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ABSTRACT 

Emerging pathogenic fungi have become a topic of conservation concern due to declines 

seen in several host taxa. One newly emerging fungal pathogen, Ophidiomyces ophiodiicola, has 

been well documented as the causative agent of Snake Fungal Disease (SFD). SFD has been found 

in a variety of snake species across the United States, including the Eastern Massasauga (Sistrurus 

catenatus), a federally threatened rattlesnake species. Most work to date has involved detecting 

SFD for diagnosis of infection through direct sampling from snakes. Attempts to detect O. 

ophiodiicola in the environment to better understand its distribution, seasonality, and habitat 

associations are lacking. I collected topsoil and ground water samples from four macrohabitat 

types in northern Michigan at a site where SFD infection has been seen in Eastern Massasauga. I 

used a quantitative PCR (qPCR) assay targeting the internal transcribed spacer region (ITS) 

developed for diagnosis of SFD after extracting DNA from samples. Ophidiomyces DNA was 

successfully detected in topsoil, with minimal to no detection in groundwater samples. The 

frequency in which Ophidiomyces was detected in a sample did not differ between habitats, but 

samples grouped seasonally showed higher detection occurring during mid-summer. Investigation 

of the correlation of environmental parameters on Ophidiomyces occurrence recovered no 

relationships. Our data suggests that season has some effect on the presence of Ophidiomyces. 

Differences between habitats may exist but are likely more dependent on the time of sampling and 

currently uninvestigated soil parameters. These findings build on our understanding of 

Ophidiomyces ecology and epidemiology and inform where snakes like the Eastern Massasauga 

may be encountering the fungal pathogen. Furthermore, they assist with developing conservation 

practices aimed at reducing O. ophiodiicola exposure in imperiled snake species.  
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CHAPTER 1. INTRODUCTION 

1.1 The Emerging Threat of Wildlife Diseases 

       Global biodiversity is currently under threat from a variety of factors. Threats include climate 

change and anthropogenic land development, overexploitation, and the introduction of invasive 

species (Foden et al. 2013, Bellard et al. 2016). These activities are some of the top concerns when 

it comes to biodiversity preservation and lead to eventual species decline in most cases if they are 

allowed to persist. However, another threat that has become prominent in recent years is wildlife 

disease. Alone it can lead to population level declines in species, but when it is present alongside 

other pressures, it can become a serious threat to biodiversity. 

            Although wildlife disease is not something new, it has been receiving increased attention 

given the emergence of several novel diseases that have led to notable declines in sensitive species 

across the globe. Human activity has not helped this matter, as our highly motile lifestyles have 

led to the unintentional spread of novel diseases to certain areas through carrying it ourselves, or 

through the introduction of non-native species carrying novel pathogens. Climate change has also 

played a role in increasing the frequency and intensity of disease emergence in many cases. Most 

emerging diseases arise as novel pathogens, defined as a pathogen that is spread or transported via 

an animal or person to a new area where those organisms present have not been exposed and 

therefore do not have any immunity nor alternative ways to cope with its introduction (Morse 1995, 

Skerratt et al. 2007). 

An example of this is White Nose Syndrome, a disease caused by the fungal pathogen 

Pseudogymnoascus destructans. This disease is seen in microchiropteran bats effecting at least 62 

species, and has led to widespread declines in several hibernating bat species (Dzal et al. 2011, 

Reichard et al. 2014, Powers et al. 2016, Reynolds et al. 2016, Hoyt et al. 2021). P. destructans 

shows little differentiation in genetic markers between isolates, lending credit to a more recent 

emergence following the novel pathogen hypothesis. Another prominent disease is caused by the 

fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans, known to cause 

Chytridiomycosis in anurans and salamanders, respectively. Infection has been documented in 516 

species across 52 countries, with some species exhibiting severe infection while others, such as 

the African Clawed Frog (Xenopus laevis) act as asymptomatic reservoirs (Eskew and Todd 2013). 
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Both fungal pathogens have widespread distributions and seem to have been spread initially via 

anthropogenic activity. The continued spread of B. dendrobatidis and P. destructans across the 

landscape is facilitated by their ability to persist in their environment within abiotic reservoirs. 

(Eskew and Todd 2013, Kolby et al. 2015). Alternatively, endemic pathogens can cause disease 

emergence on a landscape due to changes in climate, which increase virulence created by optimal 

conditions for pathogen growth and increased infectiousness (Skerratt et al. 2007). It is likely that 

climate change will lead to continued increases in the emergence of disease, allowing pathogens 

to colonize new geographic areas and infect novel populations. 

1.2 Ophidiomyces ophiodiicola 

Another recently emerged fungal pathogen, Ophidiomyces ophiodiicola, has been associated 

with Snake Fungal Disease (SFD). The disease has grown in concern as it has the potential to 

impact species on a population level (Clark et al. 2011, Allender et al. 2015c). O. ophiodiicola 

(formally known as Chrysosporium ophiodiicola) was formerly grouped within the 

Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, a complex that contained 

Nannizziopsis vriesii and other similar isolates (Paré and Sigler 2016). Phylogenetic analysis of 

small sub-unit (SSU) and internal transcribed spacer (ITS) rRNA has revealed three lineages 

within Onygenaceae family that were once contained within CANV, those being the three now 

currently known genera of CANV fungi, Nannizziopsis, Paranannizziopsis, and Ophidiomyces 

(Sigler et al. 2013). These genera are known to cause dermal infection in a variety of reptilian taxa 

from the tuatara (Sphenodon punctatus) to crocodilians and a variety of squamates, however the 

genus Ophidiomyces and its sole species O. ophiodiicola have only been documented in snakes 

(Sigler et al. 2013). In the past, reports of dermal disease in reptiles have been suspected to be 

caused by CANV or CANV-like fungi, but the delineation of the genus Ophidiomyces by Sigler et 

al. (2013) led researchers to identify that many of these cases were caused by O. ophiodiicola 

(Allender et al. 2015c). 

        O. ophiodiicola infection and its link with SFD was validated by Koch’s postulates through 

experimental infection of snakes from isolates taken from infected wild snakes (Lorch et al. 2015). 

Lorch et al. (2015) tracked infection and SFD progression, finding that infection is facilitated when 

there is an existing breach in the outer layer of the epidermis, the stratum corneum, which allows 

for entry of fungal spores or fungal hyphae. Up to a week after initial infection, inflammation 
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occurs at initial lesions along with whitening around the scale edges. Eventual hyperkeratosis 

results from the thickening of the keratin making up the scales and is associated with 

hyperpigmentation. As infection progresses necrosis begins to occur at lesions, and infection can 

disseminate and lead to systemic infection as fungal hyphae penetrate deeper tissue. Snakes that 

do manage to clear infection through ecdysis (the shedding of their skin), if exposed again, will 

redevelop similar lesions. 

O. ophiodiicola has been shown to have robust growth on the dead tissue of several taxa, 

showing a wide array of metabolic activity (positive for lipase, gelatinase, keratinase activity, etc.) 

in vitro. It can grow when exposed to a wide range of pH (5-11), temperatures (7°C to 35°C), and 

moisture conditions. For these reasons, it has been suggested that O. ophiodiicola exists as a 

saprobe which uses open carbon sources in the environment while opportunistically infecting 

snakes (Allender et al. 2015c).    

            One of the earliest recorded observation of SFD was recovered from a museum specimen 

collected in 2000 from southern Illinois (Allender et al. 2016). Since then, there have been several 

observations of SFD in both pit vipers and colubrid species (6 families and over 30 species) across 

the midwestern and eastern United States, parts of Germany, the United Kingdom, and Australia 

(Allender et al. 2011, Clark et al. 2011, Allender et al. 2015c, Tetzlaff et al. 2015, Lorch et al. 

2016, Hileman et al. 2017).  Ophidiomyces was recently reported in California for the first time 

(Haynes et al. 2021) showing its presence in the western United States. Although it has been 

recorded causing infection in several species in the United States, it has only been associated with 

one population level decline, a Timber Rattlesnake (Crotalus horridus) population in New 

Hampshire, where it acted synergistically alongside high summer rainfall, and inbreeding 

depression (Clark et al. 2011). 

The future extent to which SFD could affect snake populations is largely unknown, 

especially  in populations that face an ever-increasing number of stressors (Hileman et al. 2017). 

As the climate continues to change, factors like O. ophiodiicola prevalence across the landscape 

could change as well. Therefore, it is important to uncover O. ophiodiicola ecology and 

distribution to determine which current populations are at risk of SFD exposure now and in the 

future. To accomplish this goal of having a more complete epidemiological understanding of O. 

ophiodiicola, further work on its presence within susceptible populations, as well as across the 

landscape, needs to be done. To date, most published work on O. ophiodiicola identifies presence 
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based through the direct swabbing of active infections on snakes.  Information on its ecology 

independent of infection is largely lacking.  However, a recently published paper by Campbell et 

al. (2021) detected O. ophiodiicola within the soil of snake hibernacula as well as topsoil at the 

level of 61% and 8% of samples, respectively. These findings from environmental studies of O. 

ophiodiicola are promising as it is important to understand where O. ophiodiicola exists in the 

environment and how it exists there. Knowledge that can help inform how snakes are developing 

infection and give information to managers actively surveying for it. 

1.3 Eastern Massasauga 

Several species of pit vipers have experienced a high frequency of infection with fungal 

pathogens that match the clinical signs of SFD (Cheatwood et al. 2003, Clark et al. 2011, Allender 

et al. 2015b, Tetzlaff et al. 2017). The Eastern Massasauga (Sistrurus catenatus) have been found 

displaying clinical symptoms of SFD since 2008 (Allender et al. 2011) and near the northern extent 

of their range in Grayling Michigan since 2013 (Allender et al. 2011, Tetzlaff et al. 2015). O. 

ophiodiicola presence was later confirmed in the tissue of the infected snakes (Allender et al. 

2015b).  This was the first observation of  SFD in snakes in the state of Michigan (Tetzlaff et al. 

2015), a relative stronghold for S. catenatus. 

The Eastern Massasauga is a small species of rattlesnake with a geographic range from 

Illinois, east to New York and Ontario (Shoemaker and Gibbs 2010, DeGregorio et al. 2011, 

Ravesi 2016). It utilizes various wetland, prairie, and low-lying habitats (Syzmanski 1998, 

Merkling 2018) as well as drier upland habitat depending on the time of year, and physiological 

needs between cohorts and populations (Reinhart and Kodrich 1982, Syzmanski 1998). Eastern 

Massasaugas, as ectotherms occupying higher latitudes, spend half of the year overwintering. 

When available they use existing burrows made by crayfish to go below the frost line, and partially 

submerge themselves in water (Smith 2009) to provide insulation from temperature changes and 

prevent desiccation. Depending on geographic location, hibernacula use can be extensive, and the 

availability of suitable overwintering habitat can be an important limiting factor of their 

distribution. 

Historically, the species could be found throughout its range, however due to fragmentation 

it has declined. Remaining populations are small and isolated due to urban and agricultural 

development creating unsuitable habitat (Syzmanski 1998, Johnson 2000).  For this reason, the 
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Eastern Massasauga has been listed federally as threatened, and threatened or endangered in all 

states and provinces where it currently resides, apart from Michigan where it is a species of special 

concern (DeGregorio et al. 2011). 

With reduced and isolated populations throughout its range, the additional pressure of an 

emerging pathogen is a concern. Fragmented and pressured populations of another pit viper, the 

timber rattlesnake (Crotalus horridus) decreased by half in the span of 15 years (1995-2010) given 

the presence of SFD with other stressors (Clark et al. 2011). Such an event could occur in a 

population of Eastern Massasauga, and the likelihood will only increase as factors like climate 

change and anthropogenic development continue. It is also important to consider research methods 

when studying the Eastern Massasauga, as researchers have the potential to increase disease 

prevalence by the introduction of SFD to new sites. As well as increase the ability of O. 

ophiodiicola to cause infection on an individual level, for the use of implanted radio-transmitters 

and other devices on fungal prevalence and infection is currently unknown (Hileman et al. 2017). 

For these reasons it is important to deploy management decisions that can help mitigate further 

population decline and susceptibility to infection by emerging diseases. 

1.4 Environmental Sampling 

Environmental sampling involves collecting samples from mediums such as soil or water. 

Recently, the environmental sampling approach has been applied for the detection of organisms in 

the environment via the detection of the organism itself, or DNA from environmental sources. 

PCR based approaches are often used to then determine presence of the species. This style of 

environmental sampling has been present in the field of microbial ecology since the 90’s 

(Giovannonoi et al. 1990). Since then it has been applied to detect and quantify a variety of 

bacterial and fungal organisms both in the environment and for food safety (Schena et al. 2004, 

Nielsen et al. 2012, Lozano-Ojalvo et al. 2015, Kamoroff and Goldberg 2017, Trujillo-Gonzalez 

et al. 2019). In the past, traditional methods such as culture-based techniques would be used to 

answer questions regarding microbial ecology. However, they tend to be time consuming and 

cannot always generate appropriate results depending on the research goals. Additionally, in 

complex microbial environments like soil, such methods are not always sensitive enough to detect 

the species of interest (Cooke et al. 2007). Environmental sampling and DNA detection provide 
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an alternative route to more traditional methods for detecting microorganisms within the 

environment.  

Environmental sampling has been successfully utilized successfully to detect fungal plant 

pathogens (Cullen et al. 2001, 2002, Lees et al. 2002) and insect associated pathogenic fungi (Sun 

et al. 2008). Aquatic, fungal pathogen detection has also applied environmental sampling with 

success (Kamoroff and Goldberg 2017, Trujillo-Gonzalez et al. 2019). Sampling schemes to detect 

pathogens environmentally can be adapted to observe temporal or spatial shifts in presence as has 

been applied in studying mycorrhizal and endophyte fungal communities (Davison et al. 2012, Ek-

Ramos et al. 2013). This would make it possible to draw inferences on pathogen presence through 

time and space, to determine environmental associations that can indicate aspects about fungal 

activity and pathogen infection. 

Quantitative PCR (qPCR) has become heavily associated with such environmental 

sampling for both single and multiple species. It can provide faster and more sensitive detection 

than conventional PCR (Lees et al. 2002, Schena et al. 2002, Shena and Ippolito 2003). With the 

application of qPCR for microbial species detection, findings are no longer limited to presence 

alone. Depending on the assay applied it is possible to quantify prevalence in the environment as 

well. 

It is important however, to consider certain factors when using an environmental sampling 

scheme to detect species. False detections, or false positives, occurs when a sample that is truly 

negative is given as a positive results usually due to cross contamination. Such false positives can 

generate false data and lead to incorrect assumptions. The same principle applies for false negative 

detections as well, where a sample is incorrectly assigned a negative result when in truth it is 

positive. Therefore, it is critical to properly decontaminate sampling equipment to avoid species 

detection in truly negative samples, while also ensuring that the methods of sampling can detect 

truly positive samples (Bohmann et al. 2014). Additionally, realizing the capabilities of the assay 

applied is important. Not all assays can lead to appropriate quantification (Allender et al. 2015a) 

due to the regions they target for amplification. Therefore, it is important to choose or design an 

assay that can meet the desired research goals.  

The inclusion of environmental sampling using highly specific and sensitive assays for 

detection can act as an early monitoring tool. This would allow for the detection of pathogenic 
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species in a new area while they are at low densities. Which can mitigate the spread of disease to 

new geographic areas and allowing managers to act in a timelier manner. 

1.5 Objectives 

O. ophiodiicola is responsible for causing SFD in snake species over a wide geographic 

area. Given the observation of infected S. catenatus displaying signs of SFD from spring egress to 

fall ingress (Allender et al. 2015b, Tetzlaff et al. 2015, Allender et al. 2016) in Michigan, it is 

possible that they are exposed to O. ophiodiicola while in their hibernacula. Groundwater could 

then be a source of infection due to S. catenatus tendency to partially submerge during winter 

(Smith 2009). Additionally, evidence persists that O. ophiodiicola exists as a saprophyte in soil 

(Allender et al. 2015c). No confirmed detection has been observed in groundwater (Baker et al. 

2018) and only one attempt in soil (Campbell et al. 2021) was successful in detecting O. 

ophiodiicola.  

I predict that O. ophiodiicola is detectable in both soil and groundwater given that it is 

present at our site of interest in northern Michigan, and that its presence will be linked to the 

surrounding habitat, its environmental parameters, and seasonality. To address the hypothesis, this 

study aimed to carry out several objectives. 1) Determine if O. ophiodiicola DNA detection is 

achievable in soil and groundwater samples, 2) compare detection between habitats and seasons 

to observe differences spatially and temporally, 3) determine environmental associations through 

exploratory modeling of occupancy as a function of measured parameters, and 4) determine 

occupancy estimates for the site, sample, and detection probability of O. ophiodiicola. 
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CHAPTER 2. METHODS 

2.1 Field site 

This study was conducted at the Camp Grayling Joint Maneuver Training Center, a U.S. 

National Guard facility west of Grayling, Michigan. The facility covers a large area over both its 

northern and southern locations, nearing 60,000 hectares in size (Michigan National Guard). The 

property consists of a mixture of training grounds that are closed to the public and public access 

areas for recreational activities. The area consists of a variety of habitat types, including deciduous 

and coniferous forests with both closed and open canopy, forested and shrub-scrub wetland, and 

shrub-scrub/barren areas. There are also two modified habitats, experimental clear cuts and burned 

areas. Clear cuts were made during 2006 in heavy canopy cover stands of red pine and quaking 

aspen, and monitored for Massasauga habitat suitability (DeGregorio 2008, Ravesi 2016). Burned 

areas occurred due to unintended spread of a burn that had been planned to take place in a small 

arms training area during 2010 (Ravesi 2016).  

Given that Camp Grayling covers a large area and has a mixture of habitats that have 

remained well intact, the area hosts a wide array of wildlife, including several species protected at 

the state and federal level, including the Eastern Massasauga.  

2.2 Environmental Sampling 

2.2.1 Soil Sample Collection  

Sample collection occurred within a ~10.5 km2 area and was developed around known 

massasauga habitat. A three-level sampling design involving primary units, secondary units, and 

replicate observations was employed following protocols designed for environmental DNA 

surveys aimed at detecting a single target species DNA to determine occurrence (Ficetola et al. 

2015, Willoughby et al. 2016, Dorazio and Erickson 2018). For this study, the primary sampling 

units (locations or sites that exist within a study area) consisted of the total study area broken down 

into four different sampling locations (Figure 1). Sampling locations were based on the 

macrohabitat type present in study area, consistent with descriptions of macrohabitat 

characteristics. Ravesi (2016) described macrohabitats within the same study site, with forested 
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closed canopy areas consisting of coniferous or deciduous forest with greater than 50% canopy 

cover, and shrub-scrub/open as areas with low canopy cover (<30%), being comprised mostly of 

woody shrubbery like speckled alder and black cherry. Two other macrohabitats included as study 

locations were the two modified habitats that exists within the study area: the burn zone from 2010, 

and clear-cut areas from 2016 in both pine and aspen stands. Macrohabitat sampling locations were 

created as polygons through image classification and made to cover the macrohabitat type they 

represent. Macrohabitat coverage was checked for correct placement through inspection of aerial 

imagery in ArcMap (ArcGIS version 10.5, Esri), land cover data (USGS), and ground proofing on 

site.  

At the second level of sampling (eDNA samples taken within each location) (Dorazio and 

Erickson 2018), an even number of random points were placed within each sampling location 

(Figure 2), using the create random points feature class on ArcMap (ArcGIS version 10.5, Esri). 

A grid feature was placed over the study locations and points were assigned to grid cells to ensure 

that randomly placed points had distribution across the study location. If the number of points 

plotted per location differed, then points were randomly removed utilizing the select random by 

count function in Python while in ArcMap. Ninety points were placed in each sampling location, 

however the number of points where samples were collected differs due to fieldwork constraints.  

The final level of sampling are the subsamples taken from each eDNA sample (Dorazio and 

Erickson 2018), which consist of PCR replicates. Each sample from a given location was run in 

triplicate, giving three subsamples per each location sample.  

Soil samples were collected during 2020 from July to November and 2021 from April to 

June. Samples were grouped seasonally (spring, summer, fall) dependent on their date of collection 

to assess seasonality. Samples taken April-June were grouped as “spring”, July-August as 

“summer”, and October-November as “fall”.  Each sample was taken to a depth of 10 cm and 

across a ~10 cm diameter of surface space at each sampling site using a Fisherbrand disposable 

sterile spatula. Samples were placed in sterile Fisherbrand 4 oz. specimen containers. At that depth 

both the O and the A horizons of soil were incorporated when present, the most organic-rich 

horizons of typical soil series. The logic behind focusing on these two superficial horizons is that 

if Ophidiomyces ophiodiicola is present as a free living saprophyte within soil, which has been 

suggested based on its ability to utilize a wide variety of carbon sources and withstand a large 

range of environmental conditions (Allender et al. 2015c). Then O. ophiodiicola is most likely 
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present in these substrates. Latex gloves were used at each sampling point for handling all 

equipment that would come into direct contact with the samples, with new gloves being used for 

each sample to prevent cross contamination.  Soil samples were placed on ice for short-term 

storage (1 to 3 days) until they could be brought to the lab for DNA extraction, or frozen at -80°C 

for long term storage. When field housing provided proper storage, samples were kept on ice for 

the day of sampling and frozen until they could be brought back to the lab.  

Field positive controls consisted of field collected soil that was spiked with 100,000 copies 

of plasmid containing the target gene to be amplified. Spiked, positive soil was placed in the 

Fisherbrand 4 oz. specimen containers and stored under the same storage conditions as 

environmental samples.  For field negative samples, DNA free sand was brought into the field and 

collected utilizing the same approach, using the Fisherbrand spatulas and specimen containers, and 

stored with other samples.  

2.2.2 Ground Water Sample Collection 

The ground water sampling scheme was like that of the soil sampling, however the extent of 

the sampling area smaller.  Due to the more labor-intensive process of ground water sample 

collection, the area sampled was limited to prior observations of massasauga overwintering sites 

(Figure 3). Massasauga in the area have been found with clinical signs of SFD and O. ophiodiicola 

has been isolated from such cases (Allender et al. 2011, Allender et al. 2015b, Tetzlaff et al. 2015). 

Therefore, it is believed that if O. ophiodiicola is present in the groundwater of the area, then 

snakes are most likely encountering it while in their hibernacula.  Eastern Massasauga are known 

to utilize soils with high moisture, choosing sites where they can be close to the water line, staying 

submerged to some extent to prevent desiccation but also to take advantage of the thermal stability 

of water (Smith 2009, Merkling 2018).  

 The goal for groundwater sampling was to observe possible temporal effects on O. 

ophiodiicola presence at the site since there is only one primary sampling unit (the overwintering 

area). To accomplish this the Random points were plotted utilizing the same create random points 

feature class in Arc Map (Arc GIS) across the massasauga overwintering area. Samples were 

grouped seasonally like soil samples (summer, spring, fall) to assess seasonality at the site level, 

and potential environmental correlates were measured for each ground water sample at the sample 

level.  



 
 

20 

Independent of direct known hibernacula use, ground water was collected using a stainless-

steel drive point well supplied by Solnist (Figure 4). The drive point well apparatus included a 

30cm piezometer with holes covered in a mesh (304 S.S. 50 Mesh, 0.254 mm) to filter ground 

water from sand and other debris. A depth of ~1m was achieved with a 60cm extension pipe 

connected to the piezometer. The drive head assembly was struck with a slide hammer until the 

entire unit reached the proper depth.  Plastic tubing provided by Solnist was attached to the 

piezometer and run through the drive point well where it could be attached to a tube adaptor and 

connected to smaller diameter, flexible tubing fitted to a peristaltic pump head. Ground water was 

pumped up though the well using a cordless drill that rotated the peristaltic pump head to create a 

vacuum. Ground water was collected by filling a sterile 500 ml plastic bottle which was sealed and 

labelled accordingly. Ground water samples were stored on ice for 1-2 days, or frozen at -80 °C 

for longer term storage.  

All equipment that came into direct contact with groundwater (piezometer, extension pipes, 

all tubing, and adaptors) was soaked in a 3% sodium hypochlorite (50% bleach) solution for up to 

20 minutes and rinsed with sterile water. All sanitized materials were brought to the field and 

stored in a separate container designated for clean supplies and transported to sampled sites in a 

separate field pack from used equipment carried between sampling points.  

2.2.3 Environmental data 

Alongside soil and water samples collected within the four sampling locations, 

environmental parameters hypothesized to be associated with O. ophiodiicola occurrence were 

taken. For each soil sample, ambient air temperature (°C) and soil temperature (°C) at 10 cm depth, 

was measured with a  Traceable Lollipop Waterproof thermometer was measured.  A ribbon test 

was performed to estimate the soil type at the sample point (Merkling 2018).  Additionally, two 

soil samples were taken using a soil corer, one to determine soil pH, which involved mixing a soil 

core in a 1:2.5 ratio by weight with water (Kabała et al. 2016) and measured using a Quanta 

Hydrolab pH meter, ensuring the sensor is submerged to attain proper readings.  The other soil 

sample was used in soil moisture and organic matter determination.  Soil moisture was measured 

by weight change after drying, which involved taking 25 – 50 g of soil and drying it for up to 48 

hours at 70°C, checking every 24 hours until mass readings remained static as suggested for 

organic heavy soils (Heiri et al. 2001). The initial soil weight and the final weight after drying 
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were used to determine the percent moisture in the soil following the equation %SM=((Wi-

Wf)/Wi)*100. The equation can be described as subtracting the dry weight from the wet weight to 

get the mass of the water in the sample, then dividing it by the weight of the wet sample and 

multiplying by 100.  After soils were dried to determine soil moisture, organic matter was 

measured using the loss on ignition method.  One gram aliquots from each sample were placed in 

20ml porcelain crucibles and placed in a muffle furnace (Thermo Scientific Thermolyne) and 

exposed to 550°C for 4 hours (Figure 5, Heiri et al. 2001).  Soil samples were then removed from 

heat and set to cool on a heat resistant plate.  Samples were not cooled completely to room 

temperature and crucible lids were left on to prevent soils from reclaiming moisture before final 

measurements. After final measurements, the loss on ignition at 550 °C was calculated using the 

equation LOI=((Wi-Wf)/Wf)*100.  The percentage of mass loss represents the organic carbon 

present in the sample.   

Variables associated with seasonality were also estimated for each soil sample.  Data on 

daily soil temperatures (10 cm depth) and daily precipitation (mm), provided by Michigan State 

University Weather Station Network (Kalkaska station), was used to determine cumulative 

growing degree days over three weeks (cGDD), and cumulative precipitation over one week prior 

to sample collection (weekly prcpn), respectively.  

Environmental parameters collected for ground water samples include ambient air 

temperature (°C), ground water temperature (°C), pH, and dissolved oxygen (mg/L).  Air 

temperature was measured using the same thermometer (Traceable Lollipop Waterproof 

thermometer) used when collecting soil samples, all other parameters were measured using the 

Quanta Hydrolab. Water parameters were measured in sterile cups separate from the sample bottles 

and were collected before the sample to prevent drastic changes from exposure to air.  

2.3 DNA Extraction 

2.3.1 Soil Samples  

 Upon return to the lab, soil samples were stored on ice until processing for downstream 

qPCR analysis.  For long-term storage, samples were stored at -80 °C.  DNA extraction utilized 

the Qiagen DNeasy Power Soil Pro DNA extraction kit, following the extraction protocol included 

with the kit.  Bulk samples were homogenized and then 25 mg of the total sample were loaded into 
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power bead tubes with forceps, which were soaked in a 50% bleach solution, rinsed, and dried 

between samples. No further pre-processing of soil samples took place before utilization of the 

Power Soil Pro kit. When completed, samples were eluted into 100 µl of elution buffer and stored 

at -80 °C until use in qPCR.  

2.3.2 Ground Water Samples  

To prevent sample degradation, ground water samples were run through filtration in as 

timely a manner as possible once in the lab.  Water samples were filtered through a Nalgene 250 

ml rapid flow filter unit with a 0.45µm nitrocellulose (CN) filter membrane to capture DNA and 

fungal material but prevent excessive clogging that occurs with smaller filters (Eichmiller et al. 

2016, Ratsch 2018).  Samples were run until all water had passed through using a vacuum 

apparatus attached to an in-house vacuum port (Figure 6).  The filtering process per sample took 

5 to 12 hours depending on the sample due to the high levels of sediment present.  Therefore, not 

all samples from a given field sampling trip were run within 24 hours, for that reason, left over 

samples were stored at 4°C for short term storage (up to 2 days) and longer-term storage at – 80 

°C.  Once filtration was complete, filters were removed from the filter unit, folded/torn with 

forceps, placed in a 1.7 ml micro centrifuge tube, and stored at -80°C until extraction.  Used forceps 

were decontaminated by soaking in a 50% bleach solution and rinsing between filters.  

DNA extraction of ground water samples used the same Qiagen DNeasy Power Soil Pro 

DNA extraction kit.  The Power Soil extraction kit has shown low variation in extraction efficiency 

between water sources, therefore making it the most suitable for detecting across aquatic 

environments and quantification of DNA in the environment (Eichmiller et al. 2016).  Filters were 

placed in power bead tubes and were run following the extraction kit protocol before elution in 

100 µl of elution buffer.  Ground water sample DNA extracts were stored at -80 °C. 

2.4 Quantitative PCR 

 I used a quantitative PCR (qPCR) assay developed for more sensitive detection and 

diagnosis of O. ophiodiicola infection (Allender et al. 2015a).  It has been used for detection of 

Ophidiomyces in several snake populations (Allender et al. 2016, Hileman et al. 2017) and crayfish 

burrow water (Baker et al. 2018). Similarly designed assays utilizing the internal transcribed spacer 
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(ITS) region between the rRNA genes have shown that O. ophiodiicola is detectable in 

environmental samples such as soil (Bohuski et al. 2015, Campbell et al. 2021). Therefore, the 

assay applied in this study offers a specific and sensitive approach for the detection of 

Ophidiomyces in environmental samples. 

Reactions were run using USA Scientific TempPlate 96-Well, clear qPCR plates.  Each 

reaction contained 0.3 µM of both the forward (OphioITS-F) and reverse (OphioITS-R) primers, 

and 0.2 µM of the probe (Probe-FAM) (Allender et al. 2015a). Additionally, PCR master mix 

(Appliedbiosystems TaqMan Environmental Master Mix 2.0) and the Internal Positive Control 

master mix 10X/ IPC DNA 50X (Applied biosystems TaqMan Exogenous Internal Positive 

Control) were added to each reaction. Finally, 2 µl of template DNA was added in to reach a total 

reaction volume of 20 µl. The addition of IPC functioned as a positive control to monitor for false 

negatives caused by PCR inhibition.  Each sample was run in triplicate to increase detection.  

Thermo cycling parameters were carried out as in Allender et al.  (2015b), with an initial step of 

50 °C for 2 minutes, a denaturation step at 95 °C for 10 minutes to activate the polymerase and 

start the reaction, continued with 40 cycles of 95 °C for 15 seconds and 60 °C for 60 seconds, and 

72 °C for 10 minutes.  

Each plate included a series of DNA standards run in triplicate; the template DNA of those 

standards was linearized plasmid with the ITS region inserted (Allender, Bunick, et al. 2015). 

Known concentrations of the plasmid containing the insert were made by 10-fold serial dilutions 

of plasmid starting at a concentration of 1.05 x 107 (10,500,000 copies of ITS insert) down to 1.05 

x 101 (10.5 copies of ITS insert). A standard curve was run with all plates to determine reaction 

efficiency and the R2 by plotting the known concentrations against the relative fluorescence 

readings they generate.  Initial plates of standards were run to determine the limit of detection 

(LOD) for the assay, which is the lowest concentration at which 95% of the samples are positive 

(MIQE guidelines).  LOD was determined through empirical means.  Positive and negative 

controls were included on plates to assess contamination in negative controls, and make sure 

reaction is functioning as intended with the positive control.  Both samples as a whole and each 

technical replicate were assigned a binomial indicator (positive=1, negative=0).  Samples were 

deemed positive if at least one replicate amplified and if those that did amplify were within a Ct 

threshold of 40 based on suggestions made by Bohuski et al. (2015) and used in Campbell et al. 

(2021).  This procedure is aimed at detecting very low concentrations of environmental DNA and 
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avoiding dismissal of potential positives based on thresholds used more for diagnostic purposes in 

infected snakes.  

To reduce potential contamination, DNA extractions and qPCR procedures were 

completed using filtered pipette tips and all qPCR reagents were handled in a Class 2 Biological 

Safety cabinet where all surfaces were decontaminated with 50% bleach prior to use and exposed 

to UV radiation before and after each use.  Reagents for qPCR were stored in a freezer separate 

from any reagents or equipment used for DNA procedures (filtration and extraction).  Additionally, 

known Ophidiomyces DNA sources (the standard solutions) were stored in a separate room across 

the building from environmental sample handling.  

Any positive replicates from qPCR analysis were Sanger sequenced (MCLAB) to verify 

amplification of the correct sequence from the species of interest, O. ophiodiicola. The primers 

used for the assay, both Ophio-F and Ophio-R, yielded a product of 68 base pairs in length. 

Sequencing attempts with these primers yielded inconclusive results due to low base quality return.  

Likely due to the small size of the product, as Sanger sequencing takes up to 50 bp to return quality 

base readings, the diagnostic primers developed for the assay were insufficient for Sanger 

sequencing.  To remedy this, qPCR products from positive samples were purified using spin 

columns (Zymo Research) and run through a sequential PCR reaction using modified OphioITS-

F/R primers with 5’ extensions.  The 5’ extensions consisted of M13 standard primers M13(-21) 

forward and M13(-48) reverse (IDT), for the forward and reverse Ophidiomyces primers 

respectively.  This lengthened the total size of the product for sequencing to 109 bp.  The products 

were run through a 3% agarose gel, and a Qiagen gel extraction kit was used to conduct a DNA 

gel extraction to purify the product for sequencing.  

2.5 Statistical Analysis 

2.5.1 Habitat comparison analysis 

All statistical analysis were conducted through RStudio version 1.4.1717 and R version 4.1.0 

(R core team 2021).  

All numeric covariate data (organic matter %, moisture %, soil pH, and soil temperature) 

was tested for normality using a Shapiro-Wilks test of normality. Variables that met the threshold 

of W > 0.9 were treated as normally distributed.  Additionally, homogeneity of variance was tested 
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using the Levene’s test.  Variables that failed to meet either assumption were subject to Box cox 

power transformations which provided suggested transformations. Two-way analysis of variance 

(ANOVA) was used to observe if there were differences in the measured variables between the 

four habitat types as well as between the seasonal groupings. The two-way analysis also allowed 

for the investigation of an interaction between habitats and seasons. Tukey honest significant 

differences were applied as post-hoc tests to uncover the cause of any statistically significant 

difference in the ANOVA. All tests were performed with a significance threshold of α = 0.05. 

O. ophiodiicola DNA presence in a sample was also compared between habitats (forested, 

cuts, burn, and shrub-scrub open) across the entire span of sampling. Given the categorical nature 

of the variable for presence in a sample (1 =present, 0 = absent), a Chi-squared test of independence 

was used to test for whether the two variables in question (presence in a sample and habitat) are 

independent of each other.  It also was also of interest to investigate a seasonal effect throughout 

the sampling effort. Samples grouped into the three seasons, “spring” (n=62), “summer” (n=104), 

and “fall” (n=46) were subject to the same Chi-squared test for independence. 

2.5.2 Binomial Logistic Regression 

Binomial logistic regression was conducted to assess the probability of Ophidiomyces DNA 

presence in a sample, including predictors (covariates) thought to inform its presence.  Such 

logistic regression analyses have been applied to environmental DNA studies in the past on a 

variety of taxa such as invasive fish (Robson et al. 2016, Stoeckle et al. 2017), and the eastern 

hellbender (Takahashi et al. 2017) in aquatic environments. A key assumption of logistic 

regression is that there be little to no multicollinearity.  To test for correlations among predictor 

variables, Kendall’s Tau correlation was applied. Variables that showed high correlation (r > 0.7) 

were not run within the same model (Stulik 2015).  

To determine initial relationships between the probability of Ophidiomyces DNA presence, 

the binomial variable associated with Ophidiomyces presence was modelled as a function of soil 

temperature, soil pH, soil organic matter percent, soil moisture percent, cumulative precipitation 

(one week before the sample was taken), and cumulative growing degree days 3 weeks prior to 

sampling event.  A global model was created using the logistic regression function under glm (glm, 

“stats” R core team 2021) that included all parameters of interest. That global model was then 

incorporated into an automated model selection function (dredge “MuMIn”, R core team 2021) 
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which allowed for the generation of a model selection table containing all combinations of 

predictors included in the original global model. 

Regression models were then ranked by AIC (Akaike-Information criterion) and the model 

weight (w). AIC is a model selection method that ranks models based on their goodness of fit while 

penalizing for increased variance that comes with model complexity (Burnham and Anderson, 

2002).  The change in AIC (ΔAIC) and the model weight (w) are the basis for comparing models 

within a set.  Models with a change in AIC is below two units (ΔAIC < 2) from the top candidate 

models share significant support for being the model of best fit, while the weight value represents 

the weight of evidence that the given model is the best model, with all weights summing to 1 

(Burnham and Anderson 2002).  Therefore, all models within the set that were within two units 

from the top ranked model were considered to share support for being the model of best fit.  All 

predictors included in the top model as well as those that shared support for being the top ranked 

model were included as covariates of occupancy at the sample level in subsequent multiscale 

occupancy modeling.  The sum of the weights for each variable included in modeling was 

generated as well to determine importance of variables (Burnham and Anderson, 2002). 

A regression was done to determine initial relationships between predicting Ophidiomyces 

DNA presence in a sample and environmental parameters of interest, providing a more informed 

inclusion of covariates in occupancy modeling. To avoid overfitting of models a second order 

correction (AICc) was used as the selection criteria, due to smaller sample size given the number 

of explanatory variables included in modeling (Burnham and Anderson 2002).  McFadden’s 

pseudo- R2 and a residual deviance test were used to assess the performance of the top model and 

how well the model fit the observed data. McFadden’s pseudo-R2 values are known as the 

“likelihood ratio index” and were generated by comparing the log likelihood of the model in 

question to the null model as a ratio (McFadden 1973, Hu et al. 2006). The residual deviance 

goodness of fit test is determined by using the residual deviance and corresponding degrees of 

freedom that come with “glm” output. One can then generate an associated p-value using the 

“pchisq” function in RStudio. The residual deviance itself represents the how well the response 

variable is predicted by the model with the included parameters. If the associated p-value is below 

the 0.05 threshold, then the null hypothesis that the model fits the data is rejected. Indicating that 

the model is not suitable for predicting the observed data. 
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2.5.3 Occupancy Analysis  

Occupancy modeling has been applied widely across many taxa (Sewell et al. 2010, Campos‐

Cerqueira et al. 2016, Rich et al. 2016).  However, to apply such an analysis to environmental 

DNA, alterations to classical model conditions were made to encompass three nested levels of 

sampling at the location, samples within the location, and subsamples or replicates of the sample 

(Hunter et al. 2015).  These three level sampling designs have been commonly used in 

environmental DNA based surveys in the past (Ficetola et al. 2015, Schmelzle and Kinziger 2016, 

Willoughby et al. 2016, Hunter et al. 2017, Voros et al. 2017).  For this reason, the occupancy 

analysis conducted in this study utilized the eDNAOCCUPANCY package in R (version 4.1.0 R 

Core Team, 2021) which allowed for the fitting of Bayesian, multi-scale occupancy models 

(Dorazio and Erickson 2018) to the Ophidiomyces detection data collected.   

The models developed under this package estimated three probabilities, those being the 

occurrence probability at the site level, the occurrence probability at the sample level within a site, 

and the probability of detection in qPCR replicates from each sample, represented as Ψ(psi), 

ϴ(theta), and p, respectively.  Additionally, the package allows for the inclusion of covariates in 

model building, so interactions between environmental parameters and occurrence/detection 

probabilities can be observed. 

All models were fit with Markov chain Monte Carlo (MCMC) algorithms and run with 

11,000 iterations.  Trace plots and autocorrelation plots were run on the estimates from each model 

output to check for convergence and autocorrelation, which was done through functions provided 

in the package (eDNAOCCUPANCY).  Models consisted of a null with no covariates included, and 

those with covariates thought to informative of O. ophiodiicola presence at the site, sample, and 

replicate level.  

To reduce the total number of models to a more manageable level, a two-step approach to 

modeling was done (Long et al. 2010, Yates and Muzika 2010, Stulik 2015). First, detection 

probability (p) models were run with occupancy at the site and sample level held constant (Ψ(),ϴ()). 

Then the top candidate (p) model for detection was run in subsequent occupancy modeling. 

Covariates for detection probability included bulk DNA concentration (ng/µl), soil organic matter 

content, and soil pH.  These variables were deemed to be informative for detection at the PCR 

level due to their potential effects on differential detection between PCR replicates due to 

inhibition. All model combinations were compared using WAIC (Watanabe-Akaike Information 
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criterion) and PPLC (Posterior Predictive Loss criterion) for model selection with the lowest scores 

representing the model with best fit.  

Occupancy modeling at the sample (ϴ) and site (Ψ) levels included the following 

covariates: soil temperature, soil pH, soil moisture, organic matter content, cGDD, and weekly 

precipitation (prcpn).  Soil type was excluded from modeling as the variation seen in occupancy 

based on soil type is likely also explained by other covariates such as soil moisture and organic 

matter content (Burke et al. 1989, English et al. 2005, Plante et al. 2006). Additionally, the relative 

importance of soil type was found to be very low in logistic regression. To determine the 

environmental associations of Ophidiomyces, an exploratory analysis was run to investigate the 

singular effects and additive effects of all covariates in question.  All combinations of covariates 

were run for occupancy at the sample level (ϴ) with the addition of the top p model and were 

scored based on their WAIC and PPLC criterion scores.  Estimates of both formal and derived 

model parameters from the optimized model were used to produce occupancy probabilities at the 

site (Ψ) and sample (ϴ) level, and the detection probability (p).  
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Figure 1. Map of study area (~10.5 km2) consisting of the four macrohabitat types sampled at the 
primary sampling unit. Cut habitat is made up of areas subjected to clear cutting (2016), Burn 

represents area in the site that was burned (2010), forest is closed canopy forest with greater than 
50% canopy cover, and SSO are areas with <30% canopy cover dominated by woody shrubbery. 

Determined through habitat classification (ArcGIS version 10.5, Esri) and cross-referenced by 
inspection of aerial imagery and ground proofing. 
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Figure 2. Map showing randomly placed sampling points, the secondary sampling unit, within each 

macrohabitat type (sampling location). The points represent the locations of soil samples taken during the 
summer sampling season. 
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Figure 3. Map showing the sampling location for ground water samples and the corresponding random 
sampling points for the summer season. Sampling location was based on Massasauga hibernaculum 

observations and was made up of several of the macrohabitat types. 
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Figure 4. Drive point well apparatus used to pump ground water to the surface at each sampling point. 
Wells were driven to ~1 meter depth with a slide hammer. Piezometers (portion shown with openings 

above the tip), extension tubes, and white tubing were soaked in 50% bleach before each use. 
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Figure 5. Ground water filtering set up, consisting of the Nalgene filter unit connected to tubing that 
flows into a collection flask for flow through. The apparatus is connected to in house vacuum unit. 
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CHAPTER 3. RESULTS 

3.1 Habitat Comparison  

Of the environmental variables measured at each sampling point only soil pH and soil 

temperature met the normality assumption (w > 0.90), while all failed to meet the assumption of 

homogeneity of variance. Variables were subject to box-cox transformation to identify the proper 

transformation satisfying the assumptions so the two-way ANOVA could be applied.  

Two-way analysis of variance showed that soil temperature differed between both the habitat 

types (F3, 198 = 3.80, p = 0.011) and seasons (F2, 198 = 334.8, p < 0.0001) (Figure 8). However, more 

importantly an interaction between the two independent variables (habitat and season) was 

observed (F6, 198 = 2.485, p = 0.024) due to the forest having relatively cooler temperatures in the 

spring and clear cuts exhibiting warmer temperatures during the summer relative to the other 

habitats. 

When analyzing the variance in soil pH, significant differences were observed between both 

habitat (F3, 198 = 9.09, p < 0.0001) and season (F2, 198 = 62.68, p < 0.0001) groupings. No significant 

interaction was observed between habitat and season for soil pH (p = 0.052) (Figure 9). Tukey 

post-hoc analysis showed that soil pH differed between both forest and shrub-scrub habitat (p = 

0.046), burn and shrub-scrub (p < 0.0001), and cut and shrub-scrub habitat (p=0.012). There was 

also a significant difference between soil pH and all three seasons (p < 0.0001) with the highest 

pH occurring during the summer season. 

Soil moisture content, like soil pH, also differed between both groups (habitat: F3, 198 = 6.06, 

p = 0.001, season: F2, 198 = 28.63, p < 0.0001) but did not display an interaction (p = 0.541) (Figure 

10). Tukey post-hoc results indicates moisture content differed between cut habitat and all other 

habitat types, forest (p = 0.003), burn (p = 0.003), shrub-scrub (p = 0.007). While between seasons, 

soil moisture content was lowest during the summer season and significantly different than both 

fall (p < 0.0001) and spring (p < 0.0001) seasons.  

Lastly, soil organic matter content only differed between habitat types (F3, 198 = 7.456, p < 

0.0001) with no interaction occurring between habitat and season (p = 0.313) (Figure 11). The 

differences in organic matter content between habitat types were observed between the cut habitat 

and the other habitat types, forest (p < 0.0001), burn (p = 0.006), shrub-scrub (p = 0.001). Temporal 
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variables (cGDD and weekly prcpn) were not subject to season grouping comparisons nor habitat 

level comparisons as data came from a single location outside the study location.  

Confirmed positive detections differed between habitat types sampled, with forested habitat 

having 9 (18%), shrub-scrub open 12 (24%), clear cuts 5 (8%), and burned 6 (11%) positive 

samples (Figure 7). Although both shrub-scrub open and forested habitats have nearly double the 

number of positive samples as compared to burned and clear cuts, the presence of O. ophiodiicola 

DNA in a sample throughout the entire sampling effort was found to be independent of the habitat 

type from which the sample came (Chi-Squared, X2 = 5.406, df = 3, p = 0.1444).  

Findings differed when the presence of DNA was tested across the seasonal groupings 

regardless of habitat (Figure 12), with results suggesting that the DNA presence in a sample and 

the season in which the sample was taken are not independent of each other (Chi-Squared, X2 = 

10.905, df = 2, p = 0.0043). Therefore, season had some noticeable effect on whether fungal DNA 

is present. 

3.2 Quantitative (Real-time) PCR 

Both soil and groundwater extractions yielded DNA concentrations in a range of 0 to 350 

ng/µl.  The quantitative PCR assay developed by Allender et al. (2015) and implemented in this 

study utilized a standard curve based on known concentrations of linearized plasmid containing 

the fungal ITS insert.  All plates were run with their own standard curve for which the samples on 

that plate were applied to.  The MIQE guidelines state that limit of detection (LOD) is defined as 

the lowest concentration at which there is 95% amplification success (Bustin et al. 2009).  The 

LOD for this assay was determined empirically to be 101 copies of the ITS gene.  The dynamic 

range applied in this study for the standard curve on each plate was 1.05 x 107 to 1.05 x 101.  This 

followed similar results reported previously with a dynamic range of 1.05 x 108 to 1.05 x 101 copies 

(Allender et al. 2015a). For simplicity in reporting, all plates were combined into a cumulative 

standard curve based on the mean Ct values, encompassing the interassay variation between the 

plates (Figure 6) as in Allender et al. (2015).  The cumulative curve displayed similar Ct values at 

each concentration as reported previously (Allender et al. 2015a) and had an average efficiency of 

119% and R-squared value of 0.96.  

All negative controls failed to amplify, and positive controls ran consistently with their 

corresponding environmental samples. The internal positive control (IPC) included within each 
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reaction ran consistently for all samples throughout all plates, suggesting no significant PCR 

inhibition was present at any time. 

A total of 215 soil samples were taken among the four macrohabitat types (sites) with forest, 

shrub-scrub open, clear cuttings, and burned areas having 50, 51, 57, and 52 samples respectively. 

Thirty-two (14.8%) total samples showed signs of amplification (Table 1) across all habitats 

(Figure 8) and were below the threshold deeming the sample positive (Bohuski et al. 2015, 

Campbell et al. 2021).  Positive samples were confirmed through Sanger sequencing (MCLAB), 

with sequence data aligning properly to the ITS region of O. ophiodiicola (Geneious 11.1.5).  

Additionally, positive sample sequences all showed greater than 95% sequence identity to O. 

ophiodiicola reference sequence data across multiple strains and isolates (Genbank). DNA was 

only detected in a single ground water sample that was also confirmed through sequencing.  This 

result precluded further analysis of ground water.  

3.3 Binomial Logistic Regression 

The top ranked model (AICc = 166.76, w = 0.0401) included the additive effects of cGDD, 

soil pH, soil temperature, and weekly prcpn.  The estimates generated by the model suggest that 

only soil pH (p = 0.01842, z value = 2.357) and cGDD (p = 0.0406, z value = 2.048) had a 

statistically significant effect on the model with soil pH having the largest estimated effect size 

(Table 3).  These results seem to agree with previous comparative analyses with both covariates 

shown to be related to Ophidiomyces also shown to change seasonally. Soil pH was higher during 

the summer than both spring and fall seasons, while cGDD is also at its highest during the summer 

since the days where temperatures that exists above the base (7°C) occur more frequently.  

Through model selection, the top candidate model predicted that soil pH, cGDD influence 

the probability of presence. Weekly precipitation and soil temperature were also included within 

the model.  Although weekly precipitation and soil temperature were shown to not influence 

presence, their inclusion still contributed to the model fit.  There was uncertainty in model selection 

however (Table 2), as 18 different models were indicated as the top ranked model (ΔAICc < 2).  

Therefore, organic matter percentage and moisture percentage also showed evidence towards 

influencing presence of Ophidiomyces DNA in a sample.  Additionally, the summed AICc weights 

of the variables indicated relative importance of each (Table 3).  Both cGDD and soil pH had the 

highest summed AICc weights, 0.84 and 0.74 respectively meaning that cGDD represented 84% 
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of the AICc weight within the set of models and soil pH represented 74%.  AICc weight was also 

considered for inclusion of covariates in multiscale occupancy modeling.  The covariate soil type 

was not included in any of the models that fit within the ΔAICc threshold within 2 units, and it had 

the lowest of the summed weights (5.7%). 

Goodness of fit of the top model was assessed through residual deviance goodness of fit test. 

McFadden’s pseudo R2 were also included to observe model performance.  The top model of the 

candidate set had a residual deviance of 156.47 with 205 degrees of freedom while the null 

deviance was 179.26 with 209 degrees of freedom. The associated p-value from the residual 

deviance was shown to be significant (p = 0.005) indicating the model is not useful and cannot 

predict DNA presence well with the included predictors.  Pseudo R2 values further demonstrate 

poor model performance with low predictability, with models in the candidate model set having 

values no larger than 0.127 (Table 2).  

3.4 Multiscale Occupancy Analysis 

Following the two-step approach, covariate effects on detection probability models were 

investigated first. The complete model set for modeling detection (p) consisted of 8 total models 

(Table 5), which consisted of all individual and additive models between the covariates bulk DNA 

concentration, organic matter content, and soil pH. An additional null model p() with constant 

detection was included within the model set. Models were ranked off WAIC and PPLC, with the 

null model p() having detection held constant producing the lowest score under both selection 

criterion (Table 5). Therefore, any improvements in detection model fit were offset by increases 

in variance with the addition of covariate measures. The detection probability for Ophidiomyces 

was found to be 0.37 (0.25, 0.50) at the PCR replicate level.  

Due to the exploratory nature of the occupancy analysis applied, a total of 124 models were 

included in the occupancy model set (Appendix B). This ensured that all potential covariate effects 

were investigated. Model selection uncertainty existed due to both selection criteria applied 

differing in their top ranking (Table 6). The top ranked model by WAIC in the candidate set 

included soil pH as a function of sample occupancy Ψ(),Θ(Soil pH),p() (WAIC = 69.23). Trace 

plots showed acceptable model convergence (Figure 13). Autocorrelation function plots also 

showed little autocorrelation within the model (Figure 13). The probability of occupancy at the 

site level (Ψ) was shown to be 0.83 (0.48, 0.99) while the conditional probability of DNA 
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occurrence at the sample level (Θ) ranged from between 0.04 to 0.48 as shown by the confidence 

interval. Estimation of the model’s posterior mean and 95% credible limits (Table 7) show that the 

occurrence of Ophidiomyces DNA in a sample increases with increasing soil pH (mean = 0.434, 

CI = 0.196, 0.701). The relationship seen when the posterior mean, of the model’s derived 

parameter Θ, is plotted is questionable given visualization of the probability of DNA occurrence 

in a sample across soil pH (Figure 14). The plot shows the no discernable trend between soil pH 

and the probability of occurrence within a sample.  

The alternative model that was selected by PPLC (PPLC = 66.35) was the null model with 

all occupancy estimates for Ψ and Θ held constant Ψ(),Θ(),p(). The selection of this model via 

PPLC criterion indicates that the increase in fit with the addition of covariates does not outweigh 

the increase in variance with their addition. The occupancy probability remained the same at 0.83 

(0.48, 0.99) while the conditional probability of Ophidiomyces DNA occurrence in a sample was 

0.21 (0.14, 0.30). Trace plots and autocorrelation plots showed model convergence and little 

autocorrelation respectively for the null model (Figure 15). 
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Figure 6. Cumulative Standard curve for all qPCR assays applied in this study based on interassay 
variation from multiple standard runs represented in gray. Interassay variation curve from data in 

Allender et al. (2015) is represented in blue. Standard deviations plotted for each in the form of error bars. 
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Figure 7. Percent of positive detection from the total taken in each of the habitat types sampled. Showing 
the difference in detection seen across Burn (n=52), Cut (n=57), Forest (n=50), and Shrub- scrub (n=51) 

habitats. 
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Table 1. List of all positive samples. Displaying sample designation, the habitat it was collected in, the 

number or positive replicates out of three, and the mean Ct value for that sample.  

 

Positive Soil Samples 

 
Sample name Habitat Positive Replicate Number Ct mean  

b114 Burn 1/3 36.26  

b115 Burn 2/3 35.81  

b201 Burn 2/3 37.23  

b202 Burn 1/3 36.77  

b211 Burn 1/3 35.74  

b328 Burn 1/3 37.44  

c105 Clear cut 1/3 36.41  

c106 Clear cut 1/3 35.94  

c107 Clear cut 1/3 36.24  

c110 Clear cut 1/3 37.27  

c201 Clear cut 1/3 36.19  

f103 Forest 1/3 34.61  

f108 Forest 2/3 36.89  

f114 Forest 3/3 36.15  

f117 Forest 2/3 36  

f127 Forest 3/3 36.34  

f128 Forest 1/3 35.02  

f131 Forest 1/3 35.06  

f132 Forest 1/3 34.54  

f240 Forest 3/3 35  

s105 Shrub-scrub 1/3 37.39  

s108 Shrub-scrub 1/3 35.6  

s111 Shrub-scrub 1/3 37.9  

s112 Shrub-scrub 3/3 33.34  

s114 Shrub-scrub 1/3 36.11  

s121 Shrub-scrub 1/3 36.3  

s123 Shrub-scrub 1/3 35.46  

s126 Shrub-scrub 1/3 36.3  

s133 Shrub-scrub 2/3 36.7  

s201 Shrub-scrub 3/3 36.33  

s202 Shrub-scrub 2/3 37.21  

s328 Shrub-scrub 1/3 38.73  
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Figure 8. Interaction plot of square root transformed soil temperature across habitat and seasonal 
groupings. Each point represents mean values for each of the interaction groups. Error bars indicate the 

standard error of each mean value. 
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Figure 9. Interaction plot of natural log transformed soil pH across habitat and seasonal groupings. Each 
point represents mean values for each of the interaction groups. Error bars indicate the standard error of 

each mean value. 
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Figure 10. Interaction plot of natural log transformed soil moisture across habitat and seasonal 

groupings. Each point represents mean values for each of the interaction groups. Error bars indicate the 
standard error of each mean value. 
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Figure 11. Interaction plot of natural log transformed soil organic matter across habitat and seasonal 

groupings. Each point represents mean values for each of the interaction groups. Error bars indicate the 
standard error of each mean value. 
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Figure 12. Percent value of positive detection between seasons fall (n=46), spring (n=62), and summer 
(n=103). Highest detection shown to occur during the summer season
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Table 2. Binomial logistic regression output from 12 of the 124 total models ordered based on AICc. ΔAICc was used to assess model fit relative 

to the top model. Pseudo R2 also included as measure of model performance. Model weight indicated by (w) shows weight of evidence that the 
specified model is the best model.  

 
 

Model Intercept cGDD7 moisture organic Soil.pH Soil.t Soil.type weekly.prcpn Psuedo R2 AICc ΔAICc w

1 -4.901810713 0.008 - - 0.542 -0.151 - 0.016 0.127 166.76 0 0.065
2 -5.060585113 0.003 - - 0.457 - - - 0.104 166.8 0.036 0.064
3 -5.546896301 0.003 - - 0.513 - - 0.014 0.115 166.84 0.081 0.062
4 -4.97748984 0.004 - 0.016 0.386 - - - 0.114 167.09 0.33 0.055
5 -4.462919341 0.007 - - 0.48 -0.127 - - 0.113 167.2 0.435 0.052
6 -5.419018856 0.003 - 0.015 0.445 - - 0.013 0.123 167.53 0.771 0.044
7 -3.271591584 0.005 - 0.021 - - - - 0.098 167.8 1.04 0.039
8 -4.512864485 0.007 - 0.013 0.413 -0.097 - - 0.119 168.22 1.457 0.031
9 -4.903689302 0.007 - 0.01 0.485 -0.123 - 0.015 0.131 168.25 1.492 0.031
10 -5.065461412 0.004 0.008 - 0.411 - - - 0.107 168.27 1.506 0.031
11 -5.522558808 0.003 0.006 - 0.475 - - 0.014 0.117 168.57 1.807 0.026
12 -2.966654962 0.005 - - - - - - 0.081 168.87 2.107 0.023

Binomial Logistic Regression Output

47 



 
 

48 

 

 

 

 

 

 

 

Table 3. The Σw represents the summed AICc weights of each variable indicating the relative importance 
of considered variables in predicting Ophidiomyces presence. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative Variable Importance 

Σw 

cGDD 0.842473427 

Soil pH 0.74256353 

Weekly prcpn 0.476704161 

Organic 0.424434256 

Soil temperature 0.419947769 

Moisture 0.289566082 

Soil type 0.056619555 
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Table 4. Output from the top ranked model (AICc = 166.76) of logistic regression. Estimates represent 
the effect size of the variable. Null and residual deviance were used to generate chi-square statistic. 

 

 

 

 

 

 
 

 

 
 
 

Top Ranked Model (1) from Regression Output 

Coefficients: Estimate (95% CI) Standard error z value p-value 

Intercept -4.902  -7.46, -2.34 1.307 -3.751 0.00018 

cGDD 0.008 0.0003, 0.015 0.004 2.048 0.0406 

Soil pH 0.542 0.091, 0.993 0.23 2.357 0.01842 

Soil temp -0.151  -0.366, 0.064 0.11 -1.376 0.1689 

Weekly prcpn 0.016  -0.0036, 0.036 0.01 1.609 0.1076 
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Table 5. Candidate models for probability of detection (p) of Ophidiomyces DNA in PCR replicates. All 
models considered with their corresponding model selection scores. Model in bold represents top ranked 

model used to derive probability of detection. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model WAIC PPLC 

Ψ(),Θ(),p() 69.62 66.35 

Ψ(),Θ(),p(organic) 72.53 68.39 

Ψ(),Θ(),p(DNA.con) 75.32 71.21 

Ψ(),Θ(),p(Soil pH) 77.75 74.95 

Ψ(),Θ(),p(DNA.con+organic) 78.31 73.44 

Ψ(),Θ(),p(Soil pH+DNA.con) 78.95 74.43 

Ψ(),Θ(),p(Soil pH+organic) 79.97 75.7 

Ψ(),Θ(),p(DNA.con+organic+Soil pH) 81.78 75.95 
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Table 6. Fourteen of the 63 total models considered in occupancy analysis. Models scored based on 
selection criteria WAIC and PPLC with the lowest values. Bold indicates the top ranked model based on 

each criteria. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model WAIC PPLC 

Ψ(),Θ(Soil pH),p() 69.23 66.67 

Ψ(),Θ(),p() 69.62 66.35 

Ψ(),Θ(Soil pH+weekly prcpn),p() 69.91 67.46 

Ψ(),Θ(weekly prcpn),p() 69.97 67.04 

Ψ(),Θ(Soil t),p() 70.05 67.13 

Ψ(),Θ(Soil pH+Soil t),p() 70.06 67.5 

Ψ(),Θ(Soil t+cGDD),p() 70.27 67.58 

Ψ(),Θ(Soil pH+cGDD),p() 70.4 68 

Ψ(),Θ(Soil pH+Soil t+cGDD),p() 70.4 67.93 

Ψ(),Θ(moisture),p() 70.48 67.05 

Ψ(),Θ(Soil pH+moisture),p() 70.48 67.96 

Ψ(),Θ(Soil pH+ Soil t+weekly prcpn),p() 70.8 68.29 

Ψ(),Θ(weekly prcpn+moisture),p() 70.81 67.45 

Ψ(),Θ(cGDD),p() 70.82 67.99 
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Table 7. Summaries of the parameters MCMC models. Beta, alpha, and delta represent the 
estimates for the site, sample, and replicate sampling levels respectively. Model Ψ(),Θ(),p() 

shows estimates for the null model with no covariates. B) Model Ψ(),Θ(Soil pH),p() estimates 
for the model with soil pH as a covariate of sample occupancy. 

 

 

 

 

 

 
 

Bayesian Estimates of Model Parameters  

Model   Mean 95% CL 

Ψ(),Θ(),p() 

β (Intercept) 
1.16  -0.061, 2.539 

α (Intercept) 
-0.815  -1.072, -0.517 

δ (Intercept) 
-0.318  -0.668, 0.017 

Ψ(),Θ(Soil pH),p() 

β (Intercept) 
1.164  -0.072, 2.601 

α (Intercept) 
-0.888  -1.167, -0.575 

α (Soil pH) 
0.434 0.196, 0.701 

δ (Intercept) 
-0.319  -0.666, 0.009 
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Figure 13. A) Trace plots showing model convergence along all iterations run in the model. Intercept 
values for each sampling level, beta (site), alpha (sample), delta (PCR replicate). Alpha.Soil.pH is the 

covariate soil pH at the sample level (Θ). B) Autocorrelation function plots showing the degree of 
autocorrelation during the Markov Chain. Each bar represents the correlation between the observation and 

the prior observation. The dotted blue line represents the 95% confidence limit. 
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Figure 14. Relationship between the probability of Ophidiomyces DNA occurrence in a sample and the 
soil pH. Each point represents the posterior mean estimate from a sample (occupancy probability Θ) at a 

given pH. No discernable relationship is seen between occupancy probability and soil pH. 95% limits 
showed high variability in some estimates, not included for ease of viewing 
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Figure 15. A) Trace plots showing model convergence along all iterations run in the model. Intercept 
values for each sampling level, beta (site), alpha (sample), delta (PCR replicate). B) Autocorrelation 

function plots showing the degree of autocorrelation during the Markov Chain. Each bar represents the 
correlation between the observation and the prior observation. The dotted blue line represents the 95% 

confidence limit. 
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CHAPTER 4. DISCUSSION 

 Since the identification of Snake Fungal Disease and its causative agent Ophidiomyces 

ophiodiicola, it has become a relevant topic of conservation concern. Many studies have been 

conducted which survey for the presence of Ophidiomyces within populations of susceptible 

species across the United States (Allender et al. 2015b, Chandler et al. 2019, Licitra et al. 2019, 

Haynes et al. 2020, Haynes et al. 2022). Surveys of snakes and active sampling of individuals for 

disease and infection, have spurred the design of highly specific assays for diagnosis of infection 

(Allender et al. 2015a, Bohuski et al. 2015), improving our ability to monitor susceptible species 

for signs of infection.  This work provides critical insight into not only disease progression in 

individuals, but also key epidemiological information on species at risk of disease and how 

infection can cause population level effects (Clark et al. 2011). 

 Although many pieces of the puzzle regarding Ophidiomyces have been discovered, there 

remains a gap in information with respect to literature on the general ecology of O. ophiodiicola. 

Proper management of susceptible species requires a more complete understanding of 

Ophidiomyces and its habitat associations, seasonality, and distribution in the environment 

independent of hosts. This study represents one of the few attempts to detect Ophidiomyces 

through an environmental sampling approach and aims to determine where it exists in an area it is 

known to infect the federally threatened Eastern Massasauga (Sistrurus catenatus). 

The approaches applied here were successful in detecting Ophidiomyces, but there were 

limitations.  There was only questionable evidence towards environmental predictors and 

Ophidiomyces, making it difficult to draw inferences on its environmental associations. The 

variables thought to be informative may have been too broad, where true differences in occupancy 

or detection could exist within more specific aspects of variables.  Additional, differing variables 

that were not included could have also have an effect. The development of methods and the 

collection of data in this study had occurred when there was still no successful detection of 

Ophidiomyces in the environment from which more specific hypotheses about informative 

variables could be drawn. Additionally, field sample storage constraints and soil/ ground water 

volumes during extraction could have also impeded detection. 

Even with such limitations I am still confident in this data generated in this study.  I was able 

to apply a specifically targeted qPCR assay (Allender et al. 2015a) for the detection of O. 
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ophiodiicola in environmental samples. I found that detection was reliable in topsoil samples and 

observed a seasonal effect, with most detections occurring during the summer. Minimal to no 

detection occurred in groundwater samples, and I was not able to determine any meaningful 

correlations between Ophidiomyces presence and considered environmental variables.  

4.1 Ophidiomyces DNA Detection  

The application of the ITS targeted real time PCR (qPCR) assay (Allender et al. 2015) 

provided a specific approach for detection of Ophidiomyces in environmental samples.  Detection 

was primarily achieved in topsoil samples taken from the study site.  A total of 14.8% of soil 

samples showed signs of Ophidiomyces DNA amplification across all four habitat types sampled 

and each was confirmed by DNA sequencing of the assay target.  Although there were differences 

in the number of detections among the habitat types sampled, no statistical difference was observed. 

In contrast, detection did differ when samples were grouped by season (spring, summer, and 

fall) with the highest detection occurring during the summer season.  This could be caused by 

increased soil temperatures allowing for optimized growing conditions for Ophidiomyces.  In vitro 

culturing of Ophidiomyces found that the optimal temperature for growth was 25°C, while growth 

significantly slowed and completely stopped at 14°C and 7°C, respectively (Allender et al. 2015c).  

At the study site, soil temperatures climbed closer to optimal growing temperatures during the 

summer season while most samples taken during the spring and fall groupings were considerably 

lower and decreased below the base temperature (7°C) for growth.  Similarly, Allender et al. (2015) 

found that the pH range for growth was 5-11 with optimal growth at a pH of 9.  Soil pH at the 

study site showed seasonal trends with significantly higher soil pH occurring during the summer 

(mean = 5.67), while pH dropped during both fall (mean = 4.96) and spring (mean = 4.37). 

Seasonal trends in soil pH are the result of many factors including geography and climate, and  

macro- and microorganisms that interact with the soil (Yan et al. 1996, Yamashita et al. 2011). 

The higher detection seen during the summer season could be affected by these seasonal 

differences, as the time of year provides Ophidiomyces with conditions more like optimal 

conditions determined in vitro.  Soil moisture content was lowest during the summer as seen in 

both our data and the MSU weather station network.  The fact that detection was at its highest 

when soil moisture was at its lowest is counterintuitive.  Generally, soil moisture (matric potential) 

is a limiting factor for soil fungi, and most soil fungi can only tolerate matric water stress down to 
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a certain level (Magan and Lynch 1986, Deacon 2006).  However, Ophidiomyces has been shown 

to have a higher tolerance of matric water stress (-5 MPa) (Allender et al. 2015c). Therefore, 

although there is seasonality in latent soil moisture (capillary and hydroscopic moisture, not due 

to precipitation), it is likely not contributing to the seasonal detection differences seen here.  

Only one groundwater sample yielded a positive result, or 0.2% of the total sample collected. 

Such low levels of detection in water samples from an area where it is known to occur on snakes 

could indicate a failure to collect enough DNA through sampling or that Ophidiomyces has little 

to no presence in ground water at the site.  Fungal DNA detection from water samples has been 

successful in the past when surveying for Batrachochytrium dendrobatidis (Kolby et al. 2015), 

which displays an aquatic stage in its lifecycle. Ophidiomyces is known to display filamentous 

growth (Sigler et al. 2013, Allender et al. 2015c) and has no known aquatic life stage, which may 

explain the lack of detection within water. Other published work attempting to detect 

Ophidiomyces DNA in water samples exhibited no detection, specifically from water in crayfish 

burrows (Baker et al. 2018).  The results of this study might have been an artifact of the small 

volume of water sampled, but the volume in our study was 10 times (500ml) higher and again 

detection was minimal.  Although, the sample protocol cannot be ruled out as a cause of low 

detection, our results suggest that Ophidiomyces may be at low levels or largely absent from 

ground water microhabitats. 

The detection seen in topsoil marks one of the first successful attempts to detect 

Ophidiomyces environmental through eDNA based approaches.  Campbell et al. (2021) were 

successful in detecting the fungus in both topsoil samples (8% of samples) and soil collected from 

snake hibernacula.  Our results found nearly double the level detection seen within topsoil (14.8%).  

However, the detection probability in soil samples observed in this study was still low (0.37). This 

could likely be improved if larger quantities of soil are extracted. Increasing the amount of 

Ophidiomyces DNA present in each qPCR reaction. Which is discussed as a limitation. Taking 

multiple extractions of a sample per point could also lead to increased detection probability. 

In any case, the rates in topsoil seen in both studies were considerably lower than those seen 

from soil within snake hibernacula (61%) in Campbell et al. (2021).  It is difficult to determine if 

the higher detection within hibernacula is a result of the increased contact that soil has with snakes 

or if conditions for growth are better.  Both this study and that by Campbell et al. (2021) represent 

successful detection within soil, providing further evidence for the claim that Ophidiomyces 
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function as a saprotrophic fungi in soil (Allender et al. 2015c) that opportunistically infects 

susceptible snakes.  

4.2 Environmental Associations 

Simply knowing where Ophidiomyces exists helps inform focused approaches for future 

surveying, however if a more complete picture is to be obtained it is important to understand 

parameters within its environment that could be influencing its presence and prevalence on the 

landscape. I evaluated several environmental (both spatially and temporally dependent) variables 

hypothesized to be associated with its presence.  Factors that vary spatially between points like 

soil pH, organic matter and moisture all have well known effects on Ophidiomyces and general 

fungal/microbial ecology within soils (Magan and Lynch 1986, Yan et al. 1996, Blazewicz et al. 

2014, Allender et al. 2015c).  Temporal effects on soil microbes have been investigated as well 

with cGDD, or thermal time, offering a unique temporal measurement that can be more useful for 

plants and fungi than regular time measurements (Lovell et al. 2004a, Lovell et al. 2004b, Lione 

et al. 2021).  Precipitation also has been shown to cause significant fungal growth and activity 

following soil wet up events (Blazewicz et al. 2014).  

Since Ophidiomyces ecology has largely been studied in vitro, little is known of its 

environmental associations.  Our modeling initially showed that some of variables investigated 

contribute to explaining presence in both logistic regression and multiscale occupancy modeling.  

The top ranked regression model found that soil pH and cGDD had effects on DNA presence.  This 

aligns with what was seen when comparing detections seasonally, as both parameters that had an 

effect were at their highest (closest to Ophidiomyces optimal growth conditions) during the 

summer where the most detections were observed.  However, goodness of fit tests found that the 

model had poor fit and did not match the observed data well.  Therefore, proper inferences about 

what influences Ophidiomyces presence within a given sample are difficult to draw. 

Results were similar when covariate effects were investigated in multiscale occupancy 

modeling at the sample and detection level through eDNAOCCUPANCY.  Occupancy at the site 

level, which was assumed to be constant, was relatively high (0.83).  Although the confidence 

interval for this estimate had a lower bound of 0.48, the estimate still shows that occupancy across 

the site is roughly greater than 50%.  Soil pH as a function of occupancy within a sample was 

ranked highly and was shown to affect the probability of occurrence in a sample.  However, the 
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relationship was questionable at best when observed visually.  Therefore, no strong conclusions 

could be drawn about pH effects on occupancy in a sample.  The null model was used for 

determining occupancy estimates due to the lack of relationship seen with covariates.  The constant 

conditional probability of occupancy at the sample level was only 0.21 indicating that there is only 

a 21 percent chance a given sample will be occupied if the Ophidiomyces is present at the site.  No 

covariates for detection probability were found to have an effect as the top ranked model was the 

null model.  

The variables included as predictors in logistic regression and multiscale occupancy analysis 

appear to have little relationship to Ophidiomyces growth within samples.  Similarly, no 

relationships of abiotic parameters to fungus presence and growth were found in the only other 

study to investigate soil substrates (Campbell et al. 2021).  Ophidiomyces does exhibit broad 

capacity for growth in many abiotic parameters (Allender et al. 2015b), which might cause the 

lack of strong correlations between its presence and environmental variables.  The soil variables 

included in this study, while numerous, were more general variables that are made up of many 

factors. The inclusion of differing variables, like biotic variables, or those with asymptotic qualities 

might lead to a correlation, in contrast to those in this study.  

Initial growth of Ophidiomyces has been shown to be completely inhibited in soils that have 

diversified microbial communities relative to sterilized soils (Campbell et al. 2021). Soil microbial 

communities are quite complex and there is competition among species, which often results in the 

suppression of growth in certain species and a general lack of available nutrients.  Complex soil 

communities can prevent colonization and growth of pathogenic species (Weller et al. 2002, 

Agtmaal et al. 2017, Schlatter et al. 2017).  Ophidiomyces may be a poor competitor, limiting its 

presence in soil with diverse communities of soil flora.  Biotic, rather than abiotic, variables might 

have more of an effect on the presence and prevalence of Ophidiomyces in soils. Campbell et al. 

(2021) provided useful initial results towards biotic effects on Ophidiomyces presence and growth.  

If studies on addressing biotic variables continue, focus should remain on soil microbiomes.  The 

methods applied in Campbell et al. (2021) could be expanded to new areas within the known range 

of Ophidiomyces, to see if there are different trends in the observed correlations in different 

locations. Additionally, there should be continued investigation into microbial suppression and 

Ophidiomyces presence in soil. Determination of specific microbial groups or community 

compositions associated with suppression could be investigated through DNA metabarcoding.  
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4.3 Eastern Massasauga and Disease Development 

The Eastern Massasauga has displayed clinical signs of SFD, and molecular investigation 

into such cases has confirmed the presence of Ophidiomyces in those cases (Allender et al. 2015b, 

Tetzlaff et al. 2015).  Ophidiomyces has been known to exist at the study site, but it has not been 

clear on how snakes develop infection, whether snakes are the main reservoir, or if the fungus 

resides in the environment.  This study has shown that it is detectable in topsoil samples throughout 

the site independent of snakes, but at much lower levels or absent in groundwater (Baker et al. 

2018).  In addition to it found within snake hibernacula at high levels (Campbell et al. 2021), snake 

exposure in soils appears to be the most likely source of environmental infection.  Groundwater 

survey methods may not be adequate, or levels of Ophidiomyces in groundwater may be incidental 

and insufficient for snakes to develop infection.  

Although no environmental associations were observed, there was seasonality found in its 

detection.  This could suggest higher exposure during the warmer summer when the snakes are 

most active.  Interestingly, snakes have been reported showing signs of infection after emergence 

from hibernacula which occurs several weeks prior to the peak period of Ophidiomyces detection.  

Snakes may first be exposed to Ophidiomyces through contact with soil containing the fungus, or 

other infected individuals during their overwintering, when snakes would be most 

immunocompromised.  Following emergence, it is known that Massasaugas can achieve body 

temperatures much higher than environmental temperatures through thermoregulation.  Such 

thermoregulation may provide more optimal growing temperatures for Ophidiomyces on snakes 

than in the surrounding environment in the spring.  This is one proposed mechanism of infection 

at the site in northern Michigan based off findings in this study. To test such a hypothesis would 

require early monitoring of snakes directly following emergence, and confirmation of 

Ophidiomyces presence/ infection. Repeated measurements of individual snakes for Ophidiomyces 

and disease development could be paired with massasauga temperature data to monitor infection 

status as thermoregulatory opportunities improve.  

However, snakes could also develop infection independent of hibernacula. It may be less 

likely due to the difference in detection seen between topsoil and hibernaculum soil (Campbell et 

al. 2021), but still probable given the wide spatial coverage of positive detection in the study site.  

This degree of spread could lead to a chance of exposure throughout the active season as snakes 

move beyond hibernacula and encounter topsoil occupied by Ophidiomyces.  Given Ophidiomyces 



 
 

62 

low ability to compete in complex soil microbial communities (Campbell et al. 2021) it may be 

difficult for it to spread spatially in soil itself. Therefore, snakes themselves may facilitate its 

spread across the landscape.  Positive detection of Ophidiomyces in samples had a large, random 

spread across the study site, a site where SFD has been observed for almost decade (Allender et al. 

2015b, Tetzlaff et al. 2015, Allender et al. 2016).  

4.4 Suggestions for Management and Future Work 

The successful application of specific qPCR assays for detecting Ophidiomyces in 

environmental samples, as shown here, is a promising step in answering ecological and 

epidemiological questions. If surveying for Ophidiomyces, environmental sampling can provide 

specific and sensitive detection, using qPCR assays like the ITS assay applied here and in 

Campbell et al (2021). Topsoil offers a reliable method if sampling is to be done through 

environmental mediums. Soil within snake hibernacula has yielded even higher detection than 

topsoil (61%) and is another route that can be taken for environmental surveys.  

Groundwater, whether it is from hibernacula like crayfish burrows (Baker et al. 2018) or 

independent of snake activity is not a reliable medium in which to survey for the presence of 

Ophidiomyces. Although snakes are suspected to emerge with infection from hibernacula where 

they were in contact with ground water, attempts to detect DNA in water have failed (Baker et al. 

2018). Suggesting it is not a viable means for determining presence of the fugal pathogen. 

Analysis showed that there seems to be evidence of seasonal trends in the ability to detect 

Ophidiomyces in topsoil samples regardless of the macrohabitat. In northern Michigan specifically, 

success might be higher during the warmer points of the year. This seasonal trend may change 

based on the geographic area and its seasonal trends, but it offers a good starting point for managers 

looking to develop a monitoring scheme.  

To that point, most monitoring for Ophidiomyces and SFD infection relies on snake 

surveying and swabbing. While this method is very reliable way of determining active infection 

within populations and can give you an indication of Ophidiomyces presence in the area, it is more 

involved and unpredictable than environmental sampling. Environmental DNA approaches are 

known to offer benefits over more traditional methods, they are easier to accomplish, less 

demanding, and less invasive for the animal (Dejean et al. 2012, Davy et al. 2015, Spear et al. 

2015). Such methods like those applied here and in Campbell et al. (2021) have been shown to be 
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effective at detecting low amounts of Ophidiomyces free of snakes. If one wants a complete picture 

of Ophidiomyces presence on the landscape both surveys of infected snakes and Ophidiomyces are 

required.  

Since no predictors were found to be all that useful, and there was no statistically significant 

difference in detection between the macrohabitat types sampled, no suggestions can be made 

regarding habitat level management for Ophidiomyces across the landscape. From what is known 

so far about Ophidiomyces it is likely important to have intact soil microbiomes to aid in 

suppression of its growth (Campbell et al. 2021) and continue to monitor its status across the 

United States as well as those threatened species susceptible to infection.  

This project provides a useful start to answering questions on Ophidiomyces ecology. I 

provide a reliable means for the detection of Ophidiomyces environmentally and show initial 

evidence of trends in detection. Continued research is needed and should be geared towards further 

surveying for Ophidiomyces within soil and other environmental mediums.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

64 

REFERENCES 

 

Agtmaal, M., A. Straathof, A. Termorshuizen, S. Teurlincx, M. Hundscheid, S. Ruyters, P. 

Busschaert, B. Lievens, and W. Boer. 2017. Exploring the reservoir of potential fungal 

plant pathogens in agricultural soil. Appl Soil Ecol 121:152-160. 

Allender, M. C., D. Bunick, E. Dzhaman, L. Burrus, and C. Maddox. 2015a. Development and use 

of a real-time polymerase chain reaction assay for the detection of Ophidiomyces 

ophiodiicola in snakes. J Vet Diagn Invest 27:217-220. 

Allender, M. C., M. Dreslik, S. Wylie, C. Phillips, D. B. Wylie, C. Maddox, M. A. Delaney, and 

M. J. Kinsel. 2011. Chrysosporium sp. infection in eastern massasauga rattlesnakes. Emerg 

Infect Dis 17:2383-2384. 

Allender, M. C., E. T. Hileman, J. Moore, and S. Tetzlaff. 2016. Detection of Ophidiomyces, the 

Causative Agent of Snake Fungal Disease, in the Eastern Massasauga ( Sistrurus catenatus ) 

in Michigan, USA, 2014. J Wildl Dis 52:694-698. 

Allender, M. C., E. T. Hileman, J. A. Moore, and S. J. Tetzlaff. 2015b. Ophidiomyces detection in 

the Eastern Massasauga in Michigan. Wildlife Epidemiology Laboratory. 

Allender, M. C., D. B. Raudabaugh, F. H. Gleason, and A. N. Miller. 2015c. The natural history, 

ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-

ranging snake populations. Fungal Ecology 17:187-196. 

Baker, S. J., M. L. Niemiller, A. J. Stites, K. T. Ash, M. A. Davis, M. J. Dreslik, and C. A. Phillips. 

2018. Evaluation of environmental DNA to detect Sistrurus catenatus and Ophidiomyces 

ophiodiicola in crayfish burrows. Conservation Genetics Resources 12:13-15. 

Bellard, C., P. Cassey, and T. M. Blackburn. 2016. Alien species as a driver of recent extinctions. 

Biol Lett 12:20150623. 

Blazewicz, S. J., E. Schwartz, and M. K. Firestone. 2014. Growth and death of bacteria and fungi 

underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 

95:1162-1172. 

Bohmann, K., A. Evans, M. T. Gilbert, G. R. Carvalho, S. Creer, M. Knapp, D. W. Yu, and M. de 

Bruyn. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. 

Trends Ecol Evol 29:358-367. 



 
 

65 

Bohuski, E., J. M. Lorch, K. M. Griffin, and D. S. Blehert. 2015. TaqMan real-time polymerase 

chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with 

snake fungal disease. BMC Vet Res 11:95. 

Burke, I. C., C. M. Yonker, W. J. Parton, C. V. Cole, K. Flach, and D. S. Schimel. 1989. Texture, 

Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils. 

Soil Sci Soc Am J 53:800-805. 

Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Mulitmodal Inference: A 

practical information-theoretic approach. Springer Science & Buisness Media. 

Bustin, S. A., V. Benes, J. A. JGarson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, 

M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwe. 2009. The MIQE 

Guidelines Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments. Clin Chem 55:611-622. 

Campbell, L. J., J. Burger, R. T. Zappalorti, J. F. Bunnell, M. E. Winzeler, D. R. Taylor, and J. M. 

Lorch. 2021. Soil Reservoir Dynamics of Ophidiomyces ophidiicola, the Causative Agent 

of Snake Fungal Disease. J Fungi (Basel) 7. 

Campos‐Cerqueira, M., T. M. Aide, and K. Jones. 2016. Improving distribution data of threatened 

species by combining acoustic monitoring and occupancy modelling. Meth Ecol Evol 

7:1340-1348. 

Chandler, H. C., M. C. Allender, B. S. Stegenga, E. Haynes, E. Ospina, and D. J. Stevenson. 2019. 

Ophidiomycosis prevalence in Georgia's Eastern Indigo Snake (Drymarchon couperi) 

populations. PLoS One 14:e0218351. 

Cheatwood, J. L., E. R. Jacobson, P. G. May, T. M. Farrell, B. L. Homer, D. A. Samuelson, and J. 

W. Kimbrough. 2003. An outbreak of fungal dermatitis and stomatitis in a free-ranging 

population of pigmy rattlesnakes (Sistrurus miliarius barbouri) in Florida. J Wildl Dis 

39:329-337. 

Clark, R. W., M. N. Marchand, B. J. Clifford, R. Stechert, and S. Stephens. 2011. Decline of an 

isolated timber rattlesnake (Crotalus horridus) population: Interactions between climate 

change, disease, and loss of genetic diversity. Biol Con 144:886-891. 

Cooke, D. E. L., L. Schema, and S. O. Cacciola. 2007. Tools to Detect, Identify and Monitor 

Phytophthora Species in Natural Ecosystems. J Plant Path 89:13-28. 



 
 

66 

Cullen, D. W., A. K. Lees, I. K. Toth, and J. M. Duncan. 2001. Conventional PCR and real-time 

quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. Europ 

J Plant Path 107:387-398. 

Cullen, D. W., A. K. Lees, I. K. Toth, and J. M. Duncan. 2002. Detection of Colletotrichum 

coccodes from soil and potato tubers by conventional and quantitative real‐time PCR. Plant 

Path 51:281-292. 

Davison, J., M. Opik, M. Zobel, M. Vasar, M. Metsis, and M. Moora. 2012. Communities of 

arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not 

vary throughout the growing season. PLoS One 7:e41938. 

Davy, C. M., A. G. Kidd, and C. C. Wilson. 2015. Development and Validation of Environmental 

DNA (eDNA) Markers for Detection of Freshwater Turtles. PLoS One 10:e0130965. 

Deacon, J. W. 2006. Fungal Biology. 4 edition. Blackwell Publishing. 

DeGregorio, B. A. 2008. Response of the Eastern Massasauga Rattlesnake (Sistrurus catenatus) 

to Clear-Cutting. Purdue Univeristy. 

DeGregorio, B. A., J. V. Manning, N. Bieser, and B. A. Kingsbury. 2011. The Spatial Ecology of 

the Eastern Massasauga (Sistrurus c. catenatus) in Northern Michigan. Herpetologica 

67:71-79. 

Dejean, T., A. Valentini, C. Miquel, P. Taberlet, E. Bellemain, and C. Miaud. 2012. Improved 

detection of an alien invasive species through environmental DNA barcoding: the example 

of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953-959. 

Dorazio, R. M., and R. A. Erickson. 2018. EDNAOCCUPANCY: An r package for multiscale 

occupancy modelling of environmental DNA data. Mol Ecol Resour 18:368-380. 

Dzal, Y., L. P. McGuire, N. Veselka, and M. B. Fenton. 2011. Going, going, gone: the impact of 

white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). 

Biol Lett 7:392-394. 

Eichmiller, J. J., L. M. Miller, and P. W. Sorensen. 2016. Optimizing techniques to capture and 

extract environmental DNA for detection and quantification of fish. Mol Ecol Resour 

16:56-68. 

Ek-Ramos, M. J., W. Zhou, C. U. Valencia, J. B. Antwi, L. L. Kalns, G. D. Morgan, D. L. Kerns, 

and G. A. Sword. 2013. Spatial and temporal variation in fungal endophyte communities 

isolated from cultivated cotton (Gossypium hirsutum). PLoS One 8:e66049. 



 
 

67 

English, N. B., J. F. Weltzin, A. Fravolini, L. Thomas, and D. G. Williams. 2005. The influence 

of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert 

grassland. J Arid Environ 63:324-343. 

Eskew, E. A., and B. D. Todd. 2013. Parallels in Amphibian and Bat Declines from Pathogenic 

Fungi. Emerg Infect Dis 19. 

Ficetola, G. F., J. Pansu, A. Bonin, E. Coissac, C. Giguet-Covex, M. De Barba, L. Gielly, C. M. 

Lopes, F. Boyer, F. Pompanon, G. Raye, and P. Taberlet. 2015. Replication levels, false 

presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol 

Ecol Resour 15:543-556. 

Foden, W. B., S. H. Butchart, S. N. Stuart, J. C. Vie, H. R. Akcakaya, A. Angulo, L. M. DeVantier, 

A. Gutsche, E. Turak, L. Cao, S. D. Donner, V. Katariya, R. Bernard, R. A. Holland, A. F. 

Hughes, S. E. O'Hanlon, S. T. Garnett, C. H. Sekercioglu, and G. M. Mace. 2013. 

Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-

Based Assessment of all Birds, Amphibians and Corals. PLoS One 8:e65427. 

Giovannonoi, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in 

Sargasso Sea bacterioplankton. Nature 345. 

Haynes, E., H. C. Chandler, B. S. Stegenga, L. Adamovicz, E. Ospina, D. Zerpa-Catanho, D. J. 

Stevenson, and M. C. Allender. 2020. Ophidiomycosis surveillance of snakes in Georgia, 

USA reveals new host species and taxonomic associations with disease. Sci Rep 10:10870. 

Haynes, E., K. Stanford, M. Gramhofer, K. Vivirito, K. Durante, A. Wright, C. Varga, and M. C. 

Allender. 2022. Epidemiology of Ophidiomycosis in Lake Erie Watersnakes (Nerodia 

Sipedon Insularum). J Wildl Dis 58:100-113. 

Heiri, O., A. F. Lotter, and G. Lemcke. 2001. Loss on Ignition as a method for Estimating Organic 

and Carbonate Content in Sediments: Reproducibility and Comparibility of Results. J 

Paleolimnol 25:101-110. 

Hileman, E. T., M. C. Allender, D. R. Bradke, L. J. Faust, J. A. Moore, M. J. Ravesi, and S. J. 

Tetzlaff. 2017. Estimation of Ophidiomyces prevalence to evaluate snake fungal disease 

risk. J Wildl Manag 82:173-181. 

Hoyt, J. R., A. M. Kilpatrick, and K. E. Langwig. 2021. Ecology and impacts of white-nose 

syndrome on bats. Nat Rev Microbiol 19:196-210. 



 
 

68 

Hu, B., J. Shoao, and M. Palta. 2006. Pseudo-R 2 in Logistic Regression Model. Stat Sinica 

16:847-860. 

Hunter, M. E., R. M. Dorazio, J. S. Butterfield, G. Meigs-Friend, L. G. Nico, and J. A. Ferrante. 

2017. Detection limits of quantitative and digital PCR assays and their influence in 

presence-absence surveys of environmental DNA. Mol Ecol Resour 17:221-229. 

Hunter, M. E., S. J. Oyler-McCance, R. M. Dorazio, J. A. Fike, B. J. Smith, C. T. Hunter, R. N. 

Reed, and K. M. Hart. 2015. Environmental DNA (eDNA) sampling improves occurrence 

and detection estimates of invasive burmese pythons. PLoS One 10:e0121655. 

Johnson, G. 2000. Spatial Ecology of the Eastern Massasauga (Sistrurus c. catenatus) in a New 

York Peatland. J Herp 34:186-192. 

Kabała, C., E. Musztyfaga, B. Gałka, D. Łabuńska, and P. Mańczyńska. 2016. Conversion of Soil 

pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: Conclusions for Soil Management, 

Environmental Monitoring, and International Soil Databases. Polish J Environ Studies 

25:647-653. 

Kamoroff, C., and C. S. Goldberg. 2017. Using environmental DNA for early detection of 

amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Dis 

Aquat Organ 127:75-79. 

Kolby, J. E., S. D. Ramirez, L. Berger, K. L. Richards-Hrdlicka, M. Jocque, and L. F. Skerratt. 

2015. Terrestrial Dispersal and Potential Environmental Transmission of the Amphibian 

Chytrid Fungus (Batrachochytrium dendrobatidis). PLoS One 10:e0125386. 

Lees, A. K., D. W. Cullen, L. Sullivan, and M. J. Nicolson. 2002. Development of conventional 

and quantitative real‐time PCR assays for the detection and identification of Rhizoctonia 

solani AG‐3 in potato and soil. Plant Path 51:293-302. 

Licitra, D., D. P. Quinn, J. E. Reeder, T. Gavitt, J. Dickson, B. Hess, B. J. Mangold, A. D. Tuttle, 

A. Rosas-Rosas, S. Frasca, Jr., and S. M. Szczepanek. 2019. Snake Fungal Disease in 

Colubridae Snakes in Connecticut, USA in 2015 and 2017. J Wildl Dis 55:658-662. 

Lione, G., L. Giordano, F. Sillo, F. Brescia, and P. Gonthier. 2021. Temporal and spatial propagule 

deposition patterns of the emerging fungal pathogen of chestnut Gnomoniopsis castaneae 

in orchards of north‐western Italy. Plant Pathology 70:2016-2033. 



 
 

69 

Long, R. A., T. M. Donovan, P. MacKay, W. J. Zielinski, and J. S. Buzas. 2010. Predicting 

carnivore occurrence with noninvasive surveys and occupancy modeling. Landscape 

Ecology 26:327-340. 

Lorch, J. M., S. Knowles, J. S. Lankton, K. Michell, J. L. Edwards, J. M. Kapfer, R. A. Staffen, E. 

R. Wild, K. Z. Schmidt, A. E. Ballmann, D. Blodgett, T. M. Farrell, B. M. Glorioso, L. A. 

Last, S. J. Price, K. L. Schuler, C. E. Smith, J. F. Wellehan, Jr., and D. S. Blehert. 2016. 

Snake fungal disease: an emerging threat to wild snakes. Philos Trans R Soc Lond B Biol 

Sci 371. 

Lorch, J. M., J. Lankton, K. Werner, E. A. Falendysz, K. McCurley, and D. S. Blehert. 2015. 

Experimental Infection of Snakes with Ophidiomyces ophiodiicola Causes Pathological 

Changes That Typify Snake Fungal Disease. MBio 6:e01534-01515. 

Lovell, D. J., T. Hunter, S. J. Powers, S. R. Parker, and F. Van den Bosch. 2004a. Effect of 

temperature on latent period of septoria leaf blotch on winter wheat under outdoor 

conditions. Plant Path 53:170-181. 

Lovell, D. J., S. J. Powers, S. J. Welham, and S. R. Parker. 2004b. A perspective on the 

measurement of time in plant disease epidemiology. Plant Path 53:705-712. 

Lozano-Ojalvo, D., A. Rodriguez, M. Cordero, V. Bernaldez, M. Reyes-Prieto, and J. J. Cordoba. 

2015. Characterisation and detection of spoilage mould responsible for black spot in dry-

cured fermented sausages. Meat Sci 100:283-290. 

Magan, N., and J. M. Lynch. 1986. Water Potential, Growth and Cellulolysis of Fungi Involved in 

Decomposition of Cereal Residues. Microbiology 132:1181-1187. 

McFadden, D. 1973. Conditional logit analysis of qualitative choice behavior. Front 

Econometrics:105-142. 

Merkling, J. L. 2018. Development of an Environmental DNA Assay for Eastern Massasauga. 

Purdue Fort Wayne. 

Morse, S. S. 1995. Factors in the Emergence of Infectious Diseases. Emerg Infect Dis 1. 

Nielsen, L. K., J. D. Jensen, A. Rodriguez, L. N. Jorgensen, and A. F. Justesen. 2012. TRI12 based 

quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. 

graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 

157:384-392. 



 
 

70 

Paré, J. A., and L. Sigler. 2016. An Overview of Reptile Fungal Pathogens in the Genera 

Nannizziopsis, Paranannizziopsis, and Ophidiomyces. J Herp Med Surg 26. 

Plante, A. F., R. T. Conant, C. E. Stewart, K. Paustian, and J. Six. 2006. Impact of Soil Texture on 

the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Sci Soc 

Am J 70:287-296. 

Powers, K. E., R. J. Reynolds, W. Orndorff, B. A. Hyzy, C. S. Hobson, and W. M. Ford. 2016. 

Monitoring the Status of Gray Bats (Myotis grisescens) in Virginia, 2009–2014, and 

Potential Impacts of White-Nose Syndrome. Southeast Nat 15:127-137. 

Ratsch, R. A. 2018. Efficacy of using Environmental DNA (eDNA) to detect Kirtland's Snakes 

(Clonophis kirtlandii). Purdue Fort Wayne. 

Ravesi, M. J. 2016. Timber Harvest and Prescribed Fire as Tools for Massasauga Conservation. 

Purdue Fort Wayne. 

Reichard, J. D., N. W. Fuller, A. B. Bennett, S. R. Darling, M. S. Moore, K. E. Langwig, E. D. 

Preston, S. von Oettingen, C. S. Richardson, and D. S. Reynolds. 2014. Interannual 

Survival of Myotis lucifugus (Chiroptera: Vespertilionidae) near the Epicenter of White-

Nose Syndrome. Northeast Nat (Steuben) 21:N56-N59. 

Reinhart, H. K., and W. R. Kodrich. 1982. Movements and Habitat Utilization by the Massasauga, 

Sistrurus catenatus catenatus. J Herp 16:162-171. 

Reynolds, R. J., K. E. Powers, W. Orndorff, W. M. Ford, and C. S. Hobson. 2016. Changes in 

Rates of Capture and Demographics of Myotis septentrionalis (Northern Long-eared Bat) 

in Western Virginia before and after Onset of White-nose Syndrome. Northeast Nat 

23:195-204. 

Rich, L. N., D. A. W. Miller, H. S. Robinson, J. W. McNutt, M. J. Kelly, and M. Hayward. 2016. 

Using camera trapping and hierarchical occupancy modelling to evaluate the spatial 

ecology of an African mammal community. J Appl Ecol 53:1225-1235. 

Robson, H. L., T. H. Noble, R. J. Saunders, S. K. Robson, D. W. Burrows, and D. R. Jerry. 2016. 

Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in 

tropical freshwater ecosystems. Mol Ecol Resour 16:922-932. 

Schena, L., F. Nigro, and A. Ippolito. 2002. Identification and detection of Rosellinia necatrix by 

conventianal and real-time Scorpion-PCR. European Journal of Plant Path 108:355-366. 



 
 

71 

Schena, L., F. Nigro, A. Ippolito, and D. Gallitelli. 2004. Real-time quantitative PCR: a new 

technology to detect and study phytopathogenic and antagonistic fungi. Europ J Plant Path 

110:893-908. 

Schlatter, D., L. Kinkel, L. Thomashow, D. Weller, and T. Paulitz. 2017. Disease Suppressive 

Soils: New Insights from the Soil Microbiome. Phytopathology 107:1284-1297. 

Schmelzle, M. C., and A. P. Kinziger. 2016. Using occupancy modelling to compare 

environmental DNA to traditional field methods for regional-scale monitoring of an 

endangered aquatic species. Mol Ecol Resour 16:895-908. 

Sewell, D., T. J. C. Beebee, and R. A. Griffiths. 2010. Optimising biodiversity assessments by 

volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol 

Con 143:2102-2110. 

Shena, L., and A. Ippolito. 2003. Rapid and sensitive detection of Rosellinia necatrlxin roots and 

soils by real time scorpion-PCR. J Plant Path 85:15-25. 

Shoemaker, K. T., and J. P. Gibbs. 2010. Evaluating Basking-Habitat Deficiency in the Threatened 

Eastern Massasauga Rattlesnake. J Wildl Manag 74:504-513. 

Sigler, L., S. Hambleton, and J. A. Pare. 2013. Molecular Characterization of Reptile Pathogens 

Currently Known as Members of the Chrysosporium Anamorph of Nannizziopsis vriesii 

Complex and Relationship with Some Human-Associated Isolates. J Clin Microbiol 

51:3338-3357. 

Skerratt, L. F., L. Berger, R. Speare, S. Cashins, K. R. McDonald, A. D. Phillott, H. B. Hines, and 

N. Kenyon. 2007. Spread of Chytridiomycosis Has Caused the Rapid Global Decline and 

Extinction of Frogs. Ecohealth 4. 

Smith, C. S. 2009. Hibernation of the Eastern Massasauga rattlesnake (Sistrurus catenatus 

catenatus) in northern Michigan. Purdue Fort Wayne. 

Spear, S. F., J. D. Groves, L. A. Williams, and L. P. Waits. 2015. Using environmental DNA 

methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) 

monitoring program. Biol Con 183:38-45. 

Stoeckle, M. Y., L. Soboleva, and Z. Charlop-Powers. 2017. Aquatic environmental DNA detects 

seasonal fish abundance and habitat preference in an urban estuary. PLoS One 

12:e0175186. 



 
 

72 

Stulik, E. 2015. Amphibian Occupany and Habitat Use in a System of Restored Wetlands. Purdue 

Fort Wayne. 

Sun, B.-D., H.-y. Yu, A. J. Chen, and X.-Z. Liu. 2008. Insect-associated fungi in soils of field 

crops and orchards. Crop Protec 27:1421-1426. 

Syzmanski, J. 1998. Status Assessment for Eastern Massasauga (Sistrurus c. catenatus) 1998. U.S. 

Fish & Wildlife Service. 

Takahashi, M. K., M. J. Meyer, C. McPhee, J. R. Gaston, M. D. Venesky, and B. F. Case. 2017. 

Seasonal and Diel Signature of Eastern Hellbender Environmental DNA. J Wildl Manag 

82:217-225. 

Tetzlaff, S., M. C. Allender, M. J. Ravesi, J. Smith, and B. A. Kingsbury. 2015. First report of 

snake fungal disease from Michigan, USA involving Massasaugas, Sistrurus catenatus 

(Rafinesque 1818). Herp Notes 8:31-33. 

Tetzlaff, S. J., M. J. Ravesi, M. C. Allender, E. T. Carter, B. A. DeGregorio, J. M. Josimovich, and 

B. A. Kingsbury. 2017. Snake Fungal Disease Affects Behavior of Free-Ranging 

Massasauga Rattlesnakes (Sistrurus catenatus). Herp Con Biol 12:624-634. 

Trujillo-Gonzalez, A., R. C. Edmunds, J. A. Becker, and K. S. Hutson. 2019. Parasite detection in 

the ornamental fish trade using environmental DNA. Sci Rep 9:5173. 

Voros, J., O. Marton, B. R. Schmidt, J. T. Gal, and D. Jelic. 2017. Surveying Europe's Only Cave-

Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA. PLoS One 

12:e0170945. 

Weller, D. M., J. M. Raaijmakers, B. B. Gardener, and L. S. Thomashow. 2002. Microbial 

Populations Responsible for Specific Soil Suppressiveness To Plant Pathogens. Annu Rev 

Phytopathol 40:309-348. 

Willoughby, J. R., B. K. Wijayawardena, M. Sundaram, R. K. Swihart, and J. A. DeWoody. 2016. 

The importance of including imperfect detection models in eDNA experimental design. 

Mol Ecol Resour 16:837-844. 

Yamashita, N., S. Ohta, H. Sase, B. Kievuttinon, J. Luangjame, T. Visaratana, and H. Garivait. 

2011. Seasonal changes in multi-scale spatial structure of soil pH and related parameters 

along a tropical dry evergreen forest slope. Geoderma 165:31-39. 

Yan, F., S. Schubert, and K. Mengel. 1996. Soil pH Increase Due to Biological Decarboxylation 

of Organic Anions. Soil Biol. Biochem. 28:617-624. 



 
 

73 

Yates, M. D., and R. M. Muzika. 2010. Effect of Forest Structure and Fragmentation on Site 

Occupancy of Bat Species in Missouri Ozark Forests. J Wildl Manag 70:1238-1248. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

74 

APPENDIX A. POSITIVE SAMPLE DATA  

Table consisting of all positive samples, the habitat they were taken from, the number of positive 
replicates out of three, and the variable data collected for each sample.  

 

Sample 
name Habitat Positive 

Replicates 

Ambient 
temp. 
(°C) 

Soil 
temp. 
(°C) 

Soil pH Soil type 
(Texture)  

Percent 
Moisture  

b328 burn 1/3 18.1 5.7 3.56 LSn 35.74 
s328 sso 1/3 22.2 8 4.3 LSn 9.02 
b114 burn 1/3 29.2 16.9 4.73 SnL 8.35 
b115 burn 2/3 30.9 18.3 4.5 SnL 11.05 
c105 cut 1/3 28.9 17.8 7.54 LSn 0.24 
c106 cut 1/3 28.9 17.8 7.08 LSn 0.97 
c107 cut 1/3 29.5 18.5 6.78 LSn 0.27 
c110 cut 1/3 20.5 19.5 5.7 SnL 0.6 
f103 forest 1/3 22.2 14.4 4.45 SnL 12.4 
f108 forest 2/3 22.8 18.5 4.75 LSn 0.67 
f114 forest 3/3 23 16.3 5.83 LSn 0.91 
f117 forest 2/3 24.4 14.1 4.45 SnL 2.24 
f127 forest 3/3 22.7 12.6 7.2 LSn 9.19 
f128 forest 1/3 23.6 14.3 6.9 L 64.97 
f131 forest 1/3 25.1 13.4 4.9 L 42.76 
f132 forest 1/3 28 18.4 5.56 LSn 15.26 
s105 sso 1/3 21.7 18.6 6.8 Sn 8.4 
s108 sso 1/3 26.4 17.7 5.93 LSn 1.19 
s111 sso 1/3 25 20.5 6.62 SnL 0.67 
s112 sso 3/3 30.3 27.5 5.95 SnL 0.76 
s114 sso 1/3 26.1 19.1 7.21 SnL 0.56 
s121 sso 1/3 19 16 6.35 CL 40.99 
s123 sso 1/3 20.5 16 6.94 SnCL 21.85 
s126 sso 1/3 19.7 14.8 6.9 SiCL 58.18 
s133 sso 2/3 23.2 18.5 5.04 LSn 0.81 
b201 burn 2/3 8 9.1 4.97 LSn 12.03 
b202 burn 1/3 11.1 10.2 4.35 LSn 16.88 
b211 burn 1/3 13.3 10.9 5.65 SnL 14.84 
c201 cut 1/3 7.5 10.3 4.62 SnL 11.67 
f240 forest 3/3 5 7.7 6.19 SnCL 76.2 
s201 sso 3/3 8.2 10.5 5.35 SnCL 52.78 
s202 sso 2/3 7.2 10 6.16 SnCL 44.45 
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Continued. Table consisting of all positive samples, the habitat they were taken from, the number 
of positive replicates out of three, and the variable data collected for each sample 

 

Sample 
name 

Percent 
Organic 

DNA 
Concentration Date Season 

Cumulative 
Growing 

Degree Days 

Weekly 
Precipitation  

b328 4.03 25.9 13-May spring 21.85 7.37 
s328 48.85 56.5 24-Apr spring 46.05 3.55 
b114 21.93 16.1 15-Jul summer 405.95 60.96 
b115 7.55 7 15-Jul summer 405.95 60.96 
c105 1.62 65.3 8-Jul summer 385.05 0 
c106 5.64 29.6 13-Jul summer 396.75 2.54 
c107 1.76 11.8 13-Jul summer 396.75 2.54 
c110 2.3 20.9 13-Jul summer 396.75 2.54 
f103 6.07 26.5 4-Aug summer 360.8 7.36 
f108 2.89 53.2 11-Jul summer 395.7 2.54 
f114 3.93 8.8 14-Jul summer 400.6 2.54 
f117 2.88 33.2 23-Jul summer 402.15 30.74 
f127 5.28 17.4 5-Aug summer 355.65 7.36 
f128 68.58 1.1 5-Aug summer 355.65 7.36 
f131 36.46 13.5 5-Aug summer 355.65 7.36 
f132 7.45 24.3 8-Jul summer 385.05 0 
s105 0 22.2 8-Jul summer 385.05 0 
s108 5.55 53.4 11-Jul summer 395.7 2.54 
s111 2.83 13.2 15-Jul summer 405.95 60.96 
s112 5.57 11.9 15-Jul summer 405.95 60.96 
s114 2.4 19.2 15-Jul summer 405.95 60.96 
s121 40.26 1 4-Aug summer 360.8 7.36 
s123 10.38 60.3 4-Aug summer 360.8 7.36 
s126 32.3 59.6 5-Aug summer 355.65 7.36 
s133 3.49 53.2 11-Jul summer 395.7 2.54 
b201 2.95 34.7 4-Oct fall 164.45 40.14 
b202 3.55 14.5 4-Oct fall 164.45 40.14 
b211 3.79 4.7 13-Oct fall 132.1 20.32 
c201 5.11 61.2 4-Oct fall 164.45 40.14 
f240 67.39 25.4 4-Oct fall 164.45 40.14 
s201 25.72 90.1 4-Oct fall 164.45 40.14 
s202 23.24 8.3 4-Oct fall 164.45 40.14 
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APPENDIX B. OCCUPANCY MODEL SET 

Complete occupancy model set for determining covariate influences on the conditional 
probability of Ophidiomyces occupancy in a sample. 

 

 

 

 

 

 

 

Model WAIC PPLC 

Ψ(),Θ(Soil pH),p() 69.23 66.67 

Ψ(),Θ(),p() 69.62 66.35 

Ψ(),Θ(Soil pH+weekly prcpn),p() 69.91 67.46 

Ψ(),Θ(weekly prcpn),p() 69.97 67.04 

Ψ(),Θ(Soil t),p() 70.05 67.13 

Ψ(),Θ(Soil pH+Soil t),p() 70.06 67.5 

Ψ(),Θ(Soil t+cGDD),p() 70.27 67.58 

Ψ(),Θ(Soil pH+cGDD),p() 70.4 68 

Ψ(),Θ(Soil pH+Soil t+cGDD),p() 70.4 67.93 

Ψ(),Θ(moisture),p() 70.48 67.05 

Ψ(),Θ(Soil pH+moisture),p() 70.48 67.96 

Ψ(),Θ(Soil pH+ Soil t+weekly prcpn),p() 70.8 68.29 

Ψ(),Θ(weekly prcpn+moisture),p() 70.81 67.45 

Ψ(),Θ(cGDD),p() 70.82 67.99 

Ψ(),Θ(Soil pH+weekly prcpn+moisture),p() 71.07 68.51 

Ψ(),Θ(organic),p() 71.07 67.8 

Ψ(),Θ(Soil pH+Soil t+cGDD+weekly prcpn),p() 71.34 69.24 

Ψ(),Θ(Soil t+weekly prcpn),p() 71.55 68.57 

Ψ(),Θ(cGDD+moisture),p() 71.6 69.02 

Ψ(),Θ(Soil pH+Soil t+moisture),p() 71.77 69.23 

Ψ(),Θ(Soil t+moisture),p() 71.77 69.06 

Ψ(),Θ(weekly prcpn+organic),p() 71.88 68.8 

Ψ(),Θ(Soil pH+cGDD+weekly prcpn),p() 71.89 69.64 

Ψ(),Θ(Soil t+cGDD+moisture),p() 71.91 69.33 
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Continued. Complete occupancy model set for determining covariate influences on the 
conditional probability of Ophidiomyces occupancy in a sample.  

 
 

 

Model WAIC PPLC 

Ψ(),Θ(Soil pH+cGDD+moisture),p() 72.11 69.68 

Ψ(),Θ(cGDD+weekly prcpn),p() 72.11 69.46 

Ψ(),Θ(Soil pH+Soil t+cGDD+moisture),p() 72.2 69.77 

Ψ(),Θ(Soil t+cGDD+weekly prcpn),p() 72.24 69.58 

Ψ(),Θ(cGDD+organic),p() 72.38 70.12 

Ψ(),Θ(Soil pH+weekly prcpn+organic),p() 72.44 70.21 

Ψ(),Θ(Soil t+cGDD+organic),p() 72.57 70.34 

Ψ(),Θ(Soil pH+Soil t+cGDD+organic),p() 72.68 70.61 

Ψ(),Θ(Soil pH+Soil t+weekly prcpn+moisture),p() 72.69 70.48 

Ψ(),Θ(Soil pH+Soil t+organic),p() 72.72 70.8 

Ψ(),Θ(Soil pH+moisture+organic),p() 73.01 70.7 
Ψ(),Θ(Soil pH+cGDD+weekly prcpn+moisture),p() 73.09 71.07 
Ψ(),Θ(Soil t+organic),p() 73.25 71.08 
Ψ(),Θ(Soil pH+weekly prcpn+moisture+organic),p() 73.38 71.54 
Ψ(),Θ(Soil t+weekly prcpn+moisture),p() 73.38 70.77 

Ψ(),Θ(Soil pH+Soil t+cGDD+weekly prcpn+moisture),p() 73.4 71.27 

Ψ(),Θ(cGDD+moisture+organic),p() 73.55 71.28 

Ψ(),Θ(Soil pH+cGDD+organic),p() 73.82 71.6 

Ψ(),Θ(organic+moisture),p() 74.02 71.71 

Ψ(),Θ(Soil pH+Soil t+weekly prcpn+organic),p() 74.07 72.37 

Ψ(),Θ(Soil t+cGDD+moisture+organic),p() 74.28 72.06 

Ψ(),Θ(cGDD+weekly prcpn+moisture),p() 74.4 71.92 
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Continued. Complete occupancy model set for determining covariate influences on the 
conditional probability of Ophidiomyces occupancy in a sample.  

 

 

 

 

 

  

 

 

 

Model WAIC PPLC 

Ψ(),Θ(weekly prcpn+moisture+organic),p() 74.44 71.87 
Ψ(),Θ(Soil pH+cGDD+weekly prcpn+organic),p() 74.49 72.86 
Ψ(),Θ(Soil t+moisture+organic),p() 74.62 72.45 

Ψ(),Θ(Soil pH+cGDD+moisture+organic),p() 74.63 72.65 
Ψ(),Θ(Soil pH+Soil t+cGDD+moisture+organic),p() 74.68 72.8 
Ψ(),Θ(Soil pH+Soil t+cGDD+weekly prcpn+organic),p() 74.76 73.02 

Ψ(),Θ(Soil pH+Soil t+moisture+organic),p() 75.13 72.96 

Ψ(),Θ(cGDD+weekly prcpn+organic),p() 75.24 73.06 
Ψ(),Θ(Soil t+cGDD+weekly prcpn+moisture),p() 75.72 73.35 
Ψ(),Θ(.),p() 75.74 74.12 

Ψ(),Θ(Soil t+weekly prcpn+organic),p() 76.27 74.19 

Ψ(),Θ(cGDD+weekly prcpn+moisture+organic),p() 76.51 74.81 
Ψ(),Θ(Soil t+cGDD+weekly prcpn+organic),p() 76.73 74.8 
Ψ(),Θ(Soil t+weekly prcpn+moisture+organic),p() 77.48 75.51 
Ψ(),Θ(Soil t+cGDD+weekly prcpn+moisture+organic),p() 77.97 76.09 
Ψ(),Θ(cGDD+weekly prcpn+moisture+organic),p() 78.54 76.58 
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