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ABSTRACT 

Digital image steganography is the process of embedding information within a cover image 

in a secure, imperceptible, and recoverable way. The three main methods of digital image 

steganography are spatial, transform, and neural network methods. Spatial methods modify the 

pixel values of an image to embed information, while transform methods embed hidden 

information within the frequency of the image. Neural network-based methods use neural networks 

to perform the hiding process, which is the focus of the proposed methodology. 

This research explores the use of deep convolutional neural networks (CNNs) in digital 

image steganography. This work extends an existing implementation that used a two-dimensional 

CNN to perform the preparation, hiding, and extraction phases of the steganography process. The 

methodology proposed in this research, however, introduced changes into the structure of the CNN 

and used a gain function based on several image similarity metrics to maximize the 

imperceptibility between a cover and steganographic image.  

The performance of the proposed method was measured using some frequently utilized 

image metrics such as structured similarity index measurement (SSIM), mean square error (MSE), 

and peak signal to noise ratio (PSNR). The results showed that the steganographic images 

produced by the proposed methodology are imperceptible to the human eye, while still providing 

good recoverability. Comparing the results of the proposed methodology to the results of the 

original methodology revealed that our proposed network greatly improved over the base 

methodology in terms of SSIM and compares well to existing steganography methods. 
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 INTRODUCTION 

1.1 Steganography  

Steganography is the process of hiding a message by placing it within another, innocuous 

medium. The literal meaning of the word, derived from the Greek language, means “covered 

writing” [1]. The creator of the word, Trithemius, used the Greek words “steganos” and “graphia”, 

which mean “covered” and “writing”, respectively. The earliest known application of 

steganography was the use of invisible ink. One notable example of steganography is found in a 

story by Greek historian Herodotus. In this story, a Milesian tyrant ordered a slave be sent to the 

city of Miletus with a secret message tattooed onto his scalp. To obscure the tattooed message 

from, the slave allowed for time to pass such that his hair grew back, fully obscuring the tattoo. 

Once he arrived at Miletus, he shaved his head to reveal the tattooed message to the city advisor, 

Aristagoras. Upon discovery of the message, Aristagoras started a revolution against the Persian 

king [2]. In this scenario, the slave was the carrier of the message, the tattooed scalp was the hidden 

information, the tyrant was the sender, and Aristagoras was the receiver. 

Another ancient example of steganography is the story of Demaratus, also written by 

Herodotus. Demaratus, who would go on to eventually become the king of Sparta, alerted the 

Persian king Xerxes of an impending invasion of Greece by using an early form of steganography 

[3]. Demaratus scraped the wax off the writing surface of a wooden writing tablet then embedded 

his message into the underlying wood. He then re-coated the writing tablet with a fresh coat of 

wax, giving the appearance of an unused writing tablet. In this case, the seemingly unused wooden 

writing tablet was the carrier of the message, the underlying scratches composed the hidden 

information, Demaratus was the sender, and Xerxes was the receiver. 

More recently, there are many examples of steganography and information embedding in 

everyday life. When a $100 (USD) bill is held to a light, one can faintly see the visage of Benjamin 

Franklin. $100 bills also contain microprinting, which is nearly invisible to the naked eye. Using 

a magnifying glass on a $100 bill reveals tiny text printed on the currency. Of more relevance to 

this research, however, is the steganography of digital information. Today, many methods exist 

for embedding hidden information inside images, audio files, hypertext transport protocol (HTTP) 

headers, and even plain text files [4].  
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Images can hide information in the visually uninteresting parts, reducing the likelihood that 

someone would be able to tell that hidden information exists. However, the ability to hide 

information extends to other types of files as well. Audio files can also embed information in 

several ways, such as by manipulating the least significant bits (LSB) or using transform 

techniques (e.g., Discrete Wavelet Transform (DWT)) [5]. Nearly any type of digital data can be 

embedded into an audio file, from text files to other audio files. To this end, any type of digital 

data can be embedded into a cover digital medium. This research, however, focuses on the process 

of embedding a digital image within another. 

1.2 Image Steganography 

Images provide an ideal medium for embedding hidden information for several reasons. The 

first reason is that images contain many different characteristics, such as bit depth, colors, edges, 

corners, dimensions, and metadata [6]. Each of these characteristics provide the ability to hide a 

payload into an image with ease. In addition to these characteristics, the metadata of certain image 

formats can also be manipulated to embed information. Graphics Interchange Format (GIF) image 

files contain a palette of the colors used within the image. By permutating the image’s color map, 

the image remains the same perceptually but contains some hidden information [4]. The second 

reason is that images are resistant to changes in pixel values, with some exceptions. Many 

steganography methods modify the least significant bits of the pixels to embed the bits of a hidden 

image into a cover image. Since most images are split into three, 8-bit wide color channels, red, 

green, and blue, this provides plenty of space in which information can be embedded. 

The basic architecture of image steganography is shown in Figure 1.1. A sender uses two 

components, the message and payload, to construct the steganographic message. The construction 

of the steganographic message is done by an encoding process. For the sake of clarity, several 

types of encoding processes will be described later in this study. Once the encoding process is 

complete, the steganographic image is then transmitted to the receiving party. The transmission of 

the steganographic image can be done over secured or unsecured channels, since entities who gain 

access to the steganographic image will not benefit from it unless they are explicitly aware that it 

contains a hidden payload. Once the steganographic image is received, the receiving party decodes 

the message using a decoding process. In the majority of steganographic methodologies, the 
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decoding process is the same as the encoding process but performed in the opposite order. Once 

the decoding process is complete, the receiver will be able to obtain the hidden image. 

 

 

Figure 1.1. The basic architecture of the digital image steganography process. 

 

A variety of standardized measurements are used to evaluate image steganography 

techniques in terms of the hiding capacity, retrieval similarity, hiding effectiveness, and resistance 

to attacks. These measurements can be used to compare the performance of steganography 

techniques. Since many techniques vary greatly between methodologies, implementations, and 

image datasets used, fluctuations of image metrics are to be expected. To mitigate these 

fluctuations, this research relied on the use of standardized image sets such as ImageNet [7] and 

Linnaeus 5 [8]. 

Below lists several common metrics that are used to evaluate image steganographic 

techniques: 

• Bits per pixel (BPP): a measurement used to determine the hiding capacity of a 

steganography technique. BPP values have a range of [0, 24]  for regular RGB 

images. A greater BPP means that the technique can hide more information inside 

the pixels of the cover image. BPP is measured by the following algorithm, where 𝐸 

represents the embedding capacity of the technique and 𝐻  and 𝑊  represent the 

height and width of the cover image, respectively [9]: 

 

𝐵𝑃𝑃 =
𝐸

𝐻∗𝑊
 (1.1) 

 



 

12 

• Mean of Square Error (MSE): a measurement used to determine the average square 

error between the cover and steganography images. A lower MSE value represents a 

lower error measure between a cover and steganographic image. MSE is measured 

by the algorithm provided in Equation 1.2, where 𝑀 represents the number of image 

rows, 𝑁 represents the number of image columns, 𝐽(𝑖, 𝑗) represents the cover image 

dimensions, and 𝐽′(𝑖, 𝑗)  represents the steganographic image dimensions: 

 

𝑀𝑆𝐸 =
∑ ∑ (𝐽(𝑖,𝑗)−𝐽′(𝑖,𝑗))

2
𝑛
𝑗=1

𝑚
𝑖=1

𝑀∗𝑁
 (1.2) 

 

• Peak Signal to Noise Radio (PSNR): a measurement used to determine the difference 

between the cover and steganographic images. A higher PSNR value represents less 

distortion and greater similarity to the original image. PSNR is measured by the 

algorithm provided in Equation 1.3, where 𝑛 represents the maximum pixel value 

and 𝑀𝑆𝐸 represents the mean of square error: 

 

𝑃𝑆𝑁𝑅 = 10(𝑙𝑜𝑔10(
𝑛2

𝑀𝑆𝐸
)) (1.3) 

 

• Structured Similarity Index Measure (SSIM): a measurement used to determine the 

similarity between two images [10]. A higher SSIM value represents a greater 

similarity between the cover and steganographic images. SSIM is measured by the 

algorithm provided in Equation 1.4, where 𝜇𝑥  represents the mean of 𝑥 , 𝜇𝑦 

represents the mean of 𝑦, 𝜎𝑥𝑦 represents the covariance of 𝑥 and 𝑦, 𝜎𝑥
2 represents the 

mean variance of 𝑥, 𝜎𝑦
2 represents the mean variance of 𝑦, and 𝑐1 and 𝑐2 represent 

two variables to stabilize division, in the event that the denominator is weak [11]: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (1.4) 

 

• Normalized Cross Correlation (NCC): a measurement used to determine the degree 

of similarity between the original and extracted secret image. A higher NCC value 
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represents a greater similarity between the original and extracted secret images. NCC 

is measured by the algorithm provided in Equation 1.5, where the 𝑂𝑝𝑞 represents the 

original image and 𝐶𝑝𝑞 represents the extracted secret image: 

 

𝑁𝐶𝐶 = ∑ ∑
(𝑂𝑝𝑞∗𝐶𝑝𝑞)

(𝑂𝑝𝑞)
2

𝑦
𝑞=1

𝑥
𝑝=1  (1.5) 

1.3 Convolutional Neural Networks 

Deep learning is a type of approach to artificial intelligence that uses neural networks to 

achieve a task or goal [12]. Neural networks are loosely modeled after the human brain in the sense 

that a neural network consists of many interconnected nodes that communicate between each other. 

To this end, they are aptly named ‘neural networks.’ The implementation and architecture of neural 

networks can vary greatly, but the foundation is largely the same. Neural networks are comprised 

of several layers, with the first layer being the input layer and the last layer being the output layer 

[13]. In between the input layer and output layer are the hidden layers, where computation of the 

neural network is performed. Figure 1.2 shows the structure of a basic neural network.  

 

 

Figure 1.2. Structure of a basic neural network.1 

 
1 Image source: https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed 
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Depending on the application and domain, the amount of hidden layers of a network will 

vary. The number of layers in a neural network is referred to as its depth. Arguments exist 

pertaining to whether the input and output layers are included in a network’s depth value. Generally, 

however, the depth value does not include the input layer because it is not considered an active 

layer of the network. Each hidden layer consists of many perceptrons, which are also referred to 

as nodes or neurons. These perceptrons are units that have one or more inputs and are used in 

conjunction with an activation function to create an output variable [14]. The number of 

perceptrons in a neural network is referred to as its size, and the number of perceptrons within a 

particular layer is referred to as the layer’s width.  

Perceptrons consist of several parts, to include the inputs, weights, bias, weighted sum, 

activation function, and output [15]. The inputs may refer to either the outputs processed by the 

input layer or the outputs of a hidden layer. The weights of a perceptron are mathematical values 

used to manipulate the inputs of the perceptron. A perceptron’s weights are unique for each input. 

The bias of the perceptron is a numerical value that has its own weight and is used to directly 

manipulate the values of the perceptron. Bias is used to determine whether the perceptron will 

produce an output and can also be used to determine the degree to which a perceptron produces an 

output [16]. The perceptron’s inputs and bias are manipulated by its set of weights to produce its 

weighted sum. The weighted sum is subsequently used by the activation function to determine 

whether the perceptron produces an output or not. An activation function can also determine the 

strength of the output signal. There exist many types of activation functions, each of which falling 

into the category of piecewise linear activation functions or locally quadratic activation functions 

[17]. Piecewise linear activation functions are comprised of a finite number of linear segments 

across an equal number of intervals and include functions such as Rectified Linear Unit (ReLU) 

and Exponential Linear Unit activation functions. Locally quadratic activation functions are 

defined as being smooth, non-linear, and possessive of a nonzero second derivative. Examples of 

locally quadratic activation functions include the sigmoid, tangent hyperbolic, and Swish 

activation functions [18]. Because each activation function is different and can greatly affect the 

performance of a network, there is not a one-size-fits-all solution for determining which activation 

function a network should use. Figure 1.3 shows the structure of a perceptron, with weighted sum 
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being comprised of the inputs, weights, and bias, and the output defined by result of the weighted 

sum being used in the activation function. 

 

Figure 1.3. High-level architecture of a perceptron.2 

 

Convolutional networks are special types of neural networks which are designed to work 

specifically with two-dimensional data, such as images and media [19]. An example illustration of 

a CNN can be seen in Figure 1.4. In this figure, an input image is processed by a convolutional 

layer. Convolutional layers are layers that form the building blocks of CNNs. Integral to the 

formation of convolutional layers are convolutions, which are operations that involve multiplying 

a set of weights by the input. In this case, the input is a digital image. When an image or other two-

dimensional input is processed by a convolutional layer, important information about the input is 

discovered, such as edges and corners [20]. The distinction between important and unimportant 

information is decided by the activation function. Activation functions work by returning a value 

from a set of inputs. In the case of the ReLU activation function, the function returns 𝑚𝑎𝑥(0, 𝑥) for 

any negative or positive input 𝑥. In the network structure illustrated in Figure 1.4, the ReLU 

activation function is used. That information is provided to the pooling layer, where the spatial 

size of the convolution is reduced while summarizing and maintaining the important details about 

the convolution. This, in turn, reduces the computational power needed to process the data because 

there is less information to process. This is achieved by one or more of several types of pooling 

functions, such as average and max pooling.  

 
2 Image source: https://www.v7labs.com/blog/neural-networks-activation-functions 
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Weights are coefficients that are applied to each input of a perceptron that can greatly affect 

its output. When a network is first run, the weights are randomized and tuned as the network 

continues to run. As the network continues to run, the weights are updated with every iteration and 

adjust per the loss function, also referred to as the cost function. The loss function is a calculation 

that is used to determine the losses between a predicted value and the actual value [21]. 

 

Figure 1.4. Illustration of a CNN with several convolutional layers to extract the features of an 

input image.3 

 

One method of accelerating the training process involves feeding the input data of a network 

in batches, as opposed to individual samples. The batch size of a network refers to the number of 

samples passed into the neural network at a time. For this research, the batch size refers to the 

number of pairs of cover and hidden images processed by the network for each step of the training 

process. 

Gradient descent is a method used to optimize the learning process of a neural network. In the 

context of neural networks, a gradient is a calculation that dictates how to adjust the network 

parameters such that the deviation of the output and error are reduced as much as possible [22]. 

When the network is initialized and the weights of the perceptrons are randomized, one of several 

types of gradient descent methods are used to minimize the loss function. Gradient descent works 

by picking a random spot on the loss function and computing its derivative. Once obtained, the 

tangent line at the random spot is calculated and can be used to determine the slope at the starting 

point. The slope is used in conjunction with the learning rate and the cost function to determine 

 
3 Image source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-

way-3bd2b1164a53 
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how the weights and bias of the perceptrons are updated. The goal of gradient descent is to 

minimize the cost function; since the slope of the tangent line directly correlates with the error rate, 

the network will calculate the gradient descent and update the perceptrons after every iteration to 

make the slope of the line as close to zero as possible [23]. The learning rate describes the number 

of steps taken to reach the minimum of the cost function. Figure 1.5 shows the result of two 

different learning rates.  

 

 

Figure 1.5. Effects of a small and large learning rate on the gradient descent method.4 

 

There are three main types of gradient descent methods: batch, stochastic, and stochastic 

mini-batch gradient descent. Batch gradient descent calculates the error sum for all the data in an 

input batch and subsequently updates the perceptrons. Although batch gradient descent provides 

superior computational efficiency when compared to other methods, it is not ideal when used with 

large datasets, since all data needs to be stored in memory while processing the gradient. Batch 

gradient descent is also prone to converging on a local minimum of the loss function, instead of 

the global minimum. This is because the computed loss is based on the sum of losses across the 

entire batch of data.  Figure 1.6 shows two types of loss functions that have a local minimum and 

global minimum.  

 
4 Image source: https://www.ibm.com/cloud/learn/gradient-descent 
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Figure 1.6. The convergence of the gradient descent method on a local minimum, where a global 

minimum exists that provides a more optimal solution.5 

 

Stochastic gradient descent differs by calculating the gradient for each sample in the input 

batch. This method is advantageous with regards to storage, since one training sample is being 

stored in memory at a time. This, however, comes at the cost of computational speed. Since the 

gradient is computed for each training sample, this difference between data samples provides more 

noise (e.g., randomness) and is helpful in determining the global minimum. 

Stochastic mini-batch gradient descent combines characteristics of batch and stochastic 

gradient descent methods by splitting the input batch into smaller batches and calculating the 

gradient for each batch. This, in turn, provides the efficiency of the batch gradient descent and the 

speed of the stochastic gradient descent. The size of the smaller batches can vary between 

implementations and may need to be adjusted based on overall batch size and application of the 

network [24].  

Two popular extensions to the gradient descent method include AdaGrad and RMSProp. 

AdaGrad maintains a learning rate for each dimension of the network which allows the method to 

work best for sparse gradients [25]. AdaGrad works by altering the learning rate for each 

 
5 Image source: https://www.ibm.com/cloud/learn/gradient-descent 



 

19 

dimension of the network, since some perceptrons may obtain better results by having a different 

learning rate from others. This is done by obtaining the sum of the squared gradients for each 

perceptron, given a batch of data [26]. The sum is then used to determine the learning rate for the 

perceptron by dividing the initial learning rate by the sum of squared gradients. It is possible for a 

divide-by-zero operation to occur here, therefore a very small value can be added to the 

denominator to eliminate this possibility. Once the perceptron’s learning rate has been updated, 

the weights can be updated by using the new learning rate. The process of updating the 

perceptron’s learning rate continues with each mini-batch. 

RMSProp is an extension to RProp, another version of the gradient descent method. Resilient 

Propagation (RProp) extends gradient descent by maintaining the signs of the last two computed 

gradients for a particular weight and updating it based on its update value [27]. The update value 

is initially set and is continuously updated based on the recently obtained gradients. If the most 

recently obtained gradient changes its sign (e.g., negative to positive or positive to negative), it can 

be surmised that the last update was too large, and the update value is decreased by a scalar. 

Conversely, if the gradient did not change signs, the update value is slightly increased to accelerate 

the training process. Once the update value is modified, the two most recently obtained gradients 

are used to determine how it updates the weight. If both gradients’ signs are negative, the weight 

is added by its update value and if both signs are positive, the weight is decreased by its update 

value. If the signs are different, however, it can be determined that the step was too large and is 

reverted. RMSProp extends the gradient descent method by maintaining a moving average of the 

squared gradient obtained for each weight [28]. This moving average is based on the recent 

magnitudes of the squared gradients for the associated weight. The obtained gradients are then 

divided by this moving average. The motivation here is that the weights should be updated based 

on the size and frequency of the gradients.  

The gradient descent method and other optimization algorithms are used to train the network 

by updating the weights and bias of the perceptrons after every step is taken in the training process. 

As the network continues to update its weights and biases and reach the minimum of the loss 

function, diminishing results will be returned from the training process. In fact, several issues can 

start to arise by not ending the training process. Overfitting is one of the major problems associated 

with training a network that describes the phenomenon where the network is overtrained on the 

training dataset. A network that is over-fitted to the training dataset performs well on the training 
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dataset but performs poorly on the testing dataset [29]. Overfitting can be observed when the 

network starts to learn and train on the noise of the training dataset, which in turn yields new, 

suboptimal training updates [30]. 

Several methods of mitigating overfitting exist, such as early stopping, network reduction, 

regularization, and dataset expansion. As the name suggests, early stopping involves stopping the 

training process earlier than anticipated. It is difficult to determine when to stop the training 

process early without any indicator that the network is being overfitted. Three elements of early 

stopping exist to rectify this: performance monitoring, stop triggers, and model choice. 

Performance monitoring involves analyzing the performance of the network training process as it 

occurs in real time. Certain metrics can be good indicators of when to stop training, such as 

incremental losses obtained when using a validation dataset or evaluating the network losses after 

every training epoch. Stop triggers can be implemented in the network code to automatically 

terminate the training process at the end of an epoch when the current epoch’s losses were greater 

than those of the last epoch. Model choice involves saving the weights and biases of the network’s 

perceptrons to a file after a certain amount of epochs have completed. By having frequent backups 

of the network at different points in the training process, the network whose weights and biases 

produce the smallest error can be selected for integration. 

Network reduction can also be used to prevent overfitting by reducing the network complexity 

through pruning. Pruning is used to reduce the size and complexity of a network while maintaining 

or losing as little accuracy as possible [31]. Pruning involves many different methodologies, such 

as assigning scores to network parameters and removing the parameters that contribute the least 

towards the output. Pruning can be done before the training epoch has completed (pre-pruning) or 

after the training epoch has completed (post-pruning) [32]. Pre-pruning methods use certain 

criteria to determine when the network should discontinue adding conditions to a rule or adding 

rules to the description of the model. Post-pruning methods split the training dataset into a larger 

dataset and a smaller dataset, referred to as the growing set and pruning set, respectively [33]. With 

post-pruning, the first pruned epoch runs on the growing set and deletes rules and conditions from 

the network until an increase in error is detected when used with the pruning set. Pre-pruning 

methods are more computationally efficient than post-pruning methods, but post-pruning methods 

are much more accurate than pre-pruning methods. 
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Regularization describes the process of altering the network during the training process to 

reduce the generalization errors, which describe the network’s ability to accurately respond to 

unencountered data [34]. Regularization is used to reduce the overfitting problem by reducing the 

size of the perceptrons’ weights. Large network weights signal that the network is overly trained 

on the training dataset and will be sensitive to noise or new data [35]. By having smaller weights, 

the network is less likely to be overfitted to the training dataset. Popular regularization methods 

include L1 regularization, L2 regularization, dropout, additive noise, and weight constraint. L1 

regularization involves adding a penalty term to the loss function equal to the sum of absolute 

values of all the perceptrons’ weights. By adding this penalty term, the perceptron is more severely 

penalized for using larger weights than smaller weights and is therefore encouraged to use smaller 

weights. L2 regularization is identical to L1 regularization with the exception of the penalty term 

representing the sum of squared values of all the perceptrons’ weights. Dropout is implemented 

on a per-layer basis in a network and is used to randomly drop perceptrons from a layer based on 

a parameterized probability coefficient. By doing this, the network becomes more generalized and 

less tailored to the training dataset [36]. Adding noise can also reduce the generalization error of 

the network by expanding the size of the training set, which is especially beneficial for smaller 

datasets [37]. By adding a small amount of noise to each training sample, it can be guaranteed that 

no samples are completely identical. Finally, weight constraints can be implemented to mitigate 

overfitting. Weight constraints are alternatives to weight penalties in the sense that the penalty 

term is the size of the weights. When the size of a weight exceeds a certain value, the weight is 

subsequently scaled down [38]. This difference between weight constraints and weight 

regularization methods is that weight constraints force the weights to be smaller, instead of 

‘recommending’ the weights to be smaller. 
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 LITERATURE REVIEW 

This section is intended to provide a literature review of some of the numerous digital image 

steganography methods. There are three main categories that image steganography techniques fall 

under, which are spatial domain techniques, transform domain techniques, and neural networks 

[39]. It should be noted, however, that image steganography techniques may fall into several 

categories by using a combination of different techniques.  

2.1 Spatial Domain Techniques 

Many of the common spatial domain techniques involve altering the least significant bits 

(LSB) of the pixels of an image to embed information into a cover image. Often, these methods 

rely on altering between one to four of the LSB of an image’s pixels, since changes within this 

range are usually imperceptible to the human eye [40]. Figure 2.1 demonstrates the basic 

architecture of spatial domain steganography techniques. Here, the sender is taking the optional 

step of encrypting the secret text ‘Hello’ with an encryption algorithm which outputs the cipher 

text, ‘C4Za9’. Each character of the cipher text is split into individual American Standard Code 

for Information Interchange (ASCII) characters. Each ASCII character has its own decimal and 

binary value, with ‘C’ being represented as 67 in decimal notation and 01000011 in binary notation. 

With the entire binary sequence now known, these values can be embedded into the cover image 

by modifying the LSB of the individual pixels. Since color images are split into three, 8-bit wide 

color channels, this gives plenty of space to embed information while remaining undetectable to 

the human eye. Once the secret message has been embedded into the cover image, the 

steganographic image is then sent to the receiver. The receiver, in turn, will be able to extract the 

hidden message by performing the steps taken to embed the message in the opposite order. If the 

sender decides to encrypt the hidden message before embedding, the receiver will have to know 

the decryption key to perform the decryption process. Otherwise, the receiver will only receive an 

encrypted message and be unable to decipher the correct message. 

Note that the encryption step is optional in the embedding process. However, by encrypting 

the secret message, the security of the steganographic system is increased. In addition, the detail 

of the embedding process greatly varies between different implementations. As a result, the results 
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are not guaranteed to be the same. In other words, if someone sends a steganographic image 

encoded with one algorithm, it is unlikely that the receiver will be able to decipher it without using 

the same algorithm.  

 

 

Figure 2.1. Illustration of encrypting and embedding text into a cover image’s pixels.6  

 

There are many types of spatial domain techniques that rely on altering the LSB of the pixels 

of an image, such as the LSB++ method introduced in [41]. The LSB++ method works by 

encrypting the payload image using a key, creating the encrypted message. A second key is used 

to lock the frequency difference of two adjacent image bins with a gray value equal to double the 

unit, creating the cover image. The embedding process is done by combining the cover image and 

encrypted message with a third key. LSB++ improves upon other LSB-based techniques by 

maintaining sensitive pixels in the cover image so that the level of distortion is reduced throughout 

the embedding process. This provides a level of security against histography analysis. 

 
6 Image source: https://medium.com/analytics-vidhya/shh-your-secret-is-safe-a-simple-guide-to-steganography-in-

python-89116582277e 
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Another example of a spatial domain steganography technique uses a codeword formed using 

secret data and its CRC-32 checksum [40]. The codeword is then compressed with Gzip and 

encrypted with AES, where the codeword is subsequently added to the encrypted header and 

embedded into the cover image. The embedded process is done by using the Fisher-Yates Shuffle 

algorithm to select the next pixel for embedding. To increase the security of the technique, the 

LSB of the three color channels (red, green, blue) of the embedded pixel are used to hide one byte. 

To extract the embedded image, the embedding steps are reversed, using the AES symmetric key 

to decrypt the payload.  

In [42], the authors proposed a spatial domain technique using LSB substitution, pixel value 

differencing (PVD), and exploiting modification directions (EMD). The image is scanned in and 

partitioned into 2x2 non-overlapping pixel blocks. The average PVD is calculated for each pixel 

block. If the PVD is greater than fifteen, it is an edge; otherwise, it is considered a smooth region. 

Next, the edges are processed for embedding using LSB substitution and PVD, while the smooth 

regions are processed for embedding using LSB substitution and EMD. The PVD and EMD are 

used in the algorithm to determine the hiding capacity for each pixel block. The authors proposed 

two techniques where one uses pixel blocks of sizes 2x2 and the other uses pixel blocks of sizes 

3x3. They discovered that using 2x2 pixel blocks produces better PSNR values, while 3x3 pixel 

blocks produces greater hiding capacity. 

2.2 Transform Domain Techniques 

Transform domain techniques are steganography methods which use mathematical 

transformation function to embed a hidden image within a cover image. A transform is a function 

that is used to alter the structure of the data into waves, such as sine and cosine waves. One example 

of a transform is the Fourier transform. The Fourier transform is a transform function that is used 

to decompose a function into waves of different amplitudes and frequencies [43]. Another example 

of a transform function is the Discrete Wavelet Transform, which decomposes a function into a 

series of wavelets. Wavelets are wave-like oscillations which, unlike waves, are localized in time. 

Wavelets have two components, scale and location. Scale, otherwise known as dilation, describes 

how stretched or compressed a wavelet is. Location describes where the wavelet is positioned in 

time or space [44].  
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The scale and location of a wavelet are determined by two parameters, 𝑎 and 𝑏. 𝑎 is used 

adjust the scale of the wavelet and 𝑏 is used to adjust the location of the wavelet. The Discrete 

Wavelet Transform uses a finite number of wavelets to determine how much of a wavelet can be 

found within a given signal. In this case, the signals are images. The Haar two-dimensional DWT 

decomposes an image into four coefficients, which are approximation, horizontal, vertical, and 

diagonal coefficients. The approximation coefficients are composed of the low-low (LL) sub-band 

wavelet coefficients and correspond to a down-sampled version of the original image [45]. The 

horizontal coefficients are composed of the low-high (LH) sub-band wavelet coefficients. The 

vertical coefficients are composed of the high-low (HL) sub-band wavelet coefficients. Lastly, the 

diagonal coefficients are composed of the high-high (HH) sub-band wavelet coefficients. Figure 

2.2 shows the output of a two-level DWT on an image. In the upper-left corner, the original image 

is scaled to half its original size and corresponds to the LL sub-band wavelet coefficients. The 

decomposed image to the right of the grayscale image shows the vertical details of the original 

image. The decomposed images beneath and diagonal to the grayscale image show the horizontal 

and diagonal details of the original image, respectively.  
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Figure 2.2. Example of a two-level discrete wavelet transform.7 

 

One novel image steganography methodology used the Finite Ridgelet Transform (FRT), 

Discrete Wavelet Transform (DWT), and Arnold Scrambling in order to provide high 

imperceptibility and hiding capacity in comparison to other algorithms [46]. In this technique, FRT 

is used in tandem with DWT due to an increased embedding capacity the two algorithms provide 

when combined. The red, green, and blue color channels of the cover image are divided and their 

ridgelet coefficients are computed. Then, the low-low (LL) sub-band wavelet coefficients are 

gathered for each color channel. These LL subband wavelet coefficients are subsequently modified 

according to the bits of the scrambled secret color image and an insertion factor. Next, an inverse 

single-level DWT transform is performed on the modified LL sub-band wavelet coefficients with 

the original low-high (LH), high-low (HL), and high-high (HH) sub-band wavelet coefficients to 

get the modified ridgelet coefficients of each color channel. Figure 2.3 shows the decomposition 

of sub-band wavelet coefficients at three levels. Inverse FRT is performed on the modified ridgelet 

coefficients to get the altered color channels of the cover image. Last, the steganographic image is 

constructed using the modified color channels.  

 
7 Image source: https://upload.wikimedia.org/wikipedia/commons/e/e0/Jpeg2000_2-level_wavelet_transform-

lichtenstein.png 
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Figure 2.3. Labeled wavelet decomposition performed at three levels.8 

 

Another technique relied on DWT in conjunction with all phase discrete cosine biorthogonal 

transform (APDCBT) and singular value decomposition (SVD). APDCBT is a transform that 

improves upon the discrete cosine transform (DCT) by offering greater performance in high-

frequency and low-frequency aggregation. SVD is a transform that is used in numerical analysis 

and principal component analysis. First, the Haar DWT is applied to the cover image in order to 

obtain the high-frequency sub-bands (HH, HL, LH) and the low-frequency sub-band (LL). HL and 

LH are both used for inserting two identical watermarks. Here, the block-based APDCBT is used 

to obtain each sub-block by dividing the image into 8x8 blocks. Next, the direct current (DC) 

coefficients of each sub-block are used to create a new coefficient matrix. SVD is then applied to 

this coefficient matrix to obtain the singular value matrix. The first watermark is inserted into the 

coefficient matrix, where the inverse SVD is then applied to obtain a modified coefficient matrix. 

Inverse APDCBT is then applied to this matrix to obtain the HL sub-band. This same process is 

 
8 Image source: [66] 
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followed with the second watermark in order to obtain the LH sub-band. Finally, the inverse DWT 

is used to obtain the steganographic image. 

2.3 Neural Network Techniques 

More recently, there have been many research efforts to utilize deep learning in order to 

achieve image steganography. One such research that has implemented neural networks to perform 

image steganography was performed by [47]. Their technique was implemented using three CNNs, 

each of which consisting of five convolution layers. The first network is the preparatory network, 

whose primary function is to prepare the secret images to be embedded. This is done by scaling 

the hidden image to the same size as the cover image and transform the hidden image into useful 

features for embedding, such as edges and corners. The second network, known as the hiding 

network, takes the output of the preparatory network and a cover image as input and creates the 

steganographic image. This network has five convolution layers that have fifty layers each of 3x3, 

4x4, and 5x5 patches. The final network, referred to as the reveal network, is the ‘decoder’ of the 

steganographic image. Its purpose is to remove the cover image to reveal the embedded image. 

The reveal network also calculates the error between the cover and steganographic images, which 

is subsequently used to adjust the weights of the preparatory and hiding networks. The error 

between the embedded and recovered images, however, is used to adjust the weight of all three 

networks. This technique has demonstrated its security against several kinds of attacks, even 

instances where an attacker has access to the original cover and steganographic images. 

Another example of deep neural networks in use to perform digital image steganography can 

be seen in [10], where the authors combined the use of the Discrete Cosine Transform (DCT), 

Image Elliptic Curve Cryptography (ECC), and the SegNet CNN in order to achieve a hiding 

capacity of approximately 23 bits per pixel (bpp). ECC is an asymmetric encryption algorithm 

used in various security applications, such as the Diffie-Hellman key exchange algorithm. This 

technique also uses a network structure similar to [47], where a pre-processing network, encoding 

network, and decoding network are used together to achieve steganography. The pre-processing 

network normalizes the secret image and extracts important features. This is achieved using DCT 

and ECC to obtain a secret image and encrypted image. The encoding network encodes the hidden 

and cover images such that they are the same size and embeds the hidden image into the cover 

image. The decoding network extracts the hidden image from the cover image. The decoding 
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network will output the steganographic image, which will need to be further decrypted by using 

inverse DCT and ECC. 

Deep convolutional generative adversarial networks have also been used in the field of 

steganography, as seen in [48]. Generative adversarial networks are a type of neural network 

structure that contain two primary networks, a generative model and a discriminatory model [49]. 

The generative model is used to create steganographic images that look like samples from the 

dataset, while the discriminatory model is used to detect if the image has a hidden message. The 

benefit of this structure is that both networks use the results to improve the network’s hiding 

capabilities; when the generative model’s output is detected by the discriminatory model, its 

weights are adjusted to embed the data more effectively. Inversely, if the discriminatory model 

raises a false positive or negative, it uses the data from the other network to learn to discriminate 

more effectively. The method implemented in this research is to use noise, a hidden image, and a 

secret key to create the steganographic image, which is then passed to the receiving party. The 

receiving party must use the secret key to decrypt the message, while the discriminatory model 

also receives the steganographic message for training purposes. The discriminatory model’s loss 

is calculated as the average cross-entropy, which is then used to update both models.  

2.4 Summary  

Table 1 summarizes a variety of different steganographic techniques.  The domain and 

methodology for each technique is summarized, and the average PSNR, NCC, SSIM, and MSE 

values for each technique are displayed. The blindness of each technique is also noted. A 

steganography method is considered blind if it has access to the steganographic image when 

extracting the hidden image from it. Conversely, if the technique does not know or assume 

anything about the given image when attempting the extraction process, it is not considered blind. 

The preferred file formats for each technique are also described, as this may have a significant 

impact on how the images are processed by the network, due to differences in compression and 

how the data is stored. For example, image formats such as GIF and TIFF are better suited for 

image steganography due to their lossless nature, while JPEG and PNG formats may not be as 

suitable for this process because of their use of data compression techniques [50]. Finally, because 

some methods focus on certain characteristics of steganography such as imperceptibility or hiding 

capacity, certain values may be omitted from the table. 
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Table 2.1. Review of various image steganography methods. 

Research Domain Method Peak 

Signal to 

Noise 

Ratio 

(PSNR) 

Normali

zed 

Cross-

Correlat

ion 

(NCC) 

Structur

al 

Similarit

y Index 

Matrix 

(SSIM) 

Mean 

Square 

Error 

(MSE) 

Paylo

ad 

Size 

Blind? Preferre

d file 

format(s

) 

Robustness Remarks 

[40] Spatial Secret data is compressed 

using Gzip, encrypted 

using AES, and embedded 

based on Fisher-Yates 

Shuffle algorithm 

40.0834 

– 

63.8619 

1 Not 

provided 

0.02 – 

6.46 

8 bpp Yes BMP, 

PNG, 

TIFF 

Has the ability 

to detect 

alterations to 

the 

steganographic 

image using 

CRC-32 

checksum. 

Uses several 

algorithms in order 

to achieve a high 

PSNR, but it 

quickly drops as 

payload embedded 

data size increases. 

Highly resistant to 

histogram and Chi-

square attacks 

[10] Frequency 

(Discrete 

Cosine 

Transform) 

Secret image is 

decomposed using DCT, 

embedded into cover 

image using deep neural 

network, decrypted using 

the ECC key. 

Average 

40.5726 

Not 

provided 

0.9602 Not 

provided 

~23.2

69 bpp 

No BMP, 

PNG 

 

DCT is used to 

provide 

robustness by 

changing the 

structure of the 

secret image. 

Uses CNNs, 

discrete cosine 

transform, and 

elliptic curve 

cryptography to 

transform and hide 

an image into a 

cover. 

[51] Spatial Secret data is hidden using 

modified LSB substitution 

method and uses edge 

preserving modules to 

ensure minimal distortion. 

Average 

46 

Not 

provided 

Not 

provided 

Avg 1.4 ~1 – 3 

bpp, 

depen

ding 

on # of 

LSB 

Yes JPG Robustness is 

not a 

component of 

this proposed 

method. 

More LSB are used 

for edges than 

smooth areas to 

provide 

imperceptibility.  

[46] Frequency 

(Finite 

Ridgelet 

Transform, 

Discrete 

Wavelet 

Transform) 

RGB channels images are 

scrambled using Arnold 

scrambling. FRT and DWT 

are used to obtain the 

ridgelet coefficients and 

wavelet subbands, 

respectively. Inverse FRT 

and DWT is applied to 

obtain steganographic 

image. 

Average 

58.9967 

1 Not 

provided 

Not 

provided 

8 bpp No Not 

provided 

Very 

susceptible to 

attacks such as 

JPEG 

compression, 

cropping, noise, 

and histogram 

analysis.  

Uses FRT with 

DWT to greatly 

increase the 

payload capacity. 

Arnold scrambling 

is used to provide 

security to secret 

image before 

insertion. 

 

3
0
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Table 2.1 continued. 

[52] Spatial Eight-directional Pixel 

Value Differencing (PVD) 

is used to embed the pixels 

of a secret image into a 

cover image. The eight 

directions correspond to 

each of the pixels 

surrounding a particular 

pixel in the cover image. 

Variant 

1: 

Average 

39.55 

Variant 

2: 

Average 

37.22 

Not 

provided 

Avg 

0.9985 

Not 

provided 

Varian

t 1: 3 

Varian

t 2: 

Avg 

3.31 

No Not 

provided 

Robustness is 

achieved 

through its 

resistance to RS 

and Pixel 

Difference 

Histogram 

(PDH) analysis.  

Two variants of the 

method are 

provided. Variant 1 

uses 3-bit 

substitution and 

has higher PSNR, 

while Variant 2 

uses 4-bit 

substitution and 

has higher hiding 

capacity. 

[53] Spatial Secret image is 

manipulated using 

Arnold’s Cat Map, 

embedded into the edges of 

the cover image 

determined by Canny edge 

detection, and embedded 

using Least Significant Bit 

Matching Revisited [53]. 

38.6775 

– 

76.4144 

Not 

provided 

Not 

provided 

Not 

provided 

Not 

provid

ed 

Yes TIFF LSB Matching 

Revisited 

provides a level 

of robustness 

against 

asymmetric 

steganographic 

attacks.  

This method 

requires secret 

images to be 10% 

of the size of the 

cover image for 

high PSNR and 

quality. 

3
1
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 METHODOLOGY 

3.1 The Original Method 

The steganographic channel implemented in this research was built on an unofficial 

implementation of the method proposed in [47]. The implementation was provided by [54] and is 

written in Python. The overall network structure is comprised of three individual networks, a 

preparatory, hiding, and reveal network. The preparatory network is used to take a secret image 

and process it for embedding, which occurs in the hiding network. The hiding network takes the 

processed secret image and a cover image as input and produces the steganographic image. The 

reveal network takes a steganographic image as input and reproduces the secret image. Each 

network is connected and is trained as a whole, instead of training each network separately. Figure 

3.1 shows the structure of the preparatory, hiding, and reveal networks.  

The primary method in which the network learns is through the use of a loss function and the 

Adam optimizer. The loss function for this network is provided by the following equation, where 

𝑐 represents the cover image, 𝑐′ represents the steganographic image, 𝑠 represents the secret image, 

and 𝑠′ represents the recovered image: 

 

𝐿(𝑐, 𝑐′, 𝑠, 𝑠′) = ‖𝑐 + 𝑐′‖ + 𝛽‖𝑠 − 𝑠′‖ (3.1) 

 

The loss function is returned in three parts, the total, hiding, and extracted loss coefficients. 

The ‖𝑐 + 𝑐′‖ part of the loss function represents the error between the cover and steganographic 

image and is applied to preparatory and hiding network. The 𝛽‖𝑠 − 𝑠′‖ part of the loss function 

represents the error between the hidden and extracted image and is applied to all three networks. 

It is worth mentioning that these were the original author’s intentions; the implementation of that 

research only utilized the overall error coefficient. 
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Figure 3.1. Structure of the overall network. The structure of the preparatory network is identical between the hiding and reveal 

networks, with the exception of the hiding and reveal networks taking an additional step of performing a two-dimension convolution 

on the concatenated tensors. 

3
3
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Adam is a stochastic gradient descent method that is used to train the three networks. The 

Adam optimizer works well with networks that have large input requirements and has been shown 

to work well with CNNs [55]. Adam works by combining the features of two extensions of the 

stochastic gradient descent method, Adaptive Gradient Algorithm (AdaGrad) and Root Mean 

Square Propagation (RMSProp) [56]. It borrows from AdaGrad the idea that each perceptron 

should have its own continuously updated learning rate, and from RMSProp the moving averages 

and the idea that the learning rates should be updated according to the average of the recent 

magnitudes obtained from the gradients of the perceptrons’ weights. Adam differs from the 

moving average outlined in RMSProp by calculating an exponential moving average from the 

gradients and the square of the gradients, where hyperparameters 𝛽1 and 𝛽2 are used to adjust the 

decay rates of the exponential moving average. 𝛽1 is used to adjust the estimates of the gradients’ 

first moments, otherwise known as mean, and 𝛽2 is used to adjust the estimates of the gradients’ 

second moments, otherwise known as variance. 

The following summarizes the main elements of the structure of the original network: 

- Create a training graph, consisting of a preparatory network with 3x3, 4x4, and 5x5 

convolution branches, hiding network (same structure), noise layer, and reveal network 

(same structure). The purpose of the training graph is to process a randomly selected 

cover and hidden image, produce a steganographic image, extract the hidden image, 

and update the network weights using the Adam optimizer. 

o For each epoch, and for each step, randomly select a cover and hidden image 

from the datasets and provide as input to train the network.  

▪ On the hundredth step, test the network with a randomly selected cover 

and hidden image. 

- Create a test graph with a preparatory network, hiding network, and reveal network. 

The test graph is used to test the embedding and extracting processes of the network 

and obtain the combined SSIM and PSNR values. Since it is not part of the training 

process, the Adam optimizer is not used to update the weights. 

- Create a deployment graph with a preparatory network, hiding network, and reveal 

network. The deployment graph takes an input cover and hidden image and is used to 

produce a steganographic and extracted image. 
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3.2 The Enhanced Network 

In this research, the network structure is largely similar to the original implementation. That 

is, the final network consisted of a training, testing, and deployment graph. The training graph 

consisted of a preparatory network, hiding network, and reveal network. The preparatory network 

consisted of five two-dimensional convolution layers, with each convolution layer having fifty 

filters each of 3x3, 4x4, and 5x5 patches. Each patch has a kernel size of five and has a ReLU 

activation function.  

In the pursuit of better imperceptibility, hiding capacity, and robustness, many modifications 

to the original network were made: 

1. In order to eliminate the reliance of training on the ImageNet dataset, the normalization 

and denormalization methods were removed from the network. This means that the preparatory 

network no longer normalized and denormalized image batches based on the mean and standard 

deviation from the ImageNet dataset. After examining the results of input and output images from 

the network, it was apparent that these values were not creating accurate output results and thus 

were removed. These images had a much lower contrast ratio and appeared to have a type of sepia 

filter applied. 

 2. The hyperparameters were also adjusted from the original network as well. The batch 

size was increased from 8 to 16 with the hopes that the increased size of the batch would produce 

more varied results in image details and, in turn, provide more variety in the training process. Both 

networks were trained for ten epochs. However, since the steps taken per epoch were directly 

correlated to the batch sizes, the original network’s number of steps per epoch was 1,784. Since 

the batch size was doubled in the proposed network, the number of steps per epoch was reduced 

to 891. The learning rate was slightly increased from 0.0001 to 0.0002. The motivation of 

increasing the learning rate by a small amount was to speed up the training process, but not too 

much that the network converges on the wrong solution. 𝛽 , also known as momentum, was 

decreased from 0.75 to 0.25. The momentum was decreased to reduce the speed of the training 

process, since it is possible that the large momentum value attributed to the artifacts in the resulting 

images.  

3. In [47], the author adds a noise layer to the network such that the network is less likely to 

embed the information inside the LSB of the cover image’s pixels and to increase the 

imperceptibility of the hiding results. The noise layer was removed to release this unnecessary 
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constraint.  It is possible to further improve the hiding imperceptibility results by utilizing hiding 

methodologies within the LSB, in conjunction with other hiding methodologies the network 

decides to use. 

4. The learning goal of the network was altered to focus on imperceptibility instead of 

minimizing image quality losses. That is, originally, the loss function consisted of two parts, one 

representing the MSE between the cover and steganographic images and the other representing the 

MSE between hidden and extracted images. The loss function was reworked to a “gain function”, 

where the losses were not calculated based on MSE coefficients but based on the combination of 

PSNR and SSIM coefficients. Because higher PSNR and SSIM coefficients positively correlate to 

greater image quality, the loss function was reworked to maximize this value. In the 

implementation, the loss function was changed to a “gain function” by minimizing the inverse of 

the PSNR and SSIM values since TensorFlow does not provide a built-in function for maximizing 

tensors. In fact, this modification had the most impact on the results - as demonstrated in the 

Results section using both the quantitative and visually observable results. 
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 RESULTS 

4.1 Model Training & Testing 

While importing the network for our testing purposes, it was assumed that the ImageNet 

dataset was used to train the network and obtain these results, since the image pixels values were 

normalized using the mean and standard deviation values from ImageNet dataset. To provide the 

most equitable comparison between the original and proposed network designs and minimize 

differences in network training, similar datasets were obtained and used in the training and testing 

processes. To train and test the original network, the Linnaeus 5 [8] and Imagenette [57] datasets 

were used. 

Linnaeus 5 is a dataset that contains 6,000 square images of five different types of objects. 

The images in the Linnaeus 5 dataset are saved in a JPG format, with each image having a height 

and width of 128 pixels. The Imagenette is derived from the original ImageNet dataset and consists 

of 9,468 images of ten different types of objects. The Imagenette dataset was used instead of the 

full ImageNet dataset due to limited storage space for training samples. The images provided by 

the Imagenette dataset were also saved in a JPG format but varied widely in height and width. 

Because the preparatory network takes care of resizing and formatting the images for use in the 

network, however, the varying image sizes from this dataset was not an issue. 

The input cover and hidden images were provided to both the original and proposed network 

in the JPG format. When the images were supplied to the preparatory and hiding networks, they 

were first resized to 224 pixels square with the goal of hiding one full-size color image inside 

another color image of equal size. 

4.2 Experiment Setup 

For this experiment, the network proposed in [47] was built based on the Python 

implementation provided in [58]. The code was written and revised using the first major version 

of the Python TensorFlow library. Additional libraries were used in this experiment to include 

scikit-image for gathering the image metrics [59] and Matplotlib for displaying the images inside 

the Jupyter Notebook [60]. Google Colaboratory, also referred to as Colab, was used as the code 

editor and execution environment for training and testing the network. Colab works by hosting the 
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interpretation and execution of Jupyter notebooks on their cloud service, where the Jupyter 

notebooks are Python-based computational documents. To accelerate the training process, the Pro 

version of Colab was used, which enabled the use of an Nvidia Tesla T4 or Nvidia Tesla P100 

GPU for the training process. Additionally, using Colab Pro enabled the use of a high-RAM 

runtime environment, which also reduced the time spent training the network.  

To ensure that a wide variety of images were chosen for testing the networks, images that 

contain lots of color and image details were collected from various sources. Table 4.1 shows the 

ten image pairs that will be used throughout the results section to compare between 

implementations. Some images in the table, such as Baboon and Lena, are popular choices for 

testing neural networks that perform some type of image processing. Other images are samples 

from the datasets the network was trained on, such as the Karaoke and French Horn images. There 

are also a few original images, such as Graffiti and Lotus. 
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Table 4.1. List of labels and images used between experiments. 

Label Cover Image Label Hidden Image 

Baboon 

 

Graffiti 

 
Berries 

 

Karaoke 

 
Chainsaws 

 

Lena 

 
Church 

 

Lotus 

 
Dog 

 

Parachute 

 
    

    

    

    

    



 

40 

Table 4.1 continued. 

Fish 

 

Parrot 

 
French Horn 

 

Pens 

 
Garbage 

Truck 

 

Peppers 

 
Gas Pump 

 

Stained Glass 

 
Golf Balls 

 

Thistle 
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4.3 Results of the Original Network 

This section focuses on the results of the original, unmodified code from which this work was 

derived. As seen in Table 4.2, the resulting steganographic image from the original network shows 

faint traces of the secret image. The SSIM and PSNR values between the cover and steganographic 

images from the original implementation were 0.93041 and 28.69137 dB, respectively. Values in 

these ranges tend to be on the lower end of the results from other image steganography methods. 

These faint traces are highlighted when compared side-by-side to the steganographic images 

generated by the original network trained on our datasets.  

When trained on the Imagenette and Linnaeus 5 datasets, the original network clearly showed 

traces of the hidden image within the steganographic image. As shown in Table 4.3, the resulting 

steganographic and revealed images show the artifacts of the hiding process much more clearly 

than the author’s sample output images, even with many more training steps taken. Important 

image details such as edges and corners are visually perceptible in the steganographic image 

produced by the original network. A close examination of the steganographic image reveals a 

discolored version of the cover image. However, despite the vast increase in training iterations, the 

images in our implementation of the original network did not use the normalization and 

denormalization processes. This may explain why the hiding artifacts may be more apparent. 

With regards to metrics obtained from training the original network with the datasets obtained 

in this research, there are great improvements to be desired. The SSIM and PSNR values of the 

sample steganographic image generated by the original network trained on the ImageNet dataset 

were 0.93041 and 28.69137 dB, respectively. Expectedly, the SSIM and PSNR values of the same 

steganographic image generated by the original network trained on the Imagenette and Linnaeus 

5 datasets were lower, resulting in 0.89914 and 27.69137 dB, respectively. Although the SSIM 

and PSNR values were similar between the two implementations, the steganographic process of 

the original network trained on the Imagenette and Linnaeus 5 datasets is not visually 

imperceptible and can easily be spotted by the naked eye. Moreover, the visually important details 

of the hidden image like edges and corners can be detected in the steganographic image without 

tools or adjustments, which does not provide a good method for image steganography. Comparing 

the results from the code provided by [58] with the original network trained on the proposed 

network’s dataset highlights the details of the hidden image embedded within the steganographic 

image. 
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Table 4.2. Side-by-side comparison of steganographic and extracted images generated by the original network trained on the 

ImageNet dataset and the original network trained on the Imagenette and Linnaeus 5 dataset. 

Network 

Version 

Cover Image Steganographic Image Extracted Image Hidden Image 

Original 

Network 

(Original 

Dataset) 

    
Image 

Metrics 

SSIM: 0.93041 

PSNR: 28.69137 

SSIM: 0.73294 

MSE: 0.00749 

Original 

Network 

(Proposed 

Network’s 

Dataset) 

    
Image 

Metrics 

SSIM: 0.89914 

PSNR: 27.61369 

SSIM: 0.84422 

MSE: 0.00296 

 

4
2
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Table 4.3. The steganographic and extracted images generated by the original method. 

 Original Network 

Experiment Steganographic Image Recovered Image 

Cover: Baboon, 

Hidden: Graffiti 

  
Image Metrics SSIM: 0.93687 

PSNR: 27.96642 

SSIM: 0.87001 

MSE: 0.00297 

Cover: Berries, 

Hidden: 

Karaoke 

  
Image Metrics SSIM: 0.93457 

PSNR: 25.62975 

SSIM: 0.85424 

MSE: 0.0026 

Cover: 

Chainsaws, 

Hidden: Lena 

  
Image Metrics SSIM: 0.91134 

PSNR: 29.35 

SSIM: 0.91303 

MSE: 0.00162 

Cover: Church, 

Hidden: Lotus 

  
Image Metrics SSIM: 0.93737 

PSNR: 29.59204 

SSIM: 0.86413 

MSE: 0.00222 
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Table 4.3 continued. 

Cover: Dog, 

Hidden: 

Parachute 

  
Image Metrics SSIM: 0.90129 

PSNR: 25.7312 

SSIM: 0.93006 

MSE: 0.00138 

Cover: Fish, 

Hidden: Parrot 

  
Image Metrics SSIM: 0.90204 

PSNR: 25.77007 

SSIM: 0.92166 

MSE: 0.0013 

Cover: French 

Horn, Hidden: 

Pens 

  
Image Metrics SSIM: 0.87437 

PSNR: 27.37058 

SSIM: 0.77593 

MSE: 0.0045 

Cover: Garbage 

Truck, Hidden: 

Peppers 

  
Image Metrics SSIM: 0.87806 

PSNR: 27.89983 

SSIM: 0.89549 

MSE: 0.0019 
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Table 4.3 continued. 

Cover: Gas 

Pump, Hidden: 

Stained Glass 

  
Image Metrics SSIM: 0.81223 

PSNR: 25.3442 

SSIM: 0.83418 

MSE: 0.00576 

Cover: Golf 

Balls, Hidden: 

Thistle 

  
Image Metrics SSIM: 0.90461 

PSNR: 25.99714 

SSIM: 0.87267 

MSE: 0.0023 
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4.4 Results of the Enhanced Network 

This section focuses on the results of the proposed network with the various changes made. 

After making the changes to the network structure and parameters, the results of the embedding 

and extracting process were much more favorable in terms of imperceptibility and recoverability. 

As seen in Table 4.4, the resulting steganographic and extracted images generated by the proposed 

network resulted in greater PSNR and SSIM values than the values generated by the original 

network. This enhancement in imperceptibility was supported by the high SSIM and PSNR values 

generated between the two, with average values of 0.99711 and 43.04027 dB, respectively. As 

seen in Table 4.5, the results of the network were significantly improved when compared to the 

results from the original network. Compared to the results of the original network, the proposed 

network was much more effective at hiding the secret image inside the cover image. The SSIM 

and PSNR values of the sample steganographic image generated by the proposed network were 

0.99498 and 41.41283 dB, respectively. These values are much greater than the SSIM and PSNR 

values of the sample steganographic image generated by the original network, which were 0.93041 

and 28.69137 dB, respectively. When compared side-by-side, the steganographic images 

generated by the proposed network were virtually indistinguishable to the naked eye, while the 

steganographic images generated by the original network clearly exposed details of the hidden 

image. 

The recoverability of the proposed network was also greater than that of the original network. 

Comparing the extracted images from the original and proposed networks revealed that the original 

network’s extraction process lost some of the sharpness and minute details of the image. 

Additionally, extracted images contained a distorted, wave-like pattern. In Table 4.4, the sample 

extracted image generated by the original network resulted in SSIM and MSE values of 0.84422 

and 0.00296, respectively. The proposed network improved slightly on the similarity between the 

hidden and extracted image with a SSIM value of 0.87402. However, the error between the hidden 

and extracted image resulted in a slightly greater MSE value of 0.003. Visually, the extraction 

process of the proposed network maintains the sharpness and the smaller details of the image. 

However, the contrast of the extracted images was noticeably reduced, and the extracted images 

were slightly grainy. From Table 4.5, the average SSIM and MSE values of the proposed network 

were 0.89496 and 0.00294, respectively. The average SSIM and MSE values of the original 
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network were 0.87314 and 0.00266, respectively. The increased image sharpness of the proposed 

network’s extracted images is supported by the slightly increased SSIM value. The slightly higher 

MSE values may explain the graininess of the extracted images generated by the proposed network. 

Comparing the quantitative and visual results between the original and proposed methodology, 

it can be surmised that the change in network structure and loss function resulted in greatly 

improved steganography results. Table 4.6 shows the comparison of image metrics obtained from 

the steganographic and extracted images generated by the original and enhanced networks. For all 

test images, the proposed network greatly outperformed the original network in terms of the 

imperceptibility and similarity between the cover and steganographic images. Additionally, the 

proposed network slightly improved regarding the similarity between the hidden and extracted 

images. However, since the goal was to improve the imperceptibility of the steganography process, 

this resulted in extracted images with slightly higher MSE values in most cases. As supported by 

the image metrics highlighted in Table 4.6, the changes introduced by the proposed methodology 

resulted in a highly imperceptible image steganography method and produced highly desirable 

steganographic images without sacrificing much in terms the extracted image’s details. 
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Table 4.4. Side-by-side comparison of the steganographic and extracted images generated by the original and proposed 

methodologies. 

Network 

Version 

Cover Image Steganographic Image Extracted Image Hidden Image 

Original 

Network 

(ImageNet 

dataset)  

    
Image 

Metrics 

SSIM: 0.93041 

PSNR: 28.69137 

SSIM: 0.73294 

MSE: 0.00749 

Proposed 

Network 

    
Image 

Metrics 

SSIM: 0.99498 

PSNR: 41.41283 

SSIM: 0.87402 

MSE: 0.003 

4
8
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Table 4.5. The steganographic and extracted images generated by the enhanced methodology. 

Proposed Network 

Experiment Steganographic Image Recovered Image 

Cover: Baboon, 

Hidden: Graffiti 

  
Image Metrics SSIM: 0.99748 

PSNR: 42.85748 

SSIM: 0.88449 

MSE: 0.00262 

Cover: Berries, 

Hidden: 

Karaoke 

  
Image Metrics SSIM: 0.99848 

PSNR: 44.33152 

SSIM: 0.93213 

MSE: 0.00131 

Cover: 

Chainsaws, 

Hidden: Lena 

  
Image Metrics SSIM: 0.99652 

PSNR: 42.4834 

SSIM: 0.91373 

MSE: 0.00167 

Cover: Church, 

Hidden: Lotus 

  
Image Metrics SSIM: 0.99789 

PSNR: 44.17786 

SSIM: 0.90252 

MSE: 0.00204 
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Table 4.5 continued. 

Cover: Dog, 

Hidden: 

Parachute 

  
Image Metrics SSIM: 0.99853 

PSNR: 44.72544 

SSIM: 0.91306 

MSE: 0.00213 

Cover: Fish, 

Hidden: Parrot 

  
Image Metrics SSIM: 0.99773 

PSNR: 44.487 

SSIM: 0.92739 

MSE: 0.00158 

Cover: French 

Horn, Hidden: 

Pens 

  
Image Metrics SSIM: 0.99739 

PSNR: 42.45224 

SSIM: 0.83423 

MSE: 0.00498 

Cover: Garbage 

Truck, Hidden: 

Peppers 

  
Image Metrics SSIM: 0.99713 

PSNR: 43.06884 

SSIM: 0.89151 

MSE: 0.00306 
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Table 4.5 continued. 

Cover: Gas 

Pump, Hidden: 

Stained Glass 

  
Image Metrics SSIM: 0.99499 

PSNR: 41.65722 

SSIM: 0.81930 

MSE: 0.00767 

Cover: Golf 

Balls, Hidden: 

Thistle 

  
Image Metrics SSIM: 0.99494 

PSNR: 40.16172 

SSIM: 0.92120 

MSE: 0.00231 
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Table 4.6. A comparison of performance metrics between the original and enhanced networks. 

 Original Network Proposed Network 

Experiment Steganographic 

Image 

Recovered Image Steganographic 

Image 

Recovered Image 

Cover: 

Baboon, 

Hidden: 

Graffiti 

SSIM: 0.93687 

PSNR: 

27.96642 

SSIM: 0.87001 

MSE: 0.00297 

SSIM: 0.99748 

PSNR: 42.85748 

SSIM: 0.88449 

MSE: 0.00262 

Cover: 

Berries, 

Hidden: 

Karaoke 

SSIM: 0.93457 

PSNR: 

25.62975 

SSIM: 0.85424 

MSE: 0.0026 

SSIM: 0.99848 

PSNR: 44.33152 

SSIM: 0.93213 

MSE: 0.00131 

Cover: 

Chainsaws, 

Hidden: 

Lena 

SSIM: 0.91134 

PSNR: 29.35 

SSIM: 0.91303 

MSE: 0.00162 

SSIM: 0.99652 

PSNR: 42.4834 

SSIM: 0.91373 

MSE: 0.00167 

Cover: 

Church, 

Hidden: 

Lotus 

SSIM: 0.93737 

PSNR: 

29.59204 

SSIM: 0.86413 

MSE: 0.00222 

SSIM: 0.99789 

PSNR: 44.17786 

SSIM: 0.90252 

MSE: 0.00204 

Cover: Dog, 

Hidden: 

Parachute 

SSIM: 0.90129 

PSNR: 25.7312 

SSIM: 0.93006 

MSE: 0.00138 

SSIM: 0.99853 

PSNR: 44.72544 

SSIM: 0.91306 

MSE: 0.00213 

Cover: Fish, 

Hidden: 

Parrot 

SSIM: 0.90204 

PSNR: 

25.77007 

SSIM: 0.92166 

MSE: 0.0013 

SSIM: 0.99773 

PSNR: 44.487 

SSIM: 0.92739 

MSE: 0.00158 

Cover: 

French Horn, 

Hidden: Pens 

SSIM: 0.87437 

PSNR: 

27.37058 

SSIM: 0.77593 

MSE: 0.0045 

SSIM: 0.99739 

PSNR: 42.45224 

SSIM: 0.83423 

MSE: 0.00498 

Cover: 

Garbage 

Truck, 

Hidden: 

Peppers 

SSIM: 0.87806 

PSNR: 

27.89983 

SSIM: 0.89549 

MSE: 0.0019 

SSIM: 0.99713 

PSNR: 43.06884 

SSIM: 0.89151 

MSE: 0.00306 

Cover: Gas 

Pump, 

Hidden: 

Stained Glass 

SSIM: 0.81223 

PSNR: 25.3442 

SSIM: 0.83418 

MSE: 0.00576 

SSIM: 0.99499 

PSNR: 41.65722 

SSIM: 0.81930 

MSE: 0.00767 

Cover: Golf 

Balls, 

Hidden: 

Thistle 

SSIM: 0.90461 

PSNR: 

25.99714 

SSIM: 0.87267 

MSE: 0.0023 

SSIM: 0.99494 

PSNR: 40.16172 

SSIM: 0.92120 

MSE: 0.00231 
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 CONCLUSIONS 

In this research, the fields of digital image steganography and convolutional neural networks 

were explored to develop a novel method of embedding and extracting images. A close look was 

taken at many existing image steganography methods, which utilized techniques from the spatial, 

frequency, and neural network domains. To produce novel findings, this research started with a 

methodology proposed by [47] and implemented by [58], where significant changes to the network 

structure and parameters were made in order to obtain results that greatly improved on the original 

implementation. The network changes responsible for these improved results were removal of the 

image normalization methods, careful tuning of the network hyperparameters, omission of the 

noise layer, and the rework of the loss function to prioritize the similarity of the cover and hidden 

images over the reduction of the error between the input and generated images. These changes 

resulted in a network that imperceptibly embedded a color image within another color image of 

the same size and capacity. 

There are several ways in which this work can be improved upon. The Python code for the 

proposed network was written using the first version of TensorFlow. Created by Google Brain, 

TensorFlow 1.0 was released by in 2017 and its successive major revision, TensorFlow 2.0, was 

released in 2019 [61]. In the second version, many fundamental changes were made to the library, 

and the results obtained by converting the existing code to TensorFlow 2.0 may be more desirable 

than the results obtained by continuing to use original version.  

Improvements may also be made to the network by using a larger dataset with a greater variety 

of images. As mentioned in the Introduction, introducing noise to the training process can help 

mitigate the opportunity for the network to overfit to the training dataset. The Imagenette and 

Linnaeus 5 datasets both contain images with set labels for the purposes of image classification 

(e.g., dogs, flowers). To reduce the opportunity for the network to learn the details of images that 

classify these types of images and rely on them when performing the embedding and extracting 

processes, greater variety in the image datasets would be more ideal for the purposes of reducing 

overfitting. To this end, subsequent research on this methodology would also benefit from splitting 

the datasets into explicit training and testing datasets. Although the results obtained from the 

proposed methodology were greatly improved from the original, using images from the testing 

dataset foreign to the network would likely produce much better results. 
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Another avenue for future work would involve performing a steganalysis on the 

steganographic images produced by the proposed methodology. By analyzing a steganographic 

image, it is possible to detect the presence of a hidden image. If steganalysis is performed on the 

steganographic images and the presence of hidden information is detected, the proposed 

methodology can be altered to evade the detection. Conversely, if steganalysis is performed and it 

is determined that the cover image does not contain hidden information, then the proposed 

methodology would not require modifications to evade detection. 

Lastly, the image metrics produced by this network would benefit from a proper and impartial 

comparison of other existing image steganography techniques. Because each implementation uses 

its own image sets for producing metric results, some of which are controlled by copyrights and 

intellectual property laws, it is not always feasible to obtain a completely fair comparison between 

methodologies. Additionally, frequently used images such as the Lena and Baboon images may 

not always be identical between uses due to factors such as compression and differences in image 

formats. For standardized, fair-use images that are used in existing methodologies, however, an 

avenue for future work would be to use these images to provide for a more fair and equitable 

comparison of the image metrics. 

As witnessed by the significant improvement in results between the original and proposed 

methodologies, the importance of the structure and hyperparameters of the network should be 

emphasized. Small changes such as alterations in the training datasets, loss functions, and 

hyperparameters can have a profound influence on the training process and network results.  
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