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ABSTRACT

In the first chapter of this dissertation, I develop a new model of learning and level-k

reasoning in games. My model frames attraction learning in the language of beliefs and

extends it to include two important features. The first of these features is an implicit pat-

tern recognition mechanism that learns the importance of contextual information, while the

second is a nonlinear probability weighting function with an endogenous fixed point location.

The resulting beliefs determine level-1 behavior in a larger level-k rule learning model. In

keeping with the literature, I assume that rule learning occurs according to a reinforcement

learning mechanism, but I improve the approximation of latent rule reinforcements to simu-

late the effect of rule exercise. A cognitive foundation for the full model is also provided by

implementing it within the ACT-R cognitive architecture.

The second chapter investigates the extent to which human agents use level-k reasoning

in repeated mixed strategy games. Towards this end, the Chapter 1 model is estimated using

data from a novel experiment. The experiment consisted of two between-subject treatments:

in one treatment, the information provided was sufficient to use any level of reasoning, while

in the other treatment subjects were only provided with enough information to be level-1.

A random effects model is estimated using the data from both treatments to identify the

model’s belief learning parameters. In the unrestricted treatment, I find that subjects learned

to engage almost exclusively in level-1 reasoning. Simulations suggest that this result may

be explained by the difficulty of exploiting a player who is level-1.
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1. AN ADAPTIVE MODEL OF LEARNING AND LEVEL-K

REASONING IN REPEATED NORMAL-FORM GAMES

1.1 Introduction

Level-k reasoning was first introduced by Nagel (1995) and Stahl and Wilson (1994 and

1995) for the purpose of studying players’ initial responses to unfamiliar games. Beginning

with Stahl (1996), however, a subset of the literature has sought to use level-k reasoning to

explain behavior in repeated game environments. 

1
 The models used in these settings modify

the earlier static specifications to incorporate learning dynamics. Stahl (1999) identifies

two types of learning that are believed to influence repeated play: rule learning and data

learning. Rule learning posits that, rather than adhering to a fixed “level-k type”, players

learn what levels of reasoning (or what level-k decision rules) to use based on their experiences

in the game. In Stahl’s specification, this type of learning occurs via a cumulative-style

reinforcement learning mechanism. The second type of learning that Stahl identifies, data

learning, relates to how agents update their data-driven level-1 beliefs about the actions that

will be chosen by other players. 

2
 Stahl models this type of learning with a distributed-lag

forecasting equation using only a single parameter.

Taken as a whole, Stahl (1999, 2000, 2001, and 2003) and Haruvy and Stahl (2002 and

2012) provide ample evidence of both rule learning and data learning across a wide variety of

normal-form games, but since the conception of Stahl’s model there have been a number of

new developments within the adaptive learning literature. First, cumulative-style reinforce-

ment models have largely been supplanted by the more robust averaging-style variations (Ho

et al., 2007), as the later allow agents’ reward reference points to adjust so that they can

distinguish between their most commonly received payoffs. Second, fictitious play learning

(Brown, 1951) has emerged as the preeminent modeling framework for backward-looking
1

 ↑ Level-k reasoning in repeated games: Stahl, 1996, 1999, 2000, 2001, and 2003; Haruvy and Stahl, 2002
and 2012; Danz, Fehr, and Kübler, 2012; Ho and Su, 2013; Gill and Prowse, 2016; Weerd et al., 2018; Feng
and Wang, 2019; Ho et al., 2021.
2

 ↑ Level-1 players are often said to respond to a non-strategic “level-0” player. From this perspective, data
learning describes the evolution of the latter’s action probabilities. Empirically speaking, very few people
are found to fit the level-0 categorization, so I dispense with framing and omit the level-0 type from my
model of level-k reasoning.
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belief formation. Unlike distributed-lag forecasting, it decreases the rate at which beliefs

are learned over time in congruence with the power law of practice. Third, a hybrid type

of learning has been developed that combines elements of belief learning and reinforcement

learning into a single motion equation (Camerer and Ho, 1999). This hybrid, called “attrac-

tion learning”, conditions agents’ beliefs on their own upcoming action selections. Fourth,

pattern recognition has become a well-established feature of adaptive learning in some types

of normal-form games (Sonsino and Sirota, 2003; Ruström and Wilcox, 2009; Spiliopoulos,

2012, 2013a, and 2013b). It captures belief volatility by letting agents’ beliefs be conditioned

on each player’s recent action history. Finally, probability weighting has also been identified

as an important component of learning in games (Spiliopoulos, 2012 and 2013a), since it

allows agents’ beliefs to conform to common principles of subjective perception.

As the preceding paragraph suggests, several important features of modern adaptive

learning models are not included in Stahl’s learning specifications, so I incorporate these

features into a more comprehensive model of learning that I develop within the ACT-R cog-

nitive architecture (Anderson and Lebiere, 1998). ACT-R is a general theory of cognition

from the psychology literature that has performed successfully in a variety of domains, in-

cluding sequence learning (Wallach and Lebiere, 2000; Lebiere and Wallach, 2001), dynamic

decision making (Fum and Stocco, 2003; Gonzalez et al., 2003), and the playing of eco-

nomic games. 

3
 Its procedural framing and jargon-heavy terminology, however, have made

it inaccessible to many economists. ACT-R was first introduced to the economics literature

through a data learning model developed by Spiliopoulos (2013a). Like the model developed

in this chapter, it was used to study behavior in repeated normal-form games. On the two

datasets Spiliopoulos analyzed, his model outperformed a popular generalization of fictitious

play learning known as weighted fictitious play (Cheung and Friedman, 1997), but in spite

of this finding there have been no further attempts to integrate ACT-R into the economics

literature.
3

 ↑ ACT-R models of game-playing: Ritter and Wallach, 1998; Lebiere and West, 1999; Sanner et al., 2000;
Kim and Taber, 2004; West et al., 2005; Reitteret al., 2010; Spiliopoulos, 2013a and 2013b, Thomson et al.,
2014.
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In an effort to improve the architecture’s accessibility, the data learning model that I

develop in this chapter is framed as an extension of weighted fictitious play learning. I show

that ACT-R is able to nest weighted fictitious play beliefs as a special case given the right

set of modeling assumptions. This finding is important as it relates two disjointed literatures

and provides a cognitive foundation for fictitious play models. Under standard fictitious play

learning, beliefs are formed by taking a simple average over all previously observed action dis-

tributions. Weighted fictitious play learning takes a time weighted average instead such that

more weight is given to newer observations. Older observations are discounted to capture

human forgetting and facilitate faster belief adaptation. This framework can be extended to

include beliefs that are behaviorally equivalent to frequency-style reinforcement and attrac-

tion learning models. For my first major departure from Spiliopoulos, I accommodate these

beliefs within the ACT-R cognitive architecture. 

4
 

My data learning model builds on this base-level learning in two important ways. First,

it extends belief formation to include an implicit pattern recognition mechanism. In the

style of classical conditioning, my model induces pattern recognition through a series of

learned action associations, where associations are formed between tuples of the opponents’

chosen actions and each player’s action choice in the previous period. The more pairings of

these actions that an agent observes, the stronger their perceived association. Beliefs are

then increasing in the strength of each action tuple’s association with the actions chosen

last period. In contrast to the similarity matching featured in Spiliopoulos (2013a and

2013b), this model of pattern recognition allows agents to learn the importance of contextual

information. By using an implicit method of learning it also consumes less working memory,

making an n-player generalization of the model cognitively plausible.

My model’s second extension to base-level learning introduces a nonlinear probability

weighting function. In ACT-R, probability weighting naturally emerges from a memory

retrieval process called “blending”. Blending returns a weighted average of any desired set
4

 ↑ It could be argued that reinforcement learning is too unsophisticated to describe the behavior of level-
1 players, but when we consider that reinforcement learning can be framed as belief learning, its hidden
sophistication begins to become obvious. Under the belief learning framing, reinforcement learners rationally
respond to their expectations just like the players in any other level-1 model. If rationality is considered to
be a sign of sophistication, reinforcement learners are sophisticated players.
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of values that are stored in declarative memory. When the values being averaged are the

outcomes of a repeated random event, blending behaves like a probability weighting function.

It therefore determines agents’ sensitivities to probabilities as well as their levels of optimism.

For my last major departure from Spiliopoulos, I weight the stored stage-game outcomes in

memory using a generalization of ACT-R’s standard blending function. This endogenizes

the weighting function’s fixed point location and makes the nesting of weighted fictitious

play learning possible.

The data learning model maps agents’ observed action histories into their level-1 beliefs.

From there the behavior of each level is determined by a series of best response mappings.

A player using level-1 reasoning, for instance, noisily best responds to his level-1 beliefs.

A player using level-2 reasoning noisily best responds to his opponents’ best responses to

their level-1 beliefs. This process of iterating on the preceding levels’ best responses may

continue indefinitely, though experimental evidence suggests that it is rare for people to

reason beyond level-3 (Crawford et al., 2013). Following Stahl (1999), I model players as

boundedly rational agents who decide their actions using level-k rules. Each rule applies a

different level of reasoning to determine an agent’s action: the level-1 rule applies level-1

reasoning, the level-2 rule applies level-2 reasoning, and so forth.  

5
 In contrast to Camerer

et al. (2004)’s closely related cognitive hierarchy model, I make no assumptions about the

proportion of players that use each level of reasoning.

In Stahl’s model, agents approximate their opponents’ level-1 beliefs with their own

level-1 beliefs when using the level-2 rule. Unfortunately, this approximation assumes two

features of the environment that severely limit its scope of application. First, it assumes that

all players share the same payoff functions, precluding its use in asymmetric normal-form

games. Second, it assumes a large population of players so that each agent’s influence on

the empirical action distribution is negligible. To keep the setting I consider unrestricted by

these assumptions, I generalize this aspect of Stahl’s model. In contrast to Stahl, I assume

that agents mirror their own belief updating processes to approximate the belief updating
5

 ↑ Camerer et al. (2002) specifies a “sophisticated” attraction learner that is similar to Stahl (1999)’s level-2
player, but instead of best responding to the unsophisticated type, he best responds to his beliefs about the
distribution of players. In contrast to Stahl’s model, there is also no mechanism for learning a different level
of sophistication.
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processes of other players. Any agent’s beliefs can then be inferred directly from the observed

action history.

At the start of every period, agents noisily select their most preferred level-k rules. Pref-

erences over rules are learned through experience via ACT-R’s averaging-style reinforcement

learning mechanism. As a result, agents become more likely to choose rules that have re-

warded them with favorable payoffs. If rule selection is observed by the researcher, an agent’s

chosen rules can be reinforced by their resulting stage-game payoffs, but if rule selection is

latent then the reinforcements must be approximated to maintain the tractability of the

model. In the latent-rule setting, Stahl reinforces each rule at the end of every period by

its expected payoff in that period given the opponents’ chosen actions, but while this ap-

proximation preserves the learning principle known as the law of effect, it neglects its sister

principle, the law of exercise. The law of exercise permits learning through response rep-

etition as opposed to learning from the magnitude of a response’s rewards. To retain this

type of learning, I propose a new approximation for the latent rule reinforcements that is

shown to be superior to Stahl’s. My model makes a rule’s reinforcement proportional to the

probability that the rule was selected to simulate the effect of rule exercise.

The rest of the chapter is organized as follows. Section 1.2 provides an overview of

the model’s state-to-action mappings and describes how agents learn their preferences over

these mappings’ corresponding level-k rules. Section 1.3 develops the data learning model

that determines agents’ level-1 beliefs. Appendix A.1 presents the ACT-R framing of the

model and Section 1.4 concludes.

1.2 Level-k rules

Consider a generic normal-form game G ≡ (N,A, P ), where N ≡ {1, ..., n} is the set of

players, A ≡ {A1, ..., An} is the set of action spaces, and P ≡ {P1, ..., Pn} is the set of payoff

functions. Define ht ≡ ({at1, ..., atn})t−1
t=1 as all players’ joint action history from period 1 up

to period t ∈ N+ and I t ≡ (G, ht) as the information that is available to them after they

experience this history.

15



1.2.1 Rule mappings

Following Stahl (1999)’s general theory of rule learning, I model players as boundedly

rational agents who decide their actions using behavioral rules. Understand a behavioral

rule to be any mapping for a generic player i ∈ N from the information state space I∗ to

the set of general measures on his actions M(Ai). The specific family of rules that I consider

in this chapter is derived by using level-k reasoning. To state these rules formally, let Bi :

M(∏
i′∈N Ai′) → M(Ai) denote player i’s best response function and bi : I∗ → M(∏

i′∈N Ai′)

be the mapping from his information to his level-1 beliefs. Also define bti ≡ bi(I t) as the

output of this mapping when the input is information I t. Then in period t, player i’s level-k

rules can be expressed as follows:

Level-1: Bi(bti)

Level-2: Bi({Bj(btj)}j 6=i∈N)

Level-3: Bi({Bj({Bi′(bi′)}i′ 6=j∈N)}j 6=i∈N)
...

Thus, an agent using the level-1 rule (rule 1) best responds to his level-1 beliefs, an agent

using the level-2 rule (rule 2) best responds to his opponents’ best responses to their level-1

beliefs, and so forth. In keeping with Stahl, I assume that Bi only admits uniform random

responses over all of the actions between which player i is indifferent. This ensures that Bi

maps to a single general measure for any given set of beliefs. In contrast to Stahl, however,

I assume that agents mirror their own belief updating processes to approximate the belief

updating processes of other players. Any agent’s beliefs can then be inferred directly from

the observed action history. The mapping between action histories and beliefs is specified in

the following section.

At the start of every period, agents noisily select their most preferred level-k rules.

Preferences over rules are determined by the agents’ learned utility values. Each utility

reflects a player’s past experience and success using a particular level of reasoning. To

fix ideas, assume rule selection is governed by a simple logit choice function. Let U t
i (k)

denote player i’s learned utility for rule k ∈ {1, ..., r} as of period t and κ ∈ R+ be a utility

sensitivity parameter. Also allow υ(k) ∈ R to be any time-invariant bias that agents may

16



have for choosing the kth level of reasoning. Then conditional on information I t, player i’s

probability of selecting rule k is given by

pti(k) ≡ exp(υ(k) + κ · U t
i (k))∑r

k′=1 exp(υ(k′) + κ · U t
i (k′)) (1.1)

Once his rule is selected, player i uses the rule’s iterated best responses to map the

specified set of level-1 beliefs into the appropriate action. Action selection is also noisy,

however, and it is again described by a logit choice function. Define

V t
i (ai|k) ≡



∑
a−i∈A−i Pi(ai, a−i) · bti(a−i|ai) if k = 1∑
a−i∈A−i Pi(ai, a−i) · ∏

aj∈a−i Bj(aj|btj) if k = 2∑
a−i∈A−i Pi(ai, a−i) · ∏

aj∈a−i Bj(aj|{Bi′(bti′)}i′ 6=j∈N) if k = 3
...

(1.2)

as player i’s expected value for action ai ∈ Ai given his level-k beliefs in period t, where

A−i ≡ ∏
j 6=i∈N Aj is the Cartesian product of all other players’ action spaces. Let ν(ai) ∈ R

denote any time-invariant bias that agents may have for choosing action ai and λ ∈ R+ be

a payoff sensitivity parameter. Then conditional on rule k being chosen and information I t,

player i’s probability of selecting action ai is

pti(ai|k) ≡ exp(ν(ai) + λ · V t
i (ai|k))∑

a′
i∈Ai exp(ν(a′

i) + λ · V t
i (a′

i|k)) (1.3)

1.2.2 Rule learning

After selecting his action, player i observes the actions chosen by his opponents and

receives stage game payoff Pi(ati , at−i). His level-k rules can then be reinforced in a number of

different ways depending on the nature of the environment. If rule selection is observed by

the researcher, an agent’s chosen rules can be reinforced by their resulting stage-game payoffs,

but if rule selection is latent then the reinforcements must be approximated to maintain the

tractability of the model. In the latent-rule setting, Stahl reinforces each rule at the end of

every period by its expected payoff in that period given the opponents’ chosen actions. My
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model instead makes a rule’s reinforcement proportional to the probability that the rule was

selected. Towards this end, let

pti(k|ati) = pti(k) · pti(ati |k)∑r
k′ pti(k′) · pti(ati |k′) (1.4)

denote the probability that player i selected rule k given his action choice and information

I t. Also define π(k) ≡ U1
i (k) as rule k’s initial utility and allow α ∈ [0, 1] to be a step

size parameter. Then the utility of rule k can be said to evolve according to the following

difference learning equation:

U t+1
i (k) = U t

i (k) + α · pti(k|ati) · (Pi(ati , at−i) − U t
i (k)) (1.5)

In the context of (1.5), U t
i (k) can be interpreted as rule k’s predicted reinforcement and

Pi(ati , at−i) −U t
i (k) as player i’s prediction error. Learning adjusts U t+1

i (k) in the direction of

Pi(ati , at−i) but only by a fraction of the total prediction error. This fraction, α · pti(k|ati), can

be easily comprehended by considering its constituent parts. The first part, α, determines

the player’s rate of utility learning, with higher (lower) values of α corresponding to faster

(slower) rates of updating. The second part, pti(k|ati), determines what share of the total

reinforcement rule k receives in period t. It optimally estimates the indicator for whether

rule k was selected assuming a quadratic loss function. Together, equations (1.1) and (1.5)

imply that a rule’s selection probability is increasing in the likelihood that its use has yielded

favorable payoffs.

In order to assess the quality of my approximation for the latent rule reinforcements as

well as compare it to Stahl’s, I simulated 100,000 supergames of matching pennies under

three different sets of parameters with each of the three ways that the reinforcements can

be specified. In all of these games, I pit a level-1/level-2 rule learning agent against a level-

1 player. The former’s rule selection probabilities were recorded every period so that their

evolution could be compared across paradigms. For the sake of simplicity, both agents formed

their beliefs via standard fictitious play learning. They also selected their actions noiselessly

so that there was the greatest incentive to learn the optimal level of reasoning. The rule
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learning parameters for the approximations were chosen to match the observable-rule model’s

simulated rule selection probabilities as closely as possible.

Figure 1.1 depicts the results of this moment matching procedure by graphing the sim-

ulated rule selection probabilities for each model. By looking at the starting slopes of the

target time series, we can infer which of the following two learning principles is initially more

dominant: the law of effect or the law of exercise. In our simulated setting, the law of effect

increases the probability that the level-2 rule is selected since the level-1 opponent makes

level-2 reasoning optimal, while the law of exercise decreases this probability because our

chosen parameters imply that the level-1 rule is initially more probable. When the starting

rule utilities are similar to the stage-game’s typical payoffs, the law of effect is initially more

dominant. This can be seen by the target model’s upward sloping time series in the first

graph of the figure. Conversely, when the starting rule utilities are smaller than the stage-

game’s typical payoffs, the law of exercise is initially more dominant. This is demonstrated

by the downward sloping portions of the target model’s time series in the second and third

graphs of the figure. Comparing Stahl’s approximation to these time series, we see that it

provides a good fit when the law of effect is initially more dominant, but when the law of

exercise is stronger it is unable to emulate the resulting decrease in level-2 reasoning. My

approximation, on the other hand, fits the target time series well regardless of which learning

principle is more dominant, since it allows for learning by the law of effect as well as the law

of exercise.

1.3 Level-1 beliefs

Level-k reasoning is founded on agents’ level-1 beliefs, as from there the behavior of

each level is determined by a series of best response mappings. A good belief specification

is therefore essential for the success of any level-k model. In one-shot games, it is usually

sufficient to assume that players have uniform prior beliefs, but in repeated game settings

the opportunities for learning necessitate that we also specify a belief updating process. For

ease of exposition, the data learning model that I develop in this section is framed as an
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Figure 1.1. Simulated rule selection probabilities, periods 1-100

20



extension of weighted fictitious play learning. Appendix A.1 provides the original framing

of the model as it would appear in the ACT-R architecture.

1.3.1 Base-level learning

Under standard fictitious play learning, beliefs are formed by taking a simple average

over all previously observed action distributions. Weighted fictitious play learning takes a

time weighted average instead such that more weight is given to newer observations. Older

observations are discounted to capture human forgetting and facilitate faster belief adapta-

tion. While memories decay exponentially in most weighted fictitious play specifications, in

ACT-R we instead model forgetting by means of a power function.  

6
 Let 1t−i(a−i) ∈ {0, 1}

denote an indicator for whether player i’s opponents chose actions a−i ∈ A−i in period t and

φ ∈ R+ be a memory decay parameter. Also allow ξ ∈ R++ to be a parameter that controls

the strength of a player’s priors. Then given information I t, player i’s weighted fictitious

play belief that his opponents will choose actions a−i is

bti(a−i) =
∑t−1
t′=0 1t

′
−i(a−i) · (t− t′)−φ∑

a′−i∈A−i

∑t−1
t′=0 1t′−i(a′−i) · (t− t′)−φ (1.6)

where 10
−i(a−i) ≡ ξ ∀a−i ∈ A−i such that players have uniform priors. Note that a player’s

rate of forgetting is increasing in the decay parameter φ, with φ = 0 representing the special

case of standard fictitious play learning.

Equation (1.7) extends (1.6) to include beliefs that are behaviorally equivalent to frequency-

style reinforcement and attraction learning models. These models can be framed as special

types of belief learning in which agents condition their beliefs on their own upcoming action

selections. When calculating the expected value of action ai, a reinforcement learner uses

the time-discounted frequencies with which his opponents have selected every combination

of actions in all of the periods where he selected ai. Observations of his opponents’ action

choices in any other period are omitted from the frequency calculation. A belief learner,
6

 ↑ The choice of decay rate reflects the trade off between realism and computational convenience, with power
decay more closely resembling aggregated human rates of forgetting but exponential decay being more
computationally convenient.
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in contrast, uses his opponents’ action choices in all previous periods regardless of whether

he selected ai. His observation weights are independent of the actions that he chose when

he witnessed his opponents’ action realizations. An attraction learner compromises between

these two approaches by down-weighting the observations in which he did not choose ai. The

down-weighted observations receive a weighting of ρ ∈ [0, 1], which is experienced-weighted

attraction’s hypothetical reinforcement parameter (Camerer and Ho, 1999). When ρ = 1, an

agent’s beliefs are the same as those in a weighted fictitious play learning model. Conversely,

when ρ = 0, his beliefs are behaviorally equivalent to a frequency-counting reinforcement

learning model. It can therefore be said that as ρ tends towards zero, agents condition more

strongly on their own upcoming action selections.

When calculating the expected value of action ai, a reinforcement learner uses the time-

discounted frequencies with which his opponents have selected every combination of actions

in all of the periods where he selected ai. Observations of his opponents’ action choices in any

other period are omitted from the frequency calculation. A belief learner, in contrast, uses

his opponents’ action choices in all previous periods regardless of whether he selected ai. His

observation weights are independent of the actions that he chose when he witnessed his oppo-

nents’ action realizations. An attraction learner compromises between these two approaches

by down-weighting the observations in which he did not choose ai. The down-weighted

observations receive a weighting of ρ ∈ [0, 1], which is experienced-weighted attraction’s hy-

pothetical reinforcement parameter (Camerer and Ho, 1999). When ρ = 1, an agent’s beliefs

are the same as those in a weighted fictitious play learning model. Conversely, when ρ = 0,

his beliefs are behaviorally equivalent to a frequency-style reinforcement learning model. It

can therefore be said that as ρ tends towards zero, agents condition more strongly on their

own upcoming action selections.

bti(a−i|ai) =
∑t−1
t′=0 1t

′
−i(a−i) · [ρ+ 1t

′
i (ai) · (1 − ρ)] · (t− t′)−φ∑

a′−i∈A−i

∑t−1
t′=0 1t′−i(a′−i) · [ρ+ 1t′i (ai) · (1 − ρ)] · (t− t′)−φ (1.7)
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1.3.2 Associative learning

My data learning model builds on this base-level learning in two important ways. First,

it extends belief formation to include an implicit pattern recognition mechanism. In the style

of classical conditioning, my model induces pattern recognition through a series of learned

action associations, where associations are formed between tuples of the opponents’ chosen

actions and each lagged action choice contained in “the context”. Understand a period’s

context to be the set of contextual cues that players attend to when making their decisions.

In the interest of parsimony, I assume that players only attend to the actions that were

selected in the previous period.  

7
 Consequently, I define Qt ≡ {at−1

1 , ..., at−1
n } as the context

in period t > 1 with Q1 ≡ ∅.

When forming their beliefs, players consider how the available contextual cues influence

the likelihood of observing each of their opponents’ action combinations. The degree to

which an action tuple is predicted by the presence of a cue is determined by the strength of

their association: the greater the strength, the stronger a player’s belief that his opponents

will choose the associated actions. Associative strengths are normalized such that a value

of zero indicates that the actions and cue have no association, while positive and negative

strengths are taken to indicate positive and negative associations respectively. It is assumed

that players begin the game with no learned action associations. Let Sti (a−i, q) ∈ R denote

player i’s associative strength for actions a−i and cue q ∈ Qt in period t and ψ ∈ R+ be a

scaling parameter. Then pattern recognition can be appended to (1.7) by writing

bti (a−i|ai) =
bti(a−i|ai) · exp(ψ · ∑

q∈Qt Sti (a−i, q))∑
a′−i∈A−i bti(a′−i|ai) · exp(ψ · ∑

q∈Qt Sti (a′
−i, q))

(1.8)

Note that bti (a−i|ai) is a simple expression that satisfies the following criteria: i) bti (a−i|ai) ∈

[0, 1]; ii) ∑
a−i∈A−i b

t
i (a−i|ai) = 1; iii) ∂bt

i (a−i|ai)
∂St

i (a−i,q) ≥ 0; iv) Sti (a−i, q) = 0 ∀a−i ∈ A−i and q ∈

Qt =⇒ bti (a−i|ai) = bti(a−i|ai). Together, criteria i) and ii) ensure that bti (a−i|ai) is a well-

behaved belief. Criterion iii) requires bti (a−i|ai) to be weakly increasing in a−i’s association
7

 ↑ Spiliopoulos (2013a and 2013b) consider models in which players attend to more distant lagged action
choices but fail to select them over simpler lag-1 models.
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with each cue in the context. Finally, criterion iv) demands that bti (a−i|ai) = bti(a−i|ai) in

the absence of any learned associations.

After observing his opponents’ action choices, player i updates his associative strengths

for each a−i ∈ A−i and q ∈ Qt pair. The manner in which these associations are learned

is described by the Rescorla-Wagner model of classical conditioning (Rescorla and Wagner,

1972). 

8
 As in the motion equation used to model utility updating in (1.5), the Rescorla-

Wagner model modulates learning according to a player’s prediction errors. In this setting,

player i tries to predict the value of 1t−i(a−i).
∑
q∈Qt Sti (a−i, q) can be interpreted as his

prediction of this value given the available context. Let ωi(q) ∈ [0, 1] denote the attentional

weight that player i assigns to cue q such that ∑
q∈Qt ωi(q) = 1 and β ∈ [0, 1] be a step

size parameter. Then Sti (a−i, q) can be said to evolve according to the following difference

learning equation:

St+1
i (a−i, q) = Sti (a−i, q) + ωi(q) · β · (1t−i(a−i) −

∑
q′∈Qt

Sti (a−i, q
′)) (1.9)

As in (1.5), the motion equation in (1.9) adjusts ∑
q∈Qt St+1

i (a−i, q) in the direction of 1t−i(a−i)

by fraction β of the total prediction error. This adjustment is made indirectly, however, by

updating each of the associative strengths individually. The sum of the adjustments made to

these strengths is equal to β ·(1t−i(a−i)−∑
q∈Qt Sti (a−i, q)), with the adjustment to St+1

i (a−i, q)

accounting for fraction wi(q) of the total adjustment. wi(q) then controls the relative rate at

which an action’s association with cue q can be learned, increasing the rate the more salient

cue q is compared to the other cues in the context. Note that ∑
q∈Qt wi(q) = 1 also implies

wi(q) = wi(q′) ∀q, q′ ∈ Ai′ , as otherwise there would exist a Qt for which this constraint

was not satisfied. ∑
q∈Qt wi(q) = 1 then provides a complete characterization of player i’s

attentional weights up to n− 1 parameters.
8

 ↑ Previous versions of ACT-R modeled associative learning using a pseudo-Bayesian updating rule, but this
approach was deprecated in ACT-R 6 due to problems with long-run model stability. More recent models
have instead used variants of the Rescorla-Wagner learning rule, as they are supported by larger bodies of
neural and behavioral evidence and are not susceptible to long-run model instability (Thomson and Lebiere,
2013; Thomson et al., 2014).
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1.3.3 Probability weighting

My model’s second extension to base-level learning introduces a nonlinear probability

weighting function. In ACT-R, probability weighting naturally emerges from a memory re-

trieval process called blending. Blending returns a weighted average of any desired set of

values that are stored in declarative memory. When the values being averaged are the out-

comes of a repeated random event, blending behaves like a probability weighting function

(see Appendix A.1.2). It therefore determines agents’ sensitivities to probabilities as well

as their levels of optimism. The degree to which agent’s discriminate between action prob-

abilities is controlled by the curvature of the probability weighting function. Likewise, the

perceived attractiveness of gambling is controlled by the level of absolute weights, or the el-

evation of the probability weighting function. Let γ ∈ R+ and δ ∈ R++ denote the weighting

function’s curvature and elevation parameters respectively. Then probability weighting can

be appended to (1.8) by writing

bti(a−i|ai) = δ · bti (a−i|ai)γ
δ · bti (a−i|ai)γ + ∑

a′−i 6=a−i∈A−i b
t
i (a′−i|ai)γ

(1.10)

In the case where n, |Aj| = 2, this equation is equivalent to the popular linear in log odds

weighting function (Goldstein and Einhorn, 1987). More generally it follows the ratio form

weighting function proposed by Lattimore et al. (1992). As an instance of these functions,

equation (1.10) is capable of accommodating several key types of empirically relevant be-

liefs, including beliefs that are subcertain, beliefs that are subadditive, and beliefs that are

subproportional.

The top two graphs in Figure 1.2 illustrate the effects of γ and δ on players’ probability

weighted beliefs. These graphs assume that n, |Aj| = 2 to keep the weighting function’s

graphical representation two-dimensional. When γ < 1, players over-discriminate (under-

discriminate) between the likelihoods of low/high (intermediate) probability actions; when

γ > 1, the direction of these deviations from bti (aj|ai) is reversed. Likewise, when δ < 1,

players are pessimistic (optimistic) regarding the value of gain (loss) domain gambles; when
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δ > 1, players’ levels of optimism within each payoff domain are reversed. Finally, when

γ, δ = 1, the weighting function is linear and bti(aj|ai) = bti (aj|ai).

A unique feature of the weighting function in equation (1.10) is that it allows its fixed

point to vary independently of the δ parameter. It does this by making its fixed point

a function of the belief ratios for the opponents’ other action combinations. If δ = 1,

the fixed point is chosen so that agents properly perceive when all possible outcomes are

equiprobable. Equation (1.10) interpolates this prediction across the entire belief space,

yielding a continuous prediction model. In ACT-R’s standard weighting function, fixed

point determination is entirely endogenous because there is no elevation parameter, but

equation (1.10) includes δ so that the level of absolute of weights and the fixed point can

vary exogenously.

The bottom graph in Figure 1 illustrates how the weighting function’s fixed point de-

creases as bti (a′
j|ai)/bti (a′′

j|ai) increases from zero to one. Note that this graph assumes n = 2

and |Aj| = 3 to keep the weighting function’s graphical representation two dimensional.

When bti (a′
j|ai) = 0, the fixed point is 1

2 because that is where aj and a′′
j are equiprobable.

Likewise, when bti (a′
j|ai) = bti (a′′

j|ai), the fixed point is 1
3 because that is where all three of

the opponent’s actions are equiprobable. Finally, when 0 < bti (a′
j|ai) < bti (a′′

j|ai), the fixed

point is located somewhere between those two points.

Together, equations (1.7) through (1.10) completely characterize the mapping from play-

ers’ observed action histories into their level-1 beliefs. The resulting model is flexible and

nests weighted fictitious play learning as a special case when ψ = 0 and γ, δ, ρ = 1. In the

following chapter, I provide graphical evidence for this model’s goodness of fit on a novel set

of experimental data. Hypothesis testing is also conducted to determine the significance of

the pattern recognition and probability weighting extensions.

1.4 Conclusion

This chapter developed a new model of learning and level-k reasoning in games. The

model framed attraction learning in the language of beliefs and extended it to include two

important features. The first of these features is an implicit pattern recognition mechanism
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that learns the importance of contextual information, while the second is a nonlinear prob-

ability weighting function with an endogenous fixed point location. The resulting beliefs

determined level-1 behavior in a larger level-k rule learning model. In keeping with the liter-

ature, I assumed that rule learning occurs according to a reinforcement learning mechanism,

but I improved the approximation of latent rule reinforcements to simulate the effect of rule

exercise. A cognitive foundation for the full model was also provided by implementing it

within the ACT-R cognitive architecture. In the following chapter, I provide graphical evi-

dence for this model’s goodness of fit on a novel set of experimental data. Hypothesis testing

is also conducted to determine the significance of the extension parameters.
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2. AN EXPERIMENTAL ANALYSIS OF LEVEL-K

REASONING IN REPEATED MIXED STRATEGY GAMES

2.1 Introduction

Level-k reasoning is prominently featured in popular perceptions of repeated mixed strat-

egy games. In the card game poker, for instance, strategy guides often refer to an analogous

concept called “multiple level thinking”. But while many non-academics embrace level-k

reasoning as a positive theory within this class of games, it is not at all clear that the

model is descriptive of agents’ long run behavior in mixed strategy environments. Presently,

there are surprisingly few analyses of level-k reasoning in repeated mixed strategy games.

Data learning models have historically dominated attempts to characterize behavior in these

environments. 

1
 From a level-k perspective, data learning restricts all players to level-1 rea-

soning. A more general level-k model remains to be estimated to determine the validity of

this assumption.

Motivated by these considerations, this chapter investigates the extent to which human

agents use level-k reasoning in repeated mixed strategy games. Towards this end, the model

developed in Chapter 1 is estimated using data from a novel experiment. The experiment

consisted of two between-subject treatments: the player-versus-player (PvP) treatment and

the player-versus-data (PvD) treatment. In both treatments, subjects played a repeated

version of a modified rock-paper-scissors game. The treatments varied the availability of

information needed to use higher levels of reasoning. In the PvP treatment, the information

provided was sufficient to use any level of reasoning, while in the PvD treatment subjects

were only provided with enough information to be level-1. This restriction on reasoning was

realized in part by making PvD players’ stage game payoffs private knowledge. Addition-

ally, each PvD subject was matched against a predetermined sequence of actions instead

of another live human player. The sequences they were matched with were taken directly

from the action histories of PvP subjects in opposing player roles. PvD subjects were fully

informed of this setup and made to understand the differences between the two treatments.
1

 ↑ Data learning models in mixed strategy games: Mookherjee and Sopher, 1994; Ochs, 1994; Cheung and
Friedman, 1997; Camerer and Ho, 1999; Nyarko and Schotter, 2002; Ho et al., 2007; Rutström and Wilcox,
2009; Spiliopoulos, 2012, 2013a, and 2013b
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The PvD treatment removes rule selection uncertainty so subjects’ beliefs can be more

easily inferred from their actions. This helps identify the model’s belief learning parameters

which are estimated by pooling the data from both treatments. In order to accommodate

latent subject heterogeneity, I specify a random effects model with four random parameters.

Maximum likelihood estimation therefore requires the simulation of a four-dimensional ran-

dom effect. To make this estimation feasible, I combine GPU accelerated computing with

an automatic differentiation method. Together these tools reduce the total estimation time

by more than two orders of magnitude.

Comparing behavior between treatments, I find that PvD subjects behaved more adap-

tively than PvP players. This was determined by measuring their adherence to a win-stay-

lose-shift strategy. While PvD subjects were 22.6 percent more likely to stay with their

actions after a win than a loss, PvP subjects were actually 8.6 percent less likely to repeat

their actions following a positive payoff. In the first period of the supergame, PvD row

players were also more likely to select the level-1 best response. This action can be identified

without estimation because agents begin the game with uniform level-1 priors. 82.1 percent

of PvD row players selected this action compared to 42.9 percent of PvP row players. These

results are consistent with PvP subjects using higher levels of reasoning. If we look at the

action choices over all periods, however, we find a conflicting result: PvP row players were

more likely to select an action that is never a best response to any pure strategy. In the

absence of noise, agents using higher levels of reasoning would almost never select this re-

sponse, 

2
 and yet PvP row players selected this action in 30.7 percent of their decisions. PvD

row players chose this action as well, but they did so only 17.9 percent of the time. This

difference suggests that PvP subjects scarcely used higher levels of reasoning.

Using the results of my estimation to simulate subjects’ latent rule selections, I find

that the initial proportions of level-k rules in the PvP treatment were 67.9 percent, 18.9

percent, and 13.3 percent for the level-1, level-2, and level-3 rules respectively. By the end
2

 ↑ All higher levels of reasoning respond to the level-1 rule, either directly or through an iterated best
response. The level-1 rule will only prescribe a mixed strategy in the knife-edge cases where a player is
indifferent between two or more of his actions. In a mixed strategy game, the best response to any of the
opponent’s pure strategies is also a pure strategy response, so an agent using higher levels of reasoning would
almost never select an action that is never a best response to any pure strategy.
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of the supergame, however, level-1 rule use had risen to 97.9 percent and the rest of the

rules had fallen to negligible levels. Over the course of the entire supergame, PvP subjects

used level-1 reasoning to make over 93 percent of their decisions, so it should come as no

surprise that the level-k model does a poor job of explaining most of the long-run treatment

differences. To see whether subjects left any money on the table by stopping at the first

level of reasoning, I simulate the earnings of each level-k rule using the model’s estimated

parameters. In contrast to several related works that study level-k reasoning in repeated

pure strategy games (Stahl, 1999, 2000, 2001, and 2003; Gill and Prowse, 2016), I find that

earnings could not be appreciably improved by reasoning beyond level-1. This was because

level-1 behavior became too unpredictable to exploit after only a couple of periods.

Taken together, these results reject the chapter’s motivating folk wisdom and validate

the use of adaptive learning models in mixed strategy games. They also differ from a couple

of key findings from the level-k learning literature, namely, that players learn to use and

earn more money by using higher levels of reasoning (Stahl, 1996, 1999, 2000, 2001, and

2003; Danz, Fehr, and Kübler, 2012; Ho and Su, 2012 and 2020; Gill and Prowse, 2016).

One explanation for these discrepancies is that level-1 agents may have weaker preferences

between their actions in repeated mixed strategy games. This leads to noisier behavior

which in turn lowers the incentive for players to engage in higher levels of reasoning. If this

explanation is correct, then my results should generalize to other repeated mixed strategy

games. Further investigation of level-k reasoning in these environments will be needed to

confirm the scope of my findings.

Although there have been several past analyses of level-k reasoning in repeated mixed

strategy games, differences in the environments that they studied and the models that they

used make comparisons of their results with mine somewhat difficult. In Stahl (1999),

subjects played 15 different normal-form games for only a total of two periods. Three of these

games were mixed strategy games while the remainder had unique pure strategy solutions.

Subjects’ levels of reasoning were only jointly inferred from their behavior across all 15

games. In Lindner and Sutter (2013), subjects repeated five periods of the 11-20 money

request game. No model of data learning was used in this analysis, so subjects’ levels of

reasoning were almost certainly misidentified. Weerd et al. (2018) analyzed human subjects

31



who were matched against computer opponents in two repeated matching pennies games.

Subjects were told what level of reasoning the computer would noiselessly employ before they

started playing the supergames. Unsurprisingly, many subjects were found to respond with

the optimal levels of reasoning. Finally, Feng and Wang (2019) analyzed human behavior

in two repeated mixed strategy games. They assumed a Poisson distribution of fixed level-

k types who iteratively best responded to a level-0 attraction learner. It is worth noting

though that the authors did not estimate any of the attraction learning parameters. Their

estimated Poisson rates varied greatly between games (.441 and 2.64), so it difficult to draw

any general conclusions.

The rest of the chapter is organized as follows. Section 2.2 describes the experimental

design and explains my choice of repeated mixed strategy game. Section 2.3 summarizes the

experimental data and compares behavior between the two treatments. Section 2.4 presents

the structural analysis of subjects’ chosen levels of reasoning. Section 2.5 concludes with a

summary of the methods/results and takes a look towards future research.

2.2 Experiment

Ten experimental sessions were conducted at the Vernon Smith Experimental Economics

Laboratory at Purdue University in the 2016 Fall semester. Eight to twelve subjects partic-

ipated in each session with 112 subjects in total. Participants were recruited from Purdue

University’s undergraduate population using the ORSEE online recruiting system (Greiner,

2015). The experiment was programmed using the zTree toolbox for ready-made economic

experiments (Fischbacher, 2007). Subjects received paper copies of the instructions which

were read aloud to them before the start of the experiment (see Appendix B.1). They then

completed a short comprehension quiz to make sure that they understood the instructions.

Sessions took approximately 45 minutes to complete and participants were paid an average

of $15.20. This amount included a $5 show-up fee as well as an additional $10.20 in average

earnings during the experiment. 

3
 

3
 ↑ Subjects began the experiment with an initial endowment of experimental currency worth $15. This was

intended to prevent them from finishing the experiment with negative earnings. While it was still possible to
accrue negative earnings even with the $15 endowment, subjects were told that everyone in the experiment
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PvP Period
1 2 3 4 5 6 7 . . . 34 35 36 37 39 39 40

Player row M T M T M T T . . . B M T T B M T 1 Subjectcol R C L R C L C . . . C C R R L C R 2

PvD Period
1 2 3 4 5 6 7 . . . 34 35 36 37 39 39 40

Player row T B M B T B M . . . B B B M T M B 3 Subjectcol R C L R C L C . . . C C R R L C R 2

Player row M T M T M T T . . . B M T T B M T 1 Subjectcol C C L L R C C . . . L R C R R R C 4

Figure 2.1. Illustration of the sequence matching procedure used in the
PvD treatment. In this example, subject 3 (a row player) is matched with
the sequence generated by subject 2 (a column player) in the PvP treatment.
Likewise, subject 4 (a column player) is matched with the sequence generated
by subject 1 (a row player) in the PvP treatment.

2.2.1 Treatments

The experiment consisted of two between-subject treatments: the player-versus-player

(PvP) treatment and the player-versus-data (PvD) treatment. The PvP treatment is the

primary treatment of interest as it is the one from which I infer subjects’ chosen level-k

rules. Identification of these rules can be difficult, however, given their co-occurring latency

with subjects’ beliefs. To remedy this issue, the PvD treatment removes rule selection

uncertainty by restricting subjects to the level-1 rule. This helps identify the model’s belief

learning parameters, and consequently, PvP subjects’ beliefs.

In the PvP treatment, 56 subjects played a repeated mixed strategy game for which they

were given full payoff information. Before starting the supergame, subjects were informed

of their player roles and given two minutes to study the payoff table. This information was

then reproduced for them on-screen in every decision-making period of the experiment. The

stage game was repeated for 40 iterations with feedback provided after each period. This

feedback included the player’s own action, the action chosen by his opponent, and the stage

was guaranteed to leave with at least $5. This lower bound on earnings never threatened to be binding,
however, since no subject ever had less than $10.
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game payoffs they received. The opponent’s response times, however, were intentionally

obscured to prevent players from using them to infer their opponents’ levels of reasoning.

This was accomplished by instituting a minimum period duration of 30 seconds.  

4
 The

supergame proceeded independently for each pair of players so as to preserve the statistical

independence of their decisions. Pairs that finished early were instructed to wait quietly in

their seats until everyone had finished the experiment.

The PvD treatment recreated this environment as closely as possible while trying to

suppress higher levels of reasoning. Towards this end, another 56 subjects played the same

game but with private payoff information. They were told how each pair of actions mapped

into their own payoffs, but not the payoffs of the other player. At no point in the experiment

were these mappings ever revealed through any feedback or payoff tables. Additionally, each

PvD subject was matched against a predetermined sequence of actions instead of another live

human player. The sequences they were matched with were taken directly from the action

histories of PvP subjects in opposing player roles (see Figure 2.1). Each PvP subject had his

sequence of actions matched with exactly one PvD player. PvD subjects were fully informed

of this setup and made to understand the differences between the two treatments. More

specifically, the following excerpt was read aloud to them from the experimental instructions:

Before the start of the first period, you will be matched with a sequence of
actions that were chosen by a participant in a previous session. The par-
ticipant whose actions you will be matched with has been selected at random.
Everyone in today’s session will be matched with the actions of a different par-
ticipant. You will remain matched with the same participant’s sequence of
actions for all 40 periods...The previous participant whose actions you will be
matched with made his/her choices in an experiment that was nearly identical
to the experiment being conducted today, with the main difference being that
he/she was matched with another participant in the same session rather than
with a sequence of actions that were chosen by a participant in a previous ses-
sion. The participant whose actions you are matched with was not informed
that his/her actions would be used in another experiment. The choices you
make today will have no impact on the earnings of anyone other than your-
self...You will only be able to see your own payoffs in this payoff table. These
payoffs are the same payoffs that were given to the previous participants who

4
 ↑ Response times longer than 30 seconds could be observed by the first player in a pair to submit his action,

but these only accounted for 9.3 percent of all PvP subjects’ response times.
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shared your player role, but they were also able to see the other player’s payoffs
in the payoff table.

By keeping payoff information private, the PvD treatment effectively withheld the op-

ponent’s best response function from each PvD player. Knowledge of these functions was

needed in order for players to engage in higher levels of reasoning. While it might have been

possible for subjects to learn about these functions had they been allowed to interact with

other live human players, the sequence matching protocol used in this treatment ensured

that they were never given this opportunity. Furthermore, since PvD subjects were not

informed of the actions selected by the opponents of their matched PvP players, they were

also prevented from using these actions to infer their opponents’ level-1 beliefs. In this way,

the sequence matching procedure itself acted as another channel to suppress higher levels of

reasoning.

2.2.2 Stage Game

The stage game in Figure 2.2 was chosen on the basis of three primary criteria. First, it

possesses a unique mixed strategy Nash equilibrium with mixture probabilities that are suf-

ficiently far from uniform random. This creates payoff curvature and incentives for subjects

to engage in thoughtful decision making. For the row player, these mixture probabilities are
42
94 , 25

94 , and 27
94 for actions T (top), M (middle), and B (bottom) respectively, while for the

column player they are 27
94 , 25

94 , and 42
94 for actions L (left), C (center), and R (right). Second,

the stage game is a zero sum game with no equitable lag-0 or lag-1 strategies. These features

were included to discourage PvP subjects from experimenting with turn-taking strategies.

Finally, for the row player in this game, action B is never a best response to any of his

opponent’s pure strategies.  

5
 In nearly every instance, however, a player’s level-1 rule will

prescribe a pure strategy best response. This implies that all higher level rules best respond

to one of the opponent’s pure strategies. Then in the absence of noise, a row player would
5

 ↑ Cason et al. (2010) uses a similar strategy to study learning dynamics two rock-paper-scissors style games.
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L C R
T 1, -1 -4, 4 2, -2
M 2, -2 5, -5 -4, 4
B -3, 3 2, -2 1, -1

Figure 2.2. The repeated stage game used in the experiment. Payoffs are
listed in “Francs,” with a conversion rate of 10 Francs = 1 U.S. Dollar.

never select action B unless he also chose to be level-1. 

6
 Observations of B can therefore be

used to help identify level-1 reasoning.

2.3 Data

This section summarizes the experimental data and compares behavior between the two

treatments. The implications of these differences are discussed as they relate to subjects’

chosen levels of reasoning. The behavior in both treatments is also compared to the Nash

equilibrium for reference. All of the hypothesis testing in this section was conducted using

bootstrapped t-tests with 2, 000 first stage replications. Closed form expressions for the

standard deviations of the bootstrap estimators do not always exist, so they were estimated

using a second stage of bootstrapping. 200 replications per first stage sample were conducted

for 400, 000 replications in total. The samples in both stages were constructed by drawing

with replacement from the smallest independent unit of observation, which in this case is

a pair of matched PvP subjects and the two PvD subjects who were matched with their

data. Consequently, in my data set of 4, 480 subject decisions, there are only 28 independent

observations.

2.3.1 Action choices

Table 2.1 reports the empirical frequencies with which each action in the experiment

was observed. The top half of the table reports the first period action frequencies while

the bottom half reports the frequencies over all periods. Looking at the table, we see that
6

 ↑ In practice of course, there will always be some action selection noise. My structural estimation results
indicate that PvP subjects selected action B 15.4 percent of the time while using higher levels of reasoning
compared to 25.2 percent of the time when they were level-1. While this separation is not as large as I had
hoped, it still helps identify higher levels of reasoning.
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behavior in both treatments deviated substantially from the Nash equilibrium. Significant

differences were discovered in nearly two thirds of the Nash-versus-treatment comparisons.

As one would expect, the deviations from Nash were more pronounced in the supergame’s

first period. It would also appear that these deviations generally erred in the same directions

across time frames and treatments. When there were differences in the magnitudes of the

deviations from Nash, they tended to be smaller for PvP players, who (unlike their PvD

counterparts) had a “defensive” incentive to adhere to the game’s equilibrium strategies.

A number of differences between treatments were also observed for subjects in the row

player role. Of particular interest is the first period difference in the frequency of action M.

In period 1, action M is uniquely identified as the row player’s level-1 action for all r ≤ 3.

The observed direction of this difference is therefore indicative of which treatment initially

had more level-1 reasoning. From the table, we see that action M accounted for 42.9 percent

of PvP row players’ first period actions compared to 82.1 percent of PvD players’ (two-sided

p = .006). Row players were therefore initially more likely to select their level-1 action in

the PvD treatment.

Table 2.1. Action frequencies

Row players Column players
Nash PvP PvD Nash Nash PvP PvD Nash

T .447 > .286 ∗
> .071 ∗∗∗

< .447 L .287 > .250 > .107 ∗∗∗
< .287

(.086) (.049) (.082) (.057)
Period

1 M .266 ∗
< .429 ∗∗∗

< .821 ∗∗∗
> .266 C .266 ∗∗∗

> .071 ∗∗
< .321 > .266

(.095) (.074) (.047) (.088)

B .287 > .286 ∗∗
> .107 ∗∗∗

< .287 R .447 ∗∗
< .679 > .571 > .447

(.084) (.059) (.089) (.094)
T .447 ∗∗∗

> .343 ∗
< .407 < .447 L .287 < .298 > .285 < .287

(.016) (.038) (.018) (.031)
Periods

1-40 M .266 ∗∗∗
< .350 < .413 ∗∗∗

> .266 C .266 ∗∗∗
> .179 < .188 ∗∗∗

< .266
(.016) (.036) (.012) (.025)

B .287 < .307 ∗∗∗
> .179 ∗∗∗

< .287 R .447 ∗∗∗
< .522 < .528 ∗∗

> .447
(.020) (.026) (.016) (.034)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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If we look at the action choices over all periods, however, we find a conflicting result:

PvP row players were more likely to select action B which is never a best response to any

pure strategy. In the absence of noise, agents using higher levels of reasoning would almost

never select this response, and yet PvP row players selected this action in 30.7 percent of

their decisions. PvD row players chose this action as well, but they did so only 17.9 percent

of the time. This difference is highly significant (two-sided p = .002) and suggests that PvP

subjects scarcely used higher levels of reasoning.

Table B.1 in Appendix B.2 disaggregates the empirical action frequencies by the lag-1

contexts in which the actions were observed. The table refers to these contexts as “states”

and names them by concatenating the lagged actions. State TL, for instance, refers to the

state in which actions T and L were selected in the previous period. Subjects’ first period

responses are excluded from the table since they were not preceded by any action history.

Looking at the table, we again see that behavior in both treatments deviated substantially

from the Nash equilibrium. Significant differences were discovered in nearly one half of

the Nash-versus-treatment comparisons. The deviations from Nash generally erred in the

same directions across treatments and states, although there was more variation in the

directions of the deviations across states in the PvD treatment. It would therefore appear

that PvD subjects departed more strongly from the history independence property of the

mixed strategy Nash equilibrium.

The most notable takeaway from Table B.1 is the high level of inertia demonstrated by

PvD players. Understand inertia to be the tendency for players to repeat their previous

period’s action. In the vast majority of states, PvD subjects were more inert than either

Nash or PvP players. This was especially true of the states for which a subject’s previous

action resulted in a positive payoff. If the outcomes preceding these states are considered

“wins” and all other outcomes are considered “losses”, then PvD subjects (unlike their PvP

counterparts) tended to be more inert after a win than a loss. This behavior resembles a

well-known adaptive heuristic known as the win-stay-lose-shift strategy.

Table 2.2 further investigates action inertia by aggregating subjects’ inert action frequen-

cies over all states. A subject’s chosen action is said to be “inert” if he also selected that

action in the previous period. The bottom row of the table indicates that PvD subjects were
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nearly 1.5 times as likely to repeat their previous period’s action as either Nash or PvP play-

ers (two-sided p = .000). This finding could be indicative of PvP subjects switching between

different levels of reasoning. To understand why, note that if subjects slowly update their

beliefs, the level-k rules will frequently repeat their prescribed actions. The prescriptions

across rules will often vary, however, given the opposing nature of players’ payoff functions.

Switching between rules could therefore result in reduced action inertia.

Table 2.2. Inert action frequencies, periods 2-40

Nash PvP PvD Nash
Row players .353 ∗∗

> .299 ∗∗∗
< .526 ∗∗∗

> .353
(.022) (.033)

Column players .353 ∗∗
< .403 ∗∗∗

< .521 ∗∗∗
> .353

(.019) (.032)

All players .353 > .351 ∗∗∗
< .523 ∗∗∗

> .353
(.017) (.024)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.3. Per-unit change in inert action frequencies following a win, periods 2-40

Nash PvP PvD Nash
Row players 0 > -.111 ∗∗

< .320 ∗∗
> 0

(.100) (.161)

Column players 0 > -.061 < .133 > 0
(.102) (.157)

All players 0 > -.086 ∗∗
< .226 ∗

> 0
(.072) (.120)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.3 further investigates subject adaptivity by comparing inert action frequencies

in winning and losing states. The table reports the per-unit change in these frequencies

which can be viewed as a simple measure of adaptive behavior. The bottom row of the table

reveals that while PvD subjects were 22.6 percent more likely to stay with their actions after

a win than a loss, PvP subjects were actually 8.6 percent less likely to repeat their actions

following a positive payoff. Only the former is significantly different from zero (two-sided
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Table 2.4. Avg. abs. value of the z-statistic obtained by conducting a runs
test for randomness, periods 1-40

Nash PvP PvD Nash
Row players .80 ∗∗∗

< 1.26 ∗∗
< 1.88 ∗∗∗

> .80
(.17) (.25)

Column players .80 ∗∗∗
< 1.15 < 1.51 ∗∗∗

> .80
(.13) (.26)

All players .80 ∗∗∗
< 1.21 ∗∗∗

< 1.69 ∗∗∗
> .80

(.12) (.18)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

p = .073), however, which is the value predicted by the Nash equilibrium. Even so, the

treatment difference remains moderately significant (two-sided p = .011) and suggests that

PvD subjects behaved more adaptively than PvP players. From Section 2, we know that

adaptive learning is a hallmark of level-1 behavior, so it stands to reason that this result is

consistent with PvP subjects using higher levels of reasoning.

Finally, in Table 2.4 I report an averaged measure of randomness for the action sequences

produced by each player. This measure, |z|, is the absolute value of the z-statistic obtained

by conducting a one-sample runs test for randomness. A runs test compares the number

of runs in a sequence to the distribution of runs if the sequence were random. 

7
 The more

extreme the z-statistic is then (i.e., the further from 0), the less likely the sequence is to arise

under a random data generating process. From the bottom row of the table, we see that the

average |z| was 1.21 for subjects in the PvP treatment compared to 1.69 for PvD players.

The average PvP sequence was therefore twice as likely as the average PvD sequence under

the null hypothesis of randomness (two-sided p = .010). Even so, this sequence was only

two-thirds as likely as the average equilibrium sequence (two-sided p = .000). Once again,

the observed treatment difference could be explained by PvP subjects using higher levels of

reasoning, since rule selection adds additional noise to the action selection process.
7

 ↑ In this context, randomness should be understood to mean that the elements of a sequence are mutually
independent. A runs test conditions on the number of times each element appears in a sequence and is
therefore not a test to determine whether the data generating process is uniform random.
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2.3.2 Response times

As a procedural theory, level-k reasoning specifies the steps of cognition needed to use

each level-k rule. Because these steps are iterative, the model is able to make ordinal response

time predictions. More specifically, the model posits that each level of reasoning takes longer

for an agent to use than the preceding level, since it requires all the same steps of cognition

plus one additional best response mapping. If we assume that the time it takes to use each

level of reasoning is constant across the two treatments, slower treatment-level response times

can be associated with subjects using higher levels of reasoning (Alaoui and Penta, 2022).

Table 2.5 reports subjects’ average response times by their chosen actions in the PvP

and PvD treatments. Response time is measured as the latency between a subject’s button

press to start the new period and his button press to submit his chosen action. From the

bottom row of the table, we see that the average PvP response time over all actions was

seven seconds slower than the average for PvD players (two-sided p = .000). A comparison

of median response times is also provided in Appendix B.2 and it yields qualitatively similar

results (see table B.2). As noted earlier, slower response times could be indicative of subjects

using higher levels of reasoning, so these results are consistent with PvP subjects reasoning

beyond level-1.

Table 2.5. Average response times by chosen action, periods 2-40

Row players Column Players
PvP PvD PvP PvD

T 16.9 ∗∗∗
> 8.4 L 15.6 ∗∗∗

> 10.2
(2.0) (.8) (1.8) (1.1)

M 18.0 ∗∗∗
> 9.1 C 15.0 ∗∗∗

> 8.4
(2.1) (.7) (1.7) (.8)

B 15.9 ∗∗
> 11.4 R 14.9 ∗∗∗

> 8.1
(1.6) (1.2) (1.5) (.7)

All 17.0 ∗∗∗
> 9.2 All 15.1 ∗∗∗

> 8.8
(1.9) (.7) (1.5) (.7)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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The average PvP response times were also slower than the average PvD response times

for every one of the individual actions. Notably, this also includes action B, which should

only be selected when agents are level-1. The presence of action selection noise can account

for this difference by allowing action B to sometimes be selected when using higher levels of

reasoning. Given the rarity of this event, however, PvP row players should still select action

B more quickly on average than they select alternative actions. The average response time

for action B relative to the other two actions should also be smaller in the PvP treatment.

Table 2.6 investigates these hypotheses by reporting the per-unit changes in subjects’

average response times when they selected each action. From the bottom row of the table,

we see that action B was selected 9 percent faster on average than the other two actions in

the PvP treatment (two-sided p = .067). In the PvD treatment, conversely, action B was

selected 30.8 percent slower on average than the alternative actions (two-sided p = .000).

The difference in these percentages is highly significant (two-sided p = .000) and in the

direction predicted by PvP subjects using higher levels of reasoning.

Table 2.6. Per-unit change in average response times by chosen action, periods 2-40

Row players Column players
PvP PvD PvP PvD

T 0 > -.006 ∗
> -.139 ∗

< 0 L 0 < .045 ∗
< .242 ∗∗

> 0
(.034) (.074) (.061) (.109)

M 0 ∗∗
< .097 ∗

> -.030 < 0 C 0 > -.005 > -.044 < 0
(.042) (.072) (.084) (.079)

B 0 ∗
> -.090 ∗∗∗

< .308 ∗∗∗
> 0 R 0 > -.033 > -.147 ∗

< 0
(.044) (.104) (.046) (.078)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

To summarize the main results of this section, PvP subjects were found to be less inert,

less adaptive, and less predictable than their PvD counterparts. They were also less likely to

select their level-1 action in the first period of the experiment and generally took longer to

make their decisions. All of these findings are consistent with the hypothesis that they used

higher levels of reasoning. In contrast to these findings, however, PvP row players were also

more likely to select action B, an action that is normally reserved for agents who are level-1.
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On the surface it would seem that this result should be sufficient to rule out the higher-level

reasoning hypothesis.

Unfortunately, none of the aforementioned findings are sufficient to establish the extent to

which PvP subjects used higher levels of reasoning, as any one of these treatment differences

could be explained by a number of alternative hypotheses. All of the action choice differences,

for example, could be explained by the presence of stronger equilibrating forces in the PvP

treatment, since all of the PvP treatment’s departures from the PvD action choices are in

the direction of the Nash equilibrium. Alternatively, these action choice differences could be

explained by PvP subjects responding more noisily to make themselves less predictable to

opposing players, since all of the PvP treatment’s departures from the PvD action choices

are also in the direction of uniform randomness. Ultimately then, we will need to a conduct

a structural analysis to determine the extent to which PvP subjects used higher levels of

reasoning, as this will allow us to control for such factors and evaluate the contribution of

each hypothesis.

2.4 Analysis

This section summarizes the structural analysis that is used to infer subjects’ chosen

levels of reasoning. Towards this end, the model developed in Chapter 1 is parameterized

and subsequently estimated. Several related specifications are also considered to evaluate

the previous section’s alternative hypotheses. In order to assess model fit, subjects’ action

choices are simulated and plotted alongside their actual behavior. Counterfactual exercises

are also conducted to explore the relationship between earnings and chosen level of reasoning.

2.4.1 Econometric specification

The model in Chapter 1 requires us to specify the values of 2r + 14 unknown parame-

ters. These parameters include the rule learning step-size α, associative learning step-size β,

weighting function curvature γ, weighting function elevation δ, utility sensitivity κ, payoff

sensitivity λ, action selection biases ν(ai) ∀ai ∈ Ai \ {a′
i} and ∀i ∈ N , prior belief strength ξ,

initial rule utilities π(k) ∀k ∈ {1, ..., r}, hypothetical reinforcement weight ρ, rule selection
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Table 2.7. Summary of model parameters

Parameter Description Range Interpretation
α rule learning step-size [0, 1] α = 0 ⇒ no rule learning

α = 1 ⇒ instant rule learning

β associative learning step-size [0, 1] β = 0 ⇒ no associative learning
β = 1 ⇒ instant associative learning

γ weighting function curvature [0, ∞) γ < 1 ⇒ over-discriminate between low prob.
γ > 1 ⇒ under-discriminate between low prob.

δ weighting function elevation (0, ∞) δ < 1 ⇒ pessimistic over gain domain gambles
δ > 1 ⇒ optimistic over gain domain gambles

κ utility sensitivity (USD) [0, ∞) κ = 0 ⇒ rule selection is uniform random
κ → ∞ ⇒ rule selection is deterministic

λ payoff sensitivity (USD) [0, ∞) λ = 0 ⇒ action selection is uniform random
λ → ∞ ⇒ action selection is deterministic

ν(ai) action selection bias (-∞, ∞) ν(ai) → −∞ ⇒ action ai is never chosen
ν(ai) → ∞ ⇒ action ai is always chosen

ξ prior belief strength (0, ∞) ξ → 0 ⇒ beliefs are entirely learned
ξ → ∞ ⇒ beliefs are entirely priors

π(k) initial utility of rule k (-∞, ∞) π(k) → -∞ ⇒ rule k is never chosen
π(k) → ∞ ⇒ rule k is always chosen

ρ hypo. reinforcement weight [0, 1] ρ = 0 ⇒ pure reinforcement learning
ρ = 1 ⇒ pure belief learning

υ(k) rule selection bias (-∞, ∞) υ(k) → −∞ ⇒ rule k is never chosen
υ(k) → ∞ ⇒ rule k is always chosen

φ memory decay rate [0, ∞) φ = 0 ⇒ perfect memory
φ → ∞ ⇒ no memory

ψ associative strength scaler [0, ∞) ψ = 0 ⇒ no pattern recognition
ψ → ∞ ⇒ only pattern recognition

ωi(ai) attn. weight on own actions [0, 1] ωi(ai) = 0 ⇒ no attn. on own actions
ωi(ai) = 1 ⇒ all attn. on own actions
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biases υ(k) ∀k ∈ {2, ..., r}, memory decay rate φ, associative strength scaler ψ, and atten-

tional weight ωi(ai). Naturally, we will want to estimate these parameters using Maximum

Likelihood Estimation (MLE), but first we need to make several decisions regarding the

econometric specification. One such decision concerns our choice of panel data model.

The tension in the choice of panel model is characterized by the well-known bias-variance

trade-off. On one end of the model space sits a pooled panel model that assigns all subjects

the same set of parameters. The resulting estimators will generally have the lowest variance of

any panel estimators but the highest subject-level heterogeneity bias. On the other end of the

model space sits a fixed effects model that assigns each subject a unique set of parameters.

The resulting estimators will generally have the highest variance of any panel estimators

but the lowest subject-level heterogeneity bias. Between these two models sits a random

effects model that estimates some pooled and some random parameters. This specification

is recommended for adaptive learning models by Wilcox (2006), and so it is the specification

that I adopt for this analysis.

The random effects specification allows us to model subject heterogeneity with relatively

few additional parameters. This comes at the cost of increased computational complexity,

however, since each random effect adds another nonelementary integral to the likelihood

function. For this reason, the random effects are reserved for the model’s most important and

heterogeneous parameters. These include payoff sensitivity λ ∼ Lognormal(µλ, σ2
λ), memory

decay rate φ ∼ Lognormal(µφ, σ2
φ), and initial rule utilities π(k) ∼ Normal(µπ(k), σ

2
π(k)) ∀k ∈

{2, ..., r}. λ is included as a random effect because it has been previously identified as a

large source of heterogeneity bias in a model’s belief learning parameters (Wilcox, 2006). φ

is included because it is generally believed to be a belief learning model’s most important

parameter. Finally, π(k) ∀k ∈ {2, ..., r} are included because the initial distribution of

reasoning strongly affects level-k learning dynamics.  

8
 These parameters are also normalized

by defining π∗(k) ≡ κ · (π(k) − π(1)) ∀k ∈ {2, ..., r} so that they can still be identified in the

absence of rule learning.
8

 ↑ Stahl (1999) also modeled subjects’ initial rule utilities as normally distributed random variables, although
he used this specification to approximate their utility distributions across different games instead of across
different subjects.
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In the interest of parsimony and computational feasibility, my main estimation restricts

PvP subjects’ depth of strategic reasoning to level-3. By virtue of the PvD treatment’s de-

sign, its subjects are instead restricted to the first level of reasoning. All of the model’s belief

learning and action choice parameters are assumed to be the same across treatments. The

restrictions δ = 1, ξ = 1, and ρ = 1 are also imposed because these parameters can be diffi-

cult to identify. Finally, υ(k) is set to zero ∀k ∈ {2, ..., r} since rule selection is latent. The

matrix of random effects η =
[

ln(λ) π∗(2) π∗(3) ln(φ)
]

is drawn from a quadrivariate

normal distribution with mean vector µ =
[
µln(λ) µπ∗(2) µπ∗(3) µln(φ)

]
and covariance vec-

tor σ =
[
σ2

ln(λ) σln(λ),π∗(2) σ2
π∗(2) σln(λ),π∗(3) σπ∗(2),π∗(3) σ2

π∗(3) σln(λ),ln(φ) σπ∗(2),ln(φ)

σπ∗(3),ln(φ) σ2
ln(φ)

]
. Let F (η; θ) denote the cumulative distribution function of the random

effects and θ =
[
α β γ κ µ ν(M) ν(B) ν(C) ν(R) π(1) σ ψ ωi(ai)

]
be the

vector of free parameters. Then the likelihood function corresponding to my main estimation

can be expressed as follows:

L(θ) =
112∏
i=1

∫∫∫∫ 40∏
t=1

∑
ai∈Ai

1ti(ai)
ri∑
k=1

pti(k; η,θ)pti(ai|k; η,θ)dF (η; θ) (2.1)

2.4.2 Estimation procedure

The multiple integral in (2.1) cannot be evaluated through ordinary analytical methods.

It can, however, be approximated numerically or through random effects simulation. The

later is preferred for its superior accuracy when dealing with high dimensional problems. For

this reason, the model is estimated using the simulated analogue of Maximum Likelihood

Estimation. 4, 000 simulations were conducted to approximate the integral at each step of

the optimization. The random effect draws were also seeded identically for every evaluation

of the likelihood function.

The likelihood function is optimized using 1000 iterations of Wales and Doye (1997)’s

basin-hopping algorithm. Basin-hopping is a global estimation technique that combines the

efficiency of local optimization routines with guided exploration of the parameter space in-

duced by random perturbations. The local optimizer I use is a gradient-based method known

as Sequential Least Squares Programming (SLSQP) (Kraft, 1988). SLSQP is a constrained
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optimization routine that in the unconstrained case collapses to Newton’s method. Naturally,

I constrain the covariance matrix for the four random effects to be positive semidefinite.

Gradient calculation poses another potential problem for parameter estimation, as there

are no closed form expressions for the gradient of the likelihood function. Numerical approx-

imations of the gradient can be very time-intensive, and if first-order approximations are

used, also inaccurate. For these reasons, I calculate the gradient using an automatic differ-

entiation method. Automatic differentiation records the sequence of elementary operations

that are used by your computer when it evaluates the likelihood function. It then computes

the derivatives of this expression for you “automatically” through repeated application of

the chain rule. The resulting derivatives are calculated quickly and accurately up to machine

precision.

Even with the performance improvements brought about by using automatic differenti-

ation, global optimization of the likelihood function still takes considerable time and com-

putational resources. This is owed in large part to the four random effects and the many

simulations they require. To make the estimation feasible, I combine GPU accelerated com-

puting with the automatic differentiation method. Together these tools reduce the total

estimation time by more than two orders of magnitude. GPU computing is a type of parallel

processing that excels at performing element-wise operations. It is conveniently supported

by the PyTorch package for Python (Paszke et al., 2019) along with automatic differentia-

tion. Alternatively, GPU’s can be programmed in Python using the PyCUDA or PyOpenCL

packages (Klöckner et al., 2012).

GPU memory capacity is typically much smaller than it is for CPU’s of similar quality.

This poses problems for the estimation of my model which requires 16GB of GPU memory.

Most of this memory is needed to maintain the computational graph for automatic gradient

calculation. 16GB GPU’s cost nearly $3,000, which for a graduate student is prohibitively

expensive, so I instead purchased time on Nvidia’s Tesla GPU’s with a monthly Google

Colab subscription. Even with a premium subscription, Colab limits program runtime to a

maximum of 24 hours. This is enough time for my estimation, but not nearly enough time

for the entirety of my bootstrap procedure. Consequently, I had to conduct several smaller

bootstraps to obtain the desired number of bootstrap samples.
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2.4.3 Estimation results

All of the single-parameter (multi-parameter) significance testing in this subsection was

conducted using bootstrapped t-tests (Wald tests) with 1, 000 bootstrap replications. 

9
 For

the sake of computational feasibility, the standard deviations of the bootstrap estimators

themselves were estimated using the jackknife method. As in Section 3, the bootstrap

samples were constructed by drawing with replacement from the smallest independent unit

of observation, which as mentioned before is a pair of matched PvP subjects and the two

PvD subjects who were matched with their data.

Table 2.8 reports the results of five closely related estimations. These estimations vary in

what data they use and the restrictions they place on subjects’ chosen levels of reasoning. In

estimation (1), the model’s parameters are estimated using only the PvD data. Estimations

(2) and (4) are likewise performed using data from only the PvP treatment. Estimations

(3) and (5), conversely, use the data from both treatments to estimate the model’s belief

learning and action-choice parameters. In all estimations, PvD subjects are restricted to the

first level of reasoning. Estimations (2) and (3) also restrict PvP subjects from reasoning

beyond level-1. Estimations (4) and (5), conversely, allow PvP subjects to also use level-2 and

level-3 reasoning. Estimation (5) is then the primary estimation of interest as it estimates

the full level-k model using the data from both treatments. The other specifications are used

to show the contribution of level-k reasoning and inter-treatment parameter heterogeneity

in explaining the observed treatment differences.

The first items of interest are determining whether PvP players initially used and learned

to use different levels of reasoning. Looking at the estimates for the initial rule utility means

in Table 2.8, we see that µπ∗(3) is significant in both of the level-k estimations, while µπ∗(2) is

only significant in estimation (5). The means are jointly significant in both estimations as

seen in Table 2.9. The variances of the initial rule utilities σ2
π∗(2) and σ2

π∗(3) are also significant

across both estimations, both jointly and at the individual parameter level. The initial rule
9

 ↑ The asymptotic distributions of the likelihood ratio, Wald, and score test statistics do not follow chi-square
distributions under the null hypotheses for many of the significance tests conducted in this section. Instead,
they follow complicated mixtures of chi-square distributions whenever multiple null parameters lie on the
boundary of the parameter space. Bootstrapping avoids this difficult distributional theory by simulating the
distribution of the Wald test statistics directly.
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Table 2.8. Parameter estimates
Parameter Range Null (1) (2) (3) (4) (5)
α [0, 1] 0 .011∗ .018∗∗

(.007) (.006)
β [0, 1] 0 .093∗∗ .165∗∗∗ .100∗∗ .179∗ .087∗∗

(.039) (.060) (.036) (.039) (.026)
γ [0, 10] 1 .492∗ .158∗∗ .469∗∗ .363 .542∗

(.127) (.199) (.120) (.116) (.090)
κ [0, 10] 0 1.15∗∗ 2.88∗∗

(.057) (.137)
µln(λ) [-10, ln(10)] -7 1.97∗∗∗ 2.30∗∗∗ 1.70∗∗∗ 1.96∗∗ 1.66∗∗

(.261) (.423) (.243) (.154) (.164)
µπ∗(2) [-10, 10] -7 -7.07 -1.28∗

(.051) (.848)
µπ∗(3) [-10, 10] -7 -2.25∗ -1.81∗∗

(.137) (.355)
µln(φ) [-10, ln(10)] -7 -1.69∗∗∗ -7.37 -2.83∗∗∗ -5.92∗∗ -3.02∗

(.934) (1.82) (1.02) (.058) (.446)
ν(M) [-10, 10] 0 .383 -.695∗∗ .196 -.077 .333

(.326) (.371) (.220) (.123) (.163)
ν(B) [-10, 10] 0 -.416∗∗∗ -.209∗ -.194∗ .028 -.137

(.167) (.129) (.105) (.102) (.092)
ν(C) [-10, 10] 0 .114 .446∗∗ -.020 -.150 -.062

(.232) (.275) (.189) (.144) (.143)
ν(R) [-10, 10] 0 .260∗∗ .150 .325∗∗∗ .219 .319

(.129) (.130) (.088) (.104) (.083)
π(1) [-10, 10] 0 -5.20∗∗∗ -7.45∗∗

(.014) (.062)
σ2

ln(λ) (0, 10] 0 .801∗∗∗ .016 .771∗∗∗ .117 .752∗

(.366) (.099) (.223) (.133) (.168)
σln(λ),π∗(2) [-10, 10] 0 .697 .221∗

(.109) (.047)
σln(λ),π∗(3) [-10, 10] 0 .151 .602∗

(.070) (.130)
σln(λ),ln(φ) [-10, 10] 0 .021 .377∗ .512∗∗ .232 .579

(.453) (.449) (.340) (.070) (.202)
σ2

π∗(2) (0, 10] 0 4.25∗∗ .068∗∗

(.029) (.016)
σπ∗(2),π∗(3) [-10, 10] 0 .913 .194∗

(.057) (.041)
σπ∗(2),ln(φ) [-10, 10] 0 1.08∗ .252∗

(.011) (.061)
σ2

π∗(3) (0, 10] 0 .525 ∗∗ .581∗

(.076) (.176)
σπ∗(3),ln(φ) [-10, 10] 0 -.482∗∗ .885

(.052) (.205)
σ2

ln(φ) (0, 10] 0 2.45∗∗ 9.96∗∗∗ 3.29∗ 5.10∗∗ 3.03∗

(1.68) (1.66) (1.86) (.024) (.489)
ψ [0, 10] 0 4.18∗∗ 4.22 4.05∗∗ 2.77∗∗ 4.00

(1.97) (2.21) (1.85) (.094) (.971)
ωi(ai) [0, 1] 0 .260∗∗ .292∗∗ .231 .318

(.153) (.162) (.138) (.140)

Data PvD PvP All PvP All
Log likelihood -1962.47 -2295.85 -4296.37 -2289.55 -4278.40

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.9. p-values for multiple hypothesis tests
Parameters Description (1) (2) (3) (4) (5)
α, κ, π(1) rule learning .085 .061

µπ∗(2), µπ∗(3) initial rule utility means .086 .094

σ2
π∗(2), σ

2
π∗(3) initial rule utility variances .064 .079

σ∗ initial rule utility covariances .356 .350

⇑ all of the above .421 .277

β, ψ, ω pattern recognition .025 .059 .024 .122 .127

θ∗
(x) − θ(1) treatment differences .607 .484

σ∗ ≡
[
σln(λ),π∗(2) σln(λ),π∗(3) σπ∗(2),π∗(3) σπ∗(2),ln(φ) σπ∗(3),ln(φ)

]
, θ∗

(x) ≡ θ(x) ∩ θ(1) ∀x ∈ {2, 3}

utility covariances, however, are jointly insignificant in estimations (4) and (5). Even so, the

significance of the mean and variance parameters provides some evidence that PvP subjects

initially used (and varied in using) higher levels of reasoning. Turning our attention to the

rule learning parameters, we see that the rule learning step-size α, rule selection sensitivity

parameter λ, and initial rule utility π(1) are individually and jointly significant in both of

the level-k estimations. These results suggest that PvP subject learned to used different

levels of reasoning. Finally, a joint test of all the level-k parameters reveals that they are

jointly insignificant in estimations (4) and (5). It is largely the inclusion of the covariance

parameters that leads to the model being over-specified.

Figure 2.3 shows the simulated distribution of subjects’ rule frequencies using the esti-

mated parameters. From these distributions, we see that nearly all subjects overwhelmingly

used level-1 reasoning. In fact, over 93 percent of subjects decisions were made using level-1

reasoning in both estimations (4) and (5). From Figure 2.4 however, we see this wasn’t

always the case, as players learned to increasingly use level-1 reasoning. In estimation (5),

the initial proportion of level-k rules in the PvP treatment was 67.9 percent, 18.9 percent,

and 13.3 percent for the level-1, level-2, and level-3 rules respectively. By the end of the

supergame, however, level-1 rule use had risen to 97.9 percent and the rest of the rules had

fallen to negligible levels.
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Figure 2.3. Simulated distribution of rule frequencies, periods 1-40
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Figure 2.4. Simulated rule frequencies, periods 1-40

Another question of interest is whether subjects in different treatments had different

belief learning and action-choice parameters. This can be determined by comparing the

point estimates reported in estimation (1) with those reported in estimations (2) and (4).

There are several significant differences in the action selection bias parameters and variance

parameters, but the most interesting difference is the much faster mean logged rate of memory

decay in the PvD treatment as evidenced by the µln(φ) parameter. This difference decreases

the adaptability of PvP subjects in favor of making their behavior more random. As noted

before, randomness reduces the degree to which players can be exploited in repeated mixed

strategy games, so there may exist an incentive for subjects to behave more noisily in a

player-versus-player environment. Looking at Table 2.9 however, we see that the joint tests

for differences between all of the free parameters in estimation (1) with their corresponding

values in estimation (2) and (4) finds them to be jointly insignificant. This finding suggests

that we should prefer the estimations that pool their estimates of these parameters across

treatments (i.e., estimations (3) and (5)).

A final question of interest is whether the ACT-R extensions to weighted fictitious play

learning informed subjects’ level-1 beliefs. This can be determined by comparing the pattern

recognition and probability weighting parameters in Table 2.8 to their nested values under
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the null hypotheses. Looking at the pattern recognition parameters first, we see from the

non-zero values of β and ψ across most estimations that pattern recognition picked up some

traction in the belief learning model. The values of these parameters indicate that new

action associations were weighted more heavily than an agent’s memory of his opponent’s

previous action. The non-zero values of the attentional weight wi(ai) suggest that subjects

conditioned their beliefs on both their own and their opponent’s previous actions, though

wi(ai) < .5 implies that they weighted the evidence of their opponent’s previous action more

heavily. All three of these parameters are jointly significant in the level-1 estimations, but not

in estimations (4) and (5). Turning now to the only free probability weighting parameter, we

see that γ is significantly less than in one four of the five estimations. As noted before, γ < 1

indicates that subjects over-discriminated (under-discriminated) between the likelihoods of

low/high (intermediate) probability actions.

2.4.4 Simulations

The purpose of this subsection is to asses model fit and see how well the level-k model

explains the observed treatment differences. Figures 2.5 through 2.10 illustrate the fit of the

simulated data from each estimation against the observed data from the actual experiment.

All time series plots of the observed data are smoothed using a Gaussian filter with a standard

deviation of one. 50,000 simulations were conducted within each player role to generate the

simulated data. The simulated PvD subjects responded to the simulated PvP data so as to

mirror the matching protocol of the actual experiment.

Figure 2.5 depicts the observed and simulated action frequencies in each one of the su-

pergame’s 40 periods. On this dimension the simulations do a decent job matching matching

the actual data. From the right half of the figure, however, we see that estimations (3) and

(5) both struggle to reproduce the observed treatment differences. These failures indicate

that the differences are poorly explained by equilibrium dynamics and level-k reasoning re-

spectively. Looking at the left half of the figure, we see that estimations (1) and (2) and

estimations (1) and (4) provide a noticeably better fit to the data. This suggests that inter-

treatment parameter heterogeneity is at least partially responsible for some of the observed
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Figure 2.5. Action frequencies, periods 1-40
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Figure 2.6. PvP action frequencies by state, periods 2-40
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Figure 2.7. PvD action frequencies by state, periods 2-40
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Figure 2.8. Inert action frequencies, periods 2-40
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Figure 2.9. Per-unit change in inert action frequencies following a win, periods 2-40
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Figure 2.10. Distribution of z-statistics, periods 1-40
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differences between the two treatments. It is also worth noting that estimations (2) and (4)

provide a nearly identical fit to the observed PvP data.

Figures 2.6 and 2.7 compare the observed and simulated state-dependent action frequen-

cies in periods 2-40 of the experiment. These frequencies are presented as heat maps for the

reader to facilitate visual comparisons. In both figures, the simulations do a reasonably good

job emulating the actual data. There are no noticeable differences between estimations in

their ability to match the observed data from either treatment.

Figure 2.8 depicts the observed and simulated inert action frequencies in each one of the

supergame’s non-initial periods. Figure 2.9 shows how these inert action frequencies change

in the period immediately following a win. From the right halves of these figures, we see

that estimations (3) and (5) once again struggle to reproduce the observed treatment differ-

ences. This finding further suggests that the differences are poorly explained by equilibrium

dynamics and level-k reasoning. Looking at the left halves of the figures, we see that esti-

mations (1) and (2) and estimations (1) and (4) provide a marginally better fit to the data.

Estimations (2) and (4) are nearly identical, however, in their fit to the observed data from

the PvP treatment.

Finally, Figure 2.10 compares the observed and simulated distributions of the z-statistic

obtained by conducting a runs test for randomness. As in Figures 5 and 6, there are no no-

ticeable differences in the goodness of fit between the four sets of estimations. The simulated

distributions all do a good job matching the modes of the actual data, but they understate

the spread of the observed distributions, indicating that there may be some unmodeled di-

mensions of subject heterogeneity. This is to be expected though given the computational

constraints that require us to use many pooled estimators.

2.4.5 Counterfactuals

To see whether subjects left any money on the table by stopping at the first level of

reasoning, I simulate the earnings of each level-k rule using the model’s estimated parameters.

Figure 2.11 presents several time series of the average simulated earnings for each level-k rule

against various types of level-k players. The graphs in the left column show their earnings
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Figure 2.11. Average earnings by rule, periods 1-40
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against a level-2 agent, while the graphs in the right column shows their earnings against a

level-3 player. From the graphs on the left, we see that level-3 agents earn a large premium

playing against level-2 players. Level-1 agents, conversely, suffer small losses initially but

become too noisy to exploit after only a couple periods. From the graphs on the right, we

see that level-1 agents start with a small earnings premium but gradually learn to more fully

exploit the level-3 players. By the end of the supergame, they are extracting a rent of at

least $0.20 per period across all of the estimations. With these results in mind, it easy to

understand why subjects learned to use level-1 reasoning: the level-1 rule is adaptive enough

to exploit strategies that do not directly respond to it, yet noisy enough not to be exploited

itself. Consequently, it is never too far behind the average earnings of any other rule that

the law of effect is able to dominate the law of exercise.

2.5 Conclusion

This paper investigated the extent to which human agents used level-k reasoning in a

repeated mixed strategy game. Towards this end, the model developed in Chapter 1 was

estimated using data from a novel experiment with two between-subject treatments. In both

treatments, subjects played a repeated version of a modified rock-paper-scissors game. The

treatments varied the availability of information needed to use higher levels of reasoning. In

one treatment, the information provided was sufficient to use any level of reasoning, while

in the other treatment subjects were only provided with enough information to be level-1.

A random effects model was estimated using the data from both treatments to identify the

model’s belief learning parameters.

Using the results of my estimation to simulate subjects’ latent rule selections, I find that

the initial proportion of level-k rules in the PvP treatment was 67.9 percent, 18.9 percent,

and 13.3 percent for the level-1, level-2, and level-3 rules respectively. By the end of the

supergame, however, level-1 rule use had risen to 97.9 percent and the rest of the rules had

fallen to negligible levels. Over the course of the entire supergame, PvP subjects used level-1

reasoning to make over 93 percent of their decisions, so it should come as no surprise that

the level-k model does a poor job of explaining most long-run treatment differences. To
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see whether subjects left any money on the table by stopping at the first level of reasoning,

I simulate the earnings of each level-k rule using the model’s estimated parameters. In

contrast to several related works that study level-k reasoning in repeated pure strategy

games (Stahl, 1999, 2000, 2001, and 2003; Gill and Prowse, 2016), I find that earnings could

not be appreciably improved by reasoning beyond level-1. This was because level-1 behavior

became too unpredictable to exploit after only a couple of periods.

Taken together, these results reject the chapter’s motivating folk wisdom and validate

the use of adaptive learning models in mixed strategy games. They also differ from a couple

of key findings from the level-k learning literature, namely, that players learn to use and

earn more money by using higher levels of reasoning (Stahl, 1996, 1999, 2000, 2001, and

2003; Danz, Fehr, and Kübler, 2012; Ho and Su, 2012 and 2020; Gill and Prowse, 2016).

One explanation for these discrepancies is that level-1 agents may have weaker preferences

between their actions in repeated mixed strategy games. This leads to noisier behavior

which in turn lowers the incentive for players to engage in higher levels of reasoning. If this

explanation is correct, then my results should generalize to other repeated mixed strategy

games. Further investigation of level-k reasoning in these environments will be needed to

confirm the scope of my findings.
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A. CHAPTER 1 APPENDIX

A.1 ACT-R framing

ACT-R is comprised of a number of specialized modules that are responsible for the dif-

ferent components of cognition. There are multiple perceptual, manual, and control modules

along with a centralized production system. Of the eight core modules that are included in

the most recent version of ACT-R (see Figure A.1), only two require an in depth discus-

sion for the development of my game-playing model: the procedural module, which houses

the architecture’s production system, and the declarative module, which houses declarative

memory.

A.1.1 Procedural module

The procedural module coordinates the actions of all other modules through its produc-

tion system. Productions are if-then statements that map the current state of the archi-

tecture into the next set of cognitive actions. The architecture’s procedural knowledge is

represented with utility values that measure the usefulness of each production rule. When

two or more productions are in conflict (that is, their if conditions are all satisfied), the

winner is selected probabilistically on the basis of their relative utilities. As in Chapter 1,

rule selection is determined by a simple logit choice function. Utilities are also updated

over time according to Chapter 1’s rule learning mechanism. Since the production system

is governed by the same set of equations as Chapter 1’s rule learning model, we can simply

frame the level-k rules as ACT-R productions to obtain our desired framing in ACT-R.

A.1.2 Declarative module

In ACT-R, declarative knowledge is represented with schema-like structures called “chunks”.

Each chunk is made up of one or more ordered slots, and each slot holds a single symbol.

Symbols can be used to represent any information and may even be chunks themselves. As

knowledge accumulates, new chunks are added to an agent’s declarative memory. Whenever

a chunk that is identical to an existing chunk (i.e., a chunk representing previously learned

65



Figure A.1. ACT-R 7.0 modules. Source: Dimov et al. (2019)
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information) tries to enter declarative memory, it is instead merged with the old chunk re-

sulting in an increase in the chunk’s level of activation. Activation measures how easily a

chunk can be retrieved and is determined by the sum of two quantities: base activation and

associative activation.

Base activation expresses the frequency and recency with which a chunk has appeared

in declarative memory. This component is analogous to the weighted fictitious play part

of Section 2.2’s belief learning model. Before starting the supergame, agents add each one

of their opponents’ available actions to their declarative memory. This creates a total of∑
j6=i∈N |Aj| chunks to initialize the model. Each chunk begins with a base-level reinforcement

of ξ, and thereafter receives a normalized reinforcement of one every time the opponent plays

the chunk’s corresponding action. The activation boost from these reinforcements slowly

decays over time according to a power function.

Associative activation reflects the degree to which the need for a chunk can be predicted

by the presence of contextual cues. This component is analogous to the pattern recognition

part of Section 2.2’s belief learning model. After observing his opponent’s action, an agent

associates the action’s corresponding chunk with the actions each player selected in the

previous period. Associations continue to be updated over time according to the previously

discussed difference learning mechanism. Let Ci(a) denote the set of all player i chunks

containing action a ∈ Aj. Then the total activation of chunk c ∈ Ci(a) can be formally

defined as

Ati(c) = ln(
t−1∑
t=0

1tj(a)(t− t)−φ) + ψ ·
∑
q∈Qt

Sti (a, q) (A.1)

where ln(∑t−1
t=0 1tj(a)(t − t)−φ) and ψ · ∑

q∈Qt Sti (a, q) are the base-level and associative acti-

vations respectively.

To form their beliefs, agents create a composite chunk through a process known as “blend-

ing.” Blending is a type of least squares interpolation that outputs an activation-weighted

average of all the values held in each chunk’s specified slot. In ACT-R, the weight assigned to
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each chunk is typically determined by a logit weighting function. Here I use a generalization

of this function that adds the δ parameter:

wti (c) = δ · exp(γ · Ati(c))
δ · ∑

c∈C(a) exp(γ · Ati(c)) + ∑
c∈C(a)|a6=a exp(γ · Ati(c))

(A.2)

Note that the actions stored in player i’s chunks can be represented numerically with a series

of action choice indicators. Blending these indicators is equivalent to summing the weights

of the chunks that contain a given action. Then player i’s belief that player j 6= i ∈ N will

choose action a ∈ Aj in period t is bti(a) = ∑
c∈C(a) w

t
i (c).

Theorem A.1.1. The ACT-R framing and the fictitious play framing of the belief learning

model are equivalent, that is, bti(a) = bti(a).

Proof. First, note that bti(a) can be rewritten as

bti(a) =
δ · [ ∑t−1

t=0 1tj(a)(t− t)−φ · exp(ψ · ∑
q∈Qt Sti (a, q))]γ

δ · [ ∑t−1
t=0 1tj(a)(t− t)−φ · exp(ψ · ∑

q∈Qt Sti (a, q))]γ
+ ∑

a6=a∈Aj [ ∑t−1
t=0 1tj(a)(t− t)−φ · exp(ψ · ∑

q∈Qt Sti (a, q))]γ

Next, substitute equation (A.1) in for Ati(c) in equation (A.2) so that the expression for wti (c)

can be rewritten as

wti (c) =
δ · exp(γ · (ln(∑t−1

t=0 1tj(a)(t− t)−φ) + ψ · ∑
q∈Qt Sti (a, q)))

δ · ∑
c∈C(a) exp(γ · (ln(∑t−1

t=0 1tj(a)(t− t)−φ) + ψ · ∑
q∈Qt Sti (a, q)))

+ ∑
c∈C(a)|a6=a∈Aj exp(γ · (ln(∑t−1

t=0 1tj(a)(t− t)−φ) + ψ · ∑
q∈Qt Sti (a, q)))

=
δ · [ ∑t−1

t=0 1tj(a)(t− t)−φ · exp(ψ · ∑
q∈Qt Sti (a, q))]γ

δ · ∑
c∈C(a) [ ∑t−1

t=0 1tj(a)(t− t)−φ · exp(ψ · ∑
q∈Qt Sti (a, q))]γ

+ ∑
c∈C(a)|a6=a∈Aj [ ∑t−1

t=0 1tj(a)(t− t)−φ · exp(ψ · ∑
q∈Qt Sti (a, q))]γ

Finally, note that ∑
c∈C(a) w

t
i (c) = wti (c) and

wti (c) =
δ · [ ∑t−1

t=0 1tj(a)(t− t)−φ · exp(ψ · ∑
q∈Qt Sti (a, q))]γ

δ · [ ∑t−1
t=0 1tj(a)(t− t)−φ · exp(ψ · ∑

q∈Qt Sti (a, q))]γ
+ ∑

a6=a∈Aj [ ∑t−1
t=0 1tj(a)(t− t)−φ · exp(ψ · ∑

q∈Qt Sti (a, q))]γ
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since Ci(a) is a singelton set in my model. Then bti(a) = ∑
c∈C(a) w

t
i (c) = wti (c) = bti(a).

�
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B. CHAPTER 2 APPENDIX

B.1 Experimental instructions

PvP treatment

GENERAL INSTRUCTIONS

This is an experiment in the economics of strategic decision making. Purdue University

has provided funds for this research. Everyone in today’s experiment will earn at least $5. If

you follow the instructions and make appropriate decisions, you can earn even more money.

The currency used in today’s experiment will be francs. Your francs will be converted to

U.S. dollars at a rate of 10 francs to 1 U.S. dollar at the end of the experiment. At the

end of today’s session, you will be paid in private and in cash.

It is important that you remain silent and do not look at other people’s work during the

experiment. If you have a question, or need assistance of any kind, please raise your hand

and an experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be

asked to leave the session and you will not be paid. Additionally, we ask that you now turn

off your cellphones and any other electronic devices so that there are no distractions during

the experiment. We expect and appreciate your cooperation.

OVERVIEW

Today’s experiment consists of 40 decision making periods. Before the start of the first

period, you will be randomly and anonymously matched with another participant in this

room. You will remain matched with the same participant for all 40 periods.

In each period you will be asked to select one of three available actions. The actions

that you and the person you are matched with select will determine your earnings each

period. The way that these actions determine each player’s earnings is given by a payoff

table that will be presented to you shortly. Before viewing the table, however, we will first

look at some examples that illustrate how to read a payoff table.

In figure 1 there is an example of a payoff table that is different from the one that will

be used to determine your earnings. Player 1 (P1) can choose any of the actions in blue
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(A, B, or C), and player 2 (P2) can choose any of the actions in red (D, E, or F). To find

the payoffs that each player will earn from any action pair, you only need to look at the

cell corresponding to the intersection of their two actions. Player 1’s payoff is listed first in

blue, and player 2’s payoff is listed second in red.

Figure B.1. Sample payoff table

As an example, suppose player 1 chose action A and player 2 chose action E. In this

case, player 1 would earn 3 francs and player 2 would earn 4 francs because 3 and 4 are

the blue and red payoffs found at the intersection of row A and column E. Alternatively,

suppose player 1 chose action C and player 2 chose action D. In this case, player 1 would

earn 13 francs and player 2 would earn 14 francs.

At the beginning of today’s session, you will receive 150 francs for your participation in

this experiment. Any gains (losses) that you acquire over the course of the experiment will

be added to (subtracted from) this amount. In a few minutes, you will be given the actual

payoff table that will be used to determine your earnings. Before viewing the table, however,

let’s first take a look at the interface you will use to select your actions in the experiment.

Each period begins on the screen depicted in figure 2 below. Click the red button labeled

“Display” to reveal the additional information shown in figure 3. The payoff table will be

displayed in the box labeled “a” located in the upper-left hand corner. In box “b” you will

find the player role (either P1 or P2) that you will have for all 40 periods. In box “c” you

will see the actions that you and the person you are matched with picked in the previous
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period and each of your earnings in that period. Below that in box “d” there will be three

radio buttons with labels that correspond to your three possible actions. Click the button

next to the appropriate label to indicate your action choice. Once you have selected your

action, you may submit your choice by clicking the red button labeled “Submit Action”

found in box “e”. This button will not appear until you select one of the radio buttons.

After you and the person you are matched with have both submitted your actions, the next

period will begin. Note however that the program will not advance to the next period until

at least 30 seconds have passed in the current period. You may take as much time as you

need to select your actions choices.

Once you have completed all 40 periods, a gray button labeled “Continue” will appear

in the bottom right hand corner of your screen. Do not click this button, but instead please

wait quietly for everyone to finish with the experiment. No use of cellphones or any other

electronic devices will be permitted during this time.

QUIZ

You will now be asked to answer 2 short quiz questions to test you understanding of the

experiment. The experiment will not begin until everyone has answered both of the quiz

questions correctly. Everyone will answer the same 2 questions.

If there are no further questions, you will now be given 2 minutes to study the payoff

table that will be used to determine your earnings. Your role (either P1 or P2) will be listed

below the payoff table. The participant you are matched with will be assigned to the other

role. As a reminder, you will be matched with the same participant for all 40 periods. After

you have had 2 minutes to study the payoff table, the experiment will begin.
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Figure B.2. Sample screen

Figure B.3. Sample screen
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PvD treatment

GENERAL INSTRUCTIONS

This is an experiment in the economics of strategic decision making. Purdue University

has provided funds for this research. Everyone in today’s experiment will earn at least $5. If

you follow the instructions and make appropriate decisions, you can earn even more money.

The currency used in today’s experiment will be francs. Your francs will be converted to

U.S. dollars at a rate of 10 francs to 1 U.S. dollar at the end of the experiment. At the

end of today’s session, you will be paid in private and in cash.

It is important that you remain silent and do not look at other people’s work during the

experiment. If you have a question, or need assistance of any kind, please raise your hand

and an experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be

asked to leave the session and you will not be paid. Additionally, we ask that you now turn

off your cellphones and any other electronic devices so that there are no distractions during

the experiment. We expect and appreciate your cooperation.

OVERVIEW

Today’s experiment consists of 40 decision making periods. Before the start of the first

period, you will be matched with a sequence of actions that were chosen by a participant

in a previous session. The participant whose actions you will be matched with has been

selected at random. Everyone in today’s session will be matched with the actions of a

different participant. You will remain matched with the same participant’s sequence of

actions for all 40 periods.

In each period you will be asked to select one of three available actions. The actions

that you select and the actions given by the sequence you are matched with will determine

your earnings each period. The way that these actions determine your earnings is given by

a payoff table that will be presented to you shortly, but first we will discuss in greater detail

the nature of the previous session.

The previous participant whose actions you will be matched with made his/her choices in

an experiment that was nearly identical to the experiment being conducted today, with the
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main difference being that he/she was matched with another participant in the same session

rather than with a sequence of actions that were chosen by a participant in a previous session.

The participant whose actions you are matched with was not informed that his/her actions

would be used in another experiment. The choices you make today will have no impact on

the earnings of anyone other than yourself. In a few minutes, you will be given the actual

payoff table that will be used to determine your earnings. Before viewing the table, however,

let’s first take a look at some examples that illustrate how to read a payoff table.

In figure 1 there is an example of a payoff table that is different from the one that will

be used to determine your earnings. Player 1 (P1) can choose any of the actions in blue

(A, B, or C), and player 2 (P2) can choose any of the actions in red (D, E, or F). To find

the payoffs that each player will earn from any action pair, you only need to look at the

cell corresponding to the intersection of their two actions. Player 1’s payoff is listed first in

blue, and player 2’s payoff is listed second in red.

Figure B.1. Sample payoff table

As an example, suppose player 1 chose action A and player 2 chose action E. In this

case, player 1 would earn 3 francs and player 2 would earn 4 francs because 3 and 4 are

the blue and red payoffs found at the intersection of row A and column E. Alternatively,

suppose player 1 chose action C and player 2 chose action D. In this case, player 1 would

earn 13 francs and player 2 would earn 14 francs.
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At the beginning of today’s session, you will receive 150 francs for your participation in

this experiment. Any gains (losses) that you acquire over the course of the experiment will

be added to (subtracted from) this amount. In a few minutes, you will be given the actual

payoff table that will be used to determine your earnings. You will only be able to see your

own payoffs in this payoff table. These payoffs are the same payoffs that were given to the

previous participants who shared your player role, but they were also able to see the other

player’s payoffs in the payoff table. Before viewing the table, let’s first take a look at the

interface you will use to select your actions in the experiment.

Each period begins on the screen depicted in figure 2 below. Click the red button labeled

“Display” to reveal the additional information shown in figure 3. The payoff table will be

displayed in the box labeled “a” located in the upper-left hand corner. In box “b” you will

find the player role (either P1 or P2) that you will have for all 40 periods. In box “c” you

will see the actions that you and the sequence of actions you are matched with picked in the

previous period and your earnings in that period. Below that in box “d” there will be three

radio buttons with labels that correspond to your three possible actions. Click the button

next to the appropriate label to indicate your action choice. Once you have selected your

action, you may submit your choice by clicking the red button labeled “Submit Action”

found in box “e”. This button will not appear until you select one of the radio buttons.

After you have submitted your action, the next period will begin. Note however that the

program will not advance to the next period until at least 30 seconds have passed in the

current period. You may take as much time as you need to select your actions choices.

Once you have completed all 40 periods, a gray button labeled “Continue” will appear

in the bottom right hand corner of your screen. Do not click this button, but instead please

wait quietly for everyone to finish with the experiment. No use of cellphones or any other

electronic devices will be permitted during this time.
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Figure B.2. Sample screen

Figure B.3. Sample screen
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QUIZ

You will now be asked to answer 2 short quiz questions to test you understanding of the

experiment. The experiment will not begin until everyone has answered both of the quiz

questions correctly. Everyone will answer the same 2 questions.

If there are no further questions, you will now be given 2 minutes to study the payoff

table that will be used to determine your earnings. Your role (either P1 or P2) will be listed

below the payoff table. The previous participant whose sequence of actions you are matched

with was assigned to the other role. As a reminder, you will remain matched with the same

participant’s sequence of actions for all 40 periods. After you have had 2 minutes to study

the payoff table, the experiment will begin.

B.2 Supplementary tables and figures

78



Table B.1. Action frequencies by state, periods 2-40. Previous period’s action in gray.
Row players Column players

Nash PvP PvD Nash Nash PvP PvD Nash

T .447
∗∗∗
> .262

∗∗
< .500 > .447 L .287

∗
< .355 < .425

∗∗∗
> .287

(.051) (.072) (.034) (.045)

State State

TL M .266
∗∗∗
< .439 > .381

∗
> .266 C .266

∗∗∗
> .150 < .217 < .266 TL

(Win) (.045) (.060) (.032) (.034) (Loss)

B .287 < .299
∗∗∗
> .119

∗∗∗
< .287 R .447 < .495 > .358 < .447

(.056) (.035) (.052) (.057)

T .447 > .352 < .370 < .447 L .287 < .342 < .344 > .287

(.066) (.066) (.044) (.058)

State State

TC M .266 < .282 < .395
∗∗
> .266 C .266

∗∗
> .192 > .167

∗
< .266 ML

(Loss) (.063) (.056) (.031) (.048) (Loss)

B .287 < .366 > .235 < .287 R .447 < .467 < .490 > .447

(.067) (.051) (.047) (.050)

T .447
∗
> .368

∗∗∗
< .705

∗∗∗
> .447 L .287 < .323

∗∗
< .537

∗∗
> .287

(.041) (.054) (.056) (.091)

State State

TR M .266
∗
< .337

∗∗
> .198 < .266 C .266

∗∗∗
> .135 > .083

∗∗
< .266 BL

(Win) (.034) (.040) (.030) (.036) (Win)

B .287 < .295
∗∗∗
> .097

∗∗∗
< .287 R .447

∗
< .542

∗
> .380 < .447

(.041) (.027) (.055) (.082)

T .447
∗
> .367

∗
> .268

∗∗
< .447 L .287 > .282

∗∗
> .135

∗∗
< .287

(.041) (.054) (.065) (.049)

State State

ML M .266 > .233
∗∗∗
< .591

∗∗∗
> .266 C .266 > .169

∗∗∗
< .473

∗
> .266 TC

(Win) (.057) (.065) (.051) (.114) (Win)

B .287
∗∗
< .400

∗∗∗
> .141

∗∗
< .287 R .447

∗
< .549 > .392 < .447

(.042) (.038) (.061) (.097)

T .447 < .455
∗∗∗
> .127

∗∗∗
< .447 L .287 < .288 < .378 > .287

(.072) (.043) (.053) (.073)

State State

MC M .266 > .167
∗∗∗
< .696

∗∗∗
> .266 C .266 > .182 < .203 < .266 MC

(Win) (.056) (.088) (.050) (.046) (Loss)

B .287 < .379
∗∗
> .177 < .287 R .447 < .530 > .419 < .447

(.077) (.062) (.085) (.063)

T .447
∗∗∗
> .323 > .320

∗∗
< .447 L .287 > .262 > .207 < .287

(.032) (.044) (.057) (.070)

State State

MR M .266
∗∗∗
< .379 < .484

∗∗∗
> .266 C .266 > .164

∗
< .345 > .266 BC

(Loss) (.035) (.059) (.053) (.074) (Loss)

B .287 < .298
∗∗
> .196

∗∗
< .287 R .447

∗
< .574 > .448 > .447

(.041) (.036) (.071) (.062)

T .447
∗∗
> .323 > .229

∗∗
< .447 L .287 > .275 > .267 < .287

(.046) (.070) (.037) (.036)

State State

BL M .266
∗∗∗
< .490 > .479

∗∗
> .266 C .266 > .233 > .157

∗∗
< .266 TR

(Loss) (.050) (.078) (.032) (.032) (Loss)

B .287
∗∗
> .188 < .292 > .287 R .447 < .492 < .576

∗∗
> .447

(.039) (.083) (.033) (.047)

T .447
∗∗
> .311 < .421 < .447 L .287 < .313

∗
> .210 < .287

(.056) (.106) (.038) (.050)

State State

BC M .266
∗∗∗
< .459

∗∗∗
> .105 < .266 C .266

∗
> .192 > .182 < .266 MR

(Win) (.048) (.059) (.031) (.056) (Win)

B .287 > .230
∗
< .474

∗
> .287 R .447 < .495 < .607

∗∗
> .447

(.053) (.114) (.047) (.072)

T .447
∗∗
> .356 < .413 < .447 L .287 > .261 > .199

∗
< .287

(.040) (.044) (.036) (.040)

State State

BR M .266 < .328 > .312 > .266 C .266
∗
> .167

∗∗∗
> .082

∗∗∗
< .266 BR

(Win) (.044) (.053) (.037) (.027) (Loss)

B .287 < .317 > .275 < .287 R .447
∗∗∗
< .572

∗∗
< .719

∗∗∗
> .447

(.038) (.050) (.043) (.043)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.2. Median response times by chosen action, periods 2-40

Row players Column Players

PvP PvD PvP PvD

T 12.0 ∗∗∗
> 6.5 L 12.1 ∗∗∗

> 7.8

(1.0) (.7) (1.4) (.9)

M 13.7 ∗∗∗
> 6.7 C 11.9 ∗∗∗

> 6.4

(1.1) (.6) (1.2) (.8)

B 12.8 ∗∗∗
> 8.8 R 11.2 ∗∗∗

> 5.9

(1.0) (1.0) (.9) (.5)

All 12.8 ∗∗∗
> 6.9 All 11.5 ∗∗∗

> 6.5

(1.0) (.5) (1.0) (.6)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.3. Avg. earnings gain from best response to opponent’s empirical
action distribution, periods 1-40

PvP PvD
Row players 0 ∗∗∗

< 2.71 > 2.37 ∗∗∗
> 0

(.35) (.38)

Column players 0 ∗∗∗
< 2.24 > 1.77 ∗∗∗

> 0
(.29) (.44)

All players 0 ∗∗∗
< 2.48 > 2.07 ∗∗∗

> 0
(.17) (.26)

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3 Estimation code

B.3.1 estimate.py

import numpy as np

import pandas as pd

import torch

import time

import mylib as my

from scipy import special, optimize

# Basic settings

treat = ('pvp', 'pvd')

dat_file = ('wagner_pvp.csv', 'wagner_pvd.csv') # Data files

mat_file = ('wagner_mat.csv', 'wagner_mat.csv') # Matrix files

num_sub = (56, 56) # Number of subjects

num_sim = (4000, 1000) # Number of simulations

num_per = (40, 40) # Number of periods

num_act = (3, 3) # Number of actions

num_rule = (3, 1) # Number of rules

opt = {} # Options

opt['p_k'] = 'smax' # Rule selection

opt['p_ak'] = 'smax' # Action selection

opt['U'] = 'diff' # Rule learning

opt['v'] = 'lin' # Declarative utility

opt['w'] = 'ratio' # Probability weighting

opt['b_1'] = 'smax' # Action blending

opt['b_k'] = 'hmax' # Lower-level response

opt['B'] = 'pow' # Base-level forgetting

opt['S'] = 'spread' # Associative memory

opt['P'] = 'none' # Similarity matching

opt['R_a'] = opt['v'] # Procedural utility

opt['R_c'] = 'belief' # Base-level learning

opt['S_q'] = 'diff' # Associative learning

est = {} # Estimators

est['alpha'] = 'pool' # Rule learning, rate parameter
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est['beta'] = 'pool' # Associative learning, rate parameter

est['gamma'] = 'pool' # Probability weighting, curvature parameter

est['delta'] = None # Probability weighting, elevation parameter

est['iota'] = None # Lower-level response, sensitivity parameter

est['kappa'] = 'pool' # Rule selection, sensitivity parameter

est['lam'] = 'rand' # Action selection, sensitivity parameter

est['nu_M'] = 'pool' # Action selection, bias parameter

est['nu_B'] = 'pool' # Action selection, bias parameter

est['nu_C'] = 'pool' # Action selection, bias parameter

est['nu_R'] = 'pool' # Action selection, bias parameter

est['xi'] = None # Similarity matching, penalty parameter

est['pi'] = None # Base-level learning, prior parameter

est['rho'] = None # Base-level learning, reinforcement parameter

est['upsilon1'] = 'pool' # Rule learning, prior parameter

est['ups_star2'] = 'rand' # Rule learning, prior parameter

est['ups_star3'] = 'rand' # Rule learning, prior parameter

est['phi'] = 'rand' # Base-level forgetting, rate parameter

est['psi'] = 'pool' # Associative learning, strength parameter

est['omega'] = 'pool' # AL & SM, saliency parameter

# Advanced settings

seed = 7 # Random seed

cuda = True # GPU acceleration

scale = 1e-2

tol = 1e-6 * scale # Minimizer tolerance

temp = 1. * scale # Basin-hopping temperature

step = .1 # Basin-hopping stepsize

niter = 1000 # Number of basin-hopping iterations

dist = {} # RE distributions

dist['alpha'] = 'logit_norm'

dist['beta'] = 'logit_norm'

dist['gamma'] = 'log_norm'

dist['delta'] = 'log_norm'

dist['iota'] = 'log_norm'

dist['kappa'] = 'log_norm'

dist['lam'] = 'log_norm'
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dist['nu_M'] = 'normal'

dist['nu_B'] = 'normal'

dist['nu_C'] = 'normal'

dist['nu_R'] = 'normal'

dist['xi'] = 'log_norm'

dist['pi'] = 'log_norm'

dist['rho'] = 'logit_norm'

dist['upsilon1'] = 'normal'

dist['ups_star2'] = 'normal'

dist['ups_star3'] = 'normal'

dist['phi'] = 'log_norm' if opt['B'] == 'pow' else 'logit_norm'

dist['psi'] = 'log_norm'

dist['omega'] = 'logit_norm'

xset = {} # Parameter settings (x0, xmin, xmax)

xset['alpha'] = {'pool':([.1], [0], [1]), 'rand':([-1], [-10], [10])}

xset['beta'] = {'pool':([.1], [0], [1]), 'rand':([-1], [-10], [10])}

xset['gamma'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [5])}

xset['delta'] = {'pool':([1.], [1e-3], [10]), 'rand':([0], [-10], [5])}

xset['iota'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [5])}

xset['kappa'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [5])}

xset['lam'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [np.log(10)])}

xset['nu_M'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['nu_B'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['nu_C'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['nu_R'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['xi'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [5])}

xset['pi'] = {'pool':([1.], [1e-3], [10]), 'rand':([0], [-10], [5])}

xset['rho'] = {'pool':([.5], [0], [1]), 'rand':([0], [-10], [10])}

xset['upsilon1'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['ups_star2'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

xset['ups_star3'] = {'pool':([0.], [-10], [10]), 'rand':([0], [-10], [10])}

pow_set = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [np.log(10)])}

exp_set = {'pool':([.9], [0], [1]), 'rand':([2], [-10], [10])}

xset['phi'] = pow_set if opt['B'] == 'pow' else exp_set

xset['psi'] = {'pool':([1.], [0], [10]), 'rand':([0], [-10], [5])}

xset['omega'] = {'pool':([.5], [0], [1]), 'rand':([0], [-10], [10])}
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np.random.seed(seed)

ex0 = (None,)

ex02 = (None, slice(None), None)

ex1 = (slice(None), None)

ex2 = (slice(None), slice(None), None)

ex23 = (slice(None), slice(None), None, None)

ex3 = (slice(None), slice(None), slice(None), None)

dtype = torch.cuda.FloatTensor if cuda == True else torch.FloatTensor

torch.set_default_tensor_type(dtype)

opt['R_a'] = opt['v']

match = int(opt['P'] != 'none')

belief = int(opt['R_c'] == 'belief')

model = my.Model(opt)

data = []

for t in range(len(treat)):

N, S, T, A, K = (num_sub[t], num_sim[t],

num_per[t], num_act[t], num_rule[t])

Q = 2 * A

X = 1 + match*A**2

M = A ** (1-belief)

C = M * A * X

I = min(K, 2)

df = pd.read_csv(dat_file[t])

np_dat = df.to_numpy()

raw_dat = torch.from_numpy(np_dat).type(dtype)

df = pd.read_csv(mat_file[t])

np_mat = np.array(df.to_numpy()[1:,2:], dtype=float).reshape(2, A, A)

matrix = torch.from_numpy(np_mat).type(dtype)

null = torch.full((N,), float(A ** 2))

map_a = my.npeat(torch.arange(float(A)), X).repeat(M)

map_x = torch.arange(float(X)).repeat(M * A)

map_q1 = map_x // A

map_q2 = map_x % A + A*map_x.eq(A ** 2).type(dtype)

hypo = torch.empty(N, I * C, T)

hist = torch.empty(N, I * C, T)
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act = torch.empty(N, I * C, T)

cue = torch.empty(N, I * C, Q, T)

sim = torch.empty(N, I * C, Q, T)

mat = torch.empty(N, I * A, A)

for i in range(I):

ixA = (slice(None), slice(i * A, (i+1) * A))

ixC = (slice(None), slice(i * C, (i+1) * C))

own_act = raw_dat[:,8+i].reshape(N, T)

opp_act = raw_dat[:,8+1-i].reshape(N, T)

player = (raw_dat[:,6] if i == 0 else 1 - raw_dat[:,6]).reshape(N, T)

context = torch.cat((null[ex1], A*own_act[:,:-1] + opp_act[:,:-1]), 1)

own_cue = context // A

opp_cue = context % A + A*context.eq(A ** 2).type(dtype)

history = (1-belief)*A*X*own_act + X*opp_act + match*context

act[ixC] = opp_act[ex1].eq(map_a[ex02]).type(dtype)

play = player[:,0][ex1].eq(torch.arange(2.)[ex0]).type(dtype)

con = context[ex1].eq(map_x[ex02]).type(dtype)

hypo[ixC] = act[ixC] * con if match == 1 else act[ixC]

hist[ixC] = history[ex1].eq(torch.arange(float(C))[ex02]).type(dtype)

cue1 = own_cue[ex1].eq(torch.arange(float(A))[ex02]).type(dtype)

cue2 = opp_cue[ex1].eq(torch.arange(float(A))[ex02]).type(dtype)

cue[ixC] = torch.cat((cue1, cue2), 1)[ex1].expand(-1, C, -1, -1)

sim1 = -cue1[ex1] * own_cue[ex1].ne(map_q1[ex02]).type(dtype)[ex2]

sim2 = -cue2[ex1] * opp_cue[ex1].ne(map_q2[ex02]).type(dtype)[ex2]

sim[ixC] = torch.cat((sim1, sim2), 2)

mat[ixA] = (play[ex23] * matrix[ex0]).sum(1)

play = play if I == 1 else 1 - play

own_act, opp_act = (own_act, opp_act) if I == 1 else (opp_act, own_act)

obs = own_act[ex1].eq(torch.arange(float(A))[ex02]).type(dtype)

out = opp_act[ex1].eq(torch.arange(float(A))[ex02]).type(dtype)

pay = (out[ex1] * mat[:,:A][ex3]).sum(2)

str_key = ('treat',)

int_key = ('N', 'S', 'T', 'K', 'A', 'Q', 'X', 'M','C', 'I')

ten_key = ('obs', 'hypo', 'hist',

'act', 'cue', 'sim', 'mat', 'pay', 'play')

str_val = (treat[t],)
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int_val = (N, S, T, K, A, Q, X, M, C, I)

ten_val = (obs, hypo, hist, act, cue, sim, mat, pay, play)

dat = dict(zip(str_key+int_key+ten_key, str_val+int_val+ten_val))

dat['hypo'] = torch.cat((torch.zeros(hypo.size()[:-1] + (1,)), hypo), -1)

dat['hypo'][:,X-1::X, 0] = 1

dat['hist'] = torch.cat((torch.zeros(hist.size()[:-1] + (1,)), hist), -1)

dat['hist'][:,X-1::X, 0] = 1

dat['act'] = torch.cat((torch.zeros(act.size()[:-1] + (1,)), act), -1)

dat['cue'] = torch.cat((torch.zeros(cue.size()[:-1] + (1,)),cue), -1)

dat['sim'] = torch.cat((torch.zeros(sim.size()[:-1] + (1,)), sim), -1)

dat['mat'] = my.npeat(mat, (S,) + (1,) * (mat.dim()-1))

dat['play'] = my.npeat(play, (S,) + (1,) * (play.dim()-1))

data.append(dat)

R = 0

x0 = []

xmin = []

xmax = []

for (key, value) in est.items():

if value == None:

est[key] = xset[key]['pool'][0]

elif type(value) == str:

R += int(value == 'rand')

x0 += xset[key][value][0]

xmin += xset[key][value][1]

xmax += xset[key][value][2]

fact = special.factorial(R-1, True)

x0 += R*[1] + int(R > 1)*fact*[0]

xmin += R*[1e-3] + int(R > 1)*fact*[-10]

xmax += R*[10] + int(R > 1)*fact*[10]

var = slice(-R - fact, -fact)

cov = slice(-fact, None)

bnds = [(xmin[x], xmax[x]) for x in range(len(x0))]

cons = [{'type': 'ineq', 'fun': my.con, 'args': (var, cov)}] if R > 1 else ()

dic = {'normal': my.Utility.lin,

'log_norm': torch.exp, 'logit_norm': my.Probability.smax}

trans = {key: dic[value] for (key, value) in dist.items()}
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stepsize = step * np.subtract(xmax, xmin)

take_step = my.Step(xmin, xmax, est, trans,

model, data, scale, niter, stepsize, cons)

arg = {'args':(cons, est, trans, model, data, scale), 'method': 'SLSQP',

'jac': True, 'bounds': bnds, 'constraints': cons, 'tol': tol}

start = time.time()

res = optimize.basinhopping(my.fun, x0, niter=niter, T=temp, stepsize=stepsize,

take_step=take_step, minimizer_kwargs=arg)

end = time.time()

sec = end - start

print()

print('time: %dh:%dm:%ds'%(sec // 60**2 % 60, sec // 60 % 60, sec % 60))

B.3.2 mylib.py

import numpy as np

import torch

import copy

from scipy import linalg

from torch.distributions.multivariate_normal import MultivariateNormal

def npeat(x, rep):

dim = int(np.argmax(rep))

size1 = x.size()[:dim] + (int(np.max(rep)),) + x.size()[dim:]

size2 = tuple(np.multiply(rep, x.size()))

return x.repeat(rep).reshape(size1).transpose(dim, dim + 1).reshape(size2)

def con(x, var, cov):

size = len(x[var])

di = np.diag_indices(size)

tril = np.tril_indices(size, -1)

triu = np.triu_indices(size, 1)

sigma = np.empty((size, size))

sigma[di] = x[var]

sigma[tril] = x[cov]

sigma[triu] = sigma.T[triu]
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return np.real(linalg.eigvals(sigma))

def log_like(theta, model, data):

N, S, T = (data['N'], data['S'], data['T'])

p_a = torch.ones(N * S).type(torch.cuda.FloatTensor)

model.start(theta, data)

for t in range(1, T + 1):

model.update(data, t)

p_a = p_a * (npeat(data['obs'][:,:,t-1], (S, 1)) * model.p_a).sum(1)

ll = p_a.reshape(N, S).mean(1).log().sum()

return ll

def fun(x, cons, est, trans, model, data, scale):

for con in cons:

valid = np.all(con['fun'](x, *con['args']) > 0)

if valid == False: break

if valid == False:

ll = float('nan')

grad = np.empty(len(x))

grad[:] = np.nan

return (-ll, -grad)

else:

torch.manual_seed(7)

ex0 = (None,)

ex1 = (slice(None), None)

x = torch.tensor(x.astype(np.float32), requires_grad=True)

ll = 0

for d in range(len(data)):

N, S, K = (data[d]['N'], data[d]['S'], data[d]['K'])

p = 0

mu = torch.tensor([])

re = []

theta = {}

for (key, val) in est.items():

if type(val) != str:
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theta[key] = torch.tensor(val)

elif val == 'pool':

theta[key] = x[p][ex0]

p += 1

elif val == 'rand':

mu = torch.cat((mu, x[p][ex0]))

p += 1

re.append(key)

R = len(re)

di = tuple([torch.tensor(ind, dtype=torch.long)

for ind in np.diag_indices(R)])

tril = tuple([torch.tensor(ind, dtype=torch.long)

for ind in np.tril_indices(R, -1)])

triu = tuple([torch.tensor(ind, dtype=torch.long)

for ind in np.triu_indices(R, 1)])

sigma = torch.empty(R, R)

sigma[di] = x[p:p+R]

sigma[tril] = x[p+R:]

sigma[triu] = sigma.t()[triu]

mu = mu.type(torch.cuda.FloatTensor)

sigma = sigma.type(torch.cuda.FloatTensor)

try:

sample = MultivariateNormal(mu, sigma).rsample((N * S,))

except (RuntimeError, ValueError):

ll = float('nan')

grad = np.empty(len(x))

grad[:] = np.nan

return (-ll, -grad)

theta.update({re[r]: trans[re[r]](sample[:,r]) for r in range(R)})

theta['upsilon'] = torch.zeros(N * S)[ex1]

if K > 1:

theta['upsilon'] = torch.cat((theta['upsilon'],

theta['ups_star2'][ex1]), 1)

if K > 2:

theta['upsilon'] = torch.cat((theta['upsilon'],

theta['ups_star3'][ex1]), 1)
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theta['upsilon'] = (theta['upsilon']

/theta['kappa'] + theta['upsilon1'])

if data[d]['treat'] == 'pvd': theta['omega'] = torch.zeros(1)

ll = ll + log_like(theta, model, data[d])

ll = ll * scale

ll.backward()

grad = np.array(x.grad.cpu())

return (-ll.item(), -grad)

class Step(object):

def __init__(self, xmin, xmax, est, trans,

model, data, scale, niter, stepsize=0.5, cons=()):

self.xmin = xmin

self.xmax = xmax

self.stepsize = stepsize

self.cons = cons

self.est = est

self.trans = trans

self.model = model

self.data = data

self.scale = scale

self.niter = niter

self.iter = 0

def __call__(self, x):

valid = False

while valid == False:

eps = np.random.uniform(-self.stepsize, self.stepsize)

xnew = np.clip(x + eps, self.xmin, self.xmax)

ll, grad = fun(xnew, self.cons, self.est,

self.trans, self.model, self.data, self.scale)

valid_ll = not np.isnan(ll) and ll != -np.inf and ll != np.inf

valid_grad = (not np.isnan(grad).any() and np.not_equal(grad,

-np.inf).any() and np.not_equal(grad, np.inf).any())

valid = valid_ll and valid_grad
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self.iter += 1

print("********* Iteration %d *********"%self.iter)

if self.iter == self.niter:

np.save('new_x0.npy', x)

np.save('new_step.npy', self.stepsize)

return xnew

class Utility:

def lin(c):

return c

class Learning:

def none(U, *args):

return U

def diff(U, R, I, alpha):

return U + I*alpha*(R-U)

class Probability:

def rand(x, dim=None):

size = x.size()

return torch.full(size, 1 / size[dim])

def hmax(x, dim=None):

intermed = x.eq(x.max(dim, True)[0]).type(x.type())

return intermed/intermed.sum(dim, keepdim=True)

def smax(x, alpha = 0.0, lam=1.0, dim=None):

return torch.nn.functional.softmax(alpha+lam*x, dim)

class Weighting:
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def lin(p):

return p

def linlog(p, gamma, delta):

pstar = delta * p**gamma

return pstar / (pstar+(1-p)**gamma)

def ratio(p, gamma, delta, dim=None):

pstar = p ** gamma

return delta * pstar / (pstar.sum(dim, True)-pstar+delta*pstar)

class Activation:

class Base:

def none(B, R, eps=1e-10, **kwargs):

return (R + B.exp() + eps).log()

def exp(B, R, gamma, eps=1e-10, **kwargs):

return (R + gamma*B.exp() + eps).log()

def pow(t, R_j, d, eps=1e-10, dim=None, **kwargs):

return ((R_j*t**-d).sum(dim) + eps).log()

class Learning:

def none(**kwargs):

return

def belief(attn, hypo, **kwargs):

return attn * hypo

def reinf(attn, hist, **kwargs):

return attn * hist
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def attrac(attn, hypo, hist, delta):

return attn * (delta*hypo+(1-delta)*hist)

class Associative:

def none(S_j, *args):

return S_j

def spread(S_j, W, dim=None):

return(W * S_j).sum(dim)

class Learning:

def none(S_j, *args):

return S_j

def diff(S_j, S, I_i, I_j, S_max, alpha):

return S_j + I_j*alpha*(I_i*S_max-S)

class Matching:

def none(*args):

return 0

def part(Sim, MP, dim=None):

return (MP * Sim).sum(dim)

class Model:

def __init__(self, opt):

fun = {'p_k': {'rand': Probability.rand,

'hmax': Probability.hmax,

'smax': Probability.smax},

'p_ak': {'rand': Probability.rand,
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'hmax': Probability.hmax,

'smax': Probability.smax},

'U' : {'none': Utility.Learning.none,

'diff': Utility.Learning.diff},

'v': {'lin': Utility.lin},

'w': {'lin': Probability.Weighting.lin,

'linlog': Probability.Weighting.linlog,

'ratio': Probability.Weighting.ratio},

'b_1': {'rand': Probability.rand,

'hmax': Probability.hmax,

'smax': Probability.smax},

'b_k': {'rand': Probability.rand,

'hmax': Probability.hmax,

'smax': Probability.smax},

'B': {'none': Activation.Base.none,

'exp': Activation.Base.exp,

'pow': Activation.Base.pow},

'S': {'none': Activation.Associative.none,

'spread': Activation.Associative.spread},

'P': {'none': Activation.Matching.none,

'part': Activation.Matching.part},

'R_a': {'lin': Utility.lin},

'R_c': {'none': Activation.Base.Learning.none,

'belief': Activation.Base.Learning.belief,

'reinf': Activation.Base.Learning.reinf,

'attrac': Activation.Base.Learning.attrac},

'S_q': {'none': Activation.Associative.Learning.none,

'diff': Activation.Associative.Learning.diff}}

self.fun = {key: fun[key][val] for (key, val) in opt.items()}

self.opt = opt

def start(self, theta, dat):

ex0 = (None,)

ex1 = (slice(None), None)

ex12 = (slice(None), None, None)

ex2 = (slice(None),slice(None), None)
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omega = theta['omega'][ex1].expand(-1, dat['mat'].size()[-1])

W = torch.cat((omega, 1 - omega), 1)

xi = W * theta['xi'][ex1]

beta = W * theta['beta'][ex1]

if len(theta['nu_M']) == 1:

nu1 = torch.cat((torch.tensor([0.]), theta['nu_M'], theta['nu_B']))

nu2 = torch.cat((torch.tensor([0.]), theta['nu_C'], theta['nu_R']))

nu = (dat['play'][ex1]

* torch.cat((nu1[ex1], nu2[ex1]), 1)[ex0]).sum(2)

else:

nu1 = torch.cat((torch.zeros(theta['nu_M'].shape[0])[ex1],

theta['nu_M'][ex1],

theta['nu_B'][ex1]), 1)

nu2 = torch.cat((torch.zeros(theta['nu_C'].shape[0])[ex1],

theta['nu_C'][ex1],

theta['nu_R'][ex1]), 1)

nu = (dat['play'][ex1]

* torch.cat((nu1[ex2], nu2[ex2]), 2)).sum(2)

arg = {'p_k': {'rand': (1,),

'hmax': (1,),

'smax': (0., theta['kappa'][ex1], 1)},

'p_ak': {'rand': (1,),

'hmax': (1,),

'smax': (nu[ex2], theta['lam'][ex12], 1)},

'U': {'none': (),

'diff': (theta['alpha'][ex1],)},

'v': {'lin': (dat['mat'],)},

'w': {'lin': (),

'linlog': (theta['gamma'][ex12], theta['delta'][ex12]),

'ratio': (theta['gamma'][ex12], theta['delta'][ex12], 2)},

'b_1': {'rand': (2,),

'hmax': (2,),

'smax': (0., 1, 2)},

'b_k': {'rand': (2,),

'hmax': (2,),

'smax': (0., theta['iota'][ex12], 2)},
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'B': {'cons': {},

'exp': {'gamma': theta['phi'][ex1]},

'pow': {'d': theta['phi'][ex12], 'dim': 2}},

'S': {'none': (),

'spread': (2,)},

'P': {'none': (),

'part': (xi[ex1], 2)},

'R_a': {'lin': ()},

'R_c': {'none': {},

'belief': {},

'reinf': {},

'attrac': {'delta': theta['rho'][ex1]}},

'S_q': {'none': (),

'diff': (theta['psi'][ex12], beta[ex1])}}

self.arg = {key: arg[key][val] for (key, val) in self.opt.items()}

self.theta = theta

self.p_k = torch.zeros((1, 1))

self.p_ak = torch.zeros(1)

self.p_a = torch.zeros((1, 1))

self.U = theta['upsilon']

self.v = self.fun['v'](*self.arg['v'])

self.B = torch.zeros(1).log()

self.S = torch.zeros(1)[ex1]

self.R_ct = torch.zeros(0)

self.S_q = torch.zeros(1)[ex1]

def update(self, dat, t):

old = (Ellipsis, t - 1)

new = (Ellipsis, t)

ex1 = (slice(None), None)

ex2 = (slice(None), slice(None), None)

N, S, A, X, M, C, K, I = (dat['N'], dat['S'], dat['A'], dat['X'],

dat['M'], dat['C'], dat['K'], dat['I'])

hypo, hist, act, cue, sim, pay, obs = (dat['hypo'], dat['hist'],

dat['act'], dat['cue'],

dat['sim'], dat['pay'],
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dat['obs'])

hypo_old = npeat(hypo[old], (S,)+(1,)*(hypo[old].dim()-1))

hist_old = npeat(hist[old], (S,)+(1,)*(hist[old].dim()-1))

act_old = npeat(act[old], (S,)+(1,)*(act[old].dim()-1))

cue_old = npeat(cue[old], (S,)+(1,)*(cue[old].dim()-1))

cue_new = npeat(cue[new], (S,)+(1,)*(cue[new].dim()-1))

sim_new = npeat(sim[new], (S,)+(1,)*(sim[new].dim()-1))

pay_old = npeat(pay[...,t-2], (S,)+(1,)*(pay[...,t-2].dim()-1))

obs_old = npeat(obs[...,t-2], (S,)+(1,)*(obs[...,t-2].dim()-1))

fun, arg = (self.fun, self.arg)

R_a = fun['R_a'](pay_old, *arg['R_a'])

R = (R_a*obs_old).sum(1)

numerator = self.p_k * (self.p_ak*obs_old[ex2]).sum(1) + (1e-10)/K

denominator = (self.p_a * obs_old).sum(1, keepdim=True) + 1e-10

p_ka = numerator / denominator

self.U = fun['U'](self.U, R[ex1], p_ka if t > 1 else 0, *arg['U'])

attn = 1 if t > 1 else self.theta['pi'][ex1]

R_c = fun['R_c'](attn, hypo=hypo_old, hist=hist_old, **arg['R_c'])

self.R_ct = torch.cat((self.R_ct, R_c[ex2]), 2)

time = torch.arange(float(t), 0, -1)

self.S_q = fun['S_q'](self.S_q, self.S[ex2],

act_old[ex2], cue_old, *arg['S_q'])

self.B = fun['B'](B=self.B, t=time, R=R_c, R_j=self.R_ct, **arg['B'])

self.S = fun['S'](self.S_q, cue_new, *arg['S'])

P = fun['P'](sim_new, *arg['P'])

A_c = (self.B + self.S + P).reshape(N * S, I * M, C // M)

b_1 = fun['b_1'](A_c, *arg['b_1']).reshape(N * S, I * M, A, X).sum(3)

w = npeat(fun['w'](b_1, *arg['w']), (1, A // M, 1))

V_k = (w * self.v).sum(2)[ex2]

for k in range(1, K):

own = (slice(None), slice(0, A), k - 1)

opp = (slice(None), slice(A, 2 * A), k - 1)

V = torch.cat((V_k[opp], V_k[own]), 1).reshape(N * S, 2, A)

b_k = npeat(fun['b_k'](V, *arg['b_k']), (1, A, 1))

V_k = torch.cat((V_k, (b_k * self.v).sum(2)[ex2]), 2)

self.p_k = fun['p_k'](self.U, *arg['p_k'])
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self.p_ak = fun['p_ak'](V_k[:,:A], *arg['p_ak'])

self.p_a = (self.p_k[ex1] * self.p_ak).sum(2)

B.4 Analysis of Rutström and Wilcox (2009)

The experiment conducted in Rutström and Wilcox (2009) consisted of three between-

subject treatments: the “no beliefs” (NB) treatment (80 subjects), the “scoring rule” (SR)

treatment (92 subjects), and the “expected choice” (EC) treatment (92 subjects). The

subjects in all three treatments were matched against a fixed human opponent for 36 periods

in the mixed strategy game shown in Figure B.4. In the NB treatment, subjects played the

game normally with no belief elicitation. In the SR treatment, a quadratic scoring rule was

used to incentivize belief elicitation. Finally, in the EC treatment, subjects were asked to

guess their opponent’s next action without any reward for accuracy.

The most notable feature of the game in Figure B.4 is the large payoff that the row player

receives when actions T and L are chosen. While this sort of sharp payoff separation could

help identify level-k rule learning and incentivize the use of higher level rules, analyzing this

game comes with several challenges. First, there is the problem with the game’s dimension-

ality, as it is only a 2×2 game. In an action space of this size, there will always be overlap in

the actions prescribed by the first three level-k rules. Second, the row player’s TL payoff is

so large that risk aversion may be a relevant factor. In the analysis that follows, I continue

to assume that subjects have linear utility, but that assumption may not be appropriate for

this data. Finally, the empirical action choices of of row players in this game are somewhat

difficult to explain. Although column players chose action L more than six times as often

as they should in the mixed strategy Nash equilibrium, row players continued to play action

B with a surprisingly large frequency. Consequently, the authors’ belief learning model es-

timates the average subject to have an initial bias against playing action T that reduces its

latent utility by more than $2.00. The enormity of this bias suggests that there may be latent

utility factors (e.g., risk aversion, joy of winning) that are important in this environment

that are completely outside the scope of my model. With these caveats in mind, I will now
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proceed to summarizing the results of my analysis as they relate to the analysis in Chapter

2.

As in Chapter 2, I find that the initial rule utility means and variances are generally

significant across all estimations, both jointly and at the individual parameter level. Again

however, the initial rule utility covariances and all of the level-k parameters are jointly in-

significant. The evidence on rule learning is a little more mixed however. In some treatments,

I find the rule learning step-size parameter α to be individually significant, but in others it is

not. In estimaion (8), which uses the data from all three treatments, α is insignificant. The

estimates of α are also generally smaller than those of Chapter 2. Looking at the time series

of simulated rule frequencies in Figure B.6, we see that rule learning is muted or non-existent

in most estimations, similar to the way it is in my estimation of only the PvP data. 

1
 As in

that estimation, we also see that the level-1 rule has the highest frequency, followed by the

level-3 rule, followed by the level-2 rule which is used very infrequently. Given the similarities

that these simulations share with the PvP estimation, I suspect that these estimations also

struggle to clearly identify level-k reasoning. Unfortunately in this case, however, there is

no PvD treatment to help identify the model’s belief learning parameters.

The simulated action frequencies, conditional action frequencies, inert action frequencies,

per-unit changes in inert action frequencies, and distributions of z-statistics all fit the data

reasonably well as they do in Chapter 2. As in those simulations, the estimated level-k models

do not provide a noticeably better fit to the data. In contrast to the Chapter 2 estimations,

however, the simulated rule performances for row players largely depends on on whether

the level-1 or level-k model is specified. In the former case, level-2 reasoning consistently

performs the best against level-1 and level-2 players. Counter-intuitively, it also ties the

level-1 rule and beats the level-3 rule in its performance against level-3 players. I believe this

happens because the column players’ action selection biases make them frequently choose

action L, which keeps level-3 row players choosing action B, but I have yet to confirm this.

For the estimated level-k models, row players’ simulated rule earnings are largely the same
1

 ↑ Interestingly, there appears to be some level-1 rule learning in the SR treatment. This finding is consistent
with Rutström and Wilcox’s observation that SR subjects adhered more closely to the predictions of their
belief learning model.
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L R
T 19, 0 0, 1
B 0, 1 1, 0

Figure B.4. The repeated stage game used in Rutström and Wilcox (2009).
Payoffs are listed in experimental currency units with a conversion rate of 1
experimental currency units = .2 U.S. Dollars.

Table B.4. Parameter estimates, estimations (1) - (4)
Parameter Range Null (1) (2) (3) (4)
β [0, 1] 0 .496∗∗∗ .202∗∗ .486∗∗ .361∗∗∗

(.124) (.072) (.214) (.089)
γ [0, 10] 1 .105∗∗∗ .099∗∗∗ .155∗∗∗ .130∗∗∗

(.057) (.041) (.035) (.022)
µln(λ) [-10, ln(10)] -7 1.61∗∗∗ 1.57∗∗∗ 1.60∗∗∗ 1.59∗∗∗

(.140) (.100) (.085) (.042)
µln(φ) [-10, ln(10)] -7 -2.33∗∗ -2.70∗∗ -3.22∗ -2.56∗∗∗

(1.59) (.985) (1.15) (.799)
ν(B) [-10, 10] 0 10.0∗∗∗ 10.0∗∗∗ 10.0∗∗∗ 10.0∗∗∗

(.764) (.528) (.502) (.235)
ν(R) [-10, 10] 0 -.643∗∗∗ -.782∗∗∗ -.618∗∗∗ -.682∗∗∗

(.151) (.143) (.127) (.082)
σ2

ln(λ) (0, 10] 0 .002 .012∗∗ .004∗ .005∗∗∗

(.004) (.008) (.004) (.002)
σln(λ),ln(φ) [-10, 10] 0 .027 .349∗∗ .019 .034

(.050) (.140) (.111) (.079)
σ2

ln(φ) (0, 10] 0 3.15 10.0∗∗∗ 10.0∗∗∗ 6.24
(1.92) (2.67) (3.31) (2.73)

ψ [0, 10] 0 .625 3.05∗ .397 .738∗∗

(.704) (1.80) (.746) (.414)
ωi(ai) [0, 1] 0 .396∗ .194∗ .694∗∗ .402∗∗

(.198) (.156) (.212) (.170)

Data NB SR EC All
Log likelihood -1806.58 -1952.26 -2060.88 -5840.71

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

except for a dramatic increase in the profitability of level-1 reasoning. Level-1 reasoning

becomes so profitable in fact that it surpasses level-2 reasoning as the most profitable rule.

I believe this happens because the action selection bias on action B is much smaller in the

level-k estimations, giving the level-1 player more freedom to best respond to the actual

action history. Finally, for column players, regardless of whether the level-1 or level-k model

is specified, the level-1 rule earns the most against level-1 and level-3 players. The level-3

rule performs better against level-2 players as we would expect because it best responds to

that level of reasoning.
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Table B.5. Parameter estimates, estimations (5) - (8)
Parameter Range Null (5) (6) (7) (8)
α [0, 1] 0 .000 .003∗∗ .038∗ .005

(.035) (.001) (.019) (.002)
β [0, 1] 0 .296∗ .296∗ .438∗∗ .438∗

(.042) (.105) (.044) (.025)
γ [0, 10] 1 3.04 .350∗∗ .289∗∗ .231∗∗

(.121) (.089) (.030) (.006)
κ [0, 10] 0 .062∗ 2.90∗∗∗ .024∗∗ .470∗

(.030) (.061) (.006) (.025)
µln(λ) [-10, ln(10)] -7 .573∗∗ 1.62∗∗∗ 1.77∗∗ 1.83∗

(.227) (.117) (.041) (.027)
µπ∗(2) [-10, 10] -7 -4.17∗ -2.50∗∗ -5.14∗∗ -5.09∗

(.105) (.289) (.049) (.010)
µπ∗(3) [-10, 10] -7 -1.13∗ -.952∗∗ -.471∗∗ -.400∗

(.157) (.309) (.044) (.017)
µln(φ) [-10, ln(10)] -7 -2.96∗ -.342∗∗∗ -1.30∗∗ -.266∗∗∗

(.145) (.313) (.035) (.032)
ν(B) [-10, 10] 0 1.85 10.0∗∗∗ 3.91∗∗ 5.87∗∗

(.194) (.067) (.075) (.009)
ν(R) [-10, 10] 0 -1.23 -1.19∗ -1.26∗ -1.32

(.104) (.134) (.038) (.029)
π(1) [-10, 10] 0 4.40∗∗ -10.0∗∗∗ 3.94∗∗∗ -8.20∗

(.009) (.014) (.006) (.005)
σ2

ln(λ) (0, 10] 0 5.25∗∗ .194∗ 2.00∗∗ 1.10∗∗

(.079) (.077) (.040) (.023)
σln(λ),π∗(2) [-10, 10] 0 -3.33 .787 2.95∗∗ .924

(.057) (.193) (.026) (.016)
σln(λ),π∗(3) [-10, 10] 0 2.69 .561∗∗ .371 .356

(.094) (.100) .037 (.015)
σln(λ),ln(φ) [-10, 10] 0 3.95 .116 .195∗ -.089

(.085) (.132) (.025) (.015)
σ2

π∗(2) (0, 10] 0 7.73∗∗ 3.51∗∗ 8.34∗∗ 8.99∗∗

(.026) (.385) (.017) (.003)
σπ∗(2),π∗(3) [-10, 10] 0 -.699 2.62∗∗ 2.45∗∗ -.205

(.063) (.181) (.040) (.009)
σπ∗(2),ln(φ) [-10, 10] 0 -5.07 -.453 -2.37∗ -2.55∗

(.044) (.268) (.024) (.004)
σ2

π∗(3) (0, 10] 0 2.03∗ 2.00∗∗ 1.19∗∗ .647 ∗∗

(.116) (.195) (.035) (.018)
σπ∗(3),ln(φ) [-10, 10] 0 2.10∗ -.664∗ -1.09∗ -.691

(.086) (.187) (.037) (.018)
σ2

ln(φ) (0, 10] 0 9.97∗∗ 2.89∗∗ 4.70∗∗ 7.35∗∗∗

(.023) (.271) (.015) (.006)
ψ [0, 10] 0 7.95∗ 1.12 7.22∗∗ 8.64∗∗

(.106) (.393) (.008) (.002)
ωi(ai) [0, 1] 0 .000 .270 .502∗∗ .203∗

(.047) (.181) (.035) (.020)

Data NB SR EC All
Log likelihood -1746.98 -1876.31 -2002.46 -5643.01

Bootstrap std. errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.6. p-values for multiple hypothesis tests
Parameters Description (1) (2) (3) (4) (5) (6) (7) (8)
α, κ, π(1) rule learning .085 .011 .076 .075

µπ∗(2), µπ∗(3) initial rule utility means .095 .041 .051 .063

σ2
π∗(2), σ

2
π∗(3) initial rule utility variances .076 .058 .037 .039

σ∗ initial rule utility covariances .277 .226 .204 .171

⇑ all of the above .248 .134 .180 .111

β, ψ, ω pattern recognition .054 .039 .057 .006 .108 .164 .047 .043
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Figure B.5. Simulated distribution of rule frequencies, periods 1-36
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Figure B.6. Simulated rule frequencies, periods 1-36
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Figure B.7. Action frequencies, periods 1-36
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Figure B.8. NB and SR action frequencies by state, periods 2-36
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Figure B.9. EC and All action frequencies by state, periods 2-36
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Figure B.10. Inert action frequencies, periods 2-36
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Figure B.11. Per-unit change in inert action frequencies following a win, periods 2-36
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Figure B.12. Distribution of z-statistics, periods 1-36
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Figure B.13. Average earnings by rule, estimations (1) and (5)
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Figure B.14. Average earnings by rule, estimations (2) and (6)
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Figure B.15. Average earnings by rule, estimations (3) and (7)
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Figure B.16. Average earnings by rule, estimations (4) and (8)
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