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ABSTRACT

Development of complex aerospace systems often takes decades of research and testing. High
performing propellants are important to the success of rocket propulsion systems. Development
and testing of new propellants can be expensive and dangerous. Full scale tests are often required
to understand the performance of new propellants. Many industries have started using data science
tools to learn from previous work and conduct smarter tests. Material scientists have started using
these tools to speed up the development of new materials. These data science tools can be used to
speed up the development and design better propellants. | approach the development of new solid
propellants through two steps: Prediction of delivered performance from available literature tests,
prediction of ideal performance using physics-based models. Random Forest models are used to
correlate the ideal performance to delivered performance of a propellant based on the composition
and motor properties. | use Parsimonious Neural Networks (PNNs) to learn interpretable models
for the ideal performance of propellants. | find that the available open literature data is too biased
for the models to learn from and discover families of interpretable models to predict the ideal

performance of propellants.
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1. INTRODUCTION

Aerospace systems have accomplished extraordinary tasks throughout their existence. We’ve
sent humans to The Moon during the Apollo program and sent satellites out of our galaxy in the
voyager missions. These systems took decades of research and testing to successfully launch. As
we look to expand what aerospace systems can accomplish, we need to be smarter in the way we
develop new systems. Using data science tools, researchers can learn more from previous work to
guide advances in new technologies. Designing new propellant formulations is an important part
of designing better aerospace systems.

Composite solid rocket propellants have been used since the days of the Apollo missions and
are often made of ingredients such as HTPB, Ammonium Perchlorate, Ammonium Nitrate,
Aluminum, Iron Oxide. [1] Studies have been conducted to understand the effect of weight
percentages, particle size, solids loading, metalized vs non-metalized, casting procedures, and
motor configurations on performance. [2-5] Variations in these can result in changes in both the
ideal and delivered performance of the propellant. Models capable of predicting the performance
of propellants can accelerate the development of new propellants. This is especially important in
the field of energetics where experiments are time consuming, expensive, and dangerous.

Modern methods use complex thermochemical codes such as NASA CEA and Cheetah,
that with a database of composition and heats of formation, can be used to predict ideal
performance parameters for a fixed motor geometry and operating conditions. [6] For a new
potential propellant, if an experimental test has not been conducted, the heat of formation can be
estimated from expensive quantum chemistry calculations.

Development of new energetic materials often take decades of research and testing. [7]
Data science tools have been used to rapidly decrease the development time of new materials.
Recent studies have shown that more and more studies are applying data science tools to archival
data. Archival data is poorly report and often researchers disagree on what is important to report
in published data. [8,9] This issue is being open addressed within the field and researchers are
actively working to make data more available to data scientists. [10,11] With researchers making
data more available, progress has been made in the field of materials in battery applications and
high-temperature oxides. [12,13] The field of energetics have also been successfully using

available data to build models to predict detonation velocity and pressures of explosives. [14]
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Recent efforts have been made to develop models capable of predicting the ideal specific
impulse of CHNO propellants using the Kamlet-Jacobs decomposition assumption. [15] The work
develops a simple expression, using the heat of combustion and the number of grams per gaseous
mole, to predict the ideal specific impulse of 165 different propellants. [16] This model assumes a
motor operating pressure of 1000 psi and a nozzle pressure ratio of 68.9. Motor operating
conditions and motor geometry have a great effect on both the ideal and delivered performance of
the propellant. Understanding how rockets generate thrust is important to understanding potential

area of loss within propellant performances.

1.1 Principles of Rockets

The foundation of rocket propulsion systems are built around Isaac Newton’s third law of
motion. Newton states, “For every action, there is an equal and opposite reaction.” Propellants,
the fuel of rocket propulsion, is combusted and accelerated out the nozzle of the rocket. The
highspeed exhaust gases are ejected out of the nozzle and the rocket feels the reaction force called
thrust. The law of conservation of momentum states that the momentum of a system must always
be conserved. When the high velocity low mass exhaust is moving away from the rocket, the high
mass rocket must move in the opposite direction at a slower speed to conserve the momentum of
our rocket system. This allows rocket propulsion system to be effective in the vacuum of space

and within the atmosphere.
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Figure 1.1. The figure above depicts how conservation of momentum is applied to rockets. [17]

Since the goal of rocket engines is to generate thrust, efficiencies of rocket engines are how
effectively an engine and fuel combination creates thrust per amount of fuel needed. This is known
as the specific impulse, or the amount of thrust generated per unit mass flow. Specific impulse is

affected by the characteristics of the propellant, the chamber pressure of the engine, and the
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expansion ratio of the nozzle. Ideal specific impulse is the maximum efficiency a combination of
these parameters could achieve. The ideal specific impulse assumes complete combustion and zero
losses within the rocket engine and nozzle. The delivered specific impulse is the actual realized
efficiency of a rocket engine operating with real conditions. Real rocket engines experience a
specific impulse efficiency which accounts for all the losses within the combustion process and
the nozzle. To separate some areas of the rocket, we will look at the rocket in two sections: The

combustor and the nozzle.

Nlotor Case Tiscabitisi
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Figure 1.2. The figure depicts a cross section of a solid rocket motor. [18]

F
Isp= E

Equation 1.1. Specific Impulse

In the rocket combustor, fuel and oxidizer are mixed and burned at a high pressure. The
combustor provides the hot gases to the nozzle that will generate the thrust discussed above. Fuel
and oxidizers burned together can be represented in a chemical equation to combust into its

products.

1
H2+§02 = H20

Equation 1.2. Example chemical equation
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Complete combustion occurs when all the fuel has been fully oxidized and the most energy
has been released from the combustion process. In real rocket combustors, incomplete combustion
will occur and some of the products exiting the combustor will not be fully oxidized. Products that
are not fully oxidized reduce the efficiency of the combustion process. Combustion efficiency is
measured by a term called the characteristic velocity. The ideal characteristic velocity represents
the max efficiency of a propellant when it is fully combusted. Incomplete combustion results in a

loss of the c* realized by the rocket engine.

—(y+1)
. PA, |RT.[ 2 \ZD
T T T ymw\y+1

Equation 1.3. C* relation to propellant properties

Rocket nozzles use the high-pressure combustion products from the combustor and
accelerate the gases away from the rocket. A converging-diverging nozzle is used to expand the

high-pressure gases and accelerate the flow out the end of the rocket engine.

Converging Secfion  Diverging Section

Back [Fessure 1

Arnbiené Tank

Ciharnber MNozZle Jet

Figure 1. Corverging Diverging Nozzie Configuration

Figure 1.3. The above image depicts a converging diverging nozzle. [19]
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The flow will travel from the combustor, accelerated through the converging section, be
choked at the throat, and accelerated again out the diverging section of the nozzle. The exhaust
products accelerate through the converging-diverging section of the nozzle as a function of the

area ratio and the ratio of specific heats.

(r+1)
A 1(2+@-1M*)P0D
A, M| +1D

Equation 1.4. Area Mach Relation

Accelerating the exhaust through the nozzle is limited by the pressure of the exhaust as it
is accelerated. The pressure of the exhaust decreases as it is accelerated faster down the nozzle. If
the pressure of the gas drops too low, the flow can separate off the surface of the nozzle, which

restricts our expansion ratio.

Y

Equation 1.5. Isentropic Pressure relations.

1.2 Obtaining Experimental Data

To understand how all these components combine to affect the performance of a rocket engine
is a task that computational modeling has not quite reached. Rocket engines are an extremely
complex system and have many different areas of losses due to combustion and real flow effects.
Some of the real effects that could decrease performance of the rocket engine: Combustion
inefficiencies, two phase flow, boundary layer growth, systems cooling, flow separation,
under/overexpansion. Research to understand how even individual parameters can affect engine
performance is often conducted using experimental results. [3,20] Experiments of full-scale motors
is often relied on to test performance of motors and propellants. Conducting these tests to obtain

data is expensive, timely, and potentially dangerous.
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Some state-of-the-art models have been created to model the delivered specific impulse of
rocket motors. The Solid Performance Program SPP models two phase flow, divergence, boundary
layer, and chemical kinetic losses. [21,22] While models such as SPP attempt to understand the
physics occurring within an engine at a high level, | look to apply data science tools and machine

learning models to learn from experiments.

1.3 Applying Data Science Tools and Machine Learning

To apply data science tools and build machine learning models, I collected data from the open
literature that reported delivered specific impulse, properties of the motor configuration, and the
propellant being used. | used random forests to model how the propellant and the motor
configuration effected the delivered specific impulse. To understand the ideal specific impulse, a
similar dataset was used and PNNs were used to learn interpretable expressions.

Through collecting open literature data of delivered specific impulse, | find that the
available data is extremely sparse, and few details are well reported. Data reported is often only
high-performing propellants and the models learn to make accurate predictions without propellant
information. To support this work, as much usable literature data was collected.
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2.

2.1.1 Delivered Specific Impulse Data

METHODS

For the delivered specific impulse database, 66 experimental motor tests were collected from

the open literature. Literature sources needed to have information on both the propellant used and

the motor configuration used in the test. The following information was required from each source:

Propellant formulation and Ideal Specific Impulse, motor operating pressure, throat area, and

motor dimensions. Some of the information, such as Ideal Specific Impulse, was calculated using

NASA CEA [6] when this information was not provided by the publisher. Motor dimensions from

datasets that used standard BATES motors [23-25] were required to be reported in the dataset. In

total, 66 usable datasets were found within the open literature.

Table 2.1. Sample of open literature data collected for the delivered specific impulse models.

Motor | % | % | % Exit Throat | Expansion | Pressure | lIdeal | Delivered
# AP | AN | Al Angle | Diameter Ratio (psia) | Specific | Specific
(degrees) (in) Impulse | Impulse
1 73 | 0.0 | 15.0 16.8 2.32 33.3 377.0 312.0 288.3
2 73 | 0.0 | 15.0 16.1 2.75 28.0 322.0 308.7 284.0
3 73 | 0.0 | 15.0 16.5 3.43 40.0 731.0 315.6 289.7
4 73 | 0.0 | 15.0 15.6 2.61 26.8 515.0 308.4 281.2
5 73 | 0.0 | 15.0 14.9 2.84 54.0 602.0 320.2 293.2
6 73 | 0.0 | 15.0 14.3 3.27 51.2 612.0 319.4 293.6

Some literature sources reported far more information than others and features were only

considered if all literature sources reported the feature.
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Figure 2.1. This figure depicts certain parts of a rocket engine and nozzle that are in the data
columns. [26]

A cross section view of a rocket engine and nozzle can be seen in the image above. The
properties that are used in the model are highlighted in the image. Many more properties are likely
to be relevant in the predict of the delivered specific impulse but are rarely, if at all, reported in
motor tests.

2.1.2 ldeal Specific Impulse Data

As mentioned above, Ideal specific impulse measures the theoretical max performance of a
rocket motor. Ideal specific impulse is often calculated using thermochemical codes, such as
NASA CEA and Cheetah and therefor can be collected from many sources. [27] Another study
done recently looked to model the Ideal specific impulse of different propellants using regression
models and the dataset from this study was used in the following work [16]. The a, b, ¢, and d
variables represent the number of Carbon, Hydrogen, Nitrogen, and Oxygen atoms respectively.
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Table 2.2. A sample of the data used for the ideal specific impulse models.

Chemical a b c d Heat of | Moles Heat of Specific
Formula Formation | Per | Combustion | Impulse
Gram (Ns/g)
C5H8N4012 | 5.000 | 8.000 | 4.000 | 12.000 -128.70 0.0316 1.514 2.58
C7H5N306 | 7.000 | 5.000 | 3.000 | 6.000 -16.00 0.0253 1.291 2.11
C4H8N8O8 | 4.000 | 8.000 | 8.000 | 8.000 17.93 0.0338 1.477 2.62
C3H6N606 | 3.000 | 6.000 | 6.000 | 6.000 14.71 0.0338 1.482 2.62
C7H5N508 | 7.000 | 5.000 | 5.000 | 8.000 4.67 0.0270 1.420 2.35
CH3NO2 | 1.000 | 3.000 | 1.000 | 2.000 -27.00 0.0369 1.364 2.46

The Ideal specific impulse was determined at a chamber pressure and nozzle exit pressure
of 68.9 and 1 bar [16].

2.2 Random Forest Models

Random Forest models are an ensemble of decision trees used to overcome the downsides of
individual decision trees. [28] Individual decision trees are prone to overfitting but by using a large
set of randomly generated trees, a random forest can overcome the faults of individual trees. For
this work, | built random forests using the sklearn python package. [29]

Each tree is built from a random sample of the entire training set. Trees split the training data
at each branch based upon a random selection of the features in the data. This process is repeated
over and over until the data cannot be split anymore. Each individual tree makes its own prediction

and the forest averages each of these predictions.

2.3 Parsimonious Neural Networks and Genetic Algorithms

Neural networks, NNs, are a machine learning method that use layers of nodes and functions
to model complex and non-linear relationships. Many of the functions used in NNs, such as Relu,
Sigmoid, Hyperbolic Tangent, etc., are rarely found in common chemistry or physics relations.
This motivates us to create custom networks that can model common relations found in chemistry
and physics. As mentioned, PNNs are constructed from custom neural networks that allow for a
larger range of potential expressions than standard networks. [30] Unlike standard neural networks,
each node can have a unique activation function and unique number of connections to the previous
layer. This unique set of activation functions and connections allow the structure to build a wide

range of different expressions. The output of a node is calculated using the following expression:
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Y = f(i(xiwi) + b)

Equation 2.1. Activation function calculation.

Where Y is the output of a node, f is the activation function, N is the number of nodes in the
previous layer, X; are inputs from the previous layer, w; are the weights multiplied to each input,
and b is a bias term. The above expression works for many potential activation functions such as:
Linear, Multiple, squared, etc. There are some activation functions where this expression will not
work, such as the multiply activation function. For this activation function, the following
expression must be used, where only inputs with non-zero weights and/or biases are included in

the product.

Y=f (( ::Xi * Wi) (wy + b))

Equation 2.2. Custom multiply activation function.

For any activations involving an even root, it is possible for many networks to fail during
training due to a negative input being passed to an even root. To account for this, a constraint node
is attached that uses a unique activation function and trains all even root activations to output real

numbers only.

N

even #
E(X;) = ReLu| —sign (Z Xi*w; + b)

i=1

N
ZXi*Wl"l‘b

i=1

Equation 2.3. Even root activation function.

C = sum(E)

Equation 2.4. Constraint activation function.
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Just like the activation function, the weights, and biases each have a list of potential values.
The weights and biases can be set to a fixed value of zero, a fixed constant, or a randomly initialized
value that is trained through backpropagation. Any number of constants (ie. 1, 2, ) can be added
for weights and biases and any number of activation functions can be added. Increasing number of
activations, weight/bias options, and network size increases the dimensions of the space of
potential networks and thus the time for the genetic algorithm to optimize the network structure.
Selecting meaningful activations and constant weight/bias options is extremely important to reduce
this dimension to something reasonable. The components of each PNN are described using a list
of integers that represent the different activation functions and weight/bias option. The PNN
structure is then optimized using a genetic algorithm. The genetic algorithm uses an objective

function that balance accuracy of the model with the complexity of the model.

Ny Ny,
0bj = fi(Eres) + p| D Wit ) w,
i=1 =1

Equation 2.5. Objective function of genetic algorithm.

Here, E..s: represents error of the trained PNN on the test set and f; represents a logarithmic
function used in some cases to convert a wide range of errors to a similar order of magnitude to
the terms representing the parsimony. The second term sums over the Ny neurons in the network
and is intended to prefer simple activation functions. For example, if activation functions such as
linear, multiplication,V,and ¥ are considered the corresponding scores can be w; =
0,1,2,and 3, respectively. The third term sums over all weights and biases (N,,) and is intended
to prefer fixed, simple parameters over trainable ones. For example, parameters fixed to a value 0
are scored with a 0, non-zero fixed parameters are scored with a 1, and trainable parameters are
scored with a 2. The models balance complexity and accuracy using the parsimony term, p. The
larger the parsimony term is, the more the complexity of the model is valued and the smaller the
parsimony term is, the more the model accuracy is valued. Using a range of parsimony values, we

can discover a family of expressions with different levels of complexity and accuracy.
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3. DELIVERED SPECIFIC IMPULSE

| constructed random forest models to predict the delivered specific impulse of a rocket motor
configuration and propellant. These models can make predictions for aluminized composite solid
rocket propellants only. The mean average error (MAE) was calculated using a 5-fold cross-
validation. The MAE is calculated for each of the testing sets and averaged across the folds. The
models each receive information on the composition of the propellant and some information on

the motor configuration.

Table 3.1. Inputs for Models 1 and 2

Model 1 Model 2
Motor Operating Pressure | Motor Operating Pressure
Expansion Ratio Expansion Ratio
Throat Diameter Throat Diameter
Exit Angle Exit Angle
Ideal Isp %AP
%AN
%Al

Model 1 and 2 each receive different forms of the composition. Model 1 receives the Ideal
specific impulse, which is either reported in the literature or calculated using CEA. [6] Model 2
receives the weight percentages of the major components of the propellant. The data the model see

consists of propellants that are all made from these main ingredients.
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Figure 3.1. Parity plot for model 1 and 2.

The delivered specific impulse ranges from ~225-300 seconds in the available data. Models
1 and 2 perform very similarly with a MAE of less than 3 seconds. To confirm the performance of
the models, | vary some of the input parameters over a range seen in the literature data. The
variation in the input parameters shows the models knowledge of the input space and how the
inputs affect the delivered specific impulse. To conduct the exercising of these models, the models

are trained on all the data and a set of generated parameters is passed to the model for evaluation.

Table 3.2. Range of testing properties and some of the training data used.

Type Nozzle Exit Throat Expansion Pressure Ideal
Angle Diameter Ratio (psia) Specific
(in) Impulse (sec)
Testing 15 2 9.5 1000 265-325
Range
Exact 15 2 9.5 1000 ~283-292
Training
Match
(Green)
Similar 15 Varies Varies Varies Varies
Training
Match (Red)

23



Model 1 is evaluated by varying the ideal specific impulse over a set motor configuration
and motor operating pressure. The green training data represents datapoints that have the exact
motor configuration and operating pressure as the testing range. Red represents data points with

similar input parameters.
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Figure 3.2. This figure depicts model 1s prediction of a range of ideal specific impulse.

Using a fixed sized motor configuration, | can observe how the model understands how
variation in Ideal specific impulse changes the delivered specific impulse. The overlaid training
points show us that the model is lacking training data in a large portion of the input space for this
motor configuration and operating pressure. Although the model performs well on the training

data, the random forest is extrapolating for much of the input space.
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Table 3.3. Training data points values.

Motor Config. | Nozzle Exit Throat Expansion Pressure Color on
Angle Diameter (in) Ratio (psia) Figure 3.3
Baseline 15 2 9.5 1000 Blue
1 15 2.164 9.24 1010 Red
2 15 2.119 9.39 946 Green
3 15 2.077 9.47 946 Yellow
4 15 1.904 9.59 964 Black
5 15 1.953 9.63 966 Gray
6 15 1.872 9.57 1136 Purple

The above table shows 6 different motor configurations and operating pressures that were
seen in the training data. The percentage of ammonium perchlorate is varied from 60-75 percent.
Model 2 is used to understand how the amount of ammonium perchlorate changed the delivered
specific impulse. The amount of AN is adjusted a constant solid loading of 90, 0 percent aluminum,
and the following equations.

Solids Loading = %AP + %Al + %AN

Equation 3.1. Solids loading relationship.
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Figure 3.3. This figure depicts model 2’s prediction for a range of AP and AN over a variety of
motor configurations.

Using a variety of motor configurations, we can observe how the percentage of ammonium
perchlorate and ammonium nitrate affect the delivered specific impulse. The colored lines and dots
show which motor configuration and operation pressure is being evaluated. The dots represent the
training points, and the lines represent the range of model evaluation. Again, we can observe that
the training points cover far from enough of the input space for the model to avoid extrapolating.
The model’s accuracy in the areas of little to no testing data is uncertain.

The models perform well for a small amount of data and little variation within the
propellant types. To verify the model and data quality, | remove some of the inputs to the models
and observe their performance. The models should be unable to make accurate predictions if

enough of the input’s columns are removed.
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Table 3.4. Model 3 and 4 inputs.

Model 3 Model 4
Motor Operating Pressure Expansion Ratio
Expansion Ratio Throat Diameter
Throat Diameter Exit Angle
Exit Angle

To create the inputs for models 3 and 4, | remove important inputs that were given to
models 1 and 2. For model 3, all propellant composition information is removed. Ideal specific
impulse is removed from model 1 and the weight percentages are removed from model 2. For
model 4, the operating pressure is also removed, and it is interesting to note that model 4 only

contains inputs of the motor configuration.

ISP - MAE: 2.807 ISP - MAE: 2.673

300

300

200 ® Testing Data 290 ® Testing Data
- — Parity Line — Parity Line
280 280

270
260

250

Predictions (seconds)
Predictions (seconds)

240

220
220 230 240 250 260 270 280 290 300 220 230 240 250 260 270 280 290 300
Delivered Isp (seconds) Delivered Isp (seconds)

Figure 3.4. Parity plot for model 3 and model 4.

Model 3 makes accurate predictions of the data using no propellant information and only motor
geometry and operating pressure. Model 4 also makes accurate prediction using on the geometry
of the motor. The models with no information on what propellant is being used can predict almost
as good as the models with propellant and motor information. This reveals that, in the available
data, I can accurately predict what the delivered specific impulse is. This reveals that the data the

models are evaluated on is heavily biased toward similar performing propellants.
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4. IDEAL SPECIFIC IMPULSE

4.1 KJ Inputs

| constructed custom neural networks, PNNs, to find optimal expressions to calculate ideal
specific impulse. These models can predict ideal specific impulse for any CHNO propellant. The
operating pressure and the chamber pressure are fixed at a 68.9:1 ratio. A 5 k-fold cross-validation
is used on the testing and training sets. The total RMSE is the averaged across the folds. The

parsimony value is varied over a range that fills in an entire pareto front.

Using the inputs described by the Kamlet and Jacobs decomposition assumptions, |
discovery a family of interpretable models. [15] The MLRA equation is displayed on the pareto
front and is rediscovered in the evaluated equations. [16] The backpropagation of the network fails

to optimize the weights and biases for the MLRA equation.

Accuracy vs Complexity
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Figure 4.1. Pareto Front: KJ Inputs

PNN1 = w;N, + Q
PNN2 = WlNg +W2Q + b1
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PNN4 = \/WlMg +W2Ng + W3Q

PNNS =\/W1Mg +W2Ng +W3Q +b1

In most machine learning models, inputs are normalized to avoid any large differences in
the magnitudes of the different inputs. | use a min-max normalization technique to create KJ inputs
with normalized values. In the pareto front, | again discover a family of interpretable models but

do not rediscover the MRLA equation within this family.

Accuracy vs Complexity
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Figure 4.2. Pareto Front: KJ Inputs Normalized
PNN1 = W]_Q + b1

PNN2 = w,(w,N, + Q) + b,

PNN3 =w,(M + b,) + W3(W1Ng + Q)

PNN4 = \/N + (wiM, + w,N,; + Q + b,)

4.2 CHNO Inputs

In the above models, the Kamlet and Jacobs decomposition assumption is used to create inputs
for the models. | now remove this assumption and break down the KJ inputs into the basic

parameters used in their equations. These new inputs are the heat of formation and the number of
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atoms for Carbon, Hydrogen, Nitrogen, and Oxygen. This new set of inputs still allows the PNN
models to rediscover the MRLA equation and find other models that do not assume the same

decomposition as the KJ inputs.

Accuracy Vs Complexity
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Figure 4.3. Pareto Front: CHNO Inputs
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Figure 4.4. Pareto Front: CHNO Inputs zoomed in around MLRA

Using the CHNO inputs, | again discover a family of interpretable models to calculate ideal

specific impulse. Removing the KJ decomposition assumption allows me to discover models that
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perform better than the MLRA expression in both complexity and RMSE. The highest parsimony
value discovers that the data can always be simple represented by the average of the data. A wide

range of complex functions is discovered by the CHNO pareto front.

wyH + b +c+wsd
PNN3 =
W1a+C+W2d

PNN3, outperforms the MLRA equation in accuracy still using a slightly slower complexity.
This model is particularly interesting because it follows a similar yet simpler structure of the
MLRA equation.
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5. CONCLUSION

5.1 Delivered Specific Impulse

The goal of this study was to create models that can accurately predict the delivered specific
impulse of an aluminized solid rocket motor. The current trend of publication and sharing of data
from tests is biased towards high performing propellants only. This has caused the rocket
performance literature data that is currently available to not be sufficient to train intelligent ML
models in the complex physical and thermochemical environment. For ML to be successful in this

field, researchers need to publish all data, both good and bad, that accompany their studies.

5.2 Ideal Specific Impulse

The goal of this study was to evaluate the KJ assumption in the prediction of delivered specific
impulse and investigate for expressions that do not use this assumption. A family of models is
discovered that use the KJ decomposition assumptions and can make more accurate predictions
than the state-of-the-art models. The MLRA equation performs well compared to other discovered
equations that use the KJ decomposition assumption. Another family of models can be discovered
that do not use the Kamlet and Jacobs decomposition assumptions. This family can make more
accurate predictions than the models that rely on the KJ assumptions. In this family of models, we

find many models that outperform the state-of-the-art models in both complexity and accuracy.
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APPENDIX A. DELIVERED SPECIFIC IMPULSE DATA[2,25,31,32]

% | 9% Nozzl_ Throat Expar_lsio Presgur Ideal_ _ DeIiv_e_red
Moto A A % | e Exit Dlgmete n Ratio e (psia) | Specific | Specific
r No. Al | Angle | r(in) Impulse | Impulse

PN (sec) (sec)
1 73 |00 2> |168 | 232000 | 3330 3770 | 514000 126550000
2 73 |00 | g™ |161 |275000 | 28.00 322.0 808'700 384'00000
3 73 |00 | ¢> | 165 |3.43000 | 4000 731.0 815'600 389'70000
4 73 |00 | g™ |156 |261000 | 2680 515.0 808'400 381'20000
5 73 |00 | g™ |149 |284000 |54.00 6020 | 520200 |293.20000
6 73 |00 | g> |143 |327000 |51.20 6120 | o400 129360000
7 73 |00 | g> |167 |9.63000 | 2480 4430 | 300000 | 26760000
8 73 |00 | ¢> |136 688000 | 23.60 s07.0 | 500000 |264.70000
9 73 |00 2> |170 |6.88000 |42.70 507.0 | 510400 129500000
10 |73 00| |200 |6.88000 |87.90 5230 | 521000 |/500-50000
11 |68 00|, [200 |241000 |4730 6830 | o000 | 266.20000
12 |68 00|, [199 |212000 |55.60 670.0 | 51200 | 266:50000
13 |68 00|, [197 |210000 |96.90 7330 | 52>000 129510000
14 |68 |00 |% |147 |7.00000 |3310 549.0 | or#300 | 26770000
15 |70 |00 |% |141 |3:36000 | 5120 568.0 | o100 | 29070000
16 |70 |00 (1)6' 136 | 436000 |29.80 545.0 808'500 384'60000
17 |72 |00 (1)6' 140 | 424000 |32.10 547.0 811'100 389'50000
18 |70 |00 (1)6' 128 |3.82000 |39.30 588.0 813'000 388'90000
19 |69 |00 |:% |200 |299000 |17.50 6420 | 204900 | 27280000
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20 |70 |00 |:> |142 |144000 |5500  [7880 | SOS00 | 2900000
21 |70 {00 |> |139 |1.93000 |50.70 6450 | SH7-000 | 266.60000
22 |70 |00 36' 141 | 250000 | 35.40 485.0 811'300 385-90000
23 |72 |00 (1)6' 148 | 2.82000 | 46.00 465.0 817-100 390-20000
24|70 |00 |% |200 |241000 [4700  |6760 | 3900 ) 2653000
25 |71 |00 (1)8' 146 |3.57000 | 64.60 609.0 824-800 396-80000
26 |59 | 0.0 (2)0' 146 |3.32000 |74.70 723.0 329-700 398-10000
27 |69 |00 36' 150 | 1.35000 |40.20 367.0 309-700 382-70000
28 |69 |00 |” |150 |136000 14930 [3s60 | 3200 ) 2943000
20 |7 |00|;” |180 |316000 |2510  [asag | 304900 ) 2617000
30 |7 00| 150 |667000 |1790  |3440 | 20700 |26LAOON
A4 |75 |00 |3> 150 | 216400 |9.24 10100 | 283510 | 26577000
A5 |72 |00 38' 150 |2.11900 |9.39 946.0 384-740 365-33000
A6 |69 |00 (2)1' 150 |2.07700 |9.47 946.0 385'450 363-86000
A7 |66 00| |150 | 190400 |9.59 0640 | 295900 | 262.26000
A8 |63 00| |150 |195300 |9.63 066.0 | 205770 | 209.62000
A9 |60 00| |150 | 187200 |9.57 11360 | 279970 | 2553000
B-4 |75 |00 | 0> |150 |124100 |9.22 10220 | 283480 | 26281000
B-5 |72 |00 | % |150 |121500 |9.36 0430 | 204050 126127000
B6 |69 |0.0 (2)1' 150 |1.19100 |9.42 934.0 385-300 859-83000
B7 |66 00 |o% |150 |1.00400 |953 10010 | 283450 257.85000
B8 |63 |00 (2)7' 150 |1.12100 |9.57 973.0 383-630 354-73000
B9 |60 |0.0 go. 150 |1.07000 |9.56 1117.0 379'450 850-51000
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t 7t 175 |00 [ 2> 150 | 100000 | 950 10000 | 93058 | 26120202
t2"t 172 {00 [ 2% 150 | 100000 | 950 10000 | 200708 | 26113370
£ 9"t 169 |00 |2 |150 | 100000 | 950 10000 | 209920 | 26195851
4"t 66 |00 (2)4' 150 |1.00000 |9.50 1000.0 291'294 360'97083
"t 63 00 (2)7' 150 |1.00000 |9.50 1000.0 292'232 360'40829
56'31 60 | 0.0 (3;0. 150 |1.00000 |9.50 1000.0 592'436 359'94662
7 175 00| 0> 150 | 200000 |950 10000 | 33058 | 26431965
P27 172 |00 | 3% 1150 | 200000 | 950 10000 | 290708 | 2662359
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APPENDIX B. IDEAL SPECIFIC IMPULSE DATA[16]

Chemical Name | Chemical a b c d Heat | Mo | Heat Spec
Formula of les | of ific

Form | Per | Comb | Imp

ation | Gr |ustion | ulse

am (Ns/

9)

PETN C5H8N4012 860 g'oo g'oo égb -é28.7 gioa 1514 | 258
TNT C7H5N306 gbo g'oo 8'00 860 -16.00 (2)503 1201 |2.11
HMX C4H8NBO8 360 g'oo g'oo 3;)0 17.93 (3)'308 1477 | 262
RDX C3H6N606 860 8'00 8'00 860 14.71 (3)'308 1482 | 262
Tetryl C7H5N508 gbo g'oo g'oo 3;)0 4.67 (2)'700 1420 | 235
NM CH3NO2 150 150 120 200 | 90 1364 | 246
HNS CLAHBNGO12 | oo | 00 | 00 | 12 11870 | 00 | 1367 | 2.9
s g 3858 o
PBX-9011 %‘27.2';'3'18'\'2'4 e 3.01 é: ibe 4.05 g'303 1358 | 243
o | S
Pentolite(50/50) g:c2).33§;|2.37N1.2 2'03 ?'03 3'02 362 -23.90 géOS 1402 | 2.37
HNAB C12HANSO12 ééo gbo gbo (1)(2)6 67.90 (2)'403 1445 | 232
NG C3H5N309 S0 |50 139 190 | 8860 | oy | 1591 | 253
NQ CH4N402 ébo gbo gbo (2360 22.10 géOS 0898 |2.11
Octol (75/25) | gy o 1&OONES | 1T | 25| 23 125 157 |00 1431 | 250
TATB C6HBN606 o0 100 100 |00 | -36.85 | gy | 1075 | 201
PA C6H3N307 8'00 860 860 (7)'00 51.30 (2)'501 1283 |2.18
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C2.04H2.50N2.1 | 2.0 |25 |21 |26 0.0

Cycclotol 502 68 20 loo |50 |80 1.15 304 1.406 2.42
40 |80 [20 |70 0.0

DEGDN C4H8N207 0 loo 100 oo | 9940 |55, | 1392 |2.42
C1.97H3.22N2.4 |19 (32 |24 |24 0.0

PBX-9007 302.44 70 (20 |30 |40 |713 |3p4|1392 |239
C1.47H2.86N2.6 (1.4 |28 |26 |26 0.0

PBX-9501 002 60 20 leo 100 oo |228 | 336 |L1442 |2.56
12. | 6.0 [ 8.0 |12 0.0

DIPAM C12H6N8O12 000 |00 |00 | 000 | 680 |og | 1298 |2.16
50 (6.0 |8.0 |13. 0.0

BTNEU C5H6N8013 00 oo loo |o0o | 789137y | 1467 |2.52
40 |70 [3.0 9.0 0.0

BTTN C4H7N309 0 |00 |oo loo |™97:04| 35, |1.509 |2.59
20 [40 4.0 |40 0.0

FOX-7 C2H4N404 0 |00 |oo oo |73200| ;50 |1.199 |2.38
6.0 2.0 |4.0 |5.0 0.0

DDNP C6H2N405 0 |00 |00 lop |46:39 |59 |1.391 |2.27
40 |6.0 |40 |6.0 0.0

DNDMOxm C4HB6N406 0 oo |oo lop |77300 |35 1171 |2.22
7.0 | 6.0 |2.0 |5.0 0.0

DNOC C7HB6N205 0o loo loo |oo -47.80 253 1.109 | 1.93
6.0 6.0 |4.0 4.0 0.0

DNPH C6HB6N404 0o loo loo |oo 11.95 78 1.173 | 2.07
40 |80 [4.0 |80 0.0

DINA C4H8N408 0o loo loo |oo -65.88 333 1.472 | 2.56
10. | 16. | 6.0 |19. | . 0.0

DIPEHN C10H16N6019 000 | 000 |00 | 0oo 533.7 315 1.422 | 2.49
6.0 [11. | 3.0 | 9.0 |, 0.0

ETN C6H11N309 00 1000 oo | oo é14.7 g5 | 1.365 | 234
2.0 [10. | 4.0 | 6.0 |, 0.0

EDDN C2H10N406 0o looo loo | oo é56.1 403 0.966 |2.20
20 [6.0 4.0 |40 0.0

EDNA C2H6N404 0 oo |00 oo | 2481|507 |1.303 |2.46
1.0 | 6.0 |40 |30 0.0

GUNI CH6N403 0o loo loo |oo -92.52 410 0.662 | 1.90
20 [7.0 |7.0 |5.0 0.0

FOX-12 C2H7N705 0o loo loo |oo -85.09 371 0.898 |2.15
12. |50 | 7.0 |12 0.0

la C12H5N7012 ooo oo oo | oo 0.88 e 1.368 | 2.22
6.0 |80 6.0 |18. |. 0.0

1b C6H8N6018 0o loo loo | 006 %61.5 310 | 1609 | 248
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1c CH6N203 100 120 130 | -8as | o)) |0.047 | 216
1d C6N6O6 o0 100 100 |00 [ 244° 100 | 1602 | 265
le C2N8O4 o0 100 |50 [0 207 100 11e78 | 2.90
1f C2NBO3 S'OO 860 gbo 3'00 %61'0 (2)808 1936 | 2.95
1g C2H8N1004 S'OO gbo (1)80 3'00 41106'7 3801 1432 | 2.65
1h CH4NGO3 3'00 61.00 8'00 8'00 36.33 g702 1344 | 261
1i CHN503 3'00 é‘oo g.oo 8'00 73.76 gzgl 1681 | 2.65
1] CH4N604 3'00 61.00 8'00 g.oo 52.27 geoe 1507 | 273
1k C2HBN8O3 0100 150130 3267 | 0 | 1085|227
1 C2H7N9O3 010100 130 18 |90 |1A71 | 237
1m C2HIN1103 ébo 8'00 330 860 312'6 (3)904 1286 | 2.49
1n C2HANGO2 0180 100 120 |66 | o) 1198 | 230
10 C2H7N703 ébo g'oo g'oo 3'00 67.38 (3)801 1391 | 2.54
1p CsHaN5010 |0 | 39 |50 | I 158,66 | 0 | 1.860 | 2.72
1q CN202 10 120 120 4390 (2)708 1915 |2.74
R R T
1s N8 860 860 gbo 860 306'7 g507 3631 | 4.11
1t N10 860 860 égo 860 373'4 (3)507 3381 | 4.04
e B8 B e L [
C2.577
M1A1 H3.237N0.8620 25 132195 133 | 57.40 (2)902 1179 | 2.07
RN
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C2.309H2.922N

2.3

2.9

0.9

3.5

0.0

Miz 092703522 |09 |22 |27 |22 |08V | pgq | 1245 223
M4 051803455 |06 |40 |18 |86 | P10 g | 122 |220
w e G
Mz 83@5‘32%685’7“' 421'90 5'78 3'69 2'96 -55.90 g& 1319 | 237
M5 CoTSHIZ 0N | 20128199 195 | 5680 | 00 | 1304 | 2.35
M7 SESSSZ'ESSSN 2'59 §'55 éso 2'36 4830 gboz 1387 | 245
M8 etz OO | 19 120 1 20T 4750 | 90 | 1410 | 2.48
M9 etz o2IN | 2 A 3T 70 | 90 | 1422 | 250
e 05505446 |40 |45 |85 |5 |70 | pgs | 1232|207
M26 oAt oI 122 129 110 135 | 5040 | 90 | 1307 | 231
725 o N |22 |28 109 15 | 5210 | 90 11205 | 2.30
W5 25602565 |97 |32 |85 |65 | 020 |ggp | 1094|219
M17 o N oS 38 2D 2T 3100 | 90 | 1137 | 230
35 55200614 |72 |24 |50 |14 | 310 |5y | 1088|220
28/22.5/1.5/48

N)ING/Carbamits | 239302830 |90 |73 |a3 |30 |37 | ga3 | 1131 |28
[Picrite

28/22.5/1.5/48

NyNGICabamts | 242002846 |45 |70 |20 |45 | B2 | g4y | 1157|232
[Picrite

20.8/20.6/3.6/55

NINGICAtbamits | 261102645 |68 |66 |1 |40 | 2200|347 | 1107|225
2852 S50

§§NG/Carb§3n2§/§ s2r800008 |20 |59 |78 |08 | %77 |3 | 1189 |23
nPi...

NG i | som00 07 |48 |03 | o1 |47 | 3338 | ggs | 1210|236
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N)/NG/Carbamite
A\nPi...

28/22.5/1.5/28/20
NC (12% | C1.568H3.045N | 15 |3.0 | 2.1 |29 0.0
N)/NG/Carbamite | 2.16402.986 |68 |45 |64 |86 | 198|334 1248 | 238
AnPi...
20.5/32/8/1/29.5
C1.996H2.942N | 1.9 |29 | 1.4 |32 0.0
DNC/NG/DEP/2- -35.30 1339 | 2.38
A 149003261 |96 |42 |90 |61 311
29.5/32/2/1/29.5/
6
DNC/NG/DEP/2- féfégg'éffm 1'38 3'88 é‘55 2'13 3323 gioe 1300 | 2.47
NDPA/RDXAnB | & '
DN..
29.5/32/8/1/29.5
C1.598H3.096N |15 |3.0 | 1.6 |34 0.0
DNC/NG/DEP/2- 45.82 1314 | 245
A 164403416 |98 |96 |44 |16 331
29.5/32/8/1/29.5
CL759H2.95IN | 1.7 |29 | 1.4 |34 0.0
DNC/NG/DEP/2- 4003 1372 | 2.47
N 149903431 |59 |51 |99 |31 320
30/40/30
C1.908H3576N | 1.9 |35 |24 |24 0.0
gNC/CL/TAGA 2.44802.448 |08 |76 |48 |ag |716:68| 33, 1177 1218
CL687H317IN |16 |31 |27 |23 0.0
80/20 RDX/GAP | SLOSTISLTAN |20 | 31 27125 11006 |90 | 1302 | 2.46
71/9/20
C1564H2.953N | 15 |29 |2.4 |27 0.0
EIDX/GAP/BTT S E OSSN e 12 |2 12T | 096 | 0 | 1445 | 255
CL854H3.406N | 1.8 |34 |28 |21 0.0
70/30 HMXIGAP | 5+ o> bISSDON | 18 | 84 1858 120 11973 |00 11342 | 2.35
80/20 CL600H2.940N | 1.6 |29 |29 |22 0.0
RDX/BAMO 204002291 |00 |40 |40 |91 |17-26 |335|1408 | 249
70/30 CL725H3.059N | 1.7 3.0 |3.0 | 2.0 0.0
HMX/BAMO | 3.05902.085 |25 |59 |59 |85 |2217 |334 |1367 |241
70/30 CL- | CL868H2.474N |18 | 2.4 |28 |22 0.0
20/GAP 282602.220 |68 |74 |26 |20 |2389 |31y |1416 |244
80/20 CL- | CL61SHL875N | 1.6 | 1.8 |29 |23 0.0
20/BAMO 297002.321 |15 |75 |70 |21 |2996 |31 | 1488 |2.58
C0.606H3.589N | 0.6 |35 |31 | 2.7 0.0
80120 ADNIGAP | 0 00T IS OBIN | 90| 85| 311 27 1 4755 | 00 11326 | 2.60
CO.758H3.68IN | 0.7 |36 |31 |26 0.0
75/25 ADNIGAP | SOISSTISOBIN |07 | 80| 3L 25 | 1460 |90 | 1307 | 257
C0.909H3.772N | 0.9 3.7 |31 | 25 0.0
70130 ADNIGA | SOl S TN |90 | 3T 8L 25 | 1187 |90 | 1289 | 253
CLO61H3.863N | 1.0 |38 |31 |24 0.0
65/35 ADNIGA | 20t ISHOSN | 20 | 88| 3L 24 | g0 |90 1270 | 248
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60140 ADN/GAP | S NS ISN |22 | 39181125 | 609 |90 | 1252 | 2.42
50/50 ADNIGAP | 22 MR LSTN |25 | 2L 3L 20 1036 |90 | 1215 | 2.29
74126 ADNIAB | 5OS IS 202N |0 | 82 28\ 3L a6a7 | 90, | 1307 | 2.47
ADNPMVT | 305602741 |45 |50 | a6 |41 | 2016 |5ap | 1279 | 257
Nl P L e pe
7525 ANIAB | SOATSHIROION 041251 25185 | gs2g | 00 | 1054 | 229
75(25 ANPMVT | SOSSHS000N |05 150 25 131 | gg16 | 00 0880 | 2.24
ANPVMDO | 241803480 |41 |30 |18 |80 | 998 | ag3 | 0986|234
60/20/20 :

e | 29 924732 (22 e |38 o
70/15/15 :

ANIGAPITMET poivpd bl b e ol o 1118 o | 0696 | 201
ANIGAPTMET | COSTEHASTON | 09|45 |22 132 |17 |00 |71 | g9
N/NC(12%N) 4

ANIGAPTMET | CLASLIAISSN |14 |41 |18 132 | gq0 100 |7y |1,
N/NC(12%N) | 188703,

40/15/15/30

ANIGAPITMET | 5%/i10'500" | 54 |95 |4t |0 | 7704 | a7a | 0850 | 208
80/20 HNF/GAP | SLOSSHIS TSN |20 | 31 27125 | 186 | o | 1481 | 2.66
80/20 HNF/PGN | SOSSHISO2ON 99| 3071 25 182 1 1505 | 00 1522 | 2.65
B0/20 HNF/PLN | SO00HSOION 091851 23 132 1 1055 | 00 | 1530 | 2.70
LT AP e b
WL O R e
85151/AB | ool IOSZON |15 05135120 g5 00 |00 | 1853 | 2.88
wsouns | S 15 (85135 8 18 o o
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C1.374H0.520N

1.3

0.5

3.5

2.0

0.0

85/15 3vIAB 355702.074 |74 |20 |57 |74 | 7092 |95 | 1772 |283
CL.134H0.520N | 1.1 |05 |36 |21 0.0

85/15 1e/AB 3.68702.140 |34 |20 |87 |40 |B8°49 |3pq | 1889 |286

69.7/0.6/14.79/14 _

01 CO.462H6.435N | 0.4 |6.4 | 1.4 |42 0.0

HAN/AN/MeOH | 1.46604.215 |62 |35 |66 |15 | 1413 | 445 [0915 |2.27
4

/H2 O

77.25/0.67/17.19] _

4.89 C0.537H5.940N | 05 |59 | 1.6 | 4.0 0.0

HAN/AN/MeOH | 1.62504.051 |37 |40 |25 |51 |139 | 433|108 |243
4

/H2 O

72.3/0.62/11.62/1 _

5.47 CO.505H6.274N | 05 |62 |15 |41 0.0

HAN/AN/EtOH/ | 1.52104.146 |05 |74 |21 |45 é35'9 440 | 0927 | 231

H2 O

73.41/0.63/10.26/ i

CO.512H6.198N | 05 |61 |15 |41 0.0

1570 HAN/AN/ 133.4 0938 | 231

o f0 HANAN 154404024 |12 |98 |44 |24 |g 439

63.63/0.54/22.22] _

13.61 C0.592H5.669N | 0.5 |56 | 1.6 | 4.0 0.0

HAN/AN/Glycin | 1.63504.018 |92 |69 |35 |18 |43 |45 |0771 |215
3

e/H2 O

60/30/10 C0.485H4514N | 0.4 |45 |29 |30 0.0

ADN/MAN/Urea | 2.00503.058 |85 |14 |05 |58 |74 417 | 1105 |245

40/40/20 CO.758H5.172N | 0.7 |51 | 2.8 | 2.8 0.0

ADN/MAN/Urea | 2.80602.898 |58 |72 |06 |98 | 739|415 |0902 |2.20

30/40/30 C0.925H5.516N | 0.9 |55 |2.8 | 2.7 0.0

ADN/MAN/Urea | 2.81702.742 |25 |16 |17 |42 | 8431|416 | 0744 | 197

59.86/25/15.14 | o 657117.680N | 0.6 |76 |06 |47 | 0.0

H2 02| 062504727 |57 |80 |25 |27 |1728 |40 0908 |2.27

(70%)/AN/EtOH | ¥ : 5

80/8/12 H2 02| ~) 5911484100 |05 |84 |00 |53 | 0.0

(700%)/H2 Co 00 |58 100 123 o131 |00 Josas | 219

O/EtOH : 3

36.67/51.20/12.1 _

3 H2 02| C0527H5.962N | 05 |59 |16 |4.0 0.0

(70%)/ADN/EtO | 1.65104.034 |27 |62 |50 |34 ;08'1 a3a | LA3T 247

H

N2 O4 JHEH | C0.895H3579N |08 |35 |23 |33 0.0

(OIF = 1.94) 233003317 |95 |79 |30 |17 |2410| 37, 1511 1268

N2 04 -

UDMH/HEH C0.927H3.713N | 0.9 |37 | 2.4 |31 0.0

(80/20) (O/F =|247103.161 |27 |13 |71 |61 | 28 |374| 1000 |279

2.45)
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N2 04 -

UDMH/HEH | C0.922H3.695N |09 |36 |24 |31 0.0

(90/10) (O/F =|248203.156 |22 |95 |82 |56 |04 |374|1679 |280
2 55)

N2 O4 /UDMH | C0.927H3.707N | 0.9 |37 |24 |31 0.0

(OIF = 2.60) 249603139 |27 |07 |96 |39 |205 |374|16% |28l
N2 04 -

UDMH/HEH | C0.920H3.679N |09 |36 |24 |31 0.0

(60/40)  (O/F= | 243903196 |20 |79 |39 |96 | 9% |374|104 |277
2.32)

RFNA/UDMH | C0.850H4559N | 0.8 | 45 |20 |35 0.0

(OJF = 2.92) 207003516 |50 |59 |70 |16 | #383|gq3 | 1460 | 268
RENA-

UDMH/HEH | CO.850H4557N | 0.8 |45 |20 |35 0.0

(90/10) (O/F =|206103523 |50 |57 |61 |23 | 77 |393 |14 |267
2 85)

RENA/HEH (O/F | C0.837H4.408N | 0.8 | 44 | 1.9 |36 0.0

= 2.14) 195403637 |37 |08 |54 |37 | %432 |3g0 | 1304 |27
02 /RP-1 (OF = | C1.989H3.8780 | 1.9 |3.8 |00 |45 0.0

2 60) 4513 80 |78 |00 |13 | 841|303 | 2146 | 294
02/N2 H4 (OJF = | H6.529N3.2650 | 0.0 | 6.5 |32 | 2.9 0.0

0.91) 2,981 00 |20 |65 |81 | 1216 |47 | 1905 307
02 [Toluene (OIF | C2.644H3.0210 | 2.6 |3.0 | 0.0 | 4.0 0.0

= 1.87 4,075 a0 |21 o0 |75 |19 | 079 |20%6 |284
02
IMethylcyclohexa ﬁngH“ﬁglO 353 3'16 8'00 3'41 -21.69 g'207 2007 | 287
ne (O/F=2.04) '

02  /n-heptane | C2.291H5.2380 | 2.2 |52 |00 |42 0.0

(OJF = 2.05) 4.200 o1 |38 |00 |00 | 2403 |34 |20L7 |288
02 /Ethylene

. | c2.157H4.3130 |21 |43 |00 |43 0.0

<1>x1|g;: OF =55 SH 9S00 18 | 2072 | 90 | 1985 | 287
02 /Nitroethane | CL615H4.037N | 1.6 | 4.0 |08 | 4.0 0.0

(Ol F= 0.65) 080704077 |15 |37 |o7 |77 | 3158|345 1818 281
02 JEtOH-75% | CL413H5.4450 | 1.4 |54 |00 |48 0.0

(OJF = 1.30) 4,847 13 |45 |00 |47 | 9322|379 | 1040 |271
TNM/N2 H4 (OJF | C0.298H5.181IN | 0.2 |51 | 3.7 | 2.3 0.0

= 1.40) 378402388 |98 |81 |84 |88 | 1838 |38 |1586 285
H2 02 (90%)/N2 | H8.836N2.4970 | 0.0 | 2.4 |24 |35 0.0

H4 (O/F = 1.50) | 3.509 00 |97 |97 |09 | 7O |5 | 1335 270
RENA-

DETA/MA C0.936H4.491N |0.9 |44 |1.9 |35 0.0

(80/20) (O/F =|1.97103539 |36 |91 |71 |39 | %24 |3gg|1364 |261
3.00)

RFNA/Hydine | C0.852H4312N | 0.8 |43 |20 |35 0.0

(OIF =3.17) 200403587 |52 |12 |04 |87 | #8955 |3g7 | 1433 | 265
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N2 O4 /N2 H4 | H5418N3.9400 |00 |54 |39 |24 0.0
(OIF = 1.30) 2.461 00 |18 |40 |61 | 1392 |45 | 1984 | 287
N2 O4 /Aerozine- | C0.555H4.299N | 05 | 4.2 |3.0 | 2.9 0.0
50 (O/F =2.00) | 3.04402.900 |55 |99 |44 |00 |°32 |ags |1098 |283
N2 04 INO

C1.005H4.020N | 1.0 |40 |17 |37 0.0
(70/30)-MeOH 45.03 1528 | 267
O 22 10 171003746 |05 |20 |10 |46 373
N2 04 INO

H5.672N3.6010 | 0.0 |56 |36 |2.7 0.0
(70/30)-NH3 -20.17 1393 | 273
(OTF 22 10) 2741 00 |72 |01 |41 459
02 [HTPB (OF = | C2.144H3.227N |21 |32 |00 |44 0.0
230) 001904424 |44 |27 |19 |24 | 1991 |33 [2144 291
H2 02 (90%)/PE | C0.814H7.3020 | 0.8 |7.3 |00 |51 |- 0.0
(OIF = 7.80) 5.181 14 |02 |00 |81 %44'4 a2 | 1385|263
H2 02 (98%)/PE | C0.893H7.0230 | 0.8 |7.0 |00 |51 |- 0.0
(OIF=7.00)  |5.140 03 |23 |00 |40 |27 |433 |10 2
H2 02 ;
(98%)/DCPD g(l).é)ngG.MSO élo 61554 8'00 géo 112.3 2'103 1.600 |2.70
(OIF = 6.20) ' 7
H2 02| co.842H7.093N | 0.8 | 7.0 |00 |51 |: 0.0
(86%)/HTPB B42HT. 8170100451 14475 100 19633 | 276
OrF 750 0.00705.167 |42 |93 |07 |67 |g 436
H2 02| c0.941H6.877N | 0.9 |68 |00 |51 |° 0.0
(92%)/HTPB 941Hb. 9168 100 151,65 100 1 609 | 275
OrF 550 0.00805.105 |41 |77 |08 |05 |, 428
RENA/HTPB | CL196H3.092N |11 |30 |13 |39 0.0
(OJF = 4.90) 137103959 |96 |92 |71 |59 | 798| 34q | 1457 |24
N2\nO/Paraffin C0.890H1.816N | 0.8 |18 |39 |1.9 0.0
wax (O/F = 7.00) | 3.97601.988 |90 |19 |76 |88 | 204 |44 | 1359 |2€0
N2 O/HTPB (O/F | C0.842H1.267N | 0.8 | 1.2 | 4.0 | 2.0 0.0
= 7.40) 401102028 |42 |67 |11 |28 |3738 | 334 1396 | 261
HAN(95%)/HTP | C0.665H5.089N | 0.6 |50 | 1.7 | 3.8 0.0
B(O/F=960 |179803.857 |65 |89 |98 |57 | 0989|490 |1 189 |249
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