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ABSTRACT

Multi-object tracking has been well studied in the field of computer vision. Meanwhile,

with the advancement of the Unmanned Aerial Vehicles (UAV) technology, the flexibility

and accessibility of UAV draws research attention to deploy multi-object tracking on UAV.

The conventional solutions usually adapt using the ”tracking-by-detection” paradigm. Such

a paradigm has the structure where tracking is achieved through detecting objects in con-

secutive frames and then associating them with re-identification. However, the dynamic

background, crowded small objects, and limited computational resources make multi-object

tracking on UAV more challenging. Providing energy-efficient multi-object tracking solutions

on the drone-captured video is critically demanded by the research community.

To stimulate innovation in both industry and academia, we organized the 2021 Low-

Power Computer Vision Challenge with a UAV Video track focusing on multi-class multi-

object tracking with customized UAV video. This thesis analyzes the qualified submissions

of 17 different teams and provides a detailed analysis of the best solution. Methods and

future directions for energy-efficient AI and computer vision research are discussed. The

solutions and insights presented in this thesis are expected to facilitate future research and

applications in the field of low-power vision on UAV.

With the knowledge gathered from the submissions, an optical flow oriented multi-object

tracking framework, named OF-MOT, is proposed to address the similar problem with a

more realistic drone-captured video dataset. OF-MOT uses the motion information of each

detected object of the previous frame to detect the current frame, then applies a customized

object tracker using the motion information to associate the detected instances. OF-MOT

is evaluated on a drone-captured video dataset and achieves 24 FPS with 17% accuracy on a

modern GPU Titan X, showing that the optical flow can effectively improve the multi-object

tracking.

Both competition results analysis and OF-MOT provide insights or experiment results

regarding deploying multi-object tracking on UAV. We hope these findings will facilitate

future research and applications in the field of UAV vision.
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1. INTRODUCTION

1.1 Multi-object Tracking for Unmanned Aerial Vehicle

Multi-Object Tracking (MOT), as a long-standing Computer Vision problem, aims to de-

termine the identities and trajectories of multiple moving objects in a video. After years of

development in both research and industry fields, many applications, such as video surveil-

lance, autonomous cars, and crowd behavior analysis, benefit from high-quality tracking

algorithms. At the same time, Unmanned Aerial Vehicles (UAV) attract increasing research

attention in recent years due to its dynamic flexibility and convenience. Video that could not

be taken from the ground can now be easily captured from the sky. These drone-captured

video data provide a new perspective on the multi-object tracking tasks. Therefore, there

have been a substantial number of studies devoted to tracking objects in UAV-captured

videos to potentially improve aerial robot automation [ 1 ]–[ 7 ].

The standard approach used in multi-object tracking processes is instance association

as a graph-based optimization problem under the “tracking-by-detection” paradigm: the

detected objects in the current frame are re-identified based on the feature similarities of the

detected objects in the previous frames [  8 ], [  9 ]. Researchers extend the prior achievement and

knowledge of object detection and classification have been However, the sequences captured

by UAV have attributes different from sequences captured by static cameras, resulting in

a more challenging multi-object tracking problem. Although the traditional approach of

combining object detection and re-identification (Re-ID) is accurate, it requires a significant

amount of computational resources, especially when the objects are crowded and small in the

frame. When deployed on drones, difficulties can arise from 1) the dynamic background that

changes rapidly, 2) objects are small and crowded, and 3) the available energy is limited.

1.2 Contribution Summary

The contribution of this thesis can be summarized into 2 parts: 1) organizing the 2021

Low-Power Computer Vision Challenge (LPCVC) UAV Video track (Chapter  3 ), 2) providing

13



(a) (b)

(c) (d)

Figure 1.1. Each person (labeled 1-5) is given a number while moving and passing
the balls (a, b). UAV will keep moving (c) and occlusion (the red ball) is possible
(d).

an optical flow oriented multi-object tracking solution on drone-captured videos (Chapter

 4 ).

1.2.1 2021 LPCVC UAV Video Track

To achieve a better understanding of the performance of multi-object tracking on drones,

we organize a multi-object tracking problem as the task of 2021 LPCVC UAV Video track

sponsored by Facebook. The competition is hosted online with a submission window opened

from August 1st to September 1st in 2021.

With the sample videos provided by us, contestants are required to perform multi-class

multi-object tracking on a series of videos captured by drones (Figure  1.1 ). The solution

should decide when balls change hands by indicating the frames when the ID of the person

holding the ball. The hardware for the 2021 LPCVC contest is the Raspberry Pi 3B +, and

14



Figure 1.2. Sample annotated frames in the VisDrone-MOT2021 dataset.

the software framework is PyTorch, with technical support provided by the track sponsor

Facebook PyTorch. During the month-long challenge, 53 teams submit 366 solutions with

growing scores. By the end of the 2021 submission date, we receive 152 qualified solutions

from 16 different teams around the world.

This thesis provides an analysis of all qualified submissions from 16 teams in the aspects

of 1) compression of pretrained object detection models, 2) approaches to improve efficiency

during inference, and 3) balance the trade-off between energy and accuracy. During the

preparation of the competition, an innovative automated referee system and evaluation met-

rics are designed and implemented to provide a trouble-free submission period.

1.2.2 Optical Flow Oriented Multi-object tracking Solution on UAV

Optical flow is a conventional computer vision technique that computes the apparent

multi-object tracking by individual pixels on the image plane. It provides the multi-object

tracking information of each pixel in the image. This information can be combined with

object detection to estimate the movement of objects in the video. Although the information

provided by optical flow can be helpful for multi-object tracking, the traditional approach

of calculating optical flow in video is inefficient because it requires finding correspondences

between two input images at every piexl [ 10 ].
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Recently, optical flow has returned to state-of-the-art object detection algorithms [ 11 ],

[ 12 ] thanks to studies devoted to generating optical flow through deep learning. The deep

learning approach of creating optical flow can generate a light-weighted multi-object tracking

model [  10 ], making optical flow cheaper than the traditional approach. Optical flow has also

shown its advanced ability to perform object tracking proficiently [ 13 ].

To demonstrate that the inference latency can be reduced by augmenting multi-object

tracking algorithms with optical flow, we propose an optical flow oriented multi-object track-

ing solution for drone-captured video, named OF-MOT. We create the object detector for a

sequential video by aggregating the optical flow generated from a CNN-based flow generation

network [  10 ]) with a region-based detection network [  14 ], and use a customized object tracker

for instance association between keyframes to track the objects throughout the video. By

analyzing the submissions of the 2021 LPCVC UAV Video track, we applied the inference

acceleration techniques adopted by the participating teams to our solution and managed to

reduce the model size and improve the efficiency of our model.

We present comparison experiments on the multi-class drone-captured video dataset -

VisDrone2021-MOT dataset (Figure  1.2 ). OF-multi-object tracking runs in real-time at 34

FPS with tracing accuracy at 17% compare with the state-of-the-art multi-object tracking

method [ 13 ], [  15 ] running 19 FPS with accuracy at 22%. Our results suggest that there is

instance-level multi-object tracking on modeling is of great importance for efficient online

multi-object tracking solutions. Furthermore, we show that the optical flow can reduce the

execution time while maintaining a reasonable accuracy, applicable in the condition where

the payload for the battery is limited to UAVs.

1.3 Thesis Outline

The rest of the thesis is structured as follows: Chapter  2 presents the advantages and dis-

advantages of current multi-object tracking solutions and related research studies of tracking

on UAV; Chapter  3 discusses the process of hosting the competition and the analysis of the

submitted solutions; Chapter  4 demonstrates the proposed optical flow oriented multi-object

16



tracking on UAV; Chapter  5 provides a summary of the findings of this thesis as well as the

potential future development directions.
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2. RELATED WORK

This chapter provides a background on multi-object tracking and discusses the existing

solutions. This chapter is divided into three parts. Section  2.1 discusses the existing methods

of multi-object tracking in different categories. Section  2.2 presents both conventional and

deep learning approaches to compute optical flow, and how existing object detection solutions

adopt optical flow. Section  2.3 presents the existing multiobject tracking in UAV studies, as

well as competitions with similar subjects.

2.1 Multi-object Tracking

State-of-the-art multi-object tracking methods typically follow the “tracking-by-detection”

paradigm: a detector first locates all objects of interest in each frame with bounding boxes.

Tracking is then performed by the object association between frames through Re-ID. We

classify existing works into two categories based on whether they use a single model or

separate models to detect objects and extract association features.

2.1.1 Separate Detection and Tracking

Object Detection

For detection, conventional solutions operate the task of finding an arbitrary number of

objects and the task of classifying every single object and estimating the bounding box into

2 stages. This is the reason why that this category is called two-stage detectors.

In two-stage detectors, the approximate object regions are proposed using deep features

before these features are used for classification as well as bounding box regression for the

object candidate. Girshick et al. [ 16 ] proposed Region-Based Convolutional Neural Networks

(RCNN) that first select several proposed regions from an image and then label their cate-

gories and bounding boxes. The Fast-RCNN [  17 ], Faster-RCNN [  18 ], and Mask-RCNN [  19 ]

are extended variations of RCNN with modifications for faster processing and scene segmen-

tation. Most benchmark datasets such as MOT17 [  20 ] provide detection results obtained by

popular methods such as Faster R-CNN and Scalable Real-time Dynamic Graph Partitioner

18



(SDP) [  21 ]. This way, the work that focuses on the tracking part can be fairly compared with

the same object detection for its superior performance on accuracy. However, higher accu-

racy comes with high computational resource requirements, making these methods difficult

to deploy on edge devices, such as UAVs.

With the introduction of You Only Look Once (YOLO) [  22 ], one-stage detectors start

to emerge in the field of object detection. One-stage detectors predict bounding boxes over

the images without the region proposal step. This process consumes less time and can

therefore be used in real-time applications. The improved versions of YOLO, YOLOv3 [ 23 ],

YOLOv4 [  15 ], YOLOv5 [ 24 ], all prioritize the inference speed and are super fast but not

as accurate at recognizing irregularly shaped objects or a group of small objects. SSD [ 25 ]

detects objects in images using a single deep neural network by discretizing the output space

of bounding boxes into a set of default boxes over different aspect ratios and scales per

feature map location.

Object Tracking

Simple Online Real-time Tracking (SORT) [  26 ] first uses Kalman Filter [  27 ] to predict

future locations of the tracklets, computes their overlap with the detections, and uses Hun-

garian algorithm to assign detections to tracklets. DeepSORT [  13 ] augments the IoU-based

association in SORT with deep appearance (Re-ID) features. IoU tracker [ 28 ] directly com-

putes the overlap between the tracklets (of the previous frames) and the detection without

using Kalman Filter to predict future locations. Both DeepSORT and IoU Tracker are widely

used in practice due to their simplicity.

2.1.2 Single Model for Both Detection and Tracking

With the rapid maturity of multitask learning in deep learning [  29 ], joint detection and

tracking using a single network has begun to attract more research attention. The first

class of solutions performs object detection and re-identification feature extraction in a sin-

gle network to reduce the inference time. For example, premature ovarian insufficiency

(POI) [ 30 ] explores both high performance detection and Re-ID features. Track-RCNN [ 31 ]

19



adds a re-identification head on top of Mask-RCNN[ 19 ] and regresses a bounding box and

a re-identification feature for each proposal. Despite competitive accuracy, these trackers

are difficult to run efficiently due to the separation of detection and Re-ID modules. To

achieve high accuracy and higher running speed simultaneously, one-shot multi-object track-

ing methods are presented. FairMOT [  9 ] incorporate the Re-ID module into a single-shot

detector, so that the whole network can output detection and Re-ID features simultaneously.

2.2 Optical Flow in Object Detection

Optical flow is the motion of objects between consecutive frames of a sequence, caused

by the relative movement between the object and the camera. There are two types of

optical flow: sparse and dense. Sparse optical flow gives the flow vectors of some interesting

features, such as a few pixels that depict the edges or corners of an object within the frame.

The dense optical flow attempts to compute the optical flow vector for every pixel of each

frame. The traditional way of estimating optical flow involves pixel-wise image recognition

and calculation. For sparse optical flow, Lucas and Kanade [  32 ] proposed a method that,

under the assumption that the flow is essentially constant in the local neighborhood of the

pixel under consideration, the basic optical flow equations for all pixels in that neighborhood

can be solved with the least squares criterion. Farnback [  33 ] proposed a dense optical flow

estimation algorithm that requires processing all pixels in a given image and approximates

the windows of image frames by quadratic polynomials through a polynomial expansion

transform.

Recently, the usage of convolutional neural networks (CNNs) has become the method

of choice in computer vision, including optical flow estimation. Fischer et al. [  10 ] proposed

an end-to-end CNN architecture called FlowNet, which estimates optical flow by producing

the representations of the two images separately, and then combining them together in

the “correlation layer”, and learning the higher representation together. Ranjan et al. [ 34 ]

proposed a pyramid architecture to train one deep network per layer to compute the flow

update, where each level is defined based on the number of pixels related to the movement.

Ilg et al. [ 35 ] extended the work of FlowNet and proposed a stacked architecture named

20



FlowNet2 that includes warping of the second image with intermediate optical flow and

elaborates on small displacements by introducing a subnetwork specializing in small motions.

FlowNet2 shows higher efficiency and precision than the original FlowNet.

With the rise of an efficient flow computation network such as FlowNet [ 10 ], optical

flow and motion models have been utilized in object tracking and multi-object tracking in

video. The temporal information in video provides the feasibility for improving video object

detection [  11 ], [  36 ]. To utilize the temporal information, feature-level networks propagate

the information in nearby frames. SiamMOT [ 12 ] proposes an online multi-object tracking

method that combines a region-based detection network with two motion models.

OF-MOT is evaluated on a drone-captured video dataset and achieves 24 FPS with 17%

accuracy on a modern GPU Titan X, showing that the optical flow can effectively improve

the multi-object tracking.

2.3 MOT on UAV & Workshops

With the rapid growth in UAV technology, computer vision for UAV becomes increasingly

important. The viewing angle and movement of the UAV make the multiobject tracking

problem different from multi-object tracking problems captured by surveillance cameras.

TNT [ 8 ] creates tracklets of each detected object using IoU as nodes throughout the entire

video, and then combines the tracklets based on Re-ID.

Since 2017, the VisDrone [  3 ]–[ 6 ] challenge incorporates multi-object tracking along with

other computer vision tasks (e.g., object detection, crowd counting) into drone-captured

video sequences. The 2020 LPCVC [  7 ] UAV track is a competition in which participants

used the given videos captured indoors to recognize the characters on the wall.

21



3. 2021 LPCVC UAV VIDEO TRACK

3.1 Introduction

Since 2015, the IEEE Annual International Low-Power Computer Vision Challenge (LPCVC)

has been held to identify energy-efficient AI and computer vision solutions. These solutions

have a wide range of applications in mobile phones, drones, autonomous robots, or any in-

telligent systems equipped with digital cameras carrying limited energy [  37 ]–[ 39 ]. The 2021

LPCVC UAV Video track sponsored by Facebook is hosted online with a submission window

opened from August 1st to September 1st in 2021. With the sample videos provided by us

as organizers, the contestants are required to perform Multi-Class Multi-Object Tracking on

a series of videos captured by drones (Figure  1.1 ). The solution should decide when balls

change hands by indicating the frames when the ID of the person holding the ball. The hard-

ware for the UAV2021 LPCVC contest is Raspberry Pi 3B+, and the software framework is

PyTorch, with technical support provided by the track sponsor Facebook PyTorch. During

the month-long challenge, 53 teams submitted 366 solutions with growing scores (Figure

 3.1 ).
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Figure 3.1. The highest score of the submissions on each day during the
submission window. The score caluclation is explained in Section  3.2.3 .
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(a) 5p4b (b) 4p2b (c) 7p3b

Figure 3.2. Example testing video clips with different difficulty level. “p”
stands for person and “b” stands for ball. “5p4b” means there are 5 different
persons and 4 different balls in this video.

3.2 Challenge Setup

In this section, we discuss the preparation process for this track, including: creating

testing videos, providing a sample solution, designing the evaluation metric, and setting up

the automated referee system.

3.2.1 Testing Videos

Since there is no drone-captured video dataset fulfills the task we design for this track,

we create the sample and tested the videos ourselves. To increase the diversity of the video

content, the testing videos are divided into different difficulty levels based on the number of

persons and balls in the video (Figure  3.2 ). The drone keeps circulating around the object

to create a dynamic motion in the frames and occlusion of the object, which are the two

key features of drone-captured video. All testing videos are released in the original format

with a resolution at 3840 ×2160 at 30 frames per second. The drones: DJI Mavic Mini, DJI

Mavic Air, and DJI Mavic Air 2.

3.2.2 Sample Solution

The purpose of a sample solution is to help participants achieve a better understanding of

the submission format while not limiting the creativity of their solutions. A sample solution

dose not need to be perfect, but should be thought-provoking with a clear explanation of

the submission format.
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With this in mind, our sample solution adopts the conventional multi-class multi-object

tracking paradigm - “tracking-by-detection”. Object detection is performed with YOLOv5

[ 24 ]. Then, we implement DeepSORT [  13 ] for tracking because it contains multiple dimen-

sions of features to track the instance across frames and has been widely used in many MOT

projects. The sample solution is open-source at  https://github.com/lpcvai/21LPCVC-

UAV_VIdeo_Track-Sample-Solution .

3.2.3 Evaluation Metric

The LPCVC must be able to create meaningful metrics to score the submitted solutions.

Therefore, we create a set of scoring equations that do not require per-frame annotation like

the conventional multi-object tracking testing dataset.

The accuracy of each solution is determined by detecting the catches (Equation  3.1 ).

Catch detection is performed to measure the two major components of an MOT solution:

object detection and re-identification. A catch is defined within this competition as the

instant a thrown ball touches a person’s hand. The output of the solution is compared to

the manually labeled ground-truth. The referee system categorizes each catch in a solution’s

output as True Positive (TP ), False Positive (FP ), or False Negative (FN). True positives

demonstrate accurate object tracking and re-identification. For example, if a solution detects

a catch within ±5 frames of the ground-truth, with the correct person ID (correcti), it is

marked as a true positive. False positives assess re-identification performance due to object

tracking correctly calculating a catch with incorrect ID matching. A false positive is given for

a detected catch within the frame threshold but with incorrect person IDs. F alse negatives

demonstrate poor object tracking due to the ball not seen entering a person’s hands. A false

negative occurs when the MOT solution does not output a catch within ±5 frames of the

groundtruth.

Accuracy =
∑n

i=0
correcti
totali

TP + 1
2(FP + FN) (3.1)

After calculating the accuracy, we use the Yokogawa WT310 power meter to measure

the power consumption Power. The power meter starts tracking the power consumption by
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Figure 3.3. After a submission is received from the website, it is stored in a
queue on the server where the website is hosted. When the execution of the
previous submission is accomplished, the next queued submission is sent to the
Raspberry Pi 3B+ to be executed. The power meter is triggered at the same
time when the execution starts. Once finished, the power meter generates a
CSV file contains power consumption information and sends it back to the
server along with the accuracy score from the Raspberry Pi 3B+. Eventually,
a script on the server calculates the final score and reflects to the website
leaderboard.

executing the submission on the Raspberry Pi 3B+ and ends once the output of the last test

video is received. Then, the accumulated power consumption during the execution period

is extracted from a CSV file outputted by the power meter. Since we only have one power

meter, all submissions are sent to a queue on the server to be ran by the grading system

individually.

The speed of a solution is highly correlated with energy consumption: faster solutions

require less runtime and less energy on the same hardware. Most high-scoring solutions

focused on increasing processing throughput, leading to less energy consumption and thus

much higher scores.

The final score of the tested solution is represented by the ratio of accuracy and energy

for the scores, i.e.,

Score = Accuracy

Energy
(3.2)
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Figure 3.4. The percentage portion of the methods used in the object detec-
tion task and object tracking task.

Notice that although Accuracy has the range from 0 to 1, there is no specific range for

Energy, which makes Score ranges from 0 to ∞.

3.2.4 Automated Referee System

Large computer vision competitions such as ImageNet Large Scale Visual Recognition

Challenge [ 40 ] usually provides an online leaderboard for participants to evaluate and improve

their submissions. We design a referee system with an online leaderboard at  https://lpcv.ai/s-

coreboard/Video21 to reflect the scores of the submitted solutions. The detailed workflow

of the automated referee system can be found in Figure  3.3 .

3.3 Submission Results

This section presents the best solutions for all qualified teams (Table  3.1 ). A team is

considered qualified if their best solution exceeds the score of the sample solution. We

also present the evaluation analysis focusing on the techniques that participants applied to

detection, tracking, model compression, and inference.
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Table 3.1. The table of all qualified submissions from 16 different teams
and the sample solution. The rank represents the ranking of the team’s best
submitted solution amoung all submitted solutions.

Rank Team Energy Accuracy Score Detection Tracking
1 VITA 0.091 0.790 8.569 customized SORT
2 baseSlim 0.097 0.830 8.556 NanoDet DeepSORT
3 LPNet 0.078 0.683 8.551 YOLOv5 IoU tracker
9 spring 0.110 0.820 7.458 YOLOx re-identification
19 yycnn 0.119 0.750 6.304 NanoDet DeepSORT
20 mmtty 0.109 0.683 6.207 NanoDet DeepSORT
23 asw 0.115 0.677 5.761 NanoDet DeepSORT
31 xdmca 0.134 0.713 5.259 YOLOx DeepSORT
42 baili 0.176 0.830 4.695 NanoDet DeepSORT
38 sl 0.164 0.800 4.485 NanoDet DeepSORT
83 BCJ 0.164 0.337 2.090 YOLOv5 DeepSORT
88 Shiyu 0.170 0.337 1.996 YOLOx DeepSORT
92 zy42 0.167 0.297 1.833 YOLOv5 DeepSORT
93 SYSU 0.288 0.520 1.793 YOLOv5 customized
111 PotatoNet 0.393 0.313 0.800 YOLOx DeepSORT
123 FoxNoPanda 1.108 0.367 0.337 YOLOv5 DeepSORT
139 Sample Solution 2.264 0.230 0.105 YOLOv5 DeepSORT

3.3.1 Detection & Tracking

As show in Table  3.1 , most solutions apply the conventional “tracking-by-detection”

paraidgm when designing their solutions. This structure provides flexibility in trying different

combinations of detection and tracking strategies.

As shown in Figure  3.4 (a), there are 35.5% solutions using NanoDet [  41 ], and 35.5%

using YOLOv5. Given the potential influence of using YOLOv5 in the sample solution,

NanoDet shows its popularity in participants when selecting low-power object detector for

edge devices. NanoDet is a Fully Convolutional One-Stage Object Detection (FCOS) style

one-stage anchor-free object detection model that uses generalized focal loss as classification

and regression loss [  42 ]. According to its authors, Lyu et al., NanoDet can achieve up to

34.3 mean Average Precision (mAP) on COCO[ 43 ] validation dataset and still maintain real-

time on CPU when running the object detection task. As a relatively new object detection
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solution, NanoDet has attracted attention in the computer vision field and hopes to replace

the YOLO series in low-power object detection. Our evaluation results also demonstrate

that a robust detector can significantly push forward the drone-based multi-object tracking.

For example, all leading solutions adopt some advanced detectors that are designed to run

in low-power environments or high efficiency, such as NanoDet and YOLOv5. Moreover,

the association of cross-frame object instances is highly dependent on reliable and highly

representative features. With the occlusion of the balls in the frame, the top-leading solutions

all have not only color classification, but also motion features of the detected objects to

improve the tracking. Similar strategies can be applied to other objects occluded in drone-

captured videos.

For tracking, 76.5% of the teams selected DeepSORT to be implemented with their

detectors (Figure  3.4 (b)). DeepSORT has dominated the field of multi-object tracking as the

ideal solution for different types of videos since being introduced to the research community

in 2017. It solves the problem of ID switching in the traditional tracker (e.g., IoU tracker)

using an AI model that compares the similarity between people, thus reducing the problem

of switching people’s identities. Unlike the VisDrone2021-MOT challenge [ 6 ] where most

submissions used IoU tracker [ 28 ] or related techniques for tracking, only one team submitted

their solution using the IoU tracker for our challenge. This is because there are many more

objects that need to be detected in VisDrone videos, making assigning multi-dimensional

features to each detection very inefficient. Since our videos have at most 5 persons and 4

balls, our participants have more freedom to assign more diverse features to the tracked

objects. Also, unlike the VisDrone videos where the drone is flying at least 50 meters above

the ground, our drone is flying at around 15 to 20 meters. Therefore, the objects in our

video are much bigger as well. From the fact that most submissions adopt DeepSORT, we

believe that similarity calculation-based re-identification is crucial for developing advanced

multi-object tracking algorithms. This result also shows the demand for a more dynamic

and content-based object tracker in the multi-object tracking field to resolve the increasingly

complex and diverse video data.
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3.3.2 Model Compression

Although no compression technique is implemented in our sample solution, all qualified

teams apply model compression to their trained models to increase the efficiency of their

solutions. Quantization is the most utilized technique, as they are the easiest to implement

without needing to modify the original neural network architecture. After anlayzing the

submitted solutions, all qualified solutions quantize the data type from float32 to float16.

This finding shows the importance of model compression for object detectors to run on edge

devices.

The ability of shrinking your model into the As shown in Figure  3.5 , all the top 10

solutions contain pre-trained weights with the total size less than 5 MB for object detection

and tracking (only team LPNet has separate pre-trained weights from re-identification other

than DeepSORT). For example, the winning team VITA provides a winning solution strikes

a 0.790 accuracy, which is not as high as the accuracy score of the 2nd place team baseSlim

at 0.830. However, VITA’s solution only takes 0.091 kW to process, which is less than 0.097
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from baseSlim. This leads to VITA’s final score exceeding baseSlim’s by 0.014 and eventually

wins the competition. It is also worth noting that 35.3% solutions (80% top 10 solutions)

have their weights stored in .jit or .torchsciprt instead of .pt or .pth to reduce the model size.

This provides a guideline for compressing multi-object tracking models that will be deployed

on edge devices with limited computational power (e.g., Rawsp berry Pi) should be aiming

for a pre-trained weights with size less than 5 MB.

3.3.3 Inference

Apart from training, increasing efficiency during inference is also an important solution

to reduce the energy of the tested solution. Most teams focus on reducing energy by speeding

up the execution time of their solutions. As shown in Figure  3.6 , the trend of energy is more

steep than the tread of accuracy, showing that higher score solutions always consume less

energy.
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In general, qualified teams take the following approaches to increase inference runtime:

batch processing, frame skipping, and downsampling. As introduced in Section  3.2.2 , our

sample solution is real-time processing, which processes the input video frame by frame

and then stores and updates the processed information at each frame. However, there are

23.5% qualified teams (including the winning team VITA) that implement batch processing

to achieve less memory cache during execution. Team FoxNoPanda only modifies the sample

solution from real-time processing to batch processing and gained almost 200% times better

score. For frame skipping, 82.4% qualified teams follow the sample solution, setting the

frame skipping rate to be every 9 frames. For down-sampling, the sample solution changes

the input size from 3840×2160 to 640×320. On the basis of the required shape of different

object detectors, most teams have a similar or smaller input shape to achieve a balance

between efficiency and accuracy.

3.3.4 Winning Solution Analysis

In this section, we analyze the winning solution of the VITA team to show the techniques

applied in both training and inference.

System Design

The team’s Energy-Efficient Tracking-based Action Detector (E2TAD) has three core

components: ball-person detection, deep association, and action detection.

Ball-Person Detection: Existing datasets are available to detect pedestrians. However,

there is no ball-related dataset in the literature. The team adopts harmonization-aware image

composition to generate synthetic but realistic balls on pedestrian datasets, e.g., VisDrone,

COCO ball-person subset PANDA (found by the baseSlim team). To address efficiency,

the team designs a lightweight model based on YOLOv3 and YOLOv5. Among the three

branches that detect objects in multi-scales (e.g., small, medium, and large), the middle one

is retained to detect medium-scale objects. The team’s proposed two YOLO variants are

dubbed YOLO-MobileV1 and YOLO-MobileV2. Initiated from YOLOv5, YOLO-MobileV1

modifies PANet in YOLOv5 and cuts off one upsample module to output the medium-size
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feature map directly. As a descendant of YOLOv3, YOLO-MobileV2 replaces the convolution

with depth-wise convolution and removes upsampling modules.

The team VITA proposed models are inspired by the knowledge of [ 44 ], which validates

that simple techniques can still achieve state-of-the-art performance. Following this point,

the team continues to implement channel pruning on each convolution filter and decrease

the number of residual modules to one in CSP.

Deep Association: This module tags the detected persons and balls with their corre-

sponding identity labels. First, an identity-aware feature extractor (e.g., ResNet-18 trained

on the person re-identification task) is adopted to obtain the feature embeddings of the de-

tected persons/balls, given the bounding boxes together with the raw image. Second, Deep

Association maintains the person tracklets and ball tracklets in a gallery, where each tracklet

is a queue that stores re-identification features of the latest K tracks for the corresponding

person/ball. Last, using the re-identification feature of newly detected persons/balls as

queries and defining the cost of matching a query with a specific tracklet in the gallery as

the distance between their re-identification features, Deep Association formulates the iden-

tity tagging as a minimum cost assignment problem that can be solved in polynomial time by

the Hungarian algorithm. To reduce association errors, any distance larger than a predefined

threshold is marked as ∞ in the cost matrix to rule out the possibility of assignment.

Action Detection: Free of learnable parameters, this module only depends on bound-

ing box trajectories to spatio-temporally localize key actions (e.g., catch and throw), thus

extremely energy-efficient. A ball has two states: collision or non-collision. Collision hap-

pens when the center of one ball’s box falls into one person’s box. For each ball, the method

plots its collision history with other persons as a gated signal spanning from 0 to T , where

T is the total number of frames. The start and the end of any connected part in the gated

signal signify the catch action and throw action, respectively.

Efficiency

Here we discuss the efficiency strategies adopted by the team VITA in their submission.
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Pruning: Pruning can be done in an unstructured or structured way. Unstructured

pruning removes individual weights at the kernel level, while structured pruning removes

groups of weight connections, such as channels or layers. Unstructured pruning leads to

higher sparsity but requires specific hardware support for acceleration, thus not applicable

to Raspberry Pi.

Quantization: There are two types of quantization: post-training quantization and

quantization-aware training (QAT). Unlike post-training quantization, QAT supports con-

current training and quantization. Consequently, such a simulation of quantization errors

during training gives minimal accuracy loss if the representation bitwidth is converted from

FP32 to INT8.

Compressing re-identification Model as A Case Study: is Moreover, the input

image resolution is reduced to 1/16 (from 512 × 256 to 128 × 64) and the re-identification

model is finetuned on the resized images. Lastly, reducing the bitwidth from FP32 to INT8

by QAT gives faster computation and lower memory usage for re-identification: 3 times

inference time speed-up and reduced 73% of the model size with minor accuracy loss.

Adaptive Inference: is Given the observation that persons and balls’ locations are not

changing abruptly since the videos are temporally coherent, ARC predicts the next frame’s

activity region (Ît+1) based on the current frame’s bounding boxes’ coordinates (Bt) and

crops out the non-activity region after adding some residual space (∆x and ∆y), whose

details are shown below:

Ît+1 = It+1[xl − ∆x : xr + ∆x, yp − ∆y : yb + ∆y], (3.3)

where xl, xr, yp, yb = min Bx
t , max Bx

t , min By
t , max By

t . Since ball-person collision is a

necessary condition for throwing or catching a ball, CI skips the succeeding Deep Association

and Action Detection modules if no ball-person collision is inspected.

Cache-friendly Pipeline: There are three computation bottlenecks in the E2TAD

(ordered descendingly by profiling): video decoding, re-identification feature extraction, and
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Figure 3.7. Proposed heuristic approach for action detection. θ is the prior
of minimum flying time for any ball. The solution first goes through the entire
video and draw ball-person collusion history (1). Then, the parts where solutions
considers no one has the ball are dilated based on θ (2). For the parts where there
are collusion with different persons (connected parts), the solution will make up
based on majority vote of the collision information before and after that part (3).
Lastly, the beginning and ending of each period of the collision are eroded by θ/2
to make the collusion more accurate (4). This figure is provided by the team VITA
and improved by the author with consent.

ball-person detection. The computation pipeline of E2TAD can be accelerated by addressing

“temporal locality” for higher cache hit rate.

To improve the temporal locality of re-identification feature extraction, crop records and

box records are used since the layer-wise computation can be fit in the L1 cache (32KB),

and the weights after pruning and quantization can be fit in the L2 cache (512KB). To

improve the spatial and temporal locality of video decoding, an image queue is used so

that temporally consecutive frames can be decoded without interruption. (Video’s temporal

redundancy is utilized for high compression rates so that consecutive frames’ encoded signals

are closely packed together in memory.) Since the computation cost is fixed for a given video,

the latency can be significantly reduced due to less memory access.

Action association: As the downstream task, action detection is vulnerable to errors

propagated from the upstream tasks (e.g., detection and association). In detection errors,

false-negative cases may owe to occlusion, and false-positive cases can result from patches

with homogeneous color. Association errors arise from non-discriminative re-identification

features. Inspired by morphological operation-based denoising [  45 ], VITA team proposed a
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heuristic approach in  3.7 to eliminate the preceding errors from the upstream tasks. As

prior, θ is the minimum flying time for any ball. Given the collision history with different

persons as a gated signal for each ball, the team first dilates it by θ/2. Then, the team votes

in the connected parts and selects the majority as the associated person holding the ball, so

that the preceding detection and association errors are eliminated. Last, the dilated gated

signal is eroded by θ/2.

3.4 Conclusion

In conclusion, the 2021 LPCVC UAV Video track is a successful challenge that collected

many design choices of low-power multi-object tracking solutions on drone-captured video.

The analysis on the submitted solutions demonstrates that to deploy multi-object tracking on

UAV: (1) a robust detector can significantly push forward the accuracy, and usually one-shot

detectors (e.g., NanoDet, YOLO) are preferable for their high efficiency, (2) a good cross-

frame object instance association heavily leans on reliable and highly representative features

that involves both color and motion, (3) a similarity calculation-based re-identification is

crucial for developing advanced multi-object tracking algorithms, (4) model compression by

quantization from Float32 to Float16 can be used as the first step to reduce the model size

with minor accuracy reduction, and (5) frame-skipping at around 10 and down-sampled the

input frame to around 480 ×270 for 30 FPS input video do not lose too much information

of the original video. These findings can help the relevant research community to develop

multi-object tracking solutions for UAV or participate in a similar competition in the future.
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4. OPTICAL FLOW ORIENTED MULTI-OBJECT TRACKING

ON UNMANNED AERIAL VEHICLES

In this section, we present the details of the proposed optical flow oriented method named

OF-MOT for multi-object tracking in drone-captured videos. OF-MOT adopts the conven-

tional “tracking-by-detection” paradigm, but improves the object detection with optical flow

guided feature aggregation and replaced the re-identification with motion estimation (Fig-

ure  4.1 ). We also apply the findings from the 2021 LPCVC UAV Video track submission

analysis to training and inference, resulting in a more efficient model with smaller size. The

proposed OF-MOT is trained and validated on the VisDrone-MOT2021 dataset and achieves

an average accuracy of 17.7% with 24 FPS on a computer with modern GPU.

4.1 Video Processing

Multi-object tracking methods often do not require object detection for successive frames

in a video, since the successive frames are very similar [ 11 ], [  36 ]. Therefore, we treat each

frame in a more efficient way during the video preprocessing. For each frame in a video,

only the first frame (called keyframe) is stored, while the frames between this frame and its

next keyframe (called non-keyframes) are not considered. This means that the keyframes are

fixed and there is a keyframe in every k continuous frame. To clearly describe the proposed

method, we define the keyframe as Ft. where t ± k represents the frame in the interval of k

before or after the keyframe Ft. As summarized in  3.4 , the frame-skipping number should

be 10 for 30 FPS video, we set k = 5 since the input video has FPS at 15. The input frame

is down-sized by half into 500×300 to reduce the number of pixels that need to be processed.

The downsizing ratio is also set based on the analysis of 2021 LPCVC. Eventually, we learn

from Section  3.4 that batch processing requires less computational power than real-time

processing, so we adopt the batch processing approach to process the video.
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Figure 4.1. The overall network architecture of OF-MOT. For detection on
frame Ft, the frame Ft+k and Ft−k are used. The RGB feature map extracted
by Nfeature is stored as Mrgb, while the motion feature map extracted by Nflow

is stored as Mmotion. Mrgb of Ft−k and Ft+k are warped respectively through
the feature warping function ω(·) guided by each Mflow. Warped features and
the Mrgb of Ft are aggregated into Magg. Lastly, the head detector of R-FCN
(Ndetect) is applied to accomplish the video object detection task on the Magg.
The state information for each detected object will also be stored for instance
association in the tracking.

4.2 Detection Network Architecture

Optical Flow Network: We adopt the CNN-based optical flow generation network

FlowNet [  10 ] as the backbone of optical flow feature extraction, denoted as Nflow. Nmotion

takes two consecutive keyframes Ft and Ft−k to compute the optical flow map denoted

Mmotion. To reduce the amount of computational stress during training, the optical flow

output resolution is 1
4 of the original image size with the original network output stride at 4.

Since the feature map will be extracted by output stride at 16, to match the resolution of the

feature map extracted later, we down-scale the flow field by half using bilinear interpolation.

Feature Network and Aggregation Inspired by the Flow-Guided Feature Aggregation

(FGFA) [ 46 ], we adopt a similar architecture for object detection in drone-captured videos.

The original FGFA uses ResNet-50 and ResNet-101 [  47 ] as the backbone networks for their

superior deep learning capabilities by utilizing the residual blocks in the neural network to

achieve higher accuracy. However, what comes with the ResNet’s superior deep learning

ability is the enormous amount of parameters. For example, ResNet-50 outputs a model

that has more than 23 million trainable parameters. To make the output model smaller,
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we adopt ResNet18 [  48 ] as the backbone, since it is the smallest ResNet with 11 million

trainable parameters. Since we apply the classification on the aggregated feature map later,

the last 2 fully connected layers for object classification are discarded, and the first block

of the conv5 layer is modified to have a stride of 1 instead of 2. This way, we are able

to collect the features extracted from the previous layers of ResNet without conducting an

actual object classification on the features. The last two layers of ResNet-18 are re-shaped

into 256×38×63 to make the output shape fit into the R-FCN head for object classification.

The extracted RGB feature map is denoted as Mrgb.

After creating Mrgb, we aggregate the features of the current keyframe by warping the

feature maps from the previous keyframe to the current keyframe guided by the optical flow.

These feature maps provide more information of the objects in the current keyframe, such

as varied illumination and nonrigid deformations, to make object detection more accurate.

Then, we employ different weights at different spatial locations and let all feature channels

share the same spatial weight to achieve aggregation. The warped feature map Magg is

defined in Equation  4.1 as follows.

Magg =
t+k∑

i=t−k

Mrgb · ω(Mrgb, Mmotion) (4.1)

where ω(·) is the bilinear warping function applied on all locations for each channel in the

feature map. Eventually, the current keyframe has multiple feature maps from nearby frames

and its own feature map.

Detection Network: We implement our detection network following the same design

of the FGFA detection network. In practice, the aggregated feature map Magg is sent to the

detection network to draw the bounding box around the area of the object and classify the

object based on its features. Since the aggregated optical flow features augmented the region

proposal of the two-shot object detectors, the state-of-the-art R-FCN [ 14 ] is implemented,

denoted Ndetect. On top of the 1024-dimension feature maps, the RPN sub-network and

the R-FCN sub-network are applied, which connect to the first 512-dimension and the last

512-dimension features respectively. Nine anchors (3 scales and 3 aspect ratios) are utilized

in RPN, and 300 proposals are produced on each image. In addition to object detection and
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classification, Mflow is also applied for extracting object state information. The bounding

box of each object is applied onto Mflow, where the motion information for each detected

object will be calculated and stored for instance association in the tracking.

4.3 Instance Association and Object Tracking

Instance association is the key component of multi-object tracking in video. To achieve

good accuracy, state-of-the-art multi-object tracking methods usually store the features of

the previously detected objects in the queue, then compare the newly detected objects with

the queue to find the match (i.e., re-identification) [  8 ], [  9 ], [  13 ]. However, it suffers from

complexity issues when looking at drone-captured videos: 1) the objects are smaller, making

the feature comparison hard, and 2) the crowded and the large number of objects in the

frame increase the time complexity during comparison.

Since we can extract the object state information from the detector, the object association

can be completed by estimating the similarity between objects from the previous frame to

the current frame based on their state information. To achieve this, we propose a customized

tracking algorithm with the technique of Hidden Markov Model (HMM) with particle filter

[ 49 ] using the object detector and object state information from the object detector.

HMMs are one of the most popular graphical models in practice. They are characterized

by variables X1, X2, ..., Xn representing hidden states and variables E1, E2, ..., En represent-

ing observations (i.e., evidence). The subscript i in Xi and Ei represents a discrete slice of

time. There are three probability distributions in HMMs: a prior probability P (X0), a tran-

sition probability P (Xk | Xk−1) and an emission (sometimes called observation) probability

P (Ek | Xk).

Given a series of observations, we want to determine the distribution over states at some

time stamp. Concretely, we want to determine P (Xk | E1, E2, ..., En). This task is called

filtering. Particle filter is intended to estimate the state of the system at time k using the

linear stochastic difference equation assuming that the state of a system at time k evolved

from the prior state at time k − 1. Such a technique has been commonly used in localization
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scenarios and is well known for handling arbitrary distribution situations, unlike Gaussian

filters or Kalman filter. Therefore, we apply the particle filter to our tracking mechanism.

In practice, we use particle filters to estimate a posterior distribution for the location of

each object in the frame with the updated object state information in each frame. For the

transition probability�we use a uniform distribution on each object’s state information to find

the match. For the emission probability, we use a normal distribution about the bounding

box locations. Because the emission probability would have O
(

Nk!
Nk−1!

)
parameters due to

the number of possible permutations of the bounding boxes to match the detected objects,

we split the emission probability into Bayesian inference of the location of its bounding box

given the locations of the particles and a linear assignment problem. Lastly, each object will

be matched using the state information with the objects detected from the previous frame

to achieve an instance association.

4.4 Evaluation and Comparison Results

4.4.1 Training & Inference

Training and testing data comes from the VisDrone-MOT2021 dataset [  6 ]. It consists of

79 video clips with 33,366 frames in total divided into three subsets: training set (56 video

clips with 24,198 frames), validation set (7 video clips with 2,846 frames) and testing set (16

video clips with 6,322 frames). All videos are taken in crowded street scenes in urban areas

of China with various weather and lightning conditions. Most videos are shot with the UAV

moving forward above the streets where there are different means of transport (Figure  1.2 ).

All training sessions are conducted on the Titan Xp GPU running on Ubuntu 20.04.

For OF-MOT, we train 40 epochs with a batch size at 40 to use as a starting point and

continued pruning the model until the loss curve converges. We stop the training session

when the prevision reached 0.832, where the batch size is at 368. SGD optimizer is used

to train 120k iterations with a weight decay of 5e−4. The learning rates are 2.5 × 10−4 and

2.5×10−5 for the first 80K and the last 40K iterations, respectively. After training, we apply

the 16-bit floating point quantization to compress the trained model. Eventually, the model

size is reduced by 45.5% with only 0.5% of accuracy drop.
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4.4.2 Evaluation Metrics

We provide the evaluation results of Average Precision of tracking (AP ) based on the

evaluation metrics provided by the VisDrone2021-MOT challenge. Specifically, the solution

outputs a list of bounding boxes with confidence scores and the corresponding class ID.

A tracklet (i.e., a list of detected bounding boxes that are considered as the same object)

is considered correct if the Intersection over Union (IoU) overlap with the ground truth

tracklet is larger than 25%. We sort the tracklets (formed by the bounding box detections

with the same identity) according to the average confidence of their bounding box detection.

The score of each category represents the mean score of all ten predefined classes in all

video sequences tested, where each sequence is executed independently. To demonstrate the

robustness and efficiency of our method, we also show multiple object tracking precision in

Multi-object Tracking Precision (MOTP, defined in Equation  4.2 ) [  20 ], frame per second

(FPS) and model size in megabytes (MB).

MOTP =
∑

i,t di
t∑

t ct

(4.2)

where dt is the distance between the localization of objects in the ground truth and the

detection output and ct is the total matches made between ground truth and the detection

output. i represents the objects on frame t.

4.4.3 Comparison

To conduct a more comprehensive evaluation, we followed the implementation details of

one of the the winning solutions in the VisDrone2021-MOT challenge. This solution utilizes

the conventional “tracking-by-detection” paradigm combining the state-of-the-art efficient

object detection method YOLOv4 [  15 ], OSNet [  50 ] for re-identification, and Deep SORT

[ 13 ] for instance association. GPU acceleration and dependency adjustment are applied

accordingly.
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Figure 4.2. Compare to the pedestrians on the bottom left of this example
frame, the ones on the top right are not detected for they are far away from
the camera.

4.4.4 Results

In table  4.1 , we present the AP score for the object class cars, buses, trucks, pedestrians

and vans for a more comprehensive evaluation. The distribution of each object class in

the training dataset influences the final detection and tracking results. According to the

creator, there are 45.7% cars, 21.2% pedestrians, and 4.3% vans, 2.8% trucks, and 0.9%

buses annotated in the training data. As shown in the table, both methods strike good

accuracy on tracking the cars and pedestrians, given these are the majority of the training

data. OF-MOT shows close-to-the-best score on the precision of tracking cars because the

motion of cars is much more consistent in the videos captured by the drone. Due to the

long distance from the drone to the objects, some objects are particularly smaller in the

frame (Figure  4.2 ), making drone detection a more challenging task. Since we do not have

re-identification features in the object tracking, the accuracy is heavily influenced by the

motion of the objects in the video. As shown in table  4.1 , APcar is higher in OF-MOT

while APbus is lower. This is because the cars in the video usually have more diverse motion
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information than the buses, leading to a worse association and worse tracking accuracy. In

the 2019 VisDrone MOT challenge, one of the winning solutions proposed by Li et al. [ 51 ],

Flow-Tracker, showed a 26.74% difference between APcar and APbus, which is similar to the

31.6% difference from our solution. This further demonstrated that the objects speed in the

frames can heavily impact the performance of motion-based MOT methods.

Table 4.1. The mean AP score (mAP ) and individual AP score of each 5
reported object classes in the VisDrone2021-MOT testing set.

Method mAP APcar APbus APtrk APped APvan

YOLOv4 + DeepSORT 22.3 36.2 22.4 7.9 35.9 8.2
OF-MOT 17.7 42.5 10.9 7.3 20.7 15.4

In Table  4.2 , OF-MOT shows a better MOTP result with the aid of optical flow. Optical

flow captures pixels related to the moving object and aggregates them into the feature map

before object detection. In this way, object localization is more precise compared to the other

method which uses re-identification. The FPS is also significantly higher than that of the

compared solution due to quantization and object association with optical flow. The results

demonstrate the ability of instance association with optical flow instead of re-identification

to improve efficiency of the overall multi-object tracking solution.

Table 4.2. Other evaluation scores of the tested methods.
Method MOTP FPS Size (MB)

YOLOv4 + DeepSORT 57.6 19.7 245
OF-MOT 64.2 24 112

4.4.5 Discussion

In this thesis, we propose a novel multi-object tracking method OF-MOT, using optical

flow information to assist both object detection and tracking tasks. Our OF-MOT achieves

better FPS on drone-captured datasets compared to the other state-of-the-art multi-object

tracking methods, while maintaining a reasonable accuracy. We also show some qualitative

results on different scenarios and applications using OF-MOT, such as multi-object tracking

on UAV. For future development, optical flow should be intergated not only with object
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detection and tracking, but also re-identification, to make OF-MOT more adaptable in more

complex situations. Moreover, experimental studies should be conducted on different hard-

ware platforms (e.g., Jetson Nano and Raspberry Pi) to evaluate the proposed MOT solution

on edge devices.
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5. SUMMARY & CONCLUSIONS

This chapter summarizes and concludes the findings presented in this thesis. Section  5.2 sum-

marizes the innovation of using optical flow in both object detection and tracking to reduce

the computational requirement compared to conventional multi-object tracking. Section  5.1 

summarizes the findings by analyzing the 2021 Low-Power Computer Vision Challenge UAV

Video track submissions. Section  5.3 discusses the potential future development regarding

low-power multi-object tracking solutions for UAV video based on the findings listed in this

thesis.

5.1 2021 LPCVC UAV Video Track

In this thesis, we present the process of hosting the 2021 LPCVC UAV Video track

and the evaluation of the approaches adopted by qualified teams to make their submission

low-power and accurate. We proposed a multi-object tracking task that does not require

annotation on all frames by defining tracking as “which person is holding which ball”. In

this way, the annotation only needs to document the moment when the ball changes hands.

We captured videos with the drone circling around several people passing multiple balls

to each other, with different difficulty levels based on the number of persons and balls in

the video. A referee system involving Raspberry Pi 3B + testing hardware and a power

meter is designed to automatically retrieve the submission and test the accuracy and power

consumption to compute the final score. We also provide a sample solution using YOLOv5

for object detection and DeepSORT for object tracking. The sample solution also served

as a baseline, where all submissions have a lower score than the sample solutions, which is

considered disqualified.

Through the analysis of the submitted solutions, we found that 35.3% of the teams

used NanoDet for detection and 35.3% of the teams used YOLOv5. Despite the influence

of the sample solution, this result shows the advancement of NanoDet in low-power object

detection on edge devices. For object tracking, 76.5% of the teams used DeepSORT, showing

its superior ability to track objects when the video has dynamic motion and occluded objects.

We also analyze the winning solution from the VITA team by presenting the design of an
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efficient object detector and the choices they made during inference to improve efficiency.

The VITA team improved robustness by adversarial feature learning and morphological

operation-based denoising, and improved efficiency by two adaptive inference strategies and

a cache-friendly pipeline.

5.2 Optical Flow Oriented Multi-object Tracking

In this thesis, we propose a novel multi-object tracking method, OF-MOT, using optical

flow information to aid both object detection and tracking tasks. The optical flow is used

to guide the feature between the keyframes for region proposal to localize the object in

the frame, as well as to add the motion feature to help object classification. Then the

instance association is achieved through extracting the optical flow output of the detector

model and applying the motion information of the detected object to the particle filter to

associate it with itself in the previous frame. During implementation, the knowledge of low-

power multi-object tracking on UAV that we summerized from the analysis 2021 LPCVC

submissions was applied. To be more specific, we applied frame-skipping, model compression

with quantization, and input frame downsampling to reduce the model size and, therefore,

improve the inference efficiency. The proposed OF-MOT achieves better FPS on drone-

captured datasets compared to the other state-of-the-art multi-object tracking methods,

while maintaining reasonable accuracy.

5.3 Future Development

This thesis highlights the multi-object tracking solutions deployed on drone-captured

videos. The practices presented in the thesis give a good direction for the future development

of similar projects. The following work should improve the accuracy of tracking using the

motion information from the object tracker or other sources combining with re-identification.
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