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ABSTRACT 

Most new vehicles manufactured in the last two years are connected vehicles (CV) that transmit 

back to the original equipment manufacturer at near real-time fidelity. These CVs generate billions 

of data points on an hourly basis, which can provide valuable data to agencies to improve the 

overall mobility experience for users. However, with this growing scale of CV big data, 

stakeholders need efficient and scalable methodologies that allow agencies to draw actionable 

insights from this large-scale data for daily operational use. This dissertation presents a suite of 

applications, illustrated through case studies, that use CV data for assessing and managing mobility 

and safety on surface transportation systems. 

 

A systematic review of construction zone CV data and crashes on Indiana’s interstates for the 

calendar year 2019, found a strong correlation between crashes and hard-braking event data 

reported by CVs. Trajectory-level CV data analyzed for a construction zone on interstate 70 

provided valuable insights into travel time and traffic signal performance impacts on the 

surrounding road network. An 11-state analysis of electric and hybrid vehicle usage in proximity 

to public charging stations highlighted regions under and overserved by charging infrastructure, 

providing quantitative support for infrastructure investment allocations informed by real-world 

usage trends. CV data were further leveraged to document route choice behavior during active 

freeway incidents providing stakeholders with a historical record of observed routing patterns to 

inform future alternate route planning strategies. CV trajectory data analysis facilitated the 

identification of trip chaining activities resulting in improved outlier curation and realistic 

estimation of travel time metrics. 

 

The overall contribution of this thesis is developing analytical big data procedures to process 

billions of CV data records to inform engineering and public policy investments in infrastructure 

capacity, highway safety improvements, and new EV infrastructure.   These scalable and efficient 

analysis techniques proposed in this dissertation will help agencies at the federal, state and local 

levels in addition to private sector stakeholders in assessing transportation system performance at-

scale and enable informed data-driven decision making. 
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 INTRODUCTION 

Transportation agencies around the world have for the past few decades relied primarily on 

deploying fixed intelligent transportation system (ITS) sensor-based infrastructure on road 

networks to monitor traffic, roadway and vehicle conditions. These sensors collect a wide range 

of data from simple vehicle volumes to estimated vehicle speeds and roadway conditions. While 

ITS sensors have been widely deployed and promise a high degree of accuracy in detecting 

vehicles, their deployment carries with it an inherently high installation, maintenance and repair 

cost and additionally spatially limits the area of detection. Additionally, both in-roadway (loop 

detectors for example) and over-roadway (cameras and speed radar for example) sensors require 

significant disruption to traffic for installation and repair, structural cuts to pavements for 

embedding the sensors, and are highly cost and labor intensive [1]. Traditional ITS sensors for 

monitoring travel times and roadside detection can even incur costs of up to $10,000 per mile and 

$100,000 per year respectively [2]. However, Connected Vehicle (CV) data presents an 

opportunity for widespread monitoring of transportation systems at much lower costs than ITS 

sensors. 

CV data presents significant benefits for practitioners and researchers when compared to ITS 

sensors in assessing and subsequently addressing safety, mobility and environmental issues in the 

transportation domain. The US Department of Transportation (USDOT) identified four Vehicle-

to-Infrastructure (V2I) research programs, namely V2I Safety, Dynamic Mobility Applications 

(DMA), Applications for the Environment: Real-time Information Synthesis (AERIS) and Road-

Weather Management (RWM) [3] that could significantly benefit from the incorporation of CV 

data-driven methodologies. A 2021 survey of 50 smart cities in 26 states across the country found 

only 8 percent of respondents currently using CV data [4], a number that is expected to grow 

sharply as CVs make up more and more of the new car market with every passing year, with some 

estimates predicting the CV data market to be worth $334 billion by the year 2030 [5]. It is 

estimated that by that same year, CVs will make up approximately 95 percent of the global new 

car market, a sharp increase up from about 50 percent in recent years [6]. Federal and state agencies 

would be primely placed to take advantage of this market shift by themselves transitioning to CV 

data monitoring now, away from ITS-sensor based monitoring. 
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At the federal level, the USDOT has signaled a significant importance on data-driven decision 

making through its Work Zone Data Exchange (WZDx) initiative aimed at providing drivers and 

Original Equipment Manufacturers (OEMs) with the most up to date information on active work 

zones throughout the nation in a bid to improve safety [7]. The Federal Highway Administration 

(FHWA) has observed that many agencies have been and continue to use floating car and floating 

phone studies to mimic real-time trajectory data, however they run the risk of presenting non-

representative data samples and lack real-time information [8].  

The Joint Office of Energy and Transportation is also taking a data-driven approach towards 

building a nationwide Electric Vehicle (EV) charging network over the coming years by providing 

states and communities with access to a host of foundational datasets as they vie for federal and 

state funding to improve infrastructure readiness for the impending widespread adoption of EVs 

[9]. The USDOT continues to inculcate multiple data sources (many of them real-time) into 

improving the safety and efficiency of multimodal transportation systems, and has in recent times 

opened up its data sharing policies to stimulate collaboration among governmental, industrial and 

academic partners [10]. On the private sector front, multiple automotive OEMs have already begun 

or are in the process of aggregating, analyzing and in some cases, monetizing their CV data 

including GM [11], Ford [12], Honda [13] and Volkswagen [14] among others. 

The United States Congress recently passed the Bipartisan Infrastructure Deal (also known as the 

Infrastructure Investment and Jobs Act[IIJA]) which reauthorizes surface transportation programs 

for five years, and provides for nearly $110 billion in funding to repair existing transportation 

infrastructure (including roadways and significant bridges) [15]. The new National Electric 

Vehicle Infrastructure (NEVI) Formula Program, a part of this act, targets having a nationwide 

network of 500,000 EV chargers by the year 2030 [16] and requests each state submit its 

infrastructure deployment plan in order access the apportioned funds. Equitably allocating and 

effectively utilizing this investment will require that relevant stakeholders have access to real-

world insights on infrastructure usage to ensure resource allocations reflect observed trends and 

demands. One of the prime objectives behind the research in this dissertation is to propose scalable 

and efficient CV data analysis techniques that can provide these operational insights to decision-

makers. 
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1.1 Motivation 

There is an emerging shift in agencies desire to reduce ITS infrastructure investments and increase 

system wide performance monitoring using real-time CV data.  The motivation of this research is 

to address the aforementioned need by leveraging large-scale CV big data towards assessing 

surface transportation systems using visualizations, novel methodologies and associated 

performance measures to facilitate informed data-driven decision making by transportation 

stakeholders. 

Although there is strong interest by agencies in CV data, it also comes with concerns.  High 

volumes of trajectory data may soon become unwieldy for many agencies, with estimates for 2019 

putting the global volume of generated CV data at 95 petabytes [17]. This dissertation discusses 

the development of methodologies and visualizations that will allow researchers and practitioners 

to easily gain operational insights from CV big data to assess transportation system performance, 

and presents opportunities to implement CV data-based monitoring into their day-to-day 

operations. Various performance measures are proposed for assessing mobility and safety on 

interstates, assessing charging infrastructure usage and for real-time monitoring of route choice 

behavior to assist agencies with daily monitoring as well as historical reviews of traffic patterns. 

1.2 Scope and Organization 

The scope of this dissertation is the development of methodologies and visualizations that leverage 

large-scale CV big data towards assessing surface transportation systems. The contents of this 

dissertation are organized in chapters as follows: 

• To demonstrate CV data-driven visualizations and methodologies that aid in 

monitoring work zone mobility performance and impact on surrounding road 

networks (chapter 2) 

• To present a systematic review of secondary crashes on Indiana Interstates for 2019 

and document their impact on freeway mobility with quantitative performance 

measures based on CV data (chapter 3) 
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• To evaluate the use of hard-braking events as a proactive surrogate safety 

performance metric for tracking interstate work zone safety in place of reactive 

metrics relying on crash reporting (chapter 4) 

• To develop methodologies leveraging CV data towards assessing EV charging 

infrastructure usage, and identifying gaps in infrastructure availability for 

streamlining future investment opportunities (chapter 5) 

• To develop methodologies that utilize CV data in analyzing route choice behavior 

among motorists navigating through or around an active freeway incident resulting 

in a partial or complete road closure (chapter 6) 

Overall conclusions drawn from the research in this dissertation and findings from each of the 

above chapters are summarized briefly in chapter 7. 
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 MONITORING MOBILITY IN AND AROUND INTERSTATE 

CONSTRUCTION WORK ZONES 

The information presented in this chapter is published in “Agile Work Zone Management Based 

on Connected Vehicle Data” [18] and in “Methodology for Applying Connected Vehicle Data to 

Evaluate Impact of Interstate Construction Work Zone Diversions” [19]. 

This chapter discusses visualizations and methodologies for monitoring work zone mobility and 

impact of freeway construction on freeway as well as arterial mobility using CV and supporting 

data.  The analysis, methodology, and results discussed in this study can be used by agencies for 

planning monitoring strategies for large construction projects that have significant impact on 

alternative routes.   

2.1 Agile Work Zone Management Based on Connected Vehicle Data 

2.1.1 Overview 

Peak period lane closures can result in significant queueing on major interstates. Many state 

agencies thus have a lane closure policy in place based upon historical time of day and day of week 

traffic volumes. The COVID-19 pandemic resulted in a significant reduction in traffic volumes in 

Indiana during March-May 2020. In some periods, traffic volume reductions were over 35%. 

During this period, the Indiana Department of Transportation (INDOT) implemented an agile lane 

closure policy based upon observed volumes and monitored those exceptions using connected 

vehicle data. This chapter reports on the analysis of 11 lane closure exceptions on 4 interstates 

across Indiana. Congestion comparisons were made for each exception for the same time period 

in 2020 and 2019. Even with the lane closure exceptions, the study found 10 of 11 sections actually 

had fewer mile-hours of congestion and the total mile-hours of congestion for all 11 sections 

reduced from 1281 mile-hours in 2019 to 244 mile-hours in 2020. Overall, crashes decreased from 

125 in 2019 to 70 in 2020. Year-over-year comparisons for these exceptions demonstrated 

significant opportunities for agile work zone lane closure practices when coupled with close 

monitoring of crash and congestion measures derived from connected vehicle data. 
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2.1.2 Introduction 

Lane closures for construction and maintenance activities often lead to significant queueing and 

congestion. Many state agencies have lane closure policy provisions that limit lane closures to 

periods with lower traffic volumes to reduce significant queueing. However, certain exceptions to 

a pre-defined policy are often required. Criterion for permitting a lane closure exception differs on 

a state-by-state basis as does the exception granting and approval process [20]. The 2017 Indiana 

Interstate Highway Congestion Policy (IHCP) states as overall guidance that construction work 

that results in queuing outside of limits set by the congestion policy should be avoided where 

feasible while there are processes in place when granting exceptions [21]. 

In cases where lane closures are deemed essential, traffic counts and queue analysis tools are 

typically used to analyze exception requests. These tools are based upon volumes that can be 

difficult to accurately forecast and traffic models that do not always reflect local conditions. 

However, with the advent of commercially available connected vehicle data, it is now possible to 

monitor interstate congestion and queuing on a minute-by-minute interval. The motivation of this 

paper is to report on the use of daily connected vehicle dashboards to assess lane closure exception 

requests, and then follow up with assessment of those lane closure exceptions. 

As a result of a statewide stay-at-home order to address COVID-19 initiated in March 2020, traffic 

on state highways in Indiana saw a 30% to 45% decrease in passenger vehicles in March. Figure 

1 shows representative traffic volume changes in March compared to base levels. When compared 

to a control week beginning February 22nd, weekly average personal travel nationwide in the US 

as well as in Indiana was down approximately 30% for 6 weeks starting March 27th, 2020 [22]. 

This reduction in traffic volumes resulted in an opportunity for the Indiana Department of 

Transportation (INDOT) to implement agile lane closure exceptions. This paper uses crash data 

and connected vehicle data to assess the implementation of these lane closure exceptions and their 

impact on traffic. 
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Figure 1. Percentage change in Indiana traffic volume from March 9-21, 2020 compared to same 

day in base week of March 2-8, 2020 

2.1.3 Literature Review 

While agile project management methodologies first originated in the software development 

industry, they have quickly found favor in the construction industry in the pre-design, design and 

actual construction phases as well [23], [24]. Some of the biggest advantages of using an agile 

approach include decreased uncertainty associated with models and improved risk management 

on complex projects.  

States such as New Jersey have in the past developed uniform procedures for determining the 

impact of lane closures on traffic using hourly traffic volumes [25] which depend on adjustments 

made to Annual Average Daily Traffic (AADT) values. These practices are commonly used by 

many other states and INDOT has followed those practices that use historical traffic volumes with 

queueing models to determine the feasibility of approving a lane closure exception [20]. 

2.1.4 Objectives 

Existing lane closure policies that often see no updates for extended periods of time, are based 

upon historical traffic counts and use generic queue calculations to evaluate exception requests. 
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Using real-time CV data has the potential to further improve flexibility on lane closure policies to 

strike an acceptable balance between time delay costs to motorists and maximizing closure times 

to benefit construction activity. The objectives of this study are: 

(a) To evaluate the impact of agile lane closure policies on congestion. 

(b) To evaluate the impact of agile lane closure policies on crash frequency. 

(c) To evaluate the use of real-time connected vehicle data for fine tuning agile lane closure 

policies. 

2.1.5 Study Location 

This study evaluated 11 lane closure exceptions granted across the state of Indiana on 4 different 

interstate routes (Interstates 65, 69, 70 and 265). Table 1 lists these 11 lane closure exceptions, and 

columns 2 and 3 identify the route and the mile marker range they were active on. Details regarding 

congestion and crash count calculations are described in subsequent sections. 

Figure 2 shows a statewide map with each of the 11 exceptions marked, showing a majority of the 

granted exceptions were on rural stretches of interstate roadways that do not typically carry heavy 

daily commuter traffic.  
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Table 1. Lane closure exceptions evaluation area mile marker ranges and year-over-year mile-

hours of congestion and crash count comparisons 

 

2020 

Exception 
Route 

Evaluation 

Area Mile 

Marker 

Range 

Mile-hours of 

congestion (MHC) % change in 

MHC 

Crash count 
% change in 

Crashes 
2020 2019 2020 2019 

E1 I65 
MM 205 – 

230 
12 179 -94% 12 18 -33% 

E2 I70 W 
MM 103 – 

105 
1 6 -85% 1 1 0% 

E3 I70 E 
MM 95 – 

104 
96 26 276% 3 8 -63% 

E4 I65 
MM 158 – 

168 
8 69 -88% 3 14 -79% 

E5 I65 MM 20 – 22 1 18 -96% 3 0 - 

E6 I70 MM 3 – 7 48 59 -19% 6 4 50% 

E7 I65 
MM 147 – 

149 
12 23 -48% 10 4 150% 

E8 I65 
MM 106 – 

108 
7 61 -89% 10 17 -41% 

E9 I70 MM 37 – 41 21 28 -26% 2 2 0% 

E10 I69 
MM 263 – 

271 
19 578 -97% 7 29 -76% 

E11 I265 MM 0 – 7 19 234 -92% 13 28 -54% 

Total   244 1281 -81% 70 125 -44% 
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Figure 2. Statewide map of 11 Lane Closure Exceptions on Interstates 

2.1.6 Methodology 

Table 1 details the evaluation area mile marker range for each exception, and together the 11 

exceptions cover 75 miles of Indiana Interstates. Exception E1 was granted from April 2 through 

May 8, 2020 while exceptions E2 through E11 were granted for an additional 5 days ending on 

May 13, 2020. 

2.1.6.1 Assessing Congestion 

Although there are a variety of definitions of congestion, for simplicity, segments of interstate are 

typically considered to be operating in the congested regime in Indiana when  speeds are below 45 
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MPH [26]. Using this definition, commercially available connected vehicle data were employed 

to calculate mile-hours of congestion, meant to numerically represent the spatial and temporal 

extent of congestion on a stretch of roadway [27] as shown in (1) below. 

  = i=1 to n(Li × ti) () 

where, 

<45 = total mile-hours of congestion 

n = total number of segments in a stretch of interstate 

Li = length of segment i in miles 

ti = time in hours for which segment i was congested 

Mile-hours of congestion values for every exception were calculated for its corresponding period 

of activity in 2020 as well as in 2019 and are listed in their respective columns in Table 1. All but 

one exception (E3) showed a decrease in mile-hours of congestion for 2020 and an overall decrease 

of 81% was seen in congestion across all exceptions. 

2.1.6.2 Assessing Crash Data 

Similarly, individual crash reports for the same 6-week period in 2019 and 2020 were obtained 

from the state’s online repository and aggregate counts by exception have been listed in 

corresponding columns in Table 1. Crashes decreased by 44% overall in the evaluation areas for 

these exceptions in 2020.  Three exceptions (E5, E6, E7) showed an increase in crash counts in 

2020 that is discussed in the text that follows. The literature suggests crash rates are likely to 

increase on a roadway that is under construction compared to the same roadway having no 

construction activity [28]. Thus, compared to base level crash counts from 2019, there were 

substantial safety improvements as a result of the timely implementation of these lane closure 

exceptions. 
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2.1.7 Year-over-year Comparisons 

2.1.7.1 Mile-hours of Congestion and Crash Count Comparisons 

Figure 3 shows mile-hours of congestion comparisons for the 11 exceptions for 2019 and 2020. 

Callout (i) points to exception E3 depicting highest percentage increase in mile-hours of 

congestion in 2020 (276%), while callout (ii) points to exception E10 depicting highest percentage 

decrease in mile-hours of congestion in 2020 (97%). 

Figure 4 shows a similar graphical comparison as in Figure 3, but for year-over-year crash counts. 

All exceptions except E5, E6 and E7 showed a significant reduction in crashes in 2020. 

 

Figure 3. Year-over-year mile-hours of congestion comparisons for 11 exceptions 
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Figure 4. Year-over-year crash count comparison for 11 exceptions 

2.1.7.2 Crash Counts by Manner of Collision 

Figure 5 shows crash counts by exception, and further categorized by crash type. Same direction 

sideswipe crashes increased by 7 in 2020 for exception E7. A review of crash report narratives 

showed that improper merging before lane shifts and trailer involvement were frequent factors in 

these crashes. Rear end crashes, one of the detrimental outcomes and telling indicators of long 

queuing on interstates, were observed to have decreased across the board on all exceptions. 
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Figure 5. Year-over-year crash count comparisons for 11 exceptions by Manner of Collision 

2.1.7.3 Visualizing Congestion using Speed Profile Heatmaps 

Spatial and temporal heatmaps of traffic speeds for the period of April 2 through May 13 in 2019 

and 2020 were used to visualize differences in recurring and non-recurring congestion and queuing 

on the exception evaluation areas in this study. These heatmaps were generated using 

commercially available CV data consisting of average vehicle speeds for 1-mile interstate 

segments at 1-minute frequency. Traffic speed data was binned into 15-minute intervals, colored 

from green to purple as average speeds decreased from above 65 mph to below 14 mph. 

Figure 6 shows these speed profile heatmaps for 2019 (a) and 2020 (b) for exception E3 in the 

eastbound direction of travel on interstate 70. Recorded crash incidents for this evaluation area are 

overlaid on the heatmaps in Figure 6a and b. A rise in congestion is observed beginning May 4, 

2020 (callout i) which corresponds to the first phase of the state’s commercial businesses 

reopening during COVID-19. 

Figure 7 shows the same speed profile heat maps for 2019 (a) and 2020 (b) for exception E11 in 

the eastbound direction of travel on interstate 265. Recorded crash incidents for this evaluation 

area are overlaid on the heatmaps in Figure 7a and b. While Figure 7a clearly shows recurring 

weekday congestion throughout the observation area in 2019, the same trends were not observed 

in 2020 except for non-recurring congestion attributable to a personal injury crash in May 2020. 
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While the heatmaps shown in this section present an after-action review of lane closure exception 

impacts on traffic, the availability of speed profile data with only a few minutes of delay makes it 

possible for agencies to track ongoing exceptions in real-time and affords them the flexibility to 

make modifications to closures timings and/or locations as and when they notice impact on 

roadways and motorists. 

 
(a) 2019 Speed Profile Heatmap by Mile Marker and Day 

 

(b) 2020 Speed Profile Heatmap by Mile Marker and Day 

Figure 6. Exception E3: I-70 Eastbound (EB) MM 95-104 
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(a) 2019 Speed Profile Heatmap by Mile Marker and Day 

 

(b) 2020 Speed Profile Heatmap by Mile Marker and Day 

Figure 7. Exception E11: I-265 Eastbound (EB) MM 0-7 

2.1.8 Summary 

This study analyzed congestion trends and crash activity for 11 lane closure exceptions granted by 

INDOT on 4 interstate roadways over a 6-week period in 2020. The same 6-week period from 

2019 was analyzed for base level comparison. This study observed an overall 81% decrease in 

congestion and 44% decrease in crashes in 2020 compared to 2019. Although the traffic volume 

changes were unprecedented, these results support the use of agile data-driven tools for agencies 

to be flexible in their lane closure policies in conjunction with close monitoring of the impact of 

those exceptions. 

While the exceptions analyzed in this study only constituted 139 miles of a total of nearly 2500 

centerline miles of interstate roadways in Indiana, their successful implementation makes a strong 
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case for adopting agile work zone project management practices on a larger scale in conjunction 

with close monitoring made possible by access to real-time connected vehicle speeds, hard-braking 

and hard-acceleration data. Exceptions analyzed for this research were the first 11 instances of 

INDOT utilizing agile lane closure procedures in 2020.  Agile lane closure policies were 

subsequently implemented at an additional 25 locations across the state. In addition to including 

crash date and time information in the dashboards, INDOT is now incorporating hard-braking 

events reported by connected vehicles to provide even faster assessment on system operation [29]. 

This section of chapter 2 demonstrated how real-time CV data can aid in monitoring work zone’s 

(or even a freeway segment not under construction) mobility performance, and allow 

transportation agencies to make dynamic adjustments to roadway maintenance strategies based on 

observed volumes rather than historical forecasts or models. As of this writing, INDOT is actively 

leveraging real-time CV dashboards as those presented by this study to monitor freeway traffic for 

daily operational use. 

2.2 Methodology for Applying Connected Vehicle Data to Evaluate Impact of Interstate 

Construction Work Zone Diversions 

2.2.1 Overview 

Diversion of Interstate traffic can significantly impact the surrounding road network with increased 

volumes and congestion. This paper uses commercially available connected vehicle data to 

examine the impact of a construction zone on Indiana I-70 with 7 days of reduced interstate 

capacity that resulted in significant diversion onto US-40, an adjacent signalized arterial east of 

Indianapolis. Approximately 12 million connected vehicle GPS points, collected at nominal 3 

second intervals were analyzed over an eight-week period for an 11-mile section of I-70 and 

similar length parallel section of US-40. Congestion peaked at approximately 5 PM on August 

10th, 2020 and resulted in a 115% increase in sampled vehicle volumes using the adjacent US-40. 

Critical intersections along US-40 experienced an increase of approximately 1175% in split 

failures. Travel time on the US-40 corridor increased by 16% during the peak hour. The framework 

presented in this paper will serve as a valuable tool for agencies to deploy connected vehicle 

performance measures for both Interstate and Arterial routes, without significant investment in 

traditional intelligent transportation system (ITS) sensors. Since these techniques are based upon 
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emerging commercially available connected vehicle data, they can be readily scaled to any 

interstate construction project in the United States. 

2.2.2 Introduction 

Interstate construction activity and peak period lane closures can lead to significant delays, 

congestion and adversely impact the adjoining road network due to diverting traffic. Work zones 

account for about 10% of overall congestion and approximately 24% of non-recurring congestion, 

as reported by the FHWA [30], [31]. Additional data from state departments of transportation 

observed that nearly 20% of the National Highway System experiences construction activity 

during summer [31]. Assessing and subsequently mitigating the impact of interstate construction 

diversions on overall network performance is thus essential for state agencies. 

2.2.3 Literature Review 

There are multiple route guidance models [32]–[36] and Advanced Traveler Information Systems 

(ATIS) [37], [38] that offer motorists alternate diversion route information during congestion. 

Studies have also looked at the factors that affect the route choice during network disruptions and 

found that provision of real-time information was an important factor that affected traveler 

decision [39], [40]. 

Understanding the impact of traffic on alternate routes is critical for agencies during detours. 

Several studies have used stated surveys and modelling approaches for this purpose [41]–[45]. 

Only a few studies have used real-world probe vehicle data to investigate the impact of diversions. 

Traditional intelligent transportation system (ITS) sensors including Bluetooth sensors and 

dynamic message signs have been used in the past decade to evaluate work zone diversions [46]–

[49] and traffic management strategies during special events [50]. Bluetooth sensors were also 

deployed to estimate the distribution of diverted traffic on four alternate routes during an 

unexpected bridge closure [51]. The study found that relatively few drivers took the official detour 

compared to the other routes. During an unplanned closure of a 37-mile stretch of interstate in 

Indiana, agencies used traffic impact dashboards generated using real-time commercial probe 

vehicle data to monitor mobility and queuing on diverted routes [52]. A study in Japan also used 
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probe data from a commercial vehicle to evaluate the detour rate by analyzing trip origin-

destination (OD) during a heavy rain disaster [53]. 

Recent advancements in capturing anonymized trajectory-based data from connected vehicles can 

provide detailed information on the alternate routes and their traffic impact during diversions. A 

recent study using trajectory data was able to highlight the number of vehicles that diverted during 

a crash incident on an interstate [54]. However, there are very limited studies that use this emerging 

data to evaluate work zone diversions. This study uses commercially available CV trajectory data 

to examine the impact of a construction zone on Indiana I-70 that resulted in significant diversion 

on the adjacent US-40, a signalized arterial. 

2.2.4 Objectives 

The objective of this study is to propose a methodology by which CV data can be applied by 

practitioners to assess the impact of diversions caused by interstate work zones on freeway 

mobility as well as arterial traffic signal performance. Using emerging CV data, agencies can 

deploy interstate and arterial performance measures without having to put in a substantial long-

term investment in cost prohibitive and labor intensive ITS sensor infrastructure. 

2.2.5 Study Location 

In this study, the impact of a construction work zone on the eastbound (EB) direction of an 11-mile 

section of I-70, located east of Indianapolis (Figure 8a), and its effects on a parallel 12-intersection 

stretch of the alternative route US-40 are analyzed. Variation in vehicle speeds, travel-time, and 

mile-hours of congestion caused by the construction on I-70, between mile markers (MM) 88 and 

99 (Figure 8b), are examined in the following sections. There are exit and entry ramps that lead to 

and from US-40 at I-70 MM 91 and MM 96. 

The consequences of increased volumes on traffic signal performance on US-40 intersections are 

estimated from connected vehicle (CV) data. Figure 8b shows the signalized intersections analyzed 

on US-40: Post Rd. (I1), Washington Village Shoppes (I2), Cherry Tree Plaza (I3), Mitthoeffer Rd. 

(I4), Washington Square (I5), Kroger (I6), Wal-Mart (I7), German Church Rd. (I8), Hugo St. (I9), 

Muessing St. (I10), S 700 W (I11), and S 600 W (I12). 
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(a) Indiana, United States 

 

(b) East Indianapolis, IN 

Figure 8. Study Location 

2.2.6 Data Description 

Third-party crowdsourced CV data with an estimated penetration rate of 5.0% on state and US 

roads [55], crash data obtained from the state repository and traffic images acquired from a fixed 

ITS camera in the study location, for the months of July and August 2020, were used in this study. 

Two different CV datasets are analyzed: trajectory data and event data. Geofences were defined to 

capture trajectory and event data points within the study location as shown in [29]. 
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2.2.6.1 Trajectory Data 

The CV trajectory data utilized by this study consists of individual vehicle waypoints with a 

reporting interval of 3 seconds and a 1.5-meter fidelity radius. Every waypoint has the following 

information attached: GPS location, timestamp, speed, heading, and an anonymized unique 

trajectory identifier. By linking individual waypoints using their trajectory identification number, 

a vehicle’s trajectory can be obtained. 

2.2.6.2 Event Data 

The CV event data consists of individual hard-braking events, each of which has the following 

information: GPS location, timestamp, and speed. A hard-braking event is classified by the 

occurrence of a deceleration greater than 2.67 m/s2 (defined by OEM). 

2.2.7 Interstate Congestion: I-70 

Reduced interstate capacity due to construction on I-70 resulted in a significant rise in congestion 

in the EB direction of travel, specifically in the region of MM 91-96, for weekdays in the 9-day 

period beginning August 10th, 2020. Figure 9a shows a series of speed profile heat maps for the 

weekdays beginning August 3rd and ending August 14th. Hard-braking events are indicated by red 

circles while crash incidents by white circles. Recurring congestion with hard-braking events at 

the back-of-queue can be observed beginning August 10th. Figure 9c depicts traffic conditions 

captured by an ITS camera situated at I-70 MM 93.1. Free flow conditions are observed the week 

before congestion (i), followed by substantial queuing during the construction period (ii-iii), 

followed by traffic returning to free flow conditions once construction terminates (iv). 

Figure 10a shows a map of the study area east of Indianapolis, IN. A 5-mile stretch of interstate I-

70 between exits 91 and 96 highlighted in red shows the region that observed recurring congestion 

beginning August 10th. Due to this interstate congestion, a number of vehicles likely diverted away 

from I-70 to the parallel US-40 (indicated by the southbound translucent grey arrowhead). 

Additionally, motorists on I-465 who may have seen ITS messages warning of conditions on I-70, 

may have chosen to divert onto US-40 and then merge onto I-70 (indicated by the eastbound 

translucent grey arrowhead). 
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2.2.7.1 Trajectory-based Interstate Performance Measures 

2.2.7.1.1 Travel Times and Diversion Rates 

Using the anonymized trajectory identifier mentioned earlier, a vehicle’s entire trajectory could be 

tracked as it passed through the region of congestion on I-70. This enables the computation of 

diversion rates and travel times (Figure 9b). Trajectories were captured just before exit 91 so as to 

only capture travel times over a consistent stretch of I-70 EB starting at MM 90 and ending at MM 

99. For all the analyzed trajectories on I-70 EB, average travel time increased by over 102% 

between the week before (August 3rd – 7th: 10.7 minutes) and during the congestion (August 10th 

– 14th: 21.7 minutes). 3% of all analyzed trajectories were observed to have taken an alternative 

route by diverting off of I-70 and rejoining the interstate using the entry ramp at MM 96 during 

the week of congestion. These CV trajectories showed 8% lower travel times on average than those 

that stayed on I-70. 
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(a) I-70 EB MM 88-99 speed profile heat maps for the week before and during congestion: August 3 – August 14, 

2020 

 

 
(b) I-70 EB travel times for MM 90-99 for the week before and during congestion: August 3 – 14, 2020 

 
(c) I-70 EB Congestion as seen on INDOT Traffic Camera at MM 93.1 at noon on (i) August 3 (ii) August 13 (iii) 

August 17 and (iv) August 24, 2020 

Figure 9. Interstate Congestion and Travel Times on I-70 
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2.2.7.1.2 Mile-hours of congestion 

Previous studies have defined congested conditions as lengths of interstate roadway operating 

below a speed threshold of 45 miles per hour (mph) [56], [57]. Figure 10b shows a stacked bar 

representation of the mile-hours of congestion on I-70 EB by hour of day, computed by summing 

lengths of quarter-mile segments where median speed of trajectory data points over an hour dipped 

below 45 mph. An increase of 437% in average mile-hours of congestion per day was observed 

from the week before (August 3rd – 7th) to the week during the congestion (August 10th – August 

14th) on I-70. 

Figure 10c shows the number of unique trajectories that traversed US-40 from Post Road (I1) to S 

600 W (I12) during the same time period. While the pre-construction period from July 6 – August 

8 observed an average of 96 trajectories per weekday on US-40, the period of I-70 congestion from 

August 10 – August 18 showed an average of 182 trajectories per weekday on the same stretch of 

US-40. This clearly points to diverting trajectories from I-70 resulting in an increase in sampled 

volumes on US-40. It is visually discernible from Figure 10b and Figure 10c, that during the week 

of congestion, peak mile-hours of congestion observed on I-70 in the evening hours of 15:00 to 

19:00 show a corresponding rise and thus a direct impact in sampled vehicle volumes on US-40. 



 

 

39 

 
(a) Study location showing region of congestion on I-70 and alternative routes on US-40 

 

(b) Mile-hours of congestion on I-70 EB MM 88-99 by hour of day for weekdays in July 6 – August 28 2020 

 

(c) Unique trajectory counts on US-40 EB (Post Road to S 600 W) by hour of day for weekdays in July 6 – August 

28 2020 

Figure 10. Region of congestion and impact on alternative route sampled volumes 
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2.2.8 Alternative Route: US-40 

Increased volumes on US-40 due to diversions have the potential to negatively impact traffic signal 

operations. The week before congestion on I-70 (August 3rd – 7th) there were only 490 unique CV 

trajectories traveling EB from Post Rd. (I1) to S 600 W (I12). In contrast, during the week of 

congestion (August 10th – 14th) 940 unique CV trajectories completed the same trip, which 

represents a 92% increase in sampled connected vehicle volume. During the peak of congestion, 

which occurred on August 8 between 17:00 and 18:00, there was a 115% increase on sampled CV 

EB volume on US-40 when compared to the previous week. Additionally, for the same period, 

travel time on the corridor increased by 16%, and critical intersections along US-40 experienced 

an increase of approximately 1175% in split failures. The following sub-sections analyze the 

impact that the increased sampled volumes had on traffic signal operations. 

2.2.8.1 Trajectory-based Traffic Signal Performance Measures 

The methods used in this study to estimate traffic signal performance for the EB through 

movements on US-40 are based on [58], [59]. Four different metrics are analyzed: split failures 

(SF), arrivals on green (AOG), downstream blockage (DSB), and the traditional Highway Capacity 

Manual level of service (LOS) categories based upon control delay [60]. 

2.2.8.1.1 Split Failures 

A split failure is an indication of an approach operating at over capacity. It occurs when a traffic 

signal does not provide enough green time to discharge the current queue, resulting in vehicles 

having to wait for longer than one cycle-length. Split failures are identified from CV trajectory 

data when a vehicle stops more than once before crossing through the intersection. 

Figure 11a and Figure 11b graphically show the percentage of vehicles experiencing split failures, 

for the different analyzed intersections, by time-of-day, when traveling EB through on US-40 for 

the week before and during the congestion on I-70. It can be appreciated that German Church Rd. 

(I8) had the highest increase in the percentage of vehicles experiencing split failures (31%) 

between 16:00 and 18:00 (callouts i and ii). To further analyze the operational state at this location, 

Purdue Probe Diagrams (PPDs) for the same periods are shown on Figure 11c and Figure 11d [58], 

[59]. Additionally, Figure 12 shows the percentage of trajectories, by number of stops, for vehicles 
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traveling EB through at German Church Rd. for the weekdays between July 6th and August 28th, 

where the daily increase on split failures due to congestion can be appreciated. 

For all the analyzed intersections on US-40, there were over 430 additional split failures (872% 

increase) between the week before (August 3rd – 7th) and during the congestion (August 10th – 14th) 

on I-70. 

2.2.8.1.2 Arrivals on Green 

AOG has been traditionally utilized to assess the level of progression. A CV trajectory is 

characterized as AOG when the vehicle does not stop when crossing through the intersection. 

By comparing Figure 11c and Figure 11d, it can be appreciated how the percentage of vehicles 

arriving at the intersection during green (no stops) drops from 71% to 33% at German Church Rd. 

between the 16:00 and 18:00 hrs. The variation on AOG for this location, for all weekdays between 

July 6th and August 28th, can be seen on Figure 12. 

For all the analyzed intersections on US-40, there was a 2% decrease on AOG between the week 

before (August 3rd – 7th) and during the congestion (August 10th – 14th) on I-70. 

2.2.8.1.3 Downstream Blockage 

As defined in [58], [59], downstream blockage helps identify locations where adjacent 

intersections obstruct the progression of vehicles. A CV trajectory can be attributed as having 

downstream blockage by calculating the experienced delay after crossing the far side of the 

intersection. 

For all the analyzed intersections on US-40, there were over 240 additional trajectories with 

downstream blockage (220% increase) between the week before (August 3rd – 7th) and during the 

congestion (August 10th – 14th) on I-70. 

2.2.8.1.4 Level of Service 

LOS provides a description of the operating conditions at an intersection based on control delay 

[58]–[60]. For German Church Rd. between the 16:00 and 18:00 hrs. (Figure 11c and Figure 11d), 
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it can be seen how trajectories start with a longer time to the intersection’s far side during the week 

of congestion on I-70 compared to the week before. This is an indication of vehicles experiencing 

longer delays. There was a 40 second weighted average increase on control delay between Figure 

11c and Figure 11d, resulting in a change on LOS from B to E. 

For all the analyzed intersections on US-40, there was a change on the corridor LOS from A to B 

between the week before (August 3rd – 7th) and during the congestion (August 10th – 14th) on I-70. 

Figure 11. Corridor-wide split failures and PPDs at German Church Rd. (I8) longitudinal 

comparisons for vehicles traveling EB through on US-40 

 

 

  

(a) Percentage of vehicles experiencing split failures before 

the week of congestion: August 3-7, 2020 

(b) Percentage of vehicles experiencing split failures 

during the week of congestion: August 10-14, 2020 

 

  
(c) German Church Rd. PPD before the week of 

congestion: August 3-7, 2020 between 16:00 and 18:00 

(d) German Church Rd. PPD during the week of 

congestion: August 10-14, 2020 between 16:00 and 18:00 
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Figure 12. Percentage of trajectories by number of stops for vehicles traveling EB through at 

German Church Rd. (I8) 

2.2.9 Summary 

This study analyzed CV trajectory and event data for weekdays in a two-month period spanning 

July 6th to August 28th, 2020, to understand the impact of interstate construction work zone 

diversions on traffic signal performance measures on an adjoining 12-intersection arterial corridor. 

CV trajectory data with waypoints available every 3 seconds enabled travel time and diversion rate 

analysis on I-70, showing a 102% increase in travel times and 3% diversion rate during the week 

of congestion. Correspondingly, the adjoining US-40 corridor observed a 92% increase in sampled 

volumes with travel times increasing by as much as 16% during peak congestion on I-70. Analysis 

of traffic signal operations on the 12-intersection corridor with trajectory-based traffic signal 

performance measures showed the impact the interstate construction diversions had on the 

adjoining arterial, namely, an 872% increase in trajectories experiencing split failures, 2% decrease 

in AOG, 220% increase in trajectories experiencing downstream blockage and a degradation of 

the corridor LOS from A to B. 

The analysis, methodology, and results discussed in this study can potentially assist agencies and 

contractors when planning future construction activity and recommending alternative routes to the 

traveling public. With increasing penetration rates and widespread availability, the use of 

connected vehicle data provides a viable path forward for agencies by removing any spatial 

constraints that may be imposed by traditional ITS sensors and affords them the freedom to scale 

these methodologies to any interstate construction project in the United States. 

The methods presented in this chapter for using CV trajectory or segment-based data at-scale 

towards monitoring freeway and arterial mobility in near real-time will provide agencies with 
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valuable ground-level feedback and operational insights into traffic behavior, without any 

additional investment in fixed ITS sensor infrastructure. 
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 IMPACT OF SECONDARY CRASHES ON INTERSTATE MOBILITY 

IN INDIANA 

The details presented in this chapter have been published in “Using Connected Vehicle Data to 

Evaluate Impact of Secondary Crashes on Indiana Interstates” [61]. 

This chapter discusses the application of CV data for quantifying the mobility impact of secondary 

crashes on interstate roadways in Indiana for the year 2019. These methodologies developed in 

this work provided the foundation for the Indiana Criminal Justice Institute to invest in the Indiana 

Unmanned Aerial System (UAS) training program that helps agencies reduce crash clearance time.  

The USDOT Federal Highway Administration identified this as an EDC-5 initiative to promote 

nationally [62].   

3.1 Overview 

Interstate crashes often result in significant queuing, which can lead to secondary crashes in or at 

the back of the queue. These secondary crashes are of national concern and their occurrence and 

duration of traffic impact can now be assessed at-scale with CV data. This chapter describes in 

detail a study that evaluated 195 unique incidents in 2019 that involved one or more secondary 

crashes. Approximately 84% of the secondary crashes led to property damage only (PDO) whereas 

15% and 1% of the secondary crashes led to personal injuries (PI) and fatalities (F) respectively. 

This study uses commercially available connected vehicle data to assess the impact of these 

secondary crashes on Interstate mobility using metrics such as event duration time and road closure 

time. The connected vehicle data for events longer than 2 hours showed that 29% of evaluated 

incidents had a total road closure and 30% of incidents over 2 hours had event duration longer than 

5 hours. This study summarizes the mobility impacts of secondary crashes on Indiana Interstates 

and provides foundational data for agencies to invest in public safety training to accelerate incident 

clearance to reduce secondary crashes. 

3.2 Introduction 

More than 36,000 fatal crash incidents occurred in the United States in 2019 according to estimates 

from the National Highway Traffic Safety Administration (NHTSA) [63]. Crash incidents often 
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result in reduced speeds of traffic flow, closure of a lane or entire road for incident clearance and 

queueing in some cases. These queuing conditions often lead to secondary crashes. The Federal 

Highway Administration (FHWA) termed secondary crashes as crashes that would not have 

occurred unless preceded by an earlier one in close proximity [64]. Possible causes of secondary 

crashes include rapidly growing queues caused by the primary crash and rubbernecking by 

motorists. These secondary crashes pose a serious safety hazard on roadways and are a growing 

safety concern for agencies nationwide. Additionally, secondary crashes may also prevent first 

responders from reaching the scene of the primary crash. This study utilizes statewide connected 

vehicle data and crash data to evaluate the impact of secondary crashes on Indiana Interstates 

during 2019. 

3.3 Literature Review 

Freeway congestion delays can be of recurrent or nonrecurrent type. The latter are caused by 

accidents, breakdowns, weather effects or road debris among other causes. It is estimated that 

40%-60% of nonrecurrent freeway delays are caused by crash incidents [65]–[66]. These 

nonrecurrent congestion instances can lead to impacts on safety and mobility by reducing freeway 

capacity and adding to travel time uncertainty. In some instances, it can lead to a secondary crash 

in or at the back of the queue [67]. A three-year study of interstate crashes showed that the 

congested crash rate on Indiana’s interstates was 24 times higher than the crash rate under 

uncongested conditions [68]. While existing literature on the impact of secondary crashes is sparse, 

multiple attempts have been made in the past to identify secondary crashes occurring as a direct 

result of one or more primary crash incidents. Sensor data have been employed in the past on 

designated sections of freeways to identify secondary crashes [69]. An analysis of crash reports on 

urban arterial roadways in a metropolitan region in Illinois postulated that a primary and 

subsequent secondary crash may be related if the incidents occurred within 15 minutes and 1 mile 

of each other [70]. More advanced dynamic methods including spatiotemporal crash impact 

analysis, incident filtering, loop detector data among others, were also developed to identify 

freeway sections affected by crashes and the likelihood of secondary crash occurrence within that 

region [71]–[72]. 
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Emerging connected vehicle data presents practitioners with a unique opportunity to accurately 

assess system-wide performance [73]–[74] without the need for extensive intelligent transportation 

system (ITS) sensor infrastructure. Recent studies have shown how connected vehicle data can be 

used by state agencies for independent validation of interstate queues, analyzing traffic impacts 

[75] and determining speed limit compliance in work zones [76]. Research analyzing hard-braking 

behavior in interstate work zones observed a crash incident occurring for every 150 hard-braking 

events per mile of interstate roadway, a majority of which would naturally be expected to occur 

within or at the back of a queue [77]. 

The FHWA’s Traffic Incident Management (TIM) performance measurement initiative reported 

that for every minute that a primary crash scene is not cleared, the likelihood of a secondary crash 

occurring, increases by 2.8% [78]. Logistic regression models developed using a five-year incident 

database from the Borman Expressway showed that the clearance time of a primary crash is 

statistically significant in determining the likelihood of occurrence of a secondary crash [67]. 

However, there are very limited studies that use connected vehicle data to quantify incident 

clearance and road closure times on a macroscopic scale rather than on designated sections of 

freeway that may be bound by spatiotemporal sensor or data constraints. 

3.4 Objectives 

The objective of this study is to propose a methodology by which CV data can be leveraged to 

assess the impact of secondary crashes on interstate mobility. This study used commercially 

available CV data to examine the year-round impact of secondary crashes on interstate routes in 

the state of Indiana. The quantitative data produced from this study can then be used by state 

transportation agencies to make a case to invest in public safety training to accelerate incident 

clearance to reduce secondary crashes. 

3.5 Study Location 

Seven primary interstate routes operating north-south (I-65, I-69) and east-west (I-64, I-70, I-74, 

I-90, I-94) in addition to three auxiliary interstate routes operating as beltways and bypasses (I-

465 around Indianapolis, I-469 around Fort Wayne and I-265 around Louisville) together comprise 

the study area as shown in Figure 13. This study looked at connected vehicle speeds and crash 
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incidents on over 2500 centerline miles (4023 kilometers) of the aforementioned routes over 2019. 

Interstate 275 (I-275) was not included due to its limited 3-mile length in Indiana. 

 

Figure 13. Study Location 

3.6 Data Description 

High fidelity CV speed data coupled with crash data were utilized for this study. This section 

describes the data sources and attributes in detail.  

3.6.1 Speed Data 

Commercially available CV data [79][80] was analyzed during this study. CV data provides speed 

records at one-minute intervals for a roughly 1-mile stretch of interstate segments by direction of 

travel. The speed data is categorized into 7 different speed bins to isolate congested conditions 
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from uncongested. This categorized speed data is subsequently used to generate spatiotemporal 

speed profiles, alternatively known as speed profile heatmaps, an example of which is shown in 

Figure 14. The horizontal axis represents the hour of the day whereas the vertical axis represents 

the mile marker along Interstate 65 (I-65) in the southbound (SB) direction. An arrow is shown on 

the figure indicating direction of travel for vehicles represented in the figure. These speed profile 

heatmaps were used as the primary screening tool to assess and document the impact of secondary 

crashes on Indiana’s interstates. 

3.6.2 Crash Data 

Crash data classified by its severity type i.e. property damage only (PDO), personal injury (PI) and 

fatality (F) were extracted from the state of Indiana’s online repository [68]. Any personal or 

identifying information was omitted from the crash data. The timestamp and geolocation of a crash 

record were utilized to analyze them in conjunction with speed data. An additional layer of crashes 

was overlaid on the speed profile heatmaps, pointed to by callouts P, i and ii on Figure 14.  

3.7 Methodology 

A comprehensive evaluation of all crashes during 2019 was followed by segregating incidents that 

had impacts longer than 2 hours and had one or more secondary crashes. If a crash had occurred 

within the congested influence region of another preceding crash upstream, it was flagged for 

additional human confirmation using the speed profile heatmap. If confirmed by human inspection, 

the primary and secondary crashes were entered into our analysis data set. For all identified 

incidents, event metrics were computed as described below. 

3.7.1 Event Metrics 

3.7.1.1 Event Duration Time  

The total duration for which traffic was impacted starting from the time of the primary crash and 

lasting until congestion dissipates was defined as the Event Duration Time (Figure 14, dimension 

a). A section of interstate was considered to be congested if it was operating at speeds below 45 

mph, a common threshold established in existing literature [80], [81].  
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3.7.1.2 Road Closure Time  

The duration for which no speed data was recorded by the heatmap due to a total road closure in 

effect was defined as the Road Closure Time. It generally starts after the primary or secondary 

crash has occurred and around the crash location, identified as a no data block on the speed profile 

heatmap. The road closure duration is determined by computing the duration of time that no 

connected vehicles were traversing the segment (Figure 14, dimension b). 

 

Figure 14. Speed Profile Heatmap for I-65 Southbound on September 12, 2019 showing 24 hours 

of average segment speed over 30 miles as well as crash time and locations 
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3.7.2 Incident Example 

A primary crash and two secondary crashes occurring on I-65 on Thursday, September 12, 2019 

are depicted as a representative sample incident in Figure 14. A 30-mile section of I-65 in the 

southbound (SB) direction of travel from mile marker (MM) 150 to MM 180 is shown. Callout P 

shows the primary crash that occurred in the vicinity of MM 158 at 7:35 AM. The primary crash 

led to downstream traffic congestion resulting in the formation of a queue. The first of two 

secondary crashes occurred at 9:15 AM at the back of the queue (callout i), followed by another 

secondary crash occurring inside the queue forming behind the total road closure at 4:15 PM 

(callout ii). This incident resulted in a total Event Duration Time of 13 hours and 25 minutes 

(callout a) and a total Road Closure Time of 8 hours and 45 minutes (callout b). 

3.8 Mobility Impact Analysis 

A systematic review of all interstate crashes in 2019 resulted in the identification of 195 unique 

incidents that satisfied the pre-defined criteria of exhibiting at least one secondary crash and an 

impact on traffic of 2 hours or more. A comprehensive analysis of these 195 incidents (involving 

203 primary crashes and 358 secondary crashes) using the prescribed event metrics, further 

revealed the mobility impact that secondary crashes had on the ten interstate routes under 

consideration. 

Figure 15 shows primary and secondary crash counts categorized by their severity levels as well 

as the time of day. 68% of all primary crashes resulted in property damage while 29% and 3% 

resulted in personal injuries and fatalities, respectively. Correspondingly, 84% of all secondary 

crashes resulted in property damage with 15% and 1% resulting in personal injuries and fatalities, 

respectively. The evening hours of 16:00 to 18:00 showed a high concentration (25%) of secondary 

crashes over the entire year. 
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(a) 203 Primary Crashes categorized by severity 

 

(b) 358 Secondary Crashes categorized by severity 

 

(c) Primary and Secondary Crashes by Time of Day 

Figure 15. Crash Data by Severity and Time of Day 

 

As a means of spatially visualizing crash incident hotspots around the state, the entire study 

location was split into 10-mile segments by interstate route and direction of travel. Figure 16 
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highlights each such segment with the radius of the circular blue marker scaled by the total crash 

count (primary and secondary) observed at the location. Five locations that observed greater than 

10 secondary crashes during 2019 were I-94 westbound (WB) MM 0-20, I-465 outer loop (OL) 

MM 0-10, I-69 northbound (NB) MM 300-310, and I-94 EB MM 0-10. A number of these hotspots 

were located on urban interstates and near the Indiana-Illinois state borderline. This spatial map 

can potentially provide agencies with valuable input in allocating queue management and scene 

clearance resources. 

 

Figure 16. Crash locations on Indiana Interstates (10-mile segments by direction of travel) 

 

With road closure times ranging from zero to 8 hours 45 minutes as shown by the cumulative 

frequency diagram in Figure 17a, it was seen that 29% of incidents observed a non-zero duration 

of road closure (callout i). Correspondingly, event duration times ranged from a lower limit set at 
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2 hours to 13 hours 53 minutes, with 30% of all incidents showing event duration times longer 

than 5 hours (callout ii). It naturally follows that the range of event duration times would be 

significantly higher than the road closure times. 

 

(a) Cumulative Frequency Diagram of Road Closure Time (hours) 

 

(b) Cumulative Frequency Diagram of Event Duration Time (hours) 

Figure 17. Event metrics summary 
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Table 2 shows an overall summary of the mobility impacts of secondary crashes categorized by 

the 10 interstate routes analyzed in this study. I-65 experienced the highest average total road 

closure time of 3 hours and 27 mins while I-94 observed the highest average event duration time 

of 5 hours and 31 minutes. 57 incidents involved a total road closure with closures being in effect 

for an average of 2 hours and 33 minutes. 

Table 2. Summary of 2019 Incidents by interstate route 

Interstate 
Length 

(mi) 

Total Number 

of Primary 

Crashes 

Total Number 

of Secondary 

Crashes 

Number of 

Incidents 

with Road 

Closure 

Average 

Road 

Closure 

Time (when 

closed) 

Average 

Event 

Duration 

Time 

I-94 46 63 133 8 1h 17m 5h 31m 

I-65 262 35 64 13 3h 27m 4h 46m 

I-69 271 33 45 13 2h 13m 3h 46m 

I-465 53 28 59 4 2h 38m 3h 21m 

I-70 157 21 28 9 2h 37m 3h 53m 

I-74 171 9 11 6 2h 02m 3h 43m 

I-90 156 5 9 4 3h 38m 4h 16m 

I-64 124 4 4 0 - 2h 40m 

I-265 13 3 3 0 - 3h 05m 

I-469 31 2 2 0 - 3h 21m 

Statistics 

for all 

Interstates 

1264 203 358 57 2h 33m 3h 50m 

3.9 Summary 

This study used connected vehicle data to evaluate the impact of 358 secondary crashes occurring 

over 195 unique incidents, on interstate mobility in the state of Indiana during 2019. Interstate 

route-level analysis of secondary crash mobility impacts presented in Table 1 showed an average 

road closure time of 2 hours and 33 minutes with an average event duration time of 3 hours and 

50 minutes. The analysis presented depicts the significant impact that secondary crashes have on 

interstate travel both in terms of safety and reduced mobility. This data thus provides quantitative 

evidence useful for state agencies to allocate resources to public safety agencies towards 

accelerating incident clearance [82].  In fact, approximately 33 public safety agencies have been 

trained on using Unmanned Aircraft Systems (UAS) to rapidly map crash scenes. Two of the early 

adopting agencies have mapped nearly 50 crash scenes in the past 2 years, and together the 

participating agencies have mapped nearly 200 crash scenes so far.  
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A potential next step for this research is replacing visual inspection of speed profile heatmaps with 

an automated process of detecting queues building up in real-time thus enabling the generation of 

advance warnings to motorists as well as state agencies. The ability of connected vehicle data to 

identify spatial and temporal hot spots of interstate queues on a near real-time basis provides 

agencies with the necessary tools to actively mitigate the detrimental safety and mobility impacts 

of back of queue crashes. 
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 CORRELATING HARD-BRAKING ACTIVITY WITH CRASH 

OCCURRENCES ON INTERSTATE CONSTRUCTION PROJECTS IN 

INDIANA 

The information presented in this chapter was published in “Correlating hard-braking activity with 

crash occurrences on interstate construction projects in Indiana” [83]. 

 

Crash data has historically been used to identify emerging safety concerns in work zones.  This 

chapter discusses the use of hard-braking events in place of crash incident reporting for evaluating 

the safety performance of interstate construction work zones. This work has resulted in INDOT 

institutionalizing practices to monitor week to week changes in CV hard-braking to data to identify 

emerging safety concerns so they can be addressed quickly [84].   

4.1 Overview 

The Federal Highway Administration (FHWA) reported between 2016 and 2017, fatal 

crashes in work zones increased by 3%, while fatal crashes outside of work zones decreased by 

1.5%. The FHWA also reported that work zones account for approximately 10% of the nation’s 

overall congestion and 24% of unexpected interstate delays. This paper reports on a study of 23 

construction work zones that covered approximately 150 centerline miles of Indiana interstate 

roadway in the summer of 2019. Approximately 50% of all interstate crashes for the period of May 

through September 2019 occurred within or in an approach upstream or downstream of one of 

these work zones. Commercially-available vehicle hard-braking event data is used for the study 

and geofenced to the work zone approaches and limits. This research examined 196,215 hard-

braking events over a 2-month period in the summer of 2019 and 3,132 crashes over the same 2-

month period in 2018 and 2019 for the 23 interstate work zones. The study found there were 

approximately 1 crash/mile for every 147 hard-braking events in and around a construction site. 

The R2 was approximately 0.85. The paper concludes by recommending that hard-braking event 

data be used by agencies to quickly identify emerging work zone locations that show relatively 

large number of hard-braking events for further evaluation. 
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4.2 Introduction 

There are approximately 800 fatal work zone crashes in the US annually, most of which occur in 

the summer and fall, and over 25% of those crashes involve large trucks or buses [30]. The Federal 

Highway Administration (FHWA) reported between 2016 and 2017 [30] fatal crashes in work 

zones increased by 3%, while fatal crashes outside of work zones decreased by 1.5%. The FHWA 

also reported that work zones account for approximately 10% of the nation’s overall congestion 

and 24% of unexpected interstate delays [30]. Historically, crash report data has been used to 

identify opportunities to improve the design of future construction zones. However, the 

infrequency of crashes and the time it takes for personnel to read crash narratives makes it difficult 

and infeasible to use crash data for tactical monitoring of work zones. Furthermore, crash reports 

are often reported with a time delay due to associated investigation time, and the exact location 

and time reported in the crash reports varies by investigating agency. In contrast, hard-braking 

event data can be obtained daily from commercial providers with a precise timestamp and geo-

location information. This paper investigates the feasibility of using hard-braking event data to 

identify opportunities to improve the safety and operating efficiency of construction work zones. 

4.3 Literature Review 

Work zone safety and mobility have been measured in the past using a variety of metrics, including 

number of injury crashes, motorist complaints, safety inspection scores, closure and delay times 

[85] and crash severity indexes [86]. Probe vehicle data has been effectively leveraged to measure 

travel time delays in work zones and establish correlations among crashes and queue times [87], 

[88]. However, crashes are often reported with a time lag and underreported due to a variety of 

reasons [89]–[91], including unwillingness of involved drivers to report a crash [92], or reporting 

delays due to ongoing investigations that may lead to a change in the documented crash severity. 

This can potentially hamper or render unreliable any near real-time measurement of safety 

performance in work zones. Moreover, not all locations with safety challenges have crashes early 

in the construction season to help identify problem areas. Drivers making evasive maneuvers to 

avoid conflicts, such as decelerating in advance of stopped traffic, have been well studied and 

modeled [93], [94]. Finding a way to detect near-misses before crashes accumulate can be useful 

to proactively develop operating strategies.   
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Multiple studies in the past have analyzed braking behavior and reaction times at the individual 

driver level in a variety of hazardous driving situations. Using simulated driving environments, 

hard-braking by distracted motorists was found to have significant impacts on following vehicles 

in traffic, increasing the risk of a rear-end collision [95]. Investigations into the use of harsh 

braking incidents as a surrogate for truck crash counts using truck telematics data have shown 

promise in identifying potential hot spots with high crash risk [96]. A 6-month study of drivers in 

Georgia traveling on freeways, arterials and local roads found that those involved in a crash 

incident tend to more frequently hard brake (8.8 ft/s2) than those not involved in crashes [97]. An 

analysis of undesirable driving events such as hard braking, sharp turning and sudden lane changes 

showed that looking at the frequency of occurrence of such events could prove to be a valuable 

surrogate for determining driver behavior and accident risk [98]. Others have reported the linkages 

between hard-braking and driver performance, crash severity and driver fatigue [99], [100]. While 

existing literature has focused on driver behavior and its correlation to crash risk, we propose using 

aggregate hard-braking event counts as a surrogate safety measure instead of crash counts, for 

transportation system elements. Although this study focuses on hard-braking activity within work 

zones on interstate roadways, the relationship established here between hard-braking and crash 

incident counts encourages future research into using hard-braking as a surrogate safety measure 

for other elements of transportation systems as well (arterials, local roads, roundabouts). 

4.4 Enhanced Probe Data 

Commercial probe data that provides real time average segment speeds every minute at 

approximately 1-mile fidelity has been available for several years. In fact, in Indiana, the state 

ingests approximately 32 billion records per year and uses that data for a number of historical and 

real-time dashboards [57]. 

Enhanced probe data that contains vehicle acceleration attributes has become available in the past 

two years. One example of enhanced probe data generated by anonymized passenger vehicles 

includes the time and the latitude and longitude attribute of a hard-braking event experienced with 

a deceleration greater than 8.76 ft/s2 (defined by original equipment manufacturer). As a surrogate 

safety measure, and when considered in aggregate form, hard-braking activity has the potential to 

provide timely information to agencies in evaluating the safety performance of a work zone by 
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quantifying near-misses. However, there are no reports in existing literature of agencies using 

information such as hard-braking for operations-oriented management of roadways. 

4.5 Objectives 

The objectives of this study are: 

1. To evaluate the relationship between hard-braking activity and crashes in and around 

Interstate construction projects in Indiana 

2. To investigate causal factors for increased hard-braking activity 

4.6 Data Description 

4.6.1 Study Locations 

The study evaluated 23 construction zones spanning 6 different interstate routes across the state of 

Indiana. Construction on these work zones was carried out in the summer of 2019, however crash 

incidents in these zones were recorded for 2018 as well as 2019 for comparing the impact of 

construction activity on crash frequency. Table 3 summarizes the approach start and end mile 

markers (MM) for each of these 23 work zones and assigns them a unique label that is used as a 

reference in the graphics that follow. Figure 18 shows statewide spatial distribution of 11 interstate 

work zones, while Figure 19 shows a distribution of the remaining 12 interstate work zones that 

were concentrated in the Indianapolis metro area. 
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Figure 18. Statewide view of interstate work zone projects with approaches 
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Figure 19. Indianapolis metro area view of interstate work zone projects with approaches 

4.6.2 Statewide Crash Data 

Crash data was aggregated from a review of all crashes in the study area. 5-mile approaches to 

each work zone wherever possible (both upstream and downstream) were also included in our 

analysis to account for tapers, transition areas and merging resulting in crashes. In addition, impact 

on traffic from queuing resulting from construction activity in a work zone may potentially extend 

well beyond a work zone’s extent thus underlining the need for including approaches in such an 

analysis. Owing to close proximity of work zones on interstate 465, it was not feasible to include 

5-mile approaches for the Z12, Z13, Z20, Z21 and Z22 work zones. To account for this, any gap 

(if existing) between pairs of adjacent work zones was split equally to create a lesser than 5-mile 

approach for both work zones. To prevent double counting of crashes on overlapping work zone 
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approach extents, an open limit on the mile marker location for one work zone and a closed limit 

for the subsequent work zone were chosen. For example, hard-braking events and crash counts for 

Z12 were captured for MM >= 0 and MM < 12.5 while for Z22 were captured by MM >= 12.5 

and MM < 20. This procedure was then applied to all cases on I-465 and I-65 where work zone 

limits overlapped at a mile marker location to arrive at the crash counts shown in Table 3. Table 3 

shows total crash counts for both directions of each of the 23 construction work zones for the 

months of July and August in 2018 and 2019, along with percentage change in crash counts. 

Construction activities occurred in 2019 and crash data from the same two months in 2018 was 

used to visualize if a change in crash counts was seen between the two years owing to construction 

activity. An overall decrease of 2.4% in crash counts was seen over the 23 work zones for the 2-

month analysis period. Comparing changes in crash counts for individual zones between 2018 and 

2019, 13 work zones showed an increase in crash counts, 1 zone showed no change, and 9 zones 

showed a decrease in crash counts. 

One of the major hurdles with using crash data as a performance measure for work zone safety is 

that crash reports often do not get filed in real-time, some agencies still use paper-based reporting 

methods, and serious crashes often require several days of investigation before reports are 

available online. On average, only 80% of the crash reports are available in a statewide database 

within one week of the crash and some crash reports take as long as 6 months to appear in the 

database. Thus, any real-time road safety analysis using aggregate collision counts will have an 

underrepresentation of crash data. 
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Table 3. Summary details and crash counts for areas studied from July 1 through August 31 for 

2018 and 2019 

Work Zone Route 
Approach 

Start MM 

Approach 

End MM 

July and August 

% Change 2018 

Crashes 

2019 

Crashes 

Z01 I-65 170 183 32 32 0% 

Z02 I-74 27 45 13 9 -31% 

Z03 I-70 1 11 16 17 6% 

Z04 I-70 29 – 41 & 43 - 55 25 23 -8% 

Z05 I-69 259 275 14 30 114% 

Z06 I-69 326 347 26 30 15% 

Z07 I-69 214 232 67 81 21% 

Z08 I-65 245 262 116 88 -24% 

Z09 I-65 218 242 78 35 -55% 

Z10 I-74 137 162 22 19 -14% 

Z11 I-65 45 73 71 91 28% 

Z12 I-465 0 12.5 156 129 -17% 

Z13 I-465 34 49 214 217 1% 

Z14 I-65 101 110.5 107 121 13% 

Z15 I-65 110.5 115.5 123 125 2% 

Z16 I-70 78 94 165 169 2% 

Z17 I-65 126 130 5 13 160% 

Z18 I-65 130 138 19 23 21% 

Z19 I-865 0 5 20 16 -20% 

Z20 I-465 20 25 52 54 4% 

Z21 I-465 25 34 148 105 -29% 

Z22 I-465 12.5 20 74 58 -22% 

Z23 I-65 115.5 126 22 62 182% 

   Total 1585 1547    -2.4% 

4.6.3 Crash Count Comparisons 

For the period of July 1 through August 31 in 2018 and 2019, crash reports were obtained and 

individually mapped to the 23 work zones under consideration. Across all 23 work zones for the 

analysis period, 2018 saw 1585 crash incidents while 1547 crashes were seen for the corresponding 
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period in 2019. Crash counts were normalized across work zones by dividing the total number of 

crashes occurring in a zone by the length of the zone calculated as the difference between the 

approach start and end mile markers as listed in Table 3. Figure 20 shows a sorted stacked column 

chart of normalized crash counts for the 23 work zones compared for the period of July 1 through 

August 31 for 2018 and 2019. Work zones are ordered from left to right in descending order of 

number of crashes per mile for 2019. Each column shows crash counts per mile categorized by 

severity between property damage only (PDO) and personal injury (PI). Due to small numbers of 

fatal crashes on interstates and for privacy reasons, personal injury and fatality data in this study 

is combined into and referenced by the PI category. In addition, it was observed that PI crashes 

only account for approximately 14% of the total number of observed crashes in this study. 

Segregating the analysis by crash severity category would not have resulted in a good sample for 

the PI category to arrive at reliable results. Hence, crashes from both categories (PDO and PI) were 

combined and the aggregate crash count per mile was used for each work zone for the analysis 

described in the sections that follow. 

The work zone labelled Z15 which shows the highest crash per mile value for both years, covers 

a 5-mile stretch of I-65 that overlaps with I-70 near downtown Indianapolis. An average percentage 

change of 15.24% in crash counts from 2018 to 2019 was observed across all 23 work zones. Three 

work zones in particular showed far higher percentage change in crash counts than this average, 

namely Z23 (182%), Z17 (160%) and Z05 (114%). Figure 20 highlights how the peak of the 

construction season resulted in an increase in crashes in most of the work zones. However, it is 

worth noting that 7 out of the 23 work zones (Z01, Z03, Z04, Z07, Z08, Z09 and Z11) witnessed 

construction activity in both years for the months of July and August. While the comparison drawn 

here is not a direct comparison of active and inactive work zone periods, it is instrumental in 

underlining the need for an efficient safety performance analysis of work zones. The underlying 

assumption in making this assertion is that all other external factors (such as traffic volumes, 

weather conditions) remained the same from 2018 to 2019. Annual growth rate of Annual Average 

Daily Traffic (AADT) from 2018 to 2019 averaged over all 23 work zones in both directions of 

travel was found to be -0.2%. The months of July and August in total observed precipitation greater 

than 0.01 inches on 20 out of 62 days (32%) in Central Indiana (home to 12 out of the 23 work 

zones) in both years [101]. Overall crash counts decreased by 2.4% for the 2-month period from 

2018 to 2019. This decrease can be attributed to a number of factors including: improved early 
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warning systems implemented by agencies and contractors for motorists, reduced vehicle volumes, 

underreporting and delayed reporting of crash incidents, a number of work zones that observed 

construction activity for both years may have resulted in learnings from 2018 contributing to better 

decision making and work zone design in 2019 resulting in lower crash counts. 

 

Figure 20. Crash counts normalized by work zone length and categorized by severity for 23 work 

zones for July 1 to August 31 for 2018 and 2019 (highlighted work zones in red indicate work 

zones that showed an increase in crash count from 2018 to 2019) 

4.6.4 Statewide Hard-braking Data 

As indicated in previous sections, there is considerable variation in the time and location of 

reported crashes, as well as delay in that data being available in a database. In contrast, modern 

connected vehicles can provide GPS location and accurate time stamps of hard-braking events. 

Hard-braking is an event in which a driver applies more force than is typically needed to slow or 

stop a vehicle using the vehicle’s brake system. For this study, crowdsourced hard-braking event 

data for the state of Indiana was made available wherein any deceleration of 8.76 ft/s2 or greater 

occurred. 

For every hard-braking event, a geolocation, timestamp and speed value were provided to spatially 

and temporally map these events. Approximately 12.7 million unique hard-braking events were 

recorded throughout the state of Indiana for the period of July 1 to August 31, 2019. Figure 21 
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shows a statewide map summarizing spatial distribution of hard-braking event activity seen in 

Indiana during the months of July and August in 2019. Among these, more than 196,000 hard-

braking events in total were found to have occurred over the 23 work zones as a result of spatial 

joins performed on the dataset to zero in on events occurring in 46 created geofences (one per 

direction of travel per work zone). AADT values for 2019 were compared with trip counts in each 

work zone for July 2019 to arrive at an average penetration of 4.7%. The third-party crowdsourced 

hard-braking event data showed highest penetration rates for urban interstate work zones. 

 

Figure 21. Plot of 12.7 million hard-braking events in Indiana for July 1 to August 31 2019 

4.7 Methodology 

4.7.1 Capturing Hard-braking Event Counts by Work Zone and Direction of Travel 

Owing to the computational complexities involving in handling this large hard-braking dataset 

of 12.7 million events, matching each event individually to its nearest interstate location was 

infeasible. Similar hard-braking event counts available for the month of August 2020 for 11 states 



 

 

68 

– California (25,441,595), Connecticut (2,048,510), Georgia (8,704,155), Indiana (6,683,366), 

Minnesota (3,254,094), North Carolina (6,546,877), Ohio (10,012,453), Pennsylvania (9,831,815), 

Texas (26,300,993), Utah (948,931) and Wisconsin (4,049,073), underlined the need for a quicker 

procedure for capturing hard-braking activity at specific locations on roadways of interest. Owing 

to this, an alternate approach was developed wherein 46 separate geofences were created to 

spatially outline the area for every work zone analyzed in this study in two directions of travel. 

From the statewide dataset of hard-braking events shown in Figure 21, spatial joins were then used 

to effectively narrow down the hard-braking dataset to events that occurred within the virtual 

perimeter defined by any of the 46 geofences mentioned earlier. A temporal join was next applied 

to this dataset to further narrow down the events to those that occurred within the period from July 

1 through August 31, 2019. Callout (i) on Figure 22 shows such a set of geofenced polygons 

capturing hard-braking events on I-65 in the northbound direction of travel in the vicinity of mile 

marker 102. Each hard-braking event represented by a colored dot on Figure 22 has been colorized 

by the initial speed recorded in miles per hour at the time of hard-braking. When this procedure 

was repeated individually 46 times for each work zone by direction, the dataset of 12.7 million 

hard-braking events was narrowed down to the 196,215 hard-braking events used for the analysis 

in this study. 
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Figure 22. Geofenced polygons showing hard-braking events colorized by initial speed in miles 

per hour on I-65 in the northbound direction of travel in the vicinity of mile marker 102 
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4.7.2 Visualizing Relationship between congestion, crashes and hard-braking events 

Figure 23 (a) shows a spatial and temporal heatmap of traffic speeds for the period of July 1 

through August 31, 2019 for a nine and a half mile stretch of I-65 northbound from MM 101 – 

110.5. Work zone Z14 makes up the stretch of I-65 depicted in the heatmap in Figure 23 (a).   

The legend at the top shows the color for speeds ranging from greater than 65mph (green) to less 

than 14 mph (purple). The heatmap is generated from commercially available probe data consisting 

of average vehicle speeds for 1-mile interstate segments at 1 minute fidelity [102]. This 

visualization easily helps segregate recurring congestion from non-recurring events as highlighted 

by red dashed lines in Figure 23 (a). For the 2-week period beginning August 12, 2019, significant 

weekday recurring congestion can be seen between mile marker 106 and 110 (Work zone Z14) in 

the northbound direction of travel. 

Crashes are shown on the heat map in Figure 23 (a) as circles. Property damage (PDO) crashes are 

indicated by hollow circles, while personal injury (PI) crashes are indicated by gray circles. Figure 

23 (b) shows a stacked bar graph tabulation of the number of crashes occurring each day using the 

same color grey shading as the circles in Figure 23 (a), with elevated crash counts for the 2-week 

period starting August 12, 2019 highlighted by red dashed lines. 

Hard-braking event counts by day for this stretch of I-65 northbound are shown in Figure 23 (c) 

with the corresponding region of elevated crash counts and congestion highlighted by red dashed 

lines. It can clearly be seen from Figure 23 (a), (b) and (c) how hard-braking activity clusters 

correspond to regions of elevated crash counts and congestion. 
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(a) Spatial-temporal heat map showing speed profiles by mile marker and day 

 

(b) Crash count column plots stacked by severity 

 

(c) Hard-braking events by day 

Figure 23. I-65 MM 101 – 110.5 in the northbound direction of travel for July 1 through August 

31, 2019 
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Figure 24. Crashes by manner of collision percentages for Z14 in the northbound direction of 

travel, for July 1 through August 31, 2019 

 

In this study, congested conditions are defined as lengths of interstate roadway that are operating 

below a speed threshold of 45 miles per hour [57], [103]. Long queues that often build up on 

interstate work zones, such as those highlighted by red dashed lines in Figure 23 (a), would result 

in motorists having to swiftly slow down or hard-brake which increases the risk of a rear-end 

collision. Figure 24 shows the manner of collision percentages for the 92 crashes recorded for this 

work zone in Figure 23 (b). From the congestion seen in the region of MM 106 - 110 in Figure 23 

(a), significant hard-braking activity is seen to have occurred in this same region shown in Figure 

23 (c), some of which may have contributed to back-of-queue collisions. This is validated by the 

49% of crashes occurring in the two month period being rear end collisions shown in Figure 24. 

Lane closures, lane shifts, crashes, sweeping and painting in work zones, and inclement weather 

are some of the leading causes that are expected to result in hard-braking activity as motorists 

adjust to changing roadway conditions. 
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In this particular instance, the region of heavy congestion and elevated crash counts was only able 

to be identified in an after-action review once crash reports were filed. Using hard-braking events 

as a surrogate for crash counts could have pinpointed this region of concern within 24 hours instead 

of having to wait for a crash history to develop. This is visibly verifiable by the strong relationship 

observed between crash activity and hard-braking events in Figure 23 (b) and Figure 23 (c). 

4.7.3 Evaluating Relationship between Hard-braking and Crashes Within Work Zones 

Hard-braking events for each work zone occurring during July 1 through August 31, 2019 were 

totaled and divided by the extent of the work zone in miles (including approaches) to arrive at a 

value of hard-braking events per mile as shown below: 

Hard-braking Events

mile
=

Hard-braking Events
July 2019

+Hard-braking Events
August 2019

Approach End MM - Approach Start MM
        (1) 

Mile-markers and directional information were used from statewide crash reports to spatially 

determine if a crash occurred within any of the 23 work zones’ boundaries. The total 2-month 

crash count was then calculated and divided by the extent of the work zone in miles (including 

approaches) to similarly arrive at the crashes per mile value defined as: 

Crashes

mile
=

CrashesJuly 2019+CrashesAugust 2019

Approach End MM - Approach Start MM
                                (2) 

These numerical quantities together form the basis for evaluating the relationship between hard-

braking activity and crash occurrences. 

 

Figure 25 shows a scatter plot of crashes per mile against hard-braking events per mile for each of 

the 23 work zones, calculated separately for each direction of travel, for data totaled over the 2 

months of July and August in 2019. A linear trendline is plotted over the data points which returned 

an R2 value of 0.85. The plot shows that in general, 1 crash per mile is to be expected for 

approximately every 147 hard-braking events per mile within a work zone. With the exception of 

a few outliers visible in Figure 25, it can be safely said that crashes per mile increase at a steady 

rate with respect to hard-braking events per mile. Our approach to determining the correlation 

between hard-braking event and crash incident counts involved the use of the linear regression 

method. The regression resulted in an adjusted R2 value of 0.845 with a p-value of 0.000(rounded 

to three decimal places) reinforcing the statistical significance of obtained results.  
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Using this established relationship between crashes per mile and hard-braking events per mile and 

having accomplished the first objective of this study, one of the 23 work zones needed to be chosen 

for a case study in order to look at causal factors for increased hard-braking activity, the second 

objective of this study. The availability of an independent dataset, namely a mobile LiDAR map 

of the pavement profiles in work zone Z11 made it an ideal candidate for further analysis. Secondly, 

work zone Z11 was an area that had observed construction activity both in 2018 and 2019 and saw 

a 28% increase in crash count in 2019 pointing to a cause of concern for INDOT. This led to a 

case study analysis of crashes and hard-braking activity in this work zone described in detail in the 

following section. 

 

Figure 25. Scatter plot showing crashes and hard-braking events per mile across all 23 work 

zones for July 1 through August 31, 2019 with a linear trendline 

4.8 Results 

As seen in Figure 20 and Table 3, Zone 11 (Z11) experienced a modest increase in crashes and 

was representative of a common rural interstate construction work zone and there was a mobile 

LiDAR map available for detailed analysis during the time period. The northbound direction 

experienced approximately 70 hard-braking events/mile and 1.57 crashes per mile for the 2-month 

analysis period of July and August 2019. Figure 26 shows hard-braking event counts and crash 
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counts for work zone Z11, categorized by severity and manner of collision, in the northbound 

direction of travel. Callouts (i) in Figure 26 (a) and (b) indicate an elevated frequency of crashes 

were in the vicinity of MM 61, the same region that exhibited an elevated number of hard-braking 

event counts. In fact, almost 60 hard-braking events within a 0.1-mile section of road in two 

months suggested an opportunity for further investigation. 
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(a) Hard-braking events by tenth of a mile for July 1 through August 31, 2019 

 
(b) Crashes by mile and severity, for July 1 through August 31, 2019 

 
(c) Crashes by manner of collision percentages, for July 1 through August 31, 2019 

Figure 26. Northbound I65 Work zone Z11 (MM 50 – 68)  
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To safely conduct this evaluation, a wheel-based mobile mapping system was used to capture 

images and lane width data in the vicinity of mile marker 61 on I-65 in the northbound direction 

on July 17, 2019 [104]. Figure 27 (a) and Figure 28 (a) show images collected using the mobile 

mapping system with cross sections of interest highlighted. Callouts (i), (ii) and (iii) in Figure 27 

and Figure 28 correspond to the left, middle and right edges of traveling lanes used as reference 

points for lane width computations. Callout (i) has not been marked on Figure 27 (a) as the left 

edge line of the roadway was not visible in this particular image. Figure 27 (b) and Figure 28 (b) 

show cross sectional pavement profiles colored by the intensity of LiDAR data aiding in feature 

visualization and specifically lane width measurement. A single cross-sectional pavement profile 

has been used in Figure 27 to depict narrow lane widths. Two different cross-sectional pavement 

profiles are used in Figure 28 to depict narrow lane widths (cross section 1) and edge drop-offs 

(cross section 2) separately. Figure 27 (b) shows that at MM 61.196 the left lane and right lane 

have widths of 11.6 ft and 10.6 ft respectively. Figure 28 (b) similarly shows that at MM 61.262 

the left and right lanes have lane widths of 11.8 ft and 10.7 ft respectively. The skid marks pointed 

to by callout (v) in Figure 27 (a) provide additional evidence of hard-braking events in this area. 

14 crashes were observed on I-65 northbound between mile marker 50 and 68 for July 1 through 

August 31, 2019. Figure 26 (c) shows the manner of collision for those crashes split into five 

distinct categories based on obtained crash reports namely – rear end, collision with object/animal, 

same direction sideswipe, ran off road and other. 29% of the 14 crashes involved vehicles that ran 

off the road which points to a validation of the assertion that pavement edge drop-offs were a 

causal factor for crash incidents and hard-braking activity. Same direction sideswipes were the 

second leading manner of collision which points to narrow lane widths being a potential 

explanation as motorists would be forced to maintain far lesser lateral spacing when driving 

through the work zone resulting in a risk of sideswipes. While the skid marks pointed to by callout 

(v) in Figure 27 (a) provide visual evidence of hard-braking activity, the 14% of crashes caused 

by a rear end collision provide further confirmation of the same. 

Slightly further North, callout (vi) in Figure 28 (a) depicts broken pavement which results in the 

right edge line being 11.02 inches from the edge of pavement. Measurements in Figure 28 (c) using 

LiDAR data indicate an edge drop-off of 2.36 inches at the pavement boundary identified with 

callout (vi). Freeway design standards established by the American Association of State Highway 

and Transportation Officials (AASHTO) in ‘A Policy on Geometric Design of Highways and 
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Streets’, more commonly referred to as the Green Book, state that through-traffic lanes on freeways 

must be 12 ft wide (AASHTO, 2001). This leads to the conclusion that observed lane widths in 

Figure 27 (b) and Figure 28 (b) are narrow lane widths. The combination of these narrow lanes 

and close proximity of a lane to the pavement edge provide a potential explanation for the high 

number of hard-braking events seen in this region on Figure 26. 

 

 

(a) Skid marks indicative of hard-braking activity 

 

(b) Pavement profile at cross section colored by intensity showing lane widths 

 

(c) Pavement profile at cross section colored by height 

Figure 27. I-65 northbound MM 61.196 as seen on July 17, 2019 
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(a) Cross sections used to observe lane widths and edge drop-off 

 

(b) Pavement profile at cross section 1 colored by intensity showing lane widths 

 

(c) Pavement profile at cross section 2 colored by height showing edge drop-off 

Figure 28. I-65 northbound MM 61.262 as seen on July 17, 2019 
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4.9 Summary 

This paper presented a quantitative analysis of hard-braking events and crash incidents conducted 

on 23 work zones across the state for a 2-month period that demonstrates the observed near-linear 

relationship between the two quantities. Image captures of skid marks, ambiguous lane markings 

and broken pavement resulting in edge drop-offs on one of the I-65 work zones in addition to 

LiDAR data were used to help validate high density of hard-braking events. This correlation helps 

to make the case for tracking hard-braking events in real-time which, when fused with traffic 

speeds, can aid in identifying opportunities for improvements in and around work zones. Use of 

hard-braking data can potentially help prioritize safety investments for agencies, without having 

to wait for crash history to develop over time on a stretch of road that is under evaluation. The 

study found that approximately 1 crash occurred for every 147 hard-braking events per mile with 

an average probe penetration of 4.7%.  Due to the challenge in accessing construction work zones 

for detailed measurements, mobile mapping technology is important for safely conducting 

measurement of lane widths and/or edge drop offs.   

Some of the limitations of this analysis include the assumption of construction activities taking 

place in both directions of travel, inconsistencies with the reporting of crash incident locations and 

times, aggregate analysis conducted owing to unavailability of exact construction schedules and 

crash incident timestamps. Although this study only observed a set of 23 work zones to 

demonstrate feasibility, the methodology described herein can be easily scaled to a statewide or 

even nationwide level to monitor multiple work zones at a time due to the now widespread 

availability of hard-braking event data coupled with the high penetration levels of connected 

vehicles in the current automobile market. 

The results from this chapter thus show the effectiveness and statistical evidence needed to 

incorporate the use of connected vehicle events such as hard-braking into an agency’s daily safety 

monitoring workflow, thus allowing real-time proactive safety monitoring on roadways as opposed 

to reactive monitoring that has historically relied on crash reports. 
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 USING CV DATA TOWARDS ASSESSING ELECTRIC VEHICLE 

CHARGING INFRASTRUCTURE USAGE AND IDENTIFYING 

INVESTMENT OPPORTUNITIES 

The information presented in this chapter has been published in “Analysis of Electric and Hybrid 

Vehicle Usage in Proximity to Charging Infrastructure in Indiana” [106] and in “Using Connected 

Vehicle Data for Assessing Electric Vehicle Charging Infrastructure Usage and Investment 

Opportunities” [107]. 

 

This chapter discusses visualizations, methodologies and performance measures for assessing 

electric vehicle charging infrastructure usage using CV data and leveraging the same towards 

allocation of future infrastructure investment. The first section (5.1) of this chapter presents a study 

that utilized a one-week CV dataset from July 2021 for the state of Indiana to analyze EV and HV 

usage as well as prototype methodologies that assess charging infrastructure usage. The second 

section (5.2) of the chapter builds on this Indiana analysis to demonstrate scalability and 

comparative analyses among 10 additional states (California, Connecticut, Georgia, Ohio, 

Pennsylvania, Minnesota, North Carolina, Utah, Texas and Wisconsin) in the US using over 185 

billion CV records for the month of August 2021. 

5.1 Analysis of Electric and Hybrid Vehicle Usage in Proximity to Charging 

Infrastructure in Indiana 

5.1.1 Overview 

This study explores the movement of connected vehicles in Indiana for vehicles classified by the 

NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid 

electric (HV). Analysis of trajectories from July 12-18, 2021 for the state of Indiana observed 

nearly 33,300 trips and 267,000 vehicle miles travelled (VMT) for the combination of EV and HV.  

Approximately 53% of the VMT occurred in just 10 counties.  For just EVs, there were 9814 

unique trips and 64,700 Electric Vehicle Miles Traveled (EVMTs) in total. A further categorization 

of this revealed that 18% of these EVMTs were on Interstate roadways and 82% on non-interstate 

roads. A proximity analysis of existing DC Fast charging stations in relation to interstate roadways 

revealed multiple charging deserts that would be most benefited by additional charging capacity. 

Eleven roadway sections among the 9 interstates were found to have a gap in available DC fast 
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chargers of 50 miles or more.  Although the connected vehicle data set analyzed did not include 

all EV’s the methodology presented in this paper provides a technique that can be scaled as 

additional EV connected vehicle data becomes available to agencies.  Furthermore, it emphasizes 

the need for transportation agencies and automotive vendors to strengthen their data sharing 

partnerships to help accelerate adoption of EV and reduce consumer range anxiety with EV. 

Graphics are included that illustrate examples of counties that are both overserved and underserved 

by charging infrastructure. 

5.1.2 Introduction 

An estimated 10 million electric vehicles (EV) were on roads in 2020, an increase of 41% for the 

calendar year. Eighteen of the world’s top 20 vehicle manufacturers in 2020 have announced plans 

to scale up the production of electric vehicles in their fleets [108]. Fifteen countries have publicly 

announced plans to phase out sales of internal combustion engine (ICE) vehicles in support of zero 

emissions vehicles [109]. The United States recently set forth a national target for EVs to make up 

half of all new vehicle sales by the end of this decade [110]. While EVs only account for 4% of 

vehicles in the US, their penetration rate has continued to increase approximately 1% annually 

since 2017 [111]. It is estimated that EVs will come close to reaching cost parity with ICE vehicles 

around 2025 that will result in an accelerated transition from ICE to EV [112]. 

In addition to cost, range anxiety and availability of public charging stations [113], [114] are two 

of the major barriers currently cited for inhibiting growth of EVs.  Furthermore, it is unclear to 

transportation agencies, consumers, and the private sector where infrastructure usage and charging 

demand will grow or how fast it will grow.  The motivation of this paper is to explore using 

connected EV data to: 

• characterize differences (or lack of a difference) in EV and ICE operating speeds on 

Interstates in Indiana; 

• characterize vehicle miles traveled by counties; 

• identify counties that are underserved by charging infrastructure (and perhaps overserved); 

• identify “charging deserts” on major interstates; 
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• propose a methodology for evaluating candidate Interstate exits for installing new charging 

stations. 

5.1.3 Literature Review 

A study utilized questionnaire surveys to understand the reasons behind EV and hybrid vehicle 

(HV) owners in California reverting from an EV purchase and found convenience of charging and 

limited access to level 2 charging at home as contributing factors to discontinuance [115]. A survey 

of plug-in electric vehicle (PEV) owners in California in 2016 and 2017 indicated over half of 

respondents prefer home charging, while results indicated that the use of home, work and public 

charging locations is an interdependent relationship of charging capacity [116]. 

Past research has studied the impact of driving characteristics (driving style and speeds) on EV 

usage and energy consumption using test vehicles in both rural and urban areas indicating 

aggressive driving of EVs increases cost to the user by 30% and causes a marked difference in 

energy consumption [117]. Multiple energy consumption studies have looked at various factors 

that may detrimentally impact EV efficiency and range including road type, auxiliary loads (such 

as HVAC systems), driving at higher speeds, acceleration profiles, increased vehicle cross-

sectional area and ambient environment [118]–[120]. Research has established that battery electric 

vehicles have significant energy savings for low speed drives with frequent stops, and observe 

substantial energy consumption at highway speeds [121]. 

An EV usage and planning study completed on six EVs deployed in Athens, GA found most EVs 

were charged continuously within 3 hours and 80% of all trips were less than 10 miles [122]. EV 

charging infrastructure planning research has utilized long-term traffic flow predictions and public 

transportation datasets to estimate optimal future charging infrastructure plans [123]. A study 

looked at spot traffic counts in Western Australia coupled with an assumed EV penetration rate of 

1% to select sites for future DC Fast charging stations using the criterion of reliability, accessibility 

and availability of amenities and services [124]. Various simulation-based approaches have been 

employed in the past for EV fast charging infrastructure planning using simulated trajectories and 

charging behavior assumptions [125], urban mobility simulations that minimize EV energy 

consumption [126], as well as mathematical programming models factoring in user convenience 

and grid connections for low penetration levels of 5% [127]. Data obtained from fast charging 
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stations in Ireland observed 0.18 charges per day per EV user at home and 0.06 charges per day 

per EV user in public charging locations, thus reinforcing the need for more strategically placed 

fast charging stations to incentivize more usage in non-peak grid demand times [128]. 

Past research has heavily focused on factors affecting EV range and charging behavior and patterns 

on a user level. While most of the above studies utilized floating car data, spot traffic counts, 

mathematical programming or simulation modeling, very few studies have looked at real world 

connected vehicle data collected from EVs and HVs to evaluate driver behavior and usage as it 

relates to charging infrastructure on a macroscopic, statewide level. Our study aims to bridge this 

gap by using connected vehicle data for a 1-week period in Indiana for EVs and HVs. 

5.1.4 Connected Vehicle Data 

Indiana ingests over 10 billion connected vehicle records per month from a combination of EV 

and ICE, with a penetration of roughly 4% of all vehicles [129].  The charging standard for the EV 

vehicles analyzed is the SAE J1772 and Combined Charging System (CCS) standard. This study 

looked at a one-week period from July 12-18, 2021 to evaluate EV and HV usage patterns as they 

relate to existing charging infrastructure. 

Connected vehicle data utilized in this study is made up of individual journey waypoints recorded 

at a 3-second fidelity. Each data record contains the following attributes: geolocation, speed, 

heading, timestamp, an anonymized unique trajectory identification number and a vehicle 

classification code. This vehicle classification code was then cross referenced with the National 

Highway Traffic Safety Administration’s (NHTSA) Product Information Catalog Vehicle Listing 

(vPIC) Application Programming Interface (API) [130] to obtain the electrification level 

associated with it. If the electrification level obtained is ‘BEV (Battery Electric Vehicle)’, the 

vehicle classification code and subsequently the associated waypoint is flagged as belonging to an 

electric vehicle. A similar classification process is followed for Hybrid Vehicles as well (Figure 

29). 
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Figure 29. Methodology for Decoding Vehicle Classification Code to isolate EV and HV 

Connected Vehicle Data 

 

Nearly 2.65 million waypoints were thus found for EVs for the week of July 12-18, 2021 spread 

over 9,800 unique trips for the state of Indiana. Correspondingly, 7.74 million waypoints were 

obtained for HVs for the same week spread over 23,000 unique trips. A spatial representation of 

these EV and HV waypoints has been shown in Figure 30 a and b respectively. In comparison, 

over 7.54 million unique trips were found for ICE vehicles (ICEV) for the same period. The 

majority of the EV and HV coverage is concentrated in metropolitan areas. 
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(a) ~64,700 EVMTs in Indiana (b) ~202,000 HVMTs in Indiana 

Figure 30. Electric and Hybrid Vehicle Trails in Indiana (July 12-18, 2021) 

 

Of the 92 counties in the state of Indiana, vehicle miles traveled (VMT) totals were computed for 

both EVs and HVs by matching each individual waypoint to the county it was recorded in. A 

spatial representation of these EVMTs and HVMTs in terms of percentage of the total VMT 

(EVMT + HVMT) by county have been shown in Figure 31 a and b. A tabular representation of 

the top 10 counties with highest combined totals of EVMT and HVMT is shown in Table 4. Marion 

(callout i), Hamilton (callout ii) and Lake (callout iii) counties account for the highest EVMTs 

while Marion, Hamilton and Allen (callout iv) counties observed the highest HVMTs. Marion 

county had the highest vehicle miles traveled for EVs and HVs overall. 
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(a) EVMTs aggregated by County (b) HVMTs aggregated by County 

Figure 31. EVMTs and HVMTs aggregated by Indiana County (July 12-18, 2021) 
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Table 4. Top 10 Indiana Counties with highest totals of EVMT and HVMT (July 12-18, 2021) 

County EVMT (miles) HVMT (miles) Total (miles) 

Marion 9557 27980 37537 

Hamilton 4625 15994 20619 

Allen 3067 15085 18152 

Lake 4294 12862 17156 

Porter 2693 8223 10916 

St. Joseph 2899 5820 8719 

Hendricks 1865 5447 7312 

Tippecanoe 2274 4910 7184 

Monroe 1983 5010 6993 

Madison 916 5353 6269 

5.1.5 Electric and Hybrid Vehicle Miles Traveled by Roadway 

Using linear referenced sections of the roadway on all Indiana interstates at approximately 0.1- 

mile fidelity, each EV and HV waypoint was cross-referenced and matched to an interstate route 

with a direction of travel. This enabled the computation of summary statistics for EVs and HVs in 

terms of percent of vehicle miles traveled (VMT) on interstate corridors and non-interstate 

roadways (Figure 32). Approximately 18% of EVMTs occur on interstate roadways and 24% of 

HVMTs occur on interstates. A further categorization of EVMTs and HVMTs was performed for 

individual routes for 11 interstate corridors around the state. A stacked bar representation shown 

in Figure 32c clearly illustrates the north-south interstate route I-65 and I-69 seeing the most EV 

and HV traffic in addition to substantial EV and HVMT on the I-465 loop around Indianapolis. 

Using the route-by-route breakdown of EVMTs for Indiana Interstates obtained earlier, the top ten 

1-mile interstate segments with highest EVMTs are shown graphically and on an Indiana map in 

Figure 33 a and b respectively. Eight of the top 10 segments were found to be in urban areas 

primarily on or near the I-465 beltway around Indianapolis which observes daily commuter traffic. 

Additional segments on I-94 in northwest Indiana see significant usage potentially owed to traffic 

commuting to and from Illinois. These high usage sections could be potential early deployment 

sites for additional charging stations and/or in-pavement wireless charging [131]. 
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(a) EVMTs categorized by roadway (b) HVMTs categorized by roadway 

 

(c) Interstate VMTs categorized by EVs and HVs 

Figure 32. VMTs categorized by roadway, interstate routes (July 12-18, 2021) 
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(a) Top 10 Interstate Segments with Highest EVMTs 

 

(b) Statewide Map of Top 10 Interstate Segments with Highest EVMTs 

Figure 33. Interstate segments with highest EVMTs (July 12-18, 2021) 

5.1.6 Interstate Operating Speeds of Electric and Hybrid Vehicles 

Average Speeds of EVs and HVs, and ICEVs that traversed on I-65 (chosen due to highest EVMTs 

and HVMTs recorded among all interstates) were evaluated for the week of July 12-18, 2021. 
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Median EV and HV speeds were found to be 68.7 and 71.6 mph respectively, with ICEVs 

operating at a median speed of 72.3 mph.  

Figure 34 shows a cumulative frequency distribution plot of uncongested vehicle speeds (speeds 

above 45 mph) for I-65. A separate frequency line has been used for each of the EV, HV and ICEV 

vehicle classes for ease of comparison. 

From Figure 34, one can see that the distribution of ICE vehicle speeds is higher than both HV and 

EV.  In fact, there is approximately a 3mph difference in median speeds between ICE and EV.  

Some of this may be due to range anxiety concerns by EV operators resulting in them driving at 

lower speeds to conserve battery charge and/or different driving styles of ICE and EV consumers. 

 

 

Figure 34. Cumulative Frequency Distributions of EV, HV and ICEV Uncongested Speeds for I-

65 (July 12-18, 2021) 
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5.1.7 Evaluating EV Charging Infrastructure 

Using the National Renewable Energy Laboratory’s (NREL) alternative fuel stations API [132], 

geolocation data and multiple other pertinent attributes including number of charge points were 

obtained for 294 electric charging stations in Indiana. Among these, 270 were found to be level 2 

capable (Figure 35a) and 24 stations were found to be capable of providing DC Fast Charging 

(Figure 35b). Fast charging is a critical need for long-distance driving, especially for travel on long 

stretches of limited access roadways such as interstate corridors. Level 2 charging was observed 

to be spread out across the state with clusters in the Gary, South Bend, Fort Wayne and 

Indianapolis regions. DC Fast charging is however more sparsely distributed with few in the north-

central and southwest region. 

  
(a) 270 Level 2 Charging Stations (b) 24 DC Fast Charging Stations 

Figure 35. Level 2 and DC Fast Charging Infrastructure in Indiana [132] 
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5.1.7.1 Charging Station Usage 

With rising adoption rates of EV and HV, a clear and present concern for EV owners as well as 

the private sector is charging station capacity. With limited charging infrastructure and charging 

spots at each station, the adoption rate of EVs could soon possibly surpass the ability of existing 

infrastructure to serve all EV owners if the growth of infrastructure does not keep pace. Owing to 

this, an analysis of charging station usage is needed to compute number of unique uses per day to 

look at charging patterns. A DC Fast charging station in South Bend, Indiana was utilized for this 

analysis as shown in Figure 36a. 

A spatial polygon was drawn around all of the charging spots at this station. EV waypoint 

geolocations for a nearly 2-month period of June 1 – July 27, 2021 were then cross-referenced 

with this polygon to detect those waypoints that coincided directly with either of the charging 

spots. Using the obtained intersection of data, a temporal profile of unique EV trips visiting this 

charging station has been shown by the illustration in Figure 36b categorized by day of week and 

hour of day. The hours of 2 PM and 8 PM specifically show up as peak charge times with the 

weekend period of Friday, Saturday and Sunday appearing to be the preferred time to charge. 

While this analysis only provides an initial look at charging patterns at one station, this 

methodology is easily scalable to any charging station irrespective of location which makes it a 

valuable tool for EV stakeholders. 
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(a) DC Fast Charging Station (South Bend, Indiana) 

 

(b) Usage by Hour of Day and Day of Week 

Figure 36. Charging Station Usage (June 1 – July 27, 2021) 

 

Using a similar methodology as shown above, the top ten most utilized EV charging stations were 

found for the state of Indiana, 9 of which were level 2 capable and 1 provided DC fast charging 

capability (ranked 7). A majority of these stations were found to be in urban areas near 

Indianapolis, South Bend and Columbus and have also been shown on an Indiana county map 

along with their ranks called out in Figure 37. 
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Figure 37. Top 10 Utilized EV Charging Stations in Indiana called out by rank (July 12-18, 

2021) 

 

For all 92 counties in Indiana, the number of charging stations and the number of charge points at 

all stations were obtained. A linear relationship was established between VMTs for EVs and HVs 

versus the number of charge stations as well as the number of charge points available per county. 

This distinction between charge points and charge stations is needed as the number of charge 

stations in a county alone may not reflect the true charging capacity owing to multiple charge 

points available at each station. A scatter plot along with a predicted linear relationship line 
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between number of charge stations, EVMTs and HVMTs by Indiana county has been shown in 

Figure 38a. A similar plot showing a relationship with number of charge points is depicted in 

Figure 38b.  

• Clusters near the y-axis pointed to by callouts i on Figure 38a and b indicate overserved 

counties in the state where a high number of charging stations and charge points are 

available however minimal EVMTs and HVMTs are observed. 

• Clusters near the x-axis pointed to by callouts ii on Figure 38a and b indicate underserved 

counties in the state where there is a high EVMT or HVMT, but little charging 

infrastructure.   

These visualizations may be helpful to government and private sector planners in providing a first 

look at determining which geographical locations in particular are over or underserved and 

allocating resources and investment accordingly. 
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(a) Count of EV charging stations vs. EVMT and HVMT by Indiana County 

 

(b) Count of EV charging points vs. EVMT and HVMT by Indiana County 

Figure 38. Relationship between charging locations and VMT by Indiana county (July 12-18, 

2021) 

5.1.7.2 Sensitivity Analysis for DC Fast Charging Station Proximity to Interstates 

As fast charging is essential for planning long distance routes, availability of fast charging stations 

near high-speed interstate corridors is essential to assuage range anxiety. Using the geolocations 

of the 24 DC Fast charging stations in Indiana [132], a proximity analysis was conducted to 

determine the closest interstate roadway to each station within a specified radius. The results of a 

sensitivity analysis wherein the specified radius was increased in 1-mile steps are shown in Table 
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5. 75% of all DC Fast charging stations were found to be within 1-mile of an interstate corridor 

while 96% of all DC Fast charging stations were within 6 miles of an interstate. 

Table 5. Proximity of DC Fast Charging Stations to Indiana Interstates 

Radius (mi) 

Number of DC Fast 

Charging Stations 

within the radius 

Percentage of DC Fast 

Charging Stations 

within the radius 

1 18 75% 

2 20 83% 

3 21 88% 

4 22 92% 

5 22 92% 

6 23 96% 

7 23 96% 

8 23 96% 

9 23 96% 

State of Indiana 24 100% 

5.1.8 Charging Deserts on Interstate Routes 

Using the results of the sensitivity analysis from above, the closest interstate roadways were found 

within 1-mile of each of the 18 stations. These limits were subsequently utilized to introduce the 

concept of a fast “charging desert,” which indicates long segments of interstate without a DC Fast 

charging station available within a 1-mile threshold. A statewide summary of charging segments 

and deserts on nine interstate routes is shown in Figure 39a. Each interstate is broken up into 

segments at either end of which is either a charging station, route endpoint, or the state boundary 

line, however a fast-charging station is not found in the interior of the segment. It was assumed 

that a 50-mile length threshold for a fast charging desert would be significant enough to add to 

range anxiety concerns, as the average late-model production EV can travel about 3.4 miles per 

kilowatt-hour [133] and a typical level 2 charger outputting 6.6 kilowatts, thereby potentially 

adding up to about one hour to a trip if resorted to a level 2 charger. Each such 50-mile or longer 
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segment is termed a desert and has been illustrated in Figure 39b highlighting multiple long fast 

charge gaps on Indiana’s interstates, from Lafayette to Gary on I-65, Evansville to Indianapolis on 

I-69 and Terre Haute to Indianapolis on I-70 to name a few.  

To spatially visualize the sensitivity of the 1-mile threshold, a corresponding desert map has been 

shown in Figure 39c with a 5-mile threshold where the I-65 desert south of Indianapolis is shorter 

owing to a DC fast charging station found within a 5-mile radius. Callout (i) on Figure 39b shows 

the original longer desert on I-65 which reduces in length when the proximity threshold for 

charging stations is changed from 1 mile to 5 miles. 

For a detailed look at each interstate, start and end mile markers (mm) for each charging segment 

and whether it is a potential desert or not are provided in Table 6. For example, I-65 consists of 

three charging deserts, one between MM 4 and MM 120, the second between MM 120 and MM 

172 and the third between MM 172 and MM 262. Eleven fast charging deserts in total were found 

across 9 interstate routes in Indiana. 
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(a) DC Fast Charging Availability Segments on Indiana Interstates 

  

(b) DC Fast Charging Deserts longer than 50 

miles (no station within 1 mile of interstate) 

(c) DC Fast Charging Deserts longer than 50 

miles (no station within 5 miles of interstate) 

Figure 39. Segment lengths on Indiana Interstates without a DC Fast Charging Station (Fast 

Charge Deserts) 
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Table 6. Summary of charging segments and deserts on Indiana Interstates (no station within 1 

mile of interstate) 

Interstate Total Length (mi) 

Fast Charging 

Availability Segments 
Potential Desert 

Start 

MM 

End 

MM 

Length 

(mi) 

I-465 53 

52.0 33.6 34.6  

33.6 45.1 11.5  

45.1 52.0 6.9  

I-469 31 0.0 31.0 31.0  

I-64 124 0.0 124.0 124.0 Yes 

I-65 262 

0.0 4.7 4.7  

4.7 120.1 115.4 Yes 

120.1 172.1 52.0 Yes 

172.1 262.0 89.9 Yes 

I-69 357 

0.0 205.7 205.7 Yes 

205.7 210.0 4.3  

210.0 305.2 95.2 Yes 

305.2 310.9 5.7  

310.9 357.0 46.1  

I-70 157 

0.0 11.1 11.1  

11.1 71.5 60.4 Yes 

71.5 157.0 85.5 Yes 

I-74 171 0.0 171.0 171.0 Yes 

I-94 46 
0.0 22.2 22.2  

22.2 46.0 23.8  

I-90 156.28 

0.0 55.7 55.7 Yes 

55.7 80.0 24.3  

80.0 156.3 76.3 Yes 

5.1.9 Evaluating EV Usage of Interstate Exits for Charging Locations 

Having identified the significant fast charge gaps on interstates as shown in earlier sections, the 

opportunity provided to planners would be to decide which interstate exits to place additional 

charging infrastructure. It can be assumed that the most heavily utilized exits, irrespective of 

vehicle class, would serve as the ideal locations to reinforce with charging capacity.  

Without tracking user activity patterns over an entire trip, our methodology makes use of the 

vehicle classification code which represents the make and model of a vehicle in order to look at 
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outflows and inflows on the exit and entry ramps respectively at a chosen interstate location by 

defining a time threshold ranging from 30 to 90 minutes. We thus ensure anonymity by not 

capturing any stopping patterns from the connected vehicle data. 

Figure 40 shows exit 68 on I-65 NB (near the midway point on I-65 charging desert MM 4-120 

from Table 6) near Columbus, Indiana to illustrate this analysis technique. Connected vehicle 

waypoints shown in blue indicate those trips traveling through on I-65 without taking the exit, red 

indicate those exiting (callout ii) and green indicate trips entering I-65 NB (callout i) at the same 

location using one of two entry ramps. All EV, HV, and ICEV waypoints were used for this 

analysis. 

 

Figure 40. I-65 NB through, exiting and entering trajectory samples at I-65 Exit 68 (July 12-18, 

2021) 
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Once trips have been categorized as exiting, entering and through, each vehicle classification code 

from an exiting trip is matched with all vehicle classification codes from entering trips that are 

seen on the entry ramps within 30-minutes of the exiting trip. If a match is found, that particular 

trip is flagged as one that took a short break at the exit under consideration.   

Using the methodology defined above, the analysis was conducted for a 1-week period from July 

12-18, 2021 for MM 68 exclusively for the northbound direction of travel. Nearly 8.5 million 

connected vehicle records from over 61,000 unique trips were observed near this exit. Out of these, 

approximately 1.5 million records were found to be traveling northbound on I-65 spread over 

11,800 unique trips. The results of the analysis conducted on these records have been shown in 

Table 7.  

Table 7. Summary Table of Time Threshold Sensitivity and Number of Journeys Taking a Short 

Break at I-65 Exit 68 Categorized by Vehicle Type (July 12-18, 2021) 

Time Threshold (minutes) 
Journeys taking a short break 

EV HV ICEV 

30 0 2 260 

60 0 2 364 

90 0 2 414 

 

We thus see 262 trips (30-min threshold), 366 trips (60-min threshold) and 416 trips (90-min 

threshold) taking a short break at exit 68 over a 1-week period. This represents at the very least 

nearly 2% of trips taking a short break at this exit. The scalable nature of this methodology allows 

practitioners and researchers to apply similar techniques throughout an interstate to find the most 

utilized exits on a corridor and subsequently plan the placement of additional EV charging 

infrastructure accordingly so as to provide a good charging level of service to the EV and HV 

motoring public. 

5.1.10 Summary 

This study used one week of connected vehicle trajectory data in Indiana to analyze EV and HV 

usage patterns. Nearly half of all VMTs for EVs and HVs were seen in just the top 10 counties. A 
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spatial analysis highlighted multiple Indiana counties near Indianapolis with highest EV ownership 

and usage, followed by Allen County in Northeast Indiana and Lake County in Northwest Indiana. 

(Figure 31,Table 4). Out of nearly 11,600 EVMTs and 49,200 HVMTs on Indiana interstates, I-

65 had the largest EV traffic with 2,631 EVMTs (Figure 32c). In general, the average speeds of 

the EVs were close, but slightly less than HV and ICE, indicated by the left shift on the EV speed 

distributions (Figure 34).  

A graphic of charge stations and charge points versus VMTs for EVs and HVs on a county-by-

county basis was used to identify underserved and overserved counties where the charging 

infrastructure does not match travel demand and vice versa (Figure 38).  

Subsequently, a methodology was presented to evaluate percent of EV, HV and Non-EV trips 

exiting for short breaks at interstate exits. This methodology can be used to obtain most commonly 

utilized Interstate exits by EVs to further aid in decisions involving the deployment of charging 

infrastructure to address any under or overserving issues.  

There are 24 DC Fast charging stations spread around the state, and the majority of them (75%) 

are accessible within 1 mile of interstate roadways in Indiana (Table 5). The concept of a “fast 

charging desert” was introduced to identify long interstate segments that lacked DC Fast charging 

stations within 1 mile of the Interstate.  The study found 11 interstate segments, over 50 miles in 

length that lacked adjacent DC Fast charging stations.  These segments have been shown in Figure 

39 and Table 6. Methods to analyze charging station usage (Figure 36) coupled with this analysis 

of charge gaps can together provide a good overview of existing charging infrastructure 

performance for stakeholders. 

In addition to examining opportunities for fast charging stations, it is also important to look at 

locations that might be viable for wireless EV charging.  This study identified ten 1-mile interstate 

segments observing highest EVMTs (Figure 33) as an early screening for further evaluation [131]. 

Not surprisingly, they were near urban areas.   

In conclusion, an important question all EV stakeholders are currently facing is balancing 

investment in areas that have growing EV usage versus investing in underserved areas in an effort 

to stimulate demand. The performance measures and visualizations put forth in this paper will be 
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important tools for public agencies and private sector partners to use to help inform future policies 

and investments. 

5.2 Scaling Connected Vehicle Data Analytics for Assessing EV Charging Infrastructure 

Usage and Investment Opportunities in 11 states 

5.2.1 Overview 

With the projected growth of electric vehicles, there is a need for well-planned and equitable 

investment in the charging infrastructure. Connected vehicle data holds immense promise to 

understand the usage of electric and hybrid vehicles and thus inform policy. This paper discusses 

the use of connected vehicle data to inform decision makers on those investments. Approximately 

218 billion connected vehicle records across 1,014 counties in 11 states in the continental United 

States were analyzed to develop an aggregated dataset of 51 million vehicle miles traveled by 

battery electric and hybrid electric vehicles over a one-month period in 2021. This dataset was 

used to assess the current usage of existing electric vehicle charging infrastructure and also suggest 

metrics for prioritizing investments at the statewide, city and county level. This dataset and 

companion methodologies illustrate the need for policy makers and automotive OEMs to work 

together to develop a shared vision on the use of connected vehicle data to inform policy decisions 

and to ensure that investments in charging infrastructure support equitable adoption of electric 

vehicles. The article includes links to the data set to provide an opportunity for the ITE community 

to begin engaging in this technical analysis and provide a framework for further dialogue with 

policy makers and the automotive OEMs to broaden the vehicles included in this analysis and 

extend to all 50 states. 

5.2.2 Introduction 

Sales of electric (EV) and hybrid electric (HV) vehicles increased by approximately 83% and 76% 

respectively in the past year [134]. The United States government will invest approximately $7.5 

billion to expand access to EV chargers with a long term goal of establishing a national charging 

network [135], [136]. With this investment influx in the EV domain, it is important to incorporate 

available data sources to ensure strategic and equitable investments in EV chargers and monitor 

evolving usage patterns for agile adaption of public policy as the charging network is built out. 
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5.2.3 Data Description 

The paper uses an August 2021 data set of connected vehicles (CV) for California, Connecticut, 

Georgia, Indiana, Minnesota, North Carolina, Ohio, Pennsylvania, Texas, Utah and Wisconsin, to 

analyze EV and HV usage at the state, city and county level. In this research, a CV refers to a 

vehicle that shares select on-board data with the original equipment manufacturer (OEM) in real-

time. This research focused on identifying fast charging station gaps on long range travel corridors, 

measuring dwell times near public charging stations, and developing comparative metrics that can 

be used for inter- and intra-state comparisons. It is believed that the tables, figures and 

methodologies in this paper will stimulate further dialogue among decision makers and 

transportation professionals to build upon these CV data driven methodologies to inform public 

policy and investments. 

Table 8 summarizes the coverage of the CV data set utilized as well as details regarding vehicle 

miles traveled by EV and HV vehicles in those 11 states.  Although this is not an exhaustive or 

unbiased data set, it is a nationally available CV data set that can be obtained in near real-time. 

Cloud storage and data warehousing services were used to manage and analyze this big data set 

with modest costs and in a manner that can be easily scaled to all 50 states [2].  



 

 

107 

Table 8. Summary statistics for 11-state connected vehicle data (August 2021) 

State Counties 
CV 

Records 

EV 

Records 

EVMT 

(mi) 

HV 

Records 

HVMT 

(mi) 

Combined 

EV/HV VMT 

(mi) 

California 58 33.68B 892.67M 18.64M 731.61M 17.06M 35.70M 

Connecticut 8 3.31B 17.34M 0.39M 19.24M 0.49M 0.88M 

Georgia 159 15.01B 21.49M 0.44M 34.22M 0.80M 1.24M 

Indiana 92 11.19B 14.29M 0.34M 34.90M 0.90M 1.23M 

Minnesota 87 8.64B 24.74M 0.60M 29.69M 0.84M 1.44M 

North 

Carolina 
100 13.12B 26.82M 0.62M 39.70M 1.00M 1.63M 

Ohio 88 18.50B 29.84M 0.70M 55.04M 1.43M 2.13M 

Pennsylvania 67 14.61B 32.05M 0.68M 47.78M 1.15M 1.82M 

Texas 254 54.17B 54.78M 1.13M 82.43M 1.82M 2.95M 

Utah 29 2.72B 17.39M 0.38M 18.46M 0.48M 0.86M 

Wisconsin 72 9.92B 19.59M 0.51M 30.91M 0.90M 1.41M 

Total 1014 184.87B 1151.08M 24.44M 1226.80M 26.85M 51.29M 

 

A single connected vehicle trajectory is obtained as a series of waypoints at 1 to 3-second fidelity 

with a 3-meter geolocation accuracy. Each waypoint provides a timestamp, speed and heading 

value for the vehicle in addition to a vehicle classification code that helps identify the make and 

model by using the National Highway Traffic Safety Administration’s (NHTSA) Product 

Information Catalog Vehicle Listing (vPIC) dataset [130] enabling further classification of every 

record as belonging to an Internal Combustion Engine (ICEV), EV or HV. Each trajectory has a 

unique anonymized journey identifier attribute, which aids in serializing and connecting the 

individual waypoints of a single trip. Pairwise haversine distances between consecutive trajectory 

records of the same vehicle are computed and aggregated to arrive at the electric and hybrid vehicle 

miles traveled (VMT) numbers shown in Table 8.  
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Previous studies have indicated this data represents approximately 3-5% of the total vehicles 

operating in these 11 states [55].  Approximately 218 billion records of third-party crowdsourced 

CV data, corresponding to over 515 million trips, were distilled down to an aggregated county-

level dataset representing nearly 7 million trips and 51 million miles traveled by EVs and HVs in 

August 2021. California had the highest volume of EVs and HVs in this CV dataset, with more 

than 892 million and 731 million records respectively, while Texas on the other hand showed the 

highest overall volume of connected vehicle data with 54.17 billion records.  

Data on EV charging stations and number of plugs was obtained using the National Renewable 

Energy Laboratory’s (NREL) alternative fuel stations API [132]. SAE J1772 and Combined 

Charging System (CCS) are the charging standards for the electric vehicles analyzed by this study. 

5.2.4 Aggregation of EV and HV Data by County 

Vehicle miles travelled for 1,014 counties in the 11 states were tabulated. To illustrate the spatial 

variation in EVMT by county, a three-state view spanning Indiana, Ohio and Pennsylvania with 

counties colored by EVMT is shown in Figure 41a. Franklin county in Ohio (callout i, Columbus 

area) had the highest miles traveled by EVs for this three-state region for the month of August 

2021. Additional high EVMT travel was also observed in the following Ohio counties, Cuyahoga 

(callout ii, Cleveland area) and Hamilton (callout iii, Cincinnati area).  In Pennsylvania, counties 

with high EVMT were Allegheny (callout iv, Pittsburgh,) and Montgomery (callout v) and 

Philadelphia (callout vi) in the Philadelphia area.  In Indiana, Marion County (callout vii, 

Indianapolis area) had the sixth highest EVMT in the three-state region. 

5.2.5 Interstate Charging Deserts 

Fast charging deserts, defined in previous literature [106] as segments of interstate roadway longer 

than 50 miles with no fast charging station available within a mile of the interstate, are an effective 

screening tool for charge station siting towards aiding long range EV travel and alleviating range 

anxiety among current and potential EV adopters. Figure 41b shows the Interstate-70 (I-70) 

corridor passing through Indiana, Ohio, West Virginia and Pennsylvania, with solid red circles 

representing DC Fast (Level 3) charging stations in the four states, solid black lines indicating fast 

charging deserts, and translucent green segments indicating segments of I-70 with adequate access 
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to fast charging. Five distinct deserts are observed on this interstate corridor, passing through 

counties that show little to no EV activity. Thus, this figure presents a strong case for expanding 

charging capacity to curb range anxiety, encourage inter-city travel, and to connect rural 

communities by EV.  Of note is the location of charging deserts at the borders of states, 

emphasizing the importance of collaboration with adjacent states in addressing range anxiety as 

these types of analysis are performed on a national level for Interstates and perhaps the entire 

national highway system. 
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(a) EVMT by county for Indiana, Ohio and Pennsylvania (August 2021) 

 

(b) Fast charging deserts on I-70 corridor through Indiana, Ohio, West Virginia and 

Pennsylvania 

Figure 41. Visualization of EVMT and fast charging deserts  
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5.2.6 EV Dwell Time near Public Charging Stations 

Some of the past research has focused on modeling, simulating and subsequently forecasting the 

demand of EV charging [137]–[139] to identify potential locations for siting new stations primarily 

at the local level. However, the availability of real-world CV data now provides researchers and 

policy makers with the ability to evaluate in significant detail real-time charging station usage 

across the nation to further augment existing models and allow for more informed decision making. 

In this study, EV trajectories within 100 feet of level 2 and level 3 charging stations were extracted 

for a parking lot-level analysis of dwell times. The analysis focuses on dwell times instead of 

charging times due to limitations on the availability of charging status / plugged-in attributes in 

the CV data set. Pairs of discontinuous electric vehicle journeys which represent the same 

manufacturer year, make, model, motor and vehicle descriptor, and end and resume within a spatial 

threshold of 3 meters of each other (nominally a parking spot level resolution), were paired and 

subsequently classified as dwell sessions. A temporal filter of dwell sessions between 5 minutes 

and 72 hours was also applied to remove outliers. Locations with both level 2 and level 3 charging 

points next to each other were also discarded.  

Dwell session times in the vicinity of Level 2 and Level 3 charging stations across 1,101 cities 

spanning the 11 states were aggregated for the month of August and are represented in Figure 42.  

Due to the comparatively high EV usage in the state of California, two versions of the plot are 

shown, one that ranks the top ten among all 1,101 cities (Figure 42a), and another that ranks a 

subset of 612 cities that exclude California (Figure 42c), to provide a more holistic look at the 

remaining states without their statistics being dwarfed in comparison. Figure 42b and Figure 42d 

provide similar graphics delving into dwell session times in the vicinity of only Level 3 charging 

stations, with Sacramento, Los Angeles, Atlanta and Austin showing significantly high total dwell 

times, with per session dwell time averages of 0.96, 1.00, 1.87 and 0.82 hours respectively. 

Statewide and multi-state analysis of dwell sessions shown in Figure 42 can help identify cities 

most in need of additional charging infrastructure.  Further analysis at specific sites on an hour by 

hour level could also be used to identify hour by hour utilization patterns to identify periods where 

peak demand warrants investment in additional charging points. 
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(a) Level 2 and Level 3 combined 

 
(b) Only Level 3 

 
(c) Level 2 and Level 3, excluding CA 

 
(d) Only Level 3, excluding CA 

Figure 42. Top 10 cities with highest EV dwell time in the vicinity of Level 2 and Level 3 

charging stations (August 2021) 
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5.2.7 Methodology to compare investment opportunities 

A previous study conducted using CV data for a week in the state of Indiana in July 2021, proposed 

a methodology to compare the relationship between electric vehicle miles traveled (EVMT) 

aggregated at the county level with the number of EV charging points or plugs (Level 1, 2 and 3) 

available in a county. This methodology was extended to analyze the 11 states in this study.  A 

representative predicted linear relationship plot for counties in the state of Pennsylvania, along 

with individual data points for each of the 67 Pennsylvania counties is shown in Figure 43. 

Counties near the horizontal axis represent areas underserved by charging infrastructure, while 

those near the vertical axis represent a high availability of charging infrastructure not matched by 

corresponding EVMT and might be considered overserved. 

 

Figure 43. Relationship between number of charge points in a county (Level 1, 2 and 3) and  

VMT for EVs and HVs in Pennsylvania (August 2021) 
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5.2.8 Comparative Analysis of Charging Infrastructure Across 11 States 

Using the methodology covered in the previous section, a single visualization to compare the 

current state of charging infrastructure across the 1,014 counties in 11 states is shown in Figure 44 

with callouts pointing to the respective predicted linear regression lines for each state. Lines closer 

to the vertical axis indicate states that may be classified as comparatively overserved by charging 

infrastructure, while those leaning towards the horizontal axis indicate states underserved by 

charging infrastructure, showing high number of miles traveled by electric vehicles, however with 

a low number of charge points per county. Comparative analyses such as these can serve as an 

effective initial filter in deciding allocation splits for charging infrastructure investments at the 

statewide and county level. 

 

Figure 44. Linear regression lines for number of charge points in a county (Level 1, 2 and 3) 

versus EVMT for 11 states (August 2021) 
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5.2.9 Metrics for evaluating equitable charging infrastructure investment opportunities 

Using the aggregated dataset of vehicle miles traveled by EVs and HVs spatially grouped by 

county, an ordinal ranked visualization was developed depicting an average estimate of EVMTs 

per available charge point in a county. Figure 45 shows this ordinal ranked plot, with the top ten 

counties in the study location showing the highest EVMT per charge point tabulated along with 

the number of charge points (Level 1, 2 and 3) and percentage of rural land area in each, led by 

Columbia County, Wisconsin.  The statewide county rankings may be used as a high-level 

performance measure to easily compare charging infrastructure capacity between multiple states. 

This visualization provides a quick insight into locations in a state that might be evaluated for 

further investment in charging capacity to satisfy current consumer demands.  Of particular note, 

the top 10 counties as shown by the inset table in Figure 45 are overwhelmingly rural, with only 1 

or 2 charge points per county.  Although a large proportion of rural EV owners do in fact charge 

at home, this graphic suggests that it is important not to overlook rural counties during the early 

investments in EV charging infrastructure and pay close attention to hourly usage patterns at the 

relatively small number of charge points. 
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Figure 45. EVMT per charge point by county (Level 1, 2 and 3) and grouped by state (August 

2021) 

5.2.10 Summary 

Significant recent investments from the public and private sector alike merit a growing need for 

transportation researchers to use CV data to inform policy and resource allocation decisions to 

ensure a well-planned and equitable investment in EV charging infrastructure. Over 218 billion 

connected vehicle records across 11 states (Table 8) were utilized in this study to propose easily 

scalable methodologies and visualizations that can inform this decision-making process. 

Visualizations that rank charging infrastructure usage at the statewide (Figure 44), county (Figure 

45) and city (Figure 42) level were proposed and may help prioritize resource allocation informed 

by real-world EV usage trends thus providing quantitative evidence to support policy and 

investment decisions. 

While a sample dataset covering 1,014 counties of a total of 3,007 counties in the United States 

was utilized for this study, the techniques described can easily be scaled to the nationwide level to 

include data from a broader range of automotive OEMs as well as at further granularity at the 
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73,057 census tracts and 41,692 zip codes level. To demonstrate the national scalability of this 

aggregated dataset and to encourage dialogue among the transportation community on additional 

technical analysis, this aggregated data has been published as a public dataset available at a 

repository [140]. 

Connected vehicle data hold immense promise in future research to understand the usage of electric 

and hybrid vehicles and thus inform policy, without any additional requirement for investing in 

intelligent transportation systems (ITS) infrastructure. A more granular spatial analysis in close 

conjunction with sociodemographic census data may help researchers and policy makers analyze 

factors affecting EV adoption and demand and help forecast market saturation timelines. A 

nationwide analysis spanning all 50 states and multiple automotive OEM datasets would provide 

a unique high-level look at strategic opportunities for directing equitable charging infrastructure 

investment. 

Although the current commercially available CV data does not represent the entire EV fleet, nor 

does it represent all EV OEMs, actively integrating CV data into public policy decisions provides 

an opportunity to begin developing data driven investments and at the same time open 

conversations with automotive OEMs on how to most effectively partner with them to inform 

public policy and not compromise their business interests. 
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 ANALYSIS OF ROUTE CHOICE DURING PLANNED AND 

UNPLANNED ROAD CLOSURES 

The information presented in this chapter has been submitted for review to the IEEE Open Journal 

on Intelligent Transportation Systems. 

 

This chapter discusses visualizations, methodologies and performance measures leveraging CV 

data towards analyzing route choice behavior among motorists traversing through or around an 

active freeway incident resulting in roadway capacity reduction by means of a planned or 

unplanned road closure. 

6.1 Overview 

The Federal Highway Administration (FHWA) Alternate Route Handbook proposes guidance to 

identify alternate routes during planned and unplanned road closures. A challenge with this process 

is the lack of traffic data available to decision-makers. High volume corridors experiencing 

unplanned closures can provide a rich case history by systematically collecting connected vehicle 

(CV) data during such incidents. CV data provide the ability to directly measure actual diversion 

routes and travel times during an ongoing or historical incident. This paper presents methodologies 

to systematically analyze diversion data to identify the most common alternate route choices and 

impacted interstate exits, valuable information for public safety and transportation agencies to 

evaluate the surrounding road network’s resiliency in accommodating diverting traffic. Agencies 

can use this information to proactively deploy resources (officers, signs, barricades) at critical 

locations during future closures.  The scalability of this methodology is demonstrated by 

evaluating 12 additional cases to assess diversion rates found to be in the range of 58% to 93% for 

total closures exceeding five hours.  The paper concludes by recommending agencies apply these 

methodologies to develop data-driven diversion strategies on critical routes coupled with real-time 

CV monitoring in dispatch centers to provide agile adjustment of resources along diversion routes. 

6.2 Introduction 

The Federal Highway Administration (FHWA) Alternate Route Handbook [141] identifies 

construction, crashes, inclement weather and natural disasters as events that may result in 
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significant traffic diverting on to alternate routes. The first phase of the three-phase process 

proposed by the FHWA suggests using historical volumes, travel demand models and anecdotal 

evidence from public safety to identify alternate routes.  In many cases high volume corridors 

experience sufficient unplanned closures, such that systematically collecting CV data during these 

incidents provides a rich case history to identify alternate routes used by motorists. Such empirical 

techniques effectively use crowdsourced data to identify usage patterns during the early phases of 

an incident as well as later phases of the incident when the network is close to reaching perceived 

user equilibrium.  This real-life empirical data can then be used in conjunction with the FHWA 

Alternate Route Handbook to develop well-planned diversion management strategies that are 

consistent with motorists’ actual choices. 

6.3 Literature Review 

Past research has utilized Bluetooth matching, wi-fi scanning, license plate matching among other 

field observation techniques to capture diversion rates and route choice behavior among motorists 

in spatially and temporally controlled studies. An unplanned bridge closure in northwest Indiana 

utilized 11 Bluetooth Monitoring Stations to evaluate the mobility impact of trip distributions 

along four prescribed alternate routes [51]. Bluetooth probe tracking techniques have been 

implemented on interstate work zones in the past to assess travel time reliability and evaluate work 

zone mobility performance [48]. A global positioning system-based vehicle activity data study of 

467 instrumented vehicles in Atlanta, Georgia, analyzed driver-level behavior for route choices on 

morning commutes [142]. Researchers have proposed the use of widespread cellular signal towers 

and signaling events generated by devices moving from the influence area of one tower to another 

to track vehicular movement and estimate route choices [143]. One such floating phone data study 

using 1.4 million records in Germany was able to analyze route choice behavior and its dependence 

on radio broadcasts, traffic management center notifications and variable message sign 

recommendations [144]. Probe-vehicle studies have utilized a limited set of vehicles to study 

dynamic route choice behavior to augment existing static route choice models [145], [146]. Stated 

preference survey approaches and discrete choice models have captured user-level preference on 

route choice and the factors affecting it, including variable message signs, radio traffic information 

among others [147]–[150]. However, results from these existing techniques run the risk of 

presenting inherent spatial and temporal inaccuracies and may only provide approximate estimates 
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of travel time, limitations that can be addressed by CV data. Concurrently, while researchers have 

long modeled route choices [151]–[153] at the link, path and system level, CV data has the ability 

to augment those models with real-world data lending further confidence to modeling estimates. 

Segment-based probe-vehicle data have been used by agencies in Indiana to monitor queuing and 

congestion on a detour route lacking traditional intelligent transportation system (ITS) 

infrastructure during an unexpected interstate closure on Interstate 65 (I-65) [52]. However, recent 

studies on short-term and long-term interstate construction work zones in Indiana have already 

shown promise in the applicability of CV data to evaluate impacts of diverting traffic from 

interstates on traffic signal performance of the surrounding road network, as well as in computing 

detour rates and travel time estimates during construction periods [154], [155]. CV data aggregated 

by a 19-day floating car fleet study on the German freeway network were able to demonstrate the 

travel time benefits obtained by navigating around freeway congestion, and the progression of 

these benefits from the occurrence of an incident to eventual road clearance [156]. These 

encouraging approaches have paved the path for applying large scale real-world CV data towards 

route choice analysis. 

6.4 Objectives 

The objective of this study is to use CV data to develop scalable techniques that systematically 

analyze diversion patterns associated with significant road/lane closures on major highways.  The 

proposed techniques classify trips along the corridor as on-route, diversion, or a trip chaining 

activity. Associated metrics of travel time and route length are computed. These techniques 

provide the empirical data-driven foundation for agency after-action reviews, pre-planned 

diversion strategies, and tactical monitoring during an incident with significant diversion.   

6.5 Data Description 

A commercially available CV dataset which represents about 4-5% of all passenger vehicles in 

Indiana was utilized for this study [55]. Trajectory waypoints were obtained at 3-second reporting 

frequency with a geolocation accuracy of 3-meters. Each waypoint has the following information 

provided with it: latitude, longitude, timestamp, speed, heading, and an anonymized unique 



 

 

121 

trajectory identifier. A vehicle’s journey can be determined using the trajectory identifier as it 

navigates through or around an active freeway incident. 

6.6 CV Visualization of Closure Impact 

A bus crash in the northbound (NB) direction on I-65 in White County, Indiana on June 11, 2021 

resulted in a complete closure of northbound lanes for approximately 6 hours and slowed traffic in 

the opposing direction while recovery efforts were underway [157]. Public safety and emergency 

management resources from neighboring cities and counties were deployed to manage diverting 

traffic.  

Figure 46 presents a trajectory heatmap for this incident occurring at approximately 12:38 PM at 

mile marker 189. Each of the 535 trajectories shown is linearly referenced to interstate mile 

markers. The color of the vehicle trajectories at a particular location corresponds to the vehicle 

speeds shown in the legend. The horizontal axis on the heatmap represents the time of day, while 

the vertical axis represents the location along the analysis corridor. Mile marker 164 to 200 is 

shown in order to capture the upstream and downstream impacts of this incident.  Each interstate 

exit within this region is marked by a solid black horizontal line. As vehicles leave the interstate, 

a drop in CV volumes is visualized. A hollow ellipse at Exit 188 highlights one such group of 

trajectories that appear to end at mile marker 188, where the interstate was closed to provide a 

diversion opportunity.  A similar hollow ellipse at Exit 193 highlights a location where vehicles 

rejoined the interstate.  

Hard-braking events, representing a deceleration of 8.76 ft/s2 or greater on a CV trajectory (defined 

by the data supplier), are depicted by solid red diamonds and clearly indicate vehicles braking at 

the back of a queue on encountering slow moving or stopped traffic. Queues resulting from this 

incident at mile marker 189 were found to stretch as far back as mile marker 171 shown by the 

slow-moving purple trajectories (speeds of 0 to 14 miles per hour) in Figure 46. Blank areas on 

the heatmap spanning approximately from 1 PM to 7 PM between exits 178 and 193 correspond 

to total road closure with minimal to no CV trajectories passing through that segment. 
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Figure 46. Trajectory heatmap showing CV trajectories and hard-braking events for an 

unplanned closure caused due to a crash incident on I-65 NB (June 11, 2021) 

6.7 Trip Travel Time 

Figure 47 shows a scatter plot representation of travel times experienced by trips traversing the 

36-mile analysis region of I-65 NB between mile marker 164 and 200. The location of a datapoint 

on the horizontal axis is determined by the timestamp at which the trip entered the analysis corridor 

at mile marker 164. The free-flow travel time on this segment is typically 31 minutes. 
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The crash incident that resulted in the unplanned closure was reported to have occurred at 12:38 

PM as indicated by the solid black vertical line on the plot. Callout i points to an example of a 

free-flowing trip that did not leave the interstate. Callouts ii and iii correspond to examples of trip 

chaining, confirmed upon further examination showing the trip leaving and rejoining the interstate 

at the same interchange thus resulting in a higher than expected travel time. Trips entering the 

study area at mile marker 164 just after 12:00 PM were impacted as they approached the impending 

crash 25 miles away. Callouts iv, v and vi represent examples of vehicles that chose an alternate 

route to navigate around the road closure. A significant increase in travel times from a base value 

of 30 minutes to as high as 4 hours was seen in the period following the incident. The wide range 

of travel times seen after 12:38 PM highlights the diversity in routes chosen by the CVs, one of 

the prime analysis objectives for this study. 

 

Figure 47. Diversity of travel times experienced by CVs passing through region of unplanned 

closure on I-65 NB (June 11, 2021) 
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6.8 Route Choices 

It is quite easy to measure which exit observes the most vehicles departing the interstate and then 

rejoining downstream. Map matching analysis in the vicinity of interstate exits using CV trajectory 

data allows us to easily identify trips traveling through on the interstate from those utilizing the 

exit ramps to leave the interstate. Table 9 tabulates the percentage of trips leaving the interstate at 

each of the six exits shown in Figure 46. Exit 178 observed the highest portion of traffic leaving 

the interstate (18.5%), while exit 175 saw the highest mean ramp delay (12.7 minutes) experienced 

by vehicles exiting the interstate.  This high delay is likely due to a combination of relatively high 

diverting volume and an intersecting state road that was relatively close to capacity.  The mean 

ramp delay for each vehicle exiting the interstate was computed as the amount of time taken to 

pass through a half-mile radius geofence built around the center of the interchange. Metrics such 

as the percent of trips exiting and ramp delay at exits shown here provide a high-level overview 

and quantitative indications of queue propagation and mobility impacts caused upstream of a 

freeway incident. 

Table 9. Percentage of trips leaving the interstate and ramp delays experienced at six exits in 

analysis corridor (June 11, 2021) 

Exit County 
 % leaving 

interstate 

Mean ramp delay 

experienced (mins) 

Median ramp delay 

experienced (mins) 

Exit 168 Tippecanoe 0.8% 3.0 2.6 

Exit 172 Tippecanoe 4.3% 9.3 7.3 

Exit 175 Tippecanoe 12.1% 12.7 3.2 

Exit 178 Tippecanoe 18.5% 6.9 4.8 

Exit 188 White 12.3% 9.3 9.0 

Exit 193 White - - - 

 

Figure 48 shows a map view of routes taken by vehicles called out in the travel time plot in 

Figure 47. Figure 48a shows a vehicle that stayed on the interstate throughout before the incident 
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occurred, indicating a free-flowing trajectory. Figure 48b shows a route that involved trip chaining 

at exit 172 (pointed to by callout ‘Trip chaining’ in the Lafayette area) and rejoined the interstate, 

resulting, as one would expect, in a longer travel time. Figure 48c and Figure 48d show examples 

of trips making an alternate route choice. One such alternate route shown in Figure 48e observed 

a trip leaving the interstate at exit 175 and rejoining at exit 193, while crossing over the Wabash 

River using a single-lane bridge on state route (SR) 225 (Figure 48f) with a posted weight 

restriction of 12 tons. This alternate route choice, adopted by many passenger vehicles, 

unfortunately was also chosen by at least 40 heavy trucks.  Subsequently, the SR 225 bridge, which 

had a weight limit of 12 tons, required emergency closure for inspection and repair [158]. 
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(a) Route corresponding to travel time i (b) Route corresponding to travel time ii 

  

(c) Route corresponding to travel time iv (d) Route corresponding to travel time v 

 

 

(e) Route corresponding to travel time vi (f) Single lane bridge on SR-225 [159] 

Figure 48. Diversity of route choices adopted by CVs (June 11, 2021) 
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6.9 Methodology 

6.9.1 To Identify Instances of Trip Chaining 

While trip chaining as a concept is recognized among transportation practitioners and researchers, 

multiple different definitions have been utilized to identify a chained trip in past studies. Two of 

the most commonly accepted ways to define a trip chain involve a start and end at the same anchor 

location (such as ‘home’), or a sequence of trip segments with multiple stops between two anchor 

locations [160]. For this study, a slightly modified interpretation of trip chaining is broadly defined 

as a sequence of trip segments between a pair of anchor points, namely the start and end points of 

the chosen interstate analysis corridor (mile markers 164 and 200 respectively for the I-65 case 

study presented in Figure 46), involving a significant departure from the base route and subsequent 

rejoining at the same interchange. 

Figure 49 shows an example of such a trip chaining instance, wherein a journey departs the 

interstate to a rest area (Wolcott Rest Area on I-65 NB in the analysis corridor) and rejoins the 

interstate after a short break, resulting in a higher than normally expected travel time. However, 

such trips, if misclassified as an alternate route and not identified to be trip chaining, may lead to 

mischaracterization of travel time statistics and reliability metrics on a corridor. 

 

Figure 49. Instances of trip chaining (example corresponding to travel time iii of 43.8 mins from 

Figure 47) 
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A methodology proposed in this paper can be used to identify such instances of trip chaining so as 

to prevent biasing travel time estimates or incident clearance performance measures. Figure 50 

shows this methodology in finer detail as a six-step process. The first step (Figure 50a) involves 

identifying the base route (translucent blue polygon, 120 feet wide to cover all lanes of traffic) 

defined by the virtual origin and destination gates on the interstate roadway. The second step 

(Figure 50b) shows an overlay of a CV trajectory’s individual waypoints as red circles on the 

translucent blue polygon showing the base interstate route. This step is then followed by 

identifying the portion of the CV trajectory that overlaps with the base route (Figure 50c) and 

identifying parts of the journey not overlapping the interstate (Figure 50d). To determine a trip 

chaining event, the first (callout F) and last (callout L) waypoints of the non-overlapping portion 

of a journey are extracted (Figure 50e) and matched to the nearest linear referenced mile marker 

on the interstate (Figure 50f). If the gap in matched mile marker locations for these waypoints is 

under a mile, it alludes to a journey having exited and rejoined the interstate at the same 

interchange/rest area following a brief stoppage, thus confirming a trip chaining event. This 

methodology is leveraged throughout this study to separate instances of trip chaining from 

diversions. 
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(a) Identify base route (b) Overlay CV trajectory (c) Identify overlap 

   

(d) Isolate non-overlapping 

waypoints 

(e) Identify departure and 

rejoining onto base route 

(f) Validate if trip chain 

occurred at same exit 

Figure 50. Methodology to identify instances of trip chaining at interstate exits 
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6.9.2 To Identify and Group Alternate Route Choices 

Origin and destination detectors positioned at the ends of a chosen analysis region, are used to 

extract journeys having passed through both detectors. For the text that follows, the terms 

‘alternate route’ and ‘detour’ are used interchangeably for simplicity in referring to significant 

diversions from an interstate route. A flowchart representation of the methodology used to 

categorize and group route choices has been presented in Figure 51. Every trip under analysis is 

initialized with a match percent of zero, and a matched detour identifier of 0. The algorithm then 

tries to match each trip with all of the currently classified detours, and detects if a match percentage 

surpassing the pre-defined threshold (95% in this case) has been detected. A match percentage 

between a trip and a detour is defined as the percentage of a trip’s waypoints lying completely 

within the spatial polygon of a detour. If so, the current trip is classified as having matched that 

detour. If no match is found, a new detour is created and assigned a new detour identifier. The new 

detour’s spatial polygon is created by extending the line joining the current trip’s waypoints 60 

feet in either direction, perpendicular to the direction of travel. A similar process is followed for 

each trip under analysis until all trips have been classified as belonging to a detour route with an 

acceptable match percentage. This ensures sufficient matching accuracy among the various trips 

and allows for the algorithm to be adjusted by modifying the match percentage threshold. For 

instance, the match percent may need to be modified and the spatial tolerance may need to be 

increased in dense urban areas where multiple high-volume roadways run fairly close to each other 

thus increasing the potential for mismatching. Using this methodology, the set of trips under 

analysis will be condensed down to a much smaller set of identified detours providing an insight 

into the trip distribution along each alternate route choice, one of which, by virtue of the grouping 

methodology, will be the base interstate route. 
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Figure 51. Methodology to identify and group alternate route choices 

6.9.3 Sensitivity of Map Matching Percentage Threshold 

Figure 52 depicts the sensitivity of the pre-defined trip-to-detour matching percentage threshold 

utilized by the route choice analysis. Two instances of alternate route choices in Figure 52a and 

Figure 52b show a 90.4% and 93.4% match respectively with the base interstate route. 

Concurrently, Figure 52c depicts a case wherein a journey shows a complete match with the base 

route indicating it did not choose an alternate route. A matching threshold of 95% was chosen for 

the route choice analyses in this study as this threshold would allow accounting for minor 

inaccuracies in geolocation reporting, while not grouping together substantially different route 

choices. For example, if a slightly lenient matching threshold of 90% was used, alternate routes 

shown in Figure 52a and Figure 52b would be misclassified in the same category as trips taking 

the base route (100% match, Figure 52c). 
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(a) 90.4% match (b) 93.4% match (c) 100% match 

Figure 52. Sensitivity check on determining map matching percentage threshold 

6.10 Results 

6.10.1 Identification of Most Frequent Alternate Route Choices 

Table 10 shows the most common route choices (with at least two trips observed on each route 

choice) adopted by motorists during the unplanned closure from Figure 46. The analysis period 

was chosen by visual inspection of the start of congestion at 12:30 PM, ending with traffic 

returning to free flow conditions for the analysis corridor by 9 PM on June 11, 2021. Trips that 

utilized the base route of I-65 NB and chose not to detour represent 55 of a total of 258 trips 

(21.3%) during the analysis period, with average and median travel times of 88.4 minutes and 62 

minutes respectively. Six journeys that were categorized as having trip chained were excluded 

from the route choice analysis to avoid biasing the resulting travel time statistics. A total of 103 

unique detours were identified during this analysis of which the top 22 alternate route choices 

(47% of all sampled trips in the analysis period) have been summarized in Table 10. The exit on 

I-65 NB corresponding to each identified detour has also been indicated in Table 10. Ten of the 

top 22 route choices impacted Exit 178. The top two alternate route choices (detour IDs 10 and 

11) show relatively high travel times due to the increased traffic, while a majority of the other 
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detours show modest travel times, suggesting the alternate routes may not have reached 

equilibrium. 

Table 10. Top identified route choices with at least two trips observed on I-65 NB MM 164-200  

(12:30 PM – 9 PM, June 11, 2021) 

Route Choice 

Exit 

Number on 

I-65 NB 

Number of 

Trips 

% of Total 

Trips 

Avg. Travel 

Time (mins) 

Median 

Travel Time 

(mins) 

Base Route (I-

65 NB) 
- 55 21.3% 88.4 62.0 

Detour ID 10 188 19 7.4% 117.2 130.1 

Detour ID 11 188 12 4.7% 134.0 121.7 

Detour ID 45 178 10 3.9% 68.7 65.2 

Detour ID 34 178 9 3.5% 75.5 50.5 

Detour ID 12 188 8 3.1% 177.0 173.6 

Detour ID 33 178 8 3.1% 66.6 59.3 

Detour ID 22 178 7 2.7% 57.1 55.5 

Detour ID 44 178 6 2.3% 58.5 55.8 

Detour ID 51 175 6 2.3% 83.4 79.0 

Detour ID 57 178 4 1.6% 78.7 72.2 

Detour ID 80 175 4 1.6% 57.3 57.3 

Detour ID 19 178 3 1.2% 53.5 51.9 

Detour ID 36 178 3 1.2% 67.1 60.9 

Detour ID 55 175 3 1.2% 57.9 57.5 

Detour ID 64 175 3 1.2% 53.4 53.5 

Detour ID 87 175 3 1.2% 89.2 94.7 

Detour ID 92 175 3 1.2% 69.3 70.4 

Detour ID 41 178 2 0.8% 45.2 45.2 

Detour ID 49 178 2 0.8% 84.9 84.9 

Detour ID 63 175 2 0.8% 46.0 46.0 

Detour ID 79 175 2 0.8% 76.2 76.2 

Detour ID 90 175 2 0.8% 77.1 77.1 
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While Table 9 depicted a high-level data summary of diversion percentage at each exit in the 

analysis corridor, Figure 53 shows a detailed spatial representation of the base interstate route 

(Figure 53a) and the top five alternate route choices (Figure 53b-f) adopted by vehicles for this 

case study during the analysis period of 12:30 PM to 9 PM on June 11, 2021 for traversing a 36-

mile stretch of I-65 NB. The crash location along with each of the six interstate exits (exit 168 

through exit 193) have been called out on each map for geographical context. The top alternate 

route choice among motorists (detour ID 10) involved a nearly 2-mile detour by leaving the 

interstate at exit 188 and rejoining at exit 193, thus navigating around the incident at mile marker 

189. Exit 188 was observed to be the top choice as point of departure from I-65 NB for three of 

the top five alternate routes (detour IDs 10, 11 and 12), with each of them rejoining the interstate 

at exit 193. CV trajectories that may have witnessed queues building up near exit 178 chose to 

detour much earlier and are represented by detour IDs 45 (Figure 53d) and 34 (Figure 53e). 
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(a) Base route (I-65 NB) (b) Detour ID 10 

  
(c) Detour ID 11 (d) Detour ID 45 

  
(e) Detour ID 34 (f) Detour ID 12 

Figure 53. Base route and top five identified alternate route choices I-65 NB MM 164-200 

(12:30 PM – 9 PM, June 11, 2021) 
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6.10.2 Travel Time and Frequency of Alternate Route Choices during Incident 

Utilizing the methodologies described earlier, 535 unique trips traversing the analysis region on I-

65 were classified as either detouring, trip chaining or following the base route throughout. A 

colorized travel time plot for the analysis corridor for June 11, 2021 is shown in Figure 54a. Solid 

red circles indicate trips remaining on the interstate, solid blue circles indicate journeys identified 

as having trip chained, and solid green circles indicate those journeys that exited the interstate and 

chose an alternate route to navigate around the closure. Additionally, an hourly 100% stacked 

percentage plot showing trip distribution by route choice in this region is shown in Figure 54b. 

Alternate routes accounting for more than 3% of total trips are indicated by their individual colors. 

Journeys that were identified as having trip chained (23 in total) are excluded to visualize a slightly 

modified and realistic detour percentage by hour plot as shown in Figure 54c. The detour 

percentage sharply rises in the hour of 12 PM – 1 PM, which also coincides with the hour of the 

freeway crash incident, and reaches 100% for the next two hours (0% of trips taking the base 

interstate route) thus providing independent validation to the complete roadway closure. The 

detour percentage returns to zero by the hour of 10 PM – 11 PM pointing to eventual incident 

clearance and freeway traffic returning to normal thus not necessitating any detour behavior among 

drivers. 
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(a) Travel times colorized by trip chaining, alternate routes and base route usage 

 
(b) Percentage trip distribution of CV trajectories by route and hour of day 

 
(c) Percentage trip distribution of CV trajectories by route and hour of day after instances of 

trip chaining have been excluded 

Figure 54. Categorizing CV trajectories as non-detouring, detouring and trip chaining (June 11, 

2021) 
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Figure 55 depicts a scatter plot representation of the number of additional miles vehicles traveled 

over the base route. Alternate routes accounting for more than 3% of total trips are indicated by 

individually colored solid circles. 21.3% of trips adhered to the base interstate route, shown by 

solid red circles on the horizontal axis with no additional distance traveled. A majority of the trip 

chaining instances (solid blue circles) are observed to have traveled additional distances of five 

miles or less, with a mean additional distance traveled of 0.74 miles, representing short breaks at 

interstate exits. Detouring trips saw additional miles of travel ranging from 1.9 miles to 25.4 miles 

in some cases, with mean additional travel of 6.4 miles across all alternate route choices. Detour 

ID 10 (solid purple circles) accounted for 7.4% of total trips in the analysis period, with an average 

travel time approaching two hours while only adding about 2 miles of additional travel. A sharp 

increase is observed in the number of additional miles traveled by motorists right after the crash 

incident at 12:38 PM. 

 

Figure 55. Additional miles of travel compared to interstate travel, routes accounting for more 

than 3% of all trips individually highlighted (June 11, 2021) 
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6.10.3 Scalable Application to Interstate Routes 

The methodologies proposed and demonstrated for the June 11, 2021 I-65 example earlier in this 

study are easily scalable and transferable to any interstate or non-interstate route, provided the 

availability of CV data. A further 11 cases were analyzed around the state of Indiana to present the 

spatially and temporally independent repeatability of these methods. Figure 56 shows the 

approximate location of each of these 11 case locations highlighted on a statewide map for 

geographical context, covering four of the major interstate thoroughfares in Indiana, I-65, I-70, I-

74 and I-94. Two of the cases (IN-IL_12 and IN-KY_11) were chosen to demonstrate the usability 

of this method to evaluate congestion at state borders and alternate state crossing route choices at 

border towns. Case I-70_08 was chosen to demonstrate the method being used to evaluate trips 

choosing to detour through rest areas to avoid / bypass a portion of traffic queued upstream of a 

construction zone.  This diversion case is particularly concerning because anecdotal evidence 

suggests navigation software recommended this “alternate route” and highlights the need for 

transportation agencies to understand some of the unintended consequences of motorists using 

navigation software. 
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Figure 56. Statewide map of analyzed incidents 

 

The base route distance, detour percentage (number of sampled trips that chose an alternate 

route as opposed to staying on the base interstate route) during these incidents, average travel 

times, average travel time differential among detour and base route, and the number of unique exits 

utilized by motorists for diverting are tabulated in Table 11. These statistics are based upon 

analysis periods chosen for each incident similar to the period chosen for the unplanned closure 

case study in this paper from Figure 46. One of the analyzed incidents (I65_03) involved a partial 
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closure while eight cases involved a full closure. While the cases analyzed are examples 

completely independent of each other, detour percentages are observed to significantly depend on 

the duration of the full closure irrespective of the route. All analyzed cases with five or more hours 

of complete road closure had more than 50% of the sampled journeys choose an alternate route. 

Table 11. Summary of detour percentage and travel time for analyzed incidents 

Incident 

ID 
Date 

Type 

of 

closure 

Duration 

of full 

closure 

(hours) 

Base 

route 

distance 

Detour % 

Avg. 

detour 

travel 

time 

(mins) 

Avg. 

base 

route 

travel 

time 

(mins) 

Avg. detour 

travel time 

difference 

from base 

route 

(mins) 

Unique 

exits 

used 

during 

incident 

I65_01 09/14/2021 Full 2.25 34.9 39.7% 50.9 43.2 7.7 2 

I65_02 09/24/2021 Full 12 29.1 72.5% 72.7 52.5 20.2 3 

I65_03 01/24/2022 Partial - 26.9 4.2% 37.9 25.3 12.7 2 

I65_04 06/11/2021 Full 6.5 36 78.7% 86.6 88.4 -1.8 5 

I65_05 01/11/2022 Full 10.5 20.1 93.4% 46.6 64.2 -17.6 3 

I65_06 07/05/2021 Full 1.5 48.1 39.7% 80.2 62.4 17.8 7 

I65_07 07/09/2021 Full 2.25 29 71.6% 53.7 65.4 -11.7 3 

I70_08 

(Rest 

Area) 

10/10/2021 - - 1.3 4.2% 7.1 6.5 0.6 - 

I70_09 07/15/2021 Full 5 40.9 58.7% 75.5 85.3 -9.8 3 

I74_10 01/25/2022 Full 1.75 20 82.6% 57.7 24.3 33.4 2 

IN-

KY_11 
01/25/2022 - - 15.7 15.4% 17.5 13.6 3.9 3 

IN-

IL_12 
10/09/2021 - - 10.9 23.4% 45.2 64.6 -19.4 6 

6.11 Summary 

This study proposed easily scalable methodologies leveraging CV data to identify trip chaining at 

interstate exits (Figure 50), analyzing route choice distributions (Figure 51, Table 10), and travel 

times along alternate routes (Figure 54).  Knowledge of ramp delays (Table 9) and queues at 
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interstate exits will provide stakeholders with real-time and accurate ground-level information 

when responding to a freeway incident. The analysis and results presented may be useful for public 

safety agencies as well as state departments of transportation in providing a data-driven framework 

for historical as well as real-time alternate route planning. Agencies can apply these methodologies 

to develop data-driven diversion strategies for critical routes as well as implementation of real-

time monitoring to provide agile adjustment of resources along diversion routes during an active 

incident. Proposed methodologies to detect instances of trip chaining (Figure 50) will allow 

practitioners and researchers alike to better curate outliers from travel time datasets and enable 

realistic travel time reliability estimates on corridors not affected by noisy observations. 

These methodologies are highly transferable to a host of other transportation research problems 

such as evaluation of border crossing route usage between neighboring states, monitoring 

usage/impact of official detour options, and ingress/egress route planning for special events. The 

sole reliance of the proposed methodologies on CV trajectory waypoint data makes them easily 

scalable worldwide provided the availability of CV data, without being dependent on cost intensive 

ITS infrastructure. 
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 CONCLUSIONS 

The infrastructure bill will provide nearly $643 billion for surface transportation infrastructure 

over the next five years.  Although traditional infrastructure-based sensors, such as loop detectors 

will still be used, CV data is an important new source of information for agencies to make effective 

investment choices. 

It is estimated that a connected vehicle creates over 25 gigabytes of data every hour [161], and that 

volume will continue to grow with a larger portion of production vehicles being instrumented for 

connectivity with every passing year. Stakeholders using CV data require techniques that can draw 

easily consumable observations from this large-scale data. This dissertation proposed 

visualizations, methodologies and analysis techniques that allow reducing such big CV data sets 

down to actionable insights that can inform decision making on mobility, safety and day-to-day 

operational performance of surface transportation systems. Each chapter of this thesis defined a 

use case and contribution.  A brief summary of these contributions and emerging impact follows. 

7.1 Interstate Mobility Impacts of Secondary Crashes 

Crash incidents on interstate roadways often result in queuing while the incident is cleared, many 

a times resulting in secondary crash incidents at the back of a queue. CV data now allows 

researchers to quantify the mobility impacts of these secondary crashes making the case for 

increased investment in public safety resources to accelerate scene clearance. A systematic review 

of 195 incidents was performed for 2019 that involved one or more secondary crashes. Interstate 

route-level analysis of secondary crash mobility impacts showed an average road closure time of 

2 hours and 33 minutes, with an average event duration time of 3 hours and 50 minutes. As a 

consequence of this study, a project in collaboration with the Indiana Criminal Justice Institute 

(ICJI) has seen approximately 40 public safety agencies being trained so far on using Unmanned 

Aircraft Systems (UAS) to quickly map crash scenes and accelerate the clearance of backed up 

traffic.  In fact, both the justification and the UAS program have been highlighted by the USDOT 

Every Day Counts 5 Program [62]. 
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7.2 Monitoring Mobility through Interstate Construction Work Zones 

Agencies have traditionally relied on fixed ITS sensor infrastructure placed in and around 

construction sites to monitor the progression of traffic through areas under construction. However, 

this imposes spatial and temporal limits on the ability of practitioners to monitor queuing and 

congestion. CV data, on the other hand, removes these constraints and allows near real-time 

monitoring of traffic in any location provided the availability of CV data. A pilot case study on 11 

locations in Indiana showed how CV data could be used to inform the Indiana interstate highway 

closure policy (IHCP) exceptions based on reduced traffic volumes, which may traditionally have 

not been granted if decision-makers relied upon historical queue forecasting models. Encouraging 

results from this study enabled further implementations at 25 additional locations around the state, 

and allowed the Indiana Department of Transportation (INDOT) to take advantage of reduced 

volumes in the wake of the COVID-19 pandemic to accelerate construction activity while 

minimizing freeway mobility impacts. An even further granular analysis on a construction work 

zone on interstate 70 in central Indiana showed the scalable use of CV trajectory data in quantifying 

diversion rates, travel times and impact on arterial traffic signal performance. Such analyses 

provide agencies with much needed feedback from real-world CV usage and allows for agile 

strategy adjustments if and when needed to address critical mobility issues in a work zone. 

7.3 Correlating Hard-braking Events and Crash Incident Occurrences in and around 

Interstate Construction Work Zones 

Due to the inherent spatial and temporal inaccuracies and the associated time delay involved in 

reporting crash incidents, the scope of dynamic safety corrections to construction work zones in 

response to crash incidents is heavily limited. Hard-braking events on the other hand can be 

monitored in near real-time and have the potential to provide an initial filter on hot spots in a road 

network with critical safety performance issues. This chapter demonstrated the correlation between 

hard-braking events and crash incident occurrences for a system of 23 interstate construction work 

zones covering six interstate routes in Indiana in 2019. The study found approximately 1 crash per 

mile occurred for every 147 sampled hard-braking events in and around a construction site in the 

summer of 2019. While this result corresponds to a 2019 snapshot of construction activity and 

sampled CV data, the ratio is bound to change as penetration of CVs increases. In spite of the 

spatially and temporally limited nature of this study, it provides strong quantitative evidence for 
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the immediate implementation of hard-braking events as a surrogate safety performance measure 

to provide agencies with a first filter on critical safety hot spots that require their further attention.  

In fact, Indiana now monitors weekly changes in hard-braking events on their interstates to identify 

emerging safety concerns in work zones. In addition to hard-braking events, this study encourages 

further research in the use of other in-vehicle events such as hard-acceleration, emergency braking 

and traction control for near real-time safety performance monitoring of work zones and roadways 

in general. 

7.4 Evaluating Electric and Hybrid Vehicle Charging Infrastructure Usage and 

Investment Opportunities 

The new infrastructure bill provides $100 million for Indiana EV infrastructure and $7.5 billion 

nationally. With this influx of public and private sector investment into building a nationwide EV 

charging network by the end of this decade, determining an equitable formula for state-wise 

funding allocations is of utmost importance to stakeholders. This dissertation presented a case 

study using CV data from 11 states (California, Connecticut, Georgia, Indiana, Minnesota, North 

Carolina, Pennsylvania, Ohio, Utah, Texas and Wisconsin) to analyze the current usage trends of 

EVs, HVs and existing charging infrastructure. Methodologies were presented to identify critical 

gaps in fast charging availability on freeways, and for ranking charging infrastructure usage at the 

statewide, county and city level to help real-world EV usage trends provide quantitative supporting 

evidence for policy decisions and investment allocations. A publicly available aggregated dataset 

of EV and HV usage at the county level was put forth [140] by this study to stimulate and invite 

further dialogue among the transportation community on additional technical analysis. 

7.5 Analysis of Route Choice during Planned and Unplanned Road Closures 

While researchers and practitioners have long modeled, simulated, surveyed and forecasted route 

choice behavior, very limited research has been conducted on documenting and analyzing real-

world route choices. CV data provides easily scalable opportunities to monitor route choice 

behavior and provide historical evidence to agencies that may help in allocating public safety and 

traffic management resources for future roadway capacity reduction incidents. This chapter 

proposed a recursive methodology to group and summarize alternate route choices adopted by 

motorists navigating through or around a freeway road closure using a bus crash case study from 
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June 11, 2021 on Interstate 65 (I-65) in Indiana. Colorized visualizations of travel time, distance 

traveled and diversion rates were proposed to track the progression of an incident. The temporal 

and spatial scalability of these methodologies was demonstrated by analyzing a further 11 incidents 

across the state. The study recommended agencies use these methodologies for documenting 

historical incidents as well as for real-time incident monitoring in dispatch centers. This chapter 

also proposed a scalable methodology to detect instances of trip chaining, a much-needed solution 

for discarding outliers to ensure realistic travel time values for any corridor under analysis. 

7.6 Summary 

Over the course of my research, I have been lead author on 8 CV papers and contributing author 

on 7 papers.  This dissertation provides a holistic overview of that work that provided the following 

contributions in the CV data analytics space: 

• The development of CV data-driven systematic review techniques to quantifying the 

mobility impacts of secondary crashes on interstate roadways. 

• The demonstration of the applicability of CV data for monitoring impact of construction 

activity on mobility. 

• The use of hard-braking events as a surrogate measure identifying emerging safety 

concerns in construction work zones. 

• The development of performance measures for evaluating charging infrastructure usage 

using CV data for informing present and future investment allocations. 

• The development of methodologies that identify trip chaining and analyze route choice 

during a planned or unplanned road closure to help agencies make informed diversion 

strategy decisions. 

 As transportation researchers and practitioners in the public and private sector alike 

transition from sole reliance on fixed ITS sensor-based monitoring to complementing the same 

with large-scale CV data-based monitoring of transportation systems, the methodologies and 

techniques proposed in this dissertation will provide them with a data-driven framework for use in 
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day-to-day monitoring as well as provide quantitative real-world evidence to support future 

resource allocation and investment decisions. 
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