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ABSTRACT

Throughout the design process, systems engineers use analysis tools to characterize the

composition, development, and behavior of complex engineered systems. As such, designers

must ensure that these tools generate accurate results for the systems they’re designed to

analyze. One such suite of tools is the Analytic Workbench (AWB), a framework couched in

a model-based systems engineering (MBSE) environment which provides methods for inte-

grating constituent systems into a system-of-systems (SoS) or a complex engineered system,

while taking into account the capabilities and requirements of the constituent systems, and

the interdependencies between them. Hypersonic vehicles present a number of design chal-

lenges that result in a narrow performance envelope and a high degree of interdependence

between subsystems, and so the AWB provides an appropriate tool set for characterizing

the conceptual design of this class of system. The purpose of this thesis is to generate effec-

tiveness metrics for the tools within the AWB — specifically Robust Portfolio Optimization

(RPO) and System Developmental Dependency Analysis (SDDA) — in the context of a

hypersonic vehicle design problem. In particular, this thesis focuses on verification and

validation metrics, and applies these metrics to several demonstration cases, in which the

outputs of RPO and SDDA analyses of a hypersonic vehicle model consisting of top-level

subsystems are compared with a hypothetical physical vehicle. This thesis examines several

candidate effectiveness metrics, and then applies the ones that satisfy the requirements for

RPO and SDDA verification and validation to the appropriate demonstration cases. The

AWB outputs for the vehicle models in these demonstration cases deviate slightly from the

corresponding quantities for the hypothetical physical vehicles, and the effectiveness metrics

decrease in value the greater these deviations are. Subsequent explorations of these met-

rics could apply these effectiveness to other types of design problems, including analyses

involving lower-level subsystems of hypersonic vehicles.
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1. INTRODUCTION

1.1 Context

In the past several years, the aerospace industry has increased its interest in hypersonic

flight vehicles, both for military and civilian use. Hypersonic vehicles present a number of

design challenges that are either not present in subsonic or supersonic aircraft, or are much

more pronounced at higher velocities. For instance, vehicles with airbreathing propulsion

systems require more than one engine type to accelerate to hypersonic speeds, as the ramjet

and scramjet engines optimized for hypersonic cruise velocities can only operate efficiently at

at high supersonic speeds [  1 ]. Additionally, the variation in aerodynamic behavior over the

operating velocity of the aircraft significantly constrains the vehicle’s aerodynamic profile,

as well as the materials comprising its structure — since the materials must be both light

enough to allow sufficient acceleration by the engine, and durable enough to withstand

temperatures of well over 1000 K [  2 ]. As a result of these challenges, hypersonic vehicles have

a relatively narrow performance envelope compared to other aerospace vehicles. This leads

to high degree of interdependence between subsystems, and therefore must have a highly

integrated design that’s robust enough to account for performance uncertainties, especially

when the uncertainty is highest during the conceptual design phase. To meet these design

challenges, designers have transitioned to using model-based systems engineering (MBSE)

throughout the vehicle design process. INCOSE defines MBSE as ”the formalized application

of modeling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout development

and later life cycle phases” [  3 ] This definition distinguishes MBSE from document-based

systems engineering by implying that systems designed with MBSE rely on a centralized

digital model that serves as a single source of truth regarding all aspects of the system over

the course of its development, as opposed to a decentralized collection of documents detailing

the requirements, analysis, and other design processes separately.

At every stage of the design process, there is some uncertainty present regarding the

actual parameters and performance of the physical system, which — given the complex

nature of aerodynamics and other physical forces acting on aerospace vehicles — is impossible
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to model with perfect accuracy. Thus, it’s useful to have some sort of metric to evaluate the

MBSE tools once the physical system has been built, so that systems engineers can improve

upon it for use on subsequent projects. In this thesis, we will focus on one particular set of

tools used for MBSE analysis — the analytic workbench (AWB), developed by the Center

for Integrated Systems in Aerospace at Purdue University with funding from the Systems

Engineering Research Council within the U.S. Department of Defense — and consider the

metrics that could apply to these tools in the conceptual design of hypersonic flight vehicles.

1.2 Overview of Analytic Workbench

1.2.1 Analytic Workbench as an MBSE Framework

The analytic workbench was developed as a way to address ”pain points” in system-

of-systems engineering (SoSE) [  4 ]. In particular, the AWB focuses on the problem of in-

tegrating constituent systems into a system-of-systems (SoS) while addressing the issue of

interdependencies between various constituent systems in an SoS, which have varying degrees

of interconnectedness. To this end, the AWB has three main goals: Quantify performance

(i.e., capability) for the SoS as a whole, its constituent systems, and the links between them;

determine how how changes to the composition of the SoS affect its performance and risk;

and identify optimal portfolios for SoS architectures, given constraints on risk, cost, and per-

formance [  5 ]. Of course, given the size and complexity of many SoSs — or other engineered

systems with a high degree of interdependence between subsystems — many of these inter-

dependencies are difficult to grasp intuitively. Thus, tools within the AWB typically present

the SoS as a network of constituent systems. The interdependencies within this network

are represented as connections between nodes, and are characterized by easy-to-understand

parametric models. This representation of SoS as networks of constituent systems connected

by parametric relationships allows the AWB to be used in nearly any discipline (i.e., the

tools are ”domain agnostic”), and on problems of varying scale. Within the SoS design

process, the AWB tools are used with an iteratively refined truth model, allowing for the

continued analysis, verification, and validation of the model throughout the design process,

starting from an initial architecture in the conceptual design phase. Thus, the AWB satisfies
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INCOSE’s definition of an MBSE framework. Fig.  1.1 illustrates this process process within

the larger context of the SoS design process.

Figure 1.1. Role of the Analytic Workbench — shown in the blue outline —
in the SoS design process [ 5 ].

The AWB was initially designed as a suite of tools intended for use in SoSE; however,

the aforementioned ”pain points” are by no means exclusive to SoS problems. While the

subsystems comprising hypersonic flight vehicles lack the operational and managerial inde-

pendence, geographical distribution, and evolutionary development characteristics of an SoS

[ 6 ], hypersonic vehicles still face significant size, weight, and power (SWaP) constraints that

strengthen the interdependencies between subsystems and make integration challenging. As

such, the AWB would be an appropriate suite of tools for designing hypersonic vehicles.

1.2.2 Tools Within the Analytic Workbench

As applied to hypersonic vehicle design problems, the AWB contains three tools of in-

terest: Robust Portfolio Optimization (RPO), System Operational Dependency Analysis

(SODA), and System Developmental Dependency Analysis (SDDA). In the case of a com-
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plex engineered system — rather than an SoS — RPO treats the system as a portfolio of

potential constituent subsystems that can be selected or connected using a set of user-defined

rules and constraints. The objective of RPO is to generate a complete and functional system

by selecting a set of subsystems that maximizes the capability of the system as a whole,

while keeping risk and cost within acceptable bounds. RPO frames this as an optimization

problem that exactly parallels the portfolio optimization methods used in financial analysis

[ 7 ]. Each constituent subsystem is defined by a set of input requirements — things the sub-

system requires to function — and output requirements — outputs that could potentially

satisfy other subsystems’ input requirements — as well as capabilities, costs, and the un-

certainties associated with them. There are also often compatibility constraints, dictating

whether certain subsystems are required to accompany certain others, or if they’re incapable

of both being selected in the same portfolio. The overarching system also has its own set of

capabilities, which map to the subsystem capabilities and can be assigned different weights

in the objective function of the optimization problem. Fig.  1.2 illustrates how RPO generates

portfolios system portfolios based on these capabilities, requirements, uncertainties, costs,

and constraints.
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Figure 1.2. Graphic illustrating the RPO process, and how it connects with
other systems engineering tools [ 8 ].

The other two tools — SODA and SDDA — are devoted to analyzing previously gener-

ated architectures, focusing on operational risks and developmental risks, respectively. Both

SODA and SDDA were developed based on existing tools characterizing these risks — Func-

tional Dependency Network Anlaysis (FDNA) in the case of SODA, and Program Evaluation

and Review Technique (PERT) in the case of SDDA [ 9 ][ 10 ]. SODA and SDDA arrange the

subsystems selected by RPO into dependency networks, where links between subsystems

are characterized by a simple parametric relationship involving either two parameters in the

case of SDDA, or three in the case of SODA [ 9 ][ 11 ]. The links are directional, with an input

node i impacting the operability (SODA) or start of development (SDDA) of output node j.
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Operability is a variable corresponding to the overall functioning of the subsystem — where

a value of 100 signifies perfect performance, and a value of 0 signifies complete nonfunction-

ality — while the start of development is a measure of time. Additionally, each node in a

SODA network has a measure of its internal health called self-effectiveness (SE), where 0

refers to a complete lack of functionality and 100 refers to the state of optimal performance.

For SDDA, this measure is called the punctuality (P), and a value of 100 indicates that the

subsystem will develop in the minimum possible time, while a value of 0 indicates that it will

develop in the maximum possible time. In the absence of any input nodes for a subsystem

in a SODA network (i.e., the operability of a subsystem is entirely independent of that of

any other subsystems), the operability of a particular node is equal to it’s SE. For an SDDA

network, meanwhile, the beginning time of development for a subsystem without any input

nodes is equal to zero (i.e., the subsystem begins its development before any others). For

SODA specifically, we can also define the operability of an entire system in relation to the op-

erabilities of the subsystems. We often define the total operability as the average operability

of each sink node (i.e., subsystems that do not impact the operability of other subsystems),

the minimum sink node operability, or the output of a user-defined scoring function — that

can vary depending on the problem — based on the operabilities of all nodes in the network.

Fig.  1.3 illustrates how the AWB tools impact the design process for hypersonic vehi-

cles. From a basic conceptual model, systems engineers generate conceptual requirements

to make a model-based representation of the vehicle, defined mainly in terms of its intended

operational capabilities and design requirements. These are then fed into RPO, which uses

these capabilities and requirements to select portfolios of suitable subsystems from a library

of all possible hypersonic vehicle subsystems. RPO then outputs these portfolios into SODA

and SDDA, where the constituent subsystems form dependency networks based on the op-

erational and developmental relations between them, and the analysis tools use these to

characterize the risk associated with the operation and development of the system. The

analyses output by all three tools would then form the basis for a digital twin of the vehicle,

which would mirror the vehicle’s behavior in real time. The development of this digital

twin is outside the scope of this thesis; this thesis exclusively focuses on the AWB tools

themselves, shown in blue.
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Figure 1.3. Graphic illustrating the role of the AWB in the hypersonic vehicle
design process.

1.3 Research Question

Since the importance of the Analytic Workbench tools in MBSE and their applications

to hypersonic flight vehicle design has been established, this thesis will focus on how to eval-

uate the effectiveness of these tools in the context of hypersonic vehicle conceptual design.

In particular, this thesis will focus on the following research question:

What quantitative measures can we use to evaluate the effectiveness of Analytic Work-

bench tools in generating and evaluating hypersonic vehicle architectures?

To answer this question, this thesis will specifically focus on RPO and SDDA, and in-

vestigate the tools’ effectiveness when applied to example systems, both as a way to apply

the quantitative measures and to validate the model itself. In this context, ”effectiveness”

means accuracy within a particular abstraction level, in this case top-level subsystems of

hypersonic vehicles (the effectiveness metrics explored within this thesis are therefore most

useful when applied to problems within this level of abstraction). This thesis also assumes

that any analysis tools feeding RPO and SDDA are accurate, so that the effects of the

AWB tools can be isolated. Chapter 2 of this thesis will introduce the quantitative metrics
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used for RPO and SDDA and the justifications for them, as well as further discussion of

the tools themselves. Chapter 3 will outline the approach used in designing demonstration

cases for applying these measures and validating the Analytic Workbench models. Chap-

ter 4 shows the demonstration cases to which RPO and SDDA were applied, and discusses

the results. Chapter 5 discusses the conclusions and limitations of this thesis, and makes

recommendations for further exploration of this topic.
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2. DEVELOPMENT OF EFFECTIVENESS METRICS

2.1 Introduction

This chapter discusses the development of effectiveness metrics for RPO and SDDA. To

do so, we begin by discussing the types of effectiveness metrics systems engineers need to

determine if the tools they use work as intended. In this thesis, we will present two —

verification and validation — which consequently means that we must develop four metrics

in all (two each for RPO and SDDA). In the case of other engineering analysis tools, re-

searchers have already proposed various verification and validation effectiveness metrics, and

we explore several of these in order to examine if any would be appropriate for RPO and

SDDA.

We then develop the requirements for each of the four metrics, which provide guidance

on generating the metrics themselves. Before doing so, we first discuss what constitutes a

good requirement, as poorly written requirements would result in inadequate metrics, and a

complete set of well written requirements would assist developers who wish to expand upon

these effectiveness metrics further or apply them to other tools. The requirements presented

in this thesis rely on the guidance provided by Design for Safety, by Louis J. Gullo and Jack

Dixon [  12 ], and the NASA System’s Engineering Handbook [  13 ]. These sources not only

define the characteristics of good requirements, but divide system requirements into several

categories.

Once defined, these requirements help us determine which types of verification and val-

idation metrics are appropriate for RPO and SDDA. From the set of appropriate metrics,

we select one metric for each of the four that we need — RPO verification, RPO validation,

SDDA verification, and SDDA validation — which we can apply to our hypersonic vehicle

demonstration case. We conclude this chapter by comparing the selected metrics for RPO

and SDDA, and discussing the conditions under which they might be combined to form a

unified framework for a system designed using the AWB.
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2.2 Types of Effectiveness Metrics

When discussing whether an analysis tool conducts the task it’s designed to do with a

reasonable degree of accuracy, there are two questions that systems engineers should consider:

1. Do the results output by the tool correspond to those given by the mathematical

formulae on which it’s based?

2. Do the results output by the tool accurately predict the characteristics, behavior, or

development of the physical system it models?

These two questions correspond to verification and validation of the analysis tool, respec-

tively. Fig.  2.1 visualizes the relationship between the mathematical concepts that define an

analysis tool, the computerized implementation of the tool, and the physical system the tool

analyzes, and the role of verification and validation in reconciling these three things.

Figure 2.1. Relationship between physical systems, computerized models,
and the concepts behind the computerized models, as well as the role of veri-
fication and validation [ 14 ].
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INCOSE defines verification as ”a set of activities that compares a system or system

element against the required characteristics. This may include, but is not limited to, specified

requirements, design description, and the system itself” [  15 ]. In the context of an analysis

tool, verification involves identifying the mathematical concepts that the model implements,

and ensuring that the outputs of the analysis tool match the results of applying these concepts

independently (i.e., ensuring that the tool correctly solves the problem it was built to solve).

This often involves generating a suite of example problems simple enough that a design

engineer can calculate the outputs of the analysis tool on their own, using only the underlying

mathematical concepts [ 14 ].

Validation, meanwhile, ”is the set of activities ensuring and gaining confidence that a

system is able to accomplish its intended use, goals, and objectives (i.e., meet stakeholder

requirements) in the intended operational environment” [ 15 ]. In other words, validation

ensures that the design of a system is capable of satisfying all the requirements for said

system. For an analysis tool, validation involves comparing the outputs of the computerized

implementation of the tool with the physical system being analyzed, and confirming that

the analysis tool predicts the behavior, development, or characteristics of the system within

a reasonable degree of uncertainty. Additionally, validation doesn’t just refer to comparison

with the completed system; it can also apply to the results of physical tests of individual

components and subsystems (e.g., a wind tunnel test of an airfoil). The rest of this chapter

will involve the development of effectiveness metrics that can be applied to the verification

and validation of RPO and SDDA.

2.3 Purpose of Analytic Workbench Tools

Before we develop effectiveness metrics for RPO and SDDA, we need to explore how

these tools function in depth. In the context of RPO, which frames the generation of system

portfolios as an optimization problem that maximizes capability while minimizing cost and

risk, there are several different ways to define risk. One way is to focus on the risks incurred

during the development of the system, as the robust mean-variance optimization method of

RPO does [  7 ]. Another is to take into account the uncertainties in subsystem performance
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during operations, using methods developed by Bertsimas and Sim [  16 ]. Each of these

methods assumes that the uncertainties follow symmetrical distributions [  17 ], which does

not always hold in real-world operations. The Conditional Value-at-Risk (CVaR) approach

allows for more complex distributions of risk functions, which are often derived from agent-

based simulation data [  18 ]. For the purposes of this thesis, all future references of RPO will

refer exclusively to the Bertsimas-Sim approach, as our implementation of Bertsimas-Sim

RPO is more complete and better tested than the other two methods. Fig.  2.2 shows the

setup for an RPO example problem using the Bertsimas-Sim approach. The two columns

on the left represent the candidate systems, while the next five outline system capabilities,

the two columns following that outline system support requirements, and the column on the

right indicates the range of the uncertainty bounds. The red and blue boxes indicate which

uncertainties being simulated apply to which capabilities.

Figure 2.2. The Bertsimas-Sim version of RPO applied to a littoral combat
ship example [ 17 ].

SDDA, meanwhile, simulates delays in the development of a particular subsystem to de-

termine how it impacts the overall development schedule of the system by characterizing the

relationships between pairs of subsystems in terms of two parameters: strength of depen-

dence (SOD), and criticality of dependence (COD) [  11 ]. The nodes themselves, meanwhile,

are characterized by three variables: The minimum development time tmin, the maximum

development time (in the absence of any input nodes) tmax, and the punctuality P , the
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latter of which is equivalent to the SE parameter for a node in a SODA network. Unlike

in a SODA network, cycles are impossible in an SDDA network, as a subsystem cannot be

developmentally dependent on itself. The development time of node i is equal to

ti
c = ti

min + (1 − Pi

100)(ti
max − ti

min) (2.1)

If node j is dependent on node i, then the beginning time of node j is equal to either

Eq.  2.2 (if the punctuality of node i is greater than the COD) or Eq.  2.3 (if the punctuality

of node i is less than the COD).

tj
b = ti

c − tj
min(1 − SODij)(Pi − CODij)

100 − CODij
(2.2)

tj
b = ti

c (2.3)

This relationship is shown in Fig.  2.3 . Now, if a subsystem is developmentally dependent

on two or more other subsystems, the dependent subsystem calculates multiple possible

beginning development times, one from the relationship with each input node. From these

calculated beginning times, there are two ways to determine a single beginning time: Either

by using the average beginning time output by all the two-node relationships, or by using

the latest beginning time. The former algorithm is known as standard SDDA, while the

latter algorithm is known as SDDAMax.
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Figure 2.3. Relationship between the development time of an input node and
the beginning time of an output node in an SDDA network [ 11 ].

Additionally, SDDA can treat the punctuality of each node either a deterministic variable

or as following a probability density function. In the latter case, SDDA assumes that the

punctuality follows a symmetric beta probability distribution, where the user-input punctu-

ality represents the mode of the distribution. The mode may not correspond to the mean

or median, as the tails of the distribution may be cut off — and the resulting asymmetric

distribution normalized — if they correspond to values outside the range of 0 to 100. SDDA

uses a beta probability density function, rather than a normal distribution, to describe the

punctuality because the latter is explicitly unbounded, while the beta distribution only has

a nonzero value over a finite interval.

While each tool carries out a different set of tasks, RPO and SDDA share a common

purpose within the AWB: manage the complexity of a system with a high degree of interde-

pendence between subsystems, and provide methods for addressing these interdependencies

to characterize the conceptual design of such a system in a way that’s easily understandable

by designers. In the case of RPO, this complexity arises from the large library of subsystems

from which an architecture for a complex system can be generated, and RPO manages it

by considering the overall system capabilities (i.e., the mission objectives that the system

must accomplish), and the subsystem capabilities that contribute to these system capabil-
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ities being satisfied [  18 ]. Thus, RPO generates portfolios by selecting the subsystems that

most effectively satisfy the subsystem capabilities that fulfill the overall system capabili-

ties, within acceptable risk tolerances (for the Bertsimas-Sim method, risk is characterized

as a symmetric uniform uncertainty distribution for the subsystem capabilities and output

requirements [  17 ]). RPO can also generate portfolios for multiple different overall cost con-

straints, and the resulting system capability measure can be plotted against the system cost

in a Pareto frontier. As such, verification for RPO involves creating an example problem

where the portfolios that maximize system capability at different cost constraints are obvious

enough that a systems engineer can generate them intuitively, and ensuring that the RPO

implementation generates the correct portfolios. Validation for a hypersonic vehicle problem,

meanwhile, takes an RPO-generated portfolio at a single cost constraint, and compares the

resulting capabilities and costs for each subsystem with those of the physical vehicle designed

and manufactured from that portfolio.

For an SDDA analysis, the complexities arise from the interdependencies between sub-

systems during the development phase. SDDA characterizes these interdependencies as a

mathematical relationship between the beginning time of development of a particular sub-

system and the end time of development of all the subsystems that impact its development.

Thus, verification for SDDA involves calculating the beginning and end times of a network of

subsystems in an example problem using the mathematical relationships that define SDDA,

and comparing them to the outputs of a computerized implementation of SDDA. SDDA

validation for a hypersonic vehicle problem is similar to verification, only the beginning and

end times output by the implementation of SDDA would be compared to the development

timeline of an existing hypersonic vehicle instead of the results of a conceptual model.

2.4 Requirements for Effectiveness Metrics

Before defining the effectiveness metrics for RPO and SDDA, we must first outline ex-

actly what each metric should take into account when calculating how effectively each tool

functions. By generating requirements for the metrics, we can define the exact scope of each
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metric, and provide guidelines to narrow down the class of effectiveness metric that could

apply to each verification and validation metric for RPO and SDDA.

2.4.1 Designing Good Requirements

In Design for Safety, authors Louis J. Gullo and Jack Dixon explain the objective of

system requirements: ”A system requirement specifies what a system must do to satisfy a

customer need or goal ... Requirements capture customer objectives, expectations, desires,

limitations, and constraints” [  12 ]. To this end, a complete set of requirements for a system

must contain directives for every task within its scope, any constraints that affect the way it

must go about completing these tasks, and the minimum standards of performance it must

achieve in doing so. To ensure that system requirements satisfy these aforementioned needs,

Gullo and Dixon present a list of attributes that well written requirements must possess [ 12 ]:

• Clear — The meaning of the requirements shall be unambiguous

• Complete — The requirements shall cover everything relevant to what is being designed

• Consistent — The requirements shall not conflict with each other

• Correct — The requirements shall align with actual needs

• Feasible — It shall be possible to satisfy the requirements

• Objective — Each requirement shall have only one possible interpretation

• Need-Oriented — The requirements shall state what is needed, not the solution

• Singular — Each requirement shall focus on only one need

• Succinct — The requirements shall be as concise as possible

• Verifiable — It shall be possible to quantitatively demonstrate that each requirement

is satisfied
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Furthermore, systems engineers should be careful when writing negative requirements

(i.e., ”the system shall not...”) rather than positive requirements (i.e., ”the system shall...”).

Gullo and Dixon further break down requirements into six types: operational, functional,

performance, design, derived, and allocated [ 12 ]. Operational requirements focus on the basic

objectives of the system, as well as any constraints that may apply to it and the environment

in which it operates. For example, in the case of a flight data recorder for a commercial

aircraft, a reasonable operational requirement could be, ”the system shall permit recovery of

flight data for a commercial flight to aid in accident reconstruction.” Functional requirements

detail necessary tasks that must be completed to satisfy these objectives (e.g., ”the system

shall continuously broadcast its location to ground controllers during normal operations”).

Performance requirements dictate the minimum performance and reliability thresholds of the

system (e.g., ”the system shall operate continuously from the moment the aircraft begins

its takeoff roll until the moment it concludes its landing roll”). Design requirements specify

how the system needs to be designed or built (e.g., ”the system shall broadcast all signals

at a frequency of [X] MHz”). Derived requirements, which are implied from higher-level

requirements, and allocated requirements, which apportion a higher level requirement into

multiple lower-level requirements, are outside the scope of this thesis.

Appendix C of the NASA Systems Engineering Handbook, which details how to write

good requirements, agrees with Gullo and Dixon, and adds that systems engineers should

be careful to distinguish between needs and wants by asking, “what is the worst that could

happen if the requirement was not included?” [ 13 ]. Additionally, any requirement should be

traceable to either a higher-level requirement or the mission/system-of-interest scope.

2.4.2 Requirements for Verification Metrics

From INCOSE’s definition of verification, verifying RPO and SDDA involves comparing

the outputs of a computerized implementation of each tool with those given by the tools

in their conceptual forms. For most analysis software, this generally involves designing an

example problem simple enough that a design engineer can calculate the results without

running the computerized implementation [ 14 ]. Thus, the verification metrics for RPO and
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SDDA should apply to scenarios where the outputs of each tool can be easily predicted

by hand, and should describe how well each tool replicates these results. For RPO, this

output would be the portfolio of subsystems selected at each value of cost for each cost

point considered. The SDDA outputs, meanwhile, would consist of the beginning and end

development times for each subsystem.

Because the verification process involves comparing the output of each tool with a known

result generated by the conceptual model, any deviation from this result should be considered

a partial failure of the computerized implementation. As such, it doesn’t matter what type

of error occurs (in the case of RPO, the errors would be a false inclusion or exclusion of

a subsystem), or if the error generates a more optimistic or pessimistic result than the

conceptual model (such as an earlier or later beginning development time, in the case of

SDDA); the metrics should make no distinction between them.

As mentioned above, the output of interest for the RPO verification process is the port-

folio of subsystems chosen for each cost value considered in an example system. We can

quantify the generation of this portfolio as a set of decisions made by RPO at each cost

point, where a decision can be whether to include or exclude a particular subsystem, and

how many instances of the subsystem should be selected should RPO include it. As such, the

verification metric for RPO should consider all of the decisions made for each portfolio, as

well as how many of them are correct. Furthermore, when generating portfolios for multiple

cost values, RPO doesn’t inherently consider any one to be more important than the others.

Therefore, the verification metric shouldn’t allow a single portfolio to have a disproportion-

ate influence on the value of the metric. Additionally, since RPO can be applied to systems

containing a large number of subsystems and to an indefinitely large number of cost values,

the number of decisions made in a single run of RPO can vary wildly. The verification metric

should therefore be normalized to ensure consistency across a number of example problems.

Otherwise, a particular value of the verification metric could have a number of different

meanings depending on the context of the problem. For example, without such context, a

systems engineer conducting a verification test of RPO would have no idea whether a ver-

ification metric of 417 was good or bad. A normalized metric, by contrast, requires no a

priori knowledge of the scenario used in the verification process: A value of 1 indicates that
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the computerized implementation of RPO aligns perfectly with the conceptual model, while

a value of 0 indicates complete unalignment. Table  2.1 lists the requirements for an RPO

verification metric.

Table 2.1. Requirements for RPO Verification Metrics
Requirement Type

The metrics shall describe how well RPO generates portfolios
of subsystems in a scenario where the expected solutions can be Operational
easily predicted

The metrics shall incorporate how many correct decisions RPO Functional
makes in generating each portfolio

The metrics shall incorporate how many total decisions RPO Functional
makes in generating each portfolio

The metrics shall prevent a large deviation in a single
portfolio’s generation from strongly influencing the total Performance
value of the metrics

The metrics shall be normalized to take value between 0 and 1, Design
where 0 refers to low effectiveness and 1 to high effectiveness

The metrics shall make no distinction between a false Design
inclusion and a false exclusion

In contrast with RPO, SDDA has two outputs that already exist in quantitative terms:

beginning time and end time of subsystem development. When verifying an implementation

of SDDA, any deviation from the beginning and end times given by the conceptual model for

each subsystem can be considered an error. As such, the verification metric for SDDA should

take into account any deviation in the computerized implementation from the subsystem

development beginning and end times given by the easily predicted solution. While the
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outputs for stochastic SDDA include probability distributions, only the mean value need

be considered when comparing it to the known solution of an example problem. Moreover,

neither beginning development time or end development time should be treated as more

important than the other. Additionally, since SDDA doesn’t treat the development of any

one subsystem as more important than any other, the verification metric shouldn’t allow

a deviation in a single subsystem’s development to have a disproportionate influence on

the value of the metric. Because SDDA outputs correspond with an unbounded physical

quantity (time) and can incorporate an arbitrarily large number of subsystems, the sum

of all deviations from the expected beginning and end times has no upper limit. As such,

like with RPO, the verification metric for SDDA should be normalized. Table  2.2 lists the

requirements for an SDDA verification metric.

2.4.3 Requirements for Validation Metrics

In contrast with verification, which involves comparing the results of a test case with those

of the conceptual implementation of the tool, validation involves comparing the outputs of a

predictive analysis using the tool in question with the behavior, development, or composition

of the physical system. Thus, the validation metrics for RPO and SDDA need not only apply

to highly simplified example problems, but to any application corresponding to a physical

system. The output of interest for RPO would be the portfolio of subsystems selected

a particular cost point and its characteristics (subsystem cost and performance) — which

differs from the output of interest for the verification process, which consists of the portfolios

generated at every value of cost considered in the example problem. The SDDA outputs of

interest, meanwhile, are unchanged from the verification process: the beginning and end

development times for each subsystem.

Similar to the verification process, because the validation process involves comparing the

output of each tool with a known result, the metrics should treat any deviation from the

characteristics of the physical system as an undesirable result, regardless of what direction the

error falls in. For example, while an overestimate of the development time of each subsystem

would result in the physical system developing faster than expected — which most design
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Table 2.2. Requirements for SDDA Verification Metrics
Requirement Type

The metrics shall describe how well SDDA produces a design Operational
schedule where the expected solution can be easily predicted

The metrics shall incorporate the deviation from the expected Functional
beginning time of subsystem development

The metrics shall incorporate the deviation from the expected Functional
end time of subsystem development

The metrics shall prevent a large deviation in a single
subsystem’s development from strongly influencing the total Performance
value of the metrics

The metrics shall place equal weight on the beginning and end Design
development times

The metrics shall be normalized to take value between 0 and 1, Design
where 0 refers to low effectiveness and 1 to high effectiveness

The metrics shall make no distinction between a subsystem
developing before expected and a subsystem developing after Design
expected

engineers would consider a good thing — it still means that the SDDA predictions were

inaccurate, and the validation metric should penalize them accordingly. Furthermore, since

— like with the verification process — the deviations from the outputs given by each tool

can vary considerably depending on the problem, the validation metrics should be take value

between 0 and 1.
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In the case of RPO, we have two outputs of interest for the validation process: subsystem

cost and performance. We can’t assume that one of these outputs has more importance than

the other, so the validation metric for RPO should weight both of them equally. Cost is a

quantitative variable, so the validation metric should take into account the difference between

the cost of each subsystem predicted by RPO and that of the actual physical subsystem.

Performance, meanwhile, can be treated as a Boolean variable: Is each subsystem capability

satisfied? As such, the validation metric should incorporate both the total number of subsys-

tem capabilities and the number that the physical system satisfies. Since the Bertsimas-Sim

method models subsystem capabilities as following uniform, symmetrical probability distri-

butions [  17 ], the validation metric should only count a subsystem capability as unsatisfied if

it falls outside that distribution. Moreover, since RPO doesn’t treat any one subsystem or

subsystem capability as more important than any other, the validation metric should prevent

any one deviation in cost or performance from disproportionately impacting the value of the

metric. Table  2.3 lists the requirements for an RPO validation metric.

Table 2.3. Requirements for RPO Validation Metrics

Requirements Type

The metrics shall describe how well RPO predicts the cost and
performance of a portfolio of subsystems for a physical Operational
system

The metrics shall incorporate how many pertinent subsystem Functional
capabilities are met

The metrics shall incorporate the deviation from the expected Functional
cost of each subsystem

The metrics shall prevent a large deviation in a single
subsystem’s performance from strongly influencing the total Performance
value of the metrics

Continued on next page
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Table 2.3 – continued from previous page
Requirements Type

The metrics shall prevent a large deviation in a single
subsystem’s cost from strongly influencing the total value of Performance
the metrics

The metrics shall place equal weight on the cost and Design
performance of the portfolio

The metrics shall be normalized to take value between 0 and 1, Design
where 0 refers to low effectiveness and 1 to high effectiveness

The metrics shall incorporate the uncertainty in the pertinent Design
subsystem capabilities

The metrics shall make no distinction between a cost overrun Design
and a cost below expected

The metrics shall make no distinction between a performance Design
overestimate and a performance underestimate

As with the verification metric for SDDA, the validation metric for SDDA should take

into account how the beginning and end development times of the physical system differ

from those output by the analysis tool, since both outputs are quantitative variables. The

validation metric also shouldn’t allow a deviation in a single subsystem’s development to

have a disproportionate influence on the value of the metric, since SDDA doesn’t treat the

development of any one subsystem as more important than any other, and the beginning and

end times should be weighted equally. However, unlike with verification, validation assumes

that uncertainty will always be present in the model, and the validation process must take

this into account [ 19 ]. Since deterministic SDDA does not incorporate uncertainty in any
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Table 2.4. Requirements for SDDA Validation Metrics
Requirement Type

The metrics shall describe how well SDDA predicts the design Operational
schedule of a physical system

The metrics shall only apply for a stochastic SDDA simulation Operational

The metrics shall incorporate the deviation from the expected Functional
time of subsystem development

The metrics shall incorporate how close each subsystem begins Functional
and ends development relative to the expected value

The metrics shall prevent a large deviation in a single
subsystem’s development from strongly influencing the total Performance
value of the metrics

The metrics shall place equal weight on the beginning and end Design
development times

The metrics shall be normalized to take value between 0 and 1, Design
where 0 refers to low effectiveness and 1 to high effectiveness

The metrics shall make no distinction between a subsystem
developing before expected and a subsystem developing after Design
expected

capacity [  11 ], the validation metric must apply exclusively to stochastic SDDA. Table  2.4 

lists the requirements for an SDDA validation metric.
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2.5 Effectiveness Metrics

Now that we have defined requirements for the RPO and SDDA verification and valida-

tion metrics, we can explore candidate metrics from which to select one metric for each tool

and process. For verification specifically, Oberkampf and Trucano propose taking a straight-

forward error measurement, as shown in Eq.  2.4 , where uexact and udiscrete are scalar fields

representing the mathematically correct solution and that output by the computerized tool,

respectively [  14 ]. However, this error measurement is not normalized, so it doesn’t satisfy

our requirements for verification metrics. Nevertheless, it does provide a good starting point

for generating verification metrics, as it considers the total error for the entire simulation at

once.

V = uexact − udiscrete (2.4)

One way to normalize these errors would be to frame the verification process as a regres-

sion problem, where the independent variable comprises the mathematically correct outputs,

and the dependent variable comprises the outputs of the computerized model. The coeffi-

cient of determination — or R2 — is a normalized metric that divides the sum of squared

residuals (the residuals in this case being the computerized outputs minus the outputs of the

conceptual model) by the total sum of squares, as shown in Eq.  2.5 . This solves the problem

of normalizing the errors, but has the potential to cause one data point to disproportionately

affect the metric, since the denominator depends on the arithmetic mean. For example, if

the subsystems in an RPO portfolio all have a cost between $10,000 and $50,000, except

for one which has a cost of $10,000,000, the latter subsystem will have a disproportionate

impact on R2, to the point where the other subsystems can deviate wildly in cost from their

expected values with negligible impact. Additionally, because R2 = 1 whenever the data

follow a linear trend, regardless of what that trend is, the metric could potentially equal 1

even if the output of the computerized model is biased. For example, if the beginning and

end times output from SDDA equaled exactly 0.9 times what the corresponding times were
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for the actual development schedule, the validation metric would still equal 1, since the data

are perfectly linear.

V = R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (2.5)

To resolve these issues, we turn to another metric presented by Oberkampf and Trucano,

which they suggest for use in validation but can apply to a verification metric as well [ 14 ].

Eq.  2.6 presents a weighted sum of hyperbolic tangents, with the error in the numerator and

the output quantity in the denominator. The yi corresponds to the mathematically correct

output quantity for the verification metric and the physical system characteristic for the

validation metric, while ŷi corresponds to the output of the computerized model in either

case. This metric avoids both pitfalls of the coefficient of determination, as ŷi doesn’t depend

on a regression model and each term in the summation doesn’t depend on any others. The

one weakness of this metric is that if yi = 0, the absolute value of the hyperbolic tangent

equals 1, regardless of the value of the numerator. Since the quantitative outputs of RPO

and SDDA are all positive real numbers, we can easily fix this by adding an arbitrarily small

number to the denominator.

V = 1 − 1
n

n∑
i=1

tanh | ŷi − yi

yi
| (2.6)

When conducting validation tests involving probability distributions, we may not want

the validation metric to penalize deviations from the output values of each tool if the true

values are relatively close to the mean. To that end, we define another potential validation

metric in Eq.  2.7 , consisting of a weighted sum of significance tests, where ∆yi is the variable

corresponding to the magnitude of the deviation in the output variable. α refers to the

significance level, which the demonstration cases in Chapter 4 will assume is equal to 0.05.

V = 1
n

n∑
i=1

(P (∆yi >| yi − ŷi |) > α) (2.7)

All of the aforementioned metrics assume that the outputs of the tools are quantitative

variables. However, the decisions made during portfolio generation and the satisfaction of
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subsystem capabilities in RPO are categorical variables, and so we need to define another

effectiveness metric for them. If we consider these variables to be Boolean values (e.g., a

correct decision has a value of 1, and an incorrect decision has a value of 0), we can define the

variable DC as the sum of these Boolean variables, and DT as the total number of Boolean

variables (if all the Boolean variables are equal to 1, then DC = DT ). To create a normalized

effectiveness metric, we can divide DC by DT , as shown in Eq.  2.8 .

V = DC

DT

(2.8)

Table  2.5 summarizes these effectiveness metrics, their advantages and disadvantages,

and their best uses.

2.5.1 RPO Effectiveness Metrics

The variable of interest in an RPO verification test is the set of decisions made in gener-

ating a portfolio. These decisions include whether a subsystem is included or excluded, and

the number of instances of a particular subsystem should it be included. In the latter case,

a decision can be treated as correct if the number of instances selected by the computerized

implementation exactly matches the mathematically correct solution (this decision is absent

entirely if the subsystem is meant to be excluded). Since the decisions made are Boolean

variables, we use the effectiveness metric shown in Eq.  2.8 . Eq.  2.9 presents a slight varia-

tion of that, where the verification metric consists of a weighted sum of multiple instances

of Eq.  2.8 . np refers to the number of portfolios considered in the verification test.

VR = 1
np

np∑
i=1

DC

DT

(2.9)

The validation metric considers both subsystem cost — a quantitative variable — and the

satisfaction of subsystem capabilities — a categorical variable. Thus, we frame the validation

metric as the average of the submetrics for cost and performance, as shown in Eq.  2.10 .

R = P + C

2 (2.10)
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Table 2.5. Summary of Candidate Effectiveness Metrics
Metric

Metric Type Advantages Disadvantages Best Uses

Error Accounts for all Inappropriate
Measurements Verification deviations in a Not normalized for this work

[ 14 ] single scalar field

Data points can
Normalized; have outsize

Coefficient of Verification, established influence on the Inappropriate
Determination Validation measurement metric; biased yet for this work

in statistics linear data leads
to inaccurate

results

Not applicable for
Weighted Sum Normalized; each categorical RPO validation
of Hyperbolic Verification, contribution variables; (cost), SDDA
Tangents [ 14 ] Validation dependent only on punishes verification

itself any deviation
regardless of size

Ratio of Sums Normalized; Not applicable for RPO
of Boolean Verification, applicable to quantitative verification,
Variables Validation categorical variables RPO validation

variables (performance)

Normalized; useful Not applicable if
Weighted Sum Verification, if small deviations uncertainty not SDDA
of Significance Validation considered given or for validation

Tests acceptable categorical
variables

As with the verification metric, the performance validation submetric, shown in Eq.  2.11 

consists of a weighted sum of multiple instances of Eq.  2.8 , where n is the number of subsys-
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tems in a given portfolio, SCi refers to the total number of subsystem capabilities for each

subsystem, and SCi,sat refers to the number of those capabilities that are satisfied. Since the

subsystem capabilities follow a symmetric uniform uncertainty distribution, we consider a

capability satisfied if it falls within the distribution given in the RPO implementation.

P = 1
n

n∑
i=1

SCi,sat

SCi
(2.11)

The cost submetric, meanwhile, corresponds to the hyperbolic tangent metric given in

Eq.  2.6 . To avoid division by zero, as some RPO selections regarding configuration could

have zero marginal cost, we add a small constant — $0.001 for our demonstration cases,

cheaper than any real subsystem with a nonzero cost — to the denominator, as shown in

Eq.  2.12 .

C = 1 − 1
n

n∑
i=1

tanh | E(Ci) − Ci

Ci + 0+ | (2.12)

2.5.2 SDDA Effectiveness Metrics

The variables of interest in an SDDA verification test are the beginning time and the

end time of subsystem development. Both of these variables are quantitative, and the re-

quirements for SDDA verification and validation dictate that the effectiveness metrics should

place equal weight on them. As such, Eq.  2.13 presents the average of the hyperbolic tangent

metrics for the beginning development time and the end development time. By definition,

at least one of the beginning times must be equal to zero, so we add an arbitrarily small

variable to the denominator (0.000001 should be sufficiently small as to avoid making a large

impact on the metric regardless of the time units used). Since a subsystem cannot have a

total development time of zero, none of the end times can equal zero, so this metric does not

need to add an arbitrarily small constant to the corresponding denominator.

VS = 1 − 1
2n

n∑
i=1

tanh | E(tb,i) − tb,i

tb,i + 0+ | − 1
2n

n∑
i=1

tanh | E(te,i) − te,i

te,i
| (2.13)
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In contrast with the verification metric, the validation metric for SDDA explicitly applies

to stochastic SDDA, so the metric should take into account whether the beginning and end

times for the physical system significantly differ from the expected value. Thus, the valida-

tion metric presented in Eq.  2.14 is the average of the stochastic validation metrics shown

in Eq.  2.7 for the beginning and end development times. ∆tb,i and ∆te,i are variables corre-

sponding to the magnitude of the deviations in the actual beginning and end development

times, respectively, from the outputs given by an SDDA validation test.

S = 1
2n

(
n∑

i=1
((P (∆tb,i >| tb,i − E(tb,i) |) > α) + (P (∆te,i >| te,i − E(te,i) |) > α)) (2.14)

Both the verification and validation metrics for SDDA apply to standard SDDA and

SDDAMax, as the metrics don’t take into account the conservatism factor that differentiates

the two.

2.6 Comparison of RPO and SDDA Metrics

While the effectiveness metrics for RPO and SDDA share many similarities, they are not

interchangeable with one another. Since the outputs of RPO include both categorical and

quantitative variables, while the outputs of SDDA are exclusively quantitative, the effective-

ness metrics for the two tools rely on different classes of metric: RPO makes use of weighted

sums of Boolean variable ratios for its verification metric and performance validation metric;

the SDDA validation metric relies on a weighted sum of significance tests; and both tools

have effectiveness metrics that rely on hyperbolic tangent relations (the verification metric

for SDDA, and the cost validation metric for RPO). As per the requirements given earlier in

Chapter 2, the verification and validation metrics for both RPO and SDDA are normalized

to take value between 0 and 1, where 1 indicates that the analysis tool functions perfectly.

This means that systems engineers developing a hypersonic vehicle with both tools could

evaluate the effectiveness metrics for each tool, and determine whether the analysis tools

functioned as intended using the same set of numerical standards.
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This thesis considers the use of RPO and SDDA individually, and not as part of an

overarching design process involving the entire AWB. However, future research involving

these effectiveness metrics — particularly if we consider SODA as well — should consider

the possibility of developing a unified effectiveness framework for the AWB. Such a framework

would take a hypersonic vehicle based on a model analyzed using the AWB, and use a single

set of effectiveness metrics to determine if the suite of tools within the AWB can analyze

such a system with a high degree of accuracy.
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3. APPROACH

In Chapter 2, we developed quantitative measures to evaluate the effectiveness of RPO and

SDDA in the verification and validation process. We can now apply these measures to exam-

ple problems to demonstrate their effectiveness in evaluating hypersonic vehicle architectures.

Before we begin, however, we need to discuss how to construct models of hypersonic vehicles

within the tools for the verification and validation tests, and to what we will compare their

outputs.

3.1 Model Construction

In order to construct a model of a hypersonic vehicle to serve as the demonstration cases

for the AWB effectiveness metrics, we need a hypersonic vehicle on which to base the model.

Given that most hypersonic vehicles that have been constructed to date have been military

projects — funded by the United States, Russia, China, and the European Union, among

other national and international governmental bodies [ 20 ][ 21 ] — publicly available informa-

tion regarding hypersonic vehicle architectures, costs, and precise development schedules is

extremely scarce. In an effort to give engineers and researchers without access to ITAR-

restricted data the ability to develop and analyze conceptual designs for hypersonic vehicles,

the Air Force Research Laboratory (AFRL) began developing a family of generic hypersonic

vehicles (GHVs) in 2012 [  22 ]. These vehicles do not contain any proprietary or sensitive

information regarding real-world hypersonic programs, but provide a basic set of mission

profiles and top-level subsystems from which we can develop the basic architectures for our

demonstration cases.

However, as the name implies, the GHV family of hypersonic vehicles does not have any

overarching mission objectives beyond conducting a few basic maneuvers and surviving long

enough to descend [  22 ]. Therefore, the demonstration cases in this thesis rely on the system

capabilities of the Rockwell X-30, also known as the National Aerospace Plane (NASP). The

NASP began development in 1986 — though proposals for a similar hypersonic vehicle began

as early as 1958 [  23 ] — as a single-stage-to-orbit spacecraft, with the possibility of carrying

crews to and from space. Due to cost concerns, the program was defunded in 1993, and the
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NASP was never built; however, a program review published by the RAND Corporation in

1993 lists the intended system capabilities of the proposed vehicle [ 23 ]:

• Insert one or more satellites into orbit

• Inspect and retrieve satellites from orbit

• Repair satellites in orbit

• Conduct a resupply mission to a space station

• Carry crew to and from a space station

While the report did conduct a cost analysis for the spacecraft as a whole — focusing

specifically on the cost per pound of payload into orbit — it did not break down the costs per

subsystem. As such, the costs presented in the demonstration cases are purely illustrative —

as are the relative cost differences between subsystems of the same type within RPO — and

are not meant to be indicative of the actual subsystem development costs of a hypersonic

vehicle. The same applies to the performance specifications of each subsystem, as well as

the development timeline.

3.2 RPO Demonstration Cases

Based on the AFRL GHV and the NASP, the RPO validation model for a hypersonic ve-

hicle breaks down the library of top-level subsystems into several distinct groups: propulsion

systems, flight computers, thermal protection systems, power systems, sensors, communi-

cations systems, aerodynamic bodies, and structural systems. The propulsion systems are

further broken down into hypersonic combustors, inlets, nozzles, subsonic propulsion sys-

tems, and engine integration systems, while the thermal protection systems are divided into

active and passive systems, and the structures are divided into internal structures and skin.

Fig.  3.1 displays a list of the propulsion subsystems for the validation case within the RPO

input model, as well as their respective costs. As mentioned above, the costs for these demon-

stration cases are not meant to be indicative of the actual costs of developing a hypersonic

vehicle.
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Figure 3.1. Propulsion subsystems available for selection by RPO, along with
their respective costs, for the validation demonstration case.

The hypersonic vehicle model used for the verification case is similar to that used for

the validation case, though with significant simplification. Certain classes of subsystems,

such as the propulsion subsystems, have been consolidated (e.g., the hypersonic combustors,

inlets, and nozzles have all been combined into hypersonic engine subsystems), and there

are no more than two possible selections per type of subsystem. Additionally, the costs,

output requirements, capabilities, and uncertainties associated with each subsystem have

been defined such that certain selections are obvious at different cost points, in order to assist

in generating a conceptual output to which to compare the computerized implementation.

The verification demonstration case will also set the conservatism parameter Γ defining limits

on acceptable risk to zero, so that RPO will always try to maximize performance within cost

constraints without regard to the uncertainties in capability and support requirements for

the subsystems.

3.3 SDDA Demonstration Cases

In contrast with the RPO demonstration cases, where the number of subsystems differs

between the verification and validation cases, the SDDA models have the same number of

subsystems for the verification case and the validation case. The SDDA model consists of

the following 12 subsystems:
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• Combustor

• Inlet

• Nozzle

• Subsonic Propulsion

• Aerodynamic Body

• Internal Structures

• Skin

• Thermal Protection

• Flight Control Computer

• Sensors

• Communications

• Power

These subsystems align with those in the RPO validation model, but are expressed in

generic terms (i.e., the subsystems in the SDDA model do not align with one selection from

RPO in particular). Where the verification and validation cases differ is in the connections

between the subsystems: the verification case removes a large number of dependencies from

the validation case, such that each subsystem is developmentally dependent on no more than

two others. Furthermore, the punctuality Pi for all subsystems in the verification case has

been set to 100, so the relationship between the beginning time of the dependent subsystem

and the end time of the input subsystem can be expressed using Eq.  3.1 .

tj
b = ti

c − tj
min(1 − SODij) (3.1)

This also means that the only subsystems that develop in more time than the given

value of tj
min are those that are dependent on two or more other subsystems and begin their
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development at the average output beginning time from these relationships, in the case of

standard SDDA.

For simplicity, both the verification and validation cases characterize each connection

between subsystems with one of three preset values for each parameter: The SOD can equal

0.1, 0.4, or 0.9, and the COD can equal 10, 40, or 90. Additionally, the demonstration

cases will be applied to both standard SDDA and SDDAMax, as the effectiveness metrics for

verification and validation don’t consider the assumption of conservatism (or lack thereof).
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4. DEMONSTRATION CASES

4.1 Overview

The demonstration cases presented in this thesis are hypersonic vehicle models to which

we apply the four effectiveness metrics generated in Chapter 2. The top-level subsystems

for the vehicle model are derived from the AFRL GHV [  22 ], a class of vehicles developed

to allow engineers to conduct conceptual design analyses on hypersonic vehicles without the

restrictions associated with designs subject to ITAR restrictions. These subsystems form

the basis of the model used in SDDA analysis, as well as the types of subsystems that

can be selected to generate a portfolio in RPO. The cruise phase of the mission profiles

for vehicles under the umbrella of the GHV consists of performing basic flight maneuvers,

and we wish to generate a more comprehensive set of system capabilities for RPO analysis.

These demonstration cases use the mission objectives of the NASP as system capabilities in

RPO, which include satellite insertion into orbit, satellite inspection and retrieval, on-orbit

satellite repair, space station resupply, and space station crew replacement [ 23 ].

4.2 RPO Verification Results

The verification test for RPO uses a simplified library of hypersonic vehicle subsystems

to generate portfolios, where each class of subsystem contains two possible candidates, one of

which is clearly preferable — either by having a lower cost, better subsystem capabilities, or

both — to the other at a particular cost point. For each subsystem class, only one instance

need be selected. Table  4.1 displays the eight classes of subsystem used in this demonstration

case and the candidate subsystems within them, and indicates which subsystem in each

class has a lower cost and a higher performance. For four of the subsystem classes — flight

computer, sensors, communication, and structures — the high-performance subsystem also

has the lowest cost, and should thus be selected for every generated portfolio. The variation

between portfolios, therefore, should be a function of the other four subsystem classes. The

demonstration case sets the value of the conservatism parameter Γ to zero, so that the main

contributor to the variation between portfolios will be subsystem cost.
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Table 4.1. Subsystem Library for the RPO Verification Test
Subsystem Class Low Performance Option High Performance Option

Dual-Mode
Propulsion Scramjet (Low Cost) Ramjet-Scramjet (High Cost)

Power-Efficient Power-Inefficient
Flight Computer Weak Computer (High Cost) Strong Computer (Low Cost)

Flexible Carbon Ceramic
Thermal Protection TPS Blanket (Low Cost) Composites (High Cost)

Power Chemical Fuel Cell (Low Cost) Gas Turbine APU (High Cost)
Power-Efficient Power-Inefficient

Sensors Weak Radar (High Cost) Strong Radar (Low Cost)
Power-Efficient Power-Inefficient

Communications Weak Antenna (High Cost) Strong Antenna (Low Cost)
Tapered

Aerodynamic Body Wing/Wedge Tail (Low Cost) Waverider (High Cost)
Structures Steel Structure (High Cost) Composite Structure (Low Cost)

For the four competitive subsystem classes, the portfolio with the lowest cost would con-

tain the scramjet, flexible TPS blanket, chemical fuel cell, and tapered-wing/wedge tail body.

The cost differences between these subsystems and their high-cost counterparts are largest

for the aerodynamic body ($3,000,000) and propulsion subsystem ($2,000,000), followed by

the thermal protection ($1,000,000) and power ($700,000). Thus, as the cost increases, RPO

should select the high-cost options for the power, thermal protection, propulsion, and aero-

dynamic body, in that order. Additionally, among the four subsystem classes, the propulsion

subsystem satisfies the most subsystem capabilities — and thus contributes more to the sat-

isfaction of the overall system capabilities — followed by the aerodynamic body, thermal

protection, and power. The demonstration case also defines the support input requirements

for the aerodynamic body such that the high-cost option can’t be selected without the high-

cost option for the propulsion subsystem. Thus, when the cost constraint becomes high

enough for the high-cost options of the propulsion subsystem and aerodynamic body to be

selected, RPO should switch back to the low-cost options for the thermal protection and

power subsystems until the cost constraint increases enough to allow the high-cost options

for the latter two to be selected again. The same applies to the power subsystem when the

cost constraint increases to the point where RPO can select the high-cost thermal protection,
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as the latter satisfies more subsystem capabilities than the former. This results in 12 possible

portfolios that RPO should select.

Table 4.2. Portfolio Selection for the RPO Verification Test

Subsystem Portfolio (# Instances Selected)
1 2 3 4 5 6 7 8 9 10 11 12

Dual-Mode
Ramjet-Scramjet 0 0 0 0 1 1 1 1 1 1 1 1

Scramjet 1 1 1 1 0 0 0 0 0 0 0 0
Power-Efficient
Weak Computer 0 0 0 0 0 0 0 0 0 0 0 0
Power-Inefficient
Strong Computer 1 1 1 1 1 1 1 1 1 1 1 1

Flexible
TPS Blanket 1 1 0 0 1 1 0 0 1 1 0 0

Carbon Ceramic
Composites 0 0 1 1 0 0 1 1 0 0 1 1
Chemical
Fuel Cell 1 0 1 0 1 0 1 0 1 0 1 0

Gas
Turbine APU 0 1 0 1 0 1 0 1 0 1 0 1

Power-Efficient
Weak Radar 0 0 0 0 0 0 0 0 0 0 0 0

Power-Inefficient
Strong Radar 1 1 1 1 1 1 1 1 1 1 1 1

Power-Efficient
Weak Antenna 0 0 0 0 0 0 0 0 0 0 0 0

Power-Inefficient
Strong Antenna 1 1 1 1 1 1 1 1 1 1 1 1
Steel Structure 0 0 0 0 0 0 0 0 0 0 0 0

Composite
Structure 1 1 1 1 1 1 1 1 1 1 1 1
Total Cost
($100,000) 214 221 224 231 234 241 244 251 264 271 274 281

Table  4.2 lists the generated portfolios for the RPO verification demonstration case. The

simulation was run with a conservatism parameter of zero, and a cost interval small enough

that RPO wouldn’t skip over optimal portfolios at a given cost point. As the table shows,

the 12 generated portfolios match the optimal selections discussed above, so all the decisions

regarding each subsystem — whether to include it, and how many to include if so — are
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correct. Thus, the verification metric VR = 1. Fig.  4.1 visualizes these results in a Pareto

frontier.

Figure 4.1. Pareto frontier for the RPO verification test, where the conser-
vatism parameter equals zero. The Pareto frontier plots the unitless measure
of overall system (or SoS, as RPO was initially designed as an SoS analysis
tool) capability against the cost of the system, in millions of dollars.

4.3 RPO Validation Results

The demonstration case for RPO validation assumes that, after running an RPO analysis

for the top-level subsystem model of the hypersonic vehicle, the design engineers selected

the portfolio generated with a cost of $23,100,000 for further development. To explore how

deviations in subsystem cost and performance affect the validation metric, we examine two

scenarios regarding the final design of the hypersonic vehicle: one with low deviations from

the RPO-predicted values, and another with high deviations. For the high-deviation vehicle,

the deviations in the subsystem cost and subsystem capabilities will be exactly double those

of the low-deviation vehicle, so the effects of these deviations on the validation metric will

50



be evident. Table  4.3 lists the subsystems within the selected portfolio, as well as their

predicted and actual costs.

Table 4.3. Generated Portfolio and Subsystem Costs for the RPO Validation Test
Actual Actual

Subsystem Selected Predicted Cost (Low Cost (High
Type Subsystem Cost ($) Deviation, $) Deviation, $)

Hypersonic Dual-Mode
Combustor Ramjet-Scramjet 7,000,000 8,120,000 9,240,000

Inlet Axisymmetric Inlet 500,000 480,000 460,000
Axisymmetric

Nozzle Nozzle 500,000 510,000 520,000
Subsonic

Propulsion Booster Rocket 1,000,000 1,140,000 1,280,000
Engine Wing-Body

Integration Juncture 750,000 830,000 910,000
Power-Inefficient

Flight Computer Strong Computer 300,000 260,000 220,000
Passive Thermal Dielectric

Protection Composites 1,000,000 970,000 940,000
Active Thermal Transpiration

Protection Cooling 2,000,000 2,350,000 2,700,000
Power Chemical Fuel Cell 800,000 810,000 820,000

Power-Inefficient
Sensors Strong Radar 300,000 340,0000 380,000

Power-Inefficient
Communications Strong Antenna 150,000 140,000 130,000

Aerodynamic Delta Wing,
Body Forward Canards 8,000,000 8,550,000 9,100,000

Internal
Structures Steel Structure 500,000 470,000 440,000

Skin Superalloy Skin 300,000 320,000 340,000
Total 23,100,000 25,290,000 27,480,000

Since the Bertsimas-Sim formulation of RPO does not assume any uncertainty in sub-

system cost [  17 ], any deviation in cost from the value given in RPO, no matter how small,

will affect the cost validation submetric. This is not the case for the subsystem capabilities,

where each capability is characterized by a symmetric, uniform uncertainty distribution (it’s

important to note that this uncertainty is treated as a confidence interval, rather than a for-
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mal probability distribution function). For this demonstration case, we set the uncertainties

for each capability to be either 20% or 30% of the capability’s value. Tables  4.4 - 4.17 list the

capabilities that apply to each subsystem, as well as their predicted values, uncertainties,

and actual values.

Table 4.4. Subsystem Capabilities for the Hypersonic Combustor
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Maintain Hypersonic Speeds (Thrust, kN) 6 ± 1.2 7 8
Limit Temperature Increase of

Subsystems (Temperature Reduction, K) 50 ± 10 42 34
Provide Electrical Power (Power, W) 7500 ± 1500 7000 6500

Table 4.5. Subsystem Capabilities for the Inlet
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Maintain Hypersonic Speeds (Thrust, kN) 0.1 ± 0.03 0.08 0.06

Table 4.6. Subsystem Capabilities for the Nozzle
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Maintain Hypersonic Speeds (Thrust, kN) 0.1 ± 0.03 0.11 0.12

Table 4.7. Subsystem Capabilities for the Subsonic Propulsion System
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Thrust to Hypersonic Speeds (Thrust, kN) 90 ± 18 79 68
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Table 4.8. Subsystem Capabilities for the Engine Integration
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Maintain Hypersonic Speeds (Thrust, kN) 0.15 ± 0.03 0.13 0.11

Table 4.9. Subsystem Capabilities for the Flight Computer
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Determine Vehicle Position and Motion
(Performance Index, Unitless) 10 ± 2 9.1 8.2
Calculate Optimal Trajectory
(Performance Index, Unitless) 10 ± 2 8.9 7.8

Table 4.10. Subsystem Capabilities for the Passive Thermal Protection
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Limit Temperature Increase of
Subsystems (Temperature Reduction, K) 375 ± 75 390 405

Protect Payload (Performance Index,
Unitless) 10 ± 2 9.2 8.4

Table 4.11. Subsystem Capabilities for the Active Thermal Protection
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Limit Temperature Increase of
Subsystems (Temperature Reduction, K) 50 ± 15 40 30

Protect Payload (Performance Index,
Unitless) 7 ± 2.1 5.8 4.6
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Table 4.12. Subsystem Capabilities for the Power Subsystem
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Provide Electrical Power (Power, W) 750 ± 225 720 690

Table 4.13. Subsystem Capabilities for the Sensors
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)
Detect Target (Performance Index,

Unitless) 10 ± 2 9.6 9.2
Determine Target Position

(Performance Index, Unitless) 10 ± 2 8.6 7.2

Table 4.14. Subsystem Capabilities for the Communications Subsystem
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Broadcast Vehicle Telemetry
(Antenna Gain, dB) 12 ± 2.4 12.3 12.6

Receive Ground Commands (Antenna
Gain, dB) 12 ± 2.4 12.3 12.6

Table 4.15. Subsystem Capabilities for the Aerodynamic Body
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)

Aerodynamic Stability (Performance
Index, Unitless) 4 ± 1.2 5.4 6.8

Vehicle Maneuverability
(Performance Index, Unitless) 4 ± 1.2 4.5 5
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Table 4.16. Subsystem Capabilities for the Internal Structures
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)
Sustain Aerodynamic Loads (Yield

Stress, MPa) 700 ± 210 680 660
Protect Payload (Performance Index,

Unitless) 7 ± 2.1 6.7 6.4

Table 4.17. Subsystem Capabilities for the Vehicle Skin
Actual Actual

Predicted Value (Low Value (High
Capability (Parameter, Unit) Value Deviation) Deviation)
Sustain Aerodynamic Loads (Yield

Stress, MPa) 1000 ± 200 880 760
Protect Payload (Performance Index,

Unitless) 10 ± 2 8.9 7.8

All 14 subsystem capabilities appear at least once in the generated portfolio, and the

14 selected subsystems contain a total of 24 instances of these subsystem capabilities. Of

these 24, only one falls outside the uncertainty bounds for the low-deviation model, while

12 fall outside the bounds for the high-deviation model. Thus, the performance validation

submetric P = 0.958 for the low-deviation demonstration case, while P = 0.5 for the high-

deviation demonstration case. Even though the magnitude of the deviations is only twice as

high for the high-deviation case, the performance validation submetric drops off dramatically

as the subsystem capabilities fall outside acceptable uncertainty bounds. The cost validation

submetric, meanwhile, is C = 0.919 for the low-deviation demonstration case, and C = 0.845

for the high-deviation demonstration case. While the difference between the two is closer to

the difference between the low-deviation cost submetric and 1 than those of the performance

submetric, the differences are not exactly the same, as the cost submetric uses the hyperbolic

tangent of the error fraction rather than the error fraction directly. The validation metric is

therefore R = 0.939 for the low-deviation case, and R = 0.672 for the high-deviation case.
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4.4 SDDA Verification Results

The verification test for SDDA uses a top-level model of a hypersonic vehicle, where the

dependencies between the subsystems are simplified enough that a systems engineer can eas-

ily calculate the beginning and end times for each subsystem by hand with relatively little

effort. Fig.  4.2 plots the dependency network for the hypersonic vehicle model used in this

verification test, where the arrows point from subsystems that impact other subsystems’ de-

velopment to the subsystems whose development is impacted. Each subsystem is dependent

on no more than two other subsystems, so the beginning times for standard SDDA can be

easily calculated while still being distinguishable from SDDAMax (we’ll consider both for this

example).

Figure 4.2. SDDA dependency network for a hypersonic vehicle, simplified
for a verification test.

Because we’ve set the punctuality of all subsystems to 100, each subsystem should take

the minimum amount of time to develop. For this example, all subsystems have a minimum

development time of 10 weeks, so the end time should be 10 weeks after the most conserva-

tive beginning time. We’ll use deterministic SDDA for this example, since the verification

metric does not take uncertainty into account. For subsystems dependent on only one other

subsystem, the beginning times will be the same for SDDA and SDDAMax, and will be equal

to the end time minus (1 − SODij) times the minimum development time. However, for

subsystems dependent on two or more subsystems, we’ll need to consider multiple beginning

times calculated using the aforementioned formula: For SDDA, the beginning development

time will equal the average of the beginning times for each input subsystem; for SDDAMax,
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the beginning time will equal the latest of all the beginning times calculated for each input

subsystem. For example, the internal structures are dependent on the subsonic propul-

sion subsystem (te = 12 weeks, SOD = 0.4) and the aerodynamic body (te = 10 weeks,

SOD = 0.9). The beginning time calculated from the subsonic propulsion system is thus

12−(1−0.4)∗10 = 6 weeks, while the beginning time calculated from the aerodynamic body

is 10 − (1 − 0.9) ∗ 10 = 9 weeks, the average of which is 9.5 weeks. Table  4.18 and Table  4.19 

show the beginning and end times output from SDDA and SDDAMax, respectively, and the

values predicted from the conceptual model. In both cases, the predicted values match the

outputs exactly, so VS = 1.

Table 4.18. Beginning and End Times for SDDA Verification (Standard SDDA)

Predicted Output Predicted Output
Subsystem tb (Weeks) tb (Weeks) te (Weeks) te (Weeks)
Combustor 0 0 10 10

Inlet 1 1 11 11
Nozzle 1 1 11 11

Subsonic Propulsion 2 2 12 12
Aerodynamic Body 0 0 10 10
Internal Structures 7.5 7.5 19 19

Skin 13.5 13.5 28 28
Thermal Protection 27 27 37 37

Flight Control Computer 10 10 20 20
Sensors 28 28 38 38

Communications 31 31 41 41
Power 13 13 23 23
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Table 4.19. Beginning and End Times for SDDA Verification (SDDAMax)

Predicted Output Predicted Output
Subsystem tb (Weeks) tb (Weeks) te (Weeks) te (Weeks)
Combustor 0 0 10 10

Inlet 1 1 11 11
Nozzle 1 1 11 11

Subsonic Propulsion 2 2 12 12
Aerodynamic Body 0 0 10 10
Internal Structures 9 9 19 19

Skin 18 18 28 28
Thermal Protection 27 27 37 37

Flight Control Computer 10 10 20 20
Sensors 28 28 38 38

Communications 31 31 41 41
Power 13 13 23 23

4.5 SDDA Validation Results

The hypersonic vehicle model used for the validation test contains the same set of 12

subsystems as the model used in the verification test, but with more connections included

between subsystems. The hypersonic combustor, for instance, impacts the development

of seven other subsystems, while the power subsystem has its development impacted by

five others. Additionally, the minimum and maximum development times are no longer

standardized across subsystems — on the short end, the development time of the sensors

ranges between 4 and 8 weeks, while that of the subsonic propulsion ranges between 20 and

50 weeks — and the punctuality of each subsystem ranges between 50 and 90. Fig.  4.3 plots

the dependency network for the hypersonic vehicle model used for the validation test.
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Figure 4.3. SDDA dependency network for a hypersonic vehicle.

Fig.  4.4 plots the Gantt chart for a run of stochastic SDDA on the validation example.

Here, the difference between the beginning and end times for standard SDDA and SDDAMax

is stark, with the vehicle finishing its predicted development schedule over 30 weeks later

for the latter when compared to the former. Additionally, for both forms of SDDA the

uncertainty propagates as development progresses, with the distributions of each beginning

and end time growing visibly wider.
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Figure 4.4. Gantt chart for a hypersonic vehicle development timeline, with
standard SDDA in green and SDDAMax in blue. The vertical bars above each
horizontal bar represent the probability distributions for the beginning and
end times of each subsystem’s development. Time is measured in weeks.

In this example, we compare the outputs of standard SDDA and SDDAMax with a hy-

pothetical hypersonic vehicle that has already finished development, and thus has a known

development timeline. The work presented in this thesis will use the same known develop-

ment schedule for standard SDDA and SDDAMax, as this allows comparison between the two

levels of conservatism. Our validation metric S considers the number of subsystem beginning

and end development times that fall outside a (1 − α) × 100% confidence interval, and for

this example we set α = 0.05. Table  4.20 and Table  4.21 show the confidence intervals for

the beginning and end times output from SDDA and SDDAMax, respectively, alongside the

actual beginning and end times for the hypothetical hypersonic vehicle. Of the 12 beginning

and 12 end times, two beginning times fall outside the confidence intervals predicted by

standard SDDA, while seven beginning and seven end times fall outside those predicted by

SDDAMax. Thus, S = 0.917 for standard SDDA, and S = 0.417 for SDDAMax, implying

that a low-conservatism implementation of SDDA more accurately predicts the development

timeline of this hypothetical hypersonic vehicle than a high-conservatism implementation.
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Table 4.20. Beginning and End Times for SDDA Validation (Standard SDDA)

tb 95% Actual te 95% Actual
Subsystem CI (Weeks) tb (Weeks) CI (Weeks) te (Weeks)
Combustor 0.0 - 0.0 0 25.8 - 34.3 30

Inlet 20.4 - 32.6 22 30.8 - 43.2 35
Nozzle 22.8 - 33.3 23 29.0 - 39.6 36

Subsonic Propulsion 17.7 - 30.5 32 48.8 - 63.7 60
Aerodynamic Body 22.2 - 34.3 23 33.1 - 45.4 44
Internal Structures 32.6 - 46.4 35 62.2 - 77.1 65

Skin 47.8 - 60.9 55 66.7 - 81.6 80
Thermal Protection 37.9 - 50.1 49 73.9 - 88.8 82

Flight Control Computer 58.1 - 74.1 60 68.3 - 84.3 69
Sensors 58.6 - 72.7 62 74.3 - 89.2 76

Communications 69.0 - 84.1 71 75.9 - 90.8 77
Power 51.3 - 64.3 68 78.3 - 93.2 90

Table 4.21. Beginning and End Times for SDDA Validation (SDDAMax)

tb 95% Actual te 95% Actual
Subsystem CI (Weeks) tb (Weeks) CI (Weeks) te (Weeks)
Combustor 0.0 - 0.0 0 25.7 - 34.2 30

Inlet 20.2 - 32.5 22 30.7 - 43.0 35
Nozzle 22.6 - 33.2 23 28.9 - 39.5 36

Subsonic Propulsion 19.6 - 34.2 32 50.8 - 67.5 60
Aerodynamic Body 21.9 - 34.2 23 33.0 - 45.3 44
Internal Structures 45.3 - 65.2 35 75.1 - 95.6 65

Skin 75.0 - 95.5 55 82.4 - 103.2 80
Thermal Protection 82.3 - 103.1 49 93.2 - 114.2 82

Flight Control Computer 71.3 - 92.5 60 81.4 - 102.7 69
Sensors 90.6 - 111.6 62 95.4 - 116.4 76

Communications 93.5 - 114.6 71 97.9 - 118.9 77
Power 94.6 - 115.7 68 101.7 - 122.8 90
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5. CONCLUSIONS

5.1 Summary

The motivation for this thesis is the necessity of ensuring that the tools systems engi-

neers use for design analysis carry out their intended functions with a high degree of accuracy.

The AWB is one such suite of tools, designed to address complex interdependencies between

constituent systems in an SoS or a highly-integrated system in order to more effectively

generate system architectures and characterize developmental and operational risks in an

MBSE environment. One class of engineered system with a high degree of interdependence

between subsystems is that of hypersonic flight vehicles, as the aerodynamic characteristics

of hypersonic speeds and the necessity for multiple types of propulsion systems creates nu-

merous constraints on the vehicle’s design and results in a narrow performance envelope. As

such, the AWB and its constituent tools — including RPO and SDDA — could be useful in

generating conceptual designs for hypersonic vehicles, though design engineers would need a

way to verify and validate the AWB tools for this class of problem. To this end, this thesis

addressed the following research question: What quantitative measures can we use to eval-

uate the effectiveness of Analytic Workbench tools in generating and evaluating hypersonic

vehicle architectures? This chapter summarizes the findings pertaining to this question as

applied to RPO and SDDA.

This thesis presents four effectiveness metrics that can be applied to the AWB tools, one

each for RPO verification, RPO validation, SDDA verification, and SDDA validation. These

metrics were partially inspired by verification and validation metrics for computational fluid

dynamics software, in particular the work of Oberkampf and Trucano [ 14 ]. Each effectiveness

metric takes into account the quantifiable outputs of the tool to which it applies, and how it

compares to the results of either a conceptual analysis in the case of verification, or a physical

system in the case of validation. For RPO, these outputs include the system portfolios

generated at different cost points, the decisions that RPO made in generating them, and the

subsystem cost and capabilities. The SDDA metrics account for each subsystems beginning

time of development and end time of development.
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We selected the four effectiveness metrics from a list of five candidate metrics, applying

each candidate metric to the effectiveness metrics whose requirements it satisfied:

• Error Measurements: Did not satisfy the requirements for any of the four effectiveness

metrics

• Coefficient of Determination: Did not satisfy the requirements for any of the four

effectiveness metrics

• Weighted Sum of Hyperbolic Tangents: Satisfied the requirements for RPO validation

(cost submetric) and SDDA verification

• Ratio of Sums of Boolean Variables: Satisfied the requirements for RPO verification

and RPO validation (performance submetric)

• Weighted Sum of Significance Tests: Satisfied the requirements for SDDA validation

To demonstrate the application of these metrics to a physical system, this thesis created

a demonstration case for each one in the form of a hypothetical hypersonic vehicle, with

a system architecture based on the GHV [  22 ] — a class of hypersonic vehicle conceptual

designs developed by the AFRL — and system capabilities derived from the NASP [ 23 ]

— a proposed hypersonic vehicle in the 1980s and 1990s designed as a single-stage-to-orbit

vehicle. The corresponding RPO and SDDA models for the verification test were simple

enough that the outputs generated from a conceptual analysis could easily be calculated by

hand, such that the verification metrics were always equal to 1. The RPO and SDDA models

for the validation test were constructed such that the outputs deviated somewhat from the

hypothetical physical systems, so that the resulting loss of accuracy could be clearly seen

in the validation metrics. For SDDA in particular, the hypothetical physical system aligned

more with the level of conservatism predicted by standard SDDA than SDDAMax, so the

validation metric was higher for the former than the latter. Since the verification metrics

for RPO and SDDA — the implementations of which had been extensively developed and

tested — both equaled 1, and the validation metrics clearly decreased as the deviation in the

outputs from the demonstration case vehicles increased, we can conclude that the selected

metrics were appropriate for the verification and validation of these AWB tools.
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5.2 Future Work

We can explore more ways to apply verification and validation effectiveness metrics to

RPO and SDDA:

• Other RPO Formulations: The current effectiveness metrics assume that RPO uses

the Bertsimas-Sim formulation of risk [ 16 ][ 17 ]. We can reevaluate our requirements for

RPO effectiveness metrics to generate measures that apply to the robust mean-variance

and CVaR formulations of RPO.

• Cost and Performance Weighting: In our requirements in Chapter 2, we specify that the

RPO validation metric must weight cost and performance equally, as we can’t assume

that RPO places a higher importance on one than the other. However, subsequent

explorations of the RPO validation metrics could test this assumption by placing dif-

ferent weights on cost and performance, and examining how different weightings affect

the validation process.

• Beginning and End Time Weighting: Similarly, the requirements for SDDA verifica-

tion and validation specify that their respective effectiveness metrics must place equal

weight on the beginning and end development times. However, since the end devel-

opment time of each subsystem depends, by definition, on the beginning development

time, and SDDAMax differs from standard SDDA exclusively in the formulation of the

beginning time, it’s possible that the effectiveness metrics would be more useful with a

higher importance placed on beginning time. Subsequent explorations could test this

assumption by examining how different weightings affect the verification and validation

process.

• Significance Level Selection: In Chapter 2, we specified that the demonstration cases

would assume a significance level of 0.05, which is commonly used in statistics. Subse-

quent explorations of the SDDA validation metric could apply it using other commonly

used values of α, to see how it affects the validation of SDDA given deviations of various

magnitudes from the demonstration case development schedule.
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• SDDA Conservatism: The effectiveness metrics for SDDA make no distinction between

standard SDDA and SDDAMax, and does not consider any other levels of conservatism

besides these two. Further explorations of these metrics could include conservatism as

a variable, in addition to beginning and end development times, and we could examine

ways to quantify conservatism to possibly create a ”middle ground” between SDDA

and SDDAMax.

• Expansion to Other Problems: In Chapter 2, we developed the requirements for the

verification and validation metrics within the context of a hypersonic vehicle design

problem, where the portfolios and networks consisted of top-level subsystems. If we

were to apply these effectiveness metrics to a system-of-systems problem, or a design

involving both top-level and lower level subsystems, we may need to reevaluate the

requirements to ensure that they still apply. If not, we would need to develop a

different set of effectiveness metrics for that kind of problem.

Additionally, we would need to generate a larger suite of verification test cases to ensure

that the verification metrics applied to all of them, and subsequent applications of the

validation metrics should use an actual physical system, rather than the hypothetical system

used in Chapter 4. Nevertheless, these effectiveness metrics — and the example problems to

which we applied them in this thesis — provide a good starting point for further examination.

The next step in developing effectiveness metrics for the analysis tools within the AWB

would be to develop verification and validation metrics for SODA, which — as explained in

Chapter 1 — was beyond the scope of this thesis. However, generating metrics for SODA

presents a problem not present in the development of effectiveness metrics for RPO and

SDDA: The outputs of RPO (generated portfolios, subsystem capabilities, and subsystem

costs) and SDDA (beginning and end development time) have inherent physical meaning,

and correspond to quantities that are unambiguously measurable in a physical system. How-

ever, the outputs of SODA — subsystem operability and total system operability — don’t

correspond with physical quantities, and neither does the subsystem self-effectiveness [ 9 ].

For example, what does it mean for a hypersonic combustor to have an operability of 50?

Does that mean that the combustor is operating as intended, just not at its optimal condi-
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tions, or that it’s experiencing one or more mechanical failures? As a consequence, one could

potentially change the definition of operability depending on the problem in order to make

the SODA analysis appear more effective than it actually is, thus weakening the applicability

of the validation metrics. As such, any exploration of effectiveness metrics for SODA should

carefully define operability for each class of problem a priori, to prevent the possibility of

”gaming” the outcome.
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