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ABSTRACT

Partition Density Functional Theory (P-DFT) is a quantum chemistry method in which

the system is fragmented into non-interacting components, and the energy is given by func-

tionals of the fragment densities. The method is unique in the sense that it corrects for

density functional approximation errors and sheds light on the individual structure of frag-

ments within a molecule. In this work, we discuss the fundamental aspects of the theory as

well as its challenges, and we introduce two software packages that were written to advance

the understanding and applicability of the theory. The first, n2v focuses on the numerical

procedure to obtain a potential that generates a given density, and the second, pyCADMium

performs very accurate P-DFT calculations in diatomic molecules. Both packages are fully

open-source and thus can be used and repurposed with any intention. We hope that these

advances can be used to develop everyday embedding calculations.
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1. INTRODUCTION

Partition Density Functional Theory (P-DFT) is a quantum chemistry method that relies

on breaking down a full molecular calculation into smaller calculations on fragments. This

approach does not only mean that we are able to achieve a linear scaling of N with respect to

the number of fragments (acquiring a significant amount of time reduction as well as allowing

fragment calculations to be run in parallel). The other intrinsic benefit is that many of the

problems that are ubiquitous in Density Functional Theory, such as bond-breaking, can be

easily be fixed. This work is organized as in the following manner: in Chapter  2 we review

the theoretical foundations on Density Functional Theory. This chapter introduces all of the

definitions that are relevant for P-DFT. In Chapter  3 we discuss how fragmenting a system

into atoms or molecules can bring new benefits but also unexpected challenges. In Chapter  4 

we introduce n2v, a new module that allows to perform different inversion methods that are

of the essence for the understanding and development of P-DFT. In Chapter  5 , we introduce

pyCADMium , an open-source version of our P-DFT code for diatomic molecules. Finally, in

Chapter  6 , we go over the two-orbital approximation and the modified-Orbital approximation

for P-DFT that allow us to approximate the non-additive kinetic energy functional in terms

on the fragment densities.
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2. DENSITY FUNCTIONAL THEORY

Consider an electronic system of N particles in the Born-Oppenheimer formalism [ 1 ]. If we

consider atomic units (as we will be using throughout this text), the Hamiltonian in the

position representation is

H (r1, r2, ..., rN) = −

N∑
i=1

1
2
∇2

ri︸      ︷︷      ︸
Kinetic Energy

+
1
2

N∑
i=1

N∑
i,j

1
| ri − rj |︸                  ︷︷                  ︸

Electron Repulsion

−

N∑
i=1

M∑
i=α

Zα
| ri − Rα |︸                ︷︷                ︸

Nuclear Attraction

(2.1)

where ri refer to the 3N spatial coordinates of electrons and Rα refer to the 3N spatial

coordinates of the nuclei. Equation (  2.1 ) in practice is expressed as a sum of operators

independent of the representation used

Ĥ = T̂ + V̂ee + V̂ext (2.2)

To find the electronic ground state of a system of interest we find the eigenvalues and

eigenvectors of the previous operator. This is known as the Schrodinger Equation [ 2 ]. Using

Dirac’s notation [ 3 ], we can write it in a representation-independent formalism

Ĥ |Ψ〉 = E |Ψ〉 , (2.3)

where the solution to Equation ( 2.3 ) is a wavefunction dependent on all 3N spatial coor-

dinates and N spin coordinates. The solution is antisymmetric with respect to the exchange

of an odd number of particle indices. The antisymmetry condition is forced upon the solution

by constructing a linear combination of Slater determinants Φ [ 4 ],

Φ(x1, x2, ...xN) = (N!)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) . . . χk(x1)

χi(x2) χj(x2) . . . χk(x2)
...

...
...

χi(xN) χj(xN) . . . χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)

where each of the elements are spin orbitals χ(x), x := {(ri, σi) | ri ∈ R, σi ∈ {↑, ↓}.
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Finally, the electronic density can be found by integrating all but one coordinates in the

wavefunction

n(r) = N
∫
· · ·

∫
| Ψ(x1, x2, . . . , xN) |2 dσdx2 . . . dxN (2.5)

Additionally, the electron density is normalized to the number of electrons

∫
n(r) · dr = N (2.6)

To find the electronic ground-state energy we make use of the variational principle. It

establishes that if exists, |Ψ〉 can be found as the function that minimizes the expectation

value of the Hamiltonian, and in turn, the eigenvalue is the ground state energy E0.

E0 = min
Ψ
〈Ψ| Ĥ |Ψ〉 (2.7)

2.1 1964 - Hohenberg & Kohn

Consider an isolated electronic system that is composed of N particles bound in space by

a set of nuclei that fully constitutes an external potential vext(r). We can express any atomic

system we can think of by replacing the third term in the Hamiltonian of Equation ( 2.1 ).

This is because the only term that provides an identity to the Hamiltonian is the external

potential, i.e. H [vext(r)]. In this way, by multiplying the Hamiltonian by a wavefunction on

both sides and integrate in all of space, we are able to define a universal functional

F[n] =
〈
Ψ[n]

∣∣∣ T̂ + Ŵee

∣∣∣Ψ[n]
〉

(2.8)

When we solve the Schrödinger equation, we find the eigenvalues and eigenvectors asso-

ciated to a Hamiltonian, and from them, we build an electronic density. This implies that

there is a path that takes us from the external potential to an electronic density

vext(r) −→︸︷︷︸
1

Ψ −→︸︷︷︸
2

n(r) (2.9)
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In the Fall of 1964, Pierre Hohenberg and Walter Kohn published an article that proved

that not only vext(r) maps to n(r), but also that the universal functional from Equation

( 2.8 ) has as its minimum value the correct ground-state energy associated with the external

potential vext(r), making it possible to use the electronic density as a vehicle to find the

properties of the system [  5 ].

The one-page proof by contradiction is divided in two parts ( 1 and 2 ), each part

ensures that each mapping in ( 2.9 ) is unique:

• 1 Consider two Hamiltonians, each defined by their external potential H1 := H [v1(r)]

and H2 := H [v2(r)] so that they differ more than a constant v1(r) − v2(r) , C . Let us

assume that we can find the minimum energy ε0 for each system with the same Ψ.

H1 |Ψ〉 = ε0 |Ψ〉 H2 |Ψ〉 = ε0Ψ(r)︸                                            ︷︷                                            ︸
Subtract from each other

(v1(r) − v2(r)) |Ψ〉 = (ε1 − ε2) |Ψ〉

The previous equality implies that v1(r) − v2(r) , ε1 − ε2 which is a contradiction to

the initial statement since ε ∈ R. We assume that the position representation of |Ψ〉

is a function that is non-zero for all spatial coordinates (r1, r2, r3, ...), which is a rea-

sonable assumption for isolated systems with an external potential originating from

nuclei. This proves the uniqueness of the mapping between the external potential and

the wavefunction.

• 2 Assume that two different ground-state wavefunctions |Ψ1〉 and |Ψ2〉 are the lowest

energy eigenfunctions of each Hamiltoinan H1 and H2, and they give rise to the same

ground-state density n(r). Next, we can build the following set of inequalities,

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉 = 〈Ψ2| Ĥ2 + (v1(r) − v2(r)) |Ψ2〉 = E2 +

∫
(v1(r) − v2(r))n(r)dr

E2 = 〈Ψ2| Ĥ2 |Ψ2〉 < 〈Ψ1| Ĥ2 |Ψ1〉 = 〈Ψ1| Ĥ1 + (v2(r) − v1(r)) |Ψ1〉 = E1 +

∫
(v2(r) − v1(r))n(r)dr
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And proceed to add them together,

E1 + E2 < E1 + E2

Again, a contradiction. Therefore, two different wavefunctions cannot give rise to

the same electronic density. This proves the uniqueness of the mapping between the

wavefunction and the density. We arrive at the conclusion that two external potentials

differing only by a constant, cannot generate the same non-degenerate ground state

density.

n(r) −→ vext(r) + C .

2.2 1965 - Kohn & Sham

Walter Kohn and Lu Jeu Sham proposed a way to rewrite the functional in Equation

( 2.8 ) hoping to circumvent the two-body operator V̂ee [ 6 ]. To do so, the system of interacting

particles is mapped into a system of non-interacting ones. To compensate for the missing

interaction, the non-interacting particles are under the influence of an effective multiplicative

potential that allows electrons to have the exact same density as the interacting system. With

only one-body operators left, our problem becomes separable.

Mathematically, this is done by building a Hamiltonian as in Equation ( 2.2 ) in which the

electron-electron term is scaled by a constant λ. By setting λ ∈ [0, 1] we tune the electron

interaction and connect the interacting system with the non-interacting system. Using Levy’s

formulation [ 7 ]

Fλ[n] =
〈
Ψmin,λ

n

∣∣∣ T̂ + λ · V̂ee

∣∣∣Ψmin,λ
n

〉
(2.10)

where Ψmin,λ
n is the single-determinant wavefunction that minimizes the expectation value

of T̂ + λV̂ee as well as generating the density n(r). The physical system is represented by

λ = 1 and the auxiliary system of non-interacting electron is represented by λ = 0 so that:

F0[n] = Ts[n] = −
1
2

N∑
i=1

〈φi| ∇
2 |φi〉 (2.11)

20



where the {φ(r)i} are the Kohn-Sham orbitals to be defined later. Additionally, the density

is given by

n(r) =

N∑
i=1

| φi(r) |2 (2.12)

The process of expressing our problem as a non-interacting one allows us to express the

universal functional as

F[n] = Ts[n] + EH[n] + Exc[n] (2.13)

where Ts[n] is the kinetic energy computed using the known functional of Equation ( 2.11 ).

EH[n] is the Hartree energy functional

EH[n] =
1
2

∫ ∫
dr dr′

n(r) n(r′)
| r − r′ |

(2.14)

that represents the electrostatic repulsion energy generated by the electron density n(r),

and Exc[n(r)] is defined as the difference between the interacting components and the non-

interacting components

Exc[n] =

(
T [n] − Ts[n]

)
+

(
Vee[n] − VH[n]

)
(2.15)

In summary, the full Kohn-Sham functional becomes

E[n] = Ts[n] + EH[n] + Exc[n] +

∫
dr n(r) v(r) (2.16)

To minimize the previous expression, let us apply a functional derivative of the Kohn-

Sham functional with respect to n(r) to obtain

δTs[n]
δn(r)

+

∫
dr′

n(r′)
|r − r′|

+
δExc[n]
δn(r)

+ vext(r) = 0 (2.17)

where the second term is know as the Hartree potential:

vH[n(r)] =
δEH[n]
δn(r)

=

∫
dr′

n(r′)
|r − r′|

(2.18)
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and the third term is known as the exchange-correlation potential:

vxc[n] =
δExc[n]
δn(r)

(2.19)

The electronic density used to evaluate the functional is obtained from the so called

Kohn-Sham orbitals that are the solution to the set of differential equations known as the

Kohn-Sham Equations.

[
−

1
2
∇2 + vext(r) + vH[n] + vxc[n]

]
φi(r) = εiφi(r) (2.20)

where φ(r) are the Kohn-Sham orbitals, εi are the orbital’s energies. The Kohn-Sham

equations are exact, in the sense that they recover the electronic density of the interacting

system. Exc[n(r)] is not known and must be approximated through density functional ap-

proximations (DFA). In practice, when it is said that Density Functional Theory does not

yield accurate results, it is the DFA that fails, not DFT. Notice that vH[n] and vxc[n] are

implicitly dependant on the orbitals, the set of functions that we are trying to find, and thus,

this set of equation is solved self-consistently.

2.3 The Adiabatic Connection

Practical applications of DFT require Equation ( 2.15 ) to be approximated. The definition

of the exchange-correlation energy ensures that all the physical effects missing from the non-

interacting scheme are recovered. From a physical perspective, this includes effects from

both the motion of electron as well as repulsion due to charge and spin. Associating many

physical effects to a single variable that we seek to approximate is not very elegant, nor

practical. Let us attempt to fix this issue. Remember that the Hellman-Feynman Theorem

states that
δFλ[r]

δλ
=

〈
Ψmin,λ

n

∣∣∣ V̂ee

∣∣∣Ψmin,λ
n

〉
(2.21)
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where Fλ[n] is the scaled universal function of Eq (  2.10 ). Integrate the expression in the

domain of λ ∈ [0, 1] while maintaining the density constant:

∫ 1

0

δFλ[r]

δλ
dλ = F1[n] − F0[n] = Exc[n] + EH[n] (2.22)

Combine Equation (  2.21 ) with ( 2.22 ) to find the adiabatic connection formula

Exc[n] =

∫ 1

0

〈
Ψmin,λ

n

∣∣∣ V̂ee

∣∣∣Ψmin,λ
n

〉
dλ − EH[n] (2.23)

We have removed any kinetic dependence from our exchange-correlation expression. The

drawback is that we now require to know how this functional behaves as λ changes from

zero to one. The adiabatic connection formula is a common starting point for many density

functional approximations [ 8 ].

In practice the exchange-correlation energy is separated into two parts:

Exc[n] = Ex[n] + Ec[n] (2.24)

so that each can be approximated individually.

2.4 Ingredients to Construct Density Functional Approximations

To construct an approximation for Exc[n], the only real guideline is to have a functional

that depends on the density. The general form is given by

Exc[n] =

∫
εxc(n)dr (2.25)

where εxc is a quantity called energy density given its dimensions energy
volume .

The Local Density Approximation (LDA) is a simple yet powerful functional that solely

depends on the density [ 6 ]. Unfortunately for most practical calculations, it is easy to find

that the dependence of Exc[n] on the density is often highly non-local [  9 ], making small

changes on the density to cause large changes on the functional derivative of Exc[n]. To

compensate, other ingredients need to be added to account for this non-locality. The most
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common ingredients after the density are the gradient of the density (| ∇n(r) |) and laplacian

of the density (∇2n(r)), and the kinetic energy density

τ =
1
2

N∑
i

| ∇φi |
2 (2.26)

that integrates to the Kohn-Sham kinetic energy Ts[n]. By doing so, we can then construct

an energy density with any arbitrary number of different ingredients

εxc := εxc(n,∇n,∇2n, τ, ...) (2.27)

In theory, as we increase the number of ingredients, we expect a more accurate func-

tional. The modern development of functionals depends on the conventions introduced by

John Perdew. According to his methodology, by ensuring that our approximations are in

agreement with known exact conditions for Exc[n], the closer we move towards the true exact

functional [  10 ].
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3. WHAT IS THE SHAPE OF ATOMS IN MOLECULES?

“What is the shape of atoms in molecules?" is a question without an answer. Atoms in

molecules do not have a real, independent existence. When we say that a water molecule

“has" two hydrogen atoms and one oxygen atom, what we mean is that an appropriate supply

of energy can split the molecule into these three atoms. Each of these atoms, when isolated,

is spherical, but the ground-state electronic density of the water molecule is not simply the

sum of three spheres. However, it is approximately equal to the sum of three spheres (see

Figure  3.1 ), and can be written exactly as the sum of three distorted spheres. Thus, the

question of the title may be vague but it is not meaningless. All molecular information (i.e.

what makes a molecule different from the simple sum of its isolated constituents) is coded

into a set of atomic density distortions.

Figure 3.1. Ground-state density of a water molecule on the plane of the three
atoms. Calculated using Psi4 [ 11 ], [ 12 ] with CCSD(T)/UGBS. The dotted line
indicates an iso-density contour.
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There is no unique way of defining these atomic density distortions. In fact, there are

infinitely many ways in which one can decompose a given molecular density n(r) into the

sum of atomic-like functions nα(r) (we use the subscript α to label atoms in this chapter).

However, there is a unique set of densities {nα(r)} that sum up to n(r) while minimizing the

sum of the atomic energies. It is this special set of densities to which we turn our attention

in this chapter.

Density Functional Theory (DFT) [ 5 ], [ 6 ] establishes that any electronic property P of a

molecule is a functional of its ground-state electronic density, P = P[n]. The uniqueness of

the set {nα(r)} for a given density then allows one to understand molecular properties, in prin-

ciple, as functionals P[{nα(r)}] of that set. Decades of research in DFT have taught us how

the total density n(r) can be used as the main variable in molecular calculations, as explained

briefly in Section  3.1 . Our group is investigating how the atomic densities, as opposed to the

total molecular density, may be used as the main variables, and we discuss this in Section

 3.2 . The change of perspective brings with it advantages and disadvantages. The most obvi-

ous advantage is a significant lowering of the computational cost of the calculations because

instead of having to solve the N-electron Schrödinger equation (a second-order differential

equation on 3N coupled variables), one solves only for a small number of independent equa-

tions, each for less than N electrons. A second advantage will be explained and illustrated in

Section  3.3 : By focusing on atomic densities, rather than on total molecular densities, one

can fix pervasive errors of approximate density-functional approximations and significantly

improve the accuracy of certain calculations; a third advantage will be discussed in Section

 3.4 : The chemical reactivity between two atoms or molecular fragments that approach each

other is best described in a theory that employs atomic (or fragment) densities as the main

variables. On the downside, many of the theorems and techniques that have been explored

over the last six decades to describe molecular systems are not directly applicable to the

new set of variables, so entirely new methods and approximations need to be developed.

A growing community of researchers working under the umbrella of “embedding" methods

[ 13 ]–[ 16 ], including the authors, are pursuing this direction. We highlight here some of the

recent developments.
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3.1 The Struggles of Using the Molecular Density

An ample literature exists documenting the successes and failures of different approxima-

tions to E[n], [ 17 ]–[ 19 ], but in a nutshell, some of the most pervasive failures of approximate

KS-DFT appear when stretching chemical bonds. The large errors observed in these cases en-

compass both fractional charge (or delocalization) and fractional-spin (or static-correlation)

errors [ 20 ], [  21 ], which are ultimately due to the inability of the approximate XC-functionals

to reduce the molecular density to the correct atomic densities (or spin-densities) when bonds

are stretched. We illustrate both types of errors below for the Local Density Approxima-

tion (LDA), the simplest and earliest approximation for E[n] on which the modern ladder of

approximations is built [ 22 ].

Fractional-charge error: Consider stretching H+
2 . The true ground-state density has left-

right symmetry, with 1
2 electron on the left atom and 1

2 electron on the right atom. The

physical state at infinite separation must break this symmetry and produce a neutral hydro-

gen atom on one side and a bare proton on the other. Both solutions (broken-symmetry and

symmetric) should therefore have the same energy at infinite separation, but this feature is

not achieved by the LDA or other approximations built upon it. The LDA energy of a H

atom with half an electron is much lower than what it should (half the energy of infinitely

stretched H+
2 ), leading to the incorrect binding shown in dashed pink in Figure  3.2 .

Fractional-spin error: Now consider stretching H2. The issues of the previous paragraph

are no longer a problem because each atom has exactly one electron at infinite separation.

However, an analogous problem arises for fractional spins. The true ground state of H2 is

spin-unpolarized and must remain so at very large separations in the absence of environ-

mental perturbations. However, an isolated H atom is spin-polarized so the energy of two

spin-polarized H atoms should be identical to that of two spin-unpolarized H atoms (each

having half-spin up, half-spin down). This condition is again violated by the LDA, leading

to the significant overestimation of the binding that can be appreciated in Figure  3.3 .

These errors, illustrated here for the two simplest open-shell and closed-shell molecules,

are ubiquitous in quantum chemistry. Every time a bond is stretched, as in transition states

along chemical reactions, a combination of these errors can creep into and contaminate the
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Figure 3.2. Electronic binding energy of H+
2 . Exact (solid, blue), KS-LDA

(dashed, pink), and OA-LDA (dash-dotted, yellow) from [ 23 ], as explained in
Section  3.3 

DFT calculations. Cancellation between the two errors can sometimes occur (note they have

opposite signs) and lead to accidentally accurate results for complex systems, but predicting

such cancellations is generally extremely difficult and not something DFT users want to or

should rely on. Results from approximate KS-DFT calculations are thus often suspect. A

theory that uses atomic densities as the main variables, as opposed to the total molecular

density, has the potential the fix such errors. Furthermore, it has the potential to provide

information about individual atomic density distortions, along with chemical insight into the

reactivity of individual fragments.

3.2 Atomic Densities as the Main Variable

As mentioned in the Introduction if this chapter, there is a unique set of atomic densities

{nα(r)} that minimizes E f ≡
∑
α Eα[nα(r)] while satisfying the density constraint:

∑
α

nα(r) = n(r) (3.1)
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Figure 3.3. Electronic binding energy of H2. Exact (solid, blue), KS-LDA
(dashed, pink), and OA-LDA (dash-dotted, yellow). from [19] as explained in
Section  3.3 

The atomic energies Enα(r)] in the above definition of E f are not true ground-state

energies, but rather given by Eα[nα(r)] = F[nα(r)] +
∫

drvα(r)nα(r), where vα(r) is the α-

atomic potential. The constraint of Equation ( 3.1 ) prevents nα(r) from being the ground-

state density of the corresponding vα(r). However, each of the nα can be shown to be the

ensemble ground-state density of vα(r)+vp(r), where vp(r) is a unique α-independent potential.

More specifically, the Partition Potential Theorem (PPT) [ 24 ] establishes the following: If

a molecular potential v(r) is decomposed into atomic potentials {vα(r)}, i.e. v(r) =
∑
α vα(r),

then, for a set of fragment occupations {Nα} there is a unique local potential vp(r) such

that, when added to the individual vα(r)’s leads to ensemble ground-state densities {nα(r)}

summing up to the correct total density n(r).

Simple Illustration of the PPT: Figure  3.4 provides the simplest illustration of this theo-

rem. Consider first one electron moving in the 1D-potential v1(x) (dotted grey line in middle

panel). Its ground-state density, when isolated, is n(0)
1 (x) (dotted orange line in upper pan-

nel). Similarly, one electron in v2(x) has density n(0)
2 (x). Now consider two non-interacting

electrons in the double-well potential v(x) = v1(x)+v2(x) (dashed yellow line in middle panel).
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The density of this system, n(x), is not equal to n(0)(x) = n(0)
1 (x) + n(0)

2 (x), but it is close to it:

n(x) ≈ n(0)(x), especially if v1(x) overlaps weakly with v2(x). The PPT establishes that there is

only one potential vp(x) (purple line in Figure  3.4 ) such that, when added separately to v1(x)

(lower panel) and v2(x) leads to ground-state densities n1(x) (upper pannel) and n2(x) that

differ from n(0)
1 (x) and n(0)

2 (x) in just the right way so that n1(x) + n2(x) = n(x). The theorem

applies to any number of interacting electrons in 3D and to any number of fragments [ 24 ].

Figure 3.4. Graphic example of simplest PPT case for 2 non-interacting elec-
trons in 1D potentials of the form v1,2(x) = −cosh−2(x± a), with a = 2.5. Upper
panel: The gray line magnifies the atomic-density distortion n1(x)−n1(x)(0) by a
factor of 5 to highlight what occurs upon formation of the chemical bond: The
density of the isolated atom is pulled toward the bonding region. Middle panel:
Left atomic potential v1(x) (dotted), total ‘molecular’ potential (dashed), and
partition potential (solid, purple). Bottom panel: Comparison of the isolated
atomic potential v1(x) and the effective potential v1(x) + vp(x) for which the
polarized density n1(x) is a ground-state density.
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Algorithm to calculate vp(r): Several algorithms have been developed to solve the con-

strained optimization problem involved in calculating vp(r) (i.e. minimizing E f [{nα(r)}] under

the constraint of Eqution ( 3.1 )). The algorithm described here is perhaps conceptually the

simplest:

1. Choose an approximation for E[n], solve the KS equations of Equation( 2.20 ) for the

isolated atoms, and find their self-consistent densities {n(0)
α (r)} and corresponding KS-

potentials {v(0)
s,α(r)}.

2. Build an approximate molecular density as n(0)(r) ≈
∑
α nα(r)(0)(r).

3. Invert the KS equations to find the effective KS-potential v(0)
s (r) corresponding to n(0)(r).

For the exact density, this potential would be identical to v(r) + vHxc(r), but for the

approximate density it is not. The difference between the two, therefore, can be used

as a correction to generate an improved atomic KS potential v(1)
s,α(r) = v(0)

s,α(r) + {v(r) +

vHxc[n(0)](r) − v(0)
s (r)}.

4. Solve the KS equations for the atoms again with the improved atomic KS potential

and repeat until self-consistency is achieved. If convergence is achieved after iterating k

times, then the atomic KS potentials v(k)
s,α(r) are given by vα(r)+vp(r)+vHxc[nα(r)(k−1)](r).

That is, the partition potential emerges as an α-independent piece to be added to the

α-nuclear potential.

Just as for the model system of Figure  3.4 , the main feature of vp(r) in real diatomic molecules

is an attractive well in between the nuclei. The ‘job’ of this well is to distort the density

of each isolated atom by pulling it toward the bonding region. There are generally also

positive plateaus in vp(r) that are due to kinetic effects [  15 ] (contributions from the functional

derivatives of Ts[nα(r)]), and a singularity at the nuclei whose strength is proportional to the

value of the density of one atom at the location of the other [ 15 ]. Modifying the isolated-

atom density of the nuclei according to Kato’s cusp condition. This is our solution to the

question without an answer: The shape of atoms in molecules is determined by vp(r).
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3.3 Fixing Errors in Density Functional Approximations

Now define the partition energy Ep as the difference between the total energy E and

the sum of atomic energies E f . Using a bold n(r) to denote the set of atomic densities,

n(r) ≡ {nα(r)},

Ep[n] = E[n] − E f [n] (3.2)

With the KS energy-decomposition of Equation ( 2.16 ), the partition energy is given by:

Ep[n] = Tnad
s [n] + Enad

Hxc[n] + Vnad
ext [n] , (3.3)

where the “nad" superscript is used to indicate non-additive quantities, i.e. the difference

between the total and the sum of the fragments. Thus

Tnad
s [n] = Ts[n] −

∑
α

Ts[nα(r)] (3.4)

Enad
Hxc[n] = EHxc[n] −

∑
α

EHxc[nα(r)] (3.5)

Vnad
ext =

∫
dr · n(r) · v(r) −

∑
α

∫
dr · nα(r)vα(r) (3.6)

We have again combined the non-additive exchange-correlation and Hartree terms of

Equation ( 2.16 ) together into Enad
Hxc. For a given approximation to Exc[n], the algorithm

described in the previous section exactly reproduces the results of the corresponding KS

calculation, including all of its errors. It can be shown [ 25 ] that the partition potential is

the functional derivative of the partition energy with respect to any of the atomic densities,

at the minimum. Since Vnad
ext is known exactly, the key to improving over Kohn-Sham is to

propose adequate approximations for the other two components of Equation ( 3.3 ), Tnad
s and

Enad
Hxc. We discuss each separately:
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3.3.1 Approximating Enad
Hxc

The origin of common errors of approximate XC functionals is well understood especially

for homonuclear diatomic molecules [ 19 ] (i.e. see discussion above for H2 and H+
2 ). We have

shown how a simple overlap approximation (OA) to Enad
Hxc can fix both of these errors simul-

taneously [  26 ], something that no approximate XC functional can achieve with comparable

accuracy within KS-DFT. The OA is defined by:

Enad, OA
Hxc [n] = Enad

H [n] + S [n]Enad
xc [n] + (1 − S [n])∆Enad

H [n] , (3.7)

where S [n] is a measure of the overlap between the two atomic densities:

S [n] = erf
(
2
∫

dr
√

nA(r)nB(r)
)

(3.8)

The term ∆Enad
H [n] in Equation ( 3.7 ) is a correction to the non-additive Hartree contribu-

tion, properly defined in ref.[ 26 ] so that both fractional-charge and fractional-spin errors are

suppressed as the molecule is stretched, as shown in ref.[ 26 ]. The results shown in yellow in

Figure  3.2 and labeled “OA-LDA" go a step further [ 23 ] and replace Enad
Hxc in Equation ( 3.7 ) by

the non-additive exact-exchange functional, canceling completely the self-interaction error

and leading to the exact Ep[n] in this case [ 23 ]. The only deviation from the exact binding

here is due to the effect that the slightly incorrect LDA fragment densities have on E f . We

stress that the correct energy is obtained here as the molecule is stretched without symmetry

breaking: The ground state of H+
2 retains left-right symmetry, and the ground-state of H2

remains a spin-singlet throughout the entire range of separations. This is a proof-of-principle

demonstration that it is possible to use a simple functional of the density for the atoms (not

for the molecule), while approximating Enad
Hxc to fix the underlying errors due to fragmen-

tation. The route is complementary to the efforts of many others to develop sophisticated

XC-functionals of the total density [  27 ]–[ 31 ].
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3.3.2 Approximating Tnad
s

Even with a robust and accurate functional for Enad
Hxc[n] (based perhaps on future general-

izations of the OA), an explicit approximation for Tnad
s [n] is needed if one wants to reach the

goal of linear-scaling calculations. Step 3 of the algorithm described in Section  3.2 relies on

iterative inversions that make the method computationally impractical (at least, not more ef-

ficient than regular KS-DFT). The most obvious way to avoid such inversions is by resorting

to orbital-free DFT (OF-DFT) [ 32 ] to approximate Tnad
s [n] as an explicit functional of the

set of atomic densities. Kinetic-energy functionals are famously difficult to approximate and

state-of-the-art functionals are still far from reaching chemical accuracy, but we are looking

for approximations to the non-additive part of Ts, which is altogether a different challenge.

The non-interacting kinetic energies for the atoms are still calculated exactly via orbitals,

and we wish to approximate the much smaller Tnad
s [n]. Recent work shows that the route is

promising. For example, writing Tnad
s =

∫
drn(r)tnad

s (r), an expression for the non-additive

kinetic energy density tnad
s (r) of the type:

tnad
s (r) = Q[n]tnad, vW

s (r) + (1 − Q[n])tnad,TF
s (r) (3.9)

has been shown [ 33 ] to provide an excellent approximation to the exact Tnad
s in covalent

σ-bonds. In Equation ( 3.9 ), tnad, vW
s is the von Weiszäcker kinetic-energy density [  34 ], which

is exact for one-orbital systems, tnad, TF
s is the Thomas-Fermi kinetic-energy density [ 35 ], [ 36 ],

exact for uniform-density systems, and Q[n] is a switching functional whose role is analogous

to that of S [n] in Equation ( 3.7 ), as described in detail in Ref.[  33 ]. It determines the spatial

regions where a one-orbital description should dominate.

3.4 Towards a Quantum Theory of Chemical Reactivity

We glossed over one key feature of the Partition Potential Theorem (PPT) of Section

 3.2 The minimization of E f [n] is performed under the constraint that the nα(r) add to n(r),

without individual normalization constraints for the atomic densities. The nα(r) can integrate

to fractional numbers of electrons Nα as long as the total density integrates to the correct
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number of electrons, i.e.
∑

Nα = N. A sensible interpretation of fractional-number densities

is provided by an ensemble description where the fractional number arises as an ensemble

average over integer-number components. One result of the extension of DFT for fractional

electron numbers [ 37 ] is that for Nα between the integers pα and pα+1, the minimizing density

(for the exact Exc[n]) is given by nα(r) = (1 − ωα)npα(r) + ωαnpα+1(r), where 0 ≤ ωα ≤ 1.

The minimization of E f [n] is to be performed over the set of the {ωα}, leading to possibly

fractional-number densities. One immediate advantage of such fractional densities is that

chemical reactivity indices involving derivatives of various properties with respect to electron

number become sharply defined for the atoms. For example, Fukui functions are given

directly by

f +
α (r) =

∂nα(r)
∂N+

α

∣∣∣∣∣∣
vα

= npα+1(r) − npα(r) (3.10)

as normally defined [ 38 ], but here the bordering-integer densities include the polarizing

effect of the partition potential which accounts for the detailed environment of the atom in

the molecule. Similarly, the {ωα} are those that lead to electronegativity equalization [  24 ],

[ 39 ].

3.5 Next Steps

The approximations of Equations (  3.7 ) and ( 3.9 ) need to be extended to be applicable

to realistic, complex chemical systems. The roads to robust approximations of general ap-

plicability, and to efficient and accurate linear-scaling algorithms will be long and winding.

Therefore, one might wonder whether these roads are worth taking in the first place, espe-

cially given that: (a) As computers get more powerful and machine-learning conquers the

quantum-chemistry landscape, KS-DFT calculations with sophisticated approximations to

Exc will become applicable to an ever-expanding frontier of chemical complexity; (b) Sev-

eral other fragment-based [ 40 ] and embedding methods [ 41 ]–[ 43 ] are enabling multi-million

atom and multi-scale calculations where individual fragment densities are of little use; and (c)

Quantum computing, when finally here, will allow for the direct calculation of many-electron

wavefunctions rendering DFT-based methods obsolete.
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Our current take on these three valid concerns is the following: (a) Further improvements

of approximate XC functionals will continue via two directions: A non-empirical approach

in which more exact constraints will be incorporated, especially perhaps in the framework

of Generalized-Kohn-Sham [ 44 ], [ 45 ], and an empirical approach exploiting large data sets

of chemical information through machine-learning tools [ 46 ], [ 47 ]. However, all of these

positive developments can be readily incorporated into the framework described in Section

 3.2 . Furthermore, the fragments do not need to be atoms but could be functional groups,

protein backbones, etc., and calculations will greatly benefit from improved approximations

to Exc; (b) There is plenty of room in quantum chemistry for more than one type of embedding

method. When minimizing the total energy is the only goal, our approach is admittedly

not essential. When, however, in addition to minimizing the energy, one is interested in

examining the individual fragment density distortions or in understanding the reactivity of

one fragment in a specific chemical environment, then our approach offers a unique, useful

perspective; (c) Yes: Some day quantum computers will be ready to solve the many-electron

Schrödinger equation for large molecules. However, one will always want to understand the

results. Understanding the results involves determining how individual atoms or fragments

in the molecule are distorted due to the interactions with neighboring atoms or fragments.

The tools described here allow us to accomplish precisely this, regardless of the type of

computers employed.
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4. THE INVERSE KOHN-SHAM PROBLEM

4.1 The Kohn-Sham Inversion Formula.

Assume you’ve successfully completed an SCF calculation using a DFA of your choice.

Given the Kohn-Sham orbitals along with its eigenvalues, could we recover the Kohn-Sham

potential by solving for vKS?:

vKS(r) =
1
2
·
∇2φi(r)
φi(r)

+ ε (4.1)

Notice that we obtain the vKS using a single orbital, while the Kohn-Sham equations

result in a set of N Kohn-Sham orbitals. Thus, this definition results in a different potential

for a different orbital.

Another alternative is consider using all of the orbitals to build a weighted average of

orbital-specific potentials, where each of the weights is | φi(r) |2 n(r)

vKS(r) =
1

n(r)

N∑
i=1

[
1
2
φ∗i (r)∇2φi(r) + ε | φi(r) |2

]
(4.2)

In the following, any function that carries the subscript “in" (as in nin(r) below) represents

a quantity that enters iKS as input.

This direct method is rarely useful in practice because it requires KS orbitals that are

already the result of a KS calculation. Nevertheless, Equation ( 4.1 ) has been used for

determining exchange-correlation potentials [ 48 ], [ 49 ], where the direct v(r) is less obvious to

obtain directly on a grid for a high level XC functional. It has also been used for determining

the functional derivative of a kinetic energy functional [ 50 ], and for constructing orbital-

averaged exchange-correlation potentials for orbital-dependent functionals [ 51 ].

Unfortunately, the procedure indicated by Equation ( 4.1 ) suffers from numerical diffi-

culties when the ψi(r)’s are expanded on finite basis-sets[ 52 ]. These numerical issues are

almost exclusively dependent on the basis-sets employed. Gaiduk et al.[ 53 ] showed how

one could build an oscillation profile from a simple method such as the Slater exchange

functional. The profile can then be used to subtract the errors from any other more sophis-
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ticated density-functional approximations. This method along with its basis-set correction

is the first method available in n2v.

4.1.1 The Zhao-Morrison-Parr method

One of the earlier iKS methods is the Zhao-Morrison-Parr method (ZMP), named after

their developers Zhao, Morrison and Parr [ 54 ] in the early 1990’s, and recently generalized

by Kumar and Harbola [  55 ]. The method uses a self-consistent calculation to determine the

one-electron effective potential from the target density n(r). To do so, a constraint enforces

a density to be equal to nin(r) at a certain limit:

C[n(r), nin(r)] =
1
2

∫ ∫
{n(r) − nin(r)}{n(r′) − nin(r′)}

| r − r′ |
· dr · dr′ = 0 (4.3)

By attaching a Lagrange multiplier λ, one finds the corresponding potential

vλc(r) = λ

∫
n(r′) − nin(r′)
| r − r′ |

dr′ (4.4)

So that we can solve the differential equations

[
−

1
2
∇2 + vext(r) + (1 −

1
N

)vH(r) + vλc(r)
]
ψλi (r) = ελi ψ

λ
i (r) (4.5)

where ψλi and ε
λ
i are the eigenfunctions and eigenvalues found with vλc with a particular λ,

and the term (1− 1
N )vH(r) is the Fermi-Amaldi approximation. This term, besides being exact

for 1 electron [ 56 ], ensures the correct −1/r asymptotic behavior of the resulting potential.

In the limit λ → ∞ Equation ( 4.4 ) becomes Equation ( 2.20 ) and we can retrieve the

Kohn-Sham orbitals and orbital energies up to a constant. For finite λ, the solution will only

be an approximation to the exact orbitals.

With a choice of λ, at convergence, the resulting vxc(r) is given by:

vλ(r) = vλc(r) −
1
N

vH(r). (4.6)
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Finite values of λ lead to numerical difficulties [  54 ]. This issue is immediately clear by

examining the results for large values of λ. Thus, the most important and time-consuming

aspect of this method relies on carefully choosing one or several values of λ. The original

work [ 54 ] uses an extrapolation technique in which the potentials from the values of λ =

{100, 140, 200} were expanded using a three-term power series in 1/λ. To avoid fitting and

make the method more generally applicable, the default for n2v is the iterative method

used by Morrison and Zhao [  57 ]. In this approach, one starts with a small value of λ = λi,

then increases its value to λ = λi+1 and incorporates the previous self-consistent potential

as a starting potential for the calculation of λi+1. This process is iterated until the desired

convergence criteria are reached.

4.1.2 The Wu-Yang Method.

The Wu-Yang method [ 58 ] implemented with finite potential basis sets is one of the most

efficient methods for iKS problems [ 59 ]. With explicitly derived Hessian and gradient, a

regular optimizer (e.g. trust-region) will usually converge within 10 iterations. Because of

the absence of mesh points, the memory required is also usually acceptable.

The Wu-Yang method optimizes the KS non-interacting kinetic energy Ts under the

constraint that the output density density n(r) is the same as the target density nin(r). By

setting the Lagrangian multiplier as the KS potential v(r), which is the condition for the

stationary point, the Lagrangian can be built as:

W[v] = Ts[Ψdet[v]] +

∫
drvKS(r)[n(r) − nin(r], (4.7)

where Ψdet[v] is the Slater determinant corresponding to vKS(r). W[v] is proven to be concave

[ 58 ]. Thus, in order to reach the stationary point, the Lagrangian can be optimized with its

gradient:
δW[v]
δv(r)

= n(r) − nin(r) (4.8)
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and hessian

δ2W[Ψdet[vKS], vKS]
δv(r)δv(r′)

=
δn(r)
δv(r′)

= 2
occ∑
i

vir∑
a

ψ∗i (r)ψa(r)ψi(r′)ψ∗a(r′)
εi − εa

.

(4.9)

v(r) can be decomposed similarly as in ZMP:

v(r) = vext(r) + v0(r) + vPBS(r), (4.10)

where v0(r) is a guide potential designed to capture known features of the correct KS po-

tential; the Fermi-Amaldi potential is the usual choice. The rest is expanded on a finite

potential basis set (PBS) {φt}

vPBS(r) =
∑

t

btφt(r). (4.11)

In n2v, finite difference checks are implemented for both the gradient and hessian in the

PBS [ 59 ]. This can be a practically useful tool to check the error and convergence. Since the

Wu-Yang optimization can be very sensitive for multiple reasons, regularization is important

for practice [ 59 ].

4.1.3 PDE-Constrained Optimization.

Even though the iKS problem is generally ill-posed [  60 ], it is still supposed that within

a reasonably close region around the exact XC potential, the closer the KS density is to the

exact density, the more accurate the potential will be [ 60 ], [  61 ]. Following this intuition, a

density error is defined and optimized under several constraints required by the KS model

[ 60 ]–[ 62 ]. The density error is defined as:

Nerror =

∫
dr | n(r) − nin(r) |2 . (4.12)
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The Lagrangian is defined as:

L[v, {ψi}, {εi}, {pi}, {µi}] =

∫
(n(r) − nin(r))2dr

+

N/2∑
i=1

∫
pi(r)(−

1
2
∇2 + v(r) − εi)ψi(r)dr

+

N/2∑
i=1

µi(
∫
| ψi(r) |2 dr − 1),

(4.13)

where {pi} and {µi} are Lagrange multipliers for the constraints that {ψi} are the KS orbitals

of v with corresponding eigenvalues {εi} (Equation  2.20 ) and that {ψi} are normalized. The

normal equations with respect to pi, µi, ψi, εi and v are:

(−
1
2
∇2 + v(r))ψi(r) = εiψi(r), (4.14a)∫
| ψi(r) |2 dr = 1, (4.14b)[

−
1
2
∇2 + v(r) − εi

]
pi(r) = 8(nin(r) − n(r))ψi(r) − 2µiψi(r), (4.14c)∫

pi(r)ψi(r)dr = 0, (4.14d)

δL
δv(r)

=

N/2∑
i=1

pi(r)ψi(r). (4.14e)

Equations ( 4.14a ) with (  4.14b ) are solved for the {ψi}; Equations ( 4.14c ) with (  4.14d ) are

solved for the {pi}. Then {ψi} and {pi} can be plugged into ( 4.14e ) to solve for the gradient.

The PDE-Constrained Optimization has been implemented into n2v in finite basis sets as

described in [ 59 ]. Since the Lagrangian (Equation ( 4.13 )) is not concave as in WY (Equation

 4.7 ) [ 58 ], [ 59 ], there is no guarantee that the optimization will perform well. Usually a

good guide potential (such as Fermi-Amaldi) in Equation (  4.10 ) with a zero initial guess in

Equation ( 4.11 ) are sufficient to achieve convergence. Moreover, special care should be given

to the singularity introduced by subtracting the Hamiltonian operator by its eigenvalues as

in Equation ( 4.14c ) and the orthogonality as defined in Equation (  4.14d ) [ 61 ].
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4.1.4 The Modified Ryabinkin-Kohut-Staroverov Method.

The three methods above are pure KS inversion methods, in which only the densities

are taken as input. The modified Ryabinkin-Kohut-Staroverov (mRKS) method [  63 ], [ 64 ] is

an accurate method that makes use of one-electron reduced density matrices γin(r, r′) and

two-electron reduced density matrices Γin(r, r2; r′, r′2) obtained from higher-level wavefunction

calculations (WF). In mRKS, the v(r) is solved self-consistently on Kohn-Sham systems (KS)

in equation:

v(r) = vhole(r) + ε̄KS(r) − ε̄WF(r) +
τWF

P (r)
nWF(r)

−
τKS

P (r)
nKS(r)

. (4.15)

The potential of the exchange-correlation hole (vhole), the average local electron energy (ε̄),

and the Pauli kinetic energy density (τP) are defined as:

vhole(r) =

∫
dr2

n(r, r2)
| r − r2 |

, (4.16a)

ε̄KS(r) =
2

nKS(r)

N/2∑
i=1

εi | ψi(r) |2, (4.16b)

ε̄WF(r) =
2

nWF(r)

M∑
k=1

λkk(r) |2, (4.16c)

τWF
P (r) =

2
nWF(r)

M∑
k<l

nknl | χk(r)∇χl(r) − χl(r)∇χk(r) |2, (4.16d)

τKS
P (r) =

2
nKS(r)

M∑
i<j

ninj | ψi(r)∇ψj(r) − ψj(r)∇ψi(r) |2, (4.16e)

where the exchange-correlation hole n(r, r2) is

n(r, r2) =
Γin(r, r2; r, r2)

nin(r)
− nin(r2), (4.17)

The {χk} are the natural orbitals of γin(r, r′), electron density from wavefunction method is

nWF(r) = γin(r, r). {λk}, { fk(r)} are the eigenvalues and eigenfunctions of the generalized Fock

matrix:

F(r, r′) =

(
−
∇2

r

2
+ v(r)

)
γin(r, r′) +

∫
dr2

Γin(r, r2; r′, r2)
| r − r2 |

. (4.18)
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and ni,j,k,l is the orbital occupation number. When a new v is obtained from Equation ( 4.15 ),

it is plugged in into Equation ( 2.20 ) to solve for quantities that will fill in the right-hand-

side of Equation ( 4.15 ). Superscripts “WF" and “KS" are used to distinguish the results of

a wavefunction calculation (input) from those of a KS calculation (fKS).

4.1.5 The Ou-Carter method.

Ou and Carter developed a pure iKS method inspired by mRKS [ 65 ]. Instead of a

cancellation between one equation derived from a wavefunction calculation and one from the

KS system, only the KS system is utilized to derive a self-consistent equation for v(r) from

the KS equation:

v(r) = ε̄KS(r) −
τKS

L (r)
nKS(r)

− vext(r) − vH(r), (4.19)

where τKS
L is the KS kinetic energy density and

τKS
L (r)

nKS(r)
=
| ∇nKS(r) |2

8 | nKS(r) |2
−
∇2nKS(r)
4nKS(r)

+
τKS

P (r)
nKS(r)

. (4.20)

By replacing the KS density everywhere with the accurate input density and the external

potential vext(r) by an effective ṽext(r), the final expression for v(r) is:

v(r) = ε̄KS(r) +
∇2nin(r)
4nin(r)

−
| ∇nin(r) |2

8 | nin(r) |2
−
τKS

P (r)
nKS(r)

− ṽext(r) − vH[nin](r). (4.21)

Because in this method there is no error cancellation between wavefunction results and KS-

DFT results as in mRKS, using ṽext(r) is necessary to eliminate the errors (mostly numerical)

in each component [ 66 ], [ 67 ]. This is achieved by doing one extra calculation with a known

(and simple) functional (usually LDA) on the same basis set to handle the error that comes

from finite basis sets [  66 ]:

ṽext(r) = ε̄KS(r) −
τLDA

L (r)
nLDA ∈

− vH[nLDA
in ](r) − vLDA[nLDA

in ](r), (4.22)

where τLDA
L (r)
nLDA∈

is defined by Equation  4.20 .
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4.2 The n2v Library

Figure 4.1. The logo for n2v: density-to-potential inversions.

In this section we present the library n2v (n2v stands for “density-to-potential"). n2v

is a free, open-source library that offers many of the widely used and recent inversion

methods. Six selected methods are implemented and studied: the direct KS-inversion

method [  51 ], the modified Ryabinkin-Kohut-Staroverov method (mRKS) [  63 ], [ 64 ], the Wu-

Yang method (WY) [ 58 ], the error function partial-differentiation-equation constrained-

optimization method (PDE-CO) [  60 ], [  61 ], the Zhao-Morrison-Parr method (ZMP) [  54 ] and

the Ou-Carter methods (OC) [ 65 ]. mRKS is accurate but expensive to run [ 67 ]. WY is

the lightest and most efficient method. ZMP and WY are most widely used. PDE-CO was

implemented in various approaches and shows promising features and capabilities. OC is a

pure iKS method that balances well the efficiency and accuracy. Our library is written in

the high-level programming language Python, allowing us to focus on readability and rapid
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development. This enables users to quickly learn and use the library as well as the inverse

Kohn-Sham methodology. We aim to follow the rapid-prototyping scheme introduced by

Psi4Numpy[ 12 ], a repository of reference implementations and interactive tutorials. By us-

ing this methodology, we provide access to a set of inversion methods that can be learned

and modified quickly, leading to faster implementations of new applications and methods.

In a nutshell, n2v implements high-level details of the inversion algorithms but relies

on other computational chemistry packages to perform other lower-level operations such as

computing the orbitals, densities and energies.

n2v has an upstream dependence on many other canonical Python libraries. For example,

Numpy[  68 ] is used for general numerical operations; Scipy[ 69 ] is used to minimize functionals;

opt_einsum[ 70 ] is used for efficient contraction of matrices; Pylibxc[  71 ] allows computation

of exchange-correlation functionals, and Matplotlib[ 72 ] is used for visualization.

4.2.1 Code Overview.

From its early design, we have focused on making n2v easy to learn, use, maintain and

extend. We believe we have accomplished this by focusing on the following points:

• Readability. In addition to providing an extensive documentation for every compo-

nent of our code, we use an automatically generated documentation through the use of

Sphinx[ 73 ]. This can be accessed through the website:  wasserman-group.github.io/n2v/ .

Additionally, we created a set of tutorials in Jupyter Notebooks, providing instructions

into using our code and details of the algorithm for every method. The Notebooks can

be accessed through the following repository: github.com/wasserman-group/n2v_examples.

All of the results shown in this work are computed in the same fashion as the examples.

• Accessibility. Users can run our code in the Windows (through the use of Windows

Subsystem), Linux, and macOS operating systems. We recommend the use of conda

and the Python Package Index (PyPI). To begin with, at least one engine should be

installed (see Section 3.2). For example, Psi4 can be installed with conda install -c psi4

psi4, and Pyscf can be installed with pip install pyscf. Additionally, libxc is required

for the Ou-Carter method. To access libxc through python, one must obtain libxc
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through conda and proceed to manually install pylibxc. More details are available on

the repository. Proceed to install n2v through  github.com/wasserman-group/n2v or

by direct install with pip install ntov.

• Modern software development. We follow the “best practices” [  74 ] paradigm defined by

The Molecular Science Software Institute [  75 ] that covers testing, code coverage, and

continuous integration.

• Licensing We released our code under the BSD 3-clause license, a permissive license

that allows for our code’s modifications and redistribution.

4.2.2 Code Structure.

The software ecosystems within the CMS community are vast, and with the increasing

popularity of high-level languages such as Python[ 76 ]–[ 81 ] or Julia[  82 ]–[ 84 ], they will only

continue to grow. Nowadays, developers designing software must keep in mind that users do

not want to start using a new package to access different features[ 85 ]. To aid in lowering the

barrier of using n2v, we introduce engines. An engine is an abstract class in Python that

specifies what a computational chemistry code interfaced with n2v is expected to provide.

These include basic information like geometry and basis set, as well as ingredients needed

for each inversion method, such as the orbitals and densities in the atomic orbital basis set

and, in some cases, on the grid.

The Psi4[ 11 ], [ 86 ], [ 87 ] and PySCF[ 88 ], [ 89 ] engines are available in the current release.

Psi4 interfaces with our code through PsiAPI, its application programming interface (API).

The API allows users to access most of Psi4’s core C++ libraries at the python level. On

the other hand, PySCF is written in Python and thus can be connected to n2v directly. The

Psi4 engine can perform all the available methods, while the PySCF engine can perform

all except the Ou-Carter and mRKS methods. Given the intrinsic dependence on the grid

of these two methods, they are still under development, but they will be ready in a future

release.

46

https://github.com/wasserman-group/n2v


Two other classes are relevant to understanding the structure of n2v. The first one is the

Inverter, a high-level class that requests tasks from the engine. Additionally, the Inverter

collects all of the information needed for an inversion, generates a guiding potential and

routes it to the requested method. Each of the methods from section 2 is contained within

its class, so the Inverter inherits properties from all of them. In this way, once an Inverter

object has been initialized, the user can access all of the different methods with the same

object.

To perform some of the methods and visualize the resulting potentials, the class Grider

is supplied to each engine. A Grider object computes relevant quantities any given grid,

such as density, orbitals and their derivatives, and more. Each of the available engines

(Psi4 and PySCF) uses their default spherical grid to compute the DFT kernel on the grid.

For example, Psi4 uses a Lebedev-Treutler grid using 75 radial and 302 spherical points.

Although the default is robust enough to express exchange-correlation potentials on the

grid, it is advised that users refine the parameters according to each system and method.

We encourage other developers to write their engines and make them available for future

releases through pull requests in the repository. Our licensing allows any user to use and

modify any code component that is useful in their projects.

4.2.3 Using n2v.

To illustrate how to perform a calculation using n2v, we present a minimal example of a

Neon atom using the Wu-Yang inversion method (See Figure  4.2 ) using the Psi4 engine, for a

comparison with the PySCF engine, please look at Figure  4.3 . The example below is general

enough to provide users with an idea of how to use any of the methods discussed in this

paper. This example was run in a Jupyter Notebook and can be accessed through the link

github.com/wasserman-group/n2v_examples. To better describe its usage, the calculation

is separated into three groups highlighted by each cell in the Jupyter Notebook. These

correspond to 1) the calculation of target density using Psi4, 2) defining an Inverter object

and the inversion itself, and 3) the generation of the potential on the grid handled by the

Grider and additional data (Figure  4.2 ).

47



1) Calculation of target density. We define the geometry as a standard Psi4 geometry.

Units should be set to atomic units and symmetry should be set to C1. We are currently

working on exploiting the irreducible representations that would allow different symmetries

to be used. Our code takes the reference used – restricted or unrestricted – from the Psi4 set

option. Except for the mRKS method, every other method is available in the unrestricted

scheme. In this example, we obtain the target density using the Coupled-Cluster with singles

and doubles determinants (CCSD) method. Psi4 does not compute the CCSD density from

a simple energy calculation. This means that we need to generate a property such as the

“Dipole”. Other SCF methods won’t depend on this step but users should refer to the

documentation of each engine for more information.

2) Inverting the density. Initialize an Inverter object by selecting an engine as well as

setting the system and the target components. Alternatively, one can simply initialize it

by providing a wfn object from the calculation. If no additional basis-set is given, the

basis set used will be the same as the energy calculation. Here we specified a larger basis

set to be exclusively used for to express the inverted potential. To perform the inversion,

we use the method “invert” that requires as basic arguments the “method”, followed by

the“guide_component” that allows to select a starting point for the inversion. In the example,

we use the “Fermi-Amaldi Potential” that ensures that the resulting potential has the correct

decay as r tends to infinity.

3)Visualizing the resulting potential. To visualize the inverted potential we require to

prepare all quantities on the grid. In this case, we are interested on visualizing a component

of the Kohn-Sham effective potential, the exchange-correlation potential. We build a grid by

using the linspace function in numpy. Then we make use of the esp function of the Grider to

calculate the Hartree and Fermi-Amaldi potentials, followed by the actual potential inverted

(rest). This is necessary since the optimizer did not have to invert the full potential, but only

a part of it. By adding all of the components accordingly one can visualize the potential. It

should be noted that not every method generates the same output; users should refer to the

documentation of each method to ensure that they are visualizing the appropriate potential.
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Figure 4.2. The input as a Jupyter Notebook for calculating the vxc[n] for the
Neon atom with a CCSD target density.
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Figure 4.3. Side-by-side comparison of n2v running with two different En-
gines a)Psi4 and b)PySCF. Each cell highlights the similarities and differences
related to using the two engines.
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5. DFT IN A PROLATE SPHEROIDAL GRID

Diatomic molecules are among the most revealing systems in quantum chemistry. They’re

small in size which make their computational requirements feasible, and thus we can often

compare an approximation with the exact result. Additionally, they highlight many of the

present and ubiquitous problems of modern quantum chemistry approximations. Finally,

if we consider an embedding calculation with only two fragments having one atom each,

diatomics are the canonical example where embedding methods can be implemented and

tested. This is why an open-source code that can provide numerically exact results for DFT

calculation is an extremely desirable tool in the CMS community.

In this chapter we introduce pyCADMium, a Python module that uses a prolate spheroidal

(PS) coordinate grid to accurately perform computational chemistry calculations on atoms

and diatomic molecules. The name is an acronym for “Chemical Atoms in Molecules” that

references the idea of chemically significant fragments within a molecule. pyCADMium orig-

inated in a proprietary programming language but has been rewritten from the ground up

as an open-source alternative. Figure  5.1 shows the logo for the project.

Figure 5.1. Logo of pyCADMium
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Most practical calculations use a basis-set to represent operators and quantities like po-

tentials, orbitals, and densities [ 90 ], [ 91 ]. The lack of an accurate space representation of

these and other operators gives rise to the basis-set incompleteness error. This error can

be minimized by increasing the number of basis functions used, but it cannot be entirely

eliminated in practice 

1
 . On the other hand, grid-based methods intrinsically allow for an

accurate representation [ 92 ]. Nevertheless, the number of points required to achieve a sig-

nificant accuracy can become quickly unmanageable. We wrote pyCADMium , which uses

a PS grid to circumvent these issues. Atoms and diatomics are ideally suited for this coor-

dinate system given that each foci can be used to allocate an atom. Additionally, the PS

grid is denser around the foci in its Cartesian representation, where we expect functions of

molecular systems to change rapidly [  93 ].

5.1 The Coordinate System

The PS grid is a two-center orthogonal coordinate system formed by revolving an elliptic

coordinate plane around the line intersecting two foci. These planes are formed by ellipses

and hyperbolae that share the same focus [  94 ]. Assume that we place the foci in the Cartesian

coordinates (0, 0,−a) and (0, 0, a). We can transform from one coordinate system to the other

with
x = a sinh(µ) sin(ν) cos(φ)

y = a sinh(µ) sin(ν) sin(φ)

z = a cosh(µ) cos(ν)

(5.1)

Where a is the distance between the foci, and µ and ν correspond to the ellipsoidal and

hyperboloid surfaces. In the case of an axially symmetric system, the molecular orbitals of

interest are independent of the azimuth angle according to Equations ( 5.1 ). The φ coordinate

can be treated analytically and our problem now becomes two-dimensional.
1

 ↑ We exclude any discussion about numerical procedures such as basis-set extrapolation techniques.
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To allow a more accurate description of the systems around the nuclei, the coordinates

can be mapped into a new set of variables

e = cosh−1(µ), e ∈ [0,∞) (5.2)

h = cos−1(ν), h ∈ [0, π] (5.3)

In the new coordinates, the ‘radial’ part of the laplacian is

∇2 =
4

a2(µ2 − ν2)

{
∂2

∂e2
µ√
µ2 − 1

∂

∂e
+
∂2

∂h2
+

ν
√

1 − ν2

∂

∂h
−m2

a ·

[
1

µ − 1
+

1
1 − ν2

]}
(5.4)

where m2
a is an integer and it specifies the rotation symmetry of the orbitals [ 95 ]:

– ma = 0→ σ orbitals

– ma = ±1→ π orbitals

– ma = ±2→ δ orbitals

– ma = ±3→ φ orbitals

Orbitals that have a higher symmetry than φ are not relevant for diatomic molecules at

the DFT level of theory. Orbitals that have the same radial part and the same m = ±ma

belong to the same shell.

5.1.1 Symmetry Considerations

These coordinates have a convenient correspondence with the distances between any point

at either of the foci of the coordinate system.

r1 = 2a(cosh(e) + cos(h)) = a(µ + ν)

r2 = 2a(cosh(e) − cos(h)) = a(µ − ν)
(5.5)
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where r1 and r2 represent the distances of any point (x, y, z) to the foci. Additionally, the

scales factors and the volume element for a PS grid are

h1 = h2 = (r1 · r2)1/2 (5.6)

h3 = a · sinh(ε) · sin(~) (5.7)

Further discussions on the scale factors can be found on the curvilinear coordinate sys-

tem section of Reference [  94 ]. Equations  5.5 reveal a lot of interesting properties of the

transformation in Equations  5.2 and  5.3 . If the sign of µ or ν is changed, then the point

(x, y, z) → (−x,−y, z). Thus, a rotation by π radians leaves orbitals with even m unchanged

but reverses the sign of the orbitals with odd m-values:

– Functions with σ, δ, ... symmetry are even functions of (µ, ν)

– Functions with π, φ, ... symmetry are odd functions of (µ, ν)

Mathematically, this is expressed as

f (µ, ν) = (−1)m f (µ,−ν) (5.8)

f (µ, ν) = (−1)m f (−µ, ν) (5.9)

f (π + µ, ν) = (−1)m f (π − µ, ν) (5.10)

Due to these properties, we are able to use the central difference formula in any function

near the boundary line. These relations are also used to adjust f along (0, µ), (π, µ) and (µ, 0)

boundary lines for σ functions. Any function that has a higher σ symmetry vanish at these

boundary lines.

5.2 Discretization

To discretize our system, we build a two-dimensional mesh with two evenly spaced one-

dimensional grids. Since this system is orthogonal, the mesh is a product of two independent

one-dimensional meshes that generate a rectangle of Na x Nr points, representing the number
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of angular and radial points. With appropriate boundary conditions, only half of the rect-

angle is required for homonuclear diatomics, otherwise the whole rectangle is constructed.

After having defined our space, we require our differentiation and integration operations.

Integration is performed through

∫
f (r) dr '

N1∑
ij

wij fij (5.11)

To calculate the weights proceed as stated in the Appendix  D . The first and second

derivatives of the Laplacian defined on  5.4 are approximated by finite different expression

from the central difference formula.

du
dx j

=
1

dx
· (c1 · u[i−j] + c2 · u[j] + c3 · u[j+1]) (5.12)

where {ci} are the finite difference coefficients. An additional requirements for these operators

is that they must have the appropriately boundary conditions for each symmetry class,

therefore a distinct matrix is needed for each of the different orbitals symmetries.

Although we have computed the integration and differentiation operators, we have not

discuss how to produce the potentials that are usually used in a KS-DFT calculation. Each

of them needs to be addressed individually.

• The external potential is found by substitution of the transformation equations.

vext(r) = −
Z(cosh(e) − cos(h))

a(cosh2(e) − cos2(h))
(5.13)

• The Hartree or the Coulomb potential arises from the total electron density. Although

we know its explicit form as an integral involving the electronic density, it is more

commonly known to be determined by solving the Poisson equation

∇2vH = −4πn(r) (5.14)

55



The Poisson equation is not solved by direct substitution of the matrices that we

produced in the previous section. Instead they are solved using an LU decomposed

Laplacian followed by setting up the boundary conditions as suggested in Reference

[ 95 ].

• The exchange-correlation potential is found through the library of exchange-correlation

functionals libxc [ 96 ]. The library does not care about the coordinate system of the

density, it only requires as input the value of the density and the gradient at the total

discretized points. Currently no higher rungs than GGA are available in the current

version of pyCADMium .

5.3 Usage

In this next section, we briefly go over each of the steps that one needs to do to use the

many features in pyCADMium . We will start with defining the PS grid. To define a grid

within pyCADMium , we need to specify the following parameters

1 #

2 from pycadmium import Psgr id

3 #

4 a = 2.615/2 # Distance between the two f o c i / 2 ( a . u . )

5 NP = 7 # Number o f po in t s per b lock

6 NM = [ 6 , 6 ] # Number o f b locks [ angular , r a d i a l ]

7 L = np . arccosh (max_rad/a ) # Maximal r a d i a l coo rd inate va lue

8 l o c = np . array ( range ( -4 , 5) ) # S t e n c i l f o r f i n i t e d i f f e r e n c e

9 #

10 g r id = Psgr id (NP, NM, a , L , l o c )

11 g r id . i n i t i a l i z e ( ) # Def ine and i n i t i a l i z e g r id

12 #

where a is half the distance between the two foci. NP refers to the number of points in a

block, NM is the number of points per block, given separately for the ’angular’ and ’radial’

one dimensional grids to define the PS rectangle. The blocking of the points does not affect
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Table 5.1. Ground State Configuration of the first row homonuclear diatomics.
B2 1σ2

g 1σ2
u 2σ2

g 2σ2
u 1π2

u
3Σ−g

C2 1σ2
g 1σ2

u 2σ2
g 2σ2

u 1π4
u

1Σ+
g

N2 1σ2
g 1σ2

u 2σ2
g 2σ2

u 3σ2
u 1π4

u
1Σ+

g

O2 1σ2
g 1σ2

u 2σ2
g 2σ2

u 3σ2
g 1π4

u 1π2
g

3Σ−g
F2 1σ2

g 1σ2
u 2σ2

g 2σ2
u 3σ2

g 1π4
u 1π4

g
1Σ+

g

the calculation numerically, it only multiplies each of the values of NM so that the total

number of points in the grid equals (NP-1) * (NM[0]) * (NP-1) * (NM[1]). We defined the

size of the box as the maximal radial coordinate value. This quantity is modified according

to section  5.1 . The value of L must be contained within (-1,1). loc is required to select

the coefficients for the finite difference approximation. Lastly, we provide all of the defined

elements to generate a PSgrid object and we proceed to initialize it.

5.4 Molecules on the PS grid

Let us focus on the first row homonuclear diatomics B2, C2, N2, O2 and F2. To use py-

CADMium we stated that one needs to know about the orbital configuration of the diatomics.

Table  5.1 shows the orbital configuration for these and other systems.

Let us use the F2 molecule as the example of the chapter. To define the geometry in

pyCADMium we need to provide the following

1 #

2 a = 2.615/2 # Separat ion d i s t anc e / 2 ( a . u . )

3 Za = 9 .0 # Fluor ine Atom 1 Nuclear Charne

4 Zb = 9.0 # Fluor ine Atom 2 Nuclear Charge

5 pol = 1 # Set unpo la r i z ed system

6 Nmo = [ [ 5 ] , [ 2 ] ] # Number o f Molecular Orb i t a l s

7 N = [ [ 1 0 ] , [ 8 ] ] # Number o f e l e c t r o n s

8 #

In the previous code, the a parameter is both the separation distance of the nuclei and

the foci of the PS grid. We proceed to define the nuclear charges as well as the polarization of
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the system. Setting pol = 2 would explicitly compute the α and β components of the density.

Finally, the molecular configuration along with its symmetries are specied in the next two

lines. Nmo requires the total number of orbitals per symmetry. As we can appreciate from

 5.1 , this system has a total of 5 σ orbitals and 2 π orbitals, where we allocate 10 and 8

electrons, respectively. Nothing prevents us from plugging in different values of the orbitals

and the electrons. Thus one must be mindful of the desired configuration.

5.5 Kohn-Sham Calculation

We are ready to finally complete a calculation using pyCADMium . The first calculation

that we are going to do is to obtain the LDA energy of the F2 molecule. To do so, we need to

supply the previous geometry to a Kohnsham object. Besides the geometry, we can supply

an additional dictionary with several options to control how our calculation behaves. The

simplest example can be constructed as

1 #

2 from pycadmium import Kohnsham

3 #

4 optKS = { # Options f o r the KS c a l c u l a t i o n

5 ’ i n t e rac t i on_type ’ : ’ d f t ’ ,

6 ’ sym ’ : True ,

7 }

8 optSCF = { # Options f o r the SCF cyc l e

9 ’ maxiter ’ : 100 ,

10 ’ e_tol ’ : 1e - 9 ,

11 }

12 #

13 KS = KohnSham( gr id , Za , Zb , pol , Nmo, N, optKS)

14 KS. s c f ( optSCF)

15 #

where we requested a KS-DFT calculation. If no functional is provided, by default

pyCADMium uses the LDA. The sym option specifies that only half of the PS plane needs

to be constructed due to the symmetry of the F2 molecule. The next set of options controls
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the SCF procedure behaviour. Here we specified that we want a maximum of 100 iterations

and that the procedure should stop if the differences in energy are less than 1e − 9. We

proceed by defining the Kohnsham object and start the SCF procedure. The results of the

calculations such as the energies and potentials is available as properties of the Kohnsham

object. The full extent of options for the Kohnsham as well as the scf calculation can be

found on Table  5.2 
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5.6 P-DFT Calculation

One of the highlights of pyCADMium is its ability to treat each atom as a fragment.

This feature allows it to be used for developing embedding methods. In this section, we will

briefly discuss the algorithm for a P-DFT calculation. For more information refer to Chapter

 3 . Consider a set of two fragments {nα(r), nβ(r)}, each having {Na,Nb} electrons respectively.

We are interested in recreating the results of a KS-DFT calculation of the full system using

only the information of the fragments. The number of electrons in each fragment must add

up to Nm, the number of electrons in the full molecule. Additionally, we seek to minimize

the sum of the energies of each fragments. Mathematically, this can be done through the

unconstrained minimization of

G[n] = min
{nα(r)}

{
E f [{nα(r)}] +

∫
dr · vp(r) · (n f (r) − n(r)) −

∑
α

µα

( ∫
dr · nα(r) − Nα

)}
(5.15)

Where each E f [nα(r)] corresponds to the each of the fragment energies. E f [nα(r)] =

Ts[nα(r)] + EHxc[nα(r)] +
∫

vα(r)nα(r)dr and the two other terms are the Lagrange multipliers:

the partition potential vp(r) and the chemical potential µα. To minimize, perform a functional

derivative with respect to to the density nα(r)

δG
δnα(r)

= 0 (5.16)

δEα[{nα(r)}]
δnα(r)

+ vp(r) = µα (5.17)

To solve the above equation, we use a set of KS systems as fragments, each of them in

the influence of the multiplicative potential vα(r) + vp(r). With the exact partition potential,

we can solve the Kohn-Sham equations for the P-DFT problem

{
−

1
2
∇2 + vα,e f f [{nα}](r) + vp[{nα}](r)

}
φi,α(r) = εi,αφi,α(r) (5.18)
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Since the potentials inside the brackets depend on the fragment densities—the quantity

we are looking for— we solve these equations self-consistently. At convergence, we obtain a

set of fragment orbitals that we use to build the fragment densities as nα(r) =
∑N

i f | φi,α(r) |2.

In pyCADMium we make use of the class Partition to define an embedded calculation.

This class allows us to define the properties of each fragments as well as the properties of

the full molecular system that we ought to solve. To define a Partition object, follow the F2

example that we have been studying

1 #

2 from pycadmium import Pa r t i t i on

3 #

4 op tPar t i t i on = { # Options f o r the ob j e c t Pa r t i t i on

5 ’ k inet ic_part_type ’ : ’ i n v e r s i o n ’ ,

6 ’ab_sym ’ : True ,

7 ’ ens_spin_sym ’ : True

8 ’ i s o l a t e d ’ : True}

9 }

10 #

11 part = Par t i t i on ( gr id , Za , Zb , pol , MOa, Na , nua , MOb, Nb, nub ,

op tPar t i t i on )

12 #

13 part . s c f ( )

14 #

In the previous example, we first set up the options for our object using a dictionary.

The full set of options can be found in Table  5.4 . By setting isolated = True, we won’t

be doing a P-DFT calculation just yet. Instead, we want to generate an initial guess for

the calculation by simply adding the components of the individual fragments. Since the

fragments are have no interaction between each other there is no partition potential, and

thus no partition energy.
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To find the exact partition potential, we make use of numerical inversions. This allows us

to obtain the exact Kohn-Sham potential for the sum of fragment densities 

2
 , as well as the

kinetic potential of the sum of fragment densities needed to compute the partition potential.

In pyCADMium , we make use of the class Inverter to access a handful of methods to

invert a density, including the already mentioned Wu-Yang method defined in Chapter  4 . For

brevity, we will only discuss the orbital invert method that has shown to be the most robust

and reliable. The numerical inversion is essentially a direct search for orbitals that satisfy the

KS equations while satisfying some constraints at each point of the two-dimensional space.

The conditions form a set of residuals:

1. Orbitals solve the KS Equations → resKS
ij =

{
− 1

2∇
2φi

}
j
+ vs,jφi,j − εiφi,j

2. Orbitals are normalized → resN
ij =

∑
j | φi,j |

2 −1

3. Sum of the squares of each orbitals equals the target density → resn
ij =

∑
j | φi,j |

2 −nj

where the j index runs over grid points and the i point runs through the orbitals. Combine

all residuals to form a vector function that takes the orbitals, energies and effective potential

as its argument. If we find the root of this function, we find the effective potential that

reproduces the given density. The Jacobian of the residual function happens to be a sparse

square matrix that can be treated with the Newton-Raphson minimization to find which

vector minimizes the residuals. Additionally, the HOMO eigenvalue is fixed to be zero to

avoid shifting the potential, and the HOMO normalization constraint is removed allowing it

to be satisfied by the overall density constraint. These numerical inversion are used at each

step in the P-DFT scf procedure to determine the functional derivatives of Tnad
s [n(r)].

2
 ↑ This quantity is not obtained in a “forward” manner, and thus, we don’t have access to the Kohn-Sham
potential that produces such a density
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Remember that we already constructed an initial guess for our P-DFT calculation. Then,

in order to complete it alongside with the inversion procedure, we write

1 #

2 from pycadmium import Pssov ler , I nv e r t e r

3 #

4 op t Inve r t e r = { # Options f o r the ob j e c t I nv e r t e r

5 ’ invert_type ’ : ’ o r b i t a l i n v e r t ’ ,

6 }

7 #

8 # Inve r t e r Requires a PSso lver Object

9 mol_solver = Psso lve r ( gr id , MOm, Nm, {})

10 part . i n v e r t e r = Inve r t e r ( gr id , mol_solver , op t Inve r t e r )

11 #

12 # We now want the fragments to be under the presence o f the p a r t i t i o n

po t e n t i a l

13 part . op tPar t i t i on . i s o l a t e d = False

14 # ’ cont inu ing ’ ensure s we use the generated i n i t i a l guess

15 part . s c f ({ " cont inu ing " : True })

16 #

We will be using the ’orbitalinvert’, this can be set in the options for the Inverter. The

full set of options can be found in Table  5.5 . A Psolver object is needed. This object simply

stores the results from a calculation. Each Kohnsham object defines one per orbital. We

define the Inverter as an attribute of the partition. We continue by specifying the Partition

object that want to perform a P-DFT calculation without isolated fragments and we trigger

the SCF calculation.

In this section, we do not discuss any results. To find a set of examples for different use

cases of pyCADMium , please visit github.com/wasserman-group/pyCADMium_examples.

Where the results for this and many other calculations are found.
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6. APPROXIMATING THE KINETIC ENERGY FUNCTIONAL

Consider a system composed of a single electron, its kinetic energy is obtained through

T = −
1
2

∫
dr · Ψ∗(r) · ∇2Ψ(r) (6.1)

Since Ψ(r) can be found with Ψ(r) =
√

n(r). von Weizsäcker derived a formula that

can exactly describe the kinetic energy of a one-electron system in terms of the density, as

opposed to the orbitals (the proof can be found in Appendix  C ):

Ts[n(r)] =
1
8

∫
dr ·
| ∇n(r) |2

n(r)
(6.2)

The relevance of this equation should not be underestimated. This is one of the only two

cases where the kinetic energy is found as an explicit functional of the density. The other

case being the Thomas-Fermi kinetic functional, which is exact for the uniform gas and it is

given by:

T [n(r)] = CTF

∫
dr · n5/3(r) (6.3)

with:

CT F =
3

10
(3π

2)2/3 (6.4)

Finding approximate density-explicit functionals for any other system has proven to be

extremely challenging [  97 ]. This is because, alongside with the nuclear energy, the kinetic

energy makes up for most of the electronic energy. Thus, any decent approximation results

in terrible electronic energies. In the next section, we focus on different alternatives to build

kinetic approximations in the context of embedding methodologies.

6.1 The Original Two-Orbital Approximation

We saw in Chapter  3 that practical P-DFT calculations rely on approximations for the

non-additive kinetic energy functional

Tnad
s [{nα(r)}] = Ts[{nα(r)}] −

∑
α

Ts[nα(r)] (6.5)
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where each term can be calculated using the definition of the kinetic energy

Ts[{φi(r)}] = −
1
2

N∑
i=1

∫
φi(r)∇2φi(r)dr (6.6)

Notice that we have made explicit the dependence on the orbitals. Equation ( 6.5 ) shows

a dependence on the density, but this is only true in an implicit manner. In reality, each term

only depends on the Kohn-Sham orbitals which in turn, depend on the density. The goal of

a kinetic functional approximation within P-DFT is to write the first term of Equation ( 6.5 )

in terms of the fragment densities. In contrast, since the fragment densities are obtained

self-consistently, no additional approximation is needed for the second term.

Consider the simplest P-DFT calculation, i.e. a system composed of two fragments.

The He2 is a canonical example since it has two fragments and each fragment is a singlet

state with one orbital. Let us perform a Kohn-Sham DFT calculation using the LDA. The

solution is a set of two Kohn-Sham orbitals (see Figure  6.1 ). These Kohn-Sham orbitals have

a gerade and ungerade symmetry, and so, we will be referring to them as φger(r) and φung(r),

respectively. If we know the two Kohn-Sham orbitals, we can use the definition to compute

the kinetic energy of this system

Ts[{φi(r)}] = T ger
s [φger(r)] + T ung

s [φung(r)] (6.7)

We want to be able to write φger(r) and φung(r) in terms of the known fragment densities.

Given that P-DFT fragments are localized in space, we assume that these fragment densities

can be constructed from a single orbital (in a similar fashion to how the von Weizsäcker

functional is constructed). The orbitals in terms of the fragment densities are

Ψα(r) =
√

nα(r) & Ψβ(r) =
√

nβ(r) (6.8)

and we proceed to build an ungerade orbital from these functions

φung(r) ≈
1

C
1
2

·

{
Ψα(r) − Ψβ(r)

}
(6.9)

67



Figure 6.1. The two Kohn-Sham orbitals for He2, first orbital presents a gerade
symmetry whereas the second orbital presents an ungerade symmetry. The
orange points represent the position of the two Helium atoms separated 2 a.u.

where C is the normalization factor

C =

{∫
dr ·

(
Ψ1(r) − Ψ2(r)

)}2

(6.10)

To construct the second orbital, make use of the full molecular density. We do not expect

to have this quantity in practical calculations, but since He2 is so small, we can use this as

a proof of concept. Since the second orbital has an even symmetry we construct the second

orbital as

φger(r) ≈
{

n(r)
2
− φung(r)2

}1/2

(6.11)

It must be noted that for this construction to work, both fragment densities must belong

to the same species, otherwise, we would not have the appropriate symmetry requirements.

This approximation should give nice results to systems with 4 electrons such as the He2 and

it is expected to be exact in the limit of infinite separation. Let us now use it to compare it

against the exact Tnad
s [n(r)].
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Figure 6.2. Exact non-additive kinetic energies for different diatomic systems
at different separations R. Logarithm scale is used to highlight the almost
exponential behaviour of the kinetic energy e−kR for different values of the
separation distance R.

6.2 Asymptotic Behaviour of Different Diatomic Molecules

To test the approximation, we calculated the Tnad
s [n(r)] exactly for a wide range of di-

atomics: He2, HeNe, and Ne2. We used the all-electron real-space code pyCADMium in-

troduced in Section  5 . A fine prolate spheroidal grid is used where the nuclei are located

at each foci. Using a grid allows the results to be free from basis-set incompleteness errors,

providing "exact" results up to an arbitrary accuracy. The LDA minimum was used as the

ground state geometry. When we refer to “exact” Tnad
s [n(r)] we will be referring to the exact

result obtained using the LDA functional. The values of Tnad
s [n(r)] are orders of magnitude

smaller than the total energy, thus the scf procedure was set to converge only if the changes

in energy are lower than 10−11.

Figure  6.2 shows the Tnad
s [n(r)] at different internuclear separation distances for different

diatomic molecules. One can appreciate that for these systems the Tnad
s [n(r)] is always

positive. We plot these energies using a logarithm scale, and notice that it behaves almost

as an exponential function of the separation distance Tnad
s [n(r)] ∼ e−kx. Additional results

showed that even with more sophisticated functionals, such as PBE, the Tnad
s [n(r)] does not

differ by more than 1%, and thus, we continue with our analysis using the LDA.
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Figure 6.3. Ratio of the exact non-additive kinetic energy and the 2OA kinetic
energy, We can appreciate that this function behaves in a linear fashion, sug-
gesting that a system-specific constant is required to accurate reproduce the
long range behaviour of the studied systems.

We next compared the exact results with the ones obtained with the 2OA. Figure  6.3 

shows the ratio of these two quantities. Each of these functions behaves in a linear way,

suggesting that our crude approximation is able to mimic the long-range behaviour of these

systems, although only the He2 is the one closest both in shape and in magnitude, the plot

shows that a system specific constant can be added as a factor to the 20A functional to

turn into an extremely accurate approximation to the Tnad
s [n(r)]. The constants for these

systems can be found on [  33 ], but here we focus instead on looking at the orbitals that this

approximation produces.

6.3 Analysis of the Shape of Orbitals

Although the orbitals found on Figure  6.1 appear to be a cartoon representation of

the Kohn-Sham orbitals, they actually came from a KS-DFT calculation with the LDA

approximation. Let us use these orbitals to compare them with the one produced by the

2OA. Since we use the definition of the kinetic energy, the success of our approximation will

be dependent on how well we approximate these two functions. To study them further, we

again divide the exact Kohn-Sham orbital and the 2OA approximation. The 2OA manages
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Figure 6.4. Comparison of the exact gerade orbital with the 2OA of the He2

at the equilibrium geometry. The grey line shows that a system dependent
constant may be required to accurately reproduce the exact orbital.

to reproduce the shape of the two orbitals almost perfectly. As in the case with the energies,

we can see that for both the gerade in Figure  6.4 and the ungerade in Figure  6.5 reproduce

the shape of the exact LDA orbitals almost exactly.

For these two orbitals a constant to approximately 1.5 is required to accurately reproduce

the results. This is a great way of analyzing the approximation since the kinetic energy

depends entirely on the number and shape of these orbitals. Unfortunately, only systems

with up to 2 electrons per fragment can be plotted in such a way.

6.4 Behaviour of the Exact Functional Derivative for Tnad
s [n(r)]

Besides energies, we ought to look at the accuracy of the functional derivative of the

approximation. We refer to this quantity as the non-additive kinetic potential vnad
t :

vnad
t (r) =

δTnad
s [{nα(r)}]
δn(r)

(6.12)

Let us look at the exact behaviour of the vnad
t for the systems that we have discussed so

far. We are interested in two different geometries: 1) The equilibrium distance and 2) The

limit of large separation. The latter one depends on the numerical ability of the code to

71



[h]

Figure 6.5. Comparison of the exact ungerade orbital with the 2OA of the He2

at the equilibrium geometry. The grey line shows that a system dependent
constant may be required to accurately reproduce the exact orbital.
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allows us to construct a large discreet space, so most of the molecules presented the longest

separation was of 8 bohr. Figure  6.6 shows the exact vnad
t for the He2, we can see that its

most prominent feature is a double peak with a well at the middle of the bond axis, where

the overlap between the fragment densities finds its maximum. Since vnad
t is added to every

fragment’s potential, it is responsible for polarizing each of the fragment densities towards

the bonding region. As the separation distance is increased, the peaks decrease in magnitude

while the well in between the fragments becomes deeper.

Figure 6.6. Exact vnad
t for the HeHe at two different separation distances: 1)

Ground-state separation in Teal and 2) Long separation in Purple.

Figure  6.7 shows a similar plot but for HeNe. The two peaks are again present, with the

difference that there is the asymmetry in the peaks that occurs since the system is now a

heteronuclear diatomic. Most notably there is a slight plateau in the neighborhood of the

Ne atom, a feature that appears commonly in embedding potentials [ 23 ] . The edges of the

plateau correspond to the transitions between regions where the core orbital contributes the

most density and regions where the HOMO contributes the most density. Another relevant

feature to notice is that the decay on each side is different, which is also expected from a

heteronuclear diatomic [  93 ].

Let us continue by comparing the functional derivative of the 2OA approximation with

the exact result that we obtain from inversion. Figure  6.8 shows the two different potentials

for the He2 at equilibrium separation and long distance separation. Although the order of
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Figure 6.7. Exact vnad
t for the HeNe at two different separation distances: 1)

Ground-state separation in Teal and 2) Long separation in Purple

Figure 6.8. vnad
t Comparison between the exact and 2OA potentials for the

HeHe molecular at the equilibrium geometry

magnitude for each point of the 2OA seems to be in agreement with the exact potential, we

can immediately see that the physics are all incorrect: this potential prevents both fragments

from moving towards the bonding region.

Last but not least, we perform a similar analysis but with the HeNe molecule. Surpris-

ingly, we notice here that the approximated 2OA potential now has a magnitude that is

considerably larger than the expected potential now over-binding the fragments towards the
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bonding region as well as failing to reproduce any other relevant feature in the neighborhood

of the nuclei.

Figure 6.9. vnad
t Comparison between the exact and 2OA potentials for the

HeNe molecular at the equilibrium geometry

All-in-all it can be seen that although the 2OA gives very accurate results for the molecule

in the asymptotic region, there is still some deficiencies in the approximation: The 2OA com-

pletely changes the qualitative behaviour of the potential. We took advantage of the symme-

try of the molecule, something that we would not be able to exploit for a non-homonuclear

diatomic; and finally we made use of the full molecular density, something that we may not

be able to have access to. Let us proceed by modifying some aspects of the approximation

and hopefully improve on the negative aspects of the 2OA.

6.5 The modified Orbital Approximation: mOA

Let us now focus on building these two orbitals from a couple of densities { n1(r), n2(r) }

each of them having { Nα, Nβ } number of electrons respectively (notice that this procedure
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could be performed for k orbitals with k fragment densities). From the assumption that each

density arises from a single orbital, we can generate each fragment wavefunction as:

Nα · Ψα(r)2 = nα(r)→

√
nα(r)
Nα

= Ψα(r) (6.13)

Nβ · Ψ2(r)2 = n2(r)→

√
n2(r)
Nβ

= Ψ2(r) (6.14)

With an analogous equation for the second fragment. These orbitals are obtained inde-

pendently and thus, we do not expect them to be orthogonal. We can rotate the orbitals to

make them orthogonal as suggested by Lowdin [  98 ].

Let

d =

∫
·n

1
2
α(r) · n

1
2
β (r) ·

1√
NαNβ

(6.15)

and

S =

1 d

d 1

 (6.16)

We can compute the new orbitals as a linear combination of the old orbitals. Each

coefficient is given by the overlap matrix:

S −
1
2 =

1

2
√

1 − d2


√

1 − d +
√

1 + d
√

1 − d −
√

1 + d
√

1 − d −
√

1 + d
√

1 − d +
√

1 + d

 (6.17)

And so we find the orthogonal orbitals

Ψ+
1 (r) = [S −

1
2 ]11 · Ψ1(r) + [S −

1
2 ]12 · Ψ2(r) (6.18)

Ψ+
2 (r) = [S −

1
2 ]21 · Ψ1(r) + [S −

1
2 ]22 · Ψ2(r) (6.19)
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In this way, we can generate our gerade and ungerade orbitals

φung(r) ≈
1√

2 − 2
∫

Ψ+
1 (r)Ψ+

2 (r)
· (Ψ+

1 (r) − Ψ+
2 (r)) (6.20)

φger(r) ≈
1√

2 + 2
∫

Ψ+
1 (r)Ψ+

2 (r)
· (Ψ+

1 (r) + Ψ+
2 (r)) (6.21)

We can summarize all the transformations that we’ve performed:

{n1(r), n2(r)}
Square root
−−−−−−−−−→ {Ψ1(r),Ψ2(r)}

Orthogonalize
−−−−−−−−−−→ {Ψ+

1 (r),Ψ+
2 (r)}

Construct
−−−−−−−→ φung(r)

{n1(r), n2(r)}
Square root
−−−−−−−−−→ {Ψ1(r),Ψ2(r)}

Orthogonalize
−−−−−−−−−−→ {Ψ+

1 (r),Ψ+
2 (r)}

Construct
−−−−−−−→ φger(r)

Notice that we have performed a multitude of composite functions. This means that we

will have to proceed with a chain rule of death. Let us begin by redefining the following

variables to make our life a bit more bearable.

cg =

√
2 + 2

∫
dx Ψ+

α(x) Ψ+
β (x) & cu =

√
2 − 2

∫
dx Ψ+

α(x) Ψ+
β (x) (6.22)

G(x) =
1
cg

{
Ψ+
α(x) + Ψ+

β (x)
}

& U(x) =
1
ug

{
Ψ+
α(x) − Ψ+

β (x)
}

(6.23)

α(x) = nα(r) & β(x) = nβ(r) (6.24)
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we need to calculate the following colored 8 distinct functional derivatives:

δTG

δα(x)
= −

∫
dy

{
∇2G(y)

}
·

∫
dz

{
δG(y)
δΨ+

α(z)
·
δΨ+

α(z)
δα(x)

+
δG(y)
δΨ+

β (z)
·
δΨ+

β (z)

δα(x)

}
(6.25)

δTG

δβ(x)
= −

∫
dy

{
∇2G(y)

}
·

∫
dz

{
δG(y)
δΨ+

α(z)
·
δΨ+

α(z)
δβ(x)

+
δG(y)
δΨ+

β (z)
·
δΨ+

β (z)

δβ(x)

}
(6.26)

δT U

δα(x)
= −

∫
dy

{
∇2U(y)

}
·

∫
dz

{
δU(y)
δΨ+

α(z)
·
δΨ+

α(z)
δα(x)

+
δU(y)
δΨ+

β (z)
·
δΨ+

β (z)

δα(x)

}
(6.27)

δT U

δβ(x)
= −

∫
dy

{
∇2U(y)

}
·

∫
dz

{
δU(y)
δΨ+

α(z)
·
δΨ+

α(z)
δβ(x)

+
δU(y)
δΨ+

β (z)
·
δΨ+

β (z)

δβ(x)

}
(6.28)

Let us begin with 4 of the easier terms

δG(y)
δΨ+

α(z)
=

1
cg2

{
δΨ+

α(y)
δΨ+

α(z)
− (Ψ+

α(y) + Ψ+
β (y))

δ cg
δΨ+

α(z)

}

=
1

cg2

{
cg δ(z − y) − (Ψ+

α(y) + Ψ+
β (y))

1
2 · cg

(2Ψ+
β (z))

}
=

1
cg2

{
cg δ(z − y) −G(y)Ψ+

β (z)
}

(6.29)

In the same way, we can obtain the additional 3 terms:

δG(y)
δΨ+

β (z)
=

1
cg2

{
cg δ(z − y) −G(y)Ψ+

α(z)
}

(6.30)

δU(y)
δΨ+

α(z)
=

1
ug2

{
ug δ(z − y) + U(y)Ψ+

β (z)
}

(6.31)

δU(y)
δΨ+

β (z)
=

1
ug2

{
ug δ(z − y) + U(y)Ψ+

α(z)
}

(6.32)
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and proceed with the other 4 terms. We first need to express the {Ψ+
α(r),Ψ+

β (r)} in terms

of the density:

Ψ+
α(z) =

1
2

√
N
Nα

{
α

1
2 (z)

1 + ξ
+
α

1
2 (z)

1 − ξ

}
+

1
2

√
N
Nβ

{
β

1
2 (z)

1 + ξ
−
β

1
2 (z)

1 − ξ

}
(6.33)

Ψ+
β (z) =

1
2

√
N
Nα

{
α

1
2 (z)

1 + ξ
−
α

1
2 (z)

1 − ξ

}
+

1
2

√
N
Nβ

{
β

1
2 (z)

1 + ξ
+
β

1
2 (z)

1 − ξ

}
(6.34)

where

ξ =

∫
dr α

1
2 (r) β

1
2 (r) (6.35)

So that we can compute

δΨ+
α(z)

δα(x)
= AI · α−

1
2 (z)δ(z − x) − AIIP · α

1
2 (z)β

1
2 (x)α−

1
2 (x) − BII · β

1
2 (z)β

1
2 (x)α−

1
2 (x) (6.36)

δΨ+
β (z)

δβ(x)
= BI · β−

1
2 (z)δ(z − x) − BIIP · β

1
2 (z)α

1
2 (x)β−

1
2 (x) − AII · α

1
2 (z)α

1
2 (x)β−

1
2 (x) (6.37)

δΨ+
α(z)

δβ(x)
= BIM · β−

1
2 (z)δ(z − x) − BII · β

1
2 (z)α

1
2 (x)β−

1
2 (x) + AIIP · α

1
2 (z)α

1
2 (x)β−

1
2 (x) (6.38)

δΨ+
β (z)

δα(x)
= AIM · α−

1
2 (z)δ(z − x) − AII · α

1
2 (z)β

1
2 (x)α−

1
2 (x) + BIIP · β

1
2 (z)β

1
2 (x)α−

1
2 (x) (6.39)

where each of the coefficients are a constant that is given by the following rule

XYZ =
X

2(1 + ξ)Y +
X

2(1 − ξ)Y (6.40)

• X ∈ (A, B) refers to the coefficient that accompanies each term. A = 1
2

√
N
Nα

and B =

1
2

√
N
Nβ
.

• Y ∈ (1, 2) is the exponent of the denominator and it is represented with the roman

numerals (I, II).

• Z is an optional parameter Z ∈ {P,M} and it refers to whether or not there is a negative

sign accompanying one of the two terms. If Z → P, then the negative sign is on the
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term with 1 + ξ (Positive). If Z → M, then the negative sign is on the term with 1 − ξ

(Negative).

With this expression, we can proceed to calculate the integrals of Equations  6.28 . To

express them, we add up the functionals associated to the same density. For simplicity, we

are going to omit the coefficients of each of the terms,since they do not provide any insight

into the performance of this new approximation.

δTs

δn1(r)
= −α−

1
2 (x)

{
β

1
2 (x) + ∇2G(x) + ∇2U(x) + Ψ+

α(x) + Ψ+
β (x)

}
(6.41)

δTs

δn2(r)
= −β−

1
2 (x)

{
α

1
2 (x) + ∇2G(x) + ∇2U(x) + Ψ+

α(x) + Ψ+
β (x)

}
(6.42)

Let us now observe the performance of the mOA. Figure  6.10 shows the resulting potential

for the approximation. The potential not only does not show the same behaviour as the

exact kinetic potential as in Figure  6.6 , but its value at every point is orders of magnitude

greater than the exact one. This potential does not converge to a reasonable solution for

any fragment’s scf calculation. Let us try to understand why the mOA fails.

Figure 6.10. vnad
t for the He2 with the mOA.
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6.6 Analysis of the mOA

When we obtain the exact vnad
t , we find a single potential that generates the sum of

fragment densities. Nevertheless, here, we associate each orbital to a particular fragment

and thus each fragment will have a different potential

vkin
p,α(r) = [vt,α[{nα(r)}] − vt[nα(r)]] ·

n(r)
nα(r)

(6.43)

Where the factor on the right is the local-Q approximation that acts as soft Heaviside

step function that acts as a numerical strategy to ensure that the potential for each fragment

converges to the same vp(r) [ 99 ]. Focus on the first term inside the brackets. This is the

potential that we obtain from the functional derivative of the 20A and the mOA. Because

of this distinction, we cannot simply compare the potential obtained through inversion and

the set of potentials obtained for the mOA. On the other hand, we can at least compare the

mOA and the 2OA and see if there is any insight from it. Since the He2 is symmetric, we find

that the potentials obtained for the fragment with nα(r) and the fragment nβ(r) are mirrored

versions of each other. Thus we only need to analyze one of the fragments to understand

their behaviour.

Figure  6.11 shows the two components that make up the potential associated to nα(r).

We can appreciate that around the left He we have a very large peak for both functions. The

features around the first Helium contribute to the vnad
t of fragment α. The features that are

in the neighborhood of the right He nuclei, on the other hand, are of no relevance to us since

anything that is far from the extent of the left density vanishes due to the local-Q function.

One thing that is worth mentioning is that these are not singularities, but values that are

way too large for the range of values selected.

Figure  6.12 show the same plots but for the mOA. Let us again ignore the features on

the neighborhood of the right Helium atom. The main thing that we should notice is that

the values near the left Helium are not positive enough. Remember that vkin
p encompasses

the difference between the kinetic energy of the full system minus the kinetic energy of the

fragments. The fact that this function near the nuclei is not positive enough implies that
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Figure 6.11. δT ger

δnα(r) and
δT ung

δnα(r) derived from the 2OA.

the resulting vkin
p is too negative and results in an nonphysical potential that disrupts the

calculation if they are added.

Figure 6.12. δT ger

δnα(r) and
δT ung

δnα(r) derived from the mOA.
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6.7 Conclusion

We have proven that the original 2OA was applicable to weakly interacting systems. We

showed that generalizing the 2OA to circumvent the need for the full molecular density, as

well as to accurately be applicable in heteronuclear systems is it just as challenging as any

other kinetic approximation. Work in this path is ongoing, and it is still our believe that

approximating orbitals is a more profitable path that approximating the full integrand for

the kinetic energy. More improvements in this area seem to remain incredibly challenging.

83



REFERENCES

[1] M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln,” Annalen der physik,
vol. 389, no. 20, pp. 457–484, 1927.

[2] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Phys-
ical review, vol. 28, no. 6, p. 1049, 1926.

[3] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Proceedings
of the Cambridge Philosophical Society, Cambridge University Press, vol. 35, 1939, pp. 416–
418.

[4] A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced
electronic structure theory. Courier Corporation, 2012.

[5] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical review, vol. 136,
no. 3B, B864, 1964.

[6] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation
effects,” Physical review, vol. 140, no. 4A, A1133, 1965.

[7] M. Levy, “Electron densities in search of hamiltonians,” Physical Review A, vol. 26,
no. 3, p. 1200, 1982.

[8] M. Levy and S. Vuckovic, “The adiabatic connection formula for the exchange–correlation
functional,” in. Dec. 2017.

[9] V. N. Staroverov, “Density-functional approximations for exchange and correlation,” A
Matter of Density, pp. 125–156, 2012.

[10] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density func-
tional ladder: Nonempirical meta–generalized gradient approximation designed for molecules
and solids,” Physical Review Letters, vol. 91, no. 14, p. 146 401, 2003.

[11] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista,
J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, et al., “Psi4: An
open-source ab initio electronic structure program,” Wiley Interdisciplinary Reviews: Com-
putational Molecular Science, vol. 2, no. 4, pp. 556–565, 2012.

[12] D. G. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A. M. James,
J. B. Schriber, T. Zhang, B. Zhang, A. S. Abbott, et al., “Psi4numpy: An interactive quantum
chemistry programming environment for reference implementations and rapid development,”
Journal of chemical theory and computation, vol. 14, no. 7, pp. 3504–3511, 2018.

84



[13] C. R. Jacob and J. Neugebauer, “Subsystem density-functional theory,” Wiley Interdis-
ciplinary Reviews-Computational Molecular Science, vol. 4, no. 4, pp. 325–362, 2014, ISSN:
1759-0876. [Online]. Available:  %3CGo%20to%20ISI%3E://WOS:000337751100002 .

[14] Q. N. Sun and G. K. L. Chan, “Quantum embedding theories,” Acc. Chem. Res., vol. 49,
no. 12, pp. 2705–2712, 2016, ISSN: 0001-4842. [Online]. Available:  %3CGo%20to%20ISI%3E:
//WOS:000390619500005 .

[15] J. Nafziger and A. Wasserman, “Density-based partitioning methods for ground-state
molecular calculations,” The Journal of Physical Chemistry A, vol. 118, no. 36, pp. 7623–
7639, 2014.

[16] S. J. Lee, M.Welborn, F. R. Manby, and T. F. Miller III, “Projection-based wavefunction-
in-dft embedding,” Accounts of chemical research, vol. 52, no. 5, pp. 1359–1368, 2019.

[17] A. Pribram-Jones, D. A. Gross, and K. Burke, “DFT: A Theory Full of Holes?” Annu.
Rev. Phys. Chem., vol. 66, no. 1, pp. 283–304, 2015. DOI:  10.1146/annurev- physchem-
040214-121420 . (visited on 02/26/2016).

[18] A. Wasserman, J. Nafziger, K. L. Jiang, M. C. Kim, E. Sim, and K. Burke, “The
importance of being inconsistent,” Annu. Rev. Phys. Chem., vol. 68, pp. 555–581, 2017,
ISSN: 0066-426x. [Online]. Available:  %3CGo%20to%20ISI%3E://WOS:000401335600025 .

[19] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density
functional theory,” Science, vol. 321, no. 5890, pp. 792–794, 2008.

[20] T. Schmidt, E. Kraisler, A. Makmal, L. Kronik, and S. Kümmel, “A self-interaction-free
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A. CRASH COURSE IN FUNCTIONAL DERIVATIVES

We briefly review some aspects of functionals and its derivatives. These are thoroughly used

in Chapter  6 . A functional F is a mapping that takes a function and returns a number, i.e.

F[ f ]→ C , C ∈ R. The differential of a functional is given by the difference of a functional

and the same functional with an infinitesimal variation of the function:

δF[ f ] = F[ f + δ f ] = F[ f ] (A.1)

This variation δF[ f ] is linear in δ f (x) at any point of its domain

F[ f ] =

∫
δF[ f ]
δ f (x)

δ f (x)dx (A.2)

δF[ f ]/δ f (x) defines the functional derivative of F[ f ] with respect to f (x).

In practice, many of the properties of the derivatives in f : R → R translate to the

functional derivatives. Let F and G be two functionals of f, and c1, c2 ∈ R, then

δ

δ f (x)

{
c1F[ f ] + c2G[ f ]

}
= c1

δF[ f ]
δ f (x)

+ c2
δG[ f ]
δ f (x)

(A.3)

δ

δ f (x)

{
F[ f ] ∗ G[ f ]

}
=
δF[ f ]
δ f (x)

G[ f ] + F[ f ]
δG[ f ]
δ f (x)

(A.4)

δ

δ f (x)

{
F[ f ] / G[ f ]

}
=

1
G2[ f ]

{
G[ f ]

δF[ f ]
δ f (x)

− F[ f ]
δG[ f ]
δ f (x)

}
(A.5)

Let us now assume that a functional F[ f ] is a functional of f [g](x) which is in itself also

a functional of the function g(x), then the functional derivative δF[ f ]
δg(x) is found through the

analogous of the chain rule
δF[ f ]
δg(x)

=

∫
δF[ f ]
δ f (y)

·
δ f (y)
δg(x)

dy (A.6)

We may be interested in computing the functional derivative of F[ f (x)] with respect to

f (y). In that case
δF[ f (x)]
δ f (y)

=
dF[ f ]

d f
· δ(x − y) (A.7)
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Derivatives of higher orders can also be performed. In addition, there is an analogous of

Fubini’s theorem for functional derivatives

δ2F[ f ]
δ f (x)δ f (y)

=
δ2F[ f ]

δ f (y)δ f (x)
(A.8)

Given a functional F[ f ] that is dependent of f and any arbitrary number (N) of its

derivatives, i.e.

F[ f ] =

∫
f (x, f (x),

d
dx

f (x),
d2

dx2 f (x), ...,
dN

dxN f (x)) (A.9)

then

δF[ f ]
δ f

=
δF[ f ]
δ f (x)

−
d
dx
·
δF[ f ]
δ d f

dx

+
d2

dx2 ·
δF[ f ]

δ d2 f
dx2

+ ... + (−1)N dN F[ f ]
dxN (A.10)

The same applies for a functional F that depends on f : R3 → R, simply replace the total

derivative with the ∇ operator.
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B. QUANTUM CHEMISTRY ON A BASIS-SET

Most practical calculations for atomic systems done by expressing the quantities of interest

in a basis of M atomic functions {χν(r)}, usually these functions Gaussian-type functions

centered around each atom. Each of the orbitals is expanded as:

φi(r) =

M∑
µ=1

cνi · χν(r) (B.1)

We can plug in the previous expression into the Kohn-Sham equations ( 2.20 ) to find

h(r)φi(r) = εφi(r) (B.2)

that after multiplying by χ∗ν(r) and integrating over all space becomes

M∑
ν

Fµνcνi = εi

M∑
ν

S µνcνi (B.3)

where

Fµν =

∫
χ∗ν(r)h(r)χν(r)dr (B.4)

S µν =

∫
χ∗ν(r)χν(r)d (B.5)

are the elements of the “Fock-like” KS matrix and the elements of the overlap matrix of the

basis functions, respectively. The KS matrix is composed of the matrix elements 

1
 

Fµν = hµν + Jµν + Vxc,µν (B.6)

where hµν is known as the core matrix

hµν =

∫
χ∗ν(r)

{
1
2
∇2 + vext(r)

}
χν(r)dr (B.7)

1
 ↑ Here we exclude the exact exchange.
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Jµν is the Hartree potential

Jµν =

∫
χ∗ν(r) vH(r) χν(r)dr (B.8)

Vxc,µν is the exchange-correlation potential

Vxc,µν =

∫
χ∗ν(r) vxc(r) χν(r)dr (B.9)

To express the electronic density in terms of the basis-set we write

Pµν =

N∑
i=1

cµi · c∗νi (B.10)

Since the exchange-correlation potential is obtained through a functional derivative of the

exchange-correlation energy, the density needs to be available on the grid, to retrieve n(r)

from the basis set we use

n(r) =

N∑
µ=1

N∑
ν=1

χµ(r) Pµν χ
∗
µ(r) (B.11)
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C. DERIVATION OF THE VON WEIZSÄCKER EQUATION

This section is inspired by Reference [ 100 ] to which the reader is referred for more details.

The von Weizsäcker model is a kinetic energy functional that is exact for one-electron

systems. The derivation is based on the definition of the kinetic energy

T = −
1
2

∫
Ψ(r) · ∇2Ψ(r)dr (C.1)

and the electron density is defined as:

n(r) = Ψ2(r) (C.2)

Let us apply the laplacian on both sides of Equation ( C.2 )

∇2n(r) ≡ ∇2Ψ(r) (C.3)

= 2 | ∇Ψ(r) |2 +2Ψ(r)∇2Ψ(r) (C.4)

where the second line comes from the identity from vector calculus

∇2( f g) = f∇2g + 2∇ f · ∇g + g∇2 f

Let us now integrate Equation (B.4) in all of space and proceed to substitute (  C.1 )

∫
n(r)dr = 2

∫
| ∇Ψ(r) |2 dr − 4T (C.5)

and solve for T

T =
1
2

∫
| ∇Ψ(r) |2 dr −

1
4

∫
∇2n(r)dr (C.6)

Save that equation for later. In the meantime, let us apply ∇ to Equation ( C.2 )

n(r) ≡ ∇Ψ2(r) = 2Ψ(r) · ∇Ψ(r) (C.7)
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Let us square it and substitute Equation (  C.2 ) once more

| ∇n(r) |2 = 4 · Ψ2(r) | ∇Ψ(r) | 2 (C.8)

= 4 · n(r) | ∇Ψ(r) |2 (C.9)

Solve for the second factor on the right hand side

| ∇Ψ(r) |2=
| ∇n(r) |2

n(r)
dr (C.10)

As a last step, substitute the last equation into Equation ( C.6 )

T =
1
8

∫
| ∇n(r) |2

n(r)
dr −

1
4

∫
∇2n(r)dr (C.11)

From [  100 ], we know that the second term is equal to zero. This is how we find the von

Weizsäcker kinetic energy functional

T =
1
8

∫
| ∇n(r) |2

n(r)
dr (C.12)
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D. NEWTON-COTES WEIGHTS FOR INTEGRATION

Consider a function in 1D. Our goal is to compute the integral

∫ b

a
f (x)dx (D.1)

where f is a function that is defined on a discreet space of xj points. Each of these points

is given by:

xj = a + jh (D.2)

h =
b − a

n
(D.3)

j = 0, 1, 2, ...n (D.4)

Proceed to compute the Lagrange interpolation polynomial of order n

pn(x) =

n∑
k=0

Lk(x) f (xk) (D.5)

which we are hoping will mimic our function (this is not always true)

pn(x) ≈ f (x), x ∈ [a, b] (D.6)

So that we focus on integrating the polynomials

∫ b

a
f (x)dx ≈

∫ b

a
pn(x)dx =

n∑
k=0

f (sk)
∫ b

a
Lk(x)dx (D.7)

that are the weights that we are looking for:

wk =

∫ b

a
Lk(x) dx, k = 0, 1, 2, ...n (D.8)
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that are computed as

wk =

∫ b

a

n∏
j=0,j,i

x − xj

xi − xj
= (b − a)

1
n + 2

∫ n

x

∏
j=0,j,i

s − j
i − j

ds (D.9)

where a = a + sh.
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