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ABSTRACT

It is challenging to meet stringent network performance requirements with growing traffic

and increasing expectations on higher performance. Downtime caused by failures can cost

billions of dollars and cause severe problems. In this thesis, I have explored the problem of

how to design network for Service Level Objectives (SLOs) with an emphasis on provable

performance guarantees under failures. This thesis not only considers worst-case guarantees,

but also considers requirements that must be met a percentage of time given SLOs are

typically expressed in this fashion. To tackle the problem, this thesis makes the following

contributions: (i) PCF, a novel set of mechanisms which ensure the network is provably

congestion-free under failures. PCF outperforms FFC, the state-of-the-art mechanism, by

a factor of 1.5X on average across 21 topologies; (ii) key components of Lancet, the first

system for designing protection routing schemes that can meet a performance target a desired

percentage of time; (iii) Flexile, a system for designing routing that meets the bandwidth

requirements of flows for a desired percentile of time. Flexile exploits a key unexplored

opportunity that each flow’s requirement could be met using a different set of failure states.

Our experiments show that Flexile outperforms state-of-the-art schemes including SMORE

and Teavar in reducing loss at desired percentiles by 46% or more in the median case.
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1. INTRODUCTION

Online and cloud-based services have been more and more prevalent in recent years, and the

network performance requirements are becoming increasingly stringent. Users are requiring

the network infrastructure to ensure their critical applications to operate with acceptable

performance and high availability. Network architects often express these requirements as

service level objectives(SLO) [  1 ]), which asks the network to meet a performance metric a

desired percentage of the time such as “user i is guaranteed bi network bandwidth at least

β% of the time”.

To meet SLOs, network architects have to cope with uncertainty such as failures in

network operations. Failures have been shown to be common in the context of wide area

networks [ 2 ]–[ 4 ]. The rapid pace of network evolution implies that failure is the norm, and

the complexity of failures is on the rise [  4 ]. These trends make the task of ensuring acceptable

performance more challenging, and bring more attention to this task.

However, existing approaches to designing networks for failures (i) only focus on avail-

ability [ 5 ]–[ 9 ] resulting in poor performance on failures [  4 ], [  10 ]; (ii) only consider a small

number of failure states [  11 ]–[ 17 ], and do not scale as the number of possible failure states

increase; or (iii) rely on ad-hoc simulation-based testing [  18 ], [  19 ]. In this thesis, we pro-

pose to design new routing schemes with tractable models to provide analysis of network

performance.

The rest of this chapter is organized as follows: § 1.1 illustrates the background in this

research area. § 1.2 introduces some recent works and their limitations. § 1.3 presents the

contributions and key results of this thesis. §  1.4 provides a road map of the whole thesis.

1.1 Background

Researchers have long recognized the need to quickly adapt to network failures. Thus,

several schemes have been developed to achieve this by moving traffic away from a failed

network device or link. For instance, in MPLS settings, two classes of adaptation mechanisms

have been explored [ 5 ]. One is called link-based protection scheme. In a link-based protection

scheme, traffic previously on a failed link l is rerouted along pre-computed detour paths that

13



do not include l. The other is called path-based protection scheme, where backup paths

are reserved in advance for traffic from each source s to every destination t, and when a

particular path fails (e.g., an underlying link, or a node fails), the traffic is diverted to

those back-up paths. Nevertheless, these adaptation schemes usually don’t provide enough

flexibility in routing and hence are insufficient to prevent congestion (and consequently,

packet losses and delays) under failures, which can negatively impact the performance of

demanding applications such as online retail, Web search, and video streaming.

There also has been much work on designing networks while considering a small number

of possible failures (e.g., single link or node failures) [  12 ]–[ 17 ]. Typically, these works involve

formulating resilient network design as optimization problems (e.g., to determine the spare

capacity to provision to handle failures), enumerating all failure states explicitly. While

such an approach is tractable when the number of possible failure states is small, it does

not scale well for the SLO requirements involving multiple failures simultaneously [  10 ], [  20 ].

The intractability arises from the fact that naively enumerating failure states leads to a

formulation that simultaneously models exponentially many routing problems.

The state-of-practice in checking whether networks conform to SLOs involves simulation-

based testing [  18 ], [ 19 ]. Unfortunately, the number of scenarios to consider is prohibitively

large even for moderate sized networks. For instance, verifying that a network with 200

links performs acceptably under all 3 simultaneous link failures [  10 ], [ 14 ], [ 20 ] considering all

traffic matrices collected at 10 minute intervals over a week’s period requires testing over a

billion scenarios. Many more tests are required if partial link failures are also considered.

Even if such arduous testing can provide assurance that a given network design complies

with a specific SLO, it remains challenging to use such tests for designing networks that meet

an SLO requirement [ 21 ], or for deciding what SLOs to offer [ 22 ]. Given the large space of

possible designs and policies, and since exhaustively testing any one of them is prohibitive,

architects today use ad-hoc design techniques that may lead to overly conservative solutions,

or fall short of meeting performance requirements, and lack provable guarantees.

14



1.2 Recent works and their limitations

The research community has recently designed traffic engineering mechanisms that proac-

tively ensure that the network is congestion-free (i.e., ensure that no link carries more traffic

than its capacity) under typical failure scenarios [  10 ], [  20 ], [  23 ]. Given a set of failures, which

can be exponentially large, they provide tractable models which can guarantee a network

throughput that can always be served and no link will be congested. These mechanisms

typically involve light-weight online operations upon failures. For instance, FFC [  10 ], a

representative and state-of-the-art approach, allocates bandwidth to flows so that no con-

gestion occurs when f or fewer links fail. To do so, FFC splits traffic from each ingress to

egress along a set of pre-specified tunnels. R3 [  20 ], another congestion-free routing scheme,

uses link-based protection routing to ensure no link will be congested under f link failures.

However, both schemes can provide conservative performance guarantee and are far off the

network’s intrinsic capability.

1.3 Contributions

This thesis addresses the problem of how to design network to meet performance require-

ments under failures. One unique focus of this thesis is to provide provable performance

guarantees for network design. It is motivated by several key challenges of the state-of-the-

art. First, a lot of the existing approaches focus on the worst-case performance. But these

approaches are found to be very conservative. Do there exist ways to develop mechanisms

that can provide provable worst-case guarantees yet are not that conservative? Second, in

practice, network architects care more about whether the network performance can be met

a percentage of time. Designing networks for percentile guarantees is a challenging problem

that we seek to address.

To answer the above questions, this thesis (i) develops PCF, a novel routing mechanism

which can provide better worst-case guarantee than the state-of-the-art, (ii) contributes to

Lancet, one of the first systems for designing routing to meet percentile performance target,

and (iii) develops Flexile, a system for designing routing to ensure that each flow can meet

its bandwidth requirement a percentage of time. We expand these contributions below.
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1.3.1 PCF

In this thesis, we show that the existing congestion-free schemes perform much worse than

optimal, and present deeper insights into the underlying reasons. In particular, we show that

(i) FFC, the state-of-the-art congestion-free mechanism, is not only conservative, but also

its performance can degrade with an increase in the number of tunnels; (ii) the performance

of FFC can be arbitrarily worse than optimal, even when exponentially many tunnels are

used. We show that these results arise because (i) FFC models network structure in a coarse

fashion; and (ii) reservations are tightly coupled to paths. We propose PCF (Provably

Congestion-free and resilient Flexible routing), a set of novel mechanisms that ensure the

network is provably congestion-free under failures, while performing closer to the network’s

intrinsic capability. PCF achieves these goals by better modeling network structure, and

through more flexible response strategies. The key challenge that PCF addresses is how

to enhance the flexibility of network response while ensuring that the performance under

failures can be tractably modeled.

Results. We compare the performance guarantees provided by PCF’s congestion-free

mechanisms with FFC. We evaluate our models on multiple real topologies obtained from

[ 24 ]. The experiments show that across different topologies and traffic matrices, our PCF

schemes consistently outperform FFC. On average, our scheme can achieve improvement of

more than 1.44X over FFC. For GEANT topology, our scheme perform 2.6X better. We ob-

serve similar results with different number of link failures and different network performance

metrics. We also evaluate the tractability of our scheme. For most topologies, the solving

times is under 10 seconds. For the two largest networks (Deltacom and Ion) with 302 and

270 sub-links (each original link comprises 2 sub-links), the solving time for is under 100

seconds. This is reasonable because PCF’s models only need to be run at the granularity of

several minutes.

1.3.2 Lancet

In joint work with another thesis [  25 ], this thesis develops Lancet [ 26 ], one of the first

works to design networks to meet a percentile target. Lancet is a system for designing link-
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based protection routing schemes that can meet a performance target a desired percentage

of time. Lancet uses a novel and efficient divide and conquer algorithm to classify scenarios

based on performance, and designs routing for the set of scenarios which can be handled

by the network. The specific contributions of this thesis to Lancet include (i) showing how

to realize a distributed link-based protection routing scheme, (ii) extending the scheme to

support multiple traffic classes, and (iii) evaluating the potential to design protection routing

schemes with better guarantees.

1.3.3 Flexile

Existing TE schemes including Lancet and Teavar [  27 ] (a scheme to design for percentile

requirements developed concurrently with Lancet) are conservative when meeting the per-

centile bandwidth requirement of each flow. This is because they design for all flows in all

scenarios and use the same set of scenarios to meet each flow’s percentile requirement. To

tackle this, we develop a new system, Flexile, which exploits a key opportunity that each

flow could meet its bandwidth requirements over a different set of failure scenarios. Flex-

ile consists of an offline phase and an online phase. In the offline phase, Flexile identifies

critical scenarios for each flow to meet its requirement. In the online phase, Flexile uses the

information from offline phase to prioritize flows that are critical in the current scenario. A

key challenge in developing is that identifying critical scenarios in the offline phase require

solving a hard optimization problem at large scale. Flexile tackles this issue by decomposing

the original problem and using domain-specific accelerations.

Results. We compare Flexile on percentile metric with Teavar, one of the state-of-the-

art work which designs for percentile performence. We also compare Flexile with SMORE, a

scheme that optimizes MLU within each failure state, and SWAN, a scheme that can max-

imize throughput or approximate max-min fairness for multiple traffic classes. Our results

over 20 topologies show that Flexile outperforms state-of-the-art TE schemes in reducing

flow loss at desired percentiles by 46% or more in the median case while not degrading

performance much within a scenario. Our experiments also show that our algorithm for

accelerating Flexile can significantly reduce solving time and help Flexile achieve its results
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within acceptable computation time. In the largest topology where it can take hours to

design without accelerating, our algorithm manages to reduce the solving time to under 100

seconds.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 shows that existing congestion-free mecha-

nisms, notably FFC, achieve performance far short of the network’s intrinsic capability, and

presents PCF, a set of novel congestion-free mechanisms to bridge this gap. We show PCF’s

effectiveness through formal theoretical results and empirical experiments over multiple In-

ternet topologies. Chapter 3 presents a generalized model of link-based protection routing

and shows its extension and implementation. Chapter 4 presents Flexile, a mechanism which

directly designs for percentile performance and ensures each flow can sustain as much traffic

demand as possible for a given percentage of time. We show that Flexile greatly reduces

percentile traffic loss both in simulation and emulation experiments. Finally, Chapter 5

summarizes this thesis and discusses potential future research directions.
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2. PCF: RESILIENT FLEXIBLE ROUTING WITH ROBUST

THROUGHPUT GUARANTEES

As mentioned, in order to ensure that the network can handle desired demand under certain

failure scenarios, the research community has recently designed congestion-free mechanisms.

And FFC [  10 ] is considered the state-of-the-art approach. In this chapter, we explore the

performance of such congestion-free mechanisms relative to the performance that a network

could achieve by responding optimally to each failure. We refer to the performance achieved

when the network responds optimally as the intrinsic network capability. We make two

contributions in this work.

First, we show that congestion-free schemes perform much worse than optimal, and

present deeper insights into the underlying reasons. In particular, we show that (i) FFC is

not only conservative, but also its performance can degrade with an increase in the number

of tunnels; and (ii) the performance of FFC can be arbitrarily worse than optimal, even

when exponentially many tunnels are used. We show that these results arise because (i)

FFC models network structure in a coarse fashion; and (ii) reservations are tightly coupled

to paths, and the failure of a link leads to unutilized capacity on other links in the tunnel

that contain the failed link.

Second, we propose PCF (Provably Congestion-free and resilient Flexible routing), a

set of novel mechanisms that ensure the network is provably congestion-free under failures,

while performing closer to the network’s intrinsic capability. PCF achieves these goals by

better modeling network structure, and through more flexible response strategies. The key

challenge that PCF addresses is how to enhance the flexibility of network response while

ensuring that the performance under failures can be tractably modeled.

We develop multiple mechanisms as part of PCF that allow the architect to trade-off

the achievable performance guarantee with deployment complexity. First, we present an

alternate approach for bandwidth allocation with the FFC response mechanism which (i)

results in a better performance guarantee; and (ii) ensures the allocation does not degrade

with additional tunnels. Second, we explore more flexible network response based on an

abstraction that we term logical sequence (LS). A LS from a source to a destination
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traverses a series of logical segments (formally defined in §  2.2.3 ). The reservation on any

LS for a targeted failure set is guaranteed by the logical segments constituting the sequence.

Each segment may recursively route traffic over other LSs or physical tunnels servicing that

segment. This allows for significant flexibility in how traffic is routed over various segments,

and which nodes respond to a given failure. LSs are loosely inspired by ideas such as segment

routing [ 28 ], [  29 ] though with significant differences (§  4.5 ). We show that when LSs are used,

the performance can be arbitrarily better than FFC. We develop several mechanisms based on

LSs, including those that provably out-perform R3 [  20 ], another congestion-free mechanism.

We show how PCF’s mechanisms can be implemented in practice. For example, we show

that when LSs are chosen with some restrictions, they can be realized by a simple gener-

alization of the local proportional routing scheme used by FFC. When LSs are arbitrarily

chosen (which allows for even better performance guarantees), our approach discovers a vi-

able routing using techniques that are lighter weight than the the optimal network response

strategy.

Empirical evaluations of PCF over 21 topologies from the Internet Topology Zoo show

that PCF significantly out-performs FFC. PCF’s schemes can sustain higher throughput

than FFC by a factor of 1.11X to 1.5X on average across the topologies, while providing a

benefit of 2.6X in some cases.

2.1 Motivation

A critical task for network architects is to ensure that their network designs can sustain

desired traffic over a target set of failures [  10 ], [  20 ], [  23 ]. This in turn depends on the

mechanisms that the network uses to respond to failures.

To illustrate these issues, consider tunnel-based forwarding [ 10 ], [  14 ], [  30 ], where traffic

from each ingress to egress is carried over a set of pre-selected tunnels. When a tunnel

is no longer available (e.g., due to the failure of an underlying link), then, traffic is redis-

tributed across the surviving tunnels. Redistributing traffic can potentially overload some

links. A congestion-free routing mechanism guarantees that the network has been proactively

designed so no link would be over-loaded over a desired set of failures [ 10 ], [ 20 ], [ 23 ].
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Figure 2.1. (a) Example to illustrate FFC’s coarse modeling of network struc-
ture (b) Example to illustrate how tunnel-based reservations can be inefficient

FFC [  10 ] is a recent and representative approach set in the context of tunnel-based

forwarding. Consider a network where each pair of nodes (s, t) is associated with a traffic

demand dst, and a set of tunnels T (s, t) to route the traffic. FFC seeks to assign a bandwidth

bwst to each node pair such that this bandwidth can be guaranteed under all possible f

simultaneous link failures. To achieve this, FFC reserves bandwidth on each tunnel, and

ensures that the total reservation on all tunnels in T (s, t) exceeds bwst under every failure

scenario of interest. We present examples to illustrate why FFC is conservative.

Coarse modeling of network structure.

Consider Fig.  2.1a where the goal is to carry the maximum amount of traffic possible

from s to t, while tolerating any possible single link failure. If the network could respond

optimally for each failure scenario (by running an optimal multi-commodity flow for that

scenario), it is easy to verify that the network is intrinsically capable of carrying 2 units of

flow from s to t under all possible single link failures. When FFC is used, the results depend

on the set of tunnels considered. We consider two schemes: (i) FFC-4 (all 4 tunnels l1 to

l4 are used); and (ii) FFC-3 (only 3 tunnels l1 to l3 are used). Fig.  2.2 shows that both

schemes perform worse than optimal, and surprisingly, FFC-4 performs worse.

We now explain why FFC is conservative, and why its performance may degrade with

more tunnels. FFC uses a parameter pst which denotes the maximum number of tunnels
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Figure 2.2. Throughput guarantee with FFC for different tunnel choices
compared to the optimal.

between s and t that share a common link. When designing to tolerate f link failures, FFC

conservatively assumes that upto fpst tunnels may fail, and plans a reservation that can

tolerate all possible failures of fpst tunnels. In Fig.  2.1a , when FFC uses all 4 tunnels, pst is

2. Hence, when designing for single link failures, FFC-4 plans for all possible combinations of

two tunnel failures. This is conservative because tunnels l1 and l2 do not fail together under

single link failures. With FFC-3, all tunnels are disjoint, and pst = 1. Hence, FFC-3 only

needs to be consider single tunnel failures. However, FFC-3 still cannot match the optimal

since it cannot tap into the capacity of links s− 4 and 4− 3.

Fig.  2.2 also shows that if all two link failures must be tolerated, the throughput with the

optimal, FFC-3, and FFC-4 are 1, 0.5, and 0 respectively. The reasons are similar – FFC-4

can only service traffic that can survive pstf = 2 × 2 = 4 tunnel failures, and hence cannot

carry any traffic, while FFC-3 only needs to consider all 2 tunnel failure scenarios.

Limitations of tunnel reservations A second issue with FFC is that it is inherently

limited by the fact that reservations are made at the granularity of entire tunnels. To

illustrate this, consider Fig.  2.1b . It is easy to verify that if the network responds optimally,

it can carry 2/3 units of traffic from s to t under any single link failure. Unfortunately, FFC

can only achieve an optimal of 1/2. In §  2.2.3 , we will further generalize this example to show

that FFC can see arbitrarily poor performance relative to optimal.
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Tunnel-based allocation does not perform as well as optimal because reservations are

made on all links of a tunnel, and when a link fails, the reservations on other links of that

tunnel go unutilized. For example, consider a tunnel l that traverses links e1 and e4. When

e4 (and hence the tunnel l) fails, FFC only uses the reservations on the remaining tunnels,

and the reservation on e1 for the failed tunnel l goes unutilized. In contrast, the optimal

approach is able to use all capacity on all the non-failed links.

In Fig.  2.1b , let T4 and T5 respectively denote the set of tunnels from s to t that use e4

and e5. Let r4 and r5 denote FFC’s reservations on each of these sets of tunnels. FFC can

carry at most r5 units of traffic when e4 fails, and at most r4 units when e5 fails. Thus, FFC

can guarantee at most min(r4, r5) traffic from s to t over all single link failures. However,

min{r4, r5} × 2 ≤ r4 + r5 ≤ 1, where the second inequality is because tunnels in T4 and T5

must reserve capacity in one of the links e1, e2, or e3, whose combined capacity is 1 unit.

Hence, FFC can carry at most 0.5 units of traffic from s to t.

2.2 PCF overview

PCF’s primary goal is to bridge the gap between existing congestion-free routing mech-

anisms, and intrinsic network capability. PCF tackles the issues raised in §  4.1 by better

modeling, and adopting more flexible response strategies.

Unfortunately, not all routing strategies are amenable to formal guarantees on worst-

case performance under failures. For instance, when the network responds with an optimal

multi-commodity flow (the most flexible response), the problem of determining the worst-case

performance under failures is intractable [ 26 ]. Thus, a central challenge that PCF tackles

is one of carefully crafting response strategies that are (i) amenable to formal worst-case

guarantees; and yet (ii) perform closer to the network’s intrinsic capability.

PCF achieves the above by (i) developing tractable optimization formulations that are

inspired by practical response mechanisms in networking and conservatively estimate net-

work capability; and (ii) providing explicit response mechanisms that achieve the estimated

capability. Moreover, PCF allows the network architect to incrementally dial-in additional

flexibility in response as desired.
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Roadmap. We introduce notation (§  2.2.1 ), and present PCF-TF (§  2.2.2 ), which uses

FFC’s response mechanism but better models network structure. We show that PCF-TF out-

performs FFC, and achieves better performance with more tunnels. Despite these benefits,

we show that PCF-TF (like FFC) can perform arbitrarily worse than optimal. We introduce

a more flexible approach based on the logical sequence abstraction, and formally show the

performance benefits over PCF-TF (§  2.2.3 ). We present further generalizations in §  2.2.4 ,

and show how to practically realize the schemes (§ 2.3 ).

2.2.1 Notation and preliminaries

Consider a network topology, represented as a graph G = 〈V, E〉. Each link e ∈ E is

associated with a link capacity ce. For each node pair (s, t) on the graph, we are given a

traffic demand dst, and a set of tunnels T (s, t) to route the traffic. Each tunnel l consists of a

set of links τl ⊆ E. Below, we present a formulation for bandwidth allocation with tunnels,

(P1) max
z,a

Θ(z)

s.t.
∑

l∈T (s,t)
al(1− yl) ≥ zstdst ∀s, t ∈ V, ∀y ∈ Y (2.1)

al ≥ 0 ∀s, t ∈ V, l ∈ T (s, t) (2.2)∑
∀s,t∈V,l∈T (s,t)

alδ(e ∈ τl) ≤ ce ∀e ∈ E. (2.3)

Here, δ(e ∈ τl) = 1 if e ∈ τl and 0 otherwise. The formulation determines al and zst, where

al represents the amount of reservation on tunnel l, and variable zst represents the fraction

of traffic from s to t that can be satisfied. Y stands for the set of tunnel failure scenarios of

interest, and yl indicates whether tunnel l fails or not in a failure scenario (yl = 1 indicates

tunnel l fails and yl = 0 otherwise.) We later discuss how Y is modeled). Θ(z) is the metric

function we want to optimize. For tractability, we assume Θ(z) is a concave function, and

note that this model covers common metrics such as overall throughput and maximum link

utilization. For example, Θ(z) = ∑
s,t min{1, zst}dst models overall throughput. Alternately,

when Θ(z) = min
s,t
{zst}, and the optimal value is Θ∗, the model guarantees that Θ∗ fraction of
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each flow can be sent in every failure scenario. This also means that using 1/Θ∗ of each link’s

capacity is sufficient to send all the flows. Hence, the inverse of this Θ∗ is the utilization

of the most congested link, also known as the Maximum Link Utilization (MLU). Thus,

Θ(z) = min
s,t
{zst} minimizes the MLU.

2.2.2 Modeling network structure

We now discuss how to model the set of failure scenarios Y . If at most pst tunnels

between s and t share a common link, FFC assumes that upto fpst tunnels can fail under

f link failures, and plans for all possible combinations of fpst tunnel failures. As discussed

in § 4.1 , this is conservative – e.g., for the network shown in Fig.  2.1a , FFC considers the

simultaneous failure of l1 and l2 even though this is impossible under single link failure. To

address this, PCF more accurately models Y by better relating link and tunnel failures. Let

xe indicate if link e fails (xe = 1 indicates link e fails and xe = 0 otherwise). Then, PCF

models Y as:

∑
e∈E

xe ≤ f

xe − yl ≤ 0 ∀l, e ∈ τl

yl −
∑
e∈τl

xe ≤ 0 ∀l

0 ≤ xe ≤ 1 ∀e ∈ E

0 ≤ yl ≤ 1 ∀l.

(2.4)

The first constraint bounds the maximum number of simultaneous link failures. The second

ensures that the failure of an underlying link will cause the tunnel to fail. The third ensures

that a tunnel only fails when at least one underlying link fails. We denote (P1) with Y

modeled by ( 2.4 ) as PCF-TF. Observe that we do not explicitly impose that xe ∈ {0, 1}

because, just as for FFC, the failure set Y may contain too many scenarios to enumerate.

Instead, we conservatively relax this requirement to xe ∈ [0, 1]. Then, the model PCF-TF

(and all other models presented in this thesis) can be solved using dualization to ensure the
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number of constraints is polynomial in the size of the network, a technique that has been

widely used in prior networking papers [ 10 ], [ 20 ], [ 31 ]. We rewrite (  2.1 ) as

min
y∈Y

∑
l∈T (s,t)

al(1− yl) ≥ zstdst ∀s, t ∈ V. (2.5)

These constraints are reformulated by relaxing the integrality of y variables, and expressing

the LHS as a maximization problem leveraging LP duality shown below:

(D1) max
π,λ,σ,φ

−(fλst +
∑
e∈E

σest +
∑

l∈T (s,t)
φl)

s.t. πl + φl ≥ al ∀l ∈ T (s, t)

−
∑

l:e∈τl

πl + λst + σest ≥ 0 ∀e

πl ≥ 0 ∀l ∈ T (s, t)

λst ≥ 0

σest ≥ 0 ∀e ∈ E

φl ≥ 0 ∀l ∈ T (x, y).

Now, we put (D1) into ( 2.5 ) and combine it with the rest of constraints in (P1) to obtain

the final model below.
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(D2) max
π,λ,σ,φ,z,a

Θ(z)

s.t.
∑

l∈T (s,t)
al − (fλst +

∑
e∈E

σest +
∑

l∈T (s,t)
φl) ≥ zstdst

∀s, t ∈ V

al ≥ 0 ∀s, t ∈ V, l ∈ T (s, t)∑
l:∀s,t∈V,l∈T (s,t)

alδ(e ∈ τl) ≤ ce ∀e ∈ E

πl + φl ≥ al ∀s, t ∈ V, ∀l ∈ T (s, t)

−
∑

l:e∈τl

πl + λst + σest ≥ 0 ∀e, ∀s, t ∈ V

πl ≥ 0 ∀s, t ∈ V, ∀l ∈ T (s, t)

λst ≥ 0 ∀s, t ∈ V

σest ≥ 0 ∀s, t ∈ V, ∀e ∈ E

φl ≥ 0 ∀s, t ∈ V, ∀l ∈ T (s, t).

Next, we prove that (i) PCF-TF performs at least as well as FFC; and (ii) unlike FFC,

the performance of PCF-TF does not degrade as more tunnels are added.

Proposition 2.2.1. The feasible region (the set of all possible values of the variables that

satisfy the constraints) of FFC is contained in the feasible region of PCF-TF, so PCF-TF

performs at least as well as FFC (i.e., achieves the same objective or higher) for any metric.

Proof. FFC models Y as

∑
l∈T (s,t)

yl ≤ fpst ∀s, t ∈ V

0 ≤ yl ≤ 1 ∀l.
(2.6)

Let Y0 be the set of tunnel failure scenarios considered by FFC (constrained by (  2.6 )) and let

Y1 be the set of tunnel failure scenarios considered by PCF-TF (constrained by ( 2.4 )). We

show that projyY1 ⊆ Y0, where projy denotes projection of the set to y variables. For any s, t ∈
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V , we sum the third constraint in ( 2.4 ) over all l ∈ T (s, t) to get ∑
l∈T (s,t)(yl−

∑
e∈τl

xe) ≤ 0.

Then,

∑
l∈T (s,t)

yl ≤
∑

l∈T (s,t)

∑
e∈τl

xe =
∑

l∈T (s,t)

∑
e∈E

xeδ(e ∈ τl)

=
∑
e∈E

xe
∑

l∈T (s,t)
δ(e ∈ τl),

∑
e∈E xe is the total number of link failures, which is no more than f . And ∑

l∈T (s,t) δ(e ∈ τl)

is the number of tunnels from s to t traversing link e, which is no more than pst. Hence, we

have ∑
l∈T (s,t) yl ≤ fpst, which shows that any scenario in Y1 also satisfies ( 2.6 ). Since FFC

imposes (1) for each y ∈ Y0 while PCF-TF imposes (1) for each (x, y) ∈ Y1, PCF-TF is less

constrained than FFC. �

The above proof does not depend on the objective function in the optimization problem,

which means that the proposition holds for any metric. We next show that unlike FFC,

PCF-TF’s performance does not degrade with more tunnels. The intuition behind this is

that when more tunnels are added to PCF-TF, the set of constraints that need to be satisfied

does not increase. Hence, any solution feasible when fewer tunnels are employed remains

feasible when tunnels are added (though new and better solutions may be possible). Thus

the performance cannot get worse.

Proposition 2.2.2. As we provide more tunnels, PCF-TF’s performance cannot decrease.

Proof. Let {T0(s, t) | ∀s, t ∈ V } and {T1(s, t) | ∀s, t ∈ V } be two sets of tunnels, and

T0(s, t) ⊆ T1(s, t) for all s, t ∈ V . Then, we show that the optimal value for (P1) with T = T1

will not be worse than the optimal solution to (P1) with T = T0. Let (a∗, z∗) be the optimal

solution to (P1) with T = T0. We construct (a′, z′) in the following way,

a′
l = a∗

l ∀s, t ∈ V, l ∈ T0(s, t)

a′
l = 0 ∀s, t ∈ V, l ∈ T1(s, t)− T0(s, t)

z′
st = z∗

st ∀s, t ∈ V.

(2.7)
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Figure 2.3. A topology with m nodes generalized from the previous example.

Let Y0 denote ( 2.4 ) with T = T0 and Y1 denote ( 2.4 ) with T = T1. It is easy to see that

projection of Y1 onto the space of variables {xe}e∈E and {yl}l∈T0 is contained in Y0, since all

the constraints in Y0 are present in Y1. Now for each y ∈ Y1,

∑
l∈T1(s,t)

a′
l(1− yl) =

∑
l∈T0(s,t)

a∗
l (1− yl) ≤ z∗

stdst = zstdst,

where the first equality is because a′
l = 0 for l /∈ T0(s, t), the first inequality is because

(a∗, z∗) is feasible for T = T0 and the projection of Y1 is contained in Y0 and the last equality

is by construction. Since z is not altered, the objective value remains the same. �

We later show in § 4.4 that PCF-TF performs much better than FFC for real networks.

2.2.3 Modeling more flexible response

While PCF-TF is guaranteed to out-perform FFC, we begin by presenting a theoretical

result that shows the performance of PCF-TF can still be arbitrarily worse than optimal

because of the inflexibility of tunnel-based reservations. We then discuss PCF’s more flexible

approach.

Proposition 2.2.3. The throughput guaranteed by PCF-TF (and hence that guaranteed by

FFC) can be arbitrarily worse than the optimal even with exponentially many tunnels.

Proof. Consider the topology in Fig.  2.3 (the example in Fig.  2.1b is a special case where

p = 3, n = 2 and m = 2). Under any failure involving n − 1 links, the network can carry

1− n−1
p

units of traffic if it responded optimally. This is because under any such failure, the

network can carry (i) at least 1 unit of traffic between si and si+1, i > 0; and (ii) at least

29



1− n−1
p

units of traffic between s0 and s1. Moreover, if n− 1 of the links between between

s0 and s1 fail simultaneously, the traffic is no more than 1− n−1
p

.

Next, consider PCF-TF, and assume that all possible tunnels between s and t are used.

There are pnm−1 possible tunnels. We will show that PCF-TF can only guarantee traffic of

1/n units from s0 to sm under n − 1 simultaneous link failures. To see this, observe that

the reservation across all tunnels between s and t is at most 1 (constrained by the capacity

of all links between s0 and s1). Let ri denote the reservation on all tunnels that use the ith

link between s1 and s2. Then, ∑n
i=1 ri ≤ 1, and there must exist at least one link j between

s1 and s2 such that rj ≤ 1/n. Consider a failure scenario where all links between s1 and s2

except j fail. Under this scenario, PCF-TF can guarantee at most 1/n units of traffic from

s0 to sm.

Note that 1 − n−1
p
− 1

n
= (p−n)(n−1)

pn
> 0 whenever p > n > 1. Consider the case where

p = n2. Then, as n gets larger, the amount of traffic carried in the optimal solution converges

to 1, while PCF-TF converges to 0. �

As discussed in § 4.1 , these issues with FFC and PCF-TF stem from the fact that reserva-

tions are made over entire tunnels, are tightly coupled to a particular network path, and are

pre-allocated independent of any specific failure scenario. When a link in the tunnel fails,

the corresponding capacity is unavailable in other links along the tunnel.

Logical sequences. PCF is motivated by the fact that more flexible methods of re-

sponding to failures can potentially address the limitations of FFC and PCF-TF highlighted

by Proposition  2.2.3 . However, even with more flexible response, PCF must proactively

decide prior to any failure scenario how much traffic to admit so the network does not expe-

rience congestion over a given set of failure scenarios. Not all ways of making routing more

flexible are amenable to provable congestion-free guarantees.

Instead, PCF considers a more carefully crafted flexible network response strategy, which

we show is amenable to provable guarantees. Specifically, PCF introduces the notion of a

logical sequence (LS). A LS q from s to t consists of a series of routers s, v1, ..., vm, t that we

refer to as logical hops. Consecutive logical hops in a LS need not have a direct link between

them, and in fact any pair of routers in the network could be consecutive logical hops. Traffic

from s to t is required to traverse the logical hops v1, v2, . . . , vm, t, with significant flexibility
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in terms of how traffic is carried between two consecutive logical hops. In particular, traffic

may be carried over physical tunnels (like FFC), or other LSs. We refer to each of sv1,

v1v2, …, vmt as a logical segment of q. Each LS q is associated with a reservation bq, which

indicates that every segment of q (sv1, v1v2, …, vmt) is guaranteed to carry bq traffic under

all failure scenarios that PCF is designed for.

We next illustrate the potential benefits of LSs using Fig.  2.3 . Consider the LS q which

traverses the logical hops s0, s1, ..., sm. Let each link be a tunnel. Traffic between consecutive

logical hops is carried by the tunnels (links) connecting those hops. For example, traffic

between s1 and s2 is carried on the n tunnels (links) connecting the nodes. When any link

fails, only the reservation in the relevant segment of q is impacted – e.g., if a link between s1

and s2 fails, there is no impact on the reservation on the segment between s0 and s1. This is

unlike FFC and PCF-TF where such a failure would cause part of the capacity on other links

to be unavailable. The corollary to Proposition  2.2.3 below captures the resulting benefits.

Corollary 1. For the topology in Fig.  2.3 , PCF’s performance with a single LS and poly-

nomially many tunnels can be arbitrarily better than PCF-TF and FFC with exponentially

many tunnels.

Proof. We have already shown that FFC and PCF-TF can be arbitrarily worse than

optimal. Consider PCF where LS q corresponding to s0, s1, ..., sm is used, with each link

being a tunnel. There are p + n(m− 1) tunnels in total. Under any scenario involving n− 1

simultaneous link failures, the first segment (s0s1) has a capacity of at least 1− n−1
p

available.

All other segments have at least capacity 1 available on any n− 1 failure scenario. Thus, q

can carry at least 1− n−1
p

traffic, which meets the optimal throughput. �

We note that using the LS has at least two sources of flexibility beyond classic tunneling.

First, in classic tunneling, traffic on each tunnel only carries traffic corresponding to the end

points of the tunnel. Second, when there is a failure, only the source node of a tunnel may

respond. In contrast, with a LS, each segment may carry traffic corresponding to different

sources and destinations - for instance, in Fig.  2.3 , the segment (and hence tunnel) between

s1 and s2 may carry traffic between s0 and sm. Further, if the link between s1 and s2 fails,

s1 may redistribute the traffic that arrives at s1 onto the tunnels between s1 and s2.
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Bandwidth allocation with LSs. We next show that bandwidth allocation with LSs can

be tractably formulated. For each pair with source s and destination d, let L(s, t) denote

the set of LSs from s to t (with T (s, t) denoting the set of tunnels as before). Note that each

source destination pair is associated with zero or more LSs, and zero or more tunnels. Then,

the model seeks to reserve bq on each LS, and reserve al on each tunnel l as discussed below:

(P2) max
z,a,b

Θ(z)

s.t.
∑

l∈T (s,t)
al(1− yl) +

∑
q∈L(s,t)

bq

≥
∑

q′∈Q(s,t)
bq′ + zstdst ∀s, t ∈ V, ∀y ∈ Y (2.8)

bq ≥ 0 ∀s, t ∈ V, q ∈ L(s, t)

Constraints ( 2.2 ), ( 2.3 ).

The most significant change relative to (  2.4 ) pertains to the capacity constraint (first con-

straint). The LHS of this constraint captures that traffic from s to t could use both the

reservations (al) on the physical tunnels between s and t, and the reservations (bq) on the

LSs between s and t. While the capacity on tunnel l is only available when all links on the

tunnel are alive (yl = 0), the reservation on the LS q is always available (though we relax

this requirement in § 2.2.4 ). The RHS of this constraint corresponds to the total traffic that

must be carried from s to t. With FFC, this corresponds entirely to the bandwidth allocated

to traffic that originates at s, and terminates at t. However, in PCF, it is possible that st

is a segment of a LS q′ (between a source s′ and destination t′). Let Q(s, t) denote the set

of all such LSs. Then, the RHS also accounts for reservations on all such q′ ∈ Q(s, t). We

refer to (P2) as the PCF-LS model. Note that the reservation on a LS is supported by

the reservations on physical tunnels and other LSs. The reservations on physical tunnels

themselves are supported by the capacity of underlying physical links.
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Figure 2.4. Illustrating conditional logical sequences

Table 2.1. Throughput of different schemes for the topology in Fig  2.4 under
2 simultaneous link failures.

Optimal FFC PCF-TF PCF-LS PCF-CLS R3
1 0 2/3 4/5 1 0

2.2.4 Conditional Logical Sequences

As described in § 2.2.3 , each segment in a LS must guarantee the reservation associated

with the LS over the entire set of failures. We next consider a generalization, that we call

conditional LSs which only guarantee the reservation over a subset of failure scenarios. A

conditional LS q is associated with a condition hq, and a reservation bq. The reservation bq

must be guaranteed over each segment of q for all scenarios where the condition hq is met.

An example condition is a given set of links being alive or dead.

Illustrating benefits of conditional LSs. We illustrate by considering Fig.  2.4 . Ta-

ble  2.1 shows the traffic guaranteed by different schemes for traffic from source s to desti-

nation t under single and two link failures. The table shows both FFC and PCF-TF (both

schemes use all 6 tunnels from s to t) are sub-optimal (for the same reasons as (§  2.2.2 ,

§ 2.2.3 )).

Consider now that a LS (s, 4, t) is added with logical segments s4 (with the tunnel s−4),

and 4t (with multiple tunnels from 4 to t including 4−1−5−t, 4−2−6−t, and 4−3−7−t).

Further, the LS is associated with a condition that the reservation is only needed when the

link s − 4 is alive. Table  2.1 shows the optimal is achieved with this conditional LS (PCF-
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CLS). Consider two link failure case. When s − 4 is dead, at most one of the tunnels

s− 1− 5− t, s− 2− 6− t, s− 3− 7− t are dead and the remaining can carry 1 unit of flow.

When s− 4 is alive, at most 2 of these tunnels are dead. Therefore, they can cary 0.5 units

of flow. Finally, LS (s, 4, t) can carry 0.5 units of flow since s4 is alive and at most 2 of the

tunnels 4− 1− 5− t , 4− 2− 6− t and 4− 3− 7− t are dead.

Note that when the same LS is added but without the attached condition, the objective

is not optimal. This is because, the logical segment s4 cannot guarantee any reservation over

single link failures when only the tunnel s − 4 is used. It is possible to add more tunnels

between s and 4 (e.g., s− 1− 4, s− 2− 4, s− 3− 4), which allows the LS (s, 4, t) to be more

resilient to failures (PCF-LS). However, this is at the cost of reservations on the tunnels from

s to t, and consequently the objective is increased but still does not achieve the optimal.

Modeling conditional LSs. We next discuss how conditional LSs are modeled. Under

any given failure scenario, let hq indicate whether LS q is active or not. Like before, let

yl indicate whether tunnel l fails or not. Let (y, h) denote all yl and hq variables, and let

Y H denote all possible combinations of (y, h) under all scenarios involving the simultaneous

failure of f links. To incorporate these conditions, we replace constraint (  2.8 ) in (P2) with

the constraint below, and refer to the resulting model as PCF-CLS.

∑
l∈T (s,t)

al(1− yl) +
∑

q∈L(s,t)
bqhq

≥
∑

q′∈Q(s,t)
bq′hq′ + zstdst ∀s, t ∈ V, ∀(y, h) ∈ Y H.

In § 4.4 , we show that LSs activated under a simple condition (a single link being dead) is

sufficient to get good performance. To handle this, we model Y H by adding constraints

hq = xeq for each LS q to (  2.4 ), where eq is the link whose failure activates LS q. We can also

model a more general condition to help generalize PCF to richer failures (e.g., node failures)

(§ 2.2.5 ). Let hq be a condition that requires all links in ηq to be alive and all links in ξq to

be dead. Then we model hq by linearizing the constraint:

hq =
∏

e∈ξq

xe
∏
ηq

(1− xe)
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as follows:

(hq − 1) + xe ≤ 0 ∀e ∈ ηq

hq − xe ≤ 0 ∀e ∈ ξq

(1− hq)−
∑
e∈ηq

xe −
∑
e∈ξq

(1− xe) ≤ 0

0 ≤ hq ≤ 1.

2.2.5 PCF generalizations

In this section, we discuss generalizations of PCF, and its relationship with R3 [ 20 ],

another congestion-free mechanism.

Heuristics for selecting LSs. We present a heuristic for selecting LSs that works well

empirically (§  4.4 ). Our approach involves considering a more general model based on flows

and decomposing the results of that model into LSs.

We begin by introducing logical flows, which are a generalization of LSs in that traffic is

no longer constrained to visiting a sequence of hops. A logical flow w from s to t is captured

by the flow balance constraints below:

bw ≥ 0 ∀s, t ∈ V, ∀w ∈ W (s, t)

∑
j

pw(ij)−
∑

j
pw(ji) =



bw ∀s, t, i = s, w ∈ W (s, t)

0 ∀s, t, i 6= s, i 6= t, w ∈ W (s, t)

−bw ∀s, t, i = t, w ∈ W (s, t)

.
(2.9)

Here, bw is the reservation associated with the logical flow, and pw(ij) is the amount of this

reservation that must be supported on logical segment ij. Each logical flow w may itself be

associated with a condition hw, which indicates the reservation associated with w is only

guaranteed when hw is satisfied. Let W (s, t) be the set of all logical flows for traffic from s
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to t. Then, relative to (P2), the logical flow model involves adding (  2.9 ), and changing ( 2.8 )

to

∑
l∈T (s,t)

al(1− yl) +
∑

w∈W (s,t)
bwhw

≥
∑

s′,t′∈V,w′∈W (s′,t′)
pw′(st)hw′ + zstdst

∀s, t ∈ V, ∀(y, h) ∈ Y H.

The first term on the RHS captures the reservation that must be supported on (s, t) for any

logical flow w′ from s′ to t′.

To obtain LSs, we decompose the flow into sequences [ 30 ], [  31 ]. For each flow w ∈ W (s, t),

this approach generates a derived graph with the same nodes as the original topology. For

each node pair (i, j), if pw(ij) > 0, we add an edge from i to j with the weight being pw(ij).

Then, we search for the widest path from s to t on this graph, and use the sequence of hops

in this widest path as a LS with condition hw.

Relationship to link bypass. While we have focused on tunnel based mechanisms

so far [  10 ], we next discuss the relationship of our work to R3 [  20 ], another congestion-free

routing scheme. Instead of tunnels, R3 [ 20 ] focuses on a link bypass mechanism, where traffic

on a link e = 〈i, j〉 is re-routed upon its failure, along a pre-computed flow from i to j and

this flow does not use e.

We first illustrate using Fig.  2.4 that our models can out-perform R3. As Table  2.1 shows,

when R3 is applied to Fig.  2.4 , no traffic can be carried from s to t if two link failures must

be tolerated. To understand why, consider a scenario where links 1− 5, and 5− t fail. Since

a link bypass for 1− 5 must start at 1 and end at 5, and a link bypass for 5− t must start

at 5 and end at t, no viable bypass paths exist for either link. Instead, an obvious feasible

strategy is to route the traffic along the path s− 2− 6− t, an option that is not considered

by R3 because s is not an end point of either 1− 5 or 5− t.

We now state a more formal result:
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Proposition 2.2.4. A special case of PCF’s logical flow model where conditions are restricted

to the no failure or single link failure scenarios, and links are tunnels, dominates (performs

as well as or better than) R3.

Proof. To see this, consider the logical flow model under the conditions above. More

specifically, for each node pair (s, t), we have a flow w with the condition being no failure

and we constrain the flow to exactly serve the demand, i.e., bw = zstdst. For node pair (i, j)

which has an edge, we have a flow w with the condition being the link (i, j) being dead.

This model is exactly the Generalized-R3 model presented in [  26 ] which has been shown to

dominate R3. �

Shared risk links groups (SRLGs) and node failures While we have focused on

link failures, a few modifications allow for the treatment of shared risk link groups (SRLGs),

and node failures. An SRLG captures that a group of links may fail together (e.g., owing

to failure of an underlying optical element) [ 32 ]. Each SRLG is modeled by a condition

hq which indicates all links in that SRLG fail. Observe that the first constraint in (  2.4 ) is

imposed on x variables that capture link failures. Instead, the constraint can be imposed on

conditions dependent on the x variables. For example, a requirement that at most f SRLGs

fail is modeled by requiring that ∑
q∈Q hq ≤ f , where Q is the set of SRLGs. Similarly, the

failure of each node is modeled by a condition that all links incident on that router fail. Our

discussion and results in §  2.2.2 holds for node failures as well - i.e., relative to FFC, PCF-TF

performs better, and PCF-TF’s performance does not degrade with tunnels. Further, our

models do not suffer from the weaknesses of link bypass mechanisms including R3 [  20 ], that

cannot deal with node failures (since no viable bypass paths for link 〈i, j〉 from i to j exist

when node j itself fails).

2.3 Realizing PCF’s mechanisms

In this section, we discuss how to realize PCF’s network response mechanisms associated

with the models in § 2.2 .

First, PCF-TF employs the same response mechanism as FFC, which we describe in the

rest of this paragraph. Under any failure scenario, traffic across tunnels between a source
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Figure 2.5. Realizing PCF in practice. (a) Example abstract model; (b) a
practical realization using only tunnels applicable for arbitrary LSs (§ 2.3.1 );
(c) an alternate realization when LSs can be topologically sorted (§ 2.3.2 ).

s and destination t is carried on all live tunnels, and in proportion to the reservations on

the tunnels. Consider three tunnels from s to t with reservations of (2, 3, 5). When all the

tunnels are alive, the (s, t) traffic is split across the tunnels in the ratio (0.2, 0.3, 0.5). If the

first tunnels fails, the traffic is sent across the tunnels in the ratio (0, 0.3
0.8 , 0.5

0.8).

We next discuss the response mechanisms associated with our models based on LSs.

First, we discuss a mechanism that works for arbitrary LSs (§  2.3.1 ). We then show that

when LSs are topologically sorted (more formally explained later), a response mechanism

similar to FFC may be used (§ 2.3.2 ).

2.3.1 Realizing general logical sequences

Consider Fig.  2.5 (a) which shows the physical tunnels and the LSs used with our offline

PCF-LS, and PCF-CLS models for an example setting (e.g., l1 is a physical tunnel between

A and C, while q1 is a LS between A and D) where traffic is carried from A to B. These

models determine the reservations associated with each tunnel, and each LS (e.g., al1 and

bq1 are respectively the reservation on l1 and q1).

We discuss an approach to realize this abstract model only using tunnels (in §  2.3.2 , we

discuss an alternate implementation). While in FFC, a tunnel l from i to j may carry traffic
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M1 =

AC CD AD DB AB


al1 0 −bq1 0 0 AC
0 al2 −bq1 0 0 CD
0 0 al3 + bq1 0 −bq2 AD
0 0 0 al4 −bq2 DB
0 0 0 0 al5 + bq2 AB

Figure 2.6. Reservation matrix associated with Fig.  2.5 .

only from i to j, PCF permits some flexibility – e.g., l may carry traffic from s to t if in the

abstract model, (i, j) is a segment in a LS from s to t.

Like FFC, our models are run at the granularity of several minutes to periodically re-

compute reservations (e.g., to handle significant shifts in traffic demands). Once computed

for a given traffic matrix, we show that the traffic carried on tunnel l to destination t for any

failure scenario may be computed online by solving a system of linear equations, which is

much faster than solving linear programs (LPs) such as the multi-commodity flow problem

(e.g., a popular approach to solving LPs involves solving many linear systems).

In describing our approach, it is helpful to consider a matrix M that summarizes the

reservations. For instance, for the topology in Fig.  2.5 , the reservation matrix M is summa-

rized in Fig.  2.6 . Each row and column corresponds to a node pair. The diagonal entries

indicate the total reservation across all live tunnels and active logical sequences associated

with that node pair. A non-diagonal entry in column i and row j indicates that the node pair

j must carry traffic corresponding to column i. For instance, in the third row corresponding

to the node pair (A, D), the diagonal entry al3 + bq1 is the total reservation associated with

that node pair (over tunnel l3 and LS q1). Further, the entry −bq2 reflects that (A, D) is a

segment of the LS q2 from A to B and must be able to carry the reservation bq2 associated

with q2.

A node pair (s, t) is considered to be of interest if it carries positive demand, or if it carries

traffic for another node pair of interest. Let P be the set of node pairs of interest. Constraint

( 2.8 ) in our LS model can be equivalently expressed in matrix notation as M×~1 ≥v
~D. Here,
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~1 and ~D are P ×1 column vectors. All entries of ~1 are 1, while the pth row of ~D has an entry

zpdp indicating the total traffic associated with pair p that can be carried. Let ~U be a P × 1

column vector. Then, we have:

Proposition 2.3.1. M is an invertible M-matrix  

1
 , and there is a unique solution ~U∗ to the

linear system M × ~U = ~D, where ∀(i, j) ∈ P , ~U∗(i, j) ∈ [0, 1].

Proof. We will show M ∈ RP ×P is a weakly-chained diagonally dominant matrix, where

Mij,i1j1 ≤ 0 for (i, j) 6= (i1, j1). Then, it follows from Theorems 2.1 and 2.2 in [  33 ] that M is

an invertible M-Matrix.

For a particular failure scenario x, let Tx(s, t) denote the set of alive tunnels from s to

t, Lx(s, t) denote the set of active LSs from s to t and Qx(s, t) denote the active LSs which

go through segment (s, t). We first give the formal definition of P , the set of node pairs

of interest. A node pair (i1, j1) ∈ P if and only if there is a sequence of node pairs (i1, j1),

(i2, j2),…,(ik, jk), such that zikjkdikjk > 0 and ∀m : 1 ≤ m ≤ k − 1, ∃q ∈ Lx(im+1, jm+1) ∩

Qx(im, jm) such that bq > 0. There is a chain of LSs, such that a preceding LS serves a

segment in the subsequent LS, where the last LS serves a pair with non-zero allocation and

the first LS contains (i, j). For the node pairs which are not included in P , we set U(i, j) = 0.

Next, we formally define each entry in M . The diagonal of M is the sum of available

reservations on the pair, i.e. ∀(i, j) ∈ P, Mij,ij = ∑
l∈Tx(i,j) al + ∑

q∈Lx(i,j) bq. Other entries of

M denote how much a node pair needs to carry for other node pairs, i.e. for (i, j) 6= (m, n)

we set Mij,mn = −∑
q∈Qx(i,j)∩Lx(m,n) bq.

It is easy to see that M is weakly diagonally dominated because M ×~1 ≥ ~D ≥ 0, where

the first inequality is the capacity constraint and second because zpdp ≥ 0 for all p.
1

 ↑ A matrix T is an invertible M-matrix if Tij ≤ 0 when i 6= j and Tx ≥ 0 implies that x ≥ 0.
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From our definition of P , we know that ∀(i1, j1) ∈ P , there is a sequence (i1, j1), (i2, j2),…,(ik, jk),

such that zikjkdikjk > 0 and ∀m : 1 ≤ m ≤ k − 1, ∃q ∈ Lx(im+1, jm+1) ∩ Qx(im, jm) : bq > 0.

Thus, for each row (i, j) ∈ P , there is a sequence (i1, j1), (i2, j2),…,(ik, jk), such that

∑
(m,n)∈P

Mikjk,mn

=
∑

l∈Tx(ik,jk)
al +

∑
q∈Lx(ik,jk)

bq −
∑

q∈Qx(ik,jk)
bq

≥ zikjkdikjk > 0,

and ∀m : 1 ≤ m ≤ k − 1, Mikjk,ik+1jk+1 6= 0. Therefore, M is a weakly-chained diagonally

dominant matrix. Since, for (i, j) 6= (i1, j1), Mij,i1j1 = −∑
q∈Qx(i,j)∩Lx(i1,j1) bq ≤ 0, it follows

that M is an invertible M-matrix and there is a unique solution ~U∗ to the linear system

M × ~U = ~D.

Next, we use Brouwer fixed-point theorem [ 34 ] to prove that all entries of the solution

are in [0, 1]. Let f(~U) be a function mapping from [0, 1]P to RP . We define f(~U) as

f(~U)i,j =
~D(i, j) + ∑

(m,n)∈P,q∈Qx(i,j)∩Lx(m,n)
~U(m, n)bq∑

l∈Tx(i,j) al + ∑
q∈Lx(i,j) bq

. (2.10)

Observe that the denominator is larger than zero. If not, it follows from weak diagonal

dominance that Mij,i′j′ = 0 for all (i′, j′) 6= (i, j), which contradicts (i, j) ∈ P . It is easy to see

that ~U0 is a solution to M × ~U = ~D if f( ~U0) = ~U0. With ~U ∈ [0, 1]P , we have

f(~U)i,j ≥
~D(i, j)∑

l∈Tx(i,j) al + ∑
q∈Lx(i,j) bq

≥ 0. (2.11)

Moreover,

f(~U)i,j ≤
~D(i, j) + ∑

(m,n)∈P,q∈Qx(i,j)∩Lx(m,n) bq∑
l∈Tx(i,j) al + ∑

q∈Lx(i,j) bq

≤ 1, (2.12)

where the first inequality is because ~U(m, n) ≤ 1, bq ≥ 0, and the denominator is positive.

The second inequality is from the capacity constraint. Since f is a continuous function

mapping from [0, 1]P to [0, 1]P , and [0, 1]P is a compact convex set, it follows from Brouwer
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fixed-point theorem [  34 ] that there is at least one point U0 ∈ [0, 1]P so that f(U0) = U0,

which we have already argued is the unique solution to M × ~U = ~D. �

We discuss the implications of Proposition  2.3.1 here. While PCF’s models determine the

reservations, realizing them in practice requires determining the fraction of the reservation

that is actually used in any given failure scenario. The above result indicates that such a

fraction exists and may be obtained as a solution to a linear system of equations. While

linear systems are already much faster to solve than LPs, the result also indicates that the

matrix M is of a type for which simple and memory-efficient iterative algorithms for solving

linear systems can be used [ 35 ].

For t ∈ V , let ~Dt be a P × 1 column vector where the pth row of ~Dt has an entry zpdp if

t is an end point of p, and 0 otherwise. Using the same argument as for Proposition  2.3.1 ,

there is a unique solution ~U∗
t to the linear system M × ~Ut = ~Dt. Then, the following holds:

Proposition 2.3.2. For any live tunnel l from i to j and any destination t, let rlt = ~U∗
t (i, j)al

be the total traffic carried to destination t on tunnel l. Then rlt represents a valid routing

which carries all the traffic with the destination of t.

Proof We consider (s, t) column of M−1, which exists by Proposition  2.3.1 , and denote

it as λ.

By definition, M = A + B where A is a diagonal matrix with Ast,st = ∑
l∈Tx(s,t) al,

Bst,st = ∑
q∈Lx(s,t) bq, and for (s, t) 6= (m, n), Bst,mn = −∑

(m,n)∈P,q∈Qx(s,t)∩Lx(m,n) bq. Then it

follows that

∑
(m,n)∈P

λmnMmn,· = est, (2.13)

where est is (s, t)th unit vector in RP and Mmn,· denotes the column of M corresponding to

the pair (m, n). It follows that

∑
(m,n)∈P

λmnAmn,mnemn = est −
∑

(m,n)∈P

λmnBmn,· (2.14)
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Now, est can be interpreted as a directed path carrying a unit flow from s to t. Moreover, we

show that Bmn,· is a circulation since it can be written as an addition of cycles, one for each

logical sequence servicing (m, n). To show this, we only need to show that for any q ∈ Lx(i, j)

with bq > 0, if (k, l) is a logical segment in q, that is if q ∈ Qx(k, l), then (k, l) ∈ P . Since

(i, j) ∈ P , there is a weak chain from (i, j) to a strictly dominated pair. The existence of q

shows that (k, l) is connected to (i, j) since Mkl,ij ≤ bq < 0. Therefore, (k, l) ∈ P . Thus, the

RHS of (  2.14 ) represents a directed path flow est and some circulations ∑
(m,n)∈P λmnBmn,·.

By the flow decomposition theorem (Theorem 3.5 in [ 36 ]), this flow yields a unique arc flow

on the tunnel network shipping the same traffic as the directed path est. The resulting flow

is then the LHS of (  2.14 ). In other words, each al tunnel connecting (m, n) can use λmn

fraction of its capacity to transmit a unit flow from s to t. Observe that the resulting flow

may have loops that could be extracted in post-analysis.

Finally, since we have shown that M−1 ~D = ~U∗ ∈ [0, 1]P , it follows that

0 ≤ Amn,mn

∑
(s,t)∈P

M−1
mn,stzstdst ≤ Amn,mn, (2.15)

which shows that the accumulated traffic on the tunnels between (m, n) will not exceed the

reservation. Thus the traffic is feasible. Observe that all (s, t) pairs with zstdst > 0 are

included in P . Therefore, ~D contains all the serviced demands and the proof is complete.

� We compute U∗
t for every node t by solving the linear system M × [ ~U∗

t1 , ~U∗
t2 , ... ~U∗

t|V |
] =

[ ~Dt1 , ~Dt2 , ... ~Dt|V | ] , which in turn allows rlt to be computed. As computed, rlt may have

cycles that can be eliminated by subtracting flow associated with the cycle. Fig.  2.5 (b)

shows a concrete realization of PCF’s routing on tunnels for the abstract model shown in

Fig.  2.5 (a). Each tunnel is annotated with the fraction of the traffic to destination B carried

on that tunnel – e.g., rl5,B = 1/4 indicates that l5 carries 1/4 of the traffic to B.

2.3.2 Topologically sorted logical sequences

While the approach in § 2.3.1 works for arbitrary LSs, we next describe an alternate

approach that works when LSs are chosen with some restrictions. Given two node pairs
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(i, j), and (i′, j′), we say that (i, j) > (i, j′) if (i′, j′) is a segment of any active LS q in L(i, j).

Our approach below is applicable if all the node pairs under every failure scenario can be

topologically sorted with respect to relation ’>’. For example, in Fig.  2.5 , the LSs satisfy a

topological ordering with (A, B) > (A, D) since q2 ∈ L(A, B) uses the segment (A, D) (but

not vice versa). Note that, essentially, we only require a strict partial order over the node

pairs. The topological sort refers to any total order that extends this strict partial order

and, it is well-known that such a total order exists and can be derived easily from the partial

order[ 37 ].

When a topological ordering is possible, PCF implements LSs more directly (Fig.  2.5 (c)).

When A sends packets to B, traffic is split across the tunnel l5 and LS q2. Traffic to q2

involves pushing a label, and looking up the table entry for host D. This entry indicates

traffic is split across tunnel l3 and LS q1. Traffic to q1 involves pushing another label and

looking up the entry for host C, which indicates the traffic is to be forwarded on tunnel l1.

When a router receives a packet, it pops labels as needed, and if it is an intermediate point

of a LS takes the appropriate action. For example, when D receives a packet on tunnel l3

it pops the outer label l3, and based on the inner label q2, looks up the entry for B, and

forwards to B along tunnel l4.

A key question is to decide how to split the traffic at each hop – e.g., for traffic from A

to B, what fraction is sent on each of tunnels l5, and LS q2. We define local proportional

routing as a scheme where the traffic associated with each node pair (i, j) is split across all

tunnels and LSs from i to j in proportion to the reservations associated with these tunnels

and LSs. This is a generalization of FFC which uses a locally proportional scheme but in a

context where there are only tunnels. Then, the following holds:

Proposition 2.3.3. The LS models can be realized by local proportional routing when the

topological sort property is met.

Proof. For a particular failure scenario x, let Tx(s, t) denote the set of live tunnels from

s to t, Lx(s, t) denote the set of active LSs from s to t and Qx(s, t) denote the active LSs

which go through segment (s, t). We show by induction along the topological sort order that
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locally proportional routing services the demand. Our induction hypothesis is that the pair

(i, j) needs to route D̃ij where,

D̃ij = ~D(i, j) +
∑

(m,n)∈P,q∈Qx(i,j)∩Lx(m,n)
umnbq, (2.16)

if every router distribute D̃ij among the tunnels (l ∈ Tx(i, j)) and LSs (q ∈ Lx(i, j)) in the

proportion of their reservations, i.e., there is a constant uij such that traffic along l is uijal

and that along LS q is uijbq where

uij = D̃ij∑
l∈Tx(i,j) al + ∑

q∈Lx(i,j) bq

.

For the base case, observe that for the topologically largest pair p1 = (i1, j1), the demand

received is ~D(i1, j1). And the hypothesis is trivially true because Q(i1, j1) = ∅. For the

induction step, we assume that the hypothesis is true for pairs p1, p2, ..., pn in topological

sort order and show it holds for pn+1 = (i, j). Observe that for any q ∈ Qx(i, j)∩Lx(m, n), the

traffic sent to bq is, by the induction hypothesis, umnbq because Qx(i, j)∩Lx(m, n) = ∅ implies

(m, n) > (i, j). Then, (  2.16 ) holds for (i, j), and it follows easily that if (i, j) routes uijbq along

each q ∈ Lx(i, j) and uijal along each l ∈ Tx(i, j) that ∑
l∈Tx(i,j) uijal + ∑

q∈Lx(i,j) uijbq = D̃ij.

Since it follows easily from above that

uij(
∑

l∈Tx(i,j)
al +

∑
q∈Lx(i,j)

bq) =

~D(i, j) +
∑

(m,n)∈P,q∈Qx(i,j)∩Lx(m,n)
umnbq,

it follows that (uij)(i,j)∈P solves M × ~U = ~D. Therefore, by proposition  2.3.1 , 0 ≤ uij ≤ 1.

This implies that the routing is feasible since none of the reservations are exceeded. �

2.3.3 Implementation and deployment pathways

Now, we discuss how our scheme can be implemented and practically deployed. We start

with the case when the logical sequences are topologically sorted. The offline computation
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phase determines the reservation for each tunnel and LS, similar to how FFC determines

tunnel reservations. The regular forwarding operation and the failure recovery is completely

distributed. Traffic associated with each node pair (i, j) is split across all physical tunnels

and LSs in proportion to the reservations associated with them. When a tunnel fails or an

LS is inactive, the weights are rescaled in proportion to the reservations on live tunnels and

active LSs. This is similar to the existing approach of rescaling on live tunnels. Recall that

LSs may have conditions attached to them and may only be active when the condition is

true. Thus, for any conditional LS q from i to j, we need a mechanism to propagate the

condition (e.g., link failure event) to i. For concreteness, we focus our discussion on two

cases (the only cases considered in our evaluations). The first case involves LSs that do not

have any conditions attached. This case is trivial to implement - such LSs are always active,

and no hint propagation is needed. The second case involves LSs q between i and j which

are only active when the link i− j fails. This can be implemented by having i locally detect

the failure of the i − j link, which then results in i activating q and following the standard

proportional scheme.

More generally, when logical sequences cannot be sorted in topological order, one simple

implementation approach is to use a centralized controller. On each failure, the centralized

controller solves a linear system which determines the new routing as discussed in § 2.3.1 .

Solving a linear system is much easier than solving a linear program, as discussed earlier.

While we do not explore further, we believe that it is possible to perform the operations

on failure in a completely distributed fashion because the linear system we solve is of a

special type (see Proposition  2.3.1 ) for which iterative algorithms exist. We defer further

investigation to future work.

2.4 Evaluations

We compare the performance guarantees provided by PCF’s congestion-free mechanisms

with FFC, the state-of-the-art congestion-free mechanism. When possible, we compare PCF

with the performance achieved by the optimal network response which involves computing

the optimal multi-commodity flow for each failure scenario. We implement all our optimiza-
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Figure 2.7. (a) Impact of adding tunnels to FFC’s performance (b) Benefits
of PCF across multiple demands for Deltacom

tion models in Python, and use Gurobi 8.0 [ 38 ] to solve them. We consider the following

PCF schemes:

• PCF-TF. This uses FFC’s mechanism to respond to failures, but models network

structure more explicitly (§ 2.2.2 ).

• PCF-LS. Here, LSs are used but not associated with any condition (§  2.2.3 ). For each

node pair (s, t), we provide a single LS that includes the set of nodes in the shortest path

from s to t. This guarantees that the topological sort assumption is met, which ensures the

scheme can be implemented as a locally proportional routing scheme similar to FFC (§ 2.3.2 ).

• PCF-CLS. Here, the failure of each link 〈i, j〉 results in the activation of a LS from i

to j. Further, each node pair is associated with a LS that is always active. We get these

LSs by decomposing a restricted form of the logical flow model, where the only conditions

are no link failures, or single link failures, with failure of link 〈i, j〉 resulting in the activation

of a flow from i to j (§ 2.2.4 ). The LSs may not be topologically sorted. The scheme can

be realized using relatively light-weight operations on each failure compared to the optimal

network response (§  2.3.1 ). In §  2.4.2 we evaluate a heuristic that derives topologically sorted

LSs from the above LSs, which allows for a proportional routing scheme similar to FFC.

Topologies. We evaluate our models on 21 topologies obtained from [  24 ] and [  30 ].

The number of nodes and the number of edges of each topology is shown in Table  2.2 . Our
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Table 2.2. Topologies used in evaluation (PCF).

Topology # nodes # edges Topology # nodes # edges
B4 12 19 Janet Backbone 29 45

IBM 17 23 Highwinds 16 29
ATT 25 56 BTNorthAmerica 36 76
Quest 19 30 CRLNetwork 32 37
Tinet 48 84 Darkstrand 28 31
Sprint 10 17 Integra 23 32

GEANT 32 50 Xspedius 33 47
Xeex 22 32 InternetMCI 18 32

CWIX 21 26 Deltacom 103 151
Digex 31 35 ION 114 135

IIJ 27 55

two largest networks were Deltacom and Ion that contained 151 and 135 edges respectively

and over a hundred nodes each. We remove one-degree nodes in the topologies recursively

so that the networks are not disconnected with any single link failure. We use the gravity

model [  39 ] to generate traffic matrices with the utilization of the most congested link (MLU)

in the range [0.6, 0.63] across the topologies.
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Figure 2.9. (a) PCF vs FFC across topologies. (b) Performance under three
simultaneous failures. (c) Reduction in throughput overhead compared to FFC

2.4.1 Results

We start by reporting the demand scale (z) achieved by each scheme, which is the factor

by which the traffic demand of all pairs can be scaled and yet supported by a given scheme.

For example, z = 0.5 indicates that for all source destination pairs, half the demand can be

served, while z = 2 indicates twice the demand can be handled. The MLU, or the utilization

of the most congested link is the inverse of z. Later in this section, we report results with

the throughput metric.
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Benefits of modeling network structure. Fig.  2.7a shows the demand scale guaran-

teed by FFC when used to design for all single link failures for Deltacom (the topology with

the most edges) for twelve different demands. Each curve corresponds to the number of tun-

nels used per node pair. We select physical tunnels so that they are as disjoint as possible,

preferring shorter ones when there are multiple choices. With all our topologies, any node

pair has at least two disjoint physical tunnels. When three or four tunnels are selected, it is

not possible to guarantee that they are disjoint. Our strategy ensures that the failure of any

link causes at most two tunnels to fail for all node pairs in the three tunnel case, and for most

node pairs in the four tunnels case. The optimal is obtained by exhaustively enumerating

all failure scenarios, and can take over 2 days in some settings. FFC performs significantly

worse than optimal, and consistently better with two tunnels (additional tunnels hurt).

Fig.  2.8 shows the demand scale guaranteed by PCF-TF when designing for single link

failures for Deltacom, and an example traffic matrix. Results for FFC are included for

comparison. PCF-TF matches FFC’s performance when 2 tunnels are used, and performs

better as tunnels are added given that it better models network structure. We observed

similar trends with all topologies, and across demands. Henceforth, in our experiments,

all our schemes use three tunnels (this is conservative as adding more tunnels improves

performance), while FFC uses two tunnels (this represents the best setting for FFC and

choosing more tunnels leads to poorer performance).

Benefits of more flexible response. We next evaluate the performance of our various

PCF schemes relative to FFC, and report the ratio of the demand scale for a given scheme

to the demand scale with FFC. We generate 12 different demands for Deltacom to model a

traffic matrix every 2 hours. Fig.  2.7b shows a CDF of the ratios across these demands. In

the median case, PCF-TF and PCF-LS achieve an improvement of 1.25X over FFC, while

PCF-CLS achieves a 1.37X improvement. Further, for 25% of the traffic matrices, PCF-

TF, PCF-LS and PCF-CLS achieve improvements of more than 1.3X, 1.4X and 1.66X over

FFC respectively. Finally, PCF-CLS matches the optimal for most cases. While PCF-TF’s

improvements arise due to better modeling of network structure, the further benefits achieved

by PCF-LS and PCF-CLS are due to additional flexibility provided by logical sequences.

50



Analysis across topologies. Fig.  2.9a presents a CDF of the ratios of the demand

scale for each scheme relative to FFC across topologies when designing for single link failures.

All our schemes provide significant benefits, with PCF-CLS matching the optimal for most

topologies. On average, PCF-TF, PCF-LS and PCF-CLS achieve improvements of more than

1.11X, 1.22X and 1.44X over FFC respectively. For GEANT (rightmost point), PCF-LS

and PCF-CLS perform 2.6X better.

Multiple simultaneous failures. We next consider simultaneous link failures. To

avoid disconnecting the topologies, we split the capacity of each link evenly across two sub-

links that fail independently. We report the performance of all schemes when designing for all

possible scenarios involving the simultaneous failure of three sub-links. For all PCF schemes

we pick 6 tunnels, choosing them to be as disjoint as possible. For similar reasons as above,

we found FFC achieved significantly better performance with 4 tunnels (FFC resulted in

a demand scale factor of 0 with 6 tunnels).  

2
 Fig.  2.9b shows a CDF of the demand scale

ratios for each scheme relative to FFC. On average, PCF-TF, PCF-LS and PCF-CLS achieve

improvements of more than 1.11X, 1.25X and 1.50X over FFC respectively. Note that while

the trends are similar to single failures, the absolute values of demand scales are lower for

all schemes – e.g., the optimal under 3 failures is 0.42 for Deltacom, while 0.85 under single

failures).

Throughput metric. Instead of demand scale, we next consider performance when the

schemes optimize the throughput metric (sum of bandwidth allocated to each pair). Given a

demand dst for source s and destination t, and an allocated bandwidth bwst (bwst ≤ dst), we

compute the throughput overhead 1−
∑

bwst∑
dst

. Fig. 2.9c shows the % reduction in throughput

overhead of each scheme relative to FFC when designing for three failures. PCF provides

significant benefits. In the median case, PCF-TF and PCF-LS reduce the throughput over-

head of FFC by more than 16%, and the reduction with PCF-CLS is 46%. For 25% of

the topologies, PCF-TF, PCF-LS and PCF-CLS reduce the throughput overhead by 27%,

41% and 55% respectively. We do not report the optimal for this metric since it requires
2

 ↑ It was only feasible to select 6 tunnels, with 2 sharing a common link. Under three failures, FFC must
provision for the case all tunnels failed.
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Figure 2.10. Solving time for PCF’s schemes and optimal.

a prohibitively large optimization formulation that simultaneously models combinatorially

many routing problems, one for each failure state.

2.4.2 Feasibility of local yet optimal routing

As discussed earlier, PCF-TF uses a routing mechanism identical to FFC, while PCF-LS

uses topologically sorted logical sequences and can be realized using a locally proportional

routing (§  2.3.2 ) similar to FFC. However, the LSs chosen in PCF-CLS are not guaranteed

to be topologically sorted.

Interestingly, under single link failures, the LSs generated by PCF-CLS are already topo-

logically sorted by default for 16 of our 21 topologies. For the remaining ones, we consider a

new scheme, which we refer to as PCF-CLS-TopSort, that starts with the LSs initially gen-

erated by PCF-CLS, and picks a subset which are topologically sorted. To achieve this, we

use a greedy algorithm that adds LSs one by one from the original set, omitting any LS that

violates the topological sort property. In all cases, less than 0.59% of the LSs were pruned.

Further, for 4 of the 5 topologies, PCF-CLS-TopSort performs identically with PCF-CLS for

the demand scale metric. For Ion alone there was some performance degradation, from a

demand scale of 1.11 with PCF-CLS to 0.82 with PCF-CLS-TopSort, but still much better
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than FFC which achieved a demand scale of 0.48. Overall, the results indicate that for single

failure scenarios, a local proportional routing mechanism is sufficient to ensure near optimal

performance.

For multiple simultaneous failures, PCF-CLS-TopSort does not match the performance

of PCF-CLS. We note however that (i) PCF-CLS-TopSort and PCF-LS still significantly

out-perform FFC and are realizable as local algorithms; and (ii) while PCF-CLS nearly

matches optimal, it only requires a linear system of equations to be solved on each failure

as opposed to a more expensive optimization problem.

2.4.3 Tractability of formulations

Fig.  2.10 presents the solving time (Y-Axis) against topology size (X-Axis) when PCF-

TF, and PCF-CLS (the most complex scheme) are used to design for all simultaneous three

link failure scenarios. Each point corresponds to a topology. PCF-LS takes less time than

PCF-CLS and is not shown. For most topologies, the solving times is under 10 seconds. For

the two largest networks (Deltacom and Ion) with 302 and 270 sub-links (each original link

comprises 2 sub-links), the solving time for PCF-TF is under 50 seconds and for PCF-CLS

under 100 seconds. This is reasonable because PCF’s models only need to be run at the

granularity of several minutes (on failure, lighter-weight online operations are used (§ 2.3.3 )).

The figure also shows the solving time for the optimal scheme (truncating the Y-Axis at 1

hour). The solving time is much larger even for the smaller topologies and did not complete

within an hour for most topologies. For one of the larger topologies, it did not complete

even after two days.

2.5 Related work

Reactive vs. congestion-free routing schemes. Many recent traffic engineering

(TE) schemes [ 40 ], [ 41 ] have developed flexible ways of routing traffic motivated by the goal

of efficiently utilizing network capacity. Typically, these schemes involve deciding how to op-

timally route traffic at a centralized controller leveraging network-wide views [ 30 ], [ 40 ], [ 41 ].

Failures are handled reactively by recomputing routes at the centralized controller, and up-
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dating rules at switches, a process that can take a long time, and that could congestion

links in the interim [ 10 ]. A more recent work [  30 ] derives tunnels from an oblivious routing

strategy, and determines how to split traffic across tunnels so link utilizations are minimized.

The scheme does not guarantee that the network would remain congestion-free on failure.

A second class of schemes [ 10 ], [ 20 ], [ 23 ] proactively guarantee the network remains congestion-

free over a large set of failure scenarios (e.g., all scenarios with f simultaneous link failures),

while only allowing for the network to respond to failures using fast and light-weight response

mechanisms. For instance, FFC [ 10 ] conservatively admits traffic so the network does not

experience congestion when local proportional routing is used. With such schemes, an opti-

mization problem is only solved offline (i.e., prior to any failure scenario). The optimization

models guarantee the congestion-free property, and are tractable in that they do not require

an explicit enumeration of the large space of failure scenarios.

PCF addresses both objectives at the same time, by developing provably congestion-free

light-weight mechanisms that achieve close to the optimal performance sought by reactive TE

mechanisms. PCF not only out-performs existing congestion-free mechanisms, but performs

close to optimal (the best possible performance that can be achieved by a reactive centralized

TE scheme). Further, like other congestion-free schemes, PCF does not solve an LP on failure

but only involves light-weight operations. Finally, with topologically sorted LSs, PCF uses

local proportional routing, similar to FFC. Finally, while we do not explore in this paper,

the tractable failure models associated with congestion-free schemes in general and PCF

in particular can aid in network design tasks such as provisioning networks with sufficient

capacity to protect against failures.

Other congestion-free routing schemes. Among congestion-free schemes, we have

extensively discussed FFC [ 10 ]. R3, another congestion-free mechanisms based on link by-

pass [  20 ], is based on flows, and cannot handle node failures (§  2.2.5 ). PCF uses tunnels

which are easier to deploy [  30 ], and can tackle node failures. When flows are allowed, PCF

provably out-performs R3 even for link failures (§ 2.2.5 ). Another work [  23 ] addresses link

failures by adding edges to the network. The original excess capacity of the network is not

used, and the number of edges added may be substantial.
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Rather than tackle all f failures, recent works Teavar [  27 ], and Lancet [  26 ] design for

scenarios that occur with sufficient probability so a desired availability target is met. The

techniques in Teavar [  27 ] and Lancet [  26 ] are respectively demonstrated with FFC and a

generalization of R3. Techniques for probabilistic design are orthogonal to the design of

congestion-free routing schemes. In particular, the ideas in both Teavar and Lancet are

complementary to PCF, and may be potentially combined with PCF in the future to achieve

better performance bounds when designing for scenarios with given probability.

A framework for analyzing the worst-case performance of centralized TE approaches

was presented in [  31 ]. The framework provides conservative performance bounds when

network response can be modeled as an optimization problem. The conservative bounds

may be viewed loosely equivalent to the performance of a more restricted network routing

scheme that does not re-optimize on each failure. However, the bounds are obtained using

optimization-theoretic relaxation methods, and it is an open question whether these abstract

relaxations relate to practically realizable network response mechanisms. In contrast, all

of PCF’s models are associated with realizable network response mechanisms as we have

discussed.

Interestingly, while we do not explore in this paper, PCF’s models may provide alternate

and better ways to bounds the performance of centralized TE schemes – e.g., the performance

of PCF-CLS under failures matched the optimal for most topologies (§ 4.4 ). These benefits

arise because using LSs can improve the bounds for the relaxations proposed in [  31 ]. Finally,

PCF’s formulations can be naturally used to augment capacities so as to meet a desired

performance metric by simply making capacities variable.

Segment and pathlet routing. Logical sequences are similar to segment routing [  28 ],

[ 29 ] in that traffic is steered through a given series of hops. DEFO considers ISP carrier

network settings where the traffic in each segment is carried using a (possibly legacy) mech-

anism such as shortest-path forwarding, and the segments may be chosen so as to optimize

a traffic engineering goal [ 29 ]. In contrast, LSs are an abstraction to increase the flexibil-

ity of provably congestion-free resilient routing mechanisms. Each LS is associated with a

reservation, and may only be active when some conditions are met. Our actual implemen-
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tation (§  2.3.1 ) may be entirely tunneling based, or use both LSs and tunnels with a local

proportional routing scheme (§ 2.3.2 ).

In pathlet routing [  42 ], sources concatenate fragments of paths (pathlets) into end-to-

end routes in a bottom-up fashion. In contrast, with PCF, logical sequences and physical

tunnels are predefined in a top-down manner. Moreover, pathlet routing is motivated by the

challenges of multipath routing, while it does not provide any performance guarantee upon

failures.

Other related work. While several works explore quick re-routing of traffic to restore

connectivity on failures [ 5 ]–[ 9 ], PCF guarantees the network is congestion-free (not merely

restore connectivity). Oblivious routing provides bounds on network performance over mul-

tiple demands, and when networks do not adapt [  15 ], [  43 ]–[ 45 ]. PCF carefully adds flexibility

to network response to allow for tractable analysis of performance under failures. Robust

network design under single link or node failures has received attention [ 11 ]–[ 17 ]. PCF scales

to the large number of failure states arising from concurrent failures, and shows how networks

with carefully chosen response can achieve near optimal performance.

2.6 Conclusions

In this chapter, we have made two contributions. First, we have shown that existing

mechanisms which ensure the network is congestion-free on failures achieve performance

far short of the network’s intrinsic capability, and shed light on the underlying reasons.

Second, we have proposed PCF, a set of novel congestion-free mechanisms that bridges

this gap by better modeling network structure, and by carefully enhancing the flexibility of

network response to ensure that the performance under failures can be tractably modeled.

Through formal theoretical results, we show PCF’s schemes provably out-perform FFC.

Empirical experiments over 21 Internet topologies show that PCF’s schemes can sustain

higher throughput than FFC by a factor of 1.11X to 1.5X on average across the topologies,

providing a benefit as high as 2.6X in some cases. PCF’s schemes are practically realizable,

and some of them can yet achieve near optimal performance.
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3. LANCET: PROTECTION ROUTING DESIGNED FOR

PERCENTAGE OF SCENARIOS

In last chapter, we discuss how PCF designs a congestion-free routing and improves the

worst-case performance under a given set of failures. But how to ensure traffic demand is

handled a percentage of time still remains a question. In this chapter, we will target at this

question and use protection routing to design for percentage of scenarios.

Two mechanisms are used for quick recovery from network failures today: (i) link-based

protection; and (ii) path-based protection [  11 ]. In link-based protection [ 20 ], traffic on a

link l = 〈i, j〉 is re-routed upon its failure, along pre-computed detour paths from i to j.

To achieve this, an offline procedure is used, which for each link l = 〈i, j〉, makes a bypass

reservation not used until l fails, along paths that are disjoint from l and can carry flow from

i to j. When l fails, the network uses this reservation to re-route the traffic on l and executes

an efficient online procedure to compute the changes required should another failure occur.

In contrast, in a path-based protection scheme [ 10 ], failures are handled by diverting traffic

to pre-computed backup paths between each source and destination.

In this chapter, we focus on link-based protection. The primary advantage of link-based

protection is that repair is faster since it happens locally (i.e., at node i if link 〈i, j〉 fails) - in

contrast, with path-based schemes, the failure information must be propagated to the source.

In the rest of this chapter, we discuss a model for link-based protection, which generalizes

the state-of-the-art scheme [  20 ]. Then we extend this model to design routing with multiple

traffic classes. We also present how this mechanism can be implemented in terms of online

operation. And finally, we show how to apply it in a framework to design for a certain

percentage of scenarios instead of all failure scenarios.

3.1 Generalized protection routing model

3.1.1 Protection routing definition

Consider a network with nodes V and edges E for a traffic matrix d with each link e

having a capacity ce. Determining a protection routing, requires computing three sets of
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Table 3.1. Symbol table.

Symbol Definition
Parameters ce Capacity of link e

dst Traffic from s to t
Variables al Bypass reservation for link l

xe Failure status of link e
rst(e) Fraction of s to t traffic on link e (no failure)
pl(e) Reservation on link e to handle link l failure

variables, r, p, and a, where r denotes routing under normal condition, p denotes protection

routing, and a denotes bypass reservations. (Table  3.1 ). r is represented by a set of values

rst(e), s, t ∈ V, e ∈ E, which denotes the fraction of traffic from source s to destination t that

traverses link e = 〈i′, j′〉 under normal conditions. We use the notation rst(e) and rst(i′, j′)

interchangeably. For each s, t pair, r represents a flow, and must satisfy the constraints

presented below which capture that one unit of traffic exits s and enters t, and traffic is

conserved at intermediate nodes. In addition, r should also satisfy capacity constraints, and

the full model will be presented in LP (H) below.

∑
j′;〈i′,j′〉∈E

rst(i′, j′)−
∑

j′;〈j′,i′〉∈E

rst(j′, i′)

=



1 i′ = s

0 i′ 6= s, i′ 6= t ∀i′ ∈ V

−1 i′ = t

rst(i′, j′) ≥ 0 ∀i′, j′; 〈i′, j′〉 ∈ E

(3.1)

The reservation a is represented by a set of values al, l ∈ E, which denotes the amount

of reservation along bypass paths to protect against the failure of link l. The reservation

al to protect against the failure of a link l may be less, equal, or larger than cl but cannot

be arbitrarily large since sufficient capacity must be available on the bypass paths. The

variable pl(e) ∀l, e ∈ E denotes the reservation on link e to handle the failure of l = 〈i, j〉. pl

represents a flow of al from i to j, and must satisfy constraints similar to ( 3.1 ) except replacing
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Figure 3.1. Illustrating protection routing.

(i) rst(i′, j′) with pl(i′, j′); (ii) the right-hand-side (RHS) of the flow balance equation with al,

0, and −al; and (iii) (s, t) with l = 〈i, j〉. Further, the routes protecting against e′s failure

should not traverse e, i.e., pe(e) = 0.

Fig.  3.1 illustrates the notation related to bypass reservations. cl denotes the link capacity

of link l. In order to protect against the failure of link l, we reserve the amount al to bypass

the traffic between i and j. al can only be used when l fails. In this example, we use e1

and e2 to construct the bypass. To support a flow of al, e1 and e2 need to carry pl(e1) and

pl(e2) respectively. In this example, each of these variables are equal to al because of the

flow balance constraints on the routing pl.

3.1.2 Offline protection routing design

We next present an offline linear program (LP) that computes an optimal protection

routing (r, p, a) so as to protect the network against all failure scenarios in a set X. For

instance, if the architect wishes to protect against the set of all simultaneous f link failure

scenarios, X consists of the set of
(

|E|
f

)
possible f link failure scenarios. The LP minimizes

the utilization of the most congested link (or Maximum Link Utilization, henceforth referred

to as MLU) across all scenarios x ∈ X. We focus on this metric since it is widely used in the

traffic engineering community [  20 ], [  31 ]. If the optimal MLU U is under 1, then it indicates

the protection routing is congestion free, i.e., the network can handle any failure scenario
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x ∈ X. An MLU higher than 1 indicates that the network cannot guarantee a congestion-free

routing for all scenarios x ∈ X.

(H) min
r,p,a,U

U

s.t. rst is a unit flow from s to t. ∀s, t ∈ V

pl is a flow of al from i to j. ∀l ∈ E, l = 〈i, j〉

∀x ∈ X, e ∈ E,∑
s,t

dstrst(e) +
∑
l∈E

xlpl(e) ≤ Uce(1− xe) + aexe (3.2)

ae ≥ 0 ∀e ∈ E; U ≥ 0

The LP is show above. The first two constraints capture the definition of a protection

routing as elaborated above and summarized in (  3.1 ). (  3.2 ) captures the capacity and reser-

vation constraints of all links must be met under all possible failures x ∈ X. The two terms

on the left-hand-side (LHS) indicate the total traffic that link e must carry, which includes

(i) the traffic under normal conditions (∑
s,t dstrst(e)); and (ii) the bypass reservations made

on link e to protect against other link failures (∑
l∈E xlpl(e)). The RHS captures that (i)

link e carries at most Uce traffic when e is operational; and (ii) when e fails (xe = 1), a

reservation of at most ae is available along bypass paths.

A key difficulty in translating (H) into an LP is that the obvious strategy would create

|E| constraints per failure scenario, which is not scalable since X may need to be designed

for potentially up to
(

|E|
f

)
f -failure scenarios. We reformulate (H) into a more tractable LP

by (i) relaxing the integrality requirements on x variables and (ii) expressing the LHS as

a minimization problem leveraging LP duality. A similar approach was used by [  20 ] when

designing for all f failures.

Our treatment is a generalization of R3 [ 20 ], the state-of-the-art protection routing

scheme. To protect against the failure of e, R3 reserves a fixed amount ce that matches

the capacity of link e. Instead, our formulation introduces the ae variables, and thus de-

termines the bypass reservation to be made. There are two advantages to our approach.

First, our formulation is valid even when the utilization is higher than 1 while R3 is not.
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This allows the formulation to be used in settings where we wish to determine how best

to augment link capacity to handle failures [  31 ]. Second, when utilization is under 1, our

formulation achieves lower MLU than R3. For instance, for the Abilene network [ 24 ], and an

example traffic matrix [ 46 ], the MLU with R3 when protecting against all 2-failure scenarios

(each failure impacting 50% of link capacity) is 0.56. In contrast, the MLU with (H) is 0.12

(the optimal achievable if the network could respond ideally). We refer to this generalized

approach as Gen-R3.

3.1.3 Design with multiple traffic classes

So far, we have focused on the MLU metric when all traffic must be handled. We next

show how to extend to a context with multiple traffic classes where the architect wishes to

meet all high priority, and as much low priority traffic as possible.

Designing a protection routing for multiple traffic classes involves minor changes to LP

(H) and is presented below. Let dh and dl represent high and low priority traffic matrices,

with dh
st and dl

st representing the relevant traffic from s to t. The formulation determines the

largest Z such that the network can handle a traffic matrix D where Dst is dh
st + Zdl

st (i.e.,

the network can carry all high priority traffic, and a fraction Z of low priority traffic). Z ≥ 1

indicates all low priority traffic can be carried. Setting dh to zero produces the special case

where there is a single class of traffic, when Z would share an inverse relationship with the

MLU metric. The protection routing has parameters (rh, rl, p, a), where rh and rl represent

flows corresponding to high and low priority traffic from s to t. The formulation is similar
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to (H) except that rl
st only need carry a fraction Z of the dl

st traffic, however link capacity

constraints must be strictly met.

(G) max
rh,rl,p,a,Z

Z

s.t. rh
st is a flow of dh

st from s to t. ∀s, t ∈ V

rl
st is a flow of Zdl

st from s to t. ∀s, t ∈ V

pl is a flow of al from i to j. ∀l ∈ E, l = 〈i, j〉∑
s,t

rh
st(e) +

∑
s,t

rl
st(e) +

∑
l∈E

xlpl(e)

≤ ce(1− xe) + aexe ∀x ∈ X, e ∈ E

ae ≥ 0 ∀e ∈ E

Z ≥ 0

3.2 Efficient online adjustment of protection routing parameters

Consider a protection routing (r, p, a) initially computed offline using LP (H) (Table  3.1 ).

If link ε = 〈i, j〉 fails, the parameters for the routing must be recomputed since ε is unavailable

for reservations to protect against future failures. To achieve this, failure information of 〈i, j〉

is propagated to the controller which efficiently adjusts the parameters as we discuss next.

Since this update is only to protect against future failures, it is acceptable to involve the

controller.

One approach to achieving this is for the controller to solve the design LP again to

compute (r′, p′, a′) but for the network where link ε does not exist. However, this can take

time and is not suitable for online operation. Instead, we have been able to show that

(r′, p′, a′) can be efficiently computed online by making the following quickly computable

adjustments to (r, p, a). Specifically, we have:
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r′
st(e) =


rst(e) + rst(ε)(pε(e)/aε) ∀s, t, e ∈ E\{ε}

0 ∀s, t, e = ε

p̃l(e) =


pl(e) + pl(ε)(pε(e)/aε) ∀l ∈ E\{ε}, e ∈ E\{ε}

0 ∀l ∈ E\{ε}, e = ε

a′
e = ae − p̃e(e) ∀e ∈ E\{ε}

p′
l(e) =


p̃l(e) ∀l ∈ E\{ε}, e ∈ E, l 6= e

0 ∀l ∈ E\{ε}, e ∈ E, l = e

These adjustments capture the increase in (s, t) traffic on link e when ε fails, for each (s, t)

pair, and the increase in reservation on link e to protect against a subsequent failure of l,

because reservations on ε have been invalidated. The final few steps ensure link e does not

use itself when protecting against the failure of e. The update to r′ is locally computed

by each router since router i starts labeling packets to be sent along ε and forwards them

using the protection routing p as discussed earlier. Thus, the controller only pushes p′ and

a′ to switches. We next discuss the complexity of the update process. During the online

adjustment, a node i will locally update r for each of its adjacent links, and for all source-

destination pairs. As shown above, this takes di|V |2 operations where di is the degree of node

i and V is the set of nodes. However, while we do not elaborate, it is possible to optimize

this further by implementing r in a manner that only tracks the destination rather than

both the source and destination, which would result in only di|V | operations. Further, p is

updated in a centralized manner and the process takes O(|E|2) operations.

Proposition 3.2.1. Let (r, p, a, U) be a feasible solution to LP (H) for a graph G = (V, E)

when protecting against all failure scenarios defined in the set X. Then, we can show that

(r′, p′, a′, U) is a feasible solution to (H) for the graph G′ = (V, E−ε) and for failure scenarios

in X with ε failing.
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Proof. Since (r, p, a, U) (parameters prior to failure) is feasible for LP (H), it satisfies

every constraint of (H) for G = (V, E) when protecting against all failure scenarios defined

in X. The proof proceeds by showing that (r′, p′, a′, U) obtained after the failure of ε and

adjustments satisfies every constraint of LP (H) for the graph G′ = (V, E− ε) and for failure

scenarios in X with ε failing.

First, we show that r′
st is a unit flow from s to t for all s, t pairs. For convenience, let’s

define a function g(i, s, t) as:

g(i, s, t) =



1 i = s

0 i 6= s, i 6= t

−1 i = t

(3.3)

Then, the flow balance constraint on rst can be written as:

∑
j′;〈i′,j′〉∈E

rst(i′, j′)−
∑

j′;〈j′,i′〉∈E

rst(j′, i′) = g(i′, s, t) (3.4)

We now verify that the flow balance constraint for r′
st is met:

∀i′, s, t,∑
j′;〈i′,j′〉∈E\{ε}

r′
st(i′, j′)−

∑
j′;〈j′,i′〉∈E\{ε}

r′
st(j′, i′)

= (
∑

j′;〈i′,j′〉∈E\{ε}
rst(i′, j′)−

∑
j′;〈j′,i′〉∈E\{ε}

rst(j′, i′))+

rst(ε)
aε

(
∑

j′;〈i′,j′〉∈E\{ε}
pε(i′, j′)−

∑
j′;〈j′,i′〉∈E\{ε}

pε(j′, i′))

=



g(i′, s, t)− rst(ε) + rst(ε)
aε
∗ aε i′ = u

g(i′, s, t) + rst(ε)
aε
∗ 0 i′ 6= u, i′ 6= v

g(i′, s, t) + rst(ε)− rst(ε)
aε
∗ aε i′ = v

= g(i′, s, t)

(3.5)

Similarly, we can show that p′
l is a flow of a′

l from i to j for all l = 〈i, j〉 ∈ E.
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Second, we show that updated routing and future protection will not traverse ε. By

definition, ∀s, t : r′
st(ε) = 0 and ∀e ∈ E\{ε} : p′

e(ε) = 0. So link ε will not be used in the

updated routing and protection.

Third, we show that (r′, p′, a′, U) still satisfies the capacity constraint for all failure sce-

narios x with xε = 1 in the certified failure set X. From the capacity constraint on ε for any

failure scenario x ∈ X with xε = 1, we have:

∑
s,t

dstrst(ε) +
∑

l∈E\{ε}
xlpl(ε) ≤ aε (3.6)

From the capacity constraint for e 6= ε for any failure scenario x ∈ X with xε = 1, we have:

∑
s,t

dstrst(e) + pε(e) +
∑

l∈E\{ε}
xlpl(e) ≤ ce(1− xe) + aexe (3.7)
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Then the steps below show that the capacity constraints on other links after updating

continue to be met, thereby proving the proposition.

∀e ∈ E\{ε},∑
s,t

dstr
′
st(e) +

∑
l∈E\{ε}

xlp
′
l(e)

=
∑
s,t

(dstrst(e) + dstrst(ε)
pε(e)

aε

)+

∑
l∈E\{ε}

(xlpl(e) + xlpl(ε)
pε(e)

aε

)− xep̃e(e)

=
∑
s,t

dstrst(e) + pε(e)
aε

(
∑
s,t

dstrst(ε) +
∑

l∈E\{ε}
xlpl(ε))+

∑
l∈E\{ε}

xlpl(e)− xep̃e(e)

≤
∑
s,t

dstrst(e) + pε(e)
aε

aε +
∑

l∈E\{ε}
xlpl(e)− xep̃e(e)

= (
∑
s,t

dstrst(e) + pε(e) +
∑

l∈E\{ε}
xlpl(e))− xep̃e(e)

≤ ce(1− xe) + aexe − xep̃e(e)

= ce(1− xe) + a′
exe

(3.8)

3.3 Design percentage of scenarios

Up till now, our discussion focuses on how to design congestion-free routing under all

possible f or fewer simultaneous link failures, where f specifies the desired resilience level.

Unfortunately, even a few bad cases may make it infeasible to achieve this goal, forcing a

design with much lower resilience. For example, if an architect wishes to protect against

3-failure scenarios, a small number of bad 2- and 3-failure cases imply that the architect can

only design for single failures with the existing approach. Thus, it is important to analyze

which failure scenarios a network is intrinsically capable of tackling, and to enable the design

of a protection routing that can protect against most scenarios with f or fewer failures (all

single and most 2- and 3-failure scenarios in the above example) when infeasible to protect
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against all such scenarios. We also need to compare which scenarios a heuristically designed

protection routing can tackle relative to intrinsic network capability.

3.3.1 Lancet system

Lancet [  26 ] is developed to achieve these goals. Lancet employs a divide-and-conquer

algorithm, which classifies an entire set of scenarios as acceptable or violating to the extent

possible, and when necessary, partitions the set further. A key highlight of the algorithm is

that it generates a compact representation of the large number of scenarios with acceptable

performance as the union of m sets, where m is small.

Lancet can be used to design to meet probability requirements. Consider an architect

goal of design a protection routing that is guaranteed to be congestion free for scenarios that

occur occur p% of the time, given the probability of different failure scenarios. Lancet is

easily adapted to this task. Specifically, the classification algorithm is modified to maintain

a weighted count of scenarios for which performance is acceptable or violates requirements,

with the weight indicating the probability that the network is in a given failure state. The

algorithm terminates when either the weighted count of certifiable scenarios exceeds p%, or

that of violating scenarios exceeds 1−p% (indicating the network is not intrinsically capable

of meeting the goal).

3.3.2 Lancet with multiple traffic classes model

Now, we apply our multiple traffic classes model to Lancet to design routing for percent-

age of scenarios. The two-class LP in  3.1.3 determines a protection routing that handles all

high-priority traffic and the low-priority traffic scaled by a factor Z. We refer to Gen-R3(f) as

a protection routing derived from this two-class LP when protecting against all simultaneous

failures involving f or fewer links. Similar to earlier, Lancet is obtained by (i) using Lancet

to classify scenarios that obtain a Z ≥ 1 with Centralized; and (ii) using the two-class LP

to design with the set so obtained.

Fig.  3.2 shows the fraction of scenarios that achieve different Z thresholds for the schemes

above for GEANT’s 2-failure scenarios. We split the original traffic matrix into two classes
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Figure 3.2. Efficacy of Lancet aided designs with two traffic classes.

with high and low priority. For each cell we assign a random fraction of it to the high-

priority traffic class, and the rest to the low-priority one. Each curve corresponds to one

scheme, and shows the fraction of 2-failure scenarios that can attain a particular Z. The

top-most curve shows the ideal Centralized scheme, which attains Z of 1 for over 99% of

the scenarios. Lancet performs nearly as well as Centralized. While it degrades moderately

for the most stringent performance thresholds (Z = 1.4 and 1.6), we note that an architect

could use Lancet to generate new protection routings optimized for these thresholds if this

is desirable. The two Gen-R3 schemes perform poorly, with no scenario achieving a Z of

1 where all low priority traffic could be carried. Note that Gen-R3(2) matches Centralized

and performs slightly better than Lancet for the worst-case (achieving a Z of 0.42) but this

comes at the expense of performance for the vast majority of scenarios.

3.4 Conclusions

In this chapter, we present a generalized model of protection routing which designs rout-

ing for at most f simultaneous link failures. We extend this model to a context with multiple

traffic classes where the architect wishes to send all high priority traffic and as much low

priority traffic as possible. We present how the protection routing can be practically im-

plemented through efficient online adjustment and prove the correctness of this adjustment

scheme. Finally, we combine Lancet, a framework to design routing for a percentage of
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scenarios, with our multiple traffic classes model, and show the effectiveness of our model

through evaluation.
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4. FLEXILE: MINIMAL FLOW LOSS ALMOST ALWAYS

As mentioned before, most state-of-the-art traffic engineering (TE) schemes do not explicitly

provide ways to optimize performance at a desired percentile. Lancet took the first step to-

ward solving this problem. In the meantime, Teavar [  27 ] has also been developed to consider

percentiles when designing routing. However, we find that Teavar provides extremely con-

servative guarantees. The poor performance stems partially from the fact that Teavar uses a

common set of failure states to evaluate the percentile loss of all flows. Lancet will suffer the

same issue. Moreover, Teavar is approximate since it minimizes an overestimate of percentile

loss, and uses a less flexible routing strategy. Teavar’s performance is improved by flexibly

and optimally routing traffic in each scenario (an approach advocated by SMORE [  30 ]). Nev-

ertheless, the bandwidth is allocated such that some of the traffic continues to see significant

loss at desired percentile. The key reason is that such a scenario-centric approach optimizes

traffic unilaterally for each failure state, which leads to sub-optimal decisions across states.

For example, the same flow may be penalized in many bandwidth constrained network states.

Contributions. To tackle these issues, we present Flexile (FLEXibily choose scenarios

for each flow to evaluate loss percentILE). Flexile (i) ensures all flows see as low a loss as

possible at a desired percentile; (ii) supports multiple traffic classes (e.g., minimize 99.9%ile

loss for latency-sensitive traffic, and 99%ile for other traffic); and (iii) directly optimizes loss

percentiles. Flexile does so by allowing flows to meet their bandwidth requirements in a

possibly different subset of critical states that occur with sufficient probability. Although

this couples bandwidth allocation decisions across failure states, Flexile decouples them by

identifying critical states for each flow in an offline phase. Then, on failure, Flexile efficiently

allocates bandwidth online, while paying more attention to critical flows.

We evaluate Flexile on 20 topologies, including many large topologies, and validate our

results on an emulation testbed. We show that Flexile consistently outperforms existing TE

strategies such as SWAN, SMORE and Teavar. Across topologies, the median reduction

in flow loss at desired percentiles with Flexile is 46% for SMORE, and 63% for Teavar,

and the benefits are even higher for SWAN. Flexile outperforms Teavar for various reasons

that include evaluation of losses at flow level, more flexible rerouting, and optimization
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Capacity: 1, failure probability = 0.01

1.0

f1: A->B needs 1 unit of traffic with probability of 0.99 
f2: A->C needs 1 unit of traffic with probability of 0.99 

1.0

Figure 4.1. Illustrating Flexile’s opportunity. Flow 1 can be fully sent over
link A-B 99% of time. Flow 2 can be fully sent over link A-C 99% of time.
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0.5

Scenario AB and AC both 
alive (98.01%)

Only AB 
fails (0.98%)

Only AC 
fails (0.98%)

Others 
(0.03%)

Throughput of 
flow 1 (A->B) 1 0.5 0.5 -

Throughput of 
flow 2 (A->C) 1 0.5 0.5 -

(a) (b) (c)

Figure 4.2. Bandwidth objectives cannot be met for topology in Fig.  4.1 by
existing TE schemes.

of percentile instead of an overestimate. For comparison, we design and compare Flexile

with generalizations of Teavar that route flexibly and evaluate losses at flow level. While

these generalizations help, Flexile continues to out-perform. By exploiting various problem

characteristics, we show that Flexile’s offline decomposition algorithm runs quite efficiently

in practice, and is an order of magnitude faster than Teavar for the largest topology. Finally,

Flexile maintains the online reaction times of existing TE schemes [ 30 ], [ 47 ].

4.1 Motivation

4.1.1 Background

Given traffic demand associated with a set of flows, TE schemes must decide the band-

width to allocate to each flow, and how each flow must be routed so a desired performance

metric is optimized. Many TE schemes minimize the maximum link utilization (MLU) of

all links [  30 ]). Equivalently, TE schemes may maximize the demand scale factor using a

maximum concurrent flow formulation [  10 ] or minimize the maximum loss across all flows,
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Scenario AB fails, AC 
alive (0.99%)

Both AB, AC 
alive (98.01%)

AB alive, AC 
fails(0.99%)

Others 
(0.01%)

Critical for 
flow 1 (A->B) x x

Critical for 
flow 2 (A->C) x x

Figure 4.3. Critical scenarios for Fig.  4.1 .
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Figure 4.5. Increase
in ScenLoss relative to
ScenBest (optimal).

referred henceforth as ScenLoss. Many TE schemes [ 20 ], [  30 ] optimize the utilization of the

most congested link (Maximum Link Utilization or MLU), or alternately,solve the maximum

concurrent flow, and maximize the fraction z (that we also refer to as scale factor) of demand

the network can handle. Minimizing MLU, or maximizing z is equivalent to minimizing Scen-

Loss (the maximum loss across all pairs in a given scenario), since ScenLoss = max{0, 1−z},

and ScenLoss = max{0, 1−1/MLU}. We next consider a representative TE scheme Teavar.

Teavar [  27 ] falls under a class of schemes [  10 ], [ 20 ], [ 23 ], [ 27 ], [ 48 ] which explicitly guar-

antee the network remains congestion-free over a desired set of failure scenarios by conser-

vatively allocating bandwidth. While most of these schemes [ 10 ], [  20 ], [  23 ], [  48 ] ensure the

congestion-free property over all scenarios with f simultaneous link failures, we focus on

Teavar [  27 ] since it is the only scheme that considers failure probabilities. Although the goal

is to minimize the βth percentile of ScenLoss, Teavar approximates – e.g., rather than mini-

mize the 99th percentile of ScenLoss, the actual formulation minimizes the average ScenLoss

in the worst 1% of scenarios (see § 4.3 ).

Teavar (like FFC [  10 ]) uses a less flexible routing approach than the best possible scheme

for each scenario. Specifically, it pre-determines how traffic is split across tunnels, and on
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failure, proportionally rescales traffic on live tunnels. A more flexible yet still light-weight

recovery mechanism (proposed by SMORE [ 30 ]) involves splitting traffic optimally among

live tunnels (with the tunnels themselves not changing over scenarios). We term such a

scheme ScenBest for generality, but note that when the metric optimized is MLU, ScenBest

performs identically to SMORE 

1
 . Clearly, for any failure scenario, Teavar can perform no

better than ScenBest. Hence, Teavar cannot achieve a percentile performance any better

than ScenBest.

4.1.2 Example Motivating Flexile

Next, we illustrate the potential opportunity that Flexile exploits using concrete exam-

ples. Consider Fig. 4.1 , where a network must carry traffic corresponding to a flow f1 from

source A to destination B, and a flow f2 from source A to destination C. Consider a re-

quirement that each of f1 and f2 must support 1 unit of traffic 99% of the time. Each link

has a capacity of 1 and a failure probability 0.01. We make the following observations:

The network can easily meet the bandwidth requirements. This clearly follows

from the following simple routing strategy. The strategy sends f1 on link A−B and f2 on

link A−C. Clearly, the requirements of f1 are met whenever link A−B is alive, which occurs

99% of the time. Likewise, the requirements of f2 are met in all scenarios where A−C is

alive, which occurs 99% of the time.

State-of-the-art TE schemes cannot meet the requirements of flows. Unfor-

tunately, ScenBest and Teavar [ 27 ] can each only support 0.5 units for f1 and f2 99% of

the time. To illustrate this, consider Fig  4.2 (a) and Fig  4.2 (b) which illustrate ScenBest’s

routing in each of two scenarios (one where link A−B fails, and another where link B−C

fails). In both cases, ScenBest would send 0.5 units of each flow as shown. Fig.  4.2 (c) sum-

marizes the throughput achieved by each flow under different failure scenarios. Since each

of the scenarios shown in Fig  4.2 (a) and Fig  4.2 (b) occurs 0.98% of the time, to meet its

bandwidth requirement, a flow must be able to send necessary traffic in at least one of the

scenarios. Consequently, neither f1 nor f2 can support more than 0.5 units 99% of time.
1

 ↑ While SMORE [  30 ] does not extensively discuss SMORE’s failure recovery mechanisms, we clarified this
from the authors and the source code [ 49 ]
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Figure 4.6. In Teavar’s design, f1 and f2 are both split equally among 2 paths.

Fig.  4.6 shows Teavar’s designed routing for the topology in Fig.  4.1 for 99% availability.

We can see that in Teavar’s design, f1 is split equally across A-B and A-C-B, and f2 is split

equally across A-C and A-B-C. This way, for 99% of time, both flows will be able to send 0.5

units of traffic. It is also easy to see that when A-B link fails or A-C link fails, the remaining

traffic is exactly the same as depicted in Fig.  4.2 . Thus, like SMORE, Teavar too cannot

support more than 0.5 units 99% of time for both flows.

Flexile’s approach. Flexile routes traffic in a manner that exploits inherent network

capability. Flexile determines the critical scenarios associated with each flow where its loss

must be acceptable so the flow objectives can be met. Fig.  4.3 illustrates this for the topology

in Fig.  4.1 . The critical scenarios associated with f1 (resp. f2) are all those scenarios where

A−B (resp. A−C) is alive. Clearly, each flow may be associated with a different set of

critical failure scenarios.

Unlike ScenBest which seeks to ensure all flows in a scenario see as low a loss as pos-

sible. Flexile prioritizes critical flows when allocating bandwidth in any given scenario. In

individual scenarios, non-critical flows may see higher loss relative to ScenBest with Flexile.

However, Flexile mitigates the penalty through many techniques:

• Our evaluations show that after assigning necessary bandwidth to critical flows, there is

significant residual capacity available in each scenario. Flexile judiciously uses this residual

capacity to ensure good performance even for non-critical flows in any failure state.
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• Flexile supports flows of multiple traffic classes (interactive, and elastic), and ensures

favorable treatment for higher priority interactive traffic in all failure states.

• Flexile allows architects to control the loss penalty that non-critical flows may incur in

any scenario, trading off the bandwidth guaranteed at a desired percentile. For instance, in

Fig.  4.3 , if f1 and f2 could tolerate an additional loss l in their non-critical scenarios, Flexile

can guarantee 0.5 + l for both flows 99% of the time.

Flexile on a real-world topology. Fig. 4.4 shows a CDF of the 99.9%ile loss seen by

flows across failure scenarios for Teavar, ScenBest and Flexile for the IBM topology (see

§ 4.4 for evaluation details). There are many flows for which Teavar and ScenBest lead to

a significant 99.9%ile loss. Most flows have 40% loss at 99.9%ile with Teavar for reasons

outlined in §  4.1.1 . For 10% of flows ScenBest leads to a 99.9%ile loss of 16% or higher. In

contrast, Flexile ensures all flows see no loss 99.9% of the time.

Even though Flexile does not explicitly minimize scenario loss, it does not increase this

loss much. For concreteness, see Fig.  4.5 which shows a CDF of the loss penalty paid by

Flexile relative to ScenBest. ScenBest minimizes the loss of the worst performing flow in

each scenario. We plot the increase in this loss with alternate schemes. For scenarios that

occur 99.9% of time, Flexile incurs no loss penalty. The loss penalty at 99.99%ile is only

4%. In contrast, the loss penalty with Teavar is significant – at least 10% in every scenario,

while the 99.9% (resp 99.99%) values are 40% (resp 100%).

4.1.3 Discussion

Flexile can achieve the same bandwidth guarantees with lower network ca-

pacity. The above example shows Flexile can meet bandwidth objectives when existing

TE schemes cannot. Equivalently, Flexile requires less capacity to be provisioned to meet

desired bandwidth objectives. In Fig.  4.1 , ScenBest and Teavar would require each link to

be upgraded by 2X to meet the desired flow bandwidth objectives, while Flexile requires no

additional capacity.

Unlike ScenBest, Flexile ensures bandwidth guarantees never degrade with ad-

ditional links. The bandwidth guarantees provided by ScenBest is not monotonic in the
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f1: A->B needs 1 unit of traffic with prob. = 0.99 
f2: A->C needs 1 unit of traffic with prob. = 0.99 
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Figure 4.7. ScenBest can meet objectives in above topology but not in Fig.  4.1 

which has an additional link.
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Capacity: 1, failure probability = 0.01

f1: A->B needs 1 unit of traffic with prob. = 0.99 
f2: A->C needs 1 unit of traffic with prob. = 0.99 

(a) (b)

Figure 4.8. Example topology to illustrate unfairness with max-min across
scenarios. While the network can meet the 99% requirement for both flows,
max-min meets the requirements for f2 but not f1.

connectivity of the network, i.e., adding links to a network topology may result in weaker flow

loss guarantees. Consider Fig.  4.7 , which is similar to the topology in Fig.  4.1 , except that

link B−C is removed. It is easy to verify that ScenBest always routes 1 unit of f1’s traffic

on link A−B whenever the link is alive, and likewise always routes 1 unit of f2’s traffic on

link A−C whenever that link is alive, thereby meeting the requirements of both flows. Thus,

while ScenBest meets flow requirements in Fig.  4.7 , it cannot meet requirements in Fig  4.1 

which has an additional link. PCF prevents such anomalies since it ensures for any network

that all flows see a loss percentile that is as small as possible.

Existing TE schemes can be unfair across scenarios though fair in each; Flexile

mitigates this effect. To be fair for different flows in each scenario, one can use max-min
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scheme to design the routing. Consider Fig.  4.8 , which depicts a topology similar to Fig.  4.1 ,

except that links are directional. Like Fig.  4.1 , it is easy to verify that the network can meet

the bandwidth objectives of both flows by always routing f1 along A−B and f2 along A−C

respectively whenever the appropriate link is alive. However, while max-min ensures 1 unit

of f2’s traffic 99% of the time, it cannot meet the requirements of f1, and can only carry 0.5

units of f ′
1s traffic 99% of the time. To see this, first consider that max-min always routes

f2’s traffic along A−C whenever that link is alive which occurs 99% of the time irrespective

of failure status of other links. Fig  4.8 (a) illustrates this for an example scenario where

A−B fails. In contrast, observe that f1’s requirements can only be met when 1 unit of traffic

is carried in all scenarios where link A−B is alive. However, in the scenario shown in Fig  4.8 

(b), max-min only carries 0.5 units of traffic for f1 although link A−B is alive. Further, f2

is allocated traffic in this scenario although it already meets its requirements through other

scenarios. Flexile, however, achieves 99.9%ile loss of 0 for all flows.

4.2 Flexile design

Flexile allocates bandwidth to each flow in every failure scenario so a desired (say βth)

percentile of bandwidth loss across flows is minimized. The problem is further complicated

since requirements may vary across traffic classes (e.g., a 99.9% requirement for latency-

sensitive, and a 99% requirement for other traffic). Minimizing loss at a given percentile

(also referred to as Value at Risk or VaR) is a hard problem, and only recently received

attention from the networking research community. While it is possible to approximate

percentiles as done by Teavar [ 27 ], we show in S 4.3 that the approximation is weak.

Flexile tackles these challenges through two components:

• Efficient offline algorithm for determining critical scenarios. Flexile tackles the

hard problem of optimizing flow loss percentiles through a decomposition algorithm that

decouples the failure states by identifying the critical states associated with each flow in an

offline phase. For efficiency, we have developed several problem-specific accelerations. Our

evaluations confirm the algorithmic strategy is efficient.
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• Light-weight online bandwidth allocation to critical and non-critical flows. On

failure, Flexile efficiently allocates bandwidth to all flows while taking particular care of

critical flows in addition to favoring higher priority traffic classes. This step also ensures

that after critical flows are handled, residual capacity can be appropriately allocated to non-

critical flows. To achieve this, we have developed a light-weight adaptation of SWAN [ 47 ]

that incorporates information about critical flows. However, it is also possible to easily

extend other bandwidth allocation mechanisms such as SMORE with information regarding

critical flows identified by Flexile.

We start by presenting Flexile’s model for optimizing flow loss percentiles, and next

discuss the two components above. We then discuss several generalizations related to Flexile.

4.2.1 Optimizing flow loss percentiles

Given bandwidth requirement for a set of flows and a set of failure scenarios with their

associated probabilities, Flexile allocates bandwidth to each flow in each failure scenario so

that the bandwidth loss at a given percentile is minimized. Further, Flexile models flows

corresponding to different traffic classes with different percentile targets for these classes.

Consider a network topology, represented as a graph G = 〈V, E〉. K represents the

set of traffic classes. Each traffic class k ∈ K is associated with a target probability βk

for which the bandwidth requirement must be met for a set of flows Fk in this class. For

instance, high priority traffic may have a 99.9% requirement, while lower priority traffic may

have a 99% requirement, reflecting diverse service level objectives (SLOs) that the network

supports. Each flow f ∈ Fk is associated with traffic demand df that must be sent along the

source-destination pair pr(f). Q represents the set of failure scenarios with pq denoting the

probability of q ∈ Q.

Modeling desired percentile of flow loss. In each traffic class k, for each flow f ∈ Fk,

we define FlowLoss(f, βk) to be the βth
k percentile of loss for flow f . That is, there exist failure

scenarios that together occur with probability βk, where flow f encounters a loss less than

FlowLoss(f, βk).
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q1 q2 q3 q4 … βth percentile  
Flow 1 l11 l12 l13 l14 … …
Flow 2 l21 l22 l23 l24 … …
Flow 3 l31 l32 l33 l34 … …

… …
Flow n ln1 ln2 ln3 ln4 … …

max
Figure 4.9. Meeting bandwidth requirements requires computing the βth

percentile of flow losses.

For each traffic class k, in order to make sure that every flow sees small loss, we are inter-

ested in reducing the maximum of the βth
k percentile loss across all flows f ∈ Fk. Specifically,

we consider the following metric that we refer to as PercLoss (and may abbreviate as αk).

αk := PercLossk = max
f∈Fk

FlowLoss(f, β) (4.1)

Fig.  4.9 depicts this pictorially. Each row corresponds to a flow (f), each column to a failure

scenario (q), and each cell shows the bandwidth loss lfq seen by flow f in scenario q. To

meet flow level requirements, Flexile computes the βth percentile of each row, computes the

max across rows, and minimizes the result.

Considering different traffic classes. Each class k ∈ K is associated with a weight

wk to compute its penalty for loss, which reflects the relative importance of this class. Thus,

the penalty incurred for loss of traffic class k can be represented as wkαk. We focus on a

formulation where Flexile determines a bandwidth allocation such that the sum of penalty

across all traffic classes, ∑
k∈K wkαk is minimized. For instance, a 2 class setting can be

handled with a large weight for the higher priority class, and a small weight for the lower

priority class. Other priority policies are easily modeled (§  4.2.4 ).

Modeling critical scenarios. To ensure each flow’s objectives, Flexile must for each

flow f ∈ Fk select scenarios that together occur with probability βk such that f sees loss less

than αk in these scenarios. We denote these scenarios as critical scenarios for that flow. We
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Table 4.1. Notation.
Notation Meaning

Q Set of all scenarios
K Set of traffic classes
Fk Set of flows in traffic class k
P Set of source-destination pairs

Rk(i) Pair i’s tunnels for class k
E Set of edges
αk The maximum of the βth

k per-
centile loss across all flows f ∈ Fk

βk Target probability for which the
bandwidth requirement must be
met for class k

pr(f) Pair along which flow f is sent
df Traffic demand of flow f
pq Probability of scenario q
wk Weight of traffic class k
ytq 1 if tunnel t is alive in scenario q,

else 0
meq 1 if edge e is alive in scenario q, 0

otherwise
xktq Allocated bandwidth on tunnel

t for traffic class k in scenario
q(routing variable)

lfq Loss of flow f in scenario q
zfq 1 if scenario q is critical for flow

f , else 0

use a binary variable zfq to indicate whether scenario q is critical for flow f . If zfq = 1, q is

critical for f , and the loss of flow f cannot exceed PercLossk, i.e., lfq ≤ PercLossk.

∑
q∈Q

zfqpq ≥ βk ∀k ∈ K, f ∈ Fk (4.2)

αk ≥ lfq − 1 + zfq ∀k ∈ K, f ∈ Fk, q ∈ Q (4.3)

Here, ( 4.2 ) ensures that for each flow in k, we select enough critical scenarios to cover the

probability βk. When zfq = 1, ( 4.3 ) becomes PercLossk ≥ lfq meaning we care about the

loss lfq. When zfq = 0, ( 4.3 ) is satisfied no matter what PercLoss and lfq are, implying we

don’t care about the loss lfq.

We next present the formulation below which determines the best routing and choice

of critical scenarios that minimize the sum of penalty incurred by loss in different traffic
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classes. Each link e ∈ E is associated with a link capacity ce. We use P to represent the

set of source-destination pairs. Each pair i in traffic class k can use a set of tunnels Rk(i)

to route the traffic. This reflects that different traffic classes may have different routing

options and requirements (e.g. background traffic classes can have more tunnel options than

delay-sensitive traffic classes). Let ytq represent whether a tunnel t is alive in scenario q. We

use xktq to denote the bandwidth assigned to tunnel t in scenario q for traffic class k, i.e.,

our designed routing. Table  4.1 summarizes notation.

(I) min
z,x,l,α

∑
k∈K

wkαk

s.t. ( 4.2 ), ( 4.3 )∑
t∈Rk(i)

xktqytq ≥
∑

pr(f)=i,f∈Fk

(1− lfq)df ∀k ∈ K, i ∈ P, q ∈ Q (4.4)

∑
k∈K,e∈t

xktq ≤ ce ∀e ∈ E, q ∈ Q (4.5)

xktq ≥ 0 ∀k ∈ K, i ∈ P, t ∈ Rk(i), q ∈ Q (4.6)

zfq ∈ {0, 1} ∀k ∈ K, f ∈ Fk, q ∈ Q (4.7)

0 ≤ lfq ≤ 1 ∀k ∈ K, f ∈ Fk, q ∈ Q. (4.8)

( 4.4 ) ensures that there is enough bandwidth allocated to each pair. The LHS of (  4.4 ) is

the total amount of traffic required to be sent on pair i, and the RHS is the total allocated

bandwidth on tunnels connecting pair i. This constraint was modeled like [ 27 ]. (  4.5 ) and

( 4.6 ) ensure the allocated bandwidth on tunnels will not exceed any link’s capacity, and the

allocation is non-negative. The final two constraints indicate the z variables are binary, and

ensure the loss fractions are between 0 and 1.

4.2.2 Efficiently finding critical scenarios

The above problem is a Mixed Integer Program (MIP), which can be challenging to solve.

To tackle this, we tailor a systematic decomposition strategy [  50 ], to our domain with many
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problem 
(choose flows)

problem 
(choose flows)

. . .

Master problem

First stage: determine critical scenarios

Second stage: compute routes given critical 
scenarios, and learn constraints

Subproblem 1 
(compute routes in 

scenario 1)
Subproblem 2 Subproblem N

Propose critical 
 scenarios Learned constraints

Figure 4.10. Systematic decomposition approach.

problem specific optimizations to enable faster convergence, and reduce running times. We

discuss the basic strategy, followed by our optimizations.

Basic decomposition strategy. The original problem (I) simultaneously determines

(i) the critical scenarios for each flow; and (ii) how the traffic should be routed in each failure

scenario taking into account for which flows that scenario is critical. Instead, we decompose

the problem into (i) a master problem that proposes the critical scenarios for each flow; and

(ii) a sub-problem which routes traffic when given the proposed set of critical scenarios for

each flow. The sub-problem learns new constraints that are added to the master problem,

which then proposes another set of critical scenarios. By iterating, the process converges

finitely with an optimal solution.

We now discuss optimizations over the standard approach.

Subproblem decomposition. Instead of writing the subproblem as a large LP, we

observe that the subproblem can be decomposed into multiple subproblems, since routing

in each scenario can be derived independently of other scenarios. Each smaller subproblem

determines routing for one failure scenario given critical flows for that scenario. Each second

stage subproblem provides the learned constraints to the master problem so that the master

can alter its critical scenario proposal in the next iteration. Each LP subproblem is small

and solves quickly. Moreover, further speed up is attained by solving the subproblems in
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parallel. Fig.  4.10 illustrates our procedure. For each scenario q, we have the following

smaller subproblem (note that zfq is a parameter here):

(Sq) min
x,l,α

∑
k∈K

αkwk

s.t. αk ≥ lfq − 1 + zfq ∀k ∈ K, f ∈ Fk (4.9)

0 ≤ lfq ≤ 1 ∀k ∈ K, f ∈ Fk (4.10)∑
t∈Rk(i)

xktqytq ≥
∑

f∈Fk,pr(f)=i
(1− lfq)df ∀k ∈ K, i ∈ P (4.11)

∑
k∈K,e∈t

xktq ≤ ce ∀e ∈ E (4.12)

xktq ≥ 0 ∀k ∈ K, i ∈ P, t ∈ Rk(i). (4.13)

Formally, we rewrite (I) as

(I ′) min
z

Penalty(z) s.t. (  4.2 ), ( 4.7 ) (4.14)

Penalty(z) = min
x,l,α

∑
k∈K

αkwk s.t. (  4.3 ), ( 4.4 ), ( 4.5 ), ( 4.6 ), ( 4.8 ) (4.15)

We present some high-level intuition for the inner workings of the decomposition ap-

proach. Indeed, the optimal objective value for the inner problem ( 4.15 ) is convex in z. This

follows from the fact that if, for all i, (xi, li, αi) is feasible when z = zi, then for some multipli-

ers λi ≥ 0 such that ∑
i λi = 1, the solution ∑

i λi(xi, li, αi) is feasible when z = ∑
i λiz

i. This

shows that, the optimal value of the inner problem at z is no more than ∑
i λiα

i. The dual

form of ( 4.15 ) provides a cut of PercLoss(z) because its feasible region does not depend on z).

The decomposition algorithm essentially searches for the minimizer of Penalty(z) iteratively.

Although the exact shape of Penalty(z)’s is unknown at any point in the algorithm, solving

( 4.15 ) gives us one point on the function Penalty(z). Moreover, the dual form of (  4.15 )

provides a cut of Penalty(z). Thus, we can derive an underestimation of Penalty(z) by eval-

uating it at various z. Each cut is a lower bound of function Penalty(z), and the pointwise

maximum of these cuts is an underestimate of Penalty(z). Then, we can find the current

estimated minimizer of the estimated function. Solving ( 4.15 ) at the estimated minimizer
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gives a new cut and a more accurate estimate of Penalty(z). The process converges in finite

time with an optimal solution. To understand why, consider that the inner problem is always

feasible with (x, l, α) = (0, 1, 1) and bounded between 0 and 1. If we use an extreme point

of the dual feasible region to generate a cut (as is the case using dual simplex algorithm), in

finitely many iterations, a cut is developed for each extreme point, and we have an accurate

representation of PercLoss(z).

Reformulating the subproblem. To achieve further speed ups, we reformulate each

subproblem Sq to make the LHS of the constraints the same across all scenarios, so the only

change is in the RHS. This ensures that the the dual solution space is common across the

LPs for different scenarios. This allows LP solvers to memoize the intermediate results from

solving one scenario to speed up the solution of the next scenario. Specifically, we rewrite

( 4.11 ) and ( 4.12 ) as:

∑
t∈Rk(i)

xktq ≥
∑

f∈Fk,pr(f)=i
(1− lfq)df ∀k ∈ K, i ∈ P (4.16)

∑
k∈K,e∈t

xktq ≤ cemeq ∀e ∈ E. (4.17)

Rather than ytq variables that capture tunnel failure, our reformulation introduces meq vari-

ables which represent whether an edge e is alive in scenario q. The reformulation adjusts the

capacity of failed links based on their failure state rather than cancel allocations on failed

tunnels. These changes ensure only the RHS varies for different scenario q.

Master problem with decomposed subproblems We next present the master prob-

lem which derives an underestimate of the minimal penalty. This is improved by adding cut

constraints learnt from solutions of the dual of Sq.

(M) min
z,Penalty

Penalty

s.t. (  4.2 ), ( 4.7 )

Penalty ≥ gq(z·q) ∀g ∈ G,∀q ∈ Q. (4.18)
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G represents the set of all cuts computed so far. Note that since the subproblem is decom-

posed into (Sq) by scenarios, each g ∈ G is expressed as a set of cuts gq(z·q), each constraining

critical flows in one scenario q. Suppose we get a dual solution of (Sq), and the dual vari-

ables of ( 4.9 ), (  4.10 ), (  4.16 ) and ( 4.17 ) are wkfq, okfq, vkiq and ueq respectively. Then, solving

(Sq) results in the following cuts which are added to the master problem in the subsequent

iteration.

gq(z·q) =
∑

k,f∈Fk

(zfq − 1)wkfq +
∑

k,f∈Fk

okfq

+
∑

k,i,f∈Fk,pr(f)=i
vkiqdf +

∑
e

ueqcemeq (4.19)

Our reformulation ensures a common dual solution space for all decomposed subproblems.

Thus, the dual solution wkfq, okfq, vkiq and ueq of (Sq) is also a dual solution of (Sq′) for

any q′ ∈ Q. So we can construct the following cut to constraint critical flows in scenario q′

without solving (Sq′).

gq
q′(z·q′) =

∑
k,f∈Fk

(zfq′ − 1)wkfq +
∑

k,f∈Fk

okfq

+
∑

k,i,f∈Fk,pr(f)=i
vkiqdf +

∑
e

ueqcemeq′ (4.20)

Ensure better stability. To speed up convergence and avoid oscillations around the

optimal, we restrict the step when we update z. We achieve this by adding the following

constraint in (M) to limit the hamming distance between current z variable and z variable

achieved from last iteration.

∑
k∈K,f∈Fk,q∈Q

|zfq − z′
fq| ≤ Limit. (4.21)

Here, z′ is the z variable achieved from last iteration and Limit is the maximal hamming

distance we allow. Another benefit of constraining z’s change over iterations is that more

scenarios will have the same critical flows as in the last iteration. So the subproblem (Sq)

will stay unchanged for these scenarios and does not need to be solved again. The Hamming
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distance constraint can be relaxed to prevent the solution from getting stuck in a local

minima. However, we did not encounter this situation in our empirical evaluations.

Pruning scenarios. We further accelerate the decomposition strategy by recognizing

that not all subproblems need to be solved each iteration. First, we prune out perfect

scenarios where all flows can be simultaneously handled without loss. Second, we prune out

scenarios for which the set of critical flows does not change. Third, our reformulation of (Sq)

discussed earlier ensures that in (Sq) only the RHS varies for different q, and, so, all (Sq)

share the same dual solution space. Thus, by solving only each (Sq) optimally, not only do

we get a cut gq(z·q) for scenario q, but also cuts gq
q′(z·q′) for other scenarios q′ ∈ Q. As a

result, solving a few subproblems can give us many cuts.

Identifying a good starting point. It is desirable to start with a good initial choice

of z so that the algorithm requires fewer iterations to converge. We observe that a flow must

be connected in a failure scenario for that scenario to be critical. Thus, we add constraints

zfq = 0 in (M) if flow f is disconnected in scenario q, and zfq = 1 otherwise. We have the

proposition below which indicates this heuristic is a good starting point.

Proposition 4.2.1. At the initial step of our algorithm (prior to any iteration of the master),

the guarantee from our algorithm is already at least as good as TeaVar or ScenBest.

Proof. Let αq denote the maximum loss across all flows in scenario q, i.e., αq is the

optimal value of Sq with zfq = 1 for all f . Let Q′ be any minimal subset of Q such that∑
q′∈Q′ pq′ ≥ β and for q′ ∈ Q′ and q 6∈ Q′, αq ≥ αq′ . Then, we define v = maxq′∈Q′ αqv, which

is the βth percentile of (αq)q∈Q. In our first step of the algorithm, we set zfq′ = 1 for all f and

q′ ∈ Q′. By definition, ∑
q∈Q′ pqzaq ≥ β. In particular, for each flow f and q ∈ Q′, lfq ≤ v.

Therefore, for each f , the βth percentile of lfq ≤ v. So, our performance guarantee, which is

the maximum across all f of the βth percentile of lfq is no more than v. To see that TeaVar

guarantees a performance no better than v, let xt be the routing strategy obtained using

TeaVar and observe that the maximum loss across all flows using xt for a scenario q is at least

αq. Let r = (1−β)−∑
q′ 6∈Q′ pq, q̄ ∈ Q′ be any scenario with αq̄ = v, and s be the corresponding

optimal sq̄ (in TeaVar formulation). Then, observe that r ≤ pq̄ and α + s ≥ αq̄ = v, where

the inequality follows because there is at least one flow with a loss of αq̄ since αq̄ is the
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minimum possible loss attainable across all flows for scenario q̄. Then, we have that TeaVar

objective is no less than α + 1
1−β

∑
q′∈Q′ pq′sq′ + 1

1−β
rs ≥ 1

1−β

(∑
q′∈Q′ pq′αq′ + rv

)
≥ v, where

the first inequality is because ∑
q′∈Q′ pq′ +r = 1−β, α+sq′ ≥ αq′ , and α+s ≥ v. The second

inequality is because ∑
q′∈Q′ pq′ + r = 1 − β and αq′ ≥ v for q′ ∈ Q′. Moreover, ScenBest

guarantees a loss of v, since the guarantee for flows in any scenario q′ not in Q′ is αq′ . It

follows that the guarantee from the initial step of our algorithm is at least as good as the

one obtained from either ScenBest or TeaVar. �

Algorithm  1 summarizes our decomposition algorithm (Line 17-19 can be executed in

parallel). We remark that in each iteration, the algorithm yields a routing strategy, and the

corresponding Penalty can be computed easily by sorting the optimal values for (Sq) and

computing the βth percentile.

4.2.3 Critical flow-aware online allocation

The offline phase identifies the critical failure scenarios for each flow and guides which

flows to prioritize in the online phase. When a failure occurs, necessary bandwidth is first

allocated to critical flows. However, there is typically significant residual capacity remaining,

which Flexile then allocates to non-critical flows while also favoring high priority traffic.

To achieve this, Flexile uses an adaptation of SWAN’s max-min allocation algorithm [ 47 ],

but with some important changes. A first major change is that Flexile assigns necessary

bandwidth for critical flows as pre-decided by the offline phase. Then, a max-min approach

is used to allocate bandwidth to non-critical flows, and additional bandwidth beyond the

pre-determined minimum to critical flows. Like [  47 ], allocations are first done for higher

priority traffic classes.

Second, SWAN determines the allocation for each traffic class, as well as the routing,

before allocating residual capacity to a lower class. We implement an optimization where we

decide how much traffic the higher class gets, but do not pre-determine the routes. When

solving for the lower priority class, we force a minimum required allocation for the higher

priority class, and then simultaneously determine (i) the routing for both classes; and (ii)
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Algorithm 1 Decomposition algorithm
1: function solve_master(G, z′)
2: Add hamming distance constraint with z′ to (M)
3: Solve (M) with G, and get new variable z
4: return z
5: end function
6: function solve_subproblem(z,q)
7: Solve (Sq) and construct cut constraint gq

8: return xq, gq

9: end function
10: function main(max_iterations)
11: Initialize zfq to be 1 if f is connected in q and 0 otherwise
12: Initialize xq to be ∅ for all q ∈ Q
13: cur_iteration← 0
14: G← ∅
15: while cur_iteration < max_iterations do
16: g ← ∅
17: for q ∈ Q do
18: if q cannot be pruned then
19: xq, gq ← solve_subproblem(z, q)
20: g.add(gq)
21: end if
22: end for
23: G.add(g)
24: z ← solve_master(G, z)
25: cur_iteration← cur_iteration + 1
26: end while
27: return x
28: end function
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the allocation for flows in the lower priority class. Third, rather than do max-min allocations

on bandwidth, we instead consider flow loss, and do a max-min allocation on flow loss.

More generally, Flexile can work with any online bandwidth allocation algorithm, not just

SWAN, depending on the secondary design objective beyond minimizing flow loss percentiles.

For instance, formulation (Sq) could be used online to allocate traffic so as to minimize the

weighted loss of high and low priority flows given a set of critical flows, while in single class

settings, ScenBest could be easily augmented to minimize MLU while prioritizing critical

flows.

4.2.4 Generalizations

Constraining loss on non-critical flows. While §  4.2.3 already ensures non-critical

flows may be allocated bandwidth using residual capacity, we may explicitly constrain loss

on non-critical flows in each scenario through a small change to (I). Suppose for scenario q,

the optimal ScenLoss is lossq. We can add constraints of the form lfq ≤ γ + lossq, where

γ is a constant representing the maximum factor by which the flow’s loss may increase in

that scenario. γ then serves as a knob that trades off the increase the flow sees in that

scenario with PercLoss. By setting γ appropriately, we can ensure optimal performance in

each scenario.

More general scenarios. Beyond link failures, Flexile can easily model Shared Risk

Link Groups (SRLGs) where a group of links fail together. Scenarios now correspond to

SRLG failures, and for each scenario q, the meq parameters capture the links of the SRLGs

that fail. It is also easy to extend Flexile to design for a set of traffic matrices given their

probability. In model (I), each scenario q ∈ Q corresponds to a traffic matrix. The demand

of flow f in (  4.4 ) will become dq
f , reflecting different traffic matrices in different scenarios.

Flexile’s decomposition algorithm still applies.

Explicit priority with multiple traffic classes. In Flexile, by altering the weight in

the objective, more emphasis can be placed on PercLoss for high-priority traffic. Futher, our

online allocation algorithm favors high-priority traffic when using residual capacity, which

usually ensures high-priority traffic does not see loss across scenarios (Fig  4.15 ). If the
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PercLoss of low-priority traffic is even subordinate to sending high-priority traffic in a non-

critical scenarios then Flexile can be adapted as follows. First, Flexile determines critical

flows to minimize PercLoss only considering high-priority traffic. Then Flexile uses the algo-

rithm in §  4.2.3 to push as much non-critical high-priority traffic as possible in each scenario.

Next, Flexile may be used to design for low-priority traffic with additional constraints to

meet bandwidth levels for high-priority traffic determined in the first step. The approach is

easily generalized to multiple traffic classes.

Capacity augmentation to meet flow percentile requirements. Flexile can be

generalized to perform minimum-cost capacity augmentation on the network which is more

cost-effective than a scenario-centric approach. To do this, we may require that, for each

k ∈ K, PercLossk is constrained to be below a specified value and minimize ∑
e weδe, where

δe is the added capacity to link e, which changes the RHS of (  4.5 ) to ce + δe, and we is the

per-unit cost of adding capacity. (If there is a fixed-cost, we can include it by introducing a

binary variable ae which takes value 1 if link e is augmented, and add ∑
e feae to the cost.

To ensure fixed-cost is charged with any augmentation, we add upper-bounding constraints

0 ≤ δe ≤ ueae, where ue is an upper bound on the augmentation.) The decomposition

strategy of § 4.2.2 generalizes to this setting where ce is replaced with ce + δe in (  4.19 ) and

this cut now describes a cut of Penalty in the (z, δ) space.

4.3 Flexile Vs. Teavar

While Flexile minimizes the βth percentile of losses (or Value at Risk or VaR), Teavar [  27 ]

approximates the same using the Conditional Value at Risk (CVaR). CVaR minimizes the

expected loss of the worst (100 − β)th percentile of scenarios. For example, consider a

flow which sees a loss of 0%, 5% and 10% in three scenarios that respectively occur with

probability 0.9, 0.09, and 0.01. Then, the 90th percentile loss (VaR) is 0%, but the CVaR is

5 ∗ 0.09 + 10 ∗ 0.01 = 1.45%.

Recall there are two other differences between Teavar and Flexile. First, Teavar considers

the βth percentile of ScenLoss, unlike Flexile which focuses on the βth percentile of flows.

Second, on failure, Teavar rescales traffic of each source destination pair on live tunnels so
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the same proportion is maintained. In contrast, Flexile like SMORE [  30 ] allows greater

flexibility in how traffic is split across tunnels.

To analyze the advantages of directly considering VaR in Flexile, and decouple these

benefits from other benefits of Flexile, we design two new CVaR-based TE schemes, which

may be viewed generalizations of Teavar:

• Cvar-Flow-St. Here, we use CVaR to approximate the computation of PercLoss. In-

stead of directly computing βth percentile loss for flow f , i.e., FlowLoss(f , β), we use CVaR of

flow f (denoted by CV aR(f, β)) to approximate it. Then we seek to optimize the maximum

CVaR of all flows, which we denote as MaxFlowCVaR. Formally,

MaxFlowCVaR = max
f∈F

CV aR(f, β) (4.22)

. • Cvar-Flow-Ad. This is similar to Cvar-Flow-St except that we allow greater flexibility

in terms of how traffic may be split across tunnels on failure.

We develop Linear Programming (LP) models for computing the routing and bandwidth

allocations associated with these schemes. The following is the formulation for Cvar-Flow-

Ad.

min
x,t,θ,α,s

θ

s.t. θ ≥ θf ∀f ∈ F (4.23)

θf ≥ αf + 1
1− β

∑
q∈Q

pqsfq ∀f ∈ F (4.24)

αf + sfq ≥ lfq ∀f ∈ F, q ∈ Q (4.25)

sfq ≥ 0 ∀f ∈ F, q ∈ Q (4.26)

( 4.4 ), ( 4.5 )

Here, lfq is the loss for flow f in scenario q, θf models the conditional value-at-risk for

flow f , and θ models maxf θf .
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The following formulation, CVar-Flow-St, is derived from CVar-Flow-Ad by requiring

that the routing strategy is the same across all scenarios, i.e., we add the requirement that

xtq = xt for all q. More concretely, we obtain:

min
x,t,θ,α,s

θ

s.t. θ ≥ θa ∀f ∈ F (4.27)

θf ≥ αf + 1
1− β

∑
q∈Q

pqsfq ∀f ∈ F (4.28)

αf + sfq ≥ lfq ∀f ∈ F, q ∈ Q (4.29)

sfq ≥ 0 ∀f ∈ F, q ∈ Q (4.30)∑
pr(f)=i

(1− lfq)df ≤
∑

t∈R(i)
xtytq ∀i ∈ P, q ∈ Q (4.31)

∑
e∈t

xt ≤ ce ∀e ∈ E (4.32)

xt ≥ 0 ∀i ∈ P (4.33)

We have the following proposition showing that these more general strategies are still

quite conservative, and there is significant potential to doing better with Flexile by directly

considering VaR.

Proposition 4.3.1. There exists a setting where PercLoss found by Teavar, and all CVaR

strategies is at least 48% even though there exists an optimal strategy where the network can

achieve an PercLoss of zero.

Proof. Refer to Fig.  4.1 . Consider a strategy that distributes fAB equally over disjoint

paths A−B and A−C−B. Similarly, fAC is distributed equally along the disjoint paths

A−C and A−B−C. Since each flow is carried along two disjoint paths, it follows that in all

scenarios where at most one link fails, none of the flows experiences a loss of more than 50%.

Since single and no link failures cover 0.999702 probability, it follows that the CVar for this

strategy is no more than 0.5 ∗ 0.9702 + (1 − 0.9702) = 0.5149. Observe that the strategy

described above is non-adaptive and the best adaptive strategy cannot perform worse. In

other words, optimal CVar is no more than 0.5149. Now, consider the case where link A−C
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Figure 4.11. (a) Emulation testbed results. (a) Flexile vs. SWAN. (b)
Flexile vs. Teavar and SMORE. (c) Comparing flow losses across scenarios in
emulations with model predicted losses.

fails. Since CVar is the maximum expected loss across all flows and all sets of scenarios that

occur with 1% or more probability, it follows that 0.5149 ≥ CV ar ≥ 1−min{fAB, fAC} which

implies that min{fAB, fAC} ≥ 0.4851. Since, both fAB and fAC must use link A−B, we have

min{fAB, fAC}+ max{fAB, fAC} = fAB + fAC ≤ 1. It follows that max{fAB, fAC} ≤ 0.5149

which implies that both the flows experience at least 48.51% loss in this scenario. A similar

argument shows that both flows experience at least 48.51% loss also in the scenario where

link A−C fails. Since the two scenarios cover a probability of 1.9602%, it follows that

PercLoss1% ≥ 0.4851. The alternate non-adaptive strategy that sends fAB along link A−B

and fAC along link A−C experiences no loss at the 99th percentile since each of the links

does not fail with 0.99 probability. �

4.4 Evaluations

We compare Flexile with state-of-the-art TE schemes on multiple topologies, and validate

the results on an emulation testbed. We discuss our methodology and then results.

Schemes compared. We compare Flexile with

• Teavar and other CVaR schemes: We consider Teavar and two enhanced CVaR

schemes (Cvar-Flow-St and Cvar-Flow-Ad) that we developed (§  4.3 ). These schemes enable

us to separate Flexile’s benefits related to directly optimizing loss percentiles (rather than

approximate with CVaR), and its benefits related to considering flow losses.

93



Table 4.2. Topologies used in evaluation (Flexile).
Topology # nodes # edges Topology # nodes # edges

B4 12 19 Janet Backbone 29 45
IBM 17 23 Highwinds 16 29
ATT 25 56 BTNorthAmerica 36 76
Quest 19 30 CRLNetwork 32 37
Tinet 48 84 Darkstrand 28 31
Sprint 10 17 Integra 23 32

GEANT 32 50 Xspedius 33 47
Xeex 22 32 InternetMCI 18 32

CWIX 21 26 Deltacom 103 151
Digex 31 35 IIJ 27 55

• SMORE: SMORE split traffic optimally among live tunnels upon failures. This is

identical to ScenBest discussed in section § 4.1 when the optimized metric is MLU.

• SWAN: We consider both variants of SWAN [ 47 ], which we refer to as SWAN-

Throughput and SWAN-Maxmin. For each scenario, both schemes allocate bandwidth

to higher priority traffic classes before lower priority ones. SWAN-Throughput maximizes

throughput while SWAN-Maxmin uses an iterative algorithm to approximate max-min fair-

ness.

We include SWAN because like Flexile, it can handle multiple traffic classes. In contrast,

Teavar and SMORE are designed for single traffic class. Thus, our comparisons with SWAN

are based on two traffic classes (a latency-sensitive class, and a lower priority class), while

the comparisons with SMORE and Teavar consider a single traffic class.

When feasible (for smaller topologies), we also compare Flexile with IP, which uses

the optimal routing designed by the MIP formulation (I). Our implementation of Flexile

includes both the decomposition algorithm (§  4.2.2 ) for the offline phase (run for a maximum

of 5 iterations), and the online phase run on failure. We implement all our optimization

models in Python, and use Gurobi 8.0 [ 38 ] to solve them.

Performance metric. Our primary performance metric for all schemes is the PercLoss

for each class achieved by the scheme (i.e., we consider the βth percentile of loss of each

flow in a class, and take the maximum across flows.). We evaluate all the schemes based on

post-analysis. For each scheme, we determine the routing and bandwidth allocation in each

failure scenario, compute the loss of each flow in each scenario, and then compute PercLoss.
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Topologies and traffic model. We evaluate the schemes on 20 topologies obtained

from [  24 ] and [ 30 ] (see Table  4.2 ). Our largest network contains 151 edges and 103 nodes.

We remove one-degree nodes in the topologies recursively so that the networks are not dis-

connected with any single link failure. We choose tunnels balancing latency and disjointness

like prior works [  10 ], [  27 ], [  48 ]. For latency-sensitive high-priority traffic we choose three

shortest paths that are not disconnected by single link failures. For low-priority traffic which

is not as latency-sensitive, we add three additional tunnels from a larger pool of shortest

paths prioritizing disjointness. Our single class experiments use three physical tunnels per

pair that are as disjoint as possible, preferring shorter ones when there are multiple choices.

We used the gravity model [ 39 ] to generate traffic matrices with the utilization of the most

congested link (MLU) in the range [0.5, 0.7] across all topologies. The resulting traffic matrix

was used as such for the single traffic class experiments. For the two-class experiments, the

traffic of each pair was randomly split into high and low priority. We then scaled low priority

traffic by a factor of 2 given the network can run closer to saturation with low priority traffic.

Failure scenarios. For each topology, we use the Weibull distribution to generate the

failure probability of each link, like prior work [ 27 ]. We choose the Weibull parameter so that

the median failure probability is approximately 0.001, matching empirical data characterizing

failures in wide-area networks [ 2 ], [  32 ], [  51 ]. Given a set of link failure probabilities, we

sample failure scenarios based on the probability of the occurrence. Our evaluations assume

independent link failures but Flexile’s approach easily generalizes to shared risk link groups

(§ 4.2.4 ). We discard scenarios with insignificant probability (< 10−6). For single-class

experiment, our design target is set as high a probability target as possible for which all flows

in the network remain connected for the sampled scenarios since the network will trivially

see a PercLoss of 1 when designing for a higher target. We also use this as the design target

for high-priority class in two-class experiments. For low-priority class, we always use 0.99 as

the design target.

Emulation setup. Our emulation experiments are conducted on a Mininet cluster [ 52 ]

running on six Cloudlab servers [  53 ]. Link bandwidths were set to 10 Mbps to avoid software

switch bottlenecks. The traffic demands generated using the approach above was accordingly

normalized. Tunneling was implemented using MPLS labels. We emulate the performance
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of a TE scheme in a failure scenario by starting the network in the normal condition and

failing the appropriate set of links. The source switch uses select groups supported by Open

vSwitch, and weights are set so each tunnel is chosen with a probability determined by

the appropriate TE scheme. The TE scheme also determines how much data each flow is

permitted to transmit. We measure the loss seen by each flow on the emulation testbed

relative to the original demand requested, accounting for both throttling required by the

TE scheme, and losses in the testbed. We compute loss at a desired percentile for each flow

given the emulated losses for each scenario, and its probability, which in turn enables us to

compute the PercLoss for each traffic class.

4.4.1 Comparisons on emulation testbed

We emulate the IBM topology which has 17 switches, and 23 links, generating necessary

traffic using 34 end hosts. The comparisons with SWAN used two traffic classes for all 272

pairs (544 flows in all), while the comparisons with Teavar and SMORE used a single traffic

class for all pairs. Each scheme was emulated in each of 138 sampled scenarios (which cover

more than 99.992% probability) five times.

Flexile vs. SWAN. Fig.  4.11a shows PercLoss achieved by Flexile and SWAN-Maxmin

on the IBM topology for both high and low priority traffic. Each bar shows the median

PercLoss across 5 runs. The error bars show the minimum and maximum. For high priority

traffic, we consider the 99.9%ile loss of each flow, while for low priority traffic, we consider

the 99%ile of each flow. The figure shows that PercLoss is nearly zero for both schemes for

high priority traffic indicating all high priority flows can be sustained without loss 99.9% of

the time. However, while PercLoss is nearly zero for low priority with Flexile, it is fairly

high (> 60%) for SWAN-Maxmin. This indicates that Flexile can carry all low priority flows

with almost no loss 99% of the time, but some flows may see large loss with SWAN-Maxmin

99% of the time.

Flexile vs. SMORE and Teavar. Fig.  4.11b compares Flexile with SMORE and

Teavar using a single traffic class considering the 99.9%ile loss for flows. The PercLoss with

Flexile is nearly zero indicating it can support all flows with minimal loss 99.9% of the time,
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Figure 4.12. Flexile Vs. SWAN. Flexile matched optimal whenever it was
computable. Vertically aligned dots correspond to the same topology.

while the PercLoss achieved by SMORE and Teavar is 17% and 40% respectively indicating

some flows could see significant 99.9%ile loss.

Models vs. Emulation. While our models assume continuous split ratios and traffic

demands, Open vSwitch only takes integer weights in select groups, and some discretization

occurs since testbed traffic is packet-based. To assess the impact of such discretization, we

compare the losses observed in the emulations, and losses predicted by the optimization

models of TE schemes across all flows and all scenarios using the Pearson Correlation Coeffi-

cient (PCC). The PCC values are more than 0.999 in both single-class and two-class setting.

Fig.  4.11c shows a CDF of the losses observed in emulation and simulation across all flows

and scenarios. There is no difference in over 99% of the cases, and a difference of less than

1.67% in all cases. For all schemes, and all runs, PercLoss in the emulations is within 1.67%

of the models, which is much smaller than the performance gap across the schemes. These

results indicate that the emulation results closely match our optimization models.

4.4.2 Comparisons across topologies

Flexile vs. SWAN. We compare Flexile with both SWAN variants – SWAN-Throughput

and SWAN-Maxmin. For high priority traffic, all schemes achieve PercLoss of zero across

all topologies. Fig.  4.12 compares the PercLoss for low priority traffic across topologies.

Clearly, Flexile significantly outperforms both SWAN variants for most topologies. The me-

dian PercLoss across topologies for Flexile is 0%, while the median for SWAN-Maxmin is

58%. In some cases, SWAN-Maxmin sees PercLoss as high as 93%. Interestingly, SWAN-
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Throughput sees extremely high PercLoss of 100% in many cases (median across topologies

is 100%). This is because optimizing throughput may lead to significant unfairness across

flows. Some flows may be consistently sacrificed without any demand serviced in many sce-

narios. As an example, consider a path A-B-C with each link having unit capacity. Here,

SWAN-Throughput would prioritize sending one unit of demand for the AB and BC flows,

and allocate no traffic to the AC flow, as this maximizes throughput.

Flexile vs. Teavar and our CVaR variants. Fig.  4.13 compares Flexile relative to

Teavar and the new CVaR-based schemes that we designed (§  4.3 ) for the single traffic class

setting. Each curve shows a CDF of the PercLoss achieved by a particular scheme across all

topologies.

First, we see that Flexile (left-most curve) achieves significantly lower PercLoss relative

to Teavar (right-most curve). Interestingly, Teavar achieves an PercLoss of 100% in many

cases. To understand this, consider a failure scenario that disconnects the network. Teavar

cannot count such a scenario towards meeting the requirement of any flow since it optimizes

the maximum loss across all source-destination pairs in that scenario. If the topology is

connected less than β% of the time, Teavar can only achieve a 100% loss at the β%ile. In

contrast, each individual flow could still be connected in scenarios that occur β% of the

time or higher, allowing Flexile to achieve a much lower loss at the β%ile (in some extreme

cases, Flexile could guarantee 0% loss for all flows). We also evaluate Teavar in more richly

connected topologies later.

Second, our enhanced schemes Cvar-Flow-Ad and Cvar-Flow-St (which both consider

flow losses) significantly outperform Teavar, but still see high PercLoss relative to Flexile.

This is because the schemes use CVaR to approximate the percentile, while Flexile directly

optimizes the percentile. Cvar-Flow-Ad does better than Cvar-Flow-St as expected because

of more adaptive routing.

Finally, Cvar-Flow-St significantly reduces PercLoss relative to Teavar, with a reduction

of more than 50% in the median case. This indicates considering flow losses offers significant

benefits despite limited routing flexibility, and the CVaR approximation.

Flexile vs. SMORE. SMORE, like Teavar, optimizes the loss across all flows in each

scenario. Since the topology may get disconnected, we considered a variant of SMORE where
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Figure 4.13. Flexile Vs. Teavar and our CVaR variants.

in each scenario we turned off traffic for disconnected flows. This approach performed similar

to Flexile in many cases although there were topologies where Flexile still gave benefits. Even

so, Flexile can verify that the network cannot perform better, while SMORE is unable to do

so.

We also compare Flexile with SMORE in more richly connected settings, which we create

by assuming each link consists of two sub-links that fail independently. We ensure the

topology remains connected in all sampled failure scenarios. Fig. 4.14 compares the PercLoss

achieved by Flexile, SMORE and Teavar in these more richly connected topologies. Flexile

consistently outperforms Teavar and SMORE in most topologies. In the median case, the %

reduction in PercLoss achieved by Flexile over SMORE is 46% and over Teavar is 63%. In

a few cases, we do not report results for Teavar since it did not finish within several hours.

4.4.3 Does Flexile increase loss in scenarios?

As discussed in §  4.1 and §  4.2.4 , although Flexile prioritizes critical flows in each scenario,

it has several techniques to curtail the impact on non-critical flows. We next evaluate Flexile’s

effectiveness in this regard.

Single class traffic: We evaluate Flexile with respect to the ScenLoss metric (§  4.1.1 )

(i.e., the loss of the worst performing flow in each scenario), focusing on connected flows.

We compare Flexile with ScenBest, the optimal scheme in this metric. For all but the IBM

topology, Flexile achieves identical ScenLoss as ScenBest. We have already shown in § 4.1.2 
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(Fig.  4.5 ) that the increase in ScenLoss with Flexile for IBM is modest. In contrast, Teavar

sees high ScenLoss for all topologies. The 99.9%ile ScenLoss with Teavar is 100% for all

except 4 topologies while this metric never exceeds 17% with Flexile and ScenBest for any

topology.

Multiple class traffic: For two class traffic, we generalize the ScenLoss metric to

consider the loss of the worst performing flow for each class separately. We also generalize

the ScenBest scheme to optimize the loss of the worst performing connected flow for each

class, with preference to the higher priority class. We refer to this scheme as ScenBest-Multi.

Fig.  4.15 shows a distribution of the generalized scenario loss metric for various schemes for

the Sprint topology for both traffic classes. We make several observations. First, for high

priority traffic, Flexile incurs no loss for any flow in any scenario. Note that all three

schemes see no loss and overlap on the left. Second, for low priority traffic, while Flexile

does result in an increase in the loss for the worst flow, the increase is modest. Note that

unlike Flexile, ScenBest-Multi performs poorly for the PercLoss metric when loss of flows at a

desired percentile is considered. Finally, Flexile performs much better than SWAN-Maxmin.

This is owing to the optimizations described in § 4.2.3 .

Flexile ensures all high priority flows see no loss for all other topologies as well. For low

priority flows, Flexile ensures the additional loss in the worst-performing flow is small for

most other topologies. In the remaining topologies, Flexile’s approach to constraining the

increase in loss of non-critical flows works well (§  4.2.4 ). Specifically, we consider a variant

Flexile(0.05), which ensures all flows with Flexile sees bandwidth loss at most 5% more
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Figure 4.16. Performance
improvement with each it-
eration.

than ScenBest-Multi in all scenarios. The variant provides significant benefits in PercLoss

even though ScenLoss only increases modestly and is strictly controlled. For instance, for

the Quest topology, Flexile(0.05) achieves an PercLoss of 16%, significantly outperforming

both ScenBest-Multi (35% PercLoss) and SWAN-Maxmin (57% PercLoss). Overall, the

results show Flexile can bound the loss in scenarios, yet provide substantial benefits when

minimizing flow loss at a desired percentile.

4.4.4 Evaluating other aspects of Flexile

Convergence to optimality. We next compare Flexile to the optimal PercLoss that

the network can achieve for topologies for which we could compute the optimal. Fig.  4.16 

shows the CDF of the optimality gap (PercLoss achieved by Flexile - optimal PercLoss)

across topologies after each iteration of Flexile’s decomposition algorithm (§ 4.2.2 ) for the

two-class traffic setting. Across all topologies, Flexile achieves the optimal in 5 iterations,

frequently achieving it in fewer iterations. Interestingly, for 40% of the topologies, Flexile

achieves the optimal in the first iteration showing the effectiveness of our starting point

heuristic. We found Flexile typically converged to optimal even faster in the single-class

experiments.

Sensitivity to scale factor. To see how Flexile responds to different scales of traffic, we

scale the low priority traffic by different factors in our two class traffic experiments. Fig.  4.17 

shows the maximum factor we can scale without incurring any 99%tile loss using Flexile and
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SWAN-Maxmin on different topologies. We can see that Flexile can support much higher

scale factor than SWAN-Maxmin.

Solving time. Fig.  4.18 presents the solving time (Y-Axis) for different topology sizes

(X-Axis) for IP and Flexile, assuming 5 iterations for Flexile. Note that this is the offline

solving time and done prior to failure. Flexile solves multiple small LP subproblems in each

iteration, and a master problem (a MIP). For Tinet (one of our larger topologies), each

subproblem takes 0.10-0.15 seconds. The master problem is much smaller than the IP (I),

and takes less than 0.10 seconds for Tinet. We report the solving time of the master and all

subproblems, based on solving up to 10 subproblems in parallel.

Fig.  4.18 shows that Flexile reduces solving time significantly, and is under 15 seconds for

all topologies except the largest (Deltacom) which takes 118 seconds. In contrast, IP cannot

finish within 1 hour for Deltacom and takes more than 40 minutes for Tinet. Note that

further optimizations are possible for Flexile – e.g., the PercLoss for Deltacom was under

1% after 2 iterations indicating we could have stopped earlier.

Interestingly, we found that the time to solve Teavar is often significantly higher than

Flexile – e.g., Teavar is unable to finish Deltacom even after several hours. Although Teavar

solves a single LP, its solving time can be large since it bundles all the enumerated scenarios

in a single problem.

Finally, the online solving time incurred on failure is comparable to SWAN-Maxmin, and

typically under 3 seconds. Further reductions are achievable with coarse buckets for the
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max-min scheme, or using an even lighter-weight scheme such as SMORE augmented with

critical flows.

4.5 Related work

There has been recent interest in designing TE schemes with probabilistic requirements [  26 ],

[ 27 ], [  54 ]. Lancet [  26 ] designs protection routing schemes that ensure the network does not

experience congestion a desired percentage of time. The primary metric is MLU, and Lancet

does not consider flow losses, which is our focus. Beta [  54 ] tackles an orthogonal problem

where traffic arrives incrementally and in an online fashion, decides whether to accept the

demand. However, the admission decision can be overly conservative, and newly arriving

higher priority traffic may be rejected because of existing lower priority traffic.

NetDice [  55 ] verifies that network configurations meet a probabilistic requirement. The

focus is on distributed control planes (shortest paths, route redistribution, BGP etc.), and

verifying properties such as path length. Earlier work [ 56 ] allows modeling probabilistic

network behaviors, such as packet delivery probability on failures.

Resilient routing schemes [ 10 ], [ 20 ], [ 23 ], [ 31 ], [ 48 ] guarantee the network remains congestion-

free over scenarios with f or fewer failures, focusing on metrics such as MLU, or a demand

scale factor. Instead, Flexile considers failure probability, and flow losses. Researchers

have explored verification of distributed control planes to ensure load is not violated on

failures [  57 ], robust network design under single link or node failures [  11 ]–[ 17 ], and robust

design across traffic matrices [ 15 ], [ 43 ]–[ 45 ].

A linear program is decomposed in [  58 ] to distribute the centralized TE controller, while

Flexile involves decomposing an Integer Program. Recent work [  59 ] decomposes an MCF

problem into a set of subproblems, while Flexile solves a problem over multiple network

states. Finally, much research explores how to re-route traffic to restore connectivity on

failures [ 5 ]–[ 9 ] but does not consider meeting flow loss percentiles.
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4.6 Conclusions

In this thesis, we have presented Flexile, a new approach for designing cloud provider

WANs in a manner that meets the bandwidth requirements of flows over failure scenarios that

occur with a desired probability. Unlike existing TE schemes that seek to meet the require-

ments of all flows over the same set of failure scenarios making them unduly conservative,

Flexile exploits a key opportunity that each flow could meet its bandwidth requirements

over a different set of failure scenarios. As part of Flexile, we have presented an approach to

optimize the βth percentile of bandwidth losses of all flows, a hard problem, and tackled the

same using a novel decomposition approach accelerated with problem-specific insights. We

have extended a CVaR-based approach to our setting, a well-accepted method to approx-

imating loss percentiles, and shown that it can be conservative. Evaluations over 20 real

topologies show the benefits with Flexile are significant. Flexile (i) reduces PercLoss by over

80% relative to Teavar and SMORE for over 50% of topologies; and (ii) has a solving time

of tens of seconds, acceptable for the offline phase, and scales well with the number of flows.

Overall, the results show the promise of Flexile.
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5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5.1 Conclusion

To cope with uncertainty in network operations, this thesis aims at developing routing

schemes that can provide provable worst-case guarantees and schemes that can ensure the

network performance be met a percentage of time.

To provide worst-case guarantees, the research community has developed routing schemes

to ensure the networks can handle the desired traffic under a set of failures. This thesis

discovers that the state-of-the-art scheme can be highly conservative. In order to bridge

the gap between existing schemes and the network intrinsic capability, this thesis designs a

resilient routing (PCF) to support up to f simultaneous failures. PCF introduces a notion

called logical sequence to carefully increase flexibility in network response. This allows us to

achieve high throughput, tractable failure analysis and low response overhead at the same

time. Formal results show that PCF is provably better than the state-of-the-art scheme, and

our experiments show that PCF achieves up to 50% improvement over state-of-the-art on

average.

Most of the existing works don’t consider percentile performance. This thesis contributes

to Lancet, a system for analyzing protection routing schemes that can meet a performance

target a desired percentage of time, by showing how to realize a distributed protection

routing scheme, and extending the scheme to support multiple traffic classes. Further, this

thesis develops a new system (Flexile) for designing a routing scheme to provide provable

percentile guarantees. Flexile exploits a key opportunity that different flows can meet their

requirements through different scenarios, while all existing schemes use the same set of failure

states to meet requirement of all flows. This opportunity enables Flexile to design routing

much more flexibly and to guarantee better percentile performance. Flexile consists of an

offline phase which decides which set of scenarios should be used to meet percentile target for

each flow, and an online phase which designs the actual routing based on the current network

state and information achieved from offline phase. In order to speed up model solving in

Flexile, we develop a decomposition algorithm use many domain specific accelerations to

reduce the solving time. Our experiments show that Flexile reduces traffic loss by more than
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36% comparing to state-of-the-art in the median case across 20 topologies within reasonable

solving time.

5.2 Future research directions

This thesis tackles the problem of designing resilient routing schemes with provable per-

formance in order to keep up with the fast growing traffic demand and increasing performance

requirement. There are still many interesting aspects in resilient routing schemes for further

exploration. Here, we introduce two for potential future research directions: varying traffic

demands and satisfying latency requirements.

Varying traffic demands. In our designs for both PCF and Flexile, we make the

assumption that we are aware of the amount of the traffic we need to carry when we design

the routing. In practice, although we can predict the traffic demand based on the history,

the prediction may not be perfectly accurate so the assumption can be too strong. Further,

there is always a possibility that some unexpected event occurs which brings sudden traffic

spikes. It remains a question how to provide performance guarantees when uncertainty in

traffic demand is considered. We remark here that our approach has the potential to be

adapted to deal with variance in traffic demands. For example, we can introduce traffic

variance into network states so that our designed routing is resilient to a set of scenarios

with different traffic demands. This approach works if only a limited and discrete number of

traffic matrices need to be supported. It is still challenging to consider more sophisticated

and complicated traffic models when designing routing because the range of variance can be

very large.

Satisfying latency requirements. In this thesis, we focus on optimizing the routing to

send more traffic (minimizing the loss) and to guarantee performance in this sense. However,

we pay less attention to how to keep a low latency when designing the routing. While latency

is a critical criteria in practice, in fact, it remains a challenge to design a routing which can

guarantee low latency under a set of failures (or with a certain probability), especially due to

the complex model to describe latency in routing. A simple way to deal with this is to embed

latency requirements in tunnel selection. But this may result in congestion or unsatisfactory
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availability under failures when the selected tunnels are not diverse enough. Thus, how to

design routing with low latency while providing desirable performance guarantees is still an

interesting research direction.
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