
IMAGE STEGANOGRAPHY USING DEEP LEARNING TECHNIQUES

by

Anthony Rene Guzman

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Computer Science

Department of Engineering, Technology, and Computer Science

Fort Wayne, Indiana

May 2022

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Venkata Inukollu, Chair

School of Engineering, Technology, and Computer Science

Dr. Amal Khalifa

School of Engineering, Technology, and Computer Science

Dr. Mohammadreza Hajiarbabi

School of Engineering, Technology, and Computer Science

Dr. David Liu

School of Engineering, Technology, and Computer Science

Approved by:

Dr. Venkata Inukollu

3

Dedicated to my father

4

ACKNOWLEDGMENTS

I would like to acknowledge the College of Engineering, Technology, and Computer

Science at Purdue University Fort Wayne for funding the purchase of the Google Colab Pro

subscription used in this research. By funding the use of Google Colab Pro, results were obtained

more efficiently than previous attempts with the network training process. I would also like to

acknowledge Dr. Amal Khalifa for all her help throughout the entire research process. Without her

guidance and assistance throughout the entire research process, this work would not have been

possible. Lastly, I would like to acknowledge the anonymous reviewers for their many insightful

comments and suggestions.

5

TABLE OF CONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

ABSTRACT .. 8

 INTRODUCTION ... 9

1.1 Steganography... 9

1.2 Image Steganography.. 10

1.3 Convolutional Neural Networks ... 13

 LITERATURE REVIEW .. 22

2.1 Spatial Domain Techniques .. 22

2.2 Transform Domain Techniques .. 24

2.3 Neural Network Techniques ... 28

2.4 Summary ... 29

 METHODOLOGY .. 32

3.1 The Original Method... 32

3.2 The Enhanced Network... 35

 RESULTS .. 37

4.1 Model Training & Testing .. 37

4.2 Experiment Setup .. 37

4.3 Results of the Original Network ... 41

4.4 Results of the Enhanced Network ... 46

 CONCLUSIONS ... 53

REFERENCES ... 55

6

LIST OF TABLES

Table 2.1. Review of various image steganography methods. ... 30

Table 4.1. List of labels and images used between experiments. ... 39

Table 4.2. Side-by-side comparison of steganographic and extracted images generated by the

original network trained on the ImageNet dataset and the original network trained on the

Imagenette and Linnaeus 5 dataset. .. 42

Table 4.3. The steganographic and extracted images generated by the original method. 43

Table 4.4. Side-by-side comparison of the steganographic and extracted images generated by the

original and proposed methodologies. .. 48

Table 4.5. The steganographic and extracted images generated by the enhanced methodology. . 49

Table 4.6. A comparison of performance metrics between the original and enhanced networks. 52

7

LIST OF FIGURES

Figure 1.1. The basic architecture of the digital image steganography process. 11

Figure 1.2. Structure of a basic neural network. ... 13

Figure 1.3. High-level architecture of a perceptron. ... 15

Figure 1.4. Illustration of a CNN with several convolutional layers to extract the features of an

input image.. 16

Figure 1.5. Effects of a small and large learning rate on the gradient descent method. 17

Figure 1.6. The convergence of the gradient descent method on a local minimum, where a global

minimum exists that provides a more optimal solution. ... 18

Figure 2.1. Illustration of encrypting and embedding text into a cover image’s pixels. 23

Figure 2.2. Example of a two-level discrete wavelet transform. .. 26

Figure 2.3. Labeled wavelet decomposition performed at three levels. 27

Figure 3.1. Structure of the overall network. The structure of the preparatory network is identical

between the hiding and reveal networks, with the exception of the hiding and reveal networks

taking an additional step of performing a two-dimension convolution on the concatenated tensors.

... 33

8

ABSTRACT

Digital image steganography is the process of embedding information within a cover image

in a secure, imperceptible, and recoverable way. The three main methods of digital image

steganography are spatial, transform, and neural network methods. Spatial methods modify the

pixel values of an image to embed information, while transform methods embed hidden

information within the frequency of the image. Neural network-based methods use neural networks

to perform the hiding process, which is the focus of the proposed methodology.

This research explores the use of deep convolutional neural networks (CNNs) in digital

image steganography. This work extends an existing implementation that used a two-dimensional

CNN to perform the preparation, hiding, and extraction phases of the steganography process. The

methodology proposed in this research, however, introduced changes into the structure of the CNN

and used a gain function based on several image similarity metrics to maximize the

imperceptibility between a cover and steganographic image.

The performance of the proposed method was measured using some frequently utilized

image metrics such as structured similarity index measurement (SSIM), mean square error (MSE),

and peak signal to noise ratio (PSNR). The results showed that the steganographic images

produced by the proposed methodology are imperceptible to the human eye, while still providing

good recoverability. Comparing the results of the proposed methodology to the results of the

original methodology revealed that our proposed network greatly improved over the base

methodology in terms of SSIM and compares well to existing steganography methods.

9

 INTRODUCTION

1.1 Steganography

Steganography is the process of hiding a message by placing it within another, innocuous

medium. The literal meaning of the word, derived from the Greek language, means “covered

writing” [1]. The creator of the word, Trithemius, used the Greek words “steganos” and “graphia”,

which mean “covered” and “writing”, respectively. The earliest known application of

steganography was the use of invisible ink. One notable example of steganography is found in a

story by Greek historian Herodotus. In this story, a Milesian tyrant ordered a slave be sent to the

city of Miletus with a secret message tattooed onto his scalp. To obscure the tattooed message

from, the slave allowed for time to pass such that his hair grew back, fully obscuring the tattoo.

Once he arrived at Miletus, he shaved his head to reveal the tattooed message to the city advisor,

Aristagoras. Upon discovery of the message, Aristagoras started a revolution against the Persian

king [2]. In this scenario, the slave was the carrier of the message, the tattooed scalp was the hidden

information, the tyrant was the sender, and Aristagoras was the receiver.

Another ancient example of steganography is the story of Demaratus, also written by

Herodotus. Demaratus, who would go on to eventually become the king of Sparta, alerted the

Persian king Xerxes of an impending invasion of Greece by using an early form of steganography

[3]. Demaratus scraped the wax off the writing surface of a wooden writing tablet then embedded

his message into the underlying wood. He then re-coated the writing tablet with a fresh coat of

wax, giving the appearance of an unused writing tablet. In this case, the seemingly unused wooden

writing tablet was the carrier of the message, the underlying scratches composed the hidden

information, Demaratus was the sender, and Xerxes was the receiver.

More recently, there are many examples of steganography and information embedding in

everyday life. When a $100 (USD) bill is held to a light, one can faintly see the visage of Benjamin

Franklin. $100 bills also contain microprinting, which is nearly invisible to the naked eye. Using

a magnifying glass on a $100 bill reveals tiny text printed on the currency. Of more relevance to

this research, however, is the steganography of digital information. Today, many methods exist

for embedding hidden information inside images, audio files, hypertext transport protocol (HTTP)

headers, and even plain text files [4].

10

Images can hide information in the visually uninteresting parts, reducing the likelihood that

someone would be able to tell that hidden information exists. However, the ability to hide

information extends to other types of files as well. Audio files can also embed information in

several ways, such as by manipulating the least significant bits (LSB) or using transform

techniques (e.g., Discrete Wavelet Transform (DWT)) [5]. Nearly any type of digital data can be

embedded into an audio file, from text files to other audio files. To this end, any type of digital

data can be embedded into a cover digital medium. This research, however, focuses on the process

of embedding a digital image within another.

1.2 Image Steganography

Images provide an ideal medium for embedding hidden information for several reasons. The

first reason is that images contain many different characteristics, such as bit depth, colors, edges,

corners, dimensions, and metadata [6]. Each of these characteristics provide the ability to hide a

payload into an image with ease. In addition to these characteristics, the metadata of certain image

formats can also be manipulated to embed information. Graphics Interchange Format (GIF) image

files contain a palette of the colors used within the image. By permutating the image’s color map,

the image remains the same perceptually but contains some hidden information [4]. The second

reason is that images are resistant to changes in pixel values, with some exceptions. Many

steganography methods modify the least significant bits of the pixels to embed the bits of a hidden

image into a cover image. Since most images are split into three, 8-bit wide color channels, red,

green, and blue, this provides plenty of space in which information can be embedded.

The basic architecture of image steganography is shown in Figure 1.1. A sender uses two

components, the message and payload, to construct the steganographic message. The construction

of the steganographic message is done by an encoding process. For the sake of clarity, several

types of encoding processes will be described later in this study. Once the encoding process is

complete, the steganographic image is then transmitted to the receiving party. The transmission of

the steganographic image can be done over secured or unsecured channels, since entities who gain

access to the steganographic image will not benefit from it unless they are explicitly aware that it

contains a hidden payload. Once the steganographic image is received, the receiving party decodes

the message using a decoding process. In the majority of steganographic methodologies, the

11

decoding process is the same as the encoding process but performed in the opposite order. Once

the decoding process is complete, the receiver will be able to obtain the hidden image.

Figure 1.1. The basic architecture of the digital image steganography process.

A variety of standardized measurements are used to evaluate image steganography

techniques in terms of the hiding capacity, retrieval similarity, hiding effectiveness, and resistance

to attacks. These measurements can be used to compare the performance of steganography

techniques. Since many techniques vary greatly between methodologies, implementations, and

image datasets used, fluctuations of image metrics are to be expected. To mitigate these

fluctuations, this research relied on the use of standardized image sets such as ImageNet [7] and

Linnaeus 5 [8].

Below lists several common metrics that are used to evaluate image steganographic

techniques:

• Bits per pixel (BPP): a measurement used to determine the hiding capacity of a

steganography technique. BPP values have a range of [0, 24] for regular RGB

images. A greater BPP means that the technique can hide more information inside

the pixels of the cover image. BPP is measured by the following algorithm, where 𝐸

represents the embedding capacity of the technique and 𝐻 and 𝑊 represent the

height and width of the cover image, respectively [9]:

𝐵𝑃𝑃 =
𝐸

𝐻∗𝑊
 (1.1)

12

• Mean of Square Error (MSE): a measurement used to determine the average square

error between the cover and steganography images. A lower MSE value represents a

lower error measure between a cover and steganographic image. MSE is measured

by the algorithm provided in Equation 1.2, where 𝑀 represents the number of image

rows, 𝑁 represents the number of image columns, 𝐽(𝑖, 𝑗) represents the cover image

dimensions, and 𝐽′(𝑖, 𝑗) represents the steganographic image dimensions:

𝑀𝑆𝐸 =
∑ ∑ (𝐽(𝑖,𝑗)−𝐽′(𝑖,𝑗))

2
𝑛
𝑗=1

𝑚
𝑖=1

𝑀∗𝑁
 (1.2)

• Peak Signal to Noise Radio (PSNR): a measurement used to determine the difference

between the cover and steganographic images. A higher PSNR value represents less

distortion and greater similarity to the original image. PSNR is measured by the

algorithm provided in Equation 1.3, where 𝑛 represents the maximum pixel value

and 𝑀𝑆𝐸 represents the mean of square error:

𝑃𝑆𝑁𝑅 = 10(𝑙𝑜𝑔10(
𝑛2

𝑀𝑆𝐸
)) (1.3)

• Structured Similarity Index Measure (SSIM): a measurement used to determine the

similarity between two images [10]. A higher SSIM value represents a greater

similarity between the cover and steganographic images. SSIM is measured by the

algorithm provided in Equation 1.4, where 𝜇𝑥 represents the mean of 𝑥 , 𝜇𝑦

represents the mean of 𝑦, 𝜎𝑥𝑦 represents the covariance of 𝑥 and 𝑦, 𝜎𝑥
2 represents the

mean variance of 𝑥, 𝜎𝑦
2 represents the mean variance of 𝑦, and 𝑐1 and 𝑐2 represent

two variables to stabilize division, in the event that the denominator is weak [11]:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (1.4)

• Normalized Cross Correlation (NCC): a measurement used to determine the degree

of similarity between the original and extracted secret image. A higher NCC value

13

represents a greater similarity between the original and extracted secret images. NCC

is measured by the algorithm provided in Equation 1.5, where the 𝑂𝑝𝑞 represents the

original image and 𝐶𝑝𝑞 represents the extracted secret image:

𝑁𝐶𝐶 = ∑ ∑
(𝑂𝑝𝑞∗𝐶𝑝𝑞)

(𝑂𝑝𝑞)
2

𝑦
𝑞=1

𝑥
𝑝=1 (1.5)

1.3 Convolutional Neural Networks

Deep learning is a type of approach to artificial intelligence that uses neural networks to

achieve a task or goal [12]. Neural networks are loosely modeled after the human brain in the sense

that a neural network consists of many interconnected nodes that communicate between each other.

To this end, they are aptly named ‘neural networks.’ The implementation and architecture of neural

networks can vary greatly, but the foundation is largely the same. Neural networks are comprised

of several layers, with the first layer being the input layer and the last layer being the output layer

[13]. In between the input layer and output layer are the hidden layers, where computation of the

neural network is performed. Figure 1.2 shows the structure of a basic neural network.

Figure 1.2. Structure of a basic neural network.1

1 Image source: https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed

14

Depending on the application and domain, the amount of hidden layers of a network will

vary. The number of layers in a neural network is referred to as its depth. Arguments exist

pertaining to whether the input and output layers are included in a network’s depth value. Generally,

however, the depth value does not include the input layer because it is not considered an active

layer of the network. Each hidden layer consists of many perceptrons, which are also referred to

as nodes or neurons. These perceptrons are units that have one or more inputs and are used in

conjunction with an activation function to create an output variable [14]. The number of

perceptrons in a neural network is referred to as its size, and the number of perceptrons within a

particular layer is referred to as the layer’s width.

Perceptrons consist of several parts, to include the inputs, weights, bias, weighted sum,

activation function, and output [15]. The inputs may refer to either the outputs processed by the

input layer or the outputs of a hidden layer. The weights of a perceptron are mathematical values

used to manipulate the inputs of the perceptron. A perceptron’s weights are unique for each input.

The bias of the perceptron is a numerical value that has its own weight and is used to directly

manipulate the values of the perceptron. Bias is used to determine whether the perceptron will

produce an output and can also be used to determine the degree to which a perceptron produces an

output [16]. The perceptron’s inputs and bias are manipulated by its set of weights to produce its

weighted sum. The weighted sum is subsequently used by the activation function to determine

whether the perceptron produces an output or not. An activation function can also determine the

strength of the output signal. There exist many types of activation functions, each of which falling

into the category of piecewise linear activation functions or locally quadratic activation functions

[17]. Piecewise linear activation functions are comprised of a finite number of linear segments

across an equal number of intervals and include functions such as Rectified Linear Unit (ReLU)

and Exponential Linear Unit activation functions. Locally quadratic activation functions are

defined as being smooth, non-linear, and possessive of a nonzero second derivative. Examples of

locally quadratic activation functions include the sigmoid, tangent hyperbolic, and Swish

activation functions [18]. Because each activation function is different and can greatly affect the

performance of a network, there is not a one-size-fits-all solution for determining which activation

function a network should use. Figure 1.3 shows the structure of a perceptron, with weighted sum

15

being comprised of the inputs, weights, and bias, and the output defined by result of the weighted

sum being used in the activation function.

Figure 1.3. High-level architecture of a perceptron.2

Convolutional networks are special types of neural networks which are designed to work

specifically with two-dimensional data, such as images and media [19]. An example illustration of

a CNN can be seen in Figure 1.4. In this figure, an input image is processed by a convolutional

layer. Convolutional layers are layers that form the building blocks of CNNs. Integral to the

formation of convolutional layers are convolutions, which are operations that involve multiplying

a set of weights by the input. In this case, the input is a digital image. When an image or other two-

dimensional input is processed by a convolutional layer, important information about the input is

discovered, such as edges and corners [20]. The distinction between important and unimportant

information is decided by the activation function. Activation functions work by returning a value

from a set of inputs. In the case of the ReLU activation function, the function returns 𝑚𝑎𝑥(0, 𝑥) for

any negative or positive input 𝑥. In the network structure illustrated in Figure 1.4, the ReLU

activation function is used. That information is provided to the pooling layer, where the spatial

size of the convolution is reduced while summarizing and maintaining the important details about

the convolution. This, in turn, reduces the computational power needed to process the data because

there is less information to process. This is achieved by one or more of several types of pooling

functions, such as average and max pooling.

2 Image source: https://www.v7labs.com/blog/neural-networks-activation-functions

16

Weights are coefficients that are applied to each input of a perceptron that can greatly affect

its output. When a network is first run, the weights are randomized and tuned as the network

continues to run. As the network continues to run, the weights are updated with every iteration and

adjust per the loss function, also referred to as the cost function. The loss function is a calculation

that is used to determine the losses between a predicted value and the actual value [21].

Figure 1.4. Illustration of a CNN with several convolutional layers to extract the features of an

input image.3

One method of accelerating the training process involves feeding the input data of a network

in batches, as opposed to individual samples. The batch size of a network refers to the number of

samples passed into the neural network at a time. For this research, the batch size refers to the

number of pairs of cover and hidden images processed by the network for each step of the training

process.

Gradient descent is a method used to optimize the learning process of a neural network. In the

context of neural networks, a gradient is a calculation that dictates how to adjust the network

parameters such that the deviation of the output and error are reduced as much as possible [22].

When the network is initialized and the weights of the perceptrons are randomized, one of several

types of gradient descent methods are used to minimize the loss function. Gradient descent works

by picking a random spot on the loss function and computing its derivative. Once obtained, the

tangent line at the random spot is calculated and can be used to determine the slope at the starting

point. The slope is used in conjunction with the learning rate and the cost function to determine

3 Image source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-

way-3bd2b1164a53

17

how the weights and bias of the perceptrons are updated. The goal of gradient descent is to

minimize the cost function; since the slope of the tangent line directly correlates with the error rate,

the network will calculate the gradient descent and update the perceptrons after every iteration to

make the slope of the line as close to zero as possible [23]. The learning rate describes the number

of steps taken to reach the minimum of the cost function. Figure 1.5 shows the result of two

different learning rates.

Figure 1.5. Effects of a small and large learning rate on the gradient descent method.4

There are three main types of gradient descent methods: batch, stochastic, and stochastic

mini-batch gradient descent. Batch gradient descent calculates the error sum for all the data in an

input batch and subsequently updates the perceptrons. Although batch gradient descent provides

superior computational efficiency when compared to other methods, it is not ideal when used with

large datasets, since all data needs to be stored in memory while processing the gradient. Batch

gradient descent is also prone to converging on a local minimum of the loss function, instead of

the global minimum. This is because the computed loss is based on the sum of losses across the

entire batch of data. Figure 1.6 shows two types of loss functions that have a local minimum and

global minimum.

4 Image source: https://www.ibm.com/cloud/learn/gradient-descent

18

Figure 1.6. The convergence of the gradient descent method on a local minimum, where a global

minimum exists that provides a more optimal solution.5

Stochastic gradient descent differs by calculating the gradient for each sample in the input

batch. This method is advantageous with regards to storage, since one training sample is being

stored in memory at a time. This, however, comes at the cost of computational speed. Since the

gradient is computed for each training sample, this difference between data samples provides more

noise (e.g., randomness) and is helpful in determining the global minimum.

Stochastic mini-batch gradient descent combines characteristics of batch and stochastic

gradient descent methods by splitting the input batch into smaller batches and calculating the

gradient for each batch. This, in turn, provides the efficiency of the batch gradient descent and the

speed of the stochastic gradient descent. The size of the smaller batches can vary between

implementations and may need to be adjusted based on overall batch size and application of the

network [24].

Two popular extensions to the gradient descent method include AdaGrad and RMSProp.

AdaGrad maintains a learning rate for each dimension of the network which allows the method to

work best for sparse gradients [25]. AdaGrad works by altering the learning rate for each

5 Image source: https://www.ibm.com/cloud/learn/gradient-descent

19

dimension of the network, since some perceptrons may obtain better results by having a different

learning rate from others. This is done by obtaining the sum of the squared gradients for each

perceptron, given a batch of data [26]. The sum is then used to determine the learning rate for the

perceptron by dividing the initial learning rate by the sum of squared gradients. It is possible for a

divide-by-zero operation to occur here, therefore a very small value can be added to the

denominator to eliminate this possibility. Once the perceptron’s learning rate has been updated,

the weights can be updated by using the new learning rate. The process of updating the

perceptron’s learning rate continues with each mini-batch.

RMSProp is an extension to RProp, another version of the gradient descent method. Resilient

Propagation (RProp) extends gradient descent by maintaining the signs of the last two computed

gradients for a particular weight and updating it based on its update value [27]. The update value

is initially set and is continuously updated based on the recently obtained gradients. If the most

recently obtained gradient changes its sign (e.g., negative to positive or positive to negative), it can

be surmised that the last update was too large, and the update value is decreased by a scalar.

Conversely, if the gradient did not change signs, the update value is slightly increased to accelerate

the training process. Once the update value is modified, the two most recently obtained gradients

are used to determine how it updates the weight. If both gradients’ signs are negative, the weight

is added by its update value and if both signs are positive, the weight is decreased by its update

value. If the signs are different, however, it can be determined that the step was too large and is

reverted. RMSProp extends the gradient descent method by maintaining a moving average of the

squared gradient obtained for each weight [28]. This moving average is based on the recent

magnitudes of the squared gradients for the associated weight. The obtained gradients are then

divided by this moving average. The motivation here is that the weights should be updated based

on the size and frequency of the gradients.

The gradient descent method and other optimization algorithms are used to train the network

by updating the weights and bias of the perceptrons after every step is taken in the training process.

As the network continues to update its weights and biases and reach the minimum of the loss

function, diminishing results will be returned from the training process. In fact, several issues can

start to arise by not ending the training process. Overfitting is one of the major problems associated

with training a network that describes the phenomenon where the network is overtrained on the

training dataset. A network that is over-fitted to the training dataset performs well on the training

20

dataset but performs poorly on the testing dataset [29]. Overfitting can be observed when the

network starts to learn and train on the noise of the training dataset, which in turn yields new,

suboptimal training updates [30].

Several methods of mitigating overfitting exist, such as early stopping, network reduction,

regularization, and dataset expansion. As the name suggests, early stopping involves stopping the

training process earlier than anticipated. It is difficult to determine when to stop the training

process early without any indicator that the network is being overfitted. Three elements of early

stopping exist to rectify this: performance monitoring, stop triggers, and model choice.

Performance monitoring involves analyzing the performance of the network training process as it

occurs in real time. Certain metrics can be good indicators of when to stop training, such as

incremental losses obtained when using a validation dataset or evaluating the network losses after

every training epoch. Stop triggers can be implemented in the network code to automatically

terminate the training process at the end of an epoch when the current epoch’s losses were greater

than those of the last epoch. Model choice involves saving the weights and biases of the network’s

perceptrons to a file after a certain amount of epochs have completed. By having frequent backups

of the network at different points in the training process, the network whose weights and biases

produce the smallest error can be selected for integration.

Network reduction can also be used to prevent overfitting by reducing the network complexity

through pruning. Pruning is used to reduce the size and complexity of a network while maintaining

or losing as little accuracy as possible [31]. Pruning involves many different methodologies, such

as assigning scores to network parameters and removing the parameters that contribute the least

towards the output. Pruning can be done before the training epoch has completed (pre-pruning) or

after the training epoch has completed (post-pruning) [32]. Pre-pruning methods use certain

criteria to determine when the network should discontinue adding conditions to a rule or adding

rules to the description of the model. Post-pruning methods split the training dataset into a larger

dataset and a smaller dataset, referred to as the growing set and pruning set, respectively [33]. With

post-pruning, the first pruned epoch runs on the growing set and deletes rules and conditions from

the network until an increase in error is detected when used with the pruning set. Pre-pruning

methods are more computationally efficient than post-pruning methods, but post-pruning methods

are much more accurate than pre-pruning methods.

21

Regularization describes the process of altering the network during the training process to

reduce the generalization errors, which describe the network’s ability to accurately respond to

unencountered data [34]. Regularization is used to reduce the overfitting problem by reducing the

size of the perceptrons’ weights. Large network weights signal that the network is overly trained

on the training dataset and will be sensitive to noise or new data [35]. By having smaller weights,

the network is less likely to be overfitted to the training dataset. Popular regularization methods

include L1 regularization, L2 regularization, dropout, additive noise, and weight constraint. L1

regularization involves adding a penalty term to the loss function equal to the sum of absolute

values of all the perceptrons’ weights. By adding this penalty term, the perceptron is more severely

penalized for using larger weights than smaller weights and is therefore encouraged to use smaller

weights. L2 regularization is identical to L1 regularization with the exception of the penalty term

representing the sum of squared values of all the perceptrons’ weights. Dropout is implemented

on a per-layer basis in a network and is used to randomly drop perceptrons from a layer based on

a parameterized probability coefficient. By doing this, the network becomes more generalized and

less tailored to the training dataset [36]. Adding noise can also reduce the generalization error of

the network by expanding the size of the training set, which is especially beneficial for smaller

datasets [37]. By adding a small amount of noise to each training sample, it can be guaranteed that

no samples are completely identical. Finally, weight constraints can be implemented to mitigate

overfitting. Weight constraints are alternatives to weight penalties in the sense that the penalty

term is the size of the weights. When the size of a weight exceeds a certain value, the weight is

subsequently scaled down [38]. This difference between weight constraints and weight

regularization methods is that weight constraints force the weights to be smaller, instead of

‘recommending’ the weights to be smaller.

22

 LITERATURE REVIEW

This section is intended to provide a literature review of some of the numerous digital image

steganography methods. There are three main categories that image steganography techniques fall

under, which are spatial domain techniques, transform domain techniques, and neural networks

[39]. It should be noted, however, that image steganography techniques may fall into several

categories by using a combination of different techniques.

2.1 Spatial Domain Techniques

Many of the common spatial domain techniques involve altering the least significant bits

(LSB) of the pixels of an image to embed information into a cover image. Often, these methods

rely on altering between one to four of the LSB of an image’s pixels, since changes within this

range are usually imperceptible to the human eye [40]. Figure 2.1 demonstrates the basic

architecture of spatial domain steganography techniques. Here, the sender is taking the optional

step of encrypting the secret text ‘Hello’ with an encryption algorithm which outputs the cipher

text, ‘C4Za9’. Each character of the cipher text is split into individual American Standard Code

for Information Interchange (ASCII) characters. Each ASCII character has its own decimal and

binary value, with ‘C’ being represented as 67 in decimal notation and 01000011 in binary notation.

With the entire binary sequence now known, these values can be embedded into the cover image

by modifying the LSB of the individual pixels. Since color images are split into three, 8-bit wide

color channels, this gives plenty of space to embed information while remaining undetectable to

the human eye. Once the secret message has been embedded into the cover image, the

steganographic image is then sent to the receiver. The receiver, in turn, will be able to extract the

hidden message by performing the steps taken to embed the message in the opposite order. If the

sender decides to encrypt the hidden message before embedding, the receiver will have to know

the decryption key to perform the decryption process. Otherwise, the receiver will only receive an

encrypted message and be unable to decipher the correct message.

Note that the encryption step is optional in the embedding process. However, by encrypting

the secret message, the security of the steganographic system is increased. In addition, the detail

of the embedding process greatly varies between different implementations. As a result, the results

23

are not guaranteed to be the same. In other words, if someone sends a steganographic image

encoded with one algorithm, it is unlikely that the receiver will be able to decipher it without using

the same algorithm.

Figure 2.1. Illustration of encrypting and embedding text into a cover image’s pixels.6

There are many types of spatial domain techniques that rely on altering the LSB of the pixels

of an image, such as the LSB++ method introduced in [41]. The LSB++ method works by

encrypting the payload image using a key, creating the encrypted message. A second key is used

to lock the frequency difference of two adjacent image bins with a gray value equal to double the

unit, creating the cover image. The embedding process is done by combining the cover image and

encrypted message with a third key. LSB++ improves upon other LSB-based techniques by

maintaining sensitive pixels in the cover image so that the level of distortion is reduced throughout

the embedding process. This provides a level of security against histography analysis.

6 Image source: https://medium.com/analytics-vidhya/shh-your-secret-is-safe-a-simple-guide-to-steganography-in-

python-89116582277e

24

Another example of a spatial domain steganography technique uses a codeword formed using

secret data and its CRC-32 checksum [40]. The codeword is then compressed with Gzip and

encrypted with AES, where the codeword is subsequently added to the encrypted header and

embedded into the cover image. The embedded process is done by using the Fisher-Yates Shuffle

algorithm to select the next pixel for embedding. To increase the security of the technique, the

LSB of the three color channels (red, green, blue) of the embedded pixel are used to hide one byte.

To extract the embedded image, the embedding steps are reversed, using the AES symmetric key

to decrypt the payload.

In [42], the authors proposed a spatial domain technique using LSB substitution, pixel value

differencing (PVD), and exploiting modification directions (EMD). The image is scanned in and

partitioned into 2x2 non-overlapping pixel blocks. The average PVD is calculated for each pixel

block. If the PVD is greater than fifteen, it is an edge; otherwise, it is considered a smooth region.

Next, the edges are processed for embedding using LSB substitution and PVD, while the smooth

regions are processed for embedding using LSB substitution and EMD. The PVD and EMD are

used in the algorithm to determine the hiding capacity for each pixel block. The authors proposed

two techniques where one uses pixel blocks of sizes 2x2 and the other uses pixel blocks of sizes

3x3. They discovered that using 2x2 pixel blocks produces better PSNR values, while 3x3 pixel

blocks produces greater hiding capacity.

2.2 Transform Domain Techniques

Transform domain techniques are steganography methods which use mathematical

transformation function to embed a hidden image within a cover image. A transform is a function

that is used to alter the structure of the data into waves, such as sine and cosine waves. One example

of a transform is the Fourier transform. The Fourier transform is a transform function that is used

to decompose a function into waves of different amplitudes and frequencies [43]. Another example

of a transform function is the Discrete Wavelet Transform, which decomposes a function into a

series of wavelets. Wavelets are wave-like oscillations which, unlike waves, are localized in time.

Wavelets have two components, scale and location. Scale, otherwise known as dilation, describes

how stretched or compressed a wavelet is. Location describes where the wavelet is positioned in

time or space [44].

25

The scale and location of a wavelet are determined by two parameters, 𝑎 and 𝑏. 𝑎 is used

adjust the scale of the wavelet and 𝑏 is used to adjust the location of the wavelet. The Discrete

Wavelet Transform uses a finite number of wavelets to determine how much of a wavelet can be

found within a given signal. In this case, the signals are images. The Haar two-dimensional DWT

decomposes an image into four coefficients, which are approximation, horizontal, vertical, and

diagonal coefficients. The approximation coefficients are composed of the low-low (LL) sub-band

wavelet coefficients and correspond to a down-sampled version of the original image [45]. The

horizontal coefficients are composed of the low-high (LH) sub-band wavelet coefficients. The

vertical coefficients are composed of the high-low (HL) sub-band wavelet coefficients. Lastly, the

diagonal coefficients are composed of the high-high (HH) sub-band wavelet coefficients. Figure

2.2 shows the output of a two-level DWT on an image. In the upper-left corner, the original image

is scaled to half its original size and corresponds to the LL sub-band wavelet coefficients. The

decomposed image to the right of the grayscale image shows the vertical details of the original

image. The decomposed images beneath and diagonal to the grayscale image show the horizontal

and diagonal details of the original image, respectively.

26

Figure 2.2. Example of a two-level discrete wavelet transform.7

One novel image steganography methodology used the Finite Ridgelet Transform (FRT),

Discrete Wavelet Transform (DWT), and Arnold Scrambling in order to provide high

imperceptibility and hiding capacity in comparison to other algorithms [46]. In this technique, FRT

is used in tandem with DWT due to an increased embedding capacity the two algorithms provide

when combined. The red, green, and blue color channels of the cover image are divided and their

ridgelet coefficients are computed. Then, the low-low (LL) sub-band wavelet coefficients are

gathered for each color channel. These LL subband wavelet coefficients are subsequently modified

according to the bits of the scrambled secret color image and an insertion factor. Next, an inverse

single-level DWT transform is performed on the modified LL sub-band wavelet coefficients with

the original low-high (LH), high-low (HL), and high-high (HH) sub-band wavelet coefficients to

get the modified ridgelet coefficients of each color channel. Figure 2.3 shows the decomposition

of sub-band wavelet coefficients at three levels. Inverse FRT is performed on the modified ridgelet

coefficients to get the altered color channels of the cover image. Last, the steganographic image is

constructed using the modified color channels.

7 Image source: https://upload.wikimedia.org/wikipedia/commons/e/e0/Jpeg2000_2-level_wavelet_transform-

lichtenstein.png

27

Figure 2.3. Labeled wavelet decomposition performed at three levels.8

Another technique relied on DWT in conjunction with all phase discrete cosine biorthogonal

transform (APDCBT) and singular value decomposition (SVD). APDCBT is a transform that

improves upon the discrete cosine transform (DCT) by offering greater performance in high-

frequency and low-frequency aggregation. SVD is a transform that is used in numerical analysis

and principal component analysis. First, the Haar DWT is applied to the cover image in order to

obtain the high-frequency sub-bands (HH, HL, LH) and the low-frequency sub-band (LL). HL and

LH are both used for inserting two identical watermarks. Here, the block-based APDCBT is used

to obtain each sub-block by dividing the image into 8x8 blocks. Next, the direct current (DC)

coefficients of each sub-block are used to create a new coefficient matrix. SVD is then applied to

this coefficient matrix to obtain the singular value matrix. The first watermark is inserted into the

coefficient matrix, where the inverse SVD is then applied to obtain a modified coefficient matrix.

Inverse APDCBT is then applied to this matrix to obtain the HL sub-band. This same process is

8 Image source: [66]

28

followed with the second watermark in order to obtain the LH sub-band. Finally, the inverse DWT

is used to obtain the steganographic image.

2.3 Neural Network Techniques

More recently, there have been many research efforts to utilize deep learning in order to

achieve image steganography. One such research that has implemented neural networks to perform

image steganography was performed by [47]. Their technique was implemented using three CNNs,

each of which consisting of five convolution layers. The first network is the preparatory network,

whose primary function is to prepare the secret images to be embedded. This is done by scaling

the hidden image to the same size as the cover image and transform the hidden image into useful

features for embedding, such as edges and corners. The second network, known as the hiding

network, takes the output of the preparatory network and a cover image as input and creates the

steganographic image. This network has five convolution layers that have fifty layers each of 3x3,

4x4, and 5x5 patches. The final network, referred to as the reveal network, is the ‘decoder’ of the

steganographic image. Its purpose is to remove the cover image to reveal the embedded image.

The reveal network also calculates the error between the cover and steganographic images, which

is subsequently used to adjust the weights of the preparatory and hiding networks. The error

between the embedded and recovered images, however, is used to adjust the weight of all three

networks. This technique has demonstrated its security against several kinds of attacks, even

instances where an attacker has access to the original cover and steganographic images.

Another example of deep neural networks in use to perform digital image steganography can

be seen in [10], where the authors combined the use of the Discrete Cosine Transform (DCT),

Image Elliptic Curve Cryptography (ECC), and the SegNet CNN in order to achieve a hiding

capacity of approximately 23 bits per pixel (bpp). ECC is an asymmetric encryption algorithm

used in various security applications, such as the Diffie-Hellman key exchange algorithm. This

technique also uses a network structure similar to [47], where a pre-processing network, encoding

network, and decoding network are used together to achieve steganography. The pre-processing

network normalizes the secret image and extracts important features. This is achieved using DCT

and ECC to obtain a secret image and encrypted image. The encoding network encodes the hidden

and cover images such that they are the same size and embeds the hidden image into the cover

image. The decoding network extracts the hidden image from the cover image. The decoding

29

network will output the steganographic image, which will need to be further decrypted by using

inverse DCT and ECC.

Deep convolutional generative adversarial networks have also been used in the field of

steganography, as seen in [48]. Generative adversarial networks are a type of neural network

structure that contain two primary networks, a generative model and a discriminatory model [49].

The generative model is used to create steganographic images that look like samples from the

dataset, while the discriminatory model is used to detect if the image has a hidden message. The

benefit of this structure is that both networks use the results to improve the network’s hiding

capabilities; when the generative model’s output is detected by the discriminatory model, its

weights are adjusted to embed the data more effectively. Inversely, if the discriminatory model

raises a false positive or negative, it uses the data from the other network to learn to discriminate

more effectively. The method implemented in this research is to use noise, a hidden image, and a

secret key to create the steganographic image, which is then passed to the receiving party. The

receiving party must use the secret key to decrypt the message, while the discriminatory model

also receives the steganographic message for training purposes. The discriminatory model’s loss

is calculated as the average cross-entropy, which is then used to update both models.

2.4 Summary

Table 1 summarizes a variety of different steganographic techniques. The domain and

methodology for each technique is summarized, and the average PSNR, NCC, SSIM, and MSE

values for each technique are displayed. The blindness of each technique is also noted. A

steganography method is considered blind if it has access to the steganographic image when

extracting the hidden image from it. Conversely, if the technique does not know or assume

anything about the given image when attempting the extraction process, it is not considered blind.

The preferred file formats for each technique are also described, as this may have a significant

impact on how the images are processed by the network, due to differences in compression and

how the data is stored. For example, image formats such as GIF and TIFF are better suited for

image steganography due to their lossless nature, while JPEG and PNG formats may not be as

suitable for this process because of their use of data compression techniques [50]. Finally, because

some methods focus on certain characteristics of steganography such as imperceptibility or hiding

capacity, certain values may be omitted from the table.

30

Table 2.1. Review of various image steganography methods.

Research Domain Method Peak

Signal to

Noise

Ratio

(PSNR)

Normali

zed

Cross-

Correlat

ion

(NCC)

Structur

al

Similarit

y Index

Matrix

(SSIM)

Mean

Square

Error

(MSE)

Paylo

ad

Size

Blind? Preferre

d file

format(s

)

Robustness Remarks

[40] Spatial Secret data is compressed

using Gzip, encrypted

using AES, and embedded

based on Fisher-Yates

Shuffle algorithm

40.0834

–

63.8619

1 Not

provided

0.02 –

6.46

8 bpp Yes BMP,

PNG,

TIFF

Has the ability

to detect

alterations to

the

steganographic

image using

CRC-32

checksum.

Uses several

algorithms in order

to achieve a high

PSNR, but it

quickly drops as

payload embedded

data size increases.

Highly resistant to

histogram and Chi-

square attacks

[10] Frequency

(Discrete

Cosine

Transform)

Secret image is

decomposed using DCT,

embedded into cover

image using deep neural

network, decrypted using

the ECC key.

Average

40.5726

Not

provided

0.9602 Not

provided

~23.2

69 bpp

No BMP,

PNG

DCT is used to

provide

robustness by

changing the

structure of the

secret image.

Uses CNNs,

discrete cosine

transform, and

elliptic curve

cryptography to

transform and hide

an image into a

cover.

[51] Spatial Secret data is hidden using

modified LSB substitution

method and uses edge

preserving modules to

ensure minimal distortion.

Average

46

Not

provided

Not

provided

Avg 1.4 ~1 – 3

bpp,

depen

ding

on # of

LSB

Yes JPG Robustness is

not a

component of

this proposed

method.

More LSB are used

for edges than

smooth areas to

provide

imperceptibility.

[46] Frequency

(Finite

Ridgelet

Transform,

Discrete

Wavelet

Transform)

RGB channels images are

scrambled using Arnold

scrambling. FRT and DWT

are used to obtain the

ridgelet coefficients and

wavelet subbands,

respectively. Inverse FRT

and DWT is applied to

obtain steganographic

image.

Average

58.9967

1 Not

provided

Not

provided

8 bpp No Not

provided

Very

susceptible to

attacks such as

JPEG

compression,

cropping, noise,

and histogram

analysis.

Uses FRT with

DWT to greatly

increase the

payload capacity.

Arnold scrambling

is used to provide

security to secret

image before

insertion.

3
0

31

Table 2.1 continued.

[52] Spatial Eight-directional Pixel

Value Differencing (PVD)

is used to embed the pixels

of a secret image into a

cover image. The eight

directions correspond to

each of the pixels

surrounding a particular

pixel in the cover image.

Variant

1:

Average

39.55

Variant

2:

Average

37.22

Not

provided

Avg

0.9985

Not

provided

Varian

t 1: 3

Varian

t 2:

Avg

3.31

No Not

provided

Robustness is

achieved

through its

resistance to RS

and Pixel

Difference

Histogram

(PDH) analysis.

Two variants of the

method are

provided. Variant 1

uses 3-bit

substitution and

has higher PSNR,

while Variant 2

uses 4-bit

substitution and

has higher hiding

capacity.

[53] Spatial Secret image is

manipulated using

Arnold’s Cat Map,

embedded into the edges of

the cover image

determined by Canny edge

detection, and embedded

using Least Significant Bit

Matching Revisited [53].

38.6775

–

76.4144

Not

provided

Not

provided

Not

provided

Not

provid

ed

Yes TIFF LSB Matching

Revisited

provides a level

of robustness

against

asymmetric

steganographic

attacks.

This method

requires secret

images to be 10%

of the size of the

cover image for

high PSNR and

quality.

3
1

32

 METHODOLOGY

3.1 The Original Method

The steganographic channel implemented in this research was built on an unofficial

implementation of the method proposed in [47]. The implementation was provided by [54] and is

written in Python. The overall network structure is comprised of three individual networks, a

preparatory, hiding, and reveal network. The preparatory network is used to take a secret image

and process it for embedding, which occurs in the hiding network. The hiding network takes the

processed secret image and a cover image as input and produces the steganographic image. The

reveal network takes a steganographic image as input and reproduces the secret image. Each

network is connected and is trained as a whole, instead of training each network separately. Figure

3.1 shows the structure of the preparatory, hiding, and reveal networks.

The primary method in which the network learns is through the use of a loss function and the

Adam optimizer. The loss function for this network is provided by the following equation, where

𝑐 represents the cover image, 𝑐′ represents the steganographic image, 𝑠 represents the secret image,

and 𝑠′ represents the recovered image:

𝐿(𝑐, 𝑐′, 𝑠, 𝑠′) = ‖𝑐 + 𝑐′‖ + 𝛽‖𝑠 − 𝑠′‖ (3.1)

The loss function is returned in three parts, the total, hiding, and extracted loss coefficients.

The ‖𝑐 + 𝑐′‖ part of the loss function represents the error between the cover and steganographic

image and is applied to preparatory and hiding network. The 𝛽‖𝑠 − 𝑠′‖ part of the loss function

represents the error between the hidden and extracted image and is applied to all three networks.

It is worth mentioning that these were the original author’s intentions; the implementation of that

research only utilized the overall error coefficient.

33

Figure 3.1. Structure of the overall network. The structure of the preparatory network is identical between the hiding and reveal

networks, with the exception of the hiding and reveal networks taking an additional step of performing a two-dimension convolution

on the concatenated tensors.

3
3

34

Adam is a stochastic gradient descent method that is used to train the three networks. The

Adam optimizer works well with networks that have large input requirements and has been shown

to work well with CNNs [55]. Adam works by combining the features of two extensions of the

stochastic gradient descent method, Adaptive Gradient Algorithm (AdaGrad) and Root Mean

Square Propagation (RMSProp) [56]. It borrows from AdaGrad the idea that each perceptron

should have its own continuously updated learning rate, and from RMSProp the moving averages

and the idea that the learning rates should be updated according to the average of the recent

magnitudes obtained from the gradients of the perceptrons’ weights. Adam differs from the

moving average outlined in RMSProp by calculating an exponential moving average from the

gradients and the square of the gradients, where hyperparameters 𝛽1 and 𝛽2 are used to adjust the

decay rates of the exponential moving average. 𝛽1 is used to adjust the estimates of the gradients’

first moments, otherwise known as mean, and 𝛽2 is used to adjust the estimates of the gradients’

second moments, otherwise known as variance.

The following summarizes the main elements of the structure of the original network:

- Create a training graph, consisting of a preparatory network with 3x3, 4x4, and 5x5

convolution branches, hiding network (same structure), noise layer, and reveal network

(same structure). The purpose of the training graph is to process a randomly selected

cover and hidden image, produce a steganographic image, extract the hidden image,

and update the network weights using the Adam optimizer.

o For each epoch, and for each step, randomly select a cover and hidden image

from the datasets and provide as input to train the network.

▪ On the hundredth step, test the network with a randomly selected cover

and hidden image.

- Create a test graph with a preparatory network, hiding network, and reveal network.

The test graph is used to test the embedding and extracting processes of the network

and obtain the combined SSIM and PSNR values. Since it is not part of the training

process, the Adam optimizer is not used to update the weights.

- Create a deployment graph with a preparatory network, hiding network, and reveal

network. The deployment graph takes an input cover and hidden image and is used to

produce a steganographic and extracted image.

35

3.2 The Enhanced Network

In this research, the network structure is largely similar to the original implementation. That

is, the final network consisted of a training, testing, and deployment graph. The training graph

consisted of a preparatory network, hiding network, and reveal network. The preparatory network

consisted of five two-dimensional convolution layers, with each convolution layer having fifty

filters each of 3x3, 4x4, and 5x5 patches. Each patch has a kernel size of five and has a ReLU

activation function.

In the pursuit of better imperceptibility, hiding capacity, and robustness, many modifications

to the original network were made:

1. In order to eliminate the reliance of training on the ImageNet dataset, the normalization

and denormalization methods were removed from the network. This means that the preparatory

network no longer normalized and denormalized image batches based on the mean and standard

deviation from the ImageNet dataset. After examining the results of input and output images from

the network, it was apparent that these values were not creating accurate output results and thus

were removed. These images had a much lower contrast ratio and appeared to have a type of sepia

filter applied.

 2. The hyperparameters were also adjusted from the original network as well. The batch

size was increased from 8 to 16 with the hopes that the increased size of the batch would produce

more varied results in image details and, in turn, provide more variety in the training process. Both

networks were trained for ten epochs. However, since the steps taken per epoch were directly

correlated to the batch sizes, the original network’s number of steps per epoch was 1,784. Since

the batch size was doubled in the proposed network, the number of steps per epoch was reduced

to 891. The learning rate was slightly increased from 0.0001 to 0.0002. The motivation of

increasing the learning rate by a small amount was to speed up the training process, but not too

much that the network converges on the wrong solution. 𝛽 , also known as momentum, was

decreased from 0.75 to 0.25. The momentum was decreased to reduce the speed of the training

process, since it is possible that the large momentum value attributed to the artifacts in the resulting

images.

3. In [47], the author adds a noise layer to the network such that the network is less likely to

embed the information inside the LSB of the cover image’s pixels and to increase the

imperceptibility of the hiding results. The noise layer was removed to release this unnecessary

36

constraint. It is possible to further improve the hiding imperceptibility results by utilizing hiding

methodologies within the LSB, in conjunction with other hiding methodologies the network

decides to use.

4. The learning goal of the network was altered to focus on imperceptibility instead of

minimizing image quality losses. That is, originally, the loss function consisted of two parts, one

representing the MSE between the cover and steganographic images and the other representing the

MSE between hidden and extracted images. The loss function was reworked to a “gain function”,

where the losses were not calculated based on MSE coefficients but based on the combination of

PSNR and SSIM coefficients. Because higher PSNR and SSIM coefficients positively correlate to

greater image quality, the loss function was reworked to maximize this value. In the

implementation, the loss function was changed to a “gain function” by minimizing the inverse of

the PSNR and SSIM values since TensorFlow does not provide a built-in function for maximizing

tensors. In fact, this modification had the most impact on the results - as demonstrated in the

Results section using both the quantitative and visually observable results.

37

 RESULTS

4.1 Model Training & Testing

While importing the network for our testing purposes, it was assumed that the ImageNet

dataset was used to train the network and obtain these results, since the image pixels values were

normalized using the mean and standard deviation values from ImageNet dataset. To provide the

most equitable comparison between the original and proposed network designs and minimize

differences in network training, similar datasets were obtained and used in the training and testing

processes. To train and test the original network, the Linnaeus 5 [8] and Imagenette [57] datasets

were used.

Linnaeus 5 is a dataset that contains 6,000 square images of five different types of objects.

The images in the Linnaeus 5 dataset are saved in a JPG format, with each image having a height

and width of 128 pixels. The Imagenette is derived from the original ImageNet dataset and consists

of 9,468 images of ten different types of objects. The Imagenette dataset was used instead of the

full ImageNet dataset due to limited storage space for training samples. The images provided by

the Imagenette dataset were also saved in a JPG format but varied widely in height and width.

Because the preparatory network takes care of resizing and formatting the images for use in the

network, however, the varying image sizes from this dataset was not an issue.

The input cover and hidden images were provided to both the original and proposed network

in the JPG format. When the images were supplied to the preparatory and hiding networks, they

were first resized to 224 pixels square with the goal of hiding one full-size color image inside

another color image of equal size.

4.2 Experiment Setup

For this experiment, the network proposed in [47] was built based on the Python

implementation provided in [58]. The code was written and revised using the first major version

of the Python TensorFlow library. Additional libraries were used in this experiment to include

scikit-image for gathering the image metrics [59] and Matplotlib for displaying the images inside

the Jupyter Notebook [60]. Google Colaboratory, also referred to as Colab, was used as the code

editor and execution environment for training and testing the network. Colab works by hosting the

38

interpretation and execution of Jupyter notebooks on their cloud service, where the Jupyter

notebooks are Python-based computational documents. To accelerate the training process, the Pro

version of Colab was used, which enabled the use of an Nvidia Tesla T4 or Nvidia Tesla P100

GPU for the training process. Additionally, using Colab Pro enabled the use of a high-RAM

runtime environment, which also reduced the time spent training the network.

To ensure that a wide variety of images were chosen for testing the networks, images that

contain lots of color and image details were collected from various sources. Table 4.1 shows the

ten image pairs that will be used throughout the results section to compare between

implementations. Some images in the table, such as Baboon and Lena, are popular choices for

testing neural networks that perform some type of image processing. Other images are samples

from the datasets the network was trained on, such as the Karaoke and French Horn images. There

are also a few original images, such as Graffiti and Lotus.

39

Table 4.1. List of labels and images used between experiments.

Label Cover Image Label Hidden Image

Baboon

Graffiti

Berries

Karaoke

Chainsaws

Lena

Church

Lotus

Dog

Parachute

40

Table 4.1 continued.

Fish

Parrot

French Horn

Pens

Garbage

Truck

Peppers

Gas Pump

Stained Glass

Golf Balls

Thistle

41

4.3 Results of the Original Network

This section focuses on the results of the original, unmodified code from which this work was

derived. As seen in Table 4.2, the resulting steganographic image from the original network shows

faint traces of the secret image. The SSIM and PSNR values between the cover and steganographic

images from the original implementation were 0.93041 and 28.69137 dB, respectively. Values in

these ranges tend to be on the lower end of the results from other image steganography methods.

These faint traces are highlighted when compared side-by-side to the steganographic images

generated by the original network trained on our datasets.

When trained on the Imagenette and Linnaeus 5 datasets, the original network clearly showed

traces of the hidden image within the steganographic image. As shown in Table 4.3, the resulting

steganographic and revealed images show the artifacts of the hiding process much more clearly

than the author’s sample output images, even with many more training steps taken. Important

image details such as edges and corners are visually perceptible in the steganographic image

produced by the original network. A close examination of the steganographic image reveals a

discolored version of the cover image. However, despite the vast increase in training iterations, the

images in our implementation of the original network did not use the normalization and

denormalization processes. This may explain why the hiding artifacts may be more apparent.

With regards to metrics obtained from training the original network with the datasets obtained

in this research, there are great improvements to be desired. The SSIM and PSNR values of the

sample steganographic image generated by the original network trained on the ImageNet dataset

were 0.93041 and 28.69137 dB, respectively. Expectedly, the SSIM and PSNR values of the same

steganographic image generated by the original network trained on the Imagenette and Linnaeus

5 datasets were lower, resulting in 0.89914 and 27.69137 dB, respectively. Although the SSIM

and PSNR values were similar between the two implementations, the steganographic process of

the original network trained on the Imagenette and Linnaeus 5 datasets is not visually

imperceptible and can easily be spotted by the naked eye. Moreover, the visually important details

of the hidden image like edges and corners can be detected in the steganographic image without

tools or adjustments, which does not provide a good method for image steganography. Comparing

the results from the code provided by [58] with the original network trained on the proposed

network’s dataset highlights the details of the hidden image embedded within the steganographic

image.

42

Table 4.2. Side-by-side comparison of steganographic and extracted images generated by the original network trained on the

ImageNet dataset and the original network trained on the Imagenette and Linnaeus 5 dataset.

Network

Version

Cover Image Steganographic Image Extracted Image Hidden Image

Original

Network

(Original

Dataset)

Image

Metrics

SSIM: 0.93041

PSNR: 28.69137

SSIM: 0.73294

MSE: 0.00749

Original

Network

(Proposed

Network’s

Dataset)

Image

Metrics

SSIM: 0.89914

PSNR: 27.61369

SSIM: 0.84422

MSE: 0.00296

4
2

43

Table 4.3. The steganographic and extracted images generated by the original method.

 Original Network

Experiment Steganographic Image Recovered Image

Cover: Baboon,

Hidden: Graffiti

Image Metrics SSIM: 0.93687

PSNR: 27.96642

SSIM: 0.87001

MSE: 0.00297

Cover: Berries,

Hidden:

Karaoke

Image Metrics SSIM: 0.93457

PSNR: 25.62975

SSIM: 0.85424

MSE: 0.0026

Cover:

Chainsaws,

Hidden: Lena

Image Metrics SSIM: 0.91134

PSNR: 29.35

SSIM: 0.91303

MSE: 0.00162

Cover: Church,

Hidden: Lotus

Image Metrics SSIM: 0.93737

PSNR: 29.59204

SSIM: 0.86413

MSE: 0.00222

44

Table 4.3 continued.

Cover: Dog,

Hidden:

Parachute

Image Metrics SSIM: 0.90129

PSNR: 25.7312

SSIM: 0.93006

MSE: 0.00138

Cover: Fish,

Hidden: Parrot

Image Metrics SSIM: 0.90204

PSNR: 25.77007

SSIM: 0.92166

MSE: 0.0013

Cover: French

Horn, Hidden:

Pens

Image Metrics SSIM: 0.87437

PSNR: 27.37058

SSIM: 0.77593

MSE: 0.0045

Cover: Garbage

Truck, Hidden:

Peppers

Image Metrics SSIM: 0.87806

PSNR: 27.89983

SSIM: 0.89549

MSE: 0.0019

45

Table 4.3 continued.

Cover: Gas

Pump, Hidden:

Stained Glass

Image Metrics SSIM: 0.81223

PSNR: 25.3442

SSIM: 0.83418

MSE: 0.00576

Cover: Golf

Balls, Hidden:

Thistle

Image Metrics SSIM: 0.90461

PSNR: 25.99714

SSIM: 0.87267

MSE: 0.0023

46

4.4 Results of the Enhanced Network

This section focuses on the results of the proposed network with the various changes made.

After making the changes to the network structure and parameters, the results of the embedding

and extracting process were much more favorable in terms of imperceptibility and recoverability.

As seen in Table 4.4, the resulting steganographic and extracted images generated by the proposed

network resulted in greater PSNR and SSIM values than the values generated by the original

network. This enhancement in imperceptibility was supported by the high SSIM and PSNR values

generated between the two, with average values of 0.99711 and 43.04027 dB, respectively. As

seen in Table 4.5, the results of the network were significantly improved when compared to the

results from the original network. Compared to the results of the original network, the proposed

network was much more effective at hiding the secret image inside the cover image. The SSIM

and PSNR values of the sample steganographic image generated by the proposed network were

0.99498 and 41.41283 dB, respectively. These values are much greater than the SSIM and PSNR

values of the sample steganographic image generated by the original network, which were 0.93041

and 28.69137 dB, respectively. When compared side-by-side, the steganographic images

generated by the proposed network were virtually indistinguishable to the naked eye, while the

steganographic images generated by the original network clearly exposed details of the hidden

image.

The recoverability of the proposed network was also greater than that of the original network.

Comparing the extracted images from the original and proposed networks revealed that the original

network’s extraction process lost some of the sharpness and minute details of the image.

Additionally, extracted images contained a distorted, wave-like pattern. In Table 4.4, the sample

extracted image generated by the original network resulted in SSIM and MSE values of 0.84422

and 0.00296, respectively. The proposed network improved slightly on the similarity between the

hidden and extracted image with a SSIM value of 0.87402. However, the error between the hidden

and extracted image resulted in a slightly greater MSE value of 0.003. Visually, the extraction

process of the proposed network maintains the sharpness and the smaller details of the image.

However, the contrast of the extracted images was noticeably reduced, and the extracted images

were slightly grainy. From Table 4.5, the average SSIM and MSE values of the proposed network

were 0.89496 and 0.00294, respectively. The average SSIM and MSE values of the original

47

network were 0.87314 and 0.00266, respectively. The increased image sharpness of the proposed

network’s extracted images is supported by the slightly increased SSIM value. The slightly higher

MSE values may explain the graininess of the extracted images generated by the proposed network.

Comparing the quantitative and visual results between the original and proposed methodology,

it can be surmised that the change in network structure and loss function resulted in greatly

improved steganography results. Table 4.6 shows the comparison of image metrics obtained from

the steganographic and extracted images generated by the original and enhanced networks. For all

test images, the proposed network greatly outperformed the original network in terms of the

imperceptibility and similarity between the cover and steganographic images. Additionally, the

proposed network slightly improved regarding the similarity between the hidden and extracted

images. However, since the goal was to improve the imperceptibility of the steganography process,

this resulted in extracted images with slightly higher MSE values in most cases. As supported by

the image metrics highlighted in Table 4.6, the changes introduced by the proposed methodology

resulted in a highly imperceptible image steganography method and produced highly desirable

steganographic images without sacrificing much in terms the extracted image’s details.

48

Table 4.4. Side-by-side comparison of the steganographic and extracted images generated by the original and proposed

methodologies.

Network

Version

Cover Image Steganographic Image Extracted Image Hidden Image

Original

Network

(ImageNet

dataset)

Image

Metrics

SSIM: 0.93041

PSNR: 28.69137

SSIM: 0.73294

MSE: 0.00749

Proposed

Network

Image

Metrics

SSIM: 0.99498

PSNR: 41.41283

SSIM: 0.87402

MSE: 0.003

4
8

49

Table 4.5. The steganographic and extracted images generated by the enhanced methodology.

Proposed Network

Experiment Steganographic Image Recovered Image

Cover: Baboon,

Hidden: Graffiti

Image Metrics SSIM: 0.99748

PSNR: 42.85748

SSIM: 0.88449

MSE: 0.00262

Cover: Berries,

Hidden:

Karaoke

Image Metrics SSIM: 0.99848

PSNR: 44.33152

SSIM: 0.93213

MSE: 0.00131

Cover:

Chainsaws,

Hidden: Lena

Image Metrics SSIM: 0.99652

PSNR: 42.4834

SSIM: 0.91373

MSE: 0.00167

Cover: Church,

Hidden: Lotus

Image Metrics SSIM: 0.99789

PSNR: 44.17786

SSIM: 0.90252

MSE: 0.00204

50

Table 4.5 continued.

Cover: Dog,

Hidden:

Parachute

Image Metrics SSIM: 0.99853

PSNR: 44.72544

SSIM: 0.91306

MSE: 0.00213

Cover: Fish,

Hidden: Parrot

Image Metrics SSIM: 0.99773

PSNR: 44.487

SSIM: 0.92739

MSE: 0.00158

Cover: French

Horn, Hidden:

Pens

Image Metrics SSIM: 0.99739

PSNR: 42.45224

SSIM: 0.83423

MSE: 0.00498

Cover: Garbage

Truck, Hidden:

Peppers

Image Metrics SSIM: 0.99713

PSNR: 43.06884

SSIM: 0.89151

MSE: 0.00306

51

Table 4.5 continued.

Cover: Gas

Pump, Hidden:

Stained Glass

Image Metrics SSIM: 0.99499

PSNR: 41.65722

SSIM: 0.81930

MSE: 0.00767

Cover: Golf

Balls, Hidden:

Thistle

Image Metrics SSIM: 0.99494

PSNR: 40.16172

SSIM: 0.92120

MSE: 0.00231

52

Table 4.6. A comparison of performance metrics between the original and enhanced networks.

 Original Network Proposed Network

Experiment Steganographic

Image

Recovered Image Steganographic

Image

Recovered Image

Cover:

Baboon,

Hidden:

Graffiti

SSIM: 0.93687

PSNR:

27.96642

SSIM: 0.87001

MSE: 0.00297

SSIM: 0.99748

PSNR: 42.85748

SSIM: 0.88449

MSE: 0.00262

Cover:

Berries,

Hidden:

Karaoke

SSIM: 0.93457

PSNR:

25.62975

SSIM: 0.85424

MSE: 0.0026

SSIM: 0.99848

PSNR: 44.33152

SSIM: 0.93213

MSE: 0.00131

Cover:

Chainsaws,

Hidden:

Lena

SSIM: 0.91134

PSNR: 29.35

SSIM: 0.91303

MSE: 0.00162

SSIM: 0.99652

PSNR: 42.4834

SSIM: 0.91373

MSE: 0.00167

Cover:

Church,

Hidden:

Lotus

SSIM: 0.93737

PSNR:

29.59204

SSIM: 0.86413

MSE: 0.00222

SSIM: 0.99789

PSNR: 44.17786

SSIM: 0.90252

MSE: 0.00204

Cover: Dog,

Hidden:

Parachute

SSIM: 0.90129

PSNR: 25.7312

SSIM: 0.93006

MSE: 0.00138

SSIM: 0.99853

PSNR: 44.72544

SSIM: 0.91306

MSE: 0.00213

Cover: Fish,

Hidden:

Parrot

SSIM: 0.90204

PSNR:

25.77007

SSIM: 0.92166

MSE: 0.0013

SSIM: 0.99773

PSNR: 44.487

SSIM: 0.92739

MSE: 0.00158

Cover:

French Horn,

Hidden: Pens

SSIM: 0.87437

PSNR:

27.37058

SSIM: 0.77593

MSE: 0.0045

SSIM: 0.99739

PSNR: 42.45224

SSIM: 0.83423

MSE: 0.00498

Cover:

Garbage

Truck,

Hidden:

Peppers

SSIM: 0.87806

PSNR:

27.89983

SSIM: 0.89549

MSE: 0.0019

SSIM: 0.99713

PSNR: 43.06884

SSIM: 0.89151

MSE: 0.00306

Cover: Gas

Pump,

Hidden:

Stained Glass

SSIM: 0.81223

PSNR: 25.3442

SSIM: 0.83418

MSE: 0.00576

SSIM: 0.99499

PSNR: 41.65722

SSIM: 0.81930

MSE: 0.00767

Cover: Golf

Balls,

Hidden:

Thistle

SSIM: 0.90461

PSNR:

25.99714

SSIM: 0.87267

MSE: 0.0023

SSIM: 0.99494

PSNR: 40.16172

SSIM: 0.92120

MSE: 0.00231

53

 CONCLUSIONS

In this research, the fields of digital image steganography and convolutional neural networks

were explored to develop a novel method of embedding and extracting images. A close look was

taken at many existing image steganography methods, which utilized techniques from the spatial,

frequency, and neural network domains. To produce novel findings, this research started with a

methodology proposed by [47] and implemented by [58], where significant changes to the network

structure and parameters were made in order to obtain results that greatly improved on the original

implementation. The network changes responsible for these improved results were removal of the

image normalization methods, careful tuning of the network hyperparameters, omission of the

noise layer, and the rework of the loss function to prioritize the similarity of the cover and hidden

images over the reduction of the error between the input and generated images. These changes

resulted in a network that imperceptibly embedded a color image within another color image of

the same size and capacity.

There are several ways in which this work can be improved upon. The Python code for the

proposed network was written using the first version of TensorFlow. Created by Google Brain,

TensorFlow 1.0 was released by in 2017 and its successive major revision, TensorFlow 2.0, was

released in 2019 [61]. In the second version, many fundamental changes were made to the library,

and the results obtained by converting the existing code to TensorFlow 2.0 may be more desirable

than the results obtained by continuing to use original version.

Improvements may also be made to the network by using a larger dataset with a greater variety

of images. As mentioned in the Introduction, introducing noise to the training process can help

mitigate the opportunity for the network to overfit to the training dataset. The Imagenette and

Linnaeus 5 datasets both contain images with set labels for the purposes of image classification

(e.g., dogs, flowers). To reduce the opportunity for the network to learn the details of images that

classify these types of images and rely on them when performing the embedding and extracting

processes, greater variety in the image datasets would be more ideal for the purposes of reducing

overfitting. To this end, subsequent research on this methodology would also benefit from splitting

the datasets into explicit training and testing datasets. Although the results obtained from the

proposed methodology were greatly improved from the original, using images from the testing

dataset foreign to the network would likely produce much better results.

54

Another avenue for future work would involve performing a steganalysis on the

steganographic images produced by the proposed methodology. By analyzing a steganographic

image, it is possible to detect the presence of a hidden image. If steganalysis is performed on the

steganographic images and the presence of hidden information is detected, the proposed

methodology can be altered to evade the detection. Conversely, if steganalysis is performed and it

is determined that the cover image does not contain hidden information, then the proposed

methodology would not require modifications to evade detection.

Lastly, the image metrics produced by this network would benefit from a proper and impartial

comparison of other existing image steganography techniques. Because each implementation uses

its own image sets for producing metric results, some of which are controlled by copyrights and

intellectual property laws, it is not always feasible to obtain a completely fair comparison between

methodologies. Additionally, frequently used images such as the Lena and Baboon images may

not always be identical between uses due to factors such as compression and differences in image

formats. For standardized, fair-use images that are used in existing methodologies, however, an

avenue for future work would be to use these images to provide for a more fair and equitable

comparison of the image metrics.

As witnessed by the significant improvement in results between the original and proposed

methodologies, the importance of the structure and hyperparameters of the network should be

emphasized. Small changes such as alterations in the training datasets, loss functions, and

hyperparameters can have a profound influence on the training process and network results.

55

REFERENCES

[1] T. Jamil, "Steganography: the art of hiding information in plain sight," IEEE Potentials, vol.

18, no. 1, pp. 10-12, 1999.

[2] I. Cox, M. Miller, J. Bloom, J. Fridrich and T. Kalker, Digital Watermarking and

Steganography, San Francisco: Elsevier Science & Technology, 2007.

[3] Herodotus, R. B. Strassler and A. L. Purvis, The Landmark Herodotus : the Histories, New

York City: Pantheon Books, 2007.

[4] D. Artz, "Digital Steganography: Hiding Data within Data," IEEE Internet Computing, vol.

5, no. 3, pp. 75-80, 2001.

[5] F. Djebbar, B. Ayad, K. A. Meraim and H. Hamam, "Comparative study of digital audio

steganography techniques," EURASIP Journal on Audio, Speech, and Music Processing, vol.

2012, no. 1, pp. 1-16, 2012.

[6] "What is bit depth?," Florida Center for Instructional Technology, 2018. [Online]. Available:

https://etc.usf.edu/techease/win/images/what-is-bit-depth/. [Accessed 3 April 2022].

[7] L. Fei-Fei, J. Deng, O. Russakovsky, A. Berg and K. Li, ImageNet, Stanford: Stanford

University, 2020.

[8] G. Chaladze and L. Kalatozishvili, "Linnaeus 5 Dataset for Machine Learning," 2017.

[9] A. A. Zakaria, M. Hussain, A. W. A. Wahab, M. Y. I. Idris, N. A. Abdullah and K.-H. Jung,

"High-Capacity Image Steganography with Minimum Modified Bits Based on Data

Mapping and LSB Substitution," Applied Sciences, vol. VIII, no. 11, pp. 2199-2218, 2018.

[10] X. Duan, D. Guo, N. Liu, B. Li, M. Gou and C. Qin, "A New High Capacity Image

Steganography Method Combined With Image Elliptic Curve Cryptography and Deep

Neural Network," IEEE Access, pp. 25777-25788, 2020.

[11] Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multiscale structural similarity for image

quality assessment," in The Thrity-Seventh Asilomar Conference on Signals, Systems &

Computers, Pacific Grove, 2003.

56

[12] L. Hardesty, "Explained: Neural Networks," Massachusetts Institute of Technology, 14 April

2017. [Online]. Available: https://news.mit.edu/2017/explained-neural-networks-deep-

learning-0414. [Accessed 19 September 2021].

[13] G. Ognjanovski, "Everything you need to know about Neural Networks and

Backpropagation — Machine Learning Easy and Fun," Medium, 14 January 2019. [Online].

Available: https://towardsdatascience.com/everything-you-need-to-know-about-neural-

networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a. [Accessed 19

September 2021].

[14] J. Brownlee, "How to Configure the Number of Layers and Nodes in a Neural Network,"

Machine Learning Mastery, 27 July 2018. [Online]. Available:

https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-

a-neural-network/. [Accessed 19 September 2021].

[15] A. Bhardwaj, "What is a Perceptron? – Basics of Neural Networks," Towards Data Science,

11 October 2020. [Online]. Available: https://towardsdatascience.com/what-is-a-perceptron-

basics-of-neural-networks-c4cfea20c590. [Accessed 2 April 2022].

[16] deeplizard, "Bias In An Artificial Neural Network Explained | How Bias Impacts Training,"

DEEPLIZARD, 17 April 2018. [Online]. Available:

https://deeplizard.com/learn/video/HetFihsXSys. [Accessed 2 April 2022].

[17] A. D. Rasamoelina, F. Adjailia and P. Sincak, "A Review of Activation Function for

Artificial Neural Network," in International Symposium on Applied Machine Intelligence

and Informatics, Herlany, 2020.

[18] I. Ohn and Y. Kim, "Smooth Function Approximation by Deep Neural Networks with

General Activation Functions," in Entropy, Basel, 2019.

[19] J. Brownlee, "How Do Convolutional Layers Work in Deep Learning Neural Networks?,"

Machine Learning Mastery, 17 April 2019. [Online]. Available:

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-

networks/. [Accessed 19 September 2021].

[20] S. Saha, "Towards Data Science," Medium, 15 December 2018. [Online]. Available:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53. [Accessed 26 February 2022].

57

[21] P. S. Sinha, "Types of Loss Functions in Machine Learning," OpenGenus IQ, [Online].

Available: https://iq.opengenus.org/types-of-loss-function/. [Accessed 2 April 2022].

[22] J. Durán, "Everything You Need to Know about Gradient Descent Applied to Neural

Networks," Medium, 19 September 2019. [Online]. Available:

https://medium.com/yottabytes/everything-you-need-to-know-about-gradient-descent-

applied-to-neural-networks-d70f85e0cc14. [Accessed 26 March 2022].

[23] I. C. Education, "What is Gradient Descent?," IBM, 27 October 2020. [Online]. Available:

https://www.ibm.com/cloud/learn/gradient-descent. [Accessed 27 March 2022].

[24] N. Donges, "Gradient Descent: An Introduction to 1 of Machine Learning’s Most Popular

Algorithms," Built In, 23 July 2021. [Online]. Available: https://builtin.com/data-

science/gradient-descent. [Accessed 27 March 2022].

[25] R. Gylberth, "An Introduction to AdaGrad," Medium, 2 May 2018. [Online]. Available:

https://medium.com/konvergen/an-introduction-to-adagrad-f130ae871827. [Accessed 27

March 2022].

[26] J. Brownlee, "Gradient Descent With AdaGrad From Scratch," Machine Learning Mastery,

11 June 2021. [Online]. Available: https://machinelearningmastery.com/gradient-descent-

with-adagrad-from-scratch/. [Accessed 27 March 2022].

[27] M. Riedmiller and H. Bruan, "A direct adaptive method for faster backpropagation learning:

the RPROP algorithm," in IEEE International Conference on Neural Networks, San

Francisco, 1993.

[28] G. Hinton, N. Srivastava and K. Swersky, "rmsprop: Divide the gradient by a running

average of its recent magnitude," Neural Networks for Machine Learning, 2012.

[29] X. Ying, "An Overview of Overfitting and its Solutions," Journal of Physics: Conference

Series, vol. 1168, no. 2, p. 022022, 2019.

[30] J. Brownlee, "A Gentle Introduction to Early Stopping to Avoid Overtraining Neural

Networks," Machine Learning Mastery, 7 December 2018. [Online]. Available:

https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-

models/. [Accessed 2 April 2022].

58

[31] D. Blalock, J. G. J. Ortiz, J. Frankle and J. Guttag, "What Is The State of Neural Network

Pruning?," in 3rd MLSys Conference, Austin, 2020.

[32] J. Hoare, "Machine Learning: Pruning Decision Trees," Displayr, 4 July 2017. [Online].

Available: https://www.displayr.com/machine-learning-pruning-decision-trees/. [Accessed

3 April 2022].

[33] J. Furnkranz, "A Comparison of Pruning Methods for Relational Concept Learning," in AAAI

Workshop on Knowledge Discovery in Databases, Vienna, 1994.

[34] S. R. Shinde, "Improving Artificial Neural Network with Regularization and Optimization,"

Towards AI Inc., 29 September 2020. [Online]. Available: https://towardsai.net/p/machine-

learning/improving-artificial-neural-network-with-regularization-and-optimization.

[Accessed 3 April 2022].

[35] J. Brownlee, "Use Weight Regularization to Reduce Overfitting of Deep Learning Models,"

Machine Learning Mastery, 19 November 2018. [Online]. Available:

https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-

learning-models/. [Accessed 3 April 2022].

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: A

Simple Way to Prevent Neural Networks from Overfitting," The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[37] J. Brownlee, "Train Neural Networks With Noise to Reduce Overfitting," Machine Learning

Mastery, 12 December 2018. [Online]. Available:

https://machinelearningmastery.com/train-neural-networks-with-noise-to-reduce-

overfitting/. [Accessed 3 April 2022].

[38] J. Brownlee, "A Gentle Introduction to Weight Constraints in Deep Learning," Machine

Learning Mastery, 23 November 2018. [Online]. Available:

https://machinelearningmastery.com/introduction-to-weight-constraints-to-reduce-

generalization-error-in-deep-learning/. [Accessed 3 April 2022].

[39] N. M. Surse and P. Vinayakray-Jani, "A Comparative Study on Recent Image Steganography

Techniques Based on DWT," 2017 International Conference on Wireless Communications,

Signal Processing and Networking (WiSPNET), pp. 1308-1314, 2017.

59

[40] M. C. Kasapbasi and W. Elmasry, "New LSB-based colour image steganography method to

enhance the efficiency in payload capacity, security and integrity check," Sādhanā, pp. 43-

68, 2018.

[41] K. Ghazanfari, S. Ghaemmaghami and S. R. Khosravi, "LSB++: An Improvement to LSB+

Steganography," in IEEE Region 10 International Conference, Bali, 2011.

[42] A. Pradhan, K. R. Sekhar and G. Swain, "Digital Image Steganography Using LSB

Substitution, PVD, and EMD," Hindawi, vol. 2018, no. 1, pp. 1-11, 2018.

[43] S. Talebi, "Time Series, Signals, & the Fourier Transform," Towards Data Science, 16

November 2020. [Online]. Available: https://towardsdatascience.com/time-series-signals-

the-fourier-transform-f68e8a97c1c2. [Accessed 3 October 2021].

[44] S. Talebi, "The Wavelet Transform. An Introduction and Example," Towards Data Science,

20 December 2020. [Online]. Available: https://towardsdatascience.com/the-wavelet-

transform-e9cfa85d7b34. [Accessed 3 October 2021].

[45] M. C. Nechyba, "Introduction to the Discrete Wavelet Transform (DWT)," 15 February

2004. [Online]. Available:

https://mil.ufl.edu/nechyba/www/eel6562/course_materials/t5.wavelets/intro_dwt.pdf.

[Accessed 10 October 2021].

[46] R. Thanki and S. Borra, "A color image steganography in hybrid FRT-DWT domain,"

Journal of Information Security and Applications, pp. 92-102, 2018.

[47] S. Baluja, "Hiding Images in Plain Sight: Deep Steganography," in 31st Conference on

Neural Information Processing Systems, Long Beach, 2017.

[48] D. Volkhonskiy, I. Nazarov and B. Evgeny, "Steganographic Generative Adversarial

Networks," International Society for Optics and Photonics, p. 114333M, 2020.

[49] M.-Y. Liu and O. Tuzel, "Coupled Generative Adversarial Networks," in Advances in Neural

Information Processing Systems 29 (NIPS 2016), Barcelona, 2016.

[50] R. H. Wiggins, H. C. Davidson, H. R. Harnsberger, J. R. Lauman and P. A. Goede, "Image

File Formats: Past, Present, and Future," RadioGraphics, vol. 21, no. 3, pp. 789-798, 2001.

60

[51] H. Dadgostar and F. Afsari, "Image steganography based on interval-valued intuitionistic

fuzzy edge detection and modified LSB," Journal of Information Security and Applications,

pp. 94-104, 2016.

[52] G. Swain, "Digital Image Steganography Using Eight-Directional PVD," Advances in

Multimedia, p. 13, 2018.

[53] A. Delmi, S. Suryadi and Y. Satria, "Digital image steganography by using edge adaptive

based chaos cryptography," Journal of Physics Conference Series, p. 012041, 2020.

[54] H. Gupta, "buZZrobot," Medium, 11 February 2018. [Online]. Available:

https://buzzrobot.com/hiding-images-using-ai-deep-steganography-b7726bd58b06.

[Accessed 10 October 2021].

[55] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in International

Conference for Learning Representations, San Diego, 2014.

[56] J. Brownlee, "Gentle Introduction to the Adam Optimization Algorithm for Deep Learning,"

Machine Learning Mastery, 3 July 2017. [Online]. Available:

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.

[Accessed 27 March 2022].

[57] J. Howard, "Imagenette".

[58] H. Gupta, "Deep-Steganography," 2018.

[59] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager,

E. Gouillart, T. Yu and scikit-image contributors, "scikit-image: Image processing in

Python," 2014.

[60] J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing in Science &

Engineering, vol. 9, no. 3, pp. 90-95, 2007.

[61] S. Gupta, "Tensorflow 1.0 vs. Tensorflow 2.0: What’s the Difference?," Springboard, 27

October 2021. [Online]. Available: https://www.springboard.com/blog/data-

science/tensorflow-1-0-vs-tensorflow-2-0/. [Accessed 3 April 2022].

[62] X. Duan, N. Liu, M. Gou, W. Wang and C. Qin, "SteganoCNN: Image Steganography with

Generalization Ability Based on Convolutional Neural Network," Entropy, pp. 22-36, 8

October 2020.

61

[63] J. Mielikainen, "LSB Matching Revisited," IEEE Signal Processing Letters, pp. 285-287,

2006.

[64] A. K. Sahu and M. Sahu, "Digital image steganography and steganalysis: A journey of the

past three decades," Open Computer Science, pp. 296-342, 2020.

[65] A. Khalifa, S. H. Hamad and A. A. Elhadad, "A Blind High-Capacity Wavelet-Based

Steganography Technique for Hiding Images into other Images," Advances in Electrical and

Computer Engineering, pp. 35-42, 2014.

[66] X. Zhou, H. Zhang and C. Wang, "A Robust Image Watermarking Technique Based on

DWT, APDCBT, and SVD," Symmetry, pp. 77-91, 2018.

[67] R. Jain and J. Boaddh, "Advances in Digital Image Steganography," in 1st International

Conference on Innovation and Challenges in Cyber Security, Greater Noida, 2016.

[68] Q. A. Al-Haija, C. D. McCurry and S. Zein-Sabatto, "An efficient deep learning-based

detection and classification system for cyber-attacks in IoT communication networks,"

Electronics, pp. 21-52, 2020.

[69] M. F. Tolba, M. A.-S. Ghonemy, I. A.-H. Taha and A. S. Khalifa, "High Capacity Image

Steganography using Wavelet-Based Fusion," in Proceedings of the 9th IEEE Symposium

on Computers and Communications, Alexandria, 2004.

[70] H.-J. Shiu, B.-S. Lin, C.-H. Huang, P.-Y. Chiang and C.-L. Lei, "Preserving privacy of online

digital physiological signals using blind and reversible steganography," Computer Methods

and Programs in Biomedicine, pp. 159-170, 2017.

[71] A. R. Calderbank, I. Daubechies, W. Sweldens and B.-L. Yeo, "Wavelet Transforms That

Map Integers to Integers," APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, pp.

332-369, 1998.

[72] S. Adhikari, "Shh! Your secret is safe — A simple guide to Steganography in Python,"

Medium, 25 May 2020. [Online]. Available: https://medium.com/analytics-vidhya/shh-

your-secret-is-safe-a-simple-guide-to-steganography-in-python-89116582277e. [Accessed

2 October 2021].

62

[73] L. Shukla, "Designing Your Neural Networks. A Step by Step Walkthrough," Towards Data

Science, 23 September 2019. [Online]. Available:

https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed. [Accessed

10 October 2021].

[74] A. Damato, "JPEG2000 2-level Wavelet Transform-Lichtenstein," 17 May 2007. [Online].

Available: https://upload.wikimedia.org/wikipedia/commons/e/e0/Jpeg2000_2-

level_wavelet_transform-lichtenstein.png. [Accessed 10 October 2021].

[75] S. Mazaheri, P. S. Sulaiman, R. Wirza, M. Z. Dimon, F. Khalid and R. M. Tayebi, "Hybrid

Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT,"

Computational and Mathematical Methods in Medicine, vol. 2015, no. 1, pp. 1-16, 2015.

