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ABSTRACT

For a prime p > 2 and a smooth proper p–adic formal scheme X over OK where K is a

p–adic field of absolute ramification degree e, we study a series of conditions (Crs), s ≥ 0 that

partially control the GK–action on the image of the associated Breuil–Kisin prismatic co-

homology RΓ�(X/S) inside the Ainf–prismatic cohomology RΓ�(XAinf/Ainf). The condition

(Cr0) is a criterion for a Breuil–Kisin–Fargues GK–module to induce a crystalline represen-

tation used by Gee and Liu in [  14 , Appendix F], and thus leads to a proof of crystallinity of

Hi
ét(Xη,Qp) that avoids the crystalline comparison. The higher conditions (Crs) are used in

an adaptation of a ramification bounds strategy of Caruso and Liu from [  11 ]. As a result,

we establish ramification bounds for the mod p representations Hi
ét(Xη,Z/pZ) for arbitrary

e and i, which extend or improve existing bounds in various situations.
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1. INTRODUCTION

1.1 Background: Shafarevich conjectures and Fontaine’s ramification bounds

In his highly influential talk at the 1962 International Congress of Mathematicians in

Stockholm, I. R. Shafarevich proposed several conjectures regarding complete smooth curves

over number fields. In analogy with Hermite’s theorem, whose basic version 

1
 states that a

number field K has only finitely many unramified extensions E/F of a fixed degree, Shafare-

vich conjectured that there are only finitely many isomorphism classes of curves C over F of

a given genus g ≥ 1 that have good reduction everywhere. In the F = Q case, he moreover

conjectured that no such curves exist, in line with Minkowski’s theorem that implies the

non–existence of everywhere unramified extensions of Q.

Since any prime of good reduction for a curve remains a prime of good reduction for its

Jacobian, both of these conjectures were soon generalized to conjectures about abelian vari-

eties. The first one took the form that over a number field F , the set of isomorphism classes

of principally polarized g–dimensional abelian varieties with everywhere good reduction is

finite, and was proved by Faltings [ 15 ] 

2
 .

The second conjecture stated that there are no abelian varieties over Q of dimension

g ≥ 1 with good reduction everywhere or, equivalently by the theory of Néron models, that

there is no non–trivial abelian scheme over Z. This conjecture was proved by Fontaine [ 16 ]

and independently by Abrashkin [ 3 ].

The key idea in Fontaine’s (as well as Abrashkin’s) proof is to consider the potential

abelian scheme A/Z and the p–divisible group Ap∞ = {A[pn]}n∈N over Z. For suitably

chosen p (any prime p with 3 ≤ p ≤ 17), Fontaine is able to show that Ap∞ is a direct sum

of the constant and multiplicative p–divisible group; more precisely, that

Ap∞ ' (Qp/Zp)⊕g ⊕ (µp∞)⊕g. (1.1)
1

 ↑ Both Hermite’s theorem, as well as the corresponding Shafarevich finiteness conjecture over number fields,
also have a version where ramification is allowed in a prescribed finite set of places S.
2

 ↑ Famously, this result also resolved Mordell’s conjecture via the so–called Parshin’s trick [ 32 ].
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This would in particular mean that A(Z) has infinitely many p∞–torsion points, which is

not possible e.g. since the reduction map A(Z) → A(Fp) is injective on torsion points [ 25 ,

Appendix], while the group A(Fp) = AFp(Fp) is finite.

At the heart of the argument leading to ( 1.1 ) is the following bound on ramification of

finite flat group schemes, used for (the formal p–completions of) the finite stages A[pn]. To

state it in broader generality, let K be a finite extension of Qp with absolute ramification

index e = e(K/Qp). Let Γ be a finite flat pn–torsion commutative group scheme over OK .

Consider its splitting field L, that is, L = K(Γ(K)) or, alternatively, L = K
Ker ρ where

ρ : GK → Aut(Γ(K)) is the action of the Galois group GK = Gal(K/K) on K–points of Γ.

Finally, denote G(µ)
K = Gµ−1

K where Gµ
K denotes the higher ramification subgroup of GK in

the upper numbering (in the standard convention e.g. as in [  35 ]).

Theorem 1.1.1 (Fontaine, [ 16 , Theorem A]). Denote by DL/K the different of the exten-

sion L/K and by vK the additive valuation on K normalized by vK(K×) = Z. Then

(1) vK(DL/K) < e
(
n+ 1

p−1

)
.

(2) G
(µ)
K acts trivially on Γ(K) when µ > e

(
n+ 1

p−1

)
.

The GK–module A[pn](K) arises naturally as (the dual of) the first étale cohomology

of AK with coefficients Z/pnZ. It is therefore natural to consider the more general case of

pn–torsion étale cohomology. In this situation, Fontaine conjectured the following pattern

of ramification bounds.

Conjecture 1.1.2 (Fontaine, [  16 ]). Let X be a proper smooth OK–scheme. Consider the

GK–module T = Hi
ét(XK ,Z/pnZ), and let L = K

Ker ρ be its splitting field. Then

(1) vK(DL/K) < e
(
n+ i

p−1

)
,

(2) G
(µ)
K acts trivially on T when µ > e

(
n+ i

p−1

)
.

Using Fontaine–Laffaille theory [  19 ], Conjecture  1.1.2 was partially proved by Fontaine

in the special case when n = e = 1 and i < p − 1 [ 18 ], and by Abrashkin when e = 1 an

i < p−1 ([ 1 ]; see also [ 2 ]). More precisely, their proofs apply to Z/pnZ[GK ]–modules attached

9



to Fontaine–Laffaille modules. Such a module can be attached to mod pn étale cohomology

via the theorem of Fontaine–Messing [ 20 ], however, the bound is consequently established

also for pn–torsion GK–modules of the form Λ/Λ′ where Λ′ ⊆ Λ ⊆ V are two GK–stable

lattices in a crystalline Qp–representation V with Hodge–Tate weights in the range [ − i, 0]

(equivalently [0, i] by dualizing). For general n, i and e, the conjecture remains open.

1.2 Further results on ramification bounds

Subsequently, Fontaine’s and Abrashkin’s strategy for obtaining ramification bounds were

employed in the semistable context. Under the asumption i < p − 1 (and arbitrary e),

Hattori proved in [  22 ] a ramification bound for pn–torsion quotients of lattices in semistable

representations with Hodge–Tate weights in the range [− i, 0], using (a variant of) Breuil’s

filtered (φr, N)–modules. Thanks to a comparison result between log–crystalline and étale

cohomology by Caruso [  9 ], this results in a ramification bound for Hi
ét(XK ,Z/pnZ) when X

is proper with semistable reduction, assuming ie < p − 1 when n = 1 and (i + 1)e < p − 1

when n ≥ 2  

3
 .

These results were further extended by Caruso and Liu in [ 11 ] for all pn–torsion quotients

of pairs of semistable lattices with Hodge–Tate weights in [ − i, 0] (again, equivalently in

[0, i] by considering duals), without any restriction on i or e. The proof uses the theory of

(ϕ, Ĝ)–modules. Roughly speaking, a (ϕ, Ĝ)–module consists of a free Breuil–Kisin module

M and the datum of an action of Ĝ = Gal(K(µp∞ , π1/p∞)/K) on M̂ = M ⊗S,ϕ R̂ where R̂

is a suitable subring of Fontaine’s period ring Ainf = W (OC[
K

) and π ∈ K is a fixed choice of

a uniformizer. To establish the result, the essential case is that of the Z/pnZ[GK ]–module

Λ/pnΛ where Λ is a GK–stable lattice in a semistable representation V with Hodge–Tate

weights in [ − i, 0]. By a result of Liu [ 29 ], there is a unique (ϕ, Ĝ)–module M̂ associated

to Λ via an explicit functor T̂ , and moreover, the quotient M̂n := M̂/pnM̂ is a pn–torsion

version of a (ϕ, Ĝ)–module that is attached to Λ/pnΛ via a similar functor T̂n. The proof

then relies on systematic chain of modifications of the module T̂n(M̂n), with occasional (but

crucial) input coming from the knowledge of the free (ϕ, Ĝ)–module M̂ .
3

 ↑ Recently, in [  27 ] Li and Liu extended Caruso’s result to the range ie < p − 1 regardless of n, for X/OK

proper and smooth (formal) scheme. In view of this, results of [ 22 ] should apply in these situations as well.
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1.3 Case of mod p étale cohomology, and main results

In this thesis, we focus on the case of mod p étale cohomology. More precisely, let X be

a smooth proper p–adic formal scheme over OK . Denote by Xη its geometric generic fiber

in the sense of adic spaces. As before, let us fix i and let L = K
Ker ρ be the splitting field of

the mod p representation Hi
ét(Xη,Z/pZ). The main result is the following.

Theorem 1.3.1 (Theorem  6.2.10 ). Set

α =
⌊
logp

(
max

{
ip

p− 1 ,
(i− 1)e
p− 1

})⌋
+ 1, β = 1

pα

(
iep

p− 1 − 1
)
.

(1) Denoting by DL/K the different of the extension L/K, we have vK(DL/K) < 1 + eα+ β.

(2) The group G
(µ)
K acts trivially on Hi

ét(Xη,Z/pZ) when µ > 1 + eα + max
{
β, e

p−1

}
.

In particular, Theorem  1.3.1 applies for arbitrarily large i and e.

Remark 1.3.2. Note, however, that the precise shape of the estimates will depend on

the size of i and e relative to p. Concretely, one can draw from Theorem  1.3.1 the following

non–optimal, but more tractable consequence: the group G(µ)
K acts trivially on Hi

ét(Xη,Z/pZ)

when one of the following occurs.

(1) e ≤ p and µ > 1 + e
(⌊

logp
(

ip
p−1

)⌋
+ 1

)
+ e,

(2) e > p and µ > 1 + e
(⌊

logp
(

ie
p−1

)⌋
+ 1

)
+ p, 

4
 

(3) i = 1 (e, p are arbitrary) and µ > 1 + e
(
1 + 1

p−1

)
.

The starting point of the proof of Theorem  1.3.1 is the strategy of Caruso and Liu from

[ 11 ]. To implement their strategy, there are however two main obstacles.

The first obstacle is the fact that p–torsion étale cohomology does not naturally come as

a quotient of GK–stable lattices in a crystalline or semistable representation. More precisely,

while every mod p representation admits a crystalline lift by results of Emerton and Gee
4

 ↑ Strictly speaking, to obtain this precise form one has to replace (i − 1)e in α from Theorem  1.3.1 by ie,
and modify β appropriately; one can show that such form of Theorem  1.3.1 is still valid.

11



[ 14 ], there does not seem to be enough control on the Hodge–Tate weights of such lifts to be

of use in this context. As a consequence, there is no clear way how to attach (ϕ, Ĝ)–modules

to Hi
ét(Xη,Z/pZ) in general.

The type of semilinear data that is available in our context are Breuil–Kisin modules and

Breuil–Kisin–Fargues modules, an analogue of Breuil–Kisin modules over the base ring Ainf .

These modules come into the picture as the cohomology groups of the recently developed

cohomology theories of Bhatt–Morrow–Scholze and Bhatt–Scholze [ 5 ,  6 ,  7 ]. Concretely, to

a smooth p–adic formal scheme X, one can associate the “pn-torsion prismatic cohomology

theories”

RΓ�,n(X/S) = RΓ�(X/S)
L
⊗ Z/pnZ, RΓ�,n(XAinf/Ainf) = RΓ�(XAinf/Ainf)

L
⊗ Z/pnZ

where RΓ�(XAinf/Ainf),RΓ�(X/S) are the prismatic avatars of the Ainf– and Breuil–Kisin

cohomologies from [ 5 ] and [ 6 ], resp. Taking MBK = Hi
�,1(X/S) and Minf = Hi

�,1(X/Ainf), Li

and Liu showed in [  27 ] that MBK is a p–torsion Breuil–Kisin module and Minf is a p–torsion

Breuil–Kisin–Fargues module endowed with a compatible GK–action. These modules recover

the étale cohomology group Hi
ét(Xη,Z/pZ) essentially due to the étale comparison theorem for

prismatic cohomology from [  7 ]. The pair (MBK,Minf) then serves as a suitable replacement

of a torsion (ϕ, Ĝ)–module in our context.

The second obstacle in implementing the strategy of Caruso and Liu is of slightly more

technical nature. In the course of establishing the ramification bound for representation

attached to the torsion (ϕ, Ĝ)–module (Mn, M̂n), a crucial step is to provide control on the

Galois action on elements of the Breuil–Kisin module Mn inside M̂n, via a series of conditions

of the form

∀g ∈ Gal(K/K(π1/ps)) ∀x ∈Mn : g(x)− x ∈ an,s(M̂n ⊗R̂ Ainf) , (1.2)

where an,s ⊆ Ainf is a collection of ideals that is descending with increasing s. The proof of

this fact utilizes the free (ϕ, Ĝ)–module M̂ and an explicit description of the Galois action

in terms of the monodromy operator on the associated Breuil module D(M̂) (cf. [ 8 ], [ 29 ,

12



§3.2]), which is in particular a vector space over a field of characteristic 0. Since our Breuil–

Kisin(–Fargues) modules are inherently p–torsion and do not come with any apparent lift to

free modules, no such techniques are at our disposal.

To obtain an analogue of ( 1.2 ) in our setting, instead we turn to a result of Gee and Liu

that characterizes (free) Breuil–Kisin–Fargues GK–modules whose associated representation

is crystalline in terms of conditions of a similar flavor to ( 1.2 ).

Theorem 1.3.3 ([ 14 , Appendix F]). Consider a free Breuil–Kisin–Fargues GK–module

Minf , and assume that it admits a Breuil–Kisin submodule MBK with MBK ⊗S Ainf
∼→ Minf

and such that MBK ⊆MG∞
inf . Then the representation

V (Minf) = (Minf ⊗Ainf W (C[
K))ϕ=1[1/p]

is crystalline if and only if

∀g ∈ GK , ∀x ∈MBK : g(x)− x ∈ ϕ−1(µ)[π]Minf . (Cr0)

Here µ, [π] ∈ Ainf are certain distinguished elements, and G∞ denotes the closed subgroup

of GK of all elements fixing a particularly chosen system {π1/ps}s of ps–th roots of π. We call

condition (  Cr0  ) the crystalline condition. The considered formal scheme X is assumed to be

of good reduction, i.e. smooth over OK , and therefore the cohomology groups Hi
ét(Xη,Qp)

are crystalline (in this generality, by results of [ 5 ]). It is therefore reasonable to expect that

the crystalline condition applies to the pair MBK = Hi
�(X/S) and Minf = Hi

�(XAinf/Ainf),

despite the fact that these Breuil–Kisin and Breuil–Kisin–Fargues modules, resp., are not

necessarily free.

This is indeed the case and, moreover, it can be shown that the condition even applies

at the level of chain complexes, i.e. to the embedding RΓ�(X/S)→ RΓ�(XAinf/Ainf). More

precisely, one can model the cohomology theories by certain (to an extent) explicit complexes

called Čech–Alexander complexes. These were introduced in [ 7 ] in the case that X is affine,

but can be extended to (at least) arbitrary separated smooth p–adic formal schemes. The

condition (Cr0) then can be verified termwise for this pair of complexes. More generally,

13



one can introduce a decreasing series of ideals Is, s ≥ 0 where I0 = ϕ−1(µ)[π]Ainf , and then

formulate and prove the analogue of (  Cr0  ) for Is and the action of Gal(K/K(π1/ps)). As a

consequence, we obtain also the desired conditions for individual cohomology groups:

Theorem 1.3.4 (Theorem  5.1.1 , Corollary  5.2.1 , Proposition  5.2.3 ). Let X be a smooth

separated p–adic formal scheme over OK .

(1) For all s ≥ 0, the Čech–Alexander complexes Č•
BK, Č

•
inf that compute RΓ�(X/S) and

RΓ�(XAinf/Ainf), resp., satisfy (termwise) the condition

∀g ∈ Gal(K/K(π1/ps)), ∀x ∈ Č•
BK : g(x)− x ∈ IsČ•

inf . (Crs)

(2) The associated prismatic cohomology groups satisfy the crystalline condition, that is,

∀g ∈ GK , ∀x ∈ Hi
�(X/S) : g(x)− x ∈ ϕ−1(µ)[π]Hi

�(XAinf/Ainf) .

(3) For all pairs of integers s, n with s + 1 ≥ n ≥ 1, the pn–torsion prismatic cohomology

groups satisfy the condition

∀g ∈ Gal(K/K(π1/ps)), ∀x ∈ Hi
�,n(X/S) : g(x)−x ∈ ϕ−1(µ)[π]ps+1−nHi

�,n(XAinf/Ainf) .

In particular, the conditions appearing in Theorem  1.3.4 (3) specialized to n = 1 give us

an appropriate analogue of ( 1.2 ) needed to carry out the proof.

It can be further shown that the “if” part of Theorem  1.3.3 can be generalized to Breuil–

Kisin–Fargues GK–modules that are not necessarily free (Theorem  4.2.5 ), which is the typical

case for the Breuil–Kisin–Fargues modules of the form Minf = Hi
�(XAinf/Ainf). Consequently,

we obtain an alternative proof of the following aforementioned fact.

Corollary 1.3.5 (Corollary  5.2.2 ). If X is a smooth proper p–adic formal scheme over OK ,

then the cohomology groups Hi
ét(Xη,Qp) are crystalline representations.

It should be mentioned that the proof of Corollary  1.3.5 thus obtained is not quite

independent of the one in [  5 ], as it relies on a large part of the same machinery, namely
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prismatic cohomology and the étale comparison theorem. On the other hand, the proof

avoids the crystalline comparison theorem.

A natural question to ask is how the obtained bounds compare with other bounds from

the literature. Roughly speaking, the answer is as follows: in the “semistable cases” of

Hattori and Caruso–Liu [  22 ,  11 ], the known bounds are applicable to mod p étale cohomology

only when ie < p − 1 or when i = 1 by a result of Emerton and Gee [  13 ]. In all these

cases, the bounds from Theorem  1.3.1 agree with the bounds obtained by these authors. In

the “crystalline case” of Fontaine and Abrashkin [  16 ,  1 ], the bounds apply to mod p étale

cohomology only when e = 1 and i < p− 1, however, their bounds are slightly stronger than

the bounds from Theorem  1.3.1 (by 1 or (p− 1)/p less in terms of the index µ).

A source of ramification bounds not yet mentioned comes from the work of Caruso

[ 10 ]. Here the bound is given for every Z/pnZ[GK ]–module based on its restriction to

G∞, via Fontaine’s theory of étale OE–modules [  17 ]. The observation that the GK–module

Hi
ét(Xη,Z/pnZ) has an attached Breuil–Kisin module Hi

�,n(X/S) of height ≤ i then makes

this bound explicit, as described in more detail in Remark  6.2.1 . Due to somewhat different

shapes of the estimates, the comparison with Theorem  1.3.1 is not clear–cut and it depends to

a large extent on the ground field K: when the absolute ramification of K is small (e ≤ p),

the two bounds are fairly equivalent. When the ramification is tame and large, Caruso’s

bound becomes more and more favourable, and finally, the bound from Theorem  1.3.1 is

stonger when the wild part of the absolute ramification is large (relative to the tame part of

the abs. ramification).

1.4 Organization of the thesis

In Chapter  2 , we firstly set up some auxiliary commutative algebra: the expository

Section  2.1 is devoted to the review of derived I–completeness, I–complete flatness and their

relation to the more classical notions of I–adic completeness and flatness. In Section  2.2 we

leverage this theory to obtain several auxiliary results about regular sequences on I–complete

and I–completely flat modules, with special attention given to modules over the ring Ainf .
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In Chapter  3 , we set up the formalism of prismatic cohomology (Sections  3.1 ,  3.2 ),

especially for the Breuil–Kisin prism S and the Fontaine prism Ainf , and the related theory

of Breuil–Kisin(–Fargues) modules (Section  3.4 ). We also establish the Čech–Alexander

complexes for computation of prismatic cohomology in the non–affine case (Section  3.3 ).

Chapter  4 deals with the conditions (Crs): after their formal definition and the study of

their basic algebraic properties in Section  4.1 , we decribe the role of the crystalline condition

(Cr0) in the context of Breuil–Kisin–Fargues GK–modules in more detail in Section  4.2 .

Chapter  5 is devoted to proving Theorem  1.3.4 . That is, we prove that the conditions

(Crs) hold for the embedding of Čech–Alexander complexes (Section  5.1 ), and deduce con-

sequences for the individual prismatic cohomology groups (Section  5.2 ).

Finally, in Chapter  6 we use the results from Chapter  5 to deduce the desired ramification

bounds, thus proving Theorem  1.3.1 . After setting up some additional notation and review-

ing Fontaine’s formalism for ramification bounds in Section  6.1 , the proof itself is carried

out in Section  6.2 . In the last Section  6.3 , we discuss in more detail the comparison of the

obtained bounds to other bounds in the literature.

1.5 Basic setup and conventions

Finally, let us describe basic notation and conventions used in this thesis. All rings are

always commutative. Let p denote a fixed rational prime, which is assumed to be odd. Let

k be a perfect field of characteristic p and let K ′ = W (k)[1/p] be the associated absolutely

unramified p–adic field. We fix a finite totally ramified extension K/K ′, and set e = [K : K ′].

We further fix a uniformizer π ∈ OK , and denote by E(u) ∈ W (k)[u] its minimal (Eisenstein)

polynomial. We fix an embedding of K to its algebraic closure K, and we denote by CK the

completion of K.

In K, we fix a choice (πs)s≥0 of compatible ps–th roots of unity of π, meaning that

π0 = π and πps+1 = πs for all s ≥ 0. For s ∈ N, we set Ks = K(πs), and we further denote

K∞ = ⋃
sKs. We label the corresponding absolute Galois groups in the same manner, that

is, Gs denotes the group Gal(K/Ks) for s ∈ N ∪ {∞}. In particular, G0 is the absolute

Galois group of K, which is also denoted by GK .
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Similarly, we fix a non–degenerate compatible system (ζpt)t≥0 of pt–th roots of 1 in K.

That is, ζp0 = 1, ζp satisfies ζpp = 1 and ζp 6= 1, and for all t ≥ 1 we have ζppt+1 = ζpt .

For t ≥ 0, we denote Kpt = K(ζpt), and we further set Kp∞ = ⋃
tKpt . For s, t ∈ N ∪ {0},

Kpt,s denotes the composite KptKs. This is a Galois extension of K when t ≥ s, and in

particular it makes sense to consider the Galois groups Ĝs = Gal(Kp∞,∞/Ks). We further

denote Ĝ = Ĝ0.

The group Ĝ is generated by its two subgroups Gal(Kp∞,∞/Kp∞) and Gal(Kp∞,∞/K∞)

(by [ 28 , Lemma 5.1.2]). The subgroup Gal(Kp∞,∞/Kp∞) is normal, and its element g is

uniquely determined by its action on the elements (πs)s, which takes the form g(πs) = ζas
ps πs,

with the integers as unique modulo ps and compatible with each other as s increases. It

follows that Gal(Kp∞,∞/Kp∞) ' Zp, with a topological generator τ given by τ(πn) = ζpnπn.

For s ≥ 0, Ĝs = Gal(Kp∞,∞/Ks) contains Gal(Kp∞,∞/K∞), and the intersection of Ĝs

with Gal(Kp∞,∞/Kp∞) is Gal(Kp∞,∞/Kp∞,s). Just as in the s = 0 case, Ĝs is generated

by these two subgroups, with the subgroup Gal(Kp∞,∞/Kp∞,s) normal and topologically

generated by the element τ ps .

For an integer j, we denote by CK(j) the semilinear CK–representation of GK given by

χj where χ is the cyclotomic character. Given a (Hodge–Tate) Qp–representation V of GK ,

we say that j is a Hodge–Tate weight for V if (V ⊗Qp CK(j))GK 6= 0. In partiular, under this

convention the cyclotomic character is of Hodge–Tate weight −1 (rather than 1) and the

étale cohomology Hi
ét(XK ,Qp) of a proper smooth OK–scheme X has Hodge–Tate weights

contained in the interval [0, i] (rather than [− i, 0]).

Given a ring A with an endomorphism t, an A–t–semilinear map on an A–module M

is an additive map T : M → M such that T (am) = t(a)T (m) for all a ∈ A and m ∈ M .

In this situation, we set t∗M = A ⊗t,A M , and define the linearization of T to be the map

Tlin : t∗M → M given by (a ⊗m) 7→ aT (m). When a group G acts on A by ring maps, a

semilinar action of G on M is an action such that each g ∈ G acts on M by an A–g–semilinear

map. Note that in this situation, g∗M can be g–semilinearly identified with M via x↔ 1⊗x.

We refer to the operation of replacing g∗M with M in this manner as “untwisting g∗M”.
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2. PRELIMINARY COMMUTATIVE ALGEBRA

2.1 Derived completion and complete flatness

In this mostly expository section, we recall the notion of derived I–completion, with

emphasis on the case of modules, and of I–complete flatness. Roughly speaking, derived

I–completion is a version of I–adic completion that has better homological properties, and

it is frequently used in the prismatic setup. On the other hand, in many situations the

computations of derived I–completions revert back to the standard I–adic completion; one

of the aims of this sections is to explain this in more detail.

The main references for this section are [  36 , 091N], [  7 ], [  33 ], [  34 ] and [ 38 ]. While the

terminology is adopted from [  36 , 091N] and [  7 ], the emphasis on the case of modules results

in that some of the arguments and viewpoints resemble more [ 33 ], [ 34 ] or [ 38 ].

For the remainder of this section, let us fix a ring A and an ideal I ⊆ A that is assumed

to be finitely generated. Denote by D(A) the (unbounded) derived category of A–modules.

Definition 2.1.1.

(1) An A–module M is called derived I–complete if for every i ≥ 0 and every f ∈ I, one has

ExtiA(A[1/f ],M) = 0.

(2) An object C ∈ D(A) is derived I–complete if RHomA(A[1/f ], C) = 0.

Remarks 2.1.2.

(1) Let M be an A–module. By [ 36 , proof of 091Q], the set of all f ∈ A such that

ExtiA(A[1/f ],M) = 0 for all i forms a radical ideal of A. Consequently, to check that

M is derived I–complete, it is enough to check the condition ExtiA(A[1/f ],M) = 0 for

f coming from a set of generators of I (or even a set of generators up to radical). Ad-

ditionally, a derived I–complete module is automatically derived J–complete whenever

J ⊆ A is a finitely generated ideal with J ⊆
√
I.

(2) There is always a two–term free resolution of A[1/f ] coming from the presentation

A[1/f ] = A[X]/(1−Xf), that is,
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0 (1−Xf)A[X] A[X] A[1/f ] 0 .

It follows that ExtiA(A[1/f ],−) vanishes (on modules) for all i 6= 0, 1. Consequently, an

A–module M is derived I–complete if and only if for all f ∈ I (equivalently, for all f

taken from a fixed set of generators up to radical as per (2)),

HomA(A[1/f ],M) = Ext1
A(A[1/f ],M) = 0.

(3) Picking the free basis {(1 − Xf)Xj}j≥0 for the first term and {Xj}j≥0 for the second,

the above short exact sequence becomes

0 A⊕N A⊕N A[1/f ] 0 ,αf

with the map αf given by

αf : (a0, a1, a2, . . . ) 7−→ (a0, a1 − fa0, a2 − fa1, . . . ) .

Applying HomA(−,M), the long exact sequence associated to the short exact sequence

above implies that ExtiA(A[1/f ],M) = 0 for i = 0, 1 if and only if the map

α∗
f : M×N −→M×N

(m0,m1, . . . ) 7−→ (m0 − fm1,m1 − fm2, . . . )

is an isomorphism. Note that this map is isomorphic to the map

(X − f) : M [[X]] −→ XM [[X]]∑
i≥0

miX
i 7−→

∑
i≥0

(mi − fmi+1)X i+1 .

Consequently, M is derived I–complete if and only if the above map is an isomorphism

for all f ∈ I (equivalently, for a generating set of I, possibly up to radical).
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(4) Given C ∈ D(A), there is a spectral sequence

Ep,q
2 = ExtpA(A[1/f ], Hq(C))⇒ Extp+q

A (A[1/f ], C) ,

[ 36 , 0AVG]. Since A[1/f ] is of projective dimension ≤ 1 by the previous remarks, the

nonzero entries on the second page are concentrated in the first two columns. Conse-

quently, for every j there is a short exact sequence

0 Ext1
A(A[1/f ], Hj−1(C)) ExtjA(A[1/f ], C) HomA(A[1/f ], Hj(C)) 0 .

In particular, C is derived I–complete if and only if Hj(C) is a derived I–complete

module for every j.

Proposition 2.1.3.

(1) The category ModI−cp(A) of all derived I–complete A–modules is a full abelian subcat-

egory of Mod(A) closed under taking kernels, cokernels, and arbitrary direct products.

Moreover, it is closed under extensions, hence it forms a weak Serre subcategory of

Mod(A).

(2) The inclusion ModI−cp(A) ↪→ Mod(A) admits a left adjoint (̂−) : Mod(A)→ ModI−cp(A).

Proof. Proof can be found in [  33 , §1] or [ 36 , 091U], but let us recall the argument for

reader’s convenience. Stability of ModI−cp(A) under arbitrary direct products is an immedi-

ate consequence of the compatibility of Ext∗
A(A[1/f ],−) with direct products. To show that

ModI−cp(A) is closed under kernels, cokernels and images of modules, let g : M → N be a

morphism between two derived I–complete A–modules. Fix an arbitrary element f ∈ I.

First we consider the short exact sequence

0 Im g N Coker g 0 ,

from which we obtain, using HomA(A[1/f ],−), the long exact sequence

0 HomA(A[1/f ], Im g) HomA(A[1/f ], N) HomA(A[1/f ],Coker g)

Ext1
A(A[1/f ], Im g) Ext1

A(A[1/f ], N) Ext1
A(A[1/f ],Coker g) 0
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(with the last zero due to A[1/f ] having projective dimension ≤ 1). The middle column

consists of zeros and thus, we have HomA(A[1/f ], Im g) = Ext1
A(A[1/f ],Coker g) = 0 and

HomA(A[1/f ],Coker g) ' Ext1
A(A[1/f ], Im g).

Repeating the argument with the short exact sequence

0 Ker g M Im g 0 ,

we similarly obtain that HomA(A[1/f ],Ker g) = Ext1
A(A[1/f ], Im g) = 0 and also that

HomA(A[1/f ], Im g) ' Ext1
A(A[1/f ],Ker g). The two parts together prove that all these

groups vanish, proving the claim. To finish the proof of (1), it remains to prove that given

a short exact sequence

0 M L N 0

with M and N derived I–complete, the extension L is also derived I–complete. Once again,

this immediately follows by invoking the long exact sequence for HomA(A[1/f ],−) (for an

arbitrary element f ∈ I).

The category ModI−cp(A) is thus in particular closed under kernels and products, hence

all limits, formed in Mod(A). In other words, the natural inclusion ModI−cp(A) ↪→ Mod(A)

preserves limits. The conclusion about left adjoint then follows by the Special adjoint functor

theorem (e.g. [  36 , 0AHQ]).

There is also a derived variant of the above. As our focus is on the case of modules, we

omit the proof.

Proposition 2.1.4 ([ 36 , 091N, 091V]).

(1) The full subcategory DI−cp(A) of D(A) consisting of all derived I–complete objects is a

saturated triangulated subcategory of D(A), and also closed under arbitrary products.

(2) The inclusion DI−cp(A) ↪→ D(A) admits a left adjoint (̂−) : Mod(A)→ ModI−cp(A).

Definition 2.1.5. The functors (̂−) from Proposition  2.1.3 and  2.1.4 are called derived

completion as a module and derived completion as a complex, respectively.
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Remarks 2.1.6.

(1) If M is an A–module, one can consider the derived completion M̂ as a module, but also

as a complex when M is treated as a chain complex concentrated in degree zero. These

are in general different, and the completion as a module is equal to H0 of the completion

as a complex.

(2) Let us describe the derived completion as a module explicitly. First let us assume that

I = (f) is principal. Then it can be shown, using Remark  2.1.2 (3), that

M̂ := M [[X]]/(X − f)M [[X]]

satisfies the universal property of derived completion. Moreover, note that M̂ is obtained

from M using direct products and cokernels only, since it can be described as the cokernel

of the map

α′
f : M×N −→M×N

(m1,m2, . . . ) 7−→ (−fm1,m1 − fm2, . . . ) .

Consequently, if M is already derived I ′–complete for an ideal I ′, then M̂ is derived

(I ′, f)–complete. It follows easily that the derived completion for a finitely generated

ideal I = (f1, f2, . . . , fn) can be constructed by completing with respect to one generator

at a time, ultimately leading to the formula

M̂ = M [[X1, X2, . . . Xn]]/(X1 − f1, X2 − f2, . . . , Xn − fn)M [[X1, X2, . . . Xn]] . (2.1)

(For full proofs of the two assertions, see [ 33 , Theorems 6.4, 7.2].)

(3) A convenient consequence of the completion formula ( 2.1 ) is that in the case when

M = R is a derived I–complete A–algebra, the isomorphism R → R̂ picks a preferred

representative in R for the power series symbol ∑j1,...,jn aj1,...,jnf
j1
1 . . . f jnm as the preimage

of the class represented by ∑j1,...,jn aj1,...,jnX
j1
1 . . . Xjn

n . This gives an algebraically well–
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behaved notion of power series summation despite the fact that R is not necessarily

I–adically separated 

1
 .

(4) Let us, again without proof, add an explicit description of the derived completion of

complexes functor: when I = (f1, f2, . . . , fn), the derived completion is given by

Ĉ = R lim←−
m

C ⊗L
Z[X1,X2,...Xn] Z[X1, X2, . . . Xn]/(Xm

1 , X
m
2 , . . . , X

m
n ) ,

where C is made into a complex of modules over Z[X] = Z[X1, X2, . . . Xn] by letting

Xi act by fi. Since the sequence Xm
1 , X

m
2 , . . . X

m
n is regular, a convenient free reso-

lution of Z[X]/(Xm) is the Koszul complex Kos(Z[X];Xm
1 , X

m
2 , . . . X

m
n ). Since C is a

complex of A–modules, it then follows that C ⊗L
Z[X] Z[X]/(Xm) can be computed as

C ⊗L
A Kos(A; fm1 , . . . , fmn ). Thus, one has the more explicit formula

Ĉ = R lim←−
m

C ⊗L
A Kos(A; fm1 , . . . , fmn ) .

The proof of validity of this formula can be found e.g. in [  36 , 0920].

Just as in the case of I–adic completions, a version of the Nakayama lemma (called

“derived Nakayama” in the sequel) holds.

Proposition 2.1.7. If M is a derived I–complete A–module and M/IM = 0, then M = 0.

Proof. Once again, this is proved in [  36 , 09B9], but let us include a proof for convenience,

using a slightly different argument. First let us assume that I = (f) is principal. Suppose

for contradiction that M is derived I–complete and that M = fM 6= 0. Then we may

pick a nonzero element x0 ∈ M . Since M = fM , we may write x0 = fx1 for x1 ∈ M ,

and inductively write xi = fxi+1 with xi+1 ∈ M for all i. But this contradicts derived

f–completeness of M , since the sequence (x0, x1, . . . ) gives a nonzero element in the kernel

of the map α∗
f from Remark  2.1.2 (3).

1
 ↑ This operation further leads to the notion of contramodules, discussed e.g. in [ 33 ].
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In the general case let I = (f1, f2, . . . fn), suppose that M 6= 0 and let k ≥ 0 be the

biggest integer such that the module

M = M/(f1, f2, . . . , fk)M = Coker
(
M⊕k [f1,f2,...fk]−→ M

)

is nonzero. The cokernel expression shows that M is derived I–complete by Proposition  2.1.3 .

Thus, letting f = fk+1, M is derived f–complete with M/fM = 0, hence M = 0 by the

previous part. This contradicts the choice of k.

While Remark  2.1.6 already justifies the name “completion”, let us also establish a con-

nection with the more usual I–adic completion.

Notation 2.1.8. From now on, we adopt the following notation and terminology. We say

that a module is classically I–complete if it is I–adically complete. The I–adic completion

of M is called the classical I–completion of M , and it is denoted by M̂ cl.

Proposition 2.1.9 ([ 36 , 091R, 091T]).

(1) Any classically I–complete module is derived I–complete.

(2) For any A–module M , there is a surjection M̂ → M̂ cl.

(3) A derived I–complete module M is classically I–complete if and only if ⋂j IjM = 0.

Proof. To prove (1), let M be a classically I–complete module. First note that the mod-

ules M/IjM are derived I–complete for any j. Indeed, clearly for any f ∈ I one has

HomA(A[1/f ],M/IjM) = Ext1
A(A[1/f ],M/IjM) = 0 because multiplication by f is an iso-

morphism on A[1/f ] while nilpotent on M/IjM . Now, the category of derived I–complete

modules is closed under arbitrary limits by Proposition  2.1.3 (1), and thus, in particular,

M ' lim←−jM/IjM is derived I–complete.

To prove (2), note that M̂ cl agrees with the classical I–completion of M̂ , since this is

just consecutive composition of two left adjoint functors. It is therefore sufficient to show

that for a derived I–complete module M , the canonical map M → M̂ cl is surjective.
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Fix a set of generators f = f1, f2, . . . fn of I. An element x of lim←−jM/IjM is given by a

system of elements (xi)i of M such that xi+1 − xi = ∑
a ya f

a, where a = a1, a2, . . . , an runs

over sequences of non–negative integers that sum up to i, ya ∈M are suitable elements and

fa denotes the product fa1
1 . . . fan

n . Thus, we have

xk =
∑∑
aj=k−1

ya f
a + xk−1 =

∑∑
aj=k−1

ya f
a +

∑∑
aj=k−2

ya f
a + xk−2 = · · · =

∑∑
aj≤k−1

ya f
a

(with y0 = x0). Then the element ∑a ya f
a ∈ M (where a now runs over all length n

sequances of non–negative integers), that is, the equivalence class of ∑a yaX
a under the

isomorphism M 'M [[X1, . . . Xn]]/(X1 − f1, . . . , Xn − fn)M [[X1, . . . Xn]], maps onto x.

Moreover, note that the kernel of the mapM → M̂ cl considered above is precisely ⋂j IjM .

Thus, part (3) immediately follows.

Remark 2.1.10. Unlike ModI−cp(A), the category ModI−cl(A) of classically I–complete

A–modules is usually not abelian. This results in the key difference between derived and

classical I–completion: the functor (̂−), as any left adjoint between abelian categories, is

always right exact, while (̂−)
cl

is not. In fact, in favorable situations (see Proposition  2.1.16 

below), the derived completion functor as modules can be identified with L0(̂−)
cl
, the 0–th

left derived functor of classical I–completion.

Example 2.1.11 ([ 23 , Appendix A], [  34 , 3.6]). To demonstrate the difference between

classical and derived completion, consider the case A = Z and I = (p). LetM = ⊕
n≥0 Z/pnZ,

and consider the short exact sequence

0→
⊕
n≥1

Z
⊕

n
pn

−→
⊕
n≥1

Z→
⊕
n≥1

Z/pnZ→ 0 .

Taking the derived completion as a module then yields the exact sequence

⊕̂
n≥1

Z P−→
⊕̂
n≥1

Z→
⊕̂
n≥1

Z/pnZ→ 0 .
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Then M = ̂⊕
n≥1 Z/pnZ is a derived p–complete module that is not classically complete. It

will be shown in Proposition  2.1.17 that N := ⊕̂
n Z agrees with the classical p-completion

of ⊕n Z. The resulting module is then the module of all sequences in Zp that p–adically

converge to 0, and the map P is given by (an)n 7→ (pnan)n. Now consider the sequence

x = (p, p2, p3, . . . ) ∈ N . Then x is not in the image of P , since the sequence (1, 1, 1, . . . )

is not in N . On the other hand, for any m we have x ∈ ImP + pmN . Thus, the element

x ∈ N/Im P = M is non–zero and contained in pmM for any m. (Note that, since the first

two terms are classically p–complete, this example also shows that classical p–completion is

not right exact in general.)

Definition 2.1.12. An A–module M is I–completely (faithfully) flat if M/IM is a (faith-

fully) flat A/I–module and TorAi (M,A/I) = 0 for all i > 0.

More generally, C ∈ D(A) is I–completely (faithfully) flat if C⊗L
AA/I is a (faithfully) flat

A/I–module (the only cohomology is in degree 0 where it is given by a flat A/I–module).

Clearly flat modules are I–completely flat. The key motivating property for I–complete

flatness is that unlike flatness, it is preserved under I–completions.

Proposition 2.1.13. If F is a (faithfully) flat A–module (more generally, an I–completely

(faithfully) flat complex), then the derived I–completion of F as a complex is I–completely

(faithfully) flat.

Proof. Denote by DI−tor(A) the full triangulated subcategory of D(A) consisting of all objects

all of whose cohomology groups are I–torsion. Every such complex is derived I–complete,

and thus, we have a series of inlusions DI−tor(A) i
↪→ DI−cp(A) j

↪→ D(A), where the left adjoint

to j is derived I–completion and the left adjoint to both i and j ◦ i is −⊗L
A A/I. Therefore

F ⊗L
A A/I ' F̂ ⊗L

A A/I,

from which the claim immediately follows.
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Remark 2.1.14. Given an I–completely flat module or complex M , by several dévissage

arguments as in [ 38 , Theorem 3.3] one can gradually prove that:

(1) M ⊗L
AN is concentrated in degree zero for every finitely generated A/I–module N (i.e.,

TorAi (M,N) = 0 for all i > 0 when M is a module),

(2) M⊗L
AN is concentrated in degree zero for every A/I–module N (by taking direct limits),

(3) M ⊗L
A N is concentrated in degree zero for every k and every A/Ik–module N ,

(4) M ⊗L
A A/I

k is a flat A/Ik–module for every k,

(5) M ⊗L
A A/J is a flat A/J–module for every ideal J with J ⊇ Ik for some k.

In particular, I–complete flatness is equivalent to J–complete flatness whenever I, J are two

ideals with
√
I =
√
J. and implies J ′–complete flatness when J ′ is an ideal with J ′ ⊇ Ik for

some k.

Given an A–module M and f = f1, . . . , fn ∈ A, denote by Kos(M ; f) the usual Koszul

complex and, for m ≥ 1, denote by Kos(M ; fm) the Koszul complex Kos(M ; fm1 , fm2 , . . . , fmn ).

Let Hj(M ; fm) denote the j-th Koszul homology of M with respect to fm1 , fm2 , . . . , fmn . In

order to impose cohomological indexing, let us further set Hj(M ; fm) = H−j(M ; fm) for

each m. In other words, we treat Kos(M ; fm1 , fm2 , . . . , fmn ) as a complex in cohomological

degrees −n to 0.

Recall that {Kos(M ; fm)}m naturally forms an inverse system, with transition maps

obtained by tensoring together the morphisms Kos(A; fm+1
i )→ Kos(A; fmi ),

0 A A 0

0 A A 0

fm+1
i

fi id
fm

i

(this inverse system was already implicitly used in Remark  2.1.6 ). We therefore have, for

every fixed j ≤ 0, an inverse system of Koszul homologies {Hj(M ; fm)}m.

Definition 2.1.15. A sequence f = f1, . . . , fn ∈ A is weakly pro–regular if for each j < 0,

the inverse system {Hj(A; fm)}m is pro–zero, that is, for every m there is m′ > m such that
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the transition map Hj(A; fm′)→ Hj(A; fm) is 0. An ideal I is weakly pro–regular if it can

be generated by a weakly pro–regular sequence.

Clearly any regular sequence is weakly pro–regular, but the latter is much more general.

For example, when A is noetherian, it is a consequence of the Artin–Rees lemma that every

finite sequence is weakly pro–regular (see e.g. [  37 , Lemma 4.3.3]).

Derived completion for a weakly pro–regular ideal is exceptionally well–behaved. For

example, the connection between derived and classical completion becomes even stronger:

Proposition 2.1.16 ([ 39 , Theorem 3.11]). If the ideal I is weakly pro–regular, then the

derived completion functor (of complexes) is naturally equivalent to L(̂−)
cl
, the (total) left

derived functor of the classical I–completion.

Weak pro–regularity is also beneficial for derived I–completions of flat and I–completely

flat modules. The following proposition justifies why in the vast majority of situations

considered in this thesis, derived completions end up being equal to the classical completions.

Proposition 2.1.17. Assume that I is weakly pro–regular, and let C ∈ D−(A) be an

I–completely flat complex. Then the derived I–completion of C as a complex is concentrated

in degree 0 and it is classically I–complete. In particular, when M is an I–completely

flat A–module, then its derived I–completion as a complex is isomorphic to the classical

I–completion of M .

Proposition  2.1.17 might be known to experts. But while there are related results in the

literature, such as [  38 , Theorem 5.9] and [  38 , Theorem 4.3] (which is a direct consequence

of Proposition  2.1.17 ), we are not aware of any written statement and proof of this fact.

Therefore, we include the proof here.

Proof. Fix a weakly pro–regular sequence f = f1, f2, . . . , fn generating I, and denote by Km

the Koszul complex Kos(A; fm). First we compute the cohomology of C ⊗L
A Km. Note that

there is a spectral sequence

E2
p,q = Hp(C ⊗L

A H
q(A; fm))⇒ Hp+q(C ⊗L

A Km)

28



(by [  36 , 0662]). Since the Koszul homology Hq(A; fm) is an A/IN–module for big enough N

and C is I–completely flat, from Remark  2.1.14 we have that E2
p,q = 0 unless p = 0, whereas

E2
0,q = H0(C) ⊗A Hq(A; fm). Thus, the spectral sequence degenerates on the second page

and we have Hq(C ⊗L
A Km) = H0(C) ⊗A Hq(A; fm). In particular, for every q < 0, the

system {Hq(C ⊗L
A Km)}m is pro–zero as well.

Now, the distinguished triangle Ĉ → ∏
mC ⊗L

A Km →
∏
mC ⊗L

A Km → +1 defining the

derived inverse limit Ĉ = R lim←−mC ⊗
L
A Km gives a long exact sequence in cohomology

. . .
∏
mH

i−1(C ⊗L
A Km) ∏

mH
i−1(C ⊗L

A Km) H i
(
Ĉ
)

∏
mH

i(C ⊗L
A Km) ∏

mH
i(C ⊗L

A Km) . . .

δi−1

δi

The map δi has lim←−mH
i(C ⊗L

A Km) as kernel and lim←−
1
m
H i(C ⊗L

A Km) as cokernel, and

these are both 0 when i < 0 since the relevant system of cohomology groups is pro–zero.

When i = 0, H0(C⊗L
AKm) = H0(C)/(fm)H0(C) is a Mittag–Leffler system defining Ĥ0(C)

cl

(in particular, lim←−
1
m
H0(C ⊗L

A Km) still vanishes). It follows that H i(Ĉ) = 0 unless i = 0,

and therefore

Ĉ ' H0
(
Ĉ
)
' lim←−

m

H0(C)/(fm)H0(C) = Ĥ0(C)
cl
.

Notation 2.1.18. Let A be a commutative ring and I ⊆ A a finitely generated ideal. Given

two A–modules M,N , the symbol M⊗̂AN denotes the derived I–completion of M ⊗A N

(leaving the datum of the ideal I implicit) as a module if not stated otherwise. When C,D

are two objects of D(A), the symbol C⊗̂L
AD denotes the derived I–completion of C ⊗L

AD as

a complex.

Corollary 2.1.19. Let M be an I–completely flat A–module and B an A–algebra. Assume

that the ideals I ⊆ A, IB ⊆ B are weakly pro–regular. Then M⊗̂L
AB is an IB–completely

flat B–module, computed as the classical IB–completion of M ⊗A B.
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Proof. First note that M ⊗L
A B is an IB–completely flat B–complex since

(M ⊗L
A B)⊗L

B B/IB 'M ⊗L
A B/IB 'M ⊗A B/IB ' (M ⊗A A/I)⊗A/I B/IB

(where the second isomorphism used Remark  2.1.14 (2)), and this is a flat B/IB–module.

Thus, its derived completion as a complex is IB–completely flat as well, and by the proof of

Proposition  2.1.17 , we have

M̂ ⊗L
A B ' ̂H0(M ⊗L

A B)
cl

= M̂ ⊗A B
cl
,

as desired.

2.2 Some regularity results

Next, we discuss regular sequences on derived complete modules in general and then in

the particular case of the ring Ainf (or, slightly more generally, of the ring of Witt vectors of

a perfect complete rank 1 valuation ring of characteristic p). The first lemma is a straight-

forward generalization of standard facts about Koszul homology (e.g. [  30 , Theorem 16.5])

and regularity on finitely generated modules.

Lemma 2.2.1. Let A be a ring, I ⊆ A a finitely generated ideal and let M be a nonzero

derived I–complete module. Let f = f1, f2, . . . , fn ∈ I. Then

(1) f forms a regular sequence on M if and only if Hm(M ; f) = 0 for all m ≥ 1 if and only

if H1(M ; f) = 0.

(2) In this situation, any permutation of f1, f2, . . . , fn is also a regular sequence on M .

Proof. As Koszul homology is insensitive to the order of the elements f1, f2, . . . , fn, part (2)

follows immediately from (1).

To prove (1), the forward implications are standard and hold in full generality (see e.g.

[ 30 , Theorem 16.5]). It remains to prove that the sequence f1, f2, . . . fn is regular on M

if H1(M ; f1, f2, . . . , fn) = 0. We proceed by induction on n. The case n = 1 is clear
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(H1(M ;x) = M [x] by definition, and M/xM 6= 0 follows by derived Nakayama, Proposi-

tion  2.1.7 ). Let n ≥ 2, and denote by f ′ the truncated sequence f1, f2, . . . , fn−1. Then we

have Kos(M ; f) ' Kos(M ; f ′)⊗Kos(A; fn), which produces a short exact sequence

0 −→ Kos(M ; f ′) −→ Kos(M ; f) −→ Kos(M ; f ′)[− 1] −→ 0

of chain complexes which upon taking homologies results in a long exact sequence

· · ·H1(M ; f ′) ±fn−→ H1(M ; f ′) −→ H1(M ; f) −→M/(f ′)M ±fn→ M/(f ′)M −→M/(f)M → 0

(as in [  30 , Theorem 7.4]). By assumption, H1(M ; f) = 0 and thus, fnH1(M ; f ′) = H1(M ; f ′)

where fn ∈ I. Upon observing that H1(M ; f ′) is obtained from finite direct sum of copies

of M by repeatedly taking kernels and cokernels, it is derived I–complete. Thus, derived

Nakayama implies that H1(M ; f ′) = 0 as well, and by induction hypothesis, f ′ is a regu-

lar sequence on M . Finally, the above exact sequence also implies that fn is injective on

M/(f ′)M, and M/(f)M 6= 0 is satisfied thanks to derived Nakayama again. This finishes

the proof.

Corollary 2.2.2. Consider an ideal I = (f) of A where f = f1, f2, . . . , fn is a regular

sequence on A. Let F be a nonzero derived I–complete and I–completely flat A–module.

Then f is a regular sequence on F and consequently, each fi is a non–zero divisor on F .

Proof. By Lemma  2.2.1 (1), Hm(A; f) = 0 for all m ≥ 1, hence Kos(A; f) is a free resolution

of A/I. Thus, the complex Kos(F ; f) = F⊗AKos(A; f) computes TorA∗ (F,A/I), and hence it

is acyclic in positive degrees by I–complete flatness. We may thus conclude that Hi(F ; f) = 0

for all i ≥ 1. By Lemma  2.2.1 , f is a regular sequence on F , and it remains regular on F

after arbitrary permutation. This proves the claim.

From now until the rest of the section, we specialize to the following case. Let R be

a complete valuation ring of rank 1, meaning that its multiplicative valuation |−|R takes

values in R≥0, or equivalently that the only nonzero prime ideal of R is maximal. Assume

further that R is of characteristic p and perfect. For the rest of the section, we assume that
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A = W (R) where W (−) denotes the (p–typical) Witt vectors construction. (The typical

example that we consider later on is the Fontaine prism A = Ainf = W (OC[
K

)). Note that

R ↪→ Frac(R) induces the injection A ↪→ W (Frac(R)), where the latter is well–known to be

a discrete valuation ring (see e.g. [  35 , II.6]). In particular, A is a domain. The fact that R

is perfect implies that A is classically p–complete, since in this case we have

lim←−
n

A/pn = lim←−
n

Wn(R) = W (R) = A.

Lemma 2.2.3. For any element x ∈ A \ (A× ∪ pA) and all k, l ≥ 1, pkA ∩ xlA = pkxlA,

and p, x forms a regular sequence. Furthermore, we have that
√

(p, x) = (p,W (mR)) is the

unique maximal ideal of A, where mR denotes the maximal ideal of R. In particular, given

two choices x, x′ as above, we have
√

(p, x) =
√

(p, x′).

Proof. By assumption, the image x of x in A/p = R is non–zero and non–unit (non–unit

since x /∈ A× and p ∈ rad(A)). Thus, xl is a non–zero divisor both on A and on A/p, hence

the claim that pA ∩ xlA = pxlA follows for every l. The element p is itself non–zero divisor

on A and thus, p, x is a regular sequence.

To obtain pkA∩xlA = pkxlA for general k, one can e.g. use induction on k using the fact

that p is a non-zero divisor on A (or simply note that one may replace elements in regular

sequences by arbitrary positive powers).

To prove the second assertion, note that
√

(x) = mR since A/p = R is a rank 1 valuation

ring. It follows that (p,W (mR)) is the unique maximal ideal of A above (p), hence the unique

maximal ideal since p ∈ rad(A), and that
√

(p, x) is equal to this ideal.

Corollary 2.2.4. For every two choices x, x′ as in Lemma  2.2.3 , the (p, x)–adic and

(p, x′)–adic topologies agree. Furthermore, A is complete with respect to this topology.

The topology from Corollary  2.2.4 is usually referred to as the weak topology on A.

Proof. We need to show only the completeness statement. Pick a non–unit and non–zero

element t ∈ R and denote by [t] its Teichmüller lift. Then x = [t] satisfies the assumptions

of Lemma  2.2.3 , and so it is enough to show that A is classically (p, [t])–complete. By [  5 ,
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Lemma 3.2 (ii)], A is [t]–adically complete, and hence A is derived (p, [t])–complete since it

is so for p and [t] separately. Finally, since p, [t] is a regular sequence on A (by Lemma  2.2.3 

again), it follows that A is classically (p, [t])–complete by Proposition  2.1.17 .

Corollary 2.2.5. Let x, x′ ∈ A be as in Lemma  2.2.3 , and let F be a (derived, equivalently

classically) (p, x)–complete and (p, x)–completely flat A–module. Then p, x is a regular

sequence on F . In particular, for each k, l > 0, we have pkF ∩ (x′)lF = pk(x′)lF .

Consequently, F is a torsion–free A–module.

Proof. By Lemma  2.2.3 , A and F are derived (p, x′)–complete and F is (p, x′)–completely

flat over A, and p, x′ is a regular sequence on A. Corollary  2.2.2 then proves the claim that

p, x′ is a regular sequence on F . The sequence pk, (x′)l is then also regular on F , and the

claim pkF ∩ (x′)lF = pk(x′)lF follows.

To prove the “consequently” part, let y be a non–zero and non–unit element of A. Since

A is classically p–complete, we have ⋂n pnA = 0, and so there exist n such that y = pnx′′

with x′′ /∈ pA. If x′′ is a unit, then y is a non–zero divisor on F since so is pn. Otherwise

x′′ ∈ A\(A×∪pA), so p, x′′ is a regular sequence on F , and so is x′′, p (e.g. by Lemma  2.2.1 ).

In particular p, x′′ are both non–zero divisors on F , and hence so is y = pnx′′.

Finally, we record the following consequence on flatness of (p, x)–completely flat modules

modulo powers of p that seems interesting on its own.

Corollary 2.2.6. Let x ∈ A\(A×∪pA), and let F be a (p, x)–complete and (p, x)–completely

(faithfully) flat A–module. Then F is classically p–complete and p–completely (faithfully)

flat. In particular, F/pnF is a flat A/pn–module for every n > 0.

Proof. The fact that F is classically p–complete is clear since it is classically (equivalently,

derived) (p, x)–complete. We need to show that F/pF is a flat A/p–module and that

TorAi (F,A/p) = 0 for all i > 0. The second claim is a consequence of the fact that p

is a non–zero divisor on both A and F by Corollary  2.2.5 . For the first claim, note that

A/p = R is a valuation ring and therefore it is enough to show that F/pF is a torsion–free

R–module. This follows again by Corollary  2.2.5 .
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For the ‘faithful’ version, note that both the statements that F/pF is faithfully flat over

A/p and that F/(p, x)F is faithfully flat over A/(p, x) are now equivalent to the statement

F/mAF 6= 0 where mA = (p,W (mR)) is the unique maximal ideal of A.
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3. PRISMATIC COHOMOLOGY AND

BREUIL–KISIN(–FARGUES) MODULES

3.1 δ–rings and prisms

In this and the next section, we recall the apparatus of prismatic cohomology from [ 7 ].

First we recall the notion of δ–rings and prisms. The general reference for this material is

[ 7 , §2− 3]. Throughout this section, let p be a fixed prime.

Definition 3.1.1. A δ–ring is a commutative ring A together with an operation δ : A→ A

satisfying the following conditions:

(1) δ(0) = 0, δ(1) = 1.

(2) For all x, y ∈ A, δ(xy) = δ(x)yp + xpδ(y) + pδ(x)δ(y) .

(3) For all x, y ∈ A, δ(x + y) = δ(x) + δ(y) + Σ(x, y), where Σ(X,Y ) ∈ Z[X,Y ] is the

polynomial

Σ(X,Y ) = (X + Y )p −Xp − Y p

p
.

Remarks 3.1.2.

(1) The axioms of a δ–ring A are set up in a manner so that the map

ϕ(x) := xp + pδ(x)

is a ring homomorphism lifting the absolute Frobenius Fr : A/p → A/p. When A is

p–torsion free, to give a δ–ring structure to A is equivalent to giving such a Frobenius

lift ϕ, since δ can be in this case recovered as

δ(x) = ϕ(x)− xp
p

.

(2) It is clear from the definition that a δ–ring (for a fixed prime p) is an algebraic structure

defined only by universally quantified identities (axioms of commutative rings together
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with the four axioms regarding δ). That is, the category of all δ–rings (for the fixed

prime p) is a variety of algebras in the sense of universal algebra. Consequently:

• The category δ−Ringp of all δ–rings (with respect to the fixed prime p) has all limits

and colimits, and the forgetful functor δ−Ringp → Set (and, consequently, also the

forgetful functor δ−Ringp → CRing) preserves limits.

• In particular, Z is the initial δ–ring, with its unique δ–structure given so that

ϕ = idZ, that is,

δ(x) = x− xp

p
.

The same formula defines the unique δ–stucture on Z(p) and Zp (unique since the

only possible Frobenius lift is in both cases the identity, the only endomorphism of

Z(p) or Zp, resp.).

• There are free δ–rings, that is, the forgetful functor to sets has a left adjoint, which

we denote by X 7→ Z{X} (where X is a set). Moreover, the same is true for the

forgetful functor to commutative rings. Denote this functor by (−)δ. That is, Rδ

denotes the universal δ–ring associated to a commutative ring R. By a slight abuse

of notation, we use the same notation for the adjoint in relative setting: if A is

a δ–ring and A → B is an A–algebra, the universal A–δ–algebra associated to B

(obtained as the pushout of Aδ → Bδ along the counit map Aδ → A) is also denoted

by Bδ.

(3) Perhaps more surprisingly, the forgetful functor δ−Ringp → CRing admits also a right

adjoint, which assigns to a commutative ring R the ring W (R) of its p–typical Witt

vectors by a result of Joyal [  24 ], where the δ–operation on W (R) corresponds to the Witt

vector Frobenius. Consequently, the forgetful functor to commutative rings commutes

also with arbitrary colimits.

Later on, the following consequence of the above discussion will be useful:
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Corollary 3.1.3. Given a δ–ring A and a set X, the free δ–algebra A{X}(= A[X]δ where

A[X] is the polynomial algebra in the variables X) is a polynomial algebra in the variables

δ∗(X) = {δi(x) | i ≥ 0, x ∈ X}.

Proof. When A = Z(p) and X = {x}, this is [  7 , Lemma 2.11], but the same proof applies

to Z{x} as well. When X = {x1, x2, . . . , xn} is finite, comparing universal properties we

obtain that Z{X} ' Z{x1} ⊗Z Z{x2} ⊗Z · · · ⊗Z Z{xn}, which is a polynomial algebra in

variables δ∗(X). When X is infinite, it is a directed union of its finite subsets, and hence

Z{X} = lim−→X′ Z{X ′} where X ′ runs over finite subsets of X, and the direct limit agrees

with the direct limit of commutative rings. Upon noting that the transition maps are given

by inclusion of variables, the result is again a polynomial algebra on δ∗(X). Finally, the free

A–δ–algebra on X is given as A⊗Z Z{X}, proving the claim in general.

Definition 3.1.4. A prism (A, I) consists of a δ–ring A and an invertible ideal I ⊆ A

satisfying the following:

(1) A is derived (p, I)–complete,

(2) p ∈ (I, ϕ(I)).

A prism (A, I) is called bounded if A/I has bounded p∞–torsion, that is, if there is N > 0

such that A/I[p∞] = A/I[pN ].

A morphism of prisms f : (A, I)→ (B, J) is a morphism of δ–rings such that f(I) ⊆ J . A

morphism of prisms f : (A, I)→ (B, J) is called (faithfully) flat if (B, J) is (p, I)–completely

(faithfully) flat (as an A–module).

Remark 3.1.5. We do consider the zero ideal of the zero ring invertible. Consequently,

the zero ring with its zero ideal is a bounded prism. This seems to be in accordance with

the intention of the original Definition 3.2 of [  7 ], based on some related claims, such as [  7 ,

Lemma 3.7 (3)] or [ 4 , Lecture 5, Corollary 5.2], which would break down otherwise.

The importance of the boundedness condition is of a technical nature. In terms of the

discussion in Chapter  2 , we note the following result of Yekutieli.
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Theorem 3.1.6 ([ 39 ]). Given a bounded prism (A, I), the ideal (I, p) is weakly pro–regular.

Let us list some basic properties of prisms from [ 7 ] for convenience.

Proposition 3.1.7 ([ 7 , §3]). (1) Given a morphism of prisms (A, I) → (B, J), one has

J = IB.

(2) Given a prism (A, I), a morphism of derived (p, I)–complete δ–rings A → B can be

promoted to a map of prisms (A, I)→ (B, IB) if and only if B[I] = 0.

(3) Given a bounded prism (A, I) and a derived (p, I)–complete and (p, I)–completely flat

A–complex C, C is concentrated in degree 0 and classically (p, I)–complete. Moreover,

C[I] = 0 and C/IC has bounded p∞–torsion. In particular, the bounded prism (A, I) is

classically (p, I)–complete.

(4) Consequently, the category of flat prisms over a bounded prism (A, I) is equivalent to the

category of (p, I)–complete and (p, I)–completely flat A–δ–algebras via the equivalences

(B, IB)↔ B.

Remark 3.1.8. The claims of Proposition  3.1.7 (3), (4) can be also recovered as a conse-

quence of Theorem  3.1.6 and Proposition  2.1.17 .

An important notion for computational purposes is that of a prismatic envelope, which

we also recall.

Definition 3.1.9.

(1) A δ–pair is the datum of a δ–ring R and an ideal J ⊆ R. A morphism of δ–pairs

(R, J)→ (R′, J ′) consists of a map of δ–rings f : R→ R′ such that f(J) ⊆ J ′.

(2) Let (A, I) be a prism and (A, I)→ (R, J) a morphism of δ–pairs. The prismatic envelope

of (R, J) (over (A, I)) is a morphism of δ–pairs (R, J)→ (B, IB) such that

• (B, IB) is a prism over (A, I),
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• the map (R, J) → (B, IB) is universal among maps satisfying the first condition,

i.e. any map of δ–pairs (R, J)→ (C, IC) into a prism over (A, I) factors uniquely

(via a map of prisms) through (R, J)→ (B, IB).

Proposition 3.1.10. Let (A, I) be a bounded prism. Consider a map (A, I) → (R, J) of

δ–pairs.

(1) The prismatic envelope of (R, J) exists.

(2) Assume that R is derived (p, I)–complete. Let J∧ denote the (p, I)–complete ideal of R

generated by J , i.e. image of the map Ĵ → R where Ĵ is the derived (p, I)–completion

of J . Then the prismatic envelopes of (R, J) and of (R, J∧) agree.

(3) Let R0 be a (p, I)–completion of a polynomial A–algebra and J0 ⊆ R0 an ideal such that

R0/J0 is a (classical) p–completion of a smooth A/I-algebra. Let R be a (p, I)–complete

and (p, I)–completely flat δ–ring over R0. Then the prismatic envelope for (R, JR)

(equivalently, for (R, (JR)∧) by the previous part) is a bounded, flat prism over (A, I).

Moreover, the formation of prismatic envelopes commutes with (p, I)–completely flat

base change on the base prism (A, I).

Proof. Part (1) is [ 4 , Lecture 5, Lemma 5.1], and part (3) is a special case of [  7 , Propo-

sition 3.13, Example 3.14]. To prove (2), let (B, IB) be the prismatic envelope of (R, J).

Since IB is invertible, it is in particular a finitely genrerated projective B–module, hence

itself derived (p, I)–complete. The map of δ–pairs therefore induces a commutative square

Ĵ R

IB B,

and thus, a map of δ–pairs (R, J∧) → (B, IB). The claim now follows easily from the

universal property of prismatic envelopes.

Notation 3.1.11 (The prisms S ↪→ Ainf). Let us now describe the two prisms that are

of central interest in this thesis. Recall the notation from Introduction, namely the perfect

field k, finite totally ramified extension K of W (k)[1/p], uniformizer π ∈ K, its minimal
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(Eisenstein) polynomial E(u), a fixed system (πs)s of ps–th roots of π and a fixed system

(ζpn)n of primitive pn–th roots of unity in K.

(1) The Breuil–Kisin prism S is given as follows: As a ring, S = W (k)[[u]]. The δ–structure

on S is determined by the Frobenius lift ϕ : S → S which is given by the Witt vector

frobenius on W (k) and by the rule ϕ(u) = up (in particular, δ(u) = 0).

There is a surjective map S � OK given by u 7→ π, whose kernel is the principal ideal

I = (E(u)). Then it is not hard to verify that (S, (E(u))) forms a prism.

(2) Consider the ring of integers OCK
⊆ CK , and its tilt O[CK

= lim←−x 7→xp
OCK

/p. The

Fontaine prism Ainf is then given by Ainf = W (O[CK
) as a δ–ring. In particular, the Witt

vector Frobenius ϕ, given by (xi)i 7→ (xpi )i, is an isomorphism since O[CK
is perfect.

Note that one has O[CK
' lim←−x 7→xp

OCK
as multiplicative monoids, via the map whose

inverse is reduction of components modulo p. Consequently, there is a multiplicative

map (−)] : O[CK
' lim←−x 7→xp

OCK

pr0→ OCK
. This induces a ring map θ : Ainf � OCK

given,

in terms of Teichmüller coordinates on W (O[CK
), by the formula

θ

( ∞∑
i=0

pi[xi]
)

=
∞∑
i=0

pix]i.

The kernel of this map can be shown to be principal, generated by the element ω = µ
ϕ−1(µ) ,

where µ = [ε] − 1 and ε ∈ O[CK
is given by the system of primite pn–th roots of unity

(1, ζp, ζp2 , . . . ). Then (Ainf , (ω)) is a prism.

(3) Let π ∈ O[CK
be the element determined by the system (π, π1, π2, . . . ). Then the map

S → Ainf given by u 7→ [π] is injective, and in fact faithfully flat (as an algebra map,

i.e. in the classical sense) by [ 14 , Proposition 2.2.13]. Clearly this embedding is com-

patible with the Frobenius lifts, hence it is a map of δ–rings. Moreover, the fact that

θ([π]) = π shows that E(u) lands in Ker θ, therefore the map is in fact a map of prisms

(S, (E(u)))→ (Ainf , (ω)). Consequently, it follows from Proposition  3.1.7 (1) that E([π])

equals ω up to multiplication by an Ainf–unit.

40



(4) As the embedding of prisms S → Ainf remains fixed throughout the whole thesis, to

simplify notation we adopt the following convention: we treat the variable u as an

element of Ainf via identification with [π], and view S as a subring of Ainf (and thus,

talk about the principal ideal E(u)Ainf etc.). Similarly, instead of the more standard

notation µ for the element [ε]− 1 ∈ Ainf , we denote this element by v  

1
 .

3.2 Prismatic cohomology

Next, we recall the (relative) prismatic site and prismatic cohomology from [ 7 , §3-4].

Before stating the definitions, let us briefly discuss conventions regarding formal schemes.

In all cases that we consider, a formal scheme will be a p–adic formal scheme over Spf(A/I)

where (A, I) is a bounded prism (note thatA/I is in this situation classically p–complete). An

affine formal scheme Spf(R) is called smooth over A/I if the (derived, equivalently classically,

p–complete) ring R is p–completely flat over A/I and R/p is a smooth A/(I, p)–algebra. A

result of Elkik [  12 , Théorème 7] (and its extension to non–noetherian context as sketched in

[ 7 , §1.2]) then states that R is of the form R̂0
cl

for a smooth A/I–algebra R0 (that is, an

algebra such that Spec(R0)→ Spec(A/I) is a smooth map of schemes). A formal scheme X

is then smooth over A/I if it is locally a smooth affine formal scheme. As usual, X is called

separated (over A/I) if the diagonal map X→ X×A/I X is a closed embedding, and proper

if X→ Spf(A/I) is separated, of finite type and universally closed.

Definition 3.2.1.

(1) The site � is given as follows:

• The underlying category is the opposite category of the category of all bounded

prisms.

• The covers are given as the opposites of faithfully flat maps of prisms. That is,

if (B, I) → (C, IC) is a faithfully flat map of prisms, the corresponding map

{(C, IC)→ (B, I)} in � is a singleton cover.
1

 ↑ This notation originates in the fact that the embedding W (k)[[u]]→ Ainf can be extended to an embedding
W (k)[[u, v]]→ Ainf by mapping v to µ, by [ 10 , Proposition 1.14]. We will, however, not use this fact.
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Denote by O = O� the presheaf on � given by (B, IB) 7→ B.

(2) Let (A, I) be a bounded prism and let X be a smooth p–adic formal scheme over A/I.

The site (X/A)� is given as follows:

• The underlying category has as objects bounded prisms (B, IB) over (A, I) together

with a map of formal schemes Spf(B/IB) → X over A/I. The morphisms are

the opposites of maps (B, IB) → (C, IC) over (A, I) such that the induced map

Spf(C/IC)→ Spf(B/IB) is compatible with the maps to X.

• The covers are given by faithfully flat maps of prisms. That is, a morphism

in (X/A)� is considered a singleton cover if the corresponding map of prisms

(B, IB)→ (C, IC) is a faithfully flat map of prisms.

Once again, we denote by O = O� the presheaf on (X/A)� that assigns to an object of

(X/A)� the underlying ring B of the corresponding bounded prism.

Proposition 3.2.2. The data from Definition  3.2.1 define subcanonical sites �, (X/A)�,

and the corresponding presheaves O are sheaves on these sites (making them into ringed

sites).

Proof. The case of the site � is [  7 , Corollary 3.12], but the same computations verify the

claim for (X/A)�. Alternatively, one can observe that:

(1) The site (∗/A)� := (Spf(A/I)/A)� is a slice site of �, identifying O on the slice site

with the restriction of the sheaf O on �,

(2) In the case of general X, the functor hX on (∗/A)� given by

hX(B, IB) := HomA/I(Spf(B/IB),X)

is a sheaf by [  7 , Remark 4.3]. Then (X/A)� can be identified with the “slice site of

(∗/A)� over hX,” more precisely, as slice site over the site (∗/A)� extended by the sheaf

hX as per [  36 , 03A1]. Again, the sheaf O agrees with the corresponding restriction of

the sheaf O on (∗/A)�.
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In all the considered cases, the claim that the topology on the respective site is subcanon-

ical follows from the fact that the corresponding presheaf O is a sheaf.

Definition 3.2.3. Let (A, I) be a bounded prism and let X be a smooth p–adic formal

scheme over A/I. The prismatic cohomology of X over A is the sheaf cohomology

RΓ�(X/A) := RΓ((X/A)�,O)

(that is, RΓ(∗,O) where ∗ denotes the terminal sheaf on (X/A)� and where Γ(−,−) denotes

the bifunctor of morphisms of sheaves). We denote by H∗
�(X/A)) the individual cohomology

groups of RΓ�(X/A).

Given n ≥ 0, we further define the pn–torsion prismatic cohomology of X over A as

RΓ�,n(X/A) := RΓ�(X/A)⊗L
Z Z/pnZ.

The individual cohomology groups of RΓ�,n(X/A) are denoted by H∗
�,n(X/A).

Among the main results of [ 7 ], the following are the most relevant for our purposes.

Theorem 3.2.4 ([ 7 , Theorem 1.8]). Let (A, I) be a bounded prism and let X be a smooth

formal scheme over A/I.

(1) When X is additionally proper, RΓ�(X/A) is a perfect complex of A–modules.

(2) RΓ�(X/A) is endowed with a ϕA–semilinear endomorphism ϕ. When I = (d) is principal,

the induced linearized homomorphism on the i–th cohomology group,

ϕlin : H i(ϕ∗
ARΓ�(X/A))→ H i(RΓ�(X/A)) = Hi

�(X/A)

admits a map ψ in the opposite direction such that ϕlin ◦ψ = ψ ◦ϕlin = di (in particular,

ϕlin is an isomorphism after inverting d).
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(3) (Base change) If (A, I)→ (B, IB) is a map of bounded prisms, then we have

RΓ�(X/A)⊗̂L
AB

∼−→ RΓ�(XB/IB/B)

via the natural map.

(4) (Étale comparison) Assume that A is perfect, i.e. ϕA is an isomorphism, and denote by

Xη the generic fiber of X as an adic space. Then there is an isomorphism

RΓét(Xη,Z/pnZ) '
(
RΓ�,n(X/A)[1/d]

)ϕ=1

(where (−)ϕ=1 stands for taking the homotopy fiber of ϕ− 1).

Given a diagram

(B1, IB1)→ (C, IC)← (B2, IB2)

in � or (X/A)� (leaving the remaining data implicit in this case), corresponding to a pair

of maps of bounded prisms (C, IC)→ (Bi, IBi), denote the corresponding fibre product (in

the variance of �, i.e. “pushout” in the variance of prisms) by (B1, IB1) �(C,IC) (B2, IB2).

Then we have the following:

Lemma 3.2.5. Suppose that (B1, IB1) is (faithfully) flat over (C, IC). Then the fi-

bre product (B1, IB1) �(C,IC) (B2, IB2) corresponds to the prism given as the classical

(p, I)–completion of B1 ⊗C B2, and it is a (faithfully) flat prism over (B2, IB2).

Proof. This is essentially the argument in the proof of [  7 , Corollary 3.12], but let us repeat

it for clarity. By Corollary  2.1.19 , we have that

B1⊗̂
L
CB2 = B1⊗̂CB2 = ̂B1 ⊗C B2

cl
,
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and the result is (p, I)–completely flat overB2. In particular, it is a prism by Proposition  3.1.7 

(4), and therefore obviously the desired pushout of prisms (i.e. fibre product in �). The

faithfulness statement is then also clear given that

B1⊗̂CB2 ⊗B2 B2/(p, I)B2 ' B1/(p, I)B1 ⊗C/(p,I)C B2/(p, I)B2.

Note that B1⊗̂CB2/IB1⊗̂CB2 is similarly identified with the classical p–completion of

B1/IB1⊗C/ICB2/IB2, and therefore it corresponds to the fibre product of Spf(Bi/IBi)’s over

Spf(C/IC). In particular, in the case of the site (X/A)�, the implicit map Spf(C/IC)→ X

determines the appropriate maps Spf(Bi/IBi)→ X, verifying the fibre product claim in this

case.

3.3 Čech–Alexander complex

We are now ready to describe Čech–Alexander complexes for computing prismatic coho-

mology, introduced in the affine case in [  7 , §4.3], in a global setting. For the sake of being

explicit, we present the construction in detail and in a very Čech–theoretic way 

2
 .

Throughout this section, let (A, I) be a fixed bounded base prism, and let X be a smooth

separated p–adic formal scheme over A/I. Given a site C, we denote by Shv(C) the category

(topos) of sheaves of sets on C.

For our purposes a slight modification of the topology on (X/A)� is convenient. The

following proposition motivates the change.

Proposition 3.3.1. Let (A, I) be a bounded prism.

(1) Given a collection of maps of (bounded) prisms (A, I) → (Bi, IBi), i = 1, 2, . . . , n, the

canonical map (A, I)→ (C, IC) = (∏iBi, I
∏
iBi) is a map of (bounded) prisms.

2
 ↑ A possible shorter way might be to combine the affine case of the construction from [  7 ] with the fact

that prismatic cohomology satisfies Zariski descent. Such an argument would, however, involve computing
derived limits of cosimplicial δ–rings, and to make the result explicit enough, we would nonetheless need to
establish some auxiliary results, such as Proposition  3.3.11 below.
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(2) (C, IC) is flat over (A, I) if and only if each (Bi, IBi) is flat over (A, I). In that situation,

(C, IC) is faithfully flat prism over (A, I) if and only if the family of maps of formal

spectra Spf(Bi/IBi)→ Spf(A/I) is jointly surjective.

(3) Let f ∈ A be an element. Then (Âf , IÂf ), where (̂−) stands for the derived (equivalently,

classical) (p, I)–completion, is a bounded prism, and the map (A, I) → (Âf , IÂf ) is a

flat map of prisms 

3
 .

(4) Let f1, . . . , fn ∈ A be a collection of elements generating the unit ideal. Then the

canonical map (A, I)→
(∏

i Âfi
, I
∏
i Âfi

)
is a faithfully flat map of (bounded) prisms.

Proof. The proof of (1) is more or less formal. The ring C = ∏
iBi has a unique A–δ–algebra

structure since the forgetful functor from δ–rings to rings preserves limits, and C is as product

of (p, I)–complete rings (p, I)–complete. Clearly IC = ∏
i(IBi) is an invertible ideal since

each IBi is. In particular, C[I] = 0, hence C is a prism by Proposition  3.1.7 (2). Assuming

that all (Bi, IBi) are bounded, from C/IC = ∏
iBi/IBi we have C/IC[p∞] = C/IC[pk] for

k big enough so that Bi/IBi[p∞] = Bi/IBi[pk] for all i, showing that (C, IC) is bounded.

The ((p, I)–complete) flatness part of (2) is clear. For the faithful flatness statement, note

that C/(p, I)C = ∏
iBi/(p, I)Bi, hence A/(p, I)→ C/(p, I)C is faithfully flat if and only if

the map of spectra ∐i Spec(Bi/(p, I)Bi) = Spec(C/(p, I)C)→ Spec(A/(p, I)) is surjective.

Let us prove (3). Since Âf has p ∈ rad(Âf ), the equality ϕn(fk) = fkp
n+p(. . . ) shows that

ϕn(fk) for each n, k ≥ 0 is a unit in Âf . Consequently, as in [  7 , Remark 2.16], Âf = Ŝ−1A

for S = {ϕn(fk) | n, k ≥ 0}, and the latter has a unique δ–structure extending that of A by

[ 7 , Lemmas 2.15 and 2.17]. In particular, Âf is a (p, I)–completely flat A–δ–algebra, hence

(Âf , IÂf ) is flat prism over (A, I) by Proposition  3.1.7 (4).

Part (4) follows formally from parts (1)–(3).

Construction 3.3.2. Denote by (X/A)q
� the site whose underlying category is (X/A)�.

The covers on (X/A)q
� are given by the opposites of finite families {(B, IB)→ (Ci, ICi)}i of

flat maps of prisms such that the associated maps {Spf(Ci/ICi)→ Spf(B/IB)} are jointly

surjective. Let us call these “faithfully flat families” for short. The covers of the initial object
3

 ↑ Note that it can happen that Âf = 0, which occurs e.g. when f ∈ (p, I).

46



∅  

4
 are the empty cover and the identity. We similarly extend � to �q, that is, we proclaim

the identity cover and the empty cover to be covers of ∅, and generally proclaim (finite)

faithfully flat families to be covers.

Clearly isomorphisms as well as composition of covers are covers in both cases. To check

that (X/A)q
� and �q are sites, it thus remains to check the base change axiom. This is

trivial for situations involving ∅, so it remains to check that given a faithfully flat fam-

ily {(B, IB) → (Ci, ICi)}i and a morphism corresponding to a map of bounded prisms

(B, IB) → (D, ID), the fibre products (Ci, ICi) �(B,IB) (D, ID) exist and the collection

{(D, ID) → (Ci, ICi) �(B,IB) (D, ID)}i is a faithfully flat family. The existence and flat-

ness follows from Lemma  3.2.5 , and the claim about faithfully flat family follows from the

faithully flat version together with the fact that

(∏
i

(Ci, ICi)
)
�(B,IB) (D, ID) =

∏
i

(
(Ci, ICi) �(B,IB) (D, ID)

)
,

again thanks to Lemma  3.2.5 (and using Remark  3.3.3 (1) below).

Remarks 3.3.3.

(1) Note that for a finite family of objects (Ci, ICi) in (X/A)�, the structure map of the

product (A, I)→ ∏
i(Ci, ICi) together with the map of formal spectra (induced from the

maps for individual i’s)

Spf(
∏
i

Ci/ICi) =
∐
i

Spf(Ci/ICi)→ X

makes (∏iCi, I
∏
iCi) into an object of (X/A)� that is easily seen to be the coproduct of

(Ci, ICi)’s. In view of Proposition  3.3.1 (2), one thus arrives at the equivalent formulation

{Yi → Z}i is a (X/A)q
�–cover ⇔

∐
i

Yi → Z is a (X/A)�–cover.

That is, (X/A)q
� is the (finitely) superextensive site having covers of (X/A)� as singleton

covers. (Similar considerations apply to � and �q.)
4

 ↑ That is, ∅ corresponds to the zero ring, which we consider to be a prism as per Remark  3.1.5 .
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(2) The two sites are honestly different in that they define different categories of sheaves.

Namely, for every finite coproduct Y = ∐
i Yi, the collection of the canonical maps

{Yi →
∐
i Yi}i forms a (X/A)q

�–cover, and the sheaf axiom forces upon F ∈ Shv((X/A)q
�)

the identity F (∐i Yi) = ∏
iF(Yi), which is not automatic  

5
 . In fact, Shv((X/A)q

�) can be

identified with the full subcategory of Shv((X/A)�) consisting of all sheaves compatible

with finite disjoint unions in the sense above. In particular, the structure presheaf

O = O� : (B, IB) 7→ B is a sheaf for the (X/A)q
�–topology. (Again, the same is true

for � and �q, including the fact that O : (B, IB) 7→ B is a sheaf.)

Despite the above fine distinction, for the purposes of prismatic cohomology, the two

topologies are interchangeable. This is a consequence of the following lemma.

Lemma 3.3.4. Given an object (B, IB) ∈ (X/A)q
�, one has Hi((B, IB),O) = 0 for i > 0.

Proof. The sheaf O : (B, I) 7→ B on �q has vanishing positive Čech cohomology essentially

by the proof of [  7 , Corollary 3.12]: one needs to show acyclicity of the Čech complex for

any �q–cover {(B, I) → (Ci, ICi)}i, but the resulting Čech complex is identical to that for

the �–cover (B, I)→ ∏
i(Ci, ICi) (by Lemma  3.2.5 ), for which the acyclicity is proved in [ 7 ,

Corollary 3.12]. By a general result (e.g. [  36 , 03F9]), this implies vanishing of Hi

�q((B, I),O)

for all bounded prisms (B, I) and all i > 0.

Now we make use of the fact that cohomology of an object can be computed as the co-

homology of the corresponding slice site, [  36 , 03F3]. Let (B, IB) ∈ (X/A)q
�. After forgetting

structure, we may view (B, IB) as an object of �q as well, and then [  36 , 03F3] implies that

for every i, we have the isomorphisms

Hi
(X/A)q

�
((B, IB),O) ' Hi((X/A)q

�/(B, IB),O |(B,IB)),

Hi

�q((B, IB),O) ' Hi((�q
/(B, IB),O |(B,IB))

5
 ↑ For example, every constant presheaf is a sheaf for a topology given by singleton covers only, which is not

the case for (X/A)q
�.
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(where C/c for a site C and c ∈ C denotes the slice site). Upon noting that the slice

sites (X/A)q
�/(B, IB), �q/(B, IB) are equivalent sites (in a manner that identifies the two

versions of the sheaf O |(B,IB)), the claim follows.

Corollary 3.3.5. One has

RΓ((X/A)�,O) = RΓ((X/A)q
�,O).

Proof. The coverings of (X/A)q
� contain the coverings of (X/A)�, so we are in the situ-

ation of [ 36 , 0EWK], namely, there is a morphism of sites ε : (X/A)q
� → (X/A)� given

by the identity functor of the underlying categories, where the sheaf pushforward functor

ε∗ : Shv((X/A)q
�)→ Shv((X/A)�) is the natural inclusion and the (exact) inverse image func-

tor ε−1 : Shv((X/A)�)→ Shv((X/A)q
�) is the sheafification with respect to the “q”-topology.

One has

Γ((X/A)q,−) = Γ((X/A),−) ◦ ε∗

(where in this context, ε∗ denotes the inclusion of abelian sheaves only), hence

RΓ((X/A)q,O) = RΓ((X/A),Rε∗O),

and to conclude it is enough to show that Riε∗O = 0 ∀i > 0. But Riε∗O is the sheafification

of the presheaf given by (B, IB) 7→ Hi((B, IB),O) ([ 36 , 072W]), which is 0 by Lemma  3.3.4 .

Thus, Riε∗O = 0, which proves the claim.

For an open p–adic formal subscheme V ⊆ X, denote by hV the functor sending an

object(B, IB) ∈ (X/A)� to the set of factorizations of the implicit map Spf(B/IB) → X

through V ↪→ X; that is,

hV((B, IB)) =


∗ if the image of Spf(B/IB)→ X is contained in V,

∅ otherwise.
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Let (B, IB) → (C, IC) correspond to a morphism in (X/A)�. If Spf(B/IB) → X fac-

tors through V, then so does Spf(C/IC) → Spf(B/IB) → X. It follows that hV forms a

presheaf on (X/A)� (with transition maps hV((B, IB))→ hV((C, IC)) given by ∗ 7→ ∗ when

hV((B, IB)) 6= ∅, and the empty map otherwise). Note that hX is the terminal sheaf.

Proposition 3.3.6. hV is a sheaf on (X/A)q
�.

Proof. Consider a cover in (X/A)q
� given by a faithully flat family {(B, IB) → (Ci, ICi)}i.

One needs to check that the sequence

hV((B, IB)))→
∏
i

hV((Ci, ICi)) ⇒
∏
i,j

hV((Ci, ICi) �(B,IB) (Cj, ICj))

is an equalizer sequence. All the terms have at most one element; consequently, there are

just two cases to consider, depending on whether the middle term is empty or not. In both

cases, the pair of maps on the right necessarily agree, and so one needs to see that the map

on the left is an isomorphism. This is clear in the case when the middle term is empty

(since the only map into an empty set is an isomorphism). It remains to consider the case

when the middle term is nonempty, which means that hV((Ci, ICi)) = ∗ for all i. In this

case we need to show that hV((B, IB)) = ∗. Since the maps Spf(Ci/ICi) → Spf(B/IB)

are jointly surjective and each Spf(Ci/ICi)→ X lands in V, it follows that so does the map

Spf(B/IB)→ X. Thus, hV((B, IB)) = ∗, which finishes the proof.

Construction 3.3.7 (Čech–Alexander cover of V). Let us now assume additionally that

V = Spf(R) is affine, and choose a surjection PV → R where PV = Â[X] is a (p, I)–completed

free A–algebra. Denote by JV the kernel of the surjection. Then there is a commutative

diagram with exact rows

0 JV PV R 0

ĴVP δ
V P̂ δ

V
̂R⊗PV

P δ
V 0,

where (̂−) stands for derived (p, I)–completion. Note, however, that P δ
V is a flat (ac-

tually free) PV–algebra by Corollary  3.1.3 and consequently, it is equivalently classical
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(p, I)–completion (classical p–completion on the right–hand side term) by Proposition  2.1.17 .

Denote by Jδ,∧V ⊆ P̂ δ
V the image of the map ĴVP δ

V → P̂ δ
V, i.e. the (p, I)–complete ideal of P̂ δ

V

topologically generated by JV. Then we have a short exact sequence

0 Jδ,∧V P̂ δ
V

̂R⊗PV
P δ
V 0.

Let (ČV, IČV) be the prismatic envelope of (P̂ δ
V, J

δ,∧
V ). It follows from Proposition  3.1.10 that

(ČV, IČV) exists and is given by a flat prism over (A, I). The map

R→ ̂R⊗PV
P δ
V = P̂ δ

V/J
δ,∧
V → ČV/IČV

of p–complete rings corresponds to the map of formal schemes Spf(ČV/IČV)→ V ↪→ X. This

defines an object of (X/A)q
�, which we call a Čech–Alexander cover of V.

Remarks 3.3.8.

(1) Note that, by Proposition  3.1.10 , (ČV, IČV) is equivalently the prismatic envelope of

(P̂ δ
V, JVP̂

δ
V). Moreover, when the ideal JV is finitely generated, one has, in fact, the

equality Jδ,∧V = JVP̂ δ
V.

(2) Since the algebra R in Construction  3.3.7 is a p–completion of a finitely presented

A/I–algebra (as discussed at the beginning of Section  3.2 ), it follows that the map

PV → R may be chosen so that PV is the (derived) (p, I)–completion of a polynomial

A–algebra of finite type and the kernel JV is finitely generated. While such a choice may

be preferable, we formulate the construction without imposing it, as it may be conve-

nient to allow non–finite–type free algebras in the construction e.g. for the reasons of

functoriality (see the remark at the end of [ 7 , Construction 4.17]).

The following proposition justifies the “cover” part of the name.

Proposition 3.3.9. Denote by hČV
the sheaf represented by the object (ČV, IČV) ∈ (X/A)q

�.

There exists a unique map of sheaves hČV
→ hV, and it is an epimorphism.

Proof. If (B, IB) ∈ (X/A)� is an object with hČV
((B, IB)) 6= ∅, this means that the map

Spf(B/IB) → X factors through V since it factors through Spf(ČV/IČV). Thus, we also
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have hV((B, IB)) = ∗, and so the (necessarily unique) map hČV
((B, IB)) → hV((B, IB)) is

defined. When hČV
((B, IB)) is empty, the map hČV

((B, IB))→ hV((B, IB)) is still defined

and unique, namely given by the empty map. Thus, the claimed morphism of sheaves exists

and is unique.

We show that this map is an epimorphism. Let (B, IB) ∈ (X/A)� be an object such

that hV((B, IB)) = ∗, i.e. such that Spf(B/IB) → X factors through V, and consider the

map R → B/IB associated to the map Spf(B/IB) → V. Since PV is a (p, I)–completed

free A–algebra surjecting onto R and B is (p, I)–complete, the map R → B/IB admits

a lift PV → B. This induces an A–δ–algebra map P̂ δ
V → B which gives a morphism of

δ–pairs (P̂ δ
V, J

δ,∧
V )→ (B, IB), and further the map of prisms (ČV, IČV)→ (B, IB) using the

universal properties of objects involved. It is easy to see that this is indeed (the opposite of)

a morphism in (X/A)�. This shows that hČV
((B, IB)) is nonempty whenever hV((B, IB))

is. Thus, the map is an epimorphism.

Let V = {Vj}j∈J be an affine open cover of X. For an integer n ≥ 1 and a multi–index

(j1, j2, . . . , jn) ∈ Jn, denote by Vj1,...jn the intersection Vj1 ∩ · · · ∩ Vjn . As X is assumed to

be separated, each Vj1,...jn is affine and we write Vj1,...jn = Spf(Rj1,...,jn).

Remark 3.3.10 (Binary products in (X/A)�). For (B, IB), (C, IC) ∈ (X/A)�, let us

denote their binary product by (B, IB)� (C, IC). Let us describe it explicitly at least under

the additional assumptions that

(1) at least one of (B, IB), (C, IC) is a flat prism over (A, I),

(2) there are affine opens U,V ⊆ X such that hU((B, IB)) = ∗ = hV((C, IC)).

Set W = U ∩ V and denote the rings corresponding to the affine open sets U,V and W

by R,S and T, resp. Then any object (D, ID) ∈ (X/A)� with maps both to (B, IB) and

(C, IC) lives over W, i.e. satisfies hW((D, ID)) = ∗. This justifies the following construction.

Consider the following commutative diagram, where q denotes the pushout of p–complete

commutative rings, i.e. taking the classically p–completed tensor product ⊗̂ (and B⊗̂AC is

the derived, but equivalently classical, (p, I)–completion of B ⊗A C):
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B⊗̂AC

B C

(B/IB⊗̂RT )⊗̂T (C/IC⊗̂ST )

B/IB B/IB⊗̂RT A C/IC⊗̂ST C/IC

R T T S

x

x y

Let J ⊆ B⊗̂AC be the kernel of the map B⊗̂AC → (B/IB⊗̂RT )⊗̂T (C/IC⊗̂ST ). Then

(B, IB) � (C, IC) is given by the prismatic envelope of the δ–pair (B⊗̂AC, J).

Proposition 3.3.11. The Čech–Alexander covers can be chosen so that for all indices

j1, . . . , jn we have

(ČVj1,...jn
, IČVj1,...jn

) = (ČVj1
, IČVj1

) � (ČVj2
, IČVj2

) � · · ·� (ČVjn
, IČVjn

).

Proof. Clearly it is enough to show the statement for binary products. More precisely, given

two affine opens V1,V2 ⊆ X and an arbitrary initial choice of (ČV1 , IČV1) and (ČV2 , IČV2), we

show that PV12 → R12 can be chosen so that the resulting Čech–Alexander cover (ČV12 , IČV12)

of V12 is equal to (ČV1 , IČV1) � (ČV2 , IČV2). For the purposes of this proof, let us refer to a

prismatic envelope of a δ–pair (S, J) also as “the prismatic envelope of the arrow S → S/J”.

Consider αi : PVi
� Ri, i = 1, 2 as in Construction  3.3.7 , and set PV12 = PV1⊗̂APV2 .

Then one has the induced surjection α1 ⊗ α2 : PV12 → R1⊗̂A/IR2, which can be followed by

the induced map R1⊗̂A/IR2 → R12. This latter map is surjective as well since X is separated,

and therefore the composition of these two maps α12 : PV12 → R12 is surjective, with the

kernel JV12 that contains (JV1 , JV2)PV12 . We may construct a diagram analogous to the one

from Remark  3.3.10 , which becomes the diagram

53



P̂ δ
V12

P̂ δ
V1

P̂ δ
V2

R12⊗̂PV12
(P̂ δ

V12
)

R1⊗̂PV1
P̂ δ
V1

R12⊗̂PV1
P̂ δ
V1

A R12⊗̂PV2
P̂ δ
V2

R2⊗̂PV2
P̂ δ
V2

R1 R12 R12 R2,

x

x y

where the expected arrow in the central column is replaced by an isomorphic one, namely

the map obtained from the surjection PV12 → R12 by the procedure as in Construction  3.3.7 .

Now (ČV12 , IČV12) is obtained as the prismatic envelope of this composed central arrow, while

(ČV1 , IČV1) � (ČV2 , IČV2) is obtained the same way, but only after replacing the downward

arrows on the left and right by their prismatic envelopes. Comparing universal properties,

one easily sees that the resulting central prismatic envelope remains unchanged 

6
 , proving

the claim.

Remark 3.3.12. Suppose that for each j, the initial choice of the map PVj
→ Rj has

been made as in Remark  3.3.8 (2), that is, PVj
is the (p, I)–completion of a finite type free

A–algebra and the ideal JVj
is finitely generated. If now PVj1,j2,...jn

is the (p, I)–completed free

A–algebra for Vj1,j2,...jn obtained by iterating the procedure in the proof of Proposition  3.3.11 ,

it is easy to see that in this case, the algebra PVj1,j2,...jn
is still the (p, I)–completion of a finite

type free A–algebra, and it can be shown that the corresponding ideal JVj1,j2,...jn
is finitely

generated.
6

 ↑ In more detail, one can consider the category (X/A)δ defined in the same manner as (X/A)�, except
the basic objects are given by (the opposites of) all posible (p, I)–complete δ–pairs (P, J) over (A, I) and
not just bounded prisms. Then (X/A)� forms a full subcategory of (X/A)δ, and the inclusion admits a
right adjoint induced by the operation of taking prismatic envelope. The diagram in the proof shows that
(ČV12 , IČV12) corresponds to the universal object of (X/A)� admitting maps to the objects associated to
(P̂ δ

Vi
, Jδ,∧

Vi
), i = 1, 2, but every such pair of maps factors through their prismatic envelopes (ČVi , IČVi),

which establishes a map (ČV1 , IČV1)� (ČV2 , IČV2)→ (ČV12 , IČV12) in (X/A)�. The inverse map is defined
similarly, using the pair of maps (ČV1 , IČV1)�(ČV2 , IČV2)→ (ČVi

, IČVi
)→ (P̂ δ

Vi
, Jδ,∧

Vi
), i = 1, 2, in (X/A)δ.
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In more detail, given a ring B and a finitely generated ideal J ⊆ B, Let us call a

B–algebra C J–completely finitely presented if C is derived J–complete and there exists a

map α : B[X] → C from the polynomial ring in finitely many variables X = {X1, . . . , Xn}

such that the derived J–completed map α̂ : B̂[X] → C is surjective and with a finitely

generated kernel. Then the algebra Rj1,j2,...jn corresponding to Vj1,j2,...jn is (p, I)–completely

finitely presented by Remark  3.3.8 (2), and since PVj1,j2,...jn
is the (p, I)–completion of a finite

type polynomial A–algebra, the following lemma shows that JVj1,j2,...jn
is finitely generated.

Lemma 3.3.13. Let C be a J–completely finitely presented B–algebra, and consider a

map β : B[Y ] → C from a polynomial algebra in finitely many variables Y = {Y1, . . . , Ym}

such that β̂ is surjective. Then the kernel of β̂ is finitely generated.

Proof. The proof is an adaptation of the proof of [ 36 , 00R2], which is a similar assertion

about finitely presented algebras. Consider α as in Remark  3.3.12 , and additionally let us

fix a generating set (f1, f2, . . . , fk) ⊆ B̂[X] of Ker α̂.

For i = 1, . . . ,m, let us choose gi ∈ B̂[X] such that α̂(gi) = β(Yi). Then one can define

a surjective map

θ0 : B̂[X][Y ]→ C, θ0 |B̂[X]= α̂, θ0(Yi) = β(Yi),

and it is easy to see that Ker θ0 = (f1, . . . , fk, Y1 − g1, . . . , Ym − gm). That is, we have an

exact sequence

(B̂[X][Y ])⊕k+m → B̂[X][Y ] θ0→ C → 0,

where the map on the left is a module map determined by the finite set of generators of

Ker θ0. After taking the derived J–completion, the sequence becomes the exact sequence

B̂[X,Y ]
⊕k+m

→ B̂[X,Y ] θ→ C → 0.

That is, we have a surjective map θ : B̂[X,Y ]→ C determined on topological generators by

θ(Xj) = α(Xj), θ(Yi) = β(Yi), and the kernel of θ is (f1, . . . , fk, Y1 − g1, . . . , Ym − gm).
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Next, we choose elements hj ∈ B̂[Y ] such that β̂(hj) = α(Xj) for each j. Then we have a

surjective map ψ : B̂[X,Y ]→ B̂[Y ] given by Xj 7→ hj and Yi 7→ Yi, which has the property

that β̂ ◦ ψ = θ. That is,

Ker θ = Ker (β̂ ◦ ψ) = ψ−1(Ker (β̂)),

and therefore ψ(Ker θ) = Ker β̂ since ψ is surjective. But Ker θ is finitely generated by the

previous, and hence so is Ker β̂.

Let us now return to the situation before Remark  3.3.12 . The next step is to show

that an initial choice of the Čech–Alexander covers ČVj
for an affine open cover {Vj}j of X

determines, in a suitable sense, a global cover of X.

Proposition 3.3.14. The map ∐
j hVj

→ hX = ∗ (where ∐ denotes the coproduct in

Shv((X/A)q
�)) to the final object is an epimorphism, hence so is the map ∐j hČVj

→ ∗.

Proof. It is enough to show that for a given object (B, IB) ∈ (X/A)q
�, there is a faithfully

flat family (B, IB)→ (Ci, ICi) in (X/A)q,op
� such that ∐pre

j hVj
((Ci, ICi)) 6= ∅ for all i where∐pre denotes the coproduct of presheaves.

With that aim, let us first consider the preimages Wj ⊆ Spf(B/IB) of each Vj under

the map Spf(B/IB)→ X. This is an open cover of Spf(B/IB) that corresponds to an open

cover of SpecB/(p, I)B. One can then choose f1, f2, . . . , fm such that {Spec(B/(p, I)B)fi
}i

refines this cover, i.e. every Spec(B/(p, I)B)fi
corresponds to an open subset of Wj(i) for

some index j(i).

The elements f1, . . . , fm generate the unit ideal of B since they do so modulo (p, I) which

is contained in rad(B). Thus, the family

(B, IB)→ (Ci, ICi) := (B̂fi
, IB̂fi

) i = 1, 2, . . . ,m

is easily seen to give the desired faithfully flat family, with each ∐pre
j hVj

((Ci, ICi)) nonempty,

since each Spf(Ci/ICi)→ X factors through Vj(i) by construction.
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Remark 3.3.15. The proof of Proposition  3.3.14 is the one step where we used the relax-

ation of the topology, namely the fact that the faithfully flat cover (B, IB) → ∏
i(Ci, ICi)

can be replaced by the family {(B, IB)→ (Ci, ICi)}i.

Finally, we obtain the Čech–Alexander complexes in the global case.

Proposition 3.3.16. RΓ((X/A)�,O) is modelled by the Čech–Alexander complex

0 −→
∏
j

ČVj
−→

∏
j1,j2

ČVj1,j2
−→

∏
j1,j2,j3

ČVj1,j2,j3
−→ . . . (Č•

V)

Proof. By [ 36 , 079Z], the epimorphism of sheaves ∐j hČVj
→ ∗ from Proposition  3.3.14 

implies that there is a spectral sequence with E1–page

Ep,q
1 = Hq

((∐
j

hČVj

)×p
,O
)

= Hq
( ∐
j1,...,jp

hČVj1,...,jp

,O
)

=
∏

j1,...,jp

Hq((ČVj1,...,jp
, IČVj1,...,jp

),O)

converging to Hp+q(∗,O) = Hp+q((X/A)q
�,O) = Hp+q((X/A)�,O), where we implicitly used

Corollary  3.3.5 and the fact that hČVj1
×hČVj2

= hČVj1
�ČVj2

= hČVj1,j2
as in Proposition  3.3.11 ,

and similarly for higher multi–indices.

By Lemma  3.3.4 , Hq((ČVj1,...,jn
, IČVj1,...,jn

),O) = 0 for every q > 0 and every multi–index

j1, . . . , jn. The first page is therefore concentrated in a single row of the form Č•
V and

thus, the spectral sequence collapses on the second page. This proves that the cohomologies

of RΓ((X/A)�,O) are computed as cohomologies of Č•
V, but in fact, this yields a quasi–

isomorphism of the complexes themselves. (For example, analyzing the proof of [  36 , 079Z]

via [ 36 , 03OW], the double complex E••
0 of the above spectral sequence comes with a natural

map α : Č•
V → Tot(E••

0 ), and a natural quasi–isomorphism β : RΓ((X/A)�,O)→ Tot(E••
0 );

when the spectral sequence collapses as above, α is also a quasi–isomorphism).

Remarks 3.3.17.

(1) The formation of Čech–Alexander complexes is termwise compatible with flat base–

change on the base prism. That is, given a flat map of bounded prisms (A, I)→ (B, IB),

a smooth and separated formal scheme X → Spf(A/I) and a Čech–Alexander com-

plex Č• = ({Čm}m, ∂) corresponding to the affine open cover V = {Vj}j, the com-
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plex ({Čm⊗̂AB}m, ∂ ⊗ id) (which, by a slight abuse of notation, will be denoted by

Č•⊗̂AB from now on) is a Čech–Alexander complex for XB/IB corresponding to the

cover VB/IB = {(Vj)B/IB}j. Indeed, the claim immediately reduces to the case of Čech–

Alexander cover for a single affine open V. The initial p–completed free algebras can

be clearly chosen compatibly, i.e. so that PVB/IB
= PV⊗̂AB. From that point on, every

step of the construction is base–change compatible (for taking prismatic envelopes, this

is thanks to Proposition  3.1.10 (3)).

(2) Let now (A, I) be the prism (Ainf ,Ker θ) and let X be of the form X = X0 ×OK
OCK

where X0 is a smooth separated formal OK–scheme. A convenient way to describe the

GK–action on RΓ�(X/Ainf) is via base–change: given g ∈ GK , action of g on Ainf gives a

map of prisms g : (Ainf , (E(u)))→ (Ainf , (E(u))), and g∗X = X since X comes from OK .

The base–change theorem for prismatic cohomology (Theorem  3.2.4 (3)) then gives an

Ainf–linear map g∗RΓ�(X/Ainf)→ RΓ�(X/Ainf) (moreover, since g is an isomorphism it

is clear that g∗RΓ�(X/Ainf) = RΓ�(X/Ainf)⊗̂
L
Ainf ,g

Ainf agrees with the “termwise base–

change” description from previous remark). Untwisting by g on the left, this gives

an Ainf–g–semilinear action map g : RΓ�(X/Ainf) → RΓ�(X/Ainf). The exact same

procedure defines the GK–action on the the Čech–Alexander complexes modelling the

cohomology theories since they are base–change compatible.

3.4 Breuil–Kisin and Breuil–Kisin–Fargues modules

An abstract avatar of the prismatic cohomology theories RΓ�(−/S),RΓ�(−/Ainf) are

the Breuil–Kisin and Breuil–Kisin–Fargues modules, which we now briefly recall.

Definition 3.4.1.

(1) A Breuil–Kisin module is a finitely generated S–moduleM together with an isomorphism

of S[1/E(u)]–modules

ϕ = ϕM [1/E] : (ϕ∗
SM)[1/E(u)] ∼→M [1/E(u)].
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For a positive integer i, the Breuil–Kisin module M is said to be of height ≤ i if ϕM [1/E]

is induced (by linearization and localization) by a ϕ–S–semilinear map ϕM : M → M

such that, denoting ϕlin : ϕ∗M → M its linearization, there exists an S–linear map

ψ : M → ϕ∗M such that both the compositions ψ ◦ ϕlin and ϕlin ◦ ψ are multiplication

by E(u)i. A Breuil–Kisin module is of finite height if it is of height ≤ i for some i.

(2) A Breuil–Kisin–Fargues module is a finitely presented Ainf–module M such that M [1/p]

is a free Ainf [1/p]–module, together with an Ainf [1/E(u)]–linear isomorphism

ϕ = ϕM [1/E] : (ϕ∗
Ainf

M)[1/E(u)] ∼→M [1/E(u)].

Similarly, the Breuil–Kisin–Fargues module is called of height ≤ i if ϕM [1/E] comes from a

semilinear map ϕM : ϕ∗M →M such that there exist an Ainf–linear map ψ : M → ϕ∗M

such that ψ ◦ ϕlin and ϕlin ◦ ψ are multiplication maps by E(u)i, where ϕlin is the

inearization of ϕM . A Breuil–Kisin–Fargues module is of finite height if it is of height

≤ i for some i.

(3) A Breuil–Kisin–Fargues GK–module (of height ≤ i, of finite height, resp.) is a Breuil–

Kisin–Fargues module (of height ≤ i, of finite height, resp.) that is additionally endowed

with an Ainf–semilinear GK–action that makes ϕM [1/E] GK–equivariant (that makes also

ϕM GK–equivariant in the finite height cases).

That is, the definition of a Breuil–Kisin module that we use agrees with the one in [ 5 ],

and Minf is a Breuil–Kisin–Fargues module in the sense of the above definition if and only if

ϕ∗
Ainf

Minf is a Breuil–Kisin–Fargues module in the sense of [  5 ] 

7
 . The notion of Breuil–Kisin

module of height ≤ i agrees with what is called “(generalized) Kisin modules of height i”

in [  27 ]. The above notion of finite height Breuil–Kisin–Fargues modules agrees with the

one from [  14 , Appendix F] except that the modules are not assumed to be free. Also note

that under these definitions, for a Breuil–Kisin module MBK (of height ≤ i, resp.), the
7

 ↑ This is to account for the fact that while Breuil–Kisin–Fargues modules in the sense of [ 5 ] appear as
Ainf–cohomology groups of smooth proper formal schemes in their original definition, Breuil–Kisin–Fargues
modules in the above sense appear as prismatic Ainf–cohomology groups of smooth proper formal schemes.
Since the two theories differ by a ϕ–twist, so does the notion of a Breuil–Kisin–Fargues module.
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Ainf–module Minf = Ainf ⊗S MBK is a Breuil–Kisin–Fargues module (of height ≤ i, resp.),

without the need to twist the embedding S→ Ainf by ϕ.

Remark 3.4.2. Note that Definition  3.4.1 allows Breuil–Kisin(–Fargues) modules to have

p– and u–torsion in general, and in particular, we do not require these modules to be free.

The reason is that the modules coming from cohomology are generally of this form. In

particular, we also allow entirely pn–torsion Breuil–Kisin(–Fargues) modules.

However, given a Breuil–Kisin module MBK in the sense above, it is always related to a

free one: by [  5 , Propostition 4.3] there is a functorial exact sequence

0 MBK,tor MBK MBK,free MBK 0

where MBK,free is a free Breuil–Kisin module, MBK,tor is a pn-torsion module for some n

and MBK is supported at the maximal ideal (p, u). An analogous result holds also in the

Breuil–Kisin–Fargues case by [  5 , Propostition 4.13]. (Of course, in the case of pn–torsion

Breuil–Kisin(–Fargues) modules, these exact sequences degenerate.)

Definition 3.4.3 (étale realizations). Denote by C[
K the fraction field of O[CK

.

(1) Given a Breuil–Kisin module MBK, we define its étale realization by

V (MBK) :=
(
MBK ⊗S W (C[

K)
)ϕ=1

[1/p],

its integral étale realization by

T (MBK) :=
(
MBK ⊗S W (C[

K)
)ϕ=1

,

and its pn–torsion étale realization by

Tn(MBK) :=
(
MBK ⊗S Wn(C[

K)
)ϕ=1

.

(where Wn(C[
K) denotes the truncated Witt vectors W (C[

K)/pn). All the étale realiza-

tions are considered as G∞–modules via the G∞–action on the W (C[
K)–component.
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(2) Given a Breuil–Kisin–Fargues module Minf , we define its étale realization by

V inf(Minf) :=
(
Minf ⊗Ainf W (C[

K)
)ϕ=1

[1/p],

its integral étale realization by

T inf(Minf) :=
(
Minf ⊗Ainf W (C[

K)
)ϕ=1

,

and its pn–torsion étale realization by

T inf
n (Minf) :=

(
Minf ⊗Ainf Wn(C[

K)
)ϕ=1

.

When Minf additionally carries the structure of a Breuil–Kisin–Fargues GK–module, the

étale realizations are naturally GK–modules, via the GK–action on both components of

the tensor product.

The following consequence of Theorem  3.2.4 (due to Bhatt, Morrow and Scholze [  5 ,  6 ,  7 ])

relates prismatic cohomology, Breuil–Kisin(–Fargues) modules and their étale realizations.

The pn–torsion variant was established by Li and Liu [ 27 , §7.1].

Proposition 3.4.4. Let X be a proper smooth formal OK–scheme and X′ a proper smooth

formal OCK
–scheme.

(1) For every i ≥ 0 and every n ≥ 0, the modulesMinf = Hi
�(X′/Ainf),Minf,n = Hi

�,n(X′/Ainf)

are Breuil–Kisin–Fargues modules of height ≤ i (with MBK,n being pn–torsion Breuil–

Kisin–Fargues module).

(2) For every i ≥ 0 and every n ≥ 0, the modules MBK = Hi
�(X/S),MBK,n = Hi

�,n(X/S) are

Breuil–Kisin modules of height ≤ i (with MBK,n being pn–torsion Breuil–Kisin module).

(3) Denote by X′
η the generic fiber of X′ as an adic space. Then the étale realizations satisfy

V inf(Minf) ' Hi
ét(X′

η,Qp), T inf(Minf) ' Hi
ét(X′

η,Zp), T inf
n (Minf,n) ' Hi

ét(X′
η,Z/pnZ) .
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(4) Denote by Xη the geometric generic fiber of X as an adic space. Then the étale realiza-

tions satisfy

V (MBK) ' Hi
ét(Xη,Qp), T (MBK) ' Hi

ét(Xη,Zp), Tn(MBK,n) ' Hi
ét(Xη,Z/pnZ)

as G∞–modules.

(5) Assume that X′ = XOCK
. Then Minf = MBK ⊗S Ainf and Minf,n = MBK,n ⊗S Ainf

as Breuil–Kisin–Fargues modules. Moreover, they are naturally Breuil–Kisin–Fargues

GK–modules, and we have

V inf(Minf) ' Hi
ét(Xη,Qp), T inf(Minf) ' Hi

ét(Xη,Zp), T inf
n (Minf,n) ' Hi

ét(Xη,Z/pnZ)

as GK–modules.
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4. THE CONDITIONS (Crs) AND THE CRYSTALLINE

CONDITION

4.1 Definition and basic properties

In this section we define and discuss the conditions (Crs), which is in a sense the key

technical part of this work. Recall the field–theoretic setup from Introduction, namely the

Kummer tower {Ks = K(πs)}s and the corresponding sequence of absolute Galois groups

Gs = Gal(K/Ks).

There is a natural GK–action on Ainf = W (O[CK
) inbduced by the GK–action on O[CK

.

This action makes the map θ : Ainf → OCK
GK–equivariant, in particular, the kernel

E(u)Ainf is GK–stable. The GK–action on the GK–closure of S in Ainf factors through

Ĝ = Gal(Kp∞,∞/K). Note that the subgroup Gal(Kp∞,∞/K∞) of Ĝ acts trivially on ele-

ments of S, and the action of the subgroup Gal(Kp∞,∞/Kp∞) is determined by the equality

τ(u) = (v+ 1)u (where τ is a topological generator of Gal(Kp∞,∞/Kp∞) as in Introduction).

Notation 4.1.1. For an integer s ≥ 0 and i between 0 and s, denote by ξs,i the element

ξs,i = ϕs(v)
ωϕ(ω) . . . ϕi(ω) = ϕ−1(v)ϕi+1(ω)ϕi+2(ω) . . . ϕs(ω)

(recall that ω = v/ϕ−1(v) is one choice of a generator of the principal ideal Ker θ ⊆ Ainf),

and set

Is =
(
ξs,0u, ξs,1u

p, . . . , ξs,su
ps
)
⊆ Ainf .

For convenience of notation, we further set I∞ = 0 and ϕ∞(v)u = 0.

We are concerned with the following conditions.

Definition 4.1.2. Let Minf be an Ainf–module endowed with a GK–Ainf–semilinear action,

let MBK be an S–module and let MBK →Minf be an S–linear map. Let s ≥ 0 be an integer

or ∞.
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(1) An element x ∈Minf is called a (Crs)–element if for every g ∈ Gs,

g(x)− x ∈ IsMinf .

(2) We say that the pair MBK → MAinf satisfies the condition (Crs) if for every element

x ∈MBK, the image of x in Minf is (Crs).

(3) An element x ∈ Minf is called a (Cr′
s)–element if for every g ∈ Gs, there is an element

y ∈Minf such that

g(x)− x = ϕs(v)uy.

(4) We say that the pair MBK → MAinf satisfies the condition (Cr′
s) if for every element

x ∈MBK, the image of x in Minf is (Cr′
s).

(5) Aditionally, we call (Cr0)–elements crystalline elements and we call the condition (Cr0)

the crystalline condition.

Remarks 4.1.3.

(1) Since I0 = ϕ−1(v)uAinf , the crystalline condition equivalently states that for all g ∈ GK

and all x in the image of MBK,

g(x)− x ∈ ϕ−1(v)uMinf .

The reason for the extra terminology in the case s = 0 is that the condition is connected

with a criterion for certain representations to be crystalline, as discussed in Section  4.2 .

The higher conditions (Crs) will on the other hand find application in computing bounds

on ramification of pn–torsion étale cohomology. The conditions (Cr′
s) serve an auxiliary

purpose. Clearly for every s (Cr′
s) implies (Crs).

(2) Strictly speaking, one should talk about the crystalline condition (or (Crs)) for the map

f , but we choose to leave the datum of the map f implicit. This is because typically we

consider the situation that MBK is an S–submodule of Minf and MBK ⊗S Ainf ' MAinf
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via the natural map (or the derived (p, E(u))–completed variant, MBK⊗̂SAinf 'MAinf ).

Also note that f : MBK →Minf satisfies (Crs) if and only if f(MBK) ⊆Minf does.

(3) When s = ∞, both (Cr∞) and (Cr′
∞) simply state that for an element x ∈ MBK, f(x)

lands in the set MG∞
inf of G∞–fixed points of Minf .

For the rest of this section, we discuss several basic algebraic properties of the conditions

(Crs) and (Cr′
s) that will be useful later on in Chapter  5 .

Lemma 4.1.4. For any integer s, the ideals ϕs(v)uAinf and Is are GK–stable.

Proof. It is enough to prove that the ideals uAinf and vAinf are GK–stable. Note that

the GK–stability of vAinf implies GK–stability of ϕs(v)Ainf for any s ∈ Z since ϕ is a

GK–equivariant automorphism of Ainf . Once we know this, we know that gϕs(v) equals to

ϕs(v) times a unit for every g and s, the same is then true of ϕi(ω) = ϕi(v)/ϕi−1(v), hence

also of all the elements ξs,i and it follows that Is is GK–stable.

Given g ∈ GK , g(πn) = ζan
pn πn for an integer an unique modulo pn and such that

an+1 ≡ an (mod pn). It follows that g(u) = [ε]au for a p–adic integer a(= limn an). (The

Zp–exponentiation used here is defined by [ε]a = limn [ε]an and the considered limit is with

respect to the weak topology.) Thus, uAinf is GK–stable.

Similarly, we have g(ζpn) = ζbn
pn , for integers bn coprime to p, unique modulo pn and

compatible with each other as n grows. It follows that g([ε]) = [ε]b for b = limn bn, and so

g(v) = (v + 1)b − 1 = limn((v + 1)bn − 1). The resulting expression is still divisible by v. To

see that, fix the integers bn to have all positive representatives. Then the claim follows from

the formula

(v + 1)bn − 1 = v((v + 1)bn−1 + (v + 1)bn−2 + · · ·+ 1),

upon noting that the sequence of elements ((v+1)bn−1+(v+1)bn−2+· · ·+1) = ((v+1)bn−1)/v

is still (p, v)–adically (i.e. weakly) convergent thanks to Lemma  2.2.3 .

In view of the above lemma, the following is a convenient restatement of the conditions

(Crs), (Cr′
s).
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Lemma 4.1.5. Given f : MBK →Minf as in Definition  4.1.2 , the pair (MBK,Minf) satisfies

the condition (Crs) ((Cr′
s), resp.) if and only if the image of MBK in Minf := Minf/IsMinf

(Minf := Minf/ϕ
s(v)uMinf , resp.) lands in Minf

Gs .

Proof. Upon noting that the GK–action is well–defined on Minf thanks to Lemma  4.1.4 , this

is just a direct reformulation of the conditions (Crs) or (Cr′
s).

Assume that f(MBK) ⊆ MG∞
inf , that is, the condition (Cr′

∞) for the pair (MBK,Minf).

Then the GK–closure of f(MBK) in Minf is contained in the GK–submodule MGKp∞,∞ , and

thus, the GK–action on it factors through Ĝ. Under relatively mild assumptions on Minf , the

Gs–action on the elements of f(MBK) is ultimately determined by τ ps , the topological gen-

erator of Gal(Kp∞,∞/Kp∞,s). Consequently, the remaining conditions (Cr′
s) can be checked

for the action of this single element:

Lemma 4.1.6. Let f : MBK →Minf be as in Definition  4.1.2 , and assume that (Cr′
∞) holds.

Additionally assume thatMinf is classically (p, E(u))–complete and (p, E(u))–completely flat,

and that the GK–action on Minf is continuous with respect to this topology. Then the action

of Ĝ on elements of f(MBK) makes sense, and for any finite s, the pair (MBK,Minf) satisfies

the condition (Cr′
s) if and only if

∀x ∈ f(MBK) : τ ps(x)− x ∈ ϕs(v)uMinf .

Proof. Clearly the stated condition is necessary. To prove sufficiency, assume the above

condition for τ ps . By the fixed–point interpretation of the condition (Cr′
s) as in Lemma  4.1.5 ,

it is clear that the analogous condition holds for every element g ∈ 〈τ ps〉.

Next, assume that g ∈ Gal(Kp∞,∞/Kp∞,s) = 〈τ ps〉. This means that g = limn τ
psan with

the sequence of integers (an) p–adically convergent. Then, for x ∈ f(MBK), by continuity

we have g(x) − x = limn(τ psan(x) − x), which equals to limn ϕ
s(v)uyn with yn ∈ Minf .

Upon noting that the sequence (yn) is still convergent (using the fact that the (p, E(u))–adic

topology is the (p, ϕs(v)u)–adic topology, and that p, ϕs(v)u is a regular sequence on Minf

by Lemma  2.2.5 ), we have that g(x)− x = ϕs(v)uy where y = limn yn.
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To conclude, note that every element of Ĝs is of the form g1g2 with g1 ∈ Gal(Kp∞,∞/Kp∞,s)

and g2 ∈ Gal(Kp∞,∞/K∞). Then for x ∈ f(MBK), by the assumption f(MBK) ⊆ MG∞
inf we

have g1g2(x)− x = g1(x)− x, and so the condition (Cr′
s) is proved by the previous part.

Let us now discuss some basic algebraic properties of the conditions (Crs) and (Cr′
s).

The basic situation when they are satisfied is the inclusion S ↪→ Ainf itself.

Lemma 4.1.7. The pair S ↪→ Ainf satisfies the conditions (Cr′
s) (hence also (Crs)) for all

s ≥ 0.

Proof. This is clear for s =∞, and so from now on assume that s is finite. By Lemma  4.1.6 ,

it is enough to consider the action of the element τ ps ∈ Ĝs. For an element f = ∑
i aiu

i ∈ S

we have

τ p
s(f)− f =

∑
i≥0

ai((v + 1)ps

u)i −
∑
i≥0

aiu
i =

∑
i≥1

ai((v + 1)psi − 1)ui,

and thus,
τ p

s(f)− f
ϕs(v)u =

∑
i≥1

ai
(v + 1)psi − 1

ϕs(v) ui−1 =
∑
i≥1

ai
(v + 1)psi − 1
(v + 1)ps − 1 u

i−1

Since ϕs(v) = (v+1)ps−1 divides (v+1)psi−1 for each i, the obtained series has coefficients

in Ainf , showing that τ ps(f)− f ∈ ϕs(v)uAinf , as desired.

The following lemma shows that in various contexts, it is often sufficient to verify the

conditions (Crs), (Cr′
s) on generators.

Lemma 4.1.8. Fix s ∈ N ∪ {∞}. Let (C) be either the condition (Crs) or (Cr′
s).

(1) LetMinf be anAinf–module with aGK–Ainf–semilinear action. The set of all (C)–elements

forms an S–submodule of Minf .

(2) Let Cinf be anAinf–algebra endowed with aGK–semilinear action. The set of (C)–elements

of Cinf forms an S–subalgebra of Cinf .

(3) If the algebra Cinf from (2) is additionally an Ainf–δ–algebra such thatGK acts by δ–maps

(i.e. δg = gδ for all g ∈ GK) then the set of all (C)–elements forms a S–δ–subalgebra

of Cinf .

67



(4) If the algebra Cinf as in (2) is additionally derived (p, E(u))–complete, the GK–action

on it is continuous with respect to the (p, E(u))–adic topology and CBK → Cinf is a map

of S–algebras that satisfies the condition (C), then so does ĈBK → Cinf , where ĈBK is

the derived (p, E(u))–completion of CBK. In particular, the set of all (C)–elements in

Cinf forms a derived (p, E(u))–complete S–subalgebra of Cinf .

Proof. Let J be the ideal Is if (C)=(Crs) and the ideal ϕs(v)uAinf if (C)=(Cr′
s). In view of

Lemma  4.1.5 , the sets described in (1),(2) are obtained as the preimages of (Minf/JMinf)Gs

(ring (Cinf/JCinf)Gs , resp.) under the canonical map Minf →Minf/JMinf (Cinf → Cinf/JCinf ,

resp.). As these Gs–fixed points form an S–module (S–algebra, resp.) by Lemma  4.1.7 , this

proves (1) and (2).

Similarly, to prove (3) we need to prove only that the ideal JCinf is a δ–ideal (that is, an

ideal closed under the δ–operation) and therefore the canonical projection Cinf → Cinf/JCinf

is a map of δ–rings. This is clear for s =∞, so let us consider finite s.

Let us argue first in the case (Cr′
s). As δ(u) = 0, we have

δ(ϕs(v)u) = δ(ϕs(v))up = ϕ(ϕs(v))− (ϕs(v))p
p

up = ϕs+1(v)− (ϕs(v))p
p

up.

Recall that ϕs(v) = [ε]ps−1 divides ϕs+1(v) = ([ε]ps)p−1. The numerator of the last fraction

is thus divisible by ϕs(v) and since ϕs(v)Ainf ∩ pAinf = ϕs(v)pAinf by Lemma  2.2.3 , ϕs(v)

divides the whole fraction (ϕs+1(v)− (ϕs(v))p)/p in Ainf . (We note that this is true for every

integer s, in particular s = −1, as well.)

Let us now prove that the ideal J = Is is a δ–ideal. For any i between 0 and s − 1, we

have

δ (ξs,i) = δ(ϕ−1(v)ϕi+1(ω) . . . ϕs(ω)) =

= ϕ−1(v)ωϕi+2(ω) . . . ϕs+1(ω)− ϕ−1(v)pϕi+1(ω)p . . . ϕs(ω)p
p

.

The numerator is divisible by ξs,i+1, hence so is the fraction again by Lemma  2.2.3 . Thus,

we have that δ(ξs,iup
i) = δ(ξs,i)up

i+1 is a multiple of ξs,i+1u
pi+1 . Finally, when i = s, we have

ξs,s = ϕ−1(v), and δ(ξs,s) is thus a multiple of ξs,s by the previous argument. Consequently,
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δ(ξs,sup
s) = δ(ξs,s)up

s+1 is divisible by ξs,su
ps . This shows that Is (hence also IsCinf) is a

δ–ideal.

Finally, let us prove (4). Note that E(u) ≡ ue (mod pS), hence
√

(p, E(u)) =
√

(p, ue) =√
(p, u) even as ideals of S; consequently, the derived (p, E(u))–completion agrees with

the derived (p, u)–completion both for S– and Ainf–modules. We may therefore replace

(p, E(u))–completions with (p, u)–completions throughout.

Since Cinf is derived (p, u)–complete, any power series of the form

f =
∑
i,j

ci,jp
iuj

with ci,j ∈ Cinf defines a unique  

1
 element f ∈ Cinf , and f comes from ĈBK if and only if

the coefficients ci,j may be chosen in the image of the map CBK → Cinf . Assuming this, for

g ∈ Gs we have

g(f)− f =
∑
i,j

g(ci,j)pi(γu)j −
∑
i,j

ci,jp
iuj =

=
∑
i,j

(
g(ci,j)γj − g(ci,j) + g(ci,j)− ci,j

)
piuj,

where γ is the Ainf–unit such that g(u) = γu. Thus, it is clearly enough to show, assuming the

condition (C) for (CBK, Cinf), that the terms (g(ci,j)γj − g(ci,j)) piuj and (g(ci,j)− ci,j) piuj

are in JCinf when g ∈ Gs. (Note that here we rely on the fact that an element d = ∑
i,j di,jp

iuj

with di,j ∈ JCinf is itself in JCinf , a fact that holds thanks to J being finitely generated.)

We have g(ci,j)−ci,j ∈ JCinf by assumption, so it remains to treat the term g(ci,j)(γj−1).

Note that (γj − 1) is divisible by γ − 1, which is divisible by ϕs(v) by Lemma  4.1.7 , and so

the terms g(ci,j)(γj − 1)piuj are divisible by ϕs(v)u when j ≥ 1; thus, they belong to JCinf

in both considered cases. When j = 0, these terms become 0 and there is nothing to prove.

To prove the second assertion of (4), let now CBK ⊆ Cinf be the S–subalgebra of all

crystalline elements. By the previous, the map ĈBK → Cinf satisfies (C), and hence the

image C∧
BK of this map consists of (C)–elements. Thus, we have CBK ⊆ C∧

BK ⊆ CBK, and

hence, CBK is derived (p, E(u))–complete since so is C∧
BK.

1
 ↑ Here we are using the preferred representatives of power series as mentioned in Remark  2.1.6 (3).
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Remark 4.1.9. One consequence of Lemma  4.1.8 is that the S–subalgebra C of Ainf formed

by all crystalline elements (or even (Cr′
0)–elements) forms a prism, with the distinguished

invertible ideal I = E(u)C.

For future use in applications to pn–torsion modules, we consider the following simplifi-

cation of the ideals Is appearing in the conditions (Crs).

Lemma 4.1.10. Consider integers s, n with s ≥ 0, n ≥ 1. Set t = max {0, s+ 1− n}.

Then the image of the ideal Is in the ring Wn(OC[
K

) = Ainf/p
n is contained in the ideal

ϕ−1(v)upt
Wn(OC[

K
). That is, we have Is + pnAinf ⊆ ϕ−1(v)upt

Ainf + pnAinf .

Proof. When t = 0 there is nothing to prove, therefore we may assume that t = s+1−n > 0.

In the definition of Is, we may replace the elements

ξs,i = ϕ−1(v)ϕi+1(ω)ϕi+2(ω) . . . ϕs(ω)

by the elements

ξ′
s,i = ϕ−1(v)ϕi+1(E(u))ϕi+2(E(u)) . . . ϕs(E(u)),

since the quotients ξs,i/ξ′
s,i are Ainf–units.

It is thus enough to show that for every i with 0 ≤ i ≤ s, the element

ϑs,i =
ξ′
s,iu

pi

ϕ−1(v) = ϕi+1(E(u))ϕi+2(E(u)) . . . ϕs(E(u))upi

taken modulo pn is divisible by ups+1−n .

This is clear when i ≥ s+ 1− n, and so it remains to discuss the cases when i ≤ s− n.

Write ϕj(E(u)) = (ue)pj + pxj (with xj ∈ S). Then it is enough to show that

ϑs,i
upi = ((ue)pi+1 + pxi+1)((ue)p

i+2 + pxi+2) . . . ((ue)p
s + pxs) (∗)

taken modulo pn is divisible by

up
s+1−n−pi = up

i(p−1)(1+p+···+ps−n−i).
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Since we are interested in the product (  ∗ ) only modulo pn, in expanding the brackets we

may ignore the terms that use the expressions of the form pxj at least n times. Each of

the remaining terms contains the product of at least s − i − n + 1 distinct terms from the

following list:

(ue)pi+1
, (ue)pi+2

, . . . , (ue)ps

.

Thus, each of the remaining terms is divisible by (at least)

(ue)pi+1+pi+2+···+ps−n+1 = (ue)pi·(p)·(1+p+···+ps−n−i),

which is more than needed. This finishes the proof.

4.2 Breuil–Kisin–Fargues GK–modules and the crystalline condition

The connection between Breuil–Kisin modules, Breuil–Kisin–Fargues GK–modules and

the crystalline condition (that also justifies the name) is the following theorem.

Theorem 4.2.1 ([ 14 , Appendix F], [  21 ]). Consider a free Breuil–Kisin–FarguesGK–module

Minf which admits as an S–submodule a free Breuil–Kisin module MBK ⊆ Minf of finite

height, such that Ainf ⊗S MBK
∼→ Minf (as Breuil–Kisin–Fargues modules) via the natural

map, and such that the pair (MBK,Minf) satisfies (Cr∞) and the crystalline condition. Then

the étale realization V inf(Minf) of Minf is a crystalline representation.

Remarks 4.2.2.

(1) Theorem  4.2.1 is actually an equivalence: If V inf(Minf) is crystalline, it can be shown

that the pair (MBK,Minf) satisfies the crystalline condition. We state the theorem in the

one direction since this is the one that we use. However, the converse direction motivates

why it is resonable to expect the crystalline condition for prismatic cohomology groups

that is discussed in Chapter  5 .

(2) Strictly speaking, in [ 14 , Appendix F] one assumes extra conditions on the pair Minf

(“satisfying all descents”); however, these extra assumptions are used only for a semistable

version of the statement. Theorem  4.2.1 in its equivalence form is therefore only implicit
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in the proof of [ 14 , Theorem F.11], which is based on a related crystallinity criterion of

Ozeki [ 31 , Theorem 3.8] in the context of (ϕ, Ĝ)–modules.

(3) On the other hand, Theorem  4.2.1 in the one–sided form as above is a consequence of

[ 21 , Proposition 7.11] that essentially states that V inf(Minf) is crystalline if and only if

the much weaker 

2
 condition

∀g ∈ GK : (g − 1)MBK ⊆ ϕ−1(v)W (mOC[
K

)Minf

is satisfied. We note a related result of loc. cit.: V inf(Minf) is semistable if and only if

∀g ∈ GK : (g − 1)MBK ⊆ W (mOC[
K

)Minf .

This is interesting for at least two reasons: Firstly, the proof of [ 14 , Theorem F.11]

is based on arguments of [ 31 ] that make heavy use of the fact that for any r ≥ 0,

the sequence up
n
/pnr converges p–adically to 0 in Acris, the p–completion of Apd

inf =

Ainf [(E(u)n/n!)n]. In particular, in this approach u is crucial and ϕ−1(v) is essentially

irrelevant, which appears to be the complete opposite of the situation in [ 21 ]. Secondly,

the semistable criterion above might be a good starting point in generalizing the results of

Chapters  5 and  6 to the case of semistable reduction, using the log–prismatic cohomology

developed in [ 26 ]. Thus, a natural question to ask is: Similarly to how the crystalline

condition is a stronger version of the crystallinity criterion from [ 21 ], what is an analogous

stronger (while still generally valid) version of the semistability criterion from [ 21 ]?

It will be convenient later to have version of Theorem  4.2.1 that applies to not necessarily

free Breuil–Kisin and Breuil–Kisin–Fargues modules. Consider, for a Breuil–Kisin module

MBK, the exact sequence

0 MBK,tor MBK MBK,free MBK 0

from Remark  3.4.2 . Taking the base–change to Ainf , one obtains the analogous exact sequence
2

 ↑ “Weaker” for the purposes of controlling the GK–action on the submodule MBK inside Minf .
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0 Minf,tor Minf Minf,free Minf 0

where Minf,free is a free Breuil–Kisin–Fargues module. Clearly the maps MBK → Mfree and

Minf →Minf,free become isomorphisms after inverting p.

Now, let us assume that Minf is endowed with a GK–action that makes it a Breuil–

Kisin–Fargues GK–module. The functoriality of the latter exact sequence implies that the

GK–action on Minf induces a GK–action on Minf,free, endowing it with the structure of a free

Breuil–Kisin–Faruges GK–module. In more detail, given σ ∈ GK , the semilinear action map

σ : Minf → Minf induces the Ainf–linear map σlin : σ∗Minf → Minf . As σ is an isomorphism

that fixes p, E(u) up to unit and the ideal (p, u)Ainf , it is easy to see that σ∗Minf is itself

a Breuil–Kisin–Fargues module, and the exact sequence as above but for σ∗Minf can be

identified with the upper row of the diagram

0 σ∗Minf,tor σ∗Minf σ∗Minf,free σ∗Minf 0

0 Minf,tor Minf Minf,free Minf 0,

σlin σlin σlin σlin

where the second vertical map is the linearization of σ and the rest is induced by functoriality

of the sequence. Finally, untwisting σ∗Minf,free, the third vertical map σlin induces a semilinear

map σ : Minf,free → Minf,free. Note that the module Minf [1/p] ' Minf,free[1/p] inherits the

GK–action from Minf ; it is easy to see that the GK-action on Minf,free agrees with the one on

Minf [1/p] when viewing Minf,free as its submodule.

Proposition 4.2.3. Assume that the pair MBK ↪→Minf satisfies the crystalline condition.

Then so does the pair MBK,free ↪→Minf,free.

Proof. Notice that the crystalline condition is satisfied for MBK [1/p]→Minf [1/p] and by [ 5 ,

Propositions 4.3, 4.13], this map can be identified with MBK,free[1/p] ↪→Minf,free[1/p]. Thus,

the following lemma finishes the proof.

Lemma 4.2.4. Let Finf be a free Ainf–module endowed with Ainf–semilinear GK–action

and let FBK ⊆ Finf be a free S–submodule such that FBK [1/p] ↪→ Finf [1/p] satisfies the

crystalline condition. Then the pair FBK ↪→ Finf satisfies the crystalline condition.

73



Proof. Fix an element a ∈ FBK and g ∈ GK . The crystalline condition holds after inverting

p, and so

b := (g − 1)a = ϕ−1(v)u c
pk

with c ∈ Finf . In other words (using that pk is a non-zero divisor on Finf), we have

pkb = ϕ−1(v)uc ∈ pkFinf ∩ ϕ−1(v)uFinf = pkϕ−1(v)uFinf ,

where the last equality follows by Lemma  2.2.3 since Finf is a free module. In particular,

pkb = pkϕ−1(v)ud

for yet another element d ∈ Finf . As pk is a non–zero divisor on Ainf , hence on Finf , we may

cancel out to conclude

(g − 1)a = b = ϕ−1(v)ud ∈ ϕ−1(v)uFinf ,

as desired.

Combining Theorem  4.2.1 and Proposition  4.2.3 , we arrive at the following theorem.

Theorem 4.2.5. The “free” assumption in Theorem  4.2.1 is superfluous. That is, given a

Breuil–Kisin–Fargues GK–module Minf together with its Breuil–Kisin–S–submodule MBK of

finite height such that Ainf ⊗SMBK
∼→Minf and such that the pair (MBK,Minf) satisfies the

condition (Cr∞) and the crystalline condition, the representation V inf(Minf) is crystalline.

Proof. With the notation as above, upon realizing that V inf(Minf) and V inf(Minf,free) agree,

the result is a direct consequence of Proposition  4.2.3 .
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5. THE CONDITIONS (Crs) FOR COHOMOLOGY

5.1 (Crs) for Čech–Alexander complexes

Let X be a smooth separated p–adic formal scheme over OK . Denote by Č•
BK a Čech–

Alexander complex that models RΓ�(X/S) as described in Section  3.3 , and let us set

Č•
inf = Č•

BK⊗̂SAinf (computed termwise). The next goal is to prove the following theorem,

which is a precise version of the first part of Theorem  1.3.4 from Introduction.

Theorem 5.1.1. For every m ∈ N and every s ∈ N ∪ {∞}, the pair Čm
BK → Čm

inf satisfies

the condition (Crs).

Let Spf(R) = V ⊆ X be an affine open formal subscheme. Then it is enough to prove

the content of Theorem  5.1.1 for ČBK → Činf where ČBK and Činf = ČBK⊗̂SAinf are the

Čech–Alexander covers of V and V′ = V ×S Ainf with respect to the base prism S and

Ainf , respectively, since the Čech–Alexander complexes termwise consist of products of such

covers. Let R′ = R⊗̂OK
OCK

(= R⊗̂SAinf).

Let us fix a choice of the free S–algebra P0 = S[{Xi}i∈I ] whose (p, E(u))–completion is

the algebra P = PV as in Construction  3.3.7 , with J being the kernel of the surjection P → R.

Then the corresponding choices at the Ainf–level are P ′
0 = P0 ⊗S Ainf and P ′ = P ⊗̂SAinf ,

and the associated (p, E(u))–completed “δ–envelopes” are also related by the completed base

change; that is, we have a diagram with exact rows

ĴP δ P̂ δ ̂R⊗P P δ 0

Ĵ(P ′)δ (̂P ′)δ ̂R′ ⊗P ′ (P ′)δ 0.

−⊗̂SAinf

α

(5.1)

By Remark  3.3.12 , we may and do assume that the set of variables {Xi}i is finite, and

that the ideal J is finitely generated. Consequently, after replacing the maps on the left by

their respective images (and invoking Remark  3.3.8 (1)), diagram ( 5.1 ) becomes
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0 JP̂ δ P̂ δ ̂R⊗P P δ 0

0 J (̂P ′)δ (̂P ′)δ ̂R′ ⊗P ′ (P ′)δ 0

−⊗̂SAinf −⊗̂SAinf

α

(5.2)

where the rows are exact. The middle and the last term of the second row is given the

GK–action on Ainf–coefficients, that is, g(x⊗ a) = x⊗ g(a) for every g ∈ GK , a ∈ Ainf and

x coming from the first row 

1
 . In summary, we have:

(1) On (̂P ′)δ, whose topological generators are {δj(Xi)}, the action takes the simple form

g(δj(Xi)) = δj(Xi). It is further an action by δ–maps (as it comes, functorially by

functors of δ–rings, from the action on Ainf , which is given by δ–maps).

(2) The map α is GK–equivariant and thus, the ideal J (̂P ′)δ is GK–stable.

(3) Furthermore, statements analogous to (1) and (2) hold without taking the δ–envelopes.

That is, P ′ can be given a semilinear Ainf–action determined by g(Xi) = Xi on variables,

and R′ = R⊗̂SAinf can be given an action on the second factor; the resulting map

P ′ → R′ is then GK–equivariant and therefore the kernel, which is JP ′, is GK–stable.

Moreover, these actions are compatible with the ones on (̂P ′)δ and ̂R′ ⊗P ′ (P ′)δ, resp.,

in the obvious manner.

Thanks to the GK–equivariance statement (2), the GK–action extends to the prismatic

envelope (Činf , IČinf) where the action obtained this way agrees with the one indicated in

Remark  3.3.17 . Setting (ČBK, IČBK) to be the prismatic envelope of (P̂ δ, JP̂ δ), we arrive at

the situation ČBK ↪→ Činf = ČBK⊗̂SAinf for which we wish to verify the conditions (Crs).

With the goal of understanding the GK–action on Činf even more explicitly, in similar

spirit to the proof of [  7 , Proposition 3.13] we employ the following approximation of the

prismatic envelope.

1
 ↑ Note that this description indeed makes sense: the algebra (̂P ′)δ is the (p,E(u))–completion of the free
Ainf–algebra P δ

0 ⊗S Ainf , and so the (semilinear) action on Ainf–coefficients is well–defined. The ring on the
right–hand side is in fact isomorphic to R⊗P P

δ⊗̂OK
OCK

and thus, the GK–action on the last factor makes
sense and is linear.
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Definition 5.1.2. Let B be a δ–ring, J ⊆ B an ideal with a generating set x = {xi}i∈Λ,

and let b ∈ J be an element. Denote by K0 the kernel of the B–algebra map

B[T ] = B[{Ti}i∈Λ] −→ B
[1
b

]
Ti 7−→

xi
b
,

and let K be the δ–ideal in B{T} generated by K0. Then we denote by B{x
b
} the δ–ring

B{T}/K, and call it the weak δ–blowup algebra of x and b.

That is, the above construction adjoins (in δ–sense) the fractions xi/b to B together with

all relations among them that exist in B[1/b], making it possible to naturally compute with

the fractions as opposed to possibly simpler constructions such as B{T}/(Tib− xi)δ.

Note that if B → C is a map of B–δ–algebras such that JC = bC and this ideal is

invertible, the fact that the localization map C → C[1
b
] is injective shows that there is a

unique map of B–δ–algebras B{x
b
} → C. In fact, if b happens to be a non–zero divisor

on B{x
b
}, then B{x

b
} is initial among all such B–δ–algebras. This justifies the name ’weak

δ–blowup algebra’.

The purpose of the construction is the following.

Proposition 5.1.3. Let (A, I) be a bounded prism with I = (d) principal. Consider a

map of δ–pairs (A, I)→ (B, J) and assume that (C, IC) is the prismatic envelope for (B, J)

and that it is classically (p, I)–complete. Let x = {xi}i∈Λ be a system of generators of J .

Then there is a surjective map of δ–rings B̂{x
d
}

cl
→ C, where (̂−)

cl
denotes the classical

(p, I)–completion.

Note that the assumptions apply to a Čech–Alexander cover in place of (C, IC) since it

is (p, I)–completely flat over the base prism, hence classically (p, I)–complete.

Proof. Since JC = dC and and d is a non–zero divisor on C, there is an induced map

B{x
d
} → C and hence a map of δ–rings B̂{x

d
}

cl
→ C (using [ 7 , Lemma 2.17]).

To see that this map is surjective, let C ′ denote its image in C, and denote by ι the

inclusion of C ′ into C. Then C ′ is (derived, and, consequently, clasically) (p, I)–complete
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A–δ–algebra with C ′[d] = 0. It follows that (C ′, IC ′) = (C ′, (d)) is a prism by Propo-

sition  3.1.7 (2). Thus, by the universal property of C, there is a map of B–δ–algebras

r : C → C ′ which is easily seen to be right inverse to ι. In particular, ι is surjective, proving

the claim.

Finally, we are ready to prove the following proposition which, as noted above, proves

Theorem  5.1.1 .

Proposition 5.1.4. ČBK → Činf satisfies the condition (Crs) for every s ∈ N ∪ {∞}.

Proof. Fix a generating set {yj}j of J . We obtain a commutative diagram

̂̂P δ{ y

E(u)}
̂̂(P ′)δ{ y

E(u)}

ČBK Činf ,

(5.3)

where the vertical maps are the surjective maps from Proposition  5.1.3 , and the horizontal

maps come from the classically (p, E(u))–completed base change −⊗̂SAinf .

The GK–action on (̂P ′)δ naturally extends to ̂̂(P ′)δ{ y

E(u)} by the rule on topological

generators (as a δ–ring)

g

(
yj
E(u)

)
= g(yj)
g(E(u)) = γ−1 g(yj)

E(u)

where γ is the Ainf–unit such that g(E(u)) = γE(u) (note that the fraction on the right–hand

side makes sense as g(yj) ∈ JP ′). It is easy to see that this makes the right vertical map

GK–equivariant.

It is therefore enough to prove the validity of (Crs) for the pair ( ̂̂P δ{ y

E(u)},
̂̂(P ′

0)δ{
y

E(u)}).

By Lemma  4.1.8 (3),(4), it is enough to check the conditions for the topological generators

of ̂̂P{ y

E(u)} as an S–δ–algebra, which are the generators {Xi}i (i.e. the variables originally

from P0) and {yj/E(u)}j.

Fix s ∈ N ∪ {∞}. Firstly, note that the elements Xi satisfy g(Xi) − Xi = 0 for every

g ∈ Gs; consequently, by Lemma  4.1.8 the pair P → P ′ satisfies the stronger condition

(Cr′
s). In particular, (Cr′

s) holds for these generators, and since the elements yj all come

from P , it follows that these are (Cr′
s)–elements as well. Thus, upon fixing an index j and
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an element g ∈ Gs, we may write g(yj)− yj = ϕs(v)uzj for some zj ∈ P ′. Similarly, we have

g−1(E(u)) − E(u) = (γ−1 − 1)E(u) = ϕs(v)ua with a ∈ Ainf and an Ainf–unit γ satisfying

g(E(u)) = γE(u). We may thus write

g

(
yj
E(u)

)
− yj
E(u) = γ−1g(yj)− yj

E(u) = γ−1g(yj)− γ−1yj + γ−1yj − yj
E(u) =

= γ−1 g(yj)− yj
E(u) + (γ−1 − 1) yj

E(u) .

When s =∞, we have γ = 1, g(yj) = yj and thus, the right–hand side equal to 0, as desired.

So let us consider s < ∞. Then we have g(yj) − yj = ϕs(v)uzj and since ω and E(u) are

equal up to an Ainf–unit, we may write g(yj) − yj = ξs,0uE(u)z̃j (where z̃j equals zj up to

a unit). Similarly, we have, in Ainf and hence in any Ainf–δ–GK–algebra, (γ−1 − 1) = ξs,0uã

(where ã equals a up to a unit). Thus, we obtain

g

(
yj
E(u)

)
− yj
E(u) = ξs,0uγ

−1z̃j + ξs,0uã
yj
E(u) ∈ Is(P

′)δ{
y

E(u)},

and we are done.

5.2 Consequences for cohomology groups

Let us now use Theorem  5.1.1 to draw some conclusions for individual cohomology groups,

and thus finish the proof of Theorem  1.3.4 from Introduction.

The first one is the crystalline condition for the prismatic cohomology groups and its

consequence for p–adic étale cohomology. As before, let X be a separated smooth p–adic

formal scheme over OK . Denote by XAinf the base change X×OK
OCK

= X×S Ainf , and by

Xη the geometric generic adic fiber.

Corollary 5.2.1. For any i ≥ 0, the pair Hi
�(X/S) → Hi

�(XAinf/Ainf) satisfies the crys-

talline condition, and the image of Hi
�(X/S) is contained in Hi

�(XAinf/Ainf)G∞ .

Proof. By the results of Section  3.3 , we may model the cohomology theories by the Čech–

Alexander complexes

Č•
BK → Č•

inf = Č•
BK⊗̂SAinf ,
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and by Theorem  5.1.1 the conditions (Cr0) and (Cr∞) termwise hold for this pair. In par-

ticular, the claim that Hi
�(X/S) ⊆ Hi

�(X/Ainf)G∞ thus follows immediately.

Each of the terms Či
inf is (p, E(u))–completely flat over Ainf , which means in particular

that the terms Či
inf are torsion–free by Corollary  2.2.5 . Denote the differentials on Č•

BK, Č
•
inf

by ∂ and ∂′, resp.

To prove the crystalline condition for cohomology groups, it is clearly enough to verify

the condition at the level of cocycles. Given x ∈ Zi(Č•
BK), denote by x′ its image in Zi(Č•

inf).

For g ∈ GK we have g(x′)− x′ = ϕ−1(v)uy′ for some y′ ∈ Či
inf . As g(x′)− x′ ∈ Zi(Č•

inf), we

have

ϕ−1(v)u∂′(y′) = ∂′(ϕ−1(v)uy′) = 0,

and the torsion–freeness of Či+1
inf implies that ∂′(y′) = 0. Thus, y′ ∈ Zi(Činf) as well, showing

that g(x′)− x′ ∈ ϕ−1(v)uZi(Č•
inf), as desired.

When X is proper over OK , we use the previous results to reprove the result from [ 5 ]

that the étale cohomology groups Hi
ét(Xη,Qp) are in this case crystalline representations.

Corollary 5.2.2. Assume that X is additionally proper over OK . Then for any i ≥ 0, the

p–adic étale cohomology Hi
ét(Xη,Qp) is a crystalline representation.

Proof. This is now a direct consequence of Corollary  5.2.1 , together with Theorem  4.2.5 and

Proposition  3.4.4 .

For the purposes of ramification bounds discussed in the next chapter, let us establish

the consequences of the conditions (Crs) in the case of torsion prismatic cohomology.

Proposition 5.2.3. Consider a pair of integers s ≥ 0, n ≥ 1. Set t = max {0, s+ 1− n} .

Then the torsion prismatic cohomology groups Hi
�,n(X/S) → Hi

�,n(XAinf/Ainf) satisfy the

condition (Cr∞), as well as the following condition:

∀g ∈ Gs : (g − 1)Hi
�,n(X/S) ⊆ ϕ−1(v)uptHi

�,n(XAinf/Ainf).
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Proof. The proof is a slightly refined variant of the proof of Corollary  5.2.1 . Consider again

the associated Čech–Alexander complexes over S and Ainf ,

Č•
BK → Č•

inf = Č•
BK⊗̂SAinf .

Both of these complexes are given by torsion–free, hence Z–flat, modules by Corollary  2.2.5 .

Consequently, RΓ�,n(X/S) is modelled by Č•
BK,n := Č•

BK/p
nČ•

BK, and similarly for tha

Ainf–cohomology RΓ�,n(XAinf/Ainf) and Č•
inf,n = Č•

inf/p
nČ•

inf . That is, the considered maps

between cohomology groups are obtained as the maps on cohomologies for the base–change

map of chain complexes

Č•
BK,n → Č•

inf,n = Č•
BK,n⊗̂SAinf ,

and it follows from Theorem  5.1.1 that the conditions (Crs) hold termwise for this pair for

every s ∈ N ∪ {∞}. The condition (Cr∞) once again follows immediately. In order to prove

the condition from the statement for finite s, just as in the proof of Corolary  5.2.1 , it is

enough to establish the desired condition for the respective groups of cocycles.

Set α = ϕ−1(v)upt . Note that by Lemma  4.1.10 , the condition (Crs) for the pair of

complexes Č•
BK,n → Č•

inf,n implies the condition

∀g ∈ Gs : (g − 1)Č•
BK,n ⊆ αČ•

inf,n

(meant termwise as usual), and since the terms of the complex Č•
inf are (p, E(u))–complete

and (p, E(u))–completely flat, α is a non–zero divisor on the terms of Č•
inf,n by Corollary  2.2.5 .

So pick any element x ∈ Zi(Č•
BK,n). The image x′ of x in Či

inf,n lies in Zi(Č•
inf,n) and for

any chosen g ∈ Gs we have g(x′) − x′ = αy′ for some y′ ∈ Či
inf,n. Now g(x′) − x′ lies in

Zi(Č•
inf,n), so αy′ = g(x′)− x′ satisfies

0 = ∂′(αy′) = α∂′(y′).

Since α is a non–zero divisor on Či+1
inf,n, it follows that ∂′(y′) = 0, that is, y′ lies in Zi(Č•

inf,n).

We thus infer that g(x′)− x′ = αy′ ∈ αZi(Č•
inf,n), as desired.
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6. RAMIFICATION BOUNDS

6.1 Fontaine’s strategy for ramification bounds

We are ready to discuss the implications to the question of ramification bounds for

p–torsion étale cohomology groups Hi
ét(Xη,Z/pZ) when X is smooth and proper p–adic formal

scheme overOK . In this section, we set up the required notation and review the key condition

(Pm) established by Fontaine in [ 16 ].

We define an additive valuation v[ on O[CK
by v[(x) = v(x]) where v is the valuation on

OCK
normalized so that v(π) = 1, and (−)] : O[CK

→ OCK
is the multiplicative lift from

Notation  3.1.11 . This way, we have v[(π) = 1 and v[(ε− 1) = pe/(p− 1). For a real number

c ≥ 0, denote by a>c (a≥c, resp.) the ideal of O[CK
formed by all elements x with v[(x) > c

(v[(x) ≥ c, resp.).

Similarly, we fix an additive valuation vK of K normalized by vK(π) = 1. Then for an

algebraic extension L/K and a real number c ≥ 0, we denote by a>cL the ideal consisting of

all elements x ∈ OL with vK(x) > c (and similarly, for ’≥’ as well).

For a finite extensions M/F/K and a real number m ≥ 0, let us recall (a version of  

1
 )

Fontaine’s property (PM/F
m ):

(PM/F
m )

For any algebraic extension E/F, the existence of an OF–algebra map

OM → OE/a>mE implies the existence of an F–injection of fields M ↪→ E.

We also recall the upper ramification numbering in the convention used in [  11 ]. For

G = Gal(M/F ) and a non–negative real number λ, set

G(λ) = {g ∈ G | vM(g(x)− x) ≥ λ ∀x ∈ OM},

where vM is again the additive valuation of M normalized by vM(M×) = Z.

For t ≥ 0, set

φM/F (t) =
∫ t

0

dt
[G(1) : G(t)]

1
 ↑ Fontaine’s original condition uses the ideals a≥m

E instead. Up to changing some inequalities from ‘<’ to
‘≤’ and vice versa, the conditions are fairly equivalent.
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(which makes sense as G(t) ⊆ G(1) for all t > 0). Then φM/F is a piecewise–linear increasing

continuous concave function. Denote by ψM/F its inverse, and set G(µ) = G(ψM/F (µ)).

Denote by λM/F the infimum of all λ ≥ 0 such that G(λ) = {id}, and by µM/F the infimum

of all µ ≥ 0 such that G(µ) = {id}. Clearly one has µM/F = φM/F (λM/F ).

Remark 6.1.1. Let us compare the indexing conventions with [  35 ] and [  16 ], as the results

therein are (implicitly or explicitly) used. If GS-(µ), GF-(µ) are the upper–index ramification

groups in [  35 ] and [  16 ], resp., and similarly for GS-(λ) and GF-(λ) in the case of lower–index

ramification groups, then we have

G(µ) = GS-(µ−1) = GF-(µ), G(λ) = GS-(λ−1) = GF-(λ/ẽ),

where ẽ = eM/F is the ramification index of M/F .

In particular, since the enumeration differs from the one in [  35 ] only by a shift by one, the

claims that lower indexing is compatible with restrictions to subgroups and upper indexing

is compatible with passing to quotients remain valid. Thus, it make sense to set

G
(µ)
F = lim←−

M ′/F

Gal(M ′/F )(µ)

where M ′/F varies over finite Galois extensions M ′/F contained in a fixed algebraic closure

K of K (and GF = lim←−M ′/F
Gal(M ′/F ) is the absolute Galois group).

Regarding µ, the following transitivity formula is useful.

Lemma 6.1.2 ([ 11 , Lemma 4.3.1]). Let N/M/F be a pair of finite extensions with both

N/F and M/F Galois. Then we have µN/F = max(µM/F , φM/F (µN/M)).

The property (PM/F
m ) is connected with the ramification of the field extension M/F as

follows.

Proposition 6.1.3. Let M/F/K be finite extensions of fields with M/F Galois and let

m > 0 be a real number. If the property (PM/F
m ) holds, then:
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(1) ([ 40 , Proposition 3.3]) µM/F ≤ eF/Km. In fact, µM/F/eF/K is the infimum of all m > 0

such that (PM/F
m ) is valid.

(2) ([ 11 , Corollary 4.2.2]) vK(DM/F ) < m, where DM/F denotes the different of the field

extension M/F .

Corollary 6.1.4. Both the assumptions and the conclusions of Proposition  6.1.3 are in-

sensitive to replacing F by any unramified extension of F contained in M .

Proof. Let F ′/F be an unramified extension such that F ′ ⊆ M . The fact that (PM/F
m ) is

equivalent to (PM/F ′
m ) is proved in [  40 , Proposition 2.2]. To show that also the conclusions

are the same for F and F ′, it is enough to observe that eF ′/K = eF/K , eM/F ′ = eM/F ,

vK(DM/F ′) = vK(DM/F ) and µM/F ′ = µM/F . The first two equalities are clear since F ′/F is

unramified. The third equality follows from DM/F = DM/F ′DF ′/F upon noting that DF ′/F

is the unit ideal. Finally, by Lemma  6.1.2 , we have µM/F = max(µF ′/F , φF ′/F (µM/F ′)). As

F ′/F is unramified, we have µF ′/F = 0 and φF ′/F (t) = t for all t ≥ 0. The fourth equality

thus follows as well.

6.2 Ramification bounds for mod p étale cohomology

Finally, we proceed to the proof of ramification bounds. Let X be a proper and smooth

p–adic formal scheme over OK . Fix the integer i, and set T ′ = Hi
ét(Xη,Z/pZ). Let L

be the splitting field of T ′, i.e. L = K
Ker ρ where ρ : GK → AutFp(T ′) is the associated

representation. The goal is to provide an upper bound on vK(DL/K), and a constant µ0 =

µ0(e, i, p) such that G(µ)
K acts trivially on T ′ for all µ > µ0.

As described in Introduction, to achieve this we follow rather closely the strategy of

[ 11 ]. The main difference is that the input of (ϕ, Ĝ)–modules attached to the discussed

GK–respresentations in [ 11 ] is in our situation replaced by a p–torsion Breuil–Kisin mod-

ule and a Breuil–Kisin–Fargues GK–module that arise as the p–torsion prismatic S– and

Ainf–cohomology, resp. (and, more importantly, unlike in [  11 ] we also do not have any lifts

of these Breuil–Kisin(–Fargues) modules to free ones).
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Let us therefore lay out the strategy, referring to proofs in [ 11 ] whenever possible, and

describe the needed modifications where necessary. To facilitate this approach further, the

notation used will usually reflect the notation of [  11 ], except for mostly omitting the index

n throughout (which in our situation is always equal to 1).

Let M0
BK = Hi

�,1(X/S) and M0
inf = Hi

�,1(XAinf/Ainf), so that, by Proposition  3.4.4 , we

have

M0
inf = M0

BK ⊗S Ainf and T1(M0
BK) = T inf

1 (M0
inf) = Hi

ét(Xη,Z/pZ).

Observe further that, since u is a unit of W1(C[
K) = C[

K , we have T1(M0
BK) = T1(MBK) and

T inf
1 (M0

inf) = T inf
1 (Minf), where MBK = M0

BK/M
0
BK[u∞] and Minf = M0

inf/M
0
inf [u∞] are again

a Breuil–Kisin module and a Breuil–Kisin–Fargues GK–module, resp., of height ≤ i. Since

S ↪→ Ainf is faithfully flat, it is easy to see that the isomorphism Minf 'MBK⊗SAinf remains

true. Furthermore, the pair (MBK,Minf) satisfies the conditions

∀g ∈ Gs ∀x ∈MBK : g(x)− x ∈ ϕ−1(v)ups

Minf (6.1)

for all s ≥ 0, since the pair (M0
BK,M

0
inf) satisfies the analogous conditions by Proposi-

tion  5.2.3 . Finally, the module MBK is finitely generated and u–torsion–free k[[u]]–module,

hence a finite free k[[u]]–module (and, consequently, Minf is a finite free OC[
K

–module).

Instead of referring to T inf
1 (Minf) = H i

ét(Xη,Z/pnZ) directly, we will discuss the ramifica-

tion bound for

T := T ∗,inf
1 (Minf) = HomAinf ,ϕ(Minf ,OC[

K
) ' H i

ét(Xη,Z/pZ)∨,

which is equivalent, as the splitting field of T is still equal to L. Also note that we have

T ' T ∗
1 (MBK) = HomS,ϕ(MBK,OC[

K
) as a Z/pZ[G∞]–module.

Remark 6.2.1 (Ramification bounds of [ 10 ]). Similarly to the discussion above we may

take, for any n ≥ 1, M0
BK = Hi

�,n(X/S), and MBK = M0
BK/M

0
BK[u∞]. Then the G∞–module

T := T ∗
n(MBK) = HomS,ϕ(MBK,Wn(OC[

K
)) is the restriction of Hi

ét(Xη,Z/pnZ)∨ to G∞.

Denoting by OE the p–adic completion of S[1/u], ME := MBK⊗SOE then becomes an étale
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ϕ–module over OE in the sense of [  17 , §A], with the natural map MBK →ME injective; thus,

in terminology of [  10 ], MBK serves as a ϕ–lattice of height dividing E(u)i. Upon observing

that T is the G∞–respresentation associated with ME (see e.g. [  10 , §2.1.3]), Theorem 2 of

[ 10 ] implies the ramification bound

µL/K ≤ 1 + c0(K) + e
(
s0(K) + logp(ip)

)
+ e

p− 1 .

Here c0(K), s0(K) are constants that depend on the field K and that generally grow with

increasing e. (Their precise meaning is described in Section  6.3 .)

We employ the following approximations of the functors T ∗
1 and T ∗,inf

1 .

Notation 6.2.2. For a real number c ≥ 0, we define

Jc(MBK) = HomS,ϕ(MBK,OC[
K
/a>c),

J inf
c (Minf) = HomAinf ,ϕ(Minf ,OC[

K
/a>c).

We further set J∞(MBK) = T ∗
1 (MBK) and J inf

∞ (Minf) = T ∗,inf
1 (Minf). Given c, d ∈ R≥0 ∪ {∞}

with c ≥ d, we denote by ρc,d : Jc(MBK) → Jd(MBK) (ρinf
c,d : J inf

c (Minf) → J inf
d (Minf), resp.)

the map induced by the quotient map OC[
K
/a>c → OC[

K
/a>d.

Since Minf 'MBK ⊗S Ainf as ϕ–modules, it is easy to see that for every c ∈ R≥0 ∪ {∞},

we have a natural isomorphism θc : Jc(MBK) '→ J inf
c (Minf) of abelian groups; the biggest

point of distinction between the two is that J inf
c (Minf) naturally attains the action of GK

from the one on Minf , by the usual rule

g(f)(x) := g(f(g−1(x))), g ∈ GK , f ∈ J inf
c (Minf), x ∈Minf .

As for Jc(MBK), there is a natural action given similarly by the formula g(f)(x) := g(f(x))

where f ∈ Jc(MBK) and x ∈ MBK. However, in order for this action to make sense, one

needs that each g(f) defined this way is still an S–linear map, which boils down to the
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requirement that g(u) = u (that is, g(π) = π) in the ring OC[
K
/a>c. This is certainly true for

g ∈ G∞, but also for possibly bigger subgroups of GK , depending on c. The concrete result

is the following.

Proposition 6.2.3 ([ 11 , Proposition 2.5.3]). Let s be a non–negative integer such that

s > logp(
c(p−1)
ep

). Then the natural action of Gs on OC[
K
/a>c induces an action of Gs on

Jc(MBK). Furthermore, when d ≤ c, the map ρc,d : Jc(MBK) → Jd(MBK) is Gs–equivariant,

and when s′ ≥ s, the Gs′–action on Jc(MBK) defined in this manner is the restriction of the

Gs–action to Gs′ .

The crucial link to establish is the connection between the actions on Jc(MBK) and

J inf
c (Minf). This is done via the input of the conditions (Crs) (and their consequences).

Proposition 6.2.4. For

s > max
{

logp
(
c(p− 1)
ep

)
, logp

(
c− e

p− 1

)}
,

the natural isomorphism θc : Jc(MBK) '→ J inf
c (Minf) is Gs–equivariant.

Proof. Identifying Minf with MBK⊗SAinf , θc takes the form f 7→ f̃ where f̃(x⊗ a) := af(x)

for x ∈ MBK and a ∈ Ainf . Note that we have ϕ−1(v)upsOC[
K

= a≥ps+e/(p−1). The condition

( 6.1 ) then states that for all x ∈MBK and all g ∈ Gs, g(x⊗ 1)−x⊗ 1 lies in a≥ps+e/(p−1)Minf

and therefore in a>cMinf thanks to the assumption on s. It then follows that for every

f̃ ∈ J inf
c (Minf), f̃(g(x⊗ 1)) = f̃(x⊗ 1), and hence

g(f̃)(x⊗ a) = g
(
f̃(g−1(x⊗ a))

)
= g

(
g−1(a)f̃(g−1(x⊗ 1))

)
= ag

(
f̃(x⊗ 1)

)
= ag(f(x))

for every g ∈ Gs, x ∈ MBK and a ∈ Ainf . Thus, we have that g(f̃) = g̃(f) for every g ∈ Gs

and f ∈ Jc(MBK), proving the equivariance of θc.

From now on, set b := ie/(p − 1) and a := iep/(p − 1). Then T is determined by

Ja(M), Jb(M) in the following sense.
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Proposition 6.2.5.

(1) The map ρ∞,b : T ∗
1 (MBK)→ Jb(MBK) is injective, and ρ∞,b(MBK) = ρa,b(Ja(MBK)).

(2) The map ρinf
∞,b : T ∗,inf

1 (Minf)→ J inf
b (Minf) is injective, and ρinf

∞,b(Minf) = ρinf
a,b(J inf

a (Minf)).

(3) For s > logp(i), T ∗
1 (MBK) has a natural action of Gs that extends the usual G∞–action.

(4) For s > max
(
logp(i), logp((i− 1)e/(p− 1))

)
, the action from (3) agrees with T |Gs .

Proof. Part (1) is proved in [ 11 , Proposition 2.3.3]. Then T ∗
1 (MBK) attains the action of

Gs with s > logp(i) by identification with ρa,b(Ja(MBK)) and using Proposition  6.2.3 (see

also [  11 , Theorem 2.5.5]), which proves (3). Finally, the proof of (2),(4) is analogous to [  11 ,

Corollary 3.3.3] and [ 11 , Theorem 3.3.4]. Explicitly, consider the commutative diagram

T ∗
1 (MBK) Ja(MBK) Jb(MBK)

T ∗,inf
1 (Minf) J inf

a (Minf) J inf
b (Minf),

ρ∞,a

∼ θ∞ ∼ θa

ρa,b

∼ θb

ρinf
∞,a ρinf

a,b

where the composition of the rows are ρ∞,b and ρinf
∞,b, resp. This immediately proves (2)

using (1). Finally, the map ρinf
∞,b is GK–equivariant and the map ρ∞,b is tautologically

Gs–equivariant for s > logp(i) by the proof of (3), and both maps are injective. Since

θb is Gs–equivariant when s > logp((i− 1)e/(p− 1)) by Proposition  6.2.4 , it follows that so

is θ∞, which proves (4).

We employ further approximations of Jc(MBK) defined as follows.

Notation 6.2.6. Let s be a non–negative integer, consider a real number c ∈ [0, eps) and

an algebraic extension E/Ks. We consider the ring

(ϕsk)∗OE/a>c/p
s

E = k ⊗ϕs
k
,k OE/a>c/p

s

E

(note that the condition on c implies that p ∈ a
>c/ps

E , making OE/a>c/p
s

E a k–algebra). We

endow this ring with an S–algebra structure via S
mod p→ k[[u]] α→ (ϕsk)∗OE/a>c/p

s

E where α

extends the k–algebra structure map by the rule u 7→ 1⊗ πs. Then we set

J (s),E
c (MBK) = HomS,ϕ(MBK, (ϕsk)∗OE/a>c/p

s

E ).
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Note that the fact that g(πs) = πs for all g ∈ Gs implies that J (s),E
c (MBK) attains a Gs–action

induced by the Gs–action on OE/a>c/p
s

E , assuming that E/Ks is Galois.

When c, d are two real numbers satisfying eps > c ≥ d ≥ 0, there is a transition map

ρ
(s),E
c,d (MBK) : J (s),E

c (MBK)→ J
(s),E
d (MBK) which is Gs–equivariant.

The relation to Jc(MBK) is the following.

Proposition 6.2.7. Let s, c be as above. Then

(1) Given an algebraic extension E/Ks, J (s),E
c (MBK) naturally embeds into Jc(MBK) (as a

Gs–submodule if E/Ks is Galois).

(2) Given a tower of algebraic extensions F/E/Ks, J (s),E
c (MBK) naturally embeds into

J (s),F
c (MBK) (as a Gs–submodules if E/Ks, F/Ks are Galois).

(3) J (s),K
c (MBK) is naturally isomorphic to Jc(MBK) as a Gs–module.

Proof. Part (2) is immediate upon observing that the inclusion OE ↪→ OF induces the map

OE/a>c/p
s

E → OF/a>c/p
s

F which is still injective (and clearly Gs–equivariant in the Galois

case). Similarly, part (3) follows from the fact that prs : OC[
K

= lim←−s,ϕOK/p → OK/p

induces a (Gs–equivariant) isomorphism OC[
K
/a>c → (ϕsk)∗OK/a

>c/ps

K
when s > logp(c/e)

(so a fortiori when s > logp(c)), which is proved in [  11 , Lemma 2.5.1]. Part (1) is then

obtained as a direct combination of (2) and (3).

For a non–negative integer s, denote by Ls the composite of the fields Ks and L. The

following adaptation of Theorem 4.1.1 of [  11 ] plays a key role in establishing the ramification

bound.

Theorem 6.2.8. Let s be an integer satisfying

s > M0 := max
{

logp
(
a

e

)
, logp

(
b− e

p− 1

)}
= max

{
logp

(
ip

p− 1

)
, logp

(
(i− 1)e
(p− 1)

)}
,

and let E/Ks be an algebraic extension. The inclusion ρ(s),E
a,b (J (s),E

a (MBK)) ↪→ ρa,b(Ja(MBK)),

facilitated by the inclusions J (s),E
a (MBK) ↪→ Ja(MBK) and J

(s),E
b (MBK) ↪→ Jb(MBK) from

Proposition  6.2.7 , is an isomorphism if and only if Ls ⊆ E.
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Proof. The proof of [  11 , Theorem 4.1.1] applies in our context as well, as we now explain.

Using just the fact that MBK is a Breuil–Kisin module that is free over k[[u]] together

with the assumption s > logp(a/e), for every F/Ks algebraic, an auxiliary set J̃ (s),F
1 (MBK)

is constructed, together with maps of sets ρ̃(s),F
c : J̃ (s),F

1 (MBK) → J (s),F
c (MBK) for every

c ∈ (0, eps). When F is Galois over K, this set is naturally a Gs–set and the maps are

Gs–equivariant. Moreover, the sets have the property that
(
J̃

(s),F
1 (MBK)

)GF ′
= J̃

(s),F ′

1 (MBK)

when F/F ′/Ks is an intermediate extension.

Subsequently, it is shown in [ 11 , Lemma 4.1.4] that

ρ̃
(s),F
b is injective and its image is ρ(s),F

a,b (J (s),F
a (MBK)), (∗)

where the only restriction on s is again s > logp(a/e).

Finally, one obtains a series of Gs–equivariant bijections:

J̃
(s),K
1 (MBK) ' ρ

(s),K
a,b (J (s),K

a (MBK)) (by ( ∗ ))

' ρa,b(Ja(MBK)) (Proposition  6.2.7 (3))

' ρinf
a,b(J inf

a (Minf)) (Proposition  6.2.4 )

' T (Proposition  6.2.5 (2))

(where the third isomorphism relies on the assumption s > logp(b− e/(p− 1)) ). Applying

(−)GE to both sides and using (∗) again then yields

ρ
(s),E
a,b (J (s),E

a (MBK)) ' TGE .

Therefore, we may replace the inclusion from the statement of the theorem by the inclusion

TGE ⊆ T, and the claim now easily follows.

Finally, we are ready to establish the desired ramification bound. Let Ns = Ks(ζps) be

the Galois closure of Ks over K, and set Ms = LsNs. Then we have
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Proposition 6.2.9. Let s be as in Theorem  6.2.8 , and set m = a/ps. Then the properties

(PLs/Ks
m ) and (PMs/Ns

m ) hold.

Proof. The proof of (PLs/Ks
m ) is the same as in [  11 ], which refers to an older version of

[ 22 ] for parts of the proof. Let us therefore reproduce the argument for convenience. By

Corollary  6.1.4 , it is enough to prove (PLs/Kun
s

m ) where Kun
s denotes the maximal unramified

extension of Ks in Ls.

Let E/Kun
s be an algebraic extension and f : OLs → OE/a>mK be an OKun

s
–algebra map.

Setting c = a or c = b, one may consider an induced map fc : OLs/a
>c/ps

Ls
→ OE/a>c/p

s

K , and

we claim is that this map is well–defined and injective.

Indeed, let $ be a uniformizer of Ls, satisfying the relation

$e′ = c1$
e′−1 + c2$

e′−2 + · · ·+ ce′−1$ + ce′ ,

where P (T ) = T e
′ −∑i ciT

e′−i is an Eisenstein polynomial over Kun
s . Applying f one thus

obtains te′ = ∑
i cit

e′−i in OE/a>mK where t = f($), and thus, lifting t to t̃ ∈ OE, we obtain

the equality

t̃e
′ = c1t̃

e′−1 + c2t̃
e′−2 + · · ·+ ce′−1t̃+ ce′ + r

with vK(r) > m > 1/ps = vK(ce′). It follows that vK(t̃) = vK($) = 1/pse′, and thus,

$n ∈ a
>c/ps

Ls
if and only if t̃n ∈ a

>c/ps

E , proving that fc is both well–defined and injective.

The map fc induces an injection of k–algebras (ϕsk)∗OLs/a
>c/ps

Ls
↪→ (ϕsk)∗OE/a>c/p

s

E which

in turn gives an injection J (s),Ls
c (MBK) → J (s),E

c (MBK), where c = a or c = b; consequently,

we obtain an injection

ρ
(s),Ls

a,b (J (s),Ls
a (MBK)) ↪→ ρ

(s),E
a,b (J (s),E

a (MBK)).

Combining this with Propositions  6.2.5 and  6.2.7 , we have the series of injections

ρ
(s),Ls

a,b (J (s),Ls

b (MBK)) ↪→ ρ
(s),E
a,b (J (s),E

b (MBK)) ↪→ ρ
(s),K
a,b (J (s),K

b (MBK)) ↪→ ρa,b(Jb(MBK)) ' T.
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Since ρ(s),Ls

a,b (J (s),Ls

b (MBK)) ' T by Theorem  6.2.8 , the result is in fact an injective map

T ↪→ T and therefore an isomorphism since T is finite. In particular, the natural morphism

ρ
(s),E
a,b (J (s),E

b (MBK)) ↪→ ρa,b(Jb(MBK)) is an isomorphism, and Theorem  6.2.8 thus implies

that Ls ⊆ E. This finishes the proof of (1).

Similarly as in [ 11 ], the property (PMs/Ns
m ) is deduced from (PLs/Ks

m ) as follows. Given an

algebraic extension E/Ns and an ONs–algebra morphism OMs → OE/a>mE , by restriction we

obtain an OKs–algebra morphism OLs → OE/a>mE , hence there is a Ks–injection Ls → E.

Since Ns ⊆ E, this can be extended to a Ks–injection Ms → E, and upon noting that the

extension Ms/Ks is Galois, one obtains an Ns–injection Ms → E by precomposing with a

suitable automorphism of Ms. This proves (PMs/Ns
m ).

Everything is now ready for the final proof of Theorem  1.3.1 from Introduction.

Theorem 6.2.10. Let

α = bM0c+ 1 =
⌊
logp

(
max

{
ip

p− 1 ,
(i− 1)e
p− 1

})⌋
+ 1.

Then

(1)

vK(DL/K) < 1 + eα + iep

pα(p− 1) −
1
pα
.

(2) For any µ satisfying

µ > 1 + eα + max
{

iep

pα(p− 1) −
1
pα
,

e

p− 1

}
,

G
(µ)
K acts trivially on T .

Proof. We may set s = α as the condition s > M0 is then satisfied. Propositions  6.1.3 and

 6.2.9 then imply that vK(DLs/Ks) < a/ps (where a = iep/(p− 1) ) and thus

vK(DLs/K) = vK(DKs/K) + vK(DLs/Ks) < 1 + es− 1
ps

+ a

ps
= 1 + eα + a− 1

pα
.
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Similarly, we have vK(DL/K) = vK(DLs/K)−vK(DLs/L) ≤ vK(DLs/K), and the claim (1) thus

follows.

To prove (2), let Ms and Ns be as in Proposition  6.2.9 . The fields Ns and Ms = LNs are

both Galois over K, hence Lemma  6.1.2 applies and we thus have

µMs/K = max
{
µNs/K , φNs/K(µMs/Ns)

}
.

By [ 22 , Remark 5.5], we have

µNs/K = 1 + es+ e

p− 1 .

As for the second argument, Proposition  6.1.3 gives the estimate

µMs/Ns ≤ eNs/Km = eNs/K

ps
a.

The function φNs/K(t) is concave and has a constant slope 1/eNs/K beyond t = λNs/K ,

where it attains the value φNs/K(λNs/K) = µNs/K = 1 + es + e/(p− 1). Thus, φNs/K(t) can

be estimated linearly from above as follows:

φNs/K(t) ≤ 1 + es+ e

p− 1 + 1
eNs/K

(
t− λNs/K

)
= 1 + es+ t

eNs/K

−
λNs/K

eNs/K

+ e

p− 1

There is an automorphism σ ∈ Gal(Ns/K) with σ(πs) = ζpπs. That is, we have that

vK(σ(πs)− πs) = e/(p− 1) + 1/ps, showing that

λNs/K ≥ eNs/K

(
e

p− 1 + 1
ps

)
,

and combinig this with the estimate of φNs/K(t), we obtain

φNs/K(t) ≤ 1 + es+ t

eNs/K

− 1
ps
.
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Plugging in the estimate for µMs/Ns then yields

φNs/K(µMs/Ns) ≤ 1 + es+ a

ps
− 1
ps

= 1 + es+
iep
p−1 − 1
ps

.

Thus, we have

µL/K ≤ µMs/K ≤ 1 + eα + max
{

iep

pα(p− 1) −
1
pα
,

e

p− 1

}
,

which finishes the proof of part (2).

6.3 Comparisons of bounds

Finally, let us compare the bounds obtained in Theorem  6.2.10 with other results from

the literature. These are summarized in Table  6.1 below.

Table 6.1. : Comparisons of estimates of µL/K

µL/K ≤ · · ·

Theorem  6.2.10 1 + e+ e
⌊
logp

(
max

{
ip
p−1 ,

(i−1)e
p−1

})⌋
+ max

{
β, e

p−1

}
, β < min (e, 2p)  

2
 

[ 11 ] 1 + e+ e
⌊
logp

(
ip
p−1

)⌋
+ max

{
β, e

p−1

}
, β < e  

3
 

[ 10 ] 1 + c0(K) + e
(
s0(K) + logp(ip)

)
+ e

p−1

[ 22 ]

1 + e+ e
p−1 , i = 1,

1 + e+ ei
p−1 −

1
p
, i > 1,

when ie < p− 1

[ 18 ], [ 1 ] 1 + i
p−1 when e = 1,

i < p− 1

 2 

 ↑ More precisely: When i = 1, it is easy to see that β = (eip/(p−1)−1)/pα is smaller than e/(p−1), and
hence does not have any effect. When i > 1, one can easily show using pα > ip/(p− 1), pα > (i− 1)e/(p− 1)
that β < e and β < pi/(i− 1) ≤ 2p.

 3 

 ↑ The number β here has different meaning than the number β of [ 11 , Theorem 1.1].
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Comparison with [  22 ]. If we assume ie < p− 1, then the first maximum in the estimate

of µL/K is realized by ip/(p− 1) ∈ (1, p); that is, in Theorem  6.2.10 one has α = 1 and thus,

µL/K ≤ 1 + e+ max
{

ei

p− 1 −
1
p
,

e

p− 1

}
,

which agrees precisely with the estimate [ 22 ].

Comparison with [ 18 ], [  1 ]. Specializing to e = 1 in the previous case, the bound becomes

µL/K ≤


2 + 1

p−1 , i = 1,

2− 1
p

+ i
p−1 i > 1.

This is clearly a slightly worse bound than that of [ 18 ] and [  1 ] (by 1 and (p−1)/p, respectiely).

Comparison with [  11 ]. From the shape of the bounds it is clear that the bounds are

equivalent when (i− 1)e ≤ ip, that is, when e ≤ p and some “extra” cases that include the

case when i = 1 (more precisely, these extra cases are when e > p and i ≤ e/(e − p)), and

in fact, the terms β in such situation agree. In the remaining case when (i − 1)e > ip, our

estimate becomes gradually worse compared to [ 11 ].

Remark 6.3.1.

(1) It should be noted that the bounds from [ 11 ] do not necessarily apply to our situation as

it is not clear when Hi
ét(Xη,Z/pZ) can be obtained as a quotient of two GK–stable lattices

in a semi–stable representation with Hodge–Tate weights in [0, i]. To our knowledge the

only result along these lines is [  13 , Theorem 1.3.1] that states that this is indeed the

case when i = 1 (and X is a proper smooth variety over K with semistable reduction).

Interestingly, in this case the bound from Theorem  6.2.10 always agrees with the one

from [ 11 ].

(2) Let us also point out that the verbatim reading of the bound from [  11 ] as described

in Theorem 1.1 of loc. cit. would have the term
⌈
logp(ip/(p− 1))

⌉
(i.e. upper integer

part) instead of the term
⌊
logp(ip/(p− 1))

⌋
+ 1 as in Table  6.1 , but this version seems

to be the correct one. Indeed, the proof of Theorem 1.1 in [  11 ] (in the case n = 1)
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ultimately relies on the objects J (s),E
1,a (M) that are analogous to J (s),E

a (MBK), where

s =
⌈
logp(ip/(p− 1))

⌉
. In particular, Lemma 4.2.3 of loc. cit. needs to be applied

with c = a, and the implicitly used fact that the ring OE/a>a/p
s

E is a k–algebra (i.e. of

characteristic p) relies on the strict inequality e > a/ps, equivalently s > logp(ip/(p−1)).

In the case that ip/(p − 1) happens to be equal to pt for some integer t, one therefore

needs to take s = t + 1 rather than s = t. This precisely corresponds to the indicated

change.

Comparison with [  10 ]. Let us explain the constants s0(K), c0(K) that appear in the

estimate. The integer s0(K) is the smallest s such that 1 + psZp ⊆ χ(Gal(Kp∞/K)) where χ

denotes the cyclotomic character. The rational number c0(K) ≥ 0 is the smallest constant c

such that ψK/K0(1 + t) ≥ 1 + et− c (this exists, as the last slope of ψK/K0(t) is e) 

4
 .

In the case when K/K0 is tamely ramified, the estimate from [ 10 ] becomes

µL/K ≤ 1 + e
(
logp(ip) + 1

)
+ e

p− 1 ,

which is fairly equivalent to the bound from Theorem  6.2.10 when e < p (and again also in

some extra cases, e.g. when i = 1 for any e and p), with the difference of estimates being

approximately

e

(
logp

(
p

p− 1

)
− 1
p− 1

)
∈
(
− e

4√p, 0
)
.

In general, when e is big and coprime to p, the bound in [  10 ] becomes gradually better unless,

for example, i = 1.

In the case when K has relatively large wild absolute ramification, we expect that the

bound from Theorem  6.2.10 generally becomes stronger, especially if K contains pn–th roots

of unity for large n, as can be seen in the following examples (where we assume i > 1; for

i = 1, our estimate retains the shape of the tame ramification case and hence the difference

between the estimates becomes even larger).

4
 ↑ To make sense of this in general, one needs to extend the definition of the functions ψL/M , ϕL/M to the

case when the extension L/M is not necessarily Galois. This is done e.g. in [ 10 , §2.2.1].
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Example 6.3.2.

(1) When K = Qp(ζpn) for n ≥ 2, one has e = (p− 1)pn−1, s0(K) = n and from the classical

computation of ψK/Qp (e.g. as in [  35 , IV §4]), one obtains

c0(K) = [(n− 1)(p− 1)− 1]pn−1 + 1.

Then the difference between the two estimates is approximately ne−pn−1 +1 > (n−1)e.

(2) When K = Qp(p1/pn) for n ≥ 3, one has e = pn and s0(K) = 1. The description of ψK/Qp

in [  11 , §4.3] implies that c0(K) = npn = ne. The difference between the two estimates

is thus approximately

e
(
1 + logp(i)− logp(i− 1) + logp(p− 1)

)
≈ 2e.

(In the initial cases n = 1, 2, one can check that the difference is still positive, in both

cases bigger than p.)
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