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1 (•), proxy points (×), and the
points [9, 32] (□) involved in the approximation of the leaf HSS block T −

1 |i′
1×[1,n−|i1|] =

k ([1, 8], [9, 32]) for a matrix of size n = 32, number of HSS levels L = 2, and num-
ber of proxy points N = 16. Bottom: the resulting index set i′

1 (□). (These are
“cartoon illustrations” and are not actual results from such an approximation
applied to a subblock of an actual matrix T .) . . . . . . . . . . . . . . . . . . .  62 

3.4 Top: the near-field points ĩ′
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ABSTRACT

Many kernel matrices from differential equations or data science applications possess low

or approximately low off-diagonal rank for certain key matrix subblocks; such matrices are

referred to as rank-structured. Operations on rank-structured matrices like factorization and

linear system solution can be greatly accelerated by converting them into hierarchical matrix

forms, such as the hiearchically semiseparable (HSS) matrix form. The dominant cost of this

conversion process, called HSS construction, is the low-rank approximation of certain matrix

blocks. Low-rank approximation is also a required step in many other contexts throughout

numerical linear algebra. In this work, a proxy point low-rank approximation method is

detailed for general analytic kernel matrices, in both one and several dimensions. A new

accuracy analysis for this approximation is also provided, as well as numerical evidence of

its accuracy. The extension of this method to kernels in several dimensions is novel, and its

new accuracy analysis makes it a convenient choice to use over existing proxy point methods.

Finally, a new HSS construction algorithm using this method for certain Cauchy and Toeplitz

matrices is given, which is asymptotically faster than existing methods. Numerical evidence

for the accuracy and efficacy of the new construction algorithm is also provided.
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1. INTRODUCTION

Large matrices feature prominently in various areas of sciences, engineering, and applied

mathematics, such as in data science methods and differential equation solutions. When the

dimensions of the matrix in question are large, it is already either impractical or impossible

to do something as basic as to solve the corresponding linear system using the standard

methods learned in a first-year linear algebra class. Not only does the time complexity of

such “standard methods,” such as Gaussian elimination without pivoting, scale cubically in

the dimensions of the matrix, such methods also suffer from very poor numerical stability,

potentially leading to errors rendering the computation useless. For a broad overview of the

shortcomings of these naive algorithms and ways to address them, see [ 1 ].

Although more sophisticated algorithms that the above reference discusses, such as Gaus-

sian elimination with partial pivoting or Householder QR factorization, have better stability

properties, they are still not practical when the size of the matrix is very large. Hence, meth-

ods have been devised that leverage additional matrix structure for a substantial asymptotic

speedup. Perhaps the most well-known example of additional matrix structure is “spar-

sity,” or the property that a matrix has asymptotically fewer nonzero entries compared to

its dimensions. Examples of algorithms that take advantage of sparsity are the multifrontal

method [ 2 ], as well as the many iterative methods covered by the comprehensive survey in

[ 3 ]. Another example of matrices which possess additional structure are Toeplitz matrices;

at the outset of Chapter  3 , we will give a brief overview of the development of fast algo-

rithms for Toeplitz matrices and propose a new one. Yet another broad class of matrices for

which fast algorithms have been devised, and which we will focus on in this work, is that of

rank-structured matrices.

The term “rank structure” refers to either the low rank or the approximate low rank

(the latter defined precisely in Section  1.1 ) of certain off-diagonal subblocks of a matrix.

Here, “low rank” is usually taken to mean bounded by a polynomial in the logarithm of the

matrix dimensions. Another term for rank-structured matrices is “data-sparse matrices.”

It should be noted that these terms are typically used in the context of dense—i.e. not

11



sparse—matrices. Nevertheless, rank-structured matrix methods can be used to accelerate

sparse matrix computations as well, as in [ 4 ].

There are many ways of leveraging the rank structure of a matrix, most frequently by

using data structures such as SSS (sequentially semi-separable), HSS (hierarchically semi-

separable), HODLR (hierarchical off-diagonal low-rank), or similar matrix forms. Such data

structures, sometimes called hierarchical matrix representations, allow either a representation

of or an approximation to any given matrix that allows for asymptotically faster (in the

dimensions of the matrix) algorithms thereon, such as matrix-vector products, inversion,

or solution of the associated linear systems. These representations also use asymptotically

less storage. In exchange for these desirable properties, a modest cost is often paid in the

form of converting a given matrix into such a data structure; this process is referred to as

“construction.”

The exact identites of the “certain off-diagonal subblocks” referred to above depend en-

tirely on context: examples include so-called “HSS blocks” and “HODLR blocks” [ 5 ] (see

below), as well as other subblocks [ 6 ]. A lot of matrices encountered in data science applica-

tions turn out to possess rank structure [ 7 ]. Furthermore, a lot of so-called kernel matrices

with certain analytic and/or geometric properties possess rank structure. The first focus of

our work here is to identify such rank structures and construct low-rank approximations to

kernel matrices.

In recent years, a lot of research has focused on the HSS matrix form due to the exis-

tence of parallelizable and numerically stable algorithms that operate on HSS matrices. The

first such algorithms have appeared in, for example, [ 8 ]–[ 10 ]; a broad overview of some of

these ideas can be found in [ 11 ]. In particular, the stability advantage of rank-structured

algorithms is analyzed in [ 12 ]. Our second focus here is on aspects of the HSS form represen-

tation of the aforementioned kernel matrices, which we will briefly review in Section  1.2 . In

particular, in Chapters  2 and  3 , we will detail new HSS construction algorithms for certain

classes of kernel matrices. Such an algorithm helps solve an existing bottleneck in the fastest

HSS-based solvers for the relevant matrices. We will also propose a generalization of this

algorithm in Chapter  4 .
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In the literature, the term “kernel matrix” is sometimes vague, so it is useful to clarify

what we mean. We will take it to mean, given some sets X, Y, Z, a matrix whose (i, j)th

entry is k(xi, yj) for some points xi ∈ X, yj ∈ Y and for some function k : X × Y → Z. The

function k is referred to as a “kernel function,” and the sets X, Y, Z are usually subsets of the

real or complex numbers. Of course, every matrix can be viewed as a kernel matrix if either

k or the sets X, Y, Z do not have to satisfy any particular properties, so the interpretation of

a matrix as a kernel matrix is frequently context-specific. (We will touch upon this question,

in our context of complex-analytic functions k defined on complex domains, in Section  4.2 .)

The rest of the work is structured as follows: in the remainder of this chapter, we will

review concepts and methods related to the low-rank approximation of a matrix, in particular

the proxy point method and the HSS form of a matrix. In Chapter  2 , we will combine

certain algebraic and analytic properties of some prevalent types of kernel matrices known

as Cauchy matrices in a new algorithm to construct its HSS form. This construction is done

with sublinear time complexity, which is asymptotically faster than any previously known

methods. Some new analysis and a new algorithm are detailed. In Chapter  3 , we come up

with a new, more general proxy point analysis than any previously known; it is applicable

to any complex-analytic function of one variable. We then use it to come up with low-rank

approximations to and detail a similarly quick algorithm for the HSS construction of some

Toeplitz matrices. Finally, in Chapter  4 , we will generalize the proxy point analysis given

in Chapter  3 to any analytic kernel function of any number of variables. We then sketch a

generalization of the new sublinear-time HSS construction from Chapter  3 to certain classes

of general matrices.

Throughout this work, we use the following notation: let k : F×G→ C be a function and

X ⊆ F, Y ⊆ G be totally-ordered finite subsets of size r and s, respectively. Then by k(X, Y )

we mean the r-by-s matrix A with entries Aj,k = k (xj, yk), where xj is the jth element of X

and yk is the kth element of Y . Furthermore, for a, b ∈ N, define [a, b] = {j ∈ N : a ≤ j ≤ b}.

(In particular, with this notation we will never mean the closed interval on the real line from

a to b.) Moreover, let C be an l-by-m matrix and L ⊆ [1, l], M ⊆ [1, m]. Then by AL×M we

mean the |L|-by-|M | “submatrix” B of A consisting of entries Bj,k = Alj,mk
, where lj is the

jth element of L and mk is the kth element of M , ordered the usual way. Finally, we also

13



write C|L and C|{:}×M mean the “submatrices” of C corresponding to the rows specified by

L and columns specified by M , respectively.

1.1 Review of low-rank approximation

First, we define what we mean by “approximately low-rank.”

Definition 1.1.1. Let τ > 0, and let A ∈ Cm×n for some m, n ∈ N. Then the numerical

rank of A with respect to τ is defined as min{rank(B) | B ∈ Cm×n∥A−B∥2 < τ}.

With this definition in hand, we can say that a matrix A is“approximately low-rank” if

its numerical rank with respect to some context-specific tolerance τ , itself often picked to be

a small fraction of ∥A∥2, is bounded by a polynomial in the logarithm of the dimensions of

A.

From the definition, it may not be immediately clear, given A and τ , which approximant

B might satisfy ∥A−B∥2 < τ . The well-known Eckart-Young-Mirsky Theorem answers this

question:

Theorem 1.1.1 (Eckart-Young-Mirsky). Let τ > 0, A ∈ Cm×n for some m, n ∈ N, and let

A = UΣV ∗ be the singular value decomposition. Assume that all the singular values of Σ are

distinct; an analogous statement follows otherwise. Then

∥A− UΣkV ∗∥f < τ, (1.1)

where f is either the 2-norm or the Frobenius norm, Σk is the matrix identical to Σ in its

top k values and with zero values otherwise, and k is the numerical rank of A with respect

to τ .

1.1.1 Algebraic low-rank compression techniques

Algebraic low-rank compression methods are designed to be applicable to any matrix

A, without assuming any additional structure. As Theorem  1.1.1 suggests, one low-rank

approximation technique we may apply is a truncated singular value decomposition; that
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is, we approximate A by UΣkV ∗ as in (  1.1 ). However, recalling [ 1 ], the standard singular

value decomposition algorithm for general n × n matrices scales poorly with respect to n,

although faster algorithms exist. (This is especially true for certain subclasses of matrices;

see, e.g. [ 13 ].) Instead, it is possible to settle for less-than-optimal general algebraic low-

rank approximation that performs well in practice. One such approximation is the strong

rank-revealing QR factorization [  14 ]:

Proposition 1.1.2. Let A ∈ Cm×n for m ≥ n. Let σk(A) denote the kth singular value of

A. Then we may compute a factorization AΠ = QR where

R =

U V

0 W

 ,

U ∈ Ck×k is upper triangular and σk(A)p(k, n) ≥ ∥W∥2 ≥ σk(A) in sub-cubic time if k ≪ n.

Here, p(k, n) is a low-degree polynomial in k and in n.

By multiplying

V

W

 by the (relatively) quickly-invertible A−1, we may find an approxi-

mation to the original matrix A with the desired numerical rank bound. A set of algorithms

that compute such a factorization, with certain desirable stability guarantees, as well as the

precise meaning of “sub-cubic” and “low-degree” above are given in [ 14 ]. Another algebraic

low-rank approximation method is the so-called “skeletonization” method of [ 15 ]. Here, we

pick k ≪ n columns of A, C, and l≪ n rows of A, R, such that

A ≈ CUR.

U is computed to minimize the error ∥A − CUR∥2 given C and R. The exact identities of

the rows and columns to be picked may be difficult to identify, but it is important to find

ones such that U is well-conditioned; see [  15 ]. It is a combination of this method and the

QR factorization mentioned above that we will employ in Chapters  2 and  3 .
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1.1.2 Analytic low-rank compression techniques

Analytic low-rank compression, on the other hand, assumes additional structure on the

entries of A. Hence, analytic low-rank techniques are less widely applicable, but “instantly”

yield an approximation A ≈ ΦK for Φ and K of rank equal to the numerical rank of A (with

respect to some tolerance). Often, as in the subject of this work, we assume that A is a

kernel matrix with analytic structure. For concreteness, recalling the definition given above,

we have

A = k(X, Y ) =



k(x1, y1) k(x1, y2) . . . k(x1, ym)

k(x2, y1) k(x2, y2) . . . k(x2, ym)
... ... . . . ...

k(xl, y1) k(xl, y2) . . . k(xl, ym)


(1.2)

for some k : C2 → C with some regularity properties in each variable and xi, yi ∈ C for

1 ≤ i ≤ n. (We focus on the 1-dimensional case in our brief outline of analytic methods

here, but such ideas often generalize to the multidimensional case.) In particular, one way of

compressing A for some suitably differentiable k is by using Taylor expansions: fixing, say,

xi, we have

k(xi, y) ≈ k̃(xi, y) =
N∑

k=1
cxi,kyk (1.3)

for some Taylor coefficients cxi,k. We could have, of course, instead taken the expansion in

the first variable x instead of the second variable y. From ( 1.3 ), we then have the rank-k

approximation

A ≈



cx1,1 cx1,2 · · · cx1,k

cx2,1 cx2,2 · · · cx2,k

... ... . . . ...

cxl,1 cxl,2 · · · cxl,k





y1 y2 · · · ym

y2
1 y2

2 · · · y2
m

... ... . . . ...

yk
1 yk

2 · · · yk
m


.
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In this work, however, we focus on another analytic low-rank approximation method

called the proxy point method. The proxy point method is similar to the above, except for

instead of using ( 1.3 ), we take an approximation of the form

k(xi, yj) ≈ k̃(xi, yj) =
N∑

k=1
Φ(xi, zk)k(zk, yj) (1.4)

for some function Φ : C2 → C related to k. The points zk ∈ C for k = 1, . . . , N are

picked depending on the properties of k, X, and Y ; for details, see [  16 ]–[ 20 ]. This gives the

approximation

A ≈



Φ(x1, z1) Φ(x1, z2) · · · Φ(x1, zk)

Φ(x2, z1) Φ(x2, z2) · · · Φ(x2, zk)
... ... . . . ...

Φ(xl, z1) Φ(xl, z2) · · · Φ(xl, zk)





k(z1, y1) k(z1, y2) · · · k(z1, ym)

k(z2, y1) k(z2, y2) · · · k(z2, ym)
... ... . . . ...

k(zk, y1) k(zk, y2) · · · k(zk, ym)


.

Oftentimes, the relationship ( 1.4 ) comes from the discretization of some integral representa-

tion of k(xi, yj), so Φ encodes some kind of “Green’s function” and quadrature weights. We

give our precise context in Section  3.1 . In the literature, various such integral representations

are used implicitly or explicitly, see for example [ 21 ].

The convergence properties of these analytic low-rank approximations via Taylor series or

proxy points depends on the analytic properties of the function k and the sets X, Y defining

A as in ( 1.2 ). There have been multiple approaches to studying the error involved, of which

we will recount the two most relevant analyses for the proxy point method. These have

concentrated on analytic k and “well-separated” sets X and Y : X, Y ⊆ C are assumed to

be such that there exist c ∈ C and γ > 0 such that X ⊆ B(c, γ) and B(c, γ) ∩ Y = ∅.

The first proxy point analysis we wish to mention is given in [ 18 ] for k = 1/(x − y)d;

we restate a part of the result they obtain for d = 1. (A similar bound is shown in [ 18 ] for

k = 1/(x− y)d.)

Proposition 1.1.3. Let X, Y ⊆ C be finite and well-separated; let r = maxx∈X |c − x|;

and let R = miny∈Y |c − y|. Then, using the approximation ( 1.4 ) with Φ resulting from the
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discretization of the Cauchy integral formula for f(z, yj) for each j along ∂B(c, γ) using the

trapezoidal quadrature rule and N uniformly-selected points, we have

∣∣∣∣∣k(xi, yj)
k̃(xi, yj)

∣∣∣∣∣− 1 ≤ 1
1− (R/γ)N

+ 1
1− (γ/r)N

.

Hence, to minimize the error given X and Y , we need to pick c to maximize R/r, and then

to subsequently minimize γ by picking γ =
√

Rr. We will explore the geometric question of

picking c and γ in our specific context in Section  2.1 . Note that this bound explicitly shows

the relationship between the number of proxy points N and the entrywise error.

In Section  3.1 , we will also give a new bound that similarly depends on the separation

ratio R/r in Proposition  1.1.3 , and similarly shows an explicit relationship between N and

the entrywise error, but applies to general analytic k. Furthermore, in our proof, we will use

facts about Laurent series that lend themselves to greater generalization; we will consider

such a generalization in Chapter  4 . The analysis in [ 18 ] given for Proposition  1.1.3 , on the

other hand, used techniques that only applied to the specific kernel k = 1/(x−y)d. However,

it should be noted that the bound we will give in Section  3.1 is absolute, whereas this bound

is relative.

We also pause to note that, in the context of analytic k and well-separated X, Y , the left

factor of ( 1.4 ) remains unchanged for different k. This “kernel-free” property of the proxy

point approximation will be useful for our HSS construction methods given in Chapters  3 

and  4 .

The second existing proxy point approximation error analysis we wish to mention is given

in the “Cauchy FMM” scheme [ 22 ]. There, it is simply argued that, for analytic k in ( 1.4 ),

|k(xi, yj)− k̃(xi, yj)| is bounded by Ae−BN for some A, B > 0. So, while elementwise exponen-

tial convergence is argued for several different kinds of contours resulting from the Cauchy

integral representation (and not just for circles as in Proposition  1.1.3 and Section  3.1 ), the

exact number of proxy points N is not related to the geometry of X and Y in a concrete way.

Therefore, the necessity of our new analysis should already be clear, and it should hopefully

become even clearer in Chapters  3 and  4 .
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1.2 Review of HSS matrix approximation

In this section, we review the data structure known as a hierarchically semiseparable

(HSS) matrix form. Here we only give a brief outline necessary to understand the algorithms

given in the subsequent chapters; more details can be found in [ 10 ].

Definition 1.2.1. Let A be a matrix. Assume without loss of generality that A is square

with row/column size n equal to a power of two, and let L < log2(n). Recursively partition

in two the set of row/column indices of A for a total of 2L− 1 subsets. Specifically, for each

0 ≤ l ≤ L, partition [1, n] into the 2l sets

Il =
{[

1,
n

2l

]
,
[

n

2l
+ 1,

n

2l−1

]
, . . . ,

[
(2l − 1) n

2l
+ 1, n

]}
.

Let I = ⋃L
j=0 Il, and impose a partial order on I by set inclusion. We call I the L-level HSS

index set of A. Then its Hasse diagram T is a perfect binary tree, called the HSS tree of

A. Now, for each 1 ≤ j ≤ 2L − 1, define ij ∈ I to be the element corresponding to the jth

vertex of T in its postordered traversal. For each 1 ≤ j ≤ 2L − 1, define A−
j = Aij,[1,n]\ij and

A
|
j = A[1,n]\ij,ij; these are called the jth HSS block row and jth HSS block column, respectively.

(See Figure  1.1 for an example when L = 2.) The HSS rank of A is the maximum rank,

over all 1 ≤ j ≤ 2L − 1, of A−
j and A

|
j.

An L-level HSS form for A is a 6-tuple {D, U, R, V, W, B}, where:

• U = {Uj}1≤j≤2L−2, V = {Vj}1≤j≤2L−2, and B = {Bj}1≤j≤2L−2 are sets of matrices;

• D = {Dj}j∈I is a set of matrices, where I is the set of postordered indices of leaves of

T ;

• and R = {Rj}j∈J and W = {Wj}j∈J are sets of matrices, where J is the set of pos-

tordered indices of vertices of T of depth at least two;

such that

1. Dj = Aij,ij for j ∈ I;
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A−
1

A−
2

A−
4

A−
5

A−
3

A−
6

A
|
5

A
|
4

A
|
2

A
|
1

A
|
6

A
|
3

(a) HSS block rows (b) HSS block columns

Figure 1.1. The HSS block rows and columns of A where L = 2. The labeled
green blocks with rounded corners correspond to the HSS tree depth l = 1;
the labeled yellow blocks with sharp corners correspond to the HSS tree depth
l = 2.

2. Aij,isib(j) = UjBjV
T

sib(j) for 1 ≤ j ≤ 2L − 2, where Bj is full-rank and sib(j) is the

postordered index of the sibling of j;

3. and Uj =

Uc1(j)Rc1(j)

Uc2(j)Rc2(j)

 and Vj =

Vc1(j)Wc1(j)

Vc2(j)Wc2(j)

 for 1 ≤ j ≤ 2L − 2, where c1(j) and

c2(j) denote the postordered indices of the left and right children of the postordered jth

vertex of T , respectively.

Collectively, all of the matrices mentioned in this definition are called HSS generators of

A. Note that we can find generators whose sizes can all be bounded by the HSS rank of A

[ 10 ]; this is the main point constructing the HSS form of A and the reason for the efficiency

of HSS algorithms. Figure  1.2 illustrates the various relationships of the HSS generators of

A.

Finally, we say A has numerical HSS rank k with respect to a tolerance τ if the numerical

rank of A−
j and A

|
j with respect to a tolerance τ is at most k over all 1 ≤ j ≤ 2L − 1. We

define an L-level rank-k HSS approximation of A to be an L-level HSS form of A where we

replace condition  2 in Definition  1.2.1 above with the following:

2′ Aij,isib(j) ≈ UjBjV
T

sib(j) for 1 ≤ j ≤ 2L − 2, where Bj is a k × k matrix.
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Figure 1.2. The HSS generator products of A placed into the blocks of A
that they generate.

In the case that A is a Toeplitz matrix, for 1 ≤ j ≤ 2L−2, existing methods of constructing

any one of Uj, Vj, Rj, Wj, or Bj in general scale linearly in n, for at least some j.[ 23 ] In the

next section, we outline an algorithm to construct any such generator with sublinear cost.

This is useful depending on how the HSS form of A is subsequently used. For example, our

method confers a speedup if only part of the output of a matrix-vector multiplication with

A is needed.
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2. HYPERFAST HSS CONSTRUCTION OF SOME CAUCHY

MATRICES

Cauchy matrices—that is, kernel matrices with Cauchy kernel

k(x, y) = 1
x− y

. (2.1)

for values x, y ∈ C—frequently arise in some numerical computations, such as solutions

of differential equations and integral equations, solutions of Toeplitz/Hankel/Vandermonde

systems, kernel methods, and electrostatic potential evaluations. We consider some Cauchy

matrices defined by the evaluation of ( 2.1 ) at uniform points xi, yj ∈ C, i, j = 1, 2, . . . , n on

a circle. Specifically, the case with the following points plays an important role in Toeplitz

matrix computations:

X ≡ {xi}i=1:n with xi = ω2i−2, Y ≡ {yj}j=1:n with yj = ω2j−1, (2.2)

where ω = e πi
n , i =

√
−1, and the Matlab notation 1 : n means the natural numbers

1, 2, . . . , n. In fact, a Toeplitz matrix in Fourier space or in conjunction with displacement

structures (see, e.g., [ 24 ]–[ 27 ]) is related to the Cauchy matrix

C = k(X, Y ) ≡ (k(xi, yj))n×n =
( 1

ω2i−2 − ω2j−1

)
n×n

, (2.3)

where (k(xi, yj))n×n similarly denotes the n× n matrix with the (i, j) entry k(xi, yj).

To be specific, after multiplying by the n× n discrete Fourier transform (DFT) matrix,

a Toeplitz system Tx = b can be turned into an equivalent system

Cξ = β,
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where C = FnTDFH
n , Fn is an n × n DFT matrix, and D is a certain diagonal matrix. It

turns out that C satisfies what is known as a “displacement equation”:

AC − CB = UV, (2.4)

where U ∈ Cn×2 and U ∈ C2×n. (In general, A, B ∈ Cn×n are not assumed a priori to take

any particular structure, but in our case they are diagonal matrices with entries on the unit

circle.) This implies that the matrix C is Cauchy-like; that is, it has entries

Ci,j = G|{i}H|{:}×{j}

xi − yj
, (2.5)

where U ∈ Cn×2, U ∈ C2×n, and xi, yj are as defined above. Displacement structures and

their applications have been studied at length in the literature; for more details, see e.g.

[ 24 ] and [  9 ]. More recently, analytic properties of displacement structures, including those

of Cauchy matrices, have been studied in [ 28 ].

For matrices satisfying displacement structure, a Gaussian elimination with partial pivot-

ing algorithm may be designed to take asymptotically less time than O(n3) [ 24 ]. In fact, for

Toeplitz systems, the particular displacement structure in ( 2.4 ) ensures a time complexity of

O(n2). More recently, rank-structured Toeplitz methods, ensuring a sub-quadratic (so-called

“superfast”) time complexity, have proliferated over the past twenty years [ 9 ], [ 23 ], [ 29 ], [ 30 ].

In particular, such Toeplitz methods ensure greater control over the numerical stability in

system solution and other operations [ 23 ], [ 30 ]. A key component of such methods is the

efficient low-rank approximation to C, such as the randomized methods explored for the task

in [  30 ]. These methods use HSS approximations of C to construct HSS approximations to a

Cauchy-like matrix corresponding to the Toeplitz matrix to be solved in Fourier space. Once

such HSS approximations are obtained, their factorization can be quickly performed. The

approximations can also be used for other computations related to Toeplitz matrices such

as least squares solution [  23 ] and eigenvalue solution [ 13 ], [  31 ], [  32 ].

Thus, the quick approximation of C by an HSS form is very useful for computations

with Toeplitz matrices. In this chapter, we focus on ways to try and quickly find HSS
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approximations to C. As usual, the most expensive operation in constructing this HSS form is

the low-rank approximation or compression of relevant off-diagonal blocks. In previous work,

this has been done by either the direct algebraic rank-revealing factorizations mentioned in

Section  1.1 , as in [ 9 ], [  29 ], or randomized compression, as in [ 23 ], [  33 ]. The former has a

total cost of about O(n2) flops or more, and the latter costs about O(n) flops. Such costs are

needed to compress the off-diagonal block rows as well as columns at each level. Typically

in hierarchical partitioning with L levels, there are O( n
2l ) such blocks at level l = 0, 1, . . . , L,

with level L corresponding to the finest level.

However, C in ( 2.3 ) is highly structured and only depends on n. It has previously been

mentioned in [ 9 ], [  33 ] that selected subblocks of C are closely related. Here, we would like

to explore more connections among the off-diagonal blocks of C in order to extensively reuse

computations in all compression steps. That is, we intend to reuse compression information

across all the off-diagonal block rows at each hierarchical level of the HSS approximation,

and further share information between off-diagonal block rows and columns. Accordingly, we

show that we only need to approximate a single off-diagonal block row at each level, which is

sufficient to produce a basis matrix for all the other off-diagonal block rows and columns at

the same level. Consequently, the strategy significantly reduces the number of compression

steps, from O(n) to O(log n).

Furthermore, we split the off-diagonal compression step into a near-field part and a far-

field part. To avoid expensive rank-revealing factorizations, we approximate the far-field

block using the proxy point method, and then perform an algebraic compression. Hence,

such a method is sometimes called a “hybrid” compression method. The feasibility of the

proxy point method for the far-field compression of the kernel matrix in question has been

justified in [ 18 ]. In our case, for the kernel function (  2.1 ), we will provide an optimal choice

of a key parameter involved in the proxy point approximation. The optimal choice makes

sure that the resulting low-rank approximation error is as small as possible.

We then give a hierarchical compression scheme to construct an HSS approximation to C.

The scheme ensures that the far-field part of an off-diagonal block row at each hierarchical

level meets two efficiency requirements. First, it satisfies a separation condition so that

the far-field part is numerically low rank. Second, a near-field block row only involves a
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small number of rows, so that, combined with the above observation, a compact numerical

basis matrix for the off-diagonal block row can be quickly found algebraically. Then, the

aforementioned basis reuse idea and the proxy point method are integrated into this scheme

to reach sublinear complexity for the HSS construction. Specifically, we can approximate C

by an HSS form in O(r3 log2 n) flops and with O(r2 log2 n) storage, where r is a constant rank

bound for far-field low-rank approximation. This is a significant reduction from the previous

roughly O(n2) or O(n) costs. Thus, we say that the approximation method is hyperfast. An

algorithm is given and the sublinear complexity is confirmed numerically.

This chapter is structured as follows: in Section  2.1 , we detail the application of the proxy

point method to the far-field compression for the off-diagonal blocks of C. Section  2.2 reveals

some intrinsic structural relationships among the off-diagonal blocks of C. The hierarchical

compression scheme is then presented in Section  2.3 . Lastly, the algorithm, its analysis, and

some tests are given in Section  2.4 .

The work presented in this chapter will appear in [  34 ].

2.1 Analytic far-field compression by the proxy point method

In this section, we consider the low-rank approximation of the following subblock of C:

K = k(s, t) ≡ (k(xi, yj))xi∈s,yj∈t , (2.6)

where k is given in ( 2.1 ), and

s = {ω2(i−1), 1 ≤ i ≤ k} ⊂ X, t = {ω2j−1, k + s < j ≤ n− s− 1} ⊂ Y, (2.7)

1 ≤ k <
n

2 , 1 ≤ s <
n− k

2 .

Here, s is the number of points on each side of s that separate s from t. An illustration of

the sets X, Y, s, t is given in Figure  3.2 . The reason why such sets are considered will become

clear later in this section. For convenience, s and t are sometimes referred to as the source

and target sets, respectively, and K is the interaction between s and t.
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z

s

t

(a) Sets X, Y (b) Sets s, t, z

Figure 2.1. Illustration of the sets under consideration, where each cross (×)
is a point in X, each box (□) is a point in Y , s ⊂ X is the source set, t ⊂ Y is
the target set, and z is a set of proxy points.

The two sets s and t are well-separated in the sense that there exists a point z ∈ C such

that for every x ∈ s and y ∈ t,

maxx∈s |z − x|
miny∈t |z − y|

≤ δ < 1, (2.8)

where δ is a constant often referred to as the separation ratio. This concept of separation

is a basic tool in the fast multipole method [ 35 ] and also hierarchical matrix methods [ 36 ].

Using the analytic approximation bounds discussed in this work, it can be used to show that

K is numerically low-rank.

We seek to quickly write a (column) basis matrix G in a low-rank approximation to K.

This is an essential component in the HSS approximation of C in the next section. For this

purpose, we use the proxy point method in [ 18 ], and which we will review and analyze more

generally in Section  3.1 , to directly produce G as follows:

K ≈ GHT , with G = k(s, z), (2.9)

where z is a set of points located on a contour (called a proxy surface) that separates s

from t in C. See Figure  3.2 (b) for an illustration. With G in ( 2.9 ), H is then computed

appropriately; see [ 18 ] for more details. In particular, recall Proposition  1.1.3 (shown in

[ 18 ]): if s is located inside a circle with radius γ1 and center z and t is outside a circle with
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radius γ2 > γ1 and the same center z, then a nearly optimal choice of proxy points can be

obtained by choosing some quadrature points on a circle with radius γ = √γ1γ2. With such

a choice, the approximation error satisfies

∥K −GHT∥F

∥K∥F

≤ 2
(γ2

γ1
)N − 1 = O

(γ1

γ2

)N
 , (2.10)

where N is the the number of proxy points chosen.

It is important to note that this bound gives a relative bound for the proxy point error of

the appropriate matrix subblock. However, as we mentioned before, some techniques used in

obtaining this bound are specific to the Cauchy kernel, and so may not be readily generalized

to other kernels. In Section  3.1 , we give a more general bound for the proxy point error of

a general complex-analytic kernel matrix, but our new error bound is absolute. Hence, we

use the relative bound given in Proposition  1.1.3 and ( 2.10 ) for greater error control in this

specific instance.

If we take γ1 = maxx∈s |z − x| and γ2 = miny∈t |z − y|, then ( 2.8 ) is just γ1
γ2
≤ δ so that

∥K −GHT∥F

∥K∥F

= O(δr). (2.11)

Thus, the approximation error of the proxy point method decreases as γ1
γ2

get smaller. We

then try to minimize γ1
γ2

(by moving the center point z in ( 2.8 )). It is not immediately clear

which center z gives such a minimum. To this end, we have the following proposition.

Proposition 2.1.1. Consider s and t as in ( 2.7 ). Let g : C→ R be the function defined by

g(z) = γ1(z)
γ2(z) , with γ1(z) = max

x∈s
|z − x|, γ2(z) = min

y∈t
|z − y|.

Then

arg min(g) = ωk−1,

min
z∈C

g(z) = sin π(k − 1)
2n

/
sin π(k + 2(s + 1))

2n
< cos (2s + 3)π

2n
< 1. (2.12)
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Proof. Since g(0) = 1 and g
(
ωk−1

)
< 1, we have arg min(g) ̸= 0. Let the map A : C→ [0, n)

be defined by

A(z) = arg(z)
2π

n, (2.13)

which can be thought of as the argument of z scaled to the interval [0, n). Let

Θ1 =
{

z

∣∣∣∣∣ k − 1
2 ≤ A(z) <

n

2 , z ̸= 0
}

,

Θ2 =
{

z

∣∣∣∣∣ 0 ≤ A(z) <
k − 1

2 or k − 1 + n

2 ≤ A(z) < n, z ̸= 0
}

,

Ω1 =
{

z

∣∣∣∣∣ k − 1
2 ≤ A(z) < k + s, z ̸= 0

}
,

Ω2 =
{

z

∣∣∣∣∣ 0 ≤ A(z) <
k − 1

2 or n− s− 1 ≤ A(z) < n, z ̸= 0
}

.

Figure  2.2 illustrates these regions. Note that

γ1(z) =



|1− z|, z ∈ Θ1,

|ω2(k−1) − z|, z ∈ Θ2,

|ω2kz − z|, otherwise,

γ2(z) =



|ω2(k+s)+1 − z|, z ∈ Ω1,

|ω2(n−s−1)−1 − z|, z ∈ Ω2,

|ω2jz − z|, otherwise,

(2.14)

where kz = ⌊A(z) − n
2 ⌉ and jz = ⌊A(z) − 1

2⌉ + 1
2 (with tie-breaking by rounding up). This

can be conveniently understood with the aid of Figure  2.2 . (On Θ1 and Θ2, γ1(z) returns

the distance between the input z and the red and blue crosses, respectively. On Ω1 and Ω2,

γ2(z) returns the distance between z and the red and blue squares, respectively.)

In particular, we see by the above that g(z) > 1 for all z ∈ C \ {Ω1 ∪ Ω2 ∪ {0}}. Thus,

arg min(g) ∈ Ω1 ∪ Ω2.

Let z0 ∈ Ω1. If we write z0 = ρωk−1eiθ for some r, θ ∈ R with ρ ≥ 0, we have z̃0 = rωk−1e−iθ ∈

Ω2 ∪
{
z | a(z) = k−1

2 , z ̸= 0
}
. Then

g (z0) = g (z̃0) .
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Θ1

Θ2

Re

Im
Ω1

Ω2

(a) Regions of definition for γ1 (b) Regions of definition for γ2

Figure 2.2. Illustration of the regions of definition for the piecewise-defined
functions γ1 and γ2, along with points in the sets s (×) and t (□).

See Figure  2.3 (a), where g (z0) is the length of the solid blue line divided by the length of

the solid red line and g (z̃0) is the length of the dashed blue line divided by the length of the

dashed red line. Hence,

min
z∈Ω1∪Ω2

g(z) = min
z∈Ω1

g(z).

Re

Im

Re

Im

�

(a) z0 and z̃0 (b) z0 and ẑ0

Figure 2.3. Illustration of the points z0 = ρωk−1eiθ, z̃0 = ρωk−1e−iθ, and
ẑ0 = ρωk−1, along with points in the sets s (×) and t (□), where the dotted
black line illustrates the relevant symmetry.

Next, let ẑ0 = ρωk−1. Since γ1 (z0) ≤ γ1 (ẑ0), γ2(z0) ≥ γ2 (ẑ0), we have g(z) ≤ g (ẑ0). See

Figure  2.3 (b), where g (ẑ0) is the length of the dashed red line divided by the length of the

dashed blue line. Thus,

arg min(g) ∈
{

z

∣∣∣∣∣ A(z) = k − 1
2 , z ̸= 0

}
.
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Then from (  2.14 ), the positive minima of g occur at the positive minima of the following

function:

h(ρ) =

∣∣∣1− ρωk−1
∣∣∣

|ω2(k+s)+1 − ρωk−1|
= |1− ρeβi|
|eαi − ρeβi|

,

where α = 2π(k+s)+π

n
and β = π(k−1)

n
. Since h(ρ) is positive, we can just consider

h2(ρ) = (ρ sin β)2 + (1− ρ cos β)2

(sin α− ρ sin β)2 + (cos α− ρ cos β)2 .

Since the denominator above does not vanish, by the quotient rule, the positive minima of

h2(ρ) occur at the positive zeros of the function

h̃(ρ) = [2ρ sin2 β − 2 (1− ρ cos β) cos β]

· [ (sin α− ρ sin β)2 + (cos α− ρ cos β)2 ]

− [− 2 (sin α− h sin β) sin β)− 2 (cos α− h cos β) cos β]

· [ρ2 sin2 β + (1− ρ cos β)2 ]

= 2(ρ2 − 1) (cos β − cos (α− β)) .

The only such zero is at ρ = 1, so this is the only positive minimum argument of h2(ρ).

Thus, arg min(g) = e
πi(k−1)

n = ωk−1. With the choice of the center z = ωk−1, we have

γ1 =
∣∣∣1− ωk−1

∣∣∣ =
√

2(1− cos β) = 2 sin (k − 1)π
2n

,

γ2 =
∣∣∣ω2(k+s)+1 − ωk−1

∣∣∣ =
√

2(1− cos(α− β) = 2 sin (k + 2(s + 1))π
2n

.

Then minz∈C g(z) in ( 2.12 ) is obtained.

Finally, by the definition of the sets s and t, we have k < n
2 and s + 1 ≤ n−k

2 . Then

(k − 1)π
2n

∈
[
0,

π

4

)
,

(k + 2(s + 1))π
2n

∈
(

0,
π

2

)
.
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Also, note that (k+2(s+1))π

2n
− (k−1)π

2n
= (2s+3)π

2n
∈ (0, π

2). Then

sin (k − 1)π
2n

= sin (k + 2(s + 1)− (2s + 3))π
2n

< sin (k + 2(s + 1))π
2n

cos (2s + 3)π
2n

.

This yields the inequality in ( 2.12 ).

This result shows how to choose the optimal center z in ( 2.8 ) so as to make the error in

( 2.10 ) as small as possible. With the choice of the optimal z in the theorem, we can ensure

that s and t in ( 2.7 ) are well-separated so as to obtain δ in ( 2.8 ) as a constant smaller than

1 and independent of n. More specifically, we have the following result.

Corollary 2.1.2. For s and t in ( 2.7 ), suppose s = k
2 = o(n). With the optimal z in

Theorem  2.1.1 , we have
maxx∈s |z − x|
miny∈t |z − y|

∼ 1
2 as n→∞. (2.15)

Proof. Note that we have

sin π(k − 1)
2n

/
sin π(k + 2(s + 1))

2n
∼ k

k + 2s

as k →∞, so the corollary follows by the previous proposition.

Note that the result can be made more general. For convenience, we introduce the

following definition.

Definition 2.1.3. For subsets s ∈ X and t ∈ Y , with the notation in ( 2.13 ), the argument

span of s and the argument gap between s and t are respectively,

spanA(s) = max
x1,x2∈s

(|A(x1)−A(x2)|mod n),

gapA(s, t) = min
x∈s,y∈t

(|A(x)−A(y)|mod n).
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In this definition, spanA(s) and gapA(s, t) are given in terms of the scaled argument. For

example, for s and t in (  2.7 ),

spanA(s) = k, gapA(s, t) > s.

Thus, s controls the argument gap between s and t. In general, for subsets s ∈ X and t ∈ Y ,

as long as

gapA(s, t) ≥ 1
2spanA(s), (2.16)

then the separation ratio between s and t is 1
2 or smaller with center z chosen as above. (With

some technicalities, a precise statement can be made and is skipped here.) This definition

will come in handy in the next section.

This discussion indicates that, as long as gapA(s, t) is large enough in comparison with

spanA(s), s and t would be well-separated. Then the interaction matrix between s and t is

numerically low rank. Accordingly, with the proxy point method, we can use r = O(| log τ |)

proxy points to make the error in ( 2.11 ) bounded by any accuracy τ . In fact, for s and t in

( 2.7 ), following the study in [ 18 ], we select the proxy points to be the uniform quadrature

points used in the trapezoidal rule on a circle with radius γ, where we take the nearly optimal

choice γ = √γ1γ2. Thus, we choose

γ = 2
√

sin (k − 1)π
2n

sin (k + 2(s + 1))π
2n

.

2.2 Relationships among off-diagonal blocks of C

Another key idea in our hyperfast rank-structured approximation of C is to fully explore

the algebraic relationships among the off-diagonal blocks of C. As in Section  1.2 , we suppose

n is a power of 2, so that C can be hierarchically partitioned up to L = O(log2 n) times with

uniform block sizes at each level, and let the HSS tree T be defined as before. We explore

the relationships among the off-diagonal block rows and columns at each depth of the tree

so as to save low-rank compression cost in the rank-structured approximation.
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Let a node i of T correspond to the kth block row at its depth l. That is, i corresponds

to the subblock of C with index set

ii =
{

(k − 1) n

2l
+ 1, (k − 1) n

2l
+ 2, . . . , k

n

2l

}
. (2.17)

As before, the HSS block row and column corresponding to node i are, respectively,

C−
i = C|i×([1,n]\i), C

|
i = C|([1,n]\i)×i (2.18)

Suppose j is the node at depth l of T that corresponds to the (k + 1)st block row at that

depth, and so has row index set

ij =
{

k
n

2l
+ 1, k

n

2l
+ 2, . . . , (k + 1) n

2l

}
. (2.19)

In [ 9 ], it is pointed out that the subblock C|ii×ij of C−
i and the subblock C|ij×((k+1) n

2l +1:(k+2) n

2l )

of C−
j differ by just the constant scalar ω− n

2l . This follows directly from the explicit defi-

nition of C. Thus, if a low-rank approximation is obtained for C|ii×ij , it can be reused for

C|ij×((k+1) n

2l +1:(k+2) n

2l ), which is referred to as a shifting relation.

Here, we would like to systematically generalize this shifting relation and also give an

intuitive justification. We first look at the block rows at the same level and then the block

columns. The following lemma directly follows from the structure of C and provides a

convenient tool to study the relationships among the HSS blocks of C.

Lemma 2.2.1. Let C1 and C2 be circulant matrices with the first row

(
1

1−ω
1

1−ω3 · · · 1
1−ω2n−1

)
,

(
1

1−ω
1

ω2n−2−ω
· · · 1

ω2−ω

)
,

respectively. Then

C = ΛC1 = C2Λ,

where Λ = diag(1, ω2, . . . , ω2(n−1)).
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The relationship among the HSS block rows/columns at each level can be shown as

follows.

Proposition 2.2.2. Let i and j be two nodes at the same level of T corresponding to HSS

block rows C−
i and C−

j , respectively. Then there exists nonzero scalars µ1 and µ2 and per-

mutation matrices P1 and P2 such that

C−
i = µ1C

−
j P1, C

|
i = µ2P2C

|
j . (2.20)

Proof. For the first equality in ( 2.20 ), it suffices to show the result for the two nearby

HSS blocks C−
i and C−

j corresponding to the row index sets ii in ( 2.17 ) and ij in ( 2.19 ),

respectively. Once this is shown, the result then holds for all the HSS blocks at the same

depth l. Following the notation in ( 2.17 ) and ( 2.19 ), we may consider the sets

[1, n] \ ii = Ji,1 ∪ Ji,2 ∪ Ji,3, [1, n] \ ij = Jj,1 ∪ Jj,2 ∪ Jj,3,

where

Ji,1 =
{

1 : (k − 1) n

2l

}
, Ji,2 =

{
k

n

2l
+ 1 : n− n

2l

}
, Ji,3 =

{
n− n

2l
+ 1 : n

}
,

Jj,1 =
{

1 : n

2l

}
, Jj,2 =

{
n

2l
+ 1 : k

n

2l

}
, Jj,2 =

{
k

n

2l
+ 1 : n

}
.

The partitions are illustrated in Figure  2.4 . According to Lemma  2.2.1 ,

C−
i =

(
C|ii×Ji,1 C|ii×Ji,2 C|ii×Ji,3

)
(2.21)

= Λ|ii×ii

(
C1|ii×Ji,1 C1|ii×Ji,2 C1|ii×Ji,3

)
,

C−
j =

(
C|ij×Jj,1 C|ij×Jj,2 C|ij×Jj,3

)
(2.22)

= Λ|ij×ij

(
C1|ij×Jj,1 C1|ij×Jj,2 C1|ij×Jj,3

)
.
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C|ii×Ji,2 C|ii×Ji,3

C|ij×Jj,1 C|ij×Jj,3

C−
i

C−
j

C|ii×Ji,1

C|ij×Jj,2

Figure 2.4. Partitioning of C−
i and C−

j .

It is clear that Λ|ii×ii = µ1Λ|ij×ij with µ1 = ω−n/2l−1 . Also, due to the circulant structure

of C1, we have

C1|ii×Ji,1 = C1|ij×Jj,2 , C1|ii×Ji,2 = C1|ij×Jj,3 , C1|ii×Ji,3 = C1|ij×Jj,1 .

Thus, there exists a permutation matrix P1 such that

(
C1|ii×Ji,1 C1|ii×Ji,2 C1|ii×Ji,3

)
=
(
C1|ij×Jj,1 C1|ij×Jj,2 C1|ij×Jj,3

)
P1.

( 2.21 )–( 2.22 ) then lead to

C−
i = µ1Λ|ij×ij

(
C1|ij×Jj,1 C1|ij×Jj,2 C1|ij×Jj,3

)
P1 = µ1C

−
j P1.

Next, for the second equality in ( 2.20 ), we may consider the HSS block rows of CT .

According to Lemma  2.2.1 , CT = ΛCT
2 . Since CT

2 is still a circulant matrix, the result can

then be shown as above.

This proposition shows that the HSS block rows (columns) are related by scalar multiples

and column (row) permutations. Moreover, we can further relate the HSS block rows to the

HSS block columns. By Proposition  2.2.2 , we only need to relate the topmost HSS block

row and the leftmost HSS block column at a level l. For convenience, for an index set ii

associated with a node i ∈ T , we partition [1, n] \ ii as

[1, n] \ ii = i<
i ∪ i>

i ,
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where i<
i and i>

i include all indices of [1, n] smaller and larger than those in ii, respectively.

Then for C−
i = C|ii×([1,n]\ii) =

(
C|ii×i<

i
C|ii×i>

i

)
, let P be a permutation matrix such that

C−
i P =

(
C|ii×i>

i
C|ii×i<

i

)
. (2.23)

Then we have the following proposition.

Proposition 2.2.3. Let i be a node at level l of T corresponding to the HSS block row C−
i

and HSS block column C
|
i . Let m be the row size of C

|
i . Then there exists a nonzero constant

µ such that

(P T C
|
i)|{2:m} = µ

(
(C−

i P )|{:}×{1:m−1}
)T

,

where P is the permutation matrix in ( 2.23 ).

Proof. Let i1 be the leftmost node at the same level l as i. According to Proposition  2.2.2 ,

C−
i1 and C−

i are related by a scalar multiple and a column permutation. In fact, it can be

further shown that, with the permutation matrix P in ( 2.23 ), we have

C−
i1 = µ1C

−
i P, C

|
i1 = µ2P

T C
|
i , (2.24)

where µ1 and µ2 are nonzero scalars.

Now for 1 ≤ j < k ≤ n, since

Ck,j = 1
ω2k−2 − ω2j−1 =

(
− 1

ω

) 1
ω2j−2 − ω2k−3 = − 1

ω
Cj,k−1,

we have

C
|
i1|{2:m} = − 1

ω
(C−

i1 |{:}×{1:m−1})T . (2.25)

(See Figure  2.5 for an illustration.)

Then ( 2.24 ) and ( 2.25 ) together lead to our result.

The implication of Proposition  2.2.2 is that, once we obtain a low-rank approximation to

one HSS block row (or column) at level l, we can reuse its column (row) basis matrix for all

the other HSS block rows (or columns) at level l. Proposition  2.2.3 further means that, the
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(C−i )|{:}×{m:m}(C−i )|{:}×{1:m−1}

(C
|
i)|{1:1}×{:}

(C
|
i)|{2:m}×{:}

= −ω((C−i )|{:}×{1:m−1})T

Figure 2.5. The relationship between C
|
i1|{2:m} and C−

i1 |{:}×{1:m−1}, when i1 is
the leftmost node at level l of T .

HSS block column C
|
i and row C−

i are also closely related. With the exception of one row

in C
|
i and one column in C−

i , the remaining subblocks can also share basis information. In

the next subsection, we will take advantage of these relations to design our hyperfast HSS

approximation for C.

2.3 Hyperfast analytic hierarchical compression scheme

In this section, we showcase our hyperfast HSS approximation of C using a combina-

tion of several techniques. Again, we partition C in the manner of Section  1.2 . During

the construction of the HSS approximation for C, each HSS block row and column is com-

pressed so as to find the generators. In almost all existing HSS approximation methods, the

HSS blocks are compressed individually, leading to the complexity of at least O(n). In the

following subsections, we show how to construct an HSS approximation to C in sublinear

complexity by exploring certain compression strategies for the off-diagonal blocks of C and

using the algebraic structures of the previous section. The main tools are as follows:

• Extract a row basis matrix for one HSS block row at each hierarchical level via the

analytical far-field compression

• Ensure the near-field block row size is small enough at each hierarchical level
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• Share the row basis across the HSS block rows at the entire level and also extend to

the HSS block columns

We recall our assumption on n that allows us to partition C hierarchically with L levels

of block rows, so that the associated HSS tree T is a perfect binary tree. Also, corresponding

to a leaf node i ∈ T , each HSS block row C−
i = k(Xi, Yi) is the interaction between subsets

Xi ⊂ X and Yi ⊂ Y of sizes n
2L and n − n

2L , respectively. For example, if i = 1 which

corresponds to the topmost HSS block row at the leaf level, we have Xi = {ω2k−2 | 1 ≤ k ≤
n

2L} and Yi = {ω2k−1 | n
2L + 1 ≤ k ≤ n}.

2.3.1 Compression at the leaf level

For a node i at the leaf level or level L, first consider the case where i corresponds to the

topmost HSS block row. (That is, consider i = 1.) Partition Xi into

Xi = si ∪ s̄i with (2.26)

si =
{

ω2k−2 | n

2L+2 ≤ k <
3n

2L+2

}
, s̄i = Xi \ si.

Since we are considering the interaction between Xi and Yi, we may consider si as the “far-

field” subset of Xi and s̄i the “near-field” subset of Xi. See Figure  2.6 (a) for an illustration

and see Figure  2.7 for the partitioning of the corresponding HSS block C−
i . Since it is the

leaf level, the sizes of both si and s̄i are n
2L+1 and are typically set to be small multiples of a

desired numerical rank r.

Note that the partitioning in (  2.26 ) makes spanA(si) to be at most half of spanA(Xi). s̄i

has two pieces, each has argument span about 1/4 of spanA(Xi). It can be verified that, if

we set s = s̄i and t = Yi in Definition  2.1.3 , then ( 2.16 ) holds and s and t are well-separated.

Thus, the proxy point method analysis of Section  2.1 ensures a good approximation to the

far-field interaction C−
i,2 ≡ k(si, Yi). For convenience, let P (L) be a row permutation matrix

such that

C−
i = P (L)

 C−
i,1

C−
i,2

 ≡
 k(̄si, Yi)

k(si, Yi)

 .
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si

s̄i

s̄i

yi

s̃i

s̄i

s̄i

yi

(a) Set si for a leaf i (b) After sparsification (c)
⋃

i:leaf ŝi

Figure 2.6. Illustration of the sets under consideration, the sparsification of
si into s̃i for a leaf i, and the resulting source point subsets of X after one level
of compression.

xi

xi yi

si

Figure 2.7. Partitioning of the HSS block C−
i corresponding to Figure  2.6 (a).

Then, apply the proxy point method to C−
i,2 with the set zi of r = O (| log τ |) proxy points

obtain the following approximation with relative accuracy τ (see ( 2.9 )):

C−
i,2 ≈ GiH

T
i , with Gi = k(si, zi). (2.27)

Now, apply a strong rank-revealing factorization [ 14 ] to Gi to get a factorization of the form

Gi ≈ Π(L)

 I

E(L)

Gi |̃ii
, (2.28)

where Π(L) is a permutation matrix, E(L) has entries satisfying certain bounds as in [ 14 ] to

ensure stability, and Ki|̃ii
consists of r selected rows of Ki corresponding to a row index set

ĩi. In theory, any rank-revealing QR factorization may suffice, but in practice the stability

guarantees of the SRRQR factorization are important to maintain good accuracy with a large

number of proxy points. This factorization is also called an interpolative decomposition [ 37 ]
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or structure preserving rank-revealing (SPRR) factorization [ 33 ]. As mentioned in [ 33 ], this

results in the approximation

C−
i,2(= k(si, Yi)) ≈ Π(L)

 I

E(L)

Gi |̃ii
HT

i ≈ Π(L)

 I

E(L)

C−
i,2|̃ii

. (2.29)

Thus, C−
i,2|̃ii

serves as an approximate row basis matrix for C−
i,2. Such a procedure of using

the proxy point method and the SPRR factorization to get (  2.27 )–( 2.29 ) is also called a

“hybrid” compression scheme [  18 ]. We pause to note that we have C−
i,2|̃ii

= k(̃si, ti) for a

subset s̃i of si. That is, ( 2.29 ) sparsifies si into s̃i. In such circumstances, s̃i is sometimes

called a skeleton [ 38 ], [  39 ] or representative set [ 40 ].

Accordingly, we have

C−
i ≈ P (L)


I

Π(L)

 I

E(L)




 C−

i,1

C−
i,2 |̃ii

 . (2.30)

(Here, we abuse notation and use I to denote identity matrices of different sizes.) For

convenience, let īi be the row index of C−
i,1 in C−

i and let î(L) = īi ∪ ĩi. Then we may rewrite

( 2.30 ) as

C−
i ≈ U (L)C−

i |̂i(L) with U (L) = P̂ (L)

 I

Ê(L)

 , (2.31)

where P̂ (L) = P (L)

 I

Π(L)

 is a permutation matrix, Ê(L) =
(

0 E(L)
)

, and the

identity block in P̂ (L) and the zero block in Ê(L) both have column sizes equal to |̄s|.

( 2.31 ) essentially means that the entire Xi set is then sparsified to

ŝi ≡ s̄i ∪ s̃i, (2.32)
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which corresponds to the index set î(L). This is illustrated in Figure  2.6 (b). ( 2.31 ) may then

also be written as

C−
i (= k(Xi, Yi)) ≈ U (L)k(̂si, Yi). (2.33)

Note that

|si| = |̄si| =
n

2L+1 , |̂si| =
n

2L+1 + r. (2.34)

At this point, we set the HSS generator Ui = U (L). If i is any other node at the leaf level

not corresponding to the topmost HSS block row, we note that by Proposition  2.2.2 , all of

the displays in the previous case are still valid for the same matrix U (L) and row index set

î(L). Hence, we may set the HSS generator Ui to U (L) in this case as well. (Note that our

notation Π(L), U (L), Ê(L), and î(L) above is therefore justified.) Also, when si for each leaf i

is sparsified, the entire set X gets sparsified accordingly, as illustrated in Figure  2.6 (c).

2.3.2 Compression at nonleaf levels

For a node i at a nonleaf level l < L, by induction, we may assume that we have computed

U (l+1). Let c1 and c2 be the children of i.

First, suppose that i corresponds to the topmost HSS block row at level l. With i in

( 2.33 ) set to be c1 and c2, respectively, we have that C−
c1 ≈ U (l+1)k(̂sc1 , Yc1) and C−

c2 ≈

U (l+1)k(̂sc2 , Yc2). Then

C−
i (= k(Xi, Yi)) ≈

 U (l+1)

U (l+1)


 k(̂sc1 , Yi)

k(̂sc2 , Yi)

 (2.35)

≡

 U (l+1)

U (l+1)

 k(Xi, Yi),
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where Xi = ŝc1 ∪ ŝc2 . See Figure  2.8 (a). Following the HSS construction procedure in [ 10 ],

the compression of C−
i can then be done on k(Xi, Yi), which corresponds to the rows of C−

i

with index set î(l+1) ∪ (̂i(l+1) + n
2l+1 ). Similarly to before, partition Xi as

Xi = si ∪ s̄i with

si = Xi ∩
{

ω2k−2 | n

2l+2 ≤ k <
3n

2l+2

}
, s̄i = Xi \ si. (2.36)

Again, when the interaction between Xi and Yi are considered as in k(Xi, Yi), si and s̄i

may be considered as the “far-field” and “near-field” subsets of Xi, respectively. Note that

the reason why we take the intersection with
{
ω2k−2 | n

2l+2 ≤ k < 3n
2l+2

}
in (  2.36 ) is for the

purpose of separation distance as in ( 2.26 ). This still ensures that, if we set s = si and

t = Yi in Definition  2.1.3 , then gapA(s, t) and spanA(s) satisfy ( 2.16 ), so that s and t are

well-separated. See Figure  2.8 (b).

s̃c1

s̄c1

s̄c1

s̃c2
s̄c2

s̄c2

yi

s̄i

si

s̄i

yi

s̄i

s̃i

s̄i

yi

(a) ŝc1= s̄c1 ∪s̃c1 , ŝc2= s̄c2 ∪s̃c2 (b) si (c) After sparsification

Figure 2.8. Forming Xi = ŝc1 ∪ ŝc2 and si and sparsifying si into s̃i for a nonleaf node i.

Then just as in the previous subsection, an analytic compression step can be applied to

k(si, Yi). The set si is then sparsified to s̃i of size |̃si| = r. See Figure  2.8 (c). Similarly to

( 2.29 ) and ( 2.33 ), we then obtain

k(si, Yi) ≈ Π(l)

 I

E(l)

 k(̃si, Yi), (2.37)

k(Xi, Yi) ≈ U (l)k(̂si, Yi), with U (l) = P̂ (l)

 I

Ê(l)

 , (2.38)

42



where ŝi is given as in ( 2.32 ) and corresponds to an index set î(l) in k(Xi, Yi), P̂ (l) is a

permutation matrix, and Ê(l) =
(

0 E(l)
)

has bounded entries.

Note that

|si| = |̄si| =
n

2L+1 + r(L− l), |̂si| =
n

2L+1 + r(L− l + 1). (2.39)

The reason for this is as follows. For i at level L, ( 2.34 ) holds. For i at level L − 1 with

children c1 and c2, s̄i is formed by n
2l+2 points of s̄c1 , n

2l+2 points of s̄c2 , and r points from s̃c1

and s̃c2 . (Note that the points in s̃c1 and s̃c2 are sampled from sc1 and sc2 , respectively, in

the same way, and together their contributions to s̄i has r points.) Then, for i at any level

l, (  2.39 ) can be shown by induction. In addition, the size of the near-field set s̄i in ( 2.39 ) is

reasonably small.

Now, from (  2.35 ) and the HSS construction process in [ 10 ], we can set the HSS generators

Rc1 , Rc2 as

 Rc1

Rc2

 = U (l). Again from Proposition  2.2.2 , for any other node i at the same

level l, the same Rc1 , Rc2 generators are used.

Also, for the purpose of extracting B generators later, we introduce the following index

set (as a column vector):

j(l) =

 j(l+1)

j(l+1) + n
2l+1


∣∣∣∣∣∣∣̂
i(l)

, (2.40)

where j(L) = î(L). j(l) is used to keep track of the index set of ŝi in X or the row index set of

k(̂si, Yi) in C.

This process is performed until every non-root level of T is visited. At that point, we get

all the U, R generators in the HSS approximation.

2.3.3 Other HSS generators

Now, as discussed in Section  2.2 , Proposition  2.2.3 means C−
i and (C |

i)T are closely re-

lated. In fact, other than few near-field columns in C−
i and rows in (C |

i)T , the remaining

subblocks only differ by a permutation. That is, the far-field compression for C−
i can es-

sentially be used for the far-field compression of (C |
i)T . Specifically, if we replace C−

i in
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( 2.27 )–( 2.29 ) by (C |
i)T , the results stay the same. Accordingly, we can obtain the V, W

generators by setting for each leaf i,

Vi = U (L).

Similarly, for each nonleaf i at level l with children c1, c2, we set

 Wc1

Wc2

 = U (l).

Note that the generators are the same for all the nodes at the same level due to Proposi-

tion  2.2.2 .

Next, due to the forms of U (L) in ( 2.31 ) and U (l) in ( 2.38 ), we can then use the index

sets defined in ( 2.40 ) to pick, for a left node i at level l,

Bi ≡ B(l,1) = C|j(l)×(j(l)+ n

2l ),

and for a right node i at level l,

Bi ≡ B(l,2) = C|(j(l)+ n

2l )×j(l) .

Lastly, for the (leaf-level) D generators, we need only to store D1 = k(X1, X1). Lemma  2.2.1 

means that this can be used to obtain the Di generators for any other leaf i.

Overall, we need only to obtain the matrices U (l), B(l,1), B(l,2) at each level l as well as

D1 at the leaf level. They are sufficient to write out all the HSS generators of the HSS

approximation. The basis generators U, V, W, R generators are provided by U (l) which is

defined by a permutation matrix and a matrix E(l) like in (  2.31 ) or ( 2.38 ). For D1 and each

B generator, it just needs to store the associated index sets.

2.4 Algorithm analysis and performance

Algorithm 1 details the construction process. At each level of the HSS tree T , one HSS

block is compressed. The corresponding point set is sparsified. The compression information
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is then used for the other HSS blocks at the same level. Such a scheme clearly leads to an

overall sublinear complexity with a sublinear storage, as verified by the following proposition.

Algorithm 1.

function (D1, U1, R(l), B(l)) =HyperHSS(T , τ) ▷ T : HSS tree with L levels

r ← O(| log2 τ |) ▷ Number of proxy points per level

i← 1

Xi ←
(
ω2k−2

)
0≤k< n

2L

▷ Indices ordered by increasing k

Di ← C|si×si

for l = L, L− 1, . . . , 1 do ▷ Levelwise traversal of T

if i > 1 then ▷ If i is not a leaf

c1 ← left child of i

Xi ←
(
ŝc1 , ŝc1 + n

2l+1

)
end if

si ← Xi ∩
{
ω2k−2 | n

2l+2 ≤ k < 3n
2l+2

}
▷ Far field

s̄i ← Xi \ si ▷ Near field

c← ω2L−l− 1
2 ▷ Center for proxy points

γ1 ← |c− ω2L−l−1|, γ2 ← |c− 1|

z←uniformly-spaced points on circle with center c and radius √γ1γ2

▷ Proxy points

k(si, z) ≈ U (l)k(̃si, z) ▷ Rank-r SPRR factorization to get s̃i ⊂ si

ŝi ← s̄i ∪ s̃i ▷ Reordered counterclockwise in C starting at 1

if l = L then

Ui ← U (l)

else Rc1

Rc2

← U (l) ▷ c1, c2: children of i

end if

ji ← index set corresponding to ŝi in X

Bi ← C|ji×(2L−l+ji), Bi+1 ← C|(2L−l+ji)×ji
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i← parent of i in T

end for

end function

end

Proposition 2.4.1. Let L = O(log n) and let r be the number of proxy points used in each

far-field compresion step of the algorithm. Then the algorithm described above constructs

the HSS approximation in O(r3 log2 n) flops with O(r2 log2 n) storage for the HSS generators

if the B generators are not explicitly formed. An extra O(r2 log3 n) cost and O(r2 log3 n)

storage are needed for the B generators. In addition, the B generators at level l have sizes

O (r(L− l)).

Proof. At each level l, associated with the leftmost node i, the cost to form Gi like in ( 2.27 ) is

r
(

n
2L+1 + r(L− l)

)
flops, since Gi has size |si|×r with |si| in (  2.39 ). The SPRR factorization

of Ki costs O
(
r2
(

n
2L+1 + r(L− l)

))
. The total compression cost at all levels is then

L∑
l=1

O
(

r2
(

n

2L+1 + r(L− l)
))

= O(r3L2).

The storage is mainly for E(l) in (  2.37 ) and for some index vectors and looks like

L∑
l=1

O
(

r
(

n

2L+1 + r(L− l)
))

= O(r2L2).

The B generators at level l have sizes |j(l)|, which is also |̂i(l)|. Now, |̂i(l)| = |̂si| =

O (r(L− l)) from ( 2.39 ). If additionally we explicitly form B generators, then the extra cost

is
L∑

l=1
O
(
(r(L− l))2

)
= O(r2L3).

(Note that the cost for forming D1 is only O(r2).)

From this, we can see that the resulting HSS approximation has B generators with sizes

O (r(L− l)) = O(log n). This reflects the off-diagonal ranks of the HSS form. With the
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compression of each far-field blocks satisfying the accuracy in (  2.11 ), it is convenient to

apply a result in [  31 ] to obtain a global approximation error, which is roughly O(τrlog n).
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Figure 2.9. Operation count for Algorithm 1 with varying n, together with
trendlines (shown in circles ◦) that are O(log2 n) in the left plot and O(log3 n)
in the right plot. The figures suggest that the flop count associated with
forming the D, U , and R generators in the left plot is asymptotically O(log2 n)
and that the flop count associated with forming the B generators in the right
plot is asymptotically O(log3 n).

To illustrate the performance of the algorithm, we apply it to C with matrix sizes

n = 27, 28, . . . , 262. The SPRR factorization is based on an implementation from [ 41 ]. In

Figure  2.9 , we compare the number of floating point operations required to construct the

HSS generators using Algorithm 1 for a Cauchy matrix of size n. The left plot shows the

operation count associated with forming the D, U , and R generators; the right plot shows

the count associated with forming the B generators. We compare the count for the D, U, R

generators and the count for the B generators with the provided O(log2 n) and O(log3 n)

trendlines, respectively; it is evident that the former is asymptotically proportional to log2 n

and that the latter is asymptotically proportional to log3 n. Hence, their sum appears to be

asymptotically proportional to log3 n.

Similarly, in the left plot of Figure  2.10 , we provide the effective storage costs for the

constructed D, U , R, generators. This count includes storing the E matrices and permutation

vectors at each level, rather than the full U and R generators, of which significant subblocks

are simply permutation matrices. (Counting the full U and R generator storage cost would

47



0 20 40 60 80
0

5

10

15
105

log n

#
of

st
or

ed
va

lu
es

0 20 40 60 80
0

2

4

6

8

10

12

14
107

log n

#
of

st
or

ed
va

lu
es

Figure 2.10. Effective storage costs for Algorithm 1 with varying n, together
with trendlines (shown in circles ◦) that are O(log2 n) in the left plot and
O(log3 n) in the right plot. The figures suggest that the effective storage cost
for forming the D, U , and R generators in the left plot is O(log2 n) and that the
effective storage cost for forming the B generators in the right plot is O(log3 n).

introduce another factor of log n.) In the right plot, we count the effective storage costs for

the B generators. In these counts, we set both the number of proxy points and the far-field

rank to be 25. In comparing the storage count for the D, U , and R generators and the storage

count for the B generators to the provided O(log2 n) and O(log3 n) trendlines, respectively,

we again see that both counts appear to be asymptotically proportional to log2 n and log3 n.

So, again their sum is asymptotically proportional to log3 n.

In Algorithm 1, we also require a number of function evaluations to precompute certain

points selected from the unit circle. For completeness, we count these function evaluations

in Figure  2.11 . Again, the evaluation count associated with forming the D, U , and R

generators is counted in the left plot, and the evaluation count associated with forming the

B generators is counted in the right plot. In comparing them to the provided O(log2 n) and

O(log3 n) trendlines, respectively, these again appear to asymptotically grow as log2 n and

log3 n. Together, the three Figures  2.9 through  2.11 corroborate the cost calculation in the

preceding proposition, since r is kept constant at 25 and L is O(log n).

Also, in Figures  2.13 and  2.14 , we plot si, s̃i, Xi, and ŝi versus the height of each cor-

responding HSS tree node, for a Cauchy matrix of size 4096 and 6 levels of compression.

We again take 25 to be the number of proxy points and the off-diagonal far-field rank. The
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Figure 2.11. The number of exponential function evaluations in Algorithm 1
with varying n, together with trendlines (shown in circles ◦) that are O(log2 n)
in the left plot and O(log3 n) in the right plot. The figures suggest that the
number of function evaluations for forming the D, U , and R generators in the
left plot is O(log2 n) and that the number of evaluations for forming the B
generators in the right plot is O(log3 n).
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Figure 2.12. The relative accuracies in the Frobenius norm for the HSS
approximation to C using the generators constructed by the new algorithm.
Here, the leaf level size was kept constant at 64, both the off-diagonal far-field
rank r and the number of proxy points was 25.

expected linear growth of the sizes of si, s̃i, Xi, as well as the expected constant size of

the sparsified far field ŝi, shows that our implementation of the algorithm validates the as-

sumptions on the computational and storage costs at each level in the proof of the above
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proposition. Finally, to illustrate the accuracy of this algorithm, in Figure  2.12 we show that

the relative accuracy in the Frobenius norm for the HSS approximation to C constructed

using Algorithm 1 stays roughly within one order of magnitude using the same number of

proxy points and off-diagonal far-field rank at each level. Here, we also take both to be 25.

This indicates that Algorithm 1 seems to continue producing accurate approximations as n

grows.
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Figure 2.13. The cardinalities of si (·) and s̃i (◦) for n = 4096, L = 6, and
r = 25. Here, r = 25 proxy points were also used in the far-field approximation.
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Figure 2.14. The cardinalities of Xi (·) and ŝi (◦) for n = 4096, L = 6, and r =
25. Again, r = 25 proxy points were also used in the far-field approximation.
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3. HYPERFAST HSS CONSTRUCTION OF SOME TOEPLITZ

MATRICES

The ideas of the previous chapter concerned a particular kind of Cauchy matrix C. In this

chapter, we show how to extend these ideas to another class of “kernel matrices” defined on

a set of points with regular geometry as follows. Since the compression step for each HSS

row block C−
i only relies on the factor Ki in ( 2.27 ), it is possible to apply the idea of reusing

the same row basis Ũl, as in ( 2.31 ) and ( 2.38 ) across all the HSS block rows at the same

depth to some other kernel matrices, as long as the relative geometry of the proxy points and

enclosed points is the same due to symmetry. See Figure  3.1 for two examples: (a) gives the

symmetry in use in the last chapter, and (b) gives the symmetry we will use in this chapter.

(a) Circle symmetry (b) Line symmetry

Figure 3.1. Symmetry of the proxy point contours (dotted lines) and their
enclosed points si (□).

In particular, let A = k(X, Y ), for some finite sets X, Y ⊆ C, and let Xi, Yi be the points

associated with the ith HSS block row A−
i . Suppose that for each y ∈ Yi, k(z, y) is complex-

analytic in z on a region containing a circular contour around a subset si (the “far field”)

of Xi. Let zi be the associated set of proxy points. Then, suppose the corresponding proxy

point approximation looks like

k(si, Yi) ≈ λ(si, zi)k0(zi, Yi),

52



where λ is the Cauchy kernel and k0 depends on k and i. If this approximation yields an

identical λ(si, zi) for each i, we may apply the basis reuse idea from our earlier discussion.

This is exactly what we intend to do in this chapter, by considering Toeplitz matrices as

kernel matrices.

Toeplitz matrices arise frequently in many areas of computation and engineering such as

digital signal processing and differential equation solutions. In Chapter  2 , we mentioned sev-

eral algorithms have been devised that exploit the displacement structure of general Toeplitz

matrices to perform various matrix operations faster than the counterpart “naive” algorithms

applicable to general matrices. We have seen examples of the resulting fast and superfast

algorithms in [ 24 ], [ 42 ]. We have also seen that the resulting Cauchy-like intermediate ma-

trices in such algorithms can be quickly approximated by structured matrices as in [ 9 ], [ 24 ],

[ 29 ]. Similarly, in digital signal processing, it has become well-known that the multiplication

of Toeplitz convolution matrices with a given signal can be accelerated by applying FFTs

and performing the equivalent operation in the frequency domain.[ 43 ], [  44 ]

As we saw in the last chapter, the central idea of such algorithms over the past few decades

has become to apply fast Fourier transforms (FFTs) and then solve the equivalent Cauchy-

like system in the frequency space Recalling the methods mentioned in the last chapter,

we observe that, after certain speedups that may be obtained using randomized techniques,

the dominant cost in structured matrix frequency-domain Toeplitz algorithms becomes the

application of FFTs, as in [  10 ], [ 30 ], [ 37 ]. Hence, in theory, general HSS algorithms can

potentially achieve a speedup for matrix operations whenever a matrix is both Toeplitz

and has low off-diagonal rank before the application of FFTs.[ 10 ] In such algorithms, the

dominant cost becomes the construction of the structured approximant; thus, bringing this

cost down is a worthwhile endeavor.

In this chapter, we show that for Toeplitz matrices whose Toeplitz vector is generated by

a univalent map applied to the positive integers, we are able to reduce the HSS construction

time complexity from O (k2n) [ 23 ] to O
(
log5 n

)
in the size n of a square matrix with off-

diagonal rank bound k. This is done in much the same way as in the previous chapter.

While the new algorithm is less widely applicable, it may nevertheless be applied to certain

important classes of matrices, such as those arising from a convolution of a digital signal
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with a large Gaussian filter [ 44 ]. In addition, since this new scheme does not rely on Fourier

space representation, it has the advantage of preserving the rank structure of any diagonal or

rank-structured summand that may be added to the Toeplitz matrix, such as when localizing

eigenvalues; examples of the necessity of such summands include [ 31 ], [  32 ].

The key ideas in this new construction scheme largely remain the same as in the previous

chapter: the use of the proxy point method in the process of obtaining an interpolative

decomposition; the separation of the relevant points into near- and far-field sets; and the

reuse of the resulting approximate basis matrix factors for all the HSS blocks at a given HSS

depth. To guide the process of obtaining these approximate basis factors, and to understand

when it is applicable, we perform a new analysis of the error introduced by the proxy point

method when applied to complex-analytic kernel matrices. In the case that the proxy point

method is used to approximate off-diagonal blocks of Toeplitz matrices with Toeplitz vector

generated by a complex-analytic univalent map, this error is then shown to be small enough

and to increase slowly enough in n to allow our construction algorithm to be performed in

sublinear time with respect to n.

The rest of this chapter is structured as follows: in Section  3.1 , we perform the new proxy

point error analysis for general complex-analytic functions. The HSS construction algorithm

for the Toeplitz matrices under our consideration is detailed in Section  3.2 ; an explicit bound

on the number of proxy points required in this construction is given in Section  3.2.3 . Finally,

in Section  3.3 , we perform some numerical tests of the new algorithm. This work will appear

in [  45 ].

3.1 General proxy point method analysis for analytic kernels

First, we recall the proxy point method and provide a new analysis for the error intro-

duced in its application. As mentioned earlier in Section  2.1 , the analysis to follow here is

more general but provides an absolute bound, rather than the relative bound found in [ 18 ].

(See Chapter  1 .)

Let D, E ⊆ C be open balls with center c and radii r and R, respectively; let X ⊆ D and

Y ⊆ C be finite sets; and let k : C2 → C be a function such that, for each y ∈ Y , k(z, y) is
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an analytic function of z on the annulus E \D. Then, for each x ∈ X, y ∈ Y , by the Cauchy

integral formula, we have

k(x, y) = 1
2πi

∫
C

k(ζ, y)
ζ − x

dζ,

where C the boundary of an open ball with center c radius
√

Rr. (See Figure  3.2 (a).)

X
∂D

∂E C

X
∂D

∂E Z

(a) The contour C (red), the
finite set X (blue), and the
boundaries of the open balls D

and E; the shaded green region
shows where k(y, z) is assumed
to be analytic in z for each y ∈
Y

(b) The finite sets X (blue) and
Z =

⋃N
j=1 zj (red), as well as

the boundaries of the open balls
D and E

Figure 3.2. Setup for a proxy point approximation to k(X, Y ). (The set Y
is not pictured.)

Using the trapezoidal rule with N points to approximate this integral, we have

k(x, y) =
√

Rr

N

N∑
j=1

(
1

zj − x

)(
ωjk(zj, y)

)
+ ϵ,

where zj = c +
√

Rrωj, ω = e 2π

N , and ϵ ∈ C is ideally very small in magnitude. (See

Figure  3.2 (b).) To find a bound for |ϵ|, we prove the following fact; the proof is partly based

on the proof of Theorem 2.2 in [  46 ]:
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Proposition 3.1.1. Let D, E ⊆ C be open balls with center c and radii r and R, respectively;

let X ⊆ D and Y ⊆ C be finite sets; and let k : C2 → C be a function such that, for each

y ∈ Y , k(z, y) is an analytic function of z on E. Then for each x ∈ X, y ∈ Y , we have

∣∣∣∣∣∣k(x, y)−
√

Rr

N

N∑
j=1

(
1

zj − x

)(
ωjk(zj, y)

)∣∣∣∣∣∣ ≤ K
maxz∈∂F |k(z, y)|(

R
r

)N
4 − 1

,

where K =
(

2
4
√

R
r

4
√

R
r

−1

)
and F is the open ball with center c and radius r

(
R
r

) 3
4 .

Proof. Let A = B
(
0, 4
√

R
r

)
\B

(
0,
(

4
√

R
r

)−1)
, and for each x ∈ X, y ∈ Y , let kx,y : A→ C be

defined by

kx,y(z) =
k
(
c + z

√
Rr, y

) (
z
√

Rr
)

c + z
√

Rr − x
.

By our assumption on k, kx,y is analytic on an open set containing the compact annulus A,

so we have the Laurent series expansion kx,y(z) = ∑∞
p=−∞ apzp. In particular, we have

N∑
j=1

( 1
N

)
kx,y

(
ωj
)

=
N∑

j=1

( 1
N

) ∞∑
p=−∞

ap

(
ωj
)p

=
∞∑

p=−∞

N∑
j=1

( 1
N

)
ap

(
ωj
)p

=
∞∑

p=−∞
aNp,

where the last line follows from the fact that ∑N
j=1

(
1
N

)
(ωj)p is 0 if p is not a multiple of N

and 1 if p is a multiple of N . In addition, by the definition of Laurent series coefficients and

the Cauchy integral formula, respectively, we have

a0 = 1
2π

∫ 2π

0
kx,y

(
eiξ
)

dξ = k(x, y).
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Hence, we get

∣∣∣∣∣∣k(x, y)−
N∑

j=1

(√
Rr

N

)
ωjk (zj, y)

zj − x

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1
2π

∫ 2π

0
kx,y

(
eiξ
)

dξ −
N∑

j=1

( 1
N

)
kx,y

(
ωj
)∣∣∣∣∣∣

=
∣∣∣∣∣∣
 −1∑

p=−∞
aNp

+
 ∞∑

p=1
aNp

∣∣∣∣∣∣
≤

 −1∑
p=−∞

|aNp|

+
 ∞∑

p=1
|aNp|

 .

Now, let F ′ be the annulus B
(

c, r
(

R
r

) 3
4
)
\B

(
c, r 4

√
R
r

)
. For each p ∈ Z with p ̸= 0, we have

|ap| ≤
∣∣∣∣∣ 1
2π

∫
|ζ|= 4
√

R
r

kx,y(ζ)
ζp+1 dζ

∣∣∣∣∣ ,
∣∣∣∣∣∣ 1
2π

∫
|ζ|=
(

4
√

R
r

)−1
kx,y(ζ)
ζp+1 dζ

∣∣∣∣∣∣
≤ maxz∈A (|kx,y(z)|)(

4
√

R
r

)|p|

≤
(maxz∈F ′ |k(z, y)|)

(
maxz∈F ′

∣∣∣ z−c
z−x

∣∣∣)(
4
√

R
r

)|p|

≤

 4
√

R
r

4
√

R
r
− 1

 (maxz∈F ′ |k(z, y)|)(
4
√

R
r

)|p|

≤
(

K

2

) (maxy∈Y,z∈F |k(z, y)|)(
4
√

R
r

)|p|

≤
(

K

2

) maxy∈Y,z∈∂F |k(z, y)|(
4
√

R
r

)|p| ,
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with the last two inequalities by the maximum modulus principle since k(z, y) is holomorphic

on E. Therefore,

∣∣∣∣∣∣k(x, y)−
N∑

j=1

(√
Rr

N

)
ωjk (zj, y)

zj − x

∣∣∣∣∣∣ ≤
 −1∑

p=−∞
|aNp|

+
 ∞∑

p=1
|aNp|


≤
(

K

2

)2
∞∑

p=1

1(
4
√

R
r

)Np

 max
y∈Y,z∈∂F

|k(z, y)|

≤ K
maxy∈Y,z∈∂F |k(z, y)|(

R
r

)N
4 − 1

,

as claimed.

For a discussion of similar bounds, see [ 46 ]. However, note that the bounds given there

and elsewhere in the numerical analysis literature do not simultaneously and explicitly bound

the proxy point error for all values of an enclosed set X for each y ∈ Y ; hence, we may use

our new bound to bound the entrywise error across an entire kernel matrix block. This

property will allow us to use this bound to guarantee applicability of the HSS construction

method in Sections  3.2.1 and  3.2.2 . This proof also provides a reason for the heuristic,

shown in Proposition  1.1.3 ([ 18 ]) for the Cauchy kernel, that in the setup above we should

pick C to have radius
√

Rr. Therefore, for the kernel matrix k(X, Y ), we have a low-rank

approximation

k(X, Y ) ≈ UV, (3.1)
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where

U =



1
z1−x1

1
z2−x1

· · · 1
zN −x1

1
z1−x2

1
z2−x2

· · · 1
zN −x2

... ... . . . ...
1

z1−xl

1
z2−xl

· · · 1
zN −xl


;

V =



ω
√

Rrk (y1, z1) ω
√

Rrk (y2, z1) · · · ω
√

Rrk (ym, z1)

ω2
√

Rrk (y1, z2) ω2
√

Rrk (y2, z2) · · · ω2
√

Rrk (ym, z2)
... ... . . . ...

ωN
√

Rrk (y1, zN) ωN
√

Rrk (y2, zN) · · · ωN
√

Rrk (ym, zN)


;

x1, . . . , xl are the elements of X; and y1, . . . , ym are the elements of Y . Furthermore, by

Proposition  3.1.1 , we have the bound

∥k(X, Y )− UV ∥2 ≤ lmK
maxy∈Y,z∈∂F (k(z, y))(

R
r

)N
4 − 1

,

where F is an open ball with center c and radius r
(

R
r

) 3
4 . Hence, for a given 2-norm tolerance

τ of the proxy point approximation to k(X, Y ), we only need to use O (log lm + log τ) proxy

points as long as the assumption on the analyticity of k holds.

As we noted in Section  1.1.2 , the left factor U does not at all depend on k. Hence,

the quality of the approximation ( 3.1 ) depends entirely on the function maximum term

considered in Proposition  3.1.1 . Coming up with a condition on k to ensure a slow enough

growth of this maximum will be our task in Section  3.2.3 . There, we show that univalence

of a function related to the definition of k serves this purpose.

3.2 Sublinear Toeplitz kernel HSS generator construction

In this section, we detail our sublinear HSS construction algorithm for Toeplitz matrices

arising from univalent maps applied to a regular grid. This method is almost the same as

that given in Algorithm 1, with the only difference being the geometry of the proxy points
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involved. For completeness, we detail the approximation construction algorithm in  3.2.1 

and  3.2.2 ; the analysis of the number of proxy points necessary for a good approximation is

shown in  3.2.3 .

Let

T =



t0 t−1 . . . t−(n−1)

t1 t0 . . . t−(n−2)
... ... . . . ...

tn−1 tn−2 . . . t0


,

be an n× n real- or complex-valued Toeplitz matrix where the entries may be expressed as

ti = f1(−i) for −n ≤ i ≤ −1 and ti = f2(i) for 1 ≤ i ≤ n for some injective (“univalent”)

functions f1 ∈ O
(
B
(
−n

2 , n
2

))
and f2 ∈ O

(
B
(

n
2 , n

2

))
. (Here, by O

(
B
(
−n

2 , n
2

))
, we mean

the set of holomorphic functions on the open ball in C with both center and radius n
2 .)

Such matrices occur in [ 47 ][ 48 ], among many other more general contexts discussed in the

introduction. In [ 47 ], for example, the functions f1, f2 are defined by −f1(z) = f2(z) =

(1 − z) log
(

z−1
z

)
+ (z + 1) log

(
z

z+1

)
. To illustrate the application of this method, we will

deal with the symmetric case f = f1 = f2. The non-symmetric case is handled similarly (see

Section  3.2.2 ). Since we are constructing generators for approximations to the off-diagonal

blocks of T , we may assume without loss of generality that t0 = 0. Furthermore, we assume

that n is a power of two greater than 8.

3.2.1 Constructing the HSS row generators

Let L ≤ log2(n) − 2 be the number levels in the desired HSS approximation to T . Let

s be a bound for the numerical HSS rank of T ; we assume specifically that s is O(log n).

(The analysis in Section  3.2.3 can actually be used to show that s is O(log2 n), but that is

not our focus here.) For each 1 ≤ i, j ≤ n with i ̸= j, we have Ti,j = f (|j− i|). Hence, we

may consider an HSS block T −
j to be the kernel matrix k(ij, [1, n] \ ij), where k is defined by

k(x, y) = f(|x − y|). Directly finding a low-rank factorization for T −
j , for example as when

j = 1 in the first step in the HSS construction algorithm in [  10 ], is already prohibitively
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expensive with at least O(n) flops. Instead, we may follow a similar list of steps as in

Section  2.3 :

• If j is not leaf of T , we assume we have performed this list of steps on its children

c1(j) and c2(j) to obtain sets of indices i′
c1(j), i′

c2(j) ⊆ ij. If j is a leaf, we define c1(j) =

c2(j) = j and i′
j = ij. Then, we define i′

j = i′
c1(j) ∪ i′

c2(j) and apply a proxy point

approximation to
(
T −

j

)
i′
j×[1,n−|ij|]

. However, since we only assumed that f is analytic

on B
(

n
2 , n

2

)
, by Equation  3.1 , the ratio R

r
in this case could be as large 1

n
, and therefore

the number of proxy points N required to obtain a reasonably good approximation

may be prohibitively large. Hence, we first separate ij into the “near-field” and “far-

field” subsets îj and ĩj = ij \ îj, respectively, where îj is the subset of ij consisting

of its first and last |ij|
4 values, respectively, ordered the usual way. We then define

î′
j = îj ∩ i′

j, ĩ′
j = ĩj ∩ i′

j, T −
j,1 = k

(̂
i′
j, [1, n] \ ij

)
, and T −

j,2 = k
(̃
i′
j, [1, n] \ ij

)
; and we

apply a proxy point approximation to only the far-field subblock: T −
j,2 ≈ ŨjṼj. For this

approximation, we use a circular contour with center 1
2 (min(ij) + max(ij)) and radius

√
2

2 (max(ij)−min(ij) + 1) to obtain R
r

= 2. (See Figure  3.3 and Figure  3.4 .)

We thus have

(
T −

j

)
|i′

j×[1,n−|ij|] = Πi

T −
j,1

T −
j,2

 = Πi

I 0

0 Ũi


T −

j,1

Ṽi

 ,

where Πi is a permutation matrix.

• Next, we find a strong rank-revealing QR factorization

Ũj = U j
(
Π′T

j Ũj
)
|[1,s]×[1,N ],

where U j =
(

I Ej

)T

and Π′
j is a permutation matrix. We then have

T −
j,2 ≈ U j

(
Π′T

j Ũj
)

[1,s]×[1,N ]
Ṽj ≈ U j

(
Π′T

j T −
j,2

)
[1,s]×[1,n]\ij

,
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Figure 3.3. Top: the near-field points ĩ′
1 (◦), far-field points î′

1 (•), proxy points
(×), and the points [9, 32] (□) involved in the approximation of the leaf HSS
block T −

1 |i′
1×[1,n−|i1|] = k ([1, 8], [9, 32]) for a matrix of size n = 32, number of

HSS levels L = 2, and number of proxy points N = 16. Bottom: the resulting
index set i′

1 (□). (These are “cartoon illustrations” and are not actual results
from such an approximation applied to a subblock of an actual matrix T .)

so

(
T −

j

)
|i′

j×[1,n−|ij|] ≈ Πj

T −
j,1

T −
j,2



≈ Uj


(

ΠT
j T −

j |i′
j×[1,n]\ij

)
|[1,|̂i′

j|]×[1,n−|ij|](
ΠT

j T −
j |i′

j×[1,n]\ij

)
|[|̂i′

j|+1,|̂i′
j|+s]×[1,n−|ij|]


= UjT

−|i′
j×[1,n]\ij ,
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Figure 3.4. Top: the near-field points ĩ′
3 (◦), far-field points î′

3 (•), proxy
points (×), and the points [17, 32] (□) involved in the approximation of the
height-2 HSS block T −

3 |i′
3×[1,n−|i3|] = k

(
i′
j, [17, 32]

)
for a matrix of size n = 32,

number of HSS levels L = 2, and number of proxy points N = 16. Bottom:
the resulting index set i′

3 (□). (As noted in Figure  3.3 above, these are “cartoon
illustrations” and are not reflective of actual numerical results.)

where i′
j ⊆ ij is of size

∣∣∣̂i′
j

∣∣∣+ s and

Uj = Πj


I 0

0 Π′
j

 I

Ej



 .

Now, if j is a leaf, this last display is precisely the HSS generator. If j is not a leaf, we set

Rc1(j) = Uj|(i′
j∩ic1(j))×[1,|i′

j|+s] and Rc2(j) = Uj|(i′
j∩ic2(j))×[1,|i′

j|+s].
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3.2.2 Constructing the remaining HSS generators

Now, note that for each j at the leaf level in T , each matrix
(
T −

j

)
|i′

c1(j)∪i′
c2(j)×[1,n−|ij|] used

to obtain the generator Uj yields the same Uj regardless of the specific value of j. This is the

symmetry we mentioned at the beginning of the chapter, so as we mentioned earlier, it is a

very similar situation to Chapter  2 . Hence, i′
j is the same for any leaf-level j, so we can show

by induction on L that for each j at the same depth of T , Uj and i′
j are the same. This shows

that again, we only need to perform the above steps once at each depth of T to obtain all

the HSS row generators Uj for a leaf-level j and Rj for j with depth(j) ≤ L− 2. Furthermore,

because the above steps do not depend on the specific function k(x, y) = f(|x−y|) as long as

f satisfies the analyticity condition, the above steps also construct the HSS column generators

Vj and Wj. So, we set Vj = Uj for a leaf-level j and Wj = Rj for j with depth(j) ≤ L− 2. This

last fact shows why our assumption that f1 = f2 at the beginning of this section confers no

loss of generality. Finally, for each j ∈ T , we set Bj = Ti′
j×i′

sib(j)
.

So far, we have not mentioned how many proxy points are required for the far-field

approximation at each level in the above construction method; we will explore this issue in

the next section. We note here, however, that if the number of proxy points is O(log n),

then because the above procedure is almost exactly the same as in Section sec:hss, the flop

count of this method is the same. Therefore, we again get a total of O(log5 n) flops. We will

show that this is indeed the case—that is, a sublinear bound on the number of proxy points

required holds—in the next section whenever f satisfies certain conditions.

3.2.3 Number of proxy points required

First, as before, let T , I be the HSS tree and HSS index set of T , respectively. Let j ∈ T

have corresponding index set ij ∈ I. We define îj to be the subset of ij missing its least and

greatest ij
4 elements, ordered the usual way. We also define T̃ j,N

n to be the N -point proxy

point approximation (in the first variable) to the subblock T |̂ij,[1,n]\ij
= k

(̂
ij, [1, n] \ ij

)
with

center 1
2 (min(ij) + max(ij)) and radius 1

2 (max(ij)−min(ij) + 1).

Next, we show with Example  3.2.1 that for general f ∈ O
(
B
(

n
2 , n

2

))
, this approximation

need not have good convergence properties.
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Example 3.2.1. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j = cos
(

π

4 |j− i|
)
, and let

In = {in,1, in,2, in,3} be its one-level HSS index set, indexed the usual way. Then the associated

function f(z) = f1(z) = f2(z) = cos
(

πz
4

)
is holomorphic on B

(
n
2 , n

2

)
. Table  3.1 shows the

minimum number of points N required for T̃ 1,N
n to approximate (Tn) |̂in,1,[1,n]\in,1

to a given

tolerance. Note that even for such small matrix sizes and large tolerance, the number of

proxy points required already scales linearly with n. It is also worth noting that the rank of

Tn is at most 8 for all n and every off-diagonal block.

Table 3.1. The size n of the matrix Tn and the minimum number of proxy
points N required to attain

∥∥∥(Tn) |̂in,1,[1,n]\in,1
− T̃ 1,N

n

∥∥∥
F

< 10−6.

n 16 24 32 40 48 56 64 72 80
N 21 27 34 39 47 53 59 65 72

A few words about the poor performance in Example  3.2.1 are in order. By Proposi-

tion  3.1.1 , for each y ∈ Y = [1, n] \ in,1 =
[

n
2 + 1, n

]
, k(z, y) = f (|z − y|) must not be too

large in absolute value for all z ∈ ∂F = ∂B
(

n
4 + 1

2 ,
4√8n
8

)
in order for a small number of

proxy points to be sufficient. But in this case, we may observe that, if y = n
2 + 1, the max-

imum of f (|y − z|) = cos
(

π

4 |y − z|
)

along z ∈ ∂F grows exponentially in n. In particular,

even though cosine is bounded on the real line, its growth along the one-dimensional line

z(t) = t + it (as a real vector space, for real t) is exponential. Hence, the growth of N with

respect to n shown in Table  3.1 gives evidence that f with large values on B
(

n
2 , n

2

)
may

require a lot of proxy points for an accurate approximation.

On the other hand, if f is bounded on the real line and univalent on B
(

n
2 , n

2

)
, we

show in Example  3.2.2 that we do seem to have good proxy point convergence for the HSS

approximation outlined in Sections  3.2.1 and  3.2.2 .

Example 3.2.2. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j = cos
(

π|j−i|
n

)
. Then the

associated function f(z) = f1(z) = f2(z) = cos
(

πz
n

)
is univalent on B

(
n
2 , n

2

)
and bounded

on the real line. Table  3.2 shows the minimum number of proxy points required for the

sublinear HSS construction method to yield a given approximation tolerance for the topmost

HSS row block.
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Table 3.2. The size n of the matrix Tn and the minimum value of N such
that the L-level HSS approximation constructed in Sections  3.2.1 and  3.2.2 

with N proxy points approximates the topmost HSS block of Tn to a relative
Frobenius norm error 10−10.

n 2048 4096 4096 8192 8192 8192 16384 16384 16384 16384
L 1 1 2 1 2 3 1 2 3 4
N 26 27 27 28 28 28 28 28 28 28

Example  3.2.2 gives strong numerical evidence that the proxy-point approximation has

good enough convergence properties to be used in practice, even despite global HSS error

accumulation. We now show that good proxy point convergence is true for general univalent

f .

Lemma 3.2.3. Let I be an HSS index set for an n× n matrix, where n is a power of 2; let

i ∈ I; and let l be the height of i. Define k(x, y) = f (|y − x|) for some f ∈ O
(
B
(

n
2 , n

2

))
;

let x ∈ î; let y ∈ [1, n] \ i; and let N ∈ N. Then

∣∣∣∣∣∣k(x, y)−
N∑

j=1


(

4
√

8
)

2l−1

N

 ωjk (zj, y)
zj − x

∣∣∣∣∣∣ < 14maxz∈∂F (|f (y − z)|)
2N

4 − 1
, (3.2)

where zj = c +
(

4
√

8
)

2l−1ωj, F is the open ball with center c and radius
(

4
√

8
)

2l−1, and

c = 1
2 (max(i)−min(i) + 1).

Proof. This is a fairly straightforward application of Proposition  3.1.1 , where we set X = î;

Y = [1, n] \ i; and D and E to be the open balls with center c and radii R = 2l−1 and r = 2l,

respectively. We thus get K = 2
4√2

4√2−1 < 14.

By the maximum modulus principle and Lemma  3.2.3 , if maxz∈∂B(n+1
2 , n

2 −1) |f(z)| has a

sufficiently small bound with respect to n, we would need only O (log n) + | log(ϵ)| proxy

points to obtain an entrywise proxy point approximation with tolerance ϵ at every height of

the HSS tree. We may obtain such a bound to combine with Lemma  3.2.3 if f is univalent

on B
(

n
2 , n

2

)
, and if f and its derivative does not grow too quickly quickly with respect to n

along the real axis.
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Proposition 3.2.4. Let f ∈ O
(
B
(

n
2 , n

2

))
be bounded and univalent (hence conformal) on

B
(

n
2 , n

2

)
. Then for z ∈ ∂B

(
n+1

2 , n
2 − 1

)
,

|f(z)| ≤
(

n

2

)3 ∣∣∣∣f ′
(

n

2

)∣∣∣∣+ ∣∣∣∣f (n

2

)∣∣∣∣ .
Proof. Define the functions h : D→ C and g : D→ C

h(z) =
(

n

2

)
z + n

2 , and

g(z) = (f ◦ h) (z)− (f ◦ h) (0)
(f ◦ h)′ (0)

.

Then g is schlicht, so by the growth theorem, we have |g(z)| ≤ |z|
(1−|z|)2 . Thus, for z ∈

∂B
(

n+1
2 , n

2 − 1
)

,

|(f ◦ h) (z)− (f ◦ h) (0)| ≤
|z|
∣∣∣(f ◦ h)′ (0)

∣∣∣
(1− |z|)2 .

Therefore, we have

|(f ◦ h) (z)| ≤
|z|
∣∣∣(f ◦ h)′ (0)

∣∣∣
(1− |z|)2 + |(f ◦ h) (0)|

≤
(

n

2

)2 ∣∣∣(f ◦ h)′ (0)
∣∣∣+ |(f ◦ h) (0)|

=
(

n

2

)2 ∣∣∣∣f ′
(

n

2

)
h′(0)

∣∣∣∣+ ∣∣∣∣f (n

2

)∣∣∣∣
≤
(

n

2

)2 ∣∣∣∣f ′
(

n

2

)∣∣∣∣ |h′(0)|+
∣∣∣∣f (n

2

)∣∣∣∣
=
(

n

2

)2 (n

2

) ∣∣∣∣f ′
(

n

2

)∣∣∣∣+ ∣∣∣∣f (n

2

)∣∣∣∣ ,
so the result follows from the definition of h.

We observe that the independence of this bound from x, y, and l (as defined in Lemma  3.2.3 )

is the main point of the statement. With this proposition in hand, we may obtain an error

bound for the proxy point approximation of an off-diagonal “far-field” row block.
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Corollary 3.2.5. Let T ∈ C be the n × n matrix with entries Ti,j = f (|j− i|), where

f ∈ O
(
B
(

n
2 , n

2

))
is injective (hence conformal) on B

(
n
2 , n

2

)
. Let I be the HSS index set of

T , and let ij ∈ I. Then

∥∥∥T |̂ij,[1,n]\ij
− T̃ j,N

∥∥∥
F
≤
(

7n2

2N
4 +1 − 2

)(
n3

8

∣∣∣∣f ′
(

n

2

)∣∣∣∣+ ∣∣∣∣f (n

2

)∣∣∣∣
)

.

Proof. By Lemma  3.2.3 , the maximum modulus principle, and Proposition  3.2.4 , in that

order, we have that for each 1 ≤ u ≤ |̂ij| and 1 ≤ v ≤ |[1, n] \ ij|,

∣∣∣∣(T |̂ij,[1,n]\ij

)
u,v
−
(
T̃ j,N

)
u,v

∣∣∣∣ < 14maxy∈[1,n]\i, z∈∂F (|f (y − z)|)
2N

4 − 1

≤ 14
maxz∈∂B(n+1

2 , n
2 −1) (|f (z)|)

2N
4 − 1

≤ 14
2N

4 − 1

(
n3

8

∣∣∣∣f ′
(

n

2

)∣∣∣∣+ ∣∣∣∣f (n

2

)∣∣∣∣
)

.

Since |̂ij|, |[1, n] \ ij| ≤ n
2 , the result follows by summing over all u and v.

Thus, to obtain a given proxy point approximation tolerance ϵ for any level, we need

O (log n) + O
(∣∣∣f (n

2

)∣∣∣) + O
(∣∣∣f ′

(
n
2

)∣∣∣) + O (| log ϵ|) proxy points. In practice, f and its

derivative are often bounded on the real line, as in Examples  3.3.1 and  3.3.2 below.

3.3 Numerical tests

First, we note that although univalence of f is a sufficient condition, it is not strictly

necessary in practice to enable the use of our sublinear Toeplitz HSS construction algorithm.

Example  3.3.1 illustrates this.

Example 3.3.1. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j =
(
|j− i| − n

2

)2
, so the

associated function f(z) = f1(z) = f2(z) =
(
z − n

2

)2
is not univalent on B

(
n
2 , n

2

)
. Ta-

ble  3.3 lists the relative approximation tolerance for various HSS approximations of T from

Sections  3.2.1 and  3.2.2 . (For the scheme as outlined there, we set s = 28. Each matrix

involved has a relative off-diagonal numerical rank of 3 with respect to the tolerance 10−14.)

Note that relatively small values of N result in a good approximation.
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Table 3.3. The relative Frobenius norm errors of the L-level HSS approxima-
tion to Tn from Sections  3.2.1 and  3.2.2 using N proxy points.

n 2048 2048 2048 2048 8192 8192 8192
L 2 2 4 4 4 4 6
N 32 48 32 48 32 48 32
rel. err. (e10−13) 5.4863 2.0441 2.9697 9.3656 7.7119 3.2532 3.3541

n 8192 16384 16384 16384 16384
L 6 6 6 7 7
N 48 32 48 32 48
rel. err. (e10−13) 1.0675 6.9370 2.9239 3.4362 1.0933

On the other hand, the conditions of Proposition  3.2.5 provides a wide class of functions

for which our sublinear HSS construction algorithm is guaranteed to work.

Example 3.3.2. Since f1(z) = n
z

and f2(z) = −n
z

are univalent on B
(

n
2 , n

2

)
, the method

from Sections  3.2.1 and  3.2.2 should work to find the HSS generators of Tn, the Cauchy

kernel matrix evaluated at n equidistant points in [− 1, 1], sublinearly.

Table  3.4 lists the relative approximation tolerance for various HSS approximations to

the matrix Tn ∈ Rn×n with off-diagonal values (Tn)i,j = n
j−i and diagonal values equal to 0.

The maximum relative off-diagonal numerical rank s is also listed; for this experiment, we

set s = 28 for each matrix.

Table 3.4. The relative Frobenius norm errors of the L-level HSS approxima-
tion to Tn from Sections  3.2.1 and  3.2.2 using N proxy points, as well as the
numerical HSS rank s of Tn with tolerance 10−14.

n 2048 2048 2048 2048 8192 8192 8192
s 26 26 26 26 30 30 30
L 2 2 4 4 4 4 6
N 32 48 32 48 32 48 32
rel. err. (e10−14) 7.1041 1.7926 5.9208 1.1841 8.1024 2.1102 6.1210

n 8192 16384 16384 16384 16384
s 30 33 33 33 33
L 6 6 6 7 7
N 48 32 48 32 48
rel. err. (e10−14) 1.2407 9.4705 2.5062 6.1585 1.2521
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Again, we pause to note that even after global error accumulation associated with an

HSS tree of depth 6 and 7 in Examples  3.3.2 and  3.3.1 , the relative error is still quite low.

This gives evidence that the asymptotic error decay regime from Proposition  3.2.4 holds well

enough in practice: note that the function in Example  3.3.1 is even increasing on B(n/2, n/2)

for increasing n.

3.4 Further extensions

We may be able to combine the proxy point method used in this section to approximate

the HSS generators of the blocks of the Cauchy-like matrix C associated with T (see the

beginning of Chapter  2 ) directly. This likely requires certain analytic or algebraic conditions

on T : namely, the generators of C may be obtained from ( 2.5 ) interpreted as an analytic

kernel applied to well-separated sets, as well as to a ”near field.” However, the geometric

properties of the points of C2 encoded by the matrices G and H in ( 2.5 ), namely their

separation, require conditions on T to be desirable. Such conditions may be difficult to

elucidate; work in this direction has been undertaken in [  28 ], [ 49 ]. It is possible that certain

Toeplitz matrices or other matrices with displacement structure that come from specific

applications have such desirable properties.
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4. MULTIDIMENSIONAL PROXY POINT METHOD

The new proxy point method analysis detailed in Chapter  3 relies on the Cauchy integral

formula, as well as the power series representation of and the maximum modulus principle

for complex-analytic functions. One may wonder whether the proxy point method analysis

may be extended to apply to points and kernels on Ck for k ≥ 2, since both the Cauchy

integral formula and the required power series properties readily generalize to complex-

analytic functions of several variables. The answer, as we will show, is yes; we detail this

generalization in Section  4.1 .

In addition, the method applied to accelerate HSS construction of Toeplitz matrices

viewed a Toeplitz matrix as a kernel matrix applied two identical sets of points, since the

values of a Toeplitz matrix can be thought of as a “one-parameter” set, varying only with

the difference of their row/column ordinals. There, we used a complex contour to separate

points on the real line and then used appropriate growth properties of the underlying function

to guarantee off-diagonal low rank. Since the values of any matrix can be viewed as a

“two-parameter” set, varying with the row/column ordinals, one may also wonder if we may

generalize this method somehow to a suitable class of underlying two-variable functions, using

the Cauchy integral formula in several variables. We will analyze one such generalization in

Section  4.2 .

4.1 Error analysis for the proxy point method in Ck

First, we give a very straightforward generalization of Proposition  3.1.1 to several complex

variables. To our knowledge, a similar idea has only been mentioned in the “Cauchy Fast

Multipole Method” scheme introduced in [ 22 ]; see Section 2.2 of that paper. However, the

convergence analysis of even the one-variable case given in that paper is largely heuristic,

in that it does not quantitatively relate a global error to an aspect of the geometry of the

points. That is, an analog to the ratio R/r, as defined in Proposition  3.1.1 , does not play

a role in bounding the number of proxy points N for all matrix entries simultaneously in

the analysis of that paper. Hence, such analysis is not as well-suited for rank bounds, as in

Corollary  3.2.5 . Furthermore, no convergence analysis of the multidimensional case is given
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at all. By contrast, we will focus on quantitatively relating the global error to R/r and the

number of proxy points N , even in the multidimensional case.

The proof of the following error bound works in exactly the same way as the one given in

Proposition  3.1.1 , but we provide it here for completeness. For simplicity, we only consider

the case when the radii in each dimension are equal, and when the number of proxy points

in each dimension is equal to N , for a total of Nk proxy points when dealing with kernel

functions on Ck. The general case follows similarly.

Proposition 4.1.1. Let D, E ⊆ Ck be hyperdisks with center c and radii r and R, respec-

tively; let X ⊆ D and Y ⊆ Ck be finite sets; and let k : C2k → C be a function such that, for

each y ∈ Y , k(z, y) is an analytic function of z on E. Then for each x ∈ X, y ∈ Y , we have

∣∣∣∣∣∣k(x, y)−
(√

Rr

N

)k ∑
1≤j1,...,jk≤N

ωj1 · · ·ωjkk ((zj1,1, . . . , zjk,k), y)
(zj1,1 − x1) · · · (zjk,k − xk)

∣∣∣∣∣∣
≤
(

2(R/r)1/4

((R/r)1/4 − 1)((R/r)N/4 − 1)

)k

max
z∈∂F
|k(z, y)|,

where F is the polydisk with center c and radius r
(

R
r

) 3
4 , and where zj,l = cl +

√
Rrωj for

1 ≤ l ≤ k and 1 ≤ j ≤ N .

Proof. Let A = Dk (0, (R/r)1/4) \ Dk
(
0, (R/r)−1/4

)
, and for each x ∈ X, y ∈ Y , let kx,y :

A→ C be defined by

kx,y(z) =
k
(
c + z

√
Rr, y

)
Πk

l=1

(
zl

√
Rr
)

Πk
l=1(cl + zl

√
Rr − xl)

.

By our assumption on k, kx,y is analytic on an open multicircular domain containing the

compact set A, so we have the k-variable Laurent series expansion

kx,y(z1, . . . , zk) =
∑

α1,...,αk∈Z
cα1,...,αk

Πk
l=1z

αl
l
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for (z1, . . . , zk) ∈ A. In particular, since convergence is uniform on A, we have

∑
1≤j1,...,jk≤N

( 1
N

)k

kx,y
(
ωj1 , . . . , ωjk

)
=

∑
1≤j1,...,jk≤N

( 1
N

)k ∑
α1,...,αk∈Z

cα1,...,αk
Πk

l=1(ωjl)αl

=
∑

α1,...,αk∈Z

∑
1≤j1,...,jk≤N

( 1
N

)k

cα1,...,αk
Πk

l=1(ωjl)αl

=
∑

α1,...,αk∈Z
cα1,...,αk

Πk
l=1(ωjl)αl ,

where the last line follows from the fact that, for each i = 1, . . . , k, 1 ≤ j1, . . . , ĵi, . . . , jk ≤ N ,

and α1, . . . , αk ∈ Z, we have
N∑

ji=1

( 1
N

)k

Πk
l=1

(
ωjl
)αl = 0

if αi is not a multiple of N and

( 1
N

)k−1
Π1≤l≤N, l ̸=i

(
ωjl
)αl

if αi is a multiple of N . In addition, by the definition of Laurent series coefficients and the

Cauchy integral formula, respectively, we have

a0 = 1
(2π)k

∫ 2π

0
· · ·

∫ 2π

0
kx,y

(
eiξ1 , . . . , eiξk

)
dξk · · · ξ1 = k(x, y).

Hence, we get

∣∣∣∣∣∣k(x, y)−
(√

Rr

N

)k ∑
1≤j1,...,jk≤N

ωj1 · · ·ωjkk ((zj1,1, . . . , zjk,k), y)
(zj1,1 − xj1) · · · (zjk,k − xjk)

∣∣∣∣∣∣
=
∣∣∣∣∣∣ 1
(2π)k

∫ 2π

0
· · ·

∫ 2π

0
kx,y

(
eiξ1 , . . . , eiξk

)
dξk · · · ξ1 −

∑
1≤j1,...,jk≤N

( 1
N

)k

kx,y
(
ωj1 , . . . , ωjk

)∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑
α1,...,αk∈Z, (α1,...,αk) ̸=0

cNα1,...,Nαk

∣∣∣∣∣∣ .
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Now, let F ′ be the multicircular region Dk
(
c, r (R/r)3/4

)
\ Dk

(
c, r (R/r)1/4

)
. For each

α1, . . . , αk ∈ Z with (α1, . . . , αk) ̸= 0, we have

|cα1,...,αk
| ≤ 1

(2π)k

∣∣∣∣∣
∫

|ξ1|=((R/r)1/4)e1
· · ·

∫
|ξk|=((R/r)1/4)ek

kx,y(ξ1, . . . , ξk)
Πk

l=1 (ξl)αl+1 dξk · · · dξ1

∣∣∣∣∣
for any e1, . . . , ek = ±1. Thus,

|cα1,...,αk
| ≤ maxz∈A |kx,y(z)|

Πl = 1k ((R/r)1/4)|αl|

≤
maxz∈F ′ |k(z, y)|maxz∈F ′

∣∣∣Πk
l=1

(
zl−cl

zl−xl

)∣∣∣
Πk

l=1 ((R/r)1/4)|αl|

≤
(

(R/r)1/4

(R/r)1/4 − 1

)k maxz∈F ′ |k(z, y)|
Πk

l=1 ((R/r)1/4)|αl|

≤
(

(R/r)1/4

(R/r)1/4 − 1

)k maxz∈F |k(z, y)|
Πk

l=1 ((R/r)1/4)|αl|

≤
(

(R/r)1/4

(R/r)1/4 − 1

)k maxz∈∂F |k(z, y)|
Πk

l=1 ((R/r)1/4)|αl|
,

with the last inequality by the maximum modulus principle since k(z, y) is analytic as a

function of z on E. Therefore,

∣∣∣∣∣∣k(x, y)−
(√

Rr

N

)k ∑
1≤j1,...,jk≤N

ωj1 · · ·ωjkk ((zj1,1, . . . , zjk,k), y)
(zj1,1 − xj1) · · · (zjk,k − xjk)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

α1,...,αk, (α1,...,αk )̸=0

(
(R/r)1/4

(R/r)1/4 − 1

)k maxz∈∂F |k(z, y)|
Πk

l=1 ((R/r)1/4)|αl|

∣∣∣∣∣∣
≤
(

2(R/r)1/4

((R/r)1/4 − 1)((R/r)N/4 − 1)

)k

max
z∈∂F
|k(z, y)|,

as claimed.

The analysis above makes clear that any two sets X and Y must be well-separated in

each coordinate. That is, since we are relying on a hyperdisk in Ck to separate X and Y , we

must have that the lth coordinate of all points in Y is at least a certain constant away from

the lth coordinate of all points in X. If X, Y ⊆ R2, for example, this condition means that
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we must be able to draw two squares around X, the first the smallest square that contains

X, given c, and the second the largest square that contains X but no points of Y , given that

same c. See Figure  4.1 .

Re(z2)

0
Re(z1)

r

R

Figure 4.1. The definition of the separation R/r between points X (◦, bottom
left) and Y (□, top right), for k = 2 and X, Y ⊆ R2. (That is, im(w) = 0 for
all w ∈ X, Y .) The smallest box centered at c containing X, as well as the
largest box containing X but excluding Y centered at c, are displayed (dashed
squares). The point c is the black cross (×).

So far, it is not clear if, in practice, the multidimensional proxy point method allows for

computational cost savings, or if commonly-used kernels grow too quickly along the set ∂F

considered in Proposition  4.1.1 to give a reasonable approximation. The next example should

make clear that the proxy point method remains effective for k = 2 and for the commonly-

used Coulomb (k(x, y) = 1
|y−x|) potential and Gaussian (k(x, y) = e(y−x)2) kernels.

Example 4.1.2. Tables  4.1 and  4.2 give relative Frobenius norm errors for the Gaussian

and Coulomb potential kernels, for configurations of points X and Y giving varying values

of R/r, as well as for varying numbers of proxy points in each dimension. The points used

for R/r = 2 are displayed in Figure  4.2 . Here, |X| = 4096 and |Y | = 8192.

The results of Example  4.1.2 who that, even for such moderately-sized matrices, the

multidimensional proxy point method outlined in this section allows for computational cost

savings. However, we caution that the number of proxy points is listed to be what it is in
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Table 4.1. The relative Frobenius norm errors of the multidimensional proxy
point approximation to the Gauss kernel matrix applied to X, Y ⊆ R2 giving
varying values of R/r, and using varying numbers of proxy points N in each
dimension.
R/r 2 2 2 3 3 3
N 32 48 56 32 48 56
rel. err. 1.95e10−6 5.95e10−9 3.48e10−10 7.11e10−6 1.60e10−12 1.28e10−14

Table 4.2. The relative Frobenius norm errors of the multidimensional proxy
point approximation to the Coulomb kernel matrix applied to X, Y ⊆ R2 giving
varying values of R/r, and using varying numbers of proxy points N in each
dimension.
R/r 2 2 2 3 3 3
N 32 48 56 32 48 56
rel. err. 1.19e10−6 3.80e10−9 2.15e10−10 1.80e10−9 2.10e10−13 2.45e10−15

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
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3.5

4

Re(z1)

R
e(

z 2
)

Figure 4.2. The sets X ⊆ R2 (blue, bottom left) and Y ⊆ R2 (red, top right)
used in Example  4.1.2 for R/r = 2. Here, |X| = 4096 and |Y | = 8192.

each dimension. That is, “N=32” in Tables  4.1 and  4.2 refers to 322 proxy points, already a

large number in two dimensions. Hence, the multidimensional proxy point scheme becomes

impractical, even with large matrices, when the dimension of the domain of the underlying

kernel function grows beyond two or three, unless the matrix in question is spectacularly

large. Similar numbers of proxy points have been required in more traditional proxy point
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schemes, such as the one studied in [ 21 ]; hence, there is evidence that proxy point methods

may not be appropriate for kernels acting on large-dimensional data sets.

4.2 General HSS matrix construction and rank bounds

In Section  3.2 , we considered an n × n Toeplitz matrix as a kernel matrix evaluated at

the difference of two sets of points in R, each set of points being the integers [1, n]. In this

section, we extend this idea to a general n × n matrix: we interpret each entry above the

diagonal as a two-dimensional kernel matrix evaluated at a function applied to two sets of

points in R2. Define the function p : [1, n]→ R2 by p(j) = ((−n− 1)/2 + j, j− 1) and the sets

X, Y = p([1, n]). In a similar manner as before, define k((w1, w2), (z1, z2)) = (w1+z1, w2−z2).

Then the (i, j)th entry of the matrix A is taken to be

Ai,j = k(p(i), p(j)) = f (p1(i) + p1(j), p2(i)− p2(j)) = f(−n− 1 + i + j, j− i) (4.1)

for some f : C2 → C. See Figure  4.3 .

Re(z1)

4

8

0 Re(z2)4 8−4−8

12

16

Figure 4.3. The points X (□, blue) and Y (◦, yellow) in our setup for viewing
the top HSS row block (shown in grey) of a general matrix as a kernel matrix,
for n = 16. In performing a proxy point approximation, as before, we only
apply it to the “far field” of X (shown as squares with white interior) to ensure
separation.

As an illustration, for n = 8, we have:
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,

which gives

A =



f(−7, 0) f(−6, 1) f(−5, 2) f(−4, 3) f(−3, 4) f(−2, 5) f(−1, 6) f(0, 7)

f(−6,−1) f(−5, 0) f(−4, 1) f(−3, 2) f(−2, 3) f(−1, 4) f(0, 5) f(1, 6)

f(−5,−2) f(−4,−1) f(−3, 0) f(−2, 1) f(−1, 2) f(0, 3) f(1, 4) f(2, 5)

f(−4,−3) f(−3,−2) f(−2,−1) f(−1, 0) f(0, 1) f(1, 2) f(2, 3) f(3, 4)

f(−3,−4) f(−2,−3) f(−1,−2) f(0,−1) f(1, 0) f(2, 1) f(3, 2) f(4, 3)

f(−2,−5) f(−1,−4) f(0,−3) f(1,−2) f(2,−1) f(3, 0) f(4, 1) f(5, 2)

f(−1,−6) f(0,−5) f(1,−4) f(2,−3) f(3,−2) f(4,−1) f(5, 0) f(6, 1)

f(0,−7) f(1,−6) f(2,−5) f(3,−4) f(4,−3) f(5,−2) f(6,−1) f(7, 0)



.

This setup is chosen so that each off-diagonal block of the matrix A corresponds to a

kernel matrix evaluated at two sets of points that may be separated by a polydisk. Since

any matrix may be written in this way (for example, take f to be a polynomial interpolant

for the values of A), and since a lot of matrices do not have low off-diagonal rank, we may

expect to require f to belong to a restrictive subclass of functions on D2 ((0, n/2), n/2) to

obtain growth bounds similar to  3.2.4 . This is indeed the case: the two-variable variable

analog of holomorphic, univalent functions on the unit disk are the biholomorphic starlike

and convex functions, so our conditions on f need to be adjusted accordingly. A thorough

reference on the subject of generalizing classical growth bounds on univalent functions of one

complex variable to the several variable case is found in [ 50 ].

First, we provide a fairly straightforward generalization of Proposition  3.2.4 for compo-

nent functions of starlike maps in the several variable case.

Proposition 4.2.1. Let f1 be a component of a biholomorphic map f : D2 ((0, n/2), n/2)→

C2 that is starlike with respect to (0, n/2). Then, for z ∈ ∂D2 ((0, (n + 1)/2), (n/2)− 1),

|f1(z)| ≤ n2(n− 1) ∥Jf (0, n/2)∥2 + |f(0, n/2)|∞ .
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Proof. Define h : D2 → C2 and g : D2 → C2 by

h(z1, z2) = ((n/2)z1, (n/2)z2 + (n/2)) , and

g(z1, z2) = ((f ◦ h)(z1, z2)− (f ◦ h)(0, 0)) (Jf◦h(0, 0))−1 .

Then |g(z)|∞ ≤
|z|∞

(1−|z|∞)2 by the growth theorem for starlike biholomorphic maps, so for

z ∈ ∂D2 ((0, (n + 1)/2), (n/2)− 1),

|(f ◦ h)(z)− (f ◦ h)(0)|∞ ≤
2|z|∞

(1− |z|∞)2 ∥Jf◦h(0)∥2 .

Hence,

|(f ◦ h)(z)|∞ ≤
2|z|∞

(1− |z|∞)2 ∥Jf◦h(0)∥2 + |(f ◦ h)(0)|∞

≤ 2n(n− 1) ∥Jf◦h(0)∥2 + |(f ◦ h)(0)|∞

= 2n(n− 1) ∥Jf (h(0))Jh(0)∥2 + |(f ◦ h)(0)|∞

= 2n(n− 1) ∥Jf (h(0))∥2 ∥Jh(0)∥2 + |(f ◦ h)(0)|∞

= n2(n− 1) ∥Jf (h(0))∥2 + |(f ◦ h)(0)|∞

= n2(n− 1) ∥Jf (0, n/2)∥2 + |f(0, n/2)|∞ .

Since |f1(z)| ≤ |f(z)|∞, the result follows.

Starlikeness is tedious to verify; a well-known characterization was given by Suffridge in

[ 51 ]. In practice, numerical evidence suggests that this scheme could work in at least a few

cases; we give numerical results for two variants of f(z) for which this scheme appears to

work in Example  4.2.4 below.

With this growth bound in hand for a appropriate functions f , we get the following

lemma in analogy with  3.2.3 .

Lemma 4.2.2. Let A ∈ Cn×n, for n a power of two, have entries Ai,j = f (i + j− n− 1, j− i)

for some analytic f : D2 ((0, n/2), n/2) → C. Let I be the HSS index set for A; let i ∈ I;
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and let l be the height of i. Define k((x1, x2), (y1, y2)) = f(x1 + y1, x2 − y2); let i ∈ î; let

j ∈ [1, n] \ i, and let N ∈ N. Then

∣∣∣∣∣∣A(i, j)−
∑

1≤j1,j2≤N

(
( 4
√

2)2l−1

N

)2
ωj1ωj2k (p(j), (zj1,1, zj2,2))

(zj1,1 − (p(i))1) (zj2,2 − (p(i))2)

∣∣∣∣∣∣
<

159
(nN/4 − 1)2 max

j∈[1,n]\i, z∈∂F
|f ((p(j))1 + z1, p(j)2 − z2)| ,

where zs,1 = c1 + ( 4
√

2)2l−1ωs, zs,2 = c2 + ( 4
√

2)2l−1ωs for 1 ≤ s ≤ N , and where c1 =

−(n/2) + 1
2 (min(i) + max(i)− 1) and c2 = 1

2 (min(i) + max(i))− 1.

Proof. This is again a straightforward application of Proposition  4.1.1 , where we set

X = {((−n− 1)/2 + i, i− 1) | i ∈ i} ,

Y = {((−n− 1)/2 + j, j− 1) | j ∈ [1, n] \ i} ,

and D and E to be the open balls with center c and radii R = 2l+1 and r = 2l, respectively.

We thus get K =
(

2 4√2
4√2−1

)2
< 159.

Finally, we may use this, as before, to bound the approximation error to the far field of

an HSS block of A using the proxy point method as above.

Corollary 4.2.3. Let A ∈ C be the n × n matrix with entries Ai,j = f1 (i + j− n− 1, j− i)

for some f1 a component function of a biholomorphic starlike (with respect to (0, n/2)) map

f on D2 ((0, n/2), n/2). Let I be the HSS index set of A, and let i ∈ I. Then

∥∥∥A|̂i,[1,n]\i − Ãj,N
∥∥∥

F
≤
(

n2

4

)(
159

(2N/4 − 1)2

)(
n3 ∥Jf (0, n/2)∥2 + |f (0, n/2)|∞

)
.

Proof. By Lemma  4.2.2 , the maximum modulus principle, and Proposition  4.2.1 , we again

have that for each 1 ≤ u ≤ |̂i| and 1 ≤ v ≤ |[1, n] \ i|,

∣∣∣∣(A|̂i,[1,n]\i

)
u,v
−
(
Ãj,N

)
u,v

∣∣∣∣ ≤ 159maxz∈∂D2((0,(n+1)/2),n/2−1) |f (z)|
(2N/4 − 1)2

≤ 159
(2N/4 − 1)2

(
n3 ∥Jf (0, n/2)∥2 + |f (0, n/2)|∞

)
.
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Since
∣∣∣̂i∣∣∣ , |[1, n] \ i| ≤ n

2 , the result follows by summing over all u and v.

Example 4.2.4. In Table  4.3 , we show two examples of f (as in Equation  4.1 ) for which the

proxy point approximation scheme detailed above yields a relatively small error. In particular,

in this example, we set n = 8192 and f to be one of

g1(z1, z2) =
√

((z1 + z2 − 1)/2 + 1024)2 + ((z2 − z1 − 1)/2)2 or

g2(z1, z2) = 1/(4096 + z1) + 1/(4096 + z2).

Note that using Theorem 3 in [ 51 ], it can be shown that g2 is a component of a starlike map.

To see this, for example, define

F (z1, z2) =
( 1

4096 + z1
+ 1

4096 + z2
,

1
4096 + z1

− 1
4096 + z2

)
.

Since this is a linear transformation of convex coordinate functions on D2 ((0, n/2), n/2), it

is convex, hence starlike. Thus, at least in the case of g2, Corollary  4.2.3 applies to give an

asymptotic guarantee of the efficacy of our approximation scheme.

Table 4.3. The relative Frobenius norm errors of the approximation to the
far field of the topmost HSS row block of an n×n matrix A, viewed as a kernel
matrix in the sense of Equation  4.1 with kernels g1 and g2, with n = 8192 using
N proxy points.

Kernel: N = 32 N = 48 N = 56
g1 3.88e10−6 1.24e10−8 7.22e10−10

g2 4.64e10−6 1.47e10−8 8.51e10−10

Example  4.2.4 gives good evidence that we are able to, apply the sublinear HSS con-

struction technique outlined in Chapter  3 to the “kernel matrix” defined by the function g2,

with points defined via p as in ( 4.1 ). More theoretically, Lemma  4.2.2 suggests that we may

perform a sublinear HSS construction for matrices A that are defined by a component func-

tion f (as in Equation  4.1 ) of any biholomorphic starlike map on the relevant region. The

HSS construction using a hybrid approximation as in Section  3.2 works exactly as before, so

it is not detailed here. Again, the key property enabling such a construction is the identical
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geometry between the proxy points involved and each appropriate subset of the points in X.

Although the specific functions of Example  4.2.4 do not have significance in any application

that we are aware of, the broader techniques illustrated may find application.

4.3 Further extensions

We may be able to generalize some ideas in this chapter to improve the bounds we

obtained from Proposition  4.1.1 . In particular, we may be able to apply a linear transfor-

mation to the sets X and Y in order to obtain a better value for R/r in the construction

of our bounding hyperdisk, at the possible expense of increasing the maximum obtained

by an accordingly-transformed value of f . Such techniques, if successful, would in particu-

lar help broaden the applicability of the scheme outlined in Section  4.2 . Furthermore, we

may be able to apply a similar multidimensional proxy point method to kernel functions of

high-dimensional data via the tensor decomposition thereof, as long as such decompositions

involve well-separated points.

Furthermore, we may be able to explore ways in which we can redefine f , X, and Y as

above using transformations other than a linear transformation. As an example in one dimen-

sion, we may think of the Cauchy matrix studied in Chapter  2 instead as the “exponential-

difference” kernel 1/(en = em), applied to suitable values n, m ∈ R. The Cauchy contour

would then change compared to before, and so would the maximum taken by the inequality

in Proposition  3.1.1 . (Such more general contours were used in the Cauchy FMM scheme

of [ 22 ].) The question is then whether or not the bound in Proposition  3.1.1 may be made

tighter in this manner. Numerical evidence suggests that it may not, at least in the one-

variable case, but there may be a difference in several variables.
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