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ABSTRACT 

In the United States, colorectal cancer (CRC) is the third most common cancer and the 

third leading cause of cancer mortality in men and women. Recent epidemiological evidence has 

shown that there’s been a steady increase in young onset CRC, underlying a continued need to 

understand mechanisms that may be contributing to its development. One risk factor that continues 

to persist and rise is obesity. Obesity is a multifaceted disease characterized by various metabolic 

and physiologic changes that influence tumorigenesis. Another component that is altered in obesity 

and has been shown to contribute to CRC is the gut microbiota. Obesity associated gut microbiota 

is different relative to a lean counterpart and has been linked poor colonic health, which can 

increase risk for CRC. Researchers have shown that intestinal tumorigenesis is worse in diet 

induced obesity but given other related conditions like chronic inflammation, the role of the gut 

microbiota in obesity associated CRC risk has not been adequately isolated. To address this gap 

and to further explore the role of diet in this relationship given its importance in driving obesity 

and impacting gut microbiota composition, we performed two studies. First, we assessed the role 

of obesity and/or two different obesogenic diets on gut microbiota composition and intestinal 

permeability. We hypothesized that diet and obesity would affect gut microbial community 

composition and that obese mice would have higher intestinal permeability relative to lean mice 

regardless of diet. Our results indicated that both diet and obesity were significant predictors and 

had varying effects on species richness and community structure of the gut microbiota and 

significantly enriched multiple bacterial taxa. Second, to isolate the role of obesity- and/or diet-

influenced gut microbiota on CRC development, fecal microbial transplantation was performed by 

transferring the intestinal content from mice in the first study into recipient mice before chemical 

induction of CRC. We hypothesized that the gut microbiota from obese mice on obesogenic diets 

would promote CRC independent from the development of obesity. Our results indicated that gut 

microbiota shaped by the obesogenic diets was associated with worse colonic tumor 

measurements, while the differences in gut microbiota due to obesity or leanness did not affect 

CRC outcomes. Overall, we have demonstrated that diet and obesity have significant effects on 

gut microbial communities, but only dietary-induced gut microbial changes promote CRC. These 

results highlight the importance of understanding dietary effects on gut microbiota in CRC 

development which improves our ability to determine better strategies of prevention and treatment.   
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 INTRODUCTION 

1.1 Colorectal cancer and obesity 

1.1.1 Colorectal cancer prevalence and incidence 

As of 2018, the Surveillance, Epidemiology, and End Results (SEER) Program at the 

National Cancer Institute (NCI) estimates that there are over 1.3 million men and women in the 

United States living with colorectal cancer (CRC), and that there will be almost 150,000 new cases 

and 53,000 deaths from this disease, with incidence and mortality higher in men than in women 

(1). CRC development is a slow process and is primarily diagnosed in individuals between the 

ages of 65 and 74. Data collected from the past 30 years have shown that the overall rate of new 

CRC cases and deaths has been steadily decreasing and the 5-year survival rate has been steadily 

increasing (2,3). These favorable trends are thought to be due changes in lifestyle factors such as 

decreased smoking and drinking, implementation of increased screening, and better methods of 

detection and treatment (4–6). Unfortunately, after stratifying by age, data from the past decade 

have shown that there has been an increase in CRC incidence in populations younger than 50 years 

old. These patients frequently present with an advanced stage of the disease (stage III/IV) 

compared to those 50 years and older (51.6% vs 40%) (7–10). Thus, continued research into 

mechanisms that contribute to CRC risk is important in identifying strategies that can help 

attenuate this unfortunate trend.  

1.1.2 Initiation, progression, and promotion of colorectal cancer 

First proposed in 2000 by Hanahan and Weinberg, the hallmarks of cancer delineate 

specific biological processes that occur in the initiation, progression, and promotion of cancer (11). 

As of 2022, there are eight hallmarks: sustained proliferative signaling, resisting cell death, 

evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, 

sustained angiogenesis, avoiding immune destruction, and deregulating cellular metabolism; and 

two emerging hallmarks: unlocking phenotypic plasticity, and senescent cells. To address how 

cells develop these pro-tumorigenic capabilities they described four enabling characteristics of 

cancer: genome instability and mutation, tumor promoting inflammation, nonmutational 
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epigenetic programming, and polymorphic microbiomes (11–13). ). Since at its core, the growth 

and survival of a tumor relies on cell proliferation, the most fundamental hallmark is arguably 

sustained proliferative signaling (12). Genetic changes that activate oncogenes (promote cell 

proliferation) and deactivate tumor suppressor genes (inhibits cell proliferation) are present in the 

initiation and throughout the progression of all types of cancer (12).  

The genetic pathogenesis of CRC was first described by Fearon and Vogelstein. By 

analyzing the frequency of mutations present at each stage of the disease, they found that loss of 

the tumor suppressor gene, adenomatous polyposis coli (APC), was essential in the transformation 

of normal mucosa to small adenoma (polyp) (14,15). This gene is responsible for a protein that 

helps regulate the proliferative Wnt signaling pathway. In patients with familial adenomatous 

polyposis (FAP), a hereditary CRC caused by a germ line mutation in APC, risk of CRC is nearly 

100% (16). Given the multistep process of tumorigenesis, the progression from adenoma to 

adenocarcinoma to carcinoma requires further genetic changes that affect other oncogenes and 

tumor suppressor genes such as K-RAS and TP53, respectively (17–19). Additional mutations that 

influence expression of cell-signaling pathways and proteins such as PI3K and SMAD4, cell-

adhesion proteins such as N-cadherin, and DNA mismatch repair genes have also been shown to 

be important in tumor advancement (18,20–24). These genetic events are characteristic of the 

chromosomal instability pathway (CIN) of CRC development, which accounts for ~70% of 

sporadic cases (25). Other genetic pathways of CRC such as the microsatellite instability (MSI) 

pathway and the CpG island methylator phenotype (CIMP), account for ~15% and ~20-30%, 

respectively (24,26,27).  

CRC arises from a complex interaction between genetic factors and 

environmental/lifestyles choices (28). Heredity forms of CRC such as familial adenomatous 

polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC, also known as Lynch 

syndrome) compose 5-10% of CRC cases, and individuals with a family history of CRC make up 

~20-30% of CRC cases. Most are sporadic (70-75%), meaning that there are no clear causes of the 

disease (18,29). Numerous environmental exposures and lifestyle habits have been linked to the 

development of CRC (3). 
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1.1.3 Mouse models of colorectal cancer 

To study factors that contribute to CRC, researchers develop mouse models that are 

developed to emulate the progression of disease in humans. Since spontaneous CRC development 

in mice is rare, researchers have developed genetic and chemical models of CRC that include 

human-related attributes such as a loss of function mutation in APC, and tumor development in 

the colon and/or rectum (30,31). 

A workhorse in CRC research is the APCmin/+ (multiple intestinal neoplasms) mouse. This 

model contains a germline mutation in the APC gene which causes the development of numerous 

small intestine tumors (32–34). Since most humans develop tumors in the colon and/or rectum, 

transgenic mice with a conditional gene targeting system, Cre-loxP- mediated recombination, are 

used to inactivate APC activity only in the colon and rectum (35). Researchers have developed 

other genetic models which have mutations that activate oncogenes or inactivate tumor suppressor 

genes. For example, mouse models with mutations in genes such as KRAS (36), p53 (37), SMAD3 

(38) and TGFb (39) have been created and used. Since transgenic mice can be costly to generate 

and maintain, many turn to a model of chemically-induced CRC (40,41). 

 There are a variety of chemical carcinogens used to model CRC such as 1,2-

dimethylhydrazine (DMH), azoxymethane (AOM) (42), 2-amino-1-methyl-6-phenylimidozo [4,5-

b] pyridine (PhIP) (43,44), N-Methyl-N-nitro-N-nitrosoguanidine (MNNG), and N-Methyl-N-

nitrosourea (MNU) (45,46). A stable and reliable chemical used in hundreds of studies is AOM 

(31). AOM is administered over several weeks via subcutaneous or intraperitoneal injection and 

works in a dose dependent manner (42,47). In the liver, AOM is metabolized to 

methylazoxymethanol (MAM) via CYP2E1 and transported to the colon through bile or blood. 

AOM and MAM can damage DNA via alkylation or methylation, respectively (48,49). This 

method has been shown to target the Wnt signaling pathway, and to promote tumor development 

in the colon and/or rectum (50). However, success in AOM-induced CRC has been shown to be 

dependent on mouse strain, environment, and diet (42,51–54). For example, FVB/N, SWR, A/J 

have been shown to be susceptible to AOM induced colonic tumor development, while AKR/J, 

129/SvJ and C57Bl/6J are not and instead develop preneoplastic lesions known as aberrant crypt 

foci (ACF) (52,53). Understanding ACF development provides insight into CRC initiation, but 

they can only be detected through techniques such as methylene staining of colon tissue (55–57). 
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In many strains, AOM-induced CRC develops faster after rounds of dextran sodium sulfate (DSS) 

ingestion, a chemical used to severely ulcerate and inflame the intestine (47,58,59).  

While the models discussed above represent a small sampling of what is accessible, a single 

animal model has not yet been developed that is able to address the full extent of human CRC 

development. Both genetic and chemical models of CRC generally do not develop carcinomas or 

show signs of metastasis, and thus may be limited in addressing studies that examine more 

advanced stages of CRC (60). Those available are essential tools in assessing chemoprevention.  

1.1.4 Obesity is a risk factor for colorectal cancer 

One of the earliest cases of CRC was histologically identified in the mummified remains 

of an obese man, Ferrante I of Aragon, King of Naples (1431-1494 AD), whom due to his wealth 

and status had access to animal-based foods and indulgences that were high in sugar and fat (61). 

Unhealthy behaviors such as smoking, drinking and a sedentary lifestyle have been linked to CRC, 

and one well established risk factor is obesity (62–67). This phenomenon is modeled in mice, in 

which preneoplastic lesion development and colon tumor growth are enhanced by diet-induced 

obesity (68–72). Poor dietary patterns such as those high in fat and/or refined sugar, and processed 

meat and/or animal protein drive the development of obesity and have independently been 

implicated in promoting CRC (73–78). Some studies have found that obesity and increased 

consumption of sugar sweetened beverages are risk factors for early onset CRC (76,79,80). 

Numerous physiologic and metabolic changes that occur in obesity can contribute to CRC 

development such as increased inflammation, leptin, and insulin (81–90). As obesity incidence 

continues to rise in adults and adolescents in the United States, understanding potential 

mechanisms linking it to CRC is important in prevention and treatment (91,92).  

1.1.5 Mouse models of obesity 

Defining obesity encompasses a variety of anthropometric and biochemical measurements 

such as excess weight gain and body fat, and serum markers of inflammation, insulin resistance, 

and lipids (93). Some of these components have been shown to be adequately modeled in both 

genetic models of obesity and in diet-induced models of obesity. When using the latter, factors 
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such as diet composition, strain, age, and sex of the animal can significantly influence the success 

of the model.  

Like humans, obesity in many rodents is driven by diets high in fat and sugar, also referred 

to as obesogenic diets. Reflecting the contribution of sugar sweetened beverages to the obesity 

epidemic (94), administering sugar in drinking water has been successfully used to induce obesity 

in rodents (95–100). However, using high concentrations of sucrose or fructose in a solid diet 

promotes obesity only when used in combination with high dietary fat (101–103). The cafeteria 

diet was formulated to model human consumption by giving animals free access to food such as 

salami and chocolate chips (96). However, with this design, it is difficult to accurately assess 

nutrient intake. Within the literature, obesity-inducing diets are frequently labeled as “high-fat” 

and “western”, but there is no specific macronutrient profile assigned to either. Understanding 

exact diet composition is crucial as obesity development and related physiological and metabolic 

effects in mice have been shown to vary depending on aspects such as whether the lipid was 

composed of saturated fatty acids or unsaturated fatty acids (104–109). Semi-purified obesogenic 

diets are used to strictly control macronutrient source, type, and distribution. These products are 

offered by various companies and often contain between 40% and 60% fat from lard or milk. This 

percent range of saturated fat is significantly higher than the ~10% consumed by people in the 

United States, but in mice, it enables obesity to develop sooner (93,110). Depending on the exact 

diet composition, the development of obesity can take 2-4 months, and with more time, obesity-

related conditions become more apparent (93,103,111,112). 

Only certain strains of mice will gain excess weight and/or develop associated conditions 

such as systemic inflammation and insulin resistance (113,114). For example, AKR/J, DBA/2J 

and C57BL/6J have been shown to be responsive to diet induced obesity (115,116), while FVB/N 

and A/J mouse strain are not despite consuming more calories (117,118). C57BL/6J mice are 

frequently used since they develop obesity on various types of high fat and/or high sucrose diets 

(1). Other parameters such as age and sex of the animal influence the development of obesity. 

Studies using C57BL/6J mice have shown that young (4.25 months) male mice gain more weight 

on an obesity-inducing diet compared to a female counterpart, while old (11 months) female mice 

on the same obesity-inducing diet gain more weight relative to male counterparts (120,121). 

Genetic modifications such as leptin-deficient ob/ob and leptin receptor deficient db/db 

represent another approach to study the development and consequences of obesity (122,123). 
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Leptin is a hormone secreted by adipose tissue that is involved in appetite regulation. In both 

models, loss of leptin signaling leads to hyperphagia and excess weight gain. While both also 

develop hyperinsulinemia, hyperglycemia, and dyslipidemia, only the db/db mouse develops 

diabetes (123). Through analysis of ob/ob and db/db, mice researchers saw that leptin played an 

integral role in the development of obesity and set about understanding methods to exploit it to 

benefit humans (124). However, they soon found that leptin was often significantly higher in obese 

patients relative to a lean control, and some proposed that obese individuals were resistant to leptin 

signaling rather than deficient in leptin (125). It is evident there are complex interactions between 

genetics and diet (126,127). Since one can more easily change their diet rather than their genetic 

code, and a benefit of using inbred strains of rodents is the elimination of genetic background as 

confounding factor, diet-induced obesity is a useful tool in studying the development of obesity 

and its role in mediating other chronic diseases. 

1.1.6 Obesity-associated inflammation promotes a tumorigenic environment 

Nineteenth century German pathologist, Rudolph Virchow first suggested the casual role 

of inflammation in cancer when he observed infiltration of leukocytes in neoplastic tissues (128). 

Inflammation describes a set of biological processes driven by immune cells responding to signals 

such as tissue damage, infection, cellular debris, and toxic compounds. Innate and adaptive 

immune cells can produce and secrete cytokines and chemokines that promote apoptotic pathways 

and recruit more immune cells to efficiently respond to a perceived threat (129). Once cleared, to 

promote tissue healing activities like cell proliferation, anti-inflammatory processes increase as 

pro-inflammatory processes decrease. Immune cells are polarized to different phenotypes to 

mediate these activities. For example, macrophages can differentiate to an M1-inflammatory 

phenotype or M2- anti-inflammatory phenotype, and T-cells can differentiate into the cytotoxic 

CD8+ subtype or to a regulatory tolerogenic subtype (130). The equilibrium between cell death 

and cell proliferation is essential in maintaining homeostasis and preventing a tumorigenic 

environment (131,132). Loss of this balance through chronic inflammation can induce both 

apoptotic and proliferative pathways, increasing the likelihood for lasting DNA damage and 

subsequent tumor progression (130,133–135).  

In obesity, many patients develop chronic systemic inflammation due in part to excess 

adipose tissue which acts not only as a place of energy storage, but also as a 
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paracrine/endocrine/autocrine tissue that can regulate metabolic and immunologic processes by 

secreting cytokines, chemokines, hormones and other signaling molecules (136). Between the two 

adipose depots, subcutaneous (under the skin) and visceral (surrounds organs), visceral is generally 

more inflammatory and is the major provider of such mediators (137–139). In obesity, this depot 

is populated by M1-like inflammatory macrophages that secrete cytokines such as TNF-a, and IL-

1Ra, and IL-6 which can activate carcinogenic pathways via NFkB and STAT3 (140–148). These 

adipose tissue derived factors are secreted into circulation and can contribute to inflammation in 

the colon (149). In obesity, the colon is characterized by increased expression of inflammatory 

cytokines, production of reactive oxygen species, and proportion of inflammatory T-cells in the 

lamina propria (149–152). Separate from systemic factors, local factors in the colon such as the 

gut microbiota have been shown to be key mediators in intestinal health and in CRC initiation and 

progression (153–155).  

1.2 The gut microbiota  

1.2.1 A brief introduction to gut microbiota and disease 

The human body is home to trillions of microbes. The majority reside in the colon where 

they synthesize vitamins, convert primary bile acids to secondary bile acids, protect against 

pathogenic infection, and are involved in host metabolism and immune modulation (156–160). 

Ninety-nine percent of the total population of intestinal microorganisms are bacteria (161). Within 

the bacterial kingdom, 90% fall under the Firmicutes and Bacteroidetes phyla, followed by 

Actinobacteria, Proteobacteria and Verrucomicrobia (162). Fecal microorganisms were observed 

as early as 1681 when Antoine van Leeuwenhoek examined his own stool underneath a microscope 

(163). A few hundred years later, as germ-theory was embraced by doctors, Theodor Escherich, 

Henry Tissier, Russian, Ilya Metchnikov and Alfred Nissle Escherich made great strides in 

understanding the relationship between bacteria and health and disease (164–170). More recently, 

interest in the gut microbiota grew in 2004 when Bäckhed et al. demonstrated that in mice, the gut 

microbiota had a casual role in the development of obesity (171,172). Large initiatives such as the 

Human Microbiome Project (HMP) and the Metagenomics of the Human Intestinal Tract 

consortium (MetaHIT) have since made significant progress in identifying, characterizing, and 

understanding the functions of the healthy human microbiota in part by sequencing the microbiome 
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(161,173,174). While there is tremendous interindividual variation in composition among humans, 

researchers have found that the gut microbiota of patients diagnosed with a disease, such as obesity 

or CRC, is different compared to their healthy counterparts, and the disease-associated microbiota 

is often referred to as dysbiosis (175–178). In animal studies, changing the number and types of 

microorganisms through diet, fecal microbial transplants (FMTs), or antibiotics was shown to 

attenuate or promote intestinal inflammation and/or colonic tumorigenesis (26,179–186). This 

evidence demonstrates that the gut microbiota is an important area of study in understanding 

potential strategies that help CRC prevention and treatment. 

1.2.2 Mouse models used to study the gut microbiota 

Studies have shown that the gut microbiota of humans and mice are both dominated by 

Bacteroidetes and Firmicutes and found that thirteen of the twenty top genera represented in mice 

were also represented in the top twenty of the humans (187–189). Although the mouse gut 

microbiome was functionally like humans’, as determined by Kyoto Encyclopedia of Genes and 

Genomes (KEGG), only 4% of the mouse gut microbial genes were shared with those of the 

humans’ (189). Other considerations such as differences in location of bacterial fermentation 

within the digestive tract are important. In mice, bacterial fermentation occurs primarily in the 

cecum, while in the human it occurs in the colon (187,190). Thus, comparisons of gut microbiota 

composition and metabolites with other studies, or inference about potential effects on disease 

phenotype depend on sample origin and species. Despite these differences, mouse models used to 

determine effects of the gut microbiota in disease development are critical in proof-of-concept 

studies, which was demonstrated by Patrice Cani’s research group in their use of Akkermansia 

muciniphilia in the alleviation of obesity and related metabolic conditions in mice then humans 

(191,192).  

One of the most significant advancements in gut microbiota research was the development 

of the germ-free mouse, which are those devoid of all microorganisms. In 1885, Louis Pasteur was 

the first documented scientist to conceive the notion of a germ-free animal, but it wasn’t until 1959 

when Julian R. Pleasants produced germ free mice (193). This model allows researchers to 

understand disease in the complete absence of microbes or in the presence of specific microbes, 

which are known as gnotobiotic mice. Although germ-free mice are impaired in aspects of 

development and immune system maturation, they allow researchers to propose a causal link 
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between specific microorganisms and a disease (194). Unfortunately, germ-free mice require 

special care and maintenance that is costly. An alternative is to use antibiotic treated conventional 

mice, which are those with a natural gut microbiota (195). In this model, the gut microbiota of 

conventional mice is depleted after treatment with a broad-spectrum bactericidal cocktail that often 

includes ampicillin, neomycin, metronidazole, and vancomycin (196,197). This cocktail can be 

administered through drinking water or oral gavage, or a combination of the two. Treatment 

through drinking water is less cumbersome, but dosing is more imprecise. Oral gavage ensures 

equal dosing, but can be a stressful process for the mouse, especially when protocols call for 

multiple administrations over a many weeks-long period (198). Antibiotic treatments have been 

shown to disturb colonic homeostasis, but this method is a more attainable option for many 

researchers and in many studies (198,199). 

Using these mouse models to understand the effect of gut microbiota on disease 

progression often requires a fecal microbial transplant (FMT). This is a procedure where fecal 

and/or cecal samples are first collected then stored in an -80°C freezer or used directly for 

transplantation into recipient mice, often via oral gavage. There are numerous variations on each 

step that can influence results (200). For example, samples may be processed in open air which 

can affect the viability of anaerobic bacteria, or the FMT can be administered by an enema, 

bypassing the gastrointestinal tract (201). In addition, since mice are social creatures and display 

coprophagy, FMT can be done through cohousing mice. The frequency of FMT in a study is 

another important variable (200). In one experiment, researchers found that after one FMT, donor 

microbiota was still detected in recipients after 4 weeks, but there was evidence that the 

composition was shifting over time (202). Variations within these methods can make studies 

difficult to replicate, and unfortunately, gut microbiota composition is also affected by mouse 

strain, mouse vendor, housing conditions, diet source, and other environmental factors that can be 

hard to control (187,203,204). As with any animal model, translation to humans is not direct, but 

these methods have proven to be integral in better understanding the gut microbiota in disease 

progression. 

1.2.3 Bacteria and intestinal homeostasis 

The colon is an essential physical barrier that controls the movement of luminal contents 

into the body. The colonic mucosa is composed of crypts, finger-like invaginations composed of 
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stem cells, goblet cells and colonocytes, and the lamina propria, which is connective tissue that 

contains immune cells and vasculature for blood and lymph (205,206). The luminal-mucosa 

juncture is a dynamic microenvironment where bacteria, nutrients, colonocytes, and immune cells 

interact with each other to maintain homeostasis. Commensal microbes have a protective role in 

the colon. For example, toll-like receptors (TLRs) or nucleotide-binding oligomerization domain 

molecules (NODs) expressed by dendritic cells, macrophages and colonocytes respond to bacteria 

with anti-inflammatory responses that help protect against intestinal injury (207,208). Although 

the presence of non-host cells like bacteria could incite an inflammatory response, commensal 

microbes have been shown to promote tolerogenic T-cell differentiation and expansion, increased 

intestinal macrophage polarization to the M2 anti-inflammatory phenotype, and correct 

underdeveloped immune systems (209–212). Colonic health is also characterized by the ability to 

adequately respond to inflammatory stimuli. In mice, a loss or weakening of pathways known to 

induce an inflammatory response, were more susceptible to chemically induced intestinal damage 

and pathogenic infection (207,213–215). Complementary to microbiota influencing intestinal 

mucosa, changes in or to mucosal cells such as loss or constitutive expression of colon specific 

TLR4, treatment with non-steroidal anti-inflammatory drugs, and shifts in colonocyte metabolism 

have been shown to mediate changes in gut microbiota composition (216–218). 

There are numerous mechanisms by which microbiota influence the intestinal environment 

and vice versa, and one well-documented method is through bacterial metabolites (219). In 2018, 

Litvek et al introduced the concept of the C1/C2 colonocyte, an extension of the M1/M2 

macrophage categorization. Polarization to anti-inflammatory C2 was dependent on activation of 

PPARg by the microbially produced short chain fatty acid (SCFA), butyrate (216,220). The PPARg 

nuclear receptor is highly expressed in the colon. Signaling through PPARg increased beta-

oxidation, which helped to maintain the hypoxic colonic environment (220,221). This in turn was 

associated with decreased presence of facultative anaerobes like Proteobacteria, which are 

commonly measured in disease (222). Reduced intestinal oxygenation is important in stabilization 

of the transcription factor, hypoxia inducible factor (HIF), whose target genes work to maintain 

barrier integrity (223), microbial defense (224), and mucus production (225). In addition, PPARg 

activation has been associated with positive effects on intestinal barrier function, and inhibited 

CRC by promoting growth arrest, cell differentiation, and decreased tumor growth (226–230). 

There are a multitude of complex and intricate relationships among microbes and the intestine 
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(231–233). For example, microbial metabolites also provide substrate for other microbes in a 

process known as cross-feeding (234). The summation of these interactions is important in 

understanding the mechanisms by which microbes influence colonic health.  

 Changes in gut microbiota composition that disturb homeostatic mechanisms can increase 

inflammation and promote a tumorigenic environment in the colon (235–237). Various factors 

influence the gut microbiota such as age, environment, host genetics, and antibiotic use. However, 

as undigested nutrients in the colon provide substrate for intestinal microorganisms, diet is the 

primary contributor (238–246). 

1.2.4 Assessing gut microbiota composition 

There are different sequencing technologies that allow researchers to assess the gut 

microbiota. In metagenomics, all microbial genes are sequenced, collectively known as the gut 

microbiome. This provides information not only on microbial community, but also on functional 

and metabolic diversity. However, this can be expensive and computationally intensive. One of 

the most common, less expensive methods to assess gut microbial communities is through targeted 

16S ribosomal RNA (rRNA) gene sequencing. This gene is an evolutionarily conserved 

component of the prokaryotic ribosome 30S subunit that is present in almost all bacteria, making 

it an ideal taxonomic and phylogenic marker (204,247–250). Researchers can distinguish between 

different bacteria due to variations in hypervariable regions (V1-V9) that are interspersed with 

conserved regions (251). Bacterial identification from 16S rRNA gene sequencing provides a basic 

assessment of microbial community structure. Sequences generated through this method are 

termed amplicon sequence variants (ASVs) and are the basis for measuring microbial community 

structure and composition. Although amplicon sequence variant is a more precise and correct term, 

for ease, taxon/taxa will be used. Alpha and beta diversity are used to summarize the richness and 

relative abundance of taxa in a sample and to calculate microbial community dissimilarities 

between two samples, respectively. There are a variety of metrics used to calculate each type of 

diversity.  

In alpha diversity, observed taxonomic units and Faith’s PD are measurements of taxa 

richness in a community. However, observed features is a count of the number of unique sequences 

present, while Faith’s PD considers phylogenetic relationships and is a summation of branch 

lengths of the phylogenetic tree (252). Abundance can be described using Pielou’s evenness, which 
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is an assessment of how evenly taxa are distributed in a sample on a scale of 0 (no evenness) to 1 

(perfectly even) (253). Another alpha diversity metric, Shannon Entropy integrates both 

community richness and abundance (254).  

In beta-diversity, Bray-Curtis dissimilarity and Jaccard index calculate a statistic that 

quantifies the dissimilarity or similarity, respectively between two microbial communities 

(255,256). Both metrics are scored from zero to one. For Bray-Curtis, zero indicates two samples 

share all taxa and one indicates two samples share no taxa, and for Jaccard, zero indicates two 

samples share no taxa and one indicates two samples share all taxa. Another method is UniFrac, 

which was designed to assess differences between microbial communities (257,258). UniFrac is a 

distance metric used to define dissimilarity between microbial communities while incorporating 

phylogenetic relationships (257). In weighted UniFrac, the distance accounts for abundance of taxa 

while in unweighted UniFrac, the distance only considers presence and absence of taxa.  

Alongside overall microbial community structure, assigning sequences to specific taxa 

names is also important in assessing the gut microbiota. This is done through comparison with a 

database of sequences such as SILVA (259), Greengenes (260) or Ribosomal Database Project 

(RDP) (261,262). There are differences among databases in terms of coverage and frequency of 

update. Choice of alpha diversity, beta diversity, and taxonomic classification methods can 

significantly influence results. There is no golden standard for analysis so many researchers 

calculate numerous alpha and beta diversity metrics and/or compare taxonomy across different 

databases to gain confidence in the results.  

1.2.5 Effects of a westernized diet on the gut microbiota influence the colonic 
environment 

Many studies have measured shifts in gut microbiota composition in response to changes 

in diet (241,263,264). The gut microbiome is also influenced by diet. In a study comparing 

omnivore, vegetarian, and vegan gut microbiomes, vegetarian and vegan microbiomes were 

enriched for genes responsible for carbohydrate and amino acid metabolism, synthesis of essential 

amino acids and vitamins, and cell motility (264). Metagenomic sequencing has revealed many 

microbial enzymes, but most are not characterized or well-understood (265). Regardless, the 

presence of the gut microbiome provides humans with the benefits and detriments of microbial 

metabolites. A westernized diet low in fiber and high in saturated fat and animal protein is 
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associated with CRC and may be in part because bacterial metabolism of fiber, amino acids and 

lipids have significant implications in colonic health and CRC risk (266–269). 

 Much research has focused on microbial fermentation of fiber, more specifically 

microbiota accessible carbohydrates (MACS), due to their association with decreased risk for 

disease and indigestibility by humans and thus, increased availability to microbes (266,270,271). 

Microbial degradation of fiber produces simple sugars that can be further metabolized to short 

chain fatty acids (SCFAs) like acetate, propionate, and butyrate. Although butyrate makes up only 

15% of all SCFAs, it provides colonocytes with 70% of their energy needs (272). A healthy gut 

microbiota is associated with increased butyrate and butyrate producers such as Faecalibacterium 

prausnitzii, Roseburia intestinalis, Eubacterium rectale, and Anaerostipes butyraticus (175,273–

275). This SCFA imparts its beneficial effects in colonic homeostasis and CRC by influencing 

colonocyte proliferation, differentiation, apoptosis, and intestinal barrier integrity (276–279). In 

addition, butyrate was shown to influence gene expression in immune cells to promote 

immunosuppressive phenotypes such as Foxp3+ regulatory T-cells and dendritic cells that 

suppress naïve T-cell maturation into inflammatory IFN-g producing T-cells (280–284). These 

results underly the potential positive effects of microbiota and fiber in preventing CRC (267,285). 

A mechanism linking high protein diets to increased CRC risk is bacterial production of 

hydrogen sulfide (H2S) from sulfur-containing amino acids such as methionine and cysteine (286). 

RNA-seq analysis of fecal samples from human participants consuming a high protein diet showed 

a significant increase in sulphite reductase expression. These are enzymes that reduce sulfate to 

elemental sulfur, the form used by bacteria to produce hydrogen sulfide (H2S), a genotoxic 

compound that can increase intestinal inflammation and impair butyrate oxidation (287–293). 

Sulfate reducing bacteria such as Bilophila wadsworthia, and Fusobacterium nucleatum have been 

shown to be enriched in CRC patients compared to controls (294–297). However, non-animal 

based protein such as whey and pea protein have been reported to promote the growth of 

commensal Bifidobacterium and Lactobacillus alongside an increase in acetate, propionate and 

butyrate, and a decrease in sulfite reducing Clostridia (298,299). These differences based on 

protein source highlight the importance of diet in mediating gut microbiota composition and 

function.  

Lipids can interact with and influence the microbiota by providing substrate and by 

increasing bile acid secretion. The glycerol backbone of triglycerides can be metabolized to 1,3-
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propanediol by certain species of Proteobacteria, Clostridia, Lactobacilli, and Enterococci (300). 

During this process reuterin (3-hydroxypropanol) is produced (301). Reuterin has been shown to 

promote inflammation and oxidative stress, and can be spontaneously converted to acrolein, a 

reactive genotoxin, which can increase risk for DNA damage (301,302). Since lipids are efficiently 

digested and absorbed, they can also influence the colonic environment through their role in 

stimulating bile acid secretion. Bile acids are essential in emulsifying lipids to aid in fat digestion 

and absorption (303). Although most bile acids are reabsorbed, those that pass to the colon can be 

acted on by bacterial 7a-dehydroxylase which converts primary bile acids into secondary bile 

acids (304,305). High concentrations of bile acids in the colon are linked to oxidative DNA 

damage, cell membrane distress, decrease in DNA repair enzymes and other cell stressors that 

promote genomic instability (306). CRC patients are shown to have high fecal and serum levels of 

secondary bile acids such as deoxycholic acid (DCA) (307–309). In animal models and cell models 

of CRC, DCA supplementation was shown to be associated with low grade inflammation, impaired 

intestinal permeability, resistance to apoptosis, and increased tumor number (310–313). 

Diet can clearly influence gut microbiota to mediate colonic health and CRC risk. In mice, 

obesity-inducing diets such as those high in fat or high in fat and sugar have been shown to disturb 

intestinal homeostasis by weakening barrier function, decreasing mucus production and increasing 

and exacerbating colonic inflammation (151,180,314–319). Although these models are also 

associated with changes to the gut microbiota (152,180,320,321), it is possible that in addition to 

diet, obesity-related conditions such as increased systemic inflammation and circulating growth 

factors can have an impact. Using mouse models resistant to obesity, previous research has 

demonstrated that diet is the primary driver of gut microbiota composition, independent from the 

development of obesity (320,321). However, genotype was the second major predictor, likely 

masking any effects of obesity and preventing comparison to an obese counterpart. In a recently 

published study, researchers demonstrated that systemic and colonic inflammation in mice on a 

high fat diet or high sucrose diet was transferrable via fecal microbial transplant (FMT). However, 

in this study, mice on the high fat diet gained more weight than mice on the high sucrose diet, so 

the effect of obesity-related factors on gut microbiota could have confounded these results. In 

addition, the FMTs were performed four times a week for four weeks, which is a stressful process 

that can induce inflammation. From their methods, it appeared that there was no FMT given to 

their control group, thus there was no control for the inflammatory effects due to the FMT process 
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(322). Other mouse studies that used prebiotics, probiotics, and antibiotics to modulate the gut 

microbiota of obese mice have shown positive effects on inflammation, but these treatments also 

led to weight and fat loss (180,323,324). Given the intimate and complex relationship between 

diet, obesity, and the gut microbiota, it is important to tease out individual effects to better 

understand the role of the gut microbiota in obesity-associated CRC risk. 

1.3 Obesity, gut microbiota, and colorectal cancer 

1.3.1 Gut microbiota and colorectal cancer 

The first report directly implicating the gut microbiota in CRC was published in 1975. In 

this study, researchers demonstrated that in a chemically induced model of CRC, germ-free mice 

developed fewer tumors than those conventionally raised (325). These results have since been 

replicated in germ-free rats (326) and in genetic models of CRC (327). Since then, other 

researchers have demonstrated the impact of bacteria-mediated inflammation on the risk and 

progression of CRC. In models of inflammation induced tumorigenesis, using antibiotics, or 

inhibiting TLR4 was associated with reduced tumor number and decreased colonic macrophages 

and inflammatory cytokine expression (179,184,185).  

Within the microbiota-CRC literature, researchers have identified bacteria linked to CRC 

development via specific mechanisms. Three bacteria that have been well studied are 

Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli 

expressing polyketide synthase (E. coli pks+) (155). All three bacteria have been shown to be 

enriched in fecal samples from patients with CRC relative to healthy controls (295,296,328) and 

in adenoma tissue compared to adjacent normal tissue (329,330). These bacteria exert their effects 

in various ways such as by producing genotoxins like colibactin (E. coli) or by increasing 

b-catenin signaling to promote cell proliferation (F. nucleatum) and by activating the STAT3/IL-

17 immune response to increase local inflammation (ETBF) (296,331–333). In a genetic model of 

CRC, F. nucleatum and B. fragilis promoted tumor infiltrating myeloid cells and accelerated the 

development and increased the number of tumors (334). This inflammatory signature was 

comparable to those measured in human CRCs positive for F. nucleatum (295). However, these 

microbes alone do not significantly influence CRC development. For example, the presence of E. 

coli pks+ increases colon tumor development only in the presence of inflammation, such as in an 
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IL10-/- mouse model, highlighting the necessity of inflammation or other stimuli in bacterially 

mediated promotion of CRC (332). While learning the mechanisms of specific microbes in CRC 

initiation and progression lend insight into potentially exploitable pathways for prevention and 

treatment, given the complexity of the microbial ecosystem present in humans, it is also necessary 

to understand how a community of gut microbes affect this disease. 

Various analyses have demonstrated how human CRC patients have distinct gut 

microbiotas compared to their healthy counterparts (176,335–337). In both genetic and chemically 

induced models of CRC, mice that received a fecal microbial transplant from CRC patients (FMT-

CRC) developed more tumors and had decreased apoptosis compared to mice receiving healthy 

control FMT (FMT-H) (177,338). The colons of FMT-CRC mice also had higher levels of 

inflammatory cytokines like IL-1b and TNF-a, alongside decreased tight junction protein 

expression and mucus production (Muc2). These results suggested that FMT-CRC increased 

colonic inflammation to promote CRC development (177). In obesity, there are similar signs of 

increased colonic inflammation that may mediate CRC development, but it is difficult to determine 

effects due only to the gut microbiota given the presence of obesity related chronic inflammation. 

1.3.2 Obesity-associated gut microbiota in colorectal cancer development 

A few studies have assessed the role of obesity-associated gut microbiota independent from 

the physiological setting of obesity. Using FMTs and antibiotics, these studies found that found 

that high fat diet impacted the gut microbiota to promote CRC independent from the development 

of obesity (339–341). However, these studies relied on a small intestine model of cancer, which 

has a significantly different gut microbiota compared to the colon, where human CRC develops 

(342,343). By using a mouse model that was resistant to diet-induced obesity or using a model that 

developed obesity, researchers were limited in their conclusions about the role of diet and obesity 

mediating CRC by modulating the gut microbiota. Further elucidation of this relationship may 

help uncover areas of intervention that will help weaken the strong association between obesity 

and increased risk for CRC.  
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1.4 Summary 

The development of CRC generally occurs in older populations because it is a multistep 

process mediated by mutations in oncogenes and tumor suppressor genes. These potential 

tumorigenic cells are normally corrected or cleared to prevent dysregulated cell proliferation. 

Unfortunately, CRC incidence is rising in younger populations, suggesting that there are lifestyle 

and/or environmental factors that may be responsible for increasing the rate of this disease. While 

there are a variety of components that can mediate this link, obesity has been consistently 

associated with increased risk for the development of CRC and is on the rise in adolescents and 

adults. Obesity is a complex condition that promotes various pro-tumorigenic process such as 

increased inflammation, growth factors, and hormones that stem in large part from excess adipose 

tissue. In the colon, a more local source of potential pro-tumorigenic processes is the gut 

microbiota.  

Colonic bacteria have been shown to be important in maintaining intestinal homeostasis by 

modulating immune cells and intestinal epithelial cells. Obesity associated changes to the gut 

microbiota have been shown to disturb the balance between pro and anti-inflammatory processes 

in the colon, which can increase the risk for cancer development. There is a plethora of factors that 

influence gut microbiota composition including host genetics, but as intestinal microbes rely on 

dietary substrates that are in the colon, diet is a major contributor. Since diet is also a primary 

driver of obesity, the composition of obesogenic diets may have some leverage in impacting 

microbial effects in tumorigenesis. Previous research has demonstrated that changes to the gut 

microbiota can have significant effects in CRC risk, so is it important to learn if and to what extent 

obesity and/or obesogenic diets influence gut microbiota-mediated CRC development. 

Considering most living humans eat, diet is an ideal target in CRC prevention. Better 

understanding of the effect of various dietary patterns on the gut microbiota will help direct 

effective and sustainable strategies that may help to decrease the rising rate of CRC incidence in 

young adults. 
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 OBESOGENIC DIETS INFLUENCE GUT MICROBIOTA 
COMPOSITION AND INTESTINAL PERMEABILITY  

2.1 Abstract 

Obesity is a risk factor for a variety of chronic diseases such as diabetes and colorectal 

cancer. The gut microbiota, which is different in obese individuals compared to lean, has been 

shown to significantly influence many of these health outcomes. To better understand obesity-

associated gut microbiota and potential effects on colonic health we examined the effect of diet 

and/or obesity on gut microbiota composition and intestinal permeability. We hypothesized that 

diet and obesity would influence gut microbiota composition and that obese mice would have 

worse gut barrier function relative to lean mice, regardless of diet. For fifteen weeks, mice were 

fed a low-fat diet (LFD), high fat diet (HFD) or western diet (WD) ad libitum or in controlled 

amounts to generate lean and obese mice on each diet. Gut microbial analysis demonstrated that 

the effects of obesogenic diets on microbial communities was dependent on whether the mouse 

was lean or obese. Richness was higher in lean mice on the WD relative to lean mice on the HFD, 

but no analogous difference was present between obese mice on the WD and HFD. In addition, 

microbial communities were more distinct between lean mice on the HFD and LFD, compared to 

those of obese mice on the HFD and WD. This pattern continued in intestinal permeability as lean 

mice on the HFD and WD had significantly better barrier function relative to lean-LFD mice, while 

there were no differences among all three obese groups. Lean mice on obesogenic diets were 

enriched in microbes that may be beneficial in protecting the colon such as Coprobacillus, and 

obese mice on obesogenic diets were enriched in microbes that may promote intestinal 

permeability such as those in the Coriobacteriaceae and the Erysipelotrichaceae families. 

Collectively, we show that diet and obesity have significant effects on gut microbiota composition 

and intestinal permeability, and that certain microbes may be important in mediating this outcome. 

2.2 Introduction 

Models based on current obesity rates in the United States predict that by 2030, 50% of 

adults will be obese and 25% will be severely obese (1,2). Obesity is a multifaceted condition that 

is associated with increased risk for many leading causes of death in the US such as cardiovascular 
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disease (3). There are various changes that occur in obese patients that can contribute to poor 

health, including the gut microbiota. Shifts in gut microbial communities associated with obesity 

have been linked to conditions such as increased inflammation, metabolic endotoxemia, and 

insulin resistance (4–8).  

The colon harbors most of the trillions of bacteria present in and on the human body (9). 

While a variety of factors such as host genetics play a role in shaping the gut microbiota, diet is 

generally a strong force (10–17). As most undigested nutrients in the colon are available for 

bacterial action, dietary effects on substrate availability influence the number and types of 

microorganisms that survive and proliferate. Obesity is largely driven by excess consumption of 

diets high in saturated fat, refined sugars, and animal protein (18–21). While this suggests that diet 

is the primary factor responsible for obesity associated shifts in gut microbiota composition, other 

changes present in the obese state may also have an influence. Two research groups took advantage 

of mouse models that had differences in susceptibility to obesity due to genetic modification. In 

both studies, diet was the major predictor, explaining 28% of the variation in microbial 

communities (22,23). However, genotype was the second major predictor, explaining 7% or 19% 

of the variation in gut microbiota composition. Any effects that could have been attributed to 

obesity were likely confounded by the genotype-obesity relationship inherent in the animal 

models. Considering this limitation, it is still unclear if and/or to what extent obesity and diet 

influence gut microbiota composition.  

Other than its causal link to the development of obesity, the gut microbiota has been shown 

to be an important factor in colonic health (24,25). In homeostasis, commensal microbes and their 

metabolites activate anti-inflammatory pathways in the colon that promote tissue repair to prevent 

intestinal permeability (26–30). Obesity-associated changes to the gut microbiota have been shown 

to disturb these processes and are linked to increased inflammation and decreased gut barrier 

function (4,31,32). However, obesity-related conditions like chronic inflammation also influence 

intestinal health (33). As a result, effects of the gut microbiota on colonic health outcomes such as 

leaky gut are confounded by the development of obesity.  

In this study, we aimed to assess how diet and/or obesity influence gut microbiota 

composition and intestinal permeability. Since diet is a key factor in promoting obesity and shaping 

gut microbial communities, two different obesogenic diets, a high fat diet (60% fat) and a western 

diet (40% fat, 30% sucrose) were used. To gain insight into potential microbial-colonic health 
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connections, markers of intestinal barrier function were measured. We hypothesized that 

obesogenic diets and obesity would significantly influence gut microbiota composition and be 

associated with reduced intestinal permeability. 

2.3 Methods 

2.3.1 Study design and animal husbandry 

Animal studies and procedures were approved and monitored by Institutional Animal Care 

and Use Committee at Purdue University. Mice were individually housed in a humidity and 

temperature-controlled facility with a 12 hr light-dark cycle. Six-week-old male wildtype 

C57BL/6J mice (n=20/group) and ob/ob mice, C57BL/6J background (n=20) were purchased from 

Jackson Laboratories and fed a low-fat diet (LFD, 10 kcal% fat, #D12450J, Research Diets, Inc., 

New Brunswick, NJ, USA) ad libitum for one week of acclimatization. Ob/ob mice express a 

mutation in the leptin gene that induces hyperphagia. This group was maintained on the LFD 

throughout the study and was included to generate an obese-LFD group. C57BL/6J mice were then 

randomized into 5 diet groups (see table 2.1 for diet composition): (i) LFD, (ii) high-fat diet (HFD, 

60% of kcals from fat), (iii) western diet (WD, 40% kcals from fat, 30% kcals from sucrose), (iv) 

pair-fed HFD (lean-HFD), and (v) pair-fed WD (lean-WD). Pair-fed mice received a daily ration 

of HFD or WD that was isocaloric to the number of kilocalories (kcals) consumed by the lean-

LFD control group a week prior. However, previous research indicated that pair-fed mice on 

obesogenic diets still gain more weight relative to a LFD control (34). We monitored and recorded 

body weight twice a week and adjusted the number of kcals consumed so that lean-HFD and lean-

WD had comparable weight to lean-LFD. Mice were pair-fed starting at week 6. After 15 weeks 

on these dietary interventions, mice were euthanized with CO2 and cervical dislocation. Body fat 

percentage was measured using EchoMRITM on the same day as euthanization. Fresh fecal pellets 

were collected at week 15 post-dietary intervention, then stored in the -80°C freezer. 

2.3.2 Gut microbiota analysis using 16s rRNA gene sequencing 

Genomic DNA was extracted from fecal contents using a bead-beating protocol (35). 

Briefly, ~ 25 mg of fecal pellet sample was suspended in a solution containing 500 μl of extraction 
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buffer [200 mM Tris:HCl (pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 μl of 20% SDS, 500 μl of 

InvitrogenTM UltraPureTM phenol:chloroform:isoamyl alcohol (cat# 15593049, Waltham, MA), 

and 500 μl of 0.1-mm diameter zirconia/silica beads. Samples were mechanically disrupted for 

3 min at 3400 RPM under room temperature using a bead beater (Mini-beadbeater 96, BioSpec, 

Barlesville, OK), followed by centrifugation. The aqueous phase was recovered using 60 μl of 3 M 

NaAcetate and 600 uL isopropanol precipitation. QIAquick 96-well PCR Purification Kit (Qiagen, 

cat# 28181, Germantown, MD) was used to remove contaminants. Isolated DNA was eluted in 

10 mM TE (pH 8.0) buffer and was stored at −20 °C until further use. 

Amplification of the 16S rRNA gene targeting the V4 region was generated from extracted 

genomic DNA by PCR using unique 8-bp barcodes on the forward and reverse primers and fused 

with Illumina sequencing adapters (36). Each sample was amplified in duplicate in a reaction 

volume of 25 uL using KAPA HiFi HotStart DNA polymerase (KAPA Biosystems, KK2602, 

Wilmington, MA), 10 μM of each primer, and 12.5 ng of genomic DNA. PCR was carried out 

under the following conditions: initial denaturation for 3 min at 95°C, followed by 25 cycles of 

denaturation for 30 s at 95°C, annealing for 30 s at 55°C and elongation for 30 s at 72°C, and a 

final elongation step for 5 min at 72°C. PCR products were purified with Sera-Mag Select beads, 

left side size selection (Cytiva, Shrewsbury, MA, 29343052). Equimolar amounts of each sample 

were pooled and then sequenced using the Illumina MiSeq platform with V2 chemistry (2 × 250 

bp) at the Bindley Core for Genomics at Purdue University. 

Sequences were processed using a QIIME 2 pipeline (37). Demultiplexed 250 bases paired-

end sequences were imported using Casava 1.8 format and denoised using DADA2 (38,39) to 

obtain an amplicon sequence variant (ASV) table. ASVs present in less than 20 samples were 

discarded. This condition resulted in the lowest total frequency for a feature to be 164. A naïve 

Bayes taxonomy classifier was trained using Greengenes (40) reference sequences (clustered at 

99% similarity) to taxonomically annotate ASVs. An even sampling depth of 11,730 sequences 

per sample was used for assessing alpha- and beta-diversity measures. Kruskal-Wallis followed 

by Conover Iman was used to calculate differences among groups for alpha diversity metrics 

(Shannon diversity index, Faith’s phylogenetic diversity (PD), observed taxonomic units (OTUs), 

and Pielou’s Evenness). Beta-diversity was measured using unweighted and weighted UniFrac 

distances and visualized using principal coordinates analysis (PCoA) (41). Differences in UniFrac 

distances between microbiota communities were tested by pairwise PERMANOVA using QIIME2 
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beta-group-significance command with the -p-pairwise parameter. P-values corrected for multiple 

comparisons using Benjamini-Hochberg is denoted by q-values (42). Linear discriminant analysis 

(LDA) effect size (LEfSe Galaxy Version 1.0) was performed to identify differentially abundant 

taxa using default p value (α = 0.05), LDA score of 2.0, and one against all for multi-class analysis 

strategy (43). 

2.3.3 Gut barrier function assessment using FITC-dextran assay 

Fourteen-weeks after dietary treatments, intestinal barrier function was assessed in a 

subgroup of mice (n=10 mice/treatment group). Mice were fasted for 6 hours then dosed with 500 

mg/kg body weight of 4,000 Da fluorescent FITC-dextran (Sigma, cat# 46944, Burlington, MA) 

via oral gavage. After four hours, serum was collected by centrifuging blood acquired through 

nonterminal submandibular bleed at 4°C, 2000 x g for 10 minutes. Serum was diluted in 1:1 ratio 

with PBS and analyzed for FITC-dextran concentration with a fluorescence spectrophotometer 

(Biotek Instruments Synergy LX plate reader, cat# BTSLXFA) at excitation wavelength of 485 

nm and emission wavelength of 535 nm. A standard curve using FITC-dextran serially diluted in 

PBS (8000 ng/ml - 0 ng/ml) was used to determine FITC-dextran concentration in serum.  

2.3.4 Histological assessment of the intestinal barrier 

At euthanization, colons were resected, cut open and laid flat, cleaned with PBS, rolled 

from distal to proximal end to form a swiss-roll, and placed in a cassette. They were submerged in 

10% neutral buffered formalin for 48 hours and stored in 70% ethanol. Samples were submitted to 

the Histology Research Laboratory at Purdue University for assessment of mucin-2 (MUC2), a 

mucus protein secreted by goblet cells that protects the epithelium, and zonula occludin-1 (ZO1), 

a tight junction protein. Samples were processed overnight on the Sakura Tissue-Tek VIP 6 

vacuum infiltration tissue processor then embedded in paraffin wax molds and sectioned onto 

slides at 4 um thickness. After sectioning, slides were incubated for one hour at 57°C, 

deparaffinized, and then put through the antigen retrieval process in a decloaker at 95°C for 20 

minutes. For tissues intended to be stained with MUC2 (Novus Bio, NBP1-31231, Littleton, CO), 

the antigen retrieval buffer used was EDTA, and Diva decloaker for ZO-1 (Abcam, cat# ab221546, 

Waltham, MA). Slides were then rinsed in Tris EDTA buffer, marked with hydrophobic pen and 
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transferred to the Biocare intelliPATH automatic stainer. Tissues were first blocked with 3% 

hydrogen peroxide, then with 2.5% normal goat serum. After a buffer rinse, primary antibody was 

dispensed, both at a 1:500 dilution. MUC2 incubated for 60 minutes, and ZO-1 incubated for 30 

minutes. Slides were double rinsed with buffer and stained with the ImmPRESS HRP goat anti-

rabbit secondary antibody for 30 minutes. Following an additional double rinse, the 3,3’-

diaminobenzdine (DAB) chromogen was applied for 5 minutes. Lastly, slides were counterstained 

with hematoxylin, dehydrated, and cover-slipped with resinous mounting media. Images were 

uploaded to Aperio and analyzed with ImageJ software (44). Tissue sections were outlined by hand 

and percentage of negative, weak, medium, and strong staining intensity was determined using a 

macro designed in collaboration with a histopathologist. 

2.3.5 Statistical Analysis 

All statistical analysis was performed using R version 4.1.2 (2021-11-01) (45) or QIIME2 (2021.4) 

(37). Body weight, body fat percent, and kilocalories consumed were assessed using a 2-way 

ANOVA followed by Tukey HSD. Differences in FITC-dextran concentration was assessed with 

gamma GLM, and MUC2 and ZO-1 were analyzed with beta regression. Outcomes with q-values 

or p-values < 0.05 are considered statistically significant.  
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Table 2.1  Diet composition for low fat diet (LFD), high fat diet (HFD), and western diet (WD)  

 LFD HFD WD 

 
gm% kcal% gm% kcal% gm% kcal% 

Protein 19 20 26 20 23 20 

Carbohydrate 67 70 26 20 46 40 

Fat 4 10 35 60 20 40 

Total  100  100  100 

kcal/gm 3.85  5.24  4.58  

 
      

Ingredient gm kcal gm kcal gm kcal 

Casein 200 800 200 800 200 800 

L-Cystine 3 12 3 12 3 12 

Corn starch 506.2 2024.8 0 0 0 0 

Maltodextrin 10 125 500 125 500 50 200 

Sucrose 72.8 291.2 68.8 275 344 1376 

Cellulose, BW200 50 0 50 0 50 0 

Soybean Oil 25 225 25 225 25 225 

Lard 20 180 245 2205 156 1404 

Mineral Mix, S10026 10 0 10 0 10 0 

DiCalcium Phosphate 13 0 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 5.5 0 

Potassium Citrate, 1 H2O 16.6 0 16.5 0 16.5 0 

Vitamin Mix, V10001 10 40 10 40 10 40 

Choline Bitartrate 2 0 2 0 2 0 

FD&C Yellow Dye #5 0.04 0 0 0 0.025 0 

FD&C Red Dye #40 0.01 0     

FD&C Blue Dye #1   0.05 0 0.025 0 

total 1055.05 4032 773.85 4057 885.05 4057 

 

 



 
 

 63 

2.4 Results 

2.4.1 Obesogenic diets promote weight gain and fat gain 

Mice were weighed twice weekly and body fat was measured once using EchoMRITM on 

the day of euthanasia. Mice on the HFD and WD ad libitum (obese-HFD, obese-WD) gained a 

significant amount of weight (Fig 2.1A) and body fat (Fig 2.1B) relative to their lean counterparts 

lean-HFD and lean-WD. Lean-HFD and lean-WD mice maintained their weight comparable to 

lean-LFD. Twice-a-week body weight measurements allowed as needed adjustment of kcal to 

maintain a lean phenotype on an obesogenic diet (Fig 2.1C). Obese-LFD (ob/ob) mice were 

significantly heavier throughout the study and had significantly higher body fat at week 15 relative 

to all other groups. At week 1, obese-LFD consumed significantly more kcals compared to the 5 

other groups, but by week 15, this measurement was comparable to the obese-HFD and obese-

WD.  
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Figure 2.1  Body weight, body fat and kilocalories consumed 
Male C57BL/6J mice consumed ad libitum a LFD (lean-LFD), HFD (obese-HFD), or WD 

(obese-WD), or given controlled portions of HFD (lean-HFD) and WD (lean-WD) to prevent 
weight gain. Male ob/ob consuming a LFD ad libitum (obese-LFD) were included as the obese 
counterpart to lean-LFD. (A) Body weights were tracked for 15 weeks (B) prior to euthanasia, 
body fat percent was measured using EchoMRITM (C) weekly monitoring and recording of kcal 

consumed. n=18-20/group. Significance was calculated using a 2-way ANOVA followed by 
Tukey HSD * p< 0.05, **p<0.01 
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2.4.2 Alpha diversity was significantly influenced by obesity and diet 

Using four alpha diversity metrics, Faith’s PD, observed features, Pielou’s evenness, and 

Shannon entropy, the richness and abundance of microbiota in a fecal sample collected at week 

fifteen was assessed. Faith’s PD incorporates phylogenetic relationship; observed features is the 

number of unique sequences identified in a sample; Pielou’s evenness assesses abundance; 

Shannon entropy considers richness and abundance. Diet and obesity were significant predictors 

of richness in Faith’s PD (Fig 2.2A) and observed features (Fig 2.2B). Obese groups had 

significantly less richness as measured by Faith’s PD and observed features compared to their lean 

counterparts in all diets. There was a significant main effect of diet in which LFD groups had 

significantly lower richness scores compared to HFD and WD. Lean-HFD had significantly less 

richness compared to lean-WD, but there was no difference between obese-HFD and obese-WD. 

(Fig 2.2A-B). Because we used nonparametric methods to compare groups, we could not include 

an interaction term in our model. However, using the Conover-Iman test, we could compare the 

estimates for the difference between lean and obese mice for each diet group. For Faith’s PD, the 

difference between lean and obese LFD was 3.8, between lean and obese HFD was 2.5, and 

between lean and obese WD was 4. These results suggested that there was an interaction between 

obesity and HFD. To gain insight into whether this interaction was true, we used linear regression. 

Although this data does not satisfy all assumptions for linear regression, by comparing adjusted r2 

values, we could determine whether including the interaction term explained a higher percentage 

of the variation in the data. The model including the interaction term calculated a significant 

interaction between obesity and HFD (p=0.03) and had a higher adjusted r2 relative to the model 

without the interaction term, 0.41 and 0.399 respectively. Together, these results indicate that there 

is an interaction between obesity and diet whereby developing obesity on the HFD had a smaller 

effect on Faith’s PD score relative to developing obesity on the LFD or WD. The same result was 

not detected in observed features. 

We did not observe a significant effect of obesity on Shannon’s Entropy (Fig 2.2C) and 

Pielou’s Evenness (Fig 2.2D), but for both metrics, diet had a significant effect on the outcome. In 

both Shannon’s entropy and Pielou’s Evenness, mice on the LFD had lower scores compared to 

mice on the WD and HFD, and mice on the WD had scores that were significantly higher compared 

to the HFD mice.  
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Figure 2.2 Alpha diversity in fecal samples after 15 weeks on dietary treatments 
Using 16S rRNA gene sequencing, alpha diversity was measured in fecal samples collected from 

C57BL/6J male mice fed restricted amounts or fed ad libitum a low-fat diet (lean-LFD, obese-
LFD), high fat diet (lean-HFD, obese-HFD) or western diet (lean-WD, obese-WD) for 15 weeks. 

(A) Faith’s PD (B) observed features (C) Shannon Entropy (D) Pielou’s Evenness. n=18-
20/group. LFD=purple, HFD=blue, WD=green, light shades = lean, dark shades = obese.  
Data was analyzed using Kruskal-Wallis followed by Conover-Iman * p<0.05, ** p<0.01, 

***p<0.001 
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2.4.3 Beta-diversity in fecal microbiota was significantly influenced by obesity and diet  

Differences in fecal microbiota composition based on obesity status and/or diet were 

calculated using weighted and unweighted UniFrac distances. Principal coordinates analysis 

(PCoA) was used to visualize differences between communities in which a point represents a 

summary of the composition of the gut microbiota for one sample, incorporating relative 

abundance and phylogenetic relationship among microbes. The greater the distance between two 

points indicates the greater the dissimilarity between the gut microbiotas. After fifteen weeks, diet 

and obesity had significant main effects on microbial composition (q<0.05) based on both 

weighted and unweighted UniFrac distances. Only weighted UniFrac PcoAs are plotted. Given 

sample overlap between lean and obese (Fig 2.3A) and among diets (Fig 2.3B), there were 

similarities in microbial composition, particularly between the HFD and WD groups. To visualize 

distances based on diet and obesity, groups were colored such that LFD is in purple, HFD is in 

blue, and WD is in green with darker shades representing the obese group and lighter shades 

representing the lean counterpart (Fig 2.3C). There were statistical differences among all six 

groups (q< 0.05), even though differential clustering is not apparent among all treatment groups. 

We observed that the lean-HFD and lean-WD appeared more clustered and defined from each 

other relative to the obese-HFD and obese-WD, which appeared more variable and visually not as 

distinct from each other. Interestingly, based on the PcoA of unweighted UniFrac distances, the 

obese-HFD and obese-WD groups were visually more differentially clustered (data not shown), 

suggesting that differences in taxa abundance increases variability in the HFD and WD groups.  
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Figure 2.3 Beta diversity in fecal samples after 15 weeks on dietary treatments 
Using 16S rRNA gene sequencing, beta diversity was measured in fecal samples collected from 
C57BL/6J male mice fed restricted amounts or fed ad libitum a low-fat diet (lean-LFD, obese-

LFD), high fat diet (lean-HFD, obese-HFD) or western diet (lean-WD, obese-WD) for 15 weeks. 
Principal coordinate analysis plotted based on weighted UniFrac distances and colored by (A) 

obesity, brown=obese, grey=lean (B) diet, purple = LFD, blue = HFD, and green = WD and (C) 
obesity + diet, light purple = lean-LFD, dark purple=obese-LFD, light blue = lean-HFD, dark 
blue = obese-HFD, light green = lean-WD, dark green = obese-WD. n= 18-20/group, q=0.001 

between lean and obese, LFD and HFD, LFD and WD, HFD and WD, and between all pairings 
among the 6 groups. Data was analyzed using PERMANOVA followed by pairwise testing, 

a=0.05. 
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2.4.4 Obesity associated effects on taxa enrichment is influenced by diet 

To assess the effect of obesity status on taxa enrichment, we performed three separate 

LEfSe analyses comparing lean and obese mice on the LFD (Fig 2.4B), HFD (Fig 2.4C) and WD 

(Fig 2.4D), and relative abundance was visualized by phyla (Fig 2.4A). Compared to their lean 

counterpart, Actinobacteria, specifically Coriobacteriaceae, was enriched in the obese-HFD and 

obese-WD groups and Firmicutes was enriched in the obese-LFD group. Enriched Proteobacteria 

measured in all lean groups compared to their obese counterpart was attributed to Sutterella. 

Compared to their obese counterpart, lean-LFD mice were enriched in Verrucomicrobia, 

Proteobacteria and Bacteroidetes, lean-HFD mice were enriched in Proteobacteria, and lean-WD 

were enriched in Proteobacteria, Tenericutes and Verrucomicrobia. Other significantly enriched 

taxa detected between lean and obese mice on each diet group can be found in Figures 2.4B-D. If 

obesity status had the same effect across all diets, we would expect considerable overlap in 

significantly enriched taxa among all diets in the lean group and among all diets in the obese group. 

This was not the case as seen in table 2.2 and table 2.3 and suggests that there was an interaction 

between diet and obesity. Since the HFD and WD shared a substantial number of similar taxa in 

the lean (table 2.2) and obese (table 2.3) groups it seems likely the presence or absence of an 

obesogenic diet influences microbial enrichment. 

To further gain further information about specific diet effects, we identified taxa enriched 

in exactly one of the three diets in lean mice (table 2.4) and obese mice (table 2.5) based on the 

LEfSe analysis in Fig 2.4B-D. Lean-LFD had the highest number of single enriched taxa such as 

Ruminococcaceae, Lactococcus, Turicibacter, Blautia, and Clostridium. In lean-HFD mice, 

Adlercreutzia, Dehalobacterium, and Butyricicoccus were the three single taxa and Lactobacillus 

appeared to be only enriched in lean-WD mice (table 2.4). Allobaculum was only enriched in obese 

mice on the LFD, while there were two in obese-HFD, Blautia and Erysipelotrichaceae, and three 

in obese-WD, S24-7, Turicibacter, and Clostridaceae (table 2.5). 
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Figure 2.4  Differentially abundant taxa between lean and obese mice on the low-fat diet, high fat 
diet and western diet 

Significantly enriched gut microbes in fecal samples collected from C57BL/6J male mice fed 
restricted amounts or fed ad libitum a low-fat diet (lean-LFD, obese-LFD), high fat diet (lean-

HFD, obese-HFD) or western diet (lean-WD, obese-WD) for 15 weeks. (A) Percent mean 
relative abundance by phyla in each group (B) Linear discriminant analysis of effect size (LEfSe) 

analysis of significantly enriched taxa measured between lean and obese LFD groups (C) lean 
and obese HFD groups (D) and lean and obese WD groups. g_undefined indicates there was not 
enough information in the database to distinguish the specific genus. Unspecified indicates there 

was not enough information to distinguish past that level of taxonomic classification. Bars 
indicate effect size of each taxon. n=18-20/group, p<0.05 
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Figure 2.4 continued 
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Table 2.2  Significantly enriched taxa shared among lean mice on a low-fat diet (LFD), high fat 
diet (HFD) and western diet (WD) 

16S rRNA sequencing data was used to determine the identity of gut microbiota from fresh fecal 
samples collected from C57BL/6J male mice that were fed ad libitum LFD (lean-LFD), or 

controlled amounts of HFD (lean-HFD), or WD (lean-WD) to match lean-LFD weight gain for 
fifteen weeks. Taxa listed were those significantly enriched in lean groups that were also present 

in at least two of the diet groups based on linear discriminant analysis of effect size (LEfSe) 
analysis (p<0.05) 

 

  

Lean Mice 

Taxa LFD HFD WD 

p__Firmicutes.c__Clostridia.o__Clostridiales. 

f__Lachnospiraceae.g__Coprococcus 

X  X 

p__Firmicutes.c__Clostridia.o__Clostridiales. 

f__Lachnospiraceae.g__Dorea 

X X  

p__Firmicutes.c__Clostridia.o__Clostridiales. 

f__Lachnospiraceae 

 X X 

p__Firmicutes.c__Clostridia.o__Clostridiales. 

f__Ruminococcaceae.g__Clostridium 

 X X 

p__Firmicutes.c__Clostridia.o__Clostridiales  X X 

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales. 

f__Erysipelotrichaceae.g__Coprobacillus 

 X X 

p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales. 

f__Alcaligenaceae.g__Sutterella 

X X X 

p__Tenericutes.c__Mollicutes.o__RF39  X X 

p__Verrucomicrobia.c__Verrucomicrobiae.o__Verrucomicrobiales. 

f__Verrucomicrobiaceae.g__Akkermansia 

X  X 
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Table 2.3  Significantly enriched taxa shared among obese mice on the low-fat diet (LFD), high 
fat diet (HFD) and western diet (WD) 

16S rRNA sequencing data was used to determine the identity of gut microbiota from fresh fecal 
samples collected from C57BL/6J male mice that were fed ad libitum LFD (obese-LFD), or HFD 

(obese-HFD), or WD (obese-WD) for fifteen weeks. Taxa listed were those significantly 
enriched in obese groups that were also present in at least two of the diet groups based on linear 

discriminant analysis of effect size (LEfSe) analysis on 16S rRNA sequencing data,  
n =18-20/group, p<0.05 

 

 

  

Obese Mice 

Taxa LFD HFD WD 

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales. 

f__Coriobacteriaceae 

 X X 

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales. 

f__Coriobacteriaceae 

 X X 

p__Firmicutes.c__Bacilli.o__Lactobacillales 

.f__Lactobacillaceae.g__Lactobacillus 

X X  

p__Firmicutes.c__Clostridia.o__Clostridiales. 

f__Peptostreptococcaceae 

 X X 

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales. 

f__Erysipelotrichaceae.g__Clostridium 

 X X 
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Table 2.4  Significantly enriched single taxa in lean mice on a low-fat diet (LFD), high fat diet 
(HFD), and western diet (WD). 

16S rRNA sequencing data was used to determine the identity of gut microbiota from fresh fecal 
samples collected from C57BL/6J male mice that were fed ad libitum LFD (lean-LFD), or 

controlled amounts of HFD (lean-HFD), or WD (lean-WD) to match lean-LFD weight gain for 
fifteen weeks. Taxa listed were those significantly enriched in the lean group and present in only 

one diet based on linear discriminant analysis of effect size (LEfSe) analysis, n=18-20 
mice/group, p<0.05 

 

 

  

Lean Mice  

Taxa Diet 

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae. 

g__Adlercreutzia 

HFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Dehalobacteriaceae. 

g__Dehalobacterium 

HFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae HFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae. 

g__Butyricicoccus 

HFD 

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales LFD 

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__S24_7 LFD 

p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Streptococcaceae.g__Lactococcus LFD 

p__Firmicutes.c__Bacilli.o__Turicibacterales.f__Turicibacteraceae.g__Turicibacter LFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Mogibacteriaceae.unspecified LFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Blautia LFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae LFD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae LFD 

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae. 

g__Clostridium 

LFD 

p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Lactobacillaceae.g__Lactobacillus WD 
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Table 2.5  Significantly enriched single taxa in obese mice on a low-fat diet (LFD), high fat diet 
(HFD), and western diet (WD) 

16S rRNA sequencing data was used to determine the identity of gut microbiota from fresh fecal 
samples collected from C57BL/6J male mice that were fed ad libitum LFD (obese-LFD), or HFD 

(obese-HFD), or WD (obese-WD) for fifteen weeks. Taxa listed were those significantly 
enriched in only one diet group based on linear discriminant analysis of effect size (LEfSe) 

analysis (p<0.05), n=18-20 mice/group. 
 

2.4.5 Lean-HFD and lean-WD display better gut barrier function relative to lean-LFD 

The effects of diet and obesity on intestinal permeability via the in vivo FITC-dextran test 

were determined (Fig 2.5A). Results indicated that diet was a significant predictor. HFD and WD 

groups were associated with lower serum FITC-dextran concentrations indicating less intestinal 

permeability. Initially, obesity was not a significant predictor. However, since the obese-LFD were 

genetically modified and were significantly heavier and had higher percent body fat compared to 

obese-WD and obese-HFD (Fig 2.1A-B), we speculated that genetic-obesity and associated 

phenotypes may have imparted a different effect relative to mice on the obesogenic diets. After 

recoding obesity as genetic or diet, results indicated that obesity-diet was associated with a 

significant increase in of serum FITC-dextran concentration (p=0.007). There were no differences 

in intestinal permeability among obese groups, but lean-HFD and lean-WD mice had less leakiness 

compared to lean-LFD mice. Notably, there are two potential outliers in the obese-HFD and obese-

WD groups. To determine their leverage on the results, we removed the two data points and ran 

Obese mice  

Taxa Diet 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Blautia HFD 

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae HFD 

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae. 

g__Allobaculum 

LFD 

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__S24_7 WD 

p__Firmicutes.c__Bacilli.o__Turicibacterales.f__Turicibacteraceae. 

g__Turicibacter 

WD 

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Clostridiaceae WD 
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the same tests. Obesity-diet was no longer a significant predictor. However, based on the 

histogram, it appears that the distribution of data in the obese-HFD and obese-WD groups is wider, 

and more variable compared to their lean counterparts. This makes it difficult to determine if these 

points are true outliers. Since the values of the two potential outliers are not unreasonable, we used 

the model that included them in the analysis. To assess local components of the colonic barrier 

that can influence permeability, we next tested whether the proportion of strong staining intensity 

of MUC2 and ZO-1 were significantly influenced by diet and obesity. Histological signs of 

changes in barrier function were not detected (Fig 2.5B-C). 
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Figure 2.5 Measurements of intestinal barrier integrity 
C57BL/6J male mice fed restricted amounts or fed ad libitum a low-fat diet (lean-LFD, obese-

LFD), high fat diet (lean-HFD, obese-HFD) or western diet (lean-WD, obese-WD). (A) At week 
14, intestinal permeability was tested by measuring serum FITC-dextran in 8-10 mice/group. 

Box and whisker plots have lines for 25th percentile, 75th percentile, and median. Lines extending 
out represent maximum and minimum values. After 15 weeks, mice were euthanized, colons 

were swiss-rolled and then fixed in formalin and paraffin embedded. Samples were prepared for 
staining with (B) MUC2 and (C) ZO-1 (C), n=5/group. Graph represents average proportion of 
negative, weak, medium, and high staining intensity. Data was analyzed using gamma GLM for 

FITC-dextran and beta regression for MUC2 and ZO1 ** p< 0.01. 
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2.5 Discussion 

In this study, we examined the effect of obesity and two obesogenic diets on gut microbiota 

composition and intestinal permeability. To account for potential changes to the gut microbiota 

due to the physiological and metabolic changes associated with obesity, we included a lean 

counterpart for each obese mouse. This design allowed us to separate the effects of diet and obesity 

on gut microbiota composition, and to capture results relevant to an obese and lean population. In 

addition, to gain insight into local effects of the gut microbiota, we assessed gut barrier function 

through an in vivo test and through histological staining of MUC2 and ZO-1 in the colon. Overall, 

we found that both diet and obesity status influence the gut microbiota and intestinal permeability. 

Like other studies, we found that the HFD and WD significantly changed gut microbiota 

relative to the LFD control (22,23,46–48). For all alpha diversity metrics, there was a significant 

diet effect. The diets chosen for this study represent unhealthy eating habits that are linked to 

detrimental conditions that are commonly associated with lower alpha diversity. Contrary to the 

unhealthy nature of the diets, however, mice on the HFD and WD had significantly higher alpha 

diversity relative to the LFD, and the WD had significantly higher diversity compared to the HFD. 

The link between alpha diversity and health outcomes has been shown to be variable. For example, 

a similar result was measured in one study that used a HFD, (23), but a second research group 

measured decreased diversity in mice on a HFD or high fructose diet (47). In this study, we were 

further able to detect that many of these effects were dependent on obesity status. Obesity on the 

WD and HFD was associated with a significant decrease in Faith’s PD and observed features. 

Relative to the lean-HFD, lean-WD mice had more richness measured by Faith’s PD and observed 

features, but there was no analogous difference between the obese-HFD and obese-WD. This 

interaction between diet and obesity continued to appear in further analyses.  

Using weighted and unweighted UniFrac distances, we detected statistical differences 

between all six groups based on pairwise comparisons. Upon further examination of the PCoA 

generated from weighted UniFrac distances, we found that the microbial communities of lean-

HFD and lean-WD clustered more distinctly from each other compared to the obese-HFD and 

obese-WD, which was more variable and had greater overlap. This same pattern was measured in 

intestinal permeability. Lean-HFD and lean-WD had stronger barrier function relative to the lean-

LFD, while there were no differences in barrier function among obese groups. Since lean mice on 

the HFD and WD had increased taxa richness relative to the lean mice on the LFD, these results 
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support the notion that higher alpha diversity is associated with better health outcomes. This was 

unexpected given the high saturated fat and sugar content of the HFD and WD. These results 

highlight the importance of obesity status on the diet-gut microbiota relationship and the potential 

impact on intestinal permeability.  

There was much overlap of significantly enriched taxa between lean-HFD mice and lean-

WD mice that may protect and/or strength the intestinal barrier. For example, Clostridium of the 

Ruminococcaceae family and some members of the Lachnospiraceae family can produce short 

chain fatty acids (SCFA) such as butyrate (49). Butyrate is a major energy source for colonocytes, 

and has been shown to strengthen the intestinal barrier by promoting tight junction assembly, 

reducing inflammation, and promoting mucus production (50–54). Coprobacillus has been 

previously shown to be enriched in lean mice (55) and is associated with consumption of fast-

foods such as meats, French fries, mayonnaise and soft drinks, a phenotype similar to lean mice 

on obesogenic diets (56). Decreased Coprobacillus has been associated with damage to the 

intestinal barrier (57) and increased Coprobacillus has been associated with butyrate mediated 

restoration of the intestinal barrier (58). These results suggest that this bacterium may play an 

important role in improving the intestinal barrier under obesogenic diet conditions. Similar to other 

studies, obese mice on the HFD and WD had significantly worse barrier function compared to their 

lean counterparts (4,5,59). Obese mice on the HFD and WD were enriched in members of the  

Coriobacteriaceae and Erysipelotrichaceae families which have been previously reported to be 

enriched in obesity, involved in metabolic disease, and increased inflammation (60–63). Some 

members of Coriobacteriaceae are involved in bile acid metabolism which can negatively impact 

gut barrier function (62,64–66) and the Erysipelotrichaceae family has been shown to be enriched 

in colorectal cancer (CRC) patients (67) and in animal models of CRC (68). Together, this 

identifies potential microbes mediated by diet and obesity status that may be important in 

mediating intestinal permeability.  

In this study, we have demonstrated that developing obesity or remaining lean on an 

obesogenic diet has significant effects on the gut microbiota and intestinal permeability. Despite 

high amounts of saturated fat and sugar, lean mice on the HFD or WD had significantly better 

barrier function relative to lean mice on the LFD. A limitation here is that only the in vivo 

measurement of intestinal permeability was significant. We did not detect any differences in 

MUC2 or ZO-1 expression, likely because the sample size was too small. Further validation of this 
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outcome through assessments such as serum lipopolysaccharide protein (LPS) is needed. In 

addition, permeability is only one marker of intestinal health. Analyzing other components in the 

colon such as pro and anti-inflammatory gene expression and fecal metabolites would enable us 

to better understand the possible mechanisms linking obesity, diet, gut microbiota, and colonic 

health. Our research demonstrates the need to better understand how specific dietary components 

can mediate the gut microbiota and various aspects of colonic health. This will improve our ability 

to effectively use diet in disease prevention.  
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 OBESOGENIC DIETS INDEPENDENT FROM THE 
DEVELOPMENT OF OBESITY INCREASE CRC RISK BY 

MODULATING GUT MICROBIOTA  

3.1 Abstract 

Obesity is associated with increased risk for the development of colorectal rectal cancer (CRC). 

Although there are a variety of components that contribute to this link, obesity-associated gut 

microbiota may be an important factor mediating this disease. To isolate the role of obesity-

associated gut microbiota in CRC, we transplanted feces from donor mice that developed obesity 

or remained lean on a high fat diet (HFD) or western diet (WD) into recipient mice that were then 

treated with azoxymethane (AOM) to induce CRC development. We hypothesized that the gut 

microbiota from obese mice on obesogenic diets would promote CRC independent from the 

development of obesity. Our results showed that relative to LFD-recipients, HFD-recipients had 

worse tumor incidence and number, and WD-recipients displayed more cellular signs of a 

tumorigenic environment. In addition, WD-recipients had increased expression of the immune cell 

inhibitor receptor SIRPa, relative to LFD-recipients. Collectively, these results suggest that gut 

microbiota of WD-recipients still promote CRC but have components that attenuate its 

development. Differences in taxa richness, abundance, and community composition in fecal 

microbiota did not remain the same before and after tumor development. Significantly enriched 

taxa present before tumor development in HFD and WD recipients such as Sutterella, Dorea, 

Bacteroidetes and Enterococcus and those enriched after tumor development such as Blautia, 

Erysipelotrichaceae, and Anaeroplasma may be influencing the progression of CRC in HFD and 

WD recipients. In sum, our results demonstrate that gut microbiota shaped by obesogenic diets 

significantly promote CRC development. This highlights the importance of assessing the role of 

different diets in the gut microbiota-CRC relationship, as these effects can promote and/or prevent 

CRC development. 

3.2 Introduction 

Colorectal cancer (CRC) is the third most common cancer and second leading cause of 

cancer deaths in the United States (1). While overall incidence has been steadily decreasing, when 
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stratified by age, researchers have measured an increase in CRC cases in younger populations (2–

4). A factor that may be contributing to this trend is obesity, which is steadily rising in adolescents 

and adults (5,6). Obesity has been consistently associated with increased risk for the development 

of CRC (1,7,8). In animal studies, tumor growth and preneoplastic lesion development were 

positively associated with diet-induced obesity and negatively associated with calorie restriction 

and weight loss (9–13). One mechanism linking obesity and CRC is inflammation. Chronic low-

grade inflammation commonly present in obese patients stems largely from excess adipose tissue. 

Tissue resident macrophages and adipocytes can produce and secrete pro-inflammatory cytokines, 

chemokines, hormones, and growth factors that generate an ideal environment for CRC 

development (14–17).  

Considering the location of CRC, another component that influences inflammation- 

promoting tumorigenesis is the gut microbiota. The colon harbors trillions of commensal bacteria 

that have been shown to play key roles in preventing intestinal permeability and promoting anti-

inflammatory immune cell phenotypes (18). Changes to the gut microbiota associated with a 

diseased state, termed dysbiosis, can disturb colonic homeostasis to promote disease progression 

(19,20). It has been linked to obesity (21–24) and to CRC risk (19,25–30). By modulating the gut 

microbiota through antibiotics, probiotics, and fecal microbial transplants (FMTs), researchers 

have demonstrated that intestinal microorganisms can significantly influence colonic health and 

the risk for developing CRC (31–38).  

The obese gut microbiota is associated with mediating an inflammatory, pro-cancer colonic 

environment, but few studies have adequately isolated its role in CRC development independent 

from the development of obesity. These research groups found that diets high in fat promote CRC 

development by modulating the gut microbiota. However, there were a few limitations. These 

studies used a small intestine model of cancer, mice that were resistant to diet-induced obesity, 

and/or a control group that did not adequately assess the effect of obesity-associated gut microbiota 

on CRC development (39–41). Most human CRC cases occur in the colon and rectum, and the 

microbiota of the small intestine and large intestine are vastly different in composition and 

community structure (42,43). In addition, these studies relied on only a high fat diet to model an 

obese gut microbiota. Since diet drives obesity and is the primary source of substrates for intestinal 

microbes, it is critical to assess and compare the role of other obesogenic diets in mediating the 

gut microbiota-CRC relationship (44). 
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To this end, we used fecal microbial transplantation (FMT) to determine (a) if obesity-

associated gut microbiota influences the development of CRC, independent from the development 

of obesity and (b) if the development of CRC differs based on the obesogenic diet consumed by 

FMT donors. We hypothesized that microbiota from obese mice on obesogenic diets would 

promote CRC independent from the development of obesity, and while microbiota from lean mice 

on obesogenic diets would not promote tumor development, it would be associated with worse 

colonic health relative to a control. 

3.3 Methods 

3.3.1 Study design and animal husbandry 

Donor mice (from Chapter 2): Six-week-old male wildtype C57BL/6J mice (n=20/group) and 

ob/ob mice on a C57BL/6J background (n=20) were purchased from Jackson Laboratories and fed 

a low-fat diet (LFD, 10 kcal% fat, #D12450J, Research Diets, Inc., New Brunswick, NJ, USA) ad 

libitum for one week of acclimatization. Ob/ob mice express a mutation in the leptin gene that 

induces hyperphagia. This group was maintained on the LFD throughout the study and was 

included to generate an obese-LFD group. C57BL/6J mice were then randomized into 5 diet groups 

(see table 2.1 for diet composition): (i) LFD, (ii) high-fat diet (HFD, 60% of kcals from fat), (iii) 

Western diet (WD, 40% kcals from fat, 30% kcals from sucrose), (iv) pair-fed HFD (lean-HFD), 

and (v) pair-fed WD (lean-WD). Pair-fed mice received a daily ration of HFD or WD that was 

isocaloric to the number of kilocalories (kcals) consumed by the lean-LFD control group a week 

prior. Previous research indicated that pair-fed mice on obesogenic diets still gain more weight 

relative to a LFD control (45). We monitored and recorded body weight twice a week and adjusted 

the number of kcals consumed so that lean-HFD and lean-WD had comparable weight to lean-

LFD. Mice were pair-fed starting at week 6. After 15 weeks on these dietary interventions, mice 

were euthanized with CO2 and cervical dislocation. At euthanasia, cecal and fecal material were 

processed in an anaerobic chamber (Plas-Labs 855-AC, Lansing MI) and suspended in 1.875 mL 

anaerobic phosphate buffered saline and 1.125 mL of 40% glycerol in a 15 mL sterile conical tube. 

Fecal and cecal material was homogenized via pestle and vortex then stored as 300 uL aliquots in 

the -80C freezer until FMT. 
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Recipient mice: Nine-week-old male wildtype FVB/N (20/group) were acclimated on the LFD ad 

libitum for 1-week. Mice then received a 7-day treatment with antibiotic cocktail via daily oral 

gavage (10 mg/kg ampicillin, 5 mg/kg vancomycin, 5 mg/kg neomycin, 10 mg/kg metronidazole; 

10 ml/kg) to knock-down the gut microbiota. They were then randomized to receive an FMT via 

oral gavage from 1 of the 6 donor groups, with each donor mouse having a corresponding recipient 

mouse (n=20/grp). One week after the FMT, all mice received five weekly injections of 

azoxymethane (AOM, 10 mg/kg body weight/week i.p.). All recipient mice continued the LFD ad 

libitum and received an FMT every 3 weeks to maintain colonization until euthanasia 15 weeks 

after the final AOM injection. Study design illustrated in Figure 3.1. Fresh fecal pellets were 

collected at baseline (after LFD acclimatization), one week after the first FMT (post-donor 

colonization/pre-tumor) and one week prior to euthanasia (post-tumor) and stored in the -80°C 

freezer until processing for 16S rRNA gene sequencing. At euthanasia, tumors in the colon were 

counted and measured with a caliper. The colon was resected and rolled from distal to proximal 

end, fixed in 10% neutral buffered formalin for 48 hours, then paraffin embedded for histological 

analysis. While C57BL/6 mice were used as donor mice, they cannot be used as recipient mice 

because they are less sensitive to AOM-induced tumorigenesis. Concurrently, FVB/N will develop 

on average 5 colonic tumors after 5 weekly injections of AOM but are resistant to diet-induced 

obesity (31). 

 

 

 

 

 

 
Figure 3.1 Experimental design for fecal microbial transplants (FMTs) 

Nine-week-old male FVB/N mice were acclimated on a low-fat diet for 1 week, then orally 
gavaged with an antibiotic cocktail once a day for 7 days. Mice were then recolonized with 
donor gut microbiota. One week after colonization, colorectal cancer (CRC) was induced 

through 5 weekly intraperitoneal injections of azoxymethane (AOM). FMTs were continued 
every three weeks until euthanasia, 15 weeks after last AOM injection. Pre-tumor samples for 
16S rRNA gene sequencing were collected one week after the first FMT and prior to the first 
AOM injection. Post-tumor fecal samples for 16S rRNA gene sequencing were collected one 

week before euthanasia. n= 18-20/group 
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3.3.2 Fecal microbial transplant (FMT) 

On the day of FMT, inoculants were thawed to room temperature and 200 uL was administered to 

each mice via oral gavage. FMTs were performed every 3 weeks to maintain donor community in 

recipients.  

3.3.3 Gut microbiota analysis using 16S rRNA gene sequencing 

Genomic DNA was extracted from fecal contents using a bead-beating protocol (46). 

Briefly, ~ 25 mg of fecal pellet sample was suspended in a solution containing 500 μl of extraction 

buffer [200 mM Tris:HCl (pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 μl of 20% SDS, 500 μl of 

InvitrogenTM UltraPureTM phenol:chloroform:isoamyl alcohol (cat# 15593049, Waltham, MA), 

and 500 μl of 0.1-mm diameter zirconia/silica beads. Samples were mechanically disrupted for 

3 min at room temperature using a bead beater at 3400 RPM (Mini-beadbeater 96, BioSpec, 

Barlesville, OK), followed by centrifugation. The aqueous phase was recovered using 60 μl of 3 M 

NaAcetate and isopropanol precipitation. QIAquick 96-well PCR Purification Kit (Qiagen, cat# 

28181, Germantown, MD) was used to remove contaminants. Isolated DNA was eluted in 10 mM 

TE (pH 8.0) buffer and was stored at −20 °C until further use. 

Amplification of the 16S rRNA gene targeting the V4 region was generated from extracted 

genomic DNA by PCR using unique 8-bp barcodes on the forward and reverse primers and fused 

with Illumina sequencing adapters (47). Each sample was amplified in duplicate in a reaction 

volume of 25 uL using KAPA HiFi HotStart DNA polymerase (KAPA Biosystems, cat# KK2602, 

Wilmington, MA), 10 μM of each primer, and 12.5 ng of genomic DNA. PCR was carried out 

under the following conditions: initial denaturation for 3 min at 95°C, followed by 25 cycles of 

denaturation for 30 s at 95°C, annealing for 30 s at 55°C and elongation for 30 s at 72°C, and a 

final elongation step for 5 min at 72°C. PCR products were purified with Sera-Mag Select beads 

using left side size selection as per the manufacturer’s protocol (Cytiva, cat# 29343052, 

Shrewsbury, MA,). Equimolar amounts of each sample were pooled and then sequenced using the 

Illumina MiSeq platform with V2 chemistry (2 × 250 bp) at the Bindley Core for Genomics at 

Purdue University. 

Sequences were processed using a QIIME 2 pipeline (48). Demultiplexed 250 bases paired-

end sequences were imported using Casava 1.8 format and denoised using DADA2 (49,50) to 
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obtain an amplicon sequence variant (ASV) table. ASVs present in less than 11 samples were 

discarded for pre-tumor timepoint, and ASVs present in less than 22 samples were discarded for 

post-tumor data. Greengenes reference sequences (clustered at 99% similarity) were used to train 

a naïve Bayes taxonomy classifier to further annotate ASVs taxonomically (51,52). Alpha- and 

beta-diversity were measured using an even sampling depth of 9,419 sequences per sample on pre-

tumor gut microbiota and 5,908 sequences per sample on post-tumor gut microbiota. Linear 

regression was used to assess differences among groups for alpha diversity metrics (Shannon 

diversity index (53), Faith’s phylogenetic diversity (PD) (54), observed taxonomic units (OTUs), 

and Pielou’s Evenness (55)). Beta-diversity was measured using unweighted (56) and weighted 

UniFrac distances (57) and visualized using principal coordinates analysis (PCoA). Differences in 

weighted UniFrac distances between microbiota communities were tested by pairwise 

PERMANOVA using QIIME2 beta-group-significance command with the -p-pairwise parameter. 

P-values corrected for multiple comparisons using Benjamini-Hochberg (58) is denoted by q-

values. Linear discriminant analysis (LDA) effect size (LEfSe Galaxy Version 1.0) was performed 

to identify differentially abundant bacteria using default p value (α = 0.05), LDA score of 2.0, and 

one against all for multi-class analysis strategy (59). 

3.3.4 Colon RNA processing and analysis 

Using a microtome, 4 slices (10 micron/slice) of paraffin embedded colon samples were 

put into 1.5 mL Eppendorf tubes and stored in the -80°C freezer. Prior to RNA extraction, samples 

were deparaffinized using deparaffinization solution {Qiagen, Germantown, MD, 19093) and the 

manufacturer’s protocol. RNA was extracted using Norgen Biotek Corp’s FFPE RNA Purification 

Kit (Ontario, Canada, cat# 25300) per manufacturer’s protocol. Sample quality was checked using 

the Agilent Bioanalyzer 2100 and all samples were greater than 300 nucleotides. Sample 

concentration was determined via ThermoScientificTM  NanoDropTM One Microvolume UV-Vis 

Spectrophotometer (Waltham, MA, cat# 13-400-519) and diluted to 40 ng/µL. Samples were 

further processed to be run on the nCounter Analysis system at Indiana University-Purdue 

University Indianapolis (IUPUI) according to manufacturer’s protocol. In brief, samples are first 

incubated and hybridized with target probes that are tagged with a unique florescent color-coded 

barcode. These hybridized probes are then bound to a cartridge and immobilized, and images are 

digitally captured by epifluorescence microscopy. Gene expression is then assessed by counting 
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barcodes captured by these images. NanoString nCounter PanCancerTM IO 360 panel of 770 genes 

was used. (Seattle, WA, cat# 115000260).  

Data was analyzed using nSolver 4.0. This program performs a quality check and performs 

technical and biological normalization by using a positive control and a set of housekeeping genes, 

respectively.  For background correction we used background thresholding based on the geometric 

mean of negative controls. For normalization, we used the arithmetic mean of the geometric means 

of all housekeeping genes. Normalized data was used for all analyses. T-tests were performed on 

log2-transformed count data, and Benjamini-Hochberg correction was used to control for multiple 

comparisons (a=0.05). Fold change calculations are on log2 scale. 

3.3.5 Histological assessment of colon-tumor 

 Colon sections 4 µm thick were stained with hematoxylin and eosin according to standard 

methods by the Histology Research Laboratory at Purdue University. Microscopic examination 

was performed by a blinded board-certified veterinary pathologist and the interpretation was based 

on standard histopathological morphology. To determine the extent of mouse colonic lesions, a 

semi-quantitative method was used to assess the amount of inflammatory infiltrate and 

distribution, epithelial necrosis of non-neoplastic mucosa, crypt distortion, and epithelial changes 

related to neoplasia using a histomorphological scale (Table 3.1) 
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Table 3.1  Histomorphological scale used to assess inflammation, epithelial necrosis, crypt 
architectural distortion and tumor grade in colon 

Criterion Score 

Extent of inflammation 3= diffuse 

2= multifocal 

1 = focal/locally extensive 

0 = none 

Severity of Inflammation 3= marked 

2= moderate 

1 = mild 

0 = none 

Epithelial necrosis 3= 50% or greater of the cells  

2= 10%-50% 

1 = <10% 

0 = 0% 

Crypt architectural distortion 3= 50% or greater of the crypts in the mucosa 

2= 10%-50% 

1 = <10% 

0 = Normal 

Tumor grade 3= adenocarcinoma 

2= adenoma 

1 = mucosal hyperplasia 

0 = Normal 

3.3.6 Statistical Analysis 

All statistical analysis was performed using R version 4.1.2 (2021-11-01) (60) or QIIME2 (2021.4) 

(48). Two parameters, donor obesity status (obese or lean) and donor diet (LFD, HFD, WD), were 

used in each model. Tumor incidence was assessed using logistic regression; tumor number was 

assessed using negative binomial regression, and tumor burden was assessed using gamma 

generalized linear model (GLM). For histological scoring, we applied ordinal logistic regression, 
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logistic regression, or Firth’s bias corrected logistic regression using ordinal and logistf R packages 

(61,62).  

 

Choice of sample size: A previous unpublished study done by our lab showed that 20 mice per 

group was sufficient to detect the effect of a drug and/or weight loss on colon tumor incidence, 

number, and burden with an a=0.05. In this study we measure these same outcomes but consider 

the effect of gut microbiota collected from lean and obese mice on specific diets. Assuming that 

the treatment effects in this study would be approximately the same size or even slightly smaller 

than those in the previous study would justify a sample size of 20 per group. Other studies using 

fecal transplant treatments also indicate that roughly 20 or fewer mice per group can provide 

sufficient power for detecting effects on outcomes related to those studied here (39–41). Another 

approach to aid the determination of an appropriate sample size is to use a formal power calculation 

based on the statistical models that will be used to analyze the data. However, the nature of the 

outcomes we are measuring necessitate the use of generalized linear models or non-parametric 

procedures, for which such calculations are inherently difficult and typically rely on simulation-

based methods (63). In this approach, one must similarly make speculations about the potential 

effect size of the treatments, which for a GLM comes down to specifying the linear coefficients 

without having seen any data, which is inherently difficult. Another weakness of such a priori 

power calculations is that they assume that the models are well-specified, which is unrealistic in 

practice. As such, the sample sizes indicated by this approach should only be interpreted as an 

optimistic estimate. As an example, we use the simulation-based method implemented in the R 

package ’skpr’ to estimate the power of the hypothesis tests for the coefficients in a logistic 

regression of tumor incidence on donor diet and donor obesity status (ignoring possible interaction 

terms). With 20 mice per group and under the assumption of an odds ratio of 2 for developing 

CRC in the HFD and WD recipients relative to the LFD control recipients (keeping obesity status 

fixed), and an odds ratio of 2 for obese recipients relative to lean recipients (keeping the diet fixed), 

the power of the associated hypothesis tests is greater than 85%, indicating that 20 mice per group 

would be sufficient.  

 

Significance level: The use (and misuse) of p-values is a highly contentious issue in contemporary 

academic writing. Here, we follow the approach of the p-value’s inventor, Ronald Fisher, who 
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when he described it in the 1920s never intended its evaluation against a pre-specified significance 

level to be a definitive test. Its purpose was to be used as an informal way to judge whether the 

evidence collected was significant enough to warrant further study (64). When choosing a 

reasonable significance level, it is valuable to discuss the potential losses associated with making 

either a false positive or a false negative conclusion. In the context of this study, the consequence 

of a false positive is to encourage further investigation into the topics investigated here, which in 

the worst-case scenario requires writing a grant and a grad student’s hard labor. A false negative 

is arguably more detrimental to furthering the field as may discourage investigation into a 

particular line of study such as that of the role of diet and the gut microbiota in CRC development. 

As such, a p-value smaller than 0.1 is considered small enough to justify further investigation. 

3.4 Results 

Mice were weighed weekly. As expected, all mice gained weight but there were no significant 

differences in body weight among the six groups throughout our experimental period (Fig 3.2) 

 

Figure 3.2  Body weight over time 
Body weight was tracked weekly in FVB/N male mice receiving fecal microbial transplants 

(FMTs) from lean or obese donors that consumed a low-fat diet (LFD), high fat diet (HFD), or 
western diet (WD). Results expressed as mean +/- SE. Significance was calculated using 2-way 

ANOVA followed by Tukey HSD with a=0.05. n= 18-20/group 
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3.4.1 Obesity-associated gut microbiota promotes CRC independent from the 
development of obesity 

By performing FMTs, we isolated the effect of obesity-associated gut microbiota on CRC 

development. Tumor incidence (Fig 3.3A), tumor number (Fig 3.3B), and tumor burden (Fig 3.3C) 

were not influenced based on donor obesity status. On the other hand, there was evidence that 

donor-diet was important in mediating these outcomes. To illustrate donor diet-based effects, we 

graphed tumor outcomes by combining lean and obese donor mice for each diet. HFD-recipient 

mice had higher tumor incidence compared to LFD-recipients (p=0.065) and WD-recipients 

(p=0.077). HFD-recipients had higher tumor number relative to LFD-recipients (p=0.063). We did 

not detect significant differences in tumor burden. 
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Figure 3.3  Macroscopic tumor outcomes 

Colorectal cancer (CRC) was induced using 5 weekly injections of azoxymethane (AOM) in 
male FVB/N mice that had received an FMT from a donor mice that developed obesity or 
remained lean on a low-fat diet (LFD), high fat diet (HFD) or western diet (WD). Fifteen 

weeks after the last AOM injection, mice were euthanasia and (A) tumor incidence (B) tumor 
number and (C) tumor burden were assessed. For tumor incidence (A), dark pink represents 
proportion of mice that developed a tumor and light pink represents proportion of mice that 
developed no tumors, n = 36-40/group. Results were analyzed using logistic regression for 

tumor incidence, negative binomial regression for tumor number and gamma GLM for tumor 
burden. P-values are denoted on graphs 
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3.4.2 Gut microbiota from HFD and WD donors influence tumor histology 

Histological outcomes of colon-tumor tissue were scored using ordered categories (0, 1, 2, 3). See 

Table 3.1 for full scoring criteria. Given this data structure, ordinal logistic regression is typically 

an appropriate model. However, we observed separation in inflammation extent, inflammation 

severity, and crypt defects. To address this, a binary variable was created in which low indicates a 

score smaller than or equal to one and high indicates a score larger than or equal to 2. This does 

not resolve separation, but it allows us to apply Firth’s bias corrected logistic regression. Donor 

diet was a significant predictor for inflammation extent, inflammation severity, and crypt defects 

while donor obesity status was not. To visualize these results, outcomes were graphed based on 

proportion of high and low scores and by donor diet (Fig 3.4A-C). HFD-recipients and WD-

recipients were significantly more likely to have higher inflammation extent scores relative to 

LFD-recipients (Fig 3.4A). WD-recipients were also significantly more likely to have higher 

inflammation severity relative to both LFD-recipients and HFD-recipients (Fig 3.4B). WD-

recipients were statistically less likely to have more crypt defects relative to both LFD-recipients 

and HFD-recipients (Fig 3.4C). Since colon-tumor samples scored either a 0 or 1 for epithelial 

necrosis, logistic regression was used. WD-recipients were more likely to have higher (p=0.083) 

epithelial necrosis scores compared to LFD-recipients (Fig 3.4D). Ordinal logistic regression was 

used to assess tumor grade. In this analysis, we detected an interaction (0.1>p>0.05) between donor 

obesity status and donor diet. Only the obese-HFD-recipients were more likely to have lower tumor 

grade compared to lean-HFD-recipients (p=0.016). There were no differences in tumor grade 

between lean and obese LFD-recipients and lean and obese-HFD-recipients. Lean-HFD-recipients 

were more likely (p=0.08) to have high tumor grade compared to lean-LFD-recipients.  
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Figure 3.4  Histological assessment of colon-tumor tissue 
A certified histopathologist scored colon specimens collected from male FVB/N mice that 

received a fecal microbial transplant (FMT) from lean and obese donors on a low-fat diet (LFD), 
high fat diet (HFD), or western diet (WD). (A) extent of inflammation (B) severity of 

inflammation (C) crypt defects and (D) epithelial necrosis were graphed by combining recipient 
data based only on donor diet, n=18-20/group. (E) Tumor grade was graphed based on obesity 
and diet status of donor mice, n=8-10/group. (A-C), dark brown is proportion of mice that had 

high histological scores (≥2) and medium brown is proportion of mice that had low histological 
scores (≤1). (D-E), colors represent histological categories in which higher numbers reflect 

worse outcomes as described in Table 3.1. Results were analyzed using Firth’s bias corrected 
logistic regression for inflammation extent, severity, and crypt defects, logistic regression for 

epithelial necrosis, or ordinal logistic regression for tumor grade. * p< 0.05, ** p<0.01, *** p< 
0.001. 
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3.4.3 Alpha diversity of fecal samples collected prior to tumor development is influenced 
by donor diet and donor obesity status  

The richness and abundance of microbiota from fecal samples collected pre-tumor 

development were assessed. There was a significant interaction between donor diet and donor 

obesity status in Shannon entropy (Fig 3.5A), observed features (Fig 3.5B), Pielou’s evenness (Fig 

3.5C) and Faith’s PD (Fig 3.5D). In all four of these measurements, obese-WD-recipients had 

significantly lower values compared to lean-WD-recipients, and obese-HFD-recipients had 

comparable scores to lean-HFD-recipients. Interestingly, obese-LFD-recipients had the opposite 

effect, these mice had higher Shannon entropy compared to the lean-LFD-recipients. There was a 

significant donor diet effect in Pielou’s evenness in that the LFD-recipients had higher scores 

relative to the WD-recipients, regardless of donor obesity status. 
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Figure 3.5  Alpha diversity of the fecal microbiota collected after donor colonization and before 
tumor development 

Fecal samples were collected from male FVB/N recipient mice one week after receiving a fecal 
microbial transplant (FMT) from lean and obese donor mice that were on a low-fat diet (LFD), 
high fat diet (HFD) or western diet (WD). Data from 16S rRNA sequencing was used to assess 
alpha diversity using various metrics (A) Shannon’s Entropy (B) observed features (c) Pielou’s 
Evenness (D) Faith’s PD. Six groups are colored by diet (LFD=purple, HFD=blue, WD=green), 
and obesity status, (light shade=lean, dark shade=obese), n=18-20/group. Data analyzed using 

linear regression * p< 0.05, **p <0.01 

3.4.4 Beta diversity of fecal samples collected prior to tumor development is influenced by 
donor diet and donor obesity status  

Differences in gut microbial community among the six groups prior to tumor development, 

were calculated using unweighted and weighted UniFrac distances and visualized with principal 
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coordinates analysis (PCoA). In the PCoA plot, a point represents a summary of the composition 

of the gut microbiota for one sample, incorporating phylogenetic relationship among microbes for 

uweighted UniFrac and also incorporating relative abundance for weighted UniFrac. The greater 

the distance between two points indicates the greater the dissimilarity between the two gut 

microbiotas. Using both unweighted and weighted UniFrac distances, we did not detect a 

significant main effect of donor obesity status (data not shown), but by donor-diet, LFD-recipients 

were significantly different from both HFD and WD-recipients, and HFD-recipients were 

significantly different than WD-recipients (Fig 3.6A). To determine if there were any interactions, 

pairwise comparisons were done among all six groups using weighted UniFrac distances (data not 

shown). Lean- and obese-LFD-recipients were different from each other (q=0.016), and lean- and 

obese-WD-recipients were different from each other (q=0.028), but there was no difference 

between lean-and obese-HFD recipients. Performing the same pairwise comparisons using 

unweighted UniFrac distances, we measured significant differences in pairwise comparisons 

among all six groups (data not shown). These results suggest that accounting for relative 

abundance increases the similarity between lean-and obese-HFD recipients’ gut microbiota.  

 

 

 

 

  

 

 

 

 

 

Figure 3.6  Beta diversity of the fecal microbiota collected prior to tumor development 
Fecal samples were collected from male FVB/N recipient mice one week after receiving a fecal 
microbial transplant (FMT) from lean and obese donor mice that were on a low-fat diet (LFD), 
high fat diet (HFD) or western diet (WD). 16S rRNA sequencing data was used to determine 
beta-diversity and weighted UniFrac distances were used for principal coordinates analysis 

(PCoA) to visualize gut microbiota compositions of recipient communities, colored by donor 
diet, n=36-40/group. Analysis was done using PERMANOVA followed by pair-wise testing. 
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3.4.5 Significantly enriched taxa in fecal samples collected prior to tumor development 

To determine if donor obesity status influenced taxa enrichment, we measured significantly 

enriched bacteria between lean-LFD-recipients and obese-LFD-recipients (Fig 3.7B), between 

lean-HFD-recipients and obese-HFD-recipients (Fig 3.7C), and between lean-WD-recipients and 

obese-WD-recipients (Fig 3.7D). Relative abundance was visualized by phyla (Fig 3.7A) and we 

found that Actinobacteria was significantly enriched in obese-LFD-recipients relative to lean-

LFD-recipients; Actinobacteria and Tenericutes were significantly enriched in obese-HFD-

recipients relative to lean-HFD-recipients. Between lean and obese WD recipients, 

Verrucomicrobia was significantly enriched in obese-WD, and Actinobacteria was significantly 

enriched in lean-WD-recipients. We also assessed differential abundance on a lower taxonomic 

level. Between lean and obese-LFD recipients, Bacteroides was enriched in lean-LFD-recipients 

while Clostridium, Allobaculum, Erysipelotrichaceae, Lactobacillus, and S24-7 were enriched in 

obese-LFD-recipients. There was also only one significantly enriched taxon in the lean-HFD-

recipients, Clostridales, while the obese-HFD-recipient was significantly enriched in 

Anaeroplasma, Peptostreptococcaceae, Clostridium, Blautia, Christensenellaceae, 

Coriobacteriaceae and Coriobacteriales. Obese-WD-recipients were enriched in only one genus, 

Akkermansia, while lean-WD-recipients were enriched in Coprobacillus, Clostridium, 

Erysipelotrichaceae, Ruminococcaceae, Lachnospiraceae, Clostridales, Adlercreutzia, 

Coriobacteriales, and Akkermansia. We also measured significantly enriched taxa based on donor 

diet since it was an important predictor of tumor outcomes. Compared to LFD-recipients and HFD-

recipients, WD-recipients were enriched in Enterococcus and Bacteroidetes. Compared to LFD-

recipients and WD-recipients, HFD-recipients were enriched in Sutterella, Dorea, Clostridium of 

the Lachnospiraceae family and Clostridia. Compared to recipients of obesogenic diet FMTs, 

LFD-recipients were enriched many more taxa including Allobaculum, Dehalobacterium, 

Turicibacter, Lactococcus, Lactobacillus, Adlercreutzia, and Clostridium of the Ruminococcaceae 

family. 
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Figure 3.7 Significantly enriched taxa in fecal microbiota prior to tumor development 
Fecal samples were collected from male FVB/N recipient mice one week after receiving a fecal 
microbial transplant (FMT) from lean and obese donor mice that were on a low-fat diet (LFD), 

high fat diet (HFD) or western diet (WD). (A) percent mean relative abundance of phyla by 
donor diet. Linear discriminant analysis of effect size (LEfSe) was used to detect differentially 
abundant bacteria between (B) lean-recipient-LFD and obese-recipient-LFD (C) lean-recipient-
HFD and obese-recipient-HFD (D) lean-recipient-WD and obese-recipient-WD and by (E) by 

donor diet. Length of bar indicates effect size. B-D, n=18-20/group, E, n=36-40/group 
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Figure 3.7 continued 

 

 

 

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Christensenellaceae

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Blautia

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Clostridium

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Peptostreptococcaceae

p__Tenericutes.c__Mollicutes.o__Anaeroplasmatales.f__Anaeroplasmataceae.g__Anaeroplasma

p__Firmicutes.c__Clostridia.o__Clostridiales

0 1 2 3
LDA SCORE (log10)

lean−HFD−recipients obese−HFD−recipientsC 

p__Verrucomicrobia.c__Verrucomicrobiae.o__Verrucomicrobiales.f__Verrucomicrobiaceae.g__Akkermansia

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae.g__Adlercreutzia

p__Firmicutes.c__Clostridia.o__Clostridiales

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae.g__Clostridium

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae.g__Coprobacillus

0 1 2 3 4 5
LDA SCORE (log10)

lean−WD−recipients obese−WD−recipients
D 

p__Firmicutes.c__Clostridia

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Clostridium

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__Dorea

p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Alcaligenaceae.g__Sutterella

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales

p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae.g__Adlercreutzia

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__S24_7

p__Firmicutes

p__Firmicutes.c__Bacilli

p__Firmicutes.c__Bacilli.o__Lactobacillales

p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Lactobacillaceae.g__Lactobacillus

p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Streptococcaceae.g__Lactococcus

p__Firmicutes.c__Bacilli.o__Turicibacterales.f__Turicibacteraceae.g__Turicibacter

p__Firmicutes.c__Clostridia.o__Clostridiales

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Christensenellaceae

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Clostridiaceae

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Dehalobacteriaceae.g__Dehalobacterium

p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae.g__Clostridium

p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae.g__Allobaculum

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Bacteroidaceae.g__Bacteroides

p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Enterococcaceae.g__Enterococcus

0 1 2 3 4 5
LDA SCORE (log10)

LFD−recipients HFD−recipients WD−recipients

E 



 
 

 107 

3.4.6 Alpha diversity in fecal microbiota post-tumor development 

The richness and abundance of fecal microbiota collected post-tumor development (fifteen 

weeks after the last AOM-injection) were assessed. There were interactions between donor diet 

and donor obesity status in Shannon entropy (Fig 3.8A), Pielou’s evenness (Fig 3.8B) and Faith’s 

PD (Fig 3.8D). There appeared to be a greater difference between obese-HFD-recipient and lean-

HFD-recipient in Shannon entropy (p=0.051), observed features (p<0.05) and Pielou’s evenness 

(p=0.057) relative to the difference between lean and obese LFD recipients and lean and obese 

WD recipients. Initially donor obesity status was not associated with significantly less observed 

features (p=0.08). Based on the boxplots, we saw that the difference between the medians of the 

lean and obese WD and between lean and obese HFD recipients were similar, but different relative 

to the difference between the medians of the lean and obese-LFD-recipients. This suggested that 

that the impact of donor obesity-status may be driven by whether the FMT was from a donor on 

an obesogenic, or not. After recoding the data to test this, we found that recipients given FMTs 

from obese donors on an obesogenic diet had significantly less observed features relative to 

recipients given FMTs from lean-recipient counterparts. In all four alpha diversity measurements, 

there were no differences between the lean-LFD-recipient and obese-LFD-recipients. 
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Figure 3.8  Alpha diversity of the fecal microbiota post-tumor development 
Colorectal cancer was induced with five weekly injections of azoxymethane (AOM) in male 
FVB/N mice one week after receiving a fecal microbial transplant (FMT) from lean or obese 

donor mice that were on a low-fat diet (LFD), high fat diet (HFD) or western diet (WD). Fifteen 
weeks after the last AOM injection fecal samples were collected and processed for 16S rRNA 
sequencing (A) Shannon’s Entropy (B) observed features (c) Pielou’s Evennes (d) Faith’s PD. 
Six groups are colored by diet (LFD=purple, HFD=blue, WD=green), and obesity status (light 
shade=lean, dark shade=obese), n=18-20/group. Analysis was done using linear regression * 

p<0.05 
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3.4.7 Beta diversity in fecal microbiota post tumor development  

Differences in gut microbial community after tumor development (fifteen weeks after last 

AOM injection), were calculated using unweighted and weighted UniFrac distances. Unlike beta 

diversity in pre-tumor fecal microbiota, there was a significant main effect of both obesity (p<0.02) 

(Fig 3.9A) and diet (p<0.003) (Fig 3.9B) using both metrics. For ease of identifying differential 

clustering of microbial communities, unweighted UniFrac distances were used for Fig 3.9A and 

weighted UniFrac distances were used for Fig. 3.9B. For weighted UniFrac, the LFD-recipients 

were significantly different (q< 0.01) from both the HFD-recipients and WD-recipients, but there 

was no difference between the HFD-recipients and WD-recipients. (Fig 3.9). For unweighted 

UniFrac, pair-wise comparisons between the LFD, HFD, and WD recipients were all significant 

(p<0.003), suggesting that the difference in microbial communities between WD and HFD 

recipients is due to relative abundance (data not shown). Pair-wise comparisons, using weighted 

and unweighted UniFrac, among the six groups showed that there were significant differences 

(q<0.05) between lean LFD, HFD and WD recipients and their obese LFD, HFD and WD recipient 

counterparts. In addition, with weighted UniFrac, we detected a significant difference between 

lean-HFD-recipients and lean-WD-recipients (q=0.008), but no difference between obese-HFD-

recipients and obese-WD-recipients, suggesting an interaction between donor diet and donor 

obesity status (data not shown). 
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Figure 3.9 Beta diversity of fecal microbiota after tumor development 
Colorectal cancer was induced with five weekly injections of azoxymethane (AOM) in male 
FVB/N mice one week after receiving a fecal microbial transplant (FMT) from lean or obese 

donor mice that were on a low-fat diet (LFD), high fat diet (HFD) or western diet (WD). Fifteen 
weeks after the last AOM injection fecal samples were collected and processed for 16S rRNA 
sequencing. (A) unweighted UniFrac distances were used for principal coordinates analysis 

(PCoA) to visualize gut microbiota community clustering of recipients by donor obesity status 
(B) weighted UniFrac distances were used for PCoA to visualize gut microbiota community 

clustering of recipients by donor diet (n=36-40/group). Significance determined using 
PERMANOVA followed by pairwise testing, a=0.05. 

3.4.8 Significantly enriched taxa in fecal microbiota after tumor development 

To determine if donor obesity status influenced taxa enrichment, we first visualized relative 

abundance by phyla (Fig 3.10A), and then compared lean-LFD-recipients and obese-LFD-

recipients (Fig 3.10C), lean-HFD-recipients and obese-HFD-recipients (Fig 3.10D), and lean-WD-

recipients and obese-WD-recipients (Fig 3.10D). There were similarities in enrichment based on 

donor obesity status. For example, both lean-LFD-recipients and lean-WD-recipients were 

enriched in RF-39, and lean-HFD-recipients and lean-WD-recipients were enriched in 

Oscillospira, Coprococcus, and Clostridales. Both obese-LFD-recipients and obese-HFD-

recipients were enriched in Akkermansia and Rikenellaceae. In addition to similarities between 

groups, there were also taxa that were enriched in only one of the six groups. For instance, 

Turicibacter was enriched in lean-LFD-recipients; Mogibacteriaceae was enriched in obese-LFD-

recipients; S24-7 was enriched in lean-HFD-recipients; Dorea was enriched in obese-HFD-
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recipients; Anaeroplasma was enriched in lean-WD-recipients and Peptostreptococcaceae was the 

only enriched taxa in obese-WD-recipients. There were no taxa enriched in all lean-recipient 

groups or in all obese-recipient groups. Collectively these results suggest there was an interaction 

between donor obesity status and donor diet on taxa enrichment. 

 

 

Figure 3.10  Significantly enriched taxa in fecal samples post-tumor development 
Colorectal cancer was induced with five weekly injections of azoxymethane (AOM) in male 
FVB/N mice one week after receiving a fecal microbial transplant (FMT) from lean or obese 

donor mice that were on a low-fat diet (LFD), high fat diet (HFD) or western diet (WD). Fifteen 
weeks after the last AOM injection fecal samples were collected and processed for 16S rRNA 
sequencing. (A) percent mean relative abundance by phylum. Linear discriminant analysis of 
effect size (LEfSe) was used to detect differentially abundant taxa between (B) lean-recipient-

LFD and obese-recipient-LFD (C) lean-recipient-HFD and obese-recipient-HFD (D) lean-
recipient-WD and obese-recipient-WD. (E) by donor-diet. Length of bar indicates effect size, 

n=18-20/group, a= 0.05 
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Figure 3.10 continued 
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p-value < 0.05 

p-value < 0.50 

3.4.9 SIRPa RNA expression was higher in the colon-tumor tissue of WD-recipients  

Colon-tumor samples used in histological analysis (Fig 3.4A-E) were also used to measure 

differentially expressed genes using the NanoString nCounter PanCancerTM IO 360 panel that 

assesses 730 genes. Considering the relationship between donor diet and tumor outcomes, gene 

expression was assessed by donor diet. There were no significant differentially regulated genes in 

the colon-tumor tissue between HFD and LFD recipients or between HFD and WD recipients. In 

WD-recipients, signal regulatory protein alpha (SIRPa) was significantly increased relative to 

LFD-recipients (Fig 3.11). This gene codes for an inhibitory receptor expressed by innate immune 

cells that once activated, inhibits phagocytic action of macrophages and dendritic cells (61). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11  Differentially expressed genes in colon-tumor tissue 
Colorectal cancer was induced with five weekly injections of azoxymethane (AOM) in male 

FVB/N mice one week after receiving a fecal microbial transplant (FMT) from donor mice that 
were on a low-fat diet (LFD), high fat diet (HFD) or western diet (WD). RNA was extracted 
from colon-tumor tissue for differential gene expression analysis via NanoString nCounter 
PanCancerTM IO 360 panel. Volcano plot distinguishes significantly enriched genes in WD-

recipients compared to LFD-recipients, p-values indicated by dashed line on plot, n=18-
20/group. T-tests were performed on log2-transformed count data, and Benjamini-Hochberg 

correction was used to control for multiple comparisons (a=0.05) 
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3.4.10 Donor to recipient colonization 

To determine the success of donor microbiota colonization in recipient mice, we assessed 

microbial community composition by plotting weighted UniFrac distances on a PCoA. There was 

little overlap between the gut microbiota of donors and recipients (pre-tumor) (Fig 3.12). Of the 

39 taxa detected, 38 of them were detected in both the donors and recipients (pre-tumor). 

Butyricicoccus was detected in only donor fecal samples.  

 
 

Figure 3.12 Donor-recipient gut microbiota colonization 
The gut microbiota from C57BL/6J male mice that developed obesity or remained lean on a low 

fat diet (LFD), high fat diet (HFD) or western diet (WD) for 15 weeks was transplanted into 
antibiotic treated FVB/N male mice. Fecal samples were collected one week after colonization 
and assessed with 16S rRNA gene sequencing. Weighted UniFrac distances were plotted on a 

PCoA and colored by donor gut microbiota (pink) and recipient microbiota one week after 
colonization (yellow). Significance determined using PERMANOVA, a=0.05. 

3.5 Discussion 

In this study, our goal was to isolate the role of obesity-associated gut microbiota on CRC 

independent from the development of obesity. Using FMTs from lean and obese mice on two 

obesogenic diets (HFD and WD) and a control diet (LFD), we found that only donor diet (LFD, 

HFD, WD) and not donor obesity status (lean or obese) was a significant predictor of tumor 

outcomes. Overall, we found that obesogenic diets influence the gut microbiota to promote CRC. 

Like other studies, HFD-recipients were associated with higher tumor incidence and tumor 

number in the colon and had signs of increased colonic inflammation relative to the control LFD-

donors 

recipients 
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recipients (39–41). To explore the role of diet beyond those used in these studies, we also included 

FMTs from donors on a WD. We measured diet-specific differences in macroscopic and 

histological outcomes. For example, WD-recipients did not have higher tumor incidence or 

number compared to LFD-recipients, but they were significantly more likely to have severe, 

widespread colonic inflammation. WD-recipients also had increased expression of the 

immosuppressive receptor, signal-regulatory protein alpha (SIRPa). The ligand for SIRPa, CD47, 

has been found to be overexpressed on human CRC tumors and is correlated with decreased 

survival (65,66). This demonstrates that the gut microbiota of WD-recipients has factors that can 

promote and attenuate CRC development such that there is still a higher risk for CRC development 

relative to LFD-recipients. 

Although donor-diet was the main predictor of tumor outcomes, we included assessment 

of potential effects of obesity-status of the donor on gut microbiota collected before tumor 

development. We did not detect a significant decrease in alpha diversity of HFD-recipients relative 

to LFD-recipients like other studies (41,67), but we did measure that WD-recipients had 

significantly lower alpha diversity compared to HFD-recipients. In all alpha diversity metrics, 

there were no differences between lean and obese-HFD recipients, while there were significant 

differences between lean and obese-WD recipients. We found a similar pattern in beta-diversity 

(weighted UniFrac) in that there were significant differences in microbial communities between 

lean and obese WD recipients, but not between lean and obese HFD recipients. Based on these 

results, it may be that HFD-recipients had significantly worse tumor outcomes because the lean 

and obese donor microbiota was the same, amplifying its effect in tumorigenesis. On the other 

hand, the microbiota of lean and obese WD-recipients was significantly different, increasing the 

likelihood for the presence of microbiota that may attenuate CRC development.  

To further understand dietary effects on donor microbiota and CRC outcomes, we analyzed 

significantly enriched taxa by donor diet. HFD-recipients were enriched in Dorea and Sutterella, 

which have been detected in studies of HFD-induced obesity (68,69). These genera have also been 

measured in the gut microbiota of CRC patients, are associated with later stages of the disease, 

and can adhere to CRC cells (70–74). WD-recipients were enriched in Bacteroides and 

Enterococcus. Bacteroides has been found to be positively associated with Westernized countries 

that consume diets high in animal protein and saturated fat (75–78). Although these dietary habits 

are linked to increased CRC risk, potential effects of these bacteria vary widely based on species 
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and strain. For example, Bacteroides fragilis, is a bile-resistant commensal organism commonly 

found in the gut. However, some strains produce an enterotoxin which has been shown to promote 

CRC in mice and is enriched in CRC patients (26,27,30,79). Similarly, Enterococcus faecalis is a 

common commensal of the gut that has been shown to protect against tumorigenesis in rats, but 

has also been implicated in promoting intestinal permeability, reactive oxygen species, DNA 

damage, and is enriched in both lean and obese CRC patients (80–86).  

After tumor development, gut microbiota changed. Unlike alpha diversity measured in 

fecal microbiota before tumor development, we measured significant differences between lean and 

obese HFD recipients and between lean and obese WD recipients. Unlike beta diversity measured 

in fecal microbiota before tumor development, we measured a significant main effect of both donor 

diet and donor obesity status. Based on weighted UniFrac distances, LFD-recipients had 

significantly different microbial communities compared to HFD-recipients and WD-recipients, 

while there were no statistical differences between microbial communities of HFD and WD 

recipients. After tumor development, HFD-recipients were enriched in Blautia, a genus commonly 

measured in obesity (87,88) and associated with processed food and intestinal inflammation (89). 

Contrarily, they were also significantly enriched in Lactobacillus which has been shown to have 

anti-cancer activities (90,91) and is negatively associated with CRC tumors (92). Members of the 

Erysipelotrichaceae family are enriched in CRC patients (93) and in animal models of CRC (92) 

was also increased in HFD-recipients. The only genera enriched in WD-recipients was 

Anaeroplasma. This bacterium has been associated with promoting anti-inflammatory 

mechanisms in the colon (94), but was also enriched in HFD-fed mice that developed CRC (95). 

Although we did not detect bacteria highly linked to CRC such as Fusobacterium nucleatum, pks+ 

Escherichia coli, or enterotoxigenic Bacteroidetes fragilis (ETBF) (29), our results demonstrate 

that microbes present and enriched in this model may influence CRC development.   

In this study, we have shown that while obesity can influence gut microbiota composition, 

it is primarily obesogenic diets that influence CRC through changing the gut microbiota. 

Differences in tumorigenesis present in HFD-recipients and WD-recipients demonstrate that diet 

composition is critical in any gut microbiota mediated effects. However, there were limitations. 

Most taxa present in the donors were present in the recipients one week after colonization, but 

overall microbial community composition between donors and colonized recipients was 

significantly different. Thus, it is difficult to determine if diet and obesity related microbes from 
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donors were adequately transplanted into recipients. This may be because microbes in the FMT 

that were sensitive to environmental changes did not survive the freeze thaw cycle of the FMT 

aliquot or the digestive process inherent in FMT administration through oral gavage. Using a 1:1 

donor-to-recipient FMT strategy allowed us to identify any potential microbial community 

outliers, but it also likely contributed to higher microbial community variation within each FMT 

recipient group, thereby decreasing our ability to detect significance in some CRC outcomes at a 

= 0.05. In future studies, we may be able to decrease this variation by pooling FMTs for each of 

the treatment groups. While the usefulness of a priori power calculations for providing a rough 

idea of the sample size required to detect differences at a =0.05 is widely accepted, the practice of 

attempting to explain the observed data using post-hoc power analyses is controversial (96). In 

particular, if the combination of high post-hoc power and a non-rejected null hypothesis is taken 

as evidence for the apparent truth of the null, one must also accept the flawed conclusion that 

smaller but non-significant p-values provide more evidence for the null than larger p-values do 

(see section 2.2 of Hoenig & Heisey). If the results of the present studies are to be used to inform 

the sample size to be used in follow-up experiments, it is important to note that the effect sizes 

estimated should not be assumed to be the true values of the underlying population, and that the 

models used, like all models used in applied sciences, are likely to be misspecified. 

Although modeling the diversity of human dietary patterns is difficult, our study has 

highlighted the importance of diet composition in gut microbiota and CRC risk. It is only to our 

detriment if most results from animal models were based on slight variations of a diet high in fat. 

As such, further research concerning the role of dietary effects on gut microbiota in CRC risk and 

development would be instrumental in designing inventions and strategies that would reduce the 

risk for this disease.  
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 CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Summary 

In the United States, colorectal cancer (CRC) incidence in younger populations has doubled 

since the 1990s (1). Researchers have predicted that by 2030, 11% of colon cancers and 23% of 

rectal cancers will be diagnosed in adults younger than 50 years old, highlighting the need to 

understand factors that may be contributing to this trend (1–3). One modifiable lifestyle factor that 

has been consistently associated with CRC risk is obesity (4,5). Obesity is a multifaceted condition 

characterized by metabolic and physiologic conditions such as insulin resistance, increased 

circulating hormone concentration and chronic inflammation that can promote cancer initiation 

and progression (6–9). These pro-tumorigenic signaling factors stem in part from excess adipose 

tissue populated by hypertrophic adipocytes and inflammatory macrophages (10–14). Considering 

the location of CRC, another factor that has been shown to be an important mediator of CRC 

development is the gut microbiota (15–18).  

The colon houses trillions of commensal microbes that interact with the colonic mucosa and 

luminal contents to maintain homeostasis (19–21). Obesity is associated with shifts in the gut 

microbiota concurrent with worsening colonic health which increases the risk for CRC. This is 

modeled in mice where increased inflammation, intestinal permeability, and colonic tumorigenesis 

are enhanced in diet induced obesity (22–25). However, any effects due to the gut microbiota are 

confounded by other obesity-related changes, so the independent effects of the gut microbiota in 

obesity associated colonic tumorigenesis is unclear. Within the gut microbiota-obesity-CRC 

relationship, diet is an important covariate because it drives the development of obesity, shapes 

gut microbiota composition, and has itself been associated with mediating CRC risk (26–29). 

Given this omnipresent role, further research into the effect of diet is necessary. To determine if 

obesity and/or diet influences gut microbiota composition to mediate CRC development, we 

performed the following studies.  

In the first study (Chapter 2), we generated lean and obese mice on a LFD, HFD or WD to 

determine if diet and/or obesity influenced gut microbiota composition and intestinal permeability. 

Diet and obesity status significantly impacted alpha diversity, a measurement of richness and/or 

abundance of a microbial community. In all metrics used, WD and HFD mice had higher alpha 
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diversity compared to the LFD mice, and WD mice had higher alpha diversity compared to the 

HFD mice. We also found that compared to their lean counterparts, obesity on the LFD and WD 

was associated with a greater decrease in richness compared obese mice on the HFD. In beta-

diversity, which assesses differences between microbial communities, we found that remaining 

lean on the HFD and WD resulted in two distinct clusters compared to obese mice on the HFD and 

WD whose microbial communities displayed more variation and overlap. This pattern was also 

identified in results from the in vivo test of intestinal permeability using FITC-dextran. Lean-HFD 

mice and lean-WD mice displayed better barrier function compared to the lean-LFD mice, while 

there were no differences among obese groups. These results suggest that the gut microbiota 

affected by HFD and WD in the absence of obesity may promote a stronger intestinal barrier. 

In the second study (Chapter 3), we aimed to determine if obesity and/or diet mediated 

changes to the gut microbiota independently influence the development of CRC. Fecal and cecal 

content harvested from mice from Chapter 2 was used as donor microbiota to colonize antibiotic-

treated recipient mice that were then given the chemical carcinogen, azoxymethane, to induce 

CRC. We showed that diet status of the donor mice was a significant predictor of CRC outcomes. 

HFD-recipients had increased tumor incidence and tumor number relative to LFD-recipients, and 

WD-recipients had significantly worse colonic inflammation compared to LFD-recipients. Prior 

to tumor development, WD and HFD-recipients were significantly enriched in different genera. 

Some species within these genera have been shown to promote and/or prevent CRC development 

such as Enterococcus, Bacteroides and Sutterella (30–35). Overall, this study demonstrates the 

critical role diet composition plays in gut microbial effects on CRC. 

Collectively, we show that obesity status and diet significantly influence gut microbial 

composition and intestinal permeability. However, only dietary effects on gut microbiota 

composition influence CRC development. Considering diet is a modifiable lifestyle factor relevant 

to all humans, further research into dietary effects on the gut microbiota in impacting CRC 

development is critical to identify effective methods in prevention and treatment.  
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4.2 Future directions 

4.2.1 Gut microbiota and intestinal barrier function 

In the first study (Chapter 2) we found that the gut microbiota of lean-HFD and lean-WD 

mice may be responsible for promoting significantly better gut barrier function relative to the gut 

microbiota of lean-LFD. This discovery suggests that bacterial taxa enriched in both lean-HFD 

and lean-WD groups can influence intestinal permeability. For instance, Coprobacillus was 

significantly enriched in lean mice on the WD and HFD. Damage to the intestinal epithelium was 

associated with decreased Coprobacillus (36), and increased Coprobacillus was associated with 

butyrate supplementation that promoted restoration of the intestinal epithelium (37). Altogether, 

published research and our findings support the potential role of Coprobacillus in improving the 

gut barrier. Therefore, we hypothesize that Coprobacillus promotes intestinal barrier integrity. To 

date, there is only one identified, culturable species of Coprobacillus, catenaformis (38). Since our 

results also demonstrated that the obese-HFD and obese-WD had higher gut permeability relative 

to their lean counterparts, we can inoculate obese-HFD and obese-WD mice with Coprobacillus 

catenaformis and then measure intestinal permeability with in vivo FITC-dextran, serum 

lipopolysaccharide protein (LPS), and expression of mucus and tight junction proteins. We expect 

that mice on the HFD and WD that were inoculated with Coprobacillus catenaformis to have better 

barrier integrity and have gut microbial communities enriched in this bacterium compared to obese 

mice on the WD and HFD that did not receive Coprobacillus catenaformis.  

To further understand the role of Coprobacillus catenaformis in intestinal barrier function, 

we could also measure its effects in healing the colonic epithelium. Conventional mice on a semi-

purified, low-fat diet would be given drinking water supplemented with dextran sodium sulfate 

(DSS), a chemical that ulcerates and damages the colon. After one week of this treatment, we 

would then inoculate mice with Coprobacillus catenaformis and measure intestinal permeability 

7 days and 14 days later to measure rate of healing (39). We would also euthanize mice at these 

time points to perform histological assessment and IHC staining to measure cellular signs of 

epithelial recovery. In addition, we would collect fecal samples at baseline, after DSS and at both 

7- and 14-days post DSS to determine the relative abundance of Coprobacillus catenaformis 

throughout this process. We expect that mice that were treated with DSS and Coprobacillus 

catenaformis will display a faster rate of intestinal healing compared to mice not supplemented 
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with this bacterium. These results may aid in elucidating specific bacteria that could be used to 

help treat intestinal inflammation to reduce CRC risk.  

4.2.2 Sugar effects in microbiota mediated CRC 

In the second study (Chapter 3), we found that HFD-recipients and WD-recipients did not 

develop CRC in the same manner. It was interesting to find that WD-recipients did not have worse 

macroscopic tumor outcomes (tumor incidence and number) relative to LFD-recipients because a 

different study that transplanted gut microbiota from donors on a diet with a similar percentage 

and source of fat into recipient mice did observe significantly worse colon tumor number. This 

suggests that the higher percentage of sucrose in the WD in our study may have attenuated HFD 

effects on microbiota mediated promotion of CRC development. To further explore sucrose effects 

on the gut microbiota in attenuating CRC, we would use the same experimental set-up in Chapter 

2 and Chapter 3, except donors would be on one of four diets: (1) high fat (HFD) (2) western diet 

(high fat+high sucrose) (3) high sucrose (HS) or (4) control low fat diet (matched for sucrose in 

the HFD). Similar to the results in Chapter 2 and 3, we would expect that compared to control 

LFD-recipients, HFD-recipients will have worse tumor outcomes relative to the WD-recipients. 

HS-recipients will have comparable tumor outcomes to controls but have significantly different 

microbiota. Measuring taxa enriched in the gut microbiota of both HS-recipients and WD-

recipients will help narrow down potential bacteria that may be involved in slowing the 

progression of CRC. 

 The role of sucrose in mediating CRC development through the gut microbiota can be 

further explored by addressing different effects on microbial community composition due to the 

route of administration- through diet or drinking water. Past research has shown that when 

delivered through diet, high concentrations of sucrose and fructose do not induce obesity, but when 

provided through drinking water, do promote the development of obesity and related metabolic 

conditions (40–42). Observing different obesity-related effects mediated by sugar delivered 

through diet or drinking water prompted the question of whether sucrose administered through diet 

had a different effect on gut microbiota composition compared to administration through drinking 

water and whether these gut microbial changes influence the development of CRC. In one study, 

controlled administration of high fructose corn syrup through oral gavage to prevent the 

development of obesity and obesity associated metabolic syndrome still resulted in increased CRC 
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development (43). Similarly, in AOM-induced CRC, oral gavage of sucrose and fructose was 

shown to increase colonic cell proliferation and formation of ACF compared to mice that received 

an oral gavage of glucose and water (44). However, these studies did not measure the gut 

microbiota and thus could not determine if there were differences between diet and liquid 

administration of sugar on gut microbiota mediated effects of CRC. To determine if there are 

differential effects to gut microbial communities when sucrose is administered through drinking 

water or diet and whether these microbial changes influence CRC development, we would use the 

same study design used in Chapter 2 and Chapter 3. Donor mice would be on one of 4 treatments 

(1) ad libitum access to a high sucrose diet (2) ad libitum access to sucrose in drinking water and 

a (3) controlled access to sucrose in drinking water to prevent weight gain and (4) control diet with 

no sucrose. Although we did not measure obesity-status of the donor to be a significant predictor 

of CRC outcomes, we do not know if this is the case when nutrients are not administered through 

diet. We would expect that the method of sucrose administration does influence gut microbiota 

composition, but that gut microbiota associated effects on CRC development would not be 

dependent on method of sucrose administration. Thus, recipients of the microbiota from both 

sucrose groups would be associated with increased colonic inflammation and other measurements 

of poor intestinal health compared to recipients of the gut microbiota from mice on the LFD. These 

results would lend insight into whether the two major sources of sugar, diet and beverage, impact 

the gut microbiota in comparable ways to promote conditions in the colon that influence risk for 

CRC. 

4.3 Conclusions 

In this work we have shown the importance of diet and obesity on gut microbiota composition and 

intestinal permeability. In particular, we demonstrated that obesogenic diet effects on the gut 

microbiota significantly influence CRC development and that obesity-mediated effects on the gut 

microbiota had little to no effect in promoting this disease. Moreover, the extent of microbial 

effects on CRC was dependent on diet composition. In sum, this work improves our understanding 

of the role of diet and gut microbiota on CRC development. Further research in this field will aid 

in designing effective strategies that use diet to help reverse the rising incidence of CRC in young 

adults.  
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