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ABSTRACT

This thesis aims to investigate how one fundamental component of the inner-ear (cochlear)

response to all sounds, the temporal fine structure (TFS), is used by the auditory system in

everyday hearing. Although it is well known that neurons in the cochlea encode the TFS

through exquisite phase locking, how this initial/peripheral temporal code contributes to

everyday hearing and how its degradation contributes to perceptual deficits are foundational

questions in auditory neuroscience and clinical audiology that remain unresolved despite ex-

tensive prior research. This is largely because the conventional approach to studying the role

of TFS involves performing perceptual experiments with acoustic manipulations of stimuli

(such as sub-band vocoding), rather than direct physiological or behavioral measurements

of TFS coding, and hence is intrinsically limited. The present thesis addresses these gaps

in three parts: 1) developing assays that can quantify TFS coding at the individual level

2) comparing individual differences in TFS coding to differences in speech-in-noise percep-

tion across a range of real-world listening conditions, and 3) developing deep neural network

(DNN) models of speech separation/enhancement to complement the individual-difference

approach. By comparing behavioral and electroencephalogram (EEG)-based measures, Part

1 of this work identified a robust test battery that measures TFS processing in individual hu-

mans. Using this battery, Part 2 subdivided a large sample of listeners (N=200) into groups

with “good” and “poor” TFS sensitivity. A comparison of speech-in-noise scores under a

range of listening conditions between the groups revealed that good TFS coding reduces

the negative impact of reverberation on speech intelligibility, and leads to reduced reaction

times suggesting lessened listening effort. These results raise the possibility that cochlear

implant (CI) sound coding strategies could be improved by attempting to provide usable

TFS information, and that these individualized TFS assays can also help predict listening

outcomes in reverberant, real-world listening environments. Finally, the DNN models (Part

3) introduced significant improvements in speech quality and intelligibility, as evidenced by

all acoustic evaluation metrics and test results from CI listeners (N=8). These models can be

incorporated as “front-end” noise-reduction algorithms in hearing assistive devices, as well

as complement other approaches by serving as a research tool to help generate and rapidly

14



sub-select the most viable hypotheses about the role of TFS coding in complex listening

scenarios.
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1. INTRODUCTION

Hearing loss is one of the most prevalent disabilities: over 5% of the world’s population have

disabling hearing loss and it is estimated that over 900 million people, or one in every ten

people will have disabling hearing loss by 2050 (WHO,  2020 ). The communication disruption

due to hearing loss is one of the main reasons for social isolation (Mick et al.,  2014 ), which has

evolved to be a growing epidemic that is linked to some other mental and physical challenges

such as depression (Mener et al.,  2013 ), heart disease (Rosen & Olin,  1965 ), dementia, and

Alzheimer’s disease (Lin et al.,  2011 ). Although hearing assistive technologies such as hearing

aids and cochlear implants (CI) could help restore near-normal audibility in quiet, people

with hearing loss struggle to converse in noisy listening environments. The failure of current

hearing assistive technologies to restore hearing functions in noise is partly due to our limited

understanding of how sounds are coded in the human auditory system.

This thesis aims to investigate how one fundamental component of all sounds—temporal

fine structure (TFS)—is used by a typical human auditory system for everyday hearing.

Acoustic information in the auditory system is represented by cycle-by-cycle variations in

phase, the TFS, and dynamic variations in amplitude, the envelope (ENV; Hilbert,  1906 ).

Theses information is conveyed through the firing rate and/or timing of the neural spikes

(i.e., rate-place vs temporal coding) of cochlear neurons. Neurons phase-lock to both TFS

(Johnson,  1980 ), and ENV (Joris & Yin,  1992 ) robustly, with TFS phase-locking extending

at least up to 1000�Hz (Verschooten et al.,  2019 ). While the peripheral rate-place code has

consistent counterparts throughout the auditory system, the upper limit of phase-locking

progressively shifts to lower frequencies along the ascending pathway (Joris et al.,  2004 ).

How this metabolically expensive initial/peripheral temporal code (Hasenstaub et al.,  2010 ;

Laughlin et al.,  1998 ) contributes to everyday hearing and how its degradation contributes to

perceptual deficits are foundational questions in auditory neuroscience and clinical audiology.

Yet, the significance of TFS coding is debated (Drullman,  1995 ; Oxenham,  2013 ; Oxenham

& Simonson,  2009 ; Swaminathan & Heinz,  2012 ).

Current literature has established that sound localization and pitch perception could

benefit from TFS cues in quiet (J. G. Bernstein & Oxenham,  2003 ; Houtsma & Smurzyn-

16



ski,  1990 ; Moore,  1973 ; Smith et al.,  2002 ; Yin & Chan,  1990 ). However, whether TFS is

important for spatial or pitch-based masking release in noise is further debated, especially

when other redundant cues can also convey pitch or location, and when room reverberation

can degrade temporal cues (Best et al.,  2005 ; Ihlefeld & Shinn-Cunningham,  2011 ; Oxen-

ham & Simonson,  2009 ). The challenge to pin down the functional significance of TFS in

noise mainly arises from the limitations of the most commonly used approach to investi-

gating TFS—vocoding, a technique to independently manipulate and study ENV and TFS

cues (Ardoint & Lorenzi,  2010 ; Hopkins & Moore,  2009 ; Hopkins et al.,  2008 ; Lorenzi et

al.,  2009 ; Smith et al.,  2002 ). Although perceptually straightforward, the acoustic manip-

ulations cannot eliminate subsequent confounding of ENV, TFS, and place cues without

detailed knowledge of cochlear processing at the individual level (Oxenham,  2013 ; Swami-

nathan & Heinz,  2012 ). An alternative approach is to directly measure TFS sensitivity from

individual listeners and compare it to individual differences in other perceptual measures.

The individual-difference approach has been successfully used to address other fundamental

questions (Bharadwaj et al.,  2015 ; McDermott et al.,  2010 ; Whiteford et al.,  2020 ). Unfor-

tunately, the lack of established measures of TFS sensitivity at the individual level limits

this enterprise.

The goal of this thesis is to investigate the functional role of TFS in everyday hearing

using an individual-difference approach. Two steps were taken to achieve this objective. The

first step (chapter 2) was to identify candidate assays of TFS processing at the individual

level, by employing a battery of both behavioral and electroencephalography (EEG)-based,

classic TFS-sensitivity measures on a cohort of typical-hearing (TH) individuals. After

establishing the array of TFS-sensitivity measurements at the individual level, the second

step (chapter 3) was to extensively measure speech intelligibility in various types of listening

situations on a large cohort of TH individuals, along with the TFS-sensitivity measures.

The comparison between the individual differences in TFS sensitivity and speech-in-noise

intelligibility allowed us to reveal the functional role of TFS in everyday hearing. In parallel

to using the individual-difference approach to study TFS, this thesis explored the potential

of deep neural network (DNN) models for mimicking or restoring speech-in-noise hearing in a

human auditory system (chapter 4). Two state-of-the-art DNN models for speech segregation
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and enhancement were implemented and the performance of the models was evaluated by

both acoustical evaluation metrics and CI listeners. These models can be incorporated

as “front-end” noise-reduction algorithms in hearing assistive devices to help address the

limitations of current signal processing strategies for restoring normal-level of speech hearing

in noisy listening environments. These models also have the potential of complementing the

individual-difference approach by serving as a research tool to help generate and rapidly

sub-select the most viable hypotheses about the role of TFS coding in complex listening

scenarios.
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2. INDIVIDUALIZED ASSAYS OF TEMPORAL CODING IN

THE ASCENDING HUMAN AUDITORY SYSTEM

This chapter has been published in eNeuro Journal ( DOI ).

2.1 Introduction

All acoustic information we receive is conveyed through the firing rate and/or timing of

the neural spikes (i.e., rate-place vs temporal coding) of cochlear neurons. Temporal infor-

mation in the basilar-membrane vibrations consists of cycle-by-cycle variations in phase, the

temporal fine structure (TFS), and dynamic variations in amplitude, the envelope (ENV;

Hilbert,  1906 ). Cochlear neurons phase-lock to both TFS (Johnson,  1980 ), and ENV (Joris &

Yin,  1992 ) robustly, with TFS phase-locking extending at least up to 1000�Hz (Verschooten

et al.,  2019 ). While the peripheral rate-place code has consistent counterparts throughout

the auditory system, the upper limit of phase-locking progressively shifts to lower frequen-

cies along the ascending pathway (Joris et al.,  2004 ). How this metabolically expensive

initial/peripheral temporal code (Hasenstaub et al.,  2010 ; Laughlin et al.,  1998 ) contributes

to everyday hearing and how its degradation contributes to perceptual deficits are foun-

dational questions in auditory neuroscience and clinical audiology. Yet, the significance of

TFS coding is debated (Drullman,  1995 ; Oxenham,  2013 ; Oxenham & Simonson,  2009 ;

Swaminathan & Heinz,  2012 ).

Previous studies have explored whether sound localization and pitch perception benefit

from TFS cues. While it is established that lateralization of low-frequency sounds depends on

TFS (Smith et al.,  2002 ; Yin & Chan,  1990 ), whether TFS is important for pitch perception

is difficult to ascertain. Behavioral studies suggest that low-frequency periodic sounds elicit

a stronger pitch than high-frequency sounds (J. G. Bernstein & Oxenham,  2003 ; Houtsma

& Smurzynski,  1990 ; Moore,  1973 ), suggesting a possible role for TFS. However, these

results permit alternate interpretations in terms of place coding and harmonic resolvability

(Oxenham,  2012 ). Regardless of its role in quiet, whether TFS is important for masking

release in noise is further debated, especially when other redundant cues can also convey
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pitch or location, and when room reverberation can degrade temporal cues (Best et al.,

 2005 ; Ihlefeld & Shinn-Cunningham,  2011 ; Oxenham & Simonson,  2009 ).

To investigate the role of TFS, studies have used sub-band vocoding to independently

manipulate ENV and TFS cues (Ardoint & Lorenzi,  2010 ; Hopkins & Moore,  2009 ; Hopkins

et al.,  2008 ; Lorenzi et al.,  2009 ; Smith et al.,  2002 ). However, acoustic manipulations cannot

eliminate subsequent confounding of ENV, TFS, and place cues without detailed knowledge

of cochlear processing at the individual level (Oxenham,  2013 ; Swaminathan & Heinz,  2012 ).

Thus, establishing the precise role of TFS through vocoding experiments is difficult, although

the use of high-fidelity vocoders can help (Viswanathan, Bharadwaj, et al.,  2021 ). An

alternative approach is to directly measure TFS sensitivity from individual listeners and

compare it to individual differences in other perceptual measures. The individual-differences

approach has been successfully used to address other fundamental questions (Bharadwaj

et al.,  2015 ; McDermott et al.,  2010 ; Whiteford et al.,  2020 ). Unfortunately, the lack of

established measures of TFS sensitivity at the individual level limits this enterprise.

Conventional behavioral TFS-sensitivity measurements have attempted to eliminate con-

founding cues such that primary task would rely on TFS processing (Hopkins & Moore,  2010 ;

Moore & Sek,  2009 ; Sęk & Moore,  2012 ; Strelcyk & Dau,  2009 ). However, they did not as-

sess the influence of extraneous factors on the measured scores. Unfortunately, nonsensory

factors can contribute significantly to individual variability even when the tasks themselves

rely on specific acoustic cues (G. R. Kidd et al.,  2007 ). Objective electrophysiological mea-

sures of TFS sensitivity can circumnavigate this problem; however, such studies are scarce

(Parthasarathy et al.,  2020 ; Verschooten et al.,  2015 ). Here, we employ a battery of both

behavioral and electroencephalography (EEG)-based measures of TFS sensitivity on a co-

hort of typical-hearing (TH) individuals to identify candidate assays of TFS processing at

the individual level. Our results suggest that extraneous variables dominate both behavioral

and raw EEG measures. However, with adjustments, we observed robust behavior-EEG

correlations in binaural assays, rendering them well suited for quantifying individual TFS

processing.
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2.2 Materials and Methods

The primary goal of the current study was to evaluate an array of both behavioral and

electrophysiological measures as candidate assays of TFS sensitivity at the individual level.

Based on the finding that nonsensory factors contribute significantly to behavioral TFS

measures, a large-N supplementary behavioral experiment was conducted to assess whether

nonsensory factors also influence ENV sensitivity when measured from naive participants.

2.2.1 Participants

One hundred and fifty-three listeners, aged 18–60�years, were recruited from the local

community near Purdue University. All human subject measures were conducted follow-

ing protocols approved by the Purdue University Internal Review Board and the Human

Research Protection Program. Participants were recruited via posted flyers and bulletin-

board advertisements and provided informed consent. All participants had pure-tone air-

conduction thresholds of 25�dB Hearing Level (HL) or better at octave frequencies from

500 to 8000�Hz. Of the 153 subjects, 44 (20 males) participated in the main experiments

designed to evaluate candidate assays of TFS processing. The remaining N�=�109 partic-

ipated in the supplementary experiment aimed at testing whether nonsensory factors also

influence ENV sensitivity. Although the goal of the main experiment was to conduct all

behavioral and electrophysiological TFS measures on each participant, some were not able

to finish the full study battery because of limited availability. Among the 44 listeners who

participated in the main study, 43 completed the frequency modulation (FM) detection task,

and 36 completed the interaural time difference (ITD) detection task. The intersection, 33

subjects, completed both behavioral measurements. Among all participants (n�=�44), 42

subjects completed EEG-ITD sensitivity measurements; 25 of those 42 subjects also com-

pleted EEG-frequency following response (FFR) measurements. Among the subjects who

completed both behavioral measurements, all except one (n�=�32) completed the EEG-ITD

measurement; these subjects include all participants who completed the EEG-FFR mea-

surements (n�=�25). The subjects who completed both behavioral measurements (n�=�32,

age: mean�=�26.8, SD�=�11.2) were included for the main analyses including brain-behavior
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correlations. Although the age range was wide, only six out of 33 subjects were older than

35�years at the time of the testing, and age did not significantly correlate with any measure

of this study.

2.2.2 Experimental Design and Statistical Analysis

Behavioral Measures of the TFS Coding

Each of the following behavioral measurements was conducted on a different day from

the others to randomize the influence of factors that may be idiosyncratic to a specific test

day/session. A single lab visit contained only one behavioral measurement to reduce the

impact of cognitive fatigue from hour-long experiments.

FM DETECTION THRESHOLDS. To obtain monaural TFS sensitivity, FM thresholds

were measured separately in each ear, using a weighted (3:1) one-down-one-up (Kaernbach,

 1991 ), two-alternatives-forced-choice (2AFC) adaptive procedure. The stimulus in the target

interval was a 500-ms-long 500-Hz tone with FM at a 2-Hz rate and variable depth. The

reference interval was a 500-Hz pure tone. The interstimulus gap was 900�ms. The stimulus

was ramped on and off with a rise/fall time of 5�ms to eliminate audible transitions. The

stimulus level was 70�dB SPL. The subjects were instructed to press a button to indicate the

interval containing the FM. Each measurement block was terminated after 11 reversals and

the median of all the reversals from the adaptive procedure was extracted as the threshold.

Four blocks of measurements were obtained in each ear from each subject. Except for

an additional “demo” block to orient the participants before the formal testing, there was

no further training. Sennheiser HDA 300 over-the-ear headphones were used for stimulus

delivery. The slow FM rate of 2�Hz was chosen because it is thought that TFS cues are used

to detect FM at rates below �10�Hz (Moore & Sek,  1996 ; Strelcyk & Dau,  2009 ). However,

recent evidence suggests that this may not be the case (Whiteford et al.,  2020 ). Nonetheless,

given the large body of literature using and interpreting slow-FM detection as a measure of

TFS sensitivity, we chose to include this in the battery of candidate measures.

ITD DETECTION THRESHOLDS. To obtain a binaural measure of TFS sensitivity, we

measured ITD detection thresholds using a three-down-one-up, 2AFC adaptive procedure.
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The stimulus consisted of two consecutive 400-ms-long, 500-Hz tone bursts with an ITD.

The leading ear for the ITD was switched from the first burst to the second. The stimulus

was ramped on and off with a rise/fall time of 20�ms to eliminate audible transitions and

to reduce reliance on onset ITDs. The stimuli were presented at 70�dB SPL. Subjects were

asked to report the direction of the jump (left-to-right or right-to-left) between the intervals

through a button press. It was preferable to have subjects indicate the direction of change

because absolute lateralization can be influenced by multiple factors (Moore & Sek,  2009 ).

The threshold was defined as the geometric mean of the last nine reversals, and measured

repeatedly across eight blocks, with a short break scheduled after the fourth block. Etymotic

Research (ER-2) insert earphones were used for delivering the stimuli. A separate “demo”

block was included before the experimental blocks to familiarize the subject with the task.

“NONSENSORY” SCORE. Because the main goal of the study is to evaluate candidate

measures of TFS coding in naive subjects, i.e., individuals without extensive training/prac-

tice on the measured tasks, we anticipated that extraneous “nonsensory” variables may

influence the measured thresholds. Accordingly, percent-incorrect scores on easy “catch”

trials were calculated to quantify the subject’s engagement. Errors made in these catch

trials likely reflect nonsensory factors such as lapses in attention, variations in motivation,

alertness, etc., rather than the strength of sensory coding. For the FM detection task, trials

with frequency deviations (modulation depths) >15�Hz were deemed to be catch trials, and

the percent-incorrect scores were calculated for just these trials for each subject as an esti-

mate of lapse rate. Similarly, the criterion for designating a trial as a “catch” trial for the

ITD detection task was that the ITD exceeded 80 µs. The number of catch trials available

varied from subject to subject because of the adaptive nature of the task. On average, the

FM and ITD detection tasks included 3–10 catch trials per block. To mitigate the influence

of extraneous variables such as engagement and motivation on the measured thresholds, a

simple linear model was constructed with this nonsensory score as the sole predictor, and

the residuals from the model were treated as “clean” thresholds and used in all analyses

thereafter.

SUPPLEMENTARY AMPLITUDE MODULATION (AM) DETECTION TASK. To fur-

ther investigate the influence of nonsensory factors on behavioral measures in general, we
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conducted a supplementary experiment using a task that is unrelated to TFS processing, an

AM detection task similar to the one used in Bharadwaj et al.,  2015 . A similar 2AFC pro-

cedure as in the FM and ITD detection threshold measurements was employed. The target

was a 500-Hz, 75�dB SPL band of noise centered at 4 or 8�kHz, and amplitude modulated at

19�Hz. Two unmodulated tones, flanked at two equivalent rectangular bandwidths (ERBs;

Glasberg and Moore,  1990 ; Moore,  1968 ) away from the center frequency, each at 75�dB

SPL, were used to minimize off-frequency listening. The signal in the reference interval was

statistically identical but unmodulated. Using a noise carrier helps eliminate spectral cues

for the AM detection task (Viemeister,  1979 ). The threshold for the modulation depth de-

tection was determined by an adaptive weighted one-up-one-down procedure (Kaernbach,

 1991 ).

Electrophysiological Measures of the TFS Coding

While behavioral measures directly assess perceptual sensitivity to TFS, they may also

reflect common nonsensory factors such as attention and motivation. To dissociate TFS

coding from nonsensory factors, we designed two passive EEG measures of TFS coding and

compared them to individual behavioral measures. For EEG measurements, participants

watched a silent, captioned video of their choice while passively listening to the auditory

stimuli. EEG recordings were obtained using a 32-channel EEG system (Biosemi Active

Two), while the stimuli were presented via ER-2 insert earphones.

GENERAL EEG SETUP AND PREPROCESSING PROCEDURES. The Biosemi EEG

system employs active common-mode noise rejection using a pair of ground electrodes in

a “driven-right leg” configuration (Metting van Rijn et al.,  1990 ). EEG recordings were

re-referenced to the average voltage across the two ear lobes. For cortical response anal-

yses (EEG-ITD; see Cortical correlates of TFS-based ITD processing), the raw data were

bandpass filtered from 1 to 50�Hz, whereas for subcortical responses (EEG-FFR; see FFR),

raw data were filtered from 400 to 1300�Hz. The 400- to 1300-Hz bandpass filter eliminates

artifacts from eye blinks. For the 1- to 50-Hz cortical data, ocular artifacts were removed us-

ing the signal-space projection technique (Uusitalo & Ilmoniemi,  1997 ). After the eye-blink
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correction, epochs with large voltage excursions (above 150�µV for cortical recordings; above

50�µV for subcortical recordings) were excluded to reduce movement artifacts. For both

cortical and subcortical recordings, analyses focused on recordings from vertex electrodes

(i.e., Fz and Cz channels).

CORTICAL CORRELATES OF TFS-BASED ITD PROCESSING. Cortical EEG was

recorded in response to 70�dB SPL 500-Hz tones that were amplitude-modulated (100%

depth) at 40.8�Hz. 40.8�Hz can elicit a strong auditory steady-state response (ASSR) in

EEG recordings (Picton et al.,  2003 ); this response was used here as a measure of recording

quality (Fig. 1C). The stimulus duration was of 1.5 s. As with the behavioral measurement,

the leading ear for the ITD switched 1 s into the trial. The direction of the ITD switch

was randomized across trials. To minimize monaural cues, the ITD switch coincided with

a trough of the 40.8�Hz modulation (Fig.  2.1 ). This approach mirrors the method used in

Papesh et al.,  2017 , where the stimulus switches between in-phase and out-of-phase states

(phase shift of 180°). Our measurements involved ITD jumps of 20, 60, 180, or 540 µs in

magnitude. The magnitude and direction of the ITD jump were randomized across trials. A

total of 1200 trials were presented to the listener. The interstimulus interval was uniformly

distributed between 500 and 600�ms. Besides amplitude and latency of the averaged evoked

response across trials in each condition, we calculated the intertrial coherence (ITC), which

quantifies the consistency in the phase of the evoked response components across trials.

ITC of 0 indicates no phase locking (the response is dominated by background noise), and

ITC of 1 indicates perfect phase-consistency across trials (no background noise added to

the phase-locked response). Thus, the ITC is directly related to the signal-to-noise ratio

of the evoked response (Bharadwaj & Shinn-Cunningham,  2014 ). The frequency band for

ITC analysis was restricted to ∼1–20�Hz, because it is known that cortical transient-evoked

responses primarily consist of low-frequency components, and because we sought to separate

these responses from the 40.8-Hz ASSR response.

FFR. Subcortical FFRs were measured in response to tones in a forward-masking stim-

ulus configuration (Verschooten & Joris,  2014 ). The stimuli consisted of three consecutive

segments: a 500-Hz probe tone that was 100 ms long and at 75�dB SPL, a “forward-masker”

tone of the same frequency and duration but at 85�dB SPL, and the same probe tone. A 50-
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ms silent gap was included between the first probe tone and forward-masker, but only a 1-ms

gap was included between the forward-masker and the second probe tone. Each stimulus

segment was ramped on and off over 5�ms to reduce audible transitions. The polarity of the

stimulus was alternated across a total of 8000 trials. The 500-Hz component of differential

response obtained across the two stimulus polarities reflects response components that are

phase-locked to the TFS, whereas the summed 500-Hz response represents the response to the

ENV. However, the TFS component can contain both preneural (e.g., cochlear microphonic;

CM) as well as neural responses. Verschooten and Joris,  2014 argued that the nonlinear

residual obtained by subtracting the TFS response to the second probe tone from the TFS

response to the first probe tone will isolate the neural component and suppress the approxi-

mately linear CM. This is because the forward masking of response to the second probe tone

only masks the neural component, whereas the CM is intact. Owing to the inner-hair-cell

rectification, the summed response across the two polarities also contains a component at

twice the stimulus frequency (1000�Hz) that reflects physiological currents phase-locked to

the TFS in the stimulus. Although TFS-related, whether this double-frequency response is

purely neural as has been previously interpreted (Parthasarathy et al.,  2020 ), or whether

it includes preneural contributions is unknown. Thus, we considered two candidate subcor-

tical correlates of TFS processing: (1) the 500-Hz component derived from the differential

response across the two polarities of stimulus presentation, and (2) the 1000-Hz component

derived from the summed response across two polarities of stimulus presentation.

Statistical Analysis

Pearson correlations were calculated to illustrate simple associations between pairs of

measurements. Statistical inference about behavior-physiology correlations was made using

a multiple linear stepwise regression analysis by adding new potential predictors one by one

to model the dependent variable. All reported significant associations met a false discovery

rate criterion of 5% to control for multiple comparisons (Benjamini & Hochberg,  1995 ).

Statistical analyses were performed using R ( R Core Team ).
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CODE ACCESSIBILITY. Stimulus generation and data analyses were done using custom

scripts. They stimulus can be accessed at:  stimulus-github ; The analysis scripts for EEG

data can be accessed at:  EEGAnalysis-github ; The analysis scripts for behavioral data can

be accessed at:  BehaviorDataAnalysis-github .

2.3 Results

2.3.1 Non-sensory factors contribute to large individual differences in behav-
ioral measures of TFS coding

Similar to previous reports of large individual differences in the AM and ENV-based

ITD detection thresholds across TH listeners (Bharadwaj et al.,  2015 ), both the FM and

TFS-based ITD detection thresholds varied widely across our TH listeners. FM detection

thresholds across 43 TH listeners ranged from 7 to 22�dB relative to 1�Hz [i.e., a frequency

deviation (Fdev) of 2–13�Hz from 500�Hz]. ITD detection thresholds varied from 21 to

39�dB relative to 1 µs (i.e., 11–89 µs) across 37 TH listeners. These FM and ITD detection

thresholds are shown along with the results from similar studies, in Figures  2.8 and  2.1 ,

respectively, and were largely comparable.

Across listeners, neither FM (averaged across two ears) nor ITD thresholds (each av-

eraged across repetitions) correlated with the audiograms (across-ear average of thresholds

at 500�Hz; across-ear average of the mean thresholds at high frequencies: 4 and 8�kHz);

however, the two measures were significantly correlated with each other in a simple linear

regression analysis (r�=�0.44, p�=�0.01, n�=�33). While the correlations may arise from indi-

vidual differences in TFS coding, they can also reflect nonsensory factors such as attention,

motivation, etc. To disambiguate these competing explanations, we assigned each listener

a nonsensory score. When those scores were factored out from each measurement, the cor-

relation between the monaural FM and binaural ITD thresholds dropped such that the

association no longer met conventional statistical significance criteria (R�=�0.31, p�=�0.08,

n�=�33), suggesting that nonsensory factors play a large role in raw scores. Furthermore,

when just the blocks with the largest (i.e., worst) FM and ITD thresholds for each subject

were compared, considerably stronger correlations were observed (r�=�0.6, p�=�9e-4, n�=�33),
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underscoring the involvement of nonsensory factors in behavioral measurements. Figure  2.2 

shows the correlations between the measured and predicted thresholds solely based on the

lapse rates (i.e., the nonsensory score). The involvement of nonsensory factors is evident,

especially for the poorer performers.

To confirm the involvement of nonsensory factors in raw behavioral scores, a similar

comparison of thresholds and lapse rates was conducted for the supplementary AM detection

task. The predicted thresholds based on the nonsensory score significantly correlated with the

measured AM thresholds (R�=�0.52, p�=�1e-8, n�=�109; Fig.  2.3 ). This result indicates the

significant weight of nonsensory factors, not only for FM and ITD detection measurements

but behavioral measures in general.

2.3.2 Raw electrophysiological TFS measures are strongly influenced by extra-
neous sources of variance

Two passive electrophysiological measurements were conducted to objectively evaluate

individual TFS coding. Because passive electrophysiological measures are likely to be in-

fluenced by distinct extraneous factors (e.g., head size) compared with behavioral measures

(e.g., motivation/engagement), these measurements provide a complementary window into

individual TFS coding.

CANDIDATE CORTICAL CORRELATES OF TFS PROCESSING. Cortical responses

evoked by the polarity shift of the ITD are quantified through the phase-locking strength

shown in the phase-locking spectrograms (Fig.  2.1 C). Clear responses to the onset, offset, and

ITD jump are apparent in the low-frequency portion of the phase-locking spectrogram. The

sustained ASSR is also clear around 40.8�Hz. The average response from 42 TH listeners

shows monotonically increasing phase-locking strength of the ITD-evoked response across

the ITD magnitudes (Fig.  2.1 D), confirming that the response is indeed sensitive to TFS

processing and the size of the ITD jump. Perhaps more important for the search of candidate

TFS processing assays, large individual differences are apparent in the phase-locking strength

across subjects (Fig.  2.4 ). Most subjects did not show a salient response for the 20-µs

condition, and only about half showed robust responses for the 60-µs condition. Focusing

therefore on the 180- and 540-µs conditions, the 180-µs condition is still part of the increasing
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slope of the response-versus-ITD-jump-size trend, but the response amplitude may have

saturated for the 540 µs. Accordingly, we used each individual’s response for the 180-µs

condition for comparison to behavior. Note that the ITD being referred to here is the size

of the jump; for instance, for the 20-µs condition, the stimulus started with an ITD of 10 µs

with one ear leading and jumped to the other side about halfway through the stimulus to

end with a 10-µs ITD with the other ear leading.

Unfortunately, one striking aspect of the result in Figure  2.4 is that even at 540 µs, the

individual differences that were present in the lower ITD conditions persist. The ITD jump is

obviously perceptible at 540 µs, and the EEG response appears to be near saturation level for

most individuals; this suggests that a significant portion of the individual differences in the

magnitude of the cortical response arises from factors extraneous to TFS-based processing.

Extraneous factors that may contribute include anatomic factors such as head size, and

the geometry/orientation of the neural sources relative to the scalp sensors (Bharadwaj

et al.,  2019 ). Thus, although the cortical response to ITD jumps is indeed elicited and

parametrically modulated by TFS-based processing, raw response amplitude metrics may be

unsuitable for use as an individualized assay of TFS coding.

2.3.3 Candidate subcortical correlates of TFS processing

Figure  2.5 shows an example FFR recording from a single individual in response to the

stimulus sequence with a probe tone, a forward masker, and a second probe tone. The

top row (green traces) shows the differential response across two stimulus polarities. This

response to the probe tone (labeled “d1” in Fig.  2.5 ) tracks the 500-Hz TFS in the stimulus,

but contains both preneural (e.g., CM) and neural components. Because forward masking is

thought to arise from synaptic processing (Verschooten & Joris,  2014 ), the forward masker

would be expected to only suppress the neural (i.e., postsynaptic) component of the response

to the second probe tone, leaving the preneural component intact (labeled “d2” in Fig.  2.5 ).

Thus, subtracting d2 from d1 should leave a purely neural response phase-locked to the TFS.

The bottom row in Figure  2.5 , blue traces, shows the summed response across two po-

larities. Because of inner hair-cell rectification, this response contains a 1000-Hz component
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arising from the stimulus TFS (also see Materials and Methods). This 1000-Hz component

in response to the probe (labeled “s1” in Fig.  2.5 ) has previously been interpreted as a neural

response (Parthasarathy et al.,  2020 ). If that were indeed the case, the forward-masker would

considerably suppress the 1000-Hz component in response to the second probe (labeled “s2”

in Fig.  2.5 ).

Figure  2.6 shows the average d1 (Fig.  2.6 A), d1–d2 (Fig.  2.6 B), s1 (Fig.  2.6 C), and

s1-s2 (Fig.  2.6 D) response obtained across subjects, quantified in the frequency domain. It

is evident from the reduced size of the (d1–d2) response compared with the d1 response,

and the reduced size of the (s1–s2) response compared with the s1 response that, forward

masker only has a partially suppressing effect. This provides evidence that both candidate

TFS measures, the 500-Hz component from the difference across stimulus polarities, and

the 1000-Hz component from the sum across stimulus polarities, have significant preneural

contributions. This is in contrast to the previous interpretation that the component at

double the tone frequency is purely neural (Parthasarathy et al.,  2020 ).

These results indicate that a forward-masking paradigm will need to be employed to

extract the purely neural “residual” response. Unfortunately, unlike transtympanic record-

ings that are difficult to perform (Verschooten et al.,  2015 ), this residual is small and not

readily measurable from all individual subjects. Thus, while subcortical envelope-following

responses (EFRs) provide a robustly measurable correlate of envelope processing (Bharadwaj

et al.,  2015 ), tracking the TFS via FFRs are not promising, and not readily measured across

all individuals despite our cohort being comprised of TH listeners.

2.3.4 “Adjusted” behavioral and cortical measures are strongly correlated, likely
reflecting TFS coding

Based on individual differences in the cortical amplitude measure persisting for the

large-ITD-jump (540 µs) condition, we concluded that the amplitude measure of cortical

phase-locking was dominated by extraneous variance, likely from anatomic factors. Thus,

we focused our attention on the latency of the ITD-jump response, because the latency is

expected to be unaffected by the scaling effects of individual anatomy. In particular, we

extracted the latency of the cortical response to the 180-µs jump condition to avoid floor
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and ceiling effects. The latency was the mean of N1 and P2 latency (the latency is the time

difference between the red dashed line and either N1 or P2 peak in Fig.  2.1 B). The use of

the latency metric was also motivated by the previous successful use of this EEG-latency

measure to predict individual behavioral measures of spatial release from masking (Papesh

et al.,  2017 ). In addition to this latency metric, the slope of the cortical-response ampli-

tude with increasing ITD-jump (i.e., the increase from the 60-µs condition to the 180-µs

condition, divided by the 540-µs condition, in the ITC plot of Fig.  2.4 ) was extracted as a

normalized measure of TFS processing that would mitigate the overall scaling influence of

anatomic factors. This normalization was also motivated by the previous successful use of

a similarly normalized electrophysiological measure in the context of modulation processing

(Bharadwaj et al.,  2015 ).

Both of these “adjusted” cortical measures exhibited significant correlations with behav-

iorally measured ITD thresholds. Specifically, individual differences in latency of the cortical

ITD-jump response (for 180 µs) correlated with individual differences in the ITD detection

thresholds (R�=�0.35, p�=�0.048, n�=�32). The correlation improved when the behavioral

scores were also adjusted to factor out the nonsensory score (R�=�0.45, p�=�0.01, n�=�32).

The slope metric from the cortical EEG response also correlated with ITD thresholds both

with and without adjustments to the behavioral scores (R�=�0.43, p�=�0.021, n�=�32, orig-

inal ITD scores; R�=�0.42, p�=�0.028, with nonsensory score factored out). There were no

significant brain-behavior correlations with “unadjusted” or “raw” metrics, such as the ITC

amplitude of the ITD-evoked response, even after normalization by the ITC amplitude of

the onset response.

With the subcortical measures, because results indicated a significant preneural contri-

bution for both candidate TFS measures, and the residual neural component extracted from

the forward-masking paradigm was not robustly measurable for many participants, we did

not explore FFR-behavior associations in detail. A simple correlational analysis between the

residual (d1–d2) 500-Hz response and ITD thresholds suggested that the correlations were

not statistically distinguishable from zero (data not shown).

A multiple linear regression model was used to predict ITD detection thresholds using

both the nonsensory score, the EEG latency, as well as the EEG normalized slope met-
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ric (both from cortical ITD-jump response). The model could predict the behavioral ITD

threshold well (Fig.  2.7 ) with the predictors together accounting for more than half of the

variance observed in the behavioral thresholds (Table  2.1 ). We interpreted this result as

suggesting that both “adjusted” behavioral scores, and electrophysiological latency or slope

metrics in response to TFS-based binaural processing are promising candidate assays of TFS

processing that may be suitable for use at the individual level.

Table 2.1. Model prediction of the behavioral ITD detection thresholds, with
factors including the nonsensory score, EEG latency, and EEG slope. The
variations accounted for by the nonsensory score are more than three times as
by either one of the two EEG metrics. Together, more than half the variance
can be explained.

Predictor Variance Explained

Non-sensory score 37.48%
EEG latency 10.03%
EEG slope 9.28%

Explained 56.79%
Unexplained 43.21%

2.4 Discussion

In the present study, we sought to identify viable assays that can index the fidelity of

TFS processing at the individual subject level. To obtain insight into whether individual

differences in various candidate measures reflected TFS-based processing or extraneous fac-

tors, we compared individual differences in behavioral scores across FM and ITD detection

tasks to differences in cortical and subcortical EEG-based measures. Results revealed the

strong influence of extraneous factors on both behavioral scores and amplitude-based EEG

metrics.

With behavioral measures, nonsensory factors quantified using the lapse rate in catch

trials, could account for a third of the variance across individuals. Although previous work

has explored a range of behavioral TFS measures (Hopkins & Moore,  2010 ; Moore & Sek,

 2009 ; Sęk & Moore,  2012 ), the results from the present study underscore the importance of
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adjusting raw behavioral scores to reduce the impact of nonsensory factors. Indeed, although

raw FM and ITD measures correlated significantly with each other, similar to the correlation

between monaural AM detection and binaural envelope-ITD thresholds (Bharadwaj et al.,

 2015 ), this was driven in part by nonsensory factors. Because phase-locking to the TFS

is essential for low-frequency ITD processing (Yin & Chan,  1990 ), it is plausible that ITD

detection thresholds can provide an index of TFS sensitivity. On the other hand, whether

FM detection relies on TFS coding has been controversial because of the possible role of

recovered ENV cues that result from cochlear filtering of FM stimuli; indeed, FM stimuli

lead to perceptible out-of-phase ENV fluctuations at cochlear places tuned to frequencies

just above and below the FM carrier (Whiteford et al.,  2017 ; Whiteford & Oxenham,  2015 ).

Whiteford et al.,  2020 extensively tested the role of place coding in FM detection and found

that place coding by itself can account for the observed variations in FM sensitivity across all

carrier frequencies and modulation rates. This finding is in contrast to the widely accepted

view of the utilization of time coding in the detection of slow-rate FM (Moore & Sek,  1996 ;

Parthasarathy et al.,  2020 ; Strelcyk & Dau,  2009 ). Together with our finding that nonsensory

factors influence raw behavioral scores, this uncertainty about the link between TFS coding

and FM detection calls into question the previous use of FM detection scores as a correlate

of TFS processing. In contrast, unambiguous theoretical links can be made between ITD

detection and TFS coding, suggesting that once ITD thresholds are adjusted to reduce the

influence of nonsensory scores, they may serve as a useful metric of TFS processing. This was

corroborated by our finding that passive EEG measures, when combined with nonsensory

scores, can account for more than half of the variance in ITD thresholds. Here, we used lapse

rates in the catch trials to obtain a correlate of nonsensory factors. Alternately, a surrogate

behavioral task that does not rely on TFS coding (e.g., interaural level difference sensitivity)

may also be used to adjust ITD thresholds with similar benefits.

Another key finding from the present study is that although passive EEG measurements

can potentially reflect TFS-based processing objectively, they too are susceptible to the

influence of extraneous factors. Indeed, consistent with the interpretation that individual

anatomic factors can have a scaling influence on response amplitudes, we found that cortical

responses phase-locked to ITD changes showed large individual differences even for a large
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ITD jump (540 µs) where the response amplitude was near saturation for most individu-

als. Therefore, we argued that the evoked-response latency and/or percent growth/slope

metrics may be better assays of TFS processing. Accordingly, latency and slope metrics

showed significant correlations with behavioral ITD detection thresholds. For candidate

subcortical FFR-based measures of TFS processing, our results showed that preneural phys-

iological currents (CM, inner hair-cell currents) contribute significantly to the measure, thus

complicating their applicability. Indeed, brainstem response measures from individuals with

compromised inner hair-cell synaptic transmission show that preneural transduction currents

can contribute to the measured response (Santarelli et al.,  2009 ). Moreover, when employing

a forward-masking-based design to isolate the neural component of the FFR, the resulting

signal is relatively weak even in our TH cohort. This result from non-invasive ear-canal

recordings is in contrast to neurophonic measurements from the auditory nerve (Snyder &

Schreiner,  1985 ) or round window (Henry,  1995 ) from animals, or FFR measurements from

humans using transtympanic electrodes where the forward-masking design has been used

successfully (Verschooten et al.,  2018 ). Although FFRs have previously been used as a puta-

tive correlate of TFS-based processing (Parthasarathy et al.,  2020 ), our results suggest that

additional experiments are needed to clarify the interpretation of those results.

Our finding that the subcortical FFR may be a poor correlate of neural TFS process-

ing is in contrast to previous results suggesting that subcortical EFRs are correlated with

behavioral measures of ENV processing. For example, Bharadwaj et al.,  2015 showed that

the AM detection thresholds and ENV-based ITD thresholds correlated strongly with nor-

malized EFR-based metrics. This is likely both because EFR measurements more readily

exclude preneural contributions (which primarily track the TFS), and because Bharadwaj

et al.,  2015 obtained asymptotic behavioral scores from a large number of trials (1200–1500

trials) from trained subjects. Indeed, with naive subjects in this study, an AM detection

task similar to the one used in Bharadwaj et al.,  2015 also showed a strong influence of

nonsensory factors.

In summary, the present study examined various candidate assays for quantifying TFS

processing at the individual subject level. These included behavioral FM and ITD detection

thresholds, and EEG-based cortical and subcortical physiological measures. Among these,
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our experiments suggest that the latency of cortical responses to ITD jumps, normalized cor-

tical response amplitude (i.e., percent growth/slope), and “adjusted” ITD thresholds may

all be useful. Indeed, when a multiple linear regression model was constructed to predict be-

havioral ITD thresholds, the combination of the nonsensory score (lapse rate in catch trials),

EEG latency, and slope measures could account for >50% of the variance across individu-

als. Our results are consistent with the findings by Papesh et al.,  2017 , who also found a

correlation between ITD-evoked EEG latency and spatial-hearing outcomes such as spatial

release from masking. Given that multiple candidate measures were explored to identify the

most promising assays, future experiments should be conducted to independently confirm

the efficacy of the assays endorsed by our results. The most promising assays rely on bin-

aural TFS-based processing. Indeed, similarly to our results, steady-state cortical responses

that track continuous interaural phase modulations have also been found to correlate with

behavioral binaural sensitivity, further corroborating the potential utility of cortical binaural

measures as electrophysiological assays of TFS processing (Koerner et al.,  2020 ; Undurraga

et al.,  2016 ).

Reliable measures of TFS processing are critical for future investigations into the role of

TFS in everyday hearing using intact speech-in-noise stimuli without vocoding manipula-

tions. While sub-band vocoding can allow for independent manipulation of acoustic TFS and

envelope cues, subsequent cochlear processing can confound these factors once again (Gilbert

& Lorenzi,  2006 ; Swaminathan & Heinz,  2012 ). Furthermore, when both rate-place/ENV

cues and TFS cues are redundant, vocoding experiments cannot provide insight into how

they are perceptually weighted. The candidate TFS measures identified in the present study

can help address these gaps.
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Figure 2.1. Stimulus paradigm and
response from the EEG-TFS sensi-
tivity measurement. A, The stim-
ulus is a 1.5-s-long, 500-Hz pure
tone that is amplitude modulated at
40.8�Hz. The red color represents the
sound in the right ear, whereas the
blue stands for the sound in the left
ear. In the figure, the stimulus in
the right ear leads in time till 0.98
s (indicated by the red segment of
zoomed-out view of the stimulus), af-
ter which the ITD shifts in polarity,
i.e., the stimulus in the left ear takes
the lead. The ITD jump occurs when
the stimulus amplitude is zero to
minimize the involvement of monau-
ral cues (pointed out by the dashed
arrow). B, Averaged evoked response
potential (ERP) from all trials across
42 subjects in “ITD�=�540 µs” con-
dition from Cz electrode. The red
dashed line indicates where the ITD
switched polarity, which resulted in
N1 and P2 responses (denoted by
red dots). C, ITC spectrogram of
the EEG response, averaged across
42 subjects, with the colormap indi-
cating the ITC. Robust ASSRs can
be seen around the AM frequency
of 40.8�Hz. There are also salient
responses time locked to the stim-
ulus onset, offset, and importantly,
to the ITD jump. D, The average
time course of the ITC for frequen-
cies below 20�Hz is shown for each
ITD jump condition. The response
evoked by the shift in the ITD po-
larity increases monotonically with
the size of the ITD jump, confirming
that the response is parametrically
modulated by TFS-based processing.
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Figure 2.2. Measured vs. predicted thresholds based on lapse rate. [A]
Measured vs predicted ITD detection thresholds; [B] Measured vs predicted
FM detection thresholds. The significant contribution of non-sensory factors
is apparent, especially for the poorer performers.

Figure 2.3. Measured vs pre-
dicted AM thresholds based on
lapse rate. The thresholds are
the average detection thresholds
of AM tones at 4 kHz and 8 kHz.
The significant contribution of
non-sensory factors is apparent.
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Figure 2.4. Individual EEG ITC
(averaged under 20�Hz) values as a
function of the jump size of the
ITD. The ITC increases with the
ITD for almost all subjects. Ro-
bust responses above noise floor are
detected for most subjects for the
“ITD�=�180 µs” condition. Interest-
ingly, individual differences present
at 180 µs persist even at 540 µs de-
spite the ITD jump being obviously
perceptible and the response ampli-
tude appearing to saturate.

Figure 2.5. FFR to the probe-forward-masker-probe stimulus sequence for
an individual subject. The top row (green trace) represents the differential
response across two stimulus polarities, whereas the bottom row (blue trace)
represents the summed response across two stimulus polarities. The first boxed
segments in both rows (red, dashed box, labeled d1 or s1) reflect the raw
response to the probe tone, which is likely a mixture of neural and preneural
responses (e.g., CM), whereas the second boxed segments in both rows (red,
dashed box, labeled d2 or s2) is the adapted response after forward masking.
For d2 and s2, the preneural (e.g., CM) component is expected to be intact,
whereas the neural response is attenuated by forward masking (because of
the very short 1-ms gap). The forward masker only partially suppresses the
responses, suggesting a strong preneural contribution to d1 and s1. The weaker
residuals obtained by subtraction, i.e., (d1 – d2) and (s1 – s2) are likely purely
neural.
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Figure 2.6. Frequency-domain representations of the d1 (A), d1–d2 (B), s1
(C), and s1–s2 (D) segments from Figure  2.5 , but averaged across subjects.
Forward masking partially attenuates both the 500-Hz component of d1 re-
sponse, and the 1000-Hz component of the s1 response, suggesting that both
responses reflect a mix of preneural and neural sources.

Figure 2.7. Model prediction of the ITD detection thresholds, based on
the combination of lapse rate and slope (60- to 180-µs condition; A), or the
combination of lapse rate and EEG latency (B). Please refer to Table  2.1 for
the variance explained by each factor.
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Figure 2.8. A sample of published reports of FM detection thresholds for
comparison (Buss et al.,  2004 ; Grose & Mamo,  2012 ; Harris,  1952 ; He et al.,
 1998 ; Lelo de Larrea-Mancera et al.,  2020 ; Moore & Sek,  1996 ; Parthasarathy
et al.,  2020 ; Ruggles et al.,  2011 ; Shower & Biddulph,  1931 ; Strelcyk & Dau,
 2009 ; Whiteford et al.,  2017 ; Whiteford & Oxenham,  2015 ). Error bar is 1
SD. The size of the dot represents the number of subjects (Whiteford and
Oxenham,  2015 has the most subjects; N�=�100). Stimulus parameters such
as stimulus level, carrier frequency, and modulation frequency in the cited
studies are similar to those used in the current study, with slight differences
(Ruggles et al.,  2011 ; Strelcyk and Dau,  2009 used carrier at 750�Hz). Some
threshold values are approximate from figures [e.g., mean and SD had to be
estimated based on median and range in the box whisker plots in Whiteford
et al.,  2017 ; Whiteford and Oxenham,  2015 ]. The mean and SD from the
young and middle-aged group from Grose and Mamo,  2012 were combined to
generate a single data point. Some authors expressed the threshold in terms
of ΔF/Fc, where ΔF is frequency deviation, and Fc is the carrier frequency.
Moore and Sek,  1996 used ΔF that was in two directions, i.e., peak-peak. Sub-
jects from some studies were highly experienced in psychoacoustic tasks hence
the thresholds were very low/good. Whiteford et al.,  2017 ; Whiteford and Ox-
enham,  2015 obtained thresholds that fall in the lower end of the results of the
current study from a very large number of subjects. This may be because their
subjects were younger TH listeners and the stimuli were presented diotically
and dichotically instead of monaurally.
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Figure 2.9. A sample of published reports of ITD detection thresholds
for comparison (L. R. Bernstein & Trahiotis,  2002 ; Brughera et al.,  2013 ;
Dye,  1990 ; Grose & Mamo,  2010 ; Henning,  1983 ; Hershkowitz & Durlach,
 1969 ; Hopkins & Moore,  2010 ; Klumpp & Eady,  1956 ; Strelcyk & Dau,  2009 ;
Zwicker,  1956 ). Error bar is 1 SD. The size of the dot represents the num-
ber of subjects (the current study has the most subjects; N�=�36). Stimulus
parameters such as level and carrier frequency in the cited studies are sim-
ilar to those used in the current study, with slight differences [Strelcyk and
Dau,  2009 used carrier at 750�Hz]. Note that some threshold values were ex-
tracted approximately from figures rather than direct numerical reports. Some
of the studies used stimuli with the leading ear switching from one side to the
other (labeled “dynamic,” marked in green color), whereas others presented an
ITD only in the target intervals, with the reference being the midline (labeled
“static,” marked in blue color). Note that the values from Hershkowitz and
Durlach,  1969 and Brughera et al.,  2013 were halved since the authors used
ITD/2 in each interval. The mean and SD from young and middle-aged cohort
from Grose and Mamo,  2010 were combined to generate a single data point.
Subjects from some studies were highly experienced in psychoacoustic tasks.
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3. BETTER TEMPORAL FINE STRUCTURE PROCESSING

REDUCES LISTENING EFFORT AND IMPACTS FROM

REVERBERATIONS IN HUMANS

3.1 Introduction

Everyday human communication relies heavily on the auditory system’s capacity to pro-

cess complex sounds, such as speech, in the presence of interfering background noise. How-

ever, regardless of the complexity, all sounds that we hear can be decomposed into only two

elements: the rapid variations in phase—temporal fine structure (TFS) and slower variations

in amplitude superimposed on TFS—temporal envelope (Hilbert,  1906 ). The auditory sys-

tem can robustly phase-lock to both TFS (Johnson,  1980 ) and envelope (Joris & Yin,  1992 ),

with TFS phase-locking extending at least up to 1000 Hz (Verschooten et al.,  2019 ). This

fast phase-locking activity is unmatched by other sensory systems. For instance, only a se-

lective population of mechanoreceptive neurons (e.g., rapidly adapting afferent—RA) in the

somatosensory system can phase-lock to mechanical vibrations, and the phase-locking fre-

quency limit is only around 50 Hz (Ahissar & Vaadia,  1990 ; Romo & Salinas,  1999 ; Shadlen

& Newsome,  1994 ; Singer & Gray,  1995 ; Talbot et al.,  1968 ). In addition, Ochoa and Toreb-

jörk,  1983 showed that the ultimate perception of flutter sensation does not even depend on

this phase-locked temporal information. Rather, it is the RA firing rate that delivers the sen-

sory information. Similarly, despite exceptionally fast phase-locked activity in the auditory

system (i.e., TFS coding), the upper-frequency limit progressively decreases along ascending

auditory pathway, and the phase-locked temporal code gradually transitions into the rate

code (Joris et al.,  2004 ). How this metabolically consuming initial/peripheral phase-locked

temporal code (Hasenstaub et al.,  2010 ; Laughlin et al.,  1998 ) contributes to the perception,

and how its degradation is attributable to perceptual deficits is a fundamental question not

only in the auditory-system research and clinical audiology but also among overall neuro-

science community studying other sensory systems. Yet, the significance of phase-locking

(in particular, TFS coding in the auditory system) is debated (Drullman,  1995 ; Oxenham,

 2013 ; Oxenham & Simonson,  2009 ; Swaminathan & Heinz,  2012 ).
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Studies suggest that TFS plays a role in sound localization (Smith et al.,  2002 ; Yin &

Chan,  1990 ) and pitch perception (J. G. Bernstein & Oxenham,  2003 ; Houtsma & Smurzyn-

ski,  1990 ; Moore,  1973 ) in quiet settings. Both spatial (F. J. Gallun et al.,  2015 ; F. J. Gallun

et al.,  2013 ; Ihlefeld & Shinn-Cunningham,  2008 ; Jakien Kasey M. & Gallun Frederick J.,

 2018 ; Jakien Kasey M. et al.,  2017 ; Srinivasan et al.,  2016 ) and pitch cues (Bird & Darwin,

 1997 ; Brokx & Nooteboom,  1982 ; Summers Van & Leek Marjorie R.,  1998 ) could ease hear-

ing in the presence of noise maskers, providing a release from masking (or masking release)

of about 5 dB. Despite the implication of the relationship between TFS and masking release

based on either pitch or spatial cues, the perceptual role of TFS in speech-in-noise hearing

is still further debated. It is because the other component of sounds—the temporal enve-

lope—could provide a similar amount of masking release through either pitch or spatial cues

(Best et al.,  2005 ; Oxenham & Simonson,  2009 ). Furthermore, low-frequency TFS-based

spatial cues may be more susceptible to corruption by reverberation than high-frequency

envelope-based spatial cues (Ihlefeld & Shinn-Cunningham,  2011 ). Indeed, reverberation, as

one of the two primary sources of distortions of signals during transmission (the other being

amplitude fluctuations), is lowest in the range of 2-8 kHz but increases substantially in the

low-frequency region (Richards & Wiley,  1980 ), where phasing-locking of TFS is the most

prominent. Therefore, in the presence of many other distortions and redundant cues, whether

the phase-locked temporal coding of TFS would introduce additional masking-release bene-

fits beyond those delivered by rate-code-based envelope information is still unclear.

Studies have investigated the role of TFS by acoustically isolating TFS and envelope

from each other and independently manipulating the content of TFS, through a signal-

processing technique called vocoding (Ardoint & Lorenzi,  2010 ; Hopkins & Moore,  2009 ;

Hopkins et al.,  2008 ; Lorenzi et al.,  2009 ; Smith et al.,  2002 ). However, establishing the

precise role of TFS through vocoding is confounded by partial conversion of TFS to envelope

due to cochlear processing (Oxenham,  2013 ; Swaminathan & Heinz,  2012 ). Recovery of the

mixture of TFS and envelope renders the vocoding strategy ineffective for studying the role

of TFS through isolation, which is why the perceptual roles of TFS and envelope coding

in everyday hearing are still an ongoing debate. An alternative approach is to directly

measure individual differences in TFS sensitivity and compare them to individual differences
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in speech-in-noise sensitivity. Many studies, such as Bharadwaj et al.,  2015 ; McDermott

et al.,  2010 ; Whiteford et al.,  2020 , have successfully used this approach to address other

fundamental questions. Unfortunately, this approach has not been used to investigate the role

of TFS because there have not been established measures of TFS sensitivity at the individual

level until our very recent study (Borjigin et al.,  2021 ). In that study, we established a set

of TFS-sensitivity measures at the individual level, through a comprehensive assessment of

both behavioral and electrophysiological measurements. Here, we adopted the behavioral

elements of those measures and modified them accordingly for an online data-collection

platform that we custom-designed to circumnavigate the COVID-19-related restrictions on

in-person measurements (Mok et al.,  2020 ). In addition to TFS-sensitivity measurements,

we also assessed the participants’ speech-in-noise sensitivity under various types of noise

interference. The association between the individual differences in TFS and speech-in-noise

sensitivity suggests that better TFS processing does not benefit the listeners with more

masking release, but reduces the impacts from reverberation and leads to less reaction time

during the task suggesting lessened cognitive load or listening effort associated with speech

hearing in adverse listening environments.

3.2 Materials and Methods

The primary goal of this study was to uncover the perceptual role of temporal fine

structure (TFS) processing in everyday hearing, particularly speech-in-noise listening, by

evaluating both TFS and speech-in-noise sensitivity at the individual level from a large co-

hort of typical-hearing, naïve participants. To circumnavigate COVID-19 related restrictions

on in-person measurements, all data for this study battery, including TFS-sensitivity mea-

surements, a reference measurement—interaural level difference (ILD), and speech-in-noise

measurements, were collected on the remote-testing platform that was developed previously

in our lab (Mok et al.,  2020 )— snaplabonline .
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3.2.1 Participants

Two hundred participants, aged 19–54 years (mean = 30, std = 8, 102 males), were

recruited from an online subject-recruitment platform—Prolific.co. 87% of the participants

self-reported their first language as English. All participants self-reported having no hearing

loss, neurological disorders, or persistent tinnitus, and they passed a headphone check and

speech-in-noise hearing screening. The participants consented to participate in the study

following Institutional Review Board (IRB) protocols at Purdue University and were com-

pensated for their time. All participants completed the full study battery.

3.2.2 Experimental Design and Statistical Analyses

Screening Measurements

All measurements in this study including the screening measurements are listed in Ta-

ble  3.1 . Unlike in a research sound booth, with web-based testing, subjects used their

personal computers and completed the tasks in the environments of their choice. One of the

challenges of an online study for auditory research is the limited control over the participant’s

acoustic setup, such as the participant’s headphones and listening environments. As an in-

vestigation of lower-level aspects of auditory processing (i.e., TFS processing), our study is

especially sensitive to those testing parameters. So, we implemented a couple of measure-

ments to ensure that the participants were using two channels, which is crucial since TFS,

the interaural level difference (ILD), as well as speech-in-noise hearing tasks with spatial

information require two-ear listening. Furthermore, given that hearing loss is a highly pre-

vailing health condition (1 in 8 people aged 12 and older have hearing loss in both ears) (Lin

et al.,  2011 ), we also conducted a speech-in-noise test as a hearing screening to ensure that

the participants were of typical hearing. For all screening measurements, as well as the

measurements from the formal test battery that followed, the participants were instructed

to adjust the loudness of the stimulus to a comfortable level before the experiments.

HEADPHONE-CHECK MEASUREMENTS. Two measurements were taken to ensure

the appropriate use of headphones. 1) Listeners were asked to identify the softest of three
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low-frequency tones. The target was 6 dB softer than the two control (foil) tones. One of the

control tones had a phase difference of pi between the two ears. This difference would induce

an intensity reduction via acoustic cancellation if the stimulus was played by two speakers in

the free-field. Therefore, without headphones, the listener would hear two soft tones instead

of only one: one being the target and the other being the control tone with the pi-phase

difference. Therefore, the task becomes much more difficult without wearing headphones

hence more errors in the response. This measure is based on the methodology used by

Woods et al.,  2017 . However, false positives could happen if the participants’ computer only

had one speaker (channel), where acoustic cancellation would not be possible through the

free field. This method could not detect if participants’ headphones have one or two channels

either. So, the second test was carried out to ensure the use of the two-channel headphones.

Subjects were asked to discriminate the direction (rising/falling/flat) of a low-frequency chirp

(150-400 Hz) that was embedded in a background noise, configured in an N0Sπ setting. N

here represents noise; S represents target signal; N0Sπ means the noise was identical in two

ears, while the target signal’s polarity was flipped in one ear, which introduces the so-called

binaural masking level difference (BMLD) (Licklider,  1948 ). We chose the signal-to-noise

ratio (SNR) such that the chirp would be difficult to detect with only one channel without

the BMLD benefits through two channels. Therefore, the participants would make a lot

more errors in their response if they were not wearing 2-channel or stereo headphones.

Table 3.1. All measurements conducted in this study. ITD: interaural time
difference. ILD: interaural level difference. FM: frequency modulation.

Screening TFS Sensitivity Speech Intelligibility reference
Headphone check ITD detection Speech in 4-talker masker ILD detection

Speech-in-noise
hearing screening

Binaural FM detec-
tion

Speech in steady-noise
masker
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TFS Sensitivity Measurements

We previously established that a combination of binaural behavioral and electrophys-

iological (EEG) measurements of interaural time difference (ITD) sensitivity could more

reliably reflect individual differences in TFS processing fidelity than monaural behavioral

measurement of frequency-modulation (FM) detection and diotic (i.e., identical in two ears,

no binaural cues) EEG measurement of frequency-following-response (Borjigin et al.,  2021 ).

Therefore, in this study, we adopted the behavioral component—the ITD detection—and

added a binaural version of the FM detection. The EEG components were not included

due to the restrictions from remote-testing. Importantly, our previous study also pointed

out that those binaural metrics were effective only if the “non-sensory” factors that are ir-

relevant to TFS processing, such as attention and motivation, were controlled for (Borjigin

et al.,  2021 ). The “non-sensory” factors were quantified by using percent errors in catch

trials that were embedded in the same measurements. In this study, we took a step further

and implemented a stand-alone measurement—interaural level difference (ILD) detection.

Similar to the two binaural temporal metrics used for quantifying individual differences in

TFS sensitivity, ILD is also binaural but dependent on level instead of temporal coding of

TFS processing. On one hand, having ILD detection as a surrogate measure helped control

for individual variability in high-level capability to perform a behavioral task. On the other

hand, it also further augmented the extrication of TFS processing from extraneous factors,

by stripping away any individual variability that may have existed in the low-level brain-

stem circuitry for non-TFS binaural processing. This ensured that the individual differences

we observed mostly reflected TFS processing, rather than the overall sensitivity of binaural

hearing. These measurements (ITD, binaural FM, and ILD) are detailed below.

INTERAURAL TIME DIFFERENCE (ITD) DETECTION. The stimulus consisted of

two consecutive 400-ms-long, 500-Hz tone bursts. Each tone burst was delivered to both

ears, but with a certain time delay in one ear (i.e., ITD). This led to the perception of the

sound coming from a lateralized position, from the same side as the ear receiving the stimulus

without a time delay (i.e., leading ear). The leading ear for the ITD was switched from the

first to the second tone burst, which led to a perception of the tone burst “jumping” from
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one side to the other. ITDs in octave steps from 2 to 128 us (8 repetitions for each step)

were presented in random order. The tone bursts were ramped on and off with a rise and

fall time of 20 ms to exclude audible transitions and to reduce reliance on onset ITDs. The

gap between the two tone bursts was 200 ms. Some studies have shown that stimulus level

could influence ITD detection performance (Hopkins & Moore,  2010 ; Strelcyk & Dau,  2009 ).

Zwislocki and Feldman,  1956 measured the effect of sensation level on lateralization and

found that the performance was worse for very low and very high sensation levels, whereas

the performance was stable between 30 and 90 dB. As mentioned above, the participants

were instructed to adjust the loudness level to a comfortable level to ensure that their

performance was stable. We measured the subject’s sensitivity to the “jumping” perception,

instead of static lateralized location, because absolute lateralization could be complicated by

the following two factors. First, sounds with a large ITD could sometimes be heard either

from the left or from the right. Second, individuals with asymmetric hearing may perceive

the sound with a static ITD coming from the better ear, regardless of the magnitude and

direction of ITD (Hopkins & Moore,  2010 ). The measurement was conducted in a two-

alternatives forced-choice setting, where subjects were asked to report the direction of the

“jump” (left-to-right or right-to-left) between the intervals using a button press. A separate

“demo” block was included before the experimental blocks to familiarize the subject with the

task. The detection thresholds were determined by a Bayesian approach (Kuss et al.,  2005 ),

using the toolbox developed by Schütt et al.,  2016 . All other measurements in this study,

including TFS-sensitivity, ILD sensitivity, and speech-in-noise tests (Table  3.1 ), adopted the

same method for estimating the detection thresholds.

BINAURAL FREQUENCY MODULATION (FM) DETECTION. Borjigin et al.,  2021 

suggested that monaural FM measurement mostly reflected “non-sensory” factors instead of

TFS sensitivity. Since the binaural ITD measurement was proven to be better for capturing

TFS sensitivity and there is an unambiguous theoretical link between binaural temporal

hearing and TFS processing (Yin & Chan,  1990 ), monaural FM detection measurement was

replaced by binaural FM detection measurement as an additional metric for TFS-sensitivity

assessment. The stimulus consisted of a target and control. They were turned on and off

with a rise and fall time of 5 ms to exclude audible transitions, with an inter-stimulus gap
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of 900 ms. The control was a 500-ms, 500-Hz pure tone. The target was the same, except

that it had a 2-Hz frequency modulation. The direction of the modulation was set to be

opposite in two ears to introduce binaural cues. A low FM rate (under 10 Hz) was chosen for

TFS-sensitivity assessment because FM detection at fast modulation rates primarily reflects

an FM-to-AM (envelope) conversion mechanism (Moore & Sek,  1996 ). FMs of magnitudes

in octave steps from 0.1 to 3.2 Hz (8 repetitions for each step) were presented in random

order. In a two-alternatives forced-choice setting, the subject clicked on the option that

indicated the target interval with frequency modulations. No training was provided except

for the “demo” block to orient the participants before the formal testing.

INTERAURAL LEVEL DIFFERENCE (ILD) DETECTION. The ILD detection thresh-

olds were measured as a baseline reference to quantify the involvement of extraneous “non-

sensory” factors, such as lapses in attention and variations in motivation. The stimulus was

consecutive two pure-tone bursts, with their frequency set at 4 kHz to make sure it was

beyond the frequency limit of TFS processing (Verschooten et al.,  2019 ). Similar to the

measurement of ITD detection, one tone was lateralized on one side, and the other on the

opposite side. The perception of lateralization was induced by a difference in the stimulus

levels (i.e. ILD) in two ears. Within each trial, the participant perceived the tone burst

“jumping” from one side to the other. ILDs in octave steps from 0.1 to 3.2 dB (8 repetitions

for each step) were presented in random order. The subjects clicked on the option indicating

the direction of the jump in a 2AFC setting. For both ITD and ILD, the spatial cues were

delivered via the participant’s headphones, which was acceptable as previous studies suggest

that the perception of sound localization through the ear or headphones was nearly as good

as that in free-field experiments (Wightman & Kistler,  1989 ).

Speech-in-noise Sensitivity Measurements

Each trial was a mixture of a target word and a masker. The masker was either a babble

mixture of 4 speakers or steady-state noise. The target word was prompted with instructions

in the same voice, saying: “Please select the word…”. The masker began only slightly before

the onset of the target word so that the listener had a chance to orient themselves about
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the target based on the unmasked prompt. A single word instead of a full sentence was

chosen as the target to minimize the involvement of confounding factors such as individual

differences in auditory working memory. Studies have shown that children as young as 18

months tended to achieve the same speech reception thresholds (SRT) as adults when a

single word was used for a speech-in-noise intelligibility task (Litovsky,  2005 ; Murphy et al.,

 2011 ; Yuen Kevin C. P. & Yuan Meng,  2014 ). However, the detection of a full sentence takes

years to develop: “fast-learning” children could achieve an adult level at around 8 years of

age (Cameron & Dillon,  2007 ) but in other cases, not until 12 years of age (Vaillancourt

et al.,  2008 ; Werner,  2017 ).

Participants were tested with 10 different target-masker configurations, as shown in Ta-

ble  3.2 . Half of them contained 4 speech-babble-masker and 1 non-speech-masker conditions.

4 speech-babble-masker conditions include conditions with pitch cues, spatial cues, both pitch

and spatial cues, and no cues at all (i.e., control condition). The non-speech masker condition

had a steady noise as the masker without any cues. The other half had the same 5 conditions

but with an addition of room reverberation. Reverberation was added to investigate the role

of TFS processing in reverberation because the presence of reverberation generally degrades

hearing performance (Ihlefeld & Shinn-Cunningham,  2011 ). The presentation order of these

10 different test conditions was randomized across trials to reduce the formation of expecta-

tions, which could improve the subject’s performance (Russo & Pichora-Fuller,  2008 ). More

details regarding the configurations of pitch and spatial cues, reverberation, and the creation

of steady-noise masker are as follows.

Table 3.2. List of conditions for speech-in-noise tasks.

Babble Noise Steady Noise
Reverberant Control: no cues Pitch Space Pitch+Space No Cues

Non-reverberant Control: no cues Pitch Space Pitch+Space No Cues

PITCH CUES. To make sure that the pitch difference between the target and masker

remains constant across trials, audio recordings were first processed to remove the natural

pitch fluctuations or intonation, and then the flattened pitch contour of the target and masker
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was moved to a fixed frequency, as shown in Figure  3.1 . More specifically, the pitch of the

male target was fixed at 95 Hz, and the pitch of the female target was at 245 Hz; among

the 4-talker babble background, the male masker’s pitch was set at 85, 90, 100, and 105 Hz,

respectively, and the female masker’s pitch was set at 235, 240, 250, and 255 Hz, respectively.

Note that the target and masker of the same sex were at similar pitch values but with a

small difference to ensure that the participant could distinguish the target from the masker.

The pitch was flattened for all other configurations (i.e., control, space, pitch+space, and

non-speech noise masker) as well to maintain consistency throughout the study.

Figure 3.1. The
spectrogram of a sen-
tence: “The birch ca-
noe slid on the smooth
planks.” The or-
ange curve is the pitch
contour with natural
fluctuations; flattened
pitch contour is shown
in green; the flattened
pitch contour that was
moved to 255 Hz is
shown in purple.

Spatial Cues. Spatial cues help listeners better localize and hence more easily identify

the target of interest in poor listening conditions (Fay,  2005 ). To simulate the perception of

spatial separation, the polarity of the target signal in one ear was flipped while the masker

signal was kept the same in both ears. This configuration is usually denoted as N0Sπ.

The conditions without any spatial cues are referred to as N0S0. A lower speech reception

threshold (better performance) is typically observed in the N0Sπ condition. The difference in

speech reception thresholds between the N0Sπ and N0S0 conditions is commonly referred to

as binaural masking level difference (BMLD, i.e., spatial masking release) (Levitt & Rabiner,

 1967 ). Studies have shown that a difference in the spatial location, as well as the pitch of

the target and masker, would result in the benefit of a masking release of around 5 dB (Best

et al.,  2005 ; Oxenham & Simonson,  2009 ). Note that masking release is quantified as the
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threshold difference between the conditions with cues (i.e., hence easier) and the control

condition without any cues.

STEADY-NOISE MASKER AND REVERBERATION. A steady noise masker was used

as a reference for the energetic masking, in contrast to the informational masking from a

speech-babble masker. To minimize the intrinsic modulations, which is a source of informa-

tional masking that is inherent in noise (Culling & Stone,  2017 ; Hartmann & Pumplin,  1988 ;

Kohlrausch et al.,  1997 ), a previous method from (Stone & Moore,  2014 ) was used to create

the steady-noise masker. All original audios were recorded or generated in an idealistic ane-

choic chamber with no reverberation. To simulate reverberate conditions, the signals were

convoluted with an impulse response that was recorded in a bar.

Statistical Analyses

Due to the challenge to recruit anonymous online subjects back for multiple follow-up

sessions, a 3-hour, multiple-session, and in-person test battery was condensed into a single

1-hour online session, leading to fewer trials in each test. It is particularly true for speech-

in-noise measurements since it contained a total of 50 conditions (5 signal-to-noise ratios,

i.e., difficulty levels, for 10 different target-masker configurations). Consequently, only 4

trials were scheduled for each condition due to time constraints. They were not sufficient

to generate a psychometric curve for threshold estimates. Data from multiple participants

had to be converged and a statistical method—Jackknife resampling—was used to create

“more” trials for each participant. More specifically, within the same group, a subject’s data

were removed and replaced with the data that were merged from the rest of the subjects.

This process was repeated for all participants in the same group. Group-level mean and

variance were estimated by M and V/n, respectively, where M and V are the mean and

variance of the Jackknife thresholds, respectively, and n is the number of samples within

the group (Efron & Stein,  1981 ). Note that the measurements that were used to group the

participants (i.e., TFS or ILD measurements, see section  3.2.2 ) had a sufficient number of

trials for threshold estimates since all three measurements contained only 6 conditions as

opposed to 50 conditions in the speech-in-noise measurements. The difficulty in keeping
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the subjects over multiple sessions might be mostly due to the anonymous nature of the

online participants. In future studies, the recruitment of identified participants with contact

information and/or setting a reward for completion would help maintain online participants

over multiple sessions, hence more trials in the measurements.

As mentioned previously in section  3.2.2 , among 10 speech-in-noise conditions, 5 of them

were simulations of speech-in-noise mixtures in anechoic environments, and the other 5 con-

ditions were generated with room reverberation. To emphasize the effects of reverberation,

as shown in  3.5a , data from all 5 speech-in-noise configurations were merged into one for both

reverberant and non-reverberant conditions. The variance of the merged data was estimated

by using inverse-variance weighting, where the variance from each condition was weighted in

inverse proportions to its variance (Hedges,  1982 ; Sinha et al.,  2011 ).

3.3 Results

3.3.1 Performance trend in online data is in excellent agreement with lab-based
data.

Web-based online experiments that have been used in many areas of human behavioral

research have not yet been adopted in psychoacoustic research. It is mainly due to the

challenges in fulfilling stringent requirements for high audio quality, proper headphone setup

(single vs dual channels), quiet listening environments, as well as a good estimate of the

participant’s hearing status. Despite the challenges, to cope with the suspension on in-

person measurements posed by COVID-19, we custom-developed a web-based psychoacoustic

platform and demonstrated that the remote setup was viable to produce a close match

between online and in-person data across several measurements (Mok et al.,  2020 ). One of

the tremendous advantages of online study is to allow simultaneous hence fast data collection

from a large number of participants. We rapidly collected all data presented here from 200

typical-hearing participants using this online data-collection platform.

In our recent previous study (Borjigin et al.,  2021 ), we established a battery of temporal

fine structure (TFS) sensitivity measurements on the individual level, via thorough exam-

ination of several behavioral and electrophysiological measures. Based on the conclusions,
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a couple of binaural-hearing (i.e., two-ear) sensitivity measurements were chosen in this

study as the metrics for assessing individual differences in TFS processing, including bin-

aural frequency modulation (FM) detection and interaural time difference (ITD) detection

measurements. It is established that binaural temporal processing depends on TFS (Smith

et al.,  2002 ; Yin & Chan,  1990 ). In the ITD detection measurement, two ears receive copies

of the stimulus TFS with a small timing delay (i.e., ITD) in microseconds because of the

difference in traveling distance from sound to two ears. Similarly, binaural FM introduces

frequency fluctuations in opposite directions in two ears, leading to a timing difference in

TFS on two sides. Figures  3.6 and  3.7 are across-study comparisons in binaural FM detection

and ITD detection thresholds, respectively. Binaural-hearing online data are comparable to

our previous in-person results (Borjigin et al.,  2021 ) as well as the results from other studies.

For both binaural FM and ITD detection measurements, the standard deviation is small

considering the number of participants involved in this study (n = 200).

3.3.2 Binaural temporal sensitivity measures could capture individual differ-
ences in TFS processing fidelity.

The scatter plot (Figure  3.2a ) is a direct illustration of the individual differences that we

observed in the binaural temporal sensitivity measurements—binaural frequency modulation

(FM) and interaural time difference (ITD) detection measurements. In our previous study, we

found that the metrics that had been commonly used in literature to assess TFS sensitivity

(including the ITD and binaural FM detection) were prone to the impact of extraneous

variables, such as attention and motivation, hindering them to be ineffective (Borjigin et al.,

 2021 ). “Non-sensory” factors that were irrelevant to TFS processing had to be controlled

for in order for the measurements to reflect individual differences that were truly driven by

TFS processing. The “non-sensory” factors were quantified for each subject using percent-

wrong scores in catch trials. Here, in this study, we took a step further and implemented

a stand-alone surrogate measure that does not depend on TFS processing—interaural level

difference (ILD) detection measurement—to control for individual variability from “non-

sensory” factors.
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Having ILD detection as a surrogate measure not only helped control for “non-sensory”

factors but also further augmented the extrication of TFS processing from extraneous factors,

by disentangling TFS sensitivity from binaural-hearing processing. The two TFS metrics

used in this study both involved binaural temporal processing, by introducing a small tim-

ing difference in the stimulus TFS across two ears. Similar to the timing difference between

two ears (i.e., ITD), the copies of sound reaching two ears also differ in sound intensity (i.e.,

ILD) due to the attenuation by the head in between two ears. ILD is a level-dependent,

non-temporal binaural cue that does not rely on TFS processing but still requires the coor-

dination of two ears. Regressing out the ILD scores from TFS-related binaural metrics not

only reduces the influence from individual variability in high-level capability to perform a

behavioral task but also further strips away any individual variability that may exist in low-

level brainstem circuitry for binaural processing. This ensured that the individual differences

we observed mostly reflected TFS processing, rather than binaural-hearing sensitivity.

The thresholds from TFS-sensitivity measures—binaural FM and ITD detection—are

plotted against each other in Figure  3.2a . Note that ILD detection thresholds were con-

trolled for both measurements so that the influence from “non-sensory” factors as well as

general binaural-processing sensitivity was minimized. There is a statistically significant

correlation between the adjusted binaural FM and ITD detection thresholds (R = 0.3, P =

1.83e-5). Using a clustering algorithm, subjects were divided into two groups based on their

TFS-sensitivity thresholds—good vs poor-TFS group. Figures  3.3a and  3.3b demonstrate

a clear separation of two groups’ psychometric curves in the binaural FM and ITD detec-

tion measurements, respectively. However, there’s no such separation in the ILD detection

measurements between the two groups (Figure  3.3c ). This contrast assures that the two

groups in Figure  3.2a were formed based on individuals’ TFS sensitivity, rather than other

extraneous factors.

In addition to TFS sensitivity, individuals were also grouped based on their general ability

to perform a behavioral task as well as TFS-irrelevant binaural processing sensitivity, using

their ILD detection thresholds as shown in Figure  3.2b . Note that, similar to Figure  3.2a ,

TFS sensitivity was controlled for the ILD measurements by regressing out the combination

of ITD and binaural FM detection thresholds from ILD thresholds. A group-level separation
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Figure 3.2. (a). Cluster assignment based on ITD and FM thresholds. Resid-
ual means that ILD thresholds were regressed out from both ITD and FM
thresholds. fdev is the frequency deviation or fluctuation in the FM stimu-
lus. (b). Cluster assignment based on ILD sensitivity, with TFS sensitivity
regressed out.

in the psychometric curves that is present in Figure  3.3f , but not in Figure  3.3e or  3.3d 

suggests that individuals were grouped based on “non-TFS” variability in Figure  3.2b . Re-

grouping the participants using this non-TFS metric also helped validate the observed group-

level effect of better TFS processing on speech-in-noise measurement outcomes that will be

detailed in section  3.3.4 .

3.3.3 Better TFS sensitivity does not introduce additional masking-release ben-
efit.

To understand the functional role of TFS in everyday hearing, in addition to measuring

TFS sensitivity, we also measured participants’ speech intelligibility under various types of

noise interference, which was designed to simulate typical social listening settings. During

the measurement, participants were asked to identify the target speech while ignoring the

interfering background noise. Figure  3.4a shows two TFS-sensitivity groups’ speech intel-

ligibility performance in 4 different types of background noise: pitch, space, pitch+space,

and steady noise. Except for the “steady-noise” being a non-speech noise interference, all
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Figure 3.3. (a)-(c): psychometric curves for good vs poor TFS-sensitivity
groups. Left: ITD; mid: binaural FM; right: ILD. (d)-(f): psychometric curves
for good vs poor ILD-sensitivity groups. Note that the percent correct at each
experimental parameter is the average across individuals in the same group,
whereas the standard error bar was calculated after Jackknife resampling (see
Methods section  3.2.2 ).

other backgrounds are a 4-talker speech babble. In the “pitch” condition, the target and

background have a pitch difference: e.g., if the target is a female speaker, the background

babble would be produced by 4 different male talkers. With this pitch cue/difference, a lis-

tener typically could more easily identify the target, as compared to a condition where both

target and background have the same pitch (i.e., reference condition. Note that the target

and background are also spatially co-located). This benefit is often referred to as a release

from masking or simply masking release, which is shown on the vertical axis in Figure  3.4a .

In the “space” condition, instead of a pitch difference, the target and background are spa-

tially separated from each other, which also introduces masking release as opposed to the
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condition where the target and background are co-located at the same spatial location (i.e.,

reference condition). In Figure  3.4a , the masking release based on either pitch or spatial

cues is about 5 dB, which is consistent with the current literature (Bird & Darwin,  1997 ;

Brokx & Nooteboom,  1982 ; F. J. Gallun et al.,  2015 ; F. J. Gallun et al.,  2013 ; Ihlefeld &

Shinn-Cunningham,  2008 ; Jakien Kasey M. & Gallun Frederick J.,  2018 ; Jakien Kasey M.

et al.,  2017 ; Srinivasan et al.,  2016 ; Summers Van & Leek Marjorie R.,  1998 ). Furthermore,

the masking-release benefit seems to be additive (i.e., ∼10 dB) when both pitch and spatial

cues were presented to the listeners, as shown in the “pitch + space” condition. The mask-

ing release is almost 20 dB when the background noise was switched to non-speech steady

noise from babble speech (i.e., reference condition), as shown in the “steady noise” condition,

suggesting that the masking power mostly comes from a background that is similar to the

target, which is often referred to as “informational masking” (Arbogast et al.,  2002 ; G. Kidd

& Colburn,  2017 ; Viswanathan, Shinn-Cunningham, et al.,  2021 ).

More importantly, between good and poor TFS-sensitivity groups, there is no significant

group-level difference in terms of masking release across all conditions. This is consistent

with several other studies suggesting that better TFS processing does not necessarily benefit

a listener with more masking release (Best et al.,  2005 ; Freyman et al.,  2012 ; Oxenham &

Simonson,  2009 ). Figure  3.4b demonstrates the masking release in the same four conditions

as in Figure  3.4a , except for an addition of reverberation to all conditions. Note that the

reference condition (i.e., babble-speech condition, with no pitch or spatial cues) was also sim-

ulated with reverberation. In general, reverberation reduced masking-release benefits across

conditions, except for the “pitch” condition. Indeed, studies have shown that reverberation

has less impact on monaural cues such as amplitude modulation and harmonics (Culling et

al.,  1994 ; Ruggles et al.,  2011 ; B. Shinn-Cunningham et al.,  2017 ). In contrast, the “space”

condition was affected the most, which resulted in a negative masking release. It aligns with

the previous findings that spatial cues are more subjective to corruption and less reliable

in reverberation (Ihlefeld & Shinn-Cunningham,  2011 ; Palomäki et al.,  2004 ; Ruggles et al.,

 2011 ). Again, similar to the non-reverberant conditions, there is no group-level difference in

terms of masking release, due to better TFS sensitivity.
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Masking-release measure was shown to be dependent on the signal to noise ratio (SNR)

of the test conditions (J. G. W. Bernstein & Brungart,  2011 ; J. G. W. Bernstein & Grant,

 2009 ; Freyman et al.,  2008 ; Freyman et al.,  2012 ; Oxenham & Simonson,  2009 ). Little

masking release is observed if SNR is too low (i.e., noisy) or too high (i.e., quiet), where

listening cues such as pitch and spatial cues are often not used towards masking-release

advantage when the task is either too difficult or too easy. In this study, we calculated

masking release at threshold levels, which fell in between the ceiling and floor SNRs where

masking release was reported to be minimum/saturated with the least amount of individual

variations. Therefore, the factor of SNRs should not be the reason why we did not see a

group difference in masking release across conditions.
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Figure 3.4. Masking release across conditions. The height of the bars rep-
resents the mean, error bars represent 1 standard deviation. Masking release
was calculated by subtracting the speech reception threshold in each condition
from that of the control condition. Note that the control condition in (a) does
not have reverberation, whereas the control condition in (b) contains reverber-
ation. A positive masking release means that the speech reception threshold
was lower/better than that of the control condition.
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3.3.4 Better TFS processing reduces the impact from reverberation and lessens
cognitive load associated with speech-in-noise hearing.

Although the pitch-based masking release shown in Figure  3.4b was not affected by the

addition of reverberation, as compared to Figure  3.4a , the absolute speech reception thresh-

olds in both pitch and reference conditions were dramatically increased (i.e., worsened) by

reverberation, so were those from other conditions. Note that the masking release is the

difference between the speech reception threshold in a certain condition and that of the ref-

erence condition. Therefore, in addition to masking release, we also calculated the threshold

increase from non-reverberant to reverberant conditions, as indicated by the height of the

bars in Figure  3.5a . When the participants were grouped based on their TFS sensitivity

(Figure  3.5a , left), two groups differed significantly in terms of the increase/worsening in

speech reception threshold due to reverberation: the poor-TFS sensitivity group suffered

much more in reverberant settings than their counterpart (p<0.0001). When the partic-

ipants were grouped based on their non-TFS sensitivity (i.e., ILD sensitivity), there was

not anymore a significant group difference (Figure  3.5a , right), which validates that the

group difference was driven by the individual differences in TFS sensitivity, instead of other

“non-sensory” factors. This result shows that better TFS sensitivity could help reduce the

impact of reverberation in noisy listening settings, which is often the case for most everyday

listening situations. Indeed, previous studies suggest that TFS-based spatial cues are more

susceptible to corruption due to reverberation (Ihlefeld & Shinn-Cunningham,  2011 ). Hav-

ing better TFS sensitivity might have provided the listeners with a protective shield against

reverberation, leading to a significantly less increase/worsening in speech reception threshold

than their poor-TFS counterpart.

The Speech reception threshold is one of the most common metrics that have been used to

estimate an individual’s speech-hearing sensitivity in noise. However, a behavioral threshold

does not give a full picture. Two listeners with the same speech reception threshold could

have experienced the task with different levels of difficulty. To investigate the involvement of

cognitive efforts beyond threshold estimates, we calculated each individual’s reaction time, by

subtracting the time stamp of the button press from that of the stimulus offset. The reaction
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time is indicated by the height of the bars in Figure  3.5b , which agrees with the result from

the reaction-time measurement in Apoux et al.,  2001 . When the participants were grouped

based on their TFS sensitivity (Figure  3.5b , left), the group with better TFS sensitivity had

a significantly shorter reaction time than their poor-TFS counterpart (p=0.007), suggesting

less cognitive effort required to perform the task. Similar to the previous analysis, when

the listeners were re-grouped based on their non-TFS sensitivity (i.e., ILD sensitivity) as

shown in Figure  3.5b (right), the two groups did not differ significantly from each other.

This contrast helps confirm that it is the TFS sensitivity that was the main driving factor

for the group difference in reaction time, indicating a possible benefit of reduced cognitive

load due to better TFS processing.
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Figure 3.5. (a) group differences in the increase of speech reception threshold
due to reverberation and (b) in reaction time. Data were merged across all 4
conditions from Figure  3.4 .

3.4 Discussion

In this study, we investigated the functional significance of temporal fine structure (TFS)

in everyday hearing. The relative contribution of TFS and envelope to speech hearing in noise

is still debated mainly due to the limitation of the vocoding technique, which has been one

of the most commonly used methods to study TFS and envelope in the literature (Ardoint &
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Lorenzi,  2010 ; Hopkins & Moore,  2009 ; Hopkins et al.,  2008 ; Lorenzi et al.,  2009 ; Smith et al.,

 2002 ). Vocoding allows researchers to acoustically isolate TFS and envelope from the intact

sound stimulus and study them independently. Despite being conceptually straightforward,

vocoded stimulus fails to maintain the TFS content as some portion of the TFS would

be converted into the envelope after the stimulus is processed by the cochlea (Oxenham,

 2013 ; Swaminathan & Heinz,  2012 ). Therefore, vocoding doesn’t isolate TFS and envelope

from each other as expected. In addition, participants may just use TFS cues differently

when they are presented with this novel stimulus that never exists in everyday listening

environments. In this study, we avoided this limitation by using intact stimulus through

an individual-difference approach. We modified and adopted the individual measurements

of TFS processing from our recent study (Borjigin et al.,  2021 ). We also conducted a

comprehensive speech-in-noise intelligibility measurement on every individual. The direct

comparison between the individual differences in TFS processing and speech intelligibility

under various types of noise interference allowed us to reveal the perceptual role of TFS

coding in everyday hearing: the results from 200 online participants suggest that better TFS

processing does not necessarily introduce more masking-release benefits for speech-in-noise

hearing, but better TFS sensitivity provides listeners with the advantage of having a more

resilient hearing in reverberation and helps decrease reaction time hence indicating reduced

listening efforts when conversing in noisy settings.

It is somewhat surprising not to see any additional benefit of spatial masking release from

the “good-TFS” group in contrast to the “poor-TFS” counterpart (Figure  3.4a ) as there is a

well established theoretical link between phase-locked TFS processing and binaural temporal

processing aspect of spatial hearing (Smith et al.,  2002 ; Yin & Chan,  1990 ). Low-frequency

acoustic TFS is coded temporarily in the auditory nerve through phase locking, which refers

to the phenomenon where neurons only fire to a certain phase within a periodic signal. The

time intervals between successive neural firings are extracted by the brain as a temporal code

of the stimulus. Temporal code is used by binaural brainstem circuits for sound localization.

Therefore, we hypothesized that individuals with better TFS sensitivity would benefit more

from the spatial cues in speech-in-noise tasks. The null result could be due to the choice

of interaural level difference (ILD) detection task as a reference measurement for non-TFS
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factors. Similar to the binaural temporal measurements of TFS processing (see Methods

section  3.2.2 ), ILD also activates binaural circuits, but the ones that do not depend on

the temporal code from TFS processing (Tollin et al.,  2008 ). Assuming that ILD-activated

binaural processing sensitivity shares some commonality with binaural temporal processing

fidelity, regressing out the ILD scores from the binaural TFS measurements might have just

stripped away individual differences that may have existed in binaural temporal processing.

It could explain the lack of significant group differences in spatial masking release. Note

that there was no significant group-level difference when participants were grouped based

on their ILD sensitivity either (with TFS sensitivity measures regressed out from the ILD

thresholds, not shown). Another possibility lies in the fact that the ability to reliably re-

port binaural perception is challenging and typically requires extensive training (Stecker &

Gallun,  2012 ). In this study, no training was provided to the participants, except for the

initial demonstration trials for orientation. Indeed, the variation across individuals within

the poor-TFS group in spatial hearing condition was unusually broad compared to other con-

ditions (Figure  3.4a ). Passive physiological measurements (e.g., EEG) of binaural temporal

sensitivity, where active engagement is not required, could help better reflect an individual’s

spatial-temporal hearing in noisy settings. Papesh et al.,  2017 demonstrated a significant

brain-behavior correlation between auditory evoked potential measures of interaural phase

difference (IPD: it introduces ITD) and spatial release from masking in speech-in-noise lis-

tening task. The null result might also be due to the small individual differences in the ITD

thresholds considering all of our participants were of typical hearing. These small differences

might not have translated into spatial release from masking. Regardless, our result is not a

piece of evidence against the agreement regarding the role of TFS processing in the binaural

temporal processing aspect of spatial hearing (Brughera et al.,  2013 ; Churchill et al.,  2014 ;

Macpherson & Middlebrooks,  2002 ; Smith et al.,  2002 ; Wightman & Kistler,  1992 ; Yin &

Chan,  1990 ). Rather, the result emphasizes the fact that TFS processing is a necessary

but not sufficient condition for spatial hearing benefit in noise. In other words, good TFS

processing is key for successful binaural temporal processing. But a listener also needs a

good binaural processing circuitry and/or needs to be sufficiently trained to better utilize

the temporal code to benefit from spatial cues in speech-hearing-in-noise tasks.
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Similarly, there was no significant group difference in pitch-based masking release. While

it is established that TFS processing is crucial for the spatial localization of low-frequency

sounds, whether TFS is needed for pitch perception has still been debated since over 150 years

ago (Ohm,  1843 ; Seebeck,  1841 ). Behavioral studies in humans indicate that low-frequency

periodic sounds result in a stronger pitch percept than high-frequency sounds (J. G. Bernstein

& Oxenham,  2003 ; Houtsma & Smurzynski,  1990 ; Moore,  1973 ). The pitch discrimination

ability deteriorates at high frequencies above 4-5 kHz (Attneave & Olson,  1971 ; Oxenham

et al.,  2011 ), which coincides with the phase-locking limit in the auditory nerve (Palmer &

Russell,  1986 ; Rose et al.,  1967 ). It all suggests a possible role for TFS in pitch perception.

Furthermore, recent studies suggest that the deficits in TFS coding among individuals with

hearing loss as well as the lack of TFS information in cochlear implant sound coding strategies

might explain the difficulties in speech hearing in fluctuating noise, where pitch perception

is believed to play an important role (Lorenzi et al.,  2006 ; Qin & Oxenham,  2003 ; Stickney

et al.,  2007 ). However, these results are subject to alternate interpretations, such as place

coding (Oxenham,  2012 ,  2013 ). Place coding, or tonotopic coding, refers to a frequency-to-

place mapping. Within the inner ear, for example, different place along the basilar membrane

of the cochlea responds to different frequencies. This mapping is maintained from low to high

frequencies, not only in the cochlea but also throughout the rest of the auditory pathways

up to the auditory cortex. This is in contrast to temporal code from phase-locking as phase

locking to higher frequency component is not preserved in higher stations of the auditory

pathways: e.g., at the level of auditory cortex, the limit of phase locking reduces to 100-200

Hz (Wallace et al.,  2000 ). Indeed, in some studies, pitch perception remained possible with

pure tones at very high frequencies (Henning,  1966 ; Moore,  1973 ; Moore & Ernst,  2012 ),

where phase-locking information of TFS is unlikely useful. It is possible that pitch perception

is based on phase-locked TFS information at low frequencies, and the timing information

becomes so weak at high frequencies that the available place coding information takes the lead

in pitch perception. Some studies even suggest that place coding information may be even

important at low frequencies and timing information alone may not be sufficient to produce

robust pitch perception (Dreyer & Delgutte,  2006 ; Kohlrausch et al.,  1997 ; Oxenham et al.,

 2004 ). Our results are in agreement with the place-coding interpretation, showing that there
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was no additional masking-release benefit from pitch cues due to better TFS processing.

Similar to the “space” and “pitch” conditions, there was no significant group difference when

two cues were combined, as shown in the “pitch+space” condition (Figure  3.4a ). The result,

however, suggests an additive nature of the benefits from pitch and space cues, leading

to a masking release of around 10 dB. Indeed, it was shown that the differences in pitch

can help listeners more easily make sense of competing sound sources and better segregate

when spatial cues are available (Darwin,  2005 ). Having speakers with distinguishable voices

coming from different spatial locations is perhaps also a more ecologically relevant listening

scenarios we encounter in everyday listening.

When the background was switched from a speech-babble masker to a non-speech masker,

shown as a “steady noise” condition in Figure  3.4a , we observed a masking release of almost

20 dB, suggesting a significant impact from informational masking on daily speech-in-noise

communication. This is consistent with the result from Arbogast et al.,  2002 , where the

informational masking was systematically studied. Informational masking refers to the lis-

tening challenges brought by the similarity or confusion between the target and background

when there is no significant spectrotemporal overlap between them. The masking due to

spectrotemporal overlap is called energetic masking. In the “steady noise” condition (Fig-

ure  3.4a ), a steady noise masker was created to make sure that it is purely energetic masking

with the continuous spectrum and minimum intrinsic fluctuations or modulations to elimi-

nate informational masking (based on Stone and Moore,  2014 , see Methods). In the control

condition, on the other hand, the 4-talker speech masker introduces informational masking

because of the speech-on-speech masking configuration, in addition to the energetic masking.

While the energetic masking was not controlled for in the reference condition, the improve-

ment of almost 20 dB in the speech reception thresholds from the control condition to the

“steady noise” condition implies a significant role of informational masking in everyday lis-

tening. While researchers generally believe that energetic masking occurs at the auditory

periphery (Culling & Stone,  2017 ), informational masking is believed to involve central fac-

tors such as object formation, auditory selective attention, perceptual scene segregation,

auditory working memory, and linguistic processing (G. Kidd & Colburn,  2017 ). Studies

have suggested that TFS-based cues, such as pitch (Smith et al.,  2002 ), play an important
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role in supporting the formation of the aforementioned high-level functions that are critical

for the release from informational masking (Darwin,  1997 ; Oxenham & Simonson,  2009 ;

B. G. Shinn-Cunningham,  2008 ; Viswanathan, Shinn-Cunningham, et al.,  2021 ). Further-

more, TFS cues were shown to influence the coding of the target speech envelope in the

brain, which predicts the intelligibility performance in various distortions, including speech-

on-speech masking, where informational masking is dominant (Viswanathan, Bharadwaj, et

al.,  2021 ). Despite these indirect implications of the relationship between TFS coding and

the release from informational masking, our results show that there was no significant dif-

ference in the release from informational masking when the subjects were grouped based on

their TFS sensitivity (see Figure  3.4a ). However, the group with better TFS sensitivity had

a significantly shorter response time than their poor counterpart, as shown in Figure  3.5b .

The response time was measured as a quantification of the subject’s overall central engage-

ment, with shorter response time or faster reaction during the task indicating superior central

functions. Therefore, our results support previous findings regarding the role of TFS cod-

ing in central processing, which is crucial for the release from informational masking. The

lack of group difference in the informational masking release is probably because the group

difference in central processing quantified by the reaction time did not translate into the

masking-release metric. It highlights the importance of investigating the metrics that are

beyond the final threshold measurements, which may reveal many aspects that were hidden

below the surface.

We also investigated the relationship between TFS processing and speech-in-noise hear-

ing in the presence of reverberation. The same four conditions listed in Figure  3.4a were

examined with the addition of reverberation, including “pitch”, “space”, “pitch+space”, and

“steady noise” conditions, along with the reference condition. As shown in Figure  3.5a , re-

verberation notably increased (i.e., worsened) the speech reception thresholds, indicated by

the difference in thresholds from conditions with and without reverberation. More impor-

tantly, the group with poor TFS sensitivity had significantly more threshold increase than

their counterpart with better TFS sensitivity (p < 0.0001), indicating a possible role of TFS

processing in “de-reverberation”. Indeed, TFS-based spatial cues were shown to be more

susceptible to the corruptions from reverberation (Ihlefeld & Shinn-Cunningham,  2011 ) and
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reverberation also tends to cripple spatial selective attention (Ruggles et al.,  2011 ), where

TFS processing was believed to be involved as mentioned earlier. Our result combined with

these reports suggests that a better TFS processing might serve as a protective shield against

the negative impact of reverberation on speech-in-noise hearing. Besides the aforementioned

role of TFS processing in central processing and hence reduced listening efforts, it is an-

other potential benefit of good TFS processing that has been revealed in this study. One

thing to note is that the threshold increase due to reverberation was calculated from the

data merged across all test conditions with and without reverberation (see Methods). In

contrast, the masking release metric within individual reverberant conditions did not differ

between groups, as shown in Figure  3.4b . Interestingly, the spatial release from masking

turned out to be negative in reverberation (Figure  3.4b ), indicating an impairment from

the spatial cues instead of benefits. The impairment could be due to the use of interaural

phase cues (see Methods), which is not as ecologically realistic as precisely implemented ITD

cues. The mix of these artificial spatial cues and ecologically relevant acoustic distortions

such as reverberation might have caused confusion during the task. It also further reflects

the unreliable nature of spatial cues in reverberation as mentioned above (Ihlefeld & Shinn-

Cunningham,  2011 ; Palomäki et al.,  2004 ; Ruggles et al.,  2011 ). In contrast to the distortion

from reverberation on spatial cues, their effects on other cues such as amplitude modula-

tion or harmonic structure were shown to be less profound (Culling et al.,  1994 ; Ruggles

et al.,  2011 ; B. Shinn-Cunningham et al.,  2017 ). In line with this, our result shows that the

pitch-based masking release was not affected at all by the reverberation, as shown in Fig-

ure  3.4b . The additive nature of the pitch and spatial cues observed in the non-reverberant

“pitch+space” condition (Figure  3.4a ) is also present in reverberant settings (Figure  3.4b ),

where the impairment from spatial cues was neutralized to some extent by the pitch cues.

There was still a significant amount of release from informational masking despite the small

reduction, as compared to the non-reverberant condition. This is similar to the findings from

Deroche et al.,  2017 , where reverberation was shown to reduce the release from informational

masking. Nevertheless, no significant group difference due to TFS processing was observed

in the masking release measure across these conditions in reverberation, which could be due

to the same factors that were discussed for the results from the non-reverberant conditions.
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To our knowledge, this study constitutes the most comprehensive investigation of the

perceptual role of TFS by covering all major aspects of speech-in-noise hearing where TFS

processing has been believed to play a role, including pitch perception, spatial hearing, in-

formational masking, and listening in reverberation. Despite the extensive prior literature

on TFS, the contribution of TFS to speech perception in noise is poorly understood. It is

mainly due to the limitation of the vocoding approach that has been traditionally used to

study TFS. We avoided this limitation by taking the individual-difference approach, system-

atically measuring TFS sensitivity and speech-in-noise intelligibility from a very large subject

population (n=200). Our results not only confirmed many findings from previous literature

but also, most importantly, demonstrated that TFS is indeed crucial for speech-in-noise

hearing, by reducing the impacts from reverberation and reducing reaction time indicating

lessened listening efforts. This is an encouraging message for CI companies, for introducing

TFS information into the sound coding strategies to ameliorate the listening difficulties in

noise. These findings as well as our success with the individual difference approach also show

the promise of adopting TFS and speech-in-noise measurements in audiology clinics. First,

these results indicate that it is worth measuring TFS and speech-in-noise sensitivity since

they could reflect suprathreshold hearing deficits in more complex yet everyday listening

environments. Establishing assessment tools for TFS and speech-in-noise sensitivity might

help diagnose certain clinical populations, such as the “hidden hearing loss” patients who

have hearing difficulties in noise, but with a “normal” clinical diagnosis based on the current

diagnostic tools that are only designed to assess audibility. Second, our large-scale individual-

level measurement battery for TFS and speech-in-noise sensitivity provides a blueprint for

implementing those tests in clinics. The targeted sensitivity of a test battery to individual

differences that are free of influences from extraneous factors is essential for the test battery

developed in research to be adopted in clinical applications. It is the sensitivity to individual

differences of a test battery that help the clinicians make better-informed treatment decisions

for individual patients.

Lastly, our study is also one of the first few online psychoacoustics studies and our online

data-collection platform could serve as a template for future virtual testing in both research

and clinics. All data for this study battery, including TFS-sensitivity measurements, ILD
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reference measurements, and speech-in-noise measurements, were collected on the remote-

testing platform to cope with COVID-related restrictions on in-person measurements. Online

data are comparable to those from in-person measurements from our lab as well as from many

other studies in the literature (see Figure  2.8 and Figure  2.9 ). This shows the promise of

using virtual measurements in future studies. Our remote testing not only produced data of

matching quality but also demonstrated tremendous advantages over traditional in-person

testing. Conventional psychoacoustic experiments are time-consuming and hence usually

involve a small number of subjects that might have been recycled many times. A larger

number of participants with more diverse ethnic and cultural backgrounds, hearing history,

musical training, and daily experience with sounds is key to exploiting individual differences

for a better understanding of the fundamental aspects of auditory processing. We were able to

administer a large battery of TFS sensitivity assessments and comprehensive speech-in-noise

measurements under 10 different target-masker configurations on a 200-subject population.

Because of the synchronous and highly-automated nature of our online study, we finished

the entire data collection within just a few days. In contrast, data collection for such a large

study battery from 200 participants could have taken months if not years through traditional

in-person measurements. The online study further saves the time and cost that comes with

a laboratory visit, especially for scheduling “rare” subjects that are not local. For instance,

it is not uncommon for research labs studying CI to fly in the CI users from other states for

week-long experiments. The costs of travel reimbursement and compensation for time could

be very high and this type of visit can also be extremely challenging to schedule because not

everybody could make time for a week-long visit. Online platforms could greatly ameliorate

this issue by allowing researchers to access more diverse and representative subject pools that

may otherwise not be able to easily visit research facilities. Last but not the least, online

platforms could help continue human-subject research under special circumstances such as

COVID-19 when in-person experiments are restricted. The online format has also been

more and more widely adopted by medical facilities, for the same aforementioned benefits:

providing medical services for those in areas with a lack of medical resources as well as

continuing to provide medical care to patients amidst a global pandemic. With the success
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of online study, we foresee wider adoption of virtual testing in both research and clinic in

the near future.
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Figure 3.6. A sample of published reports of FM detection thresholds for
comparison (Borjigin et al.,  2021 ; Buss et al.,  2004 ; Grose & Mamo,  2012 ;
Harris,  1952 ; He et al.,  1998 ; Lelo de Larrea-Mancera et al.,  2020 ; Moore &
Sek,  1996 ; Parthasarathy et al.,  2020 ; Ruggles et al.,  2011 ; Shower & Biddulph,
 1931 ; Strelcyk & Dau,  2009 ; Whiteford et al.,  2017 ; Whiteford & Oxenham,
 2015 ). Borjigin et al.,  2021 is our previous in-person study. Error bar is 1
standard deviation (std). The size of the dot represents the number of subjects
(current study has the most subjects; N=200). Stimulus parameters such as
stimulus level, carrier frequency, and modulation frequency in the cited studies
are similar to those used in the current study, with slight differences (e.g.,
Ruggles et al.,  2011 ; Strelcyk and Dau,  2009 used carrier at 750 Hz). Some
threshold values are approximate from figures (e.g., mean and std had to be
estimated based on median and range in the box whisker plots from Whiteford
and Oxenham,  2015 and Whiteford et al.,  2017 ). The mean and std from the
young and middle-aged group from Grose and Mamo,  2012 were combined to
generate a single data point. Some authors expressed the threshold in terms
of ∆F/Fc, where ∆F is frequency deviation, and Fc is the carrier frequency.
Moore and Sek,  1996 used ∆F that was in two directions, i.e., peak-peak.
Subjects from some studies were highly experienced in psychoacoustic tasks
hence the thresholds were very low/good. Whiteford et al.,  2017 ; Whiteford
and Oxenham,  2015 obtained thresholds that fall in the lower end of the results
from a very large number of subjects. This may be because their subjects were
younger typical-hearing listeners and the stimuli were presented diotically and
dichotically instead of monaurally.
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Figure 3.7. A sample of published reports of ITD detection thresholds for
comparison (L. R. Bernstein & Trahiotis,  2002 ; Borjigin et al.,  2021 ; Brughera
et al.,  2013 ; Dye,  1990 ; Grose & Mamo,  2010 ; Henning,  1983 ; Hershkowitz &
Durlach,  1969 ; Hopkins & Moore,  2010 ; Klumpp & Eady,  1956 ; Strelcyk &
Dau,  2009 ; Zwicker,  1956 ). Borjigin et al.,  2021 is our previous in-person study.
Error bar is 1 standard deviation (std). The size of the dot represents the
number of subjects (Current study has the most subjects; N=200). Stimulus
parameters such as level and carrier frequency in the cited studies are similar
to those used in the current study, with slight differences (e.g., Strelcyk and
Dau,  2009 used carrier at 750 Hz). Note that some threshold values were
extracted approximately from figures rather than direct numerical reports.
Some of the studies used stimuli with the leading ear switching from one
side to the other (labeled “dynamic”, marked in green color), whereas others
presented an ITD only in the target intervals, with the reference being the
midline (labeled “static”, marked in blue color). Note that the values from
Brughera et al.,  2013 ; Hershkowitz and Durlach,  1969 were halved since the
authors used ITD/2 in each interval. The mean and std from young and
middle-aged cohort from Grose and Mamo,  2010 were combined to generate
a single data point. Subjects from some studies were highly experienced in
psychoacoustic tasks, hence very low/good thresholds.
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4. DEEP NEURAL NETWORK ALGORITHMS FOR NOISE

REDUCTION AND THEIR APPLICATION TO COCHLEAR

IMPLANTS

4.1 Introduction

Cochlear implant (CI) listeners struggle to understand speech in noisy environments,

despite often achieving satisfactory speech intelligibility in quiet settings. This is especially

true when the background noise is modulated, non-stationary noise interference (Cullington

& Zeng,  2008 ; Fu et al.,  1998 ). Some front-end processing algorithms have been shown to

improve speech intelligibility in fluctuating noise. For example, studies demonstrated that

two-microphone directionality could introduce a masking release of up to 10 dB (Hersbach

et al.,  2012 ; Wouters & Vanden Berghe,  2001 ). However, these approaches require the

listener to always face the target, which helps create spatial separation between the target

and background. In this work, we implemented and evaluated two single-microphone noise

reduction algorithms that do not rely on spatial separation and do not require the use of

two microphones. Traditionally, single-channel noise reduction algorithms that have been

commonly used for hearing assistive devices, are driven by signal processing strategies based

on signal statistics. Classic examples include spectral subtraction (Boll,  1979 ) and wiener

filtering (Scalart & Filho,  1996 ). These models could improve speech intelligibility to a

certain extent in statistically predictable backgrounds, such as stationary noise (Dawson

et al.,  2011 ; Loizou et al.,  2005 ; Mauger et al.,  2012 ). For speech in a more complicated,

non-stationary, multi-talker babble background, machine-learning techniques, such as deep

neural networks (DNNs) or Gaussian mixture models (GMMs), were shown to be successful

in improving speech intelligibility for listeners with typical hearing (G. Kim et al.,  2009 ), for

listeners with hearing loss (Bramsløw et al.,  2018 ; Chen et al.,  2016 ; Healy et al.,  2019 ; Healy

et al.,  2015 ; Healy et al.,  2013 ; Monaghan et al.,  2017 ), and for CI listeners (Goehring et al.,

 2017 ; Hu & Loizou,  2010 ; Lai et al.,  2018 ). Recent improvements over these models were

introduced by DNN-based regression models, where the training target was a continuous or

soft mask, instead of a binary mask (Bentsen et al.,  2018 ; Madhu et al.,  2013 ). However,
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all models mentioned above function based on a priori knowledge of the target and/or

background by using the same target speaker (Chen et al.,  2016 ; Lai et al.,  2018 ), background

interference (Goehring et al.,  2017 ), or both (Bentsen et al.,  2018 ; Bramsløw et al.,  2018 ;

Goehring et al.,  2017 ; Healy et al.,  2019 ; Healy et al.,  2015 ; Healy et al.,  2013 ; Hu & Loizou,

 2010 ; G. Kim et al.,  2009 ; Lai et al.,  2018 ) for the training and testing process.

The generalization of a speech enhancement model is critical to ensure efficacy in CI

devices. It is, however, impractical to present all speech-in-noise mixtures that a user would

normally encounter in real-world listening situations to the models during the training pro-

cess. Indeed, in most studies, the model performance evaluated by objective intelligibility

metrics was reduced significantly when unseen testing data were presented to the DNN

models (Chen & Wang,  2017 ; Goehring et al.,  2017 ; May & Dau,  2014 ). Recent studies

have demonstrated the promise of using recurrent neural network (RNN) models for bet-

ter generalization by including recurrent connections, feedback, and gate elements (Chen &

Wang,  2017 ; Graves et al.,  2013 ; Kolbæk et al.,  2017 ; Weninger et al.,  2015 ). Classic ar-

chitecture with these elements is the long short-term memory (LSTM) RNN structure that

accumulates information from the past and hence enables the network to form a temporary

memory (Hochmair et al.,  2015 ; LeCun et al.,  2015 ), which is essential for properly managing

and learning speech context. RNN-LSTM based models have been shown to improve the

speech-in-noise perception for listeners with hearing loss (Bramsløw et al.,  2018 ; Healy et al.,

 2019 ; Keshavarzi et al.,  2019 ; Keshavarzi et al.,  2018 ) and CI users (Goehring et al.,  2019 ).

Despite the wide adoption of RNN models in modern audio processing systems in many

domains, including speech recognition and synthesis as well as speech enhancement and

segregation, the sequential nature of the RNN architecture often renders the computation

inefficient. The impact of this limitation becomes especially prominent with long speech

sentences. Practically, this bottleneck can be avoided by using a mechanism known in the

literature as the transformer. The transformer is a fully attention-based mechanism that

can effectively replace the recurrence structure in a common RNN model (Vaswani et al.,

 2017 ). This architecture allows the model to attend to the entire sequence all at once and

establish connections between distinct elements, which ultimately leads to more efficient

learning of long-term dependency. The transformer has gained considerable popularity and
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competitive performance in speech recognition (Karita et al.,  2019 ), speech synthesis (Li et

al.,  2019 ), speech enhancement (J. Kim et al.,  2020 ), and audio source separation (Subakan

et al.,  2021 ). The SepFormer model developed by Subakan et al.,  2021 is currently the top-

performing model in speech separation applications, according to  Papers with Code website.

In this work, we implemented the SepFormer model for speech processing in noise. Al-

though being state of the art, this model might not be suitable for real-time applications such

as CI due to its complicated architecture. Therefore, while using SepFormer as a reference

for the flagship benchmark model, we also implemented a low-complexity RNN model of

speech enhancement, to account for the constraints on processing time and computational

power in real-time applications. The effectiveness of these two proposed DNN models was

verified through commonly used objective intelligibility metrics. We then investigated the

clinical effectiveness of this approach for CI recipients under noisy conditions by thorough

behavioral testing using challenging noise types and signal to noise ratio (SNR) levels. The

goal of this work is to serve as a proof of concept that aims to facilitate the adoption of DNN

technology in CI devices for better speech hearing in more complex and dynamic background

noise.

4.2 Network Architecture

4.2.1 RNN

The schematic of the single-channel, RNN-based speech enhancement algorithm is il-

lustrated in Figure  4.1a . A clean target speech and either babble-speech or non-speech

noise were mixed to create the unprocessed noisy speech. The features were spectral mag-

nitude from short-time Fourier transformation (STFT). The features were extracted using

Hamming-windowed frames with a window size of 32 and a hop size of 16. The “add-one”

log was applied to the spectral magnitude to reduce the influence of very small values. The

predicted mask (i.e., the model outcome) was a continuous “soft” mask instead of an ideal

binary mask, where the values of the mask were either one or zero. It was shown that “soft”

masks introduced better speech quality and intelligibility (Madhu et al.,  2013 ). In addition,

no threshold had to be determined for the “soft” mask as for the ideal binary mask. The
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predicted mask from the RNN model was multiplied with the original unprocessed noisy

mixture to generate the “de-noised” spectrum of the mixture with an enhancement on the

target speech. This “de-noised” spectrum was compared with the spectrum of the clean tar-

get speech to compute the mean square error (MSE) loss for optimizing the training outcome.

The final processed speech was recovered by resynthesizing (i.e., taking the inverse STFT) the

“de-noised” spectrum. The RNN network consisted of two long short-term memory (LSTM)

layers, with each followed by a projection layer. A PyTorch-powered speech toolkit— Speech-

Brain —was used to implement, train, and test the RNN model. Adam optimizer was used for

minimizing the MSE loss during the training process (Kingma & Ba,  2017 ), with the learning

rate set at 0.0001. The model performance was evaluated and monitored with a validation

dataset at the end of each full learning cycle with all training samples (i.e., epoch). The

training was terminated after 100 epochs to avoid overfitting, where the model performance

with the validation dataset stabilized with no further significant improvements.

4.2.2 SepFormer

While the simple, light-weight RNN model evaluated here serves as a proof of concept

for DNN algorithms that are suitable for small devices such as CI, we also implemented the

current state-of-the-art model for speech separation applications—SepFormer, to explore the

limits of current DNN technology in the speech enhancement and source separation domains.

The model architecture is depicted in Figure  4.1b . A single-layer convolutional network was

used as an encoder to learn the STFT-like representation of the input noisy signal. Similarly,

at the end of the process, a transposed convolution layer with the same stride and kernel

size as in the encoder was used to turn the STFT-like representations back into separate

sources within the mixture. The extracted STFT-like features of the noisy mixture go into

the masking network, which estimates the masks for the foreground (i.e., target speech) and

background. These masks are also “soft”, continuous masks as in the RNN model. In the

masking net, the features are first normalized and processed by a linear layer. They are then

chopped into chunks along the time axis with an overlap factor of 50%, which are next fed

into the core of the masking net—SepFormer block. This block consists of two transformer
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structures that can learn both short and long-term dependencies. More details can be found

in Subakan et al.,  2021 . The output of the SepFormer block is then processed by a PReLU

and linear layer. The overlap-add scheme, described in Luo and Mesgarani,  2019 , was used

to sum up the chunks. This summed representation is passed into two feed-forward layers

and a ReLU activation to finally generate the masks for both the foreground and background

sources. The training procedure and infrastructure are the same as in the RNN model.

(a) RNN (b) SepFormer

Figure 4.1. Schematic diagrams of the DNN architecture and signal process-
ing frameworks used in this study: (a) RNN and (b) SepFormer
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4.3 Materials

4.3.1 Training and testing datasets

The speech materials for training (including validation) the models were taken from

 LibriSpeech , an open-source corpus of about 1000 hours of read English sentences (sub-

datasets: 100, 360, 500-hour dataset). The data were extracted from read audiobooks,

with each sentence being carefully segmented and aligned. The sentences were recorded

by a total of 2484 speakers. In this work, we chose the 100-hour sub-dataset for model

training. Non-speech materials were from  WHAM! , an open-source dataset of environmental

recordings from various urban locations throughout the San Francisco Bay Area in late 2018,

such as coffee shops, bars, and parks. Each recording was carefully processed to remove

any intelligible speech. The speech-in-noise dataset for training was generated by mixing a

speech sentence with either speech babble or non-speech environmental noise. A total of four

conditions were created: a target speech mixed with non-speech noise, a target speech mixed

with 1, 2, and 4-talker speech babbles. Each condition was created at 1-10 dB signal-to-

noise ratios (SNR) in 1-dB steps. The loudness of the target was kept constant throughout

the dataset. It was made sure that each babble-talker utterance contained distinct speakers

and content. There were 5590 and 410 utterances for each condition in the training and

validation dataset, respectively, yielding a total of ∼30 hours of training data.

The models were tested and evaluated at 1, 5, and 10 dB SNR, in 2-talker speech babble

and non-speech backgrounds. To test the generalization of the models, both speech and

non-speech materials were extracted from different sources than those used for constructing

the training dataset. The speech materials were from a subset of the  IEEE “Harvard” 

corpus (Rothauser,  1969 ), which contains 720 sentences, recorded by 33 speakers (15 female

speakers). Three speakers were chosen for testing: one male speaker for the target speech

and two female speakers for the 2-talker mixtures. Within all sentences, 340 of them were

used as target sentences, while the rest were used to generate 2-talker mixtures. Each 2-

talker mixture consists of two different sentences that are spoken by different speakers. The

non-speech background noise was a steady-state noise, which is much denser in both time
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and frequency than the environmental sounds from the training dataset. We used this test

dataset for testing with both objective evaluation metrics and listeners with CI.

4.3.2 Objective intelligibility models

The DNN models were first evaluated quantitatively using three popular objective eval-

uation metrics: source to distortion ratio (SDR) (Vincent et al.,  2006 ), short-time objective

intelligibility (STOI) (Taal et al.,  2010 ,  2011 ), and perceptual evaluation of speech quality

(PESQ) (Hu & Loizou,  2008 ). These accurate and reliable objective evaluation methods

provided useful information regarding the overall expected benefit before conducting behav-

ioral listening tests with CI users. All three evaluation metrics compare a clean reference

speech and the processed speech in an attempt to measure the overall benefit elicited due to

processing and score the overall quality. The SDR metric decomposes the estimated source

into four components representing respectively the true source, spatial distortions, interfer-

ence, and artifacts. The final SDR score is computed by calculating the ratio of the source

energy to the sum of all other projection energies (i.e., spatial distortions, interference, and

artifacts) as described in Vincent et al.,  2006 . The STOI metric was initially designed to

predict the intelligibility of speech processed by enhancement algorithms. Recently, Falk et

al.,  2015 demonstrated that for CI users, the STOI outperformed all other measures for pre-

dicting the intelligibility of enhanced speech in noise. The STOI first applies time-frequency

analysis to both clean reference and processed speech. An intermediate intelligibility mea-

sure is obtained by estimating the linear correlation coefficient between clean and processed

time-frequency units. The final STOI score is the average of all intermediate intelligibility

estimates from all time-frequency units. The PESQ score ranges between –0.5 and 4.5 and

employs a sensory model to compare the reference signal with the processed signal by relying

on a perceptual model of the human auditory system. The PESQ is computed as a linear

combination of average disturbance value and average asymmetric disturbance value. The

parameters for the linear combination can be further modified towards predicting different

aspects of speech quality. More details can be found in Hu and Loizou,  2008 and Kokkinakis

and Loizou,  2011 . In general, the PESQ has been shown to reliably predict the quality of
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Table 4.1. Demographic information for the subjects who participated in
this study. [1] Fine structure processing with sequential stimulation in the
four apical channels. [2] Fine structure processing with parallel stimulation in
the four apical channels.

Subject
ID

Gender Age (yrs) Duration of CI
use (yrs)

Active elec-
trodes

Clinical
strategy

ME149 F 57 6 8 FS41

ME153 M 68 4 12 FS4
ME185 F 65 9 12 FS4-p2

ME196 M 66 2 11 FS4-p
ME202 M 56 3 12 FS4
ME203 F 63 4 11 FS4-p
ME204 M 63 2 12 FS4-p
SSD100 F 35 10 12 FS4-p

processed speech and hence in the present context, the PESQ is assumed to be capable of

detecting and quantifying the overall effects of DNN processing on the signal quality.

4.4 Methods

4.4.1 Subjects

A total of eight post-lingually deafened adults fitted with MED-EL CIs (MED-EL GmbH,

Innsbruck, Austria) took part in the study. They were all between the ages of 35 and 68 (4

male and 4 female). Their mean age at testing was 59.1 years (SD = 10.4 years). The average

duration of CI use in years was 5 years (SD = 3 years). Demographic information is provided

in Table  4.1 , including each subject’s default clinical sound coding strategy. The research

study was approved by the Western Institutional Review Board. All subjects gave informed

consent prior to testing. Only research subjects whose participation in the study would cause

them to incur financial hardship received financial compensation for their participation.

4.4.2 Test setup

All participants were tested using their everyday program, including all front-end pro-

cessing features that they normally used. Before the testing session, their audio processor
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was loaded with the recipient’s daily program. The participants used the direct audio input

(DAI) cable, which attenuates the microphone inputs by approximately 30 dB while passing

the direct input signal through DAI cable without attenuation. At the beginning of the

testing session, the audiologist provided instructions regarding the study procedures, and

then connected the recipient’s processor to the audio port of a Windows-based Microsoft

Surface Pro touchscreen tablet through DAI cable. The proprietary psychophysical soft-

ware suite PsyWorks v.6.1 (MED-EL GmbH, Innsbruck, Austria) was used to present the

speech stimuli from the table to the audio processor. The calibration was performed using

a built-in feature within the PsyWorks software and was designed specifically for use with

each recipient’s audio processor.

4.4.3 Procedure

The testing was carried out in a self-administered manner. The subjects used Psy-

Works to present the speech-perception materials to their audio processor. Subjects were

assigned a unique presentation order using a Latin square design and were blinded to the

processing condition that was presented. The subjects vocalized responses through a micro-

phone located in front of them. The responses were scored in real-time using an automatic

speech-to-text recognizer module which captured all words that were correctly or incorrectly

identified. Words containing additions, substitutions, or omissions were scored as incorrect.

The percent correct scores for each condition were calculated by dividing the number of

words correctly identified by the total number of words in a sentence list. After each list, the

percent correct was displayed and stored electronically. All participants were native English

speakers, and none had speech difficulties that prevented the investigator from understand-

ing their responses. The total testing time for all conditions including multiple breaks was

approximately 2.5 hours.
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4.5 Results

4.5.1 Objective assessment

The models introduced significant improvements across all objective evaluation metric

scores. The three objective evaluation scores of the RNN model that were tested with

340 samples are shown in Figures  4.2a - 4.2c . The RNN processing improved the source-

to-distortion ratio (SDR, Figure  4.2a ) scores over the unprocessed condition (dashed lines)

across all signal-to-noise ratios (SNRs) as well as across both masker types (green: 2-talker,

blue: non-speech noise). The improvements in SDR introduced by the RNN model (i.e., the

elevation from the dashed lines to solid lines) are all statistically significant (p values less

than 0.0001). The improvements in speech quality and intelligibility introduced by RNN can

also be evidenced by the other two metrics: perceptual evaluation of speech quality (PESQ,

Figure  4.2b ) and short-time objective intelligibility (STOI, Figure  4.2c ). All improvements

are also statistically significant, with a p value that is less than 0.0001. Although statistically

significant, the improvement in speech intelligibility metric (i.e., STOI) was not as prominent

as in the two speech quality metrics (i.e., SDR and PESQ). It is probably because the

SNR tested was high overall (starting from 1 dB SNR) and speech intelligibility was not a

significant issue (Tang et al.,  2017 ). The objective evaluation scores for the unprocessed noisy

mixtures (dashed lines) remained the same for the SepFormer model since the test materials

did not change, as shown in Figure  4.2d - 4.2f . However, the scores for the processed audio

signals by the SepFormer model (solid lines) had even more separation from the dashed

lines, indicating better performance by SepFormer than RNN. The superior performance of

SepFormer over RNN is especially evident in the 1-dB-SNR, or the worst, conditions across

all three evaluation metrics.

4.5.2 Behavioral testing with CI listeners

The models also introduced significant improvements in speech intelligibility scores in

all CI listeners tested. The speech intelligibility scores observed for the three processing

conditions: unprocessed, processed by RNN, and processed by the SepFormer model are
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Figure 4.2. (a)-(c): Objective evaluation scores for signals processed with
the RNN architecture; (d)-(f): objective evaluation scores for signals processed
with the SepFormer architecture.

plotted in percent correct in Figure  4.3 . As with the objective evaluation metrics, CI listeners

were tested with both 2-talker and non-speech masker conditions. Figure  4.3a depicts the

data collected in the 5 dB SNR condition, while Figure  4.3b shows the data obtained in the

10 dB SNR condition.

The percent correct scores were normally distributed according to the Shapiro-Wilk test

for normality and hence we conducted the following statistical tests. First, a three-way anal-

ysis of variance ANOVA (with repeated measures) using the processing condition, SNR, and

type of masker as within-subject factors indicated that there were no statistically significant

three-way or two-way interactions. Hence, two separate sets of two-way ANOVA (with re-

peated measures) were conducted separately at each SNR level in order to examine the main

effects of the processing condition and masker type separately at each SNR level.
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In the 5 dB SNR condition, a repeated measures two-way ANOVA indicated a statistically

significant effect of the masker type (F [1, 7] = 9.85, p = 0.016), and a significant effect of the

processing condition (F [2, 14] = 32.95, p < 0.001). For SNR= 10 dB, a repeated measures

two-way ANOVA indicated only a statistically significant effect of the processing condition

(F [2, 14] = 26.99, p < 0.001), confirming that speech intelligibility did not differ significantly

between different types of maskers. Post-hoc comparisons (with Bonferroni corrections)

between scores revealed that the RNN and SepFormer conditions were not significantly

different from one another (p = 0.183). The RNN scores were also not significantly different

from the unprocessed condition (p = 0.0815). However, speech intelligibility scores due

to processing with the SepFormer model were significantly different from the unprocessed

condition (p = 0.00213).

In the 5 dB SNR unprocessed condition, the median score was 27% in non-speech noise

and 15% in speech noise. After processing with the RNN model, the median performance

increased to 49% in non-speech noise and 46% in speech noise, respectively. Similar to what

was observed in the objective evaluation metrics analysis, the SepFormer model demonstrated

even better performance, raising the median score to 58% in non-speech and 60% in speech

noise. In the 10 dB SNR condition plotted in Figure  4.3b , there was an improvement in the

median scores in the unprocessed condition as compared to the 5 dB conditions: 39% in non-

speech noise and 41% in speech noise. The RNN model further improved the scores to 63%

and 64% in non-speech and speech noise, respectively. The SepFormer model outperformed

the RNN, achieving 70% and 73% in non-speech and speech noise, respectively. Theses

improvements are not only present in the medians, but also on the individual level. For

example, in 5 dB, non-speech noise condition, all subjects but SSD100 and ME196 had

improvements in their percent score due to RNN processing; all subjects had higher scores

due to SepFormer processing. Considering the large individual variability that is typical

of CI patients, the consistent improvement across almost all subjects is a very encouraging

message for the application of DNN-based models for noise reduction in CIs.

Interestingly, the increase introduced by the models was greater in speech noise than

non-speech noise. For RNN model in 5 dB condition, there was a 22% increase in non-

speech noise, whereas the increase was 31% in speech noise. An even larger difference
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was observed with SepFormer: 31% increase in non-speech noise and 45% in speech noise.

This is in contrary to traditional signal processing strategies that are designed for removing

statistically predictable and relatively stationary noises. These algorithms fall short in more

complicated non-stationary speech backgrounds (Boll,  1979 ; Dawson et al.,  2011 ; Loizou

et al.,  2005 ; Mauger et al.,  2012 ; Scalart & Filho,  1996 ). The better performance in speech

noise demonstrated by both RNN and SepFormer is in agreement with the results from

many previous studies on machine-earning based noise-reduction models, such as DNNs and

Gaussian mixture models (GMMs) (Bramsløw et al.,  2018 ; Chen et al.,  2016 ; Goehring et

al.,  2017 ; Healy et al.,  2019 ; Healy et al.,  2015 ; Healy et al.,  2013 ; Hu & Loizou,  2010 ;

G. Kim et al.,  2009 ; Lai et al.,  2018 ; Monaghan et al.,  2017 ). This shows the promise of

using machine-learning based models as a complimentary algorithm to current existing signal

processing strategies, for noise reduction in more complicated, non-stationary background.

4.6 Discussion

The results show that the speech quality and intelligibility were improved by both RNN

and SepFormer models. There were significant increase across all objective evaluation met-

rics, including source to distortion ratio (SDR), perceptual evaluation of speech quality

(PESQ), and short-time objective intelligibility (STOI). The increase in the evaluation scores

from unprocessed to processed noisy mixtures was significant across all signal-to-noise ratio

(SNR) test conditions, in both masker types, in all three metrics, and for both models. The

significance was visually apparent for the two quality metrics—SDR and PESQ, but not so

much for the intelligibility metric—STOI. It is perhaps because the room for improvement in

intelligibility is small in relatively high-SNR conditions we tested, with the worst condition

being 1 dB SNR. In general, the SepFormer model, as the current state-of-the-art, per-

formed better than the simple template RNN model. This advantage is especially prominent

in lower-SNR conditions. For instance, in the 1 dB SNR condition, SepFormer introduced

an improvement of 8.52 in SDR score as compared to 3.35 from RNN. Even in STOI scores,

where the benefits from both models were not as great as in the other two quality metrics,

SepFormer still outperformed RNN.
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The benefits observed from both DNN models with CI users, mirrored the improvements

in speech quality and intelligibility shown in the objective evaluation metrics. For example,

in the 5 dB condition, the CI listeners’ median intelligibility score averaged across speech and

non-speech conditions (not shown) increased from 24% to 46% due to RNN processing and

further increased to 60% in the SepFormer processing conditions. Similarly, the RNN and

SepFormer models increased the median intelligibility scores from 38% to 64% and 70% in

the 10 dB SNR condition, respectively. The reduced benefit of SepFormer over RNN under

this condition might be due to the fact that the 10 dB SNR condition is an easier listening

condition where “de-noising” or enhancement of the stimulus is much less necessary. These

results are consistent with previous studies on the application of machine learning-based al-

gorithms to “de-noising” strategies towards better processing in cochlear implants (Goehring

et al.,  2017 ; Goehring et al.,  2019 ; Hu & Loizou,  2010 ; Lai et al.,  2018 ). Our study further

confirms the promise of using DNN-based algorithms to solve speech-in-noise hearing prob-

lems among CI listeners. It serves as an important extension and optimization of previous

work. While Hu and Loizou,  2010 and Lai et al.,  2018 used the same speaker for training

and testing, our study further investigated the models’ capability of generalization by using

different speech and non-speech materials for testing. We also used a much larger and di-

verse training dataset. The training dataset is of approximately 30 hours in total duration

with 4 distinct target-masker configurations. Within each configuration, 10 different SNR

conditions in a 1 dB step were implemented with equal representation. The models were

also trained more extensively with 100 learning cycles or epochs, whereas some other studies

trained their models with a much less number of learning cycles. For instance, Goehring

et al.,  2019 trained their model for only one epoch. Although the successful training with

such a small number of learning cycles helps demonstrate the model’s promise of being con-

tinuously trained “on the go” with smaller resources, we wanted to explore the full capacity

of the models for noise reduction through a more thorough training process. In addition to

the basic RNN model, we also implemented and tested the current best-performing model in

the field of speech separation—the SepFormer, to explore the limit to which a DNN-based

strategy could suppress the noise for CI devices. While, not surprisingly, the SepFormer

model outperformed RNN in every test, it is a very complicated model containing over 26
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million parameters. The processing time of such a heavy model turned out to be almost

5 times the duration of the input signal on average, which renders it not suitable for a

real-time application such as a CI speech processor. The time constraint for the processing

delay in a real-time device such as CI should be below about 10-20 ms to avoid disturbance

in speech production and audio-visual integration (Bramsløw et al.,  2018 ; Goehring et al.,

 2018 ; Goehring et al.,  2019 ; Stone & Moore,  1999 ). Another limitation comes from the high

demand for computational power and memory and it is unrealistic to run these highly com-

plex state-of-the-art models within the CI processors. RNN model, on the other hand, is a

much lighter model and only takes around 3% of the incoming signal duration for processing

on average, which makes it promising to apply the RNN model to CI applications.

Improving the speech-in-noise hearing for CI listeners is the most challenging problem

for CI research and the development of future CI technologies. The results from this study

demonstrate the promise of using DNN-based technologies for noise reduction in more com-

plicated and unpredictable, but more common everyday listening environments, where cur-

rent signal processing strategies for noise reduction fail to produce satisfactory performance.

Both models evaluated here in this study are single-channel models. Dual-channel models

with spatial-hearing sensitivity might further improve the performance. Future implemen-

tation of models that consider more aspects of the “cocktail-party listening”, combined with

current signal processing strategies, will hopefully be integrated and adopted by CI devices

for better speech-in-noise hearing.
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(a)

(b)

Figure 4.3. Individual sentence recognition performance plotted as a function
of each processing condition. The boxes depict the values between the 25th and
75th percentiles, and the whiskers represent minimum and maximum values.
Medians are shown as horizontal lines. (a) SNR = 5 dB (b) SNR = 10 dB;
CCITT: speech-shaped noise, TTB: two-talker babble.
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5. CONCLUSION

This thesis aimed to investigate the perceptual role of temporal fine structure (TFS) in

everyday hearing, through the individual-difference approach. Although the results suggest

that TFS might not be critical for providing listeners with more release from masking, TFS

enables a listener to have a more resilient hearing that is less prone to corruption from

reverberation. Furthermore, TFS processing was shown to be able to reduce an individual’s

reaction time during the speech-in-noise listening task, suggesting lessened listening effort. In

addition to studying the TFS, this thesis also implemented two state-of-the-art deep neural

network (DNN) models of speech enhancement and separation to explore their potential to be

used for de-noising algorithms in hearing assistive devices, such as cochlear implants (CIs).

Both models introduced significant improvements in all speech quality and intelligibility

metrics tested. The models also significantly improved speech-in-noise listening performance

among CI listeners.

Chapter 2 laid the foundation for this thesis to study the role of TFS in speech-in-

noise listening, by establishing an array of TFS-sensitivity measurements at the individual

level. Pinning down the perceptual significance of TFS has been elusive due to the limita-

tion of the most commonly used approach—vocoding. It became very important that the

vocoding strategy was avoided throughout this thesis. Therefore, we aimed to use individual-

difference approach as an alternative. With the exploration and evaluation of many classic

measurements of TFS sensitivity both behaviorally and electrophysiologically, we found that

“adjusted” binaural assays may be well-suited for quantifying individual TFS processing.

It should be emphasized that extraneous variables dominate both behavioral scores and

EEG amplitude metrics, rendering them ineffective. The raw metrics have to be adjusted to

account for the factors that are irrelevant to TFS processing.

With the available tools for assessing individual differences in TFS sensitivity, chapter 3

proceeded to investigate the perceptual role of TFS in noise by adding comprehensive mea-

surements of speech intelligibility under various types of listening conditions. In particular,

we examined most of the major aspects of speech-in-noise listening where TFS has been

believed to play a role, including pitch perception, spatial localization, informational mask-
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ing, listening in reverberation, and listening efforts. The comparison between the individual

differences in TFS sensitivity and speech-in-noise intelligibility revealed that better TFS

sensitivity does not necessarily introduce more benefits of release from masking for speech-

in-noise listening, which is consistent with existing literature. However, this study adds to

the previous knowledge that better TFS sensitivity serves as a protective shield against cor-

ruption due to reverberation and reduces reaction time suggesting lessened listening effort

in everyday hearing.

Chapter 4 explored the potential of DNN technology for modeling speech separation and

enhancement. Current state-of-the-art signal processing strategies provide limited benefits

of noise reductions for hearing assistive technologies. Despite the wide adoption of DNN

technologies for advanced speech applications such as speech recognition and synthesis, the

application of DNN for noise-reduction problems of hearing assistive devices has been scarce.

To fill this gap, we implemented two state-of-the-art DNN models. Both models introduced

significant improvements in speech quality and intelligibility across all acoustic evaluation

metrics tested. The models also introduced significant improvements in speech intelligibility

scores among CI listeners in both speech and non-speech noise interference. This work

serves as a proof of concept that DNN technology has the potential to be incorporated

into the “front-end” noise-reduction algorithms in hearing assistive devices, as well as to

complement other approaches by serving as a research tool to help generate and rapidly pilot-

test hypotheses about various questions regarding speech-in-noise hearing before moving onto

the formal experiments.

To my knowledge, this thesis is the first to have studied the role of TFS in the ev-

eryday hearing through an individual-difference approach by systematically measuring TFS

sensitivity and speech-in-noise intelligibility under various listening conditions on a large

typical-hearing population (n=200). To ameliorate COVID-related restrictions on in-person

measurement, chapter 3 was fully carried out via remote testing, which also makes this study

one of the first few studies that have successfully achieved this enterprise in the auditory

field. The findings regarding the possible role of TFS in reducing the impact of reverber-

ation and lessening listening effort raise the possibility that cochlear implant sound coding

strategies could be improved by attempting to provide usable TFS information, and that the
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individualized TFS assays can also help predict listening outcomes in reverberant, real-world

listening environments. The success with online experiments also serves as a template for

future applications of remote testing in both research and clinics. Future work could extend

from this associational study to look into the exact mechanisms underlying the relationship

between the TFS processing and listening in reverberation, and listening effort. Finally, the

DNN study is one of the first attempts to incorporate artificial intelligence technology into

the field of hearing research. The remarkable improvements in speech quality and intelli-

gibility brought by the DNN models show us a new direction for tackling the challenging

noise-reduction problem in both research and clinic. The two models implemented in this

study are both a single-channel monaural model of speech-in-noise hearing. Future work

should focus on building more sophisticated yet realistic models of speech-in-noise listening,

by integrating many other aspects of everyday hearing, such as spatial hearing, selective

attention, and even audio-visual integration.
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