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ABSTRACT

Cognitive load theory (CLT) lays out a tripartite scheme concerned with how learners

cognitively interact with instructional materials during learning and problem solving. Cog-

nitive load refers to the utilization of working memory resources, and CLT designates three

types of cognitive load as intrinsic cognitive load, extraneous cognitive load, and germane

cognitive load. Intrinsic cognitive load is related to the intrinsic complexity of the material.

Extraneous cognitive load is concerned with unnecessary utilization of cognitive resources

due to suboptimal instructional design. Germane cognitive load results from processing the

intrinsic load and schema acquisition. The expertise reversal effect follows as a consequence

of CLT.

The expertise reversal effect (ERE) states that instructional materials that are beneficial

to low prior knowledge (LPK) learners may be detrimental to high prior knowledge (HPK)

learners. Less guided materials have been shown to reduce extraneous cognitive load for

these learners and therefore produce a greater benefit.

In this work we present the development of online instructional modules that deliver

content in two distinct styles, differentiated by their use of guiding features. the high level

guidance version (HLG) uses guiding features, such as animations and voice narration, which

have been shown to benefit LPK learners. Alternatively, guiding features have been shown

to be destructive to the learning of HPK students. The low level guidance (LLG) version

uses text in place of voice narration and pop-up content in place of continuous animations.

Both versions led to a statistically significant improvement from pre-test to post-test. How-

ever, both HPK and LPK students showed a preference for the HLG version of the module,

contrary to the ERE. Future work will focus on improving the ability to indentify HPK and

LPK students, and refining methods for providing optimal instructional materials for these

cohorts.

Meanwhile, the use of machine learning is an emerging trend in education. Machine

learning has been used in roles such as automatic scoring of essays in scientific argumen-

tation tasks and providing feedback to students in real time. In this work we report our

results on two projects using machine learning in education. In one project we used machine
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learning to predict students’ correctness on a physics problem given an essay outlining their

approach to solving the problem. Our overall accuracy in predicting problem correctness

given a student’s strategy essay was 80%. We were able to detect students whose approach

would lead to an incorrect solution at a rate of 87%. However, deploying this model to pro-

vide real-time feedback would necessitate performance improvement. Planned future work

on this problem includes hand grading essays to produce a label that reflects the scientific

merit of each essay, using more sophisticated models (like Google’s B.E.R.T.), and general-

izing to a larger set of problems.

In another study, we used data about students’ prior academic behavior to predict aca-

demic risk in a first-year algebra based physics course. Their final course grade was used

to define their risk category as; B- and above is designated low risk, and C+ and below is

designated as high-risk. Using a mix of numerical and category features such as high school

gpa, ACT/SAT scores, gender, and ethnicity we were able to predict student academic risk

with 75% overall accuracy. Students with a very high grade (A) or students with a very low

grade (D,F,W) were identified at a rate 92% and 88% (respectively).

Prior work [ 1 ], [ 2 ] has shown that performance can be greatly increased by including

in-class features into the model. Future work will focus on obtaining raw data, rather than

using curved scores reported to the university registrar. Also, obtaining more batches of

data to improve predictive power with existing models developed in this study.
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1. INTRODUCTION

Cognitive load theory (CLT) provides insight into the cognitive architecture available to stu-

dents and how it is used during learning and problem solving [ 3 ]–[ 5 ]. CLT frames a triarchic

model where cognitive load is delineated as intrinsic cognitive load, extraneous cognitive

load, and germane cognitive load. Intrinsic load originates from the essential complexity of

the material to be learned. Extraneous load stems from suboptimal instructional design and

forcing the learner to split their attention between multiple sources of information. Germane

load is related to processing the intrinsic load and schema formation. CLT provides guiding

principles for the design of instructional materials. If the cognitive load imposed by instruc-

tion is too high, working memory resources will be overwhelmed and learning will not take

place.

Furthermore, it has been demonstrated that students struggle to develop problem solving

skills [  6 ], [  7 ]. The traditional wisdom of ‘just solve a bunch of questions, then you’ll be an

expert problem solver’ doesn’t work like we think it does. We now know that appropriately

designed worked examples are superior in facilitating the acquisition of domain knowledge

relative to conventional problems which do very little to help novices become experts [  5 ], [  8 ].

Properly designed examples include guiding features that demonstrate expert-like thought

in a step-by-step fashion to reduce extraneous load by focusing the learner’s attention on

problem solving moves that are productive towards a solution [ 5 ].

It should be noted that worked examples of this nature do not benefit all learners equally.

Work on the expertise reversal effect shows that highly guided instructional approaches, while

being beneficial for novice learners, do not have the same benefit to high knowledge learners

[ 9 ]–[ 11 ]. In fact, high prior knowledge learners perform better with a lower level of guidance

because the guiding elements that reduce intrinsic load for novices increase extraneous load

for high knowledge learners [  12 ]. In order to present instructional materials in a way that is

optimal for all students, their individual learner characteristics must be respected.

Current e-learning systems are very useful for certain things like managing a course with

a large number of students, but they are not effective at fostering problem solving ability

[ 13 ]. This is truly a wasted opportunity as online instruction systems provide an interac-
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tive environment that allows students to move through difficult material at their own pace.

For an e-learning system to help everyone, it should be adaptive for students with differ-

ent knowledge levels. In this document, I present my progress towards the development of

an online learning system. I also present supplemental work in using machine learning to

classify students based on their individual characteristics. Specifically I used prior academic

and demographic variables to classify students into one of two groups. The two groups were

defined based on the final letter grade in a first-year algebra based mechanics course. How-

ever, the groups could serve as a proxy for domain knowledge level. In another supporting

project, students solved the classic ballistic pendulum problem on an online quiz during lab.

As part of their solution, they were asked to write a short essay outlining the approach they

used to solve the problem. This essay included the assumptions they made, the principles

of physics they used, and how they were used.

Machine learning refers to a set of algorithms that are capable of carrying out tasks as a

human would without explicitly being programmed to do so. Instead of explicit instructions,

machines learn as they are exposed to labelled training data (in the case of supervised classi-

fication), or by recognizing statistical trends in un-labelled data (in the case of unsupervised

learning).

Machines can be leveraged to perform tasks including but not limited to classification,

regression, and generation of speech. These tasks can be performed on data such as numer-

ical tabular data, text data, and image data (again including but not limited to).

In my work, I endeavored to combine the power of artificial intelligence with novel tech-

niques for physics education.

Our main research questions were the following:

1. To what extent will students benefit from interactive online modules that are made

adaptive to student’s domain knowledge level?

2. To what extent can we classify students based on their level of domain knowledge using

only data that is available prior to the start of a course?

3. Given a student essay outlining their strategy for solving a physics problem, with what

degree of accuracy can I predict whether the student will get the problem correct?
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In study 1, we addressed the first research question by developing an online instructional

module on the subject of force and motion. Specifically, the concepts of vector analysis,

drawing a force diagram given a problem statement, writing Newton’s second law in terms

of vector components, and solving Newton’s second law. This module was a web application

created from scratch using the django framework in Python, and hosted on a web server.

Students accessed the module remotely through the web browser on their computer. The

module was intentionally designed not to be usable with mobile devices to reduce distrac-

tions from other applications (e.g. facebook notifications), and ensure that the screen was

large enough to properly display the content. The webapp was utilized by students from a

first year, algebra based mechanics course. It was available in two versions.

The module was made of three sections. There was a pre-test, an instructional portion,

and a post-test. The pre/post test were isomorphic in the sense that conceptual questions

were held fixed, and numerical questions had changed numbers between pre/post while all

other aspects were unchanged.

The two versions were differentiated by the instruction phase of the module. In one

version, designated as high level guidance (HLG), material was delivered in the manner

of a lesson being taught by an instructor. Concepts were illustrated through pictures and

animated scenes. Animations were used to demonstrate concepts such as vector addition.

These scenes and animations were synched to voice narrations produced by an AI generated

voice. The overall presentation was similiar to a lecture video. However, all the elements

were made to render in the browser to provide a higher level of immersion for the student.

The trajectory of the lesson was more-or-less fixed, however they were allowed to go back in

the event they missed something.

The low level guidance (LLG) module differed from the HLG variant by presentation

only. The LLG version delivered content statically, without using animations or narration.

Users are presented with prominent content areas labelled by concepts that are relevant to

the lesson.

When the user hovers their mouse over these content areas, pictures or diagrams appear

on the screen along with text explaining the figure. When the user moves their cursor out of

the content area, the text and figure disappears from the screen. This method of displaying
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content is an interactive alternative to a static slide or image. Furthermore, even though

the order of the content areas suggest a path through the lesson by the learner, this mode

allows the user more independence as they move through the lesson. The learning modules

will be described in more detail in chapter 4.

Research question 2 was explored in study 2 by obtaining data from the University

registrar for students in a first year, algebra-based mechanics course. This sample of stu-

dents were mainly from the school of technology, pre-pharmacy, and the life sciences. This

data included current and prior academic measures, and demographic attributes. Among

the academic data was students’ high school (HS) grade point average (GPA), most-recent-

prior-term college GPA, ACT/SAT scores, and advanced placement (AP) math and physics

scores. The demographic information included gender, ethnicity, and first generation college

student status.

Also included in this data was the students’ final course grade. The final course grade

was used to divide the students into two classes. One class (class 1) consisted of students

whose final grade was ’B-’ or above, and the other class (class 0) was students whose final

grade was ’C+’ or below. A machine learning model was trained using this combination of

data and labels from several consecutive semesters. The trained model was used to predict

the final course grade for students from the most recent semester for which the data was

available.

I investigated research question 3 in study 3 by embedding a question in an online quiz

taken during lab in a first year course for future scientists and engineers over two non-

consecutive semesters. The quiz question asked students to solve a variation of the classic

”ballistic pendulum” problem. As part of the question, they were asked to write an essay

outlining their approach to solving the problem. The essay was to include a discussion of the

principles of physics used in the solution, the assumptions that were made, and how these

were used.

The correctness of the answer to the problem was used as a binary class label, with ’1’

denoting a correct final answer and ’0’ indicating the final answer was incorrect. The es-

says were transformed into a high dimensional vector using the methods of natural language

processing. This combination of essays and labels from one semester were used to train a
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machine learning model, and the trained model was used to predict the problem correctness

of the other semester given student essays.

1.1 Overview

This document will be organized in the following fashion. In the second chapter we will

discuss cognitive load theory in more detail as well as a providing a short list of some of the

cognitive load effects that follow from cognitive load theory proper. We will go on to discuss

some of the features of adaptive learning systems and some principles of design. One of the

central tasks of a successful adaptive learning platform is being able to appropriately classify

students based on their knowledge level. The use of machine learning could facilitate this

task. Consequently, a discussion of what machine learning is, how it is used, and how some

of the algorithms work will follow.

In the third chapter we will discuss some preliminary work that was performed to address

the research questions outlined in this chapter. In the fourth chapter, I lay out the devel-

opment of and deployment of an instructional module. I will provide a deeper discussion

of the differences between the two versions of the module, and give some results about how

students benefitted from the use of this module in the context of research question 1. In

chapter 5 we describe the project the use of machine learning to predict student outcomes

in a first year course in mechanincs. Specifically, we wil discuss the data that we obtained,

how the data was prepared, how our machine learning model was built and validated, and

provide some discussion about the implications of this work for improving student outcomes

and the ability to classify students based on their level of domain knowledge. In chapter

six I will outline the work that was conducted to use natural language processing to assess

student scientific argumentation. Specifically, I disucuss the data that we collected, how it

was used in the study, the results that I obtained, and the implications for future studies.
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2. BACKGROUND

In this chapter I describe the motivating principles behind my work. I will start with an

introduction to cognitive load theory which provides insight into the cognitive architecture

available to students and how they use it during learning and problem solving. This will be

followed by discussion of some of the effects that follow as a direct result of cognitive load

theory, for example the expertise reversal effect. Then, we will discuss adaptive learning

platforms where instructional content is dynamically delivered in a way that is optimal for

individuals. We will end this chapter with a discussion of machine learning and natural

language processing.

2.1 Cognitive Load Theory

In this section we introduce a framework, cognitive load theory, which relates cognitive

architecture to instruction and learning. Cognitive load theory provides guiding principles

which serve as a basis for the design of instructional materials that are optimal with respect

to the cognitive resources available to the student.

Human memory and the interplay between long-term memory and working memory is

central to cognitive activities such as learning and problem solving. The multicomponent

model of working memory proposed by Braddeley and Hitch [  14 ], [  15 ] specifies working

memory as consisting of four distinct parts: the central executive, the episodic buffer, the

phonological loop, and the visuo-spatial sketchpad.

The central executive (Fig  2.1 (1)) is the control center of working memory. It assigns tasks

the other systems involved in learning and memory tasks, and coordinates information when

multiple tasks are performed simultaneously. The central exectutive also performs high-order

cognitive tasks such as problem-solving. Moreover, the central executive is responsible for

directing attention to relevant information and discarding the irrelevant.

The phonological loop (Fig  2.1 (2)) processes linguistic information and includes a storage

mechanism that allows one to keep information active in memory by rehersal (repeating to

yourself). The visuo-spatial sketchpad (Fig  2.1 (4)) processes and stores visual information
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Figure 2.1. Working memory is described as consisting of 4 parts. [ 14 ], [ 15 ]
The central executive (1), the phonological loop (2), the episodic buffer (3),
and the visuo-spatial sketchpad (4)

(such as the visual attributes of an object) and spatial information (such as mental maps).

The episodic buffer (Fig  2.1 (3)) serves to synthesize information that has both a linguistic

and visuo-spatial component, and acts as a temporary cache. [  15 ].

Cognitive load theory (CLT) describes how working memory resources are utilized to

process information in learning and problem solving. CLT frames a triarchic model, enu-

merating cognitive load as intrinsic cognitive load, extraneous cognitive load, and germane

cognitive load. Intrinsic cognitive load, hereafter referred to as intrinsic load, is related to

the learner and the material that must be learned. Extraneous cognitive load, hereafter

referred to as extraneous load is related to the presentation of the material and is therefore

sensitive to instructional design. Germane cognitive load, hereafter referred to as germane

load is the cognitive load associated with processing the intrinsic load and constructing or

extending schema [ 5 ].

CLT was introduced in 1988 and has been continually revisited and refined in terms of

its explanatory power and resolution since. Early versions of CLT place high importance
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of schema acquisition as the primary distinguishing factor between novice and expert-like

problem solvers. A schema is defined as a cognitive structure enabling problem solvers to

recognize problems as belonging to a category of problems which normally require a com-

mon set of steps to solve. Schemas reflect domain-specific knowledge, which novices do not

possess [ 3 ].

Expert problem solvers tend to group problems based on their solution strategy (e.g. con-

servation of energy), where novices generally group problems based on surface features (e.g.

block problems, car problems, etc…) [  16 ]. In this earliest version of CLT schema acquisition

is the primary goal of learning as other, less-directed approaches to problem solving, impose

a higher cognitive load by spending mental resources on activities that are not productive

to learning. Here, Sweller alludes to the notion of extraneous cognitive load without making

it concrete [ 3 ].

In a later version of CLT, the model is refined to explicitly refer to the cognitive load

imposed by suboptimal instructional design that is detrimental to learning as extraneous

load [ 17 ]. For example, providing information in a split-source format (such as using words

and a diagram) where neither is intelligible on its own requires the learner to split their

attention and mentally integrate the mutually referring information in the text and the di-

agram. Since this activity of mental integration is not necessary for learning and uses up

resources on activities that not productive to learning it constitutes an extraneous load. A

more friendly format from an extraneous load standpoint is an integrated format where rel-

evant text is integrated into the diagram and the learner is no longer required to split their

attention between different sources of information (Fig  2.2 ). The authors consider a mid-

dle ground in a series of experiments where they seek to determine if redundant information

which doesn’t require mental integration is destructive to learning. A study was conducted

with 28 first year electrical engineering apprentices. The apprentices were trained in testing

newly installed electrical equipment with either a conventional split source diagram (Fig  2.2 

frame 1) or a modified integrated format diagram (Fig  2.2 frame 2). After training, the

apprentices were given a practical test. The results of those experiments provide strong

evidence that presenting information in a modified format that shows the material in an

integrated manner is superior to a split-source presentation where complete information is
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Figure 2.2. The figure shows information presented in a slit-source format
(frame 1) and an integrated format (frame 2) [ 17 ].

presented in multiple sources. This result confirms that splitting attention and (unnecessar-

ily) mentally integrating separate sources of information produces an extraneous load and

reduces learning [ 17 ].

Sweller [ 4 ] elaborates on schema acquisition as a primary goal of learning by enumerat-

ing two critical mechanisms. In one mechanism schema acquisition occurs gradually as the

learner is presented with new information. Subject knowledge is organized into schemas as

new information is altered to make it congruent with the learner’s existing knowledge. An-

other mechanism relevant to information processing during learning and problem solving is

automation of schema. Information is either processed in an automatic or a controlled man-

ner. Controlled processing occurs when a learner must consciously attend to information.

Automatic processing occurs when a learner does not need to deliberately focus attention

on information during handling. Consider reading as an example which illustrates the dis-

tinction between automatic and controlled processing. Reading the words on this page is

automatic, while trying to understand the meaning of a passage is controlled. The switch

from controlled processing to automatic processing is continuous and slow as familiarity with

a given domain is obtained [  17 ]. Fig  2.3 shows that when a learner with relevant domain
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knowledge is presented a problem, they must keep the problem in their working memory

while searching long-term memory for relevant schema. If the schema is not automated,

then they activate several possible candidate schemas and must use working memory re-

sources to select the correct one. Alternatively, if the schema is automated, the correct one

is automatically activated. If the learner lacks domain knowledge then all of the processing

takes place in working memory and can easily overload the working memory capacity.

Schema acquisition and automation both serve to reduce cognitive load. The number

Figure 2.3. Controlled processing results in a search of LTM for relevent
schema and WM resources must be used to determine the applicable schema.
Automatic processing bypasses the search and relevant schema are automati-
cally activated.

of elements that can be accommodated in working memory is fixed at around 7 [  15 ]. An

element can be defined as a unit of information. Schemas reduce cognitive load by aggre-

gating elements into fewer units containing more information per unit. Schema automation

reduces cognitive load by significantly reducing the amount of processing needed in working

memory to activate relevant schemas.

An element can be anything that needs to be learned or has been learned such as facts,

concepts, formulas, definition, or even schemas themselves. What constitutes an element

28



depends on the learner and the material to be learned. A learner with high domain knowl-

edge in a content area will tend to group information in larger chunks so that each element

contains more information than the elements of their low domain knowledge counterparts.

Interaction of elements occurs when elements must be processed simultaneously rather

than sequentially. To appreciate what is meant by interacting elements, consider the follow-

ing two tasks. Memorization of events and dates in a history class and solving an algebraic

equation. For the first, pairs of dates and events can be memorized as independent pair

elements with only slight interaction associated with the order of date/pair elements (e.g.

the civil war happened before the Vietnam war). For the second, the learner must consider

the legal operations, the order in which we apply them, and the scope of each operator.

Interaction of elements is the primary determinant of intrinsic cognitive load [  5 ]. If the

number of interacting elements in a content are low, then there will be a low intrinsic load

associated with it. It would follow that memorizing dates/events in a history class would

impart a low intrinsic load whereas solving an equation would impart a higher intrinsic load.

That is of course unless the problem solver possesses a schema for solving that type of equa-

tion. In that case, the schema for solving that equation would itself be an element and the

interaction would be internal to that element (analogous to internal forces in a momentum

conservation problem). This in turn shows how schema acquisition reduces cognitive load

by reducing the number of interacting elements.

CLT was later refined in a stroke of elegance to provide a firm unifying theory for the dif-

ferent types of cognitive load, where element interactivity was designated as the fundamental

currency. In this version of CLT element interaction is still assumed to be the principal deter-

minant of intrinsic load. Estimating the number of interacting elements must simultaneously

account for the information to be learned and the knowledge level of the learners [ 5 ].

Working memory load is not only generated by the complexity of the material, it can

also originate from less than optimal design of educational materials. Extraneous load is

also induced through interacting elements by way of integrating redundant information. A

litmus test for distinguishing between intrinsic and extraneous load, since they have common

origins, is that if element interactivity can be reduced without altering the nature of what

is learned, then the cognitive load is extraneous. If the number of interacting elements can
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only be modulated by changing what is learned, then the load is intrinsic [ 5 ].

Germane load also originates from interacting elements, but it has a different status than

intrinsic or extraneous load. Intrinsic load and extraneous load are both related to the ma-

terial to be learned, whether it is the natural complexity or the presentation of the material.

Germane load, however, is entirely due to the characteristics of the learner.

The combination of intrinsic load and extraneous load constitute the total cognitive load.

Germane load, on the other hand, does not represent an independent source of cognitive load,

as it is related to both intrinsic and extraneous load. It refers to the cognitive resources that

are available to the learner to deal with the intrinsic load associated with the material. Ex-

traneous load depletes these available resources. If intrinsic load is high and extraneous load

is low, then germane load will be high as the learner is able to devote sufficient resources to

processing the intrinsic load and learning will take place. Meanwhile, for the same level of

intrinsic load, if extraneous load is high, then the germane load will be lowered and learning

will be reduced.

This formulation suggests the following mathematical relation:

GCL = WMC − ECL (2.1)

Learning can only occur if the GCL  2.1 is greater than or equal to the ICL associated

with that material. This formulation assumes that the learner will devote all resources to

leaning, irrespective of the task, a more reasonable relation was proposed and validated by

experiment [ 18 ].

GCL = min(ICL, WMQ − ECL) (2.2)

Assuming a constant level of motivation, i.e. the learner devotes available resources

to learning, the learner has no direct control over germane cognitive load. Rather, it is

manipulated indirectly by changes in intrinsic load and extraneous load.

30



2.2 Element Interactivity Effect

Many educational effects emerge as implications of cognitive load theory. These various

effects are mechanistically specified in terms of element interactivity. Infact, the element

interactivity effect states that in order to observe any of these effects, a necessary condition

is that the intrinsic load must be sufficiently high. [ 19 ]. The element interactivity effect is

treated as a separate effect because the cognitive load effects stemming from intrinsic load

have been found to have deep implications for cognitive load effects related to extraneous

load, and both are based on interacting elements.

2.3 Goal Free Effect

Problem solvers learn more from solving problems with a reduced or eliminated focus on

a singular goal relative to a conventional problem [  20 ]. Conventional problems can be solved

by a novice using a mean-ends strategy. A means-ends strategy approach to a conventional

problem requires carrying information about the problem state, the goal state, problem

solving operators to reduce the differences between the two, as well as any intermediate

goals. Goal free problems, on the other hand, only require encoding a problem state and

legal operators. These problems also aid in schema acquisition which reduce cognitive load

via a reduction in interacting elements [ 5 ].

2.4 Worked Example Effect

The worked example effect shows that worked examples are superior to their equivalent

conventional problems [ 21 ]. To solve a conventional problem, while not possessing relevant

schema, requires handling many interacting elements associated with a means-ends strategy.

Meanwhile, a worked-example takes the learner from one step to the next by applying ap-

propriate operations in the manner of an expert, and thusly reduces extraneous cognitive

load by not wasting working memory resources dealing with interacting elements associated

with legal but irrelevant moves [ 5 ].
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2.5 Expertise Reversal Effect

The expertise reversal effect states that when considering two instructional procedures,

the procedure that is successful for novices becomes less successful as their expertise in-

creases. With further expertise acquisition, the procedure that was less effective for novices

will become more effective for experts, and the procedure that was more effective for notices

will become less effective for experts.

When presented with a novel task, novices lack requisite domain knowledge. Conse-

quently, they regard this new information as a discrete set of interacting elements, which

can easily exceed their available working memory resources. Expert learners package infor-

mation into fewer elements, so that the same information occupies fewer working memory

resources.

The expertise reversal effect can be specified in terms of element interaction. For given

information, higher expertise levels reduce the level of element interactivity as learners can

combine multiple elements into a single element. Instructional procedures designed to reduce

working memory load in a high element interactivity task for novices are no longer effective

for expert learners who already find themselves in a low element interactivity environment

[ 22 ].

The expertise reversal effect necessitates a categorical change in interacting elements.

Initially, a given set of interacting elements constitutes an intrinsic load to a novice learner,

since they are essential to understanding the material. As the learner gains expertise, in-

teracting elements that arise from components of educational materials that are intended to

provide guidance to low domain knowledge learners now amount to an extraneous load since

they are no longer necessary for apprehension of the information [ 5 ].

2.6 Prior Work on The Expertise Reversal Effect

The expertise reversal effect emerged from a multitude of studies. The interaction be-

tween instruction and learner characteristics was observer as early as the 1950s [ 9 ], [  23 ], [  24 ].

Multiple works noted that the benefit of instructional formats for low prior knowledge learn-
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ers were absent for high prior knowledge learners [  10 ], [ 11 ], [ 25 ]. A full expertise reversal

effect was not documented until 2000 [  12 ]. It appears that most or all of the research on the

expertise reversal effect uses a within-subjects design where the effectiveness of educational

formats is compared for the same subjects before training (low knowledge) and after training

(high knowledge).

In one experiment N = 60 trade apprentices with three months of relevant training were

to be trained on the use of a piece of industrial equipment using different instructional for-

mats [  12 ]. The participants were randomly assigned to one of four conditions: a diagram

with visual text, a diagram with narration, a diagram with both text and narration, or the

diagram only. After studying the diagrams in their respective experimental conditions, they

were given a performance test. The diagram with text and narration significantly outper-

formed the other conditions. After a period of training including worked examples on how to

use the diagrams, the difference between these conditions was greatly reduced with a reversal

in effectiveness between the diagram only and the diagram with narration conditions.

In another study with N=70 trade apprentices in a major Australian manufacturing com-

pany, with 1.5 months of technical training, the effect of worked examples was compared with

guided exploration on training with diagrams [ 12 ]. Participants were randomly assigned to

either a worked example condition or a guided exploration condition. In the worked example

condition, participants were shown how to use the diagrams to answer example questions. In

the exploratory condition, participants were (minimally) guided through use of the diagrams

by a computer program that asks them questions involving the diagrams. The worked exam-

ple condition initially outperformed the exploratory condition, but after additional training

the effect was reversed.

In a study comparing the effects of direct guidance and guided exploration, N = 40

introductory algebra students from Carnegie Mellon University were randomly assigned to

one of four conditions: a verbal direction condition where students received non-specific

(general) instructions, a direct demonstration condition where students were given specific

instructions, a condition that received both verbal directions and direct demonstration, and

a condition that received neither (discovery condition) [  26 ]. The students solved 174 prob-

lems spread amongst four chapters. This work quantifies the performance of the different
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conditions as the number of transformations per problem, the time per transformation, the

number of operator errors, and the number of transformation errors. The discovery condi-

tion underperformed the other conditions on the first few problems of every set according

to every metric. For the rest of the problems in each set, a reversal in the performance was

observed with expertise.

Figure 2.4. The plots shows the discovery condition underperforming the
other conditions on the initial problems and outerforming the other conditions
on the remaining problems in (almost) every set [ 26 ]

2.7 Adaptive Learning

In this section we discuss adaptive learning and the principles of designing adaptive

learning systems. This fits into my thesis because I envision the modules described in the

background section as being part of an adaptive learning platform where dynamic content

is shown to students based on their knowledge level ala the expertise reversal effect.

Online learning (eLearning) systems are ubiquitous in today’s educational landscape.

While eLearning offers the advantages of ease of access to a worldwide audience, it poses

several challenges to the learner. One of the primary challenges lies in the fact that currently

used eLearning systems do not afford the learner the individualized attention that they may
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need to facilitate their learning. This deficiency of eLearning systems is particularly evident

with regards to fostering problem solving ability [ 13 ]. Problem solving is an important skill

that is valued in STEM education. Yet, students face several challenges with problem solving

[ 7 ], [ 27 ].

Adaptive learning systems present material in a dynamic way that respects the charac-

teristics of individual learners. Adaptive learning platforms follow three basic criteria. First,

e-learning has the ability to operate in real-time; storing, retrieving, and using information.

Second, content is delivered to users via their device using internet technology. Third, they

transcend traditional educational methodologies by delivering content in a dynamic manner

[ 28 ].

There are multiple approaches to adaptive learning such as the macro-adaptive approach

where the rate of material delivery is adapted to suit individual needs [ 29 ], and the aptitude-

treatment interaction approach where learners aptitudes are taken into account, but the

learner also has direct control over how they interact with the content. This section will

focus on the micro-adaptive approach. The micro-adaptive approach involves classifying

learners according to their characteristics (abilities, motivation, knowledge, preferences) in

order to provide them with the most appropriate educational experience [  30 ]. This is ap-

proach requires analysis and monitoring of the learner’s behavior and interactions with the

system in order to adapt the pedagogical flow (such as the pace and style of delivery of

content) of the learning experience [ 31 ].

This approach requires two primary procedures. First, the student must be characterized

in terms of their abilities, motivation, knowledge, and etc. Second, this information must be

used to optimize the delivery of content for that learner with those characteristics [ 30 ].

The necessary task of gathering and using data in real time to make decisions about how

content should be displayed to students is facilitated by the use of machine learning. By

gathering data from the student such as performance on assessment questions, timing data

about how they interact with questions and videos, and even directly asking the students

about their level of comfort with the material machine learning can be used to.
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2.8 Machine Learning

We begin our discussion of machine learning with the observation that humans learn

from their past experiences (especially mistakes) whereas machines traditionally require an

explicit set of instructions provided by humans. Machine learning endeavors to adapt the

way humans learn to computing. Consider the task of classifying several pictures or either

cats or dogs. A human can complete this task by expending virtually zero effort because

of their prior experience. Even children can readily differentiate between a cat and a dog.

Now assume that the human had never seen a cat or a dog. If we wished to have a person

complete this classification task, we would have to train them first by providing several

example pictures labeled with their class membership (cat or dog). The person, through

their training, could ascertain a set of features that can be used to discriminate between

cats and dogs. Features such as size, shape, eye shape, color, and et cetera. The trained

person could then classify previously unseen pictures as being either class or dog. Rather

than algorithmically analyzing pictures of cats or dogs for relevant features, people develop

experience and the process is automatized.

The approach taken by machine learning is analogous, but substantially different. Instead

of being able to recognize pictures as either being cat or dog by experience, machines calculate

the probability that a picture is a cat or a dog given the features. The model presumably has

certain parameters like mean and standard deviation. A loss function provides a measure of

the error incurred as a function of the parameters only, for given data, as it classifies labeled

data. A machine learns by choosing the parameters that minimize the errors that it makes

as it classifies (for example).

The classification task is schematically the same for the person and the machine in the

sense that after some training they/it should be able to classify pictures they/it haven’t seen.

We can think of machine learning as a set of computer algorithms that allow computers to

learn without explicit instructions. Although machine learning is used for tasks ranging from

chat bots to the self-driving car, we will restrict our discussion to algorithms used to classify

data. The product of learning in this context refers to the ability of a trained (learned)

model to classify data that it has not previously seen. Learning refers to the calculation of
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the parameters of a model by minimization of a loss function with respect to the parameters

of the model (θ). Minimization is carried out algorithmically, via gradient descent, rather

than analytically.

θ(t+1) = θ(t) − α(t)∇J(θ(t)) (2.3)

where θ(t+1) is the ”updated” set of parameters, θ(t) is the value of the parameters before

update, α(t) is the learning rate for the tth iteration, and ∇J(θ(t)) is the gradient of the loss

function evaluated at θ(t).

The gradient descent algorithm is a convex optimization algorithm that finds the optimal

θ∗ given an initial guess θ0 by moving in the direction of the gradient of the loss function,

which is the direction of steepest descent towards the minimum[ 32 ].

Provided the loss function is convex, then the gradient descent algortithm is guarenteed

Figure 2.5. The figure shows two cases for the gradient descent algorithm,
1) where the initial guess θ0 is less than the optimal point θ∗, in which case
∇J(θ) < 0 and by eqn  2.3 θ(t+1) > θ(t) 2) the initial guess θ0 is greater than
the optimal point θ∗, in which case ∇J(θ) < 0 and by eqn  2.3 θ(t+1) < θ(t)

The weights are updated in amounts that are proportional to the gradient.

to find a local minimum for appropriate choice of α(t). If α(t) is too large, then the search

algorithm oscillates around a minimum. If it is too small, then the algorithm takes too long

to run. The optimal step size is proportional to the slope of the function, so that the search
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algorithm moves in smaller steps near a minimum [  33 ]. It should be mentioned that machine

learning is a very broad field such that the procedures that I have outlined only apply to a

particular class of models called discriminative models, where we try to find lines (in 2-D)

or hyper-planes (in many dimensions) to separate the data such that all of the data points

belonging to one class are on one side of the line/plane and all of the data belonging to the

other class is on the other side (Fig  2.6 ).

Figure 2.6. The separating hyperplane shown for the 2-class case. The
optimal hyperplane minimized the residue between the data and the plane
[ 33 ].

The result of implementing a machine learning algorithm is a function y(xi) that maps

data points xi to a real number representing a Bernoulli categorical variable (for the two

class case). The precise form of y(x) is determined during the training phase, by using the

training set. Once the model is trained, it can be used to predict the class of new samples

belonging to a testing set [ 32 ].
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2.8.1 Machine Learning Experiments

In supervised learning, we assume that we have a pair of variables (xi, yi), where xi is a

d-dimensional input vector. The dimensionality of the input space is the number of features

that are contained in the data. The variable yi is a categorical variable corresponding to the

true class of the ith data point.

A training set is labelled data that is used to train a machine learning model. The trained

model then makes predictions (for example) on the testing set. The model should not have

been previously exposed to this data, for that would make it impossible to determine the

ability of your model to make predictions on new data (generalization).

There are situations where you are given a dedicated training set and a testing set.

For example, assume we want to build software that utilizes machine learning in real-time.

Further suppose that we gathered some initial data to build the machine learning model,

this would be our training set. Our goal is to ensure that our model will be able to make

valid predictions on data that will see during deployment, which would be our testing set.

Another situation is where you have a single set of data. For example, data that you

obtained from a single source (like the University Registrar). In this case, the data is split

into a training set, and a testing set [ 33 ]. Still, the model should not be exposed to the

testing set during training.

The testing set also should not be used for parameter tuning. In other words, machine

learning algorithms have tunable knobs that are set by the user. The machine learning

practitioner should not use the testing set to determine the optimal parameter settings for

performance on the testing set. Instead, parameter tuning should happen during validation.

Model validation is where a portion of the training data is used as a mock testing set to

determine the performance of the model on unseen data. This usually happens in a feed-

back loop where the training set is broken into a modified training set and validation set.

The model is trained on the modified training set and tested on the validation set. The

parameters of the model are adjusted, and the procedure is repeated until performance is

saturated.

There are different methods for choosing how to partition you training data for validation.
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The most common method is k-fold cross validation [  34 ], where the training data is split

into k partitions. For each of k trials, k-1 of the partitions are used for model training, and

the last partition is used for testing (validation). This process continues until all partitions

have been used in training and testing (fig  2.7 ).

Figure 2.7. Figure shows k-fold cross validation for the case k=5

2.9 Linear Regression

Linear Regression is a regressive discriminative model whereby we seek to obtain a linear

discriminant function of the form:

yθ(x) = wT x + w0 (2.4)

by using a training set to find the optimal value θ∗ = (w∗, w∗
0). w is the weight vector which

scales the importance of each feature in our data. w plays the role of the slope for a linear

discriminant and w0 is the bias, which plays the role of a y-intercept.

Linear regression is characterized by the mean-square error loss function.

J(θ) = 1
n

n∑
i=1

(wT xi + w0 − yi)2 (2.5)

which is exactly equal to the vectorized version

J(θ) = 1
n

(Xθ − y)T (Xθ − y) (2.6)
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where:

X =


x1 x2 x3 . . . xN

1 1 1 . . . 1


(2.7)

and the row of ones at the bottom is to account for the fact that θ contains the weight

vector w and the bias term w0.

The discriminant function represents a hyperplane in a d-dimensional space, where d is

the number of features. The optimal discriminant function is a separating hyperplane found

by minimization of J(θ) with respect to θ. While gradient descent would certainly yield a

global minimum for such a simple loss function, and gradient descent is sometimes used in

practice for large datasets, we can analytically obtain the optimal θ [ 33 ]. We wish to solve:

∇θJ(θ) = 0 (2.8)

Plugging in J(θ)

∇θ (Xθ − y)T (Xθ − y) = 0 (2.9)

Expanding

∇θ

(
(θT XT Xθ − 2yT Xθ + yT y

)
= 0 (2.10)

Applying ∇θ

∇θ(θT XT Xθ) − ∇θ(2yT Xθ) + ∇θ(yT y) = 0 (2.11)

Using ∂
∂θ

[
θT Aθ

]
= Aθ + AT θ and A = (XT X) = (XT X)T = AT

2(XT X)θ = 2XT y (2.12)

Finally,
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θ∗ = (XT X)−1Xy (2.13)

2.10 Naïve Bayes

Naïve Bayes is a generative discriminative model. Naïve Bayes is based on Bayes’ The-

orem, where we wish to find the conditional probability that a datum xi belongs to a class

Ck, P (Ck|xi).

By Bayes’ Theorem,

P (Ck|xi) = P (xi|Ck)p(Ck)
p(x) (2.14)

In Naïve Bayes, the posterior is assumed to be Gaussian. We find the probability of

obtaining the dimension sample vector xi given class Ck as:

P (xi|Ck) = 1
(2π)d/2

d∏
k=1

1
σk

exp

(
−(xik − µk)2

2σk
2

)
(2.15)

This can also be written in a vectorized version,

P (xi|Ck) = 1√
(2π)d|∑k|

exp{(xi − µk)T
∑

k

−1(xi − µk)} (2.16)

µk is the mean vector for class k and Σk is the covariance matrix for class k.

This model is generative in the sense that we assume a Gaussian posterior probability

distribution and use the data to calculate the parameters of the model The classification

made for each datum is given by:

y = argmaxCk
{P (xi|Ck)p(Ck)} (2.17)

The algorithm makes a classification by maximizing the posterior probability [  33 ]. Im-

plicitly, the use of Naïve Bayes assumes that each sample is independent from the rest and the

features of the model are normally distributed with mean µ and covariance Σ. Furthermore,

we assume that the features of the model are conditionally independent, so that
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Σ =



σ1 0 . . . 0

0 σ2 . . . 0
... ... . . . 0

0 0 . . . σd


(2.18)

The assumption of independent and identically distributed data seems very restrictive,

but this model works well for a number of applications including text classification in spite

of violating this assuption [ 35 ].

2.11 Support Vector Machine

The support vector machine (SVM) is a classification scheme that much like linear re-

gression is an applied optimization problem. The basic idea of SVM is that we wish, given

two linearly-separable classes, to find a separating hyperplane that maximizes the distance

between the hyperplane and the nearest data point (margin). The motivation is to create

a classifier that is robust to noise. By making the margin as large as possible small per-

turbations (like noise associated with observed data) should not move the data across the

hyperplane changing the classification, and thus improves generalization to unseen data [ 33 ],

[ 36 ] (fig  2.8 ). Careful analysis shows that maximizing the margin is equivalent to the

constrained optimization problem:

argminw,w0

1
2 ‖ w ‖2 subject to yj(wT xj + w0) ≥ 1 (2.19)

The constraint yj(wT xj + w0) ≥ 1 corresponds to a data point being correctly classified

and laying some minimum distance from the hyperplane.

Using the weights and bias, w∗ and w0 obatined from the optimization problem (eqn

 2.19 ) the discriminant is a line(plane)

y = w∗T x + w0
∗ (2.20)
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Figure 2.8. The separating hyperplane is shown as the solid black line di-
viding the blue and the orange regions and separating the two classes (blue
circles, yellow x’s). The margin is the distance from the hyperplane to the
nearest data point [ 33 ]

2.12 Perceptron

The perceptron algorithm is a linear classifier that uses the hypothesis function

y = sign(wT x + w0) (2.21)

Which is equivalent to

y =


+1 wT x + w0 > 0

−1 else
(2.22)

The perceptron was created in 1950’s as a way to emulate the function of a neuron. In other

words, the perceptron can only take two values which is analogous to the two-state action

potential of neuron [ 37 ].

The loss function of perceptron is:

J(θ) = −
∑

j∈M(θ)
yj(wT x + w0) (2.23)
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Where M(θ) := {1, 2, . . . , m} is the set of mis-classified samples. We wish to find w and w0

that minimize eqn  2.23 .

2.13 Decision Tree

A decision (classification) tree is a binary-tree structure used infer an item’s class based

on some collection of features of the item. A decision tree originates on a root node (best

predicting feature) and branches to a decision node (another feature) or a terminal node

(class prediction) breaking a data set into subsets moving from child to parent within the

network [ 38 ].

The tree is constructed feature wise, where an impurity measure is used to determine

how predictive a given feature is. Impurity refers to the imperfect classification of data,

given classification based only on that feature. There are several impurity measures, we will

focus on the Gini impurity because it is used by default in scikit-learn’s implementation of

decision trees (random forrests). The impurity is calculated for each division of the data

and used to determine the optimal structure of the tree. The gini impurity in the case of a

two-class problem is defined as:

Igini = 1 − P1
2 − P 0

2 (2.24)

Where P1 is the fraction (frequentist-probability) of data points that belong to class ’1’

given that it was assigned to a particular child node, and likewise P0 for class ’0’. Let’s

consider the following example. Assume we have the following data (table  2.1 ):

Table 2.1. Example data consisting of ”HS GPA > 3.0”, ”Math ACT/SAT
> 0.75”, and ”Took AP Phys” as features. ”Passed The Course” is the label

N HS GPA > 3.0 Math ACT/SAT > 0.75 Took AP Phys Passed The Course
1 y y y y
2 n y y n
... ... ... ... ...

228 y n y y
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Consider the first column ”HS GPA > 3.0”. Data points are sorted on the basis of whether

they satisfy this condition (fig  2.9 ).

Figure 2.9. Data is sorted into child nodes based on whether they satisfy
the condition ”HS GPA > 3.0”, and they are futher divided based on whether
they passed the class (label).

Then the impurity is calculated for each of the child nodes in the following fashion:

For the ”True” branch:

Itrue = 1 −
( 127

127 + 36

)2
−
( 36

127 + 36

)2
= 0.34 (2.25)

For the ”False” Branch:

Ifalse = 1 −
( 47

47 + 18

)2
−
( 18

47 + 18

)2
= 0.40 (2.26)
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Then the total gini impurity is the average for each branch, weighted by the number of data

points in each branch.

Itotal = 0.71(Itrue) + 0.29(Ifalse) = 0.71(0.34) + 0.28(0.40) = 0.35 (2.27)

This procedure is repeated for all the features, and the one with the lowest impurity is

used as the root node. At this point it should be mentioned that the tree will only split

to include new nodes (features) if doing so reduces the gini impurity. Subsequently, this

procedure is repeated for all of the remaining features until the left side of the tree is filled

out. Finally, this procedure is repeated for each feature until the right side of the tree is

built out. Following this example, a fully constructed decision tree with these features may

look like fig.  2.10 (Note 80/20 [for example] means 80 people passed and 20 people failed)

Figure 2.10. The figure shows a hypothetical decision treefully built from
the data (table  2.1 ). The final classification is shown as Npassed/Nfailed

Decision trees tend to be noisy and over fit to their training sets [  34 ]. In the next section,

we see how to deal with this limitation
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2.14 Random Forest

A Random forest is a multitude of such decision trees where each item is classified by

several decision trees. During training, the features for each tree are chosen from a random

subset of the training data (with replacement), a process known as bootstrapping. The

final classification for each datum is the mode of the classifications made by each tree [ 39 ],

a process known as bagging. For a sufficiently large number of relevant features, random

forests are robust to inclusion of noisy features [  34 ]. This process of bagging and bootstrapping

overcomes (to a large extent) the limitations of individual decision trees.

Figure 2.11. A random forest as a ”forest” of decision trees, where the overall
classification is the mode of the classification from each tree.

2.15 Deep Learning/Multi-Layer Perceptrons

Neural networks (NN) are a parallelization of machine learning methods that is inspired

by human models of cognition. The structure of a NN is decided at the time the model is

constructed, usually based on the performance of the model on some validation data set.

NNs consist of multiple layers of nodes connected sequentially (layer-wise). Data enters

the network through the input layer. The features of the data are mapped to the nodes of

the next layer by a series of weights indicating the strength of the connection between that
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Figure 2.12. a) The structure of a neural network is shown where Wij rep-
resents the strength of the connection between neuron i and neuron j. b)
The input to neuron 5 from the previous layer I1 and I2 is multiplied by the
weights, where W15 is the strength of connection between neuron 1 and neuron
5, and likewise W25 neurons 2 and 5. This setup is commonly referred to as a
multi-layer perceptron

feature and the corresponding nodes (fig  2.12 ).

Just as electrical signals propagate in the brain by activation of neurons, the nodes

in each layer run the output from the previous layer through a mathematical (activation)

function, indicating the extent to which that neuron (node) is activated. In general, there are

several of these layers known as hidden layers. In the output layer, the signal from the hidden

layers is mapped to the output space to make a final prediction. Since the weights (strength

of connection between consecutive layers) are randomly initialized, the first run isn’t very
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accurate. Back propagation is used to recognize errors made by the network and update

the weights throughout the network to improve predictive power. A thorough discussion of

neural networks is beyond the scope of this report.

2.16 Natural Language Processing

Many educational applications of machine learning involve the use of text data. Since

machine learning algorithms use statistics and can’t directly understand language, we must

find indirect methods to deal with this text data. To that end natural language processing

can be used to perform computation and statistical inference with this text data.

Natural language processing (NLP) is a subfield of computer science in which a computer

uses human language for computational tasks (e.g. classification). NLP began as algorithms

based on explicit instructions [ 40 ]. Today, most NLP applications take a statistical approach

and rely heavily on machine learning.

Common machine learning approaches to NLP applications such as spam filters, chat

bots, recommender systems, and translation bots all require that words be transformed to

numerical feature vectors. One common approach is a bag of words model (fig  2.13 , which is a

count vectorization method where a corpra (collection of documents, each called a corpus) is

scanned for unique words and each corpus is transformed into a vector whose dimensionality

is the number of unique words in the corpra and each component is the number of times

that word appears in the corpus.

Another commonly used approach to word vectorization is the TFIDF (term frequency-

inverse document frequency) weighting scheme (eqn  2.16 ).

Wi,j = tfi,jlog

(
N

dfi

)
(2.28)

tfi,j is the frequency of term i, in document j, dfi is the number of documents containing

term i, and N is the number of documents.

the TFIDF transformation is applied to every component of a count vector. TFIDF
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Figure 2.13. Shows how the bag of words model (count vectorization) tran-
sorms words to vectors.

weighting linearly rewards for a term being common in a particular document, but punishes

logarithmically for that term being common in all of the documents (fig  2.14 ).

Figure 2.14. Count vectors TFIDF transformed.
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2.16.1 Word Embeddings

Word embeddings are a step-up in sophistication from word count encodings, in that

capture the meaning of words in the following fashion. Word embeddings are vectors that

encode each word’s position in a semantic space. Words with similar meaning are neighbors

in such a space in the sense that similar words are closer together than dissimilar words. For

example, truck is closer to car than horse or mule (fig  2.15 ).

Figure 2.15. Words are represented vectors where meaning is inferred from
where vectors live in this semantic space.

In practice, a set of word embeddings encodes the essay as a set of high dimensional (e.g.

300 dimensions) dense vectors. Each word in the essay is replaced by its embedding vector

(fig  2.16 ). This operation isn’t actually performed on each essay individually, it is performed

as a matrix operation on the entire corpra. This produces a very complicated data structure

called a tensor. For example, the shape of a tensor could be N x d x 300 where N is the

number of essays, d is the number of words in each essay, and 300 is the dimensionality of

the word embedding.
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Figure 2.16. Shows the procedure of transforming essay to tensor of word
embedding vectors

2.17 Prior Work on Adaptive Instruction and Machine Learning in Education

The Next Generation Science Standards (NGSS Lead States, 2013) and The Framework

for K-12 education (NRC, 2012) emphasize learners using core ideas, scientific and engi-

neering practices, and crosscutting concepts to make sense of phenomena and solve complex

problems; to address learning goals that focus on transfer/application rather than recall [ 41 ].

One of the greatest challenges is the assessment goals specified in the K-12 framework and

NGSS is to develop assessment tasks which tap complex constructs such as cognitive abilities

during practice and to apply the assessment during instruction [ 42 ].

Complex, open ended assessment tasks are needed to accurately measure three-dimension

learning [  43 ], [ 44 ]. The scoring of three dimensional assessment tasks raises validity concerns

[ 45 ]. Machine Learning (ML) has the capability to find patterns in data that offers a ma-

jor advantage in automated scoring of student generated text in responding to tasks that

require students to provide open ended arguments and explanations, construct diagrams,

or describe scientific investigations [ 46 ]. Machine scoring has similar reliability to human

scoring in English and Chinese [ 47 ].

A vast body of research has shown the effectiveness of machine learning (ML) in sci-

ence assessments. Zhai, Yin, Pellegrino, Haudek,and Shi [  48 ] have provided a systematic

meta-analysis of the field. The authors analyzed the studies using a three-tier analytical

framework, which examined the technical feature (i.e. advantage of automaticity), validity

feature (i.e. empirical evidence and theoretical rationales supporting the inference), and

53



the pedagogical feature (i.e. benefits of using ML in science assessments). Machine learning

(ML) in science assessment uses one of three approaches: Supervised ML, Unsupervised ML,

Semi-Supervised ML. In supervised ML, the machine learns from labelled data to develop an

algorithmic model, and then infers and makes decisions using the trained model. Supervised

ML has been used for automated scoring, such as assigning a score to students’ scientific

reasoning [ 49 ], [  50 ]. Supervised ML has also been used for classification of student responses

[ 51 ], recognition [  52 ] and prediction of student performance, such as by analysing online

student discussion to predict performance on a project [ 53 ]. In unsupervised ML, the model

automatically performs the desired task using the latent structure of the data. Although

supervised ML has great potential to automatically score student responses, this study finds

that this approach requires a lot of data, which must be labelled at large cost, for training.

Unsupervised ML does not require labelled data to train the MLA. This reduces human

effort and avoids high training costs. A large sample size is needed to increase validity. This

requirement limits the efficiency of using ML in high-stakes testing, because complex assess-

ment and grading tasks are usually time and cost consuming to grade during instructional

practice [ 54 ]. Unsupervised ML typically uses two types of attributes: demographic, and

academic. Muldner, Burleson, Van de Sande, and VanLehn [  55 ] examined students who

used an Intelligent Tutor System to make progress in an online tutorial system while not

learning the underlying physics. Zehner, Saelzer, and Goldhammer [ 56 ] employed several un-

supervised approaches to classify student responses to the Program for International Student

Assessment (PISA). Unsupervised machine scoring can be used to analyze large qualitative

data sets to reveal patterns in qualitative data [ 57 ]. For instance, ML has been used to

code multimodal representational thinking in learners’ written representation of lab reports.

[ 58 ]. Among various techniques used, deep learning has been found to be more accurate

in finding patterns than traditional methods. Finally, in Semi-Supervised ML part of the

data set is labelled and part is not. Mason and Just[  59 ] employed fMRI while presenting

a set of 30 physics concepts one-by-one to students. They used a pixel-map of the brain

scans to identify activations (labelled data) and combined this with unlabelled data to build

a Naïve-Bayes model and predict, with 75% accuracy, whether the student understood the

concepts.
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Developing and using complex constructive response assessments in a classroom envi-

ronment, whether K-12 or college, can provide teachers and students information to make

educational decisions for student learning. This feedback must occur in a timely manner to

be valuable to student learning (NRC, 2001). In addition to science assessment per se, several

studies have also embedded ML in learning activities, usually using feedback or assistance

provided by ML directly to students. In large college instructional contexts, ML can provide

valuable instantaneous feedback [  60 ], [  61 ] to students and teachers on cognitively challeng-

ing tasks that go beyond selected response. For instance, ML has been used to automate

scoring of constructed response assessment designed to elicit complex reasoning aligned to

a physiology learning progression for undergraduate students [ 61 ], and various ML models

have been explored on how they could be used to eliminate attrition among at-risk students

[ 60 ]. ML has also been used to track learners’ facial expressions to measure student en-

gagement while performing investigations [ 62 ]. Further, ML-generated automated feedback

when integrated seamlessly into online curriculum can influence student’s performance, such

as on students’ response to different kinds of feedback on in computer simulation tasks [ 63 ].

Donnelly, Vitale, and Linn (2015) used ML to support scientific inquiry, by providing stu-

dents with individual learning guides based on automated scoring of student essays. Gerard

and Linn [ 64 ] found the combination of automated and teacher guidance was more effective

for learning the topics of photosynthesis than automated guidance alone. Vitale, McBride,

and Linn [ 65 ] found that specific learning guides showing students what was missing in their

responses was less effective than those that provided hints or encouraged students to revisit

their responses. Gerard, Kidron and Linn [ 66 ] explored how teachers customized automated

guidance in their classrooms. Their results indicate that ML-based science assessment has

the potential for adaptive learning and responsive teaching. However, it is difficult to pro-

mote the adoption and use of emerging technologies if they require excessive cost of time or

money [ 67 ].

The works in the April 2021 special issue of the Journal of Science Education and Technol-

ogy Krajcik [  68 ] shows that ML can be used beyond scoring and providing general feedback

to selective response items to students. Rather, ML can be used to reliably evaluate com-

plex open-ended assessment tasks and provide almost immediate, or just in time feedback

55



to researchers, students, and instructors on complex open-ended assessment tasks that show

how learners use their knowledge. Immediate results allow teachers and instructors to tailor

feedback to differentiate instruction to promote learning. Krajcik [  68 ] argues that while this

is a significant step forward and does support differentiation, the potential to provide more

meaningful feedback to open-ended assessment items exists. For instance, feedback can be

tailored to a student’s response promoting the individual to deeper levels of understanding,

and to identify less engaged learners [ 47 ]. Though it may be some time before the prod-

ucts of these works become available to students and teachers, the potential is staggering.

The challenge of how to efficiently evaluate and provide quality feedback is one hurdle that

educators around the globe will have to solve in order to produce educational systems that

will enable students to use their knowledge to solve complex problems, make decisions, and

learn more when needed. The assessment component of educational systems is a critical

piece that ML can help to solve. ML also holds promise in helping college instructors in

modifying instruction and materials for future uses. Overall, advances in ML are allowing

science education researchers to analyze students’ responses to complex assessment items,

and improve assessment, instruction, and curriculum to better promote student learning.

2.18 Chapter Summary

In this chapter we’ve discussed cognitive load theory, dealing with the cognitive re-

sources available to students and how they use them during learning and problem solving.

We also reviewed some of the cognitive load effects that emerge from cognitive load theory.

Specifically, we discussed the expertise reversal effect wherein educational materials that

provide a high level of guidance and are effective for low prior knowledge students prove to

be inferior for high prior knowledge students who perform better with less guided materials.

In a subsequent section we reviewed the features of adaptive learning platforms as well

as some principles of design for adaptive learning systems. In my future work the expertise

reversal effect will provide theoretical justification for the differences in the materials that

we show to students classified as low prior knowledge and students classified as high prior

knowledge.
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In a following segment we had a discussion of the theory behind machine learning and

mentioned some specific algorithms. Additionally, we talked about how we can use machine

learning with text data by using the methods of natural language processing.

Machine learning/Natural language processing can be used in future productions of the

modules to classify students by knowledge level, or even provide pre-emptive feedback to

students.
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3. PRIOR WORK

3.1 Pilot Study 1

To what extent will students benefit from interactive online modules containing instruc-

tional videos that replace traditional classroom lectures and contain guided examples that

scaffold expert-like problem solving process?

In pilot study 1 we tried to determine if students will benefit from interactive online

modules containing instructional videos that replace traditional classroom lectures and con-

tain guided examples that scaffold expert-like problem solving process

Physics 220 (Alg-based Physics 1) was offered as a summer course to N=28 students at

Purdue University. This course used a flipped-classroom format where the lecturing was

provided outside of class by way of interactive instruction modules and class time was used

for summary of concepts and working examples. Additionally, weekly quizzes were used to

supplement exams as an assessment tool to provide more timely feedback to students and

cultivate a more equitable classroom [  69 ]. The modules were required for 15% of the course

total grade. Each module, which was created in Qualtrics, consisted of a training/lecturing

phase where traditional lecturing was replaced by multiple short videos (about 5 minutes

each) and a second phase where students were guided through a worked example. Each video

contained lecture-style slides with animations and were recorded with voice narration. The

training videos also included one or more worked examples, which were shown to aid schema

acquisition [ 4 ], [ 5 ], [ 22 ].

The guided example phase of each module starts with a problem statement and is fol-

lowed by questions intended to provide scaffolding to an expert-like problem solving process

(Fig  3.2 ).

Students were given feedback product (correctness) and process (explanatory) feedback

[ 22 ]. Students were also given process feedback even if they entered the correct answer, this

was by their request (Fig  3.3 ). The Force Concept Inventory exam was administered on the

first week and again at the completion of the mechanics portion.
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Figure 3.1. Shows a worked example. The problem statement is shown on
the left (part 1) and the solution shown on the right (part 2).

Figure 3.2. The figure shows the typical parts of a problem in a module
(parts 1-3) correspond to the problem solving steps.

3.1.1 Results

The Force Concept Inventory exam (FCI) was administered in the first week of classes

(pre-instruction) and again at the end of the mechanics section of the course (post-instruction).

59



Figure 3.3. The feedback shown consists of product feedback where ”correct!”
is shown or it is not shown followed by process feedback.

The pre-instruction mean score on the FCI exam was 34.9% ± 2.7% and the post-instruction

mean FCI score was 52.4% ± 3.0%.

This constitutes a normalized FCI gain (g) of 0.274 ± 0.05 with a statistically significant

improvement between pre and post-instruction (p < 0.00001).

g = 〈post〉 − 〈pre〉
100 − 〈pre〉

(3.1)
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Figure 3.4. FCI pre and post scores in pilot study 1.

3.1.2 Discussion

The results of pilot study 1 indicate that the use of online instructional modules is

effective in building mechanics domain knowledge as evidenced by the normalized FCI gain

(eqn  3.1 ). The FCI is widely regarded as being a reliable tool in assessing conceptual knowl-

edge about forces and motion. Since analysis over many populations shows no significant

correlation between pre-instruction scores and normalized gain [  70 ], it can reasonably be

concluded that comparison of pre-instruction and post-instruction performance is a measure

of the effectiveness of the instructional method of building knowledge of mechanics.

Student reactions to the use of the modules is another factor that should be considered.

Overall, student experiences with the modules was very positive. In an anonymous survey

of the class, 27/29 students (93%) indicated that modules helped them learn the material at

their own pace. In a follow up survey given two weeks after the modules has been introduced

(in a 7 week course) 20/22 students (91%) indicated that they would like to continue using

the modules for the remainder of the course.

There were some issues with implementation that very likely affected the efficacy of the

modules. The modules were being created as the course was in progress which made for a

short duration between the assignment of the module and its due date.
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3.2 Pilot Study 2

To what extent can we make these modules adaptive to different knowledge levels optimize

outcomes for students based on their prior knowledge?

The second study was a pilot study focused on structuring the modules from study 1 as

an adaptive learning platform respecting students’ level of expertise [  22 ]. N = 798 students

from a fall offering of Physics 220 were given the opportunity participate in this study in

exchange for 2% of their total course grade. Four modules were created for selected topics

including: Newton’s second law, applying Newton’s second law, circular motion, and energy.

Each module was treated as independent in the sense that students could earn extra credit

proportional to the number of modules that they completed. The modules were prepared

at different levels. One level, designated as “high level guidance” commensurate with a high

relative level of expertise. A second level, designated as “low level guidance” commensurate

with a low relative level of expertise.

Students were shown a link on blackboard for each module. The link took them directly

to a pre-assessment containing calculation questions relevant to the material contained in

that module, designed to classify them according to their level of expertise. Half of the high

level students were shown the high level guidance module and half were shown the low level

guidance module and likewise for the low level students.

Following a training phase, the students were shown a judgement of learning question

asking them to rate on a scale 1 – 100 how they felt they’d do on a test of this material

based on their experience with the module.
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Figure 3.5. Judgement of Learning slider question.

Students were subsequently asked to complete a cognitive load survey asking them to

rate their level of agreement, on a 9-point likert scale, with certain statements mapping on

to the different kinds of cognitive load [ 71 ].

Table 3.1. Table shows the items from the cognitive load survey and their
respective CL categories.

Intrinsic Load
The topic(s) covered in this activity was(were) very complex.
The activity covered formulas that I perceived to be very complex.
The activity covered concepts and definitions that I perceived to be very complex.

Extraneous Load
The intructions and/or explanations during the activity were very unclear.
The instruction and/or explanations during the activity were, in terms of learning, very un-effective.
The instruction and/or explanations during the acitivity were full of unclear language.

Germane Load

The activity really enhanced my understanding of the topic(s) covered.
The activity really enhanced my understanding of physics.
The activity really enhanced my understanding of the formulas covered.
The activity really enhanced my understanding of concepts and definitions.

This survey was validated [  71 ] as being sensitive as a measure of the different kinds of cog-

nitive load experienced during instruction.

Finally students were given an assessment that was based on the initial assessment and

was the same irrespective of the level of instruction received by the student. There were six

questions in the final assessment. Two were conceptual questions following an “Answer/Rea-

soning” format, and the other four were near/far transfer questions based on the two initial

calculation question.

A near transfer question is defined by us as using the same physical principles, and dif-

ferent context or different representation. A far transfer question uses the same physical

principles with different context and different representation.
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Figure 3.6. Structure of Pilot Study 2

3.2.1 Results

Students were designated as low prior knowledge (LPK) by a score of less than 130 on a

200 point mid-term exam (µ + 0.5σ) and as high prior knowledge (HPK) for a score above

(130). High and low prior knowledge students were randomly directed to a module with

either a high (HLG) or low level guidance (LLG).

The assessment score for each condition was obtained by averaging over the assessment

questions for each student, then averaging over all of the students in each condition.

In module 1 (on applying Newton’s second law in 2-Dimensions) the HPK-HLG (High

prior knowledge students shown a high level guidance module) significantly outperformed

with other conditions (p = 0.001) on the assessment (Fig  3.7 ).

Figure 3.7. Assessment performance by condition for Module 1.
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The cognitive load measures and judgements of learning reported by the participants are

shown below (table  3.2 ).

Table 3.2. Cognitive load and judgement of learning for module 1.

Knowledge Level Low Prior Knowledge High Prior Knowledge

Guidance Level Low Level High Level Low Level High Level

Intrinsic Load 5.8 ± 0.2 5.7 ± 0.02 5.8 ± 0.2 5.3 ± 0.3

Extraneous Load 4.1 ± 0.2 3.9 ± 0.2 4.0 ± 0.2 3.3 ± 0.3

Germane Load 6.4 ± 0.2 6.3 ± 0.2 6.0 ± 0.2 5.9 ± 0.3

Judgement of Learning 63.3 ± 2.0 68.9 ± 1.9 69.6 ± 2.5 73.8 ± 2.0

In module 2 (on circular motion), the HPK-HLG condition again showed a statistically

significant higher performance (p < 0.00001) than the other conditions on the assessment

questions (Fig  3.7 ).

Figure 3.8. Performance on the assessment task for module 2 by conditions.

The self reported cognitive load measures and judgement of learning for each condition

is shown below (table  3.3 ).

In Module 3 (on energy), the roles were reversed and the HPK-LLG condition showed
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Table 3.3. Self reported cognitive load measures and judgement of learning.

Knowledge Level Low Prior Knowledge High Prior Knowledge

Guidance Level Low Level High Level Low Level High Level

Intrinsic Load 5.8 ± 0.1 5.9 ± 0.02 5.1 ± 0.2 5.2 ± 0.4

Extraneous Load 3.2 ± 0.1 3.2 ± 0.2 3.1 ± 0.3 2.8 ± 0.3

Germane Load 6.2 ± 0.1 6.2 ± 0.2 5.8 ± 0.3 6.8 ± 0.3

Judgement of Learning 67.4 ± 1.5 68.9 ± 2.0 79.2 ± 1.7 80.1 ± 2.3

a statistically significant benefit (p < .00001) over the other conditions on the assessment

task.

Figure 3.9. Performance of the assessment task for module 3 by conditions.

The self reported cognitive load measures and judgement of learning for module 3 is

shown below (Fig  3.8 ).

3.2.2 Discussion

In the first two modules of this study, the lecture videos shown in the high/level guidance

modules were the same. In the last module, the video included minimal guiding features
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Table 3.4. Self reported cognitive load measures and judgement of learning
score in module 3.

Knowledge Level Low Prior Knowledge High Prior Knowledge

Guidance Level Low Level High Level Low Level High Level

Intrinsic Load 4.9 ± 0.2 5.0 ± 0.2 4.4 ± 0.3 4.3 ± 0.4

Extraneous Load 2.6 ± 0.2 2.6 ± 0.2 2.3 ± 0.2 2.3 ± 0.3

Germane Load 5.8 ± 0.2 6.8 ± 0.3 6.4 ± 0.3 6.8 ± 0.3

Judgement of Learning 62.0 ± 2.4 72.9 ± 1.9 80.7 ± 2.8 82.3 ± 3.2

and elaboration relative to the high level alternative. More work must be done on this

project, but preliminary results suggest that the low level guidance module with minimally

guided lecture videos show a greater benefit to high knowledge learners than the videos with

higher levels of guidance. Regarding question 2(b) concerning how to classify students as

high/low prior knowledge, this method of using the midterm exam score as selection criteria

yields more sensible results. Classifying the students based on their performance on an initial

task led to an outcome where there was no significant difference between the low/high prior

knowledge conditions(Figure 20).

Figure 3.10. Performance of the assessment task for module 3 by conditions
using an initial task for prior knowledge classification.
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3.3 Pilot Study 3

Given a student essay outlining their strategy for solving problem, with what degree of

accuracy can we predict who will ultimately answer the problem correctly using machine

learning? In pilot study 3, N = 1289 first year engineering students enrolled in Physics 172

at Purdue university were given an online quiz where they were asked to solve a problem

isomorphic to the ballistic pendulum. As the first step to their solution, they were asked to

write a short essay elucidating their strategy to solve the problem, including the physical

principles they would use and how they were going to use them. Their responses were col-

lected on a spread sheet (.csv) along with their eventual outcome (correct =1 incorrect = 0)

on the main problem. The goal of this study was to use a machine learning algorithm that

would predict, given a student essay, if they’d go on to get the problem correct.

This work was executed in python using typical data science and machine learning li-

braries such as pandas, numpy, matplotlib, and scikit-learn.

First, the data consisting of student responses (essays) and class labels (correctness)

along with irrelevant features (such as student ID) were imported to python using a pandas

dataframe as an internal data-structure. The data was pre-processed by removing irrelevant

columns (features) and dropping extra rows corresponding to multiple attempts, keeping the

first attempt for each student.

Subsequently, the data was “cleaned” for the machine learning step. The data cleaning

function performed the following steps:

• Removed all extraneous characters such as new line characters (\n) which are artifacts

found in raw text, and html tags present when students used rich formatting in their

online responses.

• Converted all the characters to lower case (since text methods are case sensitive).

• Irrelevant words (a.k.a. stop words) such as “is”, “were”, “and” were removed.

• Words replaced by their stems (energy, energetic, energetically → energi). This was

performed for the sake of uniformity and also reduces the impact of spelling errors.
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The data set was heavily biased towards people who got the problem correct (N = 935

in class 1, N = 354 in class 0) which can result in a lot of false positive errors. Therefore,

a training set was constructed by randomly sampling 270 data (without replacement) from

class 0 and 550 from class 1. The data set has a true proportion of 2.65 (class 1: class 0).

The training set has a proportion of 2.03. This will hopefully make the model have a larger

tendency towards false negative errors. The remaining 469 data were used as the testing set

(N = 385 in class 1, N = 84 in class 0). It should be explicitly stated that the training set

and the testing set are completely complementary.

In the next step, the corpra was vectorized. A count vectorizer (bag of words model) was

fit on the entire data set. Then the training set and the testing were vectorized first by count

vectorization then by tfidf weighting. The size of the feature space ( unique 1200 words)

was reduced by keeping the best 800 features chi-square correlated with the class label. This

method was used to (hopefully) reduce the number of irrelevant, noisy features leading to

better predictions.

The training set and the training labels were used to train a naïve Bayes classifier, a

support vector machine, and a random forest classifier. The trained models are then used

to classify the testing set.

3.3.1 Results

In machine learning tasks choosing an appropriate measure of error can be problematic.

For example, the accuracy (which is defined as the number of correct classifications divided

by the total number of classifications) can be very high if the classifier is largely biased

towards the majority class, even though the classifier would likely have bad performance on

an unseen example of the minority class. The confusion matrix is a compact way to express

the error in a classification task by looking at the number of true positive classifications (They

got the problem right and were classified as having got the problem right), true negatives

(They got the problem wrong and were classified as having got the problem wrong), false

positives (They got the problem wrong and were classified as having got the problem right),
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and false negatives (They got the problem right and were classified as having got the problem

wrong).

Table 3.5. Figure shows a confusion matrix. True positive predictions are
shown top-left. False negatives are shown top right. False positives are shown
bottom left. True negatives are shown bottom right.

N = 714 Predicted: Correct Predicted: Incorrect

Actual: Correct 576.2 ± 2.34 29.8 ± 2.34 NAct. Correct = 606

Actual: Incorrect 96.6 ± 1.22 11.4 ± 1.22 NAct. Correct = 108

672.8 ± 3.56 41.2 ± 3.56 Accuracy = 82.3%

3.3.2 Discussion

If this method is to be used to provide pre-emptive feedback, then our error rate is totally

unacceptable. A false positive error amounts to a student who is likely to get the problem

incorrect being told that they are on the right track. Likewise, a false negative error would

result in a student who would probably go on to get the right being told that their they

should reconsider their approach. With this rate or error, a pre-emptive feedback structure

driven by this machine learning algorithm would do more harm than good.

This classifier makes predictions that the student will get the problem right by an over-

whelming margin (15:1). One of the obvious reasons that the classifier performs so poorly

is that the data from the two classes is very similar. If we look at the most commonly used

words in both classes, words like ‘energy’, ‘momentum’, and ‘principle’ are at the top of the

list for both classes. This conclusion is consistent with the poor (non-)performance of the

support vector machine (SVM) classifier. The SVM classifier works by finding a separating

hyperplane that maximizes the separation between the two classes in the feature space of the

problem. If the two classes are not separable, because the selected features aren’t sensitive

to the difference in the two classed, then the classifier will not be able to find such a sepa-

rating hyperplane. Furthermore, when I artificially induced a difference in the two classes

by manually deleting the common words such as ‘energy’, ’momentum’, and ‘principle’ from
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one class but not the other the accuracy of the classifier was 100%. This is a very hard

problem, and the level of sophistication of our approach is simply inadequate.
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4. PREDICTING AT RISK STUDENTS USING DATA

MINING AND MACHINE LEARNING

4.1 ABSTRACT

Machine learning (ML) has been widely used in education for a wide variety of tasks.

ML has been employed for automated scoring of text data, providing real-time feedback,

and several other applications to improve student learning. In this work we report on the

use of ML to predict students’ risk of adverse outcomes in a first year algebra-based physics

course for non-science majors. We obtained academic and demographic data for students.

This data also included student’s final grade in the course. This data set required significant

processing before it was able to be used for ML.

This data set included students’ final grade in the course. Their final grade was used to

make a class label, where students receiving ’C+’ or below were labeled ’1’ for the high-risk

category, and students receiving ’B-’ or above were labeled ’0’ for low-risk. We used eXtreme

Gradient Boost (XGBoost) classifier to predict students in the high risk category with 70%

precision, and those in the low-risk category with 78% precision. The overall prediction

accuracy was 75%. The model was found to have very high accuracy in predicting students

that recieved ’D+’ or below as high risk. The model had much lower accuracy for students

on the margins, students recieving ’B’ or ’C’.
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4.2 Introduction

Our modern society is constantly confronted with issues of science and technology. In

order to have a future generation that is equipped navigate these challenges it is essential that

students learn to solve problems, digest information, and reason based on evidence. These

skills are developed in a curriculum rich in science, technology, engineering, mathematics,

and computer science (STEM/CS) [  72 ]. Therefore, ensuring a workforce with a sufficient

number of STEM/CS competent graduates is a national priority [ 73 ].

Research shows that exposure to STEM in high school does not necessarily translate

to increased post-secondary STEM degree attainment [  74 ]. This implies that colleges and

universities have a critical role to play in guaranteeing people enter the workforce with

STEM/CS competency.

From the individual perspective, STEM/CS jobs are higher paying, more stable, and

have more openings [  75 ]–[ 77 ]. Furthermore, STEM degrees lead to increased opportunity as

STEM/CS degree holders are able to transfer their skills to a broader range of jobs, and they

typically are paid more even when working in non-STEM/CS fields [ 77 ], [ 78 ]. Unfortunately,

Women and minorities are underrepresented in these fields in terms of number and pay [ 75 ],

[ 78 ]. For these reasons, it is important to identify at-risk students and intervene to reduce

STEM/CS attrition at the earliest possible opportunity.

Zhai, Haudek, Shi, Nehm, and Urban-Lurain [ 48 ] assessed the use of machine learning

in education using a three-fold analytical framework. The validity feature corresponds to

quantifying and assessing the performance of ML models. The technical feature examines

the technology used and investigates its accessibility to students and teachers. Finally, the

pedagogical feature delves into the potential benefit of this work to the field of education.

We will present our findings in a similar manner.

Zariskie et. al. [ 1 ] reported on work predicting at-risk students. The authors collected

data through educational data mining for students taking a calculus based introductory

physics sequence for future scientists and engineers. Students were categorized by their

final grade in the course. Students receiving an ’A’ or ’B’ were designated as low risk, and

students receiving a ’C’ or below were designated as high risk. Data comprised of academic
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and demographic variables were used to predict the student’s risk of unfavorable outcomes.

The data were collected in two samples and aggregated, from which a random split was

used for training the machine learning algorithm, and another split was used for testing.

Their performance in predicting outcome/risk for Physics 1 students was 73% using only

institutional variables, but improved to 80% by the fifth week of classes by the inclusion of

in-class variables (homework, quizzes, and exams) using random forest classifier and 82%

using logistic regression with only in-class variables.

Yang et. al. [  2 ] focused on predicting the ’most’ at-risk students. In this work, they

categorized the high-risk students as those receiving a ’D’ or below in a calculus based Physics

1 course. Defining the high risk students in this way presented a significant challenge from

the machine learning perspective, because categories were high imbalanced. Their initial

performance using only institutional variables was 50% accuracy at predicting high risk

students, which improved to 68% at the end of week 8 using a mix of institutional and in-

class variables. In this study, aggregate data were randomly split into training and testing

sets as in [ 1 ]

In this report we detail our work using only institutional data on students’ prior academic

behaviors and demographic information, which are available prior to the start of a semester,

to predict students’ risk profile. Specifically, we use institutional data obtained from the

registrar to train a machine learning algorithm to categorize students’ final course grade in

a first semester algebra-based physics course for non-science majors. A student receiving an

’A’ or ’B’ is deemed low-risk, and likewise for students earning ’C’ or below and high risk as

in [ 1 ]. Students taking the course on a pass/fail basis were also included in the study where

pass (’P’) was included in low-risk, and fail (’N’) was high-risk.

This work seeks to extend the pioneering work by [  1 ], [  2 ] by applying these methods

to a different population of students. Namely, non-science majors enrolled in algebra-based

introductory physics. Also we used a whole course as the testing set, rather than using

random splits of aggregated data. We believe that using the data in this manner is more

representative of how such a prediction model would be used in deployment.

Both works [ 1 ], [  2 ] showed that the performance of machine learning models can be greatly

improved by the addition of in-class variables as the semester progresses. We demonstrated
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above that it is imperative to identify at-risk students at the earliest possible opportunity.

From this perspective, false negative errors cause the most harm. False positive errors, while

still potentially causing harm to students, will likely be minimal if intervention strategies

are not too cumbersome. Meanwhile, missing the opportunity to intercede for students at

risk of failure can have disastrous consequences. The ability to identify at risk students (and

also those not at risk) will improve greatly during the first weeks of class [  1 ], [  2 ] which will

mitigate any harm caused by miscategorizing low-risk students as high-risk.

We define a false positive error as predicting a student who is not at academic risk as

being in the high risk group. Likewise, we define a false negative error as predicting a student

who is at academic risk as not being at academic risk. Therefore, we seek to minimize false

negative errors. In light of these definitions, the research questions we addressed were the

following:

1. Research Question 1 (RQ1): How should we define the high and the low risk groups

such that the number of false negative errors are minimized?

2. Research Question 2 (RQ2): With what accuracy can we predict students that are

at risk of failure?

3. Research Question 3 (RQ3): How can this work be used to benefit students?

In the methods section we will describe our data set and how it was processed. We will also

describe our machine learning pipeline and explain how the experiment was conducted. In

the results section we will state our results. Finally, in the discussion section we will evaluate

our results in the conext of our research questions, and provide some concluding remarks.

4.3 Methods and Materials

In this section we discuss our data set, how features from the data set were processed,

how relevant features were selected, and outline our ML pipeline.
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4.3.1 Data

Our data set was acquired in two batches from the university registrar subsequent to

IRB approval. The batches were prepared by two different analysts, by retrieving the infor-

mation that we requested from a database. The first batch consisted of approximately 60

variables for N1 = 1705 students from a first-year algebra- based mechanics course at a large

midwestern university. Students from batch 1 were distributed across three semesters(Fall

2019 - Fall 2020) each taught by different instructors using a different modality (Completely

in-person, completely online, and a hybrid [respectively]). Batch 2 consisted of approxi-

mately 60 variables for N2 = 676 students. Students from batch 2 were from an in-person

class that also had an online section taught during the spring 2021 semester. This course is

mainly taken by students from the school of technology, pre-medical students, and students

from the school of pharmacy. The academic risk profile of this population is higher than

the corresponding calculus based intro-mechanics course for future scientists and engineers

because these students possess weaker academic preparation.

The data from each batch were presented as 7 smaller sets of tabular data (spread sheets)

corresponding to information about students’ high school (HS) academic record, advanced

placement (AP) math/science classes taken in HS, their ACT/SAT scores, demographic in-

formation, and information about college academic performance. The data were anonymized

by use of an abridged version of their student identification number.

One of the challenges in working with this data set was a large number of missing values

Table 4.1. Shows the Semester and Course Modality of Each Data Batch
Batch Semester Modality

1 Fall 2019 In-Person
1 Spring 2020 Hybrid
1 Fall 2020 Online
2 Spring 2021 Online

in the data. Values could be missing for any number of reasons. For example, if the student

transferred from another college/university, they may not have been required to provide HS

transcripts or ACT/SAT scores. Additionally, information for students coming from abroad
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may not have been available for a variety of reasons. Also, students may appear more than

once in data if they changed their major or they have a double major. More information

is not available to determine the exact cause of multiple listing for the same student for

logistical reasons.

Missing values were filled by mean / mode imputation. In this method, you fill miss-

ing values in a particular column with the mean (for numerical features) or the mode (for

categorical features). This is a quick and dirty way to deal with missing values. More

sophisticated methods use deep learning to fill missing values by using adjacent values as

predictors. For example, you could fill a student’s ACT/SAT score using their high school

GPA, their AP Math scores, and etc. Early explorations determined that this approach,

which is very time consuming, did not improve predictive power. Therefore, we used the

less precise mean/median imputation technique. The record containing college academic

data also included the final course grade reported to the registrar. This grade would include

any modifications to mid-semester or final grades made by the different instructors. This

feature will ultimately be used to create a label. Students earning ’B-’ or above were deemed

low-risk and assigned ’0’. Students earning ’C+’ or below were assigned ’1’, indicating they

were high risk.

4.3.2 Combining Data

Although the data request submitted to the registrar for both batches of data was iden-

tical, the two batches differed substantially. In order to use the data for machine learning

it had be combined homogenously. In other words, the data had to have the same features

with the same column names. Furthermore, the batches had the data grouped differently

among the subsets/records.

The records were combined by software in Python. The software loaded the data as a

pandas dataframe, selected relevant columns, and mapped each column name to a desired

target column name. Additionally, students missing their HS GPA or most recent prior

term college GPA were dropped from the data. The software also handled some rough pre-

processing like converted numerical values from strings to floats.
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Student ACT/SAT scores were scaled by the respective maximum test score. This was

performed to account for the fact that some students took one test but not the other. Math

portions of ACT/SAT scores were combined into a single feature, averaging if more than

one score was listed. ACT/SAT non-math scores were combined into a single feature in the

same manner as the ACT/SAT math scores.

The Python program ultimately constructed two identical batches of data in terms of

data used and the column names. The first batch, as defined in section 4.2.1 will be used as

the training set, and the second batch is used as the testing set. Batch 1 had been used for

previous work and therefore was not suitable for use in the testing set.

4.3.3 Processing

In order to maintain good data hygiene as in section 2.8.1, data processing performed

by the software processed the batches (training and testing) separately. Information was

allowed to flow from the training set to the testing set in the sense that will be outlined

in this section, but never from the testing set to the training set. That is, any processing

methods that require parameters such as a mean value or a standard deviation, obtained

these values from the training set.

Machine learning algorithms generally perform better if numerical values are scaled to

values less than 1. For one reason, using unscaled feature values can cause the model to

place undue importance on features with larger values. Numerical features, such as HS and

college GPA, were Z-scaled.

Z = (x − µtrain)
σtrain

(4.1)

Where x is the value, µtrain is the training set column mean, and σtrain is the training set

column standard deviation. Training set and testing set values were scaled according to the

training set values.

The model also makes use of several catgorical variables. Categorical variables are vari-

ables such as gender where values correspond to belonging to a particular category. In the

original data, these items had string values such as ’m’ or ’f’ in the case of gender. In order
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to admit these features to the model, they must be transformed into a number or a vector.

One common approach to this problem is ordinal encoding, where each of the distinct

categories are assigned an arbitrary integer label and each value is transformed into the

corresponding integer label. This approach leads to problematic performance because the

magnitude of the value doesn’t have any real meaning in the sense that a bigger number is not

necessarily better. Another approach is one-hot encoding where each value is transformed

into a vector whose dimensionality is the number of unique categories and the coordinate

corresponding to the category membership of the value is set as 1, and all other entries are

0.

The approach we used is called mean encoding. Mean encoding works feature-wise in the

following fashion,

1. Reduce the number of unique categories for each feature to 10, where all data points

that didn’t belong to any of the 10 categories were set as ’oth’

2. Each value is ordinal encoded

3. Each column is grouped by the ordinal encoded value

4. The average of the class label (1 or 0) is calculated for the group

5. A dictionary is created with the raw category as the key, and the label mean as the

value

This is procedure is performed on the training set to create the mean encoding dictionary.

Step 1 is performed on the testing set using the unique categories from the training set.

Subsequently, the testing set is transformed using the mean encoding dictionary built from

the training set. The results of mean encoding are that each categorical value is mapped to

a number between 0 and 1 representing the probability that a data point with that value

has a label value of 1. Mean encoding is a meaningful way encode categorical data, and

corresponds to superior serparability of classes relative to ordinal encoding.
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4.3.4 Machine Learning Pipeline

Four candidate machine learning models were initially selected, logistic regression, ran-

dom forest classifier, eXtreme Gradient Boosting (XGBoost) classifier, and an ensemble of

the three. These candidate models were chosen based on prior unpublished work with batch

1. 5-fold cross validation was repeatedly performed on the training set. This step allowed

us to choose optimal parameters and select a model. From the results of cross validation, a

stand-alone XGBoost model was chosen with a learning rate of 1 × 10−3 and 5000 esitma-

tors. This resulted in a 5% accuracy increase relative to the base XGBoost model on cross

validation.

Figure 4.1. The figure shows the machine learning/data pipeline. 1) 2
batches of data are obtained. 2) Individual records are combined and vari-
ables/variable names are made uniform between the batches. 3) Features are
processed for admission to the ML model. Information only flows from train
to test. 4) Cross validation is performed. A model and optimal parameters
are chosen. 5) The final trained model emerges. 6) The final model predicts
the class membership of testing data.

The features used in the final model were chosen based on prior work and exploratory

data analysis using the training set (not the testing set). Specifically, a mix of pearson cor-

relation between each feature and the target, and performance on cross validation was used
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to select the final features.

Table 4.2. The final set of features used in the model are shown
Feature Meaning Type Processing
hsGPA High school GPA Numerical Z-scaled

hsMathGPA High school math GPA Numerical Z-scaled
hsPhysGPA High school physics GPA Numerical Z-scaled

ACT/SAT Math ACT/SAT math score Numerical Z-scaled
ACT/SAT Non-Math ACT/SAT non-math score Numerical Z-scaled

AP Math Score Average AP math score Numerical Z-scaled
collegeGPA most recent prior college GPA Numerical Z-scaled
AP Math Number of years of AP math taken Categorical Mean encoded
hsMathYr Number of years of HS math taken Categorical Mean encoded
AP Math Number of years of AP math taken Categorical Mean encoded
AP Phys Number of year of AP physics taken Categorical Mean encoded
gender Student’s gender Categorical Mean encoded
ethnicity Student’s ethnicity Categorical Mean encoded
repeatIND If student is retaking the course Categorical Mean encoded

studentClassification Student’s year in college Categorical Mean encoded
firstGenCollege First gen. college status Categorical Mean encoded

The model was trained using using the training set with variables in table  4.2 , and the

model was used to predict the class membership of the testing data.

4.4 Results

In this section, we will present the results of the classification task and provide a thor-

ough discussion of the classification error. We begin by defining some useful metrics. We

partitioned the group in two classes. The class designated as class 1 were the students that

scored ’C+’ or lower as their final grade in the course. This group would be the high risk

group. Likewise for students who score ’B-’ or better, class label 0, and low risk. So, we can

make the following definitions:

This table (Table  4.3 ) is also called a confusion matrix, which we will be using later in

this section.
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Table 4.3. Table defines true positve (tp), true negative (tn), false positive
(fp), and false negative (fn) classifications

Predicted High Risk Predicted Low Risk
Actual High Risk tp fn

Actual Low Risk fp tn

In terms of the definitions (Table  4.3 ) we can define several other useful quantities.

Precision (P) is calculated for each class and is a measure of the accuracy of the predictions

made by the model. In other words, what fraction of the classifications of low-risk were

correct? What fraction of classifications of high-risk made by the model were correct?

P1 = tp

tp + fp

P0 = tn

tn + fn

(4.2)

Recall (R) is calculated for each class and indicates what fraction of each class were

correctly predicted. In other words, what fraction of high-risk students were detected by the

model? What fraction of low-risk students were detected by the model?

R1 = tp

tp + fn

R0 = tn

tn + fp

(4.3)

Finally, the overall accuracy of the classifier is the number of correct predictions, divided by

the total number of classifications

Acc = tp + tn

tp + tn + fp + fn

(4.4)

The classification trial was repeated three times. The three trials were independent in the

sense that each time the model was trained on the data, predictions were made. However, the

classification and the associated metrics were identical among the three trials. The results

of the classification were as follows,
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Table 4.4. Table shows the results of the experiment. Class membership,
precision, recall, number of specimens (N), and Overall Accuracy (Accuracy)

Class Precision Recall N Accuracy
0 0.78 0.74 372 ——
1 0.70 0.76 304 ——

—— —— —— —— 0.75

Table 4.5. Table shows the confusion matrix for this experiment
Predicted High Risk Predicted Low Risk N

Actual High Risk 231 73 304
Actual Low Risk 97 275 372

Totals 328 348 676

The normalized error is calculated separately for each grade level as:

Egrade = Nerror

Ntotal

(4.5)

Where Nerror is the number of miscategorized samples, and Ntotal is the total number of

samples from that grade level. For example, if there are 75 total students that earned

a grade of ’C+’, and 30 of them were miscategorized (categorized as low-risk), then the

normalized error for the grade ’C+’ would be

EC+ = 30
75 = 0.4 (4.6)

We also define the accuracy by grade level as,

Agrade = 1 − Egrade (4.7)

Note: This metric is technically recall, but we re-framed it as accuracy to avoid confusion

with the above definitions. Also, since it is defined in terms of classification error, the name
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Figure 4.2. The accuracy by class for each grade level is shown.

accuracy is sensible. Finally, another way we can examine to facilitate later discussion is

the prediction accuracy of the ’A’ students, the ’BC’ students, and the ’DFW’ students.

Table 4.6. Table shows the accuracy of A, BC, and DFW students
Grade Category Accuracy

A 0.92
BC 0.67

DFW 0.88
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4.5 Discussion

In this section we will provide a thorough examination of results through the lens of the

research questions RQ1, RQ2, and RQ3. We begin by addressing RQ1, which is how we

should define the high and low risk groups to minimize false negative errors.

A fundamental part of the machine learning pipeline is to formulate a problem that

is solvable, interpretable, and has useful results. It is well known that imbalanced class

numbers significantly reduce the performance of machine learning models. Class imbalance

causes a failure of the algorithm to learn the underlying distributions in the data [  79 ], and

thus produces poor results in many cases.

The results of Yang et. al. [ 2 ] were quite poor when using only instutional variables.

This was due to the large class imbalance in the way that they formulated their learning

problem. However, it should be noted that performance drastically improved by the addition

of several in-class variables later in the experiment.

We believe by defining the classes as in [ 1 ], that we derive a very solvable problem whose

results are still useful. Failure of the course isn’t the only adverse outcome related to a

”low” grade. Many of the students taking introductory physics are doing so for admission

into other programs. A significant portion of this population will be applying to medical or

pharmacy programs, which are very competitive. For this reason, a grade of ’C+’ or below

could present a significant obstacle to the students’ later plans. Additionally, formulating

the classes in this way allows us to detect the most at-risk students in a more timely fashion

before in-class variables are available to be used in the model.

RQ2 is concerned with the ability of a model trained with this data to accurately predict

at-risk students. Our classification accuracy of 75% is not especially compelling. However,

as table  4.2 and table  4.6 show, the prediction accuracy does not tell the whole story. The

overall accuracy is reduced because the model struggles with students near the class margin.

In other words, students who got a B could have certainly gotten a C instead, and likewise

students who earned a C could have instead earned a B.

It is notable that the model does very well at detecting the most at-risk students, the

ones in the ’DFW’ category. If intervention can be implemented in a way that is not exces-
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sively burdensome to the students, then instructors might find this error acceptable in the

very beginning of the course until additional data can be added to the model to improve the

precision as in [  1 ], [  2 ]. For the price of miscategorizing students on the margins, instructors

are able to get a good indication of students that are at serious risk of adverse outcomes.

In order to gain insight into why the model struggles with students on the margin we

used L.I.M.E. (Local Interpretable Model-agnostic Explanations). L.I.M.E. is a package in

Python and allows the experimenter to look at individual classifications made by the model

and examine the reason behind the model’s prediction. Obviously since the L.I.M.E. pack-

age works on indivdual predictions, and there are 676 predictions, we cannot examine them

all. However, even looking at a subset of the predictions can be informative. Students

were generally categorized according to academic features. This was true regardless of grade

level (’A’,’B’,...,’F’). The most important features selected by the model were college gpa,

ACT/SAT math score, HS GPA, and AP math score. This finding is in agreement with

[ 2 ]. Students that were categorized as low risk had scores well above the mean for these

features, and students that were correctly categorized as high risk had scores that were be-

low the mean. The model struggled on students that were marginal and had a number of

conflicting indicators. For example, if the student had poor HS attributes, but has a high

college GPA. Categorical features such as ethnicity and gender were much less important

but non-negligible. It seems that the model uses these auxillary features as ”tie-breakers”

in borderline cases.

RQ3 deals with assessing the model in the tripartite framework [  48 ]. The technical

feature is a subjective measure that rates the accessibility of technology to students and

teachers. Due to the amount of data processing that was required for this project, our model

would rate low to moderate. If an instructor is competent in machine learning/data engi-

neering it is conceivable that they could implement a model of this type in their course. This

technology could be made much more accessible if data analysts could work with instructors

to make the data more uniform in terms of the variables included and the variable names.

Also, analysts may be able to assist with some of the processing tasks. If this aid is available,

then this method of predicting student risk could rate moderate to high.

The validity feature deals with how the model is validated. We used k-fold cross valida-
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tion which is an industry best practice, and the results of cross validation were consistent

with the results of the final model. However, it is difficult to make strong claims about the

validity of the model until it is tested on more unseen data from the same poplulation or

different populations (generalization). For that reason, our work would rate moderately on

that metric.

The final piece is the pedagogical feature. Our work rates moderate to high here. We

have shown that our model has very strong predictive power for the highest risk category

(’DFW’). If the model was used properly, it would allow for very early intervention for the

most at-risk students.

Another feature not mentioned in [  48 ] is the ethical feature. Our work rates moderate

to high in this category. Arguably the model would rate high here because it focuses on

academic features, and does not use demographic features (primarily) to classify students as

high risk. The model would be unethical if it relied on features such as gender or race to

make it predictions. Use of this model in a real classroom would be slightly unethical in the

sense that it miscategorizes one out of every three students in the ’BC’ group.

Much of the harm associated with miscategorizing the ’BC’ student could be mitigated

by thoughtful implementation of this model. Students should volunteer for inclusion in any

prediction about their future outcome in the course. Furthermore, the instructor should

openly acknowledge the limitations of the model in discussions with students. For example,

telling students that were categorized as high-risk by the model, that there is 30% error

rate associated with predictions of high risk. The instructor should also mention that model

indentifies ’DFW’ students with very high accuracy. As mentioned previously, prediction

power can rapidly increase over time. It might also bolster confidence for students who were

previously categorized as high risk to change their risk category through their own work in

the course.

4.6 Conclusion

In this work we obtained data from the registrar which included information about a

student’s academic past, and their demographics. This data was used to train a machine
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learning algorithm. The trained algorithm was used to predict the students that are at risk

of adverse outcomes. The model has reasonable, but not perfect, performance on the dataset

as a whole. In the results and discussion sections we provided a thorough discussion of the

strengths and the weaknesses of the model.

The model has high performance at detecting the most at-risk students. While the model

doesn’t directly identify the student as likely to earn a ’DFW’ score, it correctly identifies

them as ’at-risk’. The model also miscategorizes a significant number of high risk students

as low risk, and vice-versa. These miscategorized students are mostly on the margins. This

doesn’t mean that it is acceptable that they are not correctly categorized. It only means

that instructors should be aware of this potential problem and have mitigation strategies in

mind until more data can be added to the model to improve prediction.

We also showed that the model could be used ethically, since it doesn’t discriminate

against students by using features such as gender or ethnicity to make its predictions. We

also argued that prior work [  1 ], [  2 ] showed that prediction power can be greatly improved

by the addition of in-class variables gathered in the first weeks of class. This allows for

predictions that are both timely and accurate. Furthermore, this model could be improved

by the addition of other features such as the student scores on a diagnostic instrument such

as the Force Concept Inventory [ 70 ].
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5. USING NATURAL LANGUAGE PROCESSING TO

PREDICT STUDENT PROBLEM SOLVING PERFORMANCE

5.1 ABSTRACT

In this work we report on a pilot study where we used machine learning to predict

whether students will correctly solve the classic “ballistic pendulum” problem based on an

essay written by students elucidating their approach to solving the problem. Specifically,

students were asked to describe the “principles, assumptions, and approximations” they used

to solve the problem. Student essays were codified using the practices of natural language

processing. Essays from two non-consecutive semesters were used for training/validation (N

= 1441) and testing (N=1480). The final model used to make predictions was an ensemble

classification scheme using random forest, eXtreme Gradient Boosting classifier (XGBoost),

and logistic regression as estimators. Our accuracy in predicting students’ correctness was

around 80% with slightly higher accuracy in identifying students who incorrectly solved the

problem and slightly lower in predicting student who correctly solved the problem.
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5.2 Introduction

Research has shown that facilitating students to attend to the underlying concepts and

principles needed to solve a problem improve problem solving performance [  80 ], [ 81 ]. We

implemented strategy writing [  81 ] in a pilot study with students in a calculus-based physics

course at a large public mid-western university. Students were asked to write an essay de-

scribing their strategy for solving a problem. Their essays were analyzed using Natural

Language Processing (NLP) to determine whether they could predict the ground truth label

i.e. the correctness of the student’s answer to the problem.

NLP is a branch of artificial intelligence (AI) in which computers perform operations

on human language. NLP has numerous applications such as determining the sentiment of

tweets; chatbots/assistants which perform speech recognition/generation; and machine text

translation. Classification in NLP is at the intersection of machine learning and NLP. Ma-

chine learning (ML) can be thought of as a collection of methods where a statistical model

is developed that maps numerical data on to a target variable (label). A ML algorithm is

trained when an objective function which quantifies the error made by incorrect predictions

is minimized with respect to the model’s parameters (e.g. weights and biases in the case of

multiple linear regression). The trained model is then used to predict the class membership

of unseen data known as a testing set. The fundamental rule of ML is testing data is not

used for training or any manner of model parameter tuning.

In this work we report on the use of NLP to predict whether students in a first semester

calculus-based course would correctly solve a problem (Fig. 1) during a quiz taken in lab.

We asked students to write an essay describing their strategy for solving the problem, includ-

ing underlying principles used, and objects in the system/surroundings. Data were labeled

0/1 based on whether students solved the problem incorrectly/correctly. This work was ex-

ploratory in nature to determine how well we could make accurate predictions. Our vision for

the future of this work is a platform to provide in-situ feedback to improve student learning.

The text data from the essay were transformed using the term frequency-inverse docu-

ment frequency (TFIDF) method. We constructed a ML model using the Scikitlearn [ 82 ]

library in Python. The final prediction model was a hard voting scheme using Random
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Forest [  83 ], Logistic Regression, and eXtreme Gradient Boosting classifier [ 84 ] as estimators.

We used data from Spring 2020 for model training and general validation, and data from

Spring 2021 for testing. More details are presented in the following sections. We addressed

the following question.

1. Research Question: With what accuracy can we predict if a student will correctly

5.3 Methods

Students completed the task shown below (fig.  5.1 ) on Quiz 3, which was administered in

Week 7 of the semester. The quiz was administered in a sterile environment where notes and

collaboration were not allowed. We chose this problem because it is a well-known problem

in introductory physics that students have difficulties with.

Figure 5.1. Problem solved by students in online Quiz 3 in Week 7

5.3.1 Data

The descriptive statistics for the word length of the essay data are shown in Table I. A

thorough analysis of the differences between the words and phrases used by each group is

beyond the scope of this paper. There is no significant difference in essay length between

the correct and incorrect responses, or between the data sets.
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Table 5.1. Table shows descriptive statistics for the essays
Data Set Mean ± S.D. Median

Spring 2020 correct (N1 = 703) 57.9 ± 31.2 51
(training) incorrect(N0 = 738) 56.5 ± 29.9 51
Spring 2021 correct (N1 = 679) 60.2 ± 32.0 55
(testing) incorrect (N0 = 801) 59.8 ± 37.3 52

92



5.3.2 Text Processing

Text Cleaning

The essays from both sets were cleaned using a function in Python, that removes unim-

portant commonly used words (stop words) [  85 ] to reduce noise, as well as punctuation,

numbers, and equations which some students (6.1% in training, 4.5% in testing set) included

in the essay. Finally, the essays were spell checked using a context-unaware spell checker

from the textblob [ 86 ] library.

TFIDF Transformation

ML algorithms cannot perform computation on raw text. Most standard methods in

NLP involve transforming text into a vector. The simplest approach is the bag-of-words

model in which text is transformed into a vector of dimensionality equal to the number

of unique words in the corpa and whose components are the word counts in a particular

corpus. A higher level of sophistication is the TF-IDF transformation, which converts each

essay (corpus) into a vector whose dimensionality is the number of unique words in all the

essays (corpa). The components of each vector are a calculated score for each unique word

in the corpa based on its frequency of appearance in that corpus and inverse frequency in

the corpa:

W (t, d, D) = ft,dlog
(

N

nt

)
(5.1)

The TFIDF score, W , for each word, t, is calculated corpus-wise for each document d in the

corpa D. W is large for words with a high frequency (f) appearing in a small number of

documents (nt). W is low for words that have low frequency appearing in a large number of

documents.

5.3.3 Prediction Model

The prediction model uses three independent estimators, Random Forest [  83 ], eXtreme

Gradient Boosting (XGBoost) [  84 ], and Logistic Regression. The predictions emerging from
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these algorithms are combined to make a single final prediction, a scheme known as ensemble

learning.

Random Forest Classifier

A decision tree is a flowchart like structure where a datum is classified after passing

through a network of nodes representing features of the model. In some cases, the deci-

sion tree can be conceptualized as a series of yes/no questions that ultimately results in a

classification [  87 ]. Decision trees are robust to irrelevant features (noise) and are capable

of learning complex patterns. However, they tend to learn the training set very well while

struggling with unseen testing data (overfitting). The random forest classifier is an ensemble

(forest) of decision trees [ 83 ]. Each tree in the forest is built by randomly sampling the train-

ing data with replacement, a method known as bootstrap aggregation, and using a random

subset of the features (variables) to make predictions. The final classification is the majority

vote of all the trees. This has the effect of reducing overfitting relative to a single decision

tree by producing a series of weak uncorrelated learners which averaged together make more

accurate predictions [ 88 ].

eXtreme Gradient Boosting Classifier (XGBoost)

Boosting is a technique whereby the classifier learns from its mistakes (incorrect predic-

tions) [ 84 ]. The version of XGBoost used in this work is based on the random forest classifier.

XGBoost uses boosted tree learning to improve upon the consistently high performance of

random forest. The goal of XGBoost is to learn a decision function (classifier) that encap-

sulates the structure and function of a random forest. Boosting happens in iterations called

boosting rounds. The decision function is initialized to a constant value, obtained by solving

an optimization problem. During each of the m subsequent boosting rounds the decision

function is updated recursively to correct mistakes made in the previous round. This scheme

results in a classification algorithm that is robust to overfitting but can be susceptible to
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outliers [  89 ]. For labeled data {xi, yi}, the decision function Fm after the m-th boosting

round, and the regularization term hm:

Fm (x) = Fm−1 (x) + αmhm(x, rm−1) (5.2)

While the usual gradient descent algorithm that is at the heart of machine learning aims

to minimize the objective function with respect to the parameters of the decision function,

gradient boosting endeavors to minimize the objective function with respect to the decision

function.

Logistic Regression

In logistic regression we predict samples using the sigmoid function:

h (x) = 1
1 + e−θx

(5.3)

Where θ is a vector of weights and biases (high dimensional analog to slope and intercept)

and x is a feature vector (data point). The vector θ is obtained by minimizing the log-loss

objective function with respect to θ.

J (θ) = − 1
m

m∑
i=1

[
y(i) × log

(
hθ

(
x(i)

))
+
(
1 − y(i)

)
× log

(
1 − hθ

(
x(i)

))]
(5.4)

The sigmoid function is a continuous valued function bounded on (0,1). When making a

binary classification, a thresholded decision function h′(x) is used such that:

h′ (x) =


1 if h(x) ≥ 0.50

0 else
(5.5)

5.3.4 Training, Testing, and Validation

Model training is the process (Fig. 3) of using the training data to select the optimal

parameters for a given model. The optimal parameters are usually determined by minimizing
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an objective function with respect to the model parameters. This gives a candidate model.

The success of a model is determined by its ability to correctly classify unseen data. The

hypothetical scenario is that the testing set is not available to you when you create the model,

and it will be used in production to classify new data in real time. Thus, it is necessary

to validate the model before production on some data that was not used during training

(validation set).

In k-fold validation, we split all of the data into k equal sized partitions. k-1 sets are

used for training and the remaining set is used for testing. This is repeated until all k sets

have been used in training and testing. The accuracy is averaged across the k trials.

Figure 5.2. A diagram showing the machine learning workflow. (1) Training
data (blue), validation data (red), and testing data (green) are processed by
(2) removing stop words, punctuation, and checking spelling. (3) A Tfidf
transformer object is fitted to the training data and used to transform training,
validation, testing sets. The testing set is put aside. The training set is
used to train a candidate model, and the candidate model is evaluated on
the validation set. (4) The model is tuned in a feedback loop to improve
classification performance on the validation set. The process continues until
performance is saturated and the final model (5) emerges. The training and
validation sets are used to train the final model and (6) predictions are made
on the testing set

5.4 Results

The classification accuracy is an important metric by which to judge the performance

of the prediction model. However, accuracy should not be considered in isolation. Other

important metrics to consider are precision, recall, and F-score.
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We define a true positive (tp) classification as a student who is labeled ‘1’ and is predicted

as ‘1’, likewise a false positive (fp) classification is a student is labeled as ‘0’ but predicted

as ‘1’. We define a true negative (tn) as a student who is labeled as ‘0’ and predicted as ‘0’,

likewise a false negative (fn) is a student who is labeled ‘1’ but predicted as ‘0’.

Precision is the fraction of correct classifications made by the classifier.

P1 = tp

tp + fp

P0 = tn

tn + fn

(5.6)

Recall is the fraction of each population correctly identified by the classifier.

R1 = tp

tp + fn

R0 = tn

tn + fp

(5.7)

The F-score is the harmonic mean of precision and recall. F-score is a balanced metric to

determine the overall quality of the classifier.

F1 = 2 P1R1

P1 + R1
F0 = 2 P0R0

P0 + R0
(5.8)

Cohen’s kappa [  90 ] is a measure of agreement between raters, controlling for agreement by

chance.

κ = p0 − pe

1 − pe
(5.9)

Where p0 is the observed agreement between raters, and pe is the probability of agreement

by chance. The results of the classification are in Tables  5.2 and  5.3 below. Finally, Cohen’s

Table 5.2. Precision, Recall, and F-score
Class N Precision Recall F-Score
0 801 0.79 0.87 0.82
1 679 0.82 0.77 0.77

kappa was calculated to be κ = 0.594.
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Table 5.3. Confusion matrix: Correct predictions are on the diagonal. Incor-
rect predictions are off diagonal.

Predicted Negative Predicted Positive Accuracy
Actual Negative 695 106 —–
Actual Positive 190 489 —–

—– —– —– 0.8
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5.5 Discussion

A proposed instrument for essay scoring should only be deployed if it is shown to be

valid, fair, and reliable. A method is considered valid if it measures what it claims to mea-

sure. A method is fair if it does not unfairly penalize correct responses, and it is reliable if

the results are repeatable [ 91 ]. It is difficult to gauge the validity of this model without a

direct comparison with other models which perform the same function. Many projects that

attempt automatic essay scoring (AES) use comparison with human raters as a metric [ 92 ].

A competition among commercial AES vendors used eight student essay corpa from six

member states of the Race-To-The-Top assessment consortium as a dataset [ 92 ]. Students

wrote persuasive, expository, narrative, and source-based essays (where they formulated an

argument based on a passage). This dataset used the state adjudicated score conferred by

human scorers (resolved score) as the ground truth (label) and compared the performance

between different proprietary scoring engines. A metric used in this study is percent agree-

ment between computer scoring systems and the resolved score. Percent agreement (identical

to accuracy) is the percentage of times the resolved score and the computer score were identi-

cal. The percent agreement of the scoring engines ranged from 0.29 to 0.76, and the Cohen’s

κ ranged from 0.04 to 0.84 across eight datasets. Thus, our results (accuracy = 0.80, and

Cohen’s κ = 0.594) are within the range of proprietary scoring engines used in [ 92 ].

A key difference with our study is that in [  92 ] the essays themselves were scored by a

multi-point rubric, while we did not score the essays per se, rather we used problem correct-

ness (0/1) as a proxy for scoring of the essays themselves. It is also worth noting that the

scoring engines in [ 92 ] had high performance on “adjacent agreement” when the computer

score was within 2 points of the resolved score on a rubric of 8 points (maximum). There is

no way to directly compare our results on this metric due to the differences in essay scoring.

Presently, there is not enough information to establish that our prediction model is valid

for scoring student essays themselves. However, the goal of the present study was to use the

strategy essay to predict if the student will correctly solve a problem. If we could substan-

tially reduce the error rate, this model could be useful to provide feedback to students so

they can correct errors before submission.
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In regards to fairness, about 20% of students were incorrectly scored, out of which 13%

were predicted incorrect despite solving the problem correctly. Finally, since we currently

only have two sets of data to work with, we cannot establish the reliability of this model.

5.6 Conclusions, Limitations & Implications

Despite the shortcomings of our classification scheme these results are promising since

the model is able to predict, based on the strategy essay written by a student, whether or

not the student has answered the problem correctly with 80% accuracy. For the purposes of

predicting incorrect answers, the prediction rate is 87%.

This study has the following limitations. First these results leave room for improvement

in accuracy and fairness, which could be achieved with a larger training set and more pow-

erful state-of-the-art machine learning methods, such as deep learning. Second, the study

used only a single problem that required students to determine their answer in symbolic

representation using a multiple-choice format. Therefore, the results are not generalizable to

problems in other formats and representations, not to mention other topical areas in intro-

ductory physics. Finally, the study did not score the essays themselves, rather it predicted

the scores of the problem that students wrote the strategy essay for, and they may have

written this essay not necessarily before solving the problem. Future studies will use human

raters to score the essays based on the validity of the outlined approach, and therefore the

likelihood that the strategy will lead to a correct solution.

Despite these limitations, the study has several implications for research and education.

This study provides proof-of-concept that it is possible to predict students’ correctness of

a problem with a high degree of accuracy, based on the essay they have written describing

their strategy to solve the problem. Research has shown that asking students to describe

their strategies for solving problems can be useful in helping them develop more expert-like

problem solving strategies [ 80 ].

However, past studies did not provide feedback to students on their strategy writing.

The time cost of providing such feedback, especially in large enrollment introductory classes

can be prohibitive. The results of this study are promising because they provide proof of
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concept that it might be possible, using NLP methods to provide students feedback on their

strategy writing in real time, thereby giving them the opportunity to reflect on, and if nec-

essary, alter their problem-solving strategy before they apply it to solve the problem. Such

a system would also allow us to investigate whether real time strategy feedback can improve

students’ metacognitive skills and make them more expert-like problem solvers in the future.
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6. CREATION OF AN ADAPTIVE ONLINE

INSTRUCTIONAL MODULE

6.1 Abstract

In this study we developed an online instructional module to teach the concepts of force

and motion. The module was created in two versions meant to optimize instruction for

students based on their level of physics domain knowledge according to the expertise reversal

effect [ 12 ], [  93 ], [  94 ]. Specifically, a high level guidance (HLG) version and a low level

guidance (LLG) version. The HLG version provides guiding features, such as continuous

animations and voice voice narration. The low level guidance version is self-paced and shows

pop-up content as the user interacts with the page.

The module was deployed to N=378 students from a first year algebra based mechanics

course. The module was hosted on a web server and students used the module in a location

and time of their choosing. The number of participants was reduced to N=171 when filtering

students who used the modules in a way that indicated they were not putting forth ”honest

effort” based on timing metrics. The results indicate that both versions of the module were

generally effective in teaching students the principles of force and motion. However, we failed

to show that the modules provided adaptive instruction to students based on their domain

knowledge level.
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6.2 Introduction

Online learning has been a common component of many classrooms for nearly 20 years.

Meanwhile, institutions have been slow to use these systems to their full potential [ 95 ]. The

global pandemic has caused institutions to re-examine how online learning should be used

to deliver course content. Additionally, a larger number of students are choosing online ed-

ucation. This cohort finds the traditional classroom ”restrictive, inflexible, and impractical”

[ 96 ]. Alternatively, the online classroom allows students (some non-traditional) with a tight

schedule access to higher education[ 96 ].

E-learning systems should be engaging, appropriately paced, and provide timely and

useful feedback[ 97 ], [  98 ]. Moreover, the same instructional considerations that are employed

when designing in-person course content should be addressed when designing online educa-

tional materials. Guiding principles for the design of instructional materials can be derived

from cognitive load theory [ 3 ]–[ 5 ].

Cognitive load refers to the utilization of working memory rescources during learning and

problem solving. Intinsic cognitive load (ICL) is presented by the inherent complexity of the

material. ICL can differ for given material based on the characteristics of individual learners.

Specifically, material may present different levels of ICL to experts and novices. Extrane-

ous cognitive load (ECL) is cognitive load that arises from utilizing cognitve resources on

activites that are not productive for learning and problem solving. ECL can result from

sub-optimal instructional design. For example forcing learners to mentally integrate multi-

ple streams of information produces a high ECL environment relative to providing the same

information in a single source [  17 ]. Germane cognitive load (GCL) refers to the working

memory resources used to build schema. GCL is incurred by the learner as they use cogni-

tive resources to process the intrinsic load. ECL reduces the efficiency of the ICL processing.

Mayer’s principles of multimedia learning [  99 ] distills the insights of cognitive load theory

and related work, and provides a clear set of principles for instructors.

According to Mayer, multimedia instructional materials are words and pictures used to

convey an understanding of a concept or several concepts. Words can be written or spoken,

and pictures can be still images, diagrams, graphs, videos, or animations. These linguistic
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Table 6.1. Mayer’s Principles of Multimedia Learning as written in [ 100 ]
Principle Description

Coherence ”People learn better when extraneous words, pictures
Principle and sounds are excluded rather than included.”

Signaling ”People learn better when cues that highlight the
Principle organization of the essential material are added”

Redundancy ”People learn better from graphics and narration than
Principle from graphics, narration and on-screen text.”

Spatial Contiguity ”People learn better when corresponding words and pictures are
Principle presented near each other rather than far on the screen.”

Temporal Contiguity ”People learn better when corresponding words and pictures
Principle are presented simultaneously rather than successively.”

Segmenting ”People learn better from a multimedia lesson that is presented
Principle in user-paced segments rather than as a continuous unit.

Pre-training ”People learn better from a multimedia lesson when they
Principle know the names and characteristics of the main concepts.”

Modality ”People learn better when words are presented as narration
Principle rather than as on-screen text.”

Multimedia ”People learn better from words and pictures
Principle than from words alone.”

Personalization ”People learn better from multimedia lessons when words
Principle are in conversational style rather than formal style.”

Voice ”People learn better when the narration in multimedia lessons is
Principle spoken in a friendly human voice rather than a machine voice.”
Image ”People do not necessarily learn better from a multimedia lesson
Principle when the speaker’s image is added to the screen.”

and visual components are used in such a way that when the student receives instruction in

this modality, they should build a mental model. From this perspective, the primary goal

of multimedia instruction is schema development. Therefore, multimedia learning has taken

place when the learner has developed a mental model as a result of multimedia lessons [ 99 ].

This work seeks to build an online instructional module to teach the principles of force

and motion to students from an alegbra based introductory physics course at a large mid-

western university. We made a web application (webapp) that delivered content in two

versions. One version designated as the high-level guidance (HLG) version used an AI gen-

erated voice to deliver narration, which was synched to animation to produce the effect of a

video that rendered in the participant’s web browser. Another version designated as the low
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level guidance (LLG) version had on screen text and still pictures appear when participants

hovered their mouse over certain content areas that were prominent on the screen. Content

displayed in this manner will hereafter be referred to as pop-up content.

The expertise reversal effect (ERE) [  12 ], [  93 ], [  94 ] examines the differences between learn-

ers based on their level of expertise in a given domain (domain knowledge). The HLG version

of the module was intended to benefit learners with low prior knowledge (LPK). Likewise, the

LLG version is intended for learners with a relatively high level of prior knowledge (HPK).

The principal difference between HPK and LPK learners is the existence of knowledge struc-

tures , called schema, in their long term memory that are vitally important in learning and

problem solving. Schema are generally built incrementally as the learner gains new expe-

rience. Thereafter, new knowledge has to be reconciled with and integrated into existing

schema.

Schema that are responsible for directing attention to relevant pieces of information,

disregarding irrelevant information, and constructing a solution to the problem at hand are

missing in the LPK learner. The LPK learner, lacking relevant schema, resorts to ”mostly

random and cognitively inefficient” activities[  94 ]. Furthermore, ”direct and explicit” in-

struction can be a substitute for these knowledge structures in learning and problem solving

activities[ 94 ]. In otherwords, LPK students can compensate for their lack of schema (to an

extent) by being provided explicit instructions.

The guiding features present in the HLG version designed to minimize CL for LPK

learners, must also be processed in the working memory of HPK learners. However, already

posessing the necessary knowledge (as schemas), this instructional guidance is not only un-

necessary but harmful[ 12 ], [ 94 ], [ 101 ]. In other words, instructional guidance presents an

ECL to HPK learners if present, and an ECL to LPK learners if absent [ 94 ].

According to cognitive load theory and related work, the LLG version of this module

should present a working memory overload for LPK learners. Replacing the majority of on-

screen text with auditory narration in the HLG version allows the involvement of auditory

channels of working memory [ 14 ], [  102 ] reducing the load on visual channels. Meanwhile,

HPK learners are able to leverage pre-existing mental models to mitigate cognitive load im-

posed by heavy loading on visual channels.
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In the LLG version, learners process the text in the bulleted list and the ”pop-up” content

displayed when they hover their mouse over the item serially, rather than simultaneously,

which eliminates the need to mentally integrate the separate streams of information as in

the split-attention effect. This approach has been found to improve learning outcomes rel-

ative to a split-soure format or an integrated format [ 103 ]. Additionally, the use of pop-up

elements in the LLG version leads to educational content that is transient in nature. Tran-

sient information can itself be a source of cognitive load. Transient information presents a

disproportionately large ECL for the LPK learner relative to the HPK learner. Both learn-

ers must hold this information while processing the lesson. The HPK learner experiences a

smaller ECL in general due schema guiding their processing of the lesson and any additional

ECL from transient material is nominal. Meanwhile the LPK learner processes the lesson

inefficiently and feels a greater impact from transient items [ 104 ].

The HLG version reduces cognitive load by replacing much of the on-screen text with

narration as in the modality effect (tab.  6.1 ). The HLG version further reduced ECL

for LPK learners by avoiding transient materials, opting instead for continuous animations

[ 104 ]. Both versions of the module are structured in sections and subsections that the user

is allowed to navigate at their own pace, respecting the segmenting principle (tab.  6.1 ).

Deploying this module after the concepts of force and motion are covered in their physics

course complies with the pre-training principle (tab.  6.1 ). Both versions of the module were

designed to reduce extraneous contents pursuant to the coherence principle (tab.  6.1 ).

The research questions that we addressed in this study were the following:

1. Research Question 1 (RQ1): To what extent can students learn the principles of

force and motion from online instructional modules?

2. Research Question 2 (RQ2): How can we optimize these modules for all students

using Mayer’s principles of multi-media learning?

3. Research Question 3 (RQ3): How can we classify students based on domain knowl-

edge?
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4. Research Question 4 (RQ4): To what extent can we further optimize these mod-

ules by providing instruction adaptively to students based on their level of domain

knowledge using CLT and ERE?

In the methods and materials section we describe how the module was created. We describe

the material covered and how it was formatted to teach users how to solve problems involving

force and motion. We also show a side-by-side comparison between the HLG and LLG

implementations of this module. In the results section, we present the results of the study.

In the discussion section we evaluate our results. Finally, in the conclusion section we

summarize our study and address the research questions.

6.3 Methods and Materials

In this work we developed an online instructional module (a webapp) to teach the prin-

ciples of force and motion. Specifically, the webapp was intended to teach students how

to solve problems on force and motion. N=378 Students voluntarily participated in the

study in return for 2% of their course grade in extra credit. Students were provided a

link to the module ( https://www.themoduleproject.info ) on the course management sytem

(Brightspace). Upon logging in to the module with their school username and school ID

Number, they were randomly assigned to either the HLG version or the LLG version of the

module.

Both versions of the module contained four sections; a pre-test, an instrucional section,

the cognitive load survey, and a post-test. Students began the module by completing a 10

question pre-test. The pre-test was the same for HLG and LLG versions of the module.

Next, students were shown some directions about how to use the module. Afterward they

were directed to the instructional section of the module. The same four subsections were

present in both versions. Namely a subsection where the student learned vector decomposi-

tion, a subsection where the student learned to translate a problem statement into a force

diagram and subsequently write an expression for the net force, another subsection where

the student was instructed how to reason about the direction of acceleration (i.e. deter-

mine the y-component of the acceleration must be zero for an object in linear motion in the
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x-direction), and lastly an instructional subsection summarized the other three subsections

and provided an example of the entire process for solving problems. The content of the

four subsections was fixed between HLG and LLG, and they mainly differed by presentation

of the material. Next, students from both conditions completed the judgement of learning

and cognitive load survey where they answered questions designed (and validated [ 105 ]) to

facilitate self-reporting of cognitive load. Finally, students took a 10 question post-test that

was identical to the pre-test and identical between conditions (LLG and HLG).

The HLG version of the module was created with the LPK student in mind. The LPK

student is one who has had very little prior exposure to physics and also likely has weak

mathematical preparation. For this population, content was delivered as a continuous ani-

mation that was synched to an audio track. This had the effect of a video that rendered in

the participant’s web browser. This modality was chosen based on the theory that displaying

content in this way would be more immersive than a stand-alone video being shown. The

voice track was made using an AI voice that had human-like qualities.

After each of the instructional subsections were complete, a question was shown. The

questions were similar to the pre-test questions and for the HLG version, process feedback

was shown. Process feedback emphasizes the logical steps behind arriving at the solution.

The feedback was delivered via a ”video” in the style outlined in the previous paragraph.

The LLG version of the module was created for the HPK student. The HPK student

is one who has had some prior exposure to physics and likely has stronger mathematical

preparation than their LPK counterparts. In the LLG version, content is shown in the man-

ner of a lecture slide with numbered bullet points. When the user hovers their mouse over

each bullet point, additional content such as figures and diagrams are shown. In most cases,

when the user moves their mouse off of the area, the content disappears.

After each of the instructional subsections were complete, a question was shown. The

question was identical to that from the HLG condition. Upon submission of their response

to the question, product feedback was shown. Product feedback just gives the correct final

answer. This was shown at the bottom of the screen after submission.

More detail about the instructional section of the module and the precise differences

between HLG and LLG versions will be shown in the coming subsections.
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6.3.1 Vectors Subsection

The vectors subsection of the module was created to demonstrate vector decomposition,

which is a necessary step for writing Newton’s second law in a component form.

HLG

The HLG version provides explanations of concepts in a more basic way including more

explicit instruction, than the corresponding LLG version. Compare the differences between

fig.  A.1 and fig.  A.6 where the idea of a vector having components is explained (HLG) or

stated (LLG).

The video starts and the voice provides instruction as bullet points appear on the screen.

Content is delivered to the student in a fixed sequence, although they have the ability to

seek forward and backward. A vector and its x and y components were presented as making

a right triangle. Next, the video goes on to show that trigonometry applies to the triangle

formed by a vector and its components, just as any other right triangle (fig  A.2 ).After the

vectors instructional subsection is complete, the participant goes on to answer an assessment

question(fig  A.3 ).

LLG

In the LLG version of the module, students hover their mouse over areas on the screen

to reveal content (fig.  A.6 ). When the student moves the mouse away from the item, the

content disappears and the screen returns to its previous state (fig  A.5 ).Students are next

shown a still frame showing how to obtain the x and y component of a vector, given the

magnitude of the vector and the angle with respect to the x axis (fig  A.7 ). Students are

presented with the same assessment question as the HLG version (fig  A.3 ) upon completing

the instruction portions of this subsection. Upon submitting their answer, they are shown

product feedback (fig  A.8 ).
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6.3.2 Net Force Subsection

In this section students are instructed on how to parse a problem statement and use key

information to draw a force diagram, and in-turn use the force diagram to write the net

force.

HLG

The video begins by defining Newton’s second law and explaining some of its properties.

Specifically, that Newton’s second law is a principle that tells how forces applied on an object

change’s the object’s motion (i.e. produce acceleration). Secondly, that since Newton’s

second law is a vector equation, that the net force will always be in the same direction as

the acceleration (fig.  A.9 ).

Next, the definition of the net force is presented as the vector sum of all of the forces

acting. Since we endeavor to write Newton’s second law in a component form, we also define

the x and the y component of the net force (fig  A.10 ). Subsequently vector decomposition

is revisited. We elaborate on our earlier discussion from the vectors sub-section to include a

general treatment where the vector is in other quadrants of the x-y plane than quadrant 1.

Also, for the cases where the angle is defined relative to the x and y axis (fig.  A.11 ).

In the following portions of the video, we reinforce these concepts and show a concrete

example of how to apply these skills. Given a problem statement, we create a vector diagram

with step-by-step explanations (fig  A.12 ) as forces are added to the diagram. With the

complete force diagram, students are shown how to write the x and y components of the net

force (fig.  A.13 ). Finally, the students are shown another assessment question. They are

provided process feedback on submission of their response.

LLG

The same content is covered as in the HLG version to the level that is appropriate for the

LLG version. Also as in the vectors subsection the user interacts with the page by hovering

their mouse over prominent areas on the screen. As in the HLG version of the net force
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subsection, the instruction begins by defining Newton’s second law and pointing out some

properties (fig  A.15 ).

Next the net force and its components are explicitly defined (fig.  A.16 ). After which a

procedure for finding the components of forces acting in other quadrants of the x-y plane,

and for angles with respect to x and y axes, is formalized (fig.  A.17 ). In the following part

of this subsection, the student is present a problem statement and a pop-down list of items.

As they hover their mouse over items that are named by the forces acting in the problem,

the forces appear on the set of x-y axes.

Next the student is directed to hover their mouse over the force diagram. When they

hover their mouse over one of the x-y axes, the other axis disappears along with the forces

acting in that other direction. Simulatenously, the net force is shown for the direction that

is being interacted with (fig.  A.19 ). Finally, the student goes on to answer an assessment

question (fig.  A.14 ). Upon submission, they are shown product feedback.

6.3.3 Acceleration Subsection

In the acceleration subsection we start with a discussion of the kinds of problems that

can be solved with Newton’s second law. We try to look at how forces produce acceleration,

and thus change an object’s motion. Finally we return to our example problem and try to

reason about the direction of the acceleration. This is a necessary step because it eliminates

one of the unknown quantities from an otherwise underdetermined system of equations.

HLG

The video begins with a brief revisitation of Newton’s second law (fig  A.20 ). A short

statement on how Newton’s second law can be used is given in terms of what information is

needed and what information can be extracted. Next, we formally define acceleration and

use Newton’s second law to directly relate an object’s change in velocity to the net force

applied on it (fig.  A.21 ).

Subsequently we consider some conceptual examples showing specifically how an applied

net force leads to a specific final velocity (fig.  A.22 ). We conclude this section by deducing
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the direction of the acceleration, and explicitly substituting this value into Newton’s second

law. The student then solves two assessment problems and is shown process feedback for each

question (fig.  A.23 and fig.  A.24 ). The students are allowed (as with the other subsections)

to revisit the instructional portions of the subsection. Students are not allowed to revisit the

first question after they submit it.

LLG

This subsection starts with several list items (bullet points) that reinforce conceptual un-

derstanding of Newton’s second law. One of the bullet points shows the relationship between

the change in velocity and the net force (fig.  A.26 ). In the next portion on this section, the

student sees an interface with three possible initial velocities listed as well as a statement

about the nature of the example and some assumptions that are made (fig.  A.25 ). When

the student hovers their mouse over one of the indicated initial velocites in the list to the

left, the statement disappears and an empty set of x-y axes appears. Also, a set of buttons

appear above the axes. This set of buttons blinks indicating that they are to be interacted

with (fig.  A.27 ). When they interact with these buttons additional content appears. One of

the buttons shows the net force acting on the object. The next button shows the resulting

acceleration. The next shows the final velocity for the object experiencing that acceleration

given the initial velocity.

The student then moves to another portion where the direction of the acceleration is

deduced. The same information coveryed by the narration in the HLG version is commu-

nicated by blocks of text in this version (fig.  A.29 ). This subsection concludes with the

student answering the same assessment questions as the HLG version (fig.  A.23 and fig.

 A.24 ). Upon submitting their answer, they are shown product feedback.

6.3.4 Conclusion Subsection

In the final subsection of this module, the process of solving Newton’s second is finalized.

The example problem developed over the previous subsections is solved in a manner that is

appropriate for that condition/version.
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6.3.5 Judgement of Learning/Cognitive Load Survey

After completing the instructional section of the module students are shown the judge-

ment of learning slider question (fig.  6.1 ) and the cognitive load survey where they self-report

the cognitive load they incurred as a result of the module (tab.  6.2 ).

Figure 6.1. The judgement of learning slider question from the module

Table 6.2. Table shows the items from the cognitive load survey and their
respective CL categories.

Intrinsic Load
The topic(s) covered in this activity was(were) very complex.
The activity covered formulas that I perceived to be very complex.
The activity covered concepts and definitions that I perceived to be very complex.

Extraneous Load
The intructions and/or explanations during the activity were very unclear.
The instruction and/or explanations during the activity were, in terms of learning, very un-effective.
The instruction and/or explanations during the acitivity were full of unclear language.

Germane Load

The activity really enhanced my understanding of the topic(s) covered.
The activity really enhanced my understanding of physics.
The activity really enhanced my understanding of the formulas covered.
The activity really enhanced my understanding of concepts and definitions.

6.3.6 Filtering Students

The module allows students complete freedom of traversal. As a result, there is no

mechanism to stop students from clicking through the module without actually viewing the

material. The fastest time that a participant completed the LLG pre-test was 51 seconds, and

26 seconds in the case of the HLG pre-test. The longest time in which someone completed
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the pre-test in the LLG condition was 267 hours. This was very likely due to the student

stopping in the middle of one of the questions, and finishing it before the due date. A student

completing a 10 question test in 26 seconds is evidently not engaging with the module, and

their inclusion will confound the results. Therefore, it is necessary to remove this data from

the analysis.

Students were removed if the time it took them to complete the pre/post test was too

long or too short. The standard approach to filtering based on time, which is to use µ ± 2σ

cutoffs, will not work because of the huge variance in completion times. Instead, we used

a bottom end cutoff of 5 minutes. This was based on the amount of time it took me as a

content expert and creator of the test to finish it. The upper end cutoff was 30 minutes,

which was chosen because it was more than double the median values of 833 seconds and

929 second for the HLG pre-test and LLG pre-test (respectively). Applying these filters led

to a combined (HLG and LLG) data set size of N=171. This filter also eliminated students

who used the module more than once or appeared in both versions.

6.3.7 Classifying HPK/LPK Students

Multiple approaches for classifying students as HPK or LPK were considered. Among

them, we implemented splitting these students according to their pretest scores according

to the condition (HLG or LLG) median score. The median was chosen because scores on

the pretest are discrete and using the average led to large imbalance between the knowledge

classes for a given condition. In chapter 4 [  4 ] we reported on the training and simulated

deployment of a machine learning model that predicted student risk based on academic and

behavioral features. We used this machine learning model to make predictions on un-labelled

data available for students using the module. Although some students were automatically

excluded from this analysis due to missing features in the dataset.

The final method we used to classify students was their responses to the cognitive load

survey. HPK students should generally report lower ICL in both condtions (HLG and LLG)

than their LPK counterparts. However, HPK students in the HLG version should report

higher ECL than HPK students in the LLG condition. Conversely, LPK students should
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generally report higher ICL. LPK students in the LLG condition should report higher ECL

than those in the HLG condition.

6.4 Results

6.4.1 Validation

In this section we present the results of the deployment of this module. We begin by

demonstrating that the pre/post test used in this study is a valid instrument to assess student

knowledge. To this end, we use Kuder-Richardson Formula 20 (KR20). The KR20 metric

prinipally examines the correctness-incorrectness rate and the variance of student answers.

KR20 yields values that are in the range [0,1] where 0 is total un-reliability and 1 is total

reliability [ 106 ].

KR20 = k

k − 1

(
1 −

∑
i piqi

σ2

)
(6.1)

Where k is the number of questions, pi is the fraction of students correctly solving each

question, qi is the fraction incorrectly solving the problem, and σ is the standard deviation

of the total score. The results of KR20 are summarized in (tab.  6.3 ).

The results of KR20 indicate that the pre/post-test are very reliable instruments to

Table 6.3. KR20 scores for all students (HLG and LLG) for the pre-test and
the post-test

Test KR20
Pre-Test 0.96
Post-Test 0.98

assess student knowledge of forces and motion.

6.4.2 HLG and LLG Scores

Next we present the test scores for the LLG condition not differentiated by prior knowl-

edge level (HPK/LPK). All scores will be reported as µ ± σ√
N
. The results are reported in

tab.  6.4 .
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To provide further insight into the effect of the module on this group, we will examine

Table 6.4. Aggregate scores on pre and post test for the LLG condition out of 10 points
Test Score

LLG-Pre 6.22 ± 0.18
LLG-Post 7.02 ± 0.20

the performance by question for pre-test and post-test in the LLG condition (fig.  6.2 ).

We also present test scores for the HLG condition, not deliniated by prior knowledge

Figure 6.2. The graph shows a side-by-side comparison of the pre/post test
performance of participants in the LLG condition. ∗ indicates statistical sig-
nificance at the level of α∗ = 0.05
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level in tab.  6.5 .

Now we present the performance by question for the pre/post test in the HLG condition

Table 6.5. Aggregate scores on pre and post test for the LLG condition out of 10 points
Test Score

HLG-Pre 6.38 ± 0.20
HLG-Post 7.45 ± 0.18

(fig.  6.3 ).

We also report the results of the judgement of learning and cognitive load survey for

Figure 6.3. The graph shows a side-by-side comparison of the pre/post test
performance of participants in the HLG condition. ∗ indicates statistical sig-
nificance at the level of α∗ = 0.05
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the HLG and LLG participants.

Finally, we show the effect of the module as normalized gain[  70 ] between pre-test and

Table 6.6. Results of the judgement of learning and cognitive load survey for
students using the LLG version and the HLG version of the module. ∗ denotes
statistical significance at the level α∗ = 0.05

Item HLG LLG
Judgement of Learning∗ (81.56 ± 1.35)% (72.18 ± 1.82)%

Intrinsic Load 4.59 ± 0.19 5.01 ± 0.17
Extraneous Load 2.55 ± 0.16 2.84 ± 0.16
Germane Load∗ 6.89 ± 0.16 6.34 ± 0.17

post-test. The normalized gain, also called the Hake gain uses the difference between the pre

and post test scores, and is normalized by how much better participants could have done on

the pre-test. The normalized gain is a useful metric, and criticisms that it is biased towards

the pre-test score are unfounded [ 107 ].

〈g〉 = 〈post〉 − 〈pre〉
100% − 〈pre〉

(6.2)

Uncertainties were estimated using the rules of error propogation There was a statis-

Table 6.7. Normalized gain (〈g〉) by condition
Condition 〈g〉

HLG 0.30 ± 0.07
LLG 0.21 ± 0.06

tically significant improvement for HLG and LLG from pre-test and post-test at the level

α = 0.05.

6.4.3 Classifying HPK/LPK Students

Now we report on classifying students as HPK and LPK. The XGBoost model trained

in Chapter  4 was imported and used to make predictions. Specifically a model trained

on academic and demographic features with the final course grade as the label, was used to
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make predictions on unlabelled data for students that completed the module. The predictions

made by the model in Chapter  4 corresponded to risk of failing a physics course in which

they were enrolled. Here, we used academic risk as a proxy for domain knowledge. Students

predicted by the model as ’1’ (high-risk) were deemed LPK, and students predicted as ’0’

(low-risk) were deemed HPK.

The data for the HLG and LLG conditions were subsequently split into four groups (tab.

 6.8 ): The definitions in tab.  6.8 led to the data being sorted in the following groups (tab.

Table 6.8. Classes used for analysis of adaptive features of the module.
Group Description

HLG-HPK Classified as HPK and used HLG version
HLG-LPK Classified as LPK and used HLG version
LLG-HPK Classified as HPK and used LLG version
LLG-LPK Classified as LPK and used LLG version

 6.9 ) The preformance of these groups are shown in figure  6.5 

Table 6.9. Class Numbers Resulting from ML Sorting
Group N

HLG-HPK 45
HLG-LPK 23
LLG-HPK 47
LLG-LPK 18

Another approach to HPK/LPK classification was to segment student groups by their

score on the pretest. Students were grouped based on the HLG/LLG aggregate median on

the pretest.

The final method for sorting students based on prior knowledge level was to use responses

to the cognitive load survey. Students reporting at or above the median level of intrinsic

cognitive load for their condition (HLG or LLG) were designated as LPK and students report

ICL below the median value were designated as HPK.
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Figure 6.4. The pretest, post test scores are shown along with the normalized
gain for the four groups sorted according to ML classification (tab.  6.9 )

Table 6.10. Sorting criterion for HPK and LPK students from the two con-
ditions HLG and LLG

Group Criteria N
HLG-HPK > x̃ 45
HLG-LPK ≤ x̃ 37
LLG-HPK > x̃ 35
LLG-LPK ≤x̃ 49
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Figure 6.5. The pretest, post test scores are shown along with the normalized
gain for the four groups sorted according to pretest score sorting (tab.  6.10 )
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Figure 6.6. The pretest, post test scores are shown along with the normalized
gain for the four groups sorted according to sorting by the cognitive load survey
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6.5 Discussion

The results show a significant improvement for students using both the LLG and HLG

versions of the module. However, the HLG version of the module led to a greater overall

improvement. The question-by-question analysis shows that the modules are most effective

at teaching students to reason with vectors and to use that skill to accurately create force

diagrams, which are prerequisites to solving problems in force and motion. This analysis also

shows that students had a strong initial ability to solve force and motion problems, althouth

they were lacking in the fundamental skills of vector analysis and translating problem state-

ments to force diagrams.

Students using the HLG version report significantly higher judgement of learning scores

than in the LLG version. This reflects their perception that the HLG version is effective in

imparting knowledge. Furthermore, participants using the HLG version reported a signif-

icantly higher GCL. Based on the literature, there are two possible interpretations of this

result. According to cognitive load theory proper [  3 ]–[ 5 ] this indicates that this version of

the module is effective at facilitating schema development. According to Mayer [  25 ] schema

acquisition is the ultimate goal of multimedia instruction.

Another interpretation of high GCL relates to mental effort, such as ”concious appli-

cation of a learning strategy” [  108 ]. This result along with significantly higher judgement

of learning scores indicate that students were more engaged as a result of using the HLG

version of the module.

Our methods for grouping HPK and LPK students among participants who used the

HLG and LLG versions of the module did not lead to any significant insights about the

effectiveness of the different versions of the module for HPK and LPK students.

The machine learning approach was coherent in the sense that for HLG users the pretest

scores for HLG-HPK were significantly higher than HLG-LPK as expected. The pretest

scores for LLG-HPK were significantly different from LLG- LPK. Although, the expertise

reversal effect was not demonstrated in the data.

Using the pretest scores to seperate HPK learners from LPK learners seems like a sound

approach. The pretest scores were significantly different between these two groups. Granted
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that this is not an indepent metric to judge the suitablility of this method since the learners

were split based on their pretest score. However, the pretest scores are significantly different

between LPK and HPK which is not guarenteed by this method of sorting HPK and LPK

learners. Also, the normalized gain hints at the expertise reversal effect without demonstrat-

ing it with statistical significance. The very large error bars associated with normalized gain

prevent us from drawing any definite conclusions based on this metric alone.

Finally, The method of using the cognitive load survey along to split learners proves to be

a very problematic approach. First, HPK and LPK learners show very similar pretest scores

which is a strong indication that this method is invalid. Furthermore, according to Zu et.

al. [  105 ] LPK learners struggle to differentiate between different CL types in self-reported

survey items. In light of these considerations, this method of differentiating LPK from HPK

does not seem to be valid.

6.6 Conclusion

In this work we developed and deployed an instructional module. The module was used

by students in a first-year algebra based Newtonian mechanics course. The module was ran-

domly presented to students in one of two presentations. The HLG version used animation,

narration, and explicit instruction to optimize instruction of LPK students. Meanwhile, the

LLG version used pop-up content in place of animations and narration to reduce cognitive

load for HPK learners.

The results showed that both versions of the module were effective in teaching principles

of force and motion as evidence in an increase between the pretest and the post-test for all

questions. Since the pretest and the post-test were indentical one might expect that in the

absence of learning that had taken place as a result of using the module, students would

default to using their answers from the pretest on the post-test. That didn’t happen, instead

there was a significant difference in the responses to these two instruments.

We conclude pursuant to RQ1 that we were able to successfully use online instructional

modules to teach the principles of force and motion. This claim is based on the significant

improvement between the post-test scores and the pretest scores.
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The significant improvements shown between the pretest and the post-test as a result of

using the module along with the instructional considerations outlined in section  6.2 indicate

that we were able to optimize content in general for learners from this population as in RQ2.

RQ3 is related to the classification of HPK and LPK students. There is not a clear

answer to this question at the present time. Both the approaches of using ML for classifica-

tion and using pretest score are coherent in the sense that the pretest score is significantly

different between HPK and LPK. The small sample size makes the error associated with

performance metrics (particularly the normalized gain) such that no clear conclusions can

be drawn. Therefore, we are forced to conclude that we were either not able to adequately

sort HPK/LPK students or that the modules were not particularly well suited to provide

adaptive instruction as in RQ4.
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7. CONCLUSION

7.1 Overview

In this body of work we set forth with the goal to improve student learning in physics

through automated differentiated feedback and instruction. We pursued this goal at three

levels: At the macro level of the course as a whole i.e. in developing a model that would

predict success in terms of final course grade, at the meso level of providing differentiated

instruction through an online module within the course; and at the micro level of providing

feedback on the quality of a written strategy essay on a single problem.

In chapter 4 we reported on the development of a machine learning algorithm (MLA) to

predict students at risk of academic difficulty in a first year course in mechanics. Specifi-

cally, we used academic and demographic information to train a MLA to predict the final

grade category of the student (’B-’ or above [low-risk], and ’C+’ and below[high-risk]). Our

performance at predicting at-risk students was such that intervention could happen in a

timely manner to prevent unfavorable outcomes for this population. In chapter 6, we tried

to repurpose this algorithm to predict students’ level of domain knowledge in physics (HPK

or LPK). The results indicate that it may be a useful to categorize students in this way.

However, due (in part) to the small numbers of students we were unable to draw any signif-

icant conclusions using this approach.

In chapter 5 we developed a machine learning algorithm to assess student scientific ar-

gumentation. We gave a quiz to future scientists and engineers where they were asked to

solve a variation of the ’ballistic pendulum’ problem. We codified the essays using text-

vectorization methods and used the final (binary) score on the problem as a ground truth

label. We had very good overall performance on this problem that was in line with commer-

cial essay scoring platforms [  92 ]. Specifically we note, that 84% of people who would go on

to solve the problem incorrectly were predicted by the algorithm as likely to incorrectly solve

the problem. Due to a significant number of errors made by the model, more work is needed

on this problem before it can be used in real classrooms to provide useful interventions.

In chapter 6 we developed an online instructional module to provide instruction about

the principles of force and motion. The content was delivered in two different styles that were
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intended to make the module adaptive to students based on their level of domain knowledge.

The results showed that both versions of the module were effective at teaching the concepts

of force and motion. However, we were unable to demonstrate a strong preference of low

prior knowledge (LPK) learners for the module with a high level of guiding (HLG) features.

Likewise for high prior knowledge (HPK) learners and the module with a low level of guid-

ing features (LLG). This arrangement (HPK →LLG and LPK →HLG) is predicted by the

expertise reversal effect (ERE) [  12 ], [  93 ]. Due to the level of error imposed by variation in

learning outcomes and small sample sizes, we cannot make any conclusions about the ERE

in multimedia physics instruction.

7.2 Future Work

7.2.1 Chapter 4

The performance of the model in chapter 4 indicates that more work is needed to improve

the quality of predictions before it can be deployed in real life classrooms. One reason for

lower than expected performance was missing features from the data. This problem cannot

be directly addressed until record keeping improves. One potential way to overcome this

obstacle is to obtain more data in terms of the number of features, and the number of

students represented in the data. This would allow the use of advanced practices in filling

missing features, such as training a machine learning model on adjacent features and using

the model to predict the missing features.

Another way that performance could potentially be improved is to obtain raw data on

student scores, rather than the adjusted final scores reported to the registrar. Using raw

data would likely result in a better correlated set of features and labels.

Finally, it was shown in the literature [ 1 ], [  2 ] that the inclusion of in-class features such

as homework and exam scores, can improve the performace of the model.
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7.2.2 Chapter 5

The results of a simulated deployment of the model in chapter 5 shows that this model

needs to be refined to make better predictions. Since the model was trained on roughly

the same number of samples that it was tested on, an obvious point is that more training

data should greatly improve the prediction accuracy. Furthermore, in this work we used the

problem correctness as the ground truth label. An interesting parallel is to score the essays

on their own merit, and use the model to assess the quality of the scientific reasoning. It is a

very labor intensive proposition, fraught with logistical challenges to hand score thousands

of essays. Even so, this task is currently underway.

Subsequent work on this problem will be focused on improving prediction and general-

ization. In a series of studies that are planned for the future, the endpoints will correspond

to notions of generalization. In phase 1 generalization, which we have already achieved to

some degree, the trained model will predict data that it wasn’t trained on (out of sample

data) with a high degree of accuracy. In phase 2 generalization, the model will make high

accuracy predictions on different problems from the same class of problems (momentum and

energy conservation). In phase 3 generalization, the trained model will assess argumentation

on any problem that is appropriate for this population.

The levels of generalization outlined in the previous paragraph will require very sophis-

ticated methods. In chapter 5 we used very simple methods to represent text data, name

bag-of-words. These high levels of generalization will require a model that is capable of

understanding human writing. To this end, we will use the Bi-Directional Encoder Repre-

sentations from Transformers (B.E.R.T.) model. The BERT model uses transformers with

a built in self attention mechanism to learn contextualized word embeddings. While a de-

tailed description of BERT is beyond the scope of this report, we can say that BERT is a

huge advance in the endeavor of human language understanding by a machine. The use of

BERT may be sufficient to detect patterns in scientific reasoning that lends itself to phase 3

generalization as defined above.
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7.2.3 Chapter 6

In chapter 6 we were able to generally provide effective instruction to students on the

principles of force and motion. However, we were unable to differentiate students based on

their level of domain knowledge. Therefore, we were unable to make any conclusions about

the benefit of the versions of the module to students based on domain knowledge. The

method of sorting students based on their pretest score on the module hinted at the ERE,

but failed to show it conclusively. The method of using a machine learning model trained on

students’ prior academic behaviors and demographic information was coherent in the sense

that students predicted as HPK had higher pretest scores than those predicted as LPK.

Future work would necessarily include improving the ability to identify students’ level of

domain knowledge. Approaches to this problem may include using the pretest score along

with behavioral data, and additional data such as the Force Concept Inventory score. With

this data we could train a machine learning algorithm such as in chapter 4 to accurately pre-

dict student domain knowledge levels. With the ability to classify students’ prior knowledge

level we can revisit the design of the modules.

Currently, the HLG version of the module is being used on another study to detect pat-

terns in student attention during online learning. In this project, students are asked to use

the module in a lab setting while their eye movements are being logged along with a web cam

that is providing a screen-forward view of the student during online learning. Students are

then classified into one of four quadrants [ 109 ] Quadrant 1 corresponds to a student who

Table 7.1. Quadrant Descriptions Based on Gaze Target and Engagement
Quadrant Looking at Screen Engaged

1 yes yes
2 yes no
3 no no
4 no yes

is looking at the lesson content and is actively thinking about it. Quadrant 2 is a student

who is looking at the screen, but is engaged in thought not related to the lesson. A student

in quadrant 3 is looking off screen and not thinking about the lesson. Meanwhile, quadrant
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4 is a student is looking off screen but is actively engaged in thought about the lesson.

One of the endpoints of this study is to produce software where the student uses the

module while being observed by their own webcam outside of the lab. Data acquired by the

webcam is then able to be used to classify the student into one of the four quadrants and

intervention can happen in real time to get the student to re-engage with the lesson.
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A. APPENDIX A.1 IMAGES FROM THE MODULES IN

STUDY 3

Figure A.1. An analogy is presented where the x and y components of the
vector are like the shadow of the vector on x and y axis (respectively) in the
HLG version ( 6.3.1 ).

Figure A.2. The video shows how trigonometry can be applied to the right
triangle formed by a vector and its components in the HLG version ( 6.3.1 ).
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Figure A.3. The assessment question given at the end of the vectors subsec-
tion in the HLG and LLG version ( 6.3.1 ).

Figure A.4. Upon submitting the answer to the question, a video is played
where the voice explains the logic behind the solution, and the mathematical
steps of the solution are shown on screen in the HLG version ( 6.3.1 ).

Figure A.5. The figure shows the state of the page before the student hovers
their mouse over an item and after they move their mouse away from the item
in the LLG version ( 6.3.1 ).
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Figure A.6. Figure shows the user hovering mouse over one of the list items.
The other list items are grayed out and a diagram is shown. When the student
moves the mouse away from the list item, the page reverts to a state where
just the list items are shown in the LLG version ( 6.3.1 ).

Figure A.7. Students are shown how to find the components of a vector in
the LLG version ( 6.3.1 ).

Figure A.8. Students are shown product feedback only in the LLG version ( 6.3.1 ).
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Figure A.9. The figure shows a section of the module where Newton’s second
law is introduced in the HLG version ( 6.3.2 ).

Figure A.10. The definition of the components of the net force is shown in
the HLG version ( 6.3.2 ).

Figure A.11. Vector decomposition is shown for vectors in other quadrants
than quadrant 1, and with an angle defined with respect to both the x and y
axes in the HLG version ( 6.3.2 ).
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Figure A.12. Forces are added to an empty set of x-y axes one at a time as
the voice in the video explains how the problem statement describes a force of
that magnitude pointing in that direction until the force diagram is complete
in the HLG version ( 6.3.2 ).

Figure A.13. The force diagram is used to write the x component of Newton’s
second law. The y axis and all of the forces without a x component are hidden,
and each of the forces are described in the context of Newton’s second law.
This is repeated for y-axis and the y-component in the HLG version ( 6.3.2 ).

Figure A.14. The assessment question for the HLG/LLG net force sub-section ( 6.3.2 ).
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Figure A.15. The figure shows a section from the LLG version of the module
where Newton’s second law is introduced in the LLG version ( 6.3.2 ).

Figure A.16. The components of the net force are defined in terms of the
components of other forces acting in the problem ( 6.3.2 ).

Figure A.17. The student hovers their mouse over an additional column
of list items that pops down and they are allowed to see vector analysis for
different combinations of quadrants and angles in the LLG version ( 6.3.2 ).
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Figure A.18. As the student hovers their mouse over the list items in the
pop-down menu, force vectors are added to the empty set of x-y axes in the
LLG version ( 6.3.2 ).

Figure A.19. The figure shows what a student would see when they hover
their mouse over the x-axis in the LLG version ( 6.3.2 ).

Figure A.20. The figure shows how Newton’s second law being restated to
emphasize that the the net force and acceleration are in the same direction,
which also applies for Newton’s second law in component form in the HLG
version ( 6.3.3 ).
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Figure A.21. The figure shows how the change in velocity of an object is
related to the net force in the HLG version of the module ( 6.3.3 ).

Figure A.22. The figure shows the final velocity being constucted given
vi = 0 and the net force directed diagonally upward along the dotted line in
the HLG version ( 6.3.3 ).

Figure A.23. The figure shows the direction of the acceleration being deduced
from the problem statement in the HLG version ( 6.3.3 ).
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Figure A.24. The figure shows the first assessment question in the accelera-
tion subsection of the HLG/LLG versions ( 6.3.3 ).

Figure A.25. The figure shows the second assessment question in the accel-
eration subsection of the HLG/LLG versions ( 6.3.3 ).

Figure A.26. The figure shows the change in velocity being related to the
net force in the LLG version ( 6.3.3 ).
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Figure A.27. The figure shows an interface where conceptual examples of
finding the final velocity given initial velocity and the net force in the LLG
version ( 6.3.3 ). This is the view when the student hovers their mouse over list
items on the left highlighting a particular initial veloctiy

Figure A.28. The figure shows interface where conceptual examples of finding
the final velocity given initial velocity and the net force in the LLG version
( 6.3.3 ). This is the view when the student hovers their mouse over the purple
buttons (top center).

Figure A.29. The figure shows the direction of the acceleration being deduced
from the problem statement in the LLG version ( 6.3.3 ).
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Figure A.30. The figure shows the default view of the conceptual example
interface in the LLG version ( 6.3.3 ).
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