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ABSTRACT

This thesis studies infinite dimensional Gaussian measures on Banach spaces. Let µ0 be a

centered Gaussian measure on Banach space B, and µ∗ is a measure equivalent to µ0. We are

interested in approximating, in sense of relative entropy (or KL divergence) the quantity dµz

dµ∗

where µz is a mean shift measure of µ0 by an element z in the so-called “Cameron-Martin”

space Hµ0 . That is, we want to find the information projection

inf
z∈Hµ0

DKL(µz||µ0) = inf
z∈Hµ0

Eµz

(
log

(
dµz

dµ∗

))
.

We relate this information projection to a mode computation, to an “open loop” control

problem, and to a variational formulation leading to an Euler-Lagrange equation. Further-

more, we use this relationship to establish a kind of Feynman-Kac theorem for systems of

ordinary differential equations. We demonstrate that the solution to a system of second

order linear ordinary differential equations is the mode of a diffusion, analogous to the result

of Feynman-Kac for parabolic partial differential equations.
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1. INTRODUCTION

Infinite dimensional Gaussian measure theory uses tools from functional analysis, measure

theory and probability theory and has found use in all areas of pure and applied mathe-

matics, including quantum field theory via Feynman path integration, statistical mechanics,

financial mathematics and biology to name a few. The generalization from finite dimensional

measures to infinite dimensional measures poses many technical challenges; including ana-

lyzing various statistics like the mean, covariance and more recently, the mode. Similarly to

the finite dimensional case, the mode of an infinite dimensional measure is an optimization

problem, with all of the challenges that infinite dimensional optimization poses. The means

of measures on Gaussian Banach spaces provide much information and have been used to

prove interesting equivalences. For example, Feynman’s originally ill-posed theory of infinite

dimensional path integration which underpins much of quantum field theory was put on rig-

orous ground via the Feynman-Kac theorem introduced in [  2 ] - which says that the solution

to a parabolic PDE is the mean of an infinite dimensional measure on the classical Wiener

space. This equivalence not only resolved one of the most fundamental problems in mathe-

matical quantum field theory, but the equivalence spurred much generalization including to

stochastic PDE in e.g. [  3 ]–[ 5 ]. It has also seen utility in physics, see e.g. [  6 ]–[ 10 ]. It has

been used also in interacting particle systems, see e.g. [  11 ]–[ 14 ], and in finance, see e.g. [  15 ].

One very useful implication of the classical Feynman-Kac formula is that it leads to Monte

Carlo methods for efficient numerical estimation of the solution to parabolic PDEs. As with

the mean, the mode is an essential statistic.

In this thesis, we first prove a “Portmanteau” theorem that relates information projec-

tions, modes defined through Onsager-Machlup formalism, “open loop” or state independent

KL weighted control and an Euler-Lagrange equation. Then we use a modified version of this

theorem to include “conditional” modes to prove a Feynman-Kac type theorem for systems

of ordinary differential equations.
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1.1 Preliminaries

In this section we collect several classical results that are frequently referenced throughout

this thesis. First, we discuss results for Gaussian measure theory on Banach spaces. We refer

the reader to [ 16 ], [ 17 ] for more information on Gaussian measure theory.

We will work on a separable Banach space (B, ‖ · ‖), where we denote elements of B as

ω ∈ B. We let B∗ denote the space of continuous linear functionals ` : B → R (with respect

to the norm on B).

Definition 1.1.1. [ 17 , Definition 3.2] Let µ be a Borel probability measure on B.

(i) The pushforward measure `∗(µ) for ` ∈ B∗ is defined by `∗(µ)(A) := µ(`−1(A))

for all Borel A ⊂ R.

(ii) µ is Gaussian if, for all ` ∈ B∗, `∗(µ) is a Gaussian measure on R.

(iii) µ is centered if, for all ` ∈ B∗, `∗(µ) is centered.

Formally, we consider Dirac-δ measures to be Gaussian in the limit of infinitesimally

small variance. This convention includes the case where e.g. ` ≡ 0.

Definition 1.1.2. [ 17 , Equation (3.2)] Let µ be a centered Gaussian measure on B. The

covariance operator corresponding to µ is Cµ : B∗ × B∗ → R defined by

Cµ(`, `′) :=
∫

B
`(x)`′(x)µ(dx),

for all `, `′ ∈ B∗.

When B = Rd, we may identify (Rd)∗ with Rd so that the covariance operator from Definition

 1.1.2 is just the usual covariance matrix.

Next we define the Cameron-Martin space which plays a central role in this thesis. In

particular, in our upcoming information projection problem we will optimize over all shift

measures corresponding to the Cameron-Martin space.

Definition 1.1.3. [ 17 , Definition 3.24] Let µ be a centered Gaussian measure on B. The

Cameron-Martin space Hµ is the completion of the subspace

H̊µ := {h ∈ B : ∃h∗ ∈ B∗ with Cµ(h∗, `) = `(h), ∀` ∈ B∗}

8



with respect to the norm ‖ · ‖µ corresponding to µ defined by ‖h‖µ := 〈h, h〉µ := Cµ(h∗, h∗)

for all h ∈ B.

Remark 1.1.1. There might be multiple h∗ associated to h in the sense of Definition  1.1.3 .

However, the norm ‖·‖µ is independent of the choice of h∗. Furthermore, there is a canonical

representation for h∗ (see e.g. [  17 , Proposition 3.31]). In the rest of our work, we just assume

h∗ is this canonical representation.

One of the main achievements of Gaussian measure theory is the Cameron-Martin theo-

rem. For h ∈ B, the translation map Th : B → B is defined by Th(x) := x+ h for all x ∈ B.

Let µ0 be a reference Gaussian measure on B. Corresponding to the translation map Th,

we define the pushforward measure µ := T ∗
h (µ0) by µ(A) = T ∗

h (µ0)(A) = µ0(T−1
h (A)) for all

Borel A.

Theorem 1.1.1. [ 17 , Theorem 3.41] Let µ0 be a centered Gaussian measure on B. The

pushforward measure µ := T ∗
h (µ0) is absolutely continuous with respect to µ0 if and only

h ∈ Hµ0. Furthermore, the Radon-Nikodym derivative of µ with respect to µ0 is

dµ

dµ0
= exp

(
h∗(x) − 1

2‖h‖2
µ

)
.

We now recall the Kullback-Leibler (KL) divergence, which is central to our information

projection problem (it is the objective of this problem). Continue to let µ0 be a reference

measure on B and let µ be another measure on B such that the Radon-Nikodym derivative
dµ
dµ0

exists. Then, the KL-divergence of µ with respect to µ0 is defined by:

DKL(µ||µ0) := Eµ

[
log

(
dµ

dµ0

)]
.

We recall three key properties of the KL-divergence: (i) DKL(µ||µ0) ≥ 0; (ii) DKL(µ||µ0) = 0

if and only if µ = µ0; and (iii) µ 7→ DKL(µ||µ0) is convex. The next result shows how to

compute the KL-divergence between two shift measures drawn from the Cameron-Martin

space Hµ0 .
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Theorem 1.1.2. [ 18 , Lemma 3.20] Let µ0 be a centered Gaussian measure on B with

Cameron-Martin space Hµ0, and let µ1 = T ∗
h1(µ0) and µ2 = T ∗

h2(µ0) for some h1, h2 ∈ Hµ0.

Then, the Radon-Nikodym derivative dµ1
dµ2

exists and

DKL(µ1||µ2) = 1
2‖h1 − h2‖2

µ0 .

Next we define classical Wiener space associated to a standard Brownian motion. This

is our first specific example of a Banach space with a Gaussian measure, and later in the

thesis we obtain some more detailed results for this special setting.

Definition 1.1.4. Let B = C0[0, T ] be the set of continuous functions f : [0, T ] → R equipped

with the supremum norm ‖ · ‖∞, such that f(0) = 0. Let µ0 be the Borel measure on C0[0, T ]

associated to the standard Brownian motion B(t). Then (C0[0, T ], µ0) is classical Wiener

space.

Proposition 1.1.1. [ 17 , Exercise 3.27] Let µ0 be the Borel measure on C0[0, T ] associated

to a standard Brownian motion B(t).

(i) The measure µ0 is a centered Gaussian measure with covariance operator Cµ0(δs, δt) =

min{s, t}.

(ii) The Cameron-Martin space associated to µ0 is the Sobolev space

W 1,2
0 :=

{
F : [0, T ] → R : f(0) = 0 and ∃f ∈ L2[0, T ] so that F (t) =

∫ t

0
f(s)ds

}
.

Furthermore, the Cameron-Martin norm ‖ · ‖µ0 is the Sobolev norm

‖F‖µ0 =
∫ T

0
f 2(s)ds.

Now we collect some results from stochastic analysis and Malliavin calculus. We refer

the reader to [ 19 ], [ 20 ] for more details.

Theorem 1.1.3. [ 21 , Lemma 5.76] Let (C0[0, T ], µ0) be classical Wiener space, and assume:

(a) F is a progressively measurable process with respect to the filtration generated by the

standard Brownian motion B(t);
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(b) The sample paths are almost surely in the Cameron-Martin space W 1,2
0 ;

(c) Novikov’s condition,

Eµ0

[
exp

(∫ T

0
f 2(s)ds

)]
< ∞,

where f(s) = F ′(s), holds.

Then, the process B(t) − F (t) is a standard Brownian motion under µ with density

dµ

dµ0
= exp

(∫ T

0
f(s)dB(s) − 1

2

∫ T

0
f 2(s)ds

)
.

Theorem 1.1.4. [ 21 , Theorem 5.72] Let (C0[0, T ], µ0) be classical Wiener space, and suppose

µ ∼ µ0. Then, there exists a progressively measurable process F (t) with sample paths almost

surely in the Cameron-Martin space W 1,2
0 so that the process B(t) − F (t) is a standard

Brownian motion under µ. Furthermore, the density is given by

dµ

dµ0
= exp

(∫ T

0
f(s)dB(s) − 1

2

∫ T

0
f 2(s)ds

)
,

where f(s) = F ′(s).

Remark 1.1.2. Theorem  1.1.4 is a partial converse to Theorem  1.1.3 . We had to assume

Novikov’s condition holds to prove the “forward” direction in Theorem  1.1.3 . There are

weaker sufficient conditions, such as Kazamaki’s condition (see e.g. [  22 , P. 331]). However

in the “reverse” direction in Theorem  1.1.4 , the conclusion only establishes that the sample

paths lie almost surely in the Cameron-Martin space W 1,2
0 . This condition is weaker than

both Novikov’s condition and Kazamaki’s condition.

Remark 1.1.3. By the Doob-Dynkin Lemma, the progressively measurable process f that

appears in Theorem  1.1.3 and Theorem  1.1.4 has implicit dependence on the underlying

Brownian motion, i.e., f(s) = f(s, B(s)) for all s ∈ [0, T ]. We usually suppress this

dependence for cleaner notation except where it is needed explicitly.

In light of Theorem  1.1.4 we make the following definition.
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Definition 1.1.5. Let µ ∼ µ0 be a Borel measure on classical Wiener space (C0[0, T ], µ0).

We say that the progressively measurable process F (t) corresponds to the measure µ if

B̃(t) := B(t) − F (t)

is a Brownian motion under µ.

Theorem 1.1.5. [ 21 , Theorem 5.55] Let (C0[0, T ], µ0) be classical Wiener space, and let

C : C0[0, T ] → R be a functional such that Eµ0 [C2] < ∞. Then, there exists a progressively

measurable process f(t) such that

C = Eµ0 [C] +
∫ T

0
f(t)dB(t).

Theorem  1.1.5 is an existence result. A natural follow-up question is how to compute

the process f(t) that appears in the statement of Theorem  1.1.5 . The Clark-Ocone theorem

gives a computational version of Theorem  1.1.5 , stated in terms of the Malliavin derivative

of C. We refer to [  19 ] for more information on Malliavin calculus.

Theorem 1.1.6. [ 19 , Proposition 1.3.14] Let C : C0[0, T ] → R be in the Sobolev-Watanabe

space D1,2 (see [ 19 , page 27] for the definition), then

C = Eµ0 [C] +
∫ T

0
Eµ0 [DtC | Ft]dB(t),

where Dt is the Malliavin derivative and Ft is the filtration generated by Brownian motion.
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2. PORTMANTEAU THEOREM

2.1 Introduction

This chapter studies constrained information projections on Banach spaces with respect

to a Gaussian reference measure, following closely the paper [  1 ]. Specifically, our interest lies

in characterizing projections of the reference measure onto sets of measures corresponding

to changes in the mean (or shift measures). Information projection onto shift measures

emerges in a number of domains of applied probability including stochastic optimal control,

approximate inference, and large deviations analysis. Let B be a separable Banach space,

µ0 a centered Borel Gaussian measure on B, and µ∗ ∼ µ0 another Borel measure where

∼ denotes equivalence of measures. The symbol Hµ0 ↪→ B represents the Cameron-Martin

space associated to µ0. By the Cameron-Martin Theorem [  17 , Theorem 3.41], the shift

measure T ∗
h (µ0)(·) := µ0(· − h) for h ∈ B is absolutely continuous with respect to µ0 if and

only if h ∈ Hµ0 . Let P denote the set of all shift measures which are absolutely continuous

with respect to µ0. We are interested in computing the information projection of µ∗ onto P ,

infµ∈P DKL(µ||µ∗), where DKL(µ||µ∗) is the KL-divergence of µ with respect to µ∗.

The main result of this chapter characterizing the information projection is consolidated

in the following portmanteau theorem. For this result, we let val(·) and sol(·) denote the

optimal value and the set of optimal solutions of an optimization problem, respectively.

Theorem 2.1.1. [A Portmanteau Theorem] Let B be a separable Banach space. Let µ0

be a Gaussian measure on B (see Definition  1.1.1 ) with Cameron-Martin space Hµ0 (see

Definition  1.1.3 ). Let C : B → R be a functional satisfying Hypothesis  2.2.2 . Furthermore,

assume that the functional Φ : B → R defined by Φ(z) = Eµ0 [C(ω + z)] exists and satisfies

Hypothesis  2.2.1 . Define the probability measure µ∗ on B with density

dµ∗

dµ0
:= e−C

Eµ0 [e−C ]
,

and the probability measure µ̃ on B with density

dµ̃

dµ0
:= e−Φ

Eµ0 [e−Φ]
.
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Let P be the set of Gaussian shift measures which are absolutely continuous with respect to

µ0 (defined in Eq. ( 2.1 )). Consider the following three optimization problems:

(a) (Information projection)

K := inf
µ∈P

DKL(µ||µ∗).

(b) (State independent KL-weighted control)

P := inf
µ∈P

{Eµ[C] +DKL(µ||µ0)} .

(c) (Mode of µ̃)

M := inf
z∈Hµ0

OMΦ(z).

Then, the optimal values val(K), val(P), and val(M) are all attained (and so all three

problems have optimal solutions). By the Cameron-Martin theorem (see Theorem  1.1.1 ), we

can identify each shift measure µz ∈ P with its corresponding shift z ∈ Hµ0, and so we have

sol(K) = sol(P) ≡ sol(M).

In the above, we have used equivalence “≡” for shorthand to denote that µz ∈ sol(P) (or

µz ∈ sol(K)) if and only if its corresponding shift z ∈ sol(M).

Furthermore, suppose (B, µ0) is the classical Wiener space (see Definition  1.1.4 ) and

C satisfies Hypothesis  2.2.3 . Let L(t, z, ż) be the Lagrangian (defined in Eq. ( 2.16 )), and

suppose L(t, z, ż) satisfies Hypothesis  2.4.1 . Consider the following calculus of variations

problem:

(d) (Calculus of variations)

L : inf
q∈W 1,2

0 [0,T ]

{
L(q, q̇; f) := 1

2

∫ T

0
L(t, q(t), q̇(t); f)dt s.t. q(0) = 0

}
.

14



Then, the optimal value val(L) is attained (so Problem L has an optimal solution). We

continue to identify each shift measure µz ∈ P with its corresponding shift z ∈ Hµ0 by the

Cameron-Martin theorem (see Theorem  1.1.1 ), and so we have

sol(K) = sol(P) ≡ sol(M) = sol(L).

Again, as above we use ≡ to denote that µz ∈ sol(P) (or µz ∈ sol(K)) if and only if its

corresponding shift z ∈ sol(M) (or z ∈ sol(L)).

In summary, the principal technical contributions of the present chapter are:

(i) For Gaussian reference measures over an arbitrary Banach space, we show that the optimal

Gaussian shift measure of the (constrained) information projection problem corresponds

precisely to the minimizer of the Onsager-Machlup function of an associated Gibbs measure

over the Banach space (that is fully characterized). As a direct consequence, the optimal

open loop KL-weighted control function can be viewed as finding the most likely path of a

stochastic process associated with the Gibbs measure.

(ii) We further characterize the information projection onto Gaussian shift measures with

respect to a reference Wiener measure. In particular, we derive a single functional constraint

to express the feasible region P . This functional constraint reveals that the feasible region

of this optimization problem is non-convex, and we also find that standard convex inner and

outer relaxations only yield “trivial” approximations.

(iii) Finally, we re-formulate the information projection problem and show that the optimal

solution corresponds to a calculus of variations problem. More precisely, we show that the

solution is completely characterized by the solution of an Euler-Lagrange equation. This

yields a tractable representation, which we illustrate through a number of examples.

Related Literature. Information projections onto shift measures appear in a number of

domains of applied probability, including stochastic optimal control, large deviations theory

and approximate inference. Kullback-Liebler (KL) or relative-entropy weighted control [ 23 ]–

[ 25 ] studies a class of restricted control problems where the total cost of a given control policy

can be expressed as the KL-divergence between the path measure of the controlled process

and that of the Wiener reference measure. Our investigation has special relevance for KL-
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weighted optimal control in ‘open-loop’ settings where the control is not state dependent,

such as in the control of large ensembles of particles, such as fleets of vehicles, modeling

flocking behavior [ 26 ], material science applications [  27 ], [ 28 ] and in power systems [  29 ]–[ 31 ]

(for load management for example).

The utility of the KL-weighted control formulation comes from a variational formula

proved in [  23 ] (and in [  32 ] in a more restricted setting) that shows that the optimal value

of the KL-weighted control is precisely the logarithm of the mean exponentiated cost under

the Wiener measure. However, even though the optimal value (and corresponding optimal

measure) can be characterized, computing the optimal control function itself is still a non-

trivial problem. For example, [  23 ] shows that the optimal control function can be computed

as the Föllmer drift [  33 ]–[ 35 ] corresponding to the optimizer of the information projection.

In most cases, the computation of the Föllmer drift is fraught; for instance, [ 23 ] uses the

Clark-Occone formula of Malliavin calculus to compute the optimal control function.

Organization. In the next section we present preliminary notation, definitions, and

standard results that will be used throughout the thesis. In Section  2.2 , we formalize our

information projection problem and show that it is equivalent to minimization of an Onsager-

Machlup function. In Section  2.2.1 we introduce the constrained relative entropy-weighted

optimization problem and connect it to Onsager-Machlup minimization. We then charac-

terize the constraint that the drift is state-independent in Section  2.3 . Specifically, we show

that this constraint can be expressed by a single functional constraint (which is a difference-

of-convex (DC) functions), and we consider some convex relaxations. In Section  2.4 we turn

to the Euler-Lagrange formulation of the problem and provide a clean derivation of the op-

timal solution in terms of the solution to the Euler-Lagrange equation. We also offer an

interpretation of the solution to this problem in terms of minimizing the Onsager-Machlup

function that was introduced in Section  2.2 . Finally, in Section  2.5 we compute the solution

of the Euler-Lagrange equation and the associated Onsager-Machlup minimizing process for

a number of example cost functions. We conclude the chapter in Section  2.6 with some

further discussion.
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2.2 Information Projection and Onsager-Machlup

For this section, let B be a separable Banach space with centered Gaussian measure µ0.

We formally define the set of Gaussian shift measures to be

P := {T ∗
h (µ0) : h ∈ Hµ0}, (2.1)

where the measure T ∗
h (µ0) is defined before Theorem  1.1.1 . Now let µ∗ be another Borel

probability measure on B such that µ∗ ∼ µ0. Recall the information projection problem

K := inf
µ∈P

DKL(µ||µ∗).

Problem K projects µ∗ onto the set of Gaussian shift measures. We are interested in

finding the measure µO that attains the optimal value val(K) of Problem K, when it exists.

We will show that computing the optimizer of Problem K is equivalent to minimizing

the Onsager-Machlup function corresponding to an associated stochastic process. We now

introduce the definition of the Onsager-Machlup function, see [ 36 ], [ 37 ] for further details.

Definition 2.2.1. Let µ0 be a Gaussian measure on a separable Banach space B with

Cameron-Martin space Hµ0. Let Bδ(z) ⊂ B be the open ball of radius δ around z. Let

µ be another measure that is absolutely continuous with respect to µ0. If the limit

lim
δ→0

µ(Bδ(z2))
µ(Bδ(z1))

= exp (OM(z1) −OM(z2))

exists for all z1, z2 ∈ Hµ0, then OM is called the Onsager-Machlup function for µ.

The Onsager-Machlup function can be viewed as the Lagrangian for the “most likely” path

of the associated process. In Theorem  2.2.2 , we specifically show that the optimizer of

Problem K can be identified with an optimal drift/shift function that is the minimizer of an

associated Onsager-Machlup function. Crucially, this identification affords a Monte Carlo

sampling method (via the associated stochastic process) for solving Problem K.

In [ 36 , Theorem 3.2], the Onsager-Machlup function is computed for a certain class of

measures. We recall this result next.
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Hypothesis 2.2.1. Let Φ : B → R be a functional satisfying the following conditions:

(i) For every ε > 0 there is an M ∈ R such that

Φ(ω) ≥ M − ε‖ω‖2,

for all ω ∈ B.

(ii) Φ is locally bounded above, i.e., for every r > 0 there is a K = K(r) > 0 such that

Φ(ω) ≤ K,

for all ω ∈ B with ‖ω‖ < r.

(iii) Φ is locally Lipschitz continuous, i.e., for every r > 0 there exists L = L(r) > 0

such that

|Φ(ω1) − Φ(ω2)| ≤ L‖ω1 − ω2‖,

for all ω1, ω2 ∈ B with ‖ω1‖ < r and ‖ω2‖ < r.

Remark 2.2.1. Note that the functional Φ in Hypothesis  2.2.1 is not necessarily of the form

in Theorem  2.1.1 , where the latter is given by some real-valued functional C.

Theorem 2.2.1. [ 36 , Theorem 3.2] Let Φ : B → R satisfy Hypothesis  2.2.1 . Let the measure

µ have the density
dµ

dµ0
= e−Φ

Eµ0 [e−Φ]
.

Then, the OM function is given by

OMΦ(z) =


Φ(z) + 1

2‖z‖2
µ0 if z ∈ Hµ0

∞ else
.

We introduce the following optimization problem

M := inf
z∈Hµ0

OMΦ(z),
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which aims to minimize the OM function OMΦ(z). Under Hypothesis  2.2.1 , we know that an

optimal solution of Problem M exists by [  38 , Proposition 3.4]. See [  37 ] for the corresponding

result in classical Wiener space. The minimizer of the OM function OMΦ(z) (i.e., the solution

of Problem M) is the “most likely” element of (B, µ0).

To express Problem K in terms of the OM function, we need a technical lemma from [  23 ]

for functionals C satisfying the following “finite entropy” hypothesis.

Hypothesis 2.2.2. We assume that µ0(C < +∞) > 0 and Eµ0 [ exp(−C) |C|] < +∞.

Lemma 2.2.1. [ 23 , Lemma 2.4(ii)] Let µ0 be a Gaussian measure on a separable Banach

space B, and let C : B → R satisfy Hypothesis  2.2.2 . Define the measure µ∗ with density

dµ∗

dµ0
= e−C

Eµ0 [e−C ]
.

Then, for µ � µ0 satisfying DKL(µ||µ0) < +∞ and Eµ[(C)+] < +∞,

DKL(µ||µ∗) = Eµ[C] +DKL(µ||µ0) − logEµ0 [e−C ].

Remark 2.2.2. In [  23 ], it is shown that Hypothesis  2.2.2 implies 0 < Eµ0 [ exp(−C)] < +∞,

and so the measure µ∗ in Lemma  2.2.1 is well defined.

We can now relate Problem K to minimization of an OM function.

Theorem 2.2.2. Let µ0 be a centered Gaussian measure on a separable Banach space B.

Let µ∗ be another Borel probability measure and assume:

(a) µ∗ ∼ µ0.

(b) µ∗ has density
dµ∗

dµ0
= e−C

Eµ0 [e−C ]
,

for a functional C : B → R which satisfies Hypothesis  2.2.2 .

(c) The functional z 7→ Φ(z) := Eµ0 [C(ω+ z)] satisfies Hypothesis  2.2.1 , and there is an

associated measure µ̃ on B with density

dµ̃

dµ0
= e−Φ

Eµ0 [e−Φ]
.
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Then, Problem K has a solution µO where µO(·) = µ0(· − zO) and zO is the minimizer of

the OM function for µ̃ (which always exists by [ 36 , Prop 3.4]).

Proof. By Lemma  2.2.1 , we have that

inf
µ∈P

DKL(µ||µ∗) = inf
µ∈P

{Eµ[C] +DKL(µ||µ0)} − logEµ0 [e−C ].

Using Theorem  1.1.2 and the definition of Φ for each µ ∈ P with corresponding shift zµ ∈

Hµ0 , we have that

DKL(µ||µ∗) = Eµ0 [C(ω + zµ)] + 1
2‖zµ‖2

µ0 − logEµ0 [e−C ]

= Φ(zµ) + 1
2‖zµ‖2

µ0 − logEµ0 [e−C ]

= OMΦ(zµ) − logEµ0 [e−C ].

By [ 36 , Prop 3.4], the minimizer of Problem M, denoted zO ∈ Hµ0 , exists. Then, we have

the chain of relations

OMΦ(zO) − logEµ0 [e−C ] = DKL(µ0(· − zO)||µ∗)

≥ inf
µ∈P

DKL(µ||µ∗)

= inf
z∈Hµ0

OMΦ(z) − logEµ0 [e−C ]

= OMΦ(zO) − logEµ0 [e−C ].

It follows that the optimal value sol(K) exists and also that sol(K) = µ0(· − zO).

Remark 2.2.3. Observe that zO is interpreted as the most likely element of (B, µ̃). In other

words, zO can be viewed as the mode of µ̃. Theorem  2.2.2 suggests a potential simulation-based

method to compute the optimizer of the information projection Problem K via Monte-Carlo

estimation of the mode of µ̃.
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2.2.1 KL-Weighted Optimization on Wiener Space

We now apply our results to KL-weighted state independent (or “open loop”) optimal

control on classical Wiener space. Let C : C0[0, T ] → R be a cost functional satisfying

Hypothesis  2.2.2 along with the following integrability condition.

Hypothesis 2.2.3. We assume that Eµ0 [C2] < ∞.

For all µ ∼ µ0, we define the functional:

J(µ) := Eµ [C] +DKL(µ||µ0) = Eµ

[
C + log

(
dµ

dµ0

)]
, (2.2)

which is the sum of the expected cost Eµ [C] with respect to µ and the KL-divergence

DKL(µ||µ0) of µ with resepct to the uncontrolled process µ0. In particular, DKL(µ||µ0) can

be interpreted as a penalty for the “effort” of control.

Let

P0 := {Borel probability measures µ : µ ∼ µ0} (2.3)

be the set of all measures on B that are equivalent to the Wiener measure µ0. The corre-

sponding classical unconstrained variational stochastic optimal control problem is:

inf
µ∈P0

Eµ

[
C + log

(
dµ

dµ0

)]
, (2.4)

where we note the feasible region in Problem (  2.4 ) is P0 instead of P (the set of shift measures

defined in Eq. (  2.1 )). The optimality conditions of Problem (  2.4 ) are characterized in the

following theorem, where we denote an optimal solution of Problem ( 2.4 ) as µ∗.

Theorem 2.2.3. [ 23 , Lemma 2.4] Suppose Hypothesis  2.2.2 holds. Then, the measure with

density
dµ∗

dµ0
:= exp(−C)

Eµ0 [ exp(−C)] (2.5)
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exists and µ∗ ∈ P0. In addition, if µ is a Borel probability measure so that Eµ[(C)+] < +∞

and DKL(µ||µ∗) < +∞, then we have:

J(µ) = DKL(µ||µ∗) − logEµ0 [e−C ]. (2.6)

Furthermore, J is strictly convex on the set

P̃ := {Borel probability measures µ : Eµ[(C)+] < +∞ and DKL(µ||µ∗) < +∞},

and µ∗ is the unique optimal solution with corresponding optimal value:

inf
µ∈P̃

J(µ) = − logEµ0

[
e−C

]
.

By Theorem  1.1.5 , if C satisfies Hypothesis  2.2.3 then there exists a progressively measurable

process f(t) so that

C = Eµ0 [C] +
∫ T

0
f(t)dB(t),

where equality holds almost surely. By Theorem  2.2.3 , the density for the optimal measure

µ∗ is
dµ∗

dµ0
= exp

(
−
∫ T

0
f(t)dB(t) − 1

2

∫ T

0
f 2(t)dt

)
,

for this same f(t). Consequently, the optimal measure µ∗ corresponds to (in the sense of

Definition  1.1.5 ) an optimal drift F (t) = −
∫ t

0 f(s)ds by Theorem  1.1.3 .

As noted before, in this thesis, we are interested in minimizing J(µ) (defined in Eq. (  2.2 ))

subject to the additional constraint that measures correspond to (in sense of Definition  1.1.5 )

a state independent drift. That is, F (t) should be a deterministic path that does not depend

on the underlying process B(t). This requirement may be equivalently viewed as constraining

the covariance of the controlled process to be the same as that of Brownian motion. In this

light, we may express the feasible region P (originally defined in Eq. ( 2.1 )) equivalently as:

P := {µ ∈ P0 : µ corresponds to a state independent drift}. (2.7)
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The corresponding constrained optimal control problem is:

P := inf
µ∈P

J(µ) = inf
µ∈P

{Eµ [C] +DKL(µ||µ0)} .

In the next section we provide a more precise description of the feasible region P . In

particular, we will show that while J is a strictly convex function, the feasible region P

is not convex, and so Problem P is not a convex optimization problem.

Using Lemma  2.2.1 , we can reformulate this constrained optimal control problem as:

P ≡ inf
µ∈P

J(µ) = inf
µ∈P

DKL(µ‖µ∗) + logEµ0 [e−C ], (2.8)

which reveals the familiar Problem K. We will use the form of Eq. ( 2.8 ) to connect with

Problem M. Theorem  2.2.2 shows that the optimal solution of Problem K is the information

projection of the optimal measure µ∗ of Problem ( 2.4 ) onto P . By Eq. (  2.8 ), we see that

the optimal solution of Problem P coincides with the optimal solution of Problem K.

This information projection corresponds to finding the most likely path of an associated

process X̃ (defined through its Onsager-Machlup function). This is philosophically similar

to the equivalence of maximum a posteriori (MAP) inference and information projection in

Euclidean spaces. For more information on this relation, see [  39 ]. We also observe that

the information projection in Problem K is intimately connected with MAP estimation and

identifying the “mode” of the Gaussian measure on a general Banach space [ 36 ].

We now explicitly reformulate Problem P as an optimization problem on path space, and

compute the associated process X̃. Consider the process X̃(t) whose Girsanov density is

given by
dµ̃

dµ0
(ω) = 1

Zµ̃

exp (−Eµ0 [C(B + ω)]) , (2.9)

where Zµ̃ is a normalizing constant. By Theorem  2.2.1 , the Onsager-Machlup function

associated to µ̃ is

OM(ϕ(t)) =


Eµ0 [C(B + ϕ)] + 1

2
∫ T

0 (ϕ̇(t))2dt if ϕ ∈ W 1,2
0 ,

∞ if ϕ 6∈ W 1,2
0 .

(2.10)
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This observation leads directly to the following optimization problem on path space:

inf
ϕ∈W 1,2

0

Eµ0 [C(B + ϕ)] + 1
2

∫ T

0
(ϕ̇(t))2dt. (2.11)

Next we use Girsanov to characterize the process X̃(t). We will use |y=x to denote

evaluation of y at the point x. That is, for a function g we define

g(y)
∣∣∣∣∣
y=x

:= g(x).

Proposition 2.2.1. Let C = C0−
∫ T

0 f(t, B(t))dB(t) be the Itô representation of a functional

C : C0[0, T ] → R satisfying Hypotheses  2.2.2 and  2.2.3 , where C0 is a constant. Assume

that Φ satisfies Hypothesis  2.2.1 , where Φ(z) := Eµ0 [C(ω + z)]. Then, the process F (t)

corresponding to the measure µ̃ defined in Eq. ( 2.9 ) is:

F (t) =
∫ t

0
Eµ0 [f(s,B(s) + x)]

∣∣∣∣∣
x=B(s)

ds. (2.12)

Proof. Let ϕ ∈ C0[0, T ], then

Eµ0 [C(B + ϕ)] = C0 − Eµ0

[∫ T

0
f(t, B(t) + ϕ(t))dB(t) +

∫ T

0
f(t, B(t) + ϕ(t))dϕ(t)

]

= C0 −
∫ T

0
Eµ0 [f(t, B(t) + ϕ(t))]dϕ(t).

Therefore, the density of µ̃ is

dµ̃

dµ0
= 1
Zµ̃

exp
∫ T

0
Eµ0 [f(t, B(t) + x)]

∣∣∣∣∣
x=B(t)

dB(t)
 , (2.13)

where we absorbed the constant C0 into the constant Zµ̃. The conclusion then follows by

Theorem  1.1.3 .

24



Remark 2.2.4. Observe that the equivalent path space problem in Eq. ( 2.11 ) formally

parallels the variational representation for the classical unconstrained KL-weighted control

Problem ( 2.4 ) from [ 23 ], [ 32 ], where it is shown that

− logEµ0 [e−C ] = inf
f∈A

Eµ0

[
C(B + f) + 1

2

∫ T

0
f 2(t)dt

]
,

where A is the set of all progressively measurable processes with respect to the natural filtration

of the Wiener process B.

Remark 2.2.5. Interestingly enough, our identification of the optimizer of Problem P with

the most likely path of X̃ as defined in Eq. ( 2.12 ) (in the sense of minimizing the Onsager-

Machlup function) is closely related to [ 40 , Theorem 5]. The latter result identifies the

optimal trajectory of a (deterministic) optimal control problem with the most likely path (in

the Onsager-Machlup sense) of a related optimally controlled stochastic process.

Specifically, [  40 ] considers cost functionals of the form C(B+f) =
∫ T

0 g(B(t)+f(t), f(t))dt+

G(B(T )), with cost rate g(x, u) = `(x, u) + 1
2 |u|2. This total cost model corresponds precisely

with the KL-weighted optimal control setting under consideration in this section. Our fo-

cus, however, is entirely on state independent, open loop control where the optimal control

process/drift coincides with the most likely path of X̃.

The results in this section require the verification of Hypotheses  2.2.1 and  2.2.2 , which

are non-trivial to satisfy even on classical Wiener space. Consequently, in the next sections,

we delve further into the Wiener space setting and develop alternative characterizations of

the optimal solution of the information projection problem.

2.3 Characterization of the Feasible Region in Wiener Space

We can develop a finer characterization of Problem K when (B, µ0) is classical Wiener

space (see Definition  1.1.4 ), which we present in this section. In particular, we construct

a penalty function corresponding to state independent drifts. This will let us encode the

feasible region P through a single functional constraint on the space of measures on contin-

uous paths in C0[0, T ]. In particular, we show that this constraint function is a “difference of
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convex” (DC) functions that is zero if the measure corresponds to a state independent drift,

and that is positive otherwise.

Define the function D : P0 → [0,∞) via

D(µ) := DKL(µ||µ0) − 1
2

∫ T

0
(∂sEµ[B(s)])2 ds. (2.14)

We interpret D as a penalty function which measures violation of the requirement that the

drift be state independent, and in particular we will show that D(µ) = 0 if and only if

µ ∈ P . The following lemma confirms that D correctly checks if µ corresponds to a state

independent drift. The proof uses the idea that the variance of the drift is zero only when it

is state independent.

Proposition 2.3.1. For all µ ∈ P0, D(µ) ≥ 0. Additionally, D(µ) = 0 if and only if µ

corresponds (in the sense of Definition  1.1.5 ) to a state independent drift.

Proof. Fix a shift measure µ ∈ P0. By Theorem  1.1.4 , there exists a progressively measurable

process F whose sample paths lie almost surely in the Sobolev space W 1,2
0 such that

log
(
dµ

dµ0

)
=
∫ T

0
f(s) dB(s) − 1

2

∫ T

0
f 2(s)ds,

where f(s) = F ′(s). In addition, we have B(t) = F (t)+ B̃(t), where B̃ is a Brownian motion

under µ. We may then compute the KL-divergence

DKL(µ||µ0) = Eµ

[∫ T

0
f(s) dB(s) − 1

2

∫ T

0
f 2(s)ds

]

= Eµ

[∫ T

0
f(s)d(B̃(s) + F (s)) − 1

2

∫ T

0
f 2(s)ds

]

= Eµ

[∫ T

0
f(s)dB̃(s) + 1

2

∫ T

0
f 2(s)ds

]
.

An Itô integral has mean zero, and so

DKL(µ||µ0) = 1
2Eµ

[∫ T

0
f 2(s) ds

]
. (2.15)
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Substituting Eq. (  2.15 ) into Eq. (  2.14 ), we arrive at

D(µ) = 1
2Eµ

[∫ T

0
f 2(s) ds

]
− 1

2

∫ t

0
(∂sEµ[F (s)])2 ds.

To write the second integral, we used the fact that B(t) = F (t)+B̃(t), where B̃ is a Brownian

motion under µ. By applying Fubini’s theorem and differentiating under the integral sign,

we obtain

D(µ) = 1
2

∫ T

0

(
Eµ[f 2(s)] − (Eµ[f(s)])2

)
ds = 1

2

∫ T

0
Varµ(f(s))ds.

It follows that D(µ) = 0 if and only if Varµ(f(s)) = 0 for all s ∈ [0, T ], i.e., F is deterministic.

Remark 2.3.1. Constructing the penalty function D is nontrivial. In general, given an

arbitrary shift measure µ ∈ P, where P is defined in ( 2.7 ), it is difficult to construct the

drift Fµ(t) corresponding to µ. It is even difficult to distinguish between F (t) and −F (t) for

deterministic drifts F ∈ W 1,2
0 . To see this, note that the Girsanov density for F (t) is

dµ(F )

dµ0
= exp

(∫ T

0
f(t)dB(t) − 1

2

∫ T

0
f 2(t)dt

)
,

where f(t) = F ′(t), while the Girsanov density for −F (t) is

dµ(−F )

dµ0
= exp

(∫ T

0
−f(t)dB(t) − 1

2

∫ T

0
f 2(t)dt

)
.

As f is deterministic and therefore
∫ T

0 f(t)dB(t) d= −
∫ T

0 f(t)dB(t) in distribution, we must

have that
dµ(−F )

dµ0

d= dµ(F )

dµ0
.

It is thus difficult to “decouple” F (t) +B(t) through a polarization identity.

Based on Proposition  2.3.1 , we can reformulate Problem K as:

K ≡ inf
µ∈P0

{DKL(µ||µ∗) : D(µ) ≤ 0} ,
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where the constraint µ ∈ P is now encoded by the single functional constraint D(µ) ≤ 0 and

the implicit constraint µ ∈ P0.

Problem K is a non-convex optimization problem because the constraint function D(µ) is

non-convex. Specifically, D(µ) is a “difference of convex functions”, i.e., the KL-divergence

DKL(µ||µ0) (which is convex) and the function 1
2
∫ T

0 (∂sEµ[B(s)])2ds (which is convex be-

cause the function ∂sEµ[B(s)] is linear in µ, and the square of a linear function is convex).

So, Problem K has a single DC constraint (see [ 41 ], [  42 ] for discussions on this class of

optimization problems). In this situation, it is natural to consider both inner and outer

convex approximations of Problem K. However, we will now see that the feasible region P

is pathological from the perspective of convex approximation.

First we consider an inner approximation. As the following proposition shows, the strict

convex combination of measures corresponding to deterministic drifts does not correspond

to a deterministic drift.

Proposition 2.3.2. Let µ1 ∼ µ0 and µ2 ∼ µ0 be two measures corresponding to drifts F1(t)

and F2(t) (possibly state dependent) in the sense of Definition  1.1.5 . Then, for λ ∈ (0, 1),

the convex combination µ := λµ1 + (1 − λ)µ2 corresponds to a drift of

F (t) := AF1(t) + (1 − A)F2(t),

where A is a Bernoulli random variable independent of B(t) with parameter λ.

Proof. Let B(t) be a Brownian motion under µ0. Then, for each time t ∈ [0, T ] and z ∈ R

we have

µ ({ω ∈ Ω : B(t, ω) ≤ z}) = λµ1 ({ω ∈ Ω : B(t, ω) ≤ z})

+ (1 − λ)µ2 ({ω ∈ Ω : B(t, ω) ≤ z})

= λµ1
(
{ω ∈ Ω : F1(t, ω) +B1(t, ω) ≤ z}

)
+ (1 − λ)µ2

(
{ω ∈ Ω : F2(t, ω) +B2(t, ω) ≤ z}

)
,
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where B1 is a Brownian motion under µ1 and B2 is a Brownian motion under µ2. Now let

µF be the measure that corresponds to the drift of F (t) = AF1(t) + (1 − A)F2(t). By the

law of total probability, for t ∈ [0, T ] and z ∈ R we have that

µF ({ω ∈ Ω : B(t, ω) ≤ z}) = λµF ({ω ∈ Ω : B(t, ω) ≤ z} | A = 1)

+ (1 − λ)µF ({ω ∈ Ω : B(t, ω) ≤ z} | A = 0)

= λµ1
(
{ω ∈ Ω : F1(t, ω) +B1(t, ω) ≤ z}

)
+ (1 − λ)µ2

(
{ω ∈ Ω : F2(t, ω) +B2(t, ω) ≤ z

)
.

Then, for all t ∈ [0, T ] and z ∈ R, we have the equality

µ ({ω ∈ Ω : B(t, ω) ≤ z}) = µF ({ω ∈ Ω : B(t, ω) ≤ z}) .

Remark 2.3.2. Proposition  2.3.2 implies that the set of measures P is precisely the set of

extreme points of the set P0. If µ = λµ1 +(1−λ)µ2 for some λ ∈ (0, 1) and µ1, µ2 ∈ P0, then

the drift associated to µ is necessarily state dependent (and thus random). Consequently,

any inner convex approximation can only consist of singletons, yielding only a trivial inner

approximation to Problem K.

Now we consider outer approximation of P . An obvious convex relaxation of P is to consider

the convex hull of P , defined as:

conv P :=
{

n∑
i=1

λiµi :
n∑

i=1
λi = 1, λ ≥ 0, {µi}n

i=1 ⊂ P , n ∈ N
}
.

As a consequence of Proposition  2.3.2 , we have the following characterization of conv P .
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Corollary 2.3.1. conv P is the set of all measures corresponding to drifts of finite random

combinations of deterministic drifts. That is, µ ∈ conv P if and only if its corresponding

drift F (t) is of the form

F (t) =



F1(t) with probability p1

...

Fn(t) with probability pn

for some n ∈ N, where Fi are deterministic drifts and p1 + · · · + pn = 1.

It follows that the convex hull conv P is too large to optimize over effectively (especially

since we are talking about measures on path space). In light of Proposition  2.3.2 and

Corollary  2.3.1 , we see that the obvious inner and outer convex approximations of Problem

K do not yield useful approximations for computing the optimal drift (or the corresponding

measure).

2.4 Euler-Lagrange Equation for Wiener Space

In response to the difficulties with the non-convex formulation of Problem K in Wiener

space discussed in the last section, we give another reformulation of the problem in this

section. In particular, we show that the solution of a certain calculus of variations problem

(when it exists) corresponds to an optimal solution of Problem K. In many cases this

method is more tractable, and, as we demonstrate in several of our examples, this calculus

of variations problem is often a convex optimization problem (in contrast to the formulation

of Problem K just discussed in Section  2.3 , which is intrinsically non-convex).

The objective of Problem K is to minimize DKL(µ||µ∗) over µ ∈ P with respect to

some µ∗. This measure µ∗ satisfies µ∗ ∼ µ0, so by Theorem  1.1.4 there is a progressively

measurable f such that:

dµ∗

dµ0
= exp

(∫ T

0
f(s,B(s))dB(s) − 1

2

∫ T

0
f 2(s,B(s))ds

)
.
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For this f , we define the following Lagrangian for all q ∈ W 1,2
0 [0, T ]:

L(t, q(t), q̇(t); f) := Eµ0

[
(q̇(t) − f(t, B(t) + q(t)))2

]
. (2.16)

The form of this Lagrangian is not a coincidence. In our upcoming Theorem  2.4.2 , we will

show that it is a natural consequence of trying to minimize the KL-divergence DKL(µ||µ∗).

With this Lagrangian now in hand, we pose the corresponding calculus of variations

problem:

inf
q∈W 1,2

0 [0,T ]

{
L(q, q̇; f) := 1

2

∫ T

0
L(t, q(t), q̇(t); f)dt s.t. q(0) = 0

}
. (2.17)

In Problem ( 2.17 ), we note the initial condition q(0) = 0 at time t = 0, but we do not

enforce any terminal condition at time t = T . Much of the classical theory for the calculus

of variations requires explicit initial and terminal conditions (see e.g. [  43 ]). So, we can

simply consider the alternative calculus of variations problem:

inf
q∈W 1,2

0 [0,T ]

{
L(q, q̇; f) := 1

2

∫ T

0
L(t, q(t), q̇(t); f)dt s.t. q(0) = 0, q(T ) = a

}
, (2.18)

with dummy terminal condition q(T ) = a for any a ∈ R. Then, we can solve Problem ( 2.18 )

for these specific initial and terminal conditions, and later optimize over a ∈ R. We will see

in our examples in Section  2.5 that this issue does not present any practical difficulty.

We first discuss existence of solutions to Problem (  2.17 ), and we refer the reader to [  43 ]

for the details of these existence results. We first require the following coercivity condition:

Hypothesis 2.4.1. There exist α > 0 and β ≥ 0 such that L(t, x, ẋ) ≥ α|ẋ|2 − β for all

t ∈ [0, T ], x ∈ R, and ẋ ∈ R.

For the next existence result, we recall that the Lagrangian L(t, q, q̇; f) is automatically

bounded below by zero by construction (since it is the expectation of a square), and so the

optimal value of Problem ( 2.17 ) is also bounded below by zero.

Theorem 2.4.1. [ 43 , Theorem 4.25] Suppose L(t, q, q̇; f) satisfies Hypothesis  2.4.1 , and

that q̇ → L(t, q, q̇; f) is convex. Then, Problem ( 2.17 ) has a solution in W 1,2
0 [0, T ].
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The Euler-Lagrange equation corresponding to Problem ( 2.17 ) is:

Lq(t, q, q̇; f) − d

dt
Lq̇(t, q, q̇; f) = 0, ∀t ∈ [0, T ]. (2.19)

Eq. ( 2.19 ) is a common necessary condition for the optimal solutions of Problem ( 2.17 ).

The next theorem connects the solutions of Problem ( 2.17 ) (that can be characterized by

Eq. (  2.19 )) with the optimal solutions of Problem K.

Theorem 2.4.2. Let µ∗ ∼ µ0 be a probability measure with density

dµ∗

dµ0
= exp

(∫ T

0
f(s,B(s))dB(s) − 1

2

∫ T

0
f 2(s,B(s))ds

)
.

Let q ∈ W 1,2
0 [0, T ] be a solution, if it exists, to Eq. ( 2.19 ). Then, the measure defined by

dµ

dµ0
= exp

(∫ T

0
q̇(s)dB(s) − 1

2

∫ T

0
(q̇(s))2ds

)
(2.20)

is an optimal solution of Problem K.

Proof. Let
dµ

dµ0
= exp

[∫ T

0
h(s)dB(s) − 1

2

∫ T

0
h2(s)ds

]

for some state independent h(s) ∈ W 1,2
0 [0, T ]. We can simplify the ratio

dµ

dµ∗ = exp
(∫ T

0
[h(s) − f(s,B(s))]dB(s) − 1

2

∫ T

0
[h2(s) − f 2(s,B(s))]ds

)

= exp
(∫ T

0
[h(s) − f(s, B̃(s) +H(s))]d(B̃(s) +H(s)) − 1

2

∫ T

0
[h2(s) − f 2(s, B̃(s) +H(s))]ds

)
,

where B̃ is a Brownian motion under µ and H ′ = h with H(0) = 0.

Because H is differentiable, we may write that

dµ

dµ∗ = exp
(∫ T

0
[h(s) − f(s, B̃(s) +H(s))]dB̃(s)

+ 1
2

∫ T

0
[h2(s) − 2h(s)f(s, B̃(s) +H(s)) + f 2(s, B̃(s) +H(s))]ds

)
.
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Factoring and then computing the KL-divergence as in the proof of Proposition  2.3.1 shows

that

DKL(µ||µ∗) = Eµ

[
log

(
dµ

dµ∗

)]
= 1

2Eµ

[∫ T

0
[h(s) − f(s, B̃(s) +H(s))]2ds

]
. (2.21)

Minimizing Eq. (  2.21 ) is equivalent to the Euler-Lagrange Eq. (  2.19 ).

To conclude this discussion, we identify some sufficient conditions for a solution of Eq.

( 2.19 ) to be an optimal solution of Problem (  2.17 ). This depends on the following joint

convexity condition.

Hypothesis 2.4.2. The Lagrangian is jointly convex in (q, q̇) → L(t, q, q̇; f) for all t ∈ [0, T ].

Theorem 2.4.3. [ 43 , Theorem 4.32] Suppose L(t, q, q̇; f) satisfies Hypothesis  2.4.1 and

Hypothesis  2.4.2 . If q ∈ W 1,2
0 [0, T ] is a weak solution of Eq. ( 2.19 ), then q is an optimal

solution of Problem ( 2.17 ).

We use Theorem  2.4.3 in our examples to justify solving Problem (  2.17 ) by solving the ODE

in Eq. (  2.19 ).

2.5 Examples

In this section, we solve several specific instances of Problem P where (B, µ0) is classical

Wiener space (see Definition  1.1.4 ).

2.5.1 Case of C =
∫ T

0 f(t, B(t))dB(t)

We start in this subsection with the case where the Itô representation C =
∫ T

0 f(t, B(t))dB(t)

of our cost functional is already known. We may assume Eµ0 [C] = 0 W.L.O.G. since con-

stants do not change the optimal solution of the minimization problem.

Example 2.5.1. Let f(s,B(s)) = −B(s) so we have

C =
∫ T

0
−B(s)dB(s).
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First, we note that C can easily be shown to satisfy Hypotheses  2.2.2 and  2.2.3 . To check

that C satisfies Hypothesis  2.2.1 , first we write

C = −1
2B

2(T ) + 1
2T.

Then, we compute Φ as

Φ(z) = 1
2Eµ0 [(B(T ) + z(T ))2 − T ] = 1

2z
2(T ).

To check Hypothesis  2.2.1 Part (i), we just note that for ε > 0 and z ∈ C0[0, T ], we have

Φ(z) ≥ 0 ≥ 0 − ε‖z‖2
∞.

Thus, Part (i) is satisfied with M = 0. To check Hypothesis  2.2.1 Part (ii), let r > 0 and

let K(r) = r2. Then, if ‖z‖∞ < r we have

Φ(z) = 1
2z

2(T ) ≤ 1
2r

2 ≤ K.

To check Hypothesis  2.2.1 Part (iii), let r > 0 and L(r) = r. For ‖z1‖∞ < r and ‖z2‖∞ < r,

we have

|Φ(z1) − Φ(z2)| = 1
2 |z2

1(T ) − z2
2(T )|

= 1
2 |z1(T ) − z2(T )||z1(T ) + z2(T )|

≤ 1
22r‖z1 − z2‖∞

= L‖z1 − z2‖∞.
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Since we have verified Hypothesis  2.2.1 , we know that Problem M has a solution. The

Lagrangian L corresponding to this problem is:

L(t, q, q̇) = 1
2Eµ0

[
(q̇(t) − (B(t) + q(t)))2

]
= 1

2Eµ0

[
q̇2(t) − 2q̇(t)(B(t) + q(t)) + (B(t) + q(t))2

]
= 1

2
[
q̇2(t) − 2q(t)q̇(t) + t+ q2(t)

]
= 1

2
[
(q̇(t) − q(t))2

]
+ 1

2t.

We see that (q, q̇) → L(t, q, q̇) is jointly convex for all t ∈ [0, T ], and it is bounded below by

zero. The functional L is minimized at q̇(t) = q(t) which yields the solution q(t) = Cet. We

additionally require q(0) = 0, and so we set C = 0 to find the solution is q(t) ≡ 0.

To confirm the optimality of this solution using the Euler-Lagrange equation, we see the

derivatives of L are:

Lq(t, q, q̇) = −q̇(t) + q(t),

and

Lq̇(t, q, q̇) = q̇(t) − q(t).

The Euler-Lagrange equation is then

−q̇(t) + q(t) − q̈(t) + q̇(t) = 0,

which has solution q(t) = C1et +C2e−t. We require q(0) = 0, and so we must have C1 = −C2.

The minimizer of L is therefore q(t) = C(et − e−t). As stated in Section  2.4 , in order to get

the constant C we must solve

inf
C

∫ T

0
L(t, q, q̇)dt = inf

C

∫ T

0

[
2C2e−2t + 1

2t
]
dt,

which is minimized when C = 0. Furthermore, we can compute:

Eµ0 [f(s,B(s) + x)]
∣∣∣∣∣
x=B(s)

= B(s),
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to see that the associated process is:

X̃(t) =
∫ t

0
B(s)ds+B(t).

Example 2.5.2. Suppose that µ∗ (the optimal unconstrained measure) corresponds to a

deterministic drift F (t) where F ′(s) = f(s) for a deterministic function f . The Lagrangian

for this problem is:

L(t, q, q̇) = 1
2Eµ0

[
q̇2(t) − 2q̇(t)f(t) + f 2(t)

]
= 1

2
[
q̇2(t) − 2q̇(t)f(t) + f 2(t)

]
.

We see that (q, q̇) → L(t, q, q̇) is jointly convex for all t ∈ [0, T ], and the derivatives of L are:

Lq = 0,

and

Lq̇ = q̇(t) − f(t).

The Euler-Lagrange equation is then simply

− d

dt
(q̇(t) − f(t)) = 0,

which yields the solution q(t) = F (t)+C1t+C2. We set C2 = 0 to satisfy the initial condition

q(0) = 0.

Furthermore, we can compute

Eµ0 [f(s,B(s) + x)]
∣∣∣∣∣
x=B(s)

= f̃(s),

to see that the associated process X̃(t) is:

X̃(t) =
∫ t

0
f̃(s)ds+B(t).
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Example 2.5.3. Suppose that µ∗ (the optimal unconstrained measure) corresponds to the

drift
∫ T

0 B2(s)ds. The Lagrangian for this problem is then:

L(t, q, q̇) = 1
2Eµ0 [q̇2(t) − 2(B(t) + q(t))2q̇(t) + (B(t) + q(t))4]

= 1
2 [q̇2(t) − 2(t+ q2(t))q̇(t) + q4(t) + 6tq2(t) + 3t2].

The derivatives of L are:

Lq(t, q, q̇) = 1
2 [ − 4q(t)q̇(t) + 4q3(t) + 12tq(t)]

and

Lq̇(t, q, q̇) = 1
2 [2q̇(t) − 2t− 2q2(t)].

The resulting Euler-Lagrange equation is:

−2q(t)q̇(t) + 2q3(t) + 6tq(t) − (q̈(t) − 1 − 2q(t)q̇(t)) = 0,

which simplifies to the second-order ODE

2q3(t) + 6tq(t) − q̈(t) + 1 = 0.

Furthermore, we can compute

Eµ0 [f(s,B(s) + x)]
∣∣∣∣∣
x=B(s)

= s+B2(s),

to see that the process F (t) corresponding to µ̃ is

F (t) =
∫ t

0
[s+B2(s)]ds.
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2.5.2 Case of C =
∫ T

0 g(B(t))dt+G(B(T ))

In this subsection, we consider cost functionals of the form C =
∫ T

0 g(B(t))dt+G(B(T )).

First, we show that such cost functionals satisfy Hypotheses  2.2.1 .

Proposition 2.5.1. Let C : C0[0, T ] → R be a functional of the form C =
∫ T

0 g(B(t))dt +

G(B(T )), where: (a) g is Lg−Lipschitz continuous; (b) G is LG−Lipschitz continuous; and

(c) both g and G are bounded below. Then, Φ(z) := Eµ0 [C(ω+ z)] satisfies Hypothesis  2.2.1 .

Proof. First we check Hypothesis  2.2.1 Part (i). As both g and G are bounded below, there

is some M ∈ R such that

g(x) ≥ M and G(x) ≥ M,

for all x ∈ R. Then, for any ε > 0 and z ∈ C0[0, T ], we have that

Φ(z) = Eµ0

[∫ T

0
g(B(t) + z(t))dt+G(B(T ) + z(T ))

]
≥ MT + T := M ′ ≥ M ′ − ε‖z‖2

∞.

Therefore, Part (i) is satisfied with M ′ = MT + T . Next, we check that Hypothesis  2.2.1 

Part (ii) is satisfied. First, we note that by Lipschitz continuity we have for t ∈ [0, T ] and

z ∈ W 1,2
0 that

Eµ0|g(B(t) + z(t))| ≤ Eµ0|g(B(t) + z(t)) − g(0)| + |g(0)|

≤ LgEµ0|B(t) + z(t)| + |g(0)|

≤ Lg

√
2t
π

+ z(t) + |g(0)|

≤ Lg

√
2T
π

+ ‖z‖∞ + |g(0)|.

An analogous chain of inequalities holds for G. Thus, we have that

Φ(z) = Eµ0

[∫ T

0
g(B(t) + z(t))dt+G(B(T ) + z(T ))

]

≤ TLg

√
2T
π

+ |g(0)| + LG

√
2T
π

+ |G(0)| + 2‖z‖∞.
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It follows that Φ is locally bounded above. Lastly, we need to check Hypothesis  2.2.1 Part

(iii). Let z1, z2 ∈ W 1,2
0 , then

|Φ(z1) − Φ(z2)| =
∣∣∣∣∣
∫ T

0
Eµ0(g(B(t) + z1(t)) − g(B(t) + z2(t))dt

+ Eµ0(G(B(T ) + z1(T )) −G(B(T ) + z2(T ))
∣∣∣∣∣

≤
∫ T

0
Lg|z1(t) − z2(t)|dt+ LG|z1(T ) − z2(T )|

≤ (LgT + LG)‖z1 − z2‖∞.

Therefore, we find that Φ is Lipschitz, which implies that it is locally Lipschitz.

To handle this class of cost functionals in our framework, we need to first compute the

Itô representation for C by using the Clark-Ocone formula, and then apply Theorem  2.4.2 

(see [ 19 ] for more information on Malliavin calculus).

For the following examples, we will need to compute the Malliavin derivative of C. We use

the following result on the Malliavin derivative of Lebesgue integrals to do this computation.

Lemma 2.5.1. Let Xu be a progressively measurable process in the Sobolev-Watanabe space

D1,2, then

Dt

∫ T

0
Xudu =

∫ T

t
Dt(Xu)du.

Proof. First note that by the dominated convergence theorem, we have that

Dt

∫ T

0
Xudu =

∫ T

0
Dt(Xu)du.

Then [ 19 , Corrolary 1.2.1] implies that Dt(Xu) = 0 for u ≤ t, and hence

∫ T

0
Dt(Xu)du =

∫ T

t
Dt(Xu)du.
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Note that, for the indicator function χ[0,t](s), we can rewrite:

g(B(t)) = g

(∫ T

0
χ[0,t](s)dB(s)

)

and

G(B(T )) = G

(∫ T

0
dB(s)

)
.

Then, using the above lemma along with the definition of the Malliavin derivative, we have

DtC =
∫ T

t
g′(B(u))du+G′(B(T )). (2.22)

Next, in order to use the Clark-Ocone formula, we need to compute the conditional expec-

tations Eµ0 [DtC | Ft]. We prove the following technical lemma for this purpose.

Lemma 2.5.2. Let h : R → R be Borel measurable and integrable. Then,

Eµ0 [h(B(t)) | Fs] = Eµ0 [h(Nx)]
∣∣∣∣∣
x=B(s)

,

where Nx ∼ N (x, t− s).

Proof. Let X and Y be integrable random variables, and let G be a σ−algebra. If X is

G−measurable and Y is independent of G, then we have:

E[f(X,Y )|G] = E[f(x, Y )]
∣∣∣∣∣
x=X

.

Applying this observation to h with Y = B(t) −B(s), X = B(s), and f(X,Y ) = h(X + Y )

gives the desired result.

Combining the previous two lemmas with the Clark-Ocone formula, we arrive at the expres-

sion

C = Eµ0 [C] +
∫ T

0
f(s,B(s))dB(s),

where

f(s,B(s)) =
∫ T

s
Eµ0 [g′(Nx)]

∣∣∣∣∣
x=B(s)

du+ Eµ0 [G′(Nx)]
∣∣∣∣∣
x=B(s)

. (2.23)
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Once we find the Itô representation for C =
∫ T

0 g(B(t))dt + G(B(T )), we can use Theorem

 2.4.2 to solve for the optimal deterministic drift.

We now work out some specific examples for various g and G.

Example 2.5.4. Let C =
∫ T

0 B(s)ds. Then, the function f defined in Eq. ( 2.23 ) is specifi-

cally

f(s,B(s)) =
∫ T

s
Eµ0 [1]

∣∣∣∣∣
x=B(s)

du

= T − s,

and we have: ∫ T

0
B(s)ds =

∫ T

0
(T − s)dB(s).

Example 2.5.5. Let C =
∫ T

0 B2(s)ds. Then, the function f defined in Eq. ( 2.23 ) is

specifically

f(s,B(s)) =
∫ T

s
Eµ0 [2(Nx)]

∣∣∣∣∣
x=B(s)

du

=
∫ T

s
2B(s)du

= 2(T − s)B(s),

and we have: ∫ T

0
B2(s)ds = Eµ0 [C] +

∫ T

0
2(T − s)B(s)dB(s). (2.24)

Example 2.5.6. Let C =
∫ T

0 B3(s)ds. Then, the function f defined in Eq. ( 2.23 ) is

specifically

f(s,B(s)) =
∫ T

s
Eµ0 [3(Nx)2]

∣∣∣∣∣
x=B(s)

du

= 3
∫ T

s
[(u− s) +B(s)]du

= (T − s)3 + 3(T − s)B(s),

41



and we have:

∫ T

0
B3(s)ds = Eµ0 [C] +

∫ T

0
[(T − s)3 + 3(T − s)B(s)]dB(s). (2.25)

In line with the previous three examples, we observe that for any polynomial g, we will

have a polynomial f in Eq. (  2.23 ).

2.6 Conclusion

This thesis is motivated by the problem of doing information projection on Banach spaces

with respect to a Gaussian reference measure. We have shown that, in many cases, this kind

of projection can be done effectively. In particular, we show that we can often reformulate

this information projection problem as a (convex) OM-functional minimization problem and

a (convex) calculus of variations problem. The OM perspective suggests a simulation-based

scheme for solving the original problem, and the calculus of variations perspective suggests

a discretization scheme for solving the original problem (for solving the Euler-Lagrange

equation which is a general second-order ODE).

An important future direction for the results of this thesis is to use the information pro-

jection of the Wiener measure onto Gaussian shift measures, and the characterization of the

optimal drift, as a computational approximation to the “full” Föllmer drift. Further prob-

lems include the consideration of more general constraint sets and other types of marginal

or path constraints on the information projection problem, and characterize the solutions in

those settings.

42



3. FEYNMAN-KAC FOR ODE

3.1 Introduction

The Feynman-Kac theorem is a widely known and extensively used formula that relates

the solutions of second order parabolic partial differential equations (PDEs) to the average

of a transformation of a diffusion. It was introduced in [ 2 ] and has since seen tremendous

utility and generalization. The Feynman-Kac formula has been extended to stochastic PDE

in e.g. [  3 ]–[ 5 ]. It has also seen utility in physics, see e.g. [ 6 ]–[ 10 ]. It has been used also in

interacting particle systems, see e.g. [  11 ]–[ 14 ]. It has been used in finance, see e.g. [  15 ].

There are many forms of the Feynman-Kac formula, see e.g. [  44 ] for a standard reference.

In one form, the Feynman-Kac formula says the following.

Theorem 3.1.1 (Feynman-Kac). Consider the partial differential equation

∂

∂t
u(t, x) + µ(t, x) ∂

∂x
u(t, x) + 1

2σ
2(t, x) ∂

2

∂x2u(t, x) = V (t, x)u(t, x),

on the domain [0, T ] × R, with terminal condition u(T, x) = ψ(x) and µ, σ, V sufficiently

regular. Then

u(t, x) = Eµ0 [e−
∫ T

t
V (s,X(s))dsψ(X(T ))|X(t) = x],

where X(t) is the solution to the solution to the stochastic differential equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dB(t),

with initial condition X(t) = x, B(t) a standard Brownian motion and µ0 is the measure

associated to B(t).

Linear second order ordinary differential equations and systems thereof find extensive

use in engineering, physics, biology, geometry, control theory and many other areas of pure

and applied mathematics. One example of a system of such equations in physics is the

matrix Airy equation, which has connections to the intersection theory on the moduli space

of curves, see [  45 ]. Further examples abound in the computation of long-run average costs

associated with diffusion processes, which can be expressed as solutions of second-order
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ordinary differential equations (ODEs). In this article, we demonstrate a theorem analogous

to Theorem  3.1.1 for second order ordinary differential equations. However in the ODE case,

solutions are represented as the conditional “mode” of a diffusion instead of a conditional

mean. By “mode”, we mean the minimizer of an Onsager-Machlup function. It was first

shown in [  37 ] that the Onsager-Machlup function is a Lagrangian for the “most likely path”

or “mode” of a diffusion. Our main theorem can be summarized as follows, see Theorem

 3.4.1 for a full version. This chapter closely follows the paper [  46 ].

Theorem 3.1.2 (Feynman-Kac for ODEs). Consider the differential equation

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0, (3.1)

where the unknown y ∈ C2([0, T ],R), with boundary conditions y(0) = 0 and y(T ) = a. Let

f(t), g(t) and h(t) be (almost) arbitrary C1 real valued functions. Then there exists a choice

of C1([0, T ],R) functions A(t) and D(t) that depend on f, g and h so that the solution to

( 3.1 ) is

y(t) = e−V (t) Mode
[
X(t)

∣∣∣∣∣X(T ) = a

]
, (3.2)

where X(t) solves the stochastic differential equation dX = −A(t)X(s)dt + dB(t), B(t) is

a standard Brownian motion and additionally V (t) = 2−1 ∫ t
0 f(s)ds. Here, the conditional

mode of a diffusion is defined as the minimizer of the Onsager-Machlup function defined in

Theorem  2.1.1 over all paths z with z(T ) = a.

The e−V (t) term is analogous to the Feynman-Kac for PDEs case, Theorem  3.1.1 . The

Feynman-Kac formula can first be proven for diffusions with no factor in front of the u(t, x)

term. Then including the exponential weight term, one can get more general terms in front

of u(t, x).

The primary tool we will use is the Onsager-Machlup formalism established in [ 1 ], [ 36 ],

[ 37 ]. In particular, we will extend the Portmanteau theorem in [  1 ], which relates information

projections, Kullback-Leibler weighted control, finding the most likely path of a diffusion

and Euler-Lagrange equations. In [ 37 ], it was shown that the so-called “Onsager-Machlup”

function is a Lagrangian for the most likely path of a diffusion. That is, the minimizer is the
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“mode” of the path. We show that the solution to (almost) any second order linear ODE

is the (potentially weighted) conditional mode a diffusion, defined as the minimizer of the

Onsager-Machlup function. Additionally, we extend our results to include systems of second

order linear ODEs.

In Section  3.2 , we introduce this formalism and the required stochastic analysis. In

Section  3.3 we extend the Portmanteau theorem of [ 1 ] for our purposes. In Section  3.4 we

prove Theorem  3.1.2 . Finally in Section  3.5 we give some examples.

3.2 Preliminaries

Recall that the Onsager-Machlup function is defined through the relation

lim
δ→0

µ(Bδ(z2))
µ(Bδ(z1))

= exp (OM(z1) −OM(z2)) .

Remark 3.2.1. The minimizer of the Onsager-Machlup function can be seen as the “most

likely” path of the diffusion, which was shown in [  37 ]. This fact is central to the approach

in this thesis. Furthermore, we define the conditional mode to minimize OM over a region.

That is, for a subset A ⊂ Hµ0 and a process X whose path measure has a density

dµ

dµ0
= e−Φ

Eµ0 [e−Φ]
,

we define

Mode
[
X(t)

∣∣∣∣∣A
]

:= arg min
z∈A

OMΦ(z),

if the infimum is indeed achieved.

3.3 A Portmanteau Theorem

We present a slightly modified Theorem  2.1.1 , a portmanteau theorem that lets us con-

vert from Euler-Lagrange equations, to information projections, to Kullback Leibler (KL)

divergence weighted control, to Onsager-Machlup functions for measures on classical Wiener

space.
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Theorem 3.3.1. Let C0 be a classical Wiener space with Cameron-Martin space Hµ0 (see

Definition  1.1.3 ). Let C : C0 → R be a functional so that µ0(C < +∞) > 0 and

Eµ0 [ exp(−C) |C|] < +∞. Furthermore, assume that the functional Φ : C0 → R defined

by Φ(z) = Eµ0 [C(ω+ z)] exists and satisfies Hypothesis  2.2.1 . Define the probability measure

µ∗ on C0 with density
dµ∗

dµ0
:= e−C

Eµ0 [e−C ]
,

and the probability measure µ̃ on C0 with density

dµ̃

dµ0
:= e−Φ

Eµ0 [e−Φ]
.

Let P be the set of Gaussian shift measures which are absolutely continuous with respect to

µ0 (defined in Eq. ( 2.1 )). Define Pa to be the subset of P defined in ( 2.1 ) defined by

Pa := {T ∗
h (µ0) : h ∈ Hµ0 , h(T ) = a}. (3.3)

Furthermore, suppose that C is such that that Eµ0 [C2] < ∞ and therefore there is a

progressively measurable process Γ(t, B(t)) so that C =
∫ T

0 Γ(t, B(t)) · dB(t) by Itô’s repre-

sentation theorem. Let L(t, z, ż) be the Lagrangian

L(t, q(t), q̇(t); Γ) := Eµ0

[
‖q̇(t) − Γ(t, B(t) + q(t))‖2

]
. (3.4)

Suppose that there exist α > 0 and β ≥ 0 such that L(t, x, ẋ) ≥ α|ẋ|2 −β for all t ∈ [0, T ],

x ∈ Rn, and ẋ ∈ Rn. Consider the calculus of variations problem:

Consider the following four optimization problems:

(a) (Information projection)

K := inf
µ∈Pa

DKL(µ||µ∗).

(b) (State independent KL-weighted control)

P := inf
µ∈Pa

{Eµ[C] +DKL(µ||µ0)} .
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(c) (Conditional mode of µ̃)

M := inf
z∈Hµ0 ,z(T )=a

OMΦ(z).

(d) (Calculus of variations)

L : inf
z∈W 1,2

0 [0,T ]

{
L(z, ż; Γ) := 1

2

∫ T

0
L(t, z(t), ż(t); Γ)dt s.t. z(0) = 0, z(T ) = a

}
.

Then, the optimal values val(K), val(P), val(M) and val(L) are all attained (and so all three

problems have optimal solutions). By the Cameron-Martin theorem (see Theorem  1.1.1 ), we

can identify each shift measure µz ∈ P with its corresponding shift z ∈ Hµ0, and so we have

sol(K) = sol(P) ≡ sol(M) = sol(L).

In the above, we have used equivalence “≡” for shorthand to denote that µz ∈ sol(P) (or

µz ∈ sol(K)) if and only if its corresponding shift z ∈ sol(M). (or z ∈ sol(L)).

Proof. Equivalence of (a) and (b) Under assumptions the µ0(C < +∞) > 0 and

Eµ0 [ exp(−C) |C|] < +∞ the measure µ∗ is well defined, see Lemma 2.4 in [  47 ]. Then

we can note that for any µ equivalent to µ∗ we have that

DKL(µ||µ∗) = Eµ

[
log

(
dµ

dµ∗

)]

= Eµ

[
log

(
dµ

dµ0

)]
− Eµ

[
log

(
dµ∗

dµ0

)]

= Eµ[C] +DKL(µ||µ0) − logEµ0 [e−C ].

Taking an infimum of both sides shows that problem (a) is equivalent to problem (b).

Equivalence of (a) and (d) We just have to check that for all µ ∈ P where P is defined

in ( 2.1 ), with shift q ∈ Hµ0 we have that

DKL(µ||µ∗) = 1
2

∫ T

0
L(t, q(t), q̇(t); Γ)dt.
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To this aim, we note that if µ ∈ P where P is defined in ( 2.1 ) with corresponding shift q

that
dµ

dµ∗ = exp
(∫ T

0
(q̇ − Γ(t, B(t))) · dB(t) − 1

2

∫ T

0
‖q̇‖2 − ‖Γ(t, B(t))‖2ds

)
.

By Girsanov’s theorem, Theorem  1.1.3 , we have that B(t) = B̃(t) + q̇(t) where B̃(t) is a

Brownian motion under µ. Therefore the KL divergence is thus

DKL(µ||µ∗) = Eµ

[ ∫ T

0
(q̇(t) − Γ(t, B̃(t) + q(t))) · d(B̃(t) + q(t))

− 1
2

∫ T

0
(‖q̇‖2 − ‖Γ(t, B̃(t) + q(t))‖2)dt

]
.

Using the mean zero property of Itô integration yields that

DKL(µ||µ∗) = Eµ

[ ∫ T

0
(‖q̇(t)‖2 − Γ(t, B̃(t) + q(t))) · q̇(t))dt

− 1
2

∫ T

0
(‖q̇‖2 − ‖Γ(t, B̃(t) + q(t))‖2)dt

]
.

Therefore using Fubini’s theorem and a polarization identity we conclude that

DKL(µ||µ∗) = 1
2

∫ T

0
Eµ0

[
‖q̇(t) − Γ(t, B(t) + q(t))‖2

]
dt.

The assumptions on the Lagrangian L imply that there is a unique solution to problem (d)

and hence there is a solution to problem (a).

Equivalence of (a) and (c) Using Theorem  1.1.2 and the definition of Φ for each µ ∈ P

with corresponding shift zµ ∈ Hµ0 , we have that

DKL(µ||µ∗) = Eµ[C] +DKL(µ||µ0) − logEµ0 [e−C ]

= Eµ0 [C(ω + zµ)] + 1
2‖zµ‖2

µ0 − logEµ0 [e−C ]

= Φ(zµ) + 1
2‖zµ‖2

µ0 − logEµ0 [e−C ]

= OMΦ(zµ) − logEµ0 [e−C ].
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Using the equivalence between (a) and (d), along with the assumptions on the Lagrangian

L concludes.

Remark 3.3.1. Theorem  2.1.1 is based on Theorem  2.1.1 . However, there are three key

differences. First, parts (a), (b), and (c) are stated in terms of a general Gaussian measure in

Theorem  2.1.1 whereas in Theorem  3.3.1 it is stated for a n-dimensional Brownian motion.

Second, part (d) in Theorem  2.1.1 is only stated in terms of a 1 dimensional Brownian motion

whereas in Theorem  3.3.1 it is for n dimensions. Third, in Theorem  2.1.1 , everything is

stated in terms of unconditional mode instead of conditional mode from Theorem  3.3.1 .

3.4 Proof of Feynman-Kac for ODEs

In this section, we restate Theorem  3.1.2 in more detail and offer a proof. For clarity,

we first prove the result for a single ODE. We then extend to the case of a system of ODEs.

The proof for the system is similar and included for completeness.

3.4.1 Feynman-Kac for single ODE

In this subsection we prove our Feynman-Kac result for a single linear second order ODE.

First we prove the case in which f(t) = 0 and thus V (t) = 0 and we are working with no

exponential weight. We then use this to construct the solution for general f . First we have

the following lemma.

Lemma 3.4.1. If Γ(t, x) = A(t)x + D(t) for C1([0, T ],Rn×n) matrix A and C1([0, T ],Rn)

vector D, then µ∗ = µ̃.
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Proof. We just have to show that C = Φ. Recall that C =
∫ T

0 Γ(t, B(t)) · dB(t). To the

stated aim, we write that

Φ(z) = Eµ0 [C(ω + z)]

= Eµ0

[∫ T

0
[A(t)(B(t) + z(t)) +D(t)] · d(B(t) + z(t))

]

=
∫ T

0
[A(t)z(t) +D(t)] · dz(t)

= C(z).

Proposition 3.4.1. Consider the differential equation

ÿ(t) + g(t)y(t) + h(t) = 0, (3.5)

where the unknown y ∈ C2([0, T ],R), with boundary conditions y(0) = 0 and y(T ) = a. Let

g(t) and h(t) be C1([0, T ],R) functions so that the differential equations

A2(t) + Ȧ(t) = −g(t) (3.6)

and

Ḋ(t) +D(t)A(t) = −h(t)

have solutions, A(t), D(t). Let X be the diffusion corresponding to µ∗ given in Theorem  2.1.1 

with Γ(t, x) = A(t)x+D(t). Then the solution to ( 3.5 ) is

y(t) = Mode
[
X(t)

∣∣∣∣∣X(T ) = a

]
, (3.7)

Here, the conditional mode of a diffusion is defined as the minimizer of the Onsager-Machlup

function defined in Theorem  2.1.1 over all paths z with z(T ) = a, as in Remark  3.2.1 .
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Proof. Let Γ(t, x) = A(t)x + D(t) for the Lagrangian defined in Theorem  2.1.1 . The La-

grangian is thus

L(t, q, q̇) = Eµ0

[
(q̇(t) − A(t)(B(t) + q(t)) −D(t))2

]
. (3.8)

First, we note that all of the hypotheses of Theorem  2.1.1 hold as A,D are both C1 functions

by assumption. Computing the derivatives of L yields that

Lq(t, q, q̇) = −2A(t) (q̇(t) − A(t)q(t) −D(t))

and

Lq̇(t, q, q̇) = 2 (q̇(t) − A(t)q(t) −D(t)) .

The Euler Lagrange equation for L is then

−A(t) (q̇(t) − A(t)q(t) −D(t)) − q̈(t) + Ȧ(t)q(t) + A(t)q̇(t) + Ḋ(t) = 0.

We may simplify this as

−q̈(t) + q(t)
(
A2(t) + Ȧ(t)

)
+
(
Ḋ(t) + A(t)D(t)

)
= 0. (3.9)

By the assumption of A and D, we have that the Euler Lagrange equation for the

Lagrangian L is equation (  3.5 ). Therefore by Theorem  2.1.1 we have that the solution to

equation (  3.5 ) is the conditional mode of µ̃. By Lemma  3.4.1 we have that µ∗ = µ̃. Therefore

the solution to equation ( 3.5 ) is the conditional mode of µ∗.

Remark 3.4.1. The equation

A2(t) + Ȧ(t) = −g(t) (3.10)

is an example of a Riccati equation, whose general form is

Ȧ(t) = γ0(t) + γ1(t)A(t) + γ2(t)A2(t),
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where γi are continuous functions and γ0, γ2 6= 0. See [ 48 ] for conditions on solving Riccati

equations explicitly. To this aim, they convert the Riccati equation to a second order linear

differential equation

z̈(t) + (−γ1(t) + γ̇2(t)/γ2(t))ż(t) + γ0(t)γ2(t)z(t) = 0,

where A(t) = −ż(t)/(γ2(t)z(t)). In the case of Theorem  3.4.1 , the Riccati equation ( 3.10 )

turns into the homogeneous equation

z̈(t) + g(t)z(t) = 0,

with A(t) = −ż(t)/z(t). Note however that this is not quite the homogeneous version of ( 3.5 )

because in ( 3.5 ) we insist that y(0) = 0.

Explicitly giving C for an equation ( 3.5 ) comes down to the solvability of the equation

( 3.10 ). We give an example of when (  3.10 ) is explicitly solvable as a corollary.

Corollary 3.4.1. Consider the differential equation

ÿ(t) + gy(t) + h(t) = 0, (3.11)

where the unknown y ∈ C2([0, T ],R), with boundary conditions y(0) = 0 and y(T ) = a. Let

h(t) be C1([0, T ],R) and let g ≤ 0 be a constant. Then the solution to ( 3.11 ) is

y(t) = Mode
[
X(t)

∣∣∣∣∣X(T ) = a

]
, (3.12)

where the process F (t) corresponding to the measure µ̃ (and hence µ∗) is the process

F (t) =
∫ t

0

(√
−gB(u) − e−u

√
−g
∫ u

1
es

√
−gh(s)ds

)
du.

Remark 3.4.2. One might ask if one can find a Γ(t, x) that yields an Euler-Lagrange

equation of the form ( 3.1 ) with f 6= 0. The answer is no, and the Γ(t, x) used in Proposition

 3.4.1 is of maximal generality, as the below lemma will show.
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Lemma 3.4.2. Let Γ(t, x) as in Portmanteau theorem be such that ∂
∂x

Γ(t, x) depends non-

trivially on x. Then the resulting Euler Lagrange equation has a nonlinearity in q.

Proof. We write down the Lagrangian as

L(t, q, q̇) = Eµ0

[
(q̇(t) − Γ(t, B(t) + q(t)))2

]
.

Taking derivatives yields

Lq(t, q, q̇) = 2Eµ0 [(q̇(t) − Γ(t, B(t) + q(t)))(−Γx(t, B(t) + q(t)))] ,

and

Lq̇(t, q, q̇) = 2Eµ0 [(q̇(t) − Γ(t, B(t) + q(t)))] .

The Euler-Lagrange equation for L is thus

− q̇(t)Eµ0 [Γx(t, B(t) + q(t))] + Eµ0 [Γ(t, B(t) + q(t))Γx(t, B(t) + q(t))]

− q̈(t) + d

dt
Eµ0 [Γ(t, B(t) + q(t))] = 0.

Because Γx(t, x) depends nontrivially on x, the term

Eµ0 [Γ(t, B(t) + q(t))Γx(t, B(t) + q(t))]

depends nonlinearly on q with no terms involving q̇ or q̈. The three other terms will all

involve a q̇ or a q̈, so there is no chance for cancellation.

Corollary 3.4.2. If an ODE

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0,

where f, g, h ∈ C1(0, T ), comes from the Euler-Lagrange equation in Theorem  2.1.1 , then

Γ(t, x) = A(t)x + C(t), for some A,C ∈ C1(0, T ). Thus f = 0 in Proposition  3.4.1 is of

maximal generality.
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We finally prove our main theorem for general f by applying a simple transformation to

solutions given in Proposition  3.4.1 . This is the full version of Theorem  3.1.2 .

Theorem 3.4.1 (Feynman-Kac for ODEs). Consider the differential equation

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0, (3.13)

where the unknown y ∈ C2([0, T ],R), with boundary conditions y(0) = 0 and y(T ) = a. Let

f(t), g(t) and h(t) be C1 real valued functions. Let V (t) = 2−1 ∫ t
0 f(s)ds. Define the functions

ĝ(t) = −V̈ (t) + (V̇ (t))2 − f(t)V̇ (t) + g(t)

and

ĥ(t) = eV (t)h(t).

Suppose that the differential equations

A2(t) + Ȧ(t) = −ĝ(t)

and

Ḋ(t) +D(t)A(t) = −ĥ(t)

have solutions, A(t), D(t), implying that the solution ŷ(t) = Mode [X | X(T ) = a] given in

Proposition  3.4.1 to the equation

ŷ′′(t) + ĝ(t)ŷ(t) + ĥ(t) = 0

exists. Then the solution to ( 3.13 ) is

y(t) = e−V (t)ŷ(t) = e−V (t) Mode [X | X(T ) = a] . (3.14)
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Proof. Differentiating y once yields that

ẏ(t) = e−V (t)[ŷ′(t) − V̇ (t)ŷ(t)].

Differentiating again gives

ÿ(t) = e−V (t)[ŷ′′(t) − V̈ (t)ŷ(t) − V̇ (t)ŷ′(t) − V̇ (t)ŷ′(t) + (V̇ (t))2ŷ(t)].

Checking that y satisfies equation ( 3.13 ) concludes that

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = e−V (t)[ŷ′′(t) + ĝ(t)ŷ(t)] + h(t)

= e−V (t)[ − eV (t)h(t)] + h(t)

= 0.

3.4.2 Feynman-Kac for Systems of Equations

In this subsection, we extend Theorem  3.4.1 to the case of systems of linear second order

ODEs. The proofs are similar to the proofs in the previous section, but we include them for

completeness.

Proposition 3.4.2. Consider the system of differential equations

ÿ(t) + g(t)y(t) + h(t) = 0, (3.15)

where the unknown y ∈ C2([0, T ],Rn), with boundary conditions y(0) = 0 and y(T ) = a. Let

g(t) be a C1([0, T ],Rn×n) matrix and let h(t) be a C1([0, T ],Rn) vector so that the differential

equations

AT (t)A(t) + Ȧ(t) = −g(t)

and

Ḋ(t) + AT (t)D(t) = −h(t)
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have solutions, A(t), D(t). Let X be the diffusion corresponding to µ given in Theorem  2.1.1 

with Γ(t, x) = A(t)x+D(t). Then the solution to ( 3.15 ) is

y(t) = Mode
[
X(t)

∣∣∣∣∣X(T ) = a

]
, (3.16)

Here, the conditional mode of a diffusion is defined as the minimizer of the Onsager-Machlup

function defined in Theorem  2.1.1 over all paths z with z(T ) = a, as in Remark  3.2.1 .

Proof. All the assumptions for Theorem  2.1.1 are satisfied so we may write the Lagrangian

for Γ as

L(t, q, q̇) = Eµ0

[
‖q̇(t) − A(t)(B(t) + q(t)) −D(t)‖2

]
. (3.17)

Differentiating under the integral sign yields that

Lq(t, q, q̇) = −Eµ0

[
2(q̇(t) − A(t)(B(t) + q(t)) −D(t))TA(t)

]
= −2(q̇(t) − A(t)q(t) −D(t))TA(t)

= −2(q̇T (t)A(t) − qT (t)AT (t)A(t) −DT (t)A(t))

and

Lq̇(t, q, q̇) = Eµ0

[
2(q̇(t) − A(t)(B(t) + q(t)) −D(t))T

]
= 2(q̇(t) − A(t)q(t) −D(t))T

= 2(q̇T (t) − qT (t)AT (t) −DT (t)).

The Euler-Lagrange equation is then

−q̇T (t)A(t) + qT (t)AT (t)A(t) +DT (t)A(t) − q̈T (t) + qT ȦT (t) + q̇T (t)AT (t) + ḊT (t) = 0.

Collecting terms yields that

−q̈T (t) + qT (t)(AT (t)A(t) + Ȧ(t)) +DT (t)A(t) + ḊT (t) = 0. (3.18)
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Taking the transpose of equation ( 3.18 ) yields that

−q̈(t) + (AT (t)A(t) + ȦT (t))q̇(t) + AT (t)D(t) + Ḋ(t) = 0,

which is equation ( 3.15 ).

Theorem 3.4.2 (Feynman-Kac for system of ODEs). Consider the system of differential

equations

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0, (3.19)

where the unknown y ∈ C2([0, T ],Rn), with boundary conditions y(0) = 0 and y(T ) = a.

Let f(t), g(t) be C1([0, T ],Rn×n) matrices and let h(t) be a C1([0, T ],Rn) vector. Let V (t) =

2−1 ∫ t
0 f(s)ds. Suppose that the matrix exponentials eV (t) and e−V (t) exist and e−V (t) commutes

with both f(t) and g(t). Define the functions

ĝ(t) = −V̈ (t) + (V̇ (t))2 − f(t)V̇ (t) + g(t)

and

ĥ(t) = eV (t)h(t),

where eV (t) denotes the standard exponential of a matrix. Suppose that the differential

equations

AT (t)A(t) + Ȧ(t) = −ĝ(t) (3.20)

and

Ḋ(t) + AT (t)D(t) = −ĥ(t)

have solutions, A(t), D(t), implying that the solution ŷ(t) = Mode [X | X(T ) = a] given in

Proposition  3.4.2 to the equation

ŷ′′(t) + ĝ(t)ŷ(t) + ĥ(t) = 0
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exists. Then the solution to ( 3.13 ) is

y(t) = e−V (t)ŷ(t) = e−V (t) Mode [X | X(T ) = a] . (3.21)

Proof. Differentiating y once yields that

ẏ(t) = e−V (t)[ŷ′(t) − V̇ (t)ŷ(t)].

Differentiating again gives

ÿ(t) = e−V (t)[ŷ′′(t) − V̈ (t)ŷ(t) − V̇ (t)ŷ′(t) − V̇ (t)ŷ′(t) + (V̇ (t))2ŷ(t)].

Checking that y satisfies equation ( 3.13 ) using the commutivity assumption concludes that

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = e−V (t)[ŷ′′(t) + ĝ(t)ŷ′(t)] + h(t)

= e−V (t)[ − eV (t)h(t)] + h(t)

= 0.

3.5 Examples

We now identify the process X for a number of example ODEs.

Example 3.5.1. Consider the ODE

ÿ(t) − y(t) = 0.

As there is no ẏ term, we may use Proposition  3.4.1 directly. In this case, A(t) solves the

first order differential equation

A2(t) + Ȧ(t) = 1.
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Thus we may let A = ±1. As there is no h term, we may simply let D = 0. Therefore

choosing Γ(t, x) = x and thus

C =
∫ T

0
B(t)dB(t).

Thus the solution is the conditional mode of the process X(t) with density

dµ∗

dµ0
= e−C

Eµ0 [e−C ]
.

Example 3.5.2. Consider the ODE

ÿ(t) + ẏ(t) − y(t) = 0.

As f 6= 0 we must use the full Theorem  3.4.1 . We note that ĝ(t) = −1 and ĥ(t) = −1. So

therefore X is the same as the previous example and we only need to include the exponential

weight to get that

y(t) = e−t/2 Mode [X(t) | X(T ) = a]

Example 3.5.3. Consider the ODE

ÿ(t) − y(t) + t = 0.

Then we can let A(t) = 1 and D(t) = 1 − t. Therefore Γ(t, x) = x+ 1 − t. Therefore

C =
∫ T

0
[B(t) + 1 − t]dB(t).

Thus the solution is the conditional mode of the process X(t) with density

dµ∗

dµ0
= e−C

Eµ0 [e−C ]
.

3.6 Conclusions

We presented a new Feynman-Kac type formula for systems of linear second order ODEs,

by demonstrating that the solution of the ODE is the mode of a specific diffusion process
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that is determined by the coefficients of the ODE. To the best of our knowledge, this charac-

terization of the solution of a given linear ODE in terms of a path functional of a stochastic

process is novel and has not been identified in the literature before. This result opens the

door to new ways of solving second order linear ODEs, potentially leveraging stochastic

simulation, just as the Feynman-Kac theorem has led to the development of Monte Carlo

methods for solving linear parabolic PDEs. We gave a few examples of the utility of our

result for numerically solving ODEs. The primary bottleneck to numerically implementing

this method is the calculation of A which, as noted before, is the solution to a Riccati equa-

tion which is known to be difficult to solve explicitly. There is work, of course, on numerical

solutions of Riccati equations, see e.g. [  49 ].

However, once A is identified, numerically computing the solution to the second order

ODE can be done reasonably efficiently. Part (d) of our Portmanteau in Theorem  2.1.1 

provides one possible way of computing the mode. Alternatively, the part (a) of the the-

orem suggests that the mode could be computed by solving the constrained information

projection. One approach to doing this would be to use the Iterative Proportional Fitting

Procedure (IPFP) or its discrete counterpart the Sinkhorn algorithm [ 50 ], for instance. There

are also direct methods for computing the mode; see [  51 ] for examples using a trapezoidal

discretization.

To conclude, we pose two open questions:

Question 3.6.1. Is there an efficient way of numerically estimating the solution without

estimating A first?

Question 3.6.2. Can we extend our results to nonlinear ODE? That is, given a general

equation

ÿ(t) + F (t, y, ẏ) = 0,

is there a condition on F so that we can guarantee to find a corresponding Γ?
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