AN ASSESSMENT OF CONNECTED VEHICLE DATA: THE EVALUATION OF INTERSECTIONS FOR ELEVATED SAFETY RISKS AND DATA REPRESENTATIVENESS
 by
 Margaret Hunter

A Thesis
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Master of Science in Civil Engineering

Lyles School of Civil Engineering
West Lafayette, Indiana
May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL

Dr. Darcy M. Bullock, Chair
Lyles School of Civil Engineering
Dr. Konstantina Gritzka
Lyles School of Civil Engineering
Dr. Jon D. Fricker
Lyles School of Civil Engineering

Approved by:

Dr. Dulcy Abraham

To my parents, Cindy and Jim, for all the love, support, and laughs for without which it would be a dull, confusing life.
To my brother, Ian, you and I already know you're awesome. Run fast.
To my uncle, Allen, for your quiet, calm mentorship and advice. Be good.
Finally, to my favorite idiots, Rory, Alfie, and MooMoo, for reminding me to cherish the small things and for making me smile every day.

ACKNOWLEDGMENTS

First, I would like to express tremendous gratitude to my advisor, Dr. Darcy Bullock, for many years of guidance and support and for introducing me to transportation data analytics. I truly think it will change the world, and if by chance it doesn't, it certainly changed mine. Additionally, I would like to thank Dr. Jon Fricker and Dr. Nadia Gkritza for sharing their passion for and knowledge of transportation and for providing invaluable feedback that improved this study. Finally, I would be remiss not to not extend a massive thanks the many colleagues that mentored, taught, and assisted me along the way: Jairaj Desai, Dr. Jijo Mathew, Daniel Saldivar, Howell Li, Ben Scholer, Justin Mahlberg, Rahul Sakhare, and Woosung Kim.

TABLE OF CONTENTS

LIST OF TABLES 7
LIST OF FIGURES 8
ABSTRACT 10

1. INTRODUCTION 11
1.1 Study Motivation 12
2. LITERATURE REVIEW 14
2.1 Surrogate Crash Events 14
2.2 Connected Vehicle Data 15
3. STUDY CORRIDOR 17
4. CRASH EVENTS 20
4.1 Crash Data 20
4.2 Analysis: Crash by Manner of Collision 20
4.3 Analysis: Crashes by Time of Day 21
5. EVENT DATA: HARD-BRAKING AND HARD-ACCELERATION 23
5.1 Data 23
5.2 Methodology 23
5.3 Hard-Braking 24
5.3.1 Analysis: Hard-Braking Events by Distance 24
5.3.2 Analysis: Hard-Braking Pattern by Intersection 28
5.4 Hard-Acceleration 32
5.4.1 Analysis: Hard-Acceleration by Distance 32
5.4.2 Analysis: Hard-Acceleration Pattern by Intersection 35
6. CORRELATION: EVENT DATA AND CRASHES 37
6.1 Hard-Braking and Rear-End Collisions: 30 Minute Bins 37
6.1.1 Correlation Test 37
6.1.2 Sensitivity Analysis 39
6.2 Event Data and Collisions: A Better Fit 40
6.3 Volume Correlation 42
7. DATA REPRESENTATIVENESS 44
7.1 The Big Question 44
7.2 Data 44
7.2.1 DOT Traffic Count Data 47
7.2.2 Vehicle Trajectory Data 48
7.3 Methodology 48
7.4 Aggregate Results 54
7.4.1 Indiana 54
7.4.2 Additional States 56
7.5 Disaggregate Results 61
7.5.1 CA: CA-25 65
7.5.2 MN: 48 69
7.5.3 MN: 1335 72
7.5.4 WI: 400026 76
7.6 Conclusion 80
8. CONCLUSION 82
APPENDIX A: PERCENT PENETRATION DATA REPOSITORY 84
APPENDIX B: EXAMPLE STATIONS FOR EACH STATE 89
REFERENCES 124
PUBLICATIONS 130

LIST OF TABLES

Table 6.1. Spearman: Interpretation of Correlation Coefficient 37
Table 6.2. Spearman's correlation between intersection rear-end crash counts and number of hard- braking events by distance, for northbound SR-37 38
Table 6.3. Spearman's correlation between intersection rear-end crash counts and number of hard-braking events by distance for southbound SR-3739
Table 6.4. Number of intersections to have a strong or very strong correlation between hard- braking events and collisions for different time bins 41
Table 6.5. Number of intersections to have a strong or very strong correlation between hard- acceleration events and collisions for different time bins 42
Table 6.6. Spearman's correlation between volume and crashes, hard-braking, and hard- 43acceleration for multiple time bins
Table 7.1. Count Station Attributes 46
Table 7.2. Hourly INDOT and vehicle trajectory counts and the resulting penetration for Indianastation 950106 (I-70 MM 25.8) on Monday August 2, 202152
Table 7.3. August 2021 summary for Indiana station 950106 (I-70 MM 25.8) 53
Table 7.4. Station summary table for interstate and non-interstate percent penetrations for 11 statesin August 202161
Table 7.5. Percent penetration calculations for August 3, 2020 and August 3, 2021 for California station CA-25 67
Table 7.6. Percent penetration calculations for August 21, 2021 for Minnesota station 48 71
Table 7.7. Hourly counts obtained from MnDOT for August 21, 2021 for Minnesota station 4872
Table 7.8. Percent penetration calculations for August 9, 2020 for Minnesota station 1335 75
Table 7.9. Hourly counts obtained from MnDOT for August 9, 2020 for Minnesota station 133576
Table 7.10. Percent penetration calculations for August 8, 2021 for Wisconsin station 400026.79
Table 7.11. Hourly counts for select hours obtained from WisDOT for August 8, 2021 forWisconsin station 40002680

LIST OF FIGURES

Figure 1.1. Visualization of number of events in Indiana in July 2019 (Hunter, Saldivar-Carranza, et al., 2021) 13

Figure 3.1. Indiana signalized corridor location for hard-braking and hard-acceleration event study 18

Figure 3.2. Number of weekday trajectories to enter the intersections by movement type for July 2019.

Figure 4.1. Number of weekday crashes by intersection and manner of collision on SR-37 between January 1, 2016 and July 9, 2020 (Hunter, Saldivar-Carranza, et al., 2021)................................ 21

Figure 4.2. Heatmap of frequency of weekday crashes between January 1, 2016 and July 9, 2020
(Hunter, Saldivar-Carranza, et al., 2021).. 22
Figure 5.1. Visualization of event processing (Hunter, Saldivar-Carranza, et al., 2021) 24
Figure 5.2. Number of weekday hard-braking events by intersection and distance from stop bar
\qquad
Figure 5.3. Heatmap of weekday hard-braking events by intersection for northbound SR-37, in July 2019.. 27
Figure 5.4. Heatmap of weekday hard-braking events by intersection for southbound SR-37, in
July 2019... 28
Figure 5.5. Southbound approach, SR-37 at Southport Road (Intersection 4) 30
Figure 5.6. Southbound approach, SR-37 at Smith Valley Road (Intersection 9)........................ 31
Figure 5.7. Number of weekday hard-acceleration events by intersection and distance from stop
bar .. 33
Figure 5.8. Heatmap of weekday hard-acceleration events by intersection for northbound SR-37,
in July 2019... 34
Figure 5.9. Heatmap of weekday hard-acceleration events by intersection for southbound $\mathrm{Sr}-37$, in
July 2019.. 35
Figure 5.10. Southbound approach, SR-37, at Thompson Road (Intersection 1)......................... 36
Figure 6.1. Sensitivity Analysis for Spearman correlation between hard-braking events and rearend crashes for 8 weeks in July and August 2019 ... 40
Figure 7.1. Locations of DOT count stations used in this study... 45
Figure 7.2. Inductive loops (i) at Indiana station 950106 (I-70 MM 25.8)................................... 47
Figure 7.3. Hourly counts and percent penetration for Indiana station 950106 (I-70 MM 25.8) on
Monday August 2, 2021... 49
Figure 7.4. Average monthly penetration over time by road type for Indiana 54
Figure 7.5. Average percent penetration by day of week for August 2021 aggregated over all stations in Indiana 55
Figure 7.6. Aggregated average percent penetration by time-of-day for August 2021 aggregated over all stations in Indiana 56
Figure 7.7. Summary plots of all stations depicting number of connect vehicle trajectory journeys, number of DOT collected vehicle counts minus the number of connected vehicle trajectory journeys, and the average percent penetration by day and for the month 57
Figure 7.8. Percent penetration for 11 states for August 2020 and August 2021 58
Figure 7.9. Spatial distribution of percent penetration for 11 states 59
Figure 7.10. Average percent penetration by state for interstate, non-interstates, rural, and urban stations 60
Figure 7.11. Monthly percent penetration by station 62
Figure 7.12. Box plot: Percent penetration by station by hour 63
Figure 7.13. Box plot: Percent penetration by station by day 64
Figure 7.14. Box plot: Percent penetration by station 64
Figure 7.15. Location of California station CA-25 66
Figure 7.16. Connected vehicle trajectory points and the associated percent penetration calculations for California station CA-25 66
Figure 7.17. Screen shots of California's CA-25 station traffic counts from Caltrans's PeMS(Caltrans, n.d.)68
Figure 7.18. Location of Minnesota station 48 69
Figure 7.19. Connected vehicle trajectory points and the associated percent penetration calculations for Minnesota station 48 70
Figure 7.20. Location of Minnesota station 1335 73
Figure 7.21. Connected vehicle trajectory points and the associated percent penetrationcalculations for Minnesota station 133574
Figure 7.22. Location of Wisconsin station 400026 77
Figure 7.23. Connected vehicle trajectory points and the associated percent penetration calculations for Wisconsin station 400026 78

Abstract

Historically, agencies have been reliant on physical infrastructure, crash data, manual data collection, and modeling to evaluate their road networks. Over the past several years, enhanced probe data has become commercially available and has shown itself to be a relatively inexpensive and scalable way to evaluate the performance of road networks. In January 2022 alone, 11.3 billion passenger vehicle trajectory waypoints and 279 million passenger vehicle event records were logged in the state of Indiana. This data, typically segmented into vehicle trajectory waypoints and vehicle event records, contains a variety of information including, but not limited to, location, speed, heading, and timestamp.

One use for this enhanced probe data is the evaluation of traffic signals for safety improvements. Typically, agencies require $3-5$ years of crash data to be able to statistically identify intersections in need of safety improvements. This study compared crash data over a 4.5year period at 8 signalized intersections to one month of weekday hard-braking and hardacceleration data from July 2019. A Spearman's rank-order correlation test was used, and a strong to very strong correlation between event data and crashes could be found indicating that just one month of event data could be an adequate substitute for $3-5$ years of crash data.

The representativeness of this data is often a major concern for many agencies as the usefulness of the data is only as good as the data itself. This paper describes and demonstrates a methodology for measuring connected vehicle penetration using data provided by state highway performance monitoring stations. This study looked at 1.7 billion count station vehicle counts and 70 million connected vehicle records across 381 count stations in 11 different states (California, Connecticut, Georgia, Indiana, Minnesota, North Carolina, Ohio, Pennsylvania, Texas, Utah, and Wisconsin). Across the 11 states and 381 stations, the average percent penetration was 3.8% in August 2020 and 3.9% in August 2021. Drilling down to August 2021, the percent penetration observed among the 187 interstate stations varied from 1.6% in Indiana to 10.0% in Wisconsin. A similar comparison of 162 non-interstate count stations showed a variation of 2.1% in MN and 18.0% in WI on non-interstates.

1. INTRODUCTION

Connected vehicle data is emerging as an important new data set for a variety of department of transportation (DOT) applications. One such example is the scalable evaluation of intersection performance measures. Removing the need for expensive infrastructure investments, connected vehicle data can provide several performance measures, such as arrival on green, downstream blockage, split failures, and level of service (E. Saldivar-Carranza et al., 2020). Similar analyses have been extended to include diverging diamonds and roundabouts (E. Saldivar-Carranza et al., 2022; E. D. Saldivar-Carranza et al., 2021). Another such use is the monitoring of highways for potential safety issues and safety improvements, especially within work zones. Studies using connected vehicle data have shown that speed feedback displays, digital speed limit trailers, presence lighting, and queue trucks have a positive impact on vehicle speeds and safety (Mathew et al., 2021; Sakhare, Desai, Mahlberg, et al., 2021; Sakhare, Desai, Mathew, et al., 2021). Additionally, as DOT's and legislatures look to the future of electric vehicles, connected vehicle data can provide a plethora of information regarding the usage of electric vehicles (Desai, Mathew, et al., 2021). Such information will be important in assisting decision makers with policy and infrastructure investments.

Crash data has historically been used to identify emerging safety issues at signalized intersections. However, collecting this data and implementing safety changes can take years. Event data, such as hard-braking and hard-acceleration data, has the potential to greatly reduce the data collection time. This thesis describes a use case for evaluating the correlation between crash data and hard-braking / hard-acceleration connected vehicle data and evaluates the relative penetration of connected vehicle data across 11 states. The remainder of this chapter and subsequent chapters are organized as follows:

- Chapter 1: Introduction and study motivation
- Chapter 2: Literature review
- Chapter 3: Background information on the study corridor
- Chapter 4: Crash data - introduction and analysis
- Chapter 5: Hard-braking and hard-acceleration event data - introduction and analysis
- Chapter 6: Correlation analysis between crash data and event data
- Chapter 7: Data representativeness evaluation across 11 states
- Chapter 8: Conclusion
- Appendix A: Data repository for connected vehicle penetration study
- Appendix B: Example percent penetration calculations for a station in each state

1.1 Study Motivation

The Indiana Department of Transportation (INDOT) has several ongoing projects that embrace the use of digital technologies. Such examples included the use of social media to alert road users of current road conditions, embedded weigh stations paired with roadside cameras to identify overweight trucks, and onboard truck telematics and real-time dashboards to assist with winter operations (Desai, Mahlberg, et al., 2021; INDOT, n.d.). However, identifying intersections in need of safety improvements remains an analog endeavor. Agencies are reliant on written crash reports which can be vague and dependent on witness accounts leaving the exact location unknown. Additionally, due to the relative infrequency of crashes, agencies need $3-5$ years of crash data in order to ensure the validity and accuracy of the agency's models. However, this method is considered reactive as agencies must wait for a substantial crash history to develop as evidence for proceeding with safety improvement projects. There is a growing interest in the industry to replace the historical method with surrogate events to reduce the time between data collection and the implementation of safety improvements.

Since the 1960 's, there has been interest in supplementing or replacing crash counts with traffic conflicts (Perkins \& Harris, 1968). Conflicts occur more frequently than crashes and are caused by the same failures that result in crashes (Tarko, 2020). The higher number of conflicts combined with their similar causations to crashes make them attractive to agencies trying to statistically determine areas for safety improvements. However, conflicts have a disadvantage; they can be difficult to collect, require trained personnel, and can be dependent on the subjective ratings of the observer.

Crowdsourced probe data that provides average segment speeds has been commercially available for some time (Remias et al., 2013). Recent developments of probe data now include data elements such as hard-braking and hard-acceleration from onboard sensors (Ctrl-Shift \& Wejo, 2020). This data, aggregated by third-party vendors, can provide agencies with the exact time and location of events on their roadways (Hunter, Saldivar-Carranza, et al., 2021).

In July 2019, there were over 6 million hard-braking events (Figure 1.1b) and over 10 million hard-acceleration events in Indiana. In contrast, during the same month, there were only 17,652 crashes in Indiana (Figure 1.1a), which represents 0.3% and 0.2% of the total number of hardbraking events and hard-acceleration events, respectively. In addition to the fewer number of crashes, crash reports may be incomplete or unclear. Between 2020 and 2021, 81.5\% of crash records were missing the roadway id and/or the mile marker. Event data, on the other hand, provides the exact time and location of the event. The motivation of this study is to use emerging crowdsourced event data for agency-wide screening of intersections and approaches for potential safety improvements, so agencies can follow up with mitigation measures addressing emerging problems much quicker than typical practices that rely on 3-5 years of crash data (Hunter, SaldivarCarranza, et al., 2021).

(a) In July 2019, there were 17,652 crashes in Indiana.

(b) In July 2019, there were $6,172,453$ hardbraking events in Indiana.

Figure 1.1. Visualization of number of events in Indiana in July 2019 (Hunter, SaldivarCarranza, et al., 2021)

2. LITERATURE REVIEW

This chapter presents a literature review on the current understanding of surrogate crash events and connected vehicle data. Understanding the current state of the practice was important in understanding where this study fit and developing ways to improve it.

2.1 Surrogate Crash Events

In the early years of traffic conflict analysis, a traffic conflict was defined as the occurrence of an evasive maneuver, braking, or a lane change (Older \& Spicer, 1976). Although there are many studies that analyze traffic conflicts, few have looked at hard-braking and hard-acceleration events at a large scale. Bagdadi and Varhelyi presented the critical jerk method to differentiate between critical and potentially critical events (Bagdadi \& Várhelyi, 2013). In a following paper, Bagdadi compared the critical jerk method to the longitudinal acceleration method in a naturalistic driving study focused on safety critical braking events. The study concluded that the critical jerk method was about 1.6 times better than the longitudinal acceleration method at identifying nearcrashes (Bagdadi, 2013). Stipancic, et al. compared hard-braking events and hard-accelerating events to crash frequency for links and intersections. For both hard-braking events and hardacceleration events, a positive correlation was found between the number of events and crash frequency for both links and intersections; however, the correlation was stronger for intersections (Stipancic et al., 2018). Li, et al. analyzed roughly 1.5 million crowd sourced hard-braking events at signalized intersections, work zones, interchanges, and entry/exit ramps. The study concluded that dilemma zones could be identified by hard-braking events along with work zones that may be in need of geometry changes or more advanced warning signs (Li et al., 2020).

Using video camera footage, Essa and Sayed concluded that the highest frequency of traffic conflicts occurred at the beginning of green as the queue is discharged at a low speed while vehicles joining the queue approach at a high speed; nevertheless, they considered most of these conflicts to be low-severity (Essa \& Sayed, 2019). While Mekker, et al.'s study focused on free flow and congested conditions on interstates, the study determined that a crash was approximately 24 times more likely to occur in congested conditions than in free-flowing conditions (Mekker et al., 2014). One common cause of congestion on interstates is construction activity. Desai, et al.
found that, in and around interstate work zones, there was approximately $1 \mathrm{crash} /$ mile for every 147 hard-braking events (Desai et al., 2020a).

Chapters 3-5 expand on a previously published paper looking at the relationship between hard-braking and crashes along SR-37. These chapters also consider hard-acceleration and add additional time bins to attempt to improve the correlation between hard-braking and hardacceleration events (Hunter, Saldivar-Carranza, et al., 2021).

2.2 Connected Vehicle Data

Connected vehicle data is just the latest in the evolution of vehicle data. As early as 1999, GPS based travel time data was used to evaluate agency infrastructure in Louisiana (Quiroga \& Bullock, 1998). By the early 2010s, crowdsourced vehicle probe data became available to both drivers and agencies through many providers and smartphone applications (INRIX, n.d.; Levine, 2019; Wang, 2007). While data gathered from smartphones was the main component to this crowdsourced data, some providers incorporated GPS-enabled vehicles as well (Hoseinzadeh et al., 2020; Kim \& Coifman, 2014). In the following years, many studies have been conducted to understand the accuracy of these datasets. These studies include a study conducted on 2,500 miles of roadway on and around I-95 evaluating commercially provided travel time and speed data (Haghani et al., 2009), a two-month study comparing probe data speeds to speeds obtained from loop detectors (Kim \& Coifman, 2014), studies comparing probe data to Bluetooth sensors with a focus on arterials and surface streets (Hoseinzadeh et al., 2020; X. Zhang et al., 2015), and a multiyear study comparing probe data to radar sensors (Ahsani et al., 2019).

These past iterations of vehicle data have been well tested and have been validated for many years. Connected vehicle trajectory data, which contains individual vehicle locations, timestamp, speed, and heading from onboard sensors, however, is still in the pilot phase for many agencies. Over the past several years, many studies focused on creating methodologies for evaluating road networks at low penetration. One study presented a method, tested against simulations and real-world data, for estimating queue length and traffic volumes without needing to explicitly know the market penetration (Zhao et al., 2019). A study conducted by Zhang et al. found that a 4% penetration was sufficient to improve ramp metering performance (C. Zhang et al., 2019). However, studies by Day et al. found that aggregated data at penetration levels as low
as $0.09 \%-0.8 \%$ would provide acceptable levels of representation for corridor retiming given a large enough aggregation period (Day et al., 2017; Day \& Bullock, 2016).

While connected vehicle data has led to the creation of new techniques to evaluate road networks (Desai et al., 2020b; Hunter, Saldivar-Carranza, et al., 2021; Li et al., 2019, 2020; Ma et al., 2020; E. Saldivar-Carranza et al., 2020; Waddell et al., 2020), there are few studies looking at connected vehicle penetration rates. In 2016, Li et al. compared loop detectors counts to vehicle trajectory counts and found an average percent penetration of 1.1% with a range of 0.2% to 2.0% depending on the time of day (Li et al., 2016). Chapter 7 of this paper expands upon two previous papers. The first paper analyzed the percent penetration for 3 months in 2020 in Indiana and found interstates to have an average percent penetration of 4.3% and non-interstates to have an average percent penetration rate of 5.0% (Hunter, Mathew, Cox, et al., 2021). The second paper extended the geographic analysis area to include Ohio and Pennsylvania and a total of 54 count station locations. The study found for August 2020, the average percent penetration ranged from 3.9% in Pennsylvania to 4.6% in Indiana (Hunter, Mathew, Li, et al., 2021). Utilizing a similar methodology, Chapter 7 continues to expand the number of count stations and number of states.

3. STUDY CORRIDOR

This study utilizes weekday event data collected between July 1 and July 31, 2019, at 8 intersections along a corridor on SR-37, south of Indianapolis, IN (Figure 3.1a, callout i). The corridor is a 4 to 6 -lane principal arterial with a speed limit of 55 mph . The volume along the corridor varies between 64,000 vehicles/day at the northernmost intersection, 49,000 vehicles/day in the middle of the corridor, and 38,000 vehicles/day at the southernmost intersection. Indianapolis commuters living south of the city use this corridor to commute northbound in the morning and southbound in the evening. The studied intersections (Figure 3.1b), in north to south order, are Thompson Rd., Harding St., Epler Ave., Southport Rd., Wicker Rd., County Line Rd., Fairview Rd. and Smith Valley Rd. These intersections run on an actuated-coordinated operation, most of them with a cycle length of 120 seconds, across four different weekday time-of-day (TOD) plans (Hunter, Saldivar-Carranza, et al., 2021):

AM Peak (AM): 05:00 - 09:15
Mid-day (MD): 09:15-14:30
PM Peak (PM): 14:30-19:00
Evening (EV): 19:00-22:00
An additional detail of note is that intersection 2, Harding St., in the southbound direction operates on a contestant green signal.

Figure 3.1. Corridor location for hard-braking and hard-acceleration event study

The number of vehicle trajectories along the corridor varies between 823 trajectories/day at the northernmost end, 414 trajectories/day in the middle, and 472 trajectories/day at the southernmost end. Figure 3.2 presents the number of weekday trajectories to traverse each intersection by movement type in July 2019. Noticeably, the vast majority of vehicles travel straight through the intersections instead of turning. Additionally, intersections 4 and 5 stand out as having the most cross traffic (Figure 3.2c and Figure 3.2d).

Figure 3.2. Number of weekday trajectories to enter the intersections by movement type for July 2019

4. CRASH EVENTS

4.1 Crash Data

The crash counts were aggregated by intersection using information gathered from Indiana's online crash repository. Using the provided GPS information, crashes that were located along the corridor within 1320 ft of an intersection were assigned to that intersection. Crashes that were missing geolocation information were manually assigned to intersections on the study corridor, if applicable, by reading through the crash report's narrative. Crashes were then filtered by their different attributes, such as their recorded manner of collision, direction of travel, and time of day.

In Indiana, during July 2019, 17,652 crashes were reported, of which 24 occurred along the roughly 6.5 -mile study corridor. 10 of those 24 crashes occurred in the vicinity of an intersection. As agencies need $3-5$ years of crash data in order to have enough crash data to perform a statistical correlation test, this study collected crash data for a 4.5 -year period between January 1, 2016 and July 9, 2020. This increased the intersection crash count to 551 crashes, of which 391 were weekday crashes. Of the 391 weekday crashes, 261 of those indicated a rear-end collision and 24 indicated a right-angle collision (Hunter, Saldivar-Carranza, et al., 2021).

4.2 Analysis: Crash by Manner of Collision

Figure 4.1 shows a stacked bar graph of the number of crashes categorized by manner of collision that occurred adjacent to the 8 intersections along SR-37 on weekdays during the 4.5year study period. The southbound approach of intersection 4, Southport Rd., stands out as having the most crashes (71 crashes) for the 4.5 -year period. Of those 71 crashes, 70% were rear-end collisions. Likewise, the second and third highest crash count approaches, southbound intersection 5, Wicker Rd., and northbound intersection 8, Smith Valley Rd., have 75\% and 65\%, respectively, of their total crash count as rear-end crashes. Overall, 65% of the 391 recorded weekday crashes on this corridor were rear-end collisions. Right-angle collisions were less frequent and only accounted for 24 of the 391 weekday crashes (6%), with the most right-angle collisions occurring at intersection 4, Southport Rd. (2 in NB and 7 in SB), and intersection 6, County Line Rd. (4 in NB and 3 in SB) (Hunter, Saldivar-Carranza, et al., 2021).

(a) Northbound
(b) Southbound

Figure 4.1. Number of weekday crashes by intersection and manner of collision on SR-37 between January 1, 2016 and July 9, 2020 (Hunter, Saldivar-Carranza, et al., 2021)

4.3 Analysis: Crashes by Time of Day

Figure 4.2 presents a heatmap of weekday crashes aggregated over the study period. Crashes were binned by 30 -minute periods and assigned to their respective intersections. In the southbound approach (Figure 4.2b), intersection 4, Southport Rd., and intersection 5, Wicker Rd., stand out in the PM time frame as having a relatively large number of crashes (Hunter, Saldivar-Carranza, et al., 2021).

Figure 4.2. Heatmap of frequency of weekday crashes between January 1, 2016 and July 9, 2020 (Hunter, Saldivar-Carranza, et al., 2021)

5. EVENT DATA: HARD-BRAKING AND HARD-ACCELERATION

5.1 Data

The event data used in this study was made commercially available by a data provider that works directly with the original equipment manufacturers (OEMs). The enhanced probe data from these connected passenger vehicles included an anonymized unique identifier along with timestamp, geolocation, speed, heading, and event description, such as hard-braking/acceleration (Note: Connected vehicles, in this paper, are defined as any vehicle that sends information to another vehicle, a roadside unit, or it's manufacturer). The provider of this data defined hardbraking and hard-acceleration events as any vehicle deceleration or acceleration with a magnitude greater than $8.76 \mathrm{ft} / \mathrm{s}^{2}(0.272 \mathrm{~g})$. In July 2019, over 6,000 hard-braking events occurred along SR37 within 1320 ft of the 8 intersections. Likewise, over 11,000 hard-acceleration events occurred. The penetration level of this data is estimated to be around 2% (Hunter, Saldivar-Carranza, et al., 2021).

5.2 Methodology

The events analyzed in this paper were sorted by intersection, distance from stop bar, and speed at which the vehicle was traveling when the event occurred. In this study, the analysis was limited to through movements. A geofence region was drawn along the through lanes for each approach. This upstream region began parallel to the opposing direction's stop bar and ended 1320 ft , a quarter mile, upstream. Once the geofenced region was defined, the events that occurred within those regions were selected, and the GPS location of each event was compared to the location of the stop bar in order to calculate the distance from stop bar. Figure 5.1a shows the hardbraking events for an intersection along the study corridor. Figure 5.1b shows the upstream geofence regions and the geofenced hard-braking events color coded by speed. The 400 ft boundary, relative to the stop bar, roughly corresponds to the location of the dilemma zone detectors at this intersection (Gazis et al., 1960; Hunter, Saldivar-Carranza, et al., 2021; Parsonson, 1978; Zegeer \& Deen, 1978).

(a) Approximately 3,000 hard-braking event points around the intersection of SR 37 and \#4 Southport Rd.

(b) Approximately 1,600 hard-braking points captured by the north and southbound upstream geofence regions. Hard-braking event points are colorized by speed of vehicle at the time of the event.

Figure 5.1. Visualization of event processing (Hunter, Saldivar-Carranza, et al., 2021)

5.3 Hard-Braking

5.3.1 Analysis: Hard-Braking Events by Distance

The hard-braking events are classified by their distance from the stop bar to study the impact of dilemma zone (Gazis et al., 1960; Parsonson, 1978; Zegeer \& Deen, 1978) and queuing. Type II dilemma zone has been defined in previous literature as the road segment where there is a $10 \%-90 \%$ probability of a vehicle stopping at the beginning of the yellow light (Parsonson, 1978). The occurrence of hard-braking events less than 400 ft (location of advance detector upstream of stop bar at 55 MPH speed limit zone) from the stop bar at lower speeds are possibly due to vehicles stopping for the red light, whereas such occurrences at higher speeds could be due to dilemma
zone issues. Hard-braking events occurring at distances greater than 400 ft from the stop bar are potentially due to long queues during oversaturated conditions.

Figure 5.2 shows the number of weekday hard-braking events occurring at each intersection, stacked by distance from the stop bar, aggregated over the month of July 2019. For both northbound and southbound approaches, the majority of the hard-braking events occur within 400 ft of the stop bar (73%). However, there are a few intersections (\#8 Smith Valley Rd., in NB and \#4 Southport Rd. and \#5, Wicker Rd. in SB) where more than 40% of hard-braking events occurred more than 400 ft from the stop bar (Hunter, Saldivar-Carranza, et al., 2021). Additionally, comparing the number of trajectories to pass through each intersection in the northbound and southbound directions (Figure 3.2a and Figure 3.2b) and the number of hard-braking events by intersection reveals that the number of hard-braking events is not directly related to the number of trajectories of the same direction. However, there may be a positive relationship between the number of trajectories to pass through each intersection in the eastbound and westbound directions (Figure 3.2c and Figure 3.2d) and the number of hard-braking events by intersection. For example, southbound intersection 4, Southport Rd., has the most hard-braking events but is far from having the most trajectories in the northbound or southbound directions. However, southbound intersection 4, Southport Rd., does have the greatest number of cross street trajectories.

Note: Stop bar is located at 0 ft .
Figure 5.2. Number of weekday hard-braking events by intersection and distance from stop bar

To understand the temporal nature of the hard-braking events and their distances from the stop bar, a heatmap was generated. Figure 5.3 illustrates a heatmap of the number of hard-braking events, during weekdays in July 2019, on the northbound approach over a 24 -hour period (30minute bins) across two distance categories - less than 400 ft and greater than 400 ft . For the less than 400 ft category, the majority of hard-braking events occur during the AM, MD and PM plans (Figure 5.3a), with no clear pattern or trend. For the 400 - 1320 ft range (Figure 5.3b), there are generally fewer hard-braking events, except for perhaps intersection 8, Smith Valley Rd, during the PM plan.

Figure 5.4 shows a heatmap similar to Figure 5.3, for the southbound approach. Hardbraking events within 400 ft of the intersection (Figure 5.4a) are generally higher for the PM plan, especially at intersection 8, Smith Valley Rd. Figure 5.4b, which is comprised of events occurring
beyond 400 ft , shows a different pattern than the northbound approaches. Intersection 4, Southport Rd., and intersection 5, Wicker Rd., experience a large number of hard-braking events during the PM plan. This could be indicative of hard-braking events that occur at the back of long queues during the PM peak period (Hunter, Saldivar-Carranza, et al., 2021).

(a) Between 0 and 400 ft upstream of the stop bar

(b) Greater than 400 ft upstream of the stop bar

Figure 5.3. Heatmap of weekday hard-braking events by intersection for northbound SR-37, in July 2019

Figure 5.4. Heatmap of weekday hard-braking events by intersection for southbound SR-37, in July 2019

5.3.2 Analysis: Hard-Braking Pattern by Intersection

To further investigate the pattern of hard-braking events, a histogram of the events stacked by speeds were plotted for different time of day plans over their distance from the stop bar. Figure 5.5 and Figure 5.6 present two such patterns for weekdays between 5:00 AM and 10:00 PM in July 2019.

Figure 5.5 shows the hard-braking events at the southbound approach of intersection 4, Southport Rd. During the PM time plan (Figure 5.5b), hard-braking events are occurring consistently for the entirety of the quarter-mile from the stop bar, with very few of those hard-
braking events occurring at speeds over 45 mph . The aerial image in Figure 5.5 a shows that there are no driveways or bus stops in the region that could be contributing to these hard-braking events.

Figure 5.6 shows the hard-braking events at the southbound approach of intersection 8, Smith Valley Rd. The PM plan, (Figure 5.6b), stands out as having numerous hard-braking events within the $0-400 \mathrm{ft}$ region. In some of the speed bins around 250 ft upstream of the intersection, over 60% of those hard-braking events occur at speeds above 45 mph which could indicate dilemma zone issues. Dilemma zone protection is often difficult on coordinated movements as more phases compete for green time and coordinated phases are forced off (Hunter, SaldivarCarranza, et al., 2021).

Figure 5.6. Southbound approach, SR-37 at Smith Valley Road (Intersection 9)

5.4 Hard-Acceleration

5.4.1 Analysis: Hard-Acceleration by Distance

As with hard-braking, the hard-acceleration events are first classified by their distance from the stop bar. Figure 5.7 shows the number of weekday hard-acceleration events occurring at each intersection, stacked by distance from the stop bar, aggerated over July 2019. Similar to hardbraking, a large portion of hard-acceleration events occurred between the stop bar and 400 ft upstream (51%). However, while a negligible number of hard-braking events occurred downstream of the stop bar, over 40% of hard-acceleration events occurred past the stop bar. Additionally, a disproportionate number of hard-acceleration events, almost 30%, occurred at intersection 1, Thompson Rd. Like hard-braking, the number of hard-acceleration events did not directly trend with the number of trajectories traveling in the northbound and southbound directions (Figure 3.2a and Figure 3.2b). However, unlike hard-braking, no discernable pattern is apparent between the number of hard-acceleration events and the number of trajectories in the eastbound and westbound directions (Figure 3.2c and Figure 3.2d) either.

Note: Stop bar is located at 0 ft.
Figure 5.7. Number of weekday hard-acceleration events by intersection and distance from stop bar

Temporal heatmaps were also generated for hard-acceleration events. While the hardbraking heatmaps focused on the specific location of the even upstream of the stop bar, these hardacceleration heatmaps are divided by events occurring downstream of the stop bar (-200 - 0 from the stop bar) and upstream of the stop bar ($0-1320 \mathrm{ft}$ from stop bar). Figure 5.8 and Figure 5.9 show the number of hard-acceleration events, during weekdays in July 2019, for the northbound and southbound approaches, respectfully. In the northbound direction, no pattern stands out in the downstream region (Figure 5.8a); however, in the upstream region, intersection 1, Thompson Rd., stands out has having more hard-acceleration events than other intersections throughout the daylight hours (Figure 5.8b). In the southbound direction, the downstream region, as with the northbound direction, has no major discernable pattern (Figure 5.9a). Upstream of the stop bar in
the southbound direction, however, has a clustering of hard-acceleration events in the PM time period at intersection 1, Thompson Rd., intersection 4, Southport Rd., intersection 5, Wicker Rd., and intersection 8, Smith Valley Rd. (Figure 5.9b).

(a) Downstream of the stop bar

(b) Upstream of the stop bar

Figure 5.8. Heatmap of weekday hard-acceleration events by intersection for northbound SR-37, in July 2019

Figure 5.9. Heatmap of weekday hard-acceleration events by intersection for southbound SR-37, in July 2019

5.4.2 Analysis: Hard-Acceleration Pattern by Intersection

Further replicating the hard-braking study with hard-acceleration, histograms of events stacked by speeds, plotted for different time of day plans, over their distance from the stop bar were created. Figure 5.10 shows an example of these plots.

Figure 5.10 shows the hard-acceleration event pattern for the southbound approach of intersection 1, Thompson Rd. Perhaps, unsurprisingly, the majority of hard-acceleration events regardless of time of day occur just before the stop bar or just after the stop bar (Figure 5.10b). Additionally, the vast majority of these events are occurring at speeds less than 30 mph . This could indicate that vehicles are rapidly accelerating as the signal turns to yellow or even red which could
further indicate a dilemma zone issue and/ or an eagerness to accelerate after the light has turned green.

(a) Aerial photo of the southbound approach

(b) Frequency of hard-acceleration events by distance to the stop bar and speed for weekdays, July 2019

Figure 5.10. Southbound approach, SR-37, at Thompson Road (Intersection 1)

6. CORRELATION: EVENT DATA AND CRASHES

6.1 Hard-Braking and Rear-End Collisions: 30 Minute Bins

In addition to the graphical visualizations highlighting similar patterns between crashes and events, several correlation tests are performed to determine if a linear correlation is present. In the first correlation test, the aggregated July 2019 weekday hard-braking events occurring over a 30minute period are compared with the aggregated 4.5-year period rear-end crashes occurring over the same 30-minute period (Hunter, Saldivar-Carranza, et al., 2021). Rear-end collisions were the focus of this first correlation test due to the fact that the vast majority of collisions at intersections along this corridor were rear-end collisions. Additionally, hard-braking and rear-end collisions are intuitively related; A common reaction to approaching a vehicle and sensing a collision is to slam on the brakes.

6.1.1 Correlation Test

A simple Spearman rank order correlation test (Spearman, 1904) is conducted to evaluate the monotonic relationship between a pair of data. The correlation coefficient, r_{s}, represents the strength of that relationship. There are many interpretations in the literature (C.P \& J., 2007; Y.H., 2003) on coefficient thresholds, but this study utilizes a conservative interpretation suggested by Evans (Evans, 1996) as seen in Table 6.1.

Table 6.1. Spearman: Interpretation of Correlation Coefficient

Correlation Coefficient	Correlation Significance
$0.80-1.0$	Very Strong
$0.60-0.79$	Strong
$0.40-0.59$	Moderate
$0.20-0.39$	Weak
$0.00-0.19$	Very Weak

Table 6.2 and Table 6.3 show the results of the Spearman test conducted at 95% and 99% confidence levels and highlights intersections with a strong correlation, for northbound and southbound respectively. Results indicate a strong correlation between rear-end crashes and hardbraking events past 400 ft of the stop bar at northbound intersection 8, Smith Valley Rd., and
southbound intersection 4, Southport Rd., and intersection 5, Wicker Rd. A check in the strong correlation box is used if the r_{s} value exceeds the 0.6 threshold shown in Table 6.1.

Interestingly, while southbound intersection 8, Smith Valley Rd. experienced a high number of high-speed hard-braking events within 250 ft of the stop bar (Figure 5.6b), this location does not exhibit a strong correlation to rear-end crashes as suggested by prior conflict models (Hunter, Saldivar-Carranza, et al., 2021; Sharma et al., 2011).

Table 6.2. Spearman's correlation between intersection rear-end crash counts and number of hard-braking events by distance, for northbound SR-37

Int ID	$\mathbf{0}-\mathbf{4 0 0} \mathbf{f t}$			$\mathbf{4 0 0}-\mathbf{1 3 2 0} \mathbf{f t}$		
	$\mathbf{r}_{\text {s }}$	p-value	Strong Correlation	$\mathbf{r}_{\mathbf{s}}$	p-value	Strong Correlation
1	0.23	0.11		0.21	0.15	
2	0.10	0.52		0.44^{*}	0.002	
3	0.25	0.09		$0.33^{* *}$	0.02	
4	0.16	0.28		0.28	0.06	
5	-0.15	0.31		$0.33^{* *}$	0.02	
6	0.20	0.18		0.2	0.19	
7	$0.34^{* *}$	0.02		0.15	0.32	
8	0.42^{*}	<0.001		0.65^{*}	<0.001	\checkmark

Table 6.3. Spearman's correlation between intersection rear-end crash counts and number of hard-braking events by distance for southbound SR-37

Int ID	$\mathbf{0}-\mathbf{4 0 0} \mathbf{f t}$			$\mathbf{4 0 0} \mathbf{- 1 3 2 0} \mathbf{f t}$		
	$\mathbf{r}_{\mathbf{s}}$	p-value	Strong Correlation	$\mathbf{r}_{\mathbf{s}}$	p-value	Strong Correlation
1	0.54^{*}	<0.001		0.15	0.32	
2	0.15	0.3		0.08	0.58	
3	0.55^{*}	<0.001		0.57^{*}	<0.001	
4	0.53^{*}	<0.001		0.72^{*}	<0.001	\checkmark
5	0.44^{*}	0.002		0.61^{*}	<0.001	\checkmark
6	0.46^{*}	0.001		$0.31^{* *}$	0.03	
7	0.12	0.14		0.22	0.13	
8	$0.33^{* *}$	0.022		0.23	0.11	

* Significant at 99\% Confidence Level
** Significant at 95\% Confidence Level

6.1.2 Sensitivity Analysis

To determine if one month of hard-braking event data is sufficient to suggest a reasonable correlation between hard-braking events and crashes, a sensitivity analysis using Spearman's correlation is performed. While this study primarily uses one month of hard-braking data collected from July 2019, the sensitivity analysis includes data from July and August 2019. Figure 6.1 shows the results of this analysis. The two plots in Figure 6.1 show that the r_{s} values plateaus around 4 weeks' worth of data. This suggests that one month of hard-braking data is sufficient to result in a reliable correlation with over 4.5 years' worth of crash data (Hunter, Saldivar-Carranza, et al., 2021).

Figure 6.1. Sensitivity analysis for Spearman correlation between hard-braking events and rearend crashes for 8 weeks in July and August 2019

6.2 Event Data and Collisions: A Better Fit

Next, the study compared different time bins, types of crashes, and the relationship between hard-acceleration and crashes to determine if a better correlation could be achieved. Table 6.4 and Table 6.5 show the results of this comparison. Table 6.4 presents the number of intersections to have a strong or very strong correlation between hard-braking and all collisions and specifically rear-end collisions for both directions and three distance regions: $0-400 \mathrm{ft}, 400-1320 \mathrm{ft}$, and 0 - 1320 ft . Overall, binning hard-braking and crashes in 3-hour time bins was the most affective in achieving a strong or very strong correlation between collisions and hard-braking events. In the southbound direction, in the 3-hour time bin, all 8 intersections had a strong or very strong correlation between rear-end collisions and hard-braking events occurring in the 0-1320 ft region.

Table 6.4. Number of intersections to have a strong or very strong correlation between hardbraking events and collisions for different time bins

	NB					SB				
	$\begin{gathered} 15 \\ \text { Min } \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \text { Min } \end{gathered}$	$\begin{gathered} 1 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 2 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 3 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 15 \\ \text { Min } \end{gathered}$	$\begin{gathered} \text { 30 } \\ \text { Min } \end{gathered}$	$\begin{gathered} 1 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 2 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 3 \\ \text { Hour } \end{gathered}$
0-400 ft										
All	0	0	0	1	5	0	0	3	4	5
Rear-End	0	0	1	2	4	0	0	4	4	7
400-1320 ft										
All	0	0	0	5	5	0	2	5	5	6
Rear-End	0	1	1	4	6	0	2	4	5	6
0-1320 ft										
All	0	0	1	3	6	0	1	5	5	7
Rear-End	0	0	1	4	5	0	1	5	5	8

Note: Max value is 8 intersections

Table 6.5 shows the number of intersections to have a strong or very strong correlation between hard-acceleration and all collisions, specifically rear-end collisions, and specifically rightangle collisions. Right-angle collisions were added to the hard-acceleration analysis because it was speculated that vehicles rapidly accelerating to cross the intersection before the red signal would be in direct conflict with cross street traffic. For this same reason, an additional distance range, $-200-0 \mathrm{ft}$, was included in order to capture hard-acceleration events occurring after the stop bar. Like hard-braking, the 3-hour time bin was the most effective in correlating hardacceleration to crashes. Additionally, like hard-braking, in the southbound direction, in the 3-hour time bin, all 8 intersections had a strong or very strong correlation between rear-end collisions and hard-acceleration events occurring in the 0-1320 ft region. Interestingly, the distance range where right-angle collisions are most likely to occur, - $200-0 \mathrm{ft}$, had the least number of intersections with a strong or very strong correlation between right-angle collisions and hard-acceleration events.

Table 6.5. Number of intersections to have a strong or very strong correlation between hardacceleration events and collisions for different time bins

	NB					SB				
	$\begin{gathered} 15 \\ \text { Min } \end{gathered}$	$\begin{gathered} \mathbf{3 0} \\ \text { Min } \end{gathered}$	$\begin{gathered} 1 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 2 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 3 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 15 \\ \text { Min } \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { Min } \end{gathered}$	$\begin{gathered} 1 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 2 \\ \text { Hour } \end{gathered}$	$\begin{gathered} 3 \\ \text { Hour } \end{gathered}$
-200-0 ft										
All	0	0	0	3	3	0	1	4	4	6
Rear - End	0	0	0	2	3	0	0	3	3	6
Right-Angle	0	0	0	0	1	0	0	0	0	1
0-400 ft										
All	0	0	1	4	4	0	1	4	4	6
Rear - End	0	0	1	3	2	0	0	5	4	7
Right-Angle	0	0	0	1	5	0	0	3	4	5
400-1320 ft										
All Collisions	0	0	0	3	3	0	2	3	3	4
Rear - End	0	0	1	3	3	0	2	3	3	5
Right-Angle	0	0	0	5	5	0	2	5	5	6
0-1320 ft										
All Collisions	0	0	1	3	5	0	1	4	4	7
Rear - End	0	0	0	4	3	0	1	4	4	8
Right-Angle	0	0	1	3	6	0	1	5	5	7

Note: Max value is 8 intersections
Due to there being 4 million more hard-acceleration events in Indiana than hard-braking events in July 2019, it was hypothesized that hard-acceleration would be a better predictor of crashes than hard-braking. However, in this study, this was not true. In the $0-1320 \mathrm{ft}$ region across all time bins for all collisions and rear-end collisions, hard-acceleration had 49 strong / very strong correlations, while hard-braking had 57. Likewise, in the 400 - 1320 ft region, hard-acceleration had 38 strong / very strong correlations, while hard-braking had 57. The only range where hardacceleration had more strong / very strong correlations was the $0-400 \mathrm{ft}$ region. In this region across all time bins for all collisions and rear-end collisions, hard-acceleration had 46 strong / very strong correlations while hard-braking had 40.

6.3 Volume Correlation

Finally, to understand the relationship between traffic volume and crashes, hard-braking, and hard-acceleration, a Spearman's rank order correlation test was performed. The volume data was collected from imbedded loop detectors for 3 weekdays in July 2019 and then averaged to
estimate intersection volume. Table 6.6 shows the results of this analysis for 4 different time bins. The correlation between volume and crashes increased as the time bins increased, while both hardbraking and hard-acceleration remained strongly to very strongly correlated with volume for all time bins. The strong correlation between hard-braking and hard-acceleration may not be surprising but suggests it can be a powerful tool for assessing intersections with potential safety issues without waiting for crash data. Intersections with a disproportionate amount of hard-braking / hard-acceleration events could be a strong indicator that the intersection needs to be evaluated further.

Table 6.6. Spearman's correlation between volume and crashes, hard-braking, and hardacceleration for multiple time bins

	30 min	1 Hour	2 Hour	3 Hour
Crashes	0.38	0.48	0.56	0.63
Hard-braking	0.72	0.74	0.76	0.74
Hard-acceleration	0.79	0.82	0.83	0.83

7. DATA REPRESENTATIVENESS

7.1 The Big Question

Connected vehicle data is opening new frontiers for agencies to evaluate the performance of their road networks. In addition to hard-braking and hard-acceleration, the resulting data sets also have the capabilities of providing agencies with a rich set of data, such as traffic signal performance measures, interstate congestion, and common detours around road closures (Desai et al., 2020a; Hunter, Saldivar-Carranza, et al., 2021; McNamara et al., 2015; E. Saldivar-Carranza et al., 2020).

However, many agencies are concerned about the representativeness of the data. In fact, the lack of any systematic evaluation of regional variation in penetration is perhaps the biggest barrier to widespread use of connected vehicle data by transportation agencies. This chapter presents a methodology for calculating connected vehicle percent penetration using two data sets: Department of Transportation (DOT) collected traffic count data and connected vehicle (CV) trajectory data. This chapter reports the observed penetration of connected vehicles observed adjacent to selected count stations in the states of California (CA), Connecticut (CT), Georgia (GA), Indiana (IN), Minnesota (MN), North Carolina (NC), Ohio (OH), Pennsylvania (PA), Texas (TX), Utah (UT), and Wisconsin (WI).

The organization of this chapter begins by discussing the locations and data used in this study, and then, explains the methodology used to calculate the hourly, daily, and monthly percent penetration for each station. Next, section 6.4 Aggregate Results discusses the percent penetration Indiana and for all 11 states aggregated over all applicable stations. Finally, section 6.5 Disaggregate Results delves into individual stations. Four example outlier stations are explored in depth to provide further understanding behind how the percent penetrations are calculated and to understand potential reasons for the stations' outlying percent penetration.

7.2 Data

For this study, 381 continuous count stations were selected to be geographically distributed, represent both interstate and non-interstate roadways, have a variety of traffic volumes, and to be in both rural and urban environments (Figure 7.1).

Figure 7.1. Locations of DOT count stations used in this study

Table 7.1 provides information on the number of count stations divided by interstate, noninterstate, rural, and urban. Not every count station has data available for every hour, day, or month; therefore, Table 7.1 also differentiates between the number of count stations used in August 2020 and August 2021. While overall 381 count stations were used in this study, only 343 stations reported data in August 2020 and 349 stations reported in August 2021. There were 315 count stations that reported data both in August 2020 and August 2021.

Table 7.1. Count Station Attributes

State	Interstate	Non-Interstate			Rural	Urban				
August 2020	Total									
						CA				
						11				
CT	10	6	9	20	29					
GA	16	15	17	14	31					
IN	24	32	34	22	56					
MN	12	23	27	8	35					
NC	13	10	14	9	23					
OH	24	13	18	19	37					
PA	14	12	13	13	26					
TX	19	13	14	18	32					
UT	16	11	6	21	27					
WI	18	13	21	10	31					
Aug 2020 Total	177	166	178	165	343					
August 2021										
CA	9	19	10	18	28					
CT	9	6	5	10	15					
GA	16	15	17	14	31					
IN	34	29	35	28	63					
MN	12	21	24	9	34					
NC	19	12	18	13	31					
OH	20	13	17	16	33					
PA	15	11	13	13	26					
TX	18	11	14	15	30					
UT	18	13	9	22	33					
WI	17	12	20	9	30					
Aug 2021 Total	187	162	182	167	349					

The traffic counts for the 381 count stations were obtained from their respective state DOTs and are, for the purposes of this study, considered the ground truth vehicle counts. Many different technologies are utilized at continuous count stations, such as inductive loops, piezoelectric sensors, and magnetic sensors (Federal Highway Administration, 2016). An example count station, located on I-70 in Indiana, utilizes inductive loops, as shown in Figure 7.2, and the location of inductive loop sensors is identified with callout i.

Figure 7.2. Inductive loops (i) at Indiana station 950106 (I-70 MM 25.8)

7.2.1 DOT Traffic Count Data

The majority of the traffic volume data (aggregated by hour) used in this study are publicly available online. However, some data was collected via correspondence with the DOT. The following list details how the DOT counts were collected. Additional details for each state's analysis are provided in Appendix A.

- CA: Performance Measurement System (Caltrans, n.d.)
- CT: Provided via email
- GA: Traffic Analysis and Data Application (GDOT \& Drakewell, n.d.)
- IN: Traffic Count Database System (INDOT \& MS2, n.d.)
- MN: Traffic Forecasting and Analysis Data Products (MnDOT, n.d.)
- NC: Traffic Data Management System (NCDOT \& MS2, n.d.)
- OH: Traffic Monitoring Management System (ODOT \& MS2, n.d.)
- PA: Traffic Information Repository (PennDOT, n.d.)
- TX: Traffic Count Database System (TXDOT \& MS2, n.d.)
- UT: Performance Measurement System (Iteris \& UDOT, n.d.)
- WI: Provided via email

7.2.2 Vehicle Trajectory Data

The vehicle trajectory data used in this chapter consists of anonymized individual waypoints that are collected every three seconds along with an anonymized trajectory identifier and GPS, timestamp, and heading information. This data was obtained through a third-party provider. This provider receives its data directly from the original equipment manufacturers (OEMs).

The vehicle trajectory counts were obtained by identifying quarter mile geofence regions near the count station that spanned the entire width of the road. In some cases, due to intersections, driveways, or curves in the road, the geofence region was shortened to avoid these features. The vehicle trajectory waypoints located inside the geofence region were selected, and the number of unique trajectories were counted. To account for trip chaining, if a trajectory identifier appeared more than 10 minutes apart or in the opposite direction, it was counted as an additional trip (Hunter, Mathew, Cox, et al., 2021; Hunter, Mathew, Li, et al., 2021).

7.3 Methodology

62 days across August 2020 and August 2021 were analyzed for 11 states (CA, CT, GA, IN, MN, NC, OH, PA, TX, UT, and WI). In addition, a longer longitudinal analysis for Indiana was conducted for the following months: July 2019, January 2020, June 2020, July 2020, September 2020, April 2021, May 2021, June 2021, July 2021, September 2021, October 2021, January 2022, and February 2022.

To calculate the hourly percent penetration, the DOT and vehicle trajectory counts were aggregated by hour. This was calculated by

$$
\begin{equation*}
H_{p}=\left(\frac{V_{h}}{C_{h}}\right) 100 \tag{Eq. 1}
\end{equation*}
$$

where H_{p} is the hourly percent penetration, V_{h} is the hourly count of unique vehicle trajectories, and C_{h} is the hourly count of vehicles to pass the count station. The hourly INDOT counts, hourly vehicle trajectory counts, and resulting hourly percent penetration for an I-70 count station in Indiana for August 2, 2021 are shown in Figure 7.3.

Figure 7.3. Hourly counts and percent penetration for Indiana station 950106 (I-70 MM 25.8) on Monday August 2, 2021

The daily percent penetration was determined by

$$
\begin{equation*}
D_{p}=\left(\frac{\sum V_{h}}{\sum C_{h}}\right) 100 \tag{Eq. 2}
\end{equation*}
$$

Where D_{p} is the daily percent penetration, V_{h} is the hourly count of the vehicle trajectories, and C_{h} is the hourly count of the vehicles to across the count station. Table 7.2 contains the daily counts and resulting daily penetration for an I-70 location in Indiana.

The monthly percent penetration is calculated using the daily counts from the entire month using

$$
\begin{equation*}
M_{p}=\left(\frac{\sum V_{d}}{\sum C_{d}}\right) 100 \tag{Eq. 3}
\end{equation*}
$$

where M_{p} is the monthly percent penetration, V_{d} is the daily count of vehicle trajectories, and C_{d} is the daily count of the vehicles to cross the count station. Table 7.3 contains the number of INDOT counts and vehicle trajectory counts the 31 days in August 2021. The resulting monthly penetration is shown at the bottom. This methodology was replicated to determine statewide, monthly percent penetration. The statewide, monthly percent penetration is calculated using the monthly counts from the stations using

$$
\begin{equation*}
S_{p}=\left(\frac{\sum V_{m}}{\sum C_{m}}\right) 100 \tag{Eq. 4}
\end{equation*}
$$

where S_{p} is the statewide, monthly percent penetration, V_{m} is the monthly count of vehicle trajectories, and C_{m} is the monthly count of the vehicles to cross the count station.

A weighted average approach of aggregating raw counts, instead of percentages, was chosen to eliminate the effects of outlier hourly or daily percent penetrations. Additionally, hours and stations with missing or incomplete DOT data were removed from the percent penetration calculations.

The percent penetration hourly trend was the very similar across all 11 states, an example for Indiana is shown in Figure 7.6. Typically, the percent penetration is the highest and is relatively constant during the daylight hours. Since the dataset used in this study contains only passenger vehicles, as the number of passenger vehicles dropped during the evening and nighttime hours and
the number of commercial vehicles decreased at a lesser rate, the percent penetration dropped to a low point between 1am and 3am before beginning to rebound as passenger vehicles reenter the road network.

Between August 2020 and August 2021, the overall percent penetration across all stations and states rose from 3.8% to 3.9%. Of the 11 states, 9 states saw an increase in percent penetration. The average increase was 0.14%. Minnesota and Texas were the two states that saw a decrease in percent penetration. Minnesota's decreased by 0.5% (attributable to a couple high percent penetration stations reporting in August 2020, but not August 2021), and Texas's decreased by 0.03%. Of the 315 stations reporting data in both August 2020 and August 2021, 85\% saw an increase in percent penetration. The average percent increase was 0.7%. Figures detailing the differences between August 2020 and August 2021 are presented in section 6.4 Aggregate Results and section 6.5 Disaggregate Results.

Table 7.2. Hourly INDOT and vehicle trajectory counts and the resulting penetration for Indiana station 950106 (I-70 MM 25.8) on Monday August 2, 2021

Time (hrs)	Count		\%
	INDOT	Veh. Traj.	
$0: 00$	614	12	2.0
$1: 00$	476	10	2.1
$2: 00$	433	9	2.1
$3: 00$	435	8	1.8
$4: 00$	546	16	2.9
$5: 00$	846	29	3.4
$6: 00$	1105	36	3.3
$7: 00$	1313	55	4.2
$8: 00$	1448	54	3.7
$9: 00$	1800	67	3.7
$10: 00$	1857	69	3.7
$11: 00$	2127	91	4.3
$12: 00$	2203	84	3.8
$13: 00$	2213	92	4.2
$14: 00$	2373	79	3.3
$15: 00$	2455	86	3.5
$16: 00$	2438	97	4.0
$17: 00$	2045	52	2.5
$18: 00$	2185	64	2.9
$19: 00$	1729	44	2.5
$20: 00$	1576	32	2.0
$21: 00$	1240	37	3.0
$22: 00$	984	19	1.9
$23: 00$	775	15	1.9
Total	$\mathbf{3 5 2 1 6}$	$\mathbf{1 1 5 7}$	$\mathbf{3 . 3}$

Table 7.3. August 2021 summary for Indiana station 950106 (I-70 MM 25.8)

Date	Count		\% Penetration
	INDOT	Veh. Traj.	
8/1/2021	36480	1602	4.4
8/2/2021	35216	1157	3.3
8/3/2021	36395	1086	3.0
8/4/2021	38584	1216	3.2
8/5/2021	39079	1175	3.0
8/6/2021	41127	1547	3.8
8/7/2021	35863	1333	3.7
8/8/2021	35359	1661	4.7
8/9/2021	35583	1272	3.6
8/10/2021	36766	1085	3.0
8/11/2021	37591	1126	3.0
8/12/2021	39543	1312	3.3
8/13/2021	41629	1569	3.8
8/14/2021	37935	1500	4.0
8/15/2021	37331	1664	4.5
8/17/2021	35737	967	2.7
8/18/2021	38100	1203	3.2
8/19/2021	39389	1266	3.2
8/20/2021	40504	1458	3.6
8/21/2021	34836	1382	4.0
8/22/2021	34905	1493	4.3
8/23/2021	33286	1148	3.4
8/24/2021	35061	1003	2.9
8/25/2021	36965	996	2.7
8/26/2021	38332	1192	3.1
8/27/2021	38611	1369	3.5
8/28/2021	33535	1259	3.8
8/29/2021	31780	1284	4.0
8/30/2021	32465	989	3.0
8/31/2021	35353	1030	2.9
Total	1103340	38344	3.5

7.4 Aggregate Results

7.4.1 Indiana

A longitudinal analysis for fifteen months between July 2019 and February 2022 was completed, shown in Figure 7.4. In July 2019, the month used in the SR-37 hard-braking and hardacceleration crash analysis discussed in the earlier chapters, the percent penetration was under 2%. The percent penetration then doubled by January 2020. This increase is likely due to an increase in the amount of data provided to the third-party data collector rather than a massive increase in connected vehicles purchased. COVID-19 pandemic restrictions began in March 2020, which led to a decrease in passenger vehicles on the road. While volume and percent penetration are independent of each other, a slight decrease in penetration occurred after the start of the COVID19 restrictions. The data used in this study is collected from passenger vehicles only. Since passenger vehicle traffic decreased at a faster rate and greater magnitude than truck traffic, the percent penetration dipped slightly (Goenaga et al., 2021). As the pandemic wore on, the percent penetration rose slightly and then hovered in the $4.5 \%-5 \%$ range.

Figure 7.4. Average monthly penetration over time by road type for Indiana

In addition to a multi-year analysis, day of week and time-of-day analyses were performed. Figure 7.5 shows the average percent penetration by day of week aggregated over August 2021 for all count stations in Indiana. Percent penetration is at its lowest during the middle of the work
week, Tuesday, Wednesday, and Thursday, and at its highest on Sundays. Interestingly, while the difference in percent penetration between non-interstates and interstates remains fairly constant between Tuesday and Thursday, the difference begins to shrink on Friday until it is negligible on Sunday. Perhaps, this could show the effect of commercial truckers taking time off for the weekend. Figure 7.6 shows the average percent penetration by time-of-day aggregated over August 2021 weekdays for all count stations in Indiana. Percent penetration is at its lowest during the early morning hours when the commercial truck volume is relatively high and passenger volume is relatively low. As passenger vehicles begin entering the roadways, the percent penetration jumps up to $4.5 \%-5 \%$, where it stays until about 7:00pm.

Figure 7.5. Average percent penetration by day of week for August 2021 aggregated over all stations in Indiana

Figure 7.6. Aggregated average percent penetration by time-of-day for August 2021 aggregated over all stations in Indiana

7.4.2 Additional States

Once Indiana's percent penetration had been analyzed, the study was broadened to include 10 other states with a focus on the months of August 2020 and August 2021. In total, roughly 15 million connected vehicle trajectory journeys in August 2020 and 19 million trajectory journeys in August 2021 were compared to 405 million DOT collected vehicle counts in August 2020 and 485 million vehicle counts in August 2021. The overall average percent penetration was 3.8% in August 2020 and 3.9% in August 2021. Figure 7.7 depicts the number of connected vehicle trajectory journeys and number of DOT collected vehicle counts minus the number of connected vehicle trajectory journeys. Additionally, Figure 7.7 shows the average percent penetration by day and for the whole month. The sawtooth pattern exhibited by the percent penetration can be explained by the trend shown in Figure 7.5. The percent penetration is at its lowest during the work week, but then sees an increase during the weekend.

Figure 7.8 drills down to the percent penetration for each of the 11 states for August 2020 and August 2021. For the majority of the states, percent penetration increased at least slightly between August 2020 and August 2021. The differences in the amount of change between August 2020 and August 2021 between the 11 states can possibly be attributed to the variation in number and types of stations reporting data over the two months (Table 7.1).

(a) August 2020

August 2021

Figure 7.7. Summary plots of all stations depicting number of connect vehicle trajectory journeys, number of DOT collected vehicle counts minus the number of connected vehicle trajectory journeys, and the average percent penetration by day and for the month

- Aug 2020 ■ Aug 2021

Figure 7.8. Percent penetration for 11 states for August 2020 and August 2021

Figure 7.9 presents similar information to Figure 7.8; however, the percent penetration is shown geographically. Penetration tends to be higher in the Midwest than in the more southern, coastal states. While the exact reasoning behind the differences in percent penetration is beyond the scope of this project, this thesis does offer some speculation. The data set used in this study doesn't include all vehicle makes. Perhaps, some states have a higher percentage of the vehicle makes included in the data than other states. Additionally, due to the lack of winter weather and subsequent salt and brine distribution, vehicles may be able to last longer in southern states leading to a larger number of older non-connected vehicles on the roadways.

Figure 7.9. Spatial distribution of percent penetration for 11 states

Figure 7.10 drills down even further and provides the percent penetration for August 2020 and August 2021 for all 11 states broken down by interstate, non-interstate, rural, and urban stations. Note each station was represented twice as each station is any combination of interstate / non-interstate and rural / urban. On average, the percent penetration varied by 0.6% between the 4 categories with the greatest difference being 1.1% for August 2020 and 1.2% for August 2021 and the smallest difference being 0.1\% for both August 2020 and August 2021.

\square Interstate \square Non-Interstate \square Rural \square Urban
(a) August 2020
(b) August 2021

Figure 7.10. Average percent penetration by state for interstate, non-interstates, rural, and urban stations

Finally, Table 7.4 presents a station summary table showing the lowest, median, and highest percent penetrations for each state in August 2021. For interstate stations, the lowest percent penetration was a California station with a percent penetration of 2.1%. Meanwhile, for non-interstate stations, an Indiana station had the lowest percent penetration at 1.6%. For both interstate and non-interstate categories, Wisconsin had the stations with the highest percent
penetration, 18% for an interstate station and 10% for a non-interstate station. The median values across all 11 states were 4.1% and 4.3% for interstate and non-interstates, respectively. The interquartile range for both types combined was between 3.3% and 5.0% with a mean of 4.2%. As a reminder, Table 7.1 provides the sample size for the number of interstate and non-interstate stations. The number of interstates count stations evaluated ranged from 9 to 34 for CA / CT and IN, respectively. The number of non-interstates count stations evaluated ranged from 6 to 29 for CT and IN, respectively.

Table 7.4. Station summary table for interstate and non-interstate percent penetrations for 11 states in August 2021

	Minimum		Median		Maximum	
	Interstate	Non-Interstate	Interstate	Non-Interstate	Interstate	Non-Interstate
CA	2.1%	2.3%	2.7%	3.3%	2.9%	5.5%
CT	2.3%	2.5%	3.0%	3.2%	4.3%	3.4%
GA	3.1%	2.4%	3.9%	3.7%	4.6%	6.7%
IN	3.4%	1.6%	4.4%	4.6%	6.2%	6.7%
MN	2.1%	3.5%	5.0%	5.9%	6.1%	9.0%
NC	3.1%	3.0%	3.5%	4.2%	4.8%	4.8%
OH	3.8%	3.6%	4.8%	4.1%	6.0%	7.5%
PA	2.9%	2.8%	3.7%	3.8%	5.2%	5.0%
TX	2.6%	3.2%	4.5%	5.5%	6.4%	7.0%
UT	2.3%	2.2%	2.7%	2.7%	3.5%	4.5%
WI	4.3%	4.5%	5.2%	6.0%	18.0%	10.0%
AII	2.1%	1.6%	4.1%	4.3%	18.0%	10.0%

7.5 Disaggregate Results

Once the aggregate results were analyzed for each of the 11 states, the individual stations were analyzed. Figure 7.11 shows the percent penetration by station for August 2020 and August 2021. The percent penetration at individual stations ranged from 1.6% to 16.3% in August 2020 and 1.6% to 18.0% in August 2021. Figure 7.12, Figure 7.13, and Figure 7.14 present box plots of the percent penetration by station by hour, by station by day, and by station. 99% of the August 2020 and August 2021 hours analyzed had percent penetrations of 11% or less $(472,000$ out of 479,000 hours). 98% of the August 2020 and August 2021 days analyzed had percent penetrations between 2% and 8% (19,800 out of 20,100 days). The following sections will examine some
outliers from California, Minnesota, Texas, and Wisconsin. Appendix B contains additional examples of specific stations for all 11 states.

(a) August 2020

(b) August 2021

Figure 7.11. Monthly percent penetration by station

Figure 7.12. Box plot: Percent penetration by station by hour

Figure 7.13. Box plot: Percent penetration by station by day

Figure 7.14. Box plot: Percent penetration by station

7.5.1 CA: CA-25

CA-25 is identified as CA 1 in Figure 7.11 and Figure 7.15. Unlike the majority of the other states analyzed in this study, Caltrans treats each direction, ramp, and high occupancy lane as a unique station. Therefore, in order to determine the full roadway volume, the appropriate Caltrans stations were summed together and treated as one station id. Additionally, not every hour was 100% observed. Hours with less than a 100% observation rate were excluded along with the corresponding connected vehicle trajectory counts for that same hour. CA- 25 consists of two Caltrans stations: 501019111 and 501019112.

CA-25 was chosen for further analysis as the percent penetration was 5.5% in August 2020, but 3.9% in August 2021. Figure 7.15 shows the location of CA-25. Figure 7.16 depicts the percent penetration calculations for Monday August 3, 2020 and Tuesday August 3, 2021. Adjacent to the calculations are maps with the connected vehicle trajectory points plotted. Table 7.5 displays the hourly percent penetration for both August 3rds. The reason for this large decrease in percent penetration can be explained by the DOT traffic counts seeing a 46% increase while the connected vehicle journey counts only saw a 6\% increase. The underlying cause for this discrepancy in percent increase is currently unknown, but it does highlight the value of aggregating over numerous sites so that such anomalies can be accounted for without overly skewing the data.

Figure 7.17 shows screen captures of PeMS for Caltrans stations 501019111 and 501019112 for hourly counts on August 3, 2020 and August 3, 2021 (Caltrans, n.d.).

Figure 7.15. Location of California station CA-25

Figure 7.16. Connected vehicle trajectory points and the associated percent penetration calculations for California station CA-25

Table 7.5. Percent penetration calculations for August 3, 2020 and August 3, 2021 for California station CA-25

2020				2021					
Date	Hour	DOT Count	CV Count	Percent	Date	Hour	DOT Count	CV Count	Percent
$8 / 3 / 2020$	0	391	18	4.6%	$8 / 3 / 2021$	0	525	6	1.1%
$8 / 3 / 2020$	1	282	14	5.0%	$8 / 3 / 2021$	1	439	13	3.0%
$8 / 3 / 2020$	2	285	9	3.2%	$8 / 3 / 2021$	2	464	8	1.7%
$8 / 3 / 2020$	3	477	21	4.4%	$8 / 3 / 2021$	3	741	20	2.7%
$8 / 3 / 2020$	4	945	50	5.3%	$8 / 3 / 2021$	4	1419	51	3.6%
$8 / 3 / 2020$	5	2076	87	4.2%	$8 / 3 / 2021$	5	3334	102	3.1%
$8 / 3 / 2020$	6	2525	149	5.9%	$8 / 3 / 2021$	6	4130	158	3.8%
$8 / 3 / 2020$	7	2519	119	4.7%	$8 / 3 / 2021$	7	4169	189	4.5%
$8 / 3 / 2020$	8	2303	134	5.8%	$8 / 3 / 2021$	8	3572	146	4.1%
$8 / 3 / 2020$	9	2212	143	6.5%	$8 / 3 / 2021$	9	3209	132	4.1%
$8 / 3 / 2020$	10	2391	128	5.4%	$8 / 3 / 2021$	10	3638	162	4.5%
$8 / 3 / 2020$	11	2454	148	6.0%	$8 / 3 / 2021$	11	3879	167	4.3%
$8 / 3 / 2020$	12	2599	163	6.3%	$8 / 3 / 2021$	12	4084	164	4.0%
$8 / 3 / 2020$	13	2792	155	5.6%	$8 / 3 / 2021$	13	4135	147	3.6%
$8 / 3 / 2020$	14	2791	165	5.9%	$8 / 3 / 2021$	14	4432	168	3.8%
$8 / 3 / 2020$	15	3113	179	5.8%	$8 / 3 / 2021$	15	5059	201	4.0%
$8 / 3 / 2020$	16	3390	179	5.3%	$8 / 3 / 2021$	16	5289	209	4.0%
$8 / 3 / 2020$	17	3171	203	6.4%	$8 / 3 / 2021$	17	5564	202	3.6%
$8 / 3 / 2020$	18	2471	138	5.6%	$8 / 3 / 2021$	18	4253	154	3.6%
$8 / 3 / 2020$	19	1704	78	4.6%	$8 / 3 / 2021$	19	3219	125	3.9%
$8 / 3 / 2020$	20	1368	67	4.9%	$8 / 3 / 2021$	20	2431	83	3.4%
$8 / 3 / 2020$	21	1074	50	4.7%	$8 / 3 / 2021$	21	1834	71	3.9%
$8 / 3 / 2020$	22	782	33	4.2%	$8 / 3 / 2021$	22	1306	37	2.8%
$8 / 3 / 2020$	23	520	24	4.6%	$8 / 3 / 2021$	23	757	29	3.8%
$8 / 3 / 2020$	Total	$\mathbf{4 4 6 3 5}$	$\mathbf{2 4 5 4}$	$\mathbf{5 . 5 \%}$	$8 / 3 / 2021$	Total	$\mathbf{7 1 8 8 2}$	$\mathbf{2 7 4 4}$	$\mathbf{3 . 8 \%}$

(a) Station 501019111 - August 3, 2020

(c) Station 501019111 - August 3, 2021

(b) Station 501019112 - August 3, 2020

(d) Station 501019112 - August 3, 2021

Figure 7.17. Screen shots of California's CA-25 station traffic counts from Caltrans's PeMS (Caltrans, n.d.)

7.5.2 MN: 48

The next station to be analyzed is station 48 in Minnesota, identified as MN 1 in Figure 7.12. This station was chosen as an example site to explain the large variation in hourly percent penetrations show in Figure 7.12. Figure 7.18 shows the location of MN 1, and Figure 7.19 depicts the percent penetration calculations for 2am on August 21, 2021 along with a map of the associated trajectory points. As shown, the 100% percent penetration can be attributed to only one vehicle, a vehicle that reports to the connected vehicle dataset used in this study, passing the count station. Table 7.6 presents the hourly percent penetration for the entire day of August 21, 2021. While the daily percent penetration of station 48 on August 21, 2021 is 6.3%, percent penetration fluctuates between 0% and 100% over the course of the day. This station highlights the importance of aggregating over many hours, instead of relying on just one hour for calculating the percent penetration, especially for low volume stations.

The Minnesota traffic count information was downloaded for MnDOT's Data Product webpage (MnDOT, n.d.). Table 7.7 shows the hourly data collected from MnDOT for station 48 for August 21, 2021. The counts received were differentiated by direction; therefore, the directional counts were summed to represent the traffic counts for the entire roadway.

Figure 7.18. Location of Minnesota station 48

Date: Aug 21, 2021
Time: 2am
Trajectory points: 5
DOT: 1
Journeys: 1
Percent Penetration:
$1 / 1=100 \%$

Figure 7.19. Connected vehicle trajectory points and the associated percent penetration calculations for Minnesota station 48

Table 7.6. Percent penetration calculations for August 21, 2021 for Minnesota station 48

Date	Hour	DOT Count	CV Count	Percent
$\mathbf{8 / 2 1 / 2 0 2 1}$	0	1	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	1	4	1	25%
$\mathbf{8 / 2 1 / 2 0 2 1}$	2	1	1	100%
$\mathbf{8 / 2 1 / 2 0 2 1}$	3	0	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	4	3	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	5	3	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	6	5	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	7	20	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	8	20	3	15%
$\mathbf{8 / 2 1 / 2 0 2 1}$	9	32	3	9%
$\mathbf{8 / 2 1 / 2 0 2 1}$	10	42	1	2%
$\mathbf{8 / 2 1 / 2 0 2 1}$	11	35	3	9%
$\mathbf{8 / 2 1 / 2 0 2 1}$	12	28	0	0%
$\mathbf{8 / 2 1 / 2 0 2 1}$	13	41	1	2%
$\mathbf{8 / 2 1 / 2 0 2 1}$	14	33	2	6%
$\mathbf{8 / 2 1 / 2 0 2 1}$	15	35	1	3%
$\mathbf{8 / 2 1 / 2 0 2 1}$	16	33	2	6%
$\mathbf{8 / 2 1 / 2 0 2 1}$	17	23	1	4%
$\mathbf{8 / 2 1 / 2 0 2 1}$	18	28	3	11%
$\mathbf{8 / 2 1 / 2 0 2 1}$	19	26	2	8%
$\mathbf{8 / 2 1 / 2 0 2 1}$	20	23	1	4%
$\mathbf{8 / 2 1 / 2 0 2 1}$	21	10	2	20%
$\mathbf{8 / 2 1 / 2 0 2 1}$	22	18	1	6%
$\mathbf{8 / 2 1 / 2 0 2 1}$	23	11	2	18%
$\mathbf{8 / 2 1 / 2 0 2 1}$	Total	$\mathbf{4 7 5}$	$\mathbf{3 0}$	$\mathbf{6 . 3 \%}$

Table 7.7. Hourly counts obtained from MnDOT for August 21, 2021 for Minnesota station 48

StationID	$\mathbf{4 8}$	$\mathbf{4 8}$	Hour
Direction	$\mathbf{N B}$	$\mathbf{N B}$	
Hour	$\mathbf{8 / 2 1 / 2 0 2 1}$	$\mathbf{8 / 2 1 / 2 0 2 1}$	
0	1	0	1
1	3	1	4
2	0	1	1
3	0	0	0
4	1	2	3
5	2	1	3
6	1	4	5
7	13	7	20
8	12	8	20
9	15	17	32
10	15	27	42
11	20	15	35
12	10	18	28
13	14	27	41
14	14	19	33
15	18	17	35
16	16	17	33
17	14	9	23
18	15	13	28
19	12	14	26
20	12	11	23
21	6	4	10
22	14	4	18
23	5	6	11
Total	$\mathbf{2 3 3}$	$\mathbf{2 4 2}$	$\mathbf{4 7 5}$
Total		$\mathbf{4 7 5}$	

7.5.3 MN: 1335

For the by station box plot (Figure 7.14), Minnesota station 1335, MN 2, was analyzed. This station is an example of an outlier station with a large percent penetration. Figure 7.20 shows the location of station 1335, and Figure 7.21 depicts the percent penetration calculations for August 9, 2020. Table 7.8 shows the hourly percent penetration for station 1335 on August 9, 2020.

Throughout the day of August 9, 2020, the percent penetration ranges from 2% at 2 am to 41% at 9am. This station's August 2020 percent penetration of 11.6% is just over double the August 2020 percent penetration for the state of Minnesota. This points to the importance of monitoring many locations and not assuming that the statewide percent penetration is applicable to all locations.

Table 7.9 shows the hourly data collected from MnDOT for station 48 for August 21, 2021.

Figure 7.20. Location of Minnesota station 1335

Date: Aug 9, 2020
Trajectory points: 6591
DOT: 9256
Journeys: 1558
Percent Penetration:
$1558 / 9256=17 \%$

Figure 7.21. Connected vehicle trajectory points and the associated percent penetration calculations for Minnesota station 1335

Table 7.8. Percent penetration calculations for August 9, 2020 for Minnesota station 1335

Date	Hour	DOT Count	CV Count	Percent
8/9/2020	0	97	5	5\%
8/9/2020	1	78	3	4\%
8/9/2020	2	49	1	2\%
8/9/2020	3	54	2	4\%
8/9/2020	4	35	3	9\%
8/9/2020	5	56	6	11\%
8/9/2020	6	58	15	26\%
8/9/2020	7	113	14	12\%
8/9/2020	8	161	35	22\%
8/9/2020	9	226	92	41\%
8/9/2020	10	391	109	28\%
8/9/2020	11	563	140	25\%
8/9/2020	12	688	154	22\%
8/9/2020	13	702	175	25\%
8/9/2020	14	844	171	20\%
8/9/2020	15	920	157	17\%
8/9/2020	16	907	146	16\%
8/9/2020	17	822	123	15\%
8/9/2020	18	698	72	10\%
8/9/2020	19	575	46	8\%
8/9/2020	20	486	46	10\%
8/9/2020	21	346	22	6\%
8/9/2020	22	250	10	4\%
8/9/2020	23	137	11	8\%
8/9/2020	Total	9256	1558	16.8\%

Table 7.9. Hourly counts obtained from MnDOT for August 9, 2020 for Minnesota station 1335

StationID	1335	1335	Hour Total
Direction	EB	WB	
Hour	8/9/2020	8/9/2020	
0	12	85	97
1	11	67	78
2	7	42	49
3	8	46	54
4	5	30	35
5	5	51	56
6	4	54	58
7	15	98	113
8	21	140	161
9	40	186	226
10	80	311	391
11	139	424	563
12	172	516	688
13	179	523	702
14	260	584	844
15	308	612	920
16	288	619	907
17	244	578	822
18	197	501	698
19	149	426	575
20	97	389	486
21	67	279	346
22	53	197	250
23	23	114	137
Total	2384	6872	9256

7.5.4 WI: 400026

The last station analyzed in the main body of this thesis is Wisconsin station 400026, shown as WI 1 in Figure 7.13 and Figure 7.14. Like Minnesota station 1335, this station is an example of an outlier station with many days of high percent penetration. Figure 7.22 shows the location of station 400026, and Figure 7.23 depicts the percent penetration calculations for August 8, 2021 along with a visual of the vehicle trajectory points. Table 7.10 shows the hourly percent penetration for August 8, 2021 for station 400026. The hourly percent penetration ranged from 15% at 8 am to
52% at 4am. The August 8, 2021 daily percent penetration was 22%, and the August 2021 monthly percent penetration was 18%. This is over 3 times the percent penetration of Wisconsin for August 2021. As with the Minnesota station 1335, the reasoning for the very large percent penetration is unknown. The aggregation of percent penetration over numerous stations helps smooth out these outliers.

The Wisconsin count data was obtained directly from a WisDOT employee via email. Table 7.11 is an example of some of the provided data for station 400026 on August 8, 2021. Like Minnesota, the counts were provided for each direction; therefore, the directional, hourly counts were aggregated before they were compared to the number of connected vehicle journeys.

Figure 7.22. Location of Wisconsin station 400026

Date: Aug 8, 2021
Trajectory points: 12565
DOT: 11886
Journeys: 2599
Percent Penetration:
2599 / $11886=22 \%$

Figure 7.23. Connected vehicle trajectory points and the associated percent penetration calculations for Wisconsin station 400026

Table 7.10. Percent penetration calculations for August 8, 2021 for Wisconsin station 400026

Date	Hour	DOT Count	CV Count	Percent
$\mathbf{8 / 8 / 2 0 2 1}$	0	109	29	27%
$\mathbf{8 / 8 / 2 0 2 1}$	1	71	17	24%
$\mathbf{8 / 8 / 2 0 2 1}$	2	48	11	23%
$\mathbf{8 / 8 / 2 0 2 1}$	3	43	13	30%
$\mathbf{8 / 8 / 2 0 2 1}$	4	29	15	52%
$\mathbf{8 / 8 / 2 0 2 1}$	5	68	24	35%
$\mathbf{8 / 8 / 2 0 2 1}$	6	185	38	21%
$\mathbf{8 / 8 / 2 0 2 1}$	7	257	61	24%
$\mathbf{8 / 8 / 2 0 2 1}$	8	445	66	15%
$\mathbf{8 / 8 / 2 0 2 1}$	9	602	128	21%
$\mathbf{8 / 8 / 2 0 2 1}$	10	958	233	24%
$\mathbf{8 / 8 / 2 0 2 1}$	11	1079	280	26%
$\mathbf{8 / 8 / 2 0 2 1}$	12	1129	213	19%
$\mathbf{8 / 8 / 2 0 2 1}$	13	1010	198	20%
$\mathbf{8 / 8 / 2 0 2 1}$	14	940	205	22%
$\mathbf{8 / 8 / 2 0 2 1}$	15	961	197	21%
$\mathbf{8 / 8 / 2 0 2 1}$	16	841	218	26%
$\mathbf{8 / 8 / 2 0 2 1}$	17	838	164	20%
$\mathbf{8 / 8 / 2 0 2 1}$	18	670	170	25%
$\mathbf{8 / 8 / 2 0 2 1}$	19	580	86	15%
$\mathbf{8 / 8 / 2 0 2 1}$	20	422	93	22%
$\mathbf{8 / 8 / 2 0 2 1}$	21	279	69	25%
$\mathbf{8 / 8 / 2 0 2 1}$	22	197	41	21%
$\mathbf{8 / 8 / 2 0 2 1}$	23	125	30	24%
$\mathbf{8 / 8 / 2 0 2 0}$	Total	$\mathbf{1 1 8 8 6}$	$\mathbf{2 5 9 9}$	$\mathbf{2 2 \%}$
$\mathbf{8}$				

Table 7.11. Hourly counts for select hours obtained from WisDOT for August 8, 2021 for Wisconsin station 400026

Date	Hour	Direction	Volume	Total Volume
8/8/2021	0	EB	54	109
8/8/2021	0	WB	55	
8/8/2021	1	EB	28	71
8/8/2021	1	WB	43	
8/8/2021	2	EB	22	48
8/8/2021	2	WB	26	
8/8/2021	3	EB	22	43
8/8/2021	3	WB	21	
8/8/2021	4	EB	12	29
8/8/2021	4	WB	17	
8/8/2021	5	EB	34	68
8/8/2021	5	WB	34	
8/8/2021	6	EB	79	185
8/8/2021	6	WB	106	
8/8/2021	7	EB	127	257
8/8/2021	7	WB	130	
8/8/2021	8	EB	211	445
8/8/2021	8	WB	234	

7.6 Conclusion

The aim of this chapter is to address a common concern of agencies, data representativeness. This chapter details a study that looked at 381 stations across 11 states for two months, August 2020 and August 2021, with an extended fifteen-month analysis for Indiana. Section 6.2 Data describes the station locations, DOT data sources, and the vehicle trajectory data. Section 6.3 Methodology explains the calculation process for determining the hourly, daily, and monthly percent penetration. Sections 6.4, Aggregate Results, and 6.5, Disaggregate Results, provide the resulting percent penetrations. Section 6.4 Aggregate Results focuses on the average percent penetration for entire states over one month, while section 6.5 Disaggregate Results drills down to the percent penetration for individual stations at the hourly, daily, and monthly levels. Additionally, Section 6.5 Disaggregate Results highlights the need to aggregate across hours, days, and even
stations in order to smooth out outliers and obtain a reasonable average percent penetration for that particular station or state. Likewise, just as one station's percent penetration doesn't always reflect the state's average, a state's average percent penetration shouldn't be assumed to be the same for all locations across the state.

8. CONCLUSION

This thesis presents a methodology for evaluating intersections for safety improvements utilizing one month of hard-braking data and/or one month of hard-acceleration data. This study compares crash data over a period of 4.5 years (January 2016 to July 2019) at 8 signalized intersections with one month of hard-braking data (July 2019) and one month of hard-acceleration data (July 2019) to determine if there was a statistical relationship between crashes and hardbraking / hard-acceleration events. Graphical illustrations comparing aggregated hard-braking events and crashes (Figure 4.2, Figure 5.3, Figure 5.4, Figure 5.8, and Figure 5.9) demonstrate a visual relationship between the crash and hard-braking / hard-acceleration data sets. A Spearman Rank Order Correlation test was used to evaluate the correlation between crashes and events for several distance ranges, time bins, and crash categories. The statistical tests show that there are strong and very strong correlations between crashes and hard-braking / hard-acceleration events (Table 6.2, Table 6.3, Table 6.4, and Table 6.5). Using a 3-hour time bins, a distance range of 01320 ft , and a focus on rear-end collisions, all 8 intersections in the southbound direction had a strong or very strong correlation between hard-braking / hard-acceleration and crashes.

Chapter 7 presents a methodology for assessing the penetration of connected vehicles on roadways. The percent penetration was assessed utilizing DOT and trajectory data from 381 location across 11 states in August 2020 and August 2021. In total, over 1 million hours, 1.7 billion count station records, and 70 million connected vehicle records were analyzed. Figure 7.8 and Figure 7.9 present the percent penetration for each of the states. Penetration ranges from a low of 1.6% in IN at station 990508 to a high of 18% in WI at station 400026 in August 2021.

A longitudinal analysis was performed over fifteen months between July 2019 and February 2022 for Indiana. Figure 7.4 shows the percent penetration for those fifteen months for interstate and non-interstate roads varied from a low of 1.8% in July 2019 to a high of 5.2% in January 2022.

A time of day analysis was performed using August 2021 Indiana data which shows that percent penetration ranged from 2.1% at $1: 00$ am to 5.3% at 7:00am and remained around 4.5% during the daylight hours (Figure 7.6). The boxpolots, Figure 7.12, Figure 7.13, and Figure 7.14, show the distribution of percent penetrations for hourly, daily, and by station. Finally, several example outlier stations are discussed.

Both the hard-braking and penetrations methodologies presented in this thesis are extremely scalable. Agencies could collect event data, such as hard-braking and hard-acceleration, for a large number of intersections and corridors, and then implement this method to assess all traffic signals within an urban area or an entire state for potential safety issues. Such analysis would be a relatively modest effort, and perhaps more importantly, require no investment in traffic signal infrastructure to collect this performance measure data (Hunter, Saldivar-Carranza, et al., 2021). Additionally, all states have highway performance monitoring systems allowing them to monitor the growth of connected vehicle penetration in their jurisdictions over time. Utilizing this information, agencies should be able to access the value of the connect vehicle data and the aggregation needed to obtain statistically robust performance measures (Hunter, Mathew, Li, et al., 2021).

APPENDIX A: PERCENT PENETRATION DATA REPOSITORY

The purpose of appendix A is to provide additional access to the connected vehicle data and results. Links for a map of the count stations, a file of count station attributes, a folder with DOT count data used, data sources, and the hourly percent penetration calculations are shared. Additionally, data attributes are defined.

Count Stations

Locations:

Figure A.1. Location of 381 count station locations
Link to google map: Count Station Map Link
URL: https://www.google.com/maps/d/u/1/edit?mid=1L0SZE4EPqnKcy4cG6qZc3y86V4mjFRW7\&usp=sharing

Attributes:

StationID	Actualtat	ActualLong	1/N	R/U	GeofenceMarker1	GeofenceMarker2	RoadWidth	Heading1	Heading2	State
9048	41.6191416	-72.7422769	Non-Interstate	Urban	41.617855755504685, -72.74269762988513	41.620266215717855, -72.74200653077425	115	190	10	CT
9050	41.5837398	-72.3784469	Non-Interstate	Rural	41.586011226015856, -72.38377851468414	41.58830102593479, -72.38752854377387	120	309	129	CT
9051	41.4939704	-72.56933745	Non-Interstate	Urban	41.48971905596023, -72.56662889522367	41.493012933535006, -72.5686355270086	169	155	335	CT
9054	41.501714	-73.151281	Interstate	Urban	41.50175209765923, -73.15114378007364	41.50395800684019, -73.14730688460145	170	232	52	CT
9055	41.4672176	-72.774973	Interstate	Urban	41.46732350855969, -72.77493536377487	41.47080624884021, -72.77359482637353	216	16	196	CT
001-0183	31.83156	-82.08647	Non-Interstate	Rural	31.832617, -82.087411	31.829684932563342, -82.08491203193553	31	144	324	GA
121-5498	33.75879	-84.477	Interstate	Urban	33.759517112647856, -84.4807915201806	33.7588945280971, -84.47650719175627	145	100	279	GA
121-0516	33.5945	-84.49743	Interstate	Urban	33.59132968407183, -84.50299199278227	33.593434362801304, -84.49943538372364	137	54	234	GA
089-3374	33.92031	-84.3041	Interstate	Urban	33.9203102564679, -84.31055523364057	33.9203173666838, -84.30618765763978	163	90	270	GA

Figure A.2. Subset of count station information used
Link: File Link

Attribute Descriptions:

StationID: The ID used by the state to identify the location.

- Utah and California are two exceptions to this rule. Since multiple stationID's correspond to the same roadway location, the stations are identified as UT_\# and CA-\#. The UT Corresponding Stations and CA Corresponding Stations tabs detail which stations are used for each location.
- Ohio and Minnesota both have a stationID 103. They are differentiated by 103_OH and 103_MN.
ActualLat / ActualLong: The latitude and longitude of the station.
- Due to Utah and California having multiple stations per location, no latitude / longitude is included.
I / N : Identifies station as either located on an interstate or non-interstate.
R/U: Identifies station as either located in a rural or urban setting. If this data was not provided by the state, a judgement was made using satellite imagery.

GeofenceMarker 1/2: Latitude and longitude of the boundaries of the geofenced region used to identify the applicable connected vehicle trajectory points.
RoadWidth: Width of the roadway. Used to provide the width of the geofence region.
Heading 1/2: The headings of both travel directions. Used to filter out vehicles traveling in the wrong direction (ie. Vehicles traveling over bridges or through underpasses).

State: The state the station is located in.

DOT Traffic Counts:

Data:

Link: Folder Link

URL: https://purdue0.sharepoint.com/f::/s/JTRP/Em2sVoW9u2NKgb1V6WFqXi0BCZ8arHLoJr9TwY-CDuXKhw?e=7KZwoK

Data Sources:

CA:

- Link: Caltrans PeMS
- URL: https://pems.dot.ca.gov/

CT:

- Provided via email by Kevin Yeomans (email: kevin.yeomans@ct.gov, phone: (860) 594-2090)
GA:
- Link: Traffic Counts in Georgia (drakewell.com)
- URL: https://gdottrafficdata.drakewell.com/publicmultinodemap.asp

IN:

- Link: Traffic Count Database System (TCDS) (ms2soft.com)
- URL: https://indot.public.ms2soft.com/tcds/tsearch.asp?loc=Indot\&mod=TCDS

MN:

- Link: TFA ATR Hourly Volume Reports (2002-2017) - TDA, MnDOT (state.mn.us)
- URL: https://www.dot.state.mn.us/traffic/data/reports-hrvol-atr.html

NC:

- Link: Transportation Data Management System (ms2soft.com)
- URL: https://ncdot.public.ms2soft.com/tcds/tsearch.asp?loc=Ncdot\&mod=TCDS
$\mathrm{OH}:$
- Link: Transportation Data Management System (ms2soft.com)
- URL: https://odot.public.ms2soft.com/tcds/tsearch.asp?loc=odot

PA:

- Link: Traffic Information Repository (TIRe) |PennDOT
- URL: https://gis.penndot.gov/tire

TX:

- Link: Traffic Count Database System (TCDS) (ms2soft.com)
- URL: https://txdot.public.ms2soft.com/tcds/tsearch.asp?loc=Txdot\&mod=TCDS

UT:

- Link: PeMS @ UDOT (iteris-pems.com)
- URL: https://udot.iteris-pems.com/

WI:

- Provided via email by Russell Lewis (email: traffic.counts @ dot.wi.gov, phone: (608) 516-5754)

Connected Vehicle Journey Counts:

Data:

Event data from July - August 2019 and trajectory data from July 2019, January 2020, June September 2020, April 2021 - October 2021, and January - February 2022 used in this study was provided by Wejo Data Services Inc.

Percent Penetration:

Hourly Results:

Station	Date	Hour	DOT Coun	CV Count	Percent	State	I/N	R/U
950106	4/1/2021	0	798	13	0.016	IN	Interstate	Rural
950106	4/2/2021	0	801	22	0.027	IN	Interstate	Rural
950106	4/3/2021	0	738	13	0.018	IN	Interstate	Rural
950106	4/4/2021	0	644	12	0.019	IN	Interstate	Rural
950106	4/17/2021	0	764	9	0.012	IN	Interstate	Rural
950106	4/18/2021	0	645	11	0.017	IN	Interstate	Rural
950106	4/25/2021	0	648	17	0.026	IN	Interstate	Rural
950106	4/5/2021	0	672	15	0.022	IN	Interstate	Rural
950106	4/6/2021	0	702	13	0.019	IN	Interstate	Rural
950106	4/7/2021	0	689	9	0.013	IN	Interstate	Rural
950106	4/8/2021	0	754	10	0.013	IN	Interstate	Rural
950106	4/9/2021	0	749	19	0.025	IN	Interstate	Rural

Figure A.3. Subset of percent penetration hourly results
Link: IN_PercentPenCalcs
URL: https://purdue0.sharepoint.com/:x:/s/JTRP/EVD8gi_JhM1Fkj6jK8tHgjYBc8VCFNHwAfG4332_vUjzTA?e=gOpJ6N
Link: OtherStates PercentPenCalcs
URL: https://purdue0.sharepoint.com/:x://s/JTRP/EfiFldzn8YNCuD21-BEHKxgB3t3uYbCfpIt8XIVF7-puKA?e=dVWInP

Attributes:

Station: The ID used by the state to identify the location.

- Utah and California are two exceptions to this rule. Since multiple stationID's correspond to the same roadway location, the stations are identified as UT_\# and CA-\#. The UT Corresponding Stations and CA Corresponding Stations tabs detail which stations are used for each location.
- Ohio and Minnesota both have a stationID 103. They are differentiated by 103_OH and 103_MN.
Date: Day counts occurred
Hour: Hour counts occurred
DOT Count: Number of vehicles reported by the DOT's count station
CV Count: Number of unique connected vehicle journeys

Percent: Percent penetration

$\%$ Penetration $=\frac{\sum \text { Unique } \text { Trajectories }}{\text { Dot Volume }}$

State: State station is located in.
I/N: Identifies station as either located on an interstate or non-interstate.
$\underline{\mathrm{R} / \mathrm{U}}$: Identifies station as either located in a rural or urban setting.

APPENDIX B: EXAMPLE STATIONS FOR EACH STATE

Appendix B provides an example station for each state. States are listed in alphabetical order.

California:

Station Name: CA-19 (corresponding Caltrans stations: 1126458, 1126455, 1126470, 1126472) Latitude: 32.836097
Longitude: -116.962089

Figure B.1. Location of California station CA-19

Trajectory points: 158,907
(a) August 2020

Trajectory points: 5,798
(b) August 12, 2020

Figure B.2. Connected vehicle points for California station CA-19

Table B.1. DOT Vehicle Counts for August 12, 2020 for California station CA-19

Date	CA-19 Stations				Hour
	$\mathbf{1 1 2 6 4 5 5}$	$\mathbf{1 1 2 6 4 5 8}$	$\mathbf{1 1 2 6 4 7 0}$	$\mathbf{1 1 2 6 4 7 2}$	Total
$8 / 12 / 20200: 00$	254	88	185	83	610
$8 / 12 / 20201: 00$	200	74	96	50	420
$8 / 12 / 20202: 00$	163	66	102	43	374
$8 / 12 / 20203: 00$	170	92	138	42	442
$8 / 12 / 20204: 00$	351	223	313	88	975
$8 / 12 / 20205: 00$	841	645	695	225	2406
$8 / 12 / 20206: 00$	1292	927	1005	421	3645
$8 / 12 / 20207: 00$	1481	951	1118	496	4046
$8 / 12 / 20208: 00$	1347	795	983	517	3642
$8 / 12 / 20209: 00$	1112	679	886	531	3208
$8 / 12 / 202010: 00$	1045	621	924	624	3214
$8 / 12 / 202011: 00$	1135	640	1040	747	3562
$8 / 12 / 202012: 00$	1192	643	1073	815	3723
$8 / 12 / 202013: 00$	1175	689	1180	850	3894
$8 / 12 / 202014: 00$	1361	628	1443	1094	4526
$8 / 12 / 202015: 00$	1553	729	1721	1307	5310
$8 / 12 / 202016: 00$	1438	735	1698	1514	5385
$8 / 12 / 202017: 00$	1257	688	1457	1284	4686
$8 / 12 / 202018: 00$	886	466	1012	799	3163
$8 / 12 / 202019: 00$	721	355	816	561	2453
$8 / 12 / 202020: 00$	619	271	710	475	2075
$8 / 12 / 202021: 00$	475	196	542	288	1501
$8 / 12 / 202022: 00$	358	138	386	209	1091
$8 / 12 / 202023: 00$	275	103	294	169	841
Total	$\mathbf{2 0 7 0 1}$	$\mathbf{1 1 4 4 2}$	$\mathbf{1 9 8 1 7}$	$\mathbf{1 3 2 3 2}$	$\mathbf{6 5 1 9 2}$

Table B.2. Hourly and resulting daily percent penetration calculations for August 12, 2020 for California station CA-19

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	610	13	2.1%
$8 / 12 / 2020$	1	420	4	1.0%
$8 / 12 / 2020$	2	374	3	0.8%
$8 / 12 / 2020$	3	442	10	2.3%
$8 / 12 / 2020$	4	975	26	2.7%
$8 / 12 / 2020$	5	2406	72	3.0%
$8 / 12 / 2020$	6	3645	104	2.9%
$8 / 12 / 2020$	7	4046	126	3.1%
$8 / 12 / 2020$	8	3642	105	2.9%
$8 / 12 / 2020$	9	3208	88	2.7%
$8 / 12 / 2020$	10	3214	111	3.5%
$8 / 12 / 2020$	11	3562	99	2.8%
$8 / 12 / 2020$	12	3723	122	3.3%
$8 / 12 / 2020$	13	3894	132	3.4%
$8 / 12 / 2020$	14	4526	143	3.2%
$8 / 12 / 2020$	15	5310	161	3.0%
$8 / 12 / 2020$	16	5385	157	2.9%
$8 / 12 / 2020$	17	4686	123	2.6%
$8 / 12 / 2020$	18	3163	92	2.9%
$8 / 12 / 2020$	19	2453	69	2.8%
$8 / 12 / 2020$	20	2075	47	2.3%
$8 / 12 / 2020$	21	1501	40	2.7%
$8 / 12 / 2020$	22	1091	19	1.7%
$8 / 12 / 2020$	23	841	13	1.5%
$8 / 12 / \mathbf{2 0 2 0}$	Total	$\mathbf{6 5 1 9 2}$	$\mathbf{1 8 7 9}$	$\mathbf{2 . 9 \%}$
8				

Figure B.3. Screenshots of California station CA-19 traffic counts for August 12, 2020 from Caltran's PeMS

Connecticut:

Station Name: 009014
Latitude: 41.68763
Longitude: -72.64968

Figure B.4. Location of Connecticut station 009014

Trajectory points: 451,879
(a) August 2020

Trajectory points: 14,757
(b) August 12, 2020

Figure B.5. Connected vehicle points for Connecticut station 009014

Table B.3. DOT vehicle counts for a subset of August 12, 2020 for Connecticut station 009014

Date	Time	Direction	Volume	Total Hour Volume
8/12/2020	12:00 AM	NB	413	643
8/12/2020	12:00 AM	SB	230	
8/12/2020	1:00 AM	NB	412	727
8/12/2020	1:00 AM	SB	315	
8/12/2020	2:00 AM	NB	575	988
8/12/2020	2:00 AM	SB	413	
8/12/2020	3:00 AM	NB	1,088	1930
8/12/2020	3:00 AM	SB	842	
8/12/2020	4:00 AM	NB	3,083	6078
8/12/2020	4:00 AM	SB	2,995	
8/12/2020	5:00 AM	NB	4,669	9697
8/12/2020	5:00 AM	SB	5,028	
8/12/2020	6:00 AM	NB	4,778	9502
8/12/2020	6:00 AM	SB	4,724	
8/12/2020	7:00 AM	NB	3,894	7466
8/12/2020	7:00 AM	SB	3,572	

Table B.4. Hourly and resulting daily percent penetration for calculations for August 12, 2020 for Connecticut station 009014

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	643	23	3.6%
$8 / 12 / 2020$	1	727	12	1.7%
$8 / 12 / 2020$	2	988	13	1.3%
$8 / 12 / 2020$	3	1930	17	0.9%
$8 / 12 / 2020$	4	6078	25	0.4%
$8 / 12 / 2020$	5	9697	89	0.9%
$8 / 12 / 2020$	6	9502	168	1.8%
$8 / 12 / 2020$	7	7466	214	2.9%
$8 / 12 / 2020$	8	6880	184	2.7%
$8 / 12 / 2020$	9	7168	176	2.5%
$8 / 12 / 2020$	10	7374	187	2.5%
$8 / 12 / 2020$	11	7643	203	2.7%
$8 / 12 / 2020$	12	8438	205	2.4%
$8 / 12 / 2020$	13	9660	222	2.3%
$8 / 12 / 2020$	14	9803	269	2.7%
$8 / 12 / 2020$	15	10072	268	2.7%
$8 / 12 / 2020$	16	8357	250	3.0%
$8 / 12 / 2020$	17	5706	243	4.3%
$8 / 12 / 2020$	18	3967	157	4.0%
$8 / 12 / 2020$	19	2007	136	6.8%
$8 / 12 / 2020$	20	1711	93	5.4%
$8 / 12 / 2020$	21	1337	68	5.1%
$8 / 12 / 2020$	22	1055	39	3.7%
$8 / 12 / 2020$	23	772	41	5.3%
$8 / \mathbf{1 2} / \mathbf{2 0 2 0}$	Total	$\mathbf{1 2 8 9 8 1}$	$\mathbf{3 3 0 2}$	$\mathbf{2 . 6 \%}$

Georgia:

Station Name: 121-5498
Latitude: 33.7595171
Longitude: -84.4807915

Figure B.6. Location of Georgia station 121-5498

Figure B.7. Connected vehicle points for Georgia station 121-5498

Figure B.8. Screenshot from Georgia's TADA of hourly DOT vehicle counts for August 12, 2020 for Georgia station 121-5498

Table B.5. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Georgia station 121-5498

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	2411	67	2.8%
$8 / 12 / 2020$	1	1688	51	3.0%
$8 / 12 / 2020$	2	1357	50	3.7%
$8 / 12 / 2020$	3	1466	41	2.8%
$8 / 12 / 2020$	4	2083	78	3.7%
$8 / 12 / 2020$	5	4389	167	3.8%
$8 / 12 / 2020$	6	6712	227	3.4%
$8 / 12 / 2020$	7	7985	285	3.6%
$8 / 12 / 2020$	8	7982	270	3.4%
$8 / 12 / 2020$	9	7248	259	3.6%
$8 / 12 / 2020$	10	7170	248	3.5%
$8 / 12 / 2020$	11	7397	277	3.7%
$8 / 12 / 2020$	12	7796	293	3.8%
$8 / 12 / 2020$	13	7757	276	3.6%
$8 / 12 / 2020$	14	9228	317	3.4%
$8 / 12 / 2020$	15	10103	316	3.1%
$8 / 12 / 2020$	16	9880	333	3.4%
$8 / 12 / 2020$	17	10223	344	3.4%
$8 / 12 / 2020$	18	8837	275	3.1%
$8 / 12 / 2020$	19	7056	232	3.3%
$8 / 12 / 2020$	20	6030	217	3.6%
$8 / 12 / 2020$	21	5215	155	3.0%
$8 / 12 / 2020$	22	4411	151	3.4%
$8 / 12 / 2020$	23	3449	119	3.5%
$\mathbf{8 / 1 2 / 2 0 2 0}$	Total	$\mathbf{1 4 7 8 7 3}$	$\mathbf{5 0 4 8}$	$\mathbf{3 . 4 \%}$

Indiana:

Station Name: 990311
Latitude: 39.83622
Longitude: -86.23980

Figure B.9. Location of Indiana station 990311

Trajectory points: 329,435
(a) August 2020

Trajectory points: 11,071
(b) August 12, 2020

Figure B.10. Connected vehicle points for Indiana station 990311

Volume Count Report

LOCATION INFO	
Location ID	990311
Type	SPOT
Fnct'I Class	1
Located On	165 SB MM 119.7
Loc On Alias	1-65 (INC)
Direction	2 -WAY
County	MARION
Community	
MPO ID	
HPMS ID	
Agency	Indiana DOT

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 8/12/2020
End Date	Thu 8/13/2020
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00$ AM
Direction	
Notes	
Station	990311
Study	
Speed Limit	
Description	
Sensor Type	
Source	TCDS_COUNT_IMPORT_COMBINE
Latitude,Longitude	

INTERVAL:15-MIN					
Time	15-min Interval				Hourly Count
	1st	2nd	3rd	4th	
(1) 0:00-1:00	220	218	191	159	788
1:00-2:00	145	123	161	123	552
2:00-3:00	113	116	114	130	473
3:00-4:00	133	121	133	132	519
4:00-5:00	130	171	226	222	749
5:00-6:00	293	377	521	511	1,702
6:00-7:00	596	786	1,051	849	3,282
7:00-8:00	970	1,176	1,295	1,164	4,605
8:00-9:00	1,039	1,031	1,001	866	3,937
9:00-10:00	862	806	841	778	3,287
10:00-11:00	837	767	777	753	3,134
11:00-12:00	763	790	860	826	3,239
12:00-13:00	833	903	810	867	3,413
13:00-14:00	862	931	879	857	3,529
14:00-15:00	903	974	1,140	1,065	4,082
15:00-16:00	1,102	1,107	1,248	1,272	4,729
16:00-17:00	1,298	1,444	1,429	1,349	5,520
17:00-18:00	1,527	1,378	1,250	1,117	5,272
18:00-19:00	1,019	917	908	782	3,626
19:00-20:00	735	712	693	588	2,728
20:00-21:00	626	559	489	511	2,185
21:00-22:00	507	470	444	414	1,835
22:00-23:00	391	337	314	291	1,333
23:00-24:00 (1)	256	275	264	211	1,006
Total					65,525
AADT					57,269
AM Peak					$\begin{array}{r} \hline 15-08: 15 \\ 4,674 \end{array}$
PM Peak					$\begin{array}{r} 15-17: 15 \\ 5,749 \\ \hline \end{array}$

Figure B.11. Screenshot from Indiana's TCDS of hourly DOT vehicle counts for August 12, 2020 for Indiana station 990311

Table B.6. Hourly and resulting daily percent penetration for calculations for August 12, 2020 for Indiana station 990311

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	788	21	2.7%
$8 / 12 / 2020$	1	552	10	1.8%
$8 / 12 / 2020$	2	473	7	1.5%
$8 / 12 / 2020$	3	519	12	2.3%
$8 / 12 / 2020$	4	749	21	2.8%
$8 / 12 / 2020$	5	1702	49	2.9%
$8 / 12 / 2020$	6	3282	136	4.1%
$8 / 12 / 2020$	7	4605	166	3.6%
$8 / 12 / 2020$	8	3937	130	3.3%
$8 / 12 / 2020$	9	3287	124	3.8%
$8 / 12 / 2020$	10	3134	106	3.4%
$8 / 12 / 2020$	11	3239	121	3.7%
$8 / 12 / 2020$	12	3413	139	4.1%
$8 / 12 / 2020$	13	3529	164	4.6%
$8 / 12 / 2020$	14	4082	154	3.8%
$8 / 12 / 2020$	15	4729	192	4.1%
$8 / 12 / 2020$	16	5520	207	3.8%
$8 / 12 / 2020$	17	5272	185	3.5%
$8 / 12 / 2020$	18	3626	147	4.1%
$8 / 12 / 2020$	19	2728	102	3.7%
$8 / 12 / 2020$	20	2185	91	4.2%
$8 / 12 / 2020$	21	1835	80	4.4%
$8 / 12 / 2020$	22	1333	51	3.8%
$8 / 12 / 2020$	23	1006	32	3.2%
$\mathbf{8 / 1 2 / 2 0 2 0}$	Total	$\mathbf{6 5 5 2 5}$	$\mathbf{2 4 4 7}$	$\mathbf{3 . 7 \%}$

Minnesota:

Station Name: 384
Latitude: 45.0362
Longitude: -92.8392

Figure B.12. Location of Minnesota station 384

Figure B.13. Connected vehicle points for Minnesota station 384

Table B.7. DOT vehicle counts for August 12, 2020 for Minnesota station 384

Direction	EB	EB	WB	WB	
Lane \#	1	2	1	2	
Hour					
$\mathbf{0}$	49	17	70	18	154
$\mathbf{1}$	46	16	107	47	216
$\mathbf{2}$	39	16	49	11	115
$\mathbf{3}$	60	14	58	9	141
$\mathbf{4}$	110	54	178	88	430
$\mathbf{5}$	228	141	420	452	1241
$\mathbf{6}$	364	298	580	800	2042
$\mathbf{7}$	508	536	622	631	2297
$\mathbf{8}$	558	525	557	509	2149
$\mathbf{9}$	623	552	553	436	2164
$\mathbf{1 0}$	633	555	615	481	2284
$\mathbf{1 1}$	709	563	653	490	2415
$\mathbf{1 2}$	749	597	685	564	2595
$\mathbf{1 3}$	746	691	663	514	2614
$\mathbf{1 4}$	770	773	689	589	2821
$\mathbf{1 5}$	822	884	749	614	3069
$\mathbf{1 6}$	885	913	761	597	3156
$\mathbf{1 7}$	790	776	695	536	2797
$\mathbf{1 8}$	587	499	533	376	1995
$\mathbf{1 9}$	419	340	411	256	1426
$\mathbf{2 0}$	315	232	346	231	1124
$\mathbf{2 1}$	262	177	283	163	885
$\mathbf{2 2}$	151	108	188	119	566
$\mathbf{2 3}$	102	48	116	65	331

Table B.8. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Minnesota station 384

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	154	5	3.2%
$8 / 12 / 2020$	1	216	6	2.8%
$8 / 12 / 2020$	2	115	1	0.9%
$8 / 12 / 2020$	3	141	8	5.7%
$8 / 12 / 2020$	4	430	27	6.3%
$8 / 12 / 2020$	5	1241	81	6.5%
$8 / 12 / 2020$	6	2042	114	5.6%
$8 / 12 / 2020$	7	2297	144	6.3%
$8 / 12 / 2020$	8	2149	130	6.0%
$8 / 12 / 2020$	9	2164	120	5.5%
$8 / 12 / 2020$	10	2284	101	4.4%
$8 / 12 / 2020$	11	2415	136	5.6%
$8 / 12 / 2020$	12	2595	136	5.2%
$8 / 12 / 2020$	13	2614	133	5.1%
$8 / 12 / 2020$	14	2821	160	5.7%
$8 / 12 / 2020$	15	3069	180	5.9%
$8 / 12 / 2020$	16	3156	180	5.7%
$8 / 12 / 2020$	17	2797	161	5.8%
$8 / 12 / 2020$	18	1995	100	5.0%
$8 / 12 / 2020$	19	1426	84	5.9%
$8 / 12 / 2020$	20	1124	61	5.4%
$8 / 12 / 2020$	21	885	46	5.2%
$8 / 12 / 2020$	22	566	30	5.3%
$8 / 12 / 2020$	23	331	17	5.1%
$8 / \mathbf{1 2} / \mathbf{2 0 2 0}$	Total	$\mathbf{3 9 0 2 7}$	$\mathbf{2 1 6 1}$	$\mathbf{5 . 5 \%}$

North Carolina:

Station Name: 0920000016
Latitude: 35.7538352
Longitude: -78.6850245

Figure B.14. Location of North Carolina station 0920000016

Trajectory points: 528,014
(a) August 2020

Trajectory points: 17,476
(b) August 12, 2020

Figure B.15. Connected vehicle points for North Carolina station 0920000016

Volume Count Report								
LOCATION INFO		INTERVAL:15-MIN						
Location ID 09	0920000016	Time	15-min Interval				Hourly Count	
Type 5 SP	SPOT		1st	2nd	3rd	4th		
Fnct'I Class 1	1	(1) 0:00-1:00	256	246	214	213	929	
Located On 14	140	1:00-2:00	147	147	143	116	553	
Loc On Alias		2:00-3:00	117	134	150	156	557	
EAST OF SR	SR 1571 GORMAN ST (EXIT 295)	3:00-4:00	143	160	179	203	685	
Direction 2 -	2-WAY	4:00-5:00	228	266	380	356	1,230	
County W	Wake	5:00-6:00	507	712	874	1,006	3,099	
Community		6:00-7:00	1,352	1,900	2,128	2,169	7,549	
MPO ID		7:00-8:00	2,035	2,196	2,411	2,308	8,950	
HPMS ID		8:00-9:00	2,011	1,990	2,082	1,977	8,060	
Agency N	NCDOT	9:00-10:00	1,816	1,758	1,885	1,823	7,282	
	CDOT	10:00-11:00	1,743	1,744	1,755	1,734	6,976	
		11:00-12:00	1,685	1,697	1,771	1,734	6,887	
COUNT DATA INFO		12:00-13:00	1,781	1,767	1,848	1,815	7,211	
Count Status	Atypical	13:00-14:00	1,874	1,809	1,803	1,904	7,390	
Start Date	Wed 8/12/2020	14:00-15:00	1,908	1,992	1,959	2,022	7,881	
End Date	Thu 8/13/2020	15:00-16:00	2,009	2,156	2,227	2,355	8,747	
Start Time	12:00:00 AM	16:00-17:00	2,401	2,464	2,447	2,414	9,726	
End Time	12:00:00 AM	17:00-18:00	2,306	2,525	2,593	2,444	9,868	
Direction	2-WAY	18:00-19:00	2,101	2,002	1,782	1,593	7,478	
Notes		19:00-20:00	1,569	1,476	1,289	1,193	5,527	
Station		20:00-21:00	1,162	1,019	1,031	917	4,129	
Study		21:00-22:00	841	812	705	653	3,011	
Speed Limit		22:00-23:00	677	607	561	466	2,311	
Description		23:00-24:00	411	417	337	306	1,471	
Sensor Type	Loop	Total					127,507	
Source	CombineVolumeCountsIncremental	AM Peak	$\begin{array}{r} \hline 07: 00-08: 00 \\ 8,950 \\ \hline \end{array}$					
Latitude,Longitude								
		PM Peak	$\begin{array}{r} \hline 17: 00-18: 00 \\ 9,868 \\ \hline \end{array}$					

Figure B.16. Screenshot from North Carolina's TCMS of hourly DOT vehicle counts for August
12, 2020 for North Carolina station 0920000016

Table B.9. Hourly and resulting daily percent penetration calculations for August 12, 2020 for North Carolina station 0920000016

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	929	13	1.4%
$8 / 12 / 2020$	1	553	8	1.4%
$8 / 12 / 2020$	2	557	8	1.4%
$8 / 12 / 2020$	3	685	17	2.5%
$8 / 12 / 2020$	4	1230	40	3.3%
$8 / 12 / 2020$	5	3099	91	2.9%
$8 / 12 / 2020$	6	7549	209	2.8%
$8 / 12 / 2020$	7	8950	288	3.2%
$8 / 12 / 2020$	8	8060	245	3.0%
$8 / 12 / 2020$	9	7282	234	3.2%
$8 / 12 / 2020$	10	6976	186	2.7%
$8 / 12 / 2020$	11	6887	254	3.7%
$8 / 12 / 2020$	12	7211	273	3.8%
$8 / 12 / 2020$	13	7390	253	3.4%
$8 / 12 / 2020$	14	7881	246	3.1%
$8 / 12 / 2020$	15	8747	274	3.1%
$8 / 12 / 2020$	16	9726	323	3.3%
$8 / 12 / 2020$	17	9868	293	3.0%
$8 / 12 / 2020$	18	7478	206	2.8%
$8 / 12 / 2020$	19	5527	136	2.5%
$8 / 12 / 2020$	20	4129	102	2.5%
$8 / 12 / 2020$	21	3011	55	1.8%
$8 / 12 / 2020$	22	2311	47	2.0%
$8 / 12 / 2020$	23	1471	35	2.4%
$8 / \mathbf{1 2 / 2 0 2 0}$	Total	$\mathbf{1 2 7 5 0 7}$	$\mathbf{3 8 3 6}$	$\mathbf{3 . 0 \%}$

Ohio:

Station Name: 119025
Latitude: 39.8717352
Longitude: -82.9477232

Figure B.17. Location of Ohio station 119025

Figure B.18. Connected vehicle points for Ohio station 119025

Volume Count Report

LOCATION INFO	
Location ID	119025
Type	SPOT
Fnct'I Class	1
Located On	JACK NICKLAUS FWY
Loc On Alias	N97
Direction	2-WAY
County	FRANKLIN
Community	OBETZ
MPO ID	
HPMS ID	
Agency	ODOT

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 8/12/2020
End Date	Thu 8/13/2020
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00$ AM
Direction	
Notes	
Station	
Study	
Speed Limit	
Description	
Sensor Type	ATR
Source	TCDS_COUNT_IMPORT_COMBINE
Latitude,Longitude	

INTERVAL:15-MIN					
Time	15-min Interval				Hourly
	1st	2nd	3rd	4th	
(1) 0:00-1:00	204	206	177	173	760
1:00-2:00	128	143	155	179	605
2:00-3:00	118	175	127	120	540
3:00-4:00	132	148	142	189	611
4:00-5:00	170	209	266	324	969
5:00-6:00	363	445	667	784	2,259
6:00-7:00	698	883	1,084	1,280	3,945
7:00-8:00	990	1,123	1,174	1,334	4,621
8:00-9:00	1,188	1,031	1,053	1,020	4,292
9:00-10:00	940	915	923	957	3,735
10:00-11:00	819	894	883	906	3,502
11:00-12:00	907	973	945	962	3,787
12:00-13:00	942	940	965	952	3,799
13:00-14:00	937	1,016	955	1,105	4,013
14:00-15:00	1,055	1,137	1,175	1,344	4,711
15:00-16:00	1,278	1,441	1,342	1,440	5,501
16:00-17:00	1,248	1,522	1,411	1,464	5,645
17:00-18:00	1,257	1,373	1,302	1,264	5,196
18:00-19:00	1,037	953	808	790	3,588
19:00-20:00	708	722	692	612	2,734
20:00-21:00	603	572	541	508	2,224
21:00-22:00	462	457	439	418	1,776
22:00-23:00	386	428	333	307	1,454
23:00-24:00 ©	304	314	266	284	1,168
Total					71,435
AADT					61,434
AM Peak					$\begin{array}{r} 15-08: 15 \\ 4,819 \end{array}$
PM Peak					$\begin{array}{r} 15-17: 15 \\ 5,654 \\ \hline \end{array}$

Figure B.19. Screenshot from Ohio's TCMS of hourly DOT vehicle counts for August 12, 2020 for Ohio station 119025

Table B.10. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Ohio station 119025

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	760	15	2.0%
$8 / 12 / 2020$	1	605	11	1.8%
$8 / 12 / 2020$	2	540	12	2.2%
$8 / 12 / 2020$	3	611	5	0.8%
$8 / 12 / 2020$	4	969	23	2.4%
$8 / 12 / 2020$	5	2259	71	3.1%
$8 / 12 / 2020$	6	3945	153	3.9%
$8 / 12 / 2020$	7	4621	167	3.6%
$8 / 12 / 2020$	8	4292	139	3.2%
$8 / 12 / 2020$	9	3735	123	3.3%
$8 / 12 / 2020$	10	3502	115	3.3%
$8 / 12 / 2020$	11	3787	108	2.9%
$8 / 12 / 2020$	12	3799	127	3.3%
$8 / 12 / 2020$	13	4013	155	3.9%
$8 / 12 / 2020$	14	4711	158	3.4%
$8 / 12 / 2020$	15	5501	201	3.7%
$8 / 12 / 2020$	16	5645	219	3.9%
$8 / 12 / 2020$	17	5196	200	3.8%
$8 / 12 / 2020$	18	3588	117	3.3%
$8 / 12 / 2020$	19	2734	98	3.6%
$8 / 12 / 2020$	20	2224	84	3.8%
$8 / 12 / 2020$	21	1776	54	3.0%
$8 / 12 / 2020$	22	1454	57	3.9%
$8 / 12 / 2020$	23	1168	21	1.8%
$8 / \mathbf{1 2} / 2020$	Total	$\mathbf{7 1 4 3 5}$	$\mathbf{2 4 3 3}$	$\mathbf{3} .4 \%$

Pennsylvania:

Station Name: 1623
Latitude: 40.2580
Longitude: -77.0647

Figure B.20. Location of Pennsylvania station 1623

Figure B.21. Connected vehicle points for Pennsylvania station 1623

Location Description: 1.4 mi. S of PA 114 (Silver Spring)

Details		Location		Map	
Type of Count	CONTINUOUS CLASS	County	CUMBERLAND (21)		
Type of Site	CAVC (831)	Route	0081		
Schedule	CONTINUOUS	Segment	0554		
Duration	CONTINUOUS	Offset	0000		
Frequency Cycle	01	Latitude	40.2576		
Cycle Year	01	Longitude	-77.06499	Googl	Map data e2022

Figure B.22. Screenshot from Pennsylvania's TIRe of hourly DOT vehicle counts for August 12, 2020 for Pennsylvania station 1623

Table B.11. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Pennsylvania station 1623

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	1041	7	0.7%
$8 / 12 / 2020$	1	767	13	1.7%
$8 / 12 / 2020$	2	821	8	1.0%
$8 / 12 / 2020$	3	1048	14	1.3%
$8 / 12 / 2020$	4	1442	18	1.2%
$8 / 12 / 2020$	5	2404	36	1.5%
$8 / 12 / 2020$	6	3523	72	2.0%
$8 / 12 / 2020$	7	4021	114	2.8%
$8 / 12 / 2020$	8	3676	84	2.3%
$8 / 12 / 2020$	9	3754	94	2.5%
$8 / 12 / 2020$	10	3743	104	2.8%
$8 / 12 / 2020$	11	3921	114	2.9%
$8 / 12 / 2020$	12	4113	98	2.4%
$8 / 12 / 2020$	13	4262	119	2.8%
$8 / 12 / 2020$	14	4790	128	2.7%
$8 / 12 / 2020$	15	5162	137	2.7%
$8 / 12 / 2020$	16	4836	146	3.0%
$8 / 12 / 2020$	17	4524	122	2.7%
$8 / 12 / 2020$	18	3422	87	2.5%
$8 / 12 / 2020$	19	2616	61	2.3%
$8 / 12 / 2020$	20	2227	51	2.3%
$8 / 12 / 2020$	21	1729	29	1.7%
$8 / 12 / 2020$	22	1567	22	1.4%
$8 / 12 / 2020$	23	1316	30	2.3%
$8 / 12 / 2020$	Total	$\mathbf{7 0 7 2 5}$	$\mathbf{1 7 0 8}$	$\mathbf{2} 4 \%$
8				

Texas:

Station Name: A193
Latitude: 32.783549
Longitude: -97.466786

Figure B.23. Location of Texas location A193

Trajectory points: 660,869
(a) August 2020

Trajectory points: 22,339
(b) August 12, 2020

Figure B.24. Connected vehicle points for Texas location A193

LOCATION INFO	
Location ID	A193
Type	SPOT
Fnct'I Class	1
Located On	IH0820
Loc On Alias	IH0820-KG
Direction	2-WAY
County	Tarrant
Community	Fort Worth
MPO ID	
HPMS ID	UNASSIGNED
Agency	Texas DOT

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed $8 / 12 / 2020$
End Date	Thu 8/13/2020
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00$ AM
Direction	
Notes	
Station	
Study	
Speed Limit	
Description	
Sensor Type	ATR
Source	TCDS_COUNT_IMPORT_COMBINE
Latitude,Longitude	

INTERVAL:60-MIN	
Time	Hourly Count
(1) 0:00-1:00	961
1:00-2:00	555
2:00-3:00	526
3:00-4:00	621
4:00-5:00	1,123
5:00-6:00	3,004
6:00-7:00	5,069
7:00-8:00	6,481
8:00-9:00	5,752
9:00-10:00	4,808
10:00-11:00	4,963
11:00-12:00	4,870
12:00-13:00	5,362
13:00-14:00	5,497
14:00-15:00	5,989
15:00-16:00	6,624
16:00-17:00	7,968
17:00-18:00	7,996
18:00-19:00	5,884
19:00-20:00	4,383
20:00-21:00	3,290
21:00-22:00	2,705
22:00-23:00	1,810
23:00-24:00 (-)	1,220
Total	97,461
AADT	95,219
AM Peak	$\begin{array}{r} \hline 07: 00-08: 00 \\ 6,481 \\ \hline \end{array}$
PM Peak	$\begin{array}{r} 17: 00-18: 00 \\ 7,996 \\ \hline \end{array}$

Figure B.25. Screenshot from Texas's TCDS of hourly DOT vehicle counts for August 12, 2020 for Texas station A193

Table B.12. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Texas station A193

Date	Hour	DOT Count	CV Count	Percent
8/12/2020	0	961	28	2.9\%
8/12/2020	1	555	15	2.7\%
8/12/2020	2	526	15	2.9\%
8/12/2020	3	621	26	4.2\%
8/12/2020	4	1123	51	4.5\%
8/12/2020	5	3004	136	4.5\%
8/12/2020	6	5069	254	5.0\%
8/12/2020	7	6481	349	5.4\%
8/12/2020	8	5752	320	5.6\%
8/12/2020	9	4808	268	5.6\%
8/12/2020	10	4963	280	5.6\%
8/12/2020	11	4870	277	5.7\%
8/12/2020	12	5362	321	6.0\%
8/12/2020	13	5497	306	5.6\%
8/12/2020	14	5989	311	5.2\%
8/12/2020	15	6624	384	5.8\%
8/12/2020	16	7968	423	5.3\%
8/12/2020	17	7996	402	5.0\%
8/12/2020	18	5884	323	5.5\%
8/12/2020	19	4383	203	4.6\%
8/12/2020	20	3290	152	4.6\%
8/12/2020	21	2705	120	4.4\%
8/12/2020	22	1810	58	3.2\%
8/12/2020	23	1220	33	2.7\%
8/12/2020	Total	97,461	5,055	5.2\%

Utah:

Station Name: UT_14 (corresponding UDOT stations: 755, 758, 99755, 99758)
Latitude: 40.949177
Longitude: -111.891273

Figure B.26. Location of Utah station UT_14

Figure B.27. Connected vehicle points for Utah station UT_14

Table B.13. DOT vehicle counts for August 12, 2020, for Utah station UT_14

Date	UT_14 Stations				Hour Total
	$\mathbf{7 5 5}$	$\mathbf{7 5 8}$	$\mathbf{9 9 7 5 5}$	$\mathbf{9 9 7 5 8}$	
$8 / 18 / 20200: 00$	435	573	14	5	1027
$8 / 18 / 20201: 00$	282	362	12	5	661
$8 / 18 / 20202: 00$	268	282	9	1	560
$8 / 18 / 20203: 00$	406	254	10	0	670
$8 / 18 / 20204: 00$	917	458	35	4	1414
$8 / 18 / 20205: 00$	2618	1148	269	21	4056
$8 / 18 / 20206: 00$	4659	2302	585	78	7624
$8 / 18 / 20207: 00$	5373	3256	555	117	9301
$8 / 18 / 20208: 00$	4875	3612	561	184	9232
$8 / 18 / 20209: 00$	4111	3725	450	239	8525
$8 / 18 / 202010: 00$	3975	4098	522	370	8965
$8 / 18 / 202011: 00$	4171	4309	502	315	9297
$8 / 18 / 202012: 00$	4261	4377	509	303	9450
$8 / 18 / 202013: 00$	4144	4657	481	337	9619
$8 / 18 / 202014: 00$	4159	5026	577	421	10183
$8 / 18 / 202015: 00$	4415	5886	594	567	11462
$8 / 18 / 202016: 00$	4636	6129	617	725	12107
$8 / 18 / 202017: 00$	4845	6240	686	568	12339
$8 / 18 / 202018: 00$	3942	4922	541	383	9788
$8 / 18 / 202019: 00$	3087	3538	371	210	7206
$8 / 18 / 202020: 00$	2875	2949	340	167	6331
$8 / 18 / 202021: 00$	2092	2374	309	135	4910
$8 / 18 / 202022: 00$	1366	1695	137	84	3282
$8 / 18 / 202023: 00$	760	1022	46	32	1860
Total	$\mathbf{7 2 6 7 2}$	$\mathbf{7 3 1 9 4}$	$\mathbf{8 7 3 2}$	$\mathbf{5 2 7 1}$	$\mathbf{1 5 9 8 6 9}$

Table B.14. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Utah station UT_14

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	1027	17	1.7%
$8 / 12 / 2020$	1	661	8	1.2%
$8 / 12 / 2020$	2	560	12	2.1%
$8 / 12 / 2020$	3	670	7	1.0%
$8 / 12 / 2020$	4	1414	30	2.1%
$8 / 12 / 2020$	5	4056	103	2.5%
$8 / 12 / 2020$	6	7624	224	2.9%
$8 / 12 / 2020$	7	9301	266	2.9%
$8 / 12 / 2020$	8	9232	239	2.6%
$8 / 12 / 2020$	9	8525	237	2.8%
$8 / 12 / 2020$	10	8965	267	3.0%
$8 / 12 / 2020$	11	9297	289	3.1%
$8 / 12 / 2020$	12	9450	267	2.8%
$8 / 12 / 2020$	13	9619	273	2.8%
$8 / 12 / 2020$	14	10183	267	2.6%
$8 / 12 / 2020$	15	11462	316	2.8%
$8 / 12 / 2020$	16	12107	295	2.4%
$8 / 12 / 2020$	17	12339	328	2.7%
$8 / 12 / 2020$	18	9788	241	2.5%
$8 / 12 / 2020$	19	7206	171	2.4%
$8 / 12 / 2020$	20	6331	130	2.1%
$8 / 12 / 2020$	21	4910	96	2.0%
$8 / 12 / 2020$	22	3282	61	1.9%
$8 / 12 / 2020$	23	1860	36	1.9%
$8 / \mathbf{1 2} / 2020$	Total	$\mathbf{1 5 9 8 6 9}$	$\mathbf{4 1 8 0}$	$\mathbf{2 . 6 \%}$

(a) Station 755

(c) Station 99755

(b) Station 758

(d) Station 99758

Figure B.28. Screenshots of Utah station UT_14 traffic counts for August 12, 2020 from UDOT's PeMS

Wisconsin:

Station Name: 310001
Latitude: 44.66349
Longitude: -87.744395

Figure B.29. Location of Wisconsin station 310001

Trajectory points: 144,772
(a) August 2020

(b) August 12, 2020

Figure B.30. Connected vehicle points for Wisconsin station 310001

Table B.15. DOT vehicle counts for a subset of August 12, 2020 for Wisconsin station 310001

Date	Day of Week	Hour	Direction	Volume by Direction	Road Volume
12-Aug-20	Wednesday	0	NB	22	48
12-Aug-20	Wednesday	0	SB	26	
12-Aug-20	Wednesday	1	NB	13	21
12-Aug-20	Wednesday	1	SB	18	
12-Aug-20	Wednesday	2	NB	10	41
12-Aug-20	Wednesday	2	SB	11	
12-Aug-20	Wednesday	3	NB	23	18
12-Aug-20	Wednesday	3	SB	68	336
12-Aug-20	Wednesday	4	NB	68	
12-Aug-20	Wednesday	4	SB	181	155
12-Aug-20	Wednesday	5	NB		
12-Aug-20	Wednesday	5	SB		

Table B.16. Hourly and resulting daily percent penetration calculations for August 12, 2020 for Wisconsin station 310001

Date	Hour	DOT Count	CV Count	Percent
$8 / 12 / 2020$	0	48	0	0.0%
$8 / 12 / 2020$	1	31	1	3.2%
$8 / 12 / 2020$	2	21	0	0.0%
$8 / 12 / 2020$	3	41	2	4.9%
$8 / 12 / 2020$	4	136	9	6.6%
$8 / 12 / 2020$	5	336	16	4.8%
$8 / 12 / 2020$	6	548	43	7.8%
$8 / 12 / 2020$	7	623	36	5.8%
$8 / 12 / 2020$	8	678	35	5.2%
$8 / 12 / 2020$	9	908	49	5.4%
$8 / 12 / 2020$	10	1023	73	7.1%
$8 / 12 / 2020$	11	1089	84	7.7%
$8 / 12 / 2020$	12	1023	62	6.1%
$8 / 12 / 2020$	13	990	65	6.6%
$8 / 12 / 2020$	14	1122	67	6.0%
$8 / 12 / 2020$	15	1272	85	6.7%
$8 / 12 / 2020$	16	1204	78	6.5%
$8 / 12 / 2020$	17	949	58	6.1%
$8 / 12 / 2020$	18	641	43	6.7%
$8 / 12 / 2020$	19	543	35	6.4%
$8 / 12 / 2020$	20	367	23	6.3%
$8 / 12 / 2020$	21	221	15	6.8%
$8 / 12 / 2020$	22	123	10	8.1%
$8 / 12 / 2020$	23	58	4	6.9%
$8 / 12 / 2020$	Total	$\mathbf{1 3 9 9 5}$	$\mathbf{8 9 3}$	$\mathbf{6 . 4 \%}$

REFERENCES

Ahsani, V., Amin-Naseri, M., Knickerbocker, S., \& Sharma, A. (2019). Quantitative analysis of probe data characteristics: Coverage, speed bias and congestion detection precision. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 23(2), 103119. https://doi.org/10.1080/15472450.2018.1502667

Bagdadi, O. (2013). Assessing safety critical braking events in naturalistic driving studies. Transportation Research Part F: Traffic Psychology and Behaviour, 16, 117-126. https://doi.org/10.1016/j.trf.2012.08.006
Bagdadi, O., \& Várhelyi, A. (2013). Development of a method for detecting jerks in safety critical events Accident Analysis and Prevention, 50, 83-91. https://doi.org/10.1016/j.aap.2012.03.032
C.P, D., \& J., R. (2007). Statistics without Maths for Psychology. Person Education.

Caltrans. (n.d.). Performance Measurement System. https://pems.dot.ca.gov/
Ctrl-Shift, \& Wejo. (2020). The Growth of the Connect Vehicle Data Market - The Implications of Personal Data and Emerging US Legislation.

Day, C. M., \& Bullock, D. M. (2016). Detector-Free Signal Offset Optimization with Limited Connected Vehicle Market Penetration: Proof-of-Concept Study. Transportation Research Record: Journal of the Transportation Research Board, 2558(1), 54-65. https://doi.org/10.3141/2558-06

Day, C. M., Li, H., Richardson, L. M., Howard, J., Platte, T., Sturdevant, J. R., \& Bullock, D. M. (2017). Detector-free optimization of traffic signal offsets with connected vehicle data. In Transportation Research Record (Vol. 2620). https://doi.org/10.3141/2620-06

Desai, J., Li, H., Mathew, J. K., Cheng, Y.-T., Habib, A., \& Bullock, D. M. (2020a). Correlating Hard-braking Activity with Crash Occurrences on Interstate Construction Projects in Indiana. Journal of Big Data Analytics in Transportation. https://doi.org/https://doi.org/10.1007/s42421-020-00024-x

Desai, J., Li, H., Mathew, J. K., Cheng, Y.-T., Habib, A., \& Bullock, D. M. (2020b). Correlating Hard-Braking Activity with Crash Occurrences on Interstate Construction Projects in Indiana. Journal of Big Data Analytics in Transportation, 3(1), 27-41. https://doi.org/10.1007/s42421-020-00024-x

Desai, J., Mahlberg, J., Kim, W., Sakhare, R., Li, H., McGuffey, J., \& Bullock, D. M. (2021). Leveraging Telematics for Winter Operations Performance Measures and Tactical Adjustment. Journal of Transportation Technologies, 11(04), 611-627. https://doi.org/10.4236/jtts.2021.114038

Desai, J., Mathew, J. K., Li, H., \& Bullock, D. M. (2021). Analysis of Electric and Hybrid Vehicle Usage in Proximity to Charging Infrastructure in Indiana. Journal of Transportation Technologies, 11(04), 577-596. https://doi.org/10.4236/jtts.2021.114036

Essa, M., \& Sayed, T. (2019). Full Bayesian conflict-based models for real time safety evaluation of signalized intersections. Accident Analysis and Prevention, 129, 367-381. https://doi.org/10.1016/j.aap.2018.09.017
Evans, J. D. (1996). Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing.
Federal Highway Administration. (2016). Traffic Monitoring Guide FHWA. Fhwa, October, 462. http://www.fhwa.dot.gov/policyinformation/tmguide/

Gazis, D., Herman, R., \& Maradudin, A. (1960). The Problem of the Amber Signal Light in Traffic Flow. Operations Research, 8(1), 112-132. https://doi.org/10.1287/opre.8.1.112
GDOT, \& Drakewell. (n.d.). Traffic Analysis and Data Application. https://gdottrafficdata.drakewell.com/publicmultinodemap.asp
Goenaga, B., Matini, N., Karanam, D., \& Underwood, B. S. (2021). Disruption and Recovery: Initial Assessment of COVID-19 Traffic Impacts in North Carolina and Virginia. Journal of Transportation Engineering, Part A: Systems, 147(4), 06021001. https://doi.org/10.1061/JTEPBS. 0000518
Haghani, A., Hamedi, M., \& Sababadi, K. F. (2009). I-95 Corridor Coalition Vehicle Probe Project: Validation of INRIX data July-September 2008 Final Report. I-95 Corridor Coalition. http://www.i95coalition.org.

Hoseinzadeh, N., Liu, Y., Han, L. D., Brakewood, C., \& Mohammadnazar, A. (2020). Quality of location-based crowdsourced speed data on surface streets: A case study of Waze and Bluetooth speed data in Sevierville, TN. Computers, Environment and Urban Systems, 83, 101518. https://doi.org/10.1016/j.compenvurbsys.2020.101518

Hunter, M., Mathew, J. K., Cox, E., Blackwell, M., \& Bullock, D. M. (2021). Estimation of Connected Vehicle Penetration Rate on Indiana Roadways. Purdue E-Pubs, 37, 1-6.

Hunter, M., Mathew, J. K., Li, H., \& Bullock, D. M. (2021). Estimation of Connected Vehicle Penetration on US Roads in Indiana, Ohio, and Pennsylvania. Journal of Transportation Technologies, 11(04), 597-610. https://doi.org/10.4236/jtts.2021.114037

Hunter, M., Saldivar-Carranza, E., Desai, J., Mathew, J., Li, H., \& Bullock, D. M. (2021). A Proactive Approach to Evaluating Intersection Safety Using Hard-braking Data. In Journal of Big Data Analytics in Transportation. Springer. https://doi.org/10.1007/s42421-021-00039-y

INDOT. (n.d.). Innovative Operations. https://www.in.gov/indot/current-programs/innovative-programs/innovative-operations/

INDOT, \& MS2. (n.d.). Traffic Count Database System. https://indot.public.ms2soft.com/tcds/tsearch.asp?loc=Indot\&mod

INRIX. (n.d.). INRIX: A History of Innovation. https://inrix.com/resources/inrix-a-history-ofinnovation/

Iteris, \& UDOT. (n.d.). Performance Measurement System. https://udot.iteris-pems.com/
Kim, S., \& Coifman, B. (2014). Comparing INRIX speed data against concurrent loop detector stations over several months. Transportation Research Part C: Emerging Technologies, 49, 59-72. https://doi.org/10.1016/j.trc.2014.10.002

Levine, U. (2019, January). From the Co-Founder of Waze, A Blueprint To Eliminate Traffic Jams. Forbes. https://www.forbes.com/sites/startupnationcentral/2019/01/27/from-the-co-founder-of-waze-a-blueprint-to-eliminate-traffic-jams/?sh=25f6863aa8f7

Li, H., Day, C. M., \& Bullock, D. M. (2016). Virtual detection at intersections using connected vehicle trajectory data. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2571-2576. https://doi.org/10.1109/ITSC.2016.7795969

Li, H., Mackey, J., Luker, M., Taylor, M., \& Bullock, D. M. (2019). Application of HighResolution Trip Trace Stitching to Evaluate Traffic Signal System Changes. Transportation Research Record: Journal of the Transportation Research Board, 2673(9), 188-201. https://doi.org/10.1177/0361198119841043

Li, H., Mathew, J. K., Kim, W., \& Bullock, D. M. (2020). Using Crowdsourced Vehicle Braking Data to Identify Roadway Hazards. In JTRP Affiliated Reports. https://doi.org/10.5703/1288284317272

Ma, W., Wan, L., Yu, C., Zou, L., \& Zheng, J. (2020). Multi-objective optimization of traffic signals based on vehicle trajectory data at isolated intersections. Transportation Research Part C: Emerging Technologies, 120, 102821. https://doi.org/10.1016/j.trc.2020.102821
Mathew, J. K., Desai, J., Li, H., \& Bullock, D. M. (2021). Using Anonymous Connected Vehicle Data to Evaluate Impact of Speed Feedback Displays, Speed Limit Signs and Roadway Features on Interstate Work Zones Speeds. Journal of Transportation Technologies, 11(04), 545-560. https://doi.org/10.4236/jtts.2021.114034
McNamara, M., Li, H., Remias, S., Richardson, L., Cox, E., Horton, D., \& Bullock, D. (2015). Using Real-Time Probe Vehicle Data to Manage Unplanned Detour Routes. ITE Journal, 85(12).

Mekker, M. M., Remias, S. M., Mcnamara, M. L., \& Bullock, D. M. (2014). Characterizing Interstate Crash Rates Based on Traffic Congestion Using Probe Vehicle Data. JTRP Affiliated Reports, 16, 2014-2015.
MnDOT. (n.d.). ATR / WIM Hourly Volume Data (2017-2020). https://www.dot.state.mn.us/traffic/data/reports-hrvol-atr.html
NCDOT, \& MS2. (n.d.). Transportation Data Management System. https://ncdot.public.ms2soft.com/tcds/tsearch.asp?loc=Ncdot\&mod=TCDS

ODOT, \& MS2. (n.d.). Traffic Monitoring Management System. https://odot.public.ms2soft.com/tcds/tsearch.asp?loc=odot
Older, S. J., \& Spicer, B. R. (1976). Traffic Conflicts-A Development in Accident Research. Human Factors: The Journal of Human Factors and Ergonomics Society, 18(4), 335-350. https://doi.org/10.1177/001872087601800403

Parsonson, P. S. (1978). Signalization of High Speed Isolated Intersections. Transportation Research Record 681, 34-42.

PennDOT. (n.d.). Traffic Information Repository. https://gis.penndot.gov/tire
Perkins, S. R., \& Harris, J. I. (1968). Traffic Conflict Characteristics - Accident Potential at Intersections. Highway Research Redord, 225, 35-43.
Quiroga, C. A., \& Bullock, D. (1998). Travel time studies with global positioning and geographic information systems: an integrated methodology. Transportation Research Part C: Emerging Technologies, $6 C(1-2), 101-127$. https://doi.org/10.1016/S0968-090X(98)00010-2

Remias, S., Hainen, A., Day, C., Brennan, T., Li, H., Rivera-Hernandez, E., Sturdevant, J., Young, S., \& Bullock, D. (2013). Performance characterization of arterial traffic flow with probe vehicle data. Transportation Research Record, 2380(2380), 10-21. https://doi.org/10.3141/2380-02

Sakhare, R. S., Desai, J. C., Mahlberg, J., Mathew, J. K., Kim, W., Li, H., McGregor, J. D., \& Bullock, D. M. (2021). Evaluation of the Impact of Queue Trucks with Navigation Alerts Using Connected Vehicle Data. Journal of Transportation Technologies, 11(04), 561-576. https://doi.org/10.4236/jtts.2021.114035

Sakhare, R. S., Desai, J. C., Mathew, J. K., McGregor, J. D., \& Bullock, D. M. (2021). Evaluation of the Impact of Presence Lighting and Digital Speed Limit Trailers on Interstate Speeds in Indiana Work Zones. Journal of Transportation Technologies, 11(02), 157-167. https://doi.org/10.4236/jtts.2021.112010
Saldivar-Carranza, E. D., Li, H., \& Bullock, D. M. (2021). Diverging Diamond Interchange Performance Measures Using Connected Vehicle Data. Journal of Transportation Technologies, 11(04), 628-643. https://doi.org/10.4236/jtts.2021.114039
Saldivar-Carranza, E., Li, H., Mathew, J., Hunter, M., Sturdevant, J., \& Bullock, D. M. (2020). Deriving Operational Traffic Signal Performance Measures from Vehicle Trajectory Data. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981211006725
Saldivar-Carranza, E., Mathew, J. K., Li, H., \& Bullock, D. M. (2022). Roundabout Performance Analysis Using Connected Vehicle Data. Journal of Transportation Technologies, 12(01), 42-58. https://doi.org/10.4236/jtts.2022.121003

Sharma, A., Bullock, D., \& Peeta, S. (2011). Estimating dilemma zone hazard function at high speed isolated intersection. Transportation Research Part C: Emerging Technologies, 19(3), 400-412. https://doi.org/10.1016/J.TRC.2010.05.002
Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. https://doi.org/10.2307/1412159
Stipancic, J., Miranda-Moreno, L., \& Saunier, N. (2018). Vehicle manoeuvers as surrogate safety measures: Extracting data from the gps-enabled smartphones of regular drivers. Accident Analysis and Prevention, 115, 160-169. https://doi.org/10.1016/j.aap.2018.03.005

Tarko, A. P. (2020). Traffic conflicts as crash surrogates. In Measuring Road Safety Using Surrogate Events (pp. 31-45). Elsevier Ltd. https://doi.org/10.1016/b978-0-12-810504-7.00003-3

TXDOT, \& MS2. (n.d.). Traffic Count Database System. https://txdot.public.ms2soft.com/tcds/tsearch.asp?loc=Txdot\&mod=TCDS
Waddell, J. M., Remias, S. M., Kirsch, J. N., \& Trepanier, T. (2020). Utilizing Low-Ping Frequency Vehicle Trajectory Data to Characterize Delay at Traffic Signals. Journal of Transportation Engineering, Part A: Systems, 146(8), 04020069. https://doi.org/10.1061/JTEPBS. 0000382
Wang, D. (2007). Stuck in Traffic? Google Official Blog. https://googleblog.blogspot.com/2007/02/stuck-in-traffic.html
Y.H., C. (2003). Biostatistics 104: Correlation Analysis. Singap Med J., 44(12), 614-619.

Zegeer, C. V., \& Deen, R. C. (1978). Green-Extension Systems at High-Speed Intersections. ITE Journal, 48(11), 4-5.

Zhang, C., Wang, J., Lai, J., Yang, X., Su, Y., \& Dong, Z. (2019). Extracting Origin-Destination with Vehicle Trajectory Data and Applying to Coordinated Ramp Metering. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/8469316

Zhang, X., Hamedi, M., \& Haghani, A. (2015). Arterial travel time validation and augmentation with two independent data sources. Transportation Research Record, 2526, 79-89. https://doi.org/10.3141/2526-09

Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y., \& Liu, H. X. (2019). Estimation of Queue Lengths, Probe Vehicle Penetration Rates, and Traffic Volumes at Signalized Intersections using Probe Vehicle Trajectories. Transportation Research Record, 2673(11), 660-670. https://doi.org/10.1177/0361198119856340

PUBLICATIONS

Hunter, M., Mathew, J. K., Cox, E., Blackwell, M., \& Bullock, D. M. (2021). Estimation of Connected Vehicle Penetration Rate on Indiana Roadways. JTRP Affiliated Reports. https://doi.org/10.5703/1288284317343

Hunter, M., Mathew, J. K., Li, H., \& Bullock, D. M. (2021). Estimation of Connected Vehicle Penetration on US Roads in Indiana, Ohio, and Pennsylvania. Journal of Transportation Technologies, $11(04)$, 597-610. https://doi.org/10.4236/jtts.2021.114037

Hunter, M., Saldivar-Carranza, E., Desai, J., Mathew, J. K., Li, H., \& Bullock, D. M. (2021). A Proactive Approach to Evaluating Intersection Safety Using Hard-Braking Data. Journal of Big Data Analytics in Transportation, 3(2), 81-94. https://doi.org/10.1007/s42421-021-00039-y

Saldivar-Carranza, E. D., Hunter, M., Li, H., Mathew, J., \& Bullock, D. M. (2021). Longitudinal Performance Assessment of Traffic Signal System Impacted by Long-Term Interstate Construction Diversion Using Connected Vehicle Data. Journal of Transportation Technologies, 11(04), 644-659. https://doi.org/10.4236/jtts.2021.114040

Saldivar-Carranza, E. D., Mathew, J. K., Li, H., Hunter, M., Platte, T., \& Bullock, D. M. (2021). Using Connected Vehicle Data to Evaluate Traffic Signal Performance and Driver Behavior after Changing Left-turns Phasing. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). https://doi.org/10.1109/itsc48978.2021.9564654

Saldivar-Carranza, E., Li, H., Mathew, J., Hunter, M., Sturdevant, J., \& Bullock, D. M. (2021). Deriving Operational Traffic Signal Performance Measures from Vehicle Trajectory Data. Transportation Research Record, 2675(9), 1250-1264. https://doi.org/10.1177/03611981211006725

