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ABSTRACT

One of the longstanding goals of photonics research has been to obtain strong optical nonlinearities.
A promising method to achieve this goal is to operate in the so-called epsilon near zero (ENZ)
spectral regime, where the real part of the dielectric permittivity changes sign. If accompanied by
low losses, this region enables a platform to achieve extraordinarily high nonlinear response, along
with many other interesting optical phenomena. In this work, some of the common all-optical
switching structures employing homogeneous ENZ materials are investigated under varying
conditions of frequency, incidence angle, and polarization. The optimum switching conditions
have been highlighted to pave the way forward to the best experimental configurations in future
studies. Moreover, the properties of some of the emerging novel plasmonic materials such as
aluminum-doped zinc oxide (AZO) and titanium nitride (TiN) are investigated, specifically for
ENZ applications. Their thickness-dependent crystalline structure and carrier densities are
employed as a method to control their optical properties. A near-perfect absorption scheme is
demonstrated utilizing the Ferrell-Berreman mode occurring at the ENZ region of ultrathin AZO
and TiN film. The ENZ frequency and the associated absorption peak of AZO are engineered
through thickness-dependence to cover most of the telecom range. This work covers the theoretical
background for ENZ nonlinearities and looks into the materials aspect for better control of

nonlinearities in experimental realizations.



1. INTRODUCTION

The propagation of light is governed by Maxwell’s equations for which the electric field and the
magnetic field components of the light are coupled. This mechanism gives rise to wave
propagation where the time variation of the electric field and the magnetic field acts as sources
driving each other. If the wave propagates inside a material, the charges inside the medium
rearrange themselves andgives rise to an additional polarization field. The contribution of magnetic
and electric polarization fields can be thought of as introducing additional source terms to
Maxwell’s equations. In the end, the total response of the material can be expressed by the electric

permittivity (&) and magnetic permeability () tensors which reduce to numbers for isotropic

materials. For most materials, the magnetic response is weak and the magnetic permeability is
equal to that of vacuum. Therefore, most of the information about a material's response to light
can be inferred from the electric permittivity. Consequently, engineering or exploring materials
with an exotic electric permittivity is a key step in controlling and modulating the light flow. For
example, plasmonics employs the negative electric permittivity of metals to create better light
confinement and strong field enhancement at the nanoscale2. Similarly, high index dielectric
materials are proposed for reducing the diffraction limit for low-loss light manipulation®*,

A new group of singular materials are the so-called epsilon-near-zero (ENZ) materials where the
real part of the electric permittivity is close to zero. When the imaginary part, which is associated
with losses, is low enough, the refractive index defined as the square root of permittivity also
vanishes, giving rise to near zero index (NZI) behavior. In this case, the induced polarization field
and the incident electric field cancel each other, killing the spatial variation throughout the medium.
This causes the wavelength and the phase velocity of light to diverge to infinity. A plethora of
applications utilizing these properties has been shown including light tunneling>®, photonic
doping’, directional radiation® and perfect absorption®**.

Apart from the aforementioned applications, ENZ materials most significantly enable

exceptionally strong light-matter interactions. Although conventionally small, nonlinear effects
are crucial in achieving all optical control of light, nonreciprocity and photonic circuitry. With

10



ENZ materials it is possible to achieve strong nonlinear effects with femtosecond recombination

rate on the nanoscale.

The enhancement of the nonlinearities in the ENZ region is twofold. First, the group velocity in

the ENZ region becomes diminishingly small as writing v, =da/ dk and expanding results in;

CyJ e
Vo = w, d de (1.1)
e+ 2(e-H =%y
H 2 do do

which results in zero when the permittivity is zero. The near zero group velocity is known as the

slow light effect'>!3, which increases the effective light-matter interaction time without the need
for long interaction lengths. A second mechanism arises due to the enhancement of the field itself
in the ENZ materials. Since the real part of the ENZ material’s permittivity crosses zero, the normal
component of the electric field is enhanced at the interface. This can be understood by examining
the charge-free boundary conditions of the normal electric field component at the interface &, Ei- =
&,E3, where the subscripts denote differing materials. These effects have been employed to
demonstrate enhanced nonlinearities in the ENZ region including enhanced Kerr effect!*!°, all-
optical switching'®, frequency translation'’'® and enhanced third®?! and high harmonic

generation??.

One of the challenges of realizing the ENZ phenomena is finding the correct material platform
with low enough losses that would give rise to NZI behavior. ENZ materials can be classified into
two categories; homogeneous ENZ materials consisting of a single material employed at its
crossing frequency and engineered structures showing artificial ENZ behavior. Engineered
structures are employed when the naturally occurring materials are shorthanded. Also called
heterogonous ENZ materials, these structures have the advantage of better tunability and lower
losses, at the expense of higher complexity and larger size. Artificial ENZ metamaterials can be
created employing waveguides at the cut-off frequency?, hyperbolic metamaterials®#?°, and
photonic crystal slabs at the Dirac Cone®®. Since the ENZ is an effective phenomenon, these

structures need to be at least a couple wavelengths long.
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Homogeneous ENZ structures have the advantage of having lower complexity and showing ENZ
behavior locally. This is a crucial aspect as it enables ENZ materials to be integrated in other
structures and have much smaller dimensions compared to structured heterogeneous ENZ
materials. However, the lack of control of the ENZ wavelength and high material losses in many

plasmonic material platforms is a major challenge for implementing homogenous ENZ materials.

Although many materials have natural crossing frequencies occurring in their dispersion diagram,
the associated losses might be too high, and the position of the crossing might not coincide with
the desired range. Common plasmonic materials like gold and silver have their crossing points in
the ultraviolet region and have higher losses at their ENZ frequency. Novel plasmonic materials
like transition metal nitrides, which proved to be a promising CMOS compatible platform with
refractory properties?”-?¢, show better tunability, but high losses are still a challenge to overcome.
Phononic materials (such as SiC) exhibit significantly lower losses but the crossing occurs in mid-

IR range away from the telecom.

One promising homogeneous ENZ material class is transparent conducting oxides (TCOs). TCOs
such as doped oxides of zinc or indium are advantageous because their ENZ regime is located in
the telecom range (1.3 — 1.5 um), and they exhibit low losses (small imaginary part of the electric
permittivity) 2% while offering an ultrafast response time on the scale of femtoseconds at the
ENZ3-%, Importantly, the optical properties of TCOs, including losses and the location of the
ENZ region, can be effectively tailored by altering the growth/deposition conditions, thickness,
and dopant ratio®8, By utilizing TCOs as ENZ materials, ultra-fast switching®*°, enhanced third
harmonic generation!®%41  resonance pinning®42#4, optical time reversal*®, and adiabatic

frequency conversion*®~8 have been demonstrated.

In this work, first, we analytically investigated the optical switching behavior specifically for
TCOs. Reflection and transmission modulation are outlined concerning a broad range of angles
and wavelengths. The aim is to highlight an optimum structure for switching and to rigorously
model the expected results for experiments. The second section consisted of an investigation of
thickness dependent properties of homogeneous ENZ materials and its effect on ENZ related

12



absorption applications. Moreover, the characteristics of novel plasmonic materials are

investigated in the respective chapter.

13



2. ALL OPTICAL SWITCHING AT ENZ

2.1 Introduction

The motivation of this chapter is to act as a primer, going through common experimental
configurations and homogeneous ENZ schemes, particularly for all-optical switching experiments.
We analyze the optical response of the structuresin terms of their reflection and transmission when
it is switched. The ENZ material used throughout this chapter is modeled as a TCO with
comparable optical parameters as of those that have been reported in experimental studies. The
findings of this part will help design the best configurations for pump-probe spectroscopy to
extract how material properties change from the dynamic reflection and transmission data. These
configurations also form the basis for more complex experiments such as time refraction?®,
negative refraction in time-varying media®®, and photonic time crystal design®. Understanding all-
optical modulation through interband and intraband pumping serves as the first step to developing
more complex experiments involving the dynamic modulation of epsilon-near-zero materials.
Most of the data presented in this chapter are taken verbatim from the paper “Fruhling, C.; Ozlu,
M. G.; Saha, S.; Boltasseva, A.; Shalaev, V. M. Understanding All-Optical Switching at the
Epsilon-near-Zero Point: A Tutorial Review. Applied Physics B: Lasers and Optics 2022, 128 (2),
1-12”.

2.2 Switching Mechanism of Homogeneous ENZ Materials

All-optical switching in ENZ materials is driven by modulating the refractive index, which in a
non-magnetic material is given by n = /. The change of the refractive index is then An o« Ae/Ve,
which indicates that large changes in the index are expected near the ENZ point even for a small
change in the permittivity >(Fig. 1b). This is one of the key advantages of using ENZ materials
for all-optical switching 31°2°*. However, as seen in Fig 1b, the modulation of the refractive index
is largest near the ENZ point but not exactly at it and the peak changes position with different
levels of modulation. This is due to the nonzero imaginary permittivity and the shifting real

permittivity with increasing pump fluence.
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The permittivity can be modulated by optically pumping the material. We study the effects of
optical pumping on ENZ materials using the Drude model®>*® that describes the permittivity of
free electrons and can model reasonably well electrons in the conduction band. The permittivity is
described as

. w3 2.1
€= Epe T LEm = €0 — (u2+iz;‘oa) ( )
_ wj 2.2
gRe = &xp — (.02+l'% ( )
e _ wplo (2.3)

Im w(w2+T3)
w2 =2 (2.4)

Egm

In Eq. (1), &5 is the response in the high frequency limit, w, is the plasma frequency of the
electrons in the conduction band and I, is the damping rate of plasma oscillations. The real and
imaginary parts are given by Egs. (2.2) and (2.3), respectively. In Eq. (2.4), for the plasma
frequency, N is the electron number density, e is the charge, and ¢, is the permittivity of free
space. The effective mass m”is defined as m* = am,, where « is a scalar quantity and m, is the
mass of an electron in free space. If we assume a relatively small damping factor (which is valid
for many TCOs at the ENZ point), the ENZ point occurs at wgyz = w,/v/€s . Therefore, one can
use the plasma frequency to control the ENZ point and thus to control the amplitude and sign
modulation of reflectance and transmittance. This also gives a means to control the spectral
position of the resonance for thin ENZ films.

In TCOs, an optical pulse changes the plasma frequency (w,) by either changing the number

density of free electrons (N) or the average effective mass (m*). The bandgap energy supplies a
natural distinction between two regimes of optical manipulation of the plasma frequency. For
pump photon energies higher than the bandgap, electrons are promoted from valence to conduction
band, which we call interband transitions (left Fig. 1a). Interband transitions naturally add more
electrons to the conduction band and thus increase the plasma frequency 2°7. For photon energies
less than the bandgap, intraband transitions move electrons to higher energies, (right Fig. 1a) where
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due to the non-parabolic nature of the band structure the effective mass is increased®®%°. Thus, a
decrease in the plasma frequency is expected 32°3-°561 The changes to the optical properties
happen on the sub-picosecond timescale. Eventually, the electrons either cool down (in case of
intraband pumping) or recombine with holes in the valence band, and the material returns to its

original state (in case of interband pumping) (Fig. 1a).
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Figure 1 a A typical experimental setup for optical pump-probe experiments. An ultrafast laser pulse is
generated and used to create a probe beam at the desired frequency. Schematics for interband and
intraband pumping are shown on the sides. b The change in index of refraction for different relative
changes in the plasma frequency 4w, /w, near the ENZ point (denoted with vertical line). See Table 1 for
the initial parameters of this plot. ¢ A schematic of a dip in transmission as material is changed due to
optical pumping. Two observation points are noted with vertical solid and dashed lines. The arrows
indicate the direction of change seen by the observer. At the wavelength indicated by the solid line,
increasing pump results in increasing the transmission. But under the same conditions, a probe at the
dashed line observes first a decrease in transmission at low pump intensities, followed by an increase at
higher intensities.

The damping factor in TCOs is also modulated by optical pumping. The rate of collisions between
free electrons is described by the damping factor I,, and depends on the number density of
electrons, which is increased by interband pumping. The damping affects the ENZ point, red-

shifting it for larger values of I}, and contributes to the width of optical resonances (see Sec. 5).
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The center of Fig. 1a illustrates the conventional transient pump-probe experiment. In many
experiments involving TCOs, the pump is a Ti-sapphire laser at the fundamental wavelength (~
800 nm), or is frequency-converted by passing through a nonlinear crystal or an optical parametric
amplifier. The probe pulse is a femtosecond pulse close to the ENZ wavelength of the material.
The sources can vary depending on the type of the experiment, the kind of excitation targeted, and
the ENZ point of the materials being investigated. The optical pump generates (interband) or
excites (intraband) free carriers in the conduction band of a material, causing the electric
permittivity and the refractive index to change. The probe pulse then measures changes in

reflectance, transmittance, or both.

The measured response depends on the pump-pulse duration (10-100 fs), the probe-pulse duration
(10-100 fs), and the material relaxation (typically ps-ns). The changed reflectance/transmittance
measured at a specific pump-probe delay is generally an ‘average’ response during the probe’s
temporal pulse-width which is short compared to the material relaxation. Under that assumption,
our calculations of the dynamic changes measured by the probe pulse can be carried out with a
static calculation. More complicated models have been employed that, for example, take into

account the relaxation of the material using a two-temperature model®*®2

Intuitively, one might expect the change in the transmittance or the reflectance of a material at a
particular wavelength to be monotonic. For example, an increasing interband pump generates free
carriers, making the material more metallic, thereby decreasing the transmittance at longer
wavelengths, and increasing the reflectance. However, we show that ENZ facilitated resonances —
especially for thin films — complicate this intuitive picture. The reflectance and transmittance
dynamics can exhibit nonmonotonic trends as the pump intensity is increased. As shown in Fig.
1c, the transmittance measured at one particular wavelength can be monotonically increasing,
while at other wavelengths it can first decrease and then increase. This is experimentally relevant
when measuring at the steady-state ENZ point, since the minimum of transmittance or reflectance
may not occur at the exact ENZ point. We investigate the monotonicity of modulation for different

pump-probe configurations in the subsequent sections of this tutorial.
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The above analysis describes the physical framework for all-optical switching. However, we also
need metrics to compare different configurations. An optical switch should be judged on its
modulation depth between high and low states and the amount of pumping required to initiate
switching. The switching is realized in the reflectance and transmittance changes which we scale
to the incident power of the probe beam. Therefore, the switch with the best contrast will have an
absolute change in reflectance or transmittance close to one and will have a relative change much
greater than one. We now explore standard experimental configurations utilizing the concepts
covered in this section. First, we discuss cases of optically thick layers of ENZ material and then

move on to thin cases.

2.3 Semi Infinite Thickness and Optically Thick ENZ Films

The first experimental configuration to examine is the interface between a semi-infinite ENZ
material and vacuum. The interaction between optical pump and ENZ is modeled using the
Transfer Matrix Method (TMM)®. TMM has been employed both for theoretical analysis®* and
for verifying experimental works®. For all examples discussed below, unless stated otherwise, we
use the initial parameters given in Table 1 for the ENZ material. Interband and intraband pumping

are introduced by relative changes to the plasma frequency.

Table 1 Optical properties of a hypothetical ENZ material described by Eq. (1).

Drude Model parameters (unpumped) Value
€oo 3
wp 2.4 x 10%° rads/s
£ 3.8 x 10'*Hz
T, 2.4 x 1013 Hz
Agnz 1358 nm

The TMM models the reflectance, transmittance and absorptance. The steady-state reflectance of
a semi-infinite ENZ material (Fig. 2a) generally increases with increasing wavelength across the
ENZ point (vertical solid black line), as the material transitions from dielectric to metallic.
Intraband pumping decreases the plasma frequency, thus raising the ENZ point and shifting the
dielectric-metallic transition to higher wavelengths. The absolute modulation of the TM polarized

reflectance ARry = Rpmoduiatea — Rsteaay—-state (F19. 2D) decreases to the right of the steady-state
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ENZ point as the spectrum shifts. The modulation is greatest near the ENZ point where the

dielectric-metallic transition occurs.

As with any semi-infinite case, common optical phenomena such as the Brewster angle and the
critical angle for total reflection are apparent. The Brewster angle described by 65 =
tan~Y(ngyz/Myac) » curls from near the ENZ wavelength to approximately the 60-degree mark.
This is the angle where tangential components of the TM polarized incident and transmitted wave
exactly match at the boundary, and thus there is no reflected TM wave (impedance matching
condition is met). The total reflection angle is described by 8, = sin™(ngyz/nyqc), Which for
our example occurs between 25 and 90 degrees. Since the refractive index of the ENZ medium is
complex due to absorption, the Brewster and the critical angle do not have their traditional
meanings® derived for real refractive index, however, the effects can still be seen (Fig. 2)¢"%. For
TM polarization, ENZ point shift induces the largest relative reflectance change ARy /Rry along
the Brewster angle where the steady-state reflectance is nearly zero (Fig. 2c). Because of the near
zero reflectance at the Brewster angle, small changes in the absolute reflectance can be amplified
into large relative changes, a technique utilized in extracting the carrier dynamics of materials
through pump-probe spectroscopy. However, for all-optical switching, larger changes in the

absolute reflectivity are desired.
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Figure 2 a The unmodulated reflectance of TM polarized light from a semi-infinite ENZ material. Inset:
reflectance of TE polarized light. b absolute change in reflectance for intraband pumping (4w, /w, =
—0.12). ¢ The relative change in reflectance for the same conditions as b. The black vertical line is the
unmodulated ENZ point. This is consistent for all similar figures. The red dashed lines are the Brewster
0 and critical 6, angles.
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These effects also are observed in the more practical case of optically thick ENZ layers (Fig. 3).
Additionally, multiple reflections between surfaces results in the well-known Fabry-Pérot
resonances for wavelengths smaller than the ENZ point. We consider a 900 nm ENZ film deposited
on glass (ng;qss = 1.5) and interfacing with vacuum on the other side. The 900 nm thickness was
chosen so that Fabry-Pérot resonances are observed in Figure 3. The increasing interaction
between surfaces also leads to a larger absorption at the ENZ point attributed to the electric field

enhancement.

Clearly these configurations are capable of optical switching as we can see modulation on the order
of ARy ~ 0.5. The single step-like transition from non-reflecting to reflecting allows for a
broadband optical switch that can be operated with both interband or intraband pumping. The
relative change in reflection, however, is relatively small because of the large wavelength range
over which the dielectric-metallic transition occurs leaving room for improvement. Even still, such

optically thick configurations have been tested with great success.

For example, Kinsey et al.3! demonstrated picosecond amplitude modulation in optically thick
aluminum-doped zinc oxide with an interband pump, while Clerici et al.>> showed even faster
modulation is possible by combining both interband and intraband pumps. Modulation of the
Fabry-Pérot modes has also been observed for example in Yttrium doped cadmium oxide (CdO)
by Saha et al*®. In telecommunication wavelengths where the optically thick CdO film is dielectric,
moderate transmittance modulations of around 4% were observed. On the other hand, for the same
film near the ENZ in the mid-infrared regime, a similar pump-fluence showed reflectance
modulations of 135%, further underpinning the importance of ENZ induced modulation for

lithography-free optical switching.
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Figure 3 Modulated (Aw,/w, = —0.12) TM reflectance a and TM transmittance b from an ENZ material

pumped with intraband laser. The inset of a shows the experimental configuration of the ENZ deposited
on a glass substrate. The thickness of ENZ material is 900 nm. Fabry-Pérot modes can be seen in the
lower left (small wavelength and small incident angle).

These configurations can also be used to study the optical properties of materials by performing
pump-probe spectroscopy near their ENZ regime. The large changes in the relative reflectance
minimum near the ENZ point makes such experiments quite useful for extracting otherwise hidden
dynamics in materials. In such experiments, materials are pumped with a high-intensity laser pulse
and a lower intensity probe pulse extracts the dynamics. This approach is particularly fruitful at

the ENZ point where small changes in the index due to carrier dynamics are amplified.

For example, titanium nitride, a refractory ceramic used for many on-chip and hot-electron
applications®?%°, has an ultrafast electron-phonon response time, which was not apparent in pump-
probe spectroscopy experiments performed on it with a probe far from its ENZ value®?. However,
subsequent experiments on TiN and ZrN performed near their respective ENZ points showed this
sub-picosecond relaxation time quite clearly, making a strong case for performing pump-probe

experiments for material characterization near the materials’ ENZ points®2,

2.4 Thin ENZ films

As the thickness of the ENZ layer decreases beyond the skin depth, the non-radiative surface

modes on the upper and lower boundaries start to couple and split into symmetric (long-range) and
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antisymmetric (short-range) modes’™. If the film thickness is further reduced, these two modes
become even more distinctive, and the symmetric mode forms a flat dispersion curve at the ENZ
spectral region called the ENZ mode. The flat dispersion of the ENZ mode implies a reduction of
the group velocity that is often referred to in slow light schemes’ "3, Additionally, there is a mode
in the radiative region around the ENZ point known as the Ferrell-Berreman (FB) mode’*"¢. When
light couples into any of these modes, a large absorptance (reflectance/transmittance) peak (dip) is
observed. Optical pumping is then used to shift the peak (dip) resulting in giant reflectance or
transmittance modulations due to the narrow resonant features (Fig 1.c). We separate the

resonances as the radiative and bound (non-radiative) modes.

The radiative FB modes occur in subwavelength films at slightly lower wavelengths than the ENZ
point and to the left of the light line. This allows the advantageous coupling of light from free
space without the need of a special geometry or pattern®*’’. Coupling generally requires the
incident wavevector to have a nonzero transverse component and is achieved in configurations
where a subwavelength ENZ film lies on top of another medium acting as a back-reflector. The
phenomenon is named after R. A. Ferrell’ who showed an absorption peak near the plasma
frequency for thin plasmonic films and D. W. Berreman” who showed a similar absorption for
phononic thin films near the longitudinal phononic resonance that occurs in the optical frequency

range.

The bound ENZ mode occurs on the right side of the light line and is therefore not accessible via
direct optical excitation. A common configuration to excite ENZ modes is to use the Kretschmann
geometry’8-8 where a prism is placed on an ENZ film. The refractive index and incident angle
into the prism are used to match the projection of the light momentum along the interface to the
ENZ dispersion. This meets the phase-matching condition and excites the ENZ mode. Gratings
are also used in a similar capacity to meet the phase-matching conditions’’. In the literature, the
static characteristics of the FB and ENZ modes have been studied in detail®*#828 Here, we focus
on the modulation around those modes with optical pumping.
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2.4.1 Thin ENZ film on glass
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Figure 4 a Experimental configuration. A prism (n,,;s,, = 1.95) is placed on top of a 10 nm ENZ film
which is deposited on glass (ng;4ss = 1.5). b Unmodulated TM reflectance for the Kretschmann

geometry. ¢ Modulated absolute TM reflectance for interband pumping at 60-degree incident angle. The
inset shows the modulation trend at the ENZ point as the modulation is increased.

First, we consider a 40 nm ENZ film deposited on glass (Fig. 4a, inset). In this configuration, the
film supports a radiative mode that can be excited directly by light from free space. The steady-
state absorption in Fig. 4a has a peak slightly to the left of the ENZ point. The large absorption
leads to a local minimum in the transmittance at the ENZ point similar to the schematic in Fig. 1c.
Therefore, non-monotonic behavior is expected when measuring the transmittance at the ENZ
point. A monotonically increasing pump-fluence can result in a sign reversal of the transmittance

modulation.

An interesting example is found by inspecting at the 60-degree angle of incidence shown in Fig.
4b-d. Some wavelengths have monotonic behavior when the colors from blue to red do not overlap.
For example, at the ENZ wavelength for both transmittance plots (Fig. 4c, d), the modulation
increases monotonically with increasing pump fluence. At other wavelengths the colors overlap
showing a non-monotonic behavior. Examples of this are seen at the ENZ wavelength for
reflectance and the dashed lines in the transmittance plots (see insets). The sign reversal of the
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optical response can have an important impact when trying to retrieve optical properties from
experimental data. Especially for nonlinear processes, it is common to measure
reflectance/transmittance and then recover the nonlinear susceptibility from those
measurements®8. A sign reversal might then be erroneously attributed to an incorrect sign of the

susceptibility.

We appraise this configuration for it prospects in optical switching by evaluating the modulation
depth and maximum relative modulation. The steady-state reflectance is small for all angles
because the thin ENZ film does not reflect much light and glass is also transparent. Therefore,
reflectance is a poor choice for optical switching because the depth of modulation is small. This is
evident when investigating the steady-state reflectance at the ENZ point, where Ry, ~ 0.1 and the
maximum modulation is ARy, ~ 0.01 (Fig. 4b inset). The transmittance cases show a larger
change of nearly ATy, ~ 0.5 at selected wavelengths. However, the unmodulated transmittance
at 60 degrees is Ty, ~0.5, making the relative change small. Transmittance is the better of the two
but does not meet both the criteria of large relative change (ATry/Try > 1) and a large depth of

modulation (AT, ~ 1).

2.4.2 Thin ENZ film on metal

Another common experimental configuration is a thin layer of ENZ material deposited on a metal
substrate338086-88(Fjqg_ 5a). The Drude model is used here to describe the metal substrate with the
parameters shown in Table 2. This is another example of a radiative mode where a large absorption
peak exists near the ENZ point. The transmittance in this case is negligible and the reflectance is
high because of the metal layer. The reflectance shows a dip where the absorption is the highest
(Fig. 5b) that can be used for optical switching. The reflectance dip follows parallel to ENZ
wavelength for lower incident angles and diverges to the ENZ-metal surface polariton resonance
at higher angles. The offset of the minimum from the ENZ wavelength causes a probe at the ENZ

wavelength to experience nonmonotonic reflectance for intraband pumping (Fig. 5¢ inset).
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Figure 5 a Configuration schematic. b Unmodulated TM reflectance as a function of wavelength and
incident angle for 10 nm ENZ film on a metal substrate. c Modulated absolute TM reflectance for
intraband pumping at 60-degree incident angle. The Drude parameters for the metal can be found in Table
2. The inset of ¢ shows the trend of reflectance at the ENZ point.

The large contrast of the reflectance dip motivates the use of this configuration for all-optical
switching and both interband and intraband pumping are applicable. For larger angles of incidence
(6 > 60), the reflectance dip is not symmetric around the minimum, therefore interband and
intraband pumping require different intensities to achieve the same switching contrast. Intraband
pumping is then slightly favorable because the transition from low to high reflectance happens
over a shorter wavelength range requiring less modulation of the plasma frequency.

Comparing the absolute reflectance change in Fig. 5c. to the changes in Fig. 4, we see a larger
absolute modulation for improved switching. At some wavelengths |AR7,| > 0.6, suchasat A =
1320 nm where the relative reflectance change is approximately 10-times. Both the relative
change and the modulation depth are large here making this configuration a better candidate for
switching (recall that reflectance and transmittance are scaled to one). This also illustrates how the
ENZ wavelength is not always the best suited for all-optical switching since the largest modulation
for 60-degree angle of incidence isat A = 1320 nm and the ENZ wavelength is Az, = 1380 nm.
The FB mode illustrated in this example has been used for femtosecond polarization switching by

Yang et al®3. A linearly polarized probe beam with both TE and TM components was incident on

25



doped CdO deposited on gold and a pump beam was used to modulate the ENZ point. The
reflectance was modulated from Ry, = 0.01 to Ry, = 0.86 in the TM component, while the TE
component had no observable modulation. Taking advantage of the different absorptance for TE
and TM polarized light near the ENZ point, an optically controlled polarization switch was
demonstrated by either increasing or decreasing attenuation of the reflected TM light.

Table 2 Optical properties of hypothetical metal

Drude Model parameters Value
Emetal 3.5
Wp. ot 9.6 X 10%°rad/s
Tmetal 4.8 x 1013571

2.4.3 The ENZ mode

Exciting the ENZ mode requires a special geometry such as the Kretschmann geometry using a
prism. For our calculations, we assume that a prism with a refractive index of 1.95 is placed on a

10 nm ENZ film on a glass substrate (ng;,ss = 1.5). A schematic of the configuration is shown in

Fig. 6a, where angle of incidence is defined with respect to the normal of ENZ film and not the
prism, to make comparing with previous examples easier. The ENZ layer needs to be deeply
subwavelength to observe the ENZ mode®* and because of that a clear line at approximately 50
degrees shows the total reflection angle corresponding to the prism-glass critical angle. At angles
larger than 50 degrees, the ENZ mode is visible as a dip in the reflectance spectrum (Fig. 6b).
Investigating again along the 60-degree angle of incidence (to compare with previous cases), we
see a similar amount of modulation in the reflectance as in the FB mode. In contrast, the dip in this
case is at larger wavelengths than the ENZ point, where for the FB mode it is at smaller
wavelengths. Therefore, the ENZ mode is equally viable as an optical switch compared to the FB

mode.
A similar configuration was utilized by Bohn et al., where a 60 nm ITO film was placed on a prism

and exposed to air. Using the coupling between pump and probe beam they reported reflectance

changing from Ry = 0.01 to Ry, = 0.45 with ultrafast switching speeds®. By probing away
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from the reflectance minimum, they also observed the ultrafast non-monotonic behavior of
reflectance as the pump pulse shifted the reflectance minimum through the probe wavelength. This
exact behavior is seen in the inset of Fig 6c¢., where a sweeping of modulation intensity shows first
a decrease, and then increase in reflectance. This brings about an important point that the ENZ
modulation may not be monotonic during the interaction with a pulsed laser as intensity ramps up.
This is especially important for cases where the probe-pulse duration is less than the pump-pulse

duration, which is often true for pump-probe experiments.
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Figure 6 a Experimental configuration. A prism (n,,;s,» = 1.95) is placed on top of a 10 nm ENZ film
which is deposited on glass (ng;4ss = 1.5). b Unmodulated TM reflectance for the Kretschmann

geometry. ¢ Modulated absolute TM reflectance for interband pumping at 60-degree incident angle. The
inset shows the modulation trend at the ENZ point as the modulation is increased.

2.5 Effect of Drude Damping

In the previous examples, we assumed that photoexcitation of free-carriers only changed the
plasma frequency by increasing the free-carrier concentration or their effective mass. However,
damping also plays an important role in all-optical switching. The damping factor represents the
inverse of the scattering time for free electrons and is therefore related to the electron density®.
Optical pumping has been shown to change the damping factor33°5609091 and depending on

experimental factors it can either decrease or increase.

27



The resulting change in damping factor due to optical pumping modulates the ENZ point. Re-

examining the ENZ frequency derived from Eq. (2) while including the effect of damping results

with wgyz = /a)g/eoo — IZ. We can estimate the size of this effect by comparing terms under the

square root sign. For typical experimental values I, /w, < 1/10 and the correction is small. There

is a stronger effect from damping changes on the ENZ resonance width.
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Figure 7 Transmission of a thin (40 nm) ENZ film deposited on glass. Same conditions as Fig. 4, except
for the damping factor, whichisaT = 0.1T,,b I' = Ty,andc T' = 2.5T,, where T}, can be found in
Table 1.

An illustrative example is made by examining the spectral width change for a thin ENZ layer like
that in Fig. 4. We considered three cases of differing damping constants shown in Fig. 7, where all
other parameters are the same as in the thin ENZ case. We plot the steady-state transmission of
TM polarized light through the thin film showing drastic changes in the resonance width with
varying damping factors; careful inspection also reveals a shift in the absorption peak indicating a

change in the ENZ point.

The immediate conclusion from this example with regards to ultrafast optical switching is the need
to keep the damping constant small for a narrow resonance. A narrow resonance allows for sharper
changes in the transmittance and reflectance, at lower pumping intensities. For example, if we
consider the 60-degree incidence angle, the half width of the transmission dip is ~ 80 nm for the
case of Fig. 7a. The unmodulated transmittance is Ty, ~ 0.04. Using a plasma frequency
modulation of Aw, /w, = 0.15, the transmittance increases by 20 times. In contrast, for the same
plasma frequency modulation, the change in the case of Fig. 7b is at most a factor of two and less

than one tenth change for Fig. 7c. The losses should then be tailored to accommodate the switching

28



specifications. Low losses should be used for efficient narrow-band switches while moderate

losses may be more applicable for broadband switching.

2.6 Chapter Summary

In this chapter we study the modulation of the reflectance and transmittance of various ENZ media,
with interband and intraband optical pumping by using the Drude model. We discuss the effects
of pumping on the plasma frequency and employed the TMM to analyze experimental
configurations. The cases studied here point out general aspects for all-optical switching with ENZ
materials. Firstly, the use of ENZ materials greatly increases the modulation of the refractive index.
Secondly, thin films demonstrate absorption peaks near the ENZ wavelength because of the strong
interaction between surface waves. The absorption peaks imply a dip in transmittance or
reflectance that can be shifted with optical pumping. This causes substantial changes in the
reflectance or transmittance allowing such systems to be utilized for all-optical switching. Finally,
losses due to damping affect the ENZ point and the resonance width. There is a tradeoff where
larger damping factors broaden the resonance allowing for broadband switching. However, the
depth of the absorption is reduced and makes the contrast between switching states smaller.
Oppositely, lower damping factors have a narrower resonance that reduces the optical switch

bandwidth, but increases the switch contrast.

We also show that although the largest modulations occur proximal to the ENZ point, the ENZ
point itself is not always the best wavelength for optical switching. For example, the Ferrell-
Berreman mode or ENZ mode are excited above and below the ENZ wavelength respectively,
resulting in the maximum modulation occurring away from ENZ point. Deviations of the
wavelength away from the maximum/minimum results in a non-monotonic trend of the reflectance
or transmittance as a function of the optical pumping power. Therefore, it is critical to optically
characterize ENZ materials in the steady state, so that the unpumped ENZ point and nearby
resonances are well identified. The pump power along with the pump photon energy are also
important parameters in experiments. These effects should be carefully considered, especially
when tracking the changes in reflectance or transmittance to extract the optical properties in the

photoexcited state.
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Throughout, we have discussed multiple common experimental configurations and ENZ schemes,
focusing on all-optical switching. These configurations are building blocks for understanding and
constructing more complex experiments such as those involving time refraction®, time reflection®,
negative refraction*® and four-wave mixing®2, where the ultrafast refractive index transitions from

optical switches may be used.

3. THICKNESS DEPENDENT CONTROL OF AZO AND TIN OPTICAL
PROPERTIES

3.1 Introduction

The aim of this chapter is to explore the thickness dependent optical properties of novel plasmonic
materials and its effect on their ENZ properties. Titanium Nitride (TiN) and Aluminum doped zinc
oxide (AZO), respectively belonging to Transition Metal Nitrides and Transparent Conducting
Oxides, are investigated and a bilayer structure exhibiting Ferrel-Berreman modes are investigated
statically and dynamically. The ENZ point and the associated applications are tuned across the

telecom wavelengths.

Titanium nitride is a promising material for nanophotonic applications because of its good
plasmonic properties®®, CMOS compatibility®, tailorability®>®, versatility of fabrication
techniques®~*°, and high laser- and thermal tolerance'®-1%2, These attractive features have led to
its utilization in high-temperature photovoltaics!®, optical circuitry!®*%  nonlinear optical
devices!®1% and many other practical applications. Similarly, transparent conducting oxides
(TCOs) form another class of optical materials for dynamically controlled nanophotonics spanning
optical switching'®’, electroabsorption modulators'®®1%, tunable metasurfaces*'®'**, and nonlinear
experiments employing epsilon-near-zero (ENZ) physics'®1%112-114 for novel applications that now
include ultrafast switching*®'>116 tunable broadband light absorption'11"-11% enhanced second-

harmonic!?® and high harmonic!? generation.

For these technologically relevant materials, the optical properties can be controlled during growth
by varying deposition conditions. For example, the properties of titanium nitride can be tailored

by fine-tuning the temperature, gas ratio, and even post-deposition annealing®"?2123, The optical
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properties and the ENZ resonances of conducting oxides can also be altered by varying the growth
conditions, namely the gas ratio, the dopant concentrations, or post-deposition
annealing®"109124125 However, a simpler method of tailoring such conducting oxides and nitrides
is often overlooked. The conductivity of materials, an intrinsic material property, is strongly
affected by the film thickness due to changes in the carrier concentration, crystalline properties,

and surface roughness'?¢-129

, especially for thin films. It stands to reason that film thickness should
also play a role in the optical property of conducting materials, and in turn, be used to control
device characteristics. This work explores the thickness-dependence of the optical properties of
polycrystalline titanium nitride (TiN) and aluminum-doped zinc oxide (AZO) and how these
materials can be tailored for select passive and dynamic photonic applications, especially those
utilizing the ENZ properties of the constituent thin films. Most of the data in this chapter is taken
verbatim from the paper; “S. Saha, M. G. Ozlu, S. N. Chowdhury, B. T. Diroll, R. D. Schaller, A.
Kildishev, A. Boltasseva, and V. M. Shalaev, "Tailoring the Thickness-Dependent Optical
Properties of Conducting Nitrides and Oxides for Epsilon-Near-Zero-Enhanced Photonic

Applications,” (2022).”

3.2 Optical Properties and Crystilline Structure of TiN and AZO Films

3.2.1 Titanium nitride on silicon

Titanium nitride in its epitaxial form has been utilized in absorbers,'®* waveguiding,%41%
refractory plasmonics,%-1%2 plasmonic nanoparticle lattices,**® and physics with ultrathin films.*3
However, epitaxial film growth requires lattice-matched substrates, which limits their application
in an industry-compatible setting.?® This difficulty makes it essential to grow and characterize
optical-quality films of polycrystalline titanium nitride on non-lattice-matched substrates.

To investigate the effect of thickness on the optical response of polycrystalline TiN films, we grew
TiN films of several thicknesses on silicon by DC reactive magnetron sputtering at elevated
temperatures. This method was utilized to produce optical grade TiN by other groups 27134,
Alternative techniques of growing TiN include pulsed laser deposition!3®*® and atomic layer

deposition 2,
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A 99.995% pure Ti target of 2-inch diameter was used for the process. To ensure uniformity, the
distance from the target to the source is kept at 20 cm. The chamber is pumped down to 10-8 T to
prevent oxygen contamination, and is backfilled with Ar to a pressure of 5 mTorr. The Ti is
sputtered for 2 minutes to clean the top surface with a power of 200W, and then an Ar:N2 mixture
of 1:18 is used for the sputtering process. The substrate is heated to a temperature of 800°C and
rotated at 5 rpm. We note that it is possible to grow epitaxial titanium nitride on silicon, but
complicated cleaning procedures are required to remove the native oxide layer*®. For this study,
we wanted to focus on the evolution of the optical properties of polycrystalline titanium nitride
with thickness. The TEM image of the films is give in Figure 8 showing the polycrystalline

structure.

Figure 8 TEM image of the 60 nm TiN film, showing the polycrystallinity. The inset shows the
diffraction pattern of the film.

We measured the optical properties of the TiN films with spectroscopic ellipsometry, and fitted
them with a Drude-Lorentz model**’, with one free electron term and two Lorentz oscillator terms
with the resonance positions at higher energy levels. The parameters of the full model are given in

table 3 for the films grown with different thicknesses.

Table 3 The Drude-Lorentz Model Parameters of TiN Films on Si vs. TiN Thickness

Thickness 10 nm 25 nm 60 nm 130 nm 200 nm
Ao 46.782 51.595 49.550 41.055 40.152
Bo 0.378 0.258 0.217 0.193 0.227
Aq 98.232 98.232 52.954 31.801 28.517
B 2.157 2.157 1.364 0.661 1.003
E1 5.119 5.119 4.466 4117 4.117
Az 407.280 407.280 310.930 357.600 391.660
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B2 149.950 149.950 79.364 80.546 99.451

E2 5.982 5.982 4.044 3.945 4.748
Eoo 2.26 2.84 3.39 3.20 3.41
MSE 5.8 2.8 4.1 8.9 8.7

In the telecommunication range, the contribution of free-electrons, represented by the Drude term,
strongly governs the optical response. Then, the real and the imaginary parts of the permittivity

can be written separately as,

= i (3.1)
AT T (hw)? + B2 '
AoBy
(3.2)

2 = hw((hw)? + BD)

where &, denotes the net contribution of the Lorentz oscillators with background permittivity &..

The dielectric function of TiN films with different thicknesses are plotted in Figure 9.
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Figure 9 (a) R(¢) of TiN on Si vs. thickness (b) I(g) of TiN on Si vs. thickness (c) Plasmonic Figure of
Merit vs. thickness (d) Plasma frequency (Ao) and Drude damping (Bo) vs. the film thickness

At first, as the thickness increases up to 25 nm, the slope of the real part of the TiN dielectric
function becomes steeper, implying increased metallicity (see Fig. 9a). The figure indicates that
when the thickness is approaching 60 nm, the change of the real part is saturating. For the
imaginary part of the TiN dielectric function (g2) this dependence is different; as the film thickness
decreases from 130 nm to 10 nm, we observe an increase that indicates increasing absorptive losses
(Fig. 1b). Figure 1c plots the so-called plasmonic figure of merit (FOM) of the films, defined as
the absolute value of the ratio of the real part of the permittivity to the imaginary part.1*13 The
grown TiN films have figure of merits better than the majority of the reported polycrystalline films,
and comparable to that of some epitaxial films?®93140-144 Taple 4 shows the comparison of the

FOM between the TiN films grown in this work and the TiN films that has grown in previous
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works. The table highlights the distinguished quality of the films in comparison to other

polycrystalline films.

Table 4 Figure of Merits of our grown polycrystalline TiN compared to other reported work on

TIiN
Reference Growth Morphology FOM at FOM at
Technique 700nm 1550nm
Guru 201228 Magnetron  Polycrystalline 0.2 0.8
Sputtering
Guru 201228 Magnetron  Epitaxial 1 1
Sputtering
Dal Negro Magnetron  Polycrystalline 1 1
20151 Sputtering
Huber 200146 ME-PIII Polycrystalline 1.2
Patsalas 2001'4"  Magnetron  Polycrystalline 1.25 -
Sputtering
Evelyn Hu Magnetron  Epitaxial 1.42 2.7
2015140 Sputtering
Nagao 20188 PLD Polycrystalline 1.5 1.3
This Work Magnetron  Polycrystalline 1.7 2.72
Sputtering
Hu 2019 Magnetron  Polycrystalline 1.75 1.9
Sputtering
Langereis'4® ALD Epitaxial 1.9 2.2
Kinsey 20204 ALD Epitaxial 2 2.33
Kinsey 202110 ALD Epitaxial 2 2.4
Odom 2017%2  Magnetron  Epitaxial 2.3 -
Sputtering
Gall 2001t UHV Epitaxial 2.3 -
Sputtering
Maurya'®? molecular  Epitaxial 2.8 3.23
beam epitaxy
Hu 2019 Magnetron  Epitaxial 3 3.7
Sputtering

To understand the change in the optical response with the thickness, we investigate the crystalline

structure of the TiN and its permittivity model. The plasma frequency increases for thicknesses up

to 25 nm then starts decreasing (Fig. 9d). An increase in the plasma frequency causes both the real

and the imaginary part of the permittivity to increase.
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The plasma frequency is related to carrier concentration and the effective mass of the electrons
through the equation A™1\/4y = w, = € /L The plasma frequency of polycrystalline films is
mr gy

lower (Ao between 43-51.6 (eV)?) than that of epitaxial titanium nitride films (A¢~58 (eV)?)
reported in previous studies'®*%3, This is because of the columnar growth of the polycrystalline
films seen from TEM (Figure 8), with many grain boundaries, through which oxygen diffuses into

the lattice, lowering the carrier density 1>41%,

The 10-nm-thick films have the highest damping factors attributed to the increased collisions of
electrons with the surface. A similar effect was observed by Shah et al. in a previous study, where
the damping factor of TiN thin films increased with decreasing thickness®’. AFM images (Figure
10) show that the thicker films have more well-defined and bigger grains. For thicker films, the
damping factor generally decreases due to increased grain size, leading to a decreased collision of
carriers with the grain boundaries. The films have a surface roughness of less than ~3.5 nm, which
is higher than in atomically-flat epitaxial films, yet comparable to polycrystalline films reported
previously®1%  Overall, the dielectric function of the studied TiN films shows a strong

dependence on the thickness, adding a critical degree of control over their optical response
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Figure 10 AFM image of TiN films with different thicknesses of (a) 10 nm, (b) 25 nm, (c) 60
nm, (d) 130 nm and (e) 200 nm. The roughnesses vary from 0.4 to 3.4 nm.
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3.2.2 Al-doped zinc oxide grown on titanium nitride films

We deposited aluminum-doped zinc oxide on optically thick TiN films using pulsed laser
deposition (PLD) with a 2% AZO target at a temperature of 120°C. We grew film thicknesses
spanning from 27 to 63 nanometers. The 27-43 nm films are grown on 60 nm TiN, and the 57 and
63 nm films are grown on 130 nm TiN. For the dielectric functions of AZO, we used a Drude-
Lorentz model with a single Lorentz oscillator. Table 5 contains the full model parameters. Figure
11 shows the optical properties of the fabricated AZO films.

Table 5 The Drude-Lorentz Parameters of AZO Films on TiN vs. AZO thickness

Thickness 27 nm 34 nm 45 nm 57 nm 63 nm
Ao 1.619 1.990 2.205 2.519 2.64

Bo 0.210 0.164 0.149 0.146 0.135

A1 9.794 16.502 18.700 21.544 7.412

B1 0.005 0.006 0.050 0.006 0.019

E1 4.143 4.368 4.282 4.386 4.258

£ 2.392 2.392 2.264 2.392 3.224
MSE 16.64 22.18 31.84 24.89 22.29
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Figure 11 (a)Real part of permittivity of AZO on TiN vs thickness (b)Imaginary permittivity of AZO vs
thickness (c)Plasma frequency (Ao) and Drude damping factor (Bo) vs thickness

The ENZ points of the films show a strong blue shift with increasing thicknesses, starting from
1750 nm for the 27-nm-thick films, and reaching the lowest value of 1470 nm for the 63-nm-thick
film. The optical losses increase with thickness up to 57 nm then start to saturate for higher
thicknesses. With the increasing thickness, the size of the crystalline domains increases, as seen
from atomic force microscopy study (Figure 12). Thinner films also have more surface defects that
can trap electrons and decrease the carrier concentration. As a result, the carrier concentration
increases with increasing thickness®, and so does the plasma frequency (Fig. 11c)™%?6L, The
thicker films have larger grain sizes with a lower surface-to-volume ratio that decreases the
scattering channels for electrons®®8, Similar increases in the carrier density and the Hall-mobility
with increasing thicknesses of AZO have been observed via conductivity studies for transparent
electrode applications by Luka et al *8. Overall, the thicker films are more metallic and the ENZ
frequency blueshifts with increasing thickness. The losses increase with the thickness because of
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the increasing carrier densities, increasing the plasma frequency but the losses corresponding to

the ENZ points decreases with increasing thickness, because of the blue-shifted ENZ.

.

. : - -40
' Avg. Roughness = ~2.4 nm

Avg. Roughness = ~3.9 nm . Avg. Roughness = ~5.1 nm

Figure 12 AFM image of AZO films of thickness (a) 27nm, (b) 34 nm, (c) 45 nm, (d) 57 nm and (e) 63
nm, grown on TiN, showing the increasing grain sizes with thickness

3.3 Tailoring AZO-TiN Bilayers for Near Perfect Absorption

We utilize the thickness-tailorable ENZ points of the conducting films to develop wavelength-
selective absorbers. In the epsilon-near-zero regime, materials have diminishingly small dielectric
permittivity that causes various singularities in their optical responses!®?. In this region, strong
light-matter interactions induced by slow-light effects and field-intensity enhancement have
enabled applications in nonlinearity enhancement *4151°, femtosecond optical switching®¢3, time
refraction!’#6:164 optical time reversal®®, and extracting hot electron dynamics in materials 65,
Ultrathin ENZ films demonstrate unique absorption resonances for p-polarized light in their ENZ
region, termed the Ferrell-Berreman (FB) modes and the ENZ modes. As the film thickness
decreases, the bound surface modes on the upper and the lower interface of the film start interacting
with each other, hybridizing into symmetric and antisymmetric modes'®. Eventually, the
symmetric mode forms a flat dispersion band near the ENZ frequency as the thickness is further
reduced. This bound resonance is called the ENZ-mode!®"1%, The radiative modes called the
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Ferrell-Berreman modes are situated in the radiative region occur due to the plasma oscillations in
metallic films®1%°, and the excitation of the longitudinal optical phonon in dielectric films'’®, FB
resonances have the further advantage of direct excitation from free space without the need for an
additional structure enabling low-cost, lithography-free fabrication. ITO, CdO® and AZO*
have been recently utilized in applications such as broadband absorption and polarization

switching.

A FB resonator comprises two parts - a robust back-reflector, and an ENZ thin film. The resonance
wavelength of the FB metasurface depends on the optical properties of the ENZ film. The TiN-
AZO bilayer stacks form a double-resonant FB device, with two dips near the ENZ regions of TiN
and AZO for p-polarized light at an angle of incidence of 50 degrees (Fig. 3a). As the AZO ENZ
point shows a large variance with the changing thickness, the FB dip at the telecom frequencies
can be tailored by changing the thickness of the AZO films. Near these ENZ points, the loss
(imaginary permittivity) is around 0.6. Near the telecommunication wavelength, the reflectance

spectrum for s-polarized light is flat.

The AZO layer is almost transparent in the visible wavelengths and the structure can be simplified
to a thin TiN layer on a reflective silicon substrate. The TiN ENZ point shows a smaller variance
(<10nm) with the changing thickness. It has larger losses (imaginary part of the permittivity around
3), resulting in a broad FB dip near 480 nm that is not affected by changing the TiN thickness (Fig.
13b). On the other hand, near the visible wavelengths, s-polarized light shone on TiN shows strong
shifts with the thickness variance, indicating the excitation of Fabry-Pérot mode (Fig. 13c). This
approach shows how utilizing multilayer stacks and engineering their properties individually can

be used to tune the broadband characteristics of the overall structure.

Previously, lithography-free absorbers have been studied for a variety of applications spanning
colors!’*17 electrical modulators™, and polarization switches!!®. To examine the efficacy of the
grown films for use in absorbers, we investigated the effect of the angle of incidence on the
spectrum theoretically using a Transfer Matrix Method (TMM) model*’®, using the experimentally
obtained dielectric properties of the thin films. Figure 3d shows the absorption of the films with
respect to the angle of incidence and wavelength. The films show near-perfect absorption around
the ENZ region for the larger angle of incidences. The peaks get narrower as the thickness
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increases because of decreasing losses, desirable for switching applications. Since the absorption
is directly related to the intensity enhancement, shown in prior studies by Anopchenko and Gurung
etal.1’®1"" it would be possible to observe high field intensities inside the AZO film, with potential
applications in nonlinear optics spanning time refraction!’®, and optical time-reversal'’®, and high-

180

harmonic generation**” using robust ENZ films.

The depth and the quality factor of the resonances depend on many factors in addition to the
material losses, such as the angle of incidence, thickness, and the backreflector. As the angle
increases the coupling strength to FB modes increases, therefore increasing the attainable
maximum absorption*®’. Also, lower losses around the ENZ correspond to sharper peaks with both
narrower features and higher maximum values. Thicker AZO films have their ENZ frequency at
lower wavelengths, with smaller losses. Hence, perfect absorption is attainable with thicker films

at larger angles of incidences.

Since the absorptive losses are intrinsic to the material properties, they are expected to be in the
same ballpark for AZO grown on different substrates and with different techniques, although slight
improvements are expected for epitaxial films. However, even with these losses, epsilon-near-zero
enhanced effects such as large reflectance modulation®, frequency translation®?, addition of
nonlinearities*®?, and negative refraction'® are achievable. Thickness-tailoring provides an
additional method of achieving such effects at different wavelengths, which is highlighted in this

paper, with the dynamic reflectance modulation as an example.
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Figure 13 (a) Reflectance spectrum of the ultra-subwavelength AZO on TiN for p-polarized light. (b)
Ferrell-Berreman modes for p-polarized and (c) Fabry-Pérot modes for s-polarized light on the TiN-AZO
films with varying TiN thickness. The solid lines in a-c are simulation results. The dashed lines are
experimental results (d) Angle and Wavelength Dependent Absorption Spectrum of the AZO films
obtained using the TMM method

3.4 Dynamic Propereties of TiN-AZO bilayers

For a proof-of-concept demonstration of the as-grown films in photonic time-varying applications,
we investigated the reflectance modulation of the 63-nm-thick AZO FB absorber with an interband
pump — near-infrared (NIR) probe configuration. The pump at 325 nm wavelength is generated by
passing a 70 fs, 800 nm pump laser through an OPA. The probe is generated by passing the pump
through a sapphire crystal to generate a NIR supercontinuum probe. The pump is at normal
incidence, while the probe is at an angle of incidence of 50-degrees (Fig. 14a). Upon excitation by
the pump, free carriers generated in the AZO cause the ENZ to blue-shift, resulting in broadband
modulation of the reflectance spectrum. As the reflectance spectrum blue shifts due to decreasing

refractive index, a positive change is seen to the blue end of the reflectance minimum, and a
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negative change is seen at the longer wavelengths. A reflectance change of 15% is seen at 1350
nm, at a pump fluence of 1.5 mJ/cm?. The relaxation time of the switching here is on the
picosecond scale, with 90% of the signal decaying under 10 ps due to defect-assisted Shockley-
Read-Hall mechanisms!®8 after which the modulation is dominated by slower, thermal effects
(Fig. 14b,c)*®5. Active permittivity modulation of AZO with an applied optical pump may be useful

for all-optical transistors!®2

and other time-varying metasurface applications®17818 Deeper and
faster modulation may be possible employing intraband pumps working at larger angles near the

FB resonance!®” ¥’ enabling stronger pump absorption.
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Figure 14 (a) Schematic of the pump-probe setup (b) Color plot showing the reflectance modulation at a
pump fluence of 1.5 mJ/cm?, at near infrared wavelengths (horizontal axis) versus time (vertical axis). (c)

90% of the signal decays under 10 ps, after which the relaxation is taken over by slower dynamics of the
backreflectors. The plot shows the dynamics at a probe wavelength of 1350 nm.
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3.5 Chapter Summary

In this work, we investigate the thickness-dependent optical response of conducting nitrides and
oxides, namely, plasmonic titanium nitride and aluminum-doped zinc oxide as a tailorable,
industry-compatible, low-loss platform for passive and dynamic photonics. Specifically, we study
the properties of low-loss, optical grade titanium nitride grown on the technologically relevant
silicon substrate. The studied TiN films exhibit plasmonic properties that are better than any
previously reported work of TiN on silicon, and in some instances, even better than epitaxial
titanium nitride grown at lower temperatures. For both TiN and AZO, we demonstrate that by
controlling the thickness, the optical properties of the conducting films can be adjusted. For
photonic device demonstrations, we grow aluminum-doped zinc oxide on the as-grown titanium
nitride films. Furthermore, we show that the spectral window of the ENZ regime of the studied
AZO films can be varied by almost 400 nm by changing the film thickness by ~40 nm, resulting
in tailorable Ferrell-Berreman modes spanning the telecommunication wavelength range.
Subsequently, we demonstrate strong absorbers utilizing the proposed AZO/TIN bilayers that
employ dual Ferrell-Berreman modes, one near the ENZ point of TiN and the other near that of
the AZO film. To explore the feasibility of the materials for dynamic photonics, we demonstrate
reflectance modulation in the studied AZO/TiN bilayers with pump-probe spectroscopy and show
that the absorbance can be tuned at picosecond timescales in the near-infrared range. Since the FB
mode only occurs for p-polarized light switching, this can enable active polarization control of the

reflected light.

The thickness-dependent optical properties of low-loss conducting films can be employed to
develop efficient, tailorable photonic devices including lithography-free light absorbers in the
near-infrared to the mid-infrared regime, all-optical switches as well as nonlinear structures for

high-harmonic generation.
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4. SUMMARY

Temporally modified optical medium is an important key in many research areas including
photonic circuitry and optical modulators. Additionally, the new excitement around the time
varying media makes it crucial to obtain strong and fast optical switching. Throughout my masters
| have worked with ENZ materials investigating this problem. We have considered the problem
both in a theoretical way to better illuminate the ENZ switching for experiments and also
investigated the material properties for better realization. In the first part, various all-optical
switching schemes were explored, particularly the strength of the modulations and their trend in
ENZ region with respect to wavelength is considered. We have tried to simplify the process of
extracting the material properties from the modulated reflection and transmission data. In the
second part, the thickness dependent optical properties of novel plasmonic materials, titanium
nitride and aluminum zinc oxide, are investigated. The ENZ region of AZO is controlled over a
300 nm range with 40 nm change in thickness. We have shown in a proof-of-concept-design that
ENZ applications can be tuned to cover the telecom range. Additionally, optically high quality
polycrystalline TiN films are obtained. The results of these projects will further the knowledge and

methods in optical switching and ENZ applications.
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