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ABSTRACT

Large-scale deep learning models have reached previously unattainable performance for various

tasks. However, the ever-growing resource consumption of neural networks generates large carbon

footprint, brings difficulty for academics to engage in research and stops emerging economies from

enjoying growing Artificial Intelligence (AI) benefits. To further scale AI to bring more benefits,

two major challenges need to be solved. Firstly, even though large-scale deep learning models

achieved remarkable success, their performance is still not satisfactory when fine-tuning with only

a handful of examples, thereby hindering widespread adoption in real-world applications where

a large scale of labeled data is difficult to obtain. Secondly, current machine learning models are

still mainly designed for tasks in closed environments where testing datasets are highly similar to

training datasets. When the deployed datasets have distribution shift relative to collected training

data, we generally observe degraded performance of developed models. How to build adaptable

models becomes another critical challenge. To address those challenges, in this dissertation, we

focus on two topics: few-shot learning and domain adaptation, where few-shot learning aims to

learn tasks with limited labeled data and domain adaption address the discrepancy between training

data and testing data. In Part  I , we show our few-shot learning studies. The proposed few-shot

solutions are built upon large-scale language models with evolutionary explorations from improving

supervision signals, incorporating unlabeled data and improving few-shot learning abilities with

lightweight fine-tuning design to reduce deployment costs. In Part  II , domain adaptation studies are

introduced. We develop a progressive series of domain adaption approaches to transfer knowledge

across domains efficiently to handle distribution shifts, including capturing common patterns across

domains, adaptation with weak supervision and adaption to thousands of domains with limited

labeled data and unlabeled data.
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1. OVERVIEW

Large-scale deep learning models [  1 ]–[ 3 ] have become the standard starting point and reaches

previously unattainable performance for various tasks. Despite the remarkable success, these large

models suffer from ever-growing resource consumption on data annotation, training and deployment.

Those challenges largely prevent Artificial Intelligence (AI) solutions from benefiting downstream

tasks and limiting their impacts in real-world settings. How to further scale deep learning to more

broad domains and tasks becomes a challenging and important problem. To solve this problem, we

get the inspiration from human learning abilities. Humans are able to grasp new concepts from only

a few examples based on accumulated knowledge, and is able to adapt to unforeseen circumstances

efficiently. Correspondingly, we study two topics in this dissertation: few-shot learning and domain

adaptation. We devote our efforts on these two topics towards the goal of developing models with

human learning abilities for AI scaling purpose.

Few-shot Learning. Few-shot learning is the problem of learning a new task with a small

number of annotated examples and has been gaining more attentions with advances in large-scale

pre-trained language models. Deep neural networks typically require large amounts of labeled

training data to achieve state-of-the-art performance. Recent advances with pre-trained language

models like BERT [  1 ], GPT-2 [  3 ] and RoBERTa [  2 ] have reduced this annotation bottleneck. In

this paradigm, deep and large neural network models are trained on massive amounts of unlabeled

data in a self-supervised manner. However, the success of these large-scale models still relies

on fine-tuning them on large amounts of labeled data for downstream tasks This poses several

challenges for many real-world tasks. Not only is acquiring large amounts of labeled data for every

task expensive and time consuming, but also not feasible in many cases due to data access and

privacy constraints, especially when dealing with personal or sensitive data. To address those issues,

we propose to develop few-shot learning approaches for large-scale models. My research tackled

these challenges with evolutionary explorations from improving supervision signals, incorporating

unlabeled data and improving few-shot learning abilities with lightweight tuning design to enable

easy deployment. More details are discussed as follows:

• Learning from Informative Supervision. Sequence labeling task aims at identifying and

categorizing spans of text into a pre-defined set of classes. Such a fundamental task is widely
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adopted in information extraction, question answering and other language understanding

applications. Conventional sequence labeling models usually treat each class as a one-hot

vector (represented by a class label), which does not carry semantic information of entity

classes and cannot form effective supervision for model training in low resource scenarios.

Meanwhile, the trained model could be highly associated with known classes and is difficult

to transfer learned knowledge to novel entity classes. To address this challenge, we propose a

method SpanNER [ 4 ], which is the first work to decompose the sequence labeling task into

span detection and entity class inference and learn from natural language supervision. Such

a design provides a flexible and precise way to capture the semantics of entity classes and

brings substantial improvement in low-resource scenarios.

• Incorporating Unlabeled Data. While recent large-scale pre-trained language models (PLM)

have obtained impressive few-shot performance, they still have a significant performance gap

relative to fully supervised state-of-the-art (SoTA) models. In the work [  5 ], we propose a meta

self-training framework, namely MetaST, which leverages very few manually annotated

labels and a large amount of unlabeled data for neural sequence labeling model training.

While self-training serves as an effective mechanism to learn from large amounts of unlabeled

data via iterative knowledge exchange – meta-learning helps in adaptive sample re-weighting

to mitigate error propagation from noisy pseudo-labels.

• Lightweight Few-shot Learners. Pre-trained language models (PLM) have been steadily

increasing in size in terms of trainable parameters ranging from millions to billions of

parameters, increasing both the computational cost and the serving cost in terms of the

storage, where every task requires its customized copy of the large model parameters. In this

work [ 6 ], we present a new fine-tuning method LiST that improves few-shot learning ability

and parameter-efficiency over existing fine-tuning strategies. LiST uses self-training and

prompt fine-tuning to learn from large amounts of unlabeled data from target domains. In

order to reduce the storage and training cost, LiST tunes only a small number of adapter

parameters with few-shot labels while keeping the large encoder frozen. With only 30 labels

for every task, LiST improves by upto 35% over classic fine-tuning while reducing 96% of

the tunable parameters.
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Domain Adaptation. Current machine learning models are only suitable for well-defined

and narrow tasks in closed environments where deployed datasets are similar to training dataset.

However, the world we see is ever-changing along changes with people, things, and the environment,

resulting in distribution shift in real-world applications. In light of this challenge, we develop a

progressive series of domain adaption approaches to transfer knowledge across domains efficiently

to handle distribution shifts, including capturing common patterns across domains, efficient adaption

for novel domains via weak supervision, quick adaption with few-labels and quick adaption with

unlabeled data.

• Common Patterns across Domains. News varies across different events in vocabulary, writ-

ing style and involved persons and etc, bringing domain shifts and limiting the applicability of

developed models. In the work [ 7 ], we first recognized the challenge of fake news detection

on emergent events and proposed a fake news detection approach for novel and time-critical

events. One typical paradigm to handle domain shift is to repeat the procedures of collecting

data from novel domains, re-training the model and re-deploying trained models. Such a

paradigm is not only computationally expensive but time consuming. To address those issues,

we propose a novel fake news detection model, namely EANN, which uses event discriminator

to measure the dissimilarities among different events, and further learns the event invariant

features which can generalize well for the newly emerged events.

• Weak Supervision on Novel Domains. Our work [  7 ] helps capture shared patterns over

events in training data but cannot learn new patterns for novel events. In the work [ 8 ], we

develop a framework, namely WeFEND, which can leverage users reports as weak supervision

to learn new patterns from novel events for fake news detection and significantly reduce data

annotation efforts and costs. Furthermore, a data selector based on reinforcement learning

techniques is integrated to choose high-quality samples from the weakly labeled data and

filter out those low-quality ones that may degrade the detectors performance.

• Quick Adaption with Few Labels. Adding the knowledge from newly emergent events

requires to build a new model from scratch or continue to fine-tune the model on newly

collected labeled data, which can be challenging and expensive for real-world settings. We

18



wonder whether the model is able to quickly adapt to new events without expensive retraining

procedure. To overcome this challenge, we propose a quick adaption model design, namely

MetaFEND, which is able to learn new knowledge within few labels. More specifically, as

the writing style, content, vocabularies and even class distributions of news on different events

usually tends to differ, MetaFEND learns to leverage labeled data instances as conditioning,

addressing limitations of meta-learning in handling heterogeneous domain distributions.

Adaption to Millions of Domains with Unlabeled Data. The number of product types is

towards millions and thus collecting training data for each of product types is extremely

expensive. In the work [ 9 ], we propose a meta-learning latent variable approach, namely

MetaBridge, for product attribute validation task. The proposed approach effectively leverages

a small set of labeled data in limited product types for training and enables quick adaptation

to more than thousands of types with unlabeled data.

The rest of this thesis is organized as the following. In Chapter 2, 3 and 4, few-shot learning

methods with semantic supervision signals, unlabeled data and light-weight tuning are studied. In

Chapter 5, 6, 7 and 8, domain adaptation with adversarial learning, weak supervision, few-labels

and unlabeled data are presented. Related work is introduced in Chapter 9. Finally, in Chapter 10,

the dissertation is concluded.
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Part I

FEW-SHOT LEARNING
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2. LEARNING FROM LANGUAGE SUPERVISION

(A version of this chapter has been previously published in EMNLP 2021 [  4 ]. )

2.1 Introduction

Named entity recognition (NER) aims at identifying and categorizing spans of text into a

pre-defined set of classes, such as people, organizations, and locations. As a fundamental language

understanding task, NER is widely adopted in question answering [ 10 ], information retrieval [  11 ]

and other language understanding applications [  12 ]–[ 14 ]. Recent advances with pre-trained language

models like BERT [  1 ], GPT-2 [  3 ] and RoBERTa [  2 ] have shown remarkable success in NER .

However, the success of these large-scale models still relies on fine-tuning them on large amounts

of in-domain labeled data. Unfortunately, obtaining NER annotations not only is expensive and

time consuming, but also may not be feasible in many sensitive user applications due to data access

and privacy constraints. This motivates us to study the problem of low-shot NER.

Low-shot NER focuses on identifying custom entities in a new domain with only a few in-

domain examples or even without any in-domain labeled data, which are refereed to as few-shot

NER and zero-shot NER respectively. The success of low-shot NER requires the model to be

capable of transferring learned knowledge to recognize new entity classes. Conventional NER

models usually treat each class as a one-hot vector (represented by a class label) for training, and

thus the trained model cannot capture the semantic meanings of those labels. In fact, the trained

model could be highly associated with known classes and it is difficult to transfer learned knowledge

to novel entity classes.

To tackle this problem, several recent works [  15 ]–[ 19 ] employ prototype-based method to

represent each class by a prototype based on the labeled examples and use nearest neighbor method

for NER. However, each entity class in NER task may include several fine-grained entity classes and

has diverse semantic meanings. Correspondingly, the tokens or entities belonging to the same entity

class are not necessarily close to each other [  15 ], making it challenging to represent each entity

class by a prototype based on a few examples. For example, MISC, one of the four entity classes in

the benchmark dataset CoNLL03 [  20 ], is a collection of fine-grained entity classes including events,

nationalities, products and works of art. FAC is an entity class in the OntoNotes5 [  21 ] collection,
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Figure 2.1. An overview of the proposed NER system: SpanNER.

including buildings, airports, highways, bridges and others. Thus, prototype-based methods may

end up learning noisy representations of prototypes and cannot achieve satisfactory performance.

Moreover, prototype-based methods have unavoidable reliance on labeled examples, thereby making

them unable to extend to the zero-shot learning setting, which is also an important and practical

scenario in the low-shot NER.

In this work, we propose a simple yet effective method SpanNER which can tackle few-shot as

well as zero-shot NER. Instead of deriving the representations of labels purely from a few labeled

examples, we propose to directly learn from the natural language descriptions of entity classes.

Such a choice provides a flexible and precise way to obtain the semantic meanings of entity classes

and enable zero-shot learning. Although using natural language as supervision has been explored

in the context of zero-shot text classification, it is challenging to be adapted in the NER task.

Unlike its use in text classification, natural language cannot provide direct supervision for token

classification. Inspired by machine reading comprehension (MRC) framework, we propose to

decompose the NER task into two procedures: span detection and entity class inference, which can

be jointly trained together. However, it is challenging to employ MRC framework into NER task

especially in the low-resource setting. The MRC framework usually needs a large amount of data

for training, which is not available in the low resource scenario. To handle these challenges, we

propose a class-agnostic span detection module which is equipped with token sampling mechanism
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to mitigate the imbalanced class issue and can be trained with limited labeled data. Moreover,

to handle the challenging that several fine-grained classes are included in one entity class, we

develop an entity class attention module to focus on the most relevant information in the given

entity class description that corresponds to the extracted span. Compared with direct adaption of

MRC framework into NER [  22 ], the proposed method can bring more than 54%, 30% and 26%

improvement in average under few-shot learning, domain transfer and zero-shot learning settings

respectively. Figure  8.1 shows an overview of the proposed framework: the span detection stage

aims to identify the span of text, and entity class inference is responsible for categorizing extracted

spans based on natural language description of pre-defined entity classes. We perform extensive

experiments on 5 benchmark datasets and evaluate the proposed method in the few-shot learning,

domain transfer and zero-shot learning settings. The experimental results show that the proposed

method brings large improvements over the state-of-the-art methods across different settings.

Contributions. Our model design is simple but distinguishes from that of the other NER works. To

the best of our knowledge, we are the first one to learn entity class via natural language for NER

task and the proposed method SpanNER achieves around 10%, 23% and 26% improvement over

state-of-the-art NER methods in few-shot learning, domain-transfer and zero-shot learning settings

respectively.

2.2 Task Formulation

NER is the process of locating and classifying named entities in text into predefined entity

categories, such as person names, organizations, and locations. Formally, given a sentence with N

tokens X = {x1, ..., xN}, an entity or slot value draws from a span of tokens s = [xi, ..., xj](0 ≤

i ≤ j ≤ N) associated with an entity class c ∈ C. The corresponding annotations for given sentence

X are denoted as Y .

Few-shot NER focuses on the NER task in a low-resource setting, where a system is only provided

with a few in-domain labeled examples per entity class and the system needs to learn to identify

custom entities in the domain. The task of K-shot NER refers to the setting with K labeled input

sentences per entity class c ∈ C, and the training data can be denotes as Dtrain = {Xi, Yi}|C|×K
i=1 . In

this work, we leverage given training data Dtrain for model fine-tuning.
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Zero-shot NER focuses on a more challenging setting where a model is trained with a set of entity

classes and then tested on a dataset with a different set of entity classes. Towards this end, zero-shot

NER systems need to learn to generalize to unseen entity classes without using any labeled example.

The training data for zero-shot learning can be denoted as Dtrain associated with an entity class

set Ctrain, and the test data is denoted as Dtest associated with an entity class set Ctest. Note that

∃ctest ∈ Ctest but ctest 6∈ Ctrain.

2.3 Methodology

In this work, we study how to develop an effective model which can identify custom entities

in a novel domain with a small set of labeled data or even without using any labeled data. To this

end, we decompose NER task into two sub-tasks: span detection and entity class inference. The

span detection module is class-agnostic and can transfer knowledge across different entity classes.

On top of span detection, the entity class inference module takes extracted spans as input to infer

the semantic relationship between the spans with natural language description of entity classes.

Learning from natural language has an important advantage over existing categorical label learning

methods, which is its ability to capture semantic meanings of labels and enable flexible zero-shot

transfer.

2.3.1 Span Detection

Span detection is explored in the machine reading comprehension (MRC) frameworks [  23 ],

[ 24 ], which predict the probability for each token as the starting or ending of the answer span given

a question. However, it is challenging to directly adapt MRC framework for NER task especially in

the low-resource setting. First, for each entity class, the model needs to answer its associated natural

language question and repeat this procedure until all the questions are answered [ 22 ]. Thus, such

a method is not scalable when the number of entity classes increases and further exacerbates the

imbalanced class issue compared to conventional NER framework. Second, the MRC framework

usually needs a large amount of data, which is not available in the low resource scenario. To

handle these challenges, we propose a class-agnostic span detection module which can share the

knowledge across classes and develop a token sampling mechanism to mitigate imbalanced issue.
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The proposed span detection module takes input sequence as input without questions and can be

trained with limited labeled data. Given an input sequence X = {x1, ..., xN}, we first feed X into a

pre-trained BERT [  1 ] to obtain token representations {x1, ...,xN} ∈ Rh×N . Besides start and end

index predictions, we also classify whether a token is a part of the entity span. For example, we get

the score for each token being start as follows:

sstart(i) = wᵀ
start · xi, (2.1)

where wstart ∈ Rh×1 is the weight of the linear classifier. Correspondingly, the probability of a

token being start index is:

pstart(i) = sigmoid(sstart(i)). (2.2)

The probability calculations for end and a part of a span are the same as that of start index prediction.

We then compute the probability of a span [i, j] being an entity as:

pmatch([i, j]) = sigmoid
(
sstart(i) + send(j)

+
j∑
t=i

sspan(t)
)
.

The span detection loss consists of three parts: start prediction loss, end prediction loss and span

matching loss. The loss function of start prediction can be represented as:

Lstart = 1
N

N∑
i=1

CE(pstart(i), yi
start), (2.3)

where CE represents cross-entropy function and yi
start = 1 if token xi is the start of an entity. The

loss of end prediction can be calculated in a similar way.

Mitigation of imbalanced class issue. For an input sequence with length N , the number of span

candidate is in a N ×N scale, where most of them are negative span candidates. To mitigate the

imbalanced class issue, we sample a subset of negative span candidates, denoted as Oneg. The span
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candidate set which corresponds to gold spans is denoted as Opos. Instead of using all the negative

spans, we propose to sample a subset of negative spans to mitigate imbalance class issue. More

specifically, we set the sampling size of negative span candidates as |Oneg| = N − |Opos| to reach a

class ratio between positive and negative labels similar to the one in the start and end prediction

losses. The span match loss is:

Lmatch = − 1
N

( ∑
(i,j)∈Opos

log pmatch([i, j])

+
∑

(i,j)∈Oneg
log (1− pmatch([i, j]))

)
.

The overall span objective consisting of three losses to be minimized is as follows:

Lspan = Lstart + Lend + Lmatch. (2.4)

During inference, start and end indexes are first separately predicted. Then we select the

consensus span between match predictions and extracted (start, end) indexes to achieve final

predictions.

2.3.2 Natural Language Supervision

Learning based on categorical labels only may discard the semantic meanings of labels, and

thus it is difficult to transfer knowledge from known classes to new entity classes. To mitigate this

limitation, we propose to use natural language description 

1
 of entity classes to provide supervision

for entity class inference and enable zero-shot learning. However, different with zero-shot text

classification or entity linking, the entity class description in NER may describe several fine-grained

entity classes, making our setup more challenging.

Mention Representation. Upon span detection, we can first obtain the mention span representation

of each span candidate [i, j] by averaging the embeddings of the span tokens. However, entity class

1
 ↑ In this work, we use the definitions of entity classes from Wikipedia or annotation guidelines as their language

description.
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is usually a high level category including many entities. Thus, we need to add a linear transformation

wentity ∈ Rh×h to project average span token embedding into the entity class space:

ei,j = wentity · (
1

j− i + 1

j∑
t=i

xt). (2.5)

The description of an entity class c is a sequence of tokens, denoted as Xc = {xc1, ..., xcK} . In this

work, we feed entity class description into another pre-trained BERT [ 1 ] to obtain its representations

{xc1, ...,xcK} ∈ Rh×K . Since there is limited data or even no data for training in the novel domain,

we fixed the parameters of this BERT to expedite transferring by maintaining the embedding of

entity class description from source and novel domains in the same space.

Entity Class Description Attention. The entity class description may describe several fine-grained

entity classes. To focus on the information in the description that corresponds to the extracted span,

we propose to construct adaptive entity class representation. More specifically, we use multi-headed

attention mechanism [ 25 ]. Each single attention function can be described as mapping a query

and a set of key-value pairs to an output. The query, key and value vector are denoted as Q, K

and V respectively. We use the aggregated mention vector ei,j ∈ Rh×1 as query vector Q and use

entity class description embedding Xc = [xc1, ...,xcK] ∈ Rh×K as key vector K and value vector

V. The output is computed as a weighted sum of the values, where the weight assigned to each

value is computed by the dot-product function of the query with the corresponding key. Then

multiple parallel attention heads can stabilize the learning mechanism. We represent the procedure

of obtaining adaptive entity class representation xc(ei,j) ∈ Rh×1 as:

xc(ei,j) = MultiHead(Q,K,V). (2.6)

The role of such a mechanism is empirically justified by the comparison between the pro-

posed model and a reduced model (i.e., the proposed model without attention mechanism) in the

experimental section.

Entity Class Inference. The entity class inference is to infer the relationship between entity class

and extracted span. We follow the zero-shot text classification [  26 ] to cast this task into binary
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prediction: whether the extracted span belongs to given entity class or not. The probability of the

extracted span being in a given entity class c is based on a matching score between them:

p(c|ei,j) = sigmoid(eᵀ
ijxc(ei,j)). (2.7)

The loss for each extracted span [i, j] is calculated as:

Lentity([i, j]) = 1
|C|

∑
c∈C

CE
(
p(c|ei,j), y

)
, (2.8)

where C is a set of entity classes of interest, and y is binary label which equals to 1 when extracted

span belongs to entity class c and 0 otherwise. We use Lentity to denote the entity class inference

loss for all extracted spans.

Final Loss. We jointly train span detection and entity class inference modules by optimizing the

sum of their losses.

2.4 Experiments

In this section, we empirically study and compare the proposed method with state-of-the-art

methods in few-shot learning, domain transfer and zero-shot learning settings.

2.4.1 Experimental Setup

Dataset. We perform large-scale experiments with five different datasets 

2
 including Named Entity

Recognition tasks and user utterances for task-oriented dialog systems as summarized in Table  3.1 .

(a) CoNLL03 [ 20 ] is a collection of news wire articles from the Reuters Corpus with 4 entity

classes. (b) OntoNotes5 [ 21 ] is in general domain including 18 entity classes. (c) WNUT 2017

[ 27 ] is collected from social media with 6 entity classes. (d) MIT Movie and Restaurant corpus [ 28 ]

consist of user utterances for movie and restaurant domains with 12 and 8 classes.

Backbone We use the the pre-trained BERTbase uncased model (∼110M parameters) as the

backbone network. The inputs during training and inference are lowercased to make them case-

insensitive.
2

 ↑ https://github.com/juand-r/entity-recognition-datasets
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Table 2.1. Dataset summary.

Dataset Domain # Classes # Train # Test

CoNLL03 News 4 14K 3.6K
OntoNotes5 General 18 60K 8.3K
WNUT Social Media 6 3.4K 1.6K
Movie Moive 12 8.8K 2.4K
Restaurant Restaurant 8 6.9K 1.5K

2.4.2 Few-shot Learning

Setting. In this subsection, we study how the proposed method performs in a few-shot supervi-

sion setting, For 5-shot setting, we sample 5 sentences for each entity class from the training set

and fine-tune models with sampled sentences. The experiment is repeated for 10 times to report the

average F1 score.

Baselines The first baseline we use is a fully supervised BERT model trained on all available

training data (3.4K-60K sentences) which provides the ceiling performance for every task. Each

of the other models are trained on 5 training sentences per class. We compare our method with

BERT (same backbone with ours) with Beginning-Intermediate-Outside (BIO) tagging mechanism

as a comparison to evaluate the proposed model design besides the backbone choice. LC and

Prototype are abbreviations for linear classifier and prototype-based methods from a recent few-shot

NER work [ 15 ]. They use pre-trained model RoBERTa-base as their backbone model. MRC-

NER [  22 ] casts NER task into machine reading comprehension and achieves the state-of-the-art

performance on several benchmark datasets. To study the role of attention mechanism proposed in

subsection  2.3.2 , we propose a reduced model SpanNER-NoAttn, which uses average operation

instead of attention to aggregate entity class description.

Performance We report the results of 5-shot supervision and distantly supervising pre-training plus

5-shot supervision in Table  2.2 . In the 5-shot supervision setting, we can observe that our methods

outperform baseline BERT consistently, which shows the advantage of the proposed model design

in addition to the benefits from backbone. The baseline Prototype leverages given support examples

to conduct NER task and achieves lower performance compared with LC with the same backbone

according to average F1. The reason may lie in that the tokens belonging to the same entity class are
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Table 2.2. F1 score comparison of models on different datasets. All models (except
LC and Prototype) use the same BERT backbone. † indicates results from [  15 ].
The highest scores are bolded, while the second highest score is underlined. F1
score of our model for each task is followed by standard deviation and percentage
improvement [↑] is over the best baseline. ∗RoBERTta is pre-trained on reddit
dataset which is similar to WNUT. We change backbone from BERT to Roberta
(same with Prototype’s) and F1 of SpanNER on WNUT is 31.5 (0.3).

Method CoNLL03 OntoNotes5 WNUT Movie Restaurant Average

Full-supervision
BERT 91.1 87.8 47.1 87.9 79.0 78.6

5-shot supervision
BERT 61.6 60.1 21.2 61.9 48.6 50.7
LC† 53.5 57.7 25.7 51.3 48.7 47.4
Prototype† 58.5 53.3 29.5 38.0 44.1 44.7
MRC-NER 28.5 49.8 0.4 58.7 43.1 36.1
SpanNER-NoAttn (ours) 68.4 (0.5) 65.1 (0.3) 22.8 (0.4) 64.8 (0.3) 48.9 (0.2) 54.0
SpanNER (ours) 71.1 (0.4) 67.3 (0.5) 25.8 (0.3)∗ 65.4 (0.4) 49.1 (0.2) 55.7 [↑9.9%]

not necessarily close to each other [  15 ]. Prototype achieves better performance on WNUT compared

to SpanNER since Prototype is based on Roberta which is pre-trained on social media dataset reddit.

We change backbone of the proposed model SpanNER from BERT to Roberta-bas and observe that

SpanNER achieves 31.5 in term of F1 score and outperforms Prototype. The MRC-NER framework

is a reading comprehension framework whose success relies on training on large-scale data and thus

cannot achieve satisfactory performance in a few-shot setting. Overall, we observe that our methods

largely outperform all methods including the models with the same BERT encoder as ours across

different datasets. The average performance improvement over the best baseline BERT is around

10%. Moreover, the comparison between SpanNER and SpanNER-NoAttn demonstrates that the

improvement brought by attention mechanism is around 3.1%.

Varying the number of shots. Table  2.2 shows the improvement in the performance of SpanNER

and BERT when increasing the number of labels for each NER type in the CoNLL03 dataset. As

we increase the amount of labeled training instances, SpanNER improves over BERT consistently.
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Figure 2.2. Variation in model performance on varying shots on CoNLL03. “Full”
indicates full supervision.

2.4.3 Domain Transfer

We evaluate the proposed model in another common scenario of adapting a NER model to a

novel domain [ 16 ]. In this setting, we have a fully supervised source domain and a target domain

with few-shot supervision. Following [  16 ], we use general domain (OntoNotes5) as a source domain

and evaluate models on News (CoNLL) and Social (WNUT) domains.

Table 2.3. F1 score comparison of models on CoNLL03 and WNUT datasets with
5-shot supervision for domain transfer. † indicates results from [  16 ].

Models CoNLL03 WNUT Average

SimBERT † 28.6 7.7 18.2
Prototypical Network † 65.9 19.8 42.9
PrototypicalNet+P&D † 67.1 23.8 45.4
NNShot † 74.3 23.9 49.1
StructShot † 75.2 27.2 51.2
MRC-NER 64.1 32.6 48.3

SpanNER-NoAttn (ours) 80.1 (0.4) 42.0 (0.7) 61.1
SpanNER (ours) 83.1 (0.5) 43.1 (0.6) 63.1 [↑23.2%]

Baselines. We adopt six state-of-the-art methods in the domain transfer setting as baselines. Sim-

BERT is based on a pre-trained BERT encoder and the predictions are conducted by a nearest

neighbor classifier [ 16 ]. Prototypical Network [  29 ] is a state-of-the-art few-shot classification
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system and is adopted by [ 30 ] for few-shot NER task. Upon Prototypical Network, Prototypical-

Net+P&D [  17 ] adds pairwise embedding and dependency mechanism to gain further improvements.

StructShot and NNShot are proposed in [ 16 ], which achieve state-of-the-art performance in this

domain transfer setting. We include our reduced baseline SpanNER-NoAttn in this task as an

ablation study and follow [ 16 ] to run our models five times and report average performance with

standard deviation.

Performance Table  2.3 shows the results of baselines and the proposed methods on CoNLL03 and

WNUT datasets. The proposed models achieve F1 scores 83.1 and 43.1 on CoNLL03 and WNUT

respectively, bringing improvements over the best baseline 10.5% and 32.2% correspondingly. The

proposed model effectively transfers learned knowledge to novel domains by learning from natural

language descriptions instead of simple one-hot representation of entity classes.

2.4.4 Zero-shot NER

Setting The zero-shot learning setting is motivated by the fact that new types of entities often

emerge in some domains and sometimes the annotations in the target domain are not accessible.

Following zero-shot text classification setting [ 26 ], we evaluate the proposed model in a common

setting: label-partially-unseen. In label-partially-unseen setting, a part of labels are unseen, enabling

us to check the performance on unseen labels as well as seen labels.

Baselines Zero-shot NER task is rarely studied. The most state-of-the-art model for zero-shot NER

is MRC-NER [  22 ], which conducts NER task by extracting answer spans given the questions of

entity classes. Another baseline we use is the reduced model SpanNER-NoAttn. The comparison

with this reduced model can demonstrate the role of entity class attention mechanism.

Table 2.4. F1 score comparison of models on CoNLL03 and WNUT datasets.
Overall and Unseen indicate F1 scores of all entity classes and never-seen entity
classes, respectively.

Method CoNLL03 WNUT
Overall Unseen Overall Unseen

MRC-NER 39.1 14.5 24.0 7.4
SpanNER-NoAttn 39.0 0.5 31.4 16.8
SpanNER 53.0 33.5 35.4 18.8
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Performance Table  2.4 shows the F1 scores of MRC-NER and the proposed methods. MRC-NER

based on reading comprehension framework is capable of conducting NER task for never-seen

classes. However, the span detection in MRC-NER is tightly coupled with question understanding,

leading to more difficulty in handling unseen entity classes. In contrast, the proposed framework

decomposes the NER task into span detection and entity class inference, avoiding the error prop-

agation between two modules and thus delivering better performance. The comparison between

SpanNER-NoAttn and SpanNER indicates the importance of attention mechanism in entity class

description understanding, especially for never-seen entity classes.

Entity Class Inference We conduct experiments that disentangle entity class inference module

from SpanNER so that the capability of this module can be evaluated. The span detection module

cannot be separately evaluated because the span annotations on both datasets are associated with

pre-defined entity classes. To demonstrate the capability of entity class inference, we use gold

spans to evaluate the performance of entity class inference. Table  2.5 shows the performance of

SpanNER-NoAttn and SpanNER. Comparing these two methods, we can observe that the attention

mechanism helps improve the performance of the entity class inference.

Table 2.5. Experiments that demonstrate the performance of the entity class in-
ference module and adopt annotating guidelines as entity class descriptions on
CoNLL03 and WNUT datasets.

CoNLL03 WNUT

Entity Class Inference
SpanNER-NoAttn 56.2 53.7
SpanNER 60.2 57.0

Annotation guidelines
SpanNER-NoAttn 31.8 11.5
SpanNER 42.1 15.7

Class Description Construction We set up experiments to study how the entity class description

affects the model performance. In this experiment, we replace Wikipedia description of entity

classes by annotation guidelines from CoNLL03 and WNUT datasets in the testing stage. We can

observe that the proposed models are still capable of identifying entities belonging to never-seen

entity classes even though the descriptions in the testing stage are different from those in the training
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stage. The F1 scores drop compared to the scores when Wikipedia descriptions are used because

training and test stages use different descriptions and the annotation guidelines do not include the

semantic explanation of entity classes.

Performance per Entity Class We show F1 score per entity class on CoNLL03 and WNUT

datasets in Table  2.6 . We can observe the various degrees of recognizing different entity classes.

First, the person names are easily recognized across different domains. The performance of person

entity class on WNUT is worse compared to that on CoNLL03, which may be due to the large

domain shift in social media data. It is interesting to see that the performance of seen entity classes

LOC, location and product is even worse than that of never-seen entity classes. To explain

this interesting phenomenon, we provide a detailed analysis of error cases below.

Table 2.6. F1 score of SpanNER per entity class on CoNLL03 and WNUT datasets.
∗ indicates unseen entity classes.

CoNLL03 WNUT
Entity Class F1 Entity Class F1

PER 77.4 person 59.1
ORG 58.5 creative-work∗ 19.3
MISC∗ 33.5 corporation∗ 19.1
LOC 5.9 group∗ 18.3
- - location 14.4
- - product 11.0

Error Analysis We manually examine the errors made by the proposed model on the CoNLL03

and WNUT test datasets and categorize these errors into 3 types. (1) Different annotation guide-

lines on datasets. For instance, the description of location entity class in the source domain

(OntoNotes5) is limited to mountain ranges and bodies of water, excluding countries, cities, states

(these are included in the entity class GPE). Such a description is different from entity class LOC on

CoNLL03 and location on WNUT. (2) Domain shift. The domain shift leads to the difficulty in

recognizing the entities belonging to seen entity classes. (3) Description understanding. Description

understanding is a crucial step for the success of zero-shot NER. For example, MISC on CoNLL03

is a collection of diverse fine-grained entity classes including events, nationalities, products and

works of art.
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3. META SELF-TRAINING

(A version of this chapter has been previously published in KDD 2021 [  5 ]. )

3.1 Introduction

Motivation. Deep neural networks typically require large amounts of labeled training data to

achieve state-of-the-art performance. Recent advances with pre-trained language models like

BERT [  1 ], GPT-2 [  3 ] and RoBERTa [  2 ] have reduced this annotation bottleneck. In this paradigm,

deep and large neural network models are trained on massive amounts of unlabeled data in a

self-supervised manner. However, the success of these large-scale models still relies on fine-tuning

them on large amounts of labeled data for downstream tasks. For instance, our experiments show

27% average improvement on multiple tasks when fine-tuning BERT with the full labeled training

set (2.5K-705K labels) versus fine-tuning with limited amount of labels (e.g., 10 per class). This

poses several challenges for many real-world tasks.

Not only is acquiring large amounts of labeled data for every task expensive and time consuming,

but also not feasible in many cases due to data access and privacy constraints, especially when

dealing with personal or sensitive data. This issue is exacerbated for sequence tagging tasks that

require annotations at token- and slot-level as opposed to instance-level classification tasks. For

example, an NER task can have slots like B-PER, I-PER, O marking the beginning, intermediate and

out-of-span markers for person names, and similar slots for the names of location and organization.

Similarly, language understanding models for dialog systems rely on effective identification of

what the user intends to do (intents) and the corresponding values as arguments (slots) for use

by downstream applications. Therefore, fully supervised neural sequence taggers are expensive

to train for such tasks, given the requirement of thousands of annotations for hundreds of slots

corresponding to the many different intents.

State-of-the-art. Semi-supervised learning (SSL) [  31 ] is one of the approaches to address labeled

data scarcity by making effective use of large amounts of unlabeled data in addition to task-specific

labeled data. Self-training (ST, [  32 ]), one of the earliest SSL approaches, has recently shown

state-of-the-art performance for
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Figure 3.1. MetaST framework.

instance-level classification tasks like image or text classification [  33 ]–[ 36 ] performing at par

with supervised systems while using very few training labels. In contrast to such instance-level

classification tasks, slot tagging or alternatively, token-level classification tasks have dependencies

between the slots demanding different design choices for slot-level loss optimization for the limited

labeled data setting. For instance, prior work [  37 ] observe that standard self-training techniques do

not work for slot tagging tasks in the low-data regime (e.g., with 10% labeled data for the target

domain) due to error propagation and amplification in the iterative learning framework. On the

positive side, there has been some success with careful task-specific data selection [ 8 ], [  38 ], and

more recently with distant supervision [  39 ] leveraging external resources like knowledge bases (e.g.,

Wikipedia). In contrast to these prior work, we develop techniques for self-training with limited

training labels and without any task-specific assumption or external knowledge resources.

Challenges. For self-training, a base model (teacher) is trained on some amount of labeled data and

used to pseudo-annotate (task-specific) unlabeled data. The original labeled data is augmented with

the pseudo-labeled data and used to train a student model. The student-teacher training is repeated

until convergence. Traditionally in self-training frameworks, the teacher model pseudo-annotates

unlabeled data without any sample selection. This may result in gradual drifts from self-training on

noisy pseudo-labeled instances [  37 ], [ 40 ]. In order to deal with noisy labels and training set biases,

recent works have developed techniques to re-weight noisy samples leveraging prior knowledge of
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the task [ 41 ], [  42 ], or automatically learning from the underlying model and task data [  33 ], [  43 ],

[ 44 ]. These prior techniques for learning to re-weight samples have been primarily developed for

instance-level tasks like image [  43 ], [  44 ] and text [ 33 ] classification. A vanilla token-level extension

of these techniques for slot tagging would assume a similar quality of the token-level pseudo-labels

in a sequence disregarding the slot distribution and difficulty. This is not desirable for tasks like

Named Entity Recognition in WikiAnn [ 45 ] involving 123 slots over 41 languages with variable

difficulty and distribution in the data and across languages. This makes it imperative to design

better sampling and re-weighting strategies for slot tagging tasks in contrast to random sampling or

token-agnostic re-weighting employed for instance-level classification tasks [  43 ].

To address the aforementioned challenges, we develop an adaptive learning mechanism to

re-weight noisy token-level pseudo-labels to mitigate the effect of error propagation during self-

training. To this end, we employ meta-learning [ 46 ]–[ 48 ] with the following meta-objective: the

best token-level re-weighting should minimize the model loss on a set of representative clean

validation examples. This formulation requires us to address two key research questions, namely, (i)

How to construct an informative validation set for the meta-objective? and (ii) How to re-weight

token-level noisy pseudo-labels to optimize the meta-objective for sequence labeling?

Prior works on meta-learning for instance-level tasks employ random sampling to construct this

validation set for the meta-objective. However, we observe this to be detrimental for our setting as

the model over-samples from the most populous categories and slot types ignoring their distribution

and difficulty. To this end, we develop an adaptive mechanism to construct an informative validation

set for meta-learning considering the diversity and uncertainty of the model for different slot

types. Furthermore, we leverage this validation set to optimize the meta-objective for token-level

loss estimation and re-weighting pseudo-labeled sequences from the teacher in a meta-learning

framework.

Our task and framework overview. We focus on sequence labeling tasks with only a few annotated

examples (e.g., K = {5, 10, 20}) per slot type for training and large amounts of task-specific

unlabeled data. Figure  8.1 shows an overview of our framework with the following components and

research contributions:
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(i) Self-training: Our self-training framework leverages a pre-trained language model as a teacher

and co-trains a student model with iterative knowledge exchange for neural sequence tagging with

very few manually annotated training labels.

(ii) Adaptive validation set construction for meta-learning: Our few-shot learning setup assumes

a small number of labeled training samples per slot type that are not equally informative. We

develop an adaptive mechanism to select informative examples to construct the validation set for

our meta-objective. To this end, we leverage stochastic loss decay of the student model as a proxy

for its uncertainty for sample selection. This strategy is used in conjunction with the re-weighting

mechanism in the next step.

(iii) Token-level re-weighting with meta-learning: Since pseudo labels from the teacher can be noisy,

we leverage a meta-objective to re-weight them to improve the student model performance on the

validation set obtained in previous step. In contrast to prior work on instance-level re-weighting,

we perform token-level re-weighting for slot tagging tasks. Finally, we learn all of the above steps

jointly with end-to-end learning in the self-training framework. We refer to our adaptive self-training

framework with meta-learning based sample re-weighting mechanism as MetaST.

(iv) Experiments: We perform extensive experiments on six benchmark datasets for several tasks

including multilingual Named Entity Recognition and slot tagging for user utterances from task-

oriented dialog systems to demonstrate the generalizability of our approach across diverse tasks,

slots, shots and languages. We adopt BERT and multilingual BERT as encoders and show that their

performance can be significantly improved by nearly 10% for the few-shot settings with very few

training labels (e.g., 10 manually labeled examples per slot type) and large amounts of unlabeled

data.

3.2 Background and Problem Formulation

Sequence labeling and slot tagging. This is the task of identifying the entity span of several

slot types (e.g., names of person, organization, location, date, etc.) in a text sequence. Formally,

given a sentence with N tokens X = {x1, ..., xN}, an entity or slot value is a span of tokens

s = [xi, ..., xj](0 ≤ i ≤ j ≤ N) associated with an entity class c ∈ C. This task assumes

a pre-defined tagging policy like BIO [ 49 ], where B marks the beginning of the slot, I marks
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an intermediate token in the span, and O marks out-of-span tokens. These span markers are

used to extract multi-token values for each of the slot types with phrase-level evaluation for the

performance. For illustration, a user utterance can be labeled as “play:O a:O popular:B-sort

chant:B-music_item by:O brian:B-artist epstein:I-artist”, with slot types like

sort, music_item and artist, with BIO denoting the span markers.

Few-shot semi-supervised sequence labeling. In this work, we study few-shot semi-supervised

sequence labeling, where a model is trained with very few manually labeled and large amounts

of unlabeled data. Formally, a few-shot semi-supervised setting for this task considers K labeled

sentences that are manually annotated at token-level for each slot type c ∈ C, and M unlabeled

sentences. The labeled samples are denoted as (X l
m = {xlm,n}, Y l

m = {ylm,n})
K×|C|,N
m=1,n=1 where ylm,n ∈

C are the slot labels. The M unlabeled sentences are denoted as (Xu
m = {xum,n})

M,N

m=1,n=1, where

M � K × |C|. Let f(X; θ) denote a tagging model that assigns a label to each token in the

sequence with trainable parameters θ.

Self-training is one of the earliest semi-supervised approaches and has recently shown state-

of-the-art performance for instance-level classification tasks. Consider f(·; θtea) and f(·; θstu) to

denote the teacher and student models respectively in the self-training framework. The role of the

teacher model (e.g., a pre-trained language model) is to assign pseudo-labels to unlabeled data

that is used to train a student model. The teacher and student model can exchange knowledge

and the training schedules are repeated till convergence. The success of self-training with deep

neural networks in recent works has been attributed to a number of factors including stochastic

regularization with dropouts [ 50 ] and data regularization with unlabeled / augmented data [ 34 ].

Formally, given m-th unlabeled sentence with N tokens Xu
m = {xum,1, ..., xum,N} and C pre-defined

labels, consider the pseudo-labels Ŷ (t)
m = [ŷ(t)

m,1, ..., ŷ
(t)
m,N ] generated by the teacher model at the t-th

iteration where,

ŷ(t)
m,n = arg max

c∈C
fn,c(xum,n; θ(t)

tea). (3.1)

The pseudo-labeled sequence data, denoted as (Xu, Ŷ (t)) = {(xum,n, ŷ(t)
m,n)}M,N

m,n , is used to train

the student model and learn its parameters as:

θ̂
(t)
stu = arg min

θ

1
M

1
N

M∑
m=1

N∑
n=1
L(ŷ(t)

m,n, f(xum,n; θ(t−1)
stu )), (3.2)
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where L(·, ·) can be modeled as the cross-entropy loss.

3.3 Self Training with Adaptive Re-weighting

Given a pre-trained language model (e.g., BERT [ 1 ]) as the teacher, we first fine-tune it on the

small labeled data with K × |C| annotated examples to make it aware of the underlying task. The

fine-tuned teacher model is now used to pseudo-label the large unlabeled data. We consider the

student model as another instantiation of the pre-trained language model that is trained over the

pseudo-labeled data. However, our few-shot setting with limited labeled data results in a noisy

teacher. A naive transfer of teacher knowledge to the student results in the propagation of noisy

labels [  37 ], [  40 ] limiting the performance of the student model. To address this challenge, we

develop an adaptive self-training framework to re-weight pseudo-labeled predictions from the

teacher with a meta-learning objective that optimizes the token-level loss from the student model on

a judiciously constructed validation set based on the model uncertainty (discussed next).

3.3.1 Adaptive Validation Set Construction for Meta-learning

Standard meta-learning techniques [ 43 ] for instance-level classification tasks, construct the

validation set to optimize the meta-objective via random sampling. However, a naive sample

selection is detrimental for the sequence labeling setup involving many slot types with variable

difficulty and distribution in the data and across languages. Therefore, we develop an adaptive

strategy to construct the validation set for effective data exploration. We empirically demonstrate its

benefit over classic meta-learning approaches from prior works in experiments.

Prior works in meta-learning and active learning broadly leverage random sampling [  43 ],

easy [  42 ] and hard example mining [ 41 ] or uncertainty methods [  51 ] for sample selection. These

strategies have been compared in prior works [ 51 ], [  52 ] that show uncertainty-based methods to

have better generalizability across diverse settings. While there are several approaches to uncertainty

estimation including error decay [  53 ] and predictive variance [  51 ], these techniques have been

developed for instance-level classification tasks, thereby, generating an overall estimate for the

entire instance. In contrast, in this work, we are interested in leveraging token-level estimates

corresponding to the different slot types and their associations.
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Specifically, we leverage token-level uncertainty estimates to select samples that the model is

uncertain about and can correspondingly benefit from knowing their labels. To this end, we leverage

stochastic token-level loss decay from the model as a proxy for the model uncertainty to generate a

validation set. This is used for estimating token-level weights and re-weighting pseudo labeled data

in Section  3.3.2 . This is an adaptive process as the model and corresponding uncertainty estimates

improve over time, thereby, generating stochastic validation sets that are most representative of the

difficulty of the underlying task at a given step during learning.

Consider the loss of the student model with parameters θ(t)
stu on the labeled data ({xlm,n}, {ylm,n})

in the t-th iteration as

L({ylm,n}, {f(xlm,n; θ(t)
stu)}). We use the loss decay at any iteration as a proxy for the model

uncertainty. This is measured by the difference between the successive stochastic losses encountered

by the model for a token in any instance. Since the losses may widely vary across iterations given

the few-shot assumption, we adopt the moving average of the stochastic losses for ({xlm,n}, {ylm,n})

in the latest R iterations as baseline B(t)
m for smoothing the loss decay estimation. The baseline

measure B(t)
m at iteration t is given as:

B(t)
m = 1

min(R, t) ·N

min(R,t)∑
r=1

N∑
n=1
L(ylm,n, f(xlm,n; θ(t−r)

stu )). (3.3)

Since the loss decay values are estimated on the fly, we want to balance exploration and

exploitation. To this end, we add a smoothness factor δ to prevent the low loss decay samples (i.e.

samples with low uncertainty in the constituent tokens) from never being selected again. Considering

all of the above factors, we obtain the sampling weight of labeled data (X l
m = {xlm,n}, Y l

m = {ylm,n})

in iteration t as follows:

W (t)
m ∝ max

(
B(t)
m −

1
N

N∑
n=1
L(ylm,n, f(xlm,n; θ(t)

stu)), 0
)

+ δ. (3.4)

A low value of W (t)
m indicates that the model loss for tokens in sequence {xlm,n} in iteration t is

similar to the average loss B(t)
m encountered in last R iterations – depicting lower model uncertainty.

In contrast, a higher value of W (t)
m depicts higher model uncertainty and therefore potential benefit

in learning from knowing token-level labels, similar to the objective in an active learning setting.
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The smoothness factor δ needs to be adaptive since the training loss is dynamic. To ensure the

scale of smoothness factor δ is similar to loss decay value, we adopt the maximum of the loss decay

values as the smoothness factor δ to encourage exploration.

For practical implementation considerations and speed-up, we re-estimate Equation  3.4 after

a fixed number of steps to adapt to model changes and sample mini-batches of labeled data {V ls}

as validation set for our meta-objective. This is used by the student model in the next step for

re-weighting pseudo-labeled sequences from the teacher model. We demonstrate the impact of this

adaptive sampling strategy via ablation study in experiments. As a minor note, the labeled data is

only used to compute sample weight and not used for explicit training of the student model in this

step.

3.3.2 Re-weighting Noisy Pseudo-Labeled Tokens

To mitigate error propagation from noisy pseudo-labeled sequences from the teacher, we

leverage meta-learning to adaptively re-weight them based on the student model loss on the sampled

validation set as our meta-objective. The validation set is obtained by our adaptive sampling strategy

from the previous step. In contrast to prior work on instance-level image and text classification,

we adapt the meta-learning framework to re-weight noisy pseudo-labeled samples at a token-level

resolution for the sequence labeling task.

Consider the pseudo-labels {Ŷ (t)
m = [ŷ(t)

m,1, ..., ŷ
(t)
m,N ]}Mm=1 from the teacher in the t-th iteration

with m and n indexing the instance and a token in the instance, respectively. In classic self-training,

we update the student parameters leveraging pseudo-labels with inner step size α as follows:

θ̂
(t)
stu = θ̂

(t−1)
stu − αO

( 1
M

1
N

M∑
m=1

N∑
n=1
L(ŷ(t)

m,n, f(xum,n; θ̂(t−1)
stu )

)
. (3.5)

Now, to downplay noisy token-level labels, we leverage meta-learning to re-weight pseudo-labeled

data. Our objective is to measure the impact of a training example towards the performance on
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validation set V l at iteration t. To this end, we leverage the idea of weight perturbation [ 43 ], [  54 ] to

change the weight of each token in each sequence of the mini-batch by ε(t)
m,n at iteration t as:

θ̂
(t)
stu(ε) = θ̂

(t−1)
stu − αO

( 1
M

1
N

M∑
m=1

N∑
n=1

[ε(t)m,n · L(ŷ(t)
m,n, f(xum,n; θ̂(t−1)

stu ))]
)
. (3.6)

Weight perturbation is used to discover data points that are most important to improve the model

performance on the validation set where the sample importance is given by the magnitude of the

negative gradients. We can now find the optimal value for the perturbation ε(t)∗
m,n that minimizes the

student model loss on the validation set V l at iteration t as:

ε(t)∗m,n = argminεm,n

1
M

1
N

M∑
m=1

N∑
n=1
L(ŷ(t)

m,n, f(xum,n; θ̂(t)
stu(εm,n)) (3.7)

The token weights are obtained by minimizing the student model loss on sampled mini-batches

of validation data {V ls} obtained from Eq.  3.4 . To obtain a cheap estimate of the meta-weight at

step t, we take a single gradient descent step for the sampled validation mini-batch V ls as:

u(t)
m,n,s = − ∂

∂εm,n,s

(∑|Vl
s|

m=1
∑N
n=1 L(ylm,n, f(xlm,n; θ̂(t)

stu(ε)))
|V ls| ·N

)∣∣∣∣
εm,n,s=0

(3.8)

We set the token weights to be proportional to the negative gradients to reflect the importance of

pseudo-labeled tokens in the sequence. Since sequence labeling tasks have dependencies between

the slot types and tokens, it is difficult to obtain a good estimation of the weights based on a single

mini-batch of examples. Therefore, we sample S mini-batches of validation sets {V l1, ...,V lS} with

the adaptive sampling strategy in Equation  3.4 and calculate the mean of the gradients to obtain a

robust gradient estimate. The overall meta-weight of pseudo-labeled token (xum,n, ŷm,n) is obtained

as:

w(t)
m,n = max( 1

S

S∑
s=1

u(t)
m,n,s, 0). (3.9)

Since a negative weight indicates a pseudo-label of poor quality that would potentially degrade

the model performance, we set such weights to 0 to filter them out. We empirically study the impact

of S in experiments.

Finally, we update the student model parameters while accounting for token-level re-weighting

as:

θ̂
(t)
stu = θ̂

(t−1)
stu − αO

( 1
M

1
N

M∑
m=1

N∑
n=1

[w(t)
m,n · L(ŷ(t)

m,n, f(xum,n; θ̂(t−1)
stu ))]

)
. (3.10)
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We demonstrate the impact of this token-level re-weighting mechanism with ablation study in

experiments.

3.3.3 Student Teacher Iterative Training

We first fine-tune the teacher model with few labeled data for each slot for each task and

initialize the student as a copy of the teacher. In every self-training iteration, the teacher generates

noisy token-level pseudo-labels for each sequence which are used to train the student model with

sample selection and token-level re-weighting in a meta-learning framework.

At the end of given self-training iterations T , we assign the student model to be the new teacher

model (i.e., θtea = θ
(T )
stu ), and repeat the above steps till convergence. We further utilize the labeled

data ({xlm,n, ylm,n}) to fine-tune the new teacher model f(·, θ(t)
tea) with standard cross-entropy loss

minimization. We explore the effectiveness of this step with an ablation study in experiments.

3.4 Experiments

We evaluate the proposed method MetaST across diverse tasks, slot (entity) types, number of

shots (manually labeled instances) and languages to demonstrate its impact for the few-shot learning

setup for sequence labeling with limited amount of training labels. We compare against several

state-of-the-art existing methods and demonstrate significant improvements in diverse settings along

with ablation studies to evaluate the contribution of different components.

3.4.1 Experimental Setup

Datasets. We perform large-scale experiments with six different datasets including user utterances

from task-oriented dialog systems and multilingual Named Entity Recognition tasks as summarized

in Table  3.1 . (a) Email. This consists of natural language user utterances for email-oriented user

actions like sending, receiving or searching emails with attributes like date, time, topics, and people.

(b) SNIPS is a public benchmark dataset [ 55 ] of user queries from multiple domains including music,

media, and weather. (c) MIT Movie and Restaurant corpus [  28 ] consist of similar user utterances

for movie and restaurant domains. (d) CoNLL03 [  20 ] and Wikiann [  45 ] are public benchmark

datasets for multilingual Named Entity Recognition. CoNLL03 is a collection of news wire articles
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from the Reuters Corpus from 4 languages with manual annotations, whereas Wikiann comprises

of extractions from Wikipedia articles from 41 languages with automatic annotation leveraging

meta-data for different entity types like ORG, PER, LOC.

For every dataset, we sample K ∈ {5, 10, 20, 100} manually labeled sequences for each slot

type from the training data, and add the remaining to the unlabeled set while ignoring their labels –

following standard setups for semi-supervised learning. We repeatedly sample K labeled instances

three times for multiple runs and report average F1 score with standard deviation across the runs in

Table  3.2 and Table  3.3 .

Table 3.1. Dataset summary. We sample K ∈ {5, 10, 20, 100} labeled sequences
for each slot type from #Train, and add the remaining to the Unlabeled set while
ignoring their labels.

Dataset #Slots #Train/
#Unla-
beled

#Test #Lang

Email 20 2.5K 1k EN
SNIPS 39 13K 0.7K EN
MIT Movie 12 8.8K 2.4K EN
MIT Restaurant 8 6.9K 1.5K EN
Wikiann (EN) 3 20K 10K EN
CoNLL03 (EN) 4 15K 3.6K EN

CoNLL03 16 38K 15K 4
Wikiann 123 705K 329K 41

Encoder. Pre-trained language models like BERT [  1 ], GPT-2 [  3 ] and RoBERTa [  2 ] have shown

state-of-the-art performance for various natural language processing tasks. In this work, we adopt

one of them as a base encoder by initializing the teacher with pre-trained BERT-base model and a

randomly initialized token classification layer.

Baselines. The first baseline we consider is the fully supervised BERT model trained on all available

training data which provides the ceiling performance for every task. Each of the other models

are trained on K training labels per slot type. We adopt several state-of-the-art semi-supervised

methods as baselines: (1) CVT [ 56 ] is a semi-supervised sequence labeling method based on cross-

view training. For unlabeled data, CVT matches auxiliary prediction based on parts of a sentence

with prediction based on the whole input to improve its representation learning. (2) SeqVAT [  57 ]
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Table 3.2. F1 score comparison of models for sequence labeling on different datasets
averaged over multiple runs. All models (except CVT and SeqVAT) use the same
BERT encoder. F1 score of our model for each task is followed by standard deviation
and percentage improvement (std dev; ↑) over BERT with 10 manually labeled
training examples per slot.

Method SNIPS Email Movie Restaurant CoNLL03 (EN) Wikiann (EN)

# Slots 39 20 12 8 4 3

Full-supervision
BERT 95.80 94.44 87.87 78.95 92.40 84.04

Few-shot supervision (10 labels per slot)
BERT 79.01 87.85 69.50 54.06 71.15 45.61

Few-shot supervision (10 labels per slot) + unlabeled data
CVT 78.23 78.24 62.73 42.57 54.31 27.89
SeqVAT 78.67 72.65 67.10 51.55 67.21 35.16
MT 79.48 89.53 67.62 51.75 68.67 41.43
VAT 79.08 89.71 70.17 53.34 65.03 38.81
Classic ST 83.26 90.70 71.88 56.80 70.99 46.15
BOND 83.54 89.75 70.91 55.78 69.56 48.73

MetaST 88.23 92.18 77.67 63.83 76.65 56.61
(0.04;↑12%) (0.47;↑4.93%) (0.10;↑11.76%) (1.62;↑18.07%) (0.73;↑7.73%) (0.4;↑24.12%)

Table 3.3. F1 score comparison of models for sequence labeling on multilingual
datasets using the same multilingual mBERT encoder. F1 score of MetaST for each
task is followed by standard deviation in parentheses and percentage improvement
(↑) over mBERT with 10 manually labeled training examples per slot.

Dataset #Lang #Slots
Full Sup. 10 labels per slot 10 labels per slot + unlabeled data
mBERT mBERT MT VAT Classic ST BOND MetaST

CoNLL03 4 16 87.67 70.77 68.34 67.63 72.69 72.79 76.41 (0.47) (↑ 7.97%)
Wikiann 41 123 87.17 79.67 80.23 78.82 80.24 79.57 81.61 (0.14) (↑ 2.42%)

incorporates adversarial training with conditional random field layer for semi-supervised sequence

labeling. (3) Mean Teacher (MT) [ 58 ] averages model weights to obtain an aggregated teacher

and applies a consistency loss between the predictions from the student model and that from the

aggregated teacher on unlabeled data. (4) VAT [  59 ] improves the robustness of the conditional

label distribution for each input data point against local perturbation. (5) Classic ST [  32 ] is simple

self-training method with hard pseudo-labels; (6) BOND 

1
 [ 39 ] is a recent work on self-training for

sequence labeling with confidence-based sample selection and forms a strong baseline for our work.

1
 ↑ We replace fine-tuning step with distant supervision by fine-tuning on labeled data.
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The above semi-supervised learning (SSL) methods augment task-specific knowledge from

manually annotated data with domain knowledge from unlabeled data. In contrast to traditional SSL

methods, few-shot learning settings involve very few manually annotated training labels resulting

in a noisy / weak model to start with. Consequently, a naive augmentation from large amounts of

unlabeled data results in drift without accounting for the noise and model uncertainty. To this end,

we develop a robust sample selection and re-weighting mechanism for adaptive learning.

We implement our framework in Pytorch and use Tesla V100 gpus for experiments.

3.4.2 Experimental Results

We first present the overall performance comparison of MetaST with several state-of-the-art

methods for few-shot sequence labeling followed by several control experiments.

10-shot sequence labeling performance comparison. Table  3.2 shows the performance compari-

son among different models with K=10 labeled examples per slot type. The fully supervised BERT

baseline trained on thousands of labeled examples provides the ceiling performance for the few-shot

setting. We observe that the proposed method MetaST significantly outperforms all other methods

across all datasets – including the models that also use the same BERT encoder as ours like MT,

VAT, Classic ST and BOND with corresponding average performance improvements as 14.22%,

14.90%, 8.46% and 8.82% respectively. This demonstrates the advantage of our adaptive / meta

self-training design. Non-BERT models like CVT and SeqVAT are consistently worse than other

baselines.

Task variation. We also observe variable performance of the models across different tasks. Specifi-

cally, the performance gap between the best few-shot model and the fully supervised model varies

significantly across tasks. MetaST achieves close performance to the fully-supervised model in some

datasets (e.g. SNIPS and Email) but has bigger room for improvement in others (e.g. CoNLL03

(EN) and Wikiann (EN)). This can be attributed to the following factors.

(i) Labeled training examples and slots. The total number of labeled training instances for our K-shot

setting is given by K × #Slots. Therefore, for tasks with higher number of slots and consequently

more training labels, most of the models perform better including MetaST. Task-oriented dialog
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systems with more slots and inherent dependency between the slot types benefit more than NER

tasks.

(ii) Task difficulty: User utterances from task-oriented dialog systems for some of the domains

like weather, music and emails contain predictive query patterns and limited diversity. In contrast,

Named Entity Recognition datasets are comparatively diverse and require more training labels to

generalize well. Similar observations are also depicted in Table  3.3 for multilingual NER tasks

with more slots and consequently more training labels from multiple languages as well as richer

interactions across the slots from different languages.

Table 3.4. F1 scores of different models with 200 manually labeled examples for
each task. The percentage improvement (↑) is over the BERT model with few-shot
supervision.

Dataset
BERT BERT MetaST

(Full Sup.) (Few-shot Sup.) ( %Improvement )

MIT Movie 87.87 75.81 80.33 (↑ 5.96%)
MIT Restaurant 78.95 60.12 67.86 (↑ 12.87%)
CoNLL03 (EN) 92.40 77.48 81.61 (↑ 5.33%)
Wikiann (EN) 84.04 62.04 71.27 (↑ 14.88%)

Average 85.82 68.86 75.27 (↑ 9.31%)

Controlling for the total amount of labeled data. In order to control for the variable amount of

training labels across different datasets / tasks, we perform another experiment where we vary the

number of training labels for different slot types while keeping the total number of labeled instances

for each dataset similar (ca. 200). Results are shown in Table  3.4 . To better illustrate the effect of the

number of training labels, we choose tasks with lower performance in Table  3.2 for this experiment.

Comparing the results in Tables  3.2 and  3.4 , we observe that the performance of MetaST improves

with more training labels for all the tasks .

Effect of varying the number of training labels K per slot. Table  3.5 shows the improvement in

the performance of MetaST when increasing the number of training labels for each slot type in the

SNIPS dataset. Similar trends can be found in other datasets. As we increase the amount of labeled

training instances, the performance of BERT and all the models improve. Correspondingly, the

relative improvement between MetaST and the baselines decreases although MetaST still improves
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Table 3.5. Variation in model performance on varying K training labels per slot
on SNIPS dataset with 39 slots. The percentage improvement (↑) is over the BERT
model with few-shot supervision.

#Shots 5 10 20 100

Few-shot supervision
BERT 70.63 79.01 86.81 93.90

Few-shot supervision + unlabeled data
CVT 69.82 78.23 86.81 94.61
SeqVAT 69.34 78.67 85.05 91.46
MT 70.85 79.48 87.31 94.26
VAT 71.34 79.08 88.19 94.53
Classic ST 72.59 83.26 88.32 93.92
BOND 72.85 83.54 88.93 94.22

MetaST 81.56 88.22 91.99 95.39
(↑15%) (↑12%) (↑6%) (↑2%)

over all of them. For example, while MetaST improves over BERT by 15% for the 5-shot setting,

the corresponding improvement reduces to 2% for the 100-shot setting.

In the self-training framework, given the ceiling performance for every task and the improved

performance of the teacher with more training labels – there is less room for (relative) improvement

of the student over the teacher model. Consider SNIPS for an illustration. Our model obtains

12% and 2% improvement over the few-shot BERT model for the 10-shot and 100-shot setting

with F1-scores as 88.22% and 95.39%, respectively. The ceiling performance for this task at

95.8% is obtained by training BERT on the fully labeled dataset with 13K labeled examples. This

demonstrates that MetaST is most impactful for low-resource settings with few training labels for a

given task.

3.4.3 Ablation analysis

Table  4.4 demonstrates the impact of different MetaST components with ablation analysis. We

observe that soft pseudo-labels hurt the model performance compared to hard pseudo-labels, as

also shown in recent work [ 60 ]. Such a performance drop may be attributed to soft labels being

less informative compared to sharpened ones. Removing the iterative teacher fine-tuning step

(Section  3.3.1 ) also hurts the overall performance.
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Continued pre-training versus self-training. Recent work [ 61 ] show the benefit of continued

pre-training with task-specific unlabeled data for adapting pre-trained language models to the

task-domain. To contrast continued pre-training with self-training, we further pre-train BERT with

masked language modeling objective on in-domain unlabeled data and then fine-tune it with few

labeled examples denoted as “BERT (Continued Pre-training + Few-shot Supervision)". The pre-

training step improves BERT performance over the baseline on SNIPS but degrades the performance

on CoNLL03. This indicates that continued pre-training can improve the performance of few-shot

supervised BERT on specialized tasks (e.g., SNIPS) with different data distribution than the original

pre-training data (e.g., Wikipedia), but may not help for general domain ones like CoNLL03 with

overlapping data from Wikipedia. In contrast to the above baseline, MetaST brings significant

improvements on both datasets. This demonstrates the generality and flexibility of self-training over

pre-training as also observed in contemporary work [  62 ] on image classification.

Table 3.6. Ablation analysis of our framework MetaST with 10 labeled examples
per slot on SNIPS and CoNLL03 (EN).

Method
Datasets

SNIPS CoNLL03

BERT w/ Few-shot Supervision 79.01 71.15
BERT w/ Continued Pre-training +
Few-shot Supervision 83.96 69.84

Classic ST w/ Hard Pseudo-Labels 83.26 70.99
Classic ST w/ Soft Pseudo-Labels 81.17 71.87

MetaST w/ Soft Pseudo-Labels 86.16 75.84

MetaST w/o Iterative Teacher Fine-tune 85.64 72.74

MetaST w/o Adaptive Valid Set Construction 86.63 75.02

Pseudo-labeled Data Selection and Re-weighting Strategies
MetaST w/o Re-weighting 85.48 73.02
MetaST (Easy Sample Selection) 85.56 74.53
MetaST (Difficult Sample Selection) 86.34 68.06
MetaST (Instance-level Re-weighting) 86.46 74.54

MetaST (ours) w/ Hard Pseudo-Labels, Token-level 88.23 76.65
Re-weighting, Adaptive Valid Set Construction
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Adaptive Validation Set Construction. We perform an ablation study by removing adaptive

validation set construction from the proposed MetaST (denoted as “MetaST w/o Adaptive Valid

Set Construction"). Removing this component leads to around 2% performance drop on an average

demonstrating the impact of adaptive validation set for meta-learning. Moreover, the performance

drop on SNIPS (39 slots) is larger than that on CoNLL03 (4 slots). This demonstrates that adaptive

validation set construction is more helpful for tasks with more slot types – where diversity and data

distribution necessitate a better exploration strategy in contrast to random sampling employed in

prior meta-learning works.

Re-weighting strategies. To explore the role of token-level re-weighting for pseudo-labeled

sequences (discussed in Section  3.3.2 ), we replace our meta-learning component with different data

selection strategies based on the model confidence. One data selection strategy chooses pseudo-

labeled tokens uniformly without any re-weighting (referred to as “MetaST w/o Re-weighting").

The sampling strategy with weights proportional to the model confidence favors easy instances

(referred to as “MetaST (Easy Sample Selection)"), whereas the converse favors difficult ones

(referred to as “MetaST (Difficult Sample Selection)"). We observe that the meta-learning based re-

weighting strategy performs the best. Interestingly, “MetaST (Easy Sample Selection)” outperforms

“MetaST (Difficult Sample Selection)” significantly on CoNLL03 (EN) but achieves slightly lower

performance on SNIPS. This demonstrates that difficult samples are more helpful when the quality

of pseudo-labeled data is relatively high. In contrast, the sample selection strategy focusing on

difficult samples introduces noisy examples with lower pseudo-label quality. Therefore, sampling

strategies may need to vary for different datasets, thereby, demonstrating the necessity of adaptive

data re-weighting as in our framework MetaST. Moreover, MetaST significantly outperforms classic

self-training strategies with hard and soft pseudo-labels demonstrating the effectiveness of our

design.

Token-level re-weighting versus instance-level re-weighting. Prior meta-learning works [ 43 ]

re-weight entire instances for classification tasks. In order to compare our token-level re-weighting

mechanism for sequence labeling tasks, we replace our token-level re-weighting component by

sentence-level re-weighting – which uses average of token weights in the same sentence as the

sentence weight (referred to as MetaST (Instance-level Re-weighting)"). Table  4.4 shows that token-
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(a) SNIPS (b) CoNLL03

Figure 3.2. Visualization of MetaST re-weighting examples on SNIPS and CoNLL03 (EN).

level re-weighting outperforms instance-level re-weighting on SNIPS and CoNLL03 by 2.05% and

2.76% respectively, demonstrating the benefit of token-level choice for sequence labeling.

Analysis of pseudo-labeled data re-weighting. To visually explore the adaptive re-weighting

mechanism, we illustrate token-level re-weighting of MetaST on SNIPS and CoNLL03 (EN)

datasets with K=10 shot at step 100 in Fig.  3.2 . We observe that the selection mechanism filters out

most of the noisy pseudo-labels (colored in blue) including even those with high teacher confidence

(X-axis).
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4. LITE PROMPTED SELF-TRAINING

(A version of this chapter has been previously published in NAACL 2022 [  6 ]. )

4.1 Introduction

Large pre-trained language models (PLMs) have obtained state-of-the-art performance in

several natural language understanding tasks [  1 ], [  2 ], [  63 ]. Despite their remarkable success, their

performance is still not satisfactory when fine-tuning with only a handful of examples, thereby

hindering widespread adoption in real-world applications where a large scale of labeled data is

difficult to obtain. While models like GPT-3 [ 64 ] have obtained impressive few-shot performance

with in-context task adaptation, they have a significant performance gap relative to fully supervised

SoTA models. For instance, the few-shot GPT-3 performance is 20 points worse than the fully-tuned

DeBERTa [ 65 ] on SuperGLUE. This poses significant challenges for many real-world tasks where

large labeled data is difficult to obtain.

In this work, we present a new fine-tuning method LiST that aims to improve few-shot learning

ability over existing fine-tuning strategies using two techniques as follows.

The first one is to leverage self-training with large amounts of unlabeled data from the target

domain to improve model adaptation in few-shot settings. Prompt-based fine-tuning [  66 ] have

recently shown significant improvements over classic fine-tuning in the few-shot learning setting.

In this work, we demonstrate that self-training with unlabeled data is able to significantly improve

prompt-based fine-tuning [  66 ] where we iteratively update a pair of teacher and student models

given natural language prompts and very few labeled examples for the task. Since the uncertain

teacher in few-shot setting produces noisy pseudo-labels, we further use meta-learning to re-weight

the pseudo-prompt labels.

Traditional self-training can be expensive if we have to update all model parameters iteratively.

To improve the efficiency of self-training, the second key technique is that we use a small number

of task-specific adapter parameters in the PLM that are updated with the above technique, while

keeping the large PLM encoder fixed. We demonstrate such light-weight tuning with self-training

can match the setting where all model parameters are tuned. This enables efficient use of self-

training and reduces the storage cost of the fine-tuned model since multiple fine-tuned models
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can now share the same PLM as backbone during inference. Note that the computational cost of

inference is out of the scope of this work and previous work has studied several ways to address it

including model distillation [  67 ], pruning [ 68 ], etc.

We perform extensive experiments in six natural language understanding tasks to demonstrate

the effectiveness of LiST. We devise a comprehensive evaluation framework considering the

variance in few-shot performance of PLMs with different shots, random seeds and splits. Results

show that LiST improves over traditional and more recent prompt-based FN methods by 35%

and 6%, respectively, with 96% reduction in number of trainable parameters given only 30 labeled

examples for each downstream task. Figure  4.1 shows the results on MNLI [  69 ] as an example.

Meanwhile, we compare our proposed method to several SoTA few-shot semi-supervised learning

approaches and the experimental results show that LiST brings improvement over the best baseline

by 6% given 30 labeled examples for each downstream task.
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Figure 4.1. LiST leverages prompt-based fine-tuning (FN) with unlabeled data
for label-efficiency and adapters for reducing tunable parameters. (a) shows classic
tuning, prompt-based FN and LiST using RoBERTa-large as backbone on MNLI
task for a comparison. The red dash line depicts ceiling performance with full
supervision with RoBERTa-large. (b) shows the number of tunable parameters for
each method.

Problem statement. Each downstream task in our framework consists of very few labeled training

examples DTrain
K for different shots K ∈ {10, 20, 30} where |DTrain

K | = K, unlabeled data DU

where DU � DTrain
K , and a test set DT est.
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Given above dataset DK = DTrain
K ∪DU for a task with shots K, a PLM with parameters ΘPLM

and loss function L, we want to adapt the model for the few-shot learning task by introducing a

small number of tunable model parameters ψ � ΘPLM.

4.2 Background on Model Fine-tuning

Given a text sequence x or a pair of sequences {x1, x2} separated by special operators (e.g.,

[CLS] and [SEP]) and a language model encoder enc(θ) parameterized by θ – classic fine-tuning

popularized by [  1 ] leverages hidden state representation h[CLS] of the sequence(s) obtained from

enc([[CLS] x1 [SEP] x2 [SEP]]) as input to a task-specific head softmax(W T · h[CLS]) for classi-

fication, where W ∈ Rd×L with d and L representing the hidden state dimension and number of

classes, are randomly initialized tunable parameters. In the process it updates both task-specific

head W and encoder θ parameters jointly.

However, this introduces a gap between pre-training and fine-tuning objective with disparate

label spaces and additional randomly initiated parametersW introduced for task-specific fine-tuning.

This is particularly challenging for few-shot classic fine-tuning, where the limited labeled data is

inadequate for adapting the task-specific head and PLM weights effectively. Prompt-based FN [  66 ],

[ 70 ] addresses this gap, by re-formulating the objective as a cloze-style auto-complete task. This is

done by adding a phrase (also called prompt) to a sentence like x1 = “contains no wit, only

labored gags" in the form of x̃ = x1 ⊕ “It was [MASK]", where ⊕ denotes concatenation of

two strings; and output mappings (also called verbalizers) from vocabulary V to the label space Y

like “{great, terrible}" corresponding to positive and negative classes (refer to Figure  4.3 

for an example). The probability of predicting class y ∈ Y is equal to calculating the probability of

corresponding label word v ∈ V:

p([MASK] = v|x̃) = exp(W T
v · h[MASK])∑

v′∈V exp(W T
v′ · h[MASK])

(4.1)

where Wv indicates the tunable parameters. Since it is identical to masked language modeling

(MLM), Wv is initialized by pre-trained weights of PLMs.

In this work, we demonstrate lite self-training with unlabeled data to significantly improve

prompt fine-tuning of PLMs in few-shot settings.
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4.3 Methodology

4.3.1 Overview

We adopt a PLM (e.g., RoBERTa [ 2 ]) as the shared encoder for both the student and teacher for

self-training. The shared PLM encoder is frozen and not updated during training. We introduce

tunable adapter parameters in both teacher and student (discussed in Section  4.3.2 ) that are

iteratively tuned during self-training. Refer to Figure  8.1 for steps in the following discussion.

We first use prompt-based fine-tuning to update the teacher adapter (Step 1) with few-shot labeled

examples and leverage the teacher model to assign pseudo-prompt labels (Step 2) on unlabeled data

Du. The teacher is often uncertain in few-shot learning and produces noisy pseudo-labels. Therefore,

we adopt meta-learning (discussed in Section  4.3.3 ) to re-weight the noisy pseudo-labeled samples

(Step 3). The re-weighted data is used to train the student adapter (Step 4). Since adapter training

with noisy pseudo labels is quite unstable, we introduce knowledge distillation warmup (discussed

in Section  4.3.3 ). Finally, we assign the trained student adapter to be the new teacher adapter (Step

5). Following true few-shot learning settings, we do not use any held-out development or validation

set. Therefore, we repeat the above steps for a pre-defined number of times (M = 6). Throughout

the training, we keep the shared student and teacher encoder parameters frozen and update the

corresponding adapter parameters along with their language model heads.

4.3.2 Lightweight Prompt Adapter Tuning

The predominant methodology for task adaptation is to tune all of the trainable parameters

of the PLMs for every task. This raises significant resource challenges both during training and

deployment. A recent study [  71 ] show that PLMs have a low instrinsic dimension that can match

the performance of the full parameter space. To adapt PLMs for downstream tasks with a small

number of parameters, adapters [  72 ] have recently been introduced as an alternative approach for

lightweight tuning. Consider the following scenario for demonstration, where we want to use

RoBERTa-large withM = 355M parameters as the PLM for T = 100 tasks. Full fine-tuning for

this scenario requires updating and storingM×T = 35.5B parameters. Now, consider fine-tuning

with LiST that requires A = 14M (tunable) adapter parameters for every task while keeping the

56



Student
Adapter

(2) Assign
Pseudo-labels

Teacher
Adapter

Unlabeled 
data

Few-shot
Labeled data

Pseudo-labeled
data

Frozen
PLM

Frozen
PLM

(1) Teacher Adapter
Tuning

(3) Re-weighting

Lite Prompted
Self-training

Repeat above steps M times

(5)Knowledge
Transfer

(4) Student Adapter
Tuning

Figure 4.2. Lite prompted self-training on unlabeled data with prompts and adapters
make efficient few-shot learners with LiST.

PLM fixed. This results in overallM+A× T = 1.8B parameters, thereby, reducing the overall

storage cost by 20x. Adapters have been shown to match the PLM performance in fully supervised

settings with thousands of training labels in classic fine-tuning. In contrast, this is the first work to

study the role of adapters in few-shot prompt-based FN. We explore different design and placement

choices of adapters in few-shot settings and investigate the performance gap with fully supervised

as well as fully tunable parameter space.

The adapter tuning strategy judiciously introduces new parameters into the original PLMs. In

contrast to standard prompt-based FN that updates all the PLM parameters ΘPLM, prompt-adapter

tuning only updates the newly introduced adapter parameters as well as the (masked) language

model head of the PLM (jointly denoted as ψ), while keeping the remaining parameters of the

original network frozen. The adapter used in LiST consists of two fully connected layers as shown

in Figure  4.4 , where a feedforward layer down projects input representations to a low dimensional

space d (referred as the bottleneck dimension), and another feedforward layer up projects the low-

dimensional features back to the original dimension. However, these newly-inserted parameters can

cause divergence resulting in up to 20% performance degradation in few-shot settings (discussed in
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[CLS] The movie 
was very boring. It 
was [MASK]. [SEP]

Fill [MASK] by label words: 

Prompt Adapter-tuning
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[CLS] Houston is 
really humid now? 

[MASK], Houston is 
freezing and dry 
right now. [SEP]     

great
terrible

yes
maybe
no

SST-2 Example MNLI Example

Figure 4.3. The underlined text depicts task prompt to transform classification into
Fill-in-MASK task. Label words are used as proxy for original task labels.

Section  4.4.3 ). To handle this issue, we adopt a skip-connection design where the adapter parameters

are initialized with zero-mean small Gaussian noise.

Multi-Head
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Input
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Feedforward Down

Feedforward Up

+

Adapter
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Feedforward-
output Skip-

connection

Figure 4.4. LiST explores several adapter placement choices (numbered positions
in left) in standard Transformer architecture, with adapter design shown in right.

Adapter placement. Prior works on lightweight adaptation tune bias [ 73 ] or embeddings [ 74 ]

of Transformers in fully-supervised settings for improving parameter-efficiency with minimal

performance loss. However, for few-shot settings, we note that adapter placement is critical to

bridge the performance gap with that of a fully tunable model and the choices of tuning bias or

embedding can result in upto 10% performance degradation (discussed in Section  4.4.3 ). To this

58



end, we explore several choices of adapter placement (refer to Figure  4.4 ) corresponding to the most

important transformer modules, namely, embedding, intermediate feedforward, output feedforward

and attention module in every layer of the Transformer. Based on empirical experiments (refer

to Section  4.4.3 ) across six diverse NLU tasks, we observe the feedforward output and attention

modules to be the most important components for parameter-efficient adaption in few-shot settings.

Formally, consider D̃Train
K = {x̃l, ỹl} to be the few-shot labeled data and D̃U = {x̃u} to be

the unlabeled data, where we transform the input sequences x to cloze-style input x̃ containing

a single mask following the prompting strategy outlined in Section  4.2 . We use the same pattern

templates and verbalizers (output mapping from the task-specific labels Y to single tokens in the

vocabulary V) from traditional prompt-based FN works [ 66 ]. Given the above adapter design and

placement of choice with parameters ψ, a dataset D̃Train
K with shots K, a PLM encoder enc with

parameters ΘPLM, where ΘPLM � ψ, we want to perform the following optimization for efficient

model adaptation:

ψ ← arg min
ψ

L(D̃Train
K ; ΘPLM, ψ) (4.2)

4.3.3 Re-weighting Noisy Prompt Labels

Consider {ŷ(t)
n }Nn=1 to be the pseudo prompt-labels (for the masked tokens in x̃un ∈ X̃) from the

teacher (ΘPLM, ψ̂tea) in the t-th iteration where N is the number of unlabeled instances and ψ̂tea

represent the teacher adapter parameters. In self-training, the student model is trained to mimic the

teacher predictions on the transfer set. Consider L(ŷ(t)
n , enc(x̃un; ΘPLM, ψ

(t)
stu)) to be the loss of the

student model with parameters (ΘPLM, ψ
(t)
stu) on the pseudo-labeled data in the t-th iteration, where

ΘPLM and ψstu represent the PLM and the student adapter parameters respectively. The student

update (with step size α) can be formalized as:

ψ̂
(t)
stu = ψ̂

(t−1)
stu − αO

( 1
N

N∑
i=1
L(ŷ(t)

i , enc(xui ; ΘPLM, ψ̂
(t−1)
stu )

)
. (4.3)

In order to reduce error propagation from noisy pseudo-labels, we leverage meta-learning to re-

weight them based on the student model loss on the validation set as our meta-objective. The

intuition of meta re-weighting is to measure the impact or weight of a pseudo-labeled example given

by its performance on the validation set (D̃Train
K in our work). To this end, we leverage the idea
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of weight perturbation [ 43 ] to set the weight of pseudo-labeled example (x̃ui , ŷ
(t)
i ) to ε(t)

i at iteration

t as:

L(t)
r (ε, ψ) =

∑N
i=1 [ε(t)i · L(ŷ(t)

i , enc(x̃ui ; ΘPLM, ψ̂
(t−1)
stu ))]

N
. (4.4)

ψ̂
(t)
stu(ε) = ψ̂

(t−1)
stu − αOL(t)

r (ε, ψ). (4.5)

Weight perturbation is used to discover data points that are most important to improve performance

on the validation set. Optimal value for the perturbation ε(t)∗
i can be obtained via minimizing student

model loss on the validation set at iteration t as:

ε
(t)∗
i = arg min

εi

∑|D̃T rain
K |

i=1 L(yi, enc(xi; ΘPLM, ψ̂
(t)
stu(εi))

|D̃Train
K |

(4.6)

To obtain a cheap estimate of the meta-weight at step t, we take a single gradient descent step on a

mini-batch D̃(t) ∈ D̃Train
K as:

u
(t)
i = − ∂

∂εi

(∑|D̃(t)|
i=1 L(yi, enc(x̃i; ΘPLM, ψ̂

(t)
stu(ε)))

|D̃(t)|

)
(4.7)

The weight w(t)
i of (x̃ui , ŷ

(t)
i ) at iteration t is set to be proportional to the negative gradient u(t)

i to

reflect the importance of pseudo-labeled samples. Samples with negative weights are filtered out

since they could potentially degrade the student performance. Finally, we update student adapter

parameters ψstu while accounting for re-weighting as:

L(t) = 1
N

N∑
i=1

[w(t)
i · L(ŷ(t)

i , enc(x̃ui ; ΘPLM, ψ̂
(t−1)
stu ))]

)
. (4.8)

Knowledge Distillation For Student Warmup.Meta re-weighting leverages gradient as a

proxy to estimate the weight of noisy pseudo labels. However, the gradients of adapter parameters

ψ are not stable in the early stages of training due to random initialization and noises in pseudo

labels. This instability issue is further exacerbated with adapter tuning that usually requires a larger

learning rate [  75 ]. Therefore, to stabilize adapter tuning, we propose a warmup training stage

via knowledge distillation [  67 ] to first tune adapter parameters via knowledge distillation loss for

Twarm steps and then we continue self-training with re-weighted updates via Eq.  4.8 . Since the

re-weighting procedure requires held-out validation set (few-shot training examples in our setting),
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we do not use labeled data in knowledge distillation while using only the consistency loss between

teacher model (ΘPLM, ψ̂tea) and student model (ΘPLM, ψ̂stu) on unlabeled data as.

arg min
ψ̂stu

KL(f(x̃u; ΘPLM, ψ̂tea) || f(x̃u; ΘPLM, ψ̂stu)). (4.9)

We further validate the effectiveness of knowledge distillation for warmup with ablation analysis.

Student Adapter Re-initialization A typical challenge in few-shot settings is the lack of a

separate validation set. In the spirit of true few-shot learning, we use only the available few-shot

labeled examples D̃Train
K as the validation set for meta-learning of the student model. This poses an

interesting challenge of preventing label leakage. To address this issue, we re-initialize the student

adapter parameters every time at the start of each self-training iteration to mitigate interference

with labeled data. Note that the student and teacher model share the encoder parameters ΘPLM that

are always kept frozen and not updated during training.

4.4 Experiments

4.4.1 Experimental Setup

Dataset. We perform large-scale experiments with six natural language understanding tasks. We

use four tasks from GLUE [  76 ], including MNLI [ 77 ] for natural language inference, RTE [  78 ]–[ 81 ]

for textual entailment, QQP 

1
 for semantic equivalence and SST-2 [  82 ] for sentiment classification.

The results are reported on their development set following [  83 ]. MPQA [  84 ] and Subj [  85 ] are used

for polarity and subjectivity detection, where we follow [ 66 ] to keep 2, 000 examples for testing

and use remaining examples for semi-supervised learning.

For each dataset, we randomly sample |K| ∈ {10, 20, 30} manually labeled samples from the

training data, and add the remaining to the unlabeled set while ignoring their labels – following

standard setups for semi-supervised learning. We repeatedly sample K labeled instances five

times, run each model with 5 different seeds and report average performance with standard

deviation across the runs. For the average accuracy over 6 tasks, we did not include standard

deviation across tasks. Furthermore, for every split and shot, we sample the labeled data such that

DTrain
10 ⊂ DTrain

20 ⊂ DTrain
30 to evaluate the impact of incremental sample injection.

1
 ↑  https://www.quora.com/q/quoradata/ 
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Following true few-shot learning setting [ 86 ], we do not use additional development set beyond

|K| labeled samples for any hyper-parameter tuning or early stopping. The performance of each

model is reported after fixed training epochs.

Baselines. In addition to classic-tuning (Classic FN), we adopt prompt-based fine-tuning (Prompt

FN) from [  66 ] as labeled-only baselines. We also adopt several state-of-the-art semi-supervised

baselines including UST [ 36 ], MetaST [  87 ] and iPET [ 88 ]. UST and MetaST are two self-training

methods which are based on classic fine-tuning strategies. iPET is a semi-supervised method

leveraging prompt-based fine-tuning and prompt ensembles to obtain state-of-the-art performance.

While iPET ensembles multiple fully-tuned models, we develop a lite self-training framework

to achieve both data and parameter efficiency. As the strongest semi-supervised baseline, we

implement a new method PromptST based on self-training using prompts and adapters (as

a subset of the methods used in LiST), but without any re-weighting, or KD warmup that are

additionally used in LiST. The methods Prompt FN, PromptST and LiST adopt same prompts

and label words as in [  66 ]. We implement our framework in Pytorch and use Tesla V100 gpus for

experiments.

Table 4.1. Performance comparison of different tuning strategies on different tasks
with RoBERTa-large as the encoder with standard deviation in parantheses. UST,
MetaST, PromptST and iPET are semi-supervised methods using unlabeled data,
whereas Classic and Prompt FN only use labeled data. GPT-3 [  64 ].

Labels Models Avg #Tunable MNLI (m/mm) RTE QQP SST-2 Subj MPQA
Params (acc) (acc) (acc) (acc) (acc) (acc)

|K| = 30 Classic FN 60.9 355M 38.0 (1.7) / 39.0 (3.1) 51.4 (3.7) 64.3 (8.1) 65.0 (11.5) 90.2 (2.2) 56.1 (5.3)

Prompt FN 77.6 355M 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8)

|K| = 30
+Unlabeled Data

UST 65.8 355M 40.5 (3.3) / 41.5 (2.9) 53.4 (1.7) 61.8 (4.3) 76.2 (11.4) 91.5 (2.1) 70.9 (6.2)

MetaST 62.6 355M 39.4 (3.9) / 40.5 (4.4) 52.9 (2.0) 65.7 (6.2) 65.3 (15.2) 91.4 (2.3) 60.5 (3.6)

iPET 75.5 355M 61.0 (5.8) / 61.8 (4.7) 54.7 (2.8) 67.3 (4.1) 93.8 (0.6) 92.6 (1.5) 83.1 (4.8)

PromptST 77.2 14M 61.8 (1.9) / 63.1 (2.9) 66.2 (5.1) 71.4 (2.1) 91.1 (1.4) 90.3 (1.5) 81.8 (2.5)

LiST 82.0 14M 73.5 (2.8) / 75.0 (3.7) 71.0 (2.4) 75.2 (0.9) 92.8 (0.9) 93.5 (2.2) 85.2 (2.1)

Supervision with Classic FN 90.9 355M 89.6 / 89.5 83.0 91.8 95.2 97.2 88.8
# Full Train Prompt FN 92.0 355M 89.3 / 88.8 88.4 92.1 95.9 97.1 89.3
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4.4.2 Key Results

Table  4.1 shows the performance comparison among different models with |K| = 30 labeled

examples with fixing RoBERTa-large as the encoder. Fully-supervised RoBERTa-large trained

on thousands of labeled examples provides the ceiling performance for the few-shot setting. We

observe LiST to significantly outperform other state-of-the-art baselines along with 96% reduction

in tunable parameters, achieving both labeled data- and parameter-efficiency. More specifically,

LiST improves over Classic FN, Prompt FN, iPET and PromptST by 34.6%, 5.7%, 8.6% and

6.2% respectively in terms of average performance on six tasks. This demonstrates the impact

of self-training with unlabeled data and prompt-based FN. Additionally, iPET and LiST both

leverage prompt-based FN to significantly improve over UST and MetaST that use classic fine-

tuning strategies, confirming the effectiveness of prompt-based FN in the low data regime. iPET

ensembles multiple prompts with diverse qualities and under-performs Prompt FN on average in

our few-shot setting without using any development set.

(a) MNLI (b) RTE

Figure 4.5. Performance comparison of Classic-tuning (denoted as “C") and prompt-
based fine-tuning (denoted as “P") with LiST on MNLI and RTE using language
model encoders of different sizes.

Figure  4.5 compares the performance of tuning methods with varying number of training labels

and encoders of different sizes. We observe that large models are more data-efficient compared to

smaller models. However, large fully-tunable models are expensive to use in practise. We observe
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Table 4.2. Average accuracy on tuning different modules of RoBERTa-large with
|K| = 30 labels on six tasks. Diff shows performance change relative to Full tuning.

Tuning #Params Avg Diff

Full 355M 77.6 —
Embedding 53M 67.0 -10.7
Attention 101M 77.0 -0.6
FF-output 102M 77.6 +0.0

FF-intermediate 102M 75.9 -1.7

that LiST with small number of tunable parameters consistently outperforms fully-tunable classic

and prompt-based FN strategies in all labeled data settings, demonstrating both data and parameter

efficiency. Additional results with different backbone encoders and varying number of shots and

fine-tuning strategies are presented in the .

4.4.3 Adapter Analysis

In this section, we explore adapter design choices for prompt-based FN with RoBERTa-large as

encoder using only few-shot labeled data.

Where to insert an adapter in Transformers? In order to answer this question, we conduct an

experiment to study the role of various Transformer modules in few-shot prompt-based FN. To

this end, we tune a given module along with the language model head while keeping all other

parameters frozen. Table  4.2 shows the performance comparison of tuning specific modules on six

tasks with varying number of labeled examples. The main modules of RoBERTa include Embedding,

Attention, Feedforward Output and Feedforward Intermediate layers. We observe that tuning only

the Feedforward Output or the Attention module delivers the best performance across most tasks

with few-shot labels. Correspondingly, this motivated us to insert our adapter parameters into these

two modules..

Comparison with other lightweight parameter efficient model tuning strategies. To validate

the effectiveness of LiST adapters, we compare it against several baselines in Table  4.3 . For

1The average accuracy of GPT-3 in-context learning with 30 labeled examples over 6 tasks is 61.5.
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Table 4.3. Average accuracy of several lightweight parameter-efficient tuning strate-
gies with |K| = 30 labels without unlabeled data on six tasks along with the number
(#) of tunable parameters. Each task is run with 5 different seeds. LiST Adapter
performance with different bottleneck dimension d of its adapters is shown in paren-
theses.

Tuning #Params Avg

Head-only 1M 66.9
Bias-only [ 73 ] 1M 68.3
Prompt-tuning [  89 ] 1M 56.4
LiST Adapter (2) 1M 72.7
Houlsby Adapter [  72 ] 14M 57.9
LiST Adapter (128) 14M 77.7

Full tuning 355M 77.6

a fair comparison, we present two variations of our LiST adapters with bottleneck dimensions

d= {2, 128} corresponding to 1M and 14M parameters to match other adapter capacities; all the

approaches in Table  4.3 are trained with 30 labels only without unlabeled data for a fair comparison.

(1) Bias-only is a simple but effective lightweight method, which tunes bias terms of PLMs while

keeping other parameters frozen. (2) Tuning head layers is widely used as a strong baseline for

lightweight studies [  72 ], where we tune last two layers including language model head while

freezing other parameters. (3) prompt-tuning is a lightweight method which only updates task

prompt embedding while keeping entire model frozen. (4) Houlsby Adapter tunes inserted adapter

parameters keeping the encoder frozen by adopting classic tuning strategy. Besides these lightweight

methods, we also present a performance comparison with full model tuning as a strong baseline.

Table  4.3 shows that LiST is able to match the performance of full model prompt-based FN

with bottleneck dimension d = 128 and outperforms all other baselines with similar capacities.

While lightweight model tuning choices like tuning the bias or inserting adapters into classic

tuning models are shown to be effective in fully-supervised settings [ 72 ], [  73 ], we observe them to

under-perform for few-shot learning. We observe that simpler tuning choices like Head-only and

Bias-only results in upto 10% performance degradation. Houlsby adapter and Prompt-only results

in upto 20% performance degradation. In constrast, LiST adapter is able to match the performance
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Table 4.4. Ablation analysis of LiST with 30 labels on MNLI and RTE with tunable
parameters in parantheses.

Method Avg Acc Avg Std Datasets

MNLI (m/mm) RTE

LiST (14M ) 72.6 2.8 73.5 (2.8) / 75.0 (3.7) 71.0 (2.4)

w/o re-init 68.3 4.2 66.7 (2.8) / 68.3 (4.3) 69.0 (4.9)

w/o KD Warmup 68.8 8.8 67.9 (12.9) / 69.0 (13.1) 69.2 (4.5)

w/o Re-weighting 71.6 4.0 72.9 (3.4) / 74.2 (4.5) 69.7 (4.1)

w/ Hard Pseudo-Labels 70.9 4.4 71.7 (3.8) / 73.0 (5.4) 69.5 (4.2)

LiST w/o Adapter (355M ) 72.6 2.5 73.6 (2.7) / 74.8 (2.7) 71.2 (2.3)

of full tuning in few-shot setting, demonstrating the importance of adapter placement choices and

parameter initialization.

4.4.4 Ablation Analysis

Table  4.4 demonstrates the impact of different components and design choices of LiST.

• Adapter training stability. Training with very few labels and noisy pseudo labeled data results

in instability for adapter tuning. To demonstrate training stability, we include the average accuracy

and standard deviation across several runs and splits as metrics. We observe that hard pseudo-labels

hurt the model performance compared to soft pseudo-labels and exacerbate the instability issue.

This is in contrast to observations from classic fine-tuning [  87 ]. A potential reason could be that the

well pre-trained language model head for prompt-based FN is able to capture better associations

among different prompt labels.

• Knowledge Distillation Warmup. In this ablation study, we remove the warmup phase with

knowledge distillation from LiST (denoted as “LiST w/o KD Warmup”). Removing this component

results in 4% performance drop in terms of average accuracy and 300% larger standard deviation –

demonstrating the importance of KD Warmup in stabilizing LiST training.

• LiST versus LiST w/o Adapter. In LiST, we only fine-tune the adapter and language model

head while keeping other encoder parameters frozen to achieve parameter efficiency. Table  4.4 

shows that LiST using only 4% tunable parameters is able to match the performance of fully

tunable LiST (that is without using any adapters and tuning all encoder parameters) on MNLI and

RTE – demonstrating the effectiveness of our lightweight design.
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Part II

DOMAIN ADAPTATION
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5. DOMAIN-ADVERSARIAL FAKE NEWS DETECTION

(A version of this chapter has been previously published in KDD 2018 [  7 ].)

5.1 Introduction

The recent proliferation of social media has significantly changed the way in which people

acquire information. Nowadays, there are increasingly more people consuming news through social

media, which can provide timely and comprehensive multimedia information on the events taking

place all over the world. Compared with traditional text news, the news with images and videos can

provide a better storytelling and attract more attention from readers. Unfortunately, this is also taken

advantage by fake news which usually contain misrepresented or even forged images, to mislead the

readers and get rapid dissemination. The dissemination of fake news may cause large-scale negative

effects, and sometimes can affect or even manipulate important public events. For example, within

the final three months of the 2016 U.S. presidential election, the fake news generated to favor either

of the two nominees was believed by many people and was shared by more than 37 million times on

Facebook [  90 ], [  91 ]. Therefore, it is in great need of an automatic detector to mitigate the serious

negative effects caused by the fake news.

Thus far, various fake news detection approaches, including both traditional learning [ 92 ]–

[ 94 ] and deep learning based models [ 95 ], [  96 ], have been exploited to identify fake news. With

sufficient verified posts on different events, existing deep learning models have achieved performance

improvement over traditional ones due to their superior ability of feature extraction. However, they

are still not able to handle the unique challenge of fake news detection, i.e., detecting fake news on

newly emerged and time-critical events [ 97 ]. Due to lack of the corresponding prior knowledge,

the verified posts about such events can be hardly obtained in a timely manner, which leads to the

unsatisfactory performance of existing models. Actually, existing models tend to capture lots of

event-specific features which are not shared among different events. Such event-specific features,

though being able to help classify the posts on verified events, would hurt the detection with regard

to newly emerged events. For this reason, instead of capturing event-specific features, we believe

that learning the shared features among all the events would help us with the detection of fake news

from unverified posts. Therefore, the goal of this work is to design an effective model to remove the
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nontransferable event-specific features and preserve the shared features among all the events for the

task of identifying fake news.

To remove event-specific features, the first step is to identify them. For posts on different events,

they have their own unique or specific features that are not sharable. Such features can be detected

by measuring the difference among posts corresponding to different events. Here the posts can

be represented by the learned features. Thus, identifying event-specific features is equivalent to

measuring the difference among learned features on different events. However, it is a technically

challenging problem. First, since the learned feature representations of posts are high-dimensional,

simple metrics like the squared error may not be able to estimate the differences among such

complicated feature representations. Second, the feature representations keep changing during

the training stage. This requires the proposed measurement mechanism to capture the changes

of feature representations and consistently provide the accurate measurement. Although this is

very challenging, the effective estimation of dissimilarities among the learned features on different

events is the premise of removing event-specific features. Thus, how to effectively estimate the

dissimilarities under this condition is the challenge that we have to address.

In order to address the aforementioned challenges, we propose an end-to-end framework referred

to as Event Adversarial Neural Networks (EANN) for fake news detection based on multi-modal

features. Inspired by the idea of adversarial networks [  98 ], we incorporate the event discriminator

to predict the event auxiliary labels during training stage, and the corresponding loss can be used

to estimate the dissimilarities of feature representations among different events. The larger the

loss, the lower the dissimilarities. Since the fake news takes advantage of multimedia content to

mislead readers and gets spread, our model needs to handle the multi-modal inputs. The proposed

model EANN consists of three main components: the multi-modal feature extractor, the fake

news detector, and the event discriminator. tW For multi-modal feature extractor, We employ

Convolutional Neural Networks (CNN) to automatically extract features from both textual and

visual content of posts. Experimental results on two large scale real-world social media datasets

show that the proposed EANN model outperforms the state-of-the-art approaches.
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Figure 5.1. The architecture of Event Adversarial Neural Networks (EANN). The
blue colored network is the textual feature extractor, the orange colored network
is visual feature extractor, the fake news detector is purple colored, and event
discriminator is green colored.

5.2 Methodology

In this section, we first introduce the three components of the proposed EANN model: the

multimodal feature extractor, the fake news detector, and the event discriminator, then describe how

to integrate these three components to learn the transferable feature representations. The detailed

algorithm flow is also shown in the last subsection.

5.2.1 Model Overview

The goal of our model is to learn the transferable and discriminable feature representations for

fake news detection. As shown in Figure  5.1 , in order to achieve this, the proposed EANN model

integrates three major components: the multi-modal feature extractor, the fake news detector, and

the event discriminator. First of all, since the posts on social media usually contain information

in different modalities (e.g., textual post and attached image), the multi-modal feature extractor

includes both textual and visual feature extractors to handle different types of inputs. After the

textual and visual latent feature representations are learned, they are concatenated together to

form the final multi-modal feature representation. Both of the fake news detector and the event

discriminator are built on top of the multi-modal feature extractor. The fake news detector takes

70



the learned feature representation as input to predict whether the posts are fake or real. The event

discriminator identifies the event label of each post based on this latent representation.

5.2.2 Multi-Modal Feature Extractor

Textual Feature Extractor

The sequential list of the words in the posts is the input to the textual feature extractor. In

order to extract the informative features from textual content, we employ convolutional neural

networks (CNN) as the core module of our textual feature extractor. CNN has been proven to

be effective in many fields such as computer vision and text classification [  99 ], [  100 ]. As can be

seen in Figure  5.1 , we incorporate a modified CNN model, namely Text-CNN [ 101 ], in our textual

feature extractor. The architecture of Text-CNN is shown in Figure  5.2 . As seen, it takes advantage

of multiple filters with various window sizes to capture different granularities of features to identify

fake news.

these
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sandy
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filter widths and feature maps

max-over-time pooling

Figure 5.2. The architecture of Text-CNN.

For detailed procedures of the textual feature extractor, each word in the text is represented as a

word embedding vector. The embedding vector for each word is initialized with the pre-trained word

embedding on the given dataset. For the i-th word in the sentence, the corresponding k dimensional

word embedding vector is denoted as Ti ∈ Rk. Thus, a sentence with n words can be represented as:

T1:n = T1 ⊕ T2 ⊕ ...⊕ Tn, (5.1)
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where ⊕ is the concatenation operator. A convolutional filter with window size h takes the

contiguous sequence of h words in the sentence as input and outputs one feature. In order to show

the procedure clearly, we take the contiguous sequence of h words starting with the i-th word as

example, the filter operation can be represented as:

ti = σ(Wc · Ti:i+h−1). (5.2)

Here σ(·) is the ReLU activation function and Wc represents the weight of the filter. The filter can

also be applied to the rest of words and then we get a feature vector for this sentence:

t = [t1, t2, ..., tn−h+1]. (5.3)

For every feature vector t, we use max-pooling operation to take the maximum value so as to extract

the most important information. Now, we get the corresponding feature for one particular filter.

The process is repeated until we get the features for all filters. In order to extract textual features

with different granularities, various window sizes are applied. For a specific window size, we have

nh different filters. Thus, assuming there are c possible window sizes, we have c · nh filters in

total. The textual features after the max-pooling operation is written as RTc ∈ Rc·nh . Following

the max-pooling operations, a fully connected layer is used to ensure the final textual feature

representation (denoted as RT ∈ Rp) has the same dimension (denoted as p) as the visual feature

representation through the following operation:

RT = σ(Wtf ·RTc), (5.4)

where Wtf is the weight matrix of the fully connected layer.

Visual Feature Extractor

The attached images of the posts are inputs to the visual feature extractor and are denoted as V .

In order to efficiently extract visual features, we employ the pre-trained VGG19 [ 102 ]. On top of

the last layer of VGG19 network, we add a fully connected layer to adjust the dimension of final
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visual feature representation to p. During the joint training process with the textual feature extractor,

the parameters of pre-trained VGG19 neural network are kept static to avoid overfitting. Denoting

p dimensional visual feature representation as RV ∈ Rp, the operation of the last layer in the visual

feature extractor can be represented as:

RV = σ(Wvf ·RVvgg)), (5.5)

where RVvgg is the visual feature representation obtained from pre-trained VGG19, and Wvf is the

weight matrix of the fully connected layer in the visual feature extractor.

The textual feature representation RT and visual feature representation RV will be concatenated

to form the multi-modal feature representation denoted as RF = RT ⊕RV ∈ R2p, which is the output

of the multi-modal feature extractor. We denote the multi-modal feature extractor as Gf (M ; θf )

where M , which is usually a set of textual and visual posts, is the input to the multi-modal feature

extractor, and θf represents the parameters to be learned.

5.2.3 Fake News Detector

In this subsection, we introduce the fake news detector. It deploys a fully connected layer with

softmax to predict whether the posts are fake or real. The fake news detector is built on top of the

multi-modal feature extractor, thus taking the multi-modal feature representation RF as input. We

denote the fake news detector as Gd(· ; θd), where θd represents all the parameters included. The

output of the fake news detector for the i-th multimedia post, denoted as mi, is the probability of

this post being a fake one:

Pθ(mi) = Gd(Gf (mi; θf ); θd). (5.6)

The goal of the fake news detector is to identify whether a specific post is fake news or not. We

use Yd to represent the set of labels and employ cross entropy to calculate the detection loss:

Ld(θf , θd) = −E(m,y)∼(M,Yd) [y log(Pθ(m)) + (1− y)(log(1− Pθ(m))]. (5.7)
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We minimize the detection loss function Ld(θf , θd) by seeking the optimal parameters θ̂f and

θ̂d, and this process can be represented as:

(θ̂f , θ̂d) = arg min
θf ,θd

Ld(θf , θd). (5.8)

As previously discussed, one of the major challenges for fake news detection stems from the

events that are not covered by the training dataset. This requires us to be able to learn the transferable

feature representations for newly emerged events. Direct minimization of detection loss only helps

detect fake news on the events included in the training dataset, since this captures only event-specific

knowledge (e.g., keywords) or patterns, which cannot generalize well. Thus, we need to enable the

model to learn more general feature representations that can capture the common features among

all the events. Such representation should be event-invariant and does not include any event-specific

features. To achieve this goal, we need to remove the uniqueness of each event. In particular, we

measure the dissimilarities of the feature representations among different events and remove them

in order to capture the event invariant feature representations.

5.2.4 Event Discriminator

Event discriminator is a neural network which consists of two fully connected layers with

corresponding activation functions. It aims to correctly classify the post into one of K events based

on the multi-modal feature representations. We denote the event discriminator as Ge(RF ; θe) where

θe represents its parameters. We define the loss of event discriminator by cross entropy and use Ye

to represent the set of the event labels:

Le(θf , θe) = −E(m,y)∼(M,Ye) [
K∑
k=1

1[k=y] log(Ge(Gf (m; θf )); θe)], (5.9)

The parameters of event discriminator minimizing the loss Le(·, ·) are written as:

θ̂e = arg min
θe

Le(θf , θe). (5.10)
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The above loss Le(θf , θ̂e) can be used to estimate the dissimilarities of different events’ distributions.

The large loss means the distributions of different events’ representations are similar and the learned

features are event-invariant. Thus, in order to remove the uniqueness of each event, we need to

maximize the discrimination loss Le(θf , θ̂e) by seeking the optimal parameters θf .

The above idea motivates a minimax game between the multi-modal feature extractor and

the event discriminator. On one hand, the multi-modal feature extractor tries to fool the event

discriminator to maximize the discrimination loss, and on the other hand, the event discriminator

aims to discover the event-specific information included in the feature representations to recognize

the event. The integration process of three components and the final objective function will be

introduced in the next subsection.

5.2.5 Model Integration

During the training stage, the multi-modal feature extractor Gf (·; θf ) needs to cooperate with

fake news detector Gd(·; θd) to minimize the detection loss Ld(θf , θd), so as to improve the perfor-

mance of fake news detection task. Simultaneously, the multi-modal feature extractor Gf (·; θf ) tries

to fool the event discriminator Ge(·; θ̂e) to achieve event invariant representations by maximizing

the event discrimination loss Le(θf , θe). The event discriminator Ge(RF ; θe) tries to recognize each

event based on the multi-modal feature representations by minimizing the event discrimination loss.

We can define the final loss of this three-player game as

Lf inal(θf , θd, θe) = Ld(θf , θd)− λ Le(θf , θe), (5.11)

θ̂f = argmin
θf

Ld(θf , θd)− λ Le(θf , θe), (5.12)

where λ controls the trade-off between the objective functions of fake news detection and event

discrimination. In this work, we simply set λ as 1 without tuning the trade-off parameter. For the

minimax game, the parameter set we seek is the saddle point of the final objective function:

(θ̂f , θ̂d) = argmin
θf ,θd

Lf inal(θf , θd, θ̂e), (5.13)
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θ̂e = argmax
θe

Lf inal(θ̂f , θe). (5.14)

We use stochastic gradient descent to solve the above problem. The θf is updated according

to Eq.  5.15 . Here we adopt the gradient reversal layer (GRL) introduced in [  103 ]. The gradient

reversal layer acts as an identity function during forward stage, and it multiplies gradient with −λ

and passes the results to the preceding layer during backprop stage. GRL can be easily added

between the multi-modal feature extractor and the event discriminator. We denote it as the reversal

layer in the Figure  5.1 .

θf ← θf − η (∂Ld
∂θf
− λ∂Le

∂θf
). (5.15)

In order to stabilize the training process, we follow the approach in [  103 ] to decay the learning

rate η:

η′ = η

(1 + α · p)β , (5.16)

where α = 10, β = 0.75, and p is linearly changing from 0 to 1 corresponding to the training

progress.

5.3 Experiments

In this section, we first introduce two large social media datasets used in the experiments, then

present the state-of-the-art fake news detection approaches, and finally analyze the performance of

the proposed model.

5.3.1 Datasets

To fairly evaluate the performance of the proposed model, we conduct experiments on two real

social media datasets, which are collected from Twitter and Weibo. Next, we provide the details of

both datasets respectively.
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Table 5.1. The Statistics of the Real-World Datasets.
Twitter Weibo

# of fake News 7898 4749
# of real News 6026 4779

# of images 514 9528

Twitter Dataset

The Twitter dataset is from MediaEval Verifying Multimedia Use benchmark [  104 ], which is used

for detecting fake content on Twitter. This dataset has two parts: the development set and test set.

We use the development as training set and test set as testing set to keep the same data split scheme.

The tweets in the Twitter dataset contain text content, attached image/video and additional social

context information. In this work, we focus on detecting fake news by incorporating both text and

image information. Thus, we remove the tweets without any text or image. For this two sets, there

is no overlapping events among them. For model training on Twitter dataset, we adopt early stop

strategy.

Weibo Dataset

The Weibo dataset is used in [  105 ] for detecting fake news. In this dataset, the real news are

collected from authoritative news sources of China, such as Xinhua News Agency. The fake news

are crawled from May, 2012 to January, 2016 and verified by the official rumor debunking system of

Weibo. This system encourages common users to report suspicious posts and examines suspicious

posts by a committee of trusted users. According to the previous work [  96 ], [ 106 ], this system also

acts as the authoritative source for collecting rumor news. When preprocessing this dataset, we

follow the same steps in the work [  105 ]. We first remove the duplicated and low quality images to

ensure the quality of entire dataset. Then we apply a single-pass clustering method [ 107 ] to discover

newly emerged events from posts. Finally, we split the whole datasets into the training, validation,

testing sets in a 7:1:2 ratio, and ensure that they do not contain any common event.
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5.3.2 Baselines

To validate the effectiveness of the proposed model, we choose baselines from the following

three categories: single modality models, multi-modal models, and the variant of the proposed

model.

Single Modality Models

In the proposed model, we leverage both text and image information to detect fake news. For each

modality, it can also be solely used to discover fake news. Thus, we proposed the following two

simple baselines:

• Text. We use 32 dimensional pre-trained word-embedding weights of text content from all of

posts to initialize the parameters of the embedding layer. Then CNN is used to extract the textual

feature RT for each post. Finally, an additional fully connected layer with softmax function is used

to predict whether this post is fake or not. We use 20 filters with window size ranging from 1 to 4,

and the hidden size of fully connected layer is 32.

• Vis. The input of Vis is an image. Pre-trained VGG-19 and a fully connected layer are used to

extract the visual feature RV . Then, RV is fed into a fully connected layer to make prediction. We

set the hidden size of fully connected layer as 32.

Multi-modal Models

All the Multi-modal approaches take the information from multiple modalities into account, includ-

ing VQA [ 108 ], NeuralTalk [  109 ] and att-RNN [  105 ].

• VQA [ 108 ]. Visual Question Answering (VQA) model aims to answer the questions based

on the given images. The original VQA model is designed for multi-class classification tasks. In

this work, we focus on binary classification. Thus, when implementing VQA model, we replace the

final multi-class layer with the binary-class layer. Besides, for fair comparison, we use one-layer

LSTM, and the hidden size of LSTM is 32.

• NeuralTalk [ 109 ]. NeuralTalk is a model to generate captions for the given images. The

latent representations are obtained by averaging the outputs of RNN at each timestep, and then these

representations are fed into a fully connected layer to make prediction. The hidden size of both

LSTM and the fully connected layer is 32.
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• att-RNN [ 105 ]. att-RNN is the state-of-the-art model for multi-modal fake news detection. It

uses attention mechanism to fuse the textual, visual and social context features. In our experiments,

we remove the part dealing with social context information, but the remaining parts are the same.

The parameter settings are the same as [  105 ].

A Variant of the Proposed EANN

The complete EANN model consists of three components: multi-modal feature extractor, fake news

detector and event discriminator. Only using multi-modal feature extractor and fake news detector,

we still can detect fake news. Thus, we design a variant of the proposed model, named EANN−. In

EANN−, we do not include the event discriminator.

5.3.3 Implementation Details

In the textual feature extractor, we set k = 32 for dimensions of word-embedding. We set

nh = 20, and the window size of filters varies from 1 to 4 in Text-CNN. The hidden size of the

fully connected layer in textual and visual extractor is 32. For fake news detector, the hidden size

of the fully connected layer is 64. The event discriminator consists of two fully connected layers:

the hidden size of first layer is 64, and the hidden size of second layer is 32. For all the baselines

and the proposed model, we use the same batch size of 100 instances in the training stages, and the

training epoch is 100.

5.3.4 Performance Comparison

Table  5.2 shows the experimental results of baselines and the proposed approaches on two

datasets. We can observe that the overall performance of the proposed EANN is much better than

the baselines in terms of accuracy, precision and F1 score.

On the Twitter dataset, the number of tweets on different events is imbalanced and more than

70% of tweets are related to a single event. This causes the learned text features mainly focus on

some specific events. Compared with visual modality, the text modality contains more obvious

event specific features which seriously prevents extracting transferable features among different

events for the Text model. Thus, the accuracy of Text is the lowest among all the approaches. As for

another single modality baseline Vis, its performance is much better than that of Text. The features
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Table 5.2. The results of different methods on two datasets.

Dataset Method Accuracy Precision Recall F1

Twitter

Text 0.532 0.598 0.541 0.568
Vis 0.596 0.695 0.518 0.593

VQA 0.631 0.765 0.509 0.611
NeuralTalk 0.610 0.728 0.504 0.595
att-RNN 0.664 0.749 0.615 0.676

EANN− 0.648 0.810 0.498 0.617
EANN 0.715 0.822 0.638 0.719

Weibo

Text 0.763 0.827 0.683 0.748
Vis 0.615 0.615 0.677 0.645

VQA 0.773 0.780 0.782 0.781
NeuralTalk 0.717 0.683 0.843 0.754
att-RNN 0.779 0.778 0.799 0.789

EANN− 0.795 0.806 0.795 0.800
EANN 0.827 0.847 0.812 0.829

of image are more transferable, and thus reduce the effect of imbalanced posts. With the help of

VGG19, a powerful tool for extracting useful features, we can capture the more sharable patterns

contained in images to tell the realness of news compared with textual modality.

Though the visual modality is effective for fake news detection, the performance of Vis is still

worse than that of the multi-modal approaches. This confirms that integrating multiple modalities is

superior for the task of fake news detection. Among multi-modal models, att-RNN performs better

than VQA and NeuralTalk, which shows that applying attention mechanism can help improve the

performance of the predictive model.

For the variant of the proposed model EANN−, it does not include the event discriminator, and

thus tends to capture the event-specific features. This would lead to the failure of learning enough

shared features among events. In contrast, with the help of the event discriminator, the complete

EANN significantly improves the performance in terms of all the measures. This demonstrates the

effectiveness of the event discriminator for performance improvements. Specifically, the accuracy of

EANN improves 10.3% compared with the best baseline att-RNN, and F1 scores increases 16.5%.
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Figure 5.3. The performance comparison for the models w/ and w/o adversary.

On the Weibo dataset, similar results can be observed as those on the Twitter dataset. For single

modality approaches, however, contradictory results are observed. From Table  5.2 , we can see that

the performance of Text is greatly higher than that of Vis. The reason is that the Weibo dataset does

not have the same imbalanced issue as the Twitter dataset, and with sufficient data diversity, useful

linguistic patterns can be extracted for fake news detection. This leads to learning a discriminable

representation on the Weibo dataset for the textual modality. On the other hand, the images in the

Weibo dataset are much more complicated in semantic meaning than those in the Twitter dataset.

With such challenging image dataset, the baseline Vis cannot learn meaningful representations,

though it uses the effective visual extractor VGG19 to generate feature representations.

As can be seen, the variant of the proposed model EANN- outperforms all the multi-modal

approaches on the Weibo dataset. When modeling the text information, our model employs

convolutional neural networks with multiple filters and different word window sizes. Since the

length of each post is relatively short (smaller than 140 characters), CNN may capture more local

representative features.

For the proposed EANN, it outperforms all the approaches on accuracy, precision and F1 score.

Compared with EANN−, we can conclude that using the event discriminator component indeed

improves the performance of fake news detection.

5.3.5 Event Discriminator Analysis

In this subsection, we aim to analyze the importance of the designed event discriminator

component from the quantitative and qualitative perspectives.
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Quantitative Analysis

To intuitively illustrate the importance of employing event discriminator in the proposed model, we

conduct the following experiments. For each single modality approach, we design its corresponding

adversarial model. Then we run the new designed model on the Weibo dataset. Figure  5.3 shows

the results in terms of F1 score and accuracy. In Figure  5.3 , “w/ adv” means that we add event

discriminator into the corresponding approaches, and “w/o adv” denotes the original approaches.

For the sake of simplicity, let Text+ and Vis+ represent the corresponding approaches, Text and

Vis, with event discriminator component being added, respectively.

From Figure  5.3 , we can observe that both accuracy and F1 score of Text+ and Vis+ are

greater than those of Text and Vis respectively. Note that for the proposed approach EANN, its

reduced model is EANN−. The comparison between EANN and EANN− has been discussed in

Section  5.3.4 . Thus, we can draw a conclusion that incorporating event discriminator component is

essential and effective for the task of fake news detection.

Qualitative Analysis

To further analyze the effectiveness of event discriminator, we qualitatively visualize the text features

RT learned by EANN− and EANN on the Weibo testing set with t-SNE [  110 ] shown in Figure  5.4 .

The label for each post is real or fake.

(a) EANN− (b) EANN

Figure 5.4. Visualizations of learned latent text feature representations on the testing
data of Weibo.

From Figure  5.4 , we can observe that for the approach EANN−, it can learn discriminable

features , but the learned features are still twisted together, especially for the left part of Figure  5.4a .

In contrast, the feature representations learned by the proposed model EANN are more discriminable,
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and there are bigger segregated areas among samples with different labels shown in Figure  5.4b .

This is because in the training stage, event discriminator tries to remove the dependencies between

feature representations and specific events. With the help of the minimax game, the muli-modal

feature extractor can learn invariant feature representations for different events and obtain more

powerful transfer ability for detection of fake news on new events. The comparison between

EANN− and EANN proves that the proposed approach learns better feature representations with

the component of event discriminator, and thus achieves better performance.

5.3.6 Case Studies for Multiple Modalities

In order to illustrate the importance of considering multi-modal features for fake news detection,

we compare the results reported by the proposed EANN and single modality feature models (Text

and Vis), and report the fake tweets correctly detected by EANN but missed by the single modality

feature models.

(a) Five headed snake (b) Photo: Lenticular clouds over Mount Fuji,
Japan. #amazing #earth #clouds #mountains

Figure 5.5. Some fake news detected by EANN but missed by single text modality
model on the Twitter dataset.

We first show two top-confident tweets which are successfully detected by the proposed model

but missed by single textual modality model in Figure  5.5 . The text content do not show evidence

to identify that the tweets are fake. For both of the examples in Figure  5.5 , they describe the images

with common patterns. The textual modality model Text also identifies this news as a real one.

Although the experts may be engaged to verify the text content using their domain knowledge,

this option may not be available for normal readers. As seen, the two attached images look quite

suspicious and are very likely to be forged pictures. By feeding visual content and textual content

into the proposed EANN, both tweets are classified as fake with high confidence scores. This

83



shows that the proposed model EANN obtains some clues from the attached images to make correct

classification. The additional visual content provides more information for fake news detection

beyond single textual modality.

(a) Want to help these unfortunates? New, Iphones,
laptops, jewelry and designer clothing could aid
them through this!

(b) Meet The Woman Who Has Given Birth To 14
Children From 14 Different Fathers!

Figure 5.6. Some fake news detected by EANN but missed by single image modality
model on the Twitter dataset.

Figure  5.6 shows another two examples missed by image modality model Vis but successfully

spotted by the proposed EANN model. For the first example, the complicated semantic meaning is

contained in the attached image, which is challenging to be captured by the visual feature extractor.

However, the words with strong emotion and inflammatory intention suggest this is a suspicious

post. By combining textual and visual content of tweets, the proposed EANN can easily detect

that this is fake news with high confidence. The attached image in the second example looks very

normal, but the corresponding textual description seems to misrepresent the image and mislead the

readers. Without the textual content, the meaning of the tweets would totally change. Only aligned

with the corresponding text description, it can be identified as fake news. The visual modality

model Vis does not classify this example as false, but with the help of multi-modal features, the

proposed EANN model gives the high confidence in detecting this fake news.

5.3.7 Convergence Analysis

In order to explore the training process of the proposed EANN model, the development of

training, testing and discrimination loss (adversarial losses) has been shown in Figure  5.7 . At the

beginning, all of the three losses decrease. Then the discrimination loss increases and stabilizes at a

certain level. The decreasing discrimination loss in the beginning represents the event discriminator

detecting the event specific information included in the feature representations of multi-modal
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feature extractor. As the minimax game between the discriminator and the feature extractor is

continuing, the feature representations tend to be event invariant. Thus, the event specific information

is removed incrementally, and the discrimination loss increases over the time. During the training

process, the three losses smoothly converge, which means that a certain level of equilibrium have

been achieved. As the training loss decreases steadily, we can observe that the testing loss also

decreases steadily, and a very similar pattern of trend is shown. This observation proves that the

feature representations learned by the proposed EANN can capture the general information among

all the events, and this representation is also discriminative even on new coming events.

0 20 40 60 80 100

Iteration

L
o
ss

Training loss

Testing loss

Discrimination loss

Figure 5.7. The training, testing and event discrimination loss development.
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6. WEAKLY-SUPERVISED FAKE NEWS DETECTION

(A version of this chapter has been previously published in AAAI 2020 [  8 ].)

6.1 Introduction

The recent proliferation of social media has significantly changed the way in which people

acquire information. According to the 2018 Pew Research Center survey, about two-thirds of

American adults (68%) get news on social media at least occasionally. Fake news, which refer

to intentionally and verifiably false news stories, can spread virally on social media platforms as

people rarely verify the source of the news when sharing a news article that sounds true. The spread

of fake news may bring many negative impacts, including social panic and financial loss. Recent

years have witnessed a number of high-impact fake news spread regarding terrorist plots and attacks,

presidential election, and various natural disasters. In many of these cases, even when correct

information later disseminates, the rapid spread of fake news can have devastating consequences.

Therefore, there is an urgent need for the development of automatic fake news detection algorithms

which can detect fake news as early as possible and help stop the viral spread of such news.

Recently, many approaches are proposed to identify fake news, which can be roughly divided

into two categories, i.e., traditional learning [ 92 ], [  93 ] and deep learning based models [ 7 ], [  95 ],

[ 96 ], [  111 ]. Traditional learning methods typically extract features from news articles and train

classifiers based on the extracted features. Compared with traditional learning methods, deep

learning models have achieved an improvement in the performance of fake news detection due to

their powerful abilities of learning informative representations automatically. However, training

deep learning models usually requires a large amount of hand-labeled data, i.e., news articles that

are labeled as real or fake. The creation of such data is expensive and time-consuming. Also,

accurate labels can only be obtained when the annotators have sufficient knowledge about the events.

Furthermore, the dynamic nature of news articles leads to decaying quality of existing labeled

samples. Some of these samples may become outdated quickly and cannot represent the news

articles on newly emerged events. To maintain the quality of labeled samples, annotators have to

continuously label newly emerging news articles, which is infeasible. To fully unleash the power of

86



deep learning models in fake news detection, it is essential to tackle the challenge of labeling fake

news.

A possible solution is to leverage the feedback provided by users who read the news. Nearly

every social medial platform provides a way for users to report their comments about the news,

and some of these comments are highly relevant to fake news detection. For example, for a news

article published on a WeChat official account  

1
 , a user who reads the article can report whether this

news is fake or not with a brief explanation. Such reports from users can be regarded as “weak”

annotation for the task of fake news detection. The large collection of user reports can help alleviate

the label shortage problem in fake news detection. However, different from expert-labeled samples,

these weak annotated samples are unavoidably noisy. Users may report real news as fake ones, and

the reasons they provide may not be meaningful. Therefore, how to transform weak annotation to

labeled samples in the training set and select high-quality samples is the major issue we need to

solve.

In light of the aforementioned challenges, we propose a reinforced weakly-supervised fake

news detection framework (WeFEND), which can leverage the crowd users’ feedback as weak

supervision for fake news detection. The proposed framework WeFEND consists of three main

components: the annotator, the fake news detector and the reinforced selector. In particular, given a

small set of labeled fake news samples together with users’ feedback towards these news articles,

we can train an annotator based on the feedback, which can then be used to automatically assign

weak labels for those unlabeled news articles simply based on the user feedback they received.

The reinforced selector which employs reinforcement learning techniques then selects high-quality

samples from weakly labeled samples as the input to the fake news detector. The fake news detector

finally assigns a label for each input article based on its content. The three components integrate

nicely and their interactions mutually enhance their performance. We conduct extensive experiments

on a large collection of news articles published by WeChat official accounts and corresponding

feedback reported by users on these articles. Experimental results show that the proposed framework

WeFEND outperforms the state-of-the-art approaches on fake news detection. Moreover, we will

1
 ↑ WeChat is a Chinese multi-purpose messaging, social media and mobile payment app developed by Tencent. Wechat

official accounts push news articles and information for subscribed followers.
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publicly release this dataset  

2
 to the community to encourage further research on fake news detection

with user reports.
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Figure 6.1. The architecture of proposed framework WeFEND.

6.2 Methodology

In this section, we first briefly introduce the overview of the proposed fake news detection

framework WeFEND, and then demonstrate each component in detail.

6.2.1 Overview

The problem setting is as follows. Each sample consists of both news articles and user feedback

comments. Both are texts, and are transformed into vector representations by word embedding. User

feedback comments are referred to as reports, which are detailed reasons and evidence provided by

users about the credibility of the corresponding news articles. A small set of samples are labeled by

experts as fake or real, and our objective is to predict the labels of the unlabeled samples.

2
 ↑  https://github.com/yaqingwang/WeFEND-AAAI20  
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Figure  6.1 shows the overview of the proposed framework WeFEND. There are three key

components: annotator, data selector and fake news detector. Annotator can be seen as a pretrained

model on the reports with their labels. Based on the pretrained model, we can assign weak labels

for the unlabeled samples according to the annotator on the reports. However, it is hard to guarantee

the quality of weak labels. To automatically choose high-quality samples, we design a data selector

by exploiting reinforcement learning techniques on the samples labeled by the annotator. Finally,

the selected samples and the original labeled samples are used to train fake news detector. In both

annotator and fake news detector, a textual feature extractor is used to extract features from input

text. The details of these components are introduced in the following subsections.

6.2.2 Textual Feature Extractor

From Figure  6.1 , we can observe that textual feature extractor is a basic module of annotator

and fake news detection, as not all words are relevant to the task of fake news detector. In this

work, we choose convolutions neural network [  101 ], which is proven effective in the fake news

detection [ 7 ], as textual feature extractor. The input of the textual feature extractor is news content

or a report message, and both can be represented as a sequential list of words. For the t-th word in

the sentence, we represent it by the corresponding d dimensional word embedding vector, denoted

as xt ∈ Rd, which is the input to the convolutions neural network. Details of CNN module [  101 ] are

in the Supplemental Material.

The learned representation from textual feature extractor are the input features to annotator and

fake news detector. Next, we will introduce how to train an annotator and use it to assign weak

labels to the unlabeled samples.

6.2.3 Automatic Annotation based on Reports

One benefit of the proposed framework is that it can automatically assign weak labels to the

unlabeled news samples, which helps enlarge the size of the training set with little costs. To train

such a model, we propose to use report messages provided by users as weak supervision.

Aggregation Cell. One news article may have reports from multiple users, so we propose

to aggregate features obtained from different reports for one sample. Since the report messages
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from multiple users for one piece of news are permutation invariant, we design an aggregation cell

consisting of a commutative aggregation function and a fully-connected layer. The commutative

aggregation function, like sum, mean and max-pooling, can combine the permutation invariant

input set. We take the i-th sample as an example, and the j-th report message is represented as

r
(i)
j . The corresponding report message set is denoted as R(i) = {r(i)

1 , r
(i)
2 , ..., r

(i)
|R(i)|}, where |R(i)| is

the number of report messages of the i-th sample. The report message r(i)
j ∈ R(i) is first fed into

the textual feature extractor to obtain an informative textual feature representation, denoted as h(i)
j .

Then we use the aggregation cell to combine the report message set R(i) to learn the hidden feature

representation h(i). In order to stabilize the training procedure, we use average operation as the

commutative aggregation function. The procedure of aggregation cell is represented as:

h(i) = σ(wr ·
|R(i)|∑
j=1

h(i)
j

|R(i)|
), (6.1)

where σ is the ReLU activation function, and wr is the weight of the fully-connected layer.

We feed h(i) into the fully connected layer to output the corresponding probability of the i-th

sample being a fake one, which is denoted as Dr(R(i), θr), where θr represents all the parameters

of the annotator and corresponding textual feature extractor. The entire report message dataset is

represented as R = {R(1), R(2), ..., R(|R|)}, and the corresponding ground truth labels of news are

denoted as Y = {y(1), y(2), ..., y(|R|)}, where |R| is the number of report sets. Based on R and Y ,

the loss function for the proposed annotator is defined by cross entropy as follows:

Lr(R, Y ; θr) =− 1
|R|

|R|∑
i=1

[y(i) logDr(R(i); θr)

+ (1− y(i)) log(1−Dr(R(i); θr))].
(6.2)

Given the unlabeled news set Xu with corresponding report messages, we use the trained

annotator to predict their labels, which are denoted as Ŷ u. By the annotator, we can obtain

a large weakly labeled dataset {Xu, Ŷ u}. However, the labels in this automatically-annotated

dataset are unavoidably noisy and directly adding these samples to the training set may degrade

the detection performance. Thus, the challenge here is how to select high-quality samples from

this set to guarantee the detection performance. To address this challenge, we propose to employ
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reinforcement learning techniques in the design of a data selector. The details of the proposed data

selector are introduced in the following subsection.

6.2.4 Data Selection via Reinforcement Learning

The objective of the data selector is to automatically select high-quality samples from those

with weak labels obtained from the annotator. The criteria of the selection is based on whether

adding the chosen sample can improve the fake news detection performance. According to this

criteria, we design a performance-driven data selection method (called reinforced data selector)

using reinforcement learning mechanism. Next, we first introduce the input data of the designed

data selector, and then present the details of this data selector.

Let X̃ denote all the input data of the proposed reinforced data selector. However, instead of

directly putting the entire dataset X̃ into the selector, we divide the whole dataset into K small

bags of data samples, i.e., X̃ = {X̃(k)}Kk=1. A bag of data samples is the input of the selector each

time. For the k-th bag of data X̃(k), it contains B samples, i.e., X̃(k) = {x(k)
1 , x

(k)
2 , ..., x

(k)
B }. The

benefit of using multiple small bags of samples is that this approach can provide more feedback to

the selector and this makes the training procedure of reinforcement learning more efficient.

Problem Formulation. In the data selection procedure, the samples in one bag are sequentially

fed into the designed reinforced data selector. For every sample, the action of reinforced data

selector is to retain or remove. The decision of the current sample x(k)
i is based on its state vector

and all the previous decisions of samples {x(k)
1 , x

(k)
2 , ..., x

(k)
i−1}. Thus, the data selection problem can

be naturally cast as a Markov Decision Process (MDP) that is the prerequisite of reinforcement

learning. Since the goal of data selection is to improve the performance of fake news detection, we

directly use the performance changes of fake news detection as the reward for reinforced selector.

The performance is evaluated by accuracy. For this sequential decision procedure, the reward is

delayed because it can only be obtained after all the decisions are made. To solve the delayed reward

problem, we employ the policy-based reinforcement learning mechanism. Since the reinforced

selector needs to use the performance changes of fake news detection as reward, we introduce the

fake news detector first.
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Fake News Detector. Fake news detection model is a neural network, which consists of a

textual feature extractor and a fully-connected layer with corresponding activation functions. The

input to fake news detector is news content, and the output is the probability of the given news being

fake. The detector is denoted as Dn(·; θn), where θn represents all the parameters.

After introducing fake news detector, we will introduce the concepts of state, action, and reward

used in the proposed reinforced selector in detail as follows.

State. The state vector of the sample x(k)
i is denoted as s(k)

i . Since every action is made based

on the current sample and the chosen sample, the state vector mainly consists of two components:

the representation of the current sample and the average representation of the chosen samples. The

representation of the current sample is related to data quality and diversity. We use the output

probability from the proposed annotator and the output probability of fake news detector to measure

the quality of the data. To represent the data diversity, we first calculate cosine similarity between

the current sample and all the chosen samples. Here each sample is represented by a vector obtained

from textural feature extractor. We then select the max value of cosine similarity as the diversity. To

balance the distribution of classes, the weak label of the current sample is also used as a part of the

representation. Therefore, the current state vector contains four elements: 1) the output probability

from the annotator, 2) the output probability from fake news detector, 3) the maximum of cosine

similarity between the current sample and the chosen samples, and 4) the weak label of the current

sample. The representations of all the chosen samples are defined as the average of all the chosen

samples’ state vectors. The concatenation of the current state vector and the average of previous

state vectors is considered as the final state vector s(k)
i .

Action. The action value of the reinforced selector for every sample is 1 or 0. 1 represents

the action to retain the sample, and 0 denotes the action to remove it. To determine the action, we

train a policy network, denoted as P (·; θs), where θs represents the parameters. The policy network

includes two fully connected layers with corresponding activation functions. Take the sample x(k)
i

as an example. The policy network outputs a probability of retaining, denoted as p(k)
i , based on the

sample’s state vector s(k)
i .

P (s(k)
i ; θs) = ψ(ws2 · σ(ws1 · s(k)

i )), (6.3)
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where ws1 and ws2 are the weights of two fully-connected layers, σ represents the ReLU activation

function, and ψ is the Sigmoid function. Then the action a(k)
i is sampled according to the output

probability. The policy πθs(s
(k)
i , a

(k)
i ) can be represented as

πθs(s
(k)
i , a

(k)
i ) =


p

(k)
i if a(k)

i = 1

1− p(k)
i if a(k)

i = 0
.

Reward. Since the goal of the action is to retain the samples that can bring improvement to fake

news detection, we use the performance changes of detection modelDn(·; θn) as the reward function.

Given the k-th bag of data {x(k)
1 , x

(k)
2 , ..., x

(k)
B }, the actions of retaining or removing are made based

on the probability output from the policy network. To evaluate the performance changes, we need

to set a baseline accuracy acc. To this end, we first extract a validation dataset from the whole

labeled dataset. Note that all the trained model will test on this extracted validation dataset. We then

calculate the baseline accuracy acc with the detection model Dn(·; θn). Since the designed data

selector can choose some high-quality samples from {x(k)
1 , x

(k)
2 , ..., x

(k)
B }, the fake news detection

model will be retrained using the retained data samples. A new accuracy acck can be obtained with

the retrained model on the validation dataset. Finally, the reward Rk for k-th bag data {x(k)
i }Bi=1 is

represented by the difference of acck and acc as follows:

Rk = acck − acc. (6.4)

For the k-th bag of data {x(k)
i }Bi=1, we aim to maximize the expected total reward. Since the

scale of Rk is small, we use the summation of reward to define the objective function in order to

make the training procedure more efficient. The objective function is defined as

J(θs) =
B∑

i=1
πθs(s

(k)
i , a

(k)
i )Rk. (6.5)

93



The derivative of the objective function above is

5θJ(θs) =
B∑

i=1
Rk 5θs πθs(s

(k)
i , a

(k)
i )

= Eπθs
[
B∑

i=1
Rk 5θs log πθs(s

(k)
i , a

(k)
i )]

(6.6)

According to the policy-based reinforcement learning algorithm [  112 ], [  113 ], we update the

parameters θ of the policy network by stochastic gradient ascent as follows:

θs ← θs + α
B∑

i=1
Rk 5θs log πθs(s

(k)
i , a

(k)
i ), (6.7)

where α is the learning rate. To improve the exploration and stabilize training, we train a target

policy network P (·, θs′) that updates much slower than the policy network P (·, θs):

θ′
s = τθ′

s + (1− τ)θs. (6.8)

In the training stage, half of the bags are fed into the policy network P (·; θs) and the another

half of bags are fed into the target policy network P (·; θ′
s).

6.2.5 Reinforced Weakly-supervised Fake News Detection Framework

In this subsection, we introduce how to integrate the three key components: annotator, fake

news detector and reinforced selector. First, we pretrain the annotator using the labeled report data

{R, Y } and assign weak labels Ŷ u to the unlabeled news set Xu. The proposed reinforced selector

will select high-quality samples from the weakly labeled dataset {Xu, Ŷ u}. Here we set the selected

bags as K. Then both the selected data set {Xs, Ys} = {X(k)
s , Y (k)

s }Kk=1 and the original labeled

data are fed into the fake news detector for training. Thus, the final loss of fake news detection

consists of two sub losses:

Ln(X,Y,Xs, Ys; θn) =λl · Lln(X,Y ; θn)

+ λs · Lsn(Xs, Ys; θn),
(6.9)
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where Lln(X,Y ; θn) and Lsn(Xs, Ys; θn) are the losses on a small amount of manually labeled data

and automatically-annotated data set respectively. Here the λl and λu control the balance between

Lln(θn) and Lsn(θn), and we simply set the values of λl and λu as 1. The two losses are defined by

cross entropy respectively as follows:

Lln(X,Y ; θn) =− E(x,y)∼(X,Y ) [y log(Dn(x; θn))

+ (1− y) log(1−Dn(x; θn))],
(6.10)

Lsn(Xs, Ys; θn) =− E(xs,ys)∼(Xs,Ys) [ys log(Dn(xs, θn))

+ (1− ys) log(1−Dn(xs; θn))].
(6.11)

6.3 Experiments

In this section, we introduce the dataset used in the experiments, present the compared fake news

detection models, validate the effectiveness and explore some insights of the proposed framework.

6.3.1 Dataset

To fairly evaluate the performance of the proposed framework, we collect a dataset from

WeChat’s Official Accounts and conduct comprehensive experiments to analyze the performance.

This dataset includes user reports and will be publicly released in future to encourage research on

fake news detection.

Table 6.1. The Statistics of the WeChat Datasets.
# News # Report # Avg. Reports/News

Unlabeled - 22981 31170 1.36

Labeled Training
Fake 1220 2010 1.65
Real 1220 1740 1.43

Labeled Testing
Fake 870 1640 1.89
Real 870 1411 1.62

In this dataset, the news are collected from WeChat’s Official Accounts, dated from March 2018

to October, 2018. To facilitate the detection fake news, the WeChat’s Official Account encourages

users to report suspicious articles, and write feedback to explain why they think these articles are
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suspicious. To obtain a small set of labeled samples, we first collect the news with reports and

then send them to the experts of WeChat team for verification. Thus, the manually labeled fake

and real news both have report messages. We split the fake news and real news into training and

testing sets according to the post timestamp. The news in the training data were posted from March

2018 to September 2018, and testing dataset is from September 2018 to October 2018. There is no

overlapped timestamp of news between these two sets. This design is to evaluate the performance

of fake news detection on the fresh news. We also have an unlabeled set containing a large amount

of collected news without annotation. The time window of the unlabeled set is from September to

October 2018. The detailed statistics are shown in the Table  8.1 . Note that the headlines can be

seen as the summary of the news content. In the manual annotation process, experts only look at

headlines to conduct labeling. Thus, in this work, we use headlines as the input data.

6.3.2 Baselines

To validate the effectiveness of the proposed model, we choose both traditional machine learning

algorithms and deep learning models as baseline methods. Previous work on verbal deception

detection showed that LIWC [ 114 ] is a valuable tool for the deception detection in various con-

texts [  115 ], [ 116 ]. Based on LIWC features, we detect fake news with different traditional machine

learning algorithms including Logistic Regression (LIWC-LR), SVM (LIWC-SVM) and Random

Forest (LIWC-RF). Besides traditional machine learning algorithms, we also compare the proposed

algorithm with the stat-of-the-art deep learning fake news detection models LSTM [  95 ], CNN [  7 ]

and EANN [  7 ]. To show effects of automatic annotation, we proposed two semi-supervised models

based on CNN and LSTM, which are denoted as LSTMsemi and CNNsemi respectively, as baselines.

Furthermore, the complete WeFEND model consists of three components: annotator, fake news

detector and data selector. To show the role of data selector, we design one variant of the proposed

model named WeFEND− , which does not include data selector.

• Supervised Setting. We split the manually labeled training set into two sets in a ratio 8:2.

20% of training set is used as a validation set to select parameters, and the remaining 80% of data is

used for training purpose.
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• Semi-supervised Setting. We still split the data as the supervised setting, but also use the

unlabeled data in the semi-supervised setting. The combination of 80% of training set and unlabeled

set are used for training. We use the entropy minimization to define the loss on unlabeled data as

[ 117 ]. Considering the relative data size, we set the ratio between two losses on labeled set and

unlabeled set as 1:0.1.

•Weakly-supervised Setting. We pretrain the proposed annotator on reports in the training

set and use the pretrained annotator to automatically annotate the unlabeled set. Based on the

annotation, we divide the unlabeled data into two sets: weakly fake data and weakly real data. For

each set, we randomly select a subset of data samples. The number of data samples is 10% of the

whole unlabeled data. These two subsets consist of a new validation set, which is used for choosing

the best parameters. All the remaining data with weak labels are used for training the model.

• Hybrid Setting. All the settings for Hybird are the same as those of Weakly-supervised, but

in the last step, we use both the labeled training data (80% as the Supervised and Semi-supervised

settings) and the remaining data with weak labels to train the model.

6.3.3 Performance Comparison

Table 6.2. The performance comparison of different methods on WeChat dataset.

Category Method Accuracy AUC-ROC
Fake News Real News

Precision Recall F1 Precision Recall F1

Supervised

LIWC-LR 0.528 0.558 0.604 0.160 0.253 0.517 0.896 0.655
LIWC-SVM 0.568 0.598 0.574 0.521 0.546 0.563 0.614 0.587
LIWC-RF 0.590 0.616 0.613 0.483 0.541 0.574 0.696 0.629

LSTM 0.733 0.799 0.876 0.543 0.670 0.669 0.923 0.775
CNN 0.747 0.834 0.869 0.580 0.696 0.685 0.913 0.783

EANN 0.767 0.803 0.863 0.634 0.731 0.711 0.899 0.794

Semi-supervised
LSTMsemi 0.753 0.841 0.854 0.611 0.713 0.697 0.895 0.784
CNNsemi 0.759 0.848 0.850 0.630 0.723 0.706 0.889 0.787

Automatically annotated
WeFEND− 0.807 0.858 0.846 0.751 0.795 0.776 0.863 0.817
WeFEND 0.824 0.873 0.880 0.751 0.810 0.783 0.898 0.836

Table  8.2 shows the performance of different approaches on the WeChat dataset. We can

observe that that the proposed framework achieves the best results in terms of Accuracy, AUC-ROC,

precision, recall and F1 measurement.
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In the supervised setting, LIWC-LR achieves the worst performance. The reason is that LIWC-

LR is a linear model and hard to discriminate the complicated distributions of fake and real news

content. Compared with LIWC-LR, LIWC-SVM and LIWC-RN improve the performance in terms

of most measurements. However, compared with traditional machine learning models, deep learning

based models, including LSTM, CNN and EANN, significantly improve the performance. This

confirms that deep learning models have superior ability to extract informative features for detection.

In particular, compared with the best traditional machine learning baseline LIWC-RF, CNN achieves

around 27% and 35% improvement on Accuracy and AUC-ROC respectively. EANN model has the

ability to capture the dynamic nature of news by learning the event-invariant feature representations.

It leads to the performance improvement and better generalization ability compared with the plain

LSTM and CNN.

Along with the setting of supervised learning, in semi-supervised setting, we incorporate external

unlabeled news. We run LSTM and CNN models in the semi-supervised setting. Since the number

of data largely increases, we can observe the performance improvement in both models. Take

LSTM-based models as an example. The Accuracy and AUC-ROC of LSTMsemi increases 3%

and 5% respectively, compared with supervised LSTM. This illustrates that using unlabeled data

enlarges size of training set and achieves performance improvement.

The advantage of the proposed framework is that it can automatically annotate unlabeled news.

From the results shown in Table  8.2 , we can observe that the performance of WeFEND− is better

than this of models in the supervised setting and semi-supervised setting.

Though incorporating automatic annotation as weak supervision helps fake news detection in

some aspects, weak supervision is unavoidably noisy. In Table  8.2 , the recall values of WeFEND−

improve as the coverage is increasing, but their precision values for fake news detection decrease.

This shows that incorporating weak supervision may add more false positive examples. For real

news, since the majority of unlabeled data with reports is still real news, the precision still improves.

To reduce the influence of noisy labels, the proposed framework WeFEND has the data selector

component based on reinforcement learning techniques. After incorporating data selector, the

precision values of fake news and real news are improved compared with their reduced version in

the same hybrid setting. Furthermore, we can observe from Table  8.2 that the proposed WeFEND

achieve the best performance compared with all the baselines.
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6.3.4 Insight Analysis

Due to the dynamic nature of news, the annotation needs to be timely to cover news articles on

newly emerged events. To address this issue, we propose to use reports from users to automatically

annotate fresh news. To valid our intuition, we conduct experiments to demonstrate why reports are

useful for this purpose.

The experiment is designed as follows. We first split the original training dataset consists of

news content and reports into two sets: 80% data as the new training set (denoted as Dt) and the

remaining 20% data as the testing set for the same time window setting (denoted as Ds). For the

different time window setting, we randomly select a subset samples from original testing dataset,

which is denoted as Dd. The number of samples in Ds is similar as that in Dd. The fake news

detector and annotator are first trained on the news content of Dt, and then we separately test the

models on Ds and Dd. We show the distributions of reports on two time sets. Since the real news is

easy to collect, the goal of annotation procedure is to expand the size of fake news samples. Thus,

to analyze the distribution of reports, we mainly focus on fake news samples. The distributions

of reports on the same and different time set are shown in the Figure  6.2 . For clear comparison

between the distribution of reports and news content, the feature representations of news content for

fake news are also shown in Figure  6.2a .
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Figure 6.2. The Visualization of latent representations for news content and reports of fake news.

From Figure  6.2a , we can observe that although the distributions of news content in the same

time set and different time set have overlaps, the samples from two set are separately clustered at the

top right and bottom left corner. This shows the distribution of news contents changes with time. In

contrast, the feature representations of report messages from two sets are all twisted and cannot be
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distinguished as shown in Figure  6.2b . This proves that the distributions of reports is time invariant

and further explains why the model trained on report messages achieves a consistent performance.

Thus, the annotation based on reports can guarantee consistent quality even for fresh news articles.

6.3.5 Importance of Reinforced Selector

To demonstrate the importance of reinforced selector, we run WeFEND− (“w/o RL”) and

WeFEND (“w RL”) 5 times, and the performance comparison during the first 30 epochs is shown in

Figure  6.3 . Note that the only difference between two models is whether it has the component of

reinforced selector or not. The solid line represents the average accuracy of 5 times, and the line

with light color represents the accuracy value of a single time. As the probability output from fake

news detection model can provide more information for the reinforced selector, we can observe that

the average accuracy of the model with reinforced selector is stably higher than that w/o reinforced

selector after 12 epochs from Figure  6.3 . The ablation study shows that the designed reinforced

selector is effective in improving the performance of fake news detection.
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Figure 6.3. The changes of Accuracy in terms of the number of Epochs.
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7. FEW-SHOT DOMAIN ADAPTATION FOR FAKE NEWS DETECTION

(A version of this chapter has been previously published in KDD 2021 [  118 ].)

7.1 Introduction

The recent proliferation of social media has significantly changed the way in which people

acquire information. According to the 2018 Pew Research Center survey, about two-thirds of

American adults (68%) get news on social media at least occasionally. The fake news on social

media usually take advantage of multimedia content which contain misrepresented or even forged

images, to mislead the readers and get rapid dissemination. The dissemination of fake news may

cause large-scale negative effects, and sometimes can affect or even manipulate important public

events. Recent years have witnessed a number of high-impact fake news spread regarding terrorist

plots and attacks, presidential election and various natural disasters. Therefore, there is an urgent

need for the development of automatic detection algorithms, which can detect fake news as early as

possible to stop the spread of fake news and mitigate its serious negative effects.

Figure 7.1. Fake news examples on an emergent event Boston Bombing from Twitter.

Task Challenges. Thus far, various fake news detection methods, including both traditional

learning [ 92 ], [ 93 ] and deep learning based models [ 7 ], [ 95 ], [ 96 ], [ 111 ], [ 119 ], [ 120 ] have been

exploited to identify fake news. Despite the success of deep learning models with large amounts

of labeled datasets, the algorithms still suffer in the cases where fake news detection is needed

on emergent events. Due to the domain shift in the news events [ 8 ], the model trained on past
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events may not achieve satisfactory performance and thus the new knowledge from emergent events

are needed to add into fake news detection models. However, adding the knowledge from newly

emergent events requires to build a new model from scratch or continue to fine-tune the model on

newly collected labeled data, which can be challenging, expensive, and unrealistic for real-world

settings. Moreover, fake news usually emerged on newly arrived events where we hardly obtain

sufficient posts in a timely manner. In the early stage of emergent events, we usually only have a

handful of related verified posts (An example is shown in the Fig.  7.1 ). How to leverage a small set

of verified posts to make the model learn quickly to detect fake news on the newly-arrived events is

a crucial challenge.

Limitations of Current Techniques. To overcome the challenge above, the few-shot learning,

which aims to leverage a small set of data instances for quick learning, is a possible solution. One

promising research line of few-shot learning is meta-learning [ 121 ], [  122 ], whose basic idea is to

leverage the global knowledge from previous tasks to facilitate the learning on new task. However,

the success of existing meta-learning methods is highly associated with an important assumption:

the tasks are from a similar distribution and the shared global knowledge applies to different tasks.

This assumption usually does not hold in the fake news detection problem as the writing style,

content, vocabularies and even class distributions of news on different events usually tends to differ.

As it can be observed from Figure  7.2 , the ratios of fake news on events are significantly different.

(a) Twitter (b) Weibo

Figure 7.2. The number of events with respect to different percentages of fake news.

The significant difference across events posts serious challenges on event heterogeneity, which

cannot be simply handled by globally sharing knowledge [  123 ]. Another research line of few-shot
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learning is neural processes np, [ 124 ], [  125 ], which conduct inference using a small set of data

instances as conditioning. Even though neural processes show better generalizablity , they are based

on a fixed set of parameters and usually suffer from the limitations like underfitting [ 125 ], thereby

leading to unsatisfactory performance. These two research lines of models are complementary

to each other: the parameter adaptation mechanism in meta-learning can provide more parameter

flexibility to alleviate unfitting issues of the neural process. Correspondingly, the neural processes

can help handle the heterogeneity challenge for MAML by using a small set of data instances as

conditioning instead of encoding all the information into parameter set. Although it is promising to

integrate two popular few-shot approaches together, the incompatible operations on the given small

set of data instances is the main obstacle for developing the model based on these two.

Our Approach. To address the aforementioned challenges, in this work, we propose a novel meta

neural process network (namely MetaFEND) for emergent fake news detection. MetaFEND unifies

the incompatible operations from meta-learning and neural process via a simple yet novel simulated

learning task, whose goal is to adapt the parameters to better take advantage of given support

data points as conditioning. Toward this end, we propose to conduct leave-one-out prediction as

shown in the Fig.  7.3 , i.e., we repeatedly use one of given data as target data and the rest are used

as context set for conditioning on all the data in support set. Therefore, the proposed model can

handle heterogeneous events via event adaption parameters and conditioning on event-specific data

instances simultaneously. Furthermore, we incorporate two novel components - label embedding

and hard attention - to handle categorical characteristics of label information and extract the

most informative instance as conditioning despite imbalanced class distributions of news events.

Experimental results on two large real-world datasets show that the proposed model effectively detect

fake news on new events with a handful of posts and outperforms the state-of-the-art approaches.

7.2 Background

We define our problem and introduce preliminary works in this section.
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7.2.1 Problem Formulation

There are many tasks related to fake news detection, such as rumor detection [ 107 ] and spam

detection [ 126 ]. Following the previous work [ 95 ], [  97 ], we specify the definition of fake news as

news which is intentionally fabricated and can be verified as false. In this work, we tackle fake

news detection on emergent events and make a practical assumption that a few labeled examples

are available per event. Our goal is to leverage the knowledge learned from past events to conduct

effective fake news detection on newly arrived events with a few examples. More formally, we

define the fake news detection following the few-shot problem.

Few-shot Fake News Detection Let E denote a set of news events. In each news event e ∼ E ,

we have a few labeled posts on the event e. The core idea of few-shot learning is to use episodic

classification paradigm to simulate few-shot settings during model training. In each episode during

the training stage, the labeled posts are partitioned into two independent sets, support set and query

set. Let {Xs
e,Ys

e} = {xse,i, yse,i}Ki=1 represent the support set, and {Xq
e ,Yq

e} = {xqe,i, y
q
e,i}Ni=K+1

be the query set. The model is trained to learn to conduct fake news detection on the query set

{Xq
e ,Yq

e} given the support set {Xs
e,Ys

e}. During the inference stage, K labeled posts are provided

per event. For each event e, the model leverages its corresponding K labeled posts as support set

{Xs
e,Ys

e} = {xse,i, yse,i}Ki=1 to conduct fake news detection on given event e.

7.2.2 Preliminary Work

MAML. We first give an overview of MAML method [  121 ], a representative algorithm of

gradient-based meta-learning approaches, and take few-shot fake news detection as an example.

The meta-learning procedure is split into two stages: meta-training and meta-testing.

During the meta-training stage, the baseline learner fθ is adapted to specific event e as fθe

with the help of the support set {Xs
e,Ys

e}. Such an event specific learner fθe is evaluated on the

corresponding query set {Xq
e ,Yq

e}. The loss L(fθe , {Xq
e ,Yq

e}) on {Xq
e ,Yq

e} is used to update the

parameters of baseline learner θ. During the meta-testing stage, the baseline learner fθ is adapted to

the testing event e′ using the procedure in meta-training stage to obtain event specific parameters

θe′ , which is employed to make predictions on the query set {Xq
e′ ,Yq

e′} of event e′.
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Figure 7.3. The proposed framework MetaFEND. The proposed framework has two
stages: event adaption and detection. During the event adaption stage, the model
parameter set θ is updated to event-specific parameter set θe. During the detection
stage, the event-specific parameter set θe is used to detect fake news on event e. ⊕
denotes concatenation operation and ⊗ means element-wise product.

MAML update parameter vector θ using one or more gradient descent updates on event e. For

example, when using one gradient update:

θe = M(fθ, {Xs
e,Ys

e}) = θ − α5θ L(fθ, {Xs
e,Ys

e}).

The model parameters are trained by optimizing for the performance of fθe with respect to θ across

events sampled from p(E). More concretely, the meta-objective is as follows:

min
θ

∑
e∼E
L(fθi) =

∑
e∼E
L(fθ−α5θL(fθ,{Xs

e ,Ys
e }), {Xq

e ,Yq
e}).

Limitations of MAML. The MAML can capture task uncertainty via one or several gradient

updates. However, in fake news detection problem, when events are heterogeneous, the event

uncertainty is difficult to encode into parameters via one or several gradient steps. Moreover, even if

given support data and query data of interest are from the same event, there is no guarantee that they

are all highly related to each other. In such a case, the parameter adaption on fake news detection

loss on support set may be misleading for some posts.

105



Conditional Neural Process (CNP). The CNP includes four components: encoder, feature extrac-

tor, aggregator and decoder. The basic idea of conditional neural process is to make predictions

with the help of support set {Xs
e,Ys

e} = {xse,i, yse,i}Ki=1 as context. The dependence of a CNP on

the support set is parametrized by a neural network encoder, denoted as g(·). The encoder g(·)

embeds each observation in the support set into feature vector, and the aggregator agg(·) maps

these feature vectors into an embedding of fixed dimension. In CNP, the aggregation procedure is a

permutation-invariant operator like averaging or summation. The query data of interest xqe,i is fed

into feature extractor h(·) to get the feature vector. Then the decoder f(·) takes the concatenation of

aggregated embedding and given target data xqe,i as input and output the corresponding prediction as

follows:

p(yqe,i|{Xs
e,Ys

e}, x
q
e,i) = f

(
agg(g({Xs

e,Ys
e}))⊕ h(xqe,i)

)
.

where ⊕ is concatenation operator.

Limitations of CNP. One widely recognized limitation of CNP is underfitting [  125 ]. For different

context data points, their importance is usually different in the prediction. However, the aggregator

of CNP treats all the support data equally and cannot achieve query-dependent context information.

Moreover, the CNP simply concatenates the input features and numerical label values of posts

together as input, ignoring the categorical characteristics of labels.

7.3 Methodology

In this work, we study how to develop an effective model which can identify fake news on

emergent events with a small set of labeled data. To this end, we propose a meta neural process

framework which can fuse meta-learning and neural process methods together via a simulated

task. To tackle the challenges brought by heterogeneous news events, we further propose a label

embedding component to handle categorical labels and a hard attention component, which can

select the most informative information from the support set with imbalanced class distributions. In

the next subsection, we introduce our overall design and architecture.
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7.3.1 Meta-learning Neural Process Design

As shown in Figure  7.3 , our proposed framework includes two stages: event adaptation and

detection. The event adaptation stage is to adapt the model parameters to specific event with the

help of the support set. The detection stage is to detect fake news on the given event with the help

of the support and the adapted parameter set.

Event adaption. We take the i-th support data {xse,i, yse,i} as an example, in the event adaption stage,

the {xse,i, yse,i} is used as target data and the rest of support set {Xs
e,Ys

e} \ {xse,i, yse,i} are used as

context set accordingly. The context set {Xs
e,Ys

e} \ {xse,i, yse,i} and target data xse,i are fed into the

proposed model to output the prediction. The loss can be calculated between the prediction ŷse,i and

the corresponding label yse,i. For simplicity, we use θ to represent all the parameters included in the

proposed model. Then, our event adaption objective function on the support set can be represented

as follows:

Lse =
∑

i

log pθ(yse,i|{Xs
e,Ys

e} \ {xse,i, yse,i}, xse,i). (7.1)

We then update parameters θ one or more gradient descent updates on Lse for event e. For example,

when using one gradient update:

θe = θ − α5θ Lse. (7.2)

Detection stage. The proposed model with event-specific parameter set θe takes query set Xq
e and

entire support set {Xs
e,Ys

e} as input and outputs predictions Ŷq
e for query set Xq

e . The corresponding

loss function in the detection stage can be represented as follows:

Lqe = log pθe(Y q
e |Xs

e , Y
s

e , X
q
e ). (7.3)

Through this meta neural process, we can learn an initialization parameter set which can rapidly

learn to use given context input-outputs as conditioning to detect fake news on newly arrived events.

Neural Network Architecture. From Figure  7.3 , we can observe that the network structures

used in these two stages are the same, including feature extractor, label embedding, aggregator

and detector. The feature extractor is a basic module which can take posts as input and output
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corresponding feature vectors. Label embedding component is to capture semantic meanings of

labels. Then we use an aggregator to aggregate these information into a fixed dimensional vector,

namely context embedding, which is used as reference for fake news detection. Thereafter both

the context embedding and target feature vector are fed into detector to output a vector. The

final prediction is based on the similarities between this output vector and label embeddings. In

the following subsections, we use event adaption to introduce the details of each component in

our proposed model. For simplicity, we omitted superscript s and q in the illustrations about

components.

7.3.2 Feature Extractor

From Figure  7.3 , we can observe that feature extractor is a basic module to process raw input.

Following the prior works [ 7 ], [  8 ], our feature extractor consists of two parts: textual feature

extractor and visual feature extractor. For a minor note, the feature extractor is a plug-in component

which can be easily replaced by other state-of-the-art models.

Textual feature extractor. We adopt convolutional neural network [ 127 ], which is proven effective

in the fake news detection [  7 ], [  8 ], as textual feature extractor. The input of the textual feature

extractor is unstructured news content, which can be represented as a sequential list of words. For

the t-th word in the sentence, we represent it by the word embedding vector which is the input to

the convolutional neural network. After the convolutions neural network, we feed the output into a

fully connected layer to adjust the dimension to df dimensional textual feature vector.

Visual feature extractor. The attached images of the posts are inputs to the visual feature extractor.

In order to efficiently extract visual features, we employ the pretrained VGG19 [  128 ] which is used

in the multi-modal fake news works [ 7 ], [  105 ]. On top of the last layer of VGG19 network, we add

a fully connected layer to adjust the dimension of final visual feature representation to the same

dimension of textual feature vector df . During the joint training process with the textual feature

extractor, we freeze the parameters of pre-trained VGG19 neural network to avoid overfitting.

For a multimedia post, we feed the text and image of the example into textual and visual feature

extractor respectively. The output of two feature extractors are concatenated together to form a

feature vector. For the target data xe,i, we denote its feature vector as he,i. For the context data xe,k

where k 6= i, we denote its feature vector as ce,k ∈ Ce.
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7.3.3 Aggregator

To construct context embedding for target data, we need to design an aggregator which satisfies

two properties: permutation-invariant and target-dependent. To satisfy the two properties, we choose

to adopt the attention mechanism which can compute weights of each observations in context set

with respect to the target and aggregates the values according to their weights to form the new value

accordingly.

Attention mechanism. In this work, we use scaled dot-product attention mechanism [  25 ]. This

attention function can be described as mapping a query and a set of key-value pairs to an output,

where the query Q, keys K, values V, and output are all vectors. In our problem, for the target

data xe,i and the context set Xe \ {xe,i} = {xe,k}Kk=1,k 6=i on event e. We use the the target feature

vector he,i ∈ R1×d after linear transformation as query vector Qi, the context feature vector

Ce = [ce,1, ..., ce,K] ∈ RK×d after linear transformation as the Key vector K. For the context

set, we represent its label information Ye \ {ye,i} = {ye,k}Kk=1,k 6=i by semantic embeddings as

vece = {vece,k}Kk=1,k 6=i. The details of label embedding are introduced in the next subsection. Then

we concatenate context feature vector and label embedding as Ce⊕vece = [ce,1⊕vece,1, ..., ce,K⊕

vece,K] ∈ R(K−1)×2d. The concatenated embedding after linear transformation is used as value

vector V. We represent Qi,V,K as follows:

Qi = Wqhe,i,

K = WkCe,

V = Wv(Ce ⊕ vece),

where Wq ∈ Rd×d, Wk ∈ Rd×d and Wv ∈ R2d×d.

The output is computed as a weighted sum of the values, where the weight assigned to each value

is computed by dot-product function of the query with the corresponding key. More specifically,

attention function can be represented as follows:

ai = softmax(QiKT

√
d

) (7.4)
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Attention(Qi,K,V) := aiV. (7.5)

Limitation of Soft-Attention. The attention mechanism with soft weight values is categorized into

soft-attention. However, soft-attention cannot effectively trim irrelevant data especially when we

have a context set with an imbalanced class distribution shown in Fig.  7.2 . Moreover, we show a

case study in the experimental section for a better illustration.

Hard-Attention. To overcome the limitation of soft-attention, we propose to select the most

related context data point instead of using weighted average. To enable argmax operation to be

differentiable, we use Straight-Through (ST) Gumbel SoftMax [  129 ] for discretely sampling the

context information given target data. We introduce the sampling and arg max approximations of

ST Gumbel SoftMax procedure next.

The Gumbel-Max trick [  130 ] provides a simple and efficient way to draw samples z from a

categorical distribution with class probabilities. In our problem, for the i-th target data point xe,i

with context set Xe \ {xe,i} = {xe,k}Kk=1,k 6=i, the class probabilities can be obtained from the weight

vector ai = [ai,1, ..., ai,K] from dot-product attention mechanism according to Eq.  7.4 . Because

arg max operation is not differentiable, we use the softmax function as a continuous, differentiable

approximation to arg max, and generate K-dimensional sample vectors Pi = [pi,1, pi,2.., pi,K] as

follows:

pi,k = exp((log(ai,k) + g)/τ)∑K
k,k 6=i exp((log(ai,k) + g)/τ)

(7.6)

where τ is a temperature parameter, g = − log(− log(µ)) is the Gumbel noise and µ is generated

by a certain noise distribution (e.g., u ∼ N (0, 1)). As the softmax temperature τ approaches 0, the

Gumbel-Softmax distribution becomes identical to the categorical distribution. Moreover, Straight-

Through (ST) gumbel-Softmax takes different paths in the forward and backward propagation,

so as to maintain sparsity yet support stochastic gradient descent. Through gumbel-softmax, the

hard-attention mechanism is able to draw the most informative sample based on weight vectors

from Pi for given target sample xe,i.

The hard-attention can trim the irrelevant data points and select the most related data point,

denoted as ce,k ⊕ ve,k ∈ R2d. Besides the hard-attention mechanism, the aggregator includes an
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additional fully connected layer on top of hard-attention to adjust the dimension. The ce,k ⊕ ve,k is

fed into this fully connected layer to output context embedding re,i ∈ Rd.

7.3.4 Detector based on Label Embedding

Categorical characteristic of label information. The context information includes posts and

their corresponding labels. The existing works like CNP [  124 ] and ANP [  125 ] usually simply

concatenate the input features and numerical label values together as input to learn a context

embedding via a neural network. Such operation discards the fact that label variables are categorical.

Moreover, this operation tends to underestimate the importance of labels as the dimension of input

features is usually significantly larger than that of single dimensional numerical value. To handle

categorical characteristic, we propose to embed labels into fixed dimension vectors inspired by word

embedding [  131 ]. We define two embeddings vec(fake) and vec(real) for the labels of fake news

and real news respectively. For example, given the k-th post xe,k on event e, the corresponding label

is fake and its label embedding vector is vec(fake), and we denote the label embedding of xe,k as

vece,k. To ensure that the label embedding can capture the semantic meanings of corresponding

labels, we propose to use embeddings vec(fake) and vec(real) in the detector as metrics and

output predictions are determined based on metric matching.

The detector is a fully-connected layer which takes target feature vector and context embedding

as inputs and outputs a vector that has the same dimensionality as that of the label embedding.

More specifically, for i-th target data, the context embedding re,i and target feature vector he,i are

concatenated. Then the detector takes re,i ⊕ he,i ∈ R2d as input and produces a output vector

oe,i ∈ Rd. The similarities between output oe,i from our model and label embeddings vec(fake)

and vec(real) are calculated as follows:

similarity(oe,i,vec(fake)) = ‖oe,i ◦ vec(fake)‖ , (7.7)

similarity(oe,i,vec(real)) = ‖oe,i ◦ vec(real)‖ . (7.8)
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The two similarity scores are then mapped into [0, 1] as probabilities via softmax. The trainable

label embedding capture semantic meaning of labels and can generalize easily to new events with

the help of adaptation step according to Eq.  7.2 .

7.3.5 Algorithm Flow

After introducing the meta-learning neural process design, feature extractor, label embedding,

aggregator and detector components, we present our algorithm flow.

As it can be observed from Figure  7.3 , when tackling an event e, our proposed framework

MetaFEND has two stages: event adaption and detection. In more details, our proposed model

adapts to the specific event according to Eq.  7.2 and then the event-specific parameter is used in the

fake news detection on given event. The algorithm flow is same in the two stages and we use event

adaption stage as an example to illustrate this procedure.

Our input includes handful instances as context set {Xs
e,Ys

e} \ {xse,i, yse,i} and xse,i as target

data. We first feed Xs
e \ {xse,i} into feature extractor and get context feature representations Cs

e.

The context feature representations Cs
e is then concatenated with label embedding vecse of Ys

e . In

the target side, the target data xse,i is also fed into feature extractor to get representation as hse,i.

The aggragator component aggregates hse,i, Cs
e and vecse as introduced in section  7.3.3 to output

context embedding rse,i ∈ Rd. Then we concatenate rse,i with target feature vector hse,i ∈ Rd. The

concatenated feature goes through the detector which is consisted of a fully connected layer to

output a vector ose,i. The similarity scores between ose,i and vec(fake), vec(real) are calculated

according to Eq.  7.7 and Eq.  7.8 respectively. In the end, the similarity scores are mapped to

probability values for fake news detection via softamax operation.

7.4 Experiments

In this section, we introduce the datasets used in the experiments, present the compared fake news

detection models, validate the effectiveness and explore some insights of the proposed framework.
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7.4.1 Datasets

To fairly evaluate the performance of the proposed model, we conduct experiments on datasets

collected from two real-world social media datasets, namely Twitter and Weibo. The detailed

description of the datasets are given below:

Table 7.1. The Statistics of the Datasets.
Twitter Weibo

# of fake News 6,934 4,050
# of real News 5,683 3,558

# of images 514 7,606

Table 7.2. The performance comparison of models for fake news detection on the
Twitter and Weibo datasets under 5-shot and 10-shot settings. Accuracy and F1
score of models are followed by standard deviation. The percentage improvement
(↑) of MetaFEND over the best baseline per setting is in the last row. EANN, CNP,
ANP, MAML, Meta-SGD and MetaFEND share the same feature extractor as the
backbone.

Twitter Weibo

Method
5-Shot 10-Shot 5-Shot 10-Shot

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

VQA 73.62 ± 1.83 76.69 ± 1.23 73.49 ± 2.61 74.69 ± 2.97 76.93 ± 0.71 75.88 ± 0.45 77.80 ± 1.43 76.36 ± 1.77
attRNN 63.04 ± 2.09 60.25 ± 4.63 63.14 ± 2.00 56.60 ± 5.25 76.07 ± 1.63 74.36 ± 2.96 78.09 ± 0.58 77.69 ± 0.35
EANN 70.01 ± 3.58 72.95 ± 2.86 70.56 ± 1.00 67.77 ± 0.80 76.43 ± 0.84 74.51 ± 0.56 77.49 ± 1.95 76.56 ± 1.28
CNP 71.42 ± 2.58 72.58 ± 3.57 72.47 ± 3.61 72.11 ± 5.74 77.47 ± 5.19 77.01 ± 4.66 78.81 ± 1.57 78.07 ± 1.98
ANP 77.08 ± 2.92 79.65 ± 3.81 74.25 ± 0.76 75.16 ± 1.27 77.85 ± 1.67 76.00 ± 3.61 76.52 ± 1.84 73.73 ± 2.78

MAML 82.24 ± 1.54 82.97 ± 1.76 85.22 ± 0.64 84.98 ± 1.70 74.68 ± 0.75 74.16 ± 0.33 75.87 ± 0.33 73.41 ± 0.86
Meta-SGD 74.13 ± 2.31 75.35 ± 2.56 74.63 ± 2.46 74.57 ± 2.74 71.73 ± 1.81 69.51 ± 2.28 73.34 ± 2.35 71.42 ± 2.80

MetaFEND 86.45 ± 1.83 86.21 ± 1.32 88.79 ± 1.27 88.66 ± 1.09 81.28 ± 0.75 80.19 ± 1.27 82.92 ± 0.13 82.37 ± 0.28
(Improvement) (↑5.12%) (↑3.91%) (↑4.19%) (↑4.33%) (↑4.41%) (↑4.13%) (↑5.22%) (↑5.51%)

The Twitter dataset is from MediaEval Verifying Multimedia Use benchmark [ 104 ], which is

used in [  7 ], [  105 ] for detecting fake content on Twitter. The Weibo dataset 

1
 is used in [  7 ], [  105 ],

[ 132 ] for detecting multi-modal fake news. The news events are included in the Twitter dataset and

we follow the previous works [ 7 ], [ 105 ], [ 132 ] to obtain events on Weibo via a single-pass clustering

method [  107 ]. In the two datasets above, we only keep the events which are associated with more

than 20 posts and randomly split the posts on same event into support and query data. To validate

performance of the models on newly emergent events, we ensure that the training and testing sets

1
 ↑ https://github.com/yaqingwang/EANN-KDD18
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do not contain any common event. We adopt Accuracy and F1 Score as evaluation metrics. These

two datasets cover diverse news events and thus can be used as good test-grounds for evaluation of

fake news detection on heterogeneous events.

7.4.2 Baselines

To validate the effectiveness of the proposed model, we choose baselines from multi-modal

models and the few-shot learning models. For the multi-modal models, we fine-tune them on

support set from events in the testing data for a fair comparison. In the experiments, we have the

5-shot and 10-shot settings. In our problem, 5-shot setting refers to that 5 labeled posts are provided

as support set.

Fine-tune models. All the multi-modal approaches take the information from multiple modalities

into account, including VQA [  108 ], att-RNN [ 105 ] and EANN [  7 ]. In the fine-tune setting, the

training data including labeled support data and labeled query data is used to train the baselines. In

the testing stage, the trained models are first fine-tuned on the labeled support data of given event,

and then make predictions for testing query data. (1) VQA [ 108 ]. Visual Question Answering

(VQA) model aims to answer the questions based on the given images and is used as a baseline

for multimodal fake news in [  105 ]. (2) att-RNN [ 105 ]. att-RNN is the state-of-the-art model for

multi-modal fake news detection. It uses attention mechanism to fuse the textual, visual and social

context features. In our experiments, we remove the part dealing with social context information,

but the remaining parts are the same. (3) EANN [ 7 ]. EANN is one of the state-of-the-art models for

fake news detection. It consists of three components: feature extractor, event discriminator and fake

news detector. It captures shared features across different events of news to improve generlziation

ability.

Few-shot learning models. We use CNP [ 124 ], ANP [  125 ], MAML [  121 ] and Meta-SGD [ 122 ]

as few-shot learning baselines. (1) CNP [ 124 ]. Conditional neural process is the state-of-the-art

model for few-shot learning. It combines neural network and gaussian process by using a small

set of input-output pairs as context to output predication for given input of data. (2) ANP [ 125 ].

Attentive neural process belongs to the family of neural process which outputs prediction based on

concatenation of learned distribution of context, context features and given input. (3) MAML [ 121 ].
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Model-aganostic Meta-learning is a representative optimization-based meta-learning model. The

mechanism of MAML is to learn a set of shared model parameters across different tasks which

can rapidly learn novel task with a small set of labeled data. (4) Meta-SGD [ 122 ]. Meta-SGD is

one of the state-of-the-art meta learning method for few-shot learning setting. Besides a shared

global initialized parameters as with MAML, it also learns step sizes and update direction during

the training procedure.

The proposed model share the same feature extractor backbone with EANN, CNP, ANP, MAML,

Meta-SGD to study the effects of other designs in addition to benefits of the feature extractor

backbone.

Implementations In the proposed model, the 300 dimensional FastText pre-trained word-embedding

weights [ 133 ] are used to initialize the parameters of the embedding layer. The window size of

filters varies from 1 to 5 for textual CNN extractor. The hidden size df of the fully connected layer

in textual and visual extractor and dimension d are set as 16 which is searched from options {8, 16,

32, 64}. τ decays from 1 to 0.5 as the suggested way in [ 129 ]. The gradient update step is set to 1

an inner learning rate β is set to 0.1 for fine-tune models: MAML, Meta-SGD and our proposed

framework MetaFEND. We implement all the deep learning baselines and the proposed framework

with PyTorch 1.2 using NVIDIA Titan Xp GPU. For training models, we use Adam [  134 ] in the

default setting. The learning rate α is 0.001. We use mini-batch size of 10 and training epochs of

400.

7.4.3 Performance Comparison

Table  7.2 shows the performance of different approaches on the Twitter and Weibo datasets. We

can observe that the proposed framework MetaFEND achieves the best results in terms of most of

the evaluation metrics in both 5-shot and 10-shot settings.

Twitter. On the Twitter dataset in 5-shot setting, compared with CNP, ANP incorporates the

attention mechanism and hence can achieve more informative context information. Due to the

heterogeneity of events, it is not easy for Meta-SGD to learn a shareable learning directions and

step size across all events. Thus, Meta-SGD’s performance is lower than MAML’s in terms of

accuracy. Compared with all the baselines, MetaFEND achieves the best performance in terms of

115



most the metrics. Our proposed model inherits the advantages of MAML to learn a set of parameters

which can rapidly learn to detect fake news with a small support set. Moreover, MetaFEND can

use the support data as conditioning set explicitly to better capture the uncertainty of events and

thus it is able to achieve more than 5% improvement compared with MAML in terms of accuracy.

In the 10-shot setting, as the size of give support data increases, the soft attention mechanism

of ANP unavoidably incorporates the irrelevant data points. In contrast, the proposed model

MetaFEND employs the hard-attention mechanism to trim irrelevant data points from context set

and significantly outperforms all the baselines in terms of all the metrics.

Weibo. Compared with the Twitter data, the Weibo dataset has different characteristics. On the

Weibo dataset, most of the posts are associated with different images. Thus, we can evaluate the

performance of models under the circumstance where support datasets do not include direct clues

with query set. As EANN tends to ignore event-specific features, it achieves the lowest accuracy

among fine-tune models in 10-shot setting. For the few-shot models, ANP and CNP achieves better

performance compared with gradient-based meta-learning methods MAML and Meta-SGD. This is

because the parameter adaptation may not be effective when support data set and query set do not

share the same patterns. Compared with ANP in 5-shot setting, our proposed method MetaFEND

achieves 4.39% improvement in terms of accuracy and 5.51% improvement in terms of F1 score.

The reason is that our MetaFEND can learn a base parameter which can rapidly learn to use a few

examples as reference information for fake news detection. Thus, our proposed model enjoys the

benefits of neural process and meta-learning model families.

7.4.4 Ablation Study

We show ablation study to analyze the role of Hard-Attention and label embedding components.

Soft-Attention v.s. Hard-Attention. To intuitively illustrate the role of hard-attention mechanism

in the proposed model, we show ablation study by replacing hard-attention with soft-attention.

Then we repeatedly run the new designed model on the Twitter dataset five times in 5-shot and

10-shot settings respectively and report the average of accuracy values. The results are show in

the Figure  7.4 . From Figure  7.4a , we can observe that accuracy scores of “Hard-Attention” in

5-shot and 10-shot settings are greater than those of “Soft-Attention” respectively. As the number
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Figure 7.4. The ablation study about (a) Soft-Attention and Hard-Attention and (b)
Label Embedding.

of support set increases, hard-attention mechanism does not have the limitation of soft-attention

mechanism which unavoidably incorporates unrelated data points and significantly outperforms the

soft-attention in terms of accuracy score. Thus, we can conclude that hard-attention mechanism can

take effectively advantage of support set, and the superiority is more significant as we enlarge size

of support set.

w/o Label Embedding v.s. w/ Label Embedding. To analyze the role of label embedding in

the proposed model, we design MetaFEND’s corresponding reduced model by replacing label

embedding with label value 0 or 1. Accordingly, we change the multiplication between output

with label embedding to a binary-class fully connected layer to directly output the probabilities.

Figure  7.4b shows the results in terms of accuracy score. In Figure  7.4b , “w/o label embedding”

denotes that we remove the label embedding, and “w label embedding” denotes the original

approach. We can observe that the accuracy score of “w label embedding” is greater than “w/o label

embedding” in 5-shot and 10-shot settings, demonstrating the effectiveness of label embedding

7.4.5 Case Study

In order to illustrate the challenges of emergent fake news detection and how our model handles

challenges, we show one example in 5-shot learning setting as case study in Fig.  7.5 . As it can

be observed, the four of five news examples in the support set are real news. Due to imbalanced

class condition in the support set, it is difficult for Soft-Attention to provide correct prediction for
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news of interest in the query set. More specifically, Fig.  7.5 shows the attention score values (red

color) between examples in support set and query set based on multi-modal features. Although

the first example with largest attention score value is most similar to news example in the query

set, the majority of context information is from the other four examples due to imbalanced class

distribution. Such an imbalanced class distribution leads to incorrect prediction for Soft-Attention.

The Hard-Attention mechanism can achieve correct result by focusing on the most similar sample

in the support set. Through this example, we can also observe the necessity of event adaption stage.

The posts and images for the same event are very similar and difficult to distinguish. Without event

adaption stage, the model cannot capture informative clues to make correct predictions.

Figure 7.5. Fake news examples missed by Soft-Attention but spotted by Hard-Attention

118



8. ADAPTATION WITH UNLABELED DATA FOR TEXTUAL

ATTRIBUTE VALIDATION

(A version of this chapter has been previously published in KDD 2020 [  9 ].)

8.1 Introduction

Product catalogs are valuable resources for eCommerce website for the organization, stan-

dardization and publishing of product information. Because the majority of product catalogs on

eCommerce websites (e.g., Amazon, Ebay, and Walmart) are contributed by individual retailers,

the catalog information unavoidably contains noisy facts [ 135 ], [ 136 ]. The existence of such

errors results in misleading information delivered to consumers and significantly downgrades the

performance of downstream applications, such as product recommendation. As the magnitude of

product catalogs does not allow for manual validation, there is an urgent need for the development

of automatic yet effective validation algorithms.

In a product catalog, a product is typically associated with multiple textual attributes, such as

name, brand, functionality and flavor, whose values are short texts. Therefore, in this work, we

focus on the important task of validating the correctness of a textual attribute value given a product.

A real example is “Ben & Jerry’s - Vermont’s Finest Ice Cream, Non-GMO - Fairtrade - Cage-Free

Eggs - Caring Dairy - Responsibly Sourced Packaging, Americone Dream, Pint (8 Count)”, which

is the product title of an icecream on Amazon. The attribute “flavor” is a textual attribute, and

for this particular icecream, “Americone Dream” is its flavor attribute value. The objective is to

automatically output whether this value is correct or not for this product.

One may consider to model this task as anomaly detection based on the values of the target

textual attribute, so that anomalies correspond to wrong values. However, this solution is not

applicable to the validation task because: 1) As individual retailers self-report these attribute

values, the set of possible values cannot be predetermined, and thus traditional anomaly detection

approaches cannot work. 2) Textual anomaly detection has been studied and many methods have

been proposed to identify anomalies by extracting distinguishing features from the texts. However,

in the validation task, the correctness of a value is highly dependent on the product. For example,
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“Americone dream" may not be a common piece of textual value, but it is a correct flavor name for

Ben&Jerry icecream.

Motivated by this observation, we propose to verify the correctness of textual attribute value

against the text description of the corresponding product. A detailed description of a product can

be found from the product webpage, which contains rich information about many attributes of the

product. For example, in our example, the title itself already covers the values of several attributes,

such as flavor and ingredients. By cross-checking the textual attribute value “Americone-dream"

for flavor against this description, we can easily verify that this value is correct. However, this

cross-checking cannot be completed by a simple matching of the keywords. We found that a certain

amount of errors are because the retailers often abuse the attribute by filling a real value of another

attribute. Such errors cannot be detected by simply matching the value with product description

text as they indeed can be found there. For example, for value “Non-GMO", it is a wrong value

as of flavor, but could be labeled as correct by a simple matching against the product title of this

icecream.

Therefore, we propose to model the validation problem as the task of automatic correctness

inference based on an input of a textual attribute value and the description of the corresponding

product. This setting is related to the natural language inference (NLI) task, which automatically

determines if a hypothesis is true or false based on a text statement. Recently, powerful neural

network based models, such as Transformer [  137 ] and BERT [  1 ] have shown promising performance

towards NLI task. However, their success relies on sufficient high-quality labeled data, which

requires the annotation of correctness on a large number of hypothesis-statement pairs. This

requirement cannot be satisfied in the textual attribute validation task. There are thousands to

millions product categories on eCommerce website, and thus annotating sufficient labeled data for

all the categories is impossible. If only limited categories are annotated, such labeled data cannot

be applied to other categories. For products in different categories, the product attributes and the

vocabularies of the attributes could vary significantly. For example, even for the same attribute

“flavor”, there is no overlapping values when describing the flavor of seasoning, ice cream and

coffee.

To tackle the aforementioned challenges, we propose a novel meta-learning latent variable

approach, namely MetaBridge, for textual attribute validation. The proposed approach effectively
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leverages a small set of labeled data in limited categories for training category-agnostic models, and

utilizes unlabeled data to capture category-specific information. More specifically, the proposed

objective function is directly derived from the textual attribute validation task based evidence lower

bound, and it seamlessly integrates meta-learning principle and latent variable modeling. We then

propose to solve this problem via a stochastic neural network which has the sampling and parameter

adaptation steps. The benefits of the proposed approach include the following. First, the parameter

adaptation step allows more parameter flexibility to capture category-specific information. Second,

we enforce the distribution consistences between unlabeled and labeled data via KL Divergence,

which makes best use of limited labeled information while extracts most useful information from

unlabeled data. Third, the proposed model is a stochastic neural network where sampling step is

beneficial to the prevention of overfitting. The insights behind our objective function are explored in

our experiments. Experimental results on two large real-world datasets show that proposed model

can effectively generalize to new product categories and outperforms the state-of-the-art approaches.

8.2 Problem Setting and Preliminary

In this section, we first introduce our problem and the few-shot learning setting, then we present

the representative algorithm of meta-learning, its limitations and our intuitions.

8.2.1 Problem Setting

Given a set of product profiles presented as unstructured text data like titles and their corre-

sponding textual attribute values, our objective is to identify incorrect attribute values based on

corresponding product profiles. Note that we have open world assumption thus we cannot construct

a golden list to filter out never-seen attribute values. As the the categories of product are from

thousands to millions and annotation job requires corresponding knowledge, we can only obtain a

small set of annotated data about a subset of product categories. But for each category, unlabeled

data are easily collected. We next formally define the problem we are solving.

Definition 8.2.1. Given a set of product categories C and corresponding products I = {Ic : c ∈ C},

product profiles P = {pi : i ∈ I}, attribute values as V = {vi : i ∈ I}, we aim to identify

X = (P, V ) pair that are incorrect for product I .
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After defining our problem, we introduce our learning setting. Following the few-shot learning

setting [  138 ], in each category c ∼ C, we have a few unlabeled examples xsc = {xsc,i}Ni=1 to constitute

the support set Dsc and have a small set of labeled examples {xqc, yqc} = {xqc,i, y
q
c,i}N+K

i=N+1 as the query

set Dqc . We need to learn from a subset of categories a well-generalized model which can facilitate

training in a new category based on unlabeled support set Dsc and infer the correctness of attribute

values for corresponding products Ic in the same category c.

8.2.2 MAML

We give an overview of Model-Agnostic Meta-Learning method [ 121 ] which is a representative

algorithm of optimization-based meta-learning approaches. First, we use our problem as an example

to introduce the general learning setting of meta-learning methods. The learning of meta-learning

are split into two stages: meta-training and meta-testing. During the meta-training stage, the

baseline learner fθ with parameter set θ will be adapted to specific category c as fθc with the help

of meta-learner M(·) on support set Dsc , i.e., θc = M(θ,Dsc). Such category specific learner fθc is

evaluated on the corresponding query set Dqc . During the meta-testing stage, the baseline learner fθ

will be adapted to testing category c on Dsc using the same procedure with meta-training stage, i.e.,

θc = M(θ,Dsc), and make predictions for the Dqc .

In the MAML, it updates parameter vector θ using one or more gradient descent updates on the

category c. For example, when using one gradient update:

θc = M(fθ,Dsc) = θ − β 5θ L(fθ,Dsc),

where β is inner step size and Dsc is a support set for given category c. The model parameters

are trained by optimizing for the performance of fθc with respect to θ across categories. More

concretely, the meta-objective is as follows:

min
θ
L(fθ) =

∑
c∈C
L(fθ−β5θL(fθ,Ds

c),Dqc),

where Dqc is a query set for given category c.
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Limitations: MAML captures category uncertainty with the help of a few labeled data. Such

mechanism brings expensive and continuous annotation costs. Although we can change the super-

vised loss on support set to unsupervised loss like entropy minimization, the adaptation on unlabeled

data will undoubtedly increase the difficulty of capturing category uncertainty and further degrade

the performance. Moreover, meta-learning methods suffer from overfitting problem especially when

only a small set of labeled data is available.

Key ideas of our solution: To avoid continuous annotation cost, we expect our model to capture

the category-uncertainty via unlabeled data. Thus, how we take advantage of unlabeled data to

benefit our method is a key problem. A simple intuition is that we need to bridge unlabeled data and

labeled data together to stabilize adaptation step. To achieve such goal, we propose a new approach

which can integrate latent variable model with meta-learning framework. The latent variable model

can capture the category distribution via a latent variable which can construct a connection between

unlabeled and labeled data and prevents overfitting with the inherent sampling procedure.

8.3 Methodology

Figure 8.1. The proposed approach MetaBridge. The proposed approach mainly
includes two stages: adaptation and Validation. During the adaptation stage, the
model parameter Θ is updated to Θc accordingly to capture the uncertainty of
category c. During the validation stage, the adapted model Θc is used to validate
textual attributes for products on the category c.
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In this section, we first introduce how we derive our meta-learning latent variable objective

function, then we present our model architecture and the algorithm flow.

8.3.1 Overview

As shown in Figure  8.1 , the proposed MetaBridge mainly includes two stages: adaptation and

validation. During the adaptation stage, the model parameter is updated on unlabeled support

data from given product category; during the validation stage, the category-specific model is used

to make textual validation for products from same product category. To capture uncertainty on

unlabeled data and prevent overfitting, we propose a meta learning latent variable objective function

which includes two terms: inference loss and bridging regularizer. By jointly minimizing both

objectives, we enforce the model i) to learn direct signal from labeled data, and ii) internally

harmonizes the latent structures of the new category and existing category from unlabeled data.

More specifically, the proposed approach is a stochastic neural network which includes sampling

and parameter adaptation steps. Furthermore, the proposed model can enforce the distribution

consistency between unlabeled and labeled data via KL Divergence. Thus, we are able to train

a complicated meta learning Transformer-based model which can jointly processes signals from

textual product description and attribute values to conduct effective inference.

8.3.2 Latent Variable Model

The goal of the proposed algorithm is to learn to infer on various categories even unseen

category with a handful unlabeled training instances. More specifically, for the c-th category,

the corresponding support set xsc is given, we aim to infer yqc based on xqc. Here We denote

xc = {xsc, xqc}, yc = {yqc} for simplicity and hence our objective function can be represented as

follows:

log pΘ(y|x) =
∑
c∈C

log pΘ(yc|xc), (8.1)

where Θ represents the parameter set of the proposed model. For each category c, we only have a

very limited number of labeled data points. To capture category uncertainty, we include a latent

variable z that captures category distribution. This latent variable is of particular interest because
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it can capture the category uncertainty and allows us to sample data for the learned category to

prevent overfitting.

To be clear, we take c-th category as an example. Let p(z, yc|xc) be a joint distribution over

a set of latent variables z ∼ Z and observed variables yc ∈ Y and xc ∈ X for category c. An

inference query involves computing posterior beliefs after incorporating evidence into the prior:

p(z|yc, xc) = p(z, yc|xc)/p(yc|xc). This quantity is often intractable to compute as the marginal

likelihood p(yc|xc) =
∫
z p(z, yc|xc)dz requires integrating or summing over a potentially exponen-

tial number of configurations for z. As with variational autoencoders [  139 ], we approximate the

objective function using the evidence lower bound (ELBO) on the log likelihood. For the purpose

of calculating ELBO, let us introduce an encoder model qφ(z|xc, yc): an approximation to the

intractable true posterior p(z|xc, yc) with a parameter set φ. In a similar vein, we use a decoder

model pθ(yc|xc, z) to approximate the intractable true posterior p(yc|xc, z) with a parameter set θ.

Thus, the parameter set Θ includes {φ, θ}. After introducing the encoder and decoder, we present

how to derive our objective function based on ELBO.

Evidence Lower Bound (ELBO) The ELBO can be shown to decompose into

log pΘ(yc|xc)

≥Eqφ(z|xc,yc)[ log pθ(yc|z, xc)]−DKL(qφ(z|xc, yc) || p(z)).
(8.2)

To better reflect the desired model behavior at test time, i.e., we have a handful training instances

as a support set xsc for each category, we explicitly split xc into support and query sets. Our goal is

to model the conditional of the query set given the support set. Thus, instead of using prior p(z) in

Eq.  8.2 , we propose to use a more informative conditional prior distribution p(z|xsc) as with [  140 ]

and further rewrite our objective function as follows:

log pΘ(yc|xc)

= log pΘ(yqc |xsc, xqc)

≥Eqφ(z|xs
c,x

q
c ,y

q
c )[ log pθ(yqc |z, xsc, xqc)]

−DKL(qφ(z|xqc, xsc, yqc) || p(z|xsc))

(8.3)
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For the encoder qφ(z|xsc, xqc, yqc), since xqc is given and yqc is implicitly encoded into parameter

set φ, we assume z is conditional independent with yqc given xqc and φ. Thus, our objective function

can be simplified as follows:

log pΘ(yqc |xsc, xqc)

≥Eqφ(z|xs
c,x

q
c)[ log pθ(yqc |z, xsc, xqc)]

−DKL(qφ(z|xsc, xqc) || p(z|xsc))

(8.4)

The support set xsc is used to help the proposed model to quickly adapt to new category. Thus, how

we take advantage of this set to benefit our framework is a key problem. To tackle this problem, we

propose to encode the information from support set into our parameter inspired by MAML [  121 ]

and further we can obtain a category-specific model to accelerate unseen category adaptation. We

will introduce how to incorporate information from support set into our framework via parameter

adaptation in the next subsection.

8.3.3 Parameter Adaptation

As introduced in the subsection  8.2.2 , MAML obtains a category specific parameter set using

one or more gradient descent updates based on loss from support set xsc. Considering the support

set in our problem is unlabeled, we redefine the loss function on unlabeled support set by entropy

minimization. Entropy minimization encourages the confidence of predictions and is commonly

used in the semi-supervised learning [ 117 ], [  141 ], [  142 ] and domain adaptation [  143 ]–[ 145 ]. More

concretely, the loss function Lcs on the support set xsc is defined by entropy as follows:

Lcs(θ, φ, xsc) = −Eqφ(z|xs
c)[pθ(z) log pθ(z)] (8.5)

and the parameter adaptation step via one step of gradient descent is defined accordingly as follows:

{θc, φc} = {θ, φ} − β 5θ,φ Lcs(θ, φ, xsc). (8.6)

Here we assume the information of support set is encoded into parameter via gradient descent and

then exclude the xsc from conditionals. Moreover, for the decoder pθ(yqc |z, xsc, xqc), yqc is conditional
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independent with xqc given z since z is the feature representation of xqc . Thus, we can have simpler

equations as follows:

Encoder: qφ(z|xsc, xqc)→ qφc(z|xqc) (8.7)

Decoder: pθ(yqc |z, xsc, xqc)→ pθc(yqc |z) (8.8)

8.3.4 Objective Function

To optimize our objective function, we still need to approximate conditional prior pθ(z|xsc)

which is intractable. As the parameter adaptation step can encode support set into the model and

captures category specific information, hence we propose to use qφc(z|xsc) as a approximation to

p(z|xsc) and then we have our final objective function as follows:

log pΘ(yqc |xsc, xqc)

≥Eqφc (z|xq
c)[ log pθc(yqc |z)]

−DKL(qφc(z|xqc) || p(z|xsc))

'Eqφc (z|xq
c)[ log pθc(yqc |z)]

−DKL(qφc(z|xqc) || qφc(z|xsc))

(8.9)

The objective function includes two terms: the first term is our supervised inference loss on query

samples and the second term is to enforce conditional category distribution qφc(z|xqc) consistent

with conditional distribution qφc(z|xsc), i.e., distributions of unlabeled and labeled data from same

category. The second term can be treated as a explicit bridge between support set and query set. λ is

a hyper-parameter that needs to be set. We explore the impact of λ in the experiment section  8.4.5 .

Lcq = −Eqφc (z|xq
c)[ log pθc(yqc |z)]︸ ︷︷ ︸

Inference Loss

+λDKL(qφc(z|xqc) || qφc(z|xsc))︸ ︷︷ ︸
Bridging Regularizer

(8.10)
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In this work, we assume qφc(z|xqc) and qφc(z|xsc) follow multivariate normal distributions

N (µ(xqc), σ2(xqc)I) andN (µ(xsc), σ2(xsc)I) respectively. The KL DivergenceDKL(qφc(z|xqc) || qφ(z|xsc))

in Eq.  8.10 can be analytically integrated:

DKL(qφc(z|xqc) || qφc(z|xsc))

=
d∑

j=1

(
log σj(xsc)

σj(xqc)
+
σ2

j (xqc) + (µj(xqc)− µj(xsc))2

2σ2
j (xsc)

− 1
2

)
,

(8.11)

where d is the dimension of z. Thus, we only need to calculate category loss term. To enable distribu-

tion qφc(z|xqc) differentiable, we follow previous work [  139 ], [  146 ], [  147 ] to use reparameterization

trick to parameterize z.

Reparameterization Trick Instead of directly sampling from a complex distribution, we can

reparametrize the random variable as a deterministic transformation of an auxiliary noise variable ε.

In our case, to sample from qφc(z|xqc), since qφc(z|xqc) = N (µ(xqc), σ2(xqc)I), one can draw samples

by computing z = µ(xqc) + σ(xqc)� ε, where ε ∼ N (0, I) and � signify an element-wise product.

By passing in auxiliary noise, our proposed model is stochastic and if we do not pass in any auxiliary

noise, then the model is deterministic.

After introducing our final objective function, we will present the detailed architecture and

algorithm flow in the next subsections.

8.3.5 Model Architecture

Our model mainly includes two components: encoder and decoder.

Encoder The encoder in use is Transformer [  137 ], which is a context-aware model and has been

proven powerful in textual classification. The transformer takes a sequence of word tokens as input.

In our problem, the input includes two parts: unstructured product profiles and the corresponding

product textual attribute values. As the length of two parts are usually very different, we use two

Transformers to take two parts separately to obtain fixed-dimensional features. Following [  1 ], the

first token of every sequence is always a special classification token ([CLS]). Accordingly, the

final hidden state corresponding to this token is used as the aggregate sequence representation.

We concatenate the two final hidden states from Transformers and then feed them into two fully
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connected layers with weight matrix W2d×d
µ and W2d×d

σ to output mean µ and log(σ) as suggested

in [ 139 ].

Decoder The decoder is a fully connected layer with weight matrix Wd×2
o to take samples from

inferred normal distribution and output the probability of given attribute values being incorrect.

8.3.6 Training and inference procedures

We first sample a batch of categories and get corresponding support set and query set for each

category. Given the support set , we first update the parameter of encoder and decoder to get

category-specific parameter set θc, φc according to Eq.  8.5 and Eq.  8.6 . The category-specific

encoder takes query set xqc and support set xsc to output the parameters for the distribution p(z|xqc)

and p(z|xsc) respectively. Then we can calculate the Bridging Regularizer in the Eq.  8.10 . We

then sample z′s from the posterior p(z|xqt,i) and the category-specific decoder takes z′s as input to

infer the correctness of attribute values. Thus, our model is stochastic during the training stage.

During the testing stage, the inference procedure is similar with it in the training procedure, the only

difference is that for any data query data xqc,i, its inferred latent code is set to be the conditional mean

µ(xqc,i) = Eqφ(z|xq
c,i)[z] and the category-specific decoder takes u(xqc,i) as input. In other words, we

use the deterministic model in the testing stage to obtain stable inference results without sampling

step.

8.4 Experiments

In this section, we introduce the dataset used in the experiments, present the compared state-of-

the-art baseline models, validate the effectiveness and explore insights of the proposed approach.

8.4.1 Datasets

To fairly evaluate the performance of the proposed approach, we use two internal Amazon

datasets on attributes Flavor and Ingredient respectively. The products in the two datatset are from

thousands of product categories across different domains. When preprocessing the datasets, we

first exclude the products which do not have the attribute of interest. Then we randomly select 100

products as support set and randomly select 10 products from the rest as query set in each category.
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We send query set to ask Amazon Mturkers to identify the correctness of attribute values based

on corresponding product profiles. Each data point is annotated by 3 Amazon Mturkers and the

final label is decided by majority voting. To evaluate the performance of attribute validation models

for never-seen product categories, we split the datasets into the training, validation, testing sets

according to their product categories. Thus, we ensure that they do not contain any common product

category. To evaluate the performance of models under a small data setting, we only use a small

portion of product categories for training purpose and the number of product category in training,

validation and testing are in a 3:1:6 ratio. The detailed statistics are shown in Table  8.1 .

Table 8.1. The Statistics of the Amazon Datasets.
Dataset # of Product Categories # of unlabeled Data # of labeled Data
Flavor 321 32,100 3,210

Ingredient 658 65,800 6,580

8.4.2 Experimental Setup

Metric. We use Precision-Recall AUC (PR AUC) and Recall@Precision (R@P) to evaluate the

performance of the models. PR AUC is defined as the area under the precision-recall curve. Such

a metric is a useful measurement of prediction when the classes are imbalanced. R@P is defined

as the recall value at a given precision. Such a measure is widely used to evaluate the model

performance when a specific precision requirement need to be satisfied.

Baselines. To validate the effectiveness of the proposed model, we choose baselines from the

following three categories: supervised learning, fine-tune and meta-learning settings.

•Supervised Learning We use Logistic Regression (LR), Support Vector Machine (SVM) and

Random Forest (RF) as baselines. The supervised learning models are only trained with labeled

query data and are not updated when testing. The feature vectors are formed by concatenation of

counting the frequencies of specific attribute value in the product textual description, the position

of first appearance of attribute value in the description and the average of attribute value word

embeddings.

•Fine-tune Attribute validation is related to natural language inference (NLI) problem. We

select three state-of-the-art models ESIM [  148 ], Transformer [ 137 ], BERT [ 1 ] as baselines. All
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sublayers of ESIM produce the output with dimension d = 16 except the last output layer. For the

BERT model, we use the output from BERT-base’s last second layer and feed the output into a fully

connected layer with weight matrix W768×16 with ReLU activation function. Then the output goes

through a fully connected layer to output inference results. In the fine-tune setting, the training data

include unlabeled support data and labeled query data. We use the entropy minimization to define

the loss on unlabeled data as [  117 ] and use the cross-entropy to define the loss on labeled data. The

ratio of labeled loss and unlabeled loss is set as 10:1. In the testing stage, the pre-trained model is

first fine-funed on the unlabeled support data of given task with entropy minimization, and then

conduct inference on testing query data.

•Meta-Learning We select two state-of-the-art meta learning models MAML [ 121 ] and Meta-

SGD [  122 ] as baselines. The model architectures of two baselines are identical with Transformers

in fine-tune setting. The meta learning setting is that we use entropy minimization loss on unlabeled

support data to adapt the parameter of models to given tasks, the task-specific parameters will be

evaluated on the query data from same task during training stage. In the testing stage, the baselines

is first fine-funed on the unlabeled support data with fixed steps of gradient updates and then conduct

inference on the testing query data.

8.4.3 Performance Comparison

Table  8.2 shows the performance of different approaches on the Flavor and Ingredient datasets.

We use 100 unlabeled data as support set and 5 labeled data as query set per product category. We

can observe that that the proposed framework achieves the best results in terms of all the evaluation

metrics on both datasets.

Table 8.2. The performance comparison of different methods in the Flavor and Ingredient data.
Setting Method

Flavor Ingredient
PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95 PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95

Supervised Learning
LR 0.6830 ± 0.0000 48.67 ± 0.00 23.24 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.4520 ± 0.0000 18.71 ± 0.00 14.08 ± 0.00 11.67 ± 0.00 11.47 ± 0.00

SVM 0.6408 ± 0.0000 42.37 ± 0.00 13.56 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.3863 ± 0.0000 19.72 ± 0.00 3.22 ± 0.00 3.22 ± 0.00 3.22 ± 0.00
RF 0.6986 ± 0.0095 43.78 ± 1.53 15.81 ± 5.88 4.43 ± 2.81 2.45 ± 2.18 0.4683 ± 0.0137 20.72 ± 1.33 16.15 ± 1.49 14.69 ± 1.06 11.07 ± 1.28

Fine-tune

RNN 0.7092 ± 0.0155 51.09 ± 5.68 34.14 ± 2.85 15.93 ± 4.09 8.35 ± 2.36 0.4388 ± 0.0134 25.88 ± 2.29 20.68 ± 2.49 14.69 ± 2.98 7.69 ± 4.61
ESIM 0.7160 ± 0.0192 54.90 ± 5.26 38.32 ± 5.09 22.22 ± 5.92 7.69 ± 6.62 0.4412 ± 0.0199 23.30 ± 6.42 16.46 ± 6.95 8.89 ± 5.45 5.07 ± 3.88

Transformer 0.7210 ± 0.0434 54.19 ± 10.97 34.21 ± 10.27 19.39 ± 6.72 12.86 ± 3.91 0.4890 ± 0.0203 31.47 ± 2.46 28.05 ± 2.94 22.90 ± 2.94 11.31 ± 8.77
BERT 0.7599 ± 0.0054 63.72 ± 1.27 45.56 ± 3.86 27.76 ± 2.34 18.52 ± 2.76 0.5292 ± 0.0111 34.00 ± 1.21 28.17 ± 1.61 17.00 ± 3.92 13.08 ± 6.04

Meta-Learning
MAML 0.7486 ± 0.0128 61.07 ± 2.55 39.66 ± 3.48 22.62 ± 4.19 15.57 ± 3.71 0.5289 ± 0.0247 34.46 ± 2.43 29.73 ± 3.44 22.48 ± 6.41 16.05 ± 6.16

Meta-SGD 0.7575 ± 0.0126 64.19 ± 3.51 42.10 ± 4.62 25.06 ± 2.83 15.01 ± 4.64 0.5312 ± 0.0141 32.80 ± 3.43 24.95 ± 1.18 22.40 ± 1.19 20.59 ± 1.34
MetaBridge 0.7852 ± 0.0027 69.49 ± 0.99 50.00 ± 1.86 30.77 ± 1.52 22.64 ± 2.37 0.5658 ± 0.0077 39.24 ± 1.60 34.57 ± 2.22 27.00 ± 0.82 21.97 ± 3.52
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On the Flavor dataset, the LR, SVM and RF achieves the similar performance compared with

RNN. The results show that the traditional models can achieve comparable performance with deep

learning models when a small set of labeled data is given. Among the fine-tune models, we can

observe that BERT achieves the better performance compared with RNN, ESIM and Transformer.

The main difference between BERT and other baselines lies in the embedding. The improvement

suggests the pre-trained embedding of BERT is informative. The RNN, ESIM and Transformer use

the same pre-trained fasttext word embedding layer. The comparison between the three baselines

indicate that Transformer architecture can take advantage of training data effectively compared

with other two baselines. For the meta-learning setting, we can observe that MAML achieves more

than 2% improvement in terms of PR AUC compared with Transformer with identical structure.

The reason is that MAML can achieve a base parameter which can easily adapt to new task

compared with semi-supervised loss learning. Besides a good base parameter, Meta-SGD also

learns update directions and learning rates during training procedure. Thus, Meta-SGD achieves

better performance compared with vanilla MAML. It is worth noting that the Meta-SGD achieves

comparable performance with the best baseline BERT but uses much less parameters. The proposed

approach MetaBridge achieves 3.66% improvement over Meta-SGD and 3.33% compared with

BERT respectively in terms of PR AUC. The improvement can also be observed from recall at given

precision. Since R@P=0.8 is similar with annotators’ precision, we also compare the approaches in

terms of this metric. The proposed framework achieves more than 10% improvement compared

with best baseline BERT in terms of R@P=0.8.

On the Ingredient dataset, the RF achieves better performance compared with deep learning

models RNN and ESIM. This further reveals the challenges of deep learning model in the small data

learning setting. Among fine-tuned models, similar results can be observed as those in the Flavor

dataset. BERT achieves the best performance compared with other fine-tuned models. This result

confirms the effectiveness of pre-trained procedure in the small data learning setting. However, a

contradict result with Flavor dataset can be observed from comparison between BERT and Meta-

learning models. The MAML and Meta-SGD achieves the comparable and even better performance

with BERT. The reason is that the vocabularies of ingredients are rarely used in other contexts

hence the information is difficult to be captured without training on the given task dataset. This

improvement shows the potentials of meta-learning models for the downstream tasks, which needs
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models to rapidly learn with a small set of data. Accordingly, the proposed framework achieves

6.98% improvement in terms of PR AUC compared with BERT. Compared with best baseline

Meta-SGD, the proposed framework achieves 6.51% in terms of PR AUC. The similar improvement

can be also observed from performance comparison on R@P=0.8, the proposed framework improves

more than 16% compared with the second best result. Furthermore, we can observe that the proposed

MetaBridge achieves the best performance compared with all the baselines.

8.4.4 Ablation Study

Compared with MAML, our derived objective function has two main differences: stochastic

characteristic and KL Divergence between support and query data. Thus, we are interested in their

roles in the performance improvements. As introduced in the Section  8.3.4 , we cannot simply

remove one of them considering the KL Divergence and sampling are tightly coupled with each

other. Instead, we propose two variants of MAML as baselines to explore the role of stochastic and

KL Divergence respectively. To explore the role of stochastic characteristic, we add random noise

into the input to last layer of MAML and denote it as stochastic variant. To explore the role of KL

Divergence, we reduce sampling step and assume that the posterior distributions of support and

query data are from normal distributions with fixed variances N (µ(xst), 1) and N (µ(xqt ), 1). The

proposed variant is denotes as KL variant.
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Figure 8.2. The changes of PR AUC for the models in term of the number of Epochs.
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We use Flavor dataset as an example. As can be seen from Fig.  8.2 , the highest PR AUC score

of stochastic variant is similar with that of MAML. However, unlike MAML, the stochastic variant

remains highest value without dropping. This shows that the stochastic characteristic can help

prevent overfitting issue. By the comparison between KL variant and MAML, we can observe

the KL variant can achieve a better PR AUC during the all training epochs. This shows the KL

Divergence can construct an effective information flow between support and query data to further

improve the performance. However, the KL variant simply assumes that posterior distributions

are from normal distribution with fixed variances, and the over-simplistic assumption limits the

potential of KL Divergence. By incorporating variances estimation, our proposed framework avoids

the over-simplistic distribution assumption and can achieve better performance compared with KL

variant. In overall, our proposed framework enjoys the benefits of stochastic characteristic and KL

Divergence simultaneously.

8.4.5 Hyperparameter Analysis
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Figure 8.3. The changes of PR AUC with different λ’s.

In our objective function, we use hyperparameter λ to control the strength between Inference

loss and KL Divergence. In this study, we aim to explore the impact of λ in the proposed framework.

We train the proposed framework using different hyperparameter λ on the Flavor Dataset. Fig.  8.3 

shows the PR AUC changes of the proposed model with respect to different λ’s. When λ is set to 0,

the sampling procedure is removed and the model is equivalent to MAML. We can observe that
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such a variant cannot effectively take advantage of unlabelled support data and the best PR AUC

score is lower than that of other approach variants. And, such a variant suffers from the overfitting

issue and converges to worst PR AUC value compared with other models. After changing the λ

from 0 to 0.1, we can observe that the PR AUC values are stably higher than that of the variant with

λ = 0. As the λ value further increases from 0.1 to 1, the proposed framework achieves significant

improvement around 4% in terms of PR AUC compared with the variant λ = 0. This illustrates

that our objective function can take advantage of unlabeled and small labeled data effectively and

improves the generalize ability of the model. When we change value of λ to 3, the PR AUC of model

increases slowly in the first 220 epochs compared with other models. But after 220 epochs, the

model can archive a high PR AUC value. This further confirms the effectiveness of KL Divergence.

8.4.6 Varying Size of Labels

To analyze the impact of the query data size per product category, we train the proposed

approach with different number of query data as 3, 5, 10 per category. The procedure is repeated

five times and we report average performance with corresponding standard deviation. To be simple,

we denote model variant by its name and number of query data. For example, the MAML which is

trained with 3 query data per category is denoted as MAML3. Figure  8.4 shows the performance

comparison of the models with different number of query data in terms of PR AUC (Fig.  8.4a ) and

R@P=0.8 (Fig.  8.4b ). When query data number is 3, our proposed framework achieves around 5.5%

improvement compared with MAML3 in terms of PR AUC. This demonstrates the effectiveness of

our model with a smaller set of labeled data available. The reason is that our proposed framework

can caputre category uncertainty via unlabeled data and enforce distribution consistence between

unlabeled support and labeled query data. Thus, the improvement of our proposed framework over

MAML is larger when the number of query data is smaller. As the number of query data increases,

the performance values of MAML and our proposed framework improve significantly. This shows

that meta-learning models can effectively take advantage of labeled data. For all three settings, our

proposed framework shows significant improvement compared with MAML. The improvement

further confirms the superiority of our proposed framework.
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Figure 8.4. The performance comparison of models with different numbers of query
data per product category.

The similar results can be observed from Fig.  8.4b . The R@P is an important metric when we

evaluate our model in the real setting. Our model achieves around 40% and 30% improvement

respectively over MAML in terms of R@P=0.8 when the number of query data is set to 3 and 5.

When the number of query data is set to 10, the R@P of our model is 53.6% which is higher than

that of our proposed framework with 5 query data more than 6%. This reveals the potential of our

model if more labeled data is available.
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9. RELATED WORK

Minimally-supervised Learning. Recent works have explored unsupervised learning [  1 ]–[ 3 ],

[ 139 ], [ 149 ]–[ 152 ] and semi-supervised methods, including data augmentation [  153 ]–[ 156 ], self-

training [ 6 ], [  36 ], [  50 ], [  87 ], [  157 ], [  158 ] and contrastive learning [ 159 ]. To alleviate the label

shortage issues in real-world setting, many works explore how to incorporate external knowledge

into model design especially in medical applications [  24 ], [ 160 ]–[ 164 ]. The knowledge are usually

referred to as well-curated information in structured [ 165 ]–[ 167 ] or unstructured types [ 23 ], [ 168 ]–

[ 170 ]. GPT-3 [  64 ] leverages massive scale with 175 billion parameters to obtain remarkable few-

shot performance on several NLU tasks given natural language prompt and a few demonstrations for

the task. Recent works [ 66 ], [  88 ] extend this idea of prompting to language models like BERT [ 1 ]

and RoBERTa [ 2 ].

Light-weight Learning. The standard approach to fine-tuning operate by tuning all of the

trainable model parameters for every task. Recent efforts have focused on tuning large PLMs in

a lightweight manner by updating a small set of parameters while keeping most of parameters in

PLMs frozen, including prefix tuning [  171 ], prompt token tuning [ 74 ] and Adapter tuning [  72 ],

[ 75 ]. All of the above works focus on fully supervised settings with thousands of labeled examples

using classic fine-tuning methods. In contrast, in this work, we focus on few-shot learning settings

leveraging prompts for model tuning. In the process, we make several observations regarding the

design and placement of adapters in few-shot settings in contrast to its resource-rich counterpart. A

contemporary work [  172 ] pre-trains adapters with full supervision and demonstrates applications in

few-shot settings.

Meta-learning has long been proposed as a form of learning that would allow systems to

systematically build up and re-use knowledge across different but related tasks [  5 ], [  9 ], [  173 ].

MAML [  121 ] is to learn model initialization parameters that are used to rapidly learn novel tasks

with a small set of labeled data. Following this direction, besides initialization parameters, Meta-

SGD [  122 ] learns step sizes and updates directions automatically in the training procedure. As

tasks usually are different in the real setting, to handle task heterogeneity, HSML [  123 ] customizes

the global shared initialization to each cluster using a hierarchical clustering structure. The event
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heterogeneity is widely observed for fake news detection, where nonexistence of hierarchical

relationship in news events makes this task more challenging.

Neural process approaches [ 124 ], [ 125 ], [ 174 ] combine stochastic process and neural network

to handling task heterogeneity by conditioning on a context set. Conditional Neural Process

(CNP) [ 124 ] and Neural Process (NP) [ 174 ] use neural networks to take input-output pairs of support

set as conditioning for inference, incorporating task specific information. However, these two works

aggregate the context set by average or sum, ignoring different importance among context data

samples and thereby leading to unsatisfactory performance. Attentive Neural Process (ANP) [ 125 ]

incorporates attention mechanism into Neural Process to alleviate such a issue. However, ANP

still suffers from underfitting issue due to fixing parameters for different tasks. Additionally, ANP

directly concatenates the label numeric values with feature representation, discarding the categorical

characteristics of label information.

Few-shot NER aims to build a model that can recognize a new class with a small number of

labeled examples quickly. Recent works [  15 ]–[ 19 ] exploit prototype-based methods to conduct

NER tasks. Since tokens or entities belonging to the same entity class are not necessarily close to

each other, prototype-based methods usually end up learning noisy prototypes and may not achieve

satisfactory performance. To further improve few-shot performance, [ 15 ], [ 175 ] explores different

pre-training strategies for few-shot NER, and [  5 ], [  15 ] propose to leverage self-training to take

advantage of additional unlabelled in-domain data. Although aforementioned few-shot NER works

show the potential of additional data in improving performance of few-shot NER, they still suffer

from the limitations of prototype or one-hot representations of labels in transferring knowledge.

Moreover, the aforementioned models cannot be applied in the zero-shot learning setting due to

either reliance on labeled support set or the adoption of one-hot label representation.

Zero-shot NER is to build a model that can recognize new classes without using corresponding

labeled data. This setting is rarely studied in NER task. Zero-shot NER is important and practical

in the real scenario since the annotations may not be accessible due to privacy and compliance

restrictions for some sensitive user applications. [  176 ] has worked on zero-shot sequence labeling

task by using attention to infer binary token-level labels. However, their token level predictions

are constrained to being binary and has to rely on sentence labels. These limitations prohibit the

use of this method for NER task. MRC-NER [ 22 ] formulates NER task as a machine reading
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comprehension task and enables zero-shot NER. However, the inference of MRC-NER for the

single sentence needs to be conducted multiple times to collect results corresponding to all the

entity types of interest, incurring expensive inference cost. Moreover, the reading comprehension

framework needs to be trained with large-scale dataset and is not effective in the few-shot setting.

[ 177 ], [ 178 ] propose to incorporate entity description for zero-shot entity-linking task. Other

zero-shot problems studied in NLP involve text classification [ 26 ], entity typing [  179 ], word sense

disambiguation [  180 ] and relation extraction [  181 ]. These problems have different settings and

challenges compared to zero-shot NER.

Fake News Detection. Many fake news detection algorithms try to distinguish news according

to their features, which can be extracted from social context and news content. (1) Social context

features represent the user engagements of news on social media [  97 ] such as the number of

followers, hash-tag (#), propagation patterns [ 106 ] and retweets. However, social context features

are very noisy, unstructured and labor intensive to collect. Especially, it cannot provide sufficient

information for newly emerged events. (2) Textual features are statistical or semantic features

extracted from text content of posts, which have been explored in many literatures of fake news

detection [ 97 ], [ 182 ], [ 183 ]. Unfortunately, linguistic patterns are not yet well understood, since they

are highly dependent on specific events and corresponding domain knowledge [ 95 ]. To overcome

this limitation, approaches like [ 96 ], [  111 ], [  119 ], [  120 ], [  184 ] propose to use deep learning

models to identify fake news and have shown the significant improvements. (3) Visual features have

been shown to be an important indicator for fake news detection [  94 ], [  97 ]. The basic features of

attached images in the posts are explored in the work [  94 ], [ 185 ], [ 186 ]. we consider multi-modal

features when identifying fake news on social media. To tackle multi-modal fake news detection,

in [  105 ], the authors propose a deep learning based fake news detection model, which extracts the

multi-modal and social context features and fuses them by attention mechanism. To detect fake

news on never-seen events, Wang et al. [  7 ] propose an event-adversarial neural network (EANN)

which can capture event-invariant features for fake news detection.

Attribute validation. Attribute validation task is related to anomaly detection which aims to

find patterns in data that do not conform to expected behavior [  187 ]. In the anomaly detection, the

most related line of research is log anomaly detection which aims to find text, which can indicate

the reasons and the nature of the failure of a system [  188 ]. The traditional methods typically extract
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features from unstructured texts and then detect anomalies based on hand-craft features. Compared

with traditional learning, deep learning models have achieved an improvement in the performance

of anomaly detection due to their powerful abilities [ 188 ]. The deep learning anomaly detection

(DAD) approaches [ 189 ], [  190 ] model the log data as a natural language sequence and apply RNN

and CNN to detect anomalies. Attribute validation task is also related to natural language inference

(NLI). NLI is a classification task where a system is asked to classify the relationship between

a pair of premise and hypothesis as either entailment, contradiction or neutral. Large annotated

datasets such as the Stanford Natural Language Inference [  191 ] (SNLI) and Multi-Genre Natural

Language Inference [  192 ] (MultiNLI) corpus have promoted the development of many different

neural NLI models [ 1 ], [  137 ], [  148 ], [  193 ] that achieve promising performance. However, NLI task

usually requires large annotated datasets for training purpose. While pre-training is beneficial, it is

not optimized to allow fine-tuning with limited supervision and such models can still require large

amounts of task-specific data for fine-tuning [  194 ], [ 195 ].
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10. CONCLUSIONS

Large-scale deep learning models have become the standard starting point and reaches previously

unattainable performance for various tasks. To further scale deep learning, we pursue to develop

systems with human learning abilities. Humans are able to learn new concepts with few examples

based accumulated knowledge and adapt to unforeseen circumstances quickly. Specifically, we

achieve this goal from two perspectives: few-shot learning and domain adaptation.

• Few-shot Learning. Conventional machine learning paradigms usually treat each class as a

one-hot vector (represented by a class label), which does not carry semantic information of

classes and cannot form effective supervision for model training in low resource scenarios.

Meanwhile, the trained model could be highly associated with known classes and is difficult

to transfer learned knowledge to novel classes. Towards this, we propose a method which

could learn from semantic natural language supervision. Such a design provides a flexible

and precise way to capture the semantics of entity classes and brings substantial improvement

in low-resource scenarios. Even though semantic supervision signals largely improve the

few-shot learning abilities, the gap between few-shot learning and full-supervised learning

still exists. Then, we proposed a meta self-training framework which leverages very few

manually annotated labels and a large amount of unlabeled data for model training. While

self-training serves as an effective mechanism to learn from large amounts of unlabeled data

via iterative knowledge exchange – meta-learning helps in adaptive sample re-weighting to

mitigate error propagation from noisy pseudo-labels. Pre-trained language models (PLM)

have been steadily increasing in size in terms of trainable parameters ranging from millions

to billions of parameters, increasing both the computational cost and the serving cost in terms

of the storage, where every task requires its customized copy of the large model parameters.

We present a new fine-tuning method LiST that improves few-shot learning ability and

parameter-efficiency over existing fine-tuning strategies.

• Domain Adaptation. One typical paradigm to handle domain shift is to repeat the procedures

of collecting data from novel domains, re-training the model and re-deploying trained models.

Such a paradigm is not only computationally expensive but time consuming. To address
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those issues, we elaborate on four models which address domain adaptation with different

data scenarios in target domains of interest. (1) No data in target domains. which uses event

discriminator to measure the dissimilarities among different events, and further learns the

event invariant features which can generalize well for the newly emerged events. (2) Weak

supervision. We develop a framework, namely WeFEND, which can leverage users reports

as weak supervision to learn new patterns from novel events for fake news detection and

significantly reduce data annotation efforts and costs. Furthermore, a data selector based

on reinforcement learning techniques is integrated to choose high-quality samples from

the weakly labeled data and filter out those low-quality ones that may degrade the detectors

performance. (3) Few labels. We propose a quick adaption model design, namely MetaFEND,

which is able to learn new knowledge within few labels. More specifically, as the writing style,

content, vocabularies and even class distributions of news on different events usually tends

to differ, MetaFEND learns to leverage labeled data instances as conditioning, addressing

limitations of meta-learning in handling heterogeneous domain distributions. (4) Unlabeled

data. we propose a meta-learning latent variable approach, namely MetaBridge, for product

attribute validation task. The proposed approach effectively leverages a small set of labeled

data in limited product types for training and enables quick adaptation to more than thousands

of types with unlabeled data.
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