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ABSTRACT

This dissertation is a collection of three papers, each one being a chapter. The run-

ning subject of interest in all the papers is the strategic behavior of individuals in different

environments. In the first chapter, I experimentally investigate collusive behavior under

simultaneous interaction in multiple strategic settings, a phenomenon which I call multiple

contacts. I investigate how multiple contacts impact collusive behavior when the players are

symmetric or asymmetric. The second chapter is a joint work with Dr. Brian Roberson. In

this chapter, we examine the role of cognitive diversity in teams on performance in a large

innovation contest setting. We use a theoretical model to derive conditions under which

increasing diversity can improve the performance in the large contest. Finally, in the third

chapter, a joint work with Dr. Yaroslav Rosokha and Dr. Masha Shunko, we experimentally

study players’ behavior when they interact in an infinitely repeated environment, where the

state of the world in each period is stochastic and dependent on a transition rule. Our main

questions are how the transition rule impacts behavior and whether asymmetry in players

impacts this.

In the first chapter, I study the phenomenon of multiple contacts using a laboratory

experiment with multiple symmetric or asymmetric prisoners’ dilemma games. When agents

interact in multiple settings, even if defection or deviation from collusion in one setting can

not be credibly punished in the same setting, it may be punishable in other settings. This

can increase the incentive to collude. I observe a statistically significant increase in probabil-

ity of punishment in one game after defection in another game under multiple contacts, but

only when the games are asymmetric in payoffs. While punishment of defection increases in

some situations, I do not find any significant increase in collusion due to multiple contacts in

either symmetric or asymmetric environment. In addition to this result, to find further sup-

port for the theory which suggests that agents should use different strategies under multiple

contacts, I estimate the underlying strategies that subjects use in my experiment. To this

end, I modify popular strategies (e.g., Grim Trigger, Tit-for-Tat, etc.) to condition on the

history observed in multiple strategic settings. I find that only for games with asymmetric

13



payoffs subjects use these modified strategies in the presence of multiple contacts.

The second chapter is a theoretical work. In our model of large team innovation contest,

teams develop an innovation using the skills or perspectives (tools) belonging to individual

team members and the costly effort they provide. Prizes are awarded based on the values of

the teams’ innovations. Within a team, the team members posses different skills or perspec-

tives (tools) which may be applied to innovation problems. For a given innovation problem

and a given level of team effort, different combinations of tools within a team may generate

different values for the team innovation. In this context, we examine the issues of individual

team performance as a function of a team’s own composition and the overall performance

of the contest as a function of the compositions of the teams. We find that the question

of whether increasing diversity leads to an increase in expected performance, for both an

individual team and the overall contest, depends on the efficiency with which teams are able

to effectively apply diverse sets of tools to innovation problems. Thus, our paper provides a

channel – other than a direct cost of diversity – through which diversity can be beneficial or

detrimental depending on how efficient teams are at utilizing diverse sets of team member

tools.

The final chapter is another experimental study. We study an enviroment where individ-

uals interact with each other in a prisoners’ dilemma game repeatedly over time. However,

the payoffs of the prisoners’ dilemma game is decided stochastically using a transition rule.

We vary the transition rule from alternation to random and study the change in subject

behavior when the interaction is either symmetric or asymmetric. Our results show that in

asymmetric environment, alternation can improve cooperation rates. With random transi-

tion rule, symmetric environment is more conducive to cooperation. We find that asymmetric

environment with random transition rules performs the worst in terms of cooperation rates.

14



1. DO MULTIPLE CONTACTS MATTER?

1.1 Introduction

Individuals, firms, and countries, often interact in multiple infinitely repeated strategic

settings simultaneously. For example, airlines compete on multiple routes day in day out.

Nations interact on multiple fronts, including trade deals, military treaties, and climate ac-

tions. These interactions are also infinitely repeated in nature. I call this phenomenon of

agents simultaneously and repeatedly interacting in multiple strategic settings multiple con-

tacts. In this paper, I use laboratory experiments to study the impact of multiple contacts

on strategic behavior.

Although the phenomenon of multiple contacts is commonplace, this is extensively stud-

ied only in the industrial organization and management literatures, where it is called multi-

market contact (MMC, henceforth). 

1
 MMC studied in these literatures is because MMC

can potentially lead to tacit collusion which negatively affects consumer welfare. When

firms repeatedly interact with each other in a market, they can engage in tacit collusion in

the presence of credible threat of punishment against unilateral defection or deviation from

collusion. However, whether the threat of punishment is credible depends on profitability

of the market, patience of the firms involved, among other market and firm characteris-

tics. Therefore, some markets might be profitable to attempt collusion in where others not.

Additionally these firms can meet not in one but in multiple markets, that is, there can

be multiple contacts among firms or MMC. Then the fundamental question is whether the

presence of MMC facilitates tacit collusion by enhancing the threat of punishment.

1
 ↑ There is considerable research in the industrial organization and the management literature on the impact
of MMC on prices among other strategic variables. The applications include airlines (Bilotkach,  2011 ;
Ciliberto and Williams,  2014 ; Evans and Kessides,  1994 ; Prince and Simon,  2009 ), computer industry (Kang,
Bayus, and Balasubramanian,  2010 ), insurance (Lin and McCarthy,  2018 ), cellular telephone industry (Busse,

 2000 ; P. M. Parker and Röller,  1997 ), cement (Jans and Rosenbaum,  1997 ), and banking (Heggestad and
Rhoades,  1978 ; Pilloff,  1999 ), among others. However, the predominant focus has been on observable actions
(e.g., prices, quality levels, market entry).The notable exception is Kang, Bayus, and Balasubramanian,

 2010 which studies retaliatory tactics used by firms in the personal computer industry. Companies use the
introduction of new products for retaliation rather than using prices. To the best of my knowledge, this is
the only paper that looks at firms’ strategies in the presence of MMC.
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The idea that MMC can facilitate tacit collusion was first proposed by Edwards,  1955 .

Bernheim and Whinston,  1990 using infinitely repeated Bertrand competition games showed

that under some conditions MMC can influence strategic behavior by increasing the threat

of punishment, i.e., the punishment to deviation from collusion becomes costlier. The intu-

ition is that failure to collude in one market can be punished in other markets. Thus the

threat of retribution in other markets can force firms to collude in a market where they oth-

erwise would not. From an anti-trust perspective, multiple contacts can therefore prove to

be detrimental to competition. This intuition or logic is not exclusive to market games and

can be applied to many situations where agents are engaged in multiple repeated strategic

interaction with the same opponent. The specific requirements of these interactions are that

these interactions must be infinitely repeated, there should be a conflict between long run

incentive to collude/cooperate accompanied by short run incentive to defect, and finally,

agents must be able to punish defection.

In this paper, I study the implications of multiple contacts on how agents behave in

infinitely repeated prisoner’s dilemma (IRPD, henceforth). In the prisoner’s dilemma (PD,

henceforth) game, cooperation is the strategic equivalent of collusion in a market game.  

2
 

There are multiple advantages to using PD games. First, agents have to choose from only

two (cooperation and defection) actions, which helps me make the experiment as simple

as possible without compromising the basic features of the testing environment. Collusive

outcomes are equivalent to mutual cooperation, and Nash equilibrium (NE, henceforth) out-

comes of other games (for example, market games) correspond to mutual defection in the PD

game. 

3
 Second, it captures the conflict between long term collusion and short term failure

to collude in terms of the actions cooperation and defection. Finally, the PD games have

been studied widely in the experimental literature, which allows me to utilize the existing
2

 ↑ In Salz and Vespa,  2020 , the experiment uses an oligopoly game, but the subjects choose between two
quantity options 0 and 1, and the profits are such that they make the oligopoly game is a PD game.
3

 ↑ Given the definition of subgame perfect NE for if a firm wants to deviate from collusive path, it is best for
the firm to choose the stage game NE action for the IRPD games. However, it is free to choose anything other
actions than the collusive action. Correspondingly, for the rest of the paper, I will use the terms cooperation
and collusion interchangeably, and I will use the term defection for the failure to collude/cooperate.
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research and methodology to understand the behavior of subjects in my environment.

In the previous literature (including industrial organization, management, and experi-

mental economics) studying multiple contacts, the main focus has been on the incidence of

cooperation and whether multiple contacts lead to higher rates of cooperation. Contrary

to this line of research, I focus on how cooperation is enforced in the presence of multiple

contacts. Specifically, in addition to incidence of cooperation, my goal is to provide empirical

evidence on incidence of punishment and strategies used by agents. Why is this important?

As I have stated earlier, the potential impact of multiple contacts is due to the fact that

agents can punish defection in one game, across multiple games. I call this cross punish-

ment. So, to find the effect of multiple contacts, I examine if subjects in my experiment

use strategies that have this property of cross punishment. Such strategies which condition

actions in each game on the history of all games.

One of the important features of MMC is that it can it can only enhance the threat of

punishment if at least some of the strategic settings or games are different from each other.

Bernheim and Whinston,  1990 state this as the Irrelevance Result. When all the strategic

settings are identical, pooling the incentives across games implies that the incentives are

multiplied by a constant leading to no change in the incentive for long term cooperation. As

a result, if a setting can not sustain cooperation on its own, multiple contacts across multiple

identical settings can not make cooperation sustainable. There are multiple ways to make

the settings different. For this paper, I have chosen two such ways. One way is to make the

settings symmetric between players but different across games. Specifically, I use two sym-

metric IRPD games, among which agents can sustain cooperation in one game (Easy game),

but not in the other (Hard game). This type of multiple contacts with different games has

been previously studied in the experimental literature. I call this the different games treat-

ment. Another way is to use an asymmetric setting where one agent is advantaged while the

other is not. The advantaged agent has incentive to cooperate if the other agent cooperate

as well, but the disadvantaged agent has no incentive to cooperate. Therefore, cooperation

can not be sustained in such a setting. The agents then interact in two asymmetric settings
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with the advantaged player switching between the two settings. In the experiment, I use one

asymmetric IRPD game, but the subjects play it twice, once as the advantaged agent, once

as the disadvantaged agent. I call this the different roles treatment. 

4
 

My laboratory experiment utilizes a 2 × 2 factorial design. The first dimension of com-

parison is the number of contacts – subjects either interact with one opponent in each (single

contact) of the two IRPD games or one opponent in two (multiple contacts) IRPD games.

The second dimension of comparison is the source of difference between the two strategic

settings (different games vs. different roles). In the different games treatment, with multiple

contacts cooperation can be maintained in both games through the credible threat of punish-

ment in the Easy Game in response to defection in the Hard Game, even though punishment

is not credible in the Hard Game in isolation. A similar logic applies in the different roles

treatments, when the incentives are pooled across the two roles. I have chosen parameters

such that the incentive to cooperate and the punishment payoffs are identical across the

different game and different role treatments. Subjects play thirty supergames in each session

of each treatment.

From the experimental data I find that under multiple contacts subjects subjects an

increased tendency to cross punish their opponents but in the different roles treatment.

However, this is not accompanied by an increase in the average cooperation levels compared

to single contact. This is possible because different strategies can lead to the same level of

cooperation depending on the history. In the different games treatment I do not see any

increase in the tendency to cross punish. However, I find that subjects increase cooperation

in the Hard Game, although this increase in marginally statistically significant or not sig-

nificant at all depending on the supergames I consider. For the Easy game, the cooperation
4

 ↑ This environment is not unlikely. Consider the airlines industry, where airlines engage in MMC. In many
routes only some airlines have a hub (or two hubs) while other have no hubs (or one hub). This provides an
advantage to airlines with higher number of hubs and among the different routes they operate in, their roles
can be reversed. For example, both American Airlines (AA) and United Airlines (UA) fly the two routes
Chicago O’Hare Airport (ORD) - Dallas Fort Worth (DFW) and Chicago O’Hare Airport (ORD) - George
Bush Intercontinental Airport, Houstan (IAH). ORD is a hub for both AA and UA. But DFW is a hub for
AA and IAH is a hub for UA. Therefore, in the ORD-DFW route, AA is the advantaged agent, while in the
ORD-IAH route UA is the advantaged agent.
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level goes down in the later supergames of the experiment under multiple contacts compared

to single contact.

The theory of multiple contacts is driven by the use of strategies that incorporate the

multiple contacts setting. The increase in the tendency to cross punish under multiple con-

tacts that I observe can be supported by many such strategies. Therefore, a change in

strategies between single contact and multiple contacts can be expected. To check this, I

estimate the implied strategies used by the subjects. In particular, I first modify popular

strategies including Grim Trigger, Tit-for-Tat, and Defect Tit-for-Tat for my multiple con-

tacts environment such that actions in each game is conditioned on the history of actions in

both games. I call these Strong strategies (e.g., Strong Grim Trigger, S-Grim henceforth).

My theory assumes that subjects use the S-Grim strategy in both different games and differ-

ent roles treatments. However, my strategy estimation finds that subjects use these Strong

strategies in the presence of multiple contacts only in the different roles treatment.

The rest of the paper is organized as follows: First, in section 2, I review related liter-

ature. Next, in section 3, I develop the theoretical background. In section 4, I present the

experimental design for the simplified environment with two IRPD games and my theoreti-

cal hypotheses for the chosen parameters. In section 5, I carry out the analysis of the data.

In particular, I analyze the choice to cooperate in each game. In section 6, I conduct an

estimation of underlying repeated-game strategies that subjects use. Finally, in section 7, I

conclude.

1.2 Literature Review

Multiple contacts have been a subject of inquiry for a significant amount of empirical

research in industrial organization literature. Most of the empirical papers are focused on

the effects of MMC, on the intensity of competition in terms of prices, service quality or

other strategic variables in different industries. However, there is only a handful of papers

that investigate this concept using experimental methodologies. Some of the very early ex-
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perimental papers attempted to find evidence for the “mutual forbearance” hypothesis first

propounded by Edwards,  1955 but the interactions between firms are in only one period. 

5
 

In simple terms, the hypothesis states that MMC among firms can facilitate collusion in

the markets where these contacts take place. R. Feinberg and Sherman,  1985 is one of

the earliest papers to find some support for the hypothesis using a market experiment. In

their subsequent work, R. M. Feinberg and Sherman,  1988 , the authors develop a model to

elucidate the “mutual forbearance” hypothesis using a parameter that captures conjectural

forbearance in the profit maximization equations of the firms. In the same paper, the authors

test the theory using market experiments where subjects play Bertrand competition in three

markets. The authors find their experimental results to support their hypothesis as they find

that the average price is higher when firms interact with the same rival in all three markets

compared to different rivals in different markets. A more recent paper, Güth et al.,  2016 

further studies mutual forbearance in the context of strategic substitutes and complements

with finitely repeated market games of different lengths. Their main result is that there is

more cooperation in the case of strategic complements than strategic substitutes. However,

they do not find support for of “mutual forbearance”. In the papers mentioned above, there

is no strategic difference between single contact and multiple contacts. Therefore the effects

they find are behavioral. 

6
 These papers are inherently different from current paper, as these

use one-shot or finitely repeated games.

Phillips and Mason,  1992 reformulated the “mutual forbearance” hypothesis using the

insights from Bernheim and Whinston,  1990 to develop the theory they test in an indefinitely

repeated Cournot competition setting with MMC. They compare quantity setting decisions

in single markets (firms interact only in one market) with that in multiple markets (firms in-

teract with the same rival in two markets) with different demand and cost conditions in each
5

 ↑ According to Jayachandran, Gimeno, and Varadarajan,  1999 mutual forbearance is “a form of tacit
collusion in which firms avoid competitive attacks against those rivals they meet in multiple markets”. The
anti-competitive behavior is proposed to appear because “multimarket competition increases the familiarity
between firms and their ability to deter each other.”
6

 ↑ Cason and Davis,  1995 also studies MMC in asymmetric Bertrand competition environment. However,
the main question that the authors study is the effect of communication among the subjects on collusion
concerning price decisions.
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market. 

7
 The result from their experiment shows that under MMC cooperation becomes eas-

ier in the market where it is more difficult to cooperate in single market conditions. Hence,

this result provides partial support to the theory from Bernheim and Whinston,  1990 in the

Cournot environment. The authors also studied the effect of MMC when markets are subject

to different regulations (one market is affected while the other is not) in Phillips and Mason,

 1996 . They find that a sufficiently restrictive regulation can lead to more competition, but a

lenient restriction can lead to more collusion in the unaffected market. My paper is different

from these papers primarily because I primarily use PD games and I expand my analysis to

include asymmetries of payoffs.

Recently a couple of papers have studied this phenomenon using PD games. In Yang,

Kawamura, and Ogawa,  2016 , the authors experimentally study multiple contacts using two

symmetric IRPD games, in only one of which cooperation can be sustained in equilibrium

under the discounted factor employed. In two of the three treatments in the experiment, the

subjects play only one of the PD games (single contact treatments). In the third treatment,

the subjects play two PD games simultaneously (multiple contacts treatment). In the exper-

iment, they observe that the subjects tend to cooperate more under multiple contacts in the

game that cannot sustain cooperation on its own. On the other hand, the cooperation rate

falls for the other game with multiple contacts. A recent paper, Laferriere et al.,  2021 this

too. They study simultaneous multiple contacts as well as sequential contact. The authors

do not find any impact of multiple contacts on the strategic behavior when the contacts are

simultaneous. In their sequential multiple contact treatments, the subjects choose actions

in the two games one after the other and can see the action chosen in the first game. In

this treatment, the authors find an increase in cooperation in the game that cannot sustain

cooperation in isolation.

7
 ↑ The authors simulate infinite horizon repeated interactions using finite repetitions with an unknown end
period. The caveat I should point out is that the simulated discount factor in this experimental design changes
from almost one in the earlier periods to significantly less than one in the later periods of interactions.
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My paper differs from these papers in several ways. First, I study how strategic behavior

is impacted by multiple contacts using both symmetric and asymmetric IRPD games. In

each case, I study the impact of multiple contacts on the tendency to cooperate. My paper

is the first experimental work to study multiple contacts with asymmetric strategic setting.

Second, although my symmetric treatment is similar to the experiment in Yang, Kawamura,

and Ogawa,  2016 , my experimental design is different, and allows me to isolate the effect

of multiple contacts from the effect of increased complexity from playing multiple games

simultaneously. Specifically, in my single contact treatments, subjects play two games with

two different players instead of playing one game with one other player. I make this design

decision to make sure that subjects face the same complexity level due to the number of

games played in all my treatments. Laferriere et al.,  2021 also uses this design. Finally, in

addition to looking at just the actions, I also investigate the strategies used by subjects in

different environments, particularly under multiple contacts to explore if strategies used by

subjects are affected by multiple contacts.

IRPD games have been studied extensively in the experimental literature. Most papers

concentrate on studying under what conditions subjects cooperate. For a comprehensive

probe into this strand of literature, see Dal Bó and Fréchette,  2018 . Some of the condi-

tions that are considered are payoffs and discount factors (Bó,  2005 ; Dal Bó and Fréchette,

 2011 ), continuous-time (Bigoni et al.,  2015 ; Friedman and Oprea,  2012 ), monitoring (Aoy-

agi, Bhaskar, and Fréchette,  2019 ; Camera and Casari,  2009 ; Rand, Fudenberg, and Dreber,

 2015 ), decisions by teams (Cason and Mui,  2019 ), identity (Kamei,  2017 ), number of players

(Camera, Casari, and Bigoni,  2012 ) and communication (Cason and Mui,  2019 ; Cooper and

Kühn,  2014 ) among others. To this end, I study if playing multiple games simultaneously can

enhance the tendency to cooperate. I also utilize the methodologies introduced in this lit-

erature to estimate strategies. I use the Strategy Frequency Estimation Method introduced

in Dal Bó and Fréchette,  2011 , and the strategies that are explored in Fudenberg, Rand,

and Dreber,  2012 . Estimation of strategies has received a lot of attention. Some papers

estimate strategies from the observed actions chosen by subjects (Breitmoser,  2015 ; Dal Bó

and Fréchette,  2011 ; Fudenberg, Rand, and Dreber,  2012 ), while other ask subjects to choose
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strategies from a list or construct strategies (Cason and Mui,  2019 ; Dal Bó and Fréchette,

 2019 ; Romero and Rosokha,  2018 ). In this paper, I adopt the former approach. Moreover,

for my multiple contacts environment, I introduce two new strategies, which I call Strong

Tit-for-Tat (S-TFT, henceforth) and Strong Defect Tit-for-Tat (S-DTFT, henceforth), by

modifying the Tit-for-Tat and Defect Tit-for-Tat strategies to fit my multiple contacts envi-

ronment. 

8
 

Asymmetric IRPD games are scarcely investigated experimentally. Some early papers

Schellenberg,  1964 ; Sheposh and Gallo Jr,  1973 study asymmetric prisoner’s dilemma games.

Among the early papers, J Keith Murnighan,  1991 ; John KMurnighan, King, and Schoumaker,

 1990 also study asymmetric IRPD games and the authors study the pattern of actions cho-

sen by subjects. These papers find that subjects alternate actions between cooperation and

defection in these games. In recent years, very few papers study asymmetric PD, mainly

in one-shot or finitely repeated environments (Ahn et al.,  2007 ; Aksoy and Weesie,  2013 ;

Haesevoets et al.,  2019 ). Bone et al.,  2015 use a symmetric IRPD game in their experiment.

However, they study if punishment (punishment is an added action besides cooperation and

defection that reduces payoff of the player who is punished) is detrimental to cooperation

and who is more likely to punish. The asymmetry comes in terms of the difference between

players in their power to punish. My paper adds to this literature by studying the tendency

to cooperate when players play multiple asymmetric games. I study if players in different

roles (high payoff or low payoff) cooperate differently. I find that subjects cooperate more

when they have a higher incentive to cooperate than their rival in asymmetric PD games.

My paper contributes by studying cooperative behavior in asymmetric IRPD games and

estimating strategies in this environment. Additionally, to the best of my knowledge, my

paper is the first paper to econometrically estimate the frequency of strategies used in the

asymmetric IRPD games.
8

 ↑ S-Grim strategy was introduced in Bernheim and Whinston,  1990 .
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1.3 Theoretical Background

In this section, I lay out the theoretical model underlying my experiment. I want to

study the circumstances under which multiple contacts can lead to a change in the strategic

behavior of players. Interacting the multiple identical environments simultaneously does not

change the incentives to have an effect on strategies. Bernheim and Whinston,  1990 refer

to this as the irrelevance result. As I have mentioned before, I require some source of het-

erogeneity or differences in the strategic settings for multiple contacts to make an impact.

I examine two sources of differences (i) difference in games (ii) different in players. In the

first case I use two different symmetric infinitely repeated PD games. While in the second

scenario, I use an asymmetric infinitely repeated PD game which is played twice in the two

different roles.

I use two sets of payoffs from which I can construct two symmetric PD games and one

asymmetric game. This also allows us to make the symmetric and asymmetric environments

equivalent. Let us consider two sets of payoffs, and call them the Easy (E) and Hard (H)

payoffs respectively. The symmetric game in which both players face the Easy payoffs, I call

the Easy game. Both players are in the Easy role. In the other game, which I call the Hard

game, both players get the Hard payoffs. Both players are in the Hard role in this game.  

9
 In

the asymmetric game, one player has Easy payoffs (Easy role) and the other player receives

the Hard payoffs (Hard role). The symmetric stage games and the asymmetric game are

shown in Figure  1.1 and Figure  1.2 respectively.

In the following discussion, I are going to use only Grim Trigger strategy when talking

about individual games and an equivalent strategy for the multiple contacts case. In in-

finitely repeated games, the set of strategies in infinite. I cannot analyze the entire of set of

strategies. I choose to study this family of strategies for a few reasons. First, these are the

simplest strategies that I can analyze analytically. Second, these assign the harshest possible

punishment to unilateral deviation, which is why I get the minimum discount factor require
9

 ↑ In the symmetric games, the terms “role” and “game” can be used interchangeably.
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to sustain cooperation. Finally, in this literature studying infinitely repeated PD games (see

Dal Bó and Fréchette,  2018 for review), the general practice is to use Grim Trigger strategy

obtain the lowest threshold discount factor. I acknowledge the fact that I can use other

strategies and obtain higher threshold discount factors.
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Figure 1.1. Symmetric Stage Games
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Figure 1.2. Asymmetric Stage Game

1.3.1 Different Games, Symmetric Players

In this setting, players are engaged in two different symmetric games. When there are

no multiple contacts, players play the two games with two separate opponents in isolation.

Therefore I can analyze the two games separately with strategies for each game. That is, the

strategies for each game considers history of actions and states what actions will be chosen

conditioned on this history for that game alone. Under multiple contacts, the players play
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the two games simultaneously with the same opponent. The two games can not be analyzed

separately. A strategy in this case combines the history of actions from both games and the

states the actions for both games conditioned on the history.

I first consider the case with no multiple contacts. When the two symmetric games are

played in isolation, Stahl,  1991 provides the set of sub-game perfect equilibria of an infinite

repetition of these games as a function of the discount factor. There exists a discount factor

δ∗i (threshold discount factor) where i = E, H, 

10
 such that for all discount factor δ < δ∗i,

defection in the only equilibrium action. However for any discount factor δ ≥ δ∗i there is a

multiplicity of equilibria which can support both defection and cooperation. For calculat-

ing δ∗i I consider the payoff from long term cooperation, versus the payoffs from unilateral

deviation when the other player is using the Grim Trigger strategy. δ∗i gives us the lowest

discount rate required to sustain cooperation in these games. This is because Grim trigger

strategy is most strict punishment strategy. If players use others strategies like Tit-for-tat,

they need higher discount factors to sustain cooperation. I choose the payoffs for my exper-

iment in such a way that δ∗E < δ∗H .

When the players play two games simultaneously with the same opponent, the incentive

to cooperate in the two games can be pooled together. Similar to the individual games, I can

find a minimum threshold discount factor required to sustain cooperation in both games.

For purpose I use the equivalent of Grim Trigger strategy in this this multiple contacts en-

vironment. In the S-Grim strategy players start by cooperating in all games, and defects

in all games in there is defection in any game in the history of the play. Bernheim and

Whinston,  1990 also used the S-Grim strategy for their analysis. Using this S-Grim strategy

I can find a threshold discount factor such that for all discount factors above it, cooperation

can be sustained in both games. S-Grim strategy uses the harshest punishment possible

for unilateral defection. Therefore the threshold discount factor is the minimum required

10
 ↑ δ∗i = bi − ci

bi − di for i = E, H
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discount factor to sustain cooperation in both games.

Cooperation in both games for all periods (given the other player uses S-Grim strategy)

gives the players the following discounted payoff.

UCC,SG = cE + cH

1 − δ
(1.1)

On the other hand, if a player deviates to defection, then she gets the following discounted

payoff.

Udev,SG = (bE + bH) + δ(dE + dH)
1 − δ

(1.2)

Notice that with multiple contacts when a player wants to defect in one game, it is

better to defect in both games than in only one game given that the other player uses the

S-Grim strategy. Given that the other player is using S-Grim, defecting in one game and

cooperating the other is a sub-optimal outcome since bE +bH > cE +bH and bE +bH > bE +cH .

Equating equations ( 1.1 ) and ( 1.2 ) I get a threshold discount factor which I denote by δ̂Sym. 

11
 

Irrespective of the payoff parameter values in the symmetric PD games, δ̂Sym lies between

the threshold factors from the two symmetric PD games. In my case, I have chosen payoff

parameters such that δ∗E < δ∗H . Therefore, δ∗E < δ̂Sym < δ∗H .

1.3.2 Same Game, Asymmetric Players

In the asymmetric game, Easy role player will have a threshold discount of δ∗E and the

Hard role player will have a threshold discount factor of δ∗H . For cooperation to be sustained

in the equilibrium, the discount factor must be such that both players will have incentive

to cooperate. Hence, the discount factor required to sustain cooperation in the asymmetric

game is the maximum of the two threshold discount factors given by

δ∗ = max{δ∗E, δ∗H} = bH − cH

bH − aH

11
 ↑ δ̂Sym = (bH + bE) − (cH + cE)

(bH + bE) − (aH + aE) .
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I now consider the situation when the players play the asymmetric game twice (once as

in Easy role and once in Hard role) simultaneously with the same opponent and for infinite

repetitions. In one game the player is in the Easy role and in the other she is in the Hard role.

I again assume that players use the S-Grim strategy and find a threshold discount factor

such that cooperation can be sustained in both games. Cooperation in the both games

for all periods (given the other player uses S-Grim strategy) gives the players the following

discounted payoff.

UCC,SG = cE + cH

1 − δ
(1.3)

On the other hand, if a player deviates to defection, then she gets the following discounted

payoff. Again, for a player it is better to deviate in both games than only one.

Udev,SG = (bE + bH) + δ(dE + dH)
1 − δ

(1.4)

Equating equations ( 1.3 ) and (  1.4 ) I get a threshold discount factor which I denote by δ̂Asym. 

12
 

Notice that the payoffs from continued cooperation and deviation is same for symmetric and

asymmetric payoff. 

13
 Therefore, I have δ̂Asym = δ̂Sym and δ̂Asym < δ∗. 

14
 

1.4 Experimental Environment, Design, and Procedure

1.4.1 Design and Parameters

In this paper I aim to better understand the effect of multiple contacts on the tendency

to cooperate in infinitely repeated prisoner’s dilemma games. As I have stated above, for

multiple contacts to have an effect I need the strategic environments to be different from each

other. I showcased two such circumstances, that is, two sources of heterogeneity and I study

them using a laboratory experiment. I want to compare these two types of heterogeneity to

see if they lead to similar effects of multiple contacts on subject behavior. Therefore, I have

a 2×2 between-subject design, as shown in Table  1.1 , with two main treatment variables for

12
 ↑ δ̂Asym = (bH + bE) − (cH + cE)

(bH + bE) − (aH + aE) .
13

 ↑ Compare eq. ( 1.1 ) to eq. ( 1.3 ) and eq. ( 1.2 ) to eq. ( 1.4 ).
14

 ↑ From before I know δ∗ = δ∗H , therefore δ̂Asym < δ∗.
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my experiment, contact (single contact versus multiple contacts), and type of heterogeneity

(different games versus different roles).

Table 1.1. Treatments
Different Games Different Roles

Single Contact SGame SRole
Multiple Contacts MGame MRole

Figure  1.3 shows how I implement multiple contacts and single contact in the experi-

ment. As par the concept of multiple contacts, subjects must interact in multiple strategic

environments with each other. In my experiment, I only use two, two-player strategic envi-

ronments and each of these environments is an IRPD game with a common discount factor.

In the experiment, I implement this by showing the subjects the stage games of both IRPD

games simultaneously and making them choose an action for each game. I call these stage

games the “Red Game” and the “Blue Game”. In the multiple contacts treatments, each

subject interacts with one other subject, whom I refer to as “Other”. This is shown in Figure

 1.3a In the single contact treatments, each subject should have contact with another subject

through one game only, i.e., each subject should play only one game with another subject.

However, to make the multiple and single contact treatments comparable and to maintain

the same level of complexity, even in the single contact treatments each subject plays two

games (“Red Game” and “Blue Game”) but with two different subjects.  

15
 In the Single Con-

tact treatments, each subject plays the “Red” Game with “Other Red” and “Blue” Game

with “Other Blue” simultaneously as in shown in Figure  1.3b .
15

 ↑ In the literature of multiple contacts, in some papers (Güth et al.,  2016 ; Phillips and Mason,  1996 ,  1992 ;
Yang, Kawamura, and Ogawa,  2016 ), for their equivalent single Contact treatment, the subjects play only
one of the games at a time. However, other papers (R. Feinberg and Sherman,  1985 ; R. M. Feinberg and
Sherman,  1988 ; Laferriere et al.,  2021 ) use this method for their single contact treatments where subjects
play multiple games with different opponents.
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Figure 1.3. Implementation of Multiple Contacts and Single Contact

For my experiment, I implement the infinitely repeated interaction as indefinitely re-

peated interaction using random termination protocol of Roth and J Keith Murnighan,

 1978 . In the experiment, I call each of these infinitely repeated interactions or supergame

a “round” and one repetition of the stage games a “period”. For all my treatments I use

the discount factor δ = 0.75. Therefore for my random termination protocol, the probabil-

ity of continuation was 0.75. This protocol was described to the subjects as the computer

randomly choosing a number between 1 and 8. If the number is lower than or equal to 6,

then the supergame will have an additional period; otherwise, the supergame will end. At

the end of each supergame, I rematch subjects randomly. All the sessions of each treatment

had 30 supergames. Each treatment had four sessions, each session with a different set of

supergame lengths pre-drawn from a Geometric Distribution with probability of success of

0.75. But the supergame lengths were common across treatments. 

16
 

16
 ↑ The supergame lengths are shown in Table  A.3 .
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Figure 1.4. Stage Game Payoffs

In our Different Games treatments, we use two symmetric PD games and for the Different

Roles treatments, we use one asymmetric PD game. To form these game we use two sets of

payoffs shown in Table  1.4 . For these payoffs, the threshold discount factors for the Easy

game and the Hard game in the SGame treatment are δ∗E = 0.08, δ∗H = 0.8 respectively.

The same for the asymmetric game in the SRole treatment is δ̂Asym = 0.8. For the multiple

contact treatments, I design the treatments such that I get the same threshold discount for

both treatments δ̂Sym = δ̂Asym = 0.44. 

17
 

During the experiment, in the Different Games treatments the “Red Game” and the

“Blue Game” that subjects see are the Easy Game and the Hard Game respectively. The

games are shown in the left panel of Figure  1.5 . In the Different Roles treatments, I refer to

the asymmetric game as the “Red Game” when subjects play it in the Easy role and as the

“Blue Game” when they play it in the Hard role as in the right panel of Figure  1.5 . Each

subject plays the games as Player 1.

17
 ↑ Following Spagnolo and Blonski,  2001 I also find the different threshold discount factors such that

cooperation is risk dominant in single contact and multiple-contacts treatments. For the SGame treatment,
the risk dominance threshold discount factor is 0.395 for the Easy game and 0.881 for the Hard game.
Therefore cooperation is a risk dominant action in the Easy game but not in the Hard game give my discount
factor of 0.75. For the SRole treatment, this threshold discount factor is 0.816. Therefore cooperation in
not a risk dominant action in the asymmetric game. Dal Bó and Fréchette,  2018 finds that the difference
between the employed threshold discount factor and the risk dominance threshold (∆) is a good predictor of
observing cooperation in symmetric IRPD games. In my case, for SGame treatment ∆∗E = 0.355 therefore
I should expect to see a considerable level of cooperation in the Easy game.
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Figure 1.5. Stage Games in the Experiment
Notes: In the experiment, the actions are named “A”, “B” for the “Red Game” and “X”, “Y” for the “Blue

Game” in place of “C”, “D” respectively.

The discount factor of 0.75 and the Easy payoffs are taken from Dal Bó and Fréchette,

 2011 . These payoffs have also been used in other papers like Romero and Rosokha,  2018 .

My Easy game corresponds to their r = 48, δ = 0.75 treatment. I take this route to provide

my experimental results some external validation. In my single contact treatments, I assume

that the subjects play the Easy game and the Hard game independently. If the cooperation

rate in my experiment matches that in the literature, then my assumption about the subject

behavior will be validated. The Hard payoffs were chosen to satisfy the condition that

δ∗H > 0.75 and that δ̂Sym = δ̂Asym to be considerably lower than 0.75. Finally, I also wanted

to restrict the differences between the payoffs, and to that end I changed only the payoffs

from cooperation. Figure  1.6 shows the flow of the experiment.

Figure 1.6. Flow of the Experiment
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1.4.2 Hypotheses Development

From the theory and comparing different treatments, I formulate the following hypotheses

that I test experimentally. The theory assumes that under multiple contacts subjects can use

strategies that cross punish defection in each game. Hard payoffs can not be used to punish

defection in the Easy or Hard game/role. So cross punishment implies defection in Hard

game/role is punished in the Easy game/role. This is implemented in different ways under

symmetric and asymmetric settings. In the symmetric setting, when a player defects in the

Hard game, both are in the Hard role. Then when the player is punished by her opponent

in the Easy game, both are in the Easy role. But for the asymmetric setting, when a player

defects in the Hard role, her opponent is in the Easy role. Then if the opponent chooses

to punish this when the player in Easy role, the opponent is in Hard role. Given the stage

game payoffs I use, in the SGame treatment, the threshold discount factor that can sustain

cooperation in equilibrium is 0.08 for the Easy game and 0.80 for Hard game. For the SRole

treatment, the minimum discount factor required to sustain cooperation in equilibrium in the

asymmetric game is 0.80. With multiple contacts, the threshold discount factor to sustain

cooperation in equilibrium (in both MGame and MRole treatments) becomes 0.44 which is

lower than 0.75. I now provide two general hypotheses based on my theoretical predictions.  

18
 

Our first hypothesis deals with the effect of multiple-contact. I will use the term “role” and

“game” interchangeably for the symmetric treatments.

Hypothesis 1.1. Differences in cooperation rates due to multiple contacts:

1. (MGame vs. SGame)

(a) Subjects have a higher probability to punish defection by opponent in Hard game

by defecting in the Easy game in MGame treatment compared to the SGame

treatement.

(b) Cooperation rate in the Hard game is higher in MGame treatment than in SGame

treatment.

2. (MRole vs. SRole)
18

 ↑ For a comprehensive look at my theoretical predictions please check Table  A.1 .
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(a) Subjects have a higher probability to punish defection by ooponent in Hard role by

defecting in the Hard role in MRole treatment compared to the SRole treatement.

(b) Cooperation rates in both the Easy and Hard roles are higher in treatment MRole

than in treatment SRole.

The theoretical predictions suggest that cooperation cannot be sustained in the asym-

metric PD with single contact. However, cooperation can be sustained in both the Easy and

Hard roles when there are multiple contacts. Therefore, I expect to find higher degree of

cooperation by subjects in both roles under multiple contacts compared to single contact.

When considering symmetric payoffs, I know that under single contact, cooperation is a pos-

sible equilibrium outcome in the Easy game but not in the Hard game. Whereas, multiple

contacts can enforce cooperation in both games in equilibrium. Therefore, I expect that

subjects are more likely to cooperate in the Hard game with multiple contacts. Our second

hypothesis considers the effect of asymmetry in payoffs.

Hypothesis 1.2. Differences in cooperation rates due to asymmetry of payoffs:

1. (MGame vs MRole) Players can sustain cooperation in both the Easy and Hard

roles in both treatments.

2. (SGame vs SRole) Players can sustain cooperation in the Easy role but not in the

Hard role in SGame treatment. Players cannot sustain cooperation in either roles in

SRole treatment.

With multiple contacts, my theory suggests that cooperation can be sustained by subjects

in both roles in equilibrium. Therefore, I can not postulate any difference in behavior from

my theory. In case of single contact, cooperation can be sustained in equilibrium by the

subjects in Easy role in SGame treatment. Therefore, I expect to find lower cooperation

levels under asymmetry of payoffs for the Easy role. Again, from the theoretical perspective

I cannot predict any difference in cooperation rates for the Hard role arising from payoff

asymmetry.
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1.4.3 Procedure

I conducted the experimental sessions at the Vernon Smith Experimental Economics

Laboratory in August 2020. Subjects were recruited from a pool of under-graduate students

at Purdue University using ORSEE (Greiner,  2015 ). For each treatment I conducted four

sessions, which amounted to 16 sessions in total.  

19
 A total of 192 students participated in

16 sessions with 12 subjects in each session. I implement a between subject design. Each

subject participated in only one of the sessions of this study.

The computerized experimental sessions used oTree (D. L. Chen, Schonger, and Wickens,

 2016 ) to record subject decisions. Subjects were given instruction at the beginning of the

session. Each session started with instructions, followed by an incentivized quiz, and then

the experiment. At the end of the experiment there was a demographic survey and finally

subjects were paid individually. 

20
 Each session took about one hour to complete. The in-

structions were shown on the screen (Appendix  A.3.1 contains the instructions the subjects

were given). At the end of the instructions there was an incentivized quiz with 8 questions.

The subjects could earn $0.25 for each correctly answered question. After submitting the

answers of the quiz, the subjects were shown the correct option, the option they chose and

the amount of money they would receive for the quiz (Appendix  A.3.2 contains the quiz

questions that the subjects were asked). After the quiz the subjects began the experiment

part of the session which starts with a reminder of the instructions.

The subjects were guaranteed a payment of $5 for appearing for the session. The subjects

earned an average of $18.36, with a minimum of $16.50 and a maximum of $21.50 (including

the $5 show up fee).  

21
 The average number of periods per round was 4.05 with a minimum

of 1 period and a maximum of 13 periods. The subjects earned in points during the experi-

ment. At the end of the experiment, the points were converted into dollar amounts using an
19

 ↑ I could not have larger session size than 12 because of Covid-19 protocols, implemented by Purdue
University. I also conducted a pilot session with 6 subjects to adjust the conversion rate and the time for
the experiment.
20

 ↑ The flow of a session is shown in Figure  A.1 in the Appendix  A.2 .
21

 ↑ This is at par with the hourly wage rate in West Lafayette, Indiana.
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exchange rate such that the average earning in every session would be similar.  

22
 For more

details on the experimental sessions refer to Table  A.2 and Table  A.3 .

1.5 Results

In this section, I discuss the results from my laboratory experiment. For most observa-

tions and results, I use the last 10 supers and nonparametric tests. For comparison between

treatments I use nonparametric permutation test (testing if data from two treatments come

from the same distribution), and for comparison across supergames I use nonparametric ran-

domization test (testing if data from two different sets of supergames come from the same

distribution), unless stated otherwise. For robustness checks, I redo the tests with last 5

or 15 supergames and using Probit regression. Before getting into testing the hypotheses, I

discuss some of the preliminary takeaways from the data. After that I test the hypotheses

by only looking at the actions chosen by subject. Finally, I discuss the strategy estimation

part of my paper.

1.5.1 Preliminary Takeaways

In this subsection I discuss some general takeaways from the data. Figure  1.7 shows the

average cooperation rates for all periods in each supergame for each of my treatments. 

23
 My

first observation is that, in the SGame treatment, subjects learn to cooperate in the Easy

game and defect Hard game. This behavior is in line with the theory, which hypothesizes

that in the SGame treatment, given my stage game payoffs and discount factor, cooperation

can be sustained in the Easy game’s equilibrium but not in that of the Hard game. In the

data, the average cooperation level for all periods in the Easy game starts at 60.7% in the first

10 supergames and increases to around 87.3% by the last 10 supergames of the experiment.

Conversely, in the Hard game the cooperation level for all periods on average is 7.7% in the

first 10 supergames but reduces to only 3.5% in the last 10 supergames. The differences

between the first 10 and last 10 supergames are statistically significant at α < 0.001 for the
22

 ↑ he subjects were told the exchange rate in the instruction, before the experiment.
23

 ↑ Figure  A.3 in the appendix shows the average cooperation level for the first period in each supergame
for each of my treatments.
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Figure 1.7. Average Cooperation rates in Treatments for each Round (All Periods)
Notes: The shaded areas are the Two-Stage Clustered Bootstrap 95% Confidence Intervals (clustered at

session level, randomized at subject level).

Easy game and for the Hard game with p-value 0.01. 

24
 

Second, Figure  1.8 shows that there is no economically meaningful difference between

the overall cooperation levels in the Easy game of the SGame treatment of my experiment

and that r = 48, δ = 0.75 treatment of Dal Bó and Fréchette,  2011 . This observation is also

supported when looking at first period cooperation rates.  

25
 In my experiment, the average

cooperation rates over all supergames in this game are around 75% for all periods and 84%
24

 ↑ Figure  A.13 (Figure  A.12 ) shows the average cooperation for all (first) periods in the first and last 5
and 10 supergames. Table  A.14 show the z-stat estimates from the nonparametric test for the first and last
5 supergames, 10 supergames and 15 supergames. I also conduct a Probit Regression (clustered at session
level), the estimates of which are in Table  A.15 . I find similar patterns in the cooperation rates from the
robustness checks.
25

 ↑ Figure  A.4 shows the first cooperation rates per round for my SGame treatment and Dal Bó and Fréchette,
 2011 r = 48, δ = 0.75 treatment.
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Figure 1.8. Average Cooperation rates in Single Contact and Symmetric
Treatment and r = 48, δ = 0.75 Treatment in Dal Bó and Fréchette,  2011 for

each Round (All Periods)
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for the first period, which are very similar to the corresponding numbers from Dal Bó and

Fréchette,  2011 (average cooperation rate of 76.42% for all periods, and 85% for the first

period). I also use a Probit regression (clustered at session level) to test if there is any

statistically significant difference between the cooperation levels from the two experiments

in the supergames 26-30 and 21-30 (see Table  A.4 for the z-stat estimates and p-values). I

do not find any statistically significant difference.

This external validation is important since it helps rule out any significant behavioral

spillover in the Easy game from the Hard game in terms of reducing the tendency to coop-

erate. In the literature many papers investigate if actions in games are affected by playing

multiple games together, simultaneously or sequentially. In most of these papers, there is

no strategic implication of playing multiple games. Many papers study PD games in this

context. However, they study the effects on the actions taken in the PD game when subjects

play other games.  

26
 In my SGame and SRole treatments, subjects play two PD games simul-

taneously with two different opponents. Therefore there is no strategic difference between

my setting and play one PD game in isolation. From the comparison, stated in the last para-

graph, I do not find any economically or statistically significant difference in cooperation

levels between my Easy game (played simultaneously with the Hard game) in the SGame

treatment and their r = 48, δ = 0.75 treatment (played in isolation). Since the payoffs for

the Hard game have not been used in the literature, I can not rule out behavioral spillover

on this game. However, my payoff matrix is very similar to the r = 32, δ = 0.75 treatment

in Dal Bó and Fréchette,  2011 . In both these games cooperation can not be sustained in

equilibrium. The cooperation levels that I find in my Hard game in SGame treatment are

economically equivalent to the r = 32, δ = 0.75 treatment. Moreover, my data follows a sim-

ilar pattern as the data from other papers with δ − δ∗ < 0 and δ − δRD < 0 (see Dal Bó and

Fréchette,  2018 for a comprehensive overview). Unfortunately, I can not rule out behavioral

spillover in the SRole treatment. Other spillover effects like learning across multiple games
26

 ↑ The other games considered are Stag-Hunt game (Duffy and Fehr,  2018 ), Trust game (Albert et al.,
 2007 ), Alternation games (Bednar et al.,  2012 ; T. X. Liu et al.,  2019 ) or Self-interest game (Bednar et al.,
 2012 ) among other games, with the PD game.

39



(see Mengel,  2012 ) might also be present in my single contact treatments.

My third observation concerns the SRole treatment. According to the theory, coopera-

tion cannot be sustained in equilibrium for the asymmetric PD game given my payoffs and

discount factor. However, as Figure  1.7 (all periods) and Figure  A.3 (first period), both

roles have statistically significant cooperation (95% confidence intervals for each round do

not contain 0) levels in the SRole treatment in first period and all periods.  

27
 Finally, I

note that even with asymmetric payoffs (in both single contact and multiple contacts cases),

the cooperation rates are higher in Easy role compared the Hard role. I test this using a

Wilcoxon Matched-Pairs Signed-Rank Test. The estimates are presented in Table  A.5 . I

find that the cooperation levels for the Easy role are greater than (statistically significant)

that in the Hard role for every treatment.

Observation 1. Subjects learn to cooperate in the Easy game and learn to left in the Hard

game in the SGame treatment.

Observation 2. Cooperation rates in the Easy game in the SGame treatment are similar to

those in the literature.

Observation 3. Subjects cooperate in both Easy and Hard role in SRole treatment.

Observation 4. Subjects cooperate more when they are playing in Easy game/role than in

Hard game/role.
27

 ↑ In Table  1.2 I also see that average cooperation in the last ten supergames for first period or all periods
are statistically different than 0 (using bootstrapped t-statistics).
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1.5.2 Action Choices

Table 1.2. Average Cooperation Rates (in Percentage)

First Period All Periods

Easy Hard Easy Hard

SGame
92.5***

(5.5)

6.9*

(3.9)

87.2***

(7.2)

3.9*

(2.0)

MGame
71.7***

(10.2)

12.3+

(8.6)

60.5***

(9.6)

10.7*

(6.1)

SRole
47.3***

(10.7)

34.6***

(8.9)

34.0***

(6.4)

28.9***

(5.6)

MRole
45.0**

(13.8)

37.3**

(13.6)

36.9***

(10.4)

33.4**

(10.3)

Notes: Table shows average cooperation rate over mul-
tiple supergames. The statistics considers the su-
pergames 21-30 of the sessions. Two-stage Cluster
(clustered at session level, randomized at subject level)
Bootstrap Standard Errors are in parentheses. Signifi-
cance levels are due to p-values from one-sided t-test.
Significance - + at 0.1, * at 0.05, ** at 0.01, *** at
0.001

In this subsection, I examine the data for evidence supporting or contradicting my hy-

potheses by looking at the action choices made by the subjects. In the experiment I see a

considerable level of learning. Therefore, I use the later part of the experiment for further

analysis. Table  1.2 shows the average cooperation rates for the last 10 supergames consid-

ering the first period only and all periods.  

28
 The first period average cooperation rate gives

me an idea regarding the intention of the subject, whereas the all period average coopera-

tion rate can inform on the type of strategies the subjects might be using. I find that the
28

 ↑ I also use the last 5 supergames and last 15 supergames of the sessions. The estimates are in Table  A.7 .
My findings do not change considerably only when considering these supergames.

41



cooperation levels always drop as I move from first period rates to all periods rates. This

can indicate that subjects use punishing strategies, subjects start defecting at later periods

of a supergame, or both.

For the rest of the paper, unless stated otherwise, a subject’s action portfolio in a stage

game is represented by (x, y) where x and y both can take values from {C, D}. x is the

action taken in Easy game and y is the action in Hard game. Therefore action profile for

a stage game is represented by ((x1, y1), (x2, y2)). Also when I mention SGame or SRole

treatment, every subject faces two opponents. But for expediency, when comparing with

MGame or MRole treatment, I use the term opponent to mean both of them.

Figure 1.9. Conditional Probabilities for Different Roles Treatments
Notes: Each 4 × 4 matrix is a matrix of conditional probabilities, such that each cell shows the probability
choosing actions (represented in the rows) at t when opponent chose actions (represented in the columns)
at (t − 1). The action profile x,y implies x is chosen in Easy game, and y is chosen in Hard game with x,y

∈ {C, D} . The data used is from the supergames 21-30.
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Figure 1.10. Conditional Probabilities for Different Games Treatments
Notes: Each 4 × 4 matrix is a matrix of conditional probabilities, such that each cell shows the probability
choosing actions (represented in the rows) at t when opponent chose actions (represented in the columns)
at (t − 1). The data used from the supergames 21-30. NA implies there is no observation where a subject

chose the actions C,C at (t − 1).

Table 1.3. Difference in the probability of punishment at t given defection
by opponent(s) in (t − 1) when a subject chooses (C,C) in (t − 1)

Prob((D,D)|(C,D)) Prob((D,D)|(D,C)) Prob((C,D)|(C,D)) Prob((C,D)|(D,C)) Prob((D,C)|(C,D)) Prob((D,C)|(D,C))

MGame - SGame 13.63%
(14.00)

0
(0)

−33.11%
(27.54)

−0.8%
(6.24)

0
(0)

0
(0)

MRole - SRole 11.11%∗∗

(14.91)
29.49%∗∗

(23.01)
−26.98%
(29.73)

0
(0)

0
(0)

−30.4%∗∗

(29.09)
Notes: Each column represents the difference in conditional probabilities between multiple contacts and single contact given a subject chose (C,C) in t. Prob((x1, y1) |
(x2, y2)) implies the conditional probability that subject chooses x1 in Easy game/role, and y1 in Hard game/role, given opponent in Easy game/role chooses x2 and
opponent in Hard game/role chooses y2 and subject chose (C,C) in t − 1 with x1, x2, y1, y2 ∈ {C, D}. The data used is from the supergames 21-30.
Significance: * at 0.1, ** at 0.5, *** at 0.01

My first hypothesis deals with the effects of multiple contacts on the tendency to cross

punish and the average cooperation rate. To check the change in the punishment behavior, I

use two approaches. First, I look at the conditional probability of cross punishment. Second,

I look at the strategies that subjects use under the different treatments. The second approach

is relegated to the next subsection. What I want to find here is if under multiple contacts,

defection by a subject in the Hard game/role is met by punishment when she is in the Easy
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game/role. In theory, punishment is used if an agent receives the sucker’s payoff, that is,

she cooperates while the opponent defects, in any earlier periods. Therefore, I consider the

conditional probability of punishment when the subject cooperates in both games, (C, C)

in the previous period, t − 1. I do not consider the cases when the subject chooses (C, D),

(D, C) or (D, D) at period t − 1. The logic behind is that if the subject does not receive the

sucker’s payoff in case of (C, D) or (D, D) and if the subject chose (D, C) or (D, D), there is

no way to say if its due to cross punishment or because the subject prefers to defect in the

Easy game/role. Also, I do not consider the case when opponent in both games chooses to

defect at (t − 1) because that does not allow us to check if there is cross punishment. 

29
 

Table  1.3 shows the difference in probabilities of cross punishment between multiple con-

tacts and single contact treatments. In the SRole and SGame treatment, when the opponents

actions are C and D (represented by (C, D)) for the Easy and Hard role respectively, sub-

jects are more likely repeat this action profile or they continue to choose (C, C). Compared

to this, in the multiple contacts treatments, subjects choose (D, D) along with (C, D) and

(C, C). But they are now less likely to choose (C, D) but more likely to choose (C, C). I

find that cross punishment is statistically significant at α = 0.05 only when comparing the

different roles treatments.
29

 ↑ For simplicity, I only consider 1 period histories. In practice, punishment can be used after multiple
periods. But this complicates the history. For n period history, the number of possible of histories are
(2 × 2)n.
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Table 1.4. Comparison Between Treatments

First Period All Periods

Easy Hard Easy Hard

MGame - SGame
-3.05∗∗

(0.001)

1.05

(0.148)

-4.37∗∗∗

(0.0)

2.16*

(0.021)

MRole - SRole
-0.25

(0.408)

0.32

(0.379)

0.44

(0.323)

0.72

(0.235)

SRole - SGame
-6.24∗∗∗

(0.0)

4.44∗∗∗

(0.0)

-9.03∗∗∗

(0.0)

5.55∗∗∗

(0.0)

MRole - MGame
-3.01∗∗

(0.002)

3.21∗∗

(0.002)

-3.46∗∗∗

(0.0)

4.23∗∗∗

(0.0)

Notes: Table shows the t-stats estimated using Nonparametric
Permutation Test to compare the average cooperation between
test. The statistics considers the supergames 21-30 of the ses-
sions. The p-values are listed in parentheses.
Significance: + at 0.1, * at 0.05, ** at 0.01, *** at 0.001

The other part of first hypothesis is regarding the effect of multiple contacts on coop-

eration levels. Table  1.4 shows the estimates from comparison of average cooperation rates

between treatments. 

30
 For this comparison I first consider the SGame and MGame treat-

ments. I find that with multiple contacts the level of cooperation goes up in the Hard game,

where as it is lower in the Easy game. The increase in cooperation rate in the Hard game is

in line with my theoretical prediction in Hypothesis  1.1 . But the statistical significance of

the change in cooperation rates in the Hard game is not robust. The increase in the aver-

age all period cooperation rate (p-value < 0.05) in the Hard game is statistically significant

when using nonparametric permutation test. But these effects are not statistically significant

when using Probit regression (see Table  A.9 ). The decrease in the cooperation rate in the
30

 ↑ I also use a Probit regression (clustered at session level) to compare the treatments. The estimates are
in Table  A.9 .
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Easy game is in line with the previous literature (Güth et al.,  2016 ; Yang, Kawamura, and

Ogawa,  2016 ). This is not inconsistent with the theory because the theory predicts multiple

equilibria. Continued mutual cooperation in both games is supported in equilibrium but it

is not uniquely supported. I find that the reduction in cooperation rate in the Easy role is

statistically significant (p-value < 0.01 (first period), p-value < 0.001 (all periods)).  

31
 When

considering the different roles treatmets, I find similar effect of multiple contacts on the

first period cooperation rates for the Easy and Hard roles as in the case of different games

treatments. I see that cooperation rate drops for the Easy role and increases in the Hard

role. However, both these effects are not statistically significant. 

32
 I now summarize these

findings in Result  1.5.1 .

Result 1.5.1. Effect of multiple contacts:

1. (MGame vs SGame)

(a) There is no statistically significant increase in cross punishment to defectors due

to multiple contacts when subjects themselves cooperate in both games.

(b) There is no statistically significant increase in cooperation in the Hard game, but

there is a statistically significant decrease in cooperation in the Easy game due to

multiple contacts.

2. (MRole vs SRole)

(a) There is a statistically significant increase in cross punishment to defectors due

to multiple contacts when subjects themselves cooperate in both games.

(b) There is no statistically significant change in cooperation in the Easy or Hard

game due to multiple contacts.

Now I investigate the impact of asymmetry of strategic settings (in my case, payoffs) on

the levels of cooperation. I observe in Table  1.2 that the cooperation level in the Easy role
31

 ↑ This effect is present and statistically significant when I use data from the last 5 or 15 supergames (see
Table  A.8 ). I also run Probit Regression to test this (see Table  A.9 ). The fall in cooperation in the Easy
game is still statistically significant.
32

 ↑ I come to the same conclusion when using other ranges of supergames (see Table  A.8 ) or using Probit
regression (see Table  A.9 ).
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has dropped due to asymmetry of payoffs both under single contact and multiple contacts

treatments while it has increased for the Hard role under both single contact and multiple

contacts treatments. I find that the differences in cooperation rates are statistically signifi-

cant for both the Easy role (see Table  1.4 ). The difference in cooperation rates in the Hard

role due to asymmetry of payoffs under the single contact treatment contradicts my theoret-

ical prediction in Hypothesis  1.2 . This stems from the fact that high levels of cooperation

are observed in the Hard role of SRole treatment which itself contradicts my theoretical

model. The drop in cooperation in the Easy games is in line with my theoretical predictions

in Hypothesis  1.2 . I summarize my findings in Result  1.5.2 . 

33
 

Result 1.5.2. Effect of asymmetry among players:

1. (MGame vs MRole) Subjects cooperate less in Easy role and more in Hard role under

Multiple Contacts Different Roles treatment compared to Multiple Contacts Different

Games treatment. Both these effects are statistically significant.

2. (SGame vs SRole) Subjects cooperate less in Easy role and more in Hard role under

Single Contact Different Roles treatment compared to Single Contact Different Games

treatment. Both these effects are statistically significant.

I also look at the average payoffs that subjects earned in each supergame in the four

treatments. For most of the paper, I concentrate on the cooperative outcome (C, C) for the

single contact treatments and the outcome ((C, C), (C, C) for the multiple contacts treat-

ments, but the folk theorem encompasses many other possibilities. I first consider single

contact treatments. In Figure  A.5 , I show the average payoffs that the subjects receive over

supergames in the SGame treatment for the Easy game (left panel) and the Hard game (right

panel). For the Easy game, given the discount factor, the folk theorem covers all the feasible

payoffs (convex set with boundary marked in black dashed line) which are individually ra-

tional (payoff greater than 25). For the Hard game, the folk theorem payoffs do not include

the cooperative outcome. The payoffs in the experiment are in accordance with my theory

for both Easy and Hard games. Similarly for the asymmetric game, in the single contact
33

 ↑ I further use the last 5 supergames of my the experiment which provides similar conclusion. Again, my
findings do not change when I use Probit Regression for my analysis. See Table  A.8 .
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case, cooperative outcome is not supported for my discount factor. However, the payoffs

tell a different story (see Figure  A.6 ). I find some presence of payoffs from the cooperative

outcome. More surprisingly, I also find incidence of payoffs that are not individually rational.

Furthermore, subjects do not try to obtain equal payoffs for both players. The same patterns

persist when I consider supergames 26-30 for the SGame and SRole treatments (see Figures

 A.7 and  A.8 ).

I now consider the multiple contacts treatments. The folk theorem payoffs for the com-

bined games in MGame and MRole treatments contain all the feasible payoffs (including the

cooperative outcome) which are also individually rational (payoff greater than 50). There is

a stark difference between the MGame and MRole treatments in terms of payoffs from the

experiment (see Figure  A.10 in the Appendix). In the MGame treatment, the most frequent

payoff is one that corresponds to mutual cooperation in the Easy game and mutual defection

in the Hard game (73, 73). This payoff (73, 73) is very close to the efficient frontier containing

(78, 78) corresponding to mutual cooperation in both games but it is easier to coordinate on

than the latter. On the other hand, for the MRole treatment, the most frequent payoff is

(50, 50) corresponding to mutual defection in both roles but I also see incidence of mutual

cooperation in the both roles. However, in both the treatments I find considerable presence

of payoffs that are not individually rational. I also find this for the SRole treatment. This

might be because the asymmetric games and the multiple contacts environment are more

complex than the SGame environment to play in such that subjects can not play in a way

to receive individually rational payoffs. Again, I find a similar pattern for supergames 26-30

(see Figure  A.11 ).

1.5.3 Strategy Estimation

In the previous subsection, I listed some results regarding the effect of multiple contact

and asymmetry of agents on punishment behavior and average cooperation levels. My the-

ory models subject choices, assuming that the subjects use the Grim Trigger strategy in

each role in the single contact treatments and the S-Grim strategy for the multiple contacts
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treatments. Using this assumption, I hypothesized that a subject would punish defection by

another subject in the Hard game/role by defecting when the subject is in the Easy game/-

role and therefore could sustain cooperation in both settings under multiple contacts. As

we see in Result  1.5.1 there is some support to this hypothesis. But when comparing the

cooperation rates between single contact with multiple contacts treatments, I do not find

the expected differences. In the different games treatments, I see a statistically significant

drop in the Easy game’s cooperation rate with a statistically insignificant rise in the Hard

game’s cooperation rate. My hypothesis states that with my chosen discount rate, subjects

should be able to sustain cooperation in both games in the MGame treatments given that

both subjects use the S-Grim strategy. However, given the experimental data, the subjects

do not appear to use the S-Grim Trigger strategy. I also do not find any significant difference

in cooperation rates between single and multiple contacts treatments in the different roles

treatments. However, a negligible difference in average cooperation rate does not necessarily

imply that the subjects use the same strategies under both treatments. Therefore, to further

investigate this discrepancy I estimate the strategies that the subjects use. Before estimating

strategies in the multiple contacts treatments, I look at the strategy subjects use the single

contact treatment.

In my SGame treatment, cooperation could be supported in the Easy game but not in the

Hard game and the average cooperation rates that I observe for this treatment are concordant

with this conjecture. However, many other strategies can support cooperation. Although

subjects in this treatment, cooperate almost perfectly on average in the later supergames, I

find that their behavior is dispersed across sessions. Therefore, it is interesting to see what

strategies the subjects use, other than the Grim Trigger strategy. On the other hand in

the SRole treatment, subjects should not theoretically cooperate in either role, but I do not

find support for this in my experimental data. I witness significant levels of cooperation by

subjects in both roles. This implies that subjects must be using some cooperative strategies,

which warrants more inquiry. The average corporation levels indicate that at least some

subjects use strategies other than the Grim Trigger strategy.
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I use a finite mixture estimation approach to formally estimate the strategies resulting in

my experiment’s observed action choices. Finite mixture models have been used in various

studies, including Dal Bó and Fréchette,  2011 ; Fudenberg, Rand, and Dreber,  2012 ; Romero

and Rosokha,  2018 ; Rosokha andWei,  2020 to estimate the frequency with which subjects use

a strategy, usually called Strategy Frequency Estimation Method (SFEM) in this literature.

I particularly implement the algorithm used in Romero and Rosokha,  2018 . I start by

fixing the set of K strategies. For each subject, n, and each strategy k, I compare the

actual actions observed in the experiment and the strategy k’s prescribed actions given the

opponent subject’s actions. I denote by x the number of periods for which the prescribed

and the actual actions matched and by y the number of periods for which the actions do

not match. 

34
 So I get two matrices X and Y of dimensions K × N of all combinations of

subjects and strategies, then I define a Hadamard product P .

P = βX ◦ (1 − β)Y (1.5)

where β is the probability with which subjects play according to a strategy, and (1 − β) is

the probability with which subjects deviate from a strategy. Thus, each entry of the matrix

P (P (k, n)) is the likelihood that subject n’s observed actions come from the strategy k.

Then I take the matrix dot product of P and Φ, where Φ is a K−vector whose kth entry

is the probability with which a strategy k is used by all subjects. The product gives the

likelihood that my data matches my estimation model. I then estimate the entries of the

vector Φ and the scalar β.

For all my main estimation exercises, I again use the last 10 supergames of the sessions.

The assumptions that I have to make here are that subjects’ behavior in the last 10 su-

pergames has stabilized, and subjects use the same strategies in all the supergames under
34

 ↑ For example: Suppose for a PD game, I want to estimate strategy using data from a super game (round
in my case). In the super game, let the history of actions of subject n be (C, C, C, C, C) and that of the
opponent subject be (C, D, C, C, D). The super game has 5 periods. When I consider the strategy k = Grim
Trigger, subject n’s prescribed actions given the history of play by the opponent is (C, C, D, D, D). The
prescribed action and the actual actions match for 2 periods and do not match for 3 periods. Therefore, for
the strategy k = Grim Trigger and individual n X(k,n) = 2 and Y(k,n) = 3.
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consideration. 

35
 To check the validity of this assumption, I vary supergames that I consider

to check if the estimates vary substantially.

Single Contact Strategies

I first estimate the strategies subjects use in the Easy and Hard roles in single contact

treatments. To reiterate, in SGame and SRole treatments, subjects subject two PD games,

one in Easy role and one in Hard role with two different opponents. I can therefore assume

that the actions in one game is not contingent on the history of play in the other game. Fol-

lowing this logic, I estimate the strategies used in Easy and Hard games separately. In the

meta-analysis paper, Dal Bó and Fréchette,  2018 , the authors find that Always Cooperate

(AC), Always Defect (AD), Grim Trigger (Grim), Tit-for-Tat (TFT), and Defect Tit-for-Tat

(DTFT) account for most behavior in the indefinitely repeated PD literature. I primarily

use this set of strategies for my strategy estimation exercises. 

36
 I use the same set of strate-

gies for both SGame and SRole treatments. I do this for two reasons. First, this allows us

to compare behavior across the two treatments. Second, there is no previous literature to

inform the strategies subjects use in asymmetric PD games.

Table  1.5 presents the frequency estimates of strategies subjects use in the Easy and

Hard roles for treatments SGame and SRole. In the Easy role in the SGame treatment, the

most common strategies are Grim and the TFT (76.8%), while the most common strategy

is AD (65.2%) in the Hard role. This observation is in line with my theory. The estimated

frequencies of strategy use do not achieve statistical significance for any strategies in SGame

Easy role. This can be due to two reasons. First, the subjects are cooperative. Always

Cooperate, Grim Trigger and Tit-for-Tat generates the same histories unless defection is

observed. The second reason might be that data from my experiment are dispersed across

sessions, because of which, I get very high standard errors for all my estimates. I expected

that the most common strategy would be the Grim Trigger strategy. However, I find that
35

 ↑ Cason and Mui,  2019 shows that at the later supergames of experimental session there is only 10-15%
change in the strategies used by the subjects.
36

 ↑ I also estimate the mixture model with 20 strategies from Fudenberg, Rand, and Dreber,  2012 . I provide
these estimates in table  A.11 .
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Table 1.5. Estimated Frequencies of Strategies in Single Contact Treatments
SGame SRole

Easy Hard Easy Hard

AC 16.7
(12.1)

5.8
(4.6)

2.7
(3.7)

Grim 39.3
(28.9)

6.6
(4.3)

10.2
(11.2)

6.8
(8.5)

TFT 37.5
(29.0)

0
(3.5)

33.5*
(8.4)

21.2*
(6.9)

AD 6.3
(3.8)

65.2*
(12.7)

37.9*
(7.2)

43.0*
(6.9)

DTFT 28.3
(12.6)

12.7
(7.1)

26.7*
(7.6)

Cooperative 93.7*
(4.0)

6.6
(4.3)

49.4*
(9.6)

30.7*
(8.3)

Defective 6.3
(4.0)

93.4*
(4.3)

50.6*
(9.6)

69.3*
(8.3)

β
98.2
(0.7)

97.8
(1.0)

92.5
(1.3)

90.9
(1.6)

L -183.4
(58.4)

-212.9
(68.2)

-538.7
(85.1)

-609.7
(99.1)

Notes: Table shows estimated frequencies (in per-
centage). Estimation includes actions from Su-
pergames 21-30. Two-Stage Cluster Bootstrapped
Standard Errors from 3000 bootstraps (clustered
at session level, randomized at period level) in
parentheses. The strategies included here are: AC
- Always Cooperate, Grim - Grim Trigger, TFT -
Tit-for-Tat, AD - Always Defect, DTFT - Defect
Tit-for-Tat. Blank implies frequency is 0 with 0
SE.
* - Frequency estimates are significantly different
from 0 at α = 0.05 (95% Bootstrapped CIs of
estimates do not include 0)
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subjects use other strategies like TFT and AC. All these strategies are categorized as coop-

erative (Cason and Mui,  2019 ; Fudenberg, Rand, and Dreber,  2012 ) and, account for 93.7%

of the used strategies in the Easy role compared to 6.6% in the Hard role. On the other

hand, for the Hard role, the defecting strategies AD and DTFT account for around 93.4%

of the used strategies compared to 6.3% in the Easy role.

In the SRole treatment, the most frequent strategies used are shared between the Easy

and the Hard role. Although the most common strategy is AD in the Easy role (37.9%) and

the Hard role (43%), subjects use cooperative strategies more in the Easy role than the Hard

role (49.4% vs. 30.7%). Subjects have the incentive to cooperate in the Easy role while her

opponent does not (since, the opponent is in her Hard role). Therefore, I see an intention

to cooperate in subjects in the Easy role. Although subjects in the Hard role use defecting

strategies frequently, there is some use of cooperative strategies. This might be because

subjects know that their opponents would want to cooperate, and hence they attempt to

cooperate. Also, note that the mixture model’s performance in SGame treatment is worse

than SRole treatment in terms of β and L. I summarize my findings in the following result.  

37
 

Result 1.5.3. Strategies in single contact treatments:

1. (SGame) Subjects use cooperative strategies (Always Cooperate, Tit-for-Tat, Grim) in

Easy role and defecting strategies (Always Defect, Defect Tit-for-Tat) in Hard role.

2. (SRole) Subjects use common strategies in both Easy and Hard roles. Although defecting

strategies are most prevalent, in both roles, subjects also choose cooperative strategies.

Cooperative strategies are chosen more commonly in the Easy role compared to the

Hard role.

Multiple Contacts Strategies

I next estimate the strategies used by subjects in the two games they play simultaneously.

For this exercise, in some of the strategies that I use subjects choose actions in the two games
37

 ↑ I also perform this exercise with last 5 supergames. The results are presented in Table  A.10 . My results
do not change qualitatively by restricting the supergames to last 5 supergames.
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that might condition one game’s actions on history of play in either one or both games. My

theoretical model assumes that subjects in multiple contact treatments use strategies like

S-Grim strategy. Figure  1.11 shows the strategy in an automaton form. In the S-Grim

strategy, a subject starts by cooperating in both games and continues to cooperate until the

opponent defects in either game or both. Then the subject continues to defect in both games

in all future periods. My hypothesis used this S-Grim strategy; however, as I see in Result

 1.5.1 , my data does not support this hypothesis. Therefore I want to estimate the strategies

that the subjects choose. For this purpose, I introduce two more strategies – Strong TFT

and Strong DTFT. Figure  1.11 shows the automaton representation of these strategies.

CCstart DD

CC

CD, DC,
DD

CC, CD,
DC, DD

Figure 1.10. Strong Grim

CCstart DD

CC

CD, DC,
DD

CD,
DC, DD

CC

Figure 1.10. Strong TFT

CC DD start

CC

CD, DC,
DD

CD,
DC, DD

CC

Figure 1.10. Strong DTFT

Figure 1.11. Automaton Representation of Multiple Contacts Strategies

In the Strong TFT (S–TFT) strategy, a subject starts by cooperating in both games

and continues to cooperate in both games if the opponent cooperates in both games. If the

opponent defects in either one or both games, the subject defects in both games for one

period. If the opponent cooperates in both games, the subject goes back to cooperating in

both games. Strong DTFT (S–DTFT) strategy operates like S-TFT, except it starts with

defection in both games. I expect that subjects do not use the strong strategies in the single

contact treatments, but subjects do use them under the multiple contact treatments. The

other strategies I use are the combinations of the individual strategies that I use in the first
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estimation exercise –- AC, Grim, TFT, AD, DTFT. For example, AC-TFT implies, a subject

plays according to AC in the Easy role and TFT in the Hard role; TFT - DTFT implies,

a subject plays according to Tit-for-Tat in the Easy role and Defection Tit-for-Tat in the

Hard role.

Table 1.6. Estimated Frequency of Strong Strategies and other Most
Common Strategies for Two Games Simultaneously (in Percentage)

SGame SRole MGame MRole

AC-AC 0
(0.1)

4.0
(3.3)

0
(2.0)

0
(2.3)

AD-AD 2
(2.0)

34.4*
(8.3)

18.8
(7.3)

38.9*
(8.7)

S-Grim 0
(0.4)

2.1
(2.4)

1.2
(7.7)

S-TFT 0
(1.3)

0
(1.9)

25.1
(10.7)

S-DTFT 1.9
(1.8)

0
(3.1)

0
(5.4)

11.4
(6.5)

Other
Most

Frequent
Strategies

Grim-AD 28.3
(22.1)

TFT-TFT 26.1
(7.8)

Grim-AD 14.9
(9.5)

TFT-TFT 9.5
(7.1)

TFT-AD 22.9
(20.2)

DTFT-DTFT 13.9
(6.8)

TFT-AD 14.0
(10.3)

TFT-DTFT 4.4
(4.5)

TFT-DTFT 10.0
(11)

TFT-DTFT 6.9
(4.4)

Grim-DTFT 12.5
(12.1)

DTFT-DTFT 3.5
(4.5)

Aggregating over Strategies

Strong 1.9
(1.8)

0
(3.5)

2.1
(5.7)

37.7*
(13)

Same Strategy
in Both Games/Roles

5.1
(3.2)

80*
(10.5)

37.5*
(11.8)

51.9*
(11)

Cooperative in
Easy Game/Role

93.8*
(3.9)

49.3*
(10.3)

69.7*
(9.1)

17.9
(9)

Cooperative in
Hard Game/Role

6.7
(4.3)

34.2*
(8.1)

9.3
(5.7)

11.6
(8.2)

Defecting in
Easy Game/Role

4.3
(3)

50.8*
(10.8)

28.2
(9.4)

44.5*
(10.5)

Defecting in
Hard Game/Role

91.3*
(4.4)

65.8*
(8.6)

88.6*
(7.8)

50.8*
(11.9)

Notes: Table shows estimated frequencies with Two-Stage Cluster Bootstrapped Standard Errors from 3000 bootstraps (clustered
at session level, randomized at supergame level). Estimation includes actions from supergames 21-30. The entire list of estimated
parameters are in Table  A.12 . Blank implies frequency is 0 with 0 SE.
* - Frequency estimates are significantly different from 0 at α = 0.05 (95% Bootstrapped CIs do not include 0)

For the single contact treatments, I make the assumption that subjects play two games

in isolation. However, that assumption might not hold. Therefore, I estimate strategies for

the SGame and SRole treatments along with the MGame and MRole treatments by con-
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sidering the two games together without the restriction that subjects play the two games

in isolation. Table  1.6 shows the estimated frequency of the Strong strategies, and some

groups of strategies for the four treatments. 

38
 I report the estimated proportion for AC-AC

and AD-AD separately since these are combinations of individual game strategies as well as

strong type strategies. I do not include these when I calculate the cumulative frequency of

the strong type strategies.

From the estimation, I find that for the SGame and SRole treatments, the proportion

of strong strategy usages are minimal. However, I also do not find frequent use (2.1%, not

statistically different from 0 at α = 0.05) of the strong strategies in MGame treatment. The

subjects may be using some more complicated strong type strategies. Although I do not find

strong strategies in the MGame treatment, I find that the strategies being used differ from

those in the SGame treatment. I find that subjects use more defecting strategies like AD

and DTFT in the Easy game (28.2%, not statistically different from 0 at α = 0.05) under

MGame while under SGame the most prevalent strategies are cooperative strategies (93.8%,

statistically different from 0 at α = 0.05).

I find that under MRole treatment, the proportion of subjects using strong strategies

(37.7%) is significantly different from zero at α = 0.05, with S-TFT being the second most

frequently used strategy (25.1%). The use of strong strategies in the MRole treatment is

substantially higher than that in SRole treatment 0%. This indicates that even though I do

not find any differences in cooperation rates due to multiple contacts, it affects the strategies

being used. I summarize my observations in the following result.

From the strategy estimation exercise on single games, I find that in the SRole treatment,

many strategies are used in both the Easy and Hard roles. However, that exercise does not

tell us if the same subjects used the same strategies in both roles. In this exercise, I use

subjects’ actions in both roles and map the strategy prescribed actions. Therefore, in this

exercise, a strategy like AD-AD or TFT-TFT implies that a subject uses AD and TFT
38

 ↑ The complete list of estimates is in Table  A.12 .

56



in both roles. I find that in SRole a large frequency (80% statistically different from 0 at

α = 0.05) of use of same strategies in both roles, significantly higher than that in the SGame

treatment (5.1%). This result is noteworthy. In the asymmetric case, subjects play two roles;

in one, they are advantaged while in the other, they are not. However, they still use the same

strategies in both roles. Among the strategies that are used, I can theoretically support the

use of AD-AD (34.4%), I also see use of TFT-TFT (26.1%) and DTFT-DTFT (13.9%). TFT

is a cooperative strategy, and the subjects use it in both Easy (more advantaged than the

opponent) and Hard (more disadvantaged than the opponent) roles which contradicts my

hypothesis. I also find a considerable incidence of these strategies in the multiple contacts

treatments, of which AD-AD is the most commonly used strategy.

Result 1.5.4. Strategies in all treatments: 

39
 

1. Subjects do not use strong strategies in SGame and SRole treatments.

2. Subjects use same strategies in both Easy and Hard roles in SRole, MGame, and MRole

treatments with Alway Defect - Always Defect being the most commonly used strategy

among this class of strategies.

3. Subjects do not use strong strategies in MGame treatment. But the strategies used are

different from those in SGame treatment and more defecting in nature.

4. Subjects use strong strategies in MRole treatment, although S-Grim is not used fre-

quently. Strong Tit-for-Tat and Strong Defect Tit-for-Tat strategies are more com-

monplace.

1.6 Discussion

In this paper, I theoretically and experimentally investigate the effect of multiple contacts

on cooperative behavior in symmetric and asymmetric PD games. In particular, I study the

impact of multiple contacts on both the observable outcomes (i.e., the average level of coop-

eration) and unobservable outcomes (i.e., strategies). In addition, I explore the differences
39

 ↑ I use only the last 10 supergames for my strategy estimation. But I also perform this exercise with
the last 5 supergames. The results are presented in Table  A.13 . My results do not change qualitatively by
restricting the supergames to the last 5 supergames.
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in the impact of multiple contacts under two different conditions.

I utilize the theory from Bernheim and Whinston,  1990 to develop hypotheses on the

effect of multiple contacts. I then take my theoretical environment to the laboratory. I

conduct a controlled laboratory experiment with a 2 × 2 between subject design. The first

factor varies the number of contacts; Single Contact vs. Multiple Contacts. In the single

contact treatments, subjects simultaneously play two IRPD games with two different oppo-

nents. In the multiple contacts treatments, subjects simultaneously play two IRPD games

with the same opponent. The second dimension varies the payoffs (symmetry vs. asymmetry

of payoffs). In the symmetric treatments with single contact, in one of the two IRPD games

I use – Easy game – cooperation is theoretically possible, whereas in the other one– the

Hard game – defection is the only equilibrium outcome. The asymmetric payoff treatments

are different from the symmetric treatments in that cooperation is not possible in the asym-

metric PD game with single contact. Importantly, with multiple contacts, it is possible to

sustain cooperation in both roles/games both symmetric and asymmetric payoffs. The way

multiple contacts works is that defection in the Hard game can be punished in the Easy game.

In my experimental data, I find that multiple contacts do influence the cooperative be-

havior of subjects in the IRPD games. However, these effects vary based on whether payoffs

are symmetric or asymmetric. In the case of symmetric payoffs, I find that with multiple

contacts the cooperation levels in the Hard game increases (although insignificantly) from

its single contact levels, but with a significant drop in the cooperation level in the Easy

game. On the other hand, when the payoffs are asymmetric, I do not see any significant

change in cooperation levels in either the Easy or the Hard role. My results are somewhat

in line with previous papers on multiple contacts. Some of these papers find an increase

in cooperation rate due to multiple contacts in the equivalent Hard Game while others did

not (Phillips and Mason,  1992 found an increase in cooperation levels, while Güth et al.,

 2016 ; Yang, Kawamura, and Ogawa,  2016 did not). But, Güth et al.,  2016 ; Phillips and

Mason,  1992 ; Yang, Kawamura, and Ogawa,  2016 also found a decrease in cooperation rate

in the equivalent Easy game. What I find additionally is that under asymmetry of payoffs,
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subjects punish defection in the Hard game in the Easy game under multiple contacts even

the cooperation rates are not different from that under single contact. This suggests that

the subjects must be using different strategies under multiple contacts in this case. None

of the existing papers investigate the strategies their subjects used and if multiple contacts

influence the strategy choices.

The theory behind my hypotheses relies on the use of the S-Grim strategy, which condi-

tions future actions on the history of all previous strategic interactions. Although my data

do not show significant differences in cooperation rates, the question still remains whether

strategies are different under multiple contacts. To this end, I econometrically investigate

the strategies the subjects use in each of my four treatments using Strategy Frequency Es-

timation Method (Dal Bó and Fréchette,  2011 ).

First, I estimate strategies for the Single Contact treatments assuming that subjects

player the two games in isolation. I find that the most commonly used strategies in the

symmetric games are in line with my theoretical predictions and past literature (see Dal

Bó and Fréchette,  2018 for a review). However, I also find that subjects use cooperative

strategies quite heavily in the asymmetric treatments, which contradicts my predictions. I

discover that the common strategies used in the games with symmetric payoffs are not best

suited for the games in the asymmetric treatment. I then estimate strategies for all four

treatments by combining both the Easy and the Hard role actions. For this exercise, I in-

troduce two new strategies, along with the Strong Grim strategy. The Strong strategies’

main characteristic is that when choosing each game’s actions in each period, the history of

actions in both games are considered. There are a few exciting outcomes of this exercise. I

find that in none of the single contact treatments do subjects use Strong strategies. How-

ever, I do not find subjects using Strong strategies even in the multiple contacts symmetric

treatment. On the other hand, in the multiple contacts asymmetric treatment, I find that

subjects use Strong strategies extensively. I believe this is because subjects can still get

high payoffs in the multiple contacts symmetric treatment by just cooperating in the Easy

game. However, the subjects needed to coordinate in both roles to obtain high payoffs in the
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multiple contacts asymmetric treatment. Hence the subjects needed to use Strong strategies.

My results have several implications, both in the industrial organization or management

literature and the experimental literature. First, in the industrial organization literature,

researchers pay more attention to the outcome than the process. Even though studying

prices and quality in the presence of multi-market contact is essential, equal, if not more,

attention should be paid to how firms reached these outcomes. I should investigate how

firms plan to retaliate against other firms in the face of defection, where defection can imply

a drop in prices or betterment of quality. As I have shown in this paper, there are no

indications of increased collusion or cooperation in multiple contacts environment in the

case of asymmetric payoffs. However, there is a stark difference in the type of strategies that

might be at play. Uncovering strategies used by firms might be relevant for antitrust issue

in unobserved scenarios. But estimating strategies of firms can be complicated. It is less

complicated to look at conditional responses. My results also suggest that it would be more

informative, to assess the presence of MMC in an industry, to look at the responses after a

hike or drop of prices or of other variables. Second, I find that most studied strategies in

the experimental literature are not best suited for games with asymmetric payoffs. In the

literature, extensive attention is paid towards PD game with symmetric payoffs. Given that

all real-life scenarios entail asymmetry, it is worthwhile to understand how subjects react

to it. My findings suggest that conclusions from the research in symmetric games may not

offer the best explanations for asymmetric games; more attention should be paid to this

particular case. Finally, I also find that subjects in asymmetric games tend to cooperate

even in situations where I cannot predict cooperation theoretically. It should be interesting

to determine how individuals choose their actions when every stakeholder in the situation is

not the same.
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2. TEAM INNOVATION CONTESTS WITH COGNITIVE

DIVERSITY

2.1 Introduction

Ranging from early examples such as the 1714 longitude prize up through modern

innovation-competition platforms such as Kaggle.com, drivendata.org, challenge.gov, Nine-

Sigma and Innocentive, innovation contests have played and continue to play an important

role in the economy. Furthermore, note that all of the modern innovation-competition plat-

forms listed here feature competition that is open to teams of problem solvers. When think-

ing about a team of problem solvers facing an innovation problem, a fundamental issue that

comes to mind is the role of cognitive diversity — which may be thought of as differences in

skills or perspectives. In particular, as Scott Page discusses in his 2019 book “The Diversity

Bonus: How Great Teams Pay Off in the Knowledge Economy,” there is a consensus that

cognitive diversity leads to better team performance.

As an example, consider “Blackett’s Circus,” a World War II era British operations re-

search team that was tasked with a number of challenging innovation problems including the

use of radar in the aiming of anti-aircraft guns. When Patrick Maynard Stuart Blackett, who

would go on to become a Nobel Laureate in Physics, was tasked with forming his team,  

1
 he

selected: three physiologists, one (female) mathematician, two physicists, one astronomer,

one army officer, and one surveyor. As reflected in the group’s unofficial name (Blackett’s

Circus), it is clear that when Blackett was faced with a variety of challenging innovation

problems he valued having a group of individuals with diverse skills and perspectives. For a

more recent example, consider the Event Horizon Telescope which involved more than 200

scientists including physicists, astrophysicists, astronomers, and computer scientists among

others. The goal of this large scale collaboration is to “bring black holes into focus” and

by linking telescopes from around the world, the Event Horizon Telescope array has already

produced our first images of a black hole. When these images were released to the public,

Dr. Katherine Bouman [a computer scientist, tasked with creating the image from the infor-
1

 ↑ For more on Peter Blackett and the history of operations research see Budiansky,  2013 .
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mation collected from telescopes around the world and a spokesperson for the collaboration]

mentioned in an interview (Stein,  2019 ) that she hardly knew what a black hole was when

she started on the project. In her words, she “brought the computer science mindset, but

the project brought in people from so many different areas.”

Using data from 1956 – 2000 on academic research in fields such as science, engineering,

the social sciences as well as in patenting, Wuchty, Jones, and Uzzi,  2007 find that papers

produced by a team of (two or more) researchers generate higher citation counts and are

more likely to fall into the category of “exceptionally high-impact research.” In the liter-

ature that followed, Uzzi et al.,  2013 found that teams are more likely to introduce novel

innovations to the literature and that novel innovations are twice as likely to generate high

citation counts, and Freeman, Ganguli, and Murciano-Goroff,  2015 , using a survey of aca-

demic authors, found that the primary motivation for collaboration is the value generated

by the combination of the specialized knowledge and skills of individual members of the

research team. Moreover, the theoretical literature on the case of a (single) team working

to solve an innovation problem — that features technical uncertainty about whether or not

the problem may be solved — finds that the level of diversity in the skills or perspectives of

the team members may be more important than the team members’ ability levels (Hong and

Page,  2004 , Page (2008), and Marcolino, Jiang, and Tambe,  2013 ). To summarize, cognitive

diversity is a fundamental consideration for teams of innovation problem solvers and may

even dominate considerations regarding individual ability.

Given the growing role played by team-based innovation-competition platforms, a nat-

ural question that arises is how does team composition and cognitive diversity affect team

performance in a competitive setting. For example, one takeaway from the literature on

contests 

2
 is that it is generally the case that total effort and expected winner performance

increase as the playing field becomes more level. Note however that if team-level cognitive

diversity increases for some but not all teams, then the playing field may become less level.
2

 ↑ Classic examples from the contest theory literature include Baye, Kovenock, and De Vries,  1993 and Che
and I. L. Gale,  1998 . For a more recent example see Brookins and Jindapon,  2021 .

62



In such a case, does an increase in cognitive diversity adversely affect the expected perfor-

mance of the contest? Also related is the issue of whether an individual team has incentive

to increase its own level of cognitive diversity. In particular, do there exists situations in

which having less diversity would provide a competitive edge for a team? The contribution

of this paper is that it sheds light on the important issue of the role of cognitive diversity

within the context of large team innovation contests.

To examine these issues, we construct a framework for examining the role of team compo-

sition in a large contest between teams of diverse individuals facing an innovation problem.

Our large team contest utilizes the large contest framework developed by Olszewski and

Siegel,  2016 and Bodoh-Creed and Hickman,  2018 in which an arbitrarily large number of

heterogeneous individuals compete for a set of prizes. Given our focus on team composi-

tion and team performance, our framework extends the analysis on large contests to allow

for competition between heterogeneous teams. Our approach also utilizes the “productivity

based” innovation competition framework – along the lines of DiPalantino and Vojnovic,  2009 

and Chawla, Hartline, and Sivan,  2019 among others  

3
 – in which the value of an individual’s

innovation depends on both the techniques or approaches (tools) that the individual applies

to the innovation problem and the amount of work that the individual uses to develop the

innovation.

Our team-based innovation activity setup is also related to Bendor and Page,  2019 which

involves an innovation problem and a single team consisting of members with problem-solving

tools that can be applied to the innovation problem.  

4
 In moving to an environment with

competition between teams, our focus on “productivity based” innovation differs from Ben-

dor and Page,  2019 who examine innovation activity in a context with technical uncertainty

about whether or not the problem may be solved. In our framework, each team’s tool ef-
3

 ↑ In particular, in DiPalantino and Vojnovic,  2009 , each contestant has a private problem-solving effective-
ness level, which is drawn from a continuous distribution function and may be thought of as the amount of
effort exerted per unit cost of effort.
4

 ↑ As in Bendor and Page,  2019 we assume that each team member is time‐constrained in the sense that
they only have access to a single tool.
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fectiveness level depends on the composition of the tool effectiveness levels of the individual

team members and is private information for the team. Then, given the team’s tool effective-

ness level the individual team members choose effort levels and the value of a team’s project

is a function of the team’s tool effectiveness and the effort contributions of the individual

team members. 

5
 

In this large innovation contest framework, we find that the questions of whether broadly

increasing diversity leads to an increase in expected performance for the overall contest or

unilaterally increasing diversity is advantageous for a team, depends on two key components:

the measurement of diversity and the efficiency with which teams are able to utilize diverse

sets of team member tools. In the discussion that follows, we will elaborate on these two key

components. To briefly summarize, we allow teams to differ with respect to the efficiency

with which they are able to utilize diverse tool sets, and find that if, on average, teams are

sufficiently efficient in utilizing diverse tool sets, then increasing tool diversity is beneficial

for the performance of the contest. However, if teams are, on average, sufficiently inefficient

at utilizing diverse tool sets, then increasing tool diversity can actually be detrimental to

the performance of the contest. Similarly, an individual team has incentive (disincentive) to

increase its own diversity if the team is sufficiently efficient (inefficient) at utilizing diverse

sets of tools. However, an individual team always has incentive to increase the efficiency

with which it utilizes diverse tool sets. Thus, our paper provides a channel – other than a

direct cost of diversity – through which diversity can be beneficial or detrimental depending

on how efficient teams are at utilizing diverse sets of team member tools.

Beginning with the measurement of diversity, our focus is on the relationship between

the tool effectiveness levels of the individual team members. We assume, as in Bendor and

Page,  2019 , that the effectiveness of an individual team member’s tool on the given innova-

tion problem is a random variable, and thus, for an M -member team we are interested in
5

 ↑ Our approach to aggregating the effort contributions of individual team members into the value of a joint
project builds on the analysis of two teams competing in a private values all-pay auction as in Eliaz and Wu,

 2018 .
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the realization of a random M -tuple that provides the realization of the tool effectiveness

levels for each of the M team members. Loosely speaking, more cognitively diverse teams

have a larger range of possible perspectives or problem-solving styles and this results in a

larger range of tool effectiveness levels. That is, because similar tools are more likely to

generate similar tool effectiveness levels on a given problem, the different perspectives of

the team members are reflected in the dependence structure of the effectiveness levels of the

team members’ tools. Formally, we define cognitive diversity using the concordance partial

ordering of multivariate joint distributions, which provides a pairwise ranking for joint distri-

bution functions with regards to how similar the M -tuples of tool effectiveness levels of the

M individual team members are. Our analysis of changes in the level of cognitive diversity

focuses on transformations of the teams’ joint distributions of tool effectiveness levels that

vary with respect to the concordance of the teams’ joint distributions while holding constant

the individual team member’s univariate marginal distributions of tool effectiveness 

6
 – along

with their related measures of central tendency and dispersion.

Regarding the way in which teams aggregate the tool effectiveness levels of the individual

team members into the team’s tool effectiveness level, we focus primarily on the case that

this aggregation, which may be heterogeneous across teams, lies on a one-dimensional effi-

ciency spectrum. At the lower bound of this spectrum, a team’s tool effectiveness level is the

minimum of the team members’ tool effectiveness levels (i.e., what Hirshleifer,  1983 terms

the “weakest-link”). At the upper bound of this spectrum, the team’s tool effectiveness level

is the maximum of the team members’ tool effectiveness levels (i.e., what Hirshleifer,  1983 

terms the “best-shot”). Outside of this one-dimensional efficiency spectrum, the results are

more nuanced. However, for a given combination of (i) a functional form of each team’s

mapping from individual to team tool effectiveness and (ii) a functional form for each team’s

joint distribution of tool effectiveness levels, it is possible to numerically show how a partic-

ular cognitive diversity increasing transformation affects the performance of each team and
6

 ↑ That is, we focus on transformations of the teams’ m-copulas and hold constant the teams’ sets of
univariate marginal distributions.
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the overall performance of the contest, and we examine several such examples.

To summarize, our results on transformations of cognitive diversity levels across teams,

may be stated as follows. There exists a threshold level of average team efficiency above

which any transformation of cognitive diversity levels that weakly increases cognitive diver-

sity for all teams results in an increase in the equilibrium expected performance of each team,

or equivalently the total value of all innovation activity. Conversely, there exists a threshold

level of average team efficiency below which any transformation of cognitive diversity levels

that weakly increases cognitive diversity for all teams results in a decrease in the equilibrium

expected value of all innovation activity. That is cognitive diversity is only beneficial for the

overall contest when the teams are, on average, sufficiently efficient with the utilization of

diverse tool sets. Regarding individual teams, we find that a team has incentive to unilat-

erally increase its own cognitive diversity only if the team is sufficiently efficient at utilizing

a diverse set of tools. If the team is sufficiently inefficient at utilizing diverse tools, then the

team has incentive to unilaterally decrease its own level of cognitive diversity. However, all

teams have incentive to increase the efficiency with which they utilize diverse tools.

A practical implication of our results is that training programs aimed at increasing the

efficiency with which teams utilize diverse tool sets are crucial for realizing the benefits of

cognitive diversity for both the team and the contest designer.

2.2 Literature Review

We begin by examining the relationship between our model of a large team innovation

contest and the vast and growing literature on innovation contests. Adamczyk, Bullinger,

and Möslein,  2012 provides a review of 201 articles on this subject from April 1959 to July

2011. Overall there are two lines of investigation in this literature. The first line concerns the

optimal contest design and optimal prize distribution, which is the most studied question

and includes papers such as Ales, Cho, and Körpeoğlu,  2017 ; Archak and Sundararajan,

 2009 ; Cavallo and Jain,  2012 ,  2013 ; Che and I. Gale,  2003 ; Ding and Wolfstetter,  2011 ;
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Erkal and Xiao,  2021 ; Fu, J. Lu, and Y. Lu,  2012 ; Luo et al.,  2015 ; Schöttner,  2008 . Within

the optimality of contest design line, important considerations include: (i) whether entry to

the contest should be restricted (Ales, Cho, and Körpeoğlu,  2021 ; Ghosh and McAfee,  2012 ;

Taylor,  1995 ), (ii) the number of contests (Hu and Wang,  2021 ; Körpeoğlu, Korpeoglu, and

Hafalir,  2017 ), (iii) the duration (Korpeoglu, Körpeoğlu, and Tunç,  2021 ) and (iv) the role

of feedback in dynamic contests (Mihm and Schlapp,  2019 ). The second stream of papers

on innovation contests deal with different contest environments, equilibrium characteriza-

tion and comparative statics (Halac, Kartik, and Q. Liu,  2017 ; Moscarini and Squintani,

 2010 ; Schmidt,  2008 ; Segev,  2020 ; Terwiesch and Y. Xu,  2008 ). Almost all of the papers in

both streams focus exclusively on the case that the contestants are individuals. Our paper

contributes to this second stream by studying competition between teams instead of indi-

vidual participants. Candoğan, Korpeoglu, and Tang,  2020 also study innovation contests

with finite number of identical teams. They model uncertainty in outcome and interaction

among team members using normal distributions. Their notion of diversity is in terms of the

variance of uncertainty due to the interpersonal interaction. Our focus differs in that we deal

with heterogeneous teams and general distributions of skills/tools in an environment where

diversity is a function of the dependence structure of the team members’ tool effectiveness

levels.

Diversity can take various forms such as surface level (age, sex and race/ethnicity) or deep

level (attitudes, beliefs, values, knowledge or skill) (Harrison, Price, and Bell,  1998 ). Our

paper concentrates on cognitive diversity which fits into the deep level category. Cognitive

diversity may be thought of as differences in perspectives or viewpoints which in our paper

is manifested in the stochastic effectiveness or quality levels of the individual team members’

tools. In the management literature many researchers have studied the question of how cog-

nitive diversity impacts performance both in the non-competitive (Aggarwal and Woolley,

 2019 ; Kilduff, Angelmar, and Mehra,  2000 ; Olson, Parayitam, and Bao,  2007 ; Pitcher and

Smith,  2001 ; Shin et al.,  2012 ) and competitive (Hoogendoorn, S. C. Parker, and Van Praag,

 2017 ) settings. There is mixed evidence regarding whether cognitive diversity positively

impacts outputs by the teams. However, there are only a few but influential theoretical
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works in this area. Hong and Page,  2004 ,  2001 are the two earlier papers to investigate the

question of problem solving when individuals are heterogeneous or cognitively diverse. Indi-

vidual problem solvers vary in their perspective (the way individuals represent the problem

to themselves) and heuristics (the algorithm to generate a solution). The authors start with

individuals who are not capable to solve the problem on their own but if they work together

the problem can be solved. Hong and Page,  2004 further shows that a team of randomly

selected individuals from a diverse population can outperform a team of best-performing

individuals. LiCalzi and Surucu,  2012 considers a similar environment. They further find

that a team can outperform individuals. In this model, authors use correlation as a measure

of homophily and they find that higher homophily (correlation) requires larger teams to find

a solution.

Authors in this literature study different types of tasks. Marcolino, Jiang, and Tambe,

 2013 ; Marcolino, H. Xu, et al.,  2014 study a context where team members vote on actions

from a large action space. In this setting, Marcolino, Jiang, and Tambe,  2013 finds a similar

result as in Hong and Page,  2004 . That is, a diverse team of weaker agents can outperform

a team of better agents. Marcolino, H. Xu, et al.,  2014 extends this result by characterizing

the conditions under which it holds. Forecasting is another such application where diversity

is valuable. Lamberson and Page,  2012 study teams in forecasting tasks where heterogeneity

is represented through covariance among predictive accuracies or types. The more similar

individuals are in their types, the higher the covariance. In this paper, the authors charac-

terize the optimal team composition. They find that if the teams are small, teams should

be made of agents with best predictive accuracy, but with large teams, teams with low co-

variance among types should outperform. This second result is in congruence with findings

in Marcolino, H. Xu, et al.,  2014 . Our paper contributes to this literature by introducing

a competitive setting using the context of innovation contests. Our approach to modeling

diversity – using the statistical concept of concordance to compare joint distributions to

capture diversity – is closest to those used in Lamberson and Page,  2012 (uses covariance

of predictive accurance) and LiCalzi and Surucu,  2012 (correlation). Our results are also

in line with these papers, as we find that under some circumstances diversity can improve
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performance in an innovation contest.

This brings us to the contest literature. In this literature, team contests are primarily

modeled with a finite number of teams and a finite number of team members. This literature

is large and expanding. The issues that researchers address include equilibrium characteriza-

tion with or without private information (Brookins and Ryvkin,  2016 ; Chade and Eeckhout,

 2020 ; Eliaz and Wu,  2018 ; Fu, J. Lu, and Pan,  2015 ); the equilibrium effects of asymme-

tries in team production both across and within teams (Chowdhury and Topolyan,  2016a , b ;

Kolmar and Rommeswinkel,  2013 ); and prize or information sharing across team members

(Barbieri, Kovenock, et al.,  2019 ; Barbieri and Malueg,  2016 ; Feng et al.,  2021 ; Nitzan and

Ueda,  2011 ) among others. We contribute to this literature by demonstrating the existence

of equilibrium when the number of teams are large and characterize the equilibrium in the

limit case. We further examine the differences between situations equivalent to “best-shot”

and “weakest-link” in our environment.

Many papers studying team contests address the question of asymmetry across team

members. In these papers, the heterogeneity among the team members arises in terms of

cost of effort or resource (ability, power) available tot them (H. Chen and N. Lim,  2017 ; Choi,

Chowdhury, and Kim,  2016 ; Chowdhury, Lee, and Sheremeta,  2013 ; Fallucchi et al.,  2021 ;

Parreiras and Rubinchik,  2015 among others). We model diversity or differences among team

members differently. In our environment, the team members are ex-ante identical in terms of

cost of effort and claim to the group reward. However, they differ in their viewpoints or per-

spectives which is captured by the distribution of the quality of their own ability/skills/tools.

If the members are cognitively diverse, due to their varied perspectives, the effectiveness of

their tools on a particular innovation problem can be widely different. In our case, diversity

affects the outcomes of the team contest through the team’s tool effectiveness level and its

subsequent affect on the effort levels that the team members contribute. Furthermore, in

the literature on contests with asymmetric teams, the analysis has focused exclusively on

the case of two teams. In this paper, we modify the large contest framework developed by

Olszewski and Siegel,  2016 and Bodoh-Creed and Hickman,  2018 , for the case of a large
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number of heterogeneous individuals, to allow for competition between a large number of

heterogeneous teams.

2.3 Contest Model

We are interested in a contest with an arbitrarily large, but finite number N of teams

and prizes. An arbitrary team is denoted by n ∈ {1, 2, . . . , N}. Each team consists of

M team members, where an arbitrary team member is denoted by m ∈ {1, 2, . . . , M}. In

the contest, the teams compete over a set of N prizes denoted by YN = {y(p)}N
p=1, where

each prize p takes a value y(p) ∈ [0, 1] and the values of the prizes are ordered as follows

y(1) ≥ y(2) ≥ . . . ≥ y(N) ≥ 0. The empirical prize distribution is denoted as ΦN . The team

that submits the highest value innovation wins the first prize y(1). The team that submits

the second-highest value innovation wins the second prize y(2), and so on for the remaining

prizes. In the case of one or more ties, if k teams tie for the pth position, then each of the k

teams get the prize for the k + p − 1 position. 

7
 For each prize p, the team that wins the pth

prize shares the value of the pth prize, y(p), equally among its M team members. Note that

it may be the case that there exists a p < N such that y(p) > 0 but y(p) = 0 for all p > p, i.e.

the number of nonzero prizes may be strictly less than N .

We model the innovation activity of each team as a two-stage process. The following two

subsections provide the details on the two stages of innovation activity. To briefly summarize,

in the first stage each team selects an approach, technique, or method for generating an

innovation. We assume that the individual team members may differ with regards to their

problem solving type and/or the skills (or tools) that they possess. Furthermore, from an

ex ante perspective the effectiveness of a particular tool on the given problem is stochastic.

In the first, or tool, stage, members realize the effectiveness of their tools for the problem

at hand. Then, the team’s tool effectiveness level depends on how efficient the team is in
7

 ↑ Note that this tie-breaking rule ensures that the sum of the prizes that are awarded when ties occur is
always less than or equal to the sum of the values of the prizes that are awarded when ties do not occur. For
example, if two teams tie for the pth position, then both teams are awarded the prize for the p + 1 position
and 2y(p+1) ≤ y(p) + y(p+1). Our results continue to hold for a range of tie-breaking rules that hold the sum
of the prizes with ties at or below the sum of the prizes without ties.
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aggregating/utilizing its members’ tools. A team knows its own (team) tool effectiveness

level but only knows the distribution of tool effectiveness levels for the other teams. In the

second, or effort, stage, each team member chooses a costly effort level. The value of the

team’s innovation is a function of the team tool effectiveness level and the level of effort

expended by each team member. We begin by describing the first (tool) stage of the game

and then turn to the second (effort) stage.

2.3.1 First (Tool Effectiveness Level) Stage

In the first stage, the teams are given the problem and each member of each team indi-

vidually realizes the effectiveness of their tool for the given problem. Next, each team’s team

tool effectiveness level, which for compositional purposes is shortened to just team tool, is

determined by how the team is able to utilize the combination of its team members’ tools.

Let n denote an arbitrary team and m denote an arbitrary team member. For team member

m of team n, the effectiveness of their tool is a random variable, denoted by x̃m
n ∈ [0, 1],

drawn from the univariate distribution function Gm
n , which is assumed to be continuously

differentiable and strictly increasing on [0, 1] with Gm
n (0) = 0. Given a realization of each

team member m’s stochastic tool effectiveness level xm
n , a team has an M -tuple of tool ef-

fectiveness levels xn = (x1
n, ..., xM

n ) ∈ [0, 1]M . Team n’s M -tuple of effectiveness levels xn is

observable to the members of team n but is private information for team n.

Because similar tools are likely to generate similar tool effectiveness levels on a given

problem, the different perspectives of the team members are reflected in the dependence

structure of the effectiveness levels of the team members’ tools. Let Gn(·) denote the joint

distribution of team n’s M -tuple of effectiveness levels xn. Note that the set of univariate

distribution functions {Gm
n }M

m=1 described above, one univariate distribution for each team

member m of team n, corresponds to the set of M univariate marginal distributions of the

joint distribution Gn(·).
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Let tn(·) denote team n’s mapping from its M -tuple of effectiveness levels into the team

n tool. We assume that each team n’s tool aggregation function tn(·) is bounded above

by the best tool within team n and bounded below by the worst tool within team n, i.e.

tn : [0, 1]M → [0, 1] such that for each xn ∈ [0, 1]M tn(xn) ∈ [minm{xn}, maxm{xn}]. We

also assume that tn is weakly increasing in each of its M arguments.

Each team n’s tool aggregation function, tn(·) and each team n’s joint distribution of

M -tuples of team member tool effectiveness levels, Gn(·), are common knowledge, and each

team n′ 6= n forms beliefs about the distribution of the value of team n’s tool which is denoted

by Hn(·), where Hn(z) = Pr(tn(xn) ≤ z) and the M -tuple xn is distributed according to

Gn(·). When necessary, we let hn denote the corresponding probability distribution function

of Hn. We now turn to the issue of cognitive diversity and examine how the distribution of

the value an arbitrary team n’s tool, Hn(·), is affected by the level of cognitive diversity of

team n.

Cognitive Diversity

In our framework, a team’s level of cognitive diversity is a characteristic of the depen-

dence structure of the joint distribution from which the random M -tuple that provides the

realization of the tool effectiveness levels for each of the M team members is drawn. Loosely

speaking, more cognitively diverse teams have a larger range of possible perspectives or

problem-solving styles and this results in a larger range of tool effectiveness levels. To for-

malize our notion of cognitive diversity, we now relate cognitive diversity to the concordance

partial ordering of multivariate joint distributions, which provides a pairwise ranking for

joint distribution functions with regards to how similar the M -tuples of tool effectiveness

levels of the M individual team members are.

Recall that for team n the M -tuple of the team member tool effectiveness levels xn is

drawn from the joint distribution Gn(·) with support contained in [0, 1]M and with the set of

univariate marginal distributions {Gm
n }M

m=1. Our analysis of changes in the level of cognitive
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diversity focuses on transformations of the teams’ joint distributions of tool effectiveness

levels that hold constant the individual team member’s univariate marginal distributions of

tool effectiveness (i.e. holding constant the set {Gm
n }M

m=1). That is, we hold constant the

characteristics of the individual team members’ distributions of tool effectiveness levels. In

the analysis that follows, it will be convenient to work with the copula for Gn, the function

Cn that maps team n’s set of univariate marginal distributions of team members’ tool effec-

tiveness levels, {Gm
n }M

m=1, into team n’s joint distribution of tool effectiveness levels, Gn.

Let I denote the unit interval [0, 1], and let u ∈ IM denote an arbitrary M -tuple corre-

sponding to the M -tuple
(
G1

n(x1
n), . . . , GM

n (xM
n )
)
for an arbitrary x ∈ IM . An M -copula, or

copula for short, may be defined as a function, denoted by C, that maps IM into I such that:

(i) C(u) = 0 for every u ∈ IM such that um = 0 for one or more m and C(u) = um for every

u ∈ IM such that um′ = 1 for all m′ 6= m, and (ii) for every u, û ∈ IM such that um ≤ ûm for

all m = 1, . . . , M , the C-volume of the M -box [u1, û1] × [u2, û2] × . . . × [uM , ûM ] is weakly

positive. 

8
 It follows from Sklar’s theorem in M -dimensions that there exists a copula Cn for

joint distribution Gn such that for all xn = (x1
n, . . . , xM

n ) ∈ IM :

Cn

(
G1

n(x1
n), . . . , GM

n (xM
n )
)

≡ Gn(xn).

In Definition  2.3.2 below we formally define cognitive diversity using the concordance

partial ordering of multivariate joint distributions. 

9
 The concordance concept is well known

in the statistics literature, and Definition 3.1 given below follows Nelsen,  2007 .

Definition 2.3.1. Let C1(u) and C2(u) where u ∈ IM be M−copulas, and let C̄1 and C̄2

denote the corresponding M−dimensional joint survival functions corresponding to C1 and
8

 ↑ Given that an M -copula C forms an M -variate joint distribution with univariate marginal distributions
that are uniform on the unit interval, the C-volume of the M -box [u, û] = [u1, û1]× [u2, û2]× . . . × [uM , ûM ]
is simply the measure of the support of C that lies in the M -box [u, û].
9

 ↑ For more details see Nelsen,  2007 .
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C2, respectively.  

10
 C1 is more concordant than C2 if for all u ∈ IM , both C1(u) ≥ C2(u)

and C̄1(u) ≥ C̄2(u) hold.

We now use concordance to characterize the different perspectives aspect of cognitive

diversity which is the focus of our analysis.

Definition 2.3.2. For an arbitrary team n and two joint distributions of team tool quali-

ties, Gn and G′
n with the same set of univariate marginal distributions {Gm

n }M
m=1 and cop-

ulas Cn and C ′
n, respectively, team n is said to be more cognitively diverse with the

joint distribution Gn than with the joint distribution G′
n if C

(
G1 (x1) , . . . , GM

(
xM

))
≤

C ′
(
G1 (x1) , . . . , GM(xM)

)
and C̄

(
G1 (x1) , . . . , GM(xM)

)
≤ C̄ ′

(
G1 (x1) , . . . , GM(xM)

)
for

all x =
(
x1, . . . , xM

)
∈ IM .

Now that we have defined cognitive diversity in terms of the concordance partial order,

we turn to describing how the distribution of effectiveness of the team tool is determined.

Recall that each team n utilizes a tool aggregation function tn(·) that maps the M -tuple of

team member tool effectiveness levels into the team n tool. For the purpose of analytical

tractability, we will focus on the case that the tool aggregation function tn(·) is a convex com-

bination of the highest and lowest effectiveness levels of its members’ tools, where αn ∈ [0, 1]

denotes the weight placed on the most effective tool.

Given the M -variate joint distribution function of team n’s tool effectiveness levels Gn,

the distribution of the highest effectiveness level of the team members’ tools is given by,

Prob (max {x̃1, . . . , x̃M} ≤ x) = Gn(x, x, . . . , x) = Gn(x). (2.1)

Similarly, the distribution of the lowest effectiveness level of the team members’ tools is given

by,

Prob (min {x̃1, . . . , x̃M} ≤ x) = 1 − Gn(x, x, . . . , x) = 1 − Gn(x). (2.2)
10

 ↑ In terms of the joint distribution Gn, the joint survival function is defined as Ḡn(x) = P [X � x], where:
(i) for any two M -tuples x, x′ ∈ IM , x � x′ denotes that xm > x′

m for all m = 1, . . . , M and (ii) X is a
random M -tuple distributed according to Gn. Similar to how we define copula Cn for Gn, the joint survival
function may be calculated as C̄n(G1

n(x1
n), . . . , GM

n (xM
n )) ≡ Ḡn(x).

74



Let αn ∈ [0, 1], which we refer to as team n’s efficiency level, denote the weight that team n

places on the best idea within the team n members, with the remaining weight 1 − αn being

placed on the worst idea within team n. In this mixture model, the distribution of the value

of team n’s tool is constructed from the expressions in  2.1 and  2.2 as:

Hn(x) = αnGn(x) + (1 − αn)
(
1 − Gn(x)

)
. (2.3)

Note that when αn = 1 the distribution of the team tool corresponds to the distribution

of highest effectiveness level of the team members’ tools. This is the case of maximum effi-

ciency. On the other hand, if αn = 0 the distribution of the team tool is that of the lowest

effectiveness level of the team members’ tools. This is the case of minimum efficiency. As

αn increases from 0 to 1, the level of efficiency increases.

Before moving to the relationship between the team tool distribution and its efficiency,

we recall the definition of first order stochastic dominance which will be used extensively in

the remainder of the paper.

Definition 2.3.3. A distribution function H First-Order Stochastically dominates

another distribution function H ′ (henceforth denoted as H �F OSD H ′) if for all x ∈ [0, ω],

H(x) ≤ H ′(x). (FOSD)

Now, we state a proposition on the relationship between the distribution of the effective-

ness level of the team tool Hn(·) and the efficiency level αn.

Proposition 2.3.1. For any team n with joint distribution Gn, when the efficiency level of

team n increases from αn to α′
n and the corresponding distribution of the effectiveness level

of the team n tool given in equation ( 2.3 ) changes from Hn(·) to H ′
n(·), the new distribution

of the team n tool H ′
n first order stochastically dominates the original distribution of the team

n tool Hn, i.e. H ′
n �FOSD Hn.

Next, we turn to establishing a relationship between efficiency of a team, its level of

cognitive diversity and the distribution of the effectiveness of its team tool.
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Proposition 2.3.2. For any team n with an arbitrary set of M univariate distribution

functions
(
G1

n, . . . , GM
n

)
, there exists a threshold level of efficiency, α1 ∈ [0, 1) (α2 ∈ (0, 1]),

such that for each pair of copulas Cn and C ′
n with the joint distribution Cn

(
G1

n, . . . , GM
n

)
being more cognitively diverse than the joint distribution C ′

n

(
G1

n, . . . , GM
n

)
, the distribution

of the team n tool Hn(·) corresponding to the copula Cn first order stochastically dominates

(dominated by) the distribution of the team n tool H ′(·) corresponding to the copula C ′
n if

the team n efficiency level satisfies αn ∈ (α1, 1] (α ∈ [0, α2)).

The proofs of theses two propositions are provided in the appendix.

2.3.2 Second (Effort Choice) Stage

It takes effort for a team to develop a team project. In the second (effort) stage, all of the

team members in all of the teams simultaneously choose costly effort levels, where em
n ∈ R+

denotes the effort chosen by team member m in team n. The value of team n’s project,

denoted by Vn : [0, 1]×RM
+ → R+, is a function of team n’s (private) team tool effectiveness

level xn ∈ [0, 1] and team n’s M -tuple of effort levels en = (e1
n, ..., eM

n ) ∈ RM
+ . We assume

that all teams share the same team project value function V (·) which is strictly increasing

and concave in the individual effective effort levels.

2.3.3 Prize Allocation and Payoffs

In the case that team n wins prize y, which is shared equally among the M team members,

the utility for an arbitrary team member m of team n who chose effort level em
n to develop

the team project is given by
y

M
− em

n .

We let Y (·, V−n) : V → YN denote the prize assignment function given by

Y (Vn, V−n) =
N∑

n=1
y(n)1

[
Vn = V(n)

]
. (2.4)
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In equation ( 2.4 ), 1 is an indicator function which is equal to 1 when the argument Vn = V(n)

is true, otherwise it is equal to 0. The ex post utility of team member m becomes

Um
n

((
em

n , e−m
n

)
, e−n; xn

)
= Y (Vn (xn, (em

n , e−m
n )) , V−n(x−n, e−n))
M

− em
n

∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N}.

We reformulate the expected utility of a team member using the technique from Chawla,

Hartline, and Sivan,  2019 to represent it in terms of expected utility of a bidder in an N

object all pay auction. Let bm
n = xnem

n be referred to as the effective effort of team player m

of team n.

Um
n

((
bm

n , b−m
n

)
, b−n; xn

)
= xn

Y (Vn (bm
n , b−m

n ) , V−n(b−n))
M

− bm
n (2.5)

∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N}.

2.3.4 Two-Stage Game

To summarize, we examine the two-stage extensive-form team innovation game, denoted

by ΓN(N, M, {Gn}N
n=1, ΦN , YN , V ), where N ≥ 2 teams, each with M cognitively diverse

individuals. Innovation activity involves two-stages; the first (tool selection) and second

(effort choice) stages. In the first stage, the team members’ of each team n realize their

tool effectiveness levels from the joint distribution Gn. The team projects are ordered by

the rank of the team project qualities, where project qualities are determined by the team

project value function V , with the corresponding prizes from YN allocated to the teams from

the prize distribution ΦN . The prize is then equally split among the M team members.

2.3.5 Equilibrium

Our two-stage team innovation game is a Bayesian Game and we examine Bayesian-Nash

equilibria. For our game ΓN

(
N, M, YN , {Gn}N

n=1, ΦN , V
)
, a Bayesian-Nash equilibrium is an

N × M matrix of effective effort strategies βm
n : [0, 1] →

[
0,

1
M

]
, one effective effort strategy

for each team member m ∈ {1, . . . , M} of each team n ∈ {1, . . . , N}, such that each team
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member m of each team n is best responding to the effective effort strategies of the other

N · M − 1 other players.

For existence of the equilibrium we make use of the following two assumptions:

Assumption 1. For each team member m in each team n and ε > 0 and (x, b), there exists

a sufficiently large N and a neighborhood χ(b−m
n ,b−n) of (b−m

n , b−n) such that

ε > Um
n

((
bm

n , b−m
n

)
, b−n; xn

)
− Um

n

((
bm

n , b̃−m
n

)
, b̃−n; xn

)
, for all b̃−m

n , b̃−n ∈ χ(b−m
n ,b−n).

Assumption 2. ΠN
n=1Hn is absolutely continuous over [0, 1]N

Theorem 2.3.1. For sufficiently large N, there exists a Bayesian-Nash Equilibrium for the fi-

nite two-stage contest represented by the extensive form game, ΓN

(
N, M, YN , {Gn}N

n=1, ΦN , V
)
.

Given assumptions  1 and  2 , existence of equilibrium for the N-team contest in Theorem

 2.3.1 follows from corollary 1 of Carbonell-Nicolau and McLean,  2018 . Assumption  1 refers

to the payoff security assumption required for existence of a Bayesian-Nash equilibrium in

Carbonell-Nicolau and McLean,  2018 . However, in our setting, payoff security is guaranteed

for a contest with a sufficiently large number of teams.

2.3.6 An Example

Now, we will go over the basic features of our model using a simplified example. In

this example we will make use of a series of simplifying assumption in order to illustrate

the basic mechanics of our setup. First, we restrict our focus to two-member teams, which

allows us to visualize an arbitrary team n’s joint distribution Gn. We further assume that the

univariate marginal distributions of the team members are given by the Uniform distribution

over [0, 1] and that the copula used to construct the joint distribution of team members’ tool

effectiveness levels Gn is from a specific parametric family of copulas. In particular, we use

the Farlie-Gumbel-Morgenstern (FGM) family of copulas given by,

Cθ

(
G1, G2

)
= G1G2 + θG1G2

(
1 − G1

) (
1 − G2

)
,
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where Gm is the marginal distribution of team member m = 1, 2, and the parameter θ

controls the dependence structure with θ ∈ [ − 1, 1]. When θ = 0, the copula becomes

Cθ(G1, G2) = G1G2, the independent copula, which implies the tool effectiveness levels of

the two members are independent. As θ goes to −1, the random variables become negatively

dependent, where as when θ goes to 1, the random variables become positively dependent.

In Figure  2.1 we show the scatter-plots of tool effectiveness levels of the two team members

when θ = −1, 1. As we see in panel (a), with θ = −1, there is weak negative dependence

and in panel (b), with θ = 1, there is weak positive dependence. For this specific copula we

can only achieve weak dependence (positive or negative). From the two scatterplots, we can

see that in case of weak negative dependence in panel (a), there is a higher concentration of

points in the second and fourth quadrant, along the negative 45◦ line (in red), whereas, for

the scatterplot with weak positive dependence in panel (b), the points are more concentrated

on the first and third quadrants along the positive 45◦ line (in red). One obvious shortfall of

this copula is that it can only model weak dependence. However, we use this family of copula

for two reasons. First, this makes the example analytically tractable. Second, even if this

family can only model weak dependence structure, we can illustrate our results showcasing

the importance of even weak levels of diversity.
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(a) θ = −1 (b) θ = 1

Figure 2.1. Jointly Distributed Tool Effectiveness Levels of Team Members
(Using FGM Copula and varying θ)

Recalling that that the pair of univariate marginal distributions are Uniform on [0, 1],

the joint distribution for a team with dependence parameter θn is given by

Gn

(
x1

n, x2
n

)
= x1

nx2
n + θnx1

nx2
n

(
1 − x1

n

) (
1 − x2

n

)
.

As previously discussed, a team’s tool effectiveness level is a random draw of either

the best or the worst of its members’ tool effectiveness levels. The probability that the

effectiveness level is the maximum of the members’ levels is α, which we call the efficiency

level of the team. The distribution of the best effectiveness level is

Prob
(
max{X1

n, X2
n} ≤ x

)
= Gn(x, x) = x2 + θx2(1 − x)2
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and that of the worst effectiveness level is

Prob
(
min

{
X1

n, X2
n

}
≤ x

)
= Prob

(
X1

n ≤ x
)

+ Prob
(
X2

n ≤ x
)

− Prob
(
X1

n ≤ x,
)

= x + x − x2
(
1 + θn (1 − x)2

)
= 2x − x2

(
1 + θn (1 − x)2

)
.

Therefore, for a team n with efficiency level αn the distribution of the team n tool is

Hn(x) = αn

(
x2 + θx2(1 − x)2

)
+ (1 − αn)

(
2x − x2

(
1 + θn (1 − x)2

))
.

In figure  2.2 , we show how the distribution of team tool effectiveness levels changes in re-

sponse to changes in a team’s level of cognitive diversity and its efficiency level (represented

by α). A team’s level of cognitive diversity is represented using the joint distribution function

and the dependence level of the individual tool effectiveness levels. For the FGM copula in

this example, the parameter θ controls the dependence level. We therefore vary the levels of

θ and α. As we move from the left panels to the right, the efficiency level (α) increases. As

we move from top panels to bottom, the cognitive diversity decreases, that is, the individual

tool effectiveness levels become more concordant as θ increases.

First, the distribution of the best tool effectiveness level within a team always FOS dom-

inates that of the worst. Furthermore, the distribution of the team tool effectiveness level

always lies somewhere between these two extremes as it is the mixture of the maximum and

the minimum. It FOS dominates the distribution of the minimum effectiveness level and is

FOS dominated by that of the maximum effectiveness level. For this copula, the efficiency

level threshold (denoted by α1 ∈ [0, 1)) defining whether changing the dependence structure

leads to the changed team tool effectiveness level distribution to FOS dominate the former

is 0.5. If the efficiency level is higher than 0.5, that is, if it is more than equally likely that

the team tool effectiveness level is the best of the members’ tool effectiveness levels then

increasing diversity (that is, we moving from bottom panels to the top panels, the individual

effectiveness levels become less concordant) makes the new distribution FOS dominate the

81



Figure 2.2. Change in Distribution (using FGM copula) of Team Tool
Effectiveness Level with Change in Joint Distribution of Individual Tool

Effectiveness Level (θ) and team Efficiency Level (α)
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initial one. In this example, for α = 0.9 (right panels), as θ changes from 1 to 0 to −1,

the team distribution achieves higher ranking in terms of First Order Stochastic Dominance.

But with α = 0.1 (left panels), as θ changes from 1 to 0 to −1, the team distribution achieves

lower ranking in terms of First Order Stochastic Dominance.

Even with the simplified example, we can not analytically solve for the equilibrium for

the generalized asymmetric team contest with a finite number of teams. We continue with

this example in a later section where we approximate the equilibrium using our large contest

environment.

2.4 Limit Contest

In this section, we analyze our team contest when the number of teams becomes arbitrar-

ily large, while holding constant the number of members of each team.  

11
 This limiting case

approximation seems reasonable given that in the innovation-competition platforms that we

have in mind there are no limits on the number of participating teams and the the number

of teams is often quite large, but the teams involved in these activities consist of a limited

number of team members. When the number of teams is large, we can modify the approach

developed in Olszewski and Siegel,  2016 and approximate the equilibrium effective effort of

each team member using a direct revelation mechanism. From the previous section recall

that Hn(·) denotes the distribution of the team tool effectiveness level of team n. Then,

Ĥ(·; N) =
∑N

n′=1 Hn′(·)
N

can be interpreted as the expected percentile ranking of tool effec-

tiveness level in the contest with N teams. As N increases, we assume that this ranking

Ĥ(·; N) converges pointwise to a distribution Ĥ(·) which we refer to as the rank distribution.

Similarly, we assume that the empirical distribution of prizes ΦN converges pointwise to a

limiting distribution Φ̂.

Claim 2.4.1. The limit distribution Ĥ(·) is given by

Ĥ(x) = α̂Ĝ(x) + (1 − α̂)
(

1 − Ĝ(x)
)

, ∀x ∈ [0, 1] (2.6)

11
 ↑ For simplicity we assume each team comprises of the same number of members. However, our results do

not depend on this assumption.
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where Ĝ(·) = lim
N→∞

N∑
n′=1

Gn′(·)

N
, Ĝ(·) = lim

N→∞

N∑
n′=1

Gn′(·)

N
and α̂(·) = lim

N→∞

N∑
n′=1

αn′(·)

N
.

For a large contest, the equilibrium level of effective effort by a team member m of team

n with team tool effectiveness level xn can be approximated by a tariff mechanism that

implements an assortative allocation which maps a prize yn = Φ̂−1
(
Ĥ(xn)

)
to the team n. 

12
 

A tariff mechanism for a team tool x is a prize-effective effort pair (y, b) which maximizes the

utility of a team member Um
n . To derive this tariff mechanism we make use of the following

three assumptions.

Assumption 3. Assumptions on the limiting prize distribution -

1. Φ̂ has full support.

2. Φ̂ is strictly increasing in the support of prizes.

Assumption 4. U(x, y, b) ≥ U(x, 0, 0) for each type x and its prescribed prize-effective effort

pair (y, b) with an equality for at least one type x.

Assumption 5. In-team symmetry -

1. The value function V is symmetric in the effective effort choices of the team members.

2. We only consider in-team symmetric equilibria.

Given assumptions  3 ,  4 and  5 , the following theorem adopts corollary 2 of Olszewski

and Siegel,  2016 (OS2016, henceforth) to show that such a tariff mechanism for each team

member exists in our environment.

Theorem 2.4.1. For any ε > 0, there is an N such that for N ′ ≥ N , in any equilibrium of

the N teams contest, each of a fraction of at least 1 − ε of the teams obtains with probability

at least 1 − ε a prize that differs by at most ε from Φ̂−1
(
Ĥ(xn)

)
, and each member of team

n chooses effective effort with probability at least 1 − ε within ε of β(xn) given by

β(xn) = 1
M2

xn∫
0

zĥ(z)
Φ̂′
(
Φ̂−1

(
Ĥ(z)

))dz (2.7)

12
 ↑ Φ̂−1 (z) = inf

{
y : Ĥ(y) ≥ z

}
for z ≥ 0
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From Theorem  2.4.1 , we see that the equilibrium effective effort function depends only on

the distribution of team quality ranking and the prize distribution.

2.5 Effect of Diversity and Efficiency

In this section, we explore how changing cognitive diversity in teams changes the per-

formance in the team contest. As we have seen in the previous section any change in

performance can come through the rank distribution of the team tool qualities or the prize

distribution. Till now we have assumed a general function for the selection of team quality

and depending on that we have a general rank distribution. For this general function we

examine how how first order stochastic dominance of the rank distribution of team tools

affects expected performance in the contest. We find that if one rank distribution of team

tool qualities first order stochastically dominates another, then the expected performance of

any team member in the contest under the first distribution is higher than that under the

latter distribution.

Theorem 2.5.1. Suppose β1(x) and β2(x) are the equilibrium individual bidding func-

tions for limiting team tool distributions Ĥ1(x) and Ĥ2(x) defined on [0, 1], respectively.

If Ĥ1(x) �F OSD Ĥ2(x), then E[β1] > E[β2] where E[βi] is the expected bid for Ĥi where

i = 1, 2.

Given theorem  2.5.1 , we can now state our results regarding the impact of a change in

cognitive diversity. Recall that any change in cognitive diversity leads to a change in the

distribution of the tool effectiveness level of the team. Therefore when cognitive diversity

of every team changes, it can lead to a change in the rank distribution of the limit contest.

And as we see in the theorem  2.5.1 , any change in the rank distribution leads to a change

in the equilibrium effective effort levels. We state our result below.

Result 2.5.1. As the cognitive diversity of each team weakly increases, the expected effective

effort of any member m of an arbitrary team n and team n’s expected performance increases

(decreases) in the limit team contest if the limiting average efficiency level of the teams is

higher (lower) than a threshold efficiency level.
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This result is regarding the performance of the overall contest with respect to the limit

contest and from the perspective of the contest organizers. For the contest organizer what

matters is the value of the team innovative projects. What we find is that an increase in the

limiting average diversity among team members can, but does not necessarily, increase the

value of each team’s project. Something to note here is that every team’s level of diversity

does not need to strictly increase. For this result to hold we need the limiting average dis-

tribution to represent more diverse teams. We now present a result with respect to a team’s

incentive to increase its own diversity.

Recall that for a team n with an efficiency level αn and joint distribution function Gn(·),

the distribution of team tool effectiveness level is given by,

Hn(x) = αnGn(x) + (1 − αn)
(
1 − Gn(x)

)
.

But the effective effort level is given by equation  2.7 which depends on the limiting rank

distribution of tool effectiveness levels Ĥ(x). Moreover, in equilibrium, team members find

it optimal to report the true level of team tool effectiveness. Therefore the prize, y, that

team n receives is given by

Φ̂(y) = Ĥ(xn),

where xn is the team n tool effectiveness level. The equilibrium utility for a member of team

n with team tool xn becomes

U∗(xn) =
Φ̂−1

(
Ĥ(xn)

)
M

− β(xn)
xn

.

From the envelope theorem, we see that

dU∗

dxn

= 1
M

ĥ(xn)
Φ̂′
(
Φ̂−1

(
Ĥ(xn)

)) + β(xn)
x2

n

> 0,

and thus the equilibrium utility for a member of team n is an increasing function of the team

tool effectiveness level xn. From Proposition  2.3.2 we see that there exists a threshold level of
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efficiency α1(α2), such that for efficiency levels above (below) it, as the joint distribution of

individual tool effectiveness level (Gn(·)) becomes less concordant, that is, the team becomes

more diverse, the distribution of team tool effectiveness level Hn(x) becomes higher (lower)

ranked in terms of first order stochastic dominance. By the property of first order stochastic

dominance, if H ′
n(x) �FOSD Hn(x), then the expected equilibrium utility is higher under

H ′
n(x) than Hn(x) since it is an increasing function of xn. Therefore, for efficiency levels

above α1 (below α2) as the joint distribution of individual tool efficiency levels becomes more

diverse, the expected equilibrium utility U∗(x) goes up (down). We summarize this in the

following result.

Result 2.5.2. As cognitive diversity of a team increases, the team members’ equilibrium ex-

pected utilities increases (decreases) in the limit team contest if the limiting average efficiency

level of the team is higher (lower) than threshold level efficiency level given by Proposition

 2.3.2 .

Therefore, we can conclude that a team finds it to be in its own best interest to increase

its own level of team diversity when the team’s efficiency level exceeds the threshold value.

2.5.1 Continued example

Here we continue with the example from section  2.3.6 . To complete the environment we

first have to find the limiting rank distribution for the limit contest. For a team n with

efficiency level αn, the team tool effectiveness level is given by

Hn(x) = αn

(
x2 + θx2(1 − x)2

)
+ (1 − αn)

(
2x − x2

(
1 + θn (1 − x)2

))
.

Then the rank distribution for the large contest is given by,

Ĥ(x) = lim
N→∞

N∑
n=1

Hn(x)

N
= lim

N→∞

N∑
n=1

αn (x2 + θx2(1 − x)2) + (1 − αn)
(
2x − x2

(
1 + θn (1 − x)2

))
N

,

=α̂x2
(
1 + (1 − x)2θ̂

)
+ (1 − α̂)

(
2x − x2

(
1 + (1 − x)2θ̂

))
.

The last equality is driven by the following assumptions,
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1. lim
N→∞

N∑
n=1

αn

N
= α̂ ∈ [0, 1]

2. lim
N→∞

N∑
n=1

θn

N
= θ̂ ∈ [ − 1, 1]

3.
{

N∑
n=1

αn

}∞

N=1
and

{
N∑

n=1
(1 − αn)

}∞

N=1
are strictly increasing.

4. lim
N→∞

N∑
n=1

αn = ∞ and lim
N→∞

N∑
n=1

(1 − αn) = ∞

and by using the Stolz-Cesàro theorem. The corresponding probability density function is

ĥ(x) = 2 (1 − α̂) + 2 (2α̂ − 1) x
(
1 + θ̂(1 − x)(1 − 2x)

)
.

We also need a prize distribution. Again, for simplicity, we assume that the prize distribution

is a Uniform distribution over the [0, 1] interval. With this limit rank distribution Ĥ(x) and

prize distribution Φ̂(x), we have that the equilibrium effort of a member of a team with tool

effectiveness level x is given by

β(x) = 1
22

∫ x

0
zĥ(z)dz,

=x2

4

(
(1 − α̂) + 2

3 (2α̂ − 1)
(
θ̂ + 1

)
x − 3

2 (2α̂ − 1) θ̂x2 + 4
5 (2α̂ − 1) θ̂x3

)
.

For this example we can analytically derive some comparative statics on the equilibrium

effective effort but our result is in terms of expected effective effort from the perspective of

the contest organizer which is given by

E[β] =
1∫

0

β(x)ĥ(x)dx

=
1∫

0

x2

4

(
(1 − α̂) + 2

3 (2α̂ − 1)
(
θ̂ + 1

)
x − 3

2 (2α̂ − 1) θ̂x2 + 4
5 (2α̂ − 1) θ̂x3

)
·

(
2 (1 − α̂) + 2 (2α̂ − 1) x

(
1 + θ̂(1 − x)(1 − 2x)

))
dx

=
4α̂2

(
θ̂2 − 9θ̂ + 21

)
− 2α̂

(
2θ̂2 + 3θ̂ − 63

)
+ θ̂2 + 12θ̂ + 126

5040
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Figure 2.3. Change in Expected Equilibrium Effective Effort due to Change
in Diversity (θ̂) and Efficiency (α̂)

Figure  2.3 shows the equilibrium effort levels as diversity (in terms of change in θ̂ in the

FGM copula) and efficiency level (α̂) within teams change. Figure  2.3 is a heatmap with

colors moving from yellow to red as the expected equilibrium effort levels increase. We also

show a level curves using black curves. We can see that these level curves change direction

depending on the efficiency level α̂. When the limiting efficiency α̂ is above 0.5, as diversity

in the limiting distribution goes up, that is, θ̂ in the limiting rank distribution going down

from 1 to −1, we see that the expected equilibrium effective effort goes up. Since the value

of a team project is an increasing function of the effective effort of the team members, the

expected value also goes up. On the other hand, if the limiting efficiency level is below 0.5,

we get the opposite result. That is, the expected equilibrium effective effort and the expected
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equilibrium value of the team’s project goes up as the level of diversity goes down, that is,

θ̂ in the limiting rank distribution going up from −1 to 1. We also see that irrespective

of the level of diversity, the higher the level of efficiency, the higher the level of expected

equilibrium bid and the value of team project.

2.6 Discussion

To summarize, we find that when the number of teams in a contest becomes arbitrarily

large, the equilibrium performance of any team member can be approximated by a tariff

mechanism that maps an effective effort and a prize to a tool effectiveness level. We also

examine how cognitive diversity affects the performance of the team contest. Our results

imply that cognitive diversity can be beneficial or detrimental to performance in team con-

tests depending on the teams’ efficiency level. In essence, cognitive diversity can be fruitful

in improving the performance in a team contest if the teams can utilize the benefits cogni-

tive diversity brings. In our model, with higher cognitive diversity, a team is more likely to

receive high-quality tools. However, it is also likely to receive very low-quality tools. But if

the team has the tools to use only the worst quality tool among all the tools from its team

members, then diversity is detrimental to team performance. On the other hand, if the team

has the tools to develop the best tool from its team members, then an increase in cognitive

diversity is advantageous to a team and the contest organizers.
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3. TRANSITION RULE TYPE OF INTERACTION IN

STOCHASTIC DYNAMIC GAME

3.1 Introduction

Many economic situations involving strategic interactions between individuals, firms or

other agents are repeating in nature. Moreover, the characteristics of these interactions (for

example, payoffs) can change over time depending on some underlying processes. More for-

mally, the characteristics of the stage game in a period depends on the state of the world in

that period which is decided by a stochastic process. In these situations, if the agents are

aware of the exact stochastic nature of the repeated strategic interaction, which we call the

transition rule, they can internalize it and respond accordingly. Therefore, the behavior of

these agents would depend on the transition rule. In this paper, using a laboratory exper-

iment, we explore how economic agents involved in repeated interactions change behavior

with different transition rules that decide the nature of these interactions. We concentrate

only on interactions which can be modeled as social dilemma games.

Examples of these types of economic situations are numerous. Take for example, a market

environment. Firms interact with each other repeatedly in the same market. But the market

characteristics (demand, costs among others) can change over time and these changes can

depend on some underlying transition rule. The firms can become aware of this transition

rule by doing market research or just learn over time. Being aware of this rule can help them

shape their responses in the market. This environment has been studied by Rotemberg and

Saloner,  1986 . 

1
 Other examples can include teamwork on a repeated basis where the tasks

can be of different types. Multi-server queuing system catering to tasks of varying types

arriving stochastically lends itself well to this environment and can model many economic

activities. A team of emergency medical technicians responding to different types of medical

emergencies would be an example of multi-server queuing system.

1
 ↑ Green and Porter,  1984 study a version of this stochastic game where the agents can not monitor the
state of the world.
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In our paper, by holding the payoffs in each state constant, we change the transition rule.

We examine two transition rules – alternating and random. To minimize the complexity of

the stochastic game, we restrict the number of states to two. We use Prisoners’ Dilemma

(PD, henceforth) games in both states. One state has high payoffs (High state) and the

other has low payoffs (Low state) from mutual cooperation. Again, we do this for simplicity.

By changing only one of the payoff parameters, the sources behind change in behavior are

minimized. Under both rules, the state of the world in the next period is not known deter-

ministically. We make this choice to ensure that the two rules have similar complexity for

the subjects in the experiment. Under the alternating transition rule, the probability that

the state of the world in the next period is different from that in the current state is more

than that with the random transition rule. We then compare how subjects behave under

these two transition rules. Also to provide some benchmark, we use a combination of payoffs

and discount factor that has been used in the literature without any stochasticity.

What can cause a difference in behavior between the two transition rules? When the

states are alternating, the continuation value of mutual cooperation in the High state is

lower than under the random transition rule because the future is discounted. On the other

hand, by the same logic, the continuation value of mutual cooperation in the Low state is

higher under the alternating rule than the random rule. Therefore, under alternation the

continuation values of the two states are closer to each other than under random arrival of

states. However, since the difference between the two states is only in the payoffs from mu-

tual cooperation, there is no difference in payoffs from deviation from mutual cooperation.

As a result, the difference in agents’ behavior between the two transition rules can only be

driven by the continuation value of mutual cooperation in each state.

For both our transition rules, we vary the type of interaction between the players – sym-

metric or asymmetric. Under symmetry, in each period, both players are in the same state

of the world, and face the same set of payoffs. Therefore, they face a symmetric infinitely

repeated PD (IRPD, henceforth) game with payoffs that vary stochastically over time ac-

cording to a transition rule. In contrast, under asymmetry, in each period, one player is in the
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High state where as the other is in the Low state. As result, in each period of a supergame,

the players play the same asymmetric IRPD game, but who is in the High/Low state is de-

termined by the transition rule. Note that, the infinite game under both types of interactions

is still symmetric. If the subjects follow only history-contingent strategies (not depending

on the state), then strategies under the two types of interactions should provide similar

payoffs. But state-contingent or state- and history-contingent strategies can lead to very

different incentives under the two types of interactions. Another point to note here is that,

in the laboratory, ex-post, due to the indefinite nature of the supergame, the supergames

as a whole may not be symmetric when in every period the interaction is asymmetric. In

some supergames, one subject might only be in the Low state without ever switching to

the Low state, whereas their opponent will always be in the High state by the definition of

asymmetric interaction. This phenomenon is more likely under the random transition rule

than the alternating transition rule. This can also influence the behavior of subjects in the

experiment as they learn over the supergames. 

2
 

We conduct a 2 × 2 design between subject experiment to examine how behavior varies

due to the transition rules in a stochastic dynamic game and how this is affected by the

type of strategic interaction (symmetric vs. asymmetric). We have four main hypotheses.

In all our treatments, mutual cooperation can be supported in both High and Low states

in equilibrium. However, we know from the literature of IRPD, support in the equilibrium

does not imply that cooperation will be observed in the experiment. We utilize the concept

of SizeBAD which is shown as a determinant of cooperation in this literature (see Dal Bó

and Fréchette,  2018 ). SizeBAD implies the size of basin of attraction of Always Defect

(AD, henceforth) strategy. The idea is that, the higher the SizeBAD, the riskier it is to be

cooperative – to choose Grim type strategy – due to the strategic uncertainty inherent in

these games. We calculate the SizeBAD for all our treatments and derive our hypotheses.

First, in the asymmetric environment, we expect subjects to cooperate more when the states

alternate compared to when they arrive randomly. In the second hypothesis, we compare

the alternating and random transition rules in the symmetric environment. We hypothesize
2

 ↑ In each session, subjects played 30 supergames.
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that in the High state, cooperation rate will be higher under random transition rule and the

opposite to hold true in the Low state. Third, we expect subjects to cooperate more when the

interaction is symmetric and they are in High state. Finally, we expect to see higher coop-

eration rates in the High state compared to the Low state when the interaction is symmetric.

Our results indicate that subjects respond to the transition rule but only under the asym-

metric interaction. We observe cooperation rates to be higher under alternation compared

random arrival of states where the interaction is asymmetric. In the case of symmetric in-

teraction, there is no significant difference in the cooperation rates (by State or combined)

between the two transition rules. In our experiment, asymmetric treatment with random

arrival of states leads to the lowest level of cooperation rates irrespective of the states. Switch-

ing to alternation of state or symmetric interactions improves cooperation. In both states,

as we move from asymmetric to symmetric interactions, cooperation increases but only with

random transition rule. Finally, we only observe higher cooperation rates in the High state

in the treatment with symmetric interactions and alternating transition rule. Even if coop-

eration is supported in each state in all our treatments, we observe significant amount of

defection everywhere. Especially asymmetry of environment can lead to a breakdown of co-

operation. Our experiment shows two avenues that can help in improving cooperation rates

in these types of stochastic environment. First, alternation of states increases cooperation

when the players are asymmetric in each period. On the hand, the players can be made

symmetric to make them more cooperative.

The rest of the paper is organized as follows: First, in section 2, we review the related

literature. In section 3, we develop the theoretical background. In section 4, we present

the experimental design for the experiment and hypotheses for the chosen parameters. In

section 5, we examine the results of our data analysis. Finally, in section 6, we conclude.
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3.2 Literature Review

In this paper, we use a stochastic dynamic game to examine the behavior of individu-

als when they face different social dilemmas depending on the state of the world. We use

the PD game for our stage games. Recently, there are some papers that study stochastic

repeated PD games. Kloosterman,  2020 ; Rosokha and Wei,  2020 ; Salz and Vespa,  2020 ;

Vespa and Wilson,  2019 are some among these. Vespa and Wilson,  2019 study the difference

in behavior when the states of the world are decided exogenously or endogenously. Here,

the authors concentrate on the whether the behavior in these games are history-contingent

or state-contingent. In Salz and Vespa,  2020 , the authors use data from the laboratory to

estimate a structural model. Their purpose is to show if considering only Markov strategies

leads to prediction errors. Kloosterman,  2020 uses a variation of the stochastic IRPD where

only in the first two periods the game is stochastic. Finally, in Rosokha and Wei,  2020 , the

stochastic game is in a queuing setting. They vary discount rates and examine the effect of

visibility of the state of the world. We add to this literature by examining the change in

probabilities of arrival of the state of the world and the type of game, i.e., symmetric versus

asymmetric.

Since we use PD games as the basis of our stochastic game, our paper is among the

papers that study IRPD game. This is a vast and growing literature. One of the primary

research questions in this literature is to find out what factors lead to increased cooperation

in this game. Dal Bó and Fréchette,  2018 is a meta analysis that uses data from 15 papers

in this literature to find out the primary drivers of cooperation in symmetric IRPD games.

Other than a few early papers, asymmetric PD games are less studied in this literature (J

Keith Murnighan,  1991 ; John K Murnighan, King, and Schoumaker,  1990 ). These papers

concentrate on the pattern of actions chosen by subjects. Our contribution is two-fold in this

literature. We aim to figure out how the probabilistic nature of which stage game subjects

face every period determines their cooperative nature and whether symmetry and asymme-

try of the game influence the cooperative behavior. We find that alternating asymmetric

environments can increase cooperative behavior. We also find that symmetry of payoffs lead
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to higher cooperation rates.

Another related strand of literature studies multiple games being played together. The

main crux of the issue here is whether there are behavioral spillovers or strategic differences

when these games are played simultaneously or sequentially. Laferriere et al.,  2021 ; Modak,

 2021 ; Yang, Kawamura, and Ogawa,  2016 examine a situation where subjects play multiple

PD games simultaneously in an infinitely repeated setting. These papers explore if playing

two games together can lead to more cooperation in situations in which one game cannot

support cooperation on its own. All these papers use symmetric stage games, only Modak,

 2021 studies asymmetric games as well. Laferriere et al.,  2021 includes a treatment where

subjects play two stage games but sequentially. However, their setting is different from ours.

In this treatment, the subjects plays two games in each period of a supergame but one after

the other (deterministic). In our experiments, subjects play only one game in a period but

the type of the game is decided by the state of the world. Due to the indefinitely repeated

nature of the laboratory experiments, subject may not get an opportunity to play both games

in a supergame.

3.3 Theoretical Background

In this paper, we look at the behavior of individuals who face different social dilemmas

over time. The social dilemmas vary in a probabilistic way which is known to the individuals.

Our aim is to find out how individuals internalize this probabilistic rule and modify their

behavior accordingly. Our second point of interest is the difference in this behavior when

individuals interact in a symmetric versus an asymmetric environment.

3.3.1 Equilibrium of Stochastic Game

Here we discuss the stochastic game that is being played by the subjects. Let Γ (U1, U2, A1,

A2, Θ, P, δ) be the stochastic dynamic game, where Ui is the stage game utility of player i, Ai

is the stage game actions of player i, Θ is the set of states, P : Θ × Θ : [0, 1] is the transition

probability matrix and δ is the discount factor. Note that the transition probability is fully
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characterized by states at t and t + 1. In our stochastic game, players are engaged in an in-

finitely repeated game, where the state of world θ varies every period. How the state changes

in every period is given by the transition matrix P . In each period, the players play a stage

game, whose payoffs are decided by the state. In this paper, we only look at PD games,

and consider two states, High and Low. We consider both symmetric and asymmetric stage

games. In the symmetric case, the games look as in Figure  3.1 . Whereas, in the asymmetric

case, in each period, one player is in High state, while the other is in Low state. Figure  3.2 

shows the payoff matrix of the asymmetric game when player 1 is in High state and player

2 in Low state.

In this subsection we discuss two types of strategies and the conditions when some of the

strategies under these types are Subgame Perfect Nash Equilibria (SPNE, henceforth). The

two types are history-contingent and state- and history-contingent strategies. For the rest

of this subsection, we only consider strategies with respect to PD games. For PD games,

Ai = {C, D}, and for this exposition Θ = {High, Low}. We will use ai for the actions taken

by player i and θt for the state at period t. Finally, the transition probability matrix is given

by

P =

 ρ 1 − ρ

1 − ρ ρ


We call ρ the degree of persistence, as it is the probability with which the state of the world

will remain the same in the next period. As ρ increases from 0 to 1, the probability that the

same state persists in the next period increases.
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Figure 3.1. Symmetric Stage Games
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Figure 3.2. Asymmetric Stage Game

History-contingent strategies only consider the history of actions irrespective of the cur-

rent and history of states. For example, consider a strategy where the player starts by

cooperating irrespective of the state; continues to cooperate, but defects if there is defection

in the history. We call this the Strong Grim Trigger (S-Grim, henceforth). Next, there are

state-, and history-contingent strategies. For example, a strategy where a player plays Grim

strategy when the state is High, but AD when the state is Low. In this strategy, a player

starts by cooperating and continues to cooperates when they are in High state, but defects

if there is defection in High state in the history of the play. We call this strategy Grim-High

for the rest of the paper. A counter part of this strategy is where subjects play Grim in the

Low state and AD in the High state. We call this Grim-Low Strategy.
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To check whether these strategies are SPNE, we check for the incentive for one shot

deviation in each state θ = {High, Low}. We first consider the S-Grim strategy. We use

this strategy because this provides the strictest punishment for punishment. Therefore,

the conditions under which this strategy is an equilibrium is the least restrictive condition

for achieving conditional cooperation. To evaluate whether the S-Grim is an equilibrium

strategy we compare the incentive from continued mutual cooperation (denoted by, V MC
S−Grim

in eq. (  3.1 ) 

3
 ) following the S-Grim strategy and that from the one-shot deviation in each

state plus the continuation value given that the opponent is playing the S-Grim strategy

(denoted by, V Dev
S−Grim in eq. (  3.2 )).

V MC
S−Grim =

cH

cL

+ δ

 ρ (1 − ρ)

(1 − ρ) ρ

V MC
S−Grim

⇒V MC
S−Grim =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 cH

cL

 (3.1)

V Dev
S−Grim =

bH

bL

+ δ

 ρ (1 − ρ)

(1 − ρ) ρ

V MD (3.2)

V MD =

dH

dL

+ δ

 ρ (1 − ρ)

(1 − ρ) ρ

V MD

⇒V MD =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 dH

dL

 (3.3)

3
 ↑ I is the identity matrix of dimension 2.
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Figure 3.3. Stage Game Payoffs

S-Grim is an SPNE if V MC
S−Grim − V Dev

S−Grim ≥ 0. This inequality gives us a relationship

between the discount factor δ and the persistence level ρ. Also, note that for this strategy, it

does not matter if the stage is symmetric or asymmetric. In the experiment, the payoffs we

use for the High and Low states are given in Figure  3.3 . We use these payoffs to numerically

show the relationship between the discount factor and persistence level in Figure  3.4 . Note

that the darker region (colored green) is the region where S-Grim is a SPNE. For this set

of payoffs, we see that as persistence level increases the minimum level of discount factor

required for S-Grim to be an SPNE also increases. This is primarily driven by the fact that,

as the persistence level increases the continuation value of mutual cooperation decreases

when a player is in the Low state. This is because with high persistence level, they will have

a higher probability of remaining in the Low state in the next period with the low payoff

from mutual cooperation. This is due to discounting of future. Therefore, as discount factor

increases, the continuation value does not depend as much on the persistence level and the

one-shot deviation is no longer profitable.
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Figure 3.4. Strong Grim Strategy as Subgame Perfect Nash Equilibrium

We next consider Grim-High and Grim-Low strategies. The conditions for S-Grim to a

SPNE does not depend on whether the stage games are symmetric or asymmetric. However,

that is not true for Grim-High and Grim-Low strategies. The valuation for continued mutual

cooperation following these strategies are shown in the following equations. For symmetric

games, the valuations are shown in eq. ( 3.4 ,  3.5 ). While, for the asymmetric games, these

are shown in eq. (  3.6 ,  3.7 ).

V MC
Grim−H−Sym =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 cH

dL

 (3.4)

V MC
Grim−L−Sym =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 dH

cL

 (3.5)

V C
Grim−H−Asym =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 aH

bL

 (3.6)
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V C
Grim−L−Asym =

I − δ

 ρ (1 − ρ)

(1 − ρ) ρ




−1 bH

aL

 (3.7)

Note that there is no incentive for a player to deviate from defection. So to check for SPNE

we need to check if there is a profitable one-shot deviation in the state where they are

cooperating. For example, for Grim-High in the symmetric case, we need to check if

V MC
Grim−H−Sym(θ = High) ≥ bH + δ

[
ρ (1 − ρ)

]
V MD

Again these inequalities give us relationships between the discount factor and the persistence

level as to when these strategies are SPNE. We use the payoff matrices from the experiment

to numerically derive these relationships in Figure  3.5 . Note that for our payoffs, the incen-

tives from conditional cooperation under these strategies are flipped between states in the

asymmetric case (see eq. ( 3.6 ,  3.7 ) and Figure.  3.3 ). Therefore, the relationship between

discount factor and the persistence level boils down to one as shown in  3.5c . It is interest-

ing to see that the relation between the minimum discount factor and persistence level is

decreasing for symmetric games but increasing for asymmetric game. This is because in the

symmetric game, each of the strategy lead to high continuation value in the state they are

cooperating in if the persistence value is high. With low persistence, the state changes to

the one where they are mutually defecting leading to low payoffs. On the other hand, with

the asymmetric game, players receive sucker’s payoff in the state they are cooperating in

and the temptation payoff in the other. As a result, with low persistence they get higher

continuation value in the state they are cooperating in. Only with high discount factor, the

impact of persistence is alleviated.

3.3.2 SizeBAD - Determinant of cooperation

Infinitely repeated games admit a large number of strategies which are also equilibrium

strategies. In the previous subsection, we show that at least two strategies are equilibria
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(c) Grim-High & Grim-Low – Asymmetric
Games

Figure 3.5. State-Contingent Strategies as Subgame Perfect Nash Equilibrium
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given our payoffs, transition rules and discount factors. Moreover, S-Grim strategy is an

equilibrium in each treatment, therefore continued mutual cooperation can be sustained in

all treatments. The analysis of equilibrium does not give us any insight as to which strategies

subjects will choose under each treatment. However, we know from the previous literature

(see Dal Bó and Fréchette,  2018 ) in the area of infinitely repeated games, there are multi-

ple determinants of cooperation besides mutual cooperation being supported in equilibrium.

One such factor is SizeBAD. In this subsection, we will discuss the insights we can gather

by exploring the concept of SizeBAD for our setting.

In the case of deterministic IRPD game, SizeBAD is the size of basin of attraction of

Always Defect against Grim Trigger strategy. For our environment, we adopt SizeBAD as

the size of basin of attraction of Always Defect against Strong Grim Trigger Strategy. We

define SizeBAD as the maximum probability with which the other player must be playing

S-Grim to make AD optimal to the player. The SizeBAD is given by the value of p that

satisfies the equation

pV (S-Grim, S-Grim) + (1 − p)V (S-Grim,AD)

=pV (AD, S-Grim) + (1 − p)V (AD,AD) (3.8)

where V (i, j) is the value of playing strategy i where other is playing strategy j. For example,

when SizeBAD = 40%, a player needs to believe that other is playing S-Grim with 40%

probability or lower to find using AD optimal. As SizeBAD increases, cooperation becomes

weaker due to strategic uncertainty.

Our environment is that of stochastic IRPD. We adopted the calculation in the following

way. We assume that players make their decision regarding which strategy to use (S-Grim or

AD) in the first period of a supergame after they observe the state of the world in that period.

Therefore, we consider the two states separately. However, for the asymmetric treatments,

when one player in the High state, the other player is in the Low state. Hence, the effective

SizeBAD is taken to be the highest of between those of the two states. For example, if in
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an asymmetric treatment, for the High state the SizeBAD is 0.6 and for Low state it is 0.4,

then the effective SizeBAD is 0.6. A similar mechanism is used when we find the minimum

discount factor required for a strategy to be SPNE in an asymmetric IR game. We use this

concept to derive our hypotheses in the next section.

3.4 Experimental Design

As stated above, the purpose of this paper is to find out of how individuals modify

behavior in response to different probabilities of state arrival (alternating vs. random) and

different types of interaction (symmetric versus asymmetric). We study these variations

using a 2 × 2 between subject design as shown in Figure  3.6 . In our experiment, the subjects

play a stochastic IRPD game. The stochastic game has two states which have different

payoffs from mutual cooperation. Therefore, we have two stage games shown in Figure  3.3 .

For all our treatments, we used the discount factor δ = 0.75. We induce infinite repetition

using the protocol developed in Roth and J Keith Murnighan,  1978 . To the subjects we

explained it as follows – in each match 

4
 , at the end of each period, the computer is going

to roll a 12-sided die; if the number is greater than 9, the match will proceed to the next

period, else, the match will end. To check if the subjects understood the procedure, we made

them practice drawing random numbers for 10 rounds (see Appendix  C.2.1 ).

Pe
rs
ist

en
ce

Type of Interaction

Asymmetric Symmetric

Alternating

Random

Asym-Alt

Asym-Ran

Sym-Alt

Sym-Ran

Figure 3.6. Treatments

In each of the treatments, in every period subjects can see the stage games for both

states. But, in each period they are told which state they are in, i.e., which stage game is

relevant in that particular period. The stage games for the experiment are in Figure  3.7 

4
 ↑ In the experiment, we call a supergame, a match.
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and the screen that the subjects view is in Appendix  C.2.1 . In the symmetric treatments,

each subject and their opponent are in the same state together – high state (Red Game) or

low state (Blue Game). Whereas, in the asymmetric treatments, when one subject is in the

High state (Red Game), their opponent is in the Low state (Blue Game) and vice versa. We

test two levels of persistence – alternating vs. random. In case of the alternating rule, the

transition probability matrix is given by eq. ( 3.9 ) and for the random rule, the same is given

by eq. (  3.10 ). For alternating, we do not make alternation absolute as it would make the

infinitely repeated game deterministic. This would make the two treatments different for the

subjects as it would take away the uncertainty regarding which state the subjects would face

in the next period. In the experiment, subjects were told how the state would change in the

following way – “if you are playing XXX game in the current period, in the next period you

will play XXX game with probability ρ and YYY game with probability 1 − ρ” 

5
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(b) Blue Game

(c) Symmetric Games
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(e) Blue Game

(f) Asymmetric Games

Figure 3.7. Stage Games in the Experiment
Notes: In the experiment, the actions are named “A”, “B” for the “Red Game” and “X”, “Y” for the “Blue

Game” in place of “C”, “D” respectively.

Palt =

0.1 0.9

0.9 0.1

 (3.9) Pran =

0.5 0.5

0.5 0.5

 (3.10)

We conducted the experimental sessions at the Vernon Smith Experimental Economics

Laboratory in December 2021 and February 2022. Subjects were recruited from a pool of
5

 ↑ The instructions are in Appendix  C.2.1 . In the instructions, XXX and YYY were replaced Red or Blue
and ρ was replaced by the value of the probability that the same state would persist in the next period which
were either 50% (random) or 10% (alternating)
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under-graduate students at Purdue University using ORSEE (Greiner,  2015 ). For each treat-

ment, we conducted three sessions, which amounted to 12 sessions in total with a total of

186 subjects. The supergame-lengths for the sessions are listed in Table  C.4 . The average

number of periods per round was 4.31 with a minimum of 1 period and a maximum of 19

periods. We use a between subject design where each subject participated in only one of the

sessions of this study.

The computerized experimental sessions used oTree (D. L. Chen, Schonger, and Wickens,

 2016 ) to record subject decisions. Subjects were given instruction at the beginning of the

session. Each session started with a demographic questionnaire, instructions, followed by a

quiz, and then the experiment. The instructions were shown on the screen (Appendix  C.2.1 

contains the instructions the subjects were given). At the end of the instructions there was

a quiz with 5 questions. Subjects had to get each questin correct before they could move to

the next question. The questions can be found in Appendix  C.2.1 .

The subjects were guaranteed a payment of $5 for appearing for the session. Each session

lasted for not more than 1 hour. The subjects earned an average of $22.87, with a minimum

of $19.75 and a maximum of $26.25 (including the $5 show up fee). The subjects earned in

points during the experiment. At the end of the experiment, the points were converted into

dollar amounts using an exchange rate such that the average earning in every session would

be similar. 

6
 

3.4.1 Hypotheses

The effective SizeBAD for each of our four treatments are listed in Table  3.1 .
6

 ↑ The subjects were told the exchange rate in the instruction, before the experiment.
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Table 3.1. Effective SizeBAD
High State Low State

Asymmetric Symmetric Asymmetric Symmetric

Alternating 0.362 0.298 0.362 0.362

Random 0.455 0.284 0.455 0.455

We derive the following hypotheses given the SizeBAD of each of treatments. Our first

hypothesis compares the effect of persistence of the state of the world in the asymmetric

environment.

Hypothesis 3.1. Cooperation rates are higher under Asym-Alt treatment compared to Asym-

Ran treatment.

From Table  3.1 we can see that both in the High and Low states, under Random the

SizeBAD is higher than that under Alternating. Therefore, we expect subjects to find it

easier to cooperate in Asym-Alt treatment compared to Asym-Ran treatment. The next

hypothesis again compares the effect of persistence but in the symmetric environment. We

consider the two states separately. In the High state, the SizeBAD is larger in Sym-Alt

treatment compared to Sym-Ran treatment. But this is switched in the Low state. This

follows from the fact that in the High (Low) state, under alternation, the continuation value

of mutual cooperation is lower (higher) than that under random arrival of states.

Hypothesis 3.2. (a) In the High State, cooperation rates are higher in the Sym-Ran

compared to Sym-Alt.

(b) In the Low State, cooperation rates are higher in the Sym-Alt compared to Sym-Ran.

In the next hypothesis, we compare the effect of asymmetry of environments. In Table

 3.1 , we see that there is no difference between symmetry and asymmetry in the Low State.

But in the High state, irrespective of the transition rule, SizeBAD is lower under symmetry.

Therefore subjects should find it easier to cooperate under symmetry in the High state

compared to asymmetry.
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Hypothesis 3.3. In the High State, cooperation rates are higher in the symmetric treatments

compared to asymmetric treatments.

Finally, we have a hypothesis regarding difference in cooperation in the High and Low

states. Given the way we define effective SizeBAD for asymmetric treatments, there is no

difference between High and Low states. But for symmetric treatments, SizeBAD is higher

under Low states than High state. We thus have the following hypothesis.

Hypothesis 3.4. cooperation rates are higher in the High state compared to the Low state

in the symmetric treatments.

3.5 Results

We now present the results of our experimental study. Figure  3.8 shows the average all

periods cooperation rate in each state (High or Low) in each supergame of the experiment

for each treatment. We also present the 95% confidence interval (using two-stage clustered

bootstrap), shown by the shaded region. The plots for the first period average cooperation

rates with their confidence intervals are in Figure  C.1 . In Table  3.2 we present the average

cooperation rates for all periods and first periods, by state, in the last 15 supergames with

the clustered standard errors and the 95% confidence intervals.
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Figure 3.8. Average Cooperation rates in Treatments for each Round (All Periods)
Notes: The shaded areas are the Two-Stage Clustered Bootstrap 95% Confidence Intervals (clustered at

session level, randomized at subject level).
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Table 3.2. Average Cooperation Rate in the Last 15 Supergames
All Periods First Period

High Low All High Low All

Asym-Alt
0.419

(0.065)

[0.219, 0.501]

0.393

(0.063)

[0.2,0.469]

0.408

(0.066)

[0.216, 0.475]

0.472

(0.083)

[0.22, 0.558]

0.427

(0.052)

[0.269, 0.485]

0.45

(0.068)

[0.25,0.517]

Asym-Ran
0.249

(0.11)

[0.072, 0.496]

0.263

(0.108)

[0.083, 0.502]

0.264

(0.111)

[0.075, 0.511]

0.306

(0.136)

[0.064, 0.592]

0.301

(0.124)

[0.083, 0.565]

0.304

(0.125)

[0.078, 0.571]

Sym-Alt
0.482

(0.081)

[0.346, 0.663]

0.34

(0.122)

[0.145, 0.639]

0.421

(0.094)

[0.264, 0.647]

0.589

(0.03)

[0.535, 0.637]

0.335

(0.14)

[0.107, 0.67]

0.465

(0.088)

[0.317, 0.656]

Sym-Ran
0.44

(0.129)

[0.252, 0.724]

0.391

(0.124)

[0.21, 0.664]

0.423

(0.121)

[0.205, 0.691]

0.527

(0.116)

[0.291, 0.774]

0.436

(0.12)

[0.227, 0.697]

0.471

(0.117)

[0.25, 0.73]

Notes: This table presents the average cooperation rates for the last 15 supergames. The clustered boot-
strapped SE are in parenthesis and the 95% confidence intervals are in square brackets.

There are several key takeaways from this table and the graphs. The first key takeaway

is that cooperation levels are significantly higher than zero (the confidence intervals do not

include 0). This is in line with our theory, since cooperative outcomes are equilibrium out-

comes given our payoff parameters, transition rules, and discount factor. We can observe

that there is a slight increase in cooperation rate over supergames. These increases are

statistically significant in the alternating treatments for both states. For the random treat-

ments, we only observe a statistically significant increase in cooperation rate in the Sym-Ran

treatment for Low state, however this effect is no longer present when we consider only the

first periods. Tables  C.1 and  C.2 contain the regression results for this analysis. We also

find that cooperation levels are the lowest in the Asym-Ran treatment. For the rest of the

three treatments cooperation rates are similar. We now focus on our hypotheses and present

the corresponding results.
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Table  3.3 presents the comparison results for our four treatments using all periods co-

operation rates (see Table  C.3 for the same with first period action choices). For this part

of the analysis we are going to use the last 15 supergames of the experiment and Nonpara-

metric permutation test. For the Nonparametric Permutation test, we first calculate the

cooperation rate of every subject in each supergame, then averaged it over the supergames.

Therefore, our unit of observation is a subject. In this table, we provide the results for each

state separately and combined.

Table 3.3. Average Cooperation and Treatment Effects (All Periods)
High State Low State All States

Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric

Alternating
0.419

(0.065)

H3: ∼

(0.41)

0.482

(0.081)

0.393

(0.063)

∼

(0.436)

0.34

(0.122)

0.408

(0.066)

∼

(0.98)

0.421

(0.094)

H1: <**

(0.018)

H2 (a): ∼

(0.573)

H1: <*

(0.069)

H2 (b): ∼

(0.494)

<**

(0.032)

∼

(0.95)

Random
0.249

(0.11)

H3: <***

(0.009)

0.44

(0.129)

0.263

(0.108)

<*

(0.079)

0.391

(0.124)

0.264

(0.111)

<**

(0.029)

0.423

(0.121)

Notes: This table shows the average cooperation in the last 15 supergames of the experiment for all periods. Clustered bootstrap S.E. for the
cooperation levels are reported in parenthesis below. We also provide treatment effects in terms of greater than, less than or equality. For this we
provide the p-values of the two-sided test of comparison of average cooperation levels of two treatments using Non-parametric permutation test in
the parenthesis below.
* p < 0.1, ** p < 0.05, *** p < 0.01

We first consider Hypothesis  3.1 considering the different levels of persistence in the

asymmetric environment. We hypothesized that cooperation should be higher when the

states were alternating rather than randomly realized. Our data confirms this hypothesis

whether we consider the two states separately or combine them. Moreover, this result also

holds when we only consider the first period actions (see Table  C.3 ). We summarize this in

the following result.

Result 3.5.1. Cooperation rates are higher in the Asym-Alt treatment compared to Asym-

Ran treatment.

Our second hypothesis compares the two levels of persistence in the symmetric environ-

ment. We hypothesized to observe higher cooperation in the High state (Low state) under

Sym-Ran (Sym-Alt) treatment. However, our data show that there is no significant differ-
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ence between the cooperation rates under the two treatments in either state. Thus, we have

the following result.

Result 3.5.2. (a) In the High state, cooperation rates are same across Sym-Alt and Sym-

Ran treatments.

(b) In the Low state, cooperation rates are same across Sym-Alt and Sym-Ran treatments.

Our finding that cooperation rates are higher under Asym-Alt treatment compared to

Asym-Ran treatment can be compared with alternation in repeated Battle of the Sexes

game. In experiments with repeated Battle of the Sexes games, subjects often use alterna-

tion between the two equilibria to reach an efficient outcome (Cason, Lau, and Mui,  2013 ;

Duffy, Lai, and W. Lim,  2017 ; Lau and Mui,  2008 ). This is also referred to as “turn-taking”.

Turn-taking can be used to achieve efficient outcomes in other games as well, like common-

pool-resources assignment game (Janssen and Ostrom,  2006 ). In our case, subjects could

coordinate on mutual cooperation as a Pareto optimal outcome. However, in the asymmet-

ric environment, one person always receives higher payoff than their opponent from mutual

cooperation. In the case of alternating states, it becomes easy to coordinate on the Pareto

outcome as the player receiving the higher payoff from mutual cooperation alternates as the

state alternates, leading to a more equitable outcome. Here the alternation of states becomes

a coordinating device. In the case of random arrival of states (i.e., the random treatment),

turn-taking between subjects is less frequent than in the alternating treatment, essentially

invalidating the coordination device. In the symmetric environment, alternation does not

serve the additional purpose of a coordination device.

Next, we consider the comparison between symmetry and asymmetry of environment.

In hypothesis  3.3 we stated that we expect cooperation rates to be higher only in the High

state under symmetry compared to asymmetry, irrespective of the persistence level. From

the data, we find that cooperation is higher in Sym-Ran treatment compared to Asym-Ran

treatment. This hold true for High state and combining both States considering all periods

or just the first period. We summarize this in the following result. Although we do not

hypothesize to see any difference in cooperation rates in the Low state, we find this higher
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cooperation rates in Sym-Ran treatment compared to Sym-Alt treatment when we use data

from all periods.

Result 3.5.3. In the High state, cooperation rates are higher with in the Sym-Ran treatment

compared to the Asym-Ran treatment.

Although we expected to see higher cooperation rates due to symmetry under both rules,

we only observe the difference in the case of random transition rule. Cooperation is riskier

under asymmetry due to strategic uncertainty, therefore hard to maintain. But difficulty in

maintaining cooperation can be aggravated in the laboratory due to the indefinite nature

of the game. In the asymmetric treatments, the payoffs are always unequal for mutual

cooperation. On top of that, in the indefinite game that subjects play in the laboratory,

it is possible that subjects in the random treatment never switch between states even if

there are more than one period in a supergame. Therefore, a subject can remain in the Low

state for all periods, whereas their opponent is always in the High state maintaining and

accumulating unequal payoffs in case of mutual cooperation in all periods. In this event, the

subject in the Low state can choose to unilaterally deviate to defection to close the payoff

gap, effectively breaking down cooperation. Symmetry of environments in such a situation

can act as the coordination device with mutual cooperation leading to equal payoffs. Thus we

see a statistically significant increase in cooperation rates with Sym-Ran treatment compared

to Asym-Ran treatment. In case of alternating transition rule, the alternation of states helps

the subjects to reach high and equal payoffs through mutual cooperation in the asymmetric

treatment. Therefore symmetry of environments do not add much incentive to increase the

cooperation rate. Hence we do not find any statistically higher cooperation rates in the

Sym-Alt treatment compared to the Asym-Alt treatment.
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Table 3.4. Difference in Cooperation Rates between High State and Low
State (Last 15 Supergames)

All Periods First Period

Asymmetric Symmetric Asymmetric Symmetric

Alternating
0.026

(0.711)

0.142*

(0.056)

0.045

(0.627)

0.254***

(0.006)

Random
-0.015

(0.82)

0.049

(0.51)

0.005

(0.949)

0.091

(0.348)

Notes: This table shows the difference in average cooperation between High
State and Low State in the last 15 supergames of the experiment. p-values of
the two-sided test of comparison of average cooperation levels of two states using
Non-parametric permutation test in the parenthesis below.
* p < 0.1, ** p < 0.05, *** p < 0.01

In Hypothesis  3.4 we state that cooperation in the High state is expected to be higher

in the Low state in the symmetric treatments. We compare subjects’ behavior across the

two states. Table  3.4 reports the change in cooperation rate from Low state to High state

for the last 15 supergames. We find that only in the Sym-Alt, High state has a statistically

significant higher cooperation level compared to Low state. This is summarized in Result 3.

Result 3.5.4. In Sym-Alt treatment, cooperation rates are higher in the High state compared

to Low state.

3.6 Discussion

In this paper, we study a stochastic dynamic game with Prisoner dilemma stage games.

Our setting is an infinitely repeated game with the payoffs of the stage game in each period

decided by the state of the world in that period. The stochastic part of the game is reflected

in how the states change across time periods. The state in a period is only dependent on

that in the last period. We call this persistence. The higher the persistence, the higher the

likelihood that the same state persists in the next period. We only have two states of the

world – High and Low. The difference between these two states in only in the payoff from

mutual cooperation. We utilize a laboratory experiment to study how individuals internalize
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different levels of persistence and how this behavior differs when environments change from

symmetric to asymmetric.

We have four main hypotheses using the concept of sizeBAD which is shown to be a de-

terminant of cooperative behavior in the literature. First, for the asymmetric environment,

we expect that cooperation to be higher in the alternating treatments compared to the ran-

dom treatments. But for the symmetric environment, our hypothesis is state dependent. In

the High state, we expect higher cooperation rates in with random transition rule compared

to alternating transition rule and the opposite for Low state. In case of the comparison be-

tween symmetry and asymmetry of interaction, we hypothesize that the effect is only in the

High state. So our third hypothesis is that we expect in High state cooperation rates to be

higher in symmetric environments. Coordination to mutual cooperation in the asymmetric

treatments can be difficult because one player is always disadvantaged. Therefore it is easy

to break cooperation as it is driven by the incentives of the disadvantaged player. Finally,

we expect cooperation rates to be higher in the High state than in the Low state only in the

symmetric treatments.

Our results partially confirm most of our hypotheses. We find that only in the asymmet-

ric environment, alternating states leads to higher cooperation rates compared to random

arrival of states. The alternation of states acts as a coordination devices to coordinate on

mutual cooperation. On the other hand we find that symmetry of payoffs can also improve

cooperation only but only the states arrive randomly. Alternation of states can increase

cooperation sufficiently in the asymmetric environment, such that symmetry does not add

any extra incentive to cooperate. Finally, we find subjects to cooperate significantly more in

the High state but only in the Symmetric Alternating treatment.

In our paper, with asymmetric environments, changing states is like changing the status

of a player. In our asymmetric environment, one player has higher incentives than the other

always. As the state changes, the player who receives the higher incentive is flipped. We find

that Asymmetric Random treatment is least conducive to cooperation. This can be due to
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the indefinite nature of the laboratory experience. Due to random change in states in either

of the random treatments, subjects can get stuck in the Low state for multiple periods with-

out even going to the High state before a supergame ends. This can discourage cooperative

behavior because there is inequity in payoffs in the asymmetric environment. On the other

hand, with alternating states, the subjects can easily switch between High and Low states.

So over periods, the inequity of payoffs can disappear with alternation in the asymmetric

environment leading to higher incentive to cooperate. Therefore we find alternation as a

tool to increase in cooperation. The other tool that can incentivize cooperative behavior

is symmetry of payoffs. However, both these tools together does not seem to lead to much

higher cooperation rates.

The results from the current experiment are dependent of the set of parameters we used,

therefore, generalization should be done with caution. For example, we use a moderate level

of discount factor. Increasing the discount factor can influence our result that alternation

of task improves performance. If teams are fixed and long term, then randomization of

tasks might work as good as alternation. On the other hand, with teams that work together

for only short periods of time, symmetric teams might perform better than asymmetric

teams whether tasks are alternated or randomized. Another limitation of this work, is that

our asymmetry is in itself symmetric. That is, the players are inherently symmetric. The

asymmetry is realized through the state of the world. Because of this alternation of states

can effectively make the indefinite game symmetric in the laboratory (the infinite game is

symmetric). However, this might not work if one player is disadvantaged in all states as the

dynamic game becomes asymmetric. In this case, alternation or turn-taking might not be

an conducive to mutual cooperation. These limitations lend themselves to the future work,

where we vary the payoff parameter and/or discount factor in the same setting, or allow for

heterogeneous players leading to asymmetric dynamic game. Finally, here our stage games

are prisoners’ dilemma games and this can be extended to include other games, for example,

team production.

117



REFERENCES

Adamczyk, Sabrina, Angelika C Bullinger, and Kathrin M Möslein (2012). “Innovation
contests: A review, classification and outlook”. In: Creativity and Innovation Management
21.4, pp. 335–360.

Aggarwal, Ishani and Anita Williams Woolley (2019). “Team creativity, cognition, and
cognitive style diversity”. In: Management Science 65.4, pp. 1586–1599.

Ahn, Toh-Kyeong et al. (2007). “Asymmetric payoffs in simultaneous and sequential
prisoner’s dilemma games”. In: Public Choice 132.3-4, pp. 353–366.

Aksoy, Ozan and Jeroen Weesie (2013). “Social motives and expectations in one-shot
asymmetric Prisoner’s Dilemmas”. In: The Journal of mathematical sociology 37.1, pp. 24–58.

Albert, Max et al. (2007). “Are we nice (r) to nice (r) people?—an experimental analy-
sis”. In: Experimental Economics 10.1, pp. 53–69.

Ales, Laurence, Soo-Haeng Cho, and Ersin Körpeoğlu (2021). “Innovation tournaments
with multiple contributors”. In: Production and Operations Management 30.6, pp. 1772–1784.

— (2017). “Optimal award scheme in innovation tournaments”. In: Operations Research
65.3, pp. 693–702.

Aoyagi, Masaki, V Bhaskar, and Guillaume R Fréchette (2019). “The impact of mon-
itoring in infinitely repeated games: Perfect, public, and private”. In: American Economic
Journal: Microeconomics 11.1, pp. 1–43.

Archak, Nikolay and Arun Sundararajan (2009). “Optimal design of crowdsourcing con-
tests”. In: ICIS 2009 proceedings, p. 200.

Barbieri, Stefano, Dan Kovenock, et al. (2019). “Group contests with private information
and the “Weakest Link””. In: Games and Economic Behavior 118, pp. 382–411.

Barbieri, Stefano and David A Malueg (2016). “Private-information group contests:
Best-shot competition”. In: Games and Economic Behavior 98, pp. 219–234.

Baye, Michael R, Dan Kovenock, and Casper G De Vries (1993). “Rigging the lobbying
process: an application of the all-pay auction”. In: The American Economic Review 83.1,
pp. 289–294.

Bednar, Jenna et al. (2012). “Behavioral spillovers and cognitive load in multiple games:
An experimental study”. In: Games and Economic Behavior 74.1, pp. 12–31.

118



Bendor, Jonathan and Scott E Page (2019). “Optimal team composition for tool-based
problem solving”. In: Journal of Economics & Management Strategy 28.4, pp. 734–764.

Bernheim, B Douglas and Michael D Whinston (1990). “Multimarket contact and col-
lusive behavior”. In: The RAND Journal of Economics, pp. 1–26.

Bigoni, Maria et al. (2015). “Time horizon and cooperation in continuous time”. In:
Econometrica 83.2, pp. 587–616.

Bilotkach, Volodymyr (2011). “Multimarket contact and intensity of competition: evi-
dence from an airline merger”. In: Review of Industrial Organization 38.1, pp. 95–115.

Bó, Pedro Dal (2005). “Cooperation under the shadow of the future: experimental evi-
dence from infinitely repeated games”. In: American economic review 95.5, pp. 1591–1604.

Bodoh-Creed, Aaron L and Brent R Hickman (2018). “College assignment as a large
contest”. In: Journal of Economic Theory 175, pp. 88–126.

Bone, Jonathan E et al. (2015). “The effect of power asymmetries on cooperation and
punishment in a prisoner’s dilemma game”. In: PloS one 10.1, e0117183.

Breitmoser, Yves (2015). “Cooperation, but no reciprocity: individual strategies in the
repeated prisoner’s dilemma”. In: American Economic Review 105.9, pp. 2882–2910.

Brookins, Philip and Paan Jindapon (2021). “Risk preference heterogeneity in group
contests”. In: Journal of Mathematical Economics, p. 102499.

Brookins, Philip and Dmitry Ryvkin (2016). “Equilibrium existence in group contests”.
In: Economic Theory Bulletin 4.2, pp. 265–276.

Budiansky, Stephen (2013). Blackett’s War: The Men Who Defeated the Nazi U-Boats
and Brought Science to the Art of Warfare Warfare. Vintage.

Busse, Meghan R (2000). “Multimarket contact and price coordination in the cellular
telephone industry”. In: Journal of Economics & Management Strategy 9.3, pp. 287–320.

Camera, Gabriele and Marco Casari (2009). “Cooperation among strangers under the
shadow of the future”. In: American Economic Review 99.3, pp. 979–1005.

Camera, Gabriele, Marco Casari, and Maria Bigoni (2012). “Cooperative strategies in
anonymous economies: an experiment”. In: Games and Economic Behavior 75.2, pp. 570–
586.

119



Candoğan, Sıdıka Tunç, C Gizem Korpeoglu, and Christopher S Tang (2020). “Team
collaboration in innovation contests”. In: Available at SSRN 3607769.

Carbonell-Nicolau, Oriol and Richard P McLean (2018). “On the existence of Nash
equilibrium in Bayesian games”. In: Mathematics of Operations Research 43.1, pp. 100–129.

Cason, Timothy N and Douglas D Davis (1995). “Price communications in a multimarket
context: An experimental investigation”. In: Review of Industrial Organization 10.6, pp. 769–
787.

Cason, Timothy N, Sau-Him Paul Lau, and Vai-Lam Mui (2013). “Learning, teaching,
and turn taking in the repeated assignment game”. In: Economic Theory 54.2, pp. 335–357.

Cason, Timothy N and Vai-Lam Mui (2019). “Individual versus group choices of re-
peated game strategies: A strategy method approach”. In: Games and Economic Behavior
114, pp. 128–145.

Cavallo, Ruggiero and Shaili Jain (2012). “Efficient crowdsourcing contests.” In: AA-
MAS. Citeseer, pp. 677–686.

— (2013). “Winner-take-all crowdsourcing contests with stochastic production”. In: First
AAAI Conference on Human Computation and Crowdsourcing.

Chade, Hector and Jan Eeckhout (2020). “Competing teams”. In: The Review of Eco-
nomic Studies 87.3, pp. 1134–1173.

Chawla, Shuchi, Jason D Hartline, and Balasubramanian Sivan (2019). “Optimal crowd-
sourcing contests”. In: Games and Economic Behavior 113, pp. 80–96.

Che, Yeon-Koo and Ian Gale (2003). “Optimal design of research contests”. In: American
Economic Review 93.3, pp. 646–671.

Che, Yeon-Koo and Ian L Gale (1998). “Caps on political lobbying”. In: The American
Economic Review 88.3, pp. 643–651.

Chen, Daniel L, Martin Schonger, and Chris Wickens (2016). “oTree—An open-source
platform for laboratory, online, and field experiments”. In: Journal of Behavioral and Exper-
imental Finance 9, pp. 88–97.

Chen, Hua and Noah Lim (2017). “How does team composition affect effort in contests?
A theoretical and experimental analysis”. In: Journal of Marketing Research 54.1, pp. 44–60.

120



Choi, Jay Pil, Subhasish M Chowdhury, and Jaesoo Kim (2016). “Group contests with
internal conflict and power asymmetry”. In: The Scandinavian Journal of Economics 118.4,
pp. 816–840.

Chowdhury, Subhasish M, Dongryul Lee, and Roman M Sheremeta (2013). “Top guns
may not fire: Best-shot group contests with group-specific public good prizes”. In: Journal
of Economic Behavior & Organization 92, pp. 94–103.

Chowdhury, Subhasish M and Iryna Topolyan (2016a). “Best-shot versus weakest-link
in political lobbying: an application of group all-pay auction”. In: Social Choice and Welfare
47.4, pp. 959–971.

— (2016b). “The Attack-And-Defense Group Contests: Best Shot Versus Weakest Link”.
In: Economic Inquiry 54.1, pp. 548–557.

Ciliberto, Federico and Jonathan W Williams (2014). “Does multimarket contact facili-
tate tacit collusion? Inference on conduct parameters in the airline industry”. In: The RAND
Journal of Economics 45.4, pp. 764–791.

Cooper, David J and Kai-Uwe Kühn (2014). “Communication, renegotiation, and the
scope for collusion”. In: American Economic Journal: Microeconomics 6.2, pp. 247–78.

Dal Bó, Pedro and Guillaume R Fréchette (2018). “On the determinants of cooperation
in infinitely repeated games: A survey”. In: Journal of Economic Literature 56.1, pp. 60–114.

— (2019). “Strategy Choice in the Infinitely Repeated Prisoner’s Dilemma”. In: Amer-
ican Economic Review 109.11, pp. 3929–52.

— (2011). “The evolution of cooperation in infinitely repeated games: Experimental
evidence”. In: American Economic Review 101.1, pp. 411–29.

Ding, Wei and Elmar G Wolfstetter (2011). “Prizes and lemons: procurement of inno-
vation under imperfect commitment”. In: The RAND Journal of Economics 42.4, pp. 664–
680.

DiPalantino, Dominic and Milan Vojnovic (2009). “Crowdsourcing and all-pay auctions”.
In: Proceedings of the 10th ACM conference on Electronic commerce, pp. 119–128.

Duffy, John and Dietmar Fehr (2018). “Equilibrium selection in similar repeated games:
experimental evidence on the role of precedents”. In: Experimental Economics 21.3, pp. 573–
600.

Duffy, John, Ernest K Lai, and Wooyoung Lim (2017). “Coordination via correlation:
An experimental study”. In: Economic Theory 64.2, pp. 265–304.

121



Edwards, Corwin D (1955). “Conglomerate bigness as a source of power”. In: Business
concentration and price policy. Princeton University Press, pp. 331–359.

Eliaz, Kfir and Qinggong Wu (2018). “A simple model of competition between teams”.
In: Journal of Economic Theory 176, 372-392 %@ 0022–0531.

Erkal, Nisvan and Jun Xiao (2021). “Scarcity of ideas and optimal prizes in innovation
contests”. In: Available at SSRN.

Evans, William N and Ioannis N Kessides (1994). “Living by the “golden rule”: Multi-
market contact in the US airline industry”. In: The Quarterly Journal of Economics 109.2,
pp. 341–366.

Fallucchi, Francesco et al. (2021). “Not all group members are created equal: Heteroge-
neous abilities in inter-group contests”. In: Experimental Economics 24.2, pp. 669–697.

Feinberg, Robert and Roger Sherman (1985). “An experimental investigation of mutual
forbearance by conglomerate firms”. In: Industry Structure and Performance, pp. 139–166.

Feinberg, Robert M and Roger Sherman (1988). “Mutual forbearance under experimen-
tal conditions”. In: Southern Economic Journal, pp. 985–993.

Feng, Xin et al. (2021). “Optimal Prize Design in Team Contests”. In: Available at SSRN
3840615.

Freeman, Richard B, Ina Ganguli, and Raviv Murciano-Goroff (2015). 1. Why and
Wherefore of Increased Scientific Collaboration. University of Chicago Press.

Friedman, Daniel and Ryan Oprea (2012). “A continuous dilemma”. In: American Eco-
nomic Review 102.1, pp. 337–63.

Fu, Qiang, Jingfeng Lu, and Yuanzhu Lu (2012). “Incentivizing R&D: Prize or subsi-
dies?” In: International Journal of Industrial Organization 30.1, pp. 67–79.

Fu, Qiang, Jingfeng Lu, and Yue Pan (2015). “Team contests with multiple pairwise
battles”. In: American Economic Review 105.7, pp. 2120–40.

Fudenberg, Drew, David G Rand, and Anna Dreber (2012). “Slow to anger and fast to
forgive: Cooperation in an uncertain world”. In: American Economic Review 102.2, pp. 720–
49.

Ghosh, Arpita and Preston McAfee (2012). “Crowdsourcing with endogenous entry”. In:
Proceedings of the 21st international conference on World Wide Web, pp. 999–1008.

122



Green, Edward J and Robert H Porter (1984). “Noncooperative collusion under im-
perfect price information”. In: Econometrica: Journal of the Econometric Society, pp. 87–
100.

Greiner, Ben (2015). “Subject pool recruitment procedures: organizing experiments with
ORSEE”. In: Journal of the Economic Science Association 1.1, pp. 114–125.

Güth, Werner et al. (2016). “Testing forbearance experimentally: Duopolistic compe-
tition of conglomerate firms”. In: International Journal of the Economics of Business 23.1,
pp. 63–86.

Haesevoets, Tessa et al. (2019). “Decision making in the prisoner’s dilemma game: The
effect of exit on cooperation and social welfare”. In: Journal of Behavioral Decision Making
32.1, pp. 61–78.

Halac, Marina, Navin Kartik, and Qingmin Liu (2017). “Contests for experimentation”.
In: Journal of Political Economy 125.5, pp. 1523–1569.

Harrison, David A, Kenneth H Price, and Myrtle P Bell (1998). “Beyond relational de-
mography: Time and the effects of surface-and deep-level diversity on work group cohesion”.
In: Academy of Management Journal 41.1, pp. 96–107.

Heggestad, Arnold A and Stephen A Rhoades (1978). “Multi-market interdependence
and local market competition in banking”. In: The Review of Economics and Statistics,
pp. 523–532.

Hirshleifer, Jack (1983). “From weakest-link to best-shot: The voluntary provision of
public goods”. In: Public Choice 41.3, pp. 371–386.

Hong, Lu and Scott E Page (2004). “Groups of diverse problem solvers can outperform
groups of high-ability problem solvers”. In: Proceedings of the National Academy of Sciences
101.46, pp. 16385–16389.

— (2001). “Problem solving by heterogeneous agents”. In: Journal of Economic Theory
97.1, pp. 123–163.

Hoogendoorn, Sander, Simon C Parker, and Mirjam Van Praag (2017). “Smart or diverse
start-up teams? Evidence from a field experiment”. In: Organization Science 28.6, pp. 1010–
1028.

Hu, Ming and Lu Wang (2021). “Joint vs. separate crowdsourcing contests”. In: Man-
agement Science 67.5, pp. 2711–2728.

123



Jans, Ivette and David I Rosenbaum (1997). “Multimarket contact and pricing: Evidence
from the US cement industry”. In: International Journal of Industrial Organization 15.3,
pp. 391–412.

Janssen, Marco A and Elinor Ostrom (2006). “Governing social-ecological systems”. In:
Handbook of computational economics 2, pp. 1465–1509.

Jayachandran, Satish, Javier Gimeno, and P Rajan Varadarajan (1999). “The theory of
multimarket competition: A synthesis and implications for marketing strategy”. In: Journal
of Marketing 63.3, pp. 49–66.

Kamei, Kenju (2017). “Endogenous reputation formation under the shadow of the fu-
ture”. In: Journal of Economic Behavior & Organization 142, pp. 189–204.

Kang, Wooseong, Barry L Bayus, and Sridhar Balasubramanian (2010). “The strategic
effects of multimarket contact: Mutual forbearance and competitive response in the personal
computer industry”. In: Journal of Marketing Research 47.3, pp. 415–427.

Kilduff, Martin, Reinhard Angelmar, and Ajay Mehra (2000). “Top management-team
diversity and firm performance: Examining the role of cognitions”. In: Organization Science
11.1, pp. 21–34.

Kloosterman, Andrew (2020). “Cooperation in stochastic games: a prisoner’s dilemma
experiment”. In: Experimental Economics 23.2, pp. 447–467.

Kolmar, Martin and Hendrik Rommeswinkel (2013). “Contests with group-specific pub-
lic goods and complementarities in efforts”. In: Journal of Economic Behavior & Organization
89, pp. 9–22.

Korpeoglu, C Gizem, Ersin Körpeoğlu, and Sıdıka Tunç (2021). “Optimal duration of
innovation contests”. In: Manufacturing & Service Operations Management 23.3, pp. 657–
675.

Körpeoğlu, Ersin, C Gizem Korpeoglu, and Isa Emin Hafalir (2017). “Parallel innovation
contests”. In: Available at SSRN 2924817.

Laferriere, Vincent et al. (2021). “Multigame contact and cooperation”. In:

Lamberson, PJ and Scott E Page (2012). “Optimal forecasting groups”. In: Management
Science 58.4, pp. 805–810.

Lau, Sau-Him Paul and Vai-Lam Mui (2008). “Using turn taking to mitigate coordina-
tion and conflict problems in the repeated battle of the sexes game”. In: Theory and Decision
65.2, pp. 153–183.

124



LiCalzi, Marco and Oktay Surucu (2012). “The power of diversity over large solution
spaces”. In: Management Science 58.7, pp. 1408–1421.

Lin, Haizhen and Ian M McCarthy (2018). Multimarket Contact in Health Insurance:
Evidence from Medicare Advantage. Tech. rep. National Bureau of Economic Research.

Liu, Tracy Xiao et al. (2019). “Directional behavioral spillover and cognitive load effects
in multiple repeated games”. In: Experimental Economics 22.3, pp. 705–734.

Luo, Tie et al. (2015). “Incentive mechanism design for heterogeneous crowdsourcing
using all-pay contests”. In: IEEE transactions on mobile computing 15.9, pp. 2234–2246.

Marcolino, Leandro Soriano, Albert Xin Jiang, and Milind Tambe (2013). “Multi-agent
team formation: diversity beats strength?” In: Twenty-Third International Joint Conference
on Artificial Intelligence.

Marcolino, Leandro Soriano, Haifeng Xu, et al. (2014). “Give a hard problem to a di-
verse team: Exploring large action spaces”. In: Twenty-Eighth AAAI Conference on Artificial
Intelligence.

Mengel, Friederike (2012). “Learning across games”. In: Games and Economic Behavior
74.2, pp. 601–619.

Mihm, Jürgen and Jochen Schlapp (2019). “Sourcing innovation: On feedback in con-
tests”. In: Management Science 65.2, pp. 559–576.

Modak, Mouli (2021). “Do Multiple Contacts Matter?” In: Available at SSRN 3828250.

Moscarini, Giuseppe and Francesco Squintani (2010). “Competitive experimentation
with private information: The survivor’s curse”. In: Journal of Economic Theory 145.2,
pp. 639–660.

Murnighan, J Keith (1991). “Cooperating when you know your outcomes will differ”.
In: Simulation & Gaming 22.4, pp. 463–475.

Murnighan, John K, Thomas R King, and Francoise Schoumaker (1990). “The dynamics
of cooperation in asymmetric dilemmas”. In: Advances in group processes. JAI Press, pp. 179–
202.

Nelsen, Roger B (2007). An introduction to copulas. Springer Science & Business Media.

Nitzan, Shmuel and Kaoru Ueda (2011). “Prize sharing in collective contests”. In: Eu-
ropean Economic Review 55.5, pp. 678–687.

125



Olson, Bradley J, Satyanarayana Parayitam, and Yongjian Bao (2007). “Strategic deci-
sion making: The effects of cognitive diversity, conflict, and trust on decision outcomes”. In:
Journal of Management 33.2, pp. 196–222.

Olszewski, Wojciech and Ron Siegel (2016). “Large contests”. In: Econometrica 84.2,
pp. 835–854.

Parker, Philip M and Lars-Hendrik Röller (1997). “Collusive conduct in duopolies: mul-
timarket contact and cross-ownership in the mobile telephone industry”. In: The RAND
Journal of Economics, pp. 304–322.

Parreiras, Sérgio O and Anna Rubinchik (2015). “Group composition in contests”. In:
Haifa University.

Phillips, Owen R and Charles F Mason (1996). “Market regulation and multimarket
rivalry”. In: The Rand Journal of Economics, pp. 596–617.

— (1992). “Mutual forbearance in experimental conglomerate markets”. In: The RAND
Journal of Economics, pp. 395–414.

Pilloff, Steven J (1999). “Multimarket contact in banking”. In: Review of Industrial
Organization 14.2, pp. 163–182.

Pitcher, Patricia and Anne D Smith (2001). “Top management team heterogeneity:
Personality, power, and proxies”. In: Organization Science 12.1, pp. 1–18.

Prince, Jeffrey T and Daniel H Simon (2009). “Multimarket contact and service quality:
Evidence from on-time performance in the US airline industry”. In: Academy of Management
Journal 52.2, pp. 336–354.

Rand, David G, Drew Fudenberg, and Anna Dreber (2015). “It’s the thought that
counts: The role of intentions in noisy repeated games”. In: Journal of Economic Behavior
& Organization 116, pp. 481–499.

Romero, Julian and Yaroslav Rosokha (2018). “Constructing strategies in the indefi-
nitely repeated prisoner’s dilemma game”. In: European Economic Review 104, pp. 185–219.

Rosokha, Yaroslav and Chen Wei (2020). “Cooperation in Queueing Systems”. In: Avail-
able at SSRN 3526505.

Rotemberg, Julio J and Garth Saloner (1986). “A supergame-theoretic model of price
wars during booms”. In: The American economic review 76.3, pp. 390–407.

126



Roth, Alvin E and J Keith Murnighan (1978). “Equilibrium behavior and repeated play
of the prisoner’s dilemma”. In: Journal of Mathematical psychology 17.2, pp. 189–198.

Salz, Tobias and Emanuel Vespa (2020). “Estimating dynamic games of oligopolistic
competition: An experimental investigation”. In: The RAND Journal of Economics 51.2,
pp. 447–469.

Schellenberg, James A (1964). “Distributive justice and collaboration in non-zero-sum
games”. In: Journal of Conflict Resolution 8.2, pp. 147–150.

Schmidt, Frederik (2008). “Innovation contests with temporary and endogenous monopoly
rents”. In: Review of Economic Design 12.3, pp. 189–208.

Schöttner, Anja (2008). “Fixed-prize tournaments versus first-price auctions in innova-
tion contests”. In: Economic Theory 35.1, pp. 57–71.

Segev, Ella (2020). “Crowdsourcing contests”. In: European Journal of Operational Re-
search 281.2, pp. 241–255.

Sheposh, John P and Philip S Gallo Jr (1973). “Asymmetry of payoff structure and
cooperative behavior in the prisoner’s dilemma game”. In: Journal of Conflict Resolution
17.2, pp. 321–333.

Shin, Shung J et al. (2012). “Cognitive team diversity and individual team member
creativity: A cross-level interaction”. In: Academy of Management journal 55.1, pp. 197–212.

Spagnolo, Giancarlo and Matthias Blonski (2001). Prisoners’ Other Dilemma. SSE/EFI
Working Paper Series in Economics and Finance 437. Stockholm School of Economics. url:

 https://EconPapers.repec.org/RePEc:hhs:hastef:0437 .

Stahl, Dale O (1991). “The graph of prisoners’ dilemma supergame payoffs as a function
of the discount factor”. In: Games and Economic Behavior 3.3, pp. 368–384.

Stein, Vicky (Apr. 2019). Katie Bouman ‘hardly knew what a black hole was.’ Her
algorithm helped us see one. url:  https://www.pbs.org/newshour/science/katie-bouman-
hardly-knew-what-a-black-hole-was-her-algorithm-helped-us-see-one .

Taylor, Curtis R (1995). “Digging for golden carrots: An analysis of research tourna-
ments”. In: The American Economic Review, pp. 872–890.

Terwiesch, Christian and Yi Xu (2008). “Innovation contests, open innovation, and
multiagent problem solving”. In: Management science 54.9, pp. 1529–1543.

127

https://EconPapers.repec.org/RePEc:hhs:hastef:0437
https://www.pbs.org/newshour/science/katie-bouman-hardly-knew-what-a-black-hole-was-her-algorithm-helped-us-see-one
https://www.pbs.org/newshour/science/katie-bouman-hardly-knew-what-a-black-hole-was-her-algorithm-helped-us-see-one


Uzzi, Brian et al. (2013). “Atypical combinations and scientific impact”. In: Science
342.6157, pp. 468–472.

Vespa, Emanuel and Alistair J Wilson (2019). “Experimenting with the transition rule
in dynamic games”. In: Quantitative Economics 10.4, pp. 1825–1849.

Wuchty, Stefan, Benjamin F Jones, and Brian Uzzi (2007). “The increasing dominance
of teams in production of knowledge”. In: Science 316.5827, pp. 1036–1039.

Yang, Junho, Tetsuya Kawamura, and Kazuhito Ogawa (2016). “Experimental multi-
market contact inhibits cooperation”. In: Metroeconomica 67.1, pp. 21–43.

128



A. DO MULTIPLE CONTACTS MATTER?

A.1 Theoretical Predictions

Table A.1. Summary of Theoretical Predictions
Treatments Expected

Strategy

Threshold δ

Payoff Contact Easy Hard Combined

Symmetry Single (GT, All D) 0.08 0.8

Symmetry Multiple Strong GT 0.44

Asymmetry Single (All D, All D) 0.8 0.8

Asymmetry Multiple Strong GT 0.44
Notes: Expected Strategies - Strategies supported in Subgame Perfect Nash
Equilibrium.

A.2 Experiment

Table A.2. Summary of Sessions by Treatment

Treatments
Administration Demographics

Sessions Subjects Avg. Earnings % Male Avg. Age ECON Classes

SGame 4 48 $19.24 44.7% 21.5 2

MGame 4 48 $19.07 60.4% 20.6 2

SRole 4 48 $17.31 37% 20.5 1

MRole 4 48 $17.83 55.3% 19.5 1
Notes:
There were 12 subjects per session.
ECON Classes column shows the median number of economics classes (self-reported) taken by the
subjects.
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Figure A.1. Flow of the Session

A.2.1 Results

Figure A.3. Cooperation rates by Roles and Treatments for all Supergames
(First Period)

Notes: The shaded areas are the Two-Stage Clustered Bootstrap 95% Confidence Intervals (clustered at
session level, randomized at subject level).
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Figure A.2. Conditional Probability of Subject’s Action at t given Actions at t − 1
Notes: Each 4 × 4 matrix is a matrix of conditional probabilities, such that each cell shows the probability
choosing actions (represented in the rows) at t when opponent chose actions (respresented in the columns)

and subject chose actions (represented in the subtitle of the matrix) at (t − 1). The action profile x,y
implies x is chosen in Easy game, and y is chosen in Hard game with x,y ∈ {C, D} . The data used is from
the supergames 21-30. NA implies there is no observation such that a subject chose the action (represented

in the subtitle of the matrix) at (t − 1).
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Figure A.4. Average Cooperation rates in Single Contact and Symmetric
Treatment and r = 48, δ = 0.75 Treatment in Dal Bó and Fréchette,  2011 for

each Supergame (First Period)
Notes: DBF(2011) implies Dal Bó and Fréchette,  2011 . The shaded areas are the Two-Stage Clustered

Bootstrap 95% Confidence Intervals (clustered at session level, randomized at subject level).
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Table A.4. Comparison between DBF (2011) r = 48, δ = 0.75 treatment and
Easy Game in SGame treatment
Supergames 1-30 Supergames 16-30 Supergames 21-30 Supergames 26-30

First All First All First All First All

0.02

(0.985)

0.08

(0.939)

-0.93

(0.353)

-0.35

(0.723)

-1.20

(0.23)

-0.59

(0.554)

-1.37

(0.169)

-1.28

(0.2)

Notes: Table shows the z-stats estimated using Probit Regression clustered at session level
to compare the average cooperation between r = 48, δ = 0.75 treatment of Dal Bó and
Fréchette,  2011 and Easy Game of SGame treatment. The statistics considers the su-
pergames 26-30, 21-30, 16-30, and 1-30 of the sessions. For each of these we consider only
the First Period (First) and All Periods (All). The p-values are listed in parentheses.
Significance: + at 0.1, * at 0.05, ** at 0.01, *** at 0.001

Table A.5. Difference between Hard Role/Game and Easy Role/Game
(Wilcoxon Matched-Pair Signed Rank Test)

Supergames 1-30 Supergames 16-30 Supergames 21-30 Supergames 26-30

First All First All First All First All

SGame
-32.33∗∗∗

(0.0)

-62.707∗∗∗

(0.0)

-24.617∗∗∗

(0.0)

-47.731∗∗∗

(0.0)

-20.273∗∗∗

(0.0)

-38.821∗∗∗

(0.0)

-14.56∗∗∗

(0.0)

-25.981∗∗∗

(0.0)

MGame
-26.817∗∗∗

(0.0)

-49.372∗∗∗

(0.0)

-20.494∗∗∗

(0.0)

-36.858∗∗∗

(0.0)

-16.882∗∗∗

(0.0)

-30.76∗∗∗

(0.0)

-12.083∗∗∗

(0.0)

-21.143∗∗∗

(0.0)

SRole
-10.458∗∗∗

(0.0)

-7.397∗∗∗

(0.0)

-9.259∗∗∗

(0.0)

-5.641∗∗∗

(0.0)

-7.14∗∗∗

(0.0)

-4.456∗∗∗

(0.0)

-5.191∗∗∗

(0.0)

-3.064∗∗

(0.002)

MRole
-8.854∗∗∗

(0.0)

-9.918∗∗∗

(0.0)

-5.657∗∗∗

(0.0)

-6.482∗∗∗

(0.0)

-4.454∗∗∗

(0.0)

-4.965∗∗∗

(0.0)

-3.053∗∗

(0.002)

-4.503∗∗∗

(0.0)

Notes: Table shows the z-stats estimated using Wilcoxon Matched-Pair Signed Rank Test to compare the average coopera-
tion between Hard Game/Role and Easy Game/Role (Hard - Easy). The statistics considers the supergames 26-30, 21-30,
16-30, and 1-30 of the sessions. For each of these we consider only the First Period (First) and All Periods (All). The
p-values are listed in parentheses.
Significance: + at 0.1, * at 0.05, ** at 0.01, ∗∗∗ at 0.001
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Table A.6. Difference between Hard Role/Game and Easy Role/Game (Pro-
bit Regression)

Supergames 1-30 Supergames 16-30 Supergames 21-30 Supergames 26-30
First All First All First All First All

SGame -12.17∗∗∗

(0.0)
-11.03∗∗∗

(0.0)
-9.62∗∗∗

(0.0)
9.50∗∗∗

(0.0)
-11.02∗∗∗

(0.0)
-10.99∗∗∗

(0.0)
-26.71∗∗∗

(0.0)
-14.51∗∗∗

(0.0)

MGame -3.61∗∗∗

(0.0)
-3.21∗∗

(0.001)
-3.43∗∗

(0.001)
-3.31∗∗

(0.001)
-3.5∗∗∗

(0.0)
-3.54∗∗∗

(0.0)
-3.33∗∗

(0.001)
-3.09∗∗

(0.002)

SRole -5.21∗∗∗

(0.0)
-9.18∗∗∗

(0.0)
-4.53∗∗∗

(0.0)
-5.5∗∗∗

(0.0)
-4.29∗∗∗

(0.0)
-4.21∗∗∗

(0.0)
-3.28∗∗

(0.001)
-4.73∗∗∗

(0.0)

MRole -3.10∗∗

(0.002)
-2.87∗∗

(0.004)
-2.15+∗
(0.012)

-3.19∗∗

(0.001)
-3.20∗∗

(0.001)
-3.02∗∗

(0.003)
-3.51∗∗∗

(0.0)
-2.46+∗
(0.014)

Notes: Table shows the z-stats estimated using Probit Regression clustered at session level to compare the
average cooperation between Hard Game and Easy Game. The statistics considers the supergames 26-30,
21-30, 16-30, and 1-30 of the sessions. For each of these we consider only the First Period (First) and All
Periods (All). The p-values are listed in parentheses.
Significance: + at 0.1, * at 0.05, ** at 0.01, ∗∗∗ at 0.001

Table A.7. Average Cooperation Rates (in Percentage)
Rounds 26-30 Rounds 16-30

First Period All Periods First Period All Periods
Easy Hard Easy Hard Easy Hard Easy Hard

SGame
93.3∗∗∗

(0.0)

5.0+

(0.083)

88.1∗∗∗

(0.0)

4.3+

(0.074)

91.5∗∗∗

(0.0)

7.4∗

(0.047)

83.8∗∗∗

(0.0)

4.3∗

(0.029)

MGame
72.5∗∗∗

(0.0)

11.7
(0.102)

64.4∗∗∗

(0.0)

9.4+

(0.053)

71.9∗∗∗

(0.0)

13.3+

(0.057)

59.5∗∗∗

(0.0)

11.4∗

(0.043)

SRole
49.2∗∗∗

(0.0)

35.8∗∗∗

(0.0)

37.7∗∗∗

(0.0)

32.6∗∗∗

(0.0)

48.2∗∗∗

(0.0)

34.2∗∗∗

(0.0)

33.6∗∗∗

(0.0)

28.5∗∗∗

(0.0)

MRole
45.5∗∗

(0.001)

38.3∗∗

(0.003)

39.2∗∗∗

(0.0)

34.4∗∗

(0.001)

46.2∗∗

(0.001)

38.5∗∗

(0.004)

37.8∗∗∗

(0.0)

34.8∗∗

(0.001)

Notes: Table shows average cooperation rate over multiple supergames. The statistics con-
siders the supergames 26-30 and 16-30 of the sessions, the first and all periods. Two-stage
Cluster (clustered at session level, randomized at subject level) Bootstrap Standard Errors
are in parentheses. Significance levels are due to p-values from one-sided t-test.
Significance - + at 0.1, * at 0.05, ∗∗ at 0.01, ∗∗∗ at 0.001
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A.2.2 Payoffs

(a) Easy Game (b) Hard Game

Figure A.5. Subject Payoffs on the Feasible Set for Supergames 21-30 (Single
Contact Different Games)
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Figure A.6. Subject Payoffs on the Feasible Set for Supergames 21-30 (Single
Contact Different Roles)

(a) Easy Game (b) Hard Game

Figure A.7. Subject Payoffs on the Feasible Set for Supergames 26-30 (Single
Contact Different Games)
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Figure A.8. Subject Payoffs on the Feasible Set for Supergames 26-30 (Single
Contact Different Roles)

Pl
ay
er

1

Player 2
(C,C) (C,D) (D,C) (D,D)

(D,D)

(D,C)

(C,D)

(C,C) 78, 78 56, 98 42, 80 20, 100

98, 56 73, 73 62, 58 37, 75

80, 42 58, 62 55, 55 33, 75

100, 20 75, 37 75, 33 50, 50

(a) Symmetric Games

Pl
ay
er

1

Player 2
(C,C) (C,D) (D,C) (D,D)

(D,D)

(D,C)

(C,D)

(C,C) 78, 78 56, 80 42, 98 20, 100

98, 42 73, 55 62, 62 37, 75

80, 56 58, 58 55, 73 33, 75

100, 20 75, 33 75, 37 50, 50

(b) Asymmetric Games

Figure A.9. Effective Payoff Matrices (Multiple Contacts)
Notes: The payoffs are calculated by combining the actions in the two games. The action xy (xy ∈ {(C,C),
(C,D), (D,C), (D,D)}) in the combined games represent action x ∈ {C,D}) in the Easy Game (Easy Role)

and action y ∈ {C,D}) in the Hard Game (Hard Role) for the M-Sym (M-Asym) treatment
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(a) Symmetric Games (b) Asymmetric Games

Figure A.10. Subject Payoffs on the Feasible Set for Supergames 21-30 (Mul-
tiple Contacts)

(a) Symmetric Games (b) Asymmetric Games

Figure A.11. Subject Payoffs on the Feasible Set for Supergames 26-30 (Mul-
tiple Contacts)
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A.2.4 Learning

Table A.14. Comparison Across First and Last Supergames (Nonparametric
Randomization Test)

First and Last 5 Supergames First and Last 10 Supergames First and Last 15 Supergames
First Period All Periods First Period All Periods First Period All Periods

Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

SGame 2.1∗∗∗

(0.0)
-1.6∗∗∗

(0.0)
2.96∗∗∗

(0.0)
-0.96∗∗

(0.003)
1.7∗∗∗

(0.0)
0.96∗∗

(0.009)
2.44∗∗∗

(0.0)
-0.64∗

(0.01)
1.36∗∗

(0.003)
-0.71∗

(0.037)
1.69∗∗∗

(0.0)
0.39+

(0.09)

MGame 0.91+

(0.075)
-1.72∗∗∗

(0.0)
1.22∗

(0.022)
-1.29∗∗∗

(0.0)
0.69

(0.129)
-1.24∗∗

(0.006)
0.63

(0.133)
-0.99∗∗

(0.009)
0.58

(0.172)
-0.87∗

(0.038)
0.26

(0.318)
0.65+

(0.062)

SRole 1.98∗∗

(0.001)
1.56∗∗

(0.009)
2.14∗∗∗

(0.0)
1.98
(0.0)

1.57∗∗

(0.007)
1.16∗

(0.029)
1.18∗

(0.016)
1.12∗

(0.023)
1.32∗

(0.019)
0.92+

(0.073)
1.06∗

(0.022)
1.0∗

(0.03)

MRole -0.07
(0.453)

0.27
0.338

0.75+

(0.098)
0.78+

(0.093)
0.42

(0.258)
0.26

(0.344)
-0.12
(0.426)

-0.02
(0.492)

0.34
(0.309)

0.22
(0.366)

0.05
(0.458)

0.02
(0.485)

Notes: Table shows the z-stats estimated using Nonparametric Randomization Test to compare the average cooperation between Last few
supergames and First few supergames (Last - First) in the Easy Game/Role (Easy) and Hard Game/Role (Hard). The statistics considers
the supergames 1-5 and 26-30, supergames 1-10 and 21-30, supergames 1-15 and 16-30 of the sessions. For each of these cases we consider the
First Period (First) and All Periods (All). The p-values are listed in parentheses.
Significance: + at 0.1, * at 0.05, ** at 0.01, *** at 0.001

(a) First and Last 5 Su-
pergames

(b) First and Last 10 Su-
pergames

(c) First and Last 15 Su-
pergames

Figure A.12. Difference between Average Cooperation in First and Last
Supergames (First Period)
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Table A.15. Comparison Across First and Last Supergames (Probit Regression)
First and Last 5 Supergames First and Last 10 Supergames First and Last 15 Supergames
First Period All Periods First Period All Periods First Period All Periods

Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

SGame 2.59∗

(0.010)
-5.38∗∗∗

(0.0)
2.80∗∗

(0.005)
-3.44∗∗

(0.001)
2.05∗

(0.041)
-2.03∗

(0.043)
2.69∗∗

(0.007)
-1.98∗

(0.047)
2.33∗

(0.020)
-1.48
(0.139)

3.06∗∗

(0.002)
-1.17
(0.243)

MGame 3.03∗∗

(0.002)
-1.68+

(0.092)
5.39∗∗∗

(0.0)
-1.97∗

(0.049)
1.47
(0.142)

-1.42
(0.157)

2.52∗

(0.012)
-2.27∗

(0.023)
1,15
(0.248)

-1.15
(0.252)

1.02
(0.310)

-2.25∗

(0.025)

SRole 3.65∗∗∗

(0.0)
1.69+

(0.091)
6.07∗∗∗

(0.0)
6.38∗∗∗

(0.0)
5.84∗∗∗

(0.0)
2.54∗

(0.011)
5.88∗∗∗

(0.0)
3.22∗∗

(0.001)
14.09∗∗∗

(0.0)
3.25∗∗

(0.001)
3.45∗∗

(0.001)
6.19∗∗∗

(0.0)

MRole -0.12
(0.907)

0.63
(0.528)

2.03∗

(0.042)
2.58∗

(0.01)
-0.94
(0.349)

-0.54
(0.587)

-1.29
(0.199)

-0.93
(0.351)

-0.98
(0.327)

-0.58
(0.563)

-0.63
(0.531)

-0.42
(0.678)

Notes: Table shows the z-stats estimated using Probit Regression clustered at session level to compare the average cooperation between
Last few supergames and First few supergames (Last - First) in the Easy Game/Role (Easy) and Hard Game/Role (Hard). The statistics
considers the supergames 1-5 and 26-30, supergames 1-10 and 21-30, supergames 1-15 and 16-30 of the sessions. For each of these cases
we consider the First Period (First) and All Periods (All). The p-values are listed in parentheses.
Significance: + at 0.1, ** at 0.05, *** at 0.01, ∗∗∗ at 0.001

(a) First and Last 5 Su-
pergames

(b) First and Last 10 Su-
pergames

(c) First and Last 15 Su-
pergames

Figure A.13. Difference between Average Cooperation in First and Last
Supergames (All Periods)
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A.3 Experiment Details

A.3.1 Instructions
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A.3.2 Quiz
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Table A.16. Percentage of Questions Subjects got Correct

Treatments
Number of Correct Answers
5 6 7 8

SGame 2.08 6.25 18.75 72.92
SRole 2.08 6.25 18.75 72.92
MGame 2.08 6.25 12.5 79.17
MRole 14.58 22.92 62.5

Table A.17. Frequency of Correctness of Each Question

Treatments
Question Number

1 2 3 4 5 6 7 8
SGame 0.917 0.813 0.938 1 1 0.958 1 1
SRole 0.875 0.875 0.875 1 1 1 1 1
MGame 0.875 0.854 0.958 1 1 1 1 1
MRole 0.854 0.729 0.917 1 0.979 1 1 1
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B. TEAM INNOVATION CONTESTS WITH COGNITIVE

DIVERSITY

B.1 Contest Model

Proof. Proposition  2.3.1 : The distribution under efficiency level α is given by

H(x) = αG(x) + (1 − α)(1 − G(x))

and that under the efficiency level α′ is given by

H ′(x) = α′G(x) + (1 − α′)(1 − G(x))

with α′ > α.

A distribution H ′ is said to first order stochastically dominate another distribution H if

H ′(x) ≤ H(x), for all x ∈ R. We now show that H ′(x) �F OSD H(x) by showing that

H ′(x) − H(x) ≤ 0 for all x ∈ R.

H ′(x) − H(x) =
(
α′G(x) + (1 − α′)(1 − G(x))

)
−
(
αG(x) + (1 − α)(1 − G(x))

)
= (α′ − α)G(x) − (α′ − α)(1 − G(x))

= (α′ − α)
(
G(x) + G(x) − 1

)
< 0.

Proof. Proposition  2.3.2 : Recall that when a joint distribution G is more cognitively diverse

that G′, then according to definition  2.3.2 ,

C
(
G1

(
x1
)

, . . . , GM
(
xM

))
≤ C ′

(
G1

(
x1
)

, . . . , GM
(
xM

))
∀
(
x1, . . . , xM

)
∈ IM

⇒ G
(
x1, . . . , xM

)
≤ G′

(
x1, . . . , xM

)

155



and

C̄
(
G1

(
x1
)

, . . . , GM
(
xM

))
≤ C̄ ′

(
G1(x1), . . . , GM(xM)

)
∀
(
x1, . . . , xM

)
∈ IM

⇒ G
(
x1, . . . , xM

)
≤ G′

(
x1, . . . , xM

)
.

The distributions of the team tool effectiveness levels are given by

H(x) = αG(x) + (1 − α)(1 − G(x)) where x = (x, . . . , x)

and

H ′(x) = αG′(x) + (1 − α)(1 − G′(x)) where x = (x, . . . , x).

To find the threshold efficiency level α̂ we compare H and H ′ for all x ∈ [0, 1].

H(x) − H ′(x) =
(
αG(x) + (1 − α)

(
1 − G(x)

))
−
(
αG′(x) + (1 − α)

(
1 − G′(x)

))
= α (G(x) − G′(x)) + (1 − α)

(
G′(x) − G(x)

)
= α

((
G(x) + G(x)

)
−
(
G′(x) + G′(x)

))
−
(
G(x) − G′(x)

)
.

The threshold α∗(x) is given by

α
((

G(x) + G(x)
)

−
(
G′(x) + G′(x)

))
−
(
G(x) − G′(x)

)
≤ 0

⇒ α ≥ G(x) − G′(x)(
G(x) + G(x)

)
−
(
G′(x) + G′(x)

) = α∗(x)

since G(x) < G′(x) and G(x) < G′(x).

Therefore, H first order stochastically dominates (dominated by) H ′ if α ≥ max
x∈(0,1)

α∗(x) =

α1(α ≤ min
x∈(0,1)

α∗(x) = α2).
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B.2 Limit Contest

Proof. Claim  2.4.1 : Let us first represent the sequence


N∑

n′=1
Gn′(·)

N


∞

N=1

as {Wn}∞
N=1 and

the sequence


N∑

n′=1
Gn′(·)

N


∞

N=1

as
{
W n

}∞

N=1
. Then the individual functions Gn(·) and Gn(·)

can be written in terms of Wn(·) and W n(·) respectively.

G1(·) = W1(·) G1(·) = W 1(·)

G2(·) = 2W2(·) − W1(·) G2(·) = 2W 2(·) − W 1(·)

Gn(·) = nWn(·) − (n − 1)Wn−1(·) Gn(·) = nW n(·) − (n − 1)W n−1(·)

Therefore the weighted sums can be written as following,

N∑
n=1

αnGn(·) =α1W1(·) + α2 (2W2(·) − W1(·)) + . . . + αN−1 ((N − 1)WN−1(·)

+(N − 2)WN−2(·)) + αN (NWN(·) − (N − 1)WN−1(·))

= (α1 − α2) W1 + 2 (α2 − α3) W2 + . . . + (N − 1)(αN−1 − αN)WN−1 + NαNWN

=
N∑

n=1
ωnWn

with, ωn = n(αn − αn+1) for n = 1, .., N − 1 if N > 1, ωN = NαN for N ≥ 1, and

N∑
n=1

ωn = (α1 − α2) + 2 (α2 − α3) + . . . + (N − 1)(αN−1 − αN) + NαN =
N∑

n=1
αn.

Similarly,

N∑
n=1

(1 − αn)
(
1 − Gn(·)

)
=

N∑
n=1

(1 − αn) −
N∑

n=1
(1 − αn)Gn(·) =

N∑
n=1

ηn −
N∑

n=1
ηnGn(·)

=
N∑

n=1
ωn −

N∑
n=1

ωnW n(·) =
N∑

n=1
ωn

(
1 − W n(·)

)
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with, ωn = n(ηn − ηn+1) for n = 1, .., N − 1 if N > 1, ωN = NηN for N ≥ 1, and

N∑
n=1

ωn = (η1 − η2) + 2 (η2 − η3) + . . . + (N − 1)(ηN−1 − ηN) + NηN =
N∑

n=1
ηn =

N∑
n=1

(1 − αn).

Now we find the limit of

N∑
n′=1

Hn′(·)

N
as N → ∞.

lim
N→∞

N∑
n′=1

Hn′(·)

N
= Ĥ(·) = lim

N→∞

N∑
n′=1

αn′Gn′(·) + (1 − αn′)
(
1 − Gn′(·)

)
N

= lim
N→∞

N∑
n′=1

αn′

N

N∑
n′=1

αn′Gn′(·)
N∑

n′=1
αn′

+

N∑
n′=1

(1 − αn′)

N

N∑
n′=1

(1 − αn′)
(
1 − Gn′(·)

)
N∑

n′=1
(1 − αn′)

= lim
N→∞

N∑
n′=1

αn′

N

N∑
n′=1

ωn′Wn′(·)
N∑

n′=1
ωn′

+

N∑
n′=1

(1 − αn′)

N

N∑
n′=1

ωn

(
1 − W n′(·)

)
N∑

n′=1
ωn

= lim
N→∞

N∑
n′=1

αn′

N

N∑
n′=1

ωn′Wn′(·)
N∑

n′=1
ωn′

+

N∑
n′=1

(1 − αn′)

N

1 −

N∑
n′=1

ωnW n′(·)
N∑

n′=1
ωn



= lim
N→∞

N∑
n′=1

αn′

N
lim

N→∞

N∑
n′=1

ωn′Wn′(·)
N∑

n′=1
ωn′

+ lim
N→∞

N∑
n′=1

(1 − αn′)

N

1 − lim
N→∞

N∑
n′=1

ωnW n′(·)
N∑

n′=1
ωn


=α̂Ĝ(·) + (1 − α̂)

(
1 − Ĝ(·)

)

The equality between the last and the second last expressions is derived by using the

Stolz - Cesàro theorem, since lim
N→∞

WN(·) = Ĝ(·), lim
N→∞

W N(·) = Ĝ(·),
{

N∑
n′=1

ωn′

}∞

N=1
and
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{
N∑

n′=1
ωn′

}∞

N=1
are strictly monotonically increasing and lim

N→∞

N∑
n′=1

ωn′ = ∞, lim
N→∞

N∑
n′=1

ωn′ =

∞. The Stolz - Cesàro theorem gives us the following.

lim
N→∞

N∑
n′=1

ωn′Wn′(·)
N∑

n′=1
ωn′

= Ĝ(·)

and

lim
N→∞

N∑
n′=1

ωn′W n′(·)
N∑

n′=1
ωn′

= Ĝ(·).

B.3 Effect of Diversity and Efficiency

Proof. Theory  2.5.1 : Given the ranking distribution of team tool qualities Ĥ(·), the expected

bid of a team member is

E[β] = 1
M2

1∫
0

 x∫
0

zĥ(z)
Φ̂′
(
Φ̂−1

(
Ĥ(z)

))dz

 ĥ(x)dx.

With the substitution Φ̂−1
(
Ĥ(z)

)
= w we get

E[β] = 1
M2

1∫
0


Φ̂−1

(
Ĥ(x)

)∫
0

Ĥ−1
(
Φ̂(w)

)
dw

 ĥ(x)dx.

Finally with the substitution Ĥ(x) = r,

E[β] = 1
M2

1∫
0

 Φ̂−1(r)∫
0

Ĥ−1
(
Φ̂(w)

)
dw

 dr. (B.1)
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Now if Ĥ1 �FOSD Ĥ2 then by its definition Ĥ1(·) < Ĥ2(·) which also implies Ĥ−1
1 (·) > Ĥ−1

2 (·).

Therefore we have that E [β1] > E [β2].

Proof. Result  2.5.1 Let us represent the initial joint distribution of team n by Gn(·). As the

cognitive diversity of each team weakly increases, the joint distribution of team n becomes

G′
n(·) with Gn(·) ≥ G′

n(·) and for the corresponding survival functions Gn(·) ≥ G′
n(·) for

all n. Corresponding to two joint distributions we get corresponding distribution of highest

and lowest team tool effectiveness levels and their contest level averages. The corresponding

sequence of contest level expected percentile ranking of tool effectiveness as the number of

teams increases are given by

Highest Effectiveness Lowest Effectiveness

Initial


N∑

n′=1
Gn′(·)

N


∞

N=1

= {WN}∞
N=1


N∑

n′=1
(1 − Gn′(·))

N


∞

N=1

=
{
1 − W N(·)

}∞

N=1

Final


N∑

n′=1
G′

n′(·)

N


∞

N=1

= {W ′
N(·)}∞

N=1


N∑

n′=1
(1 − G′

n′(·))

N


∞

N=1

=
{
1 − W

′
N(·)

}∞

N=1

with WN ≥ W ′
N and W N ≥ W

′
N . Therefore lim

N→∞
WN = Ŵ > Ŵ ′ = lim

N→∞
W ′

N and

lim
N→∞

W N = Ŵ > Ŵ ′ = lim
N→∞

W ′
N .

Under the initial set of distributions, the rank distribution of the limit contest is given by

Ĥ(·) = α̂Ĝ(·) + (1 − α̂)
(

1 − Ĝ(·)
)

and under the final set,

Ĥ ′(·) = α̂Ĝ′(·) + (1 − α̂)
(

1 − Ĝ′(·)
)

.
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From an earlier claim we know that Ĥ ′(·) ≤ Ĥ(·) if α̂ ≥ α̂∗(·) given by,

α̂∗(·) = Ĝ(·) − Ĝ′(·)(
Ĝ(·) + Ĝ(·)

)
−
(

Ĝ′(·) + Ĝ′(·)
) .

Therefore if α̂ ≥ max
x∈(0,1)

α̂∗(·), then Ĥ ′ first order stochastically dominates Ĥ and the expected

individual effective efforts will improve due to the increase in cognitive diversity. Since each

team’s project value V is an increasing function of the effective efforts of all its members,

its expected value also increases with expected effective effort. On the other hand, if α̂ ≤

min
x∈(0,1)

α̂∗(·), then Ĥ ′ is first order stochastically dominated by Ĥ and the expected individual

effective effort will decrease due to increase in cognitive diversity. As in the first case, a

team’s expected project value E(V ) decreases as the expected effective effort falls. But,

there remains a region α̂ ∈
(

min
x∈(0,1)

α̂∗(·), max
x∈(0,1)

α̂∗(·)
)

for which we can not specify whether

increasing cognitive diversity is beneficial or detrimental to the expected team performance.

161



C. TRANSITION RULE TYPE OF INTERACTION IN

STOCHASTIC DYNAMIC GAME

C.1 Results

Figure C.1. Average Cooperation rates in Treatments for each Round (First Period)
Notes: The shaded areas are the Two-Stage Clustered Bootstrap 95% Confidence Intervals (clustered at

session level, randomized at subject level).

Table C.1. Change in Cooperation Rate over Supergame (All Periods)
High State Low State

Asym-Alt Asym-Ran Sym-Alt Sym-Ran Asym-Alt Asym-Ran Sym-Alt Sym-Ran

Supergame
0.007***

(4.92)

0.000

(0.42)

0.005***

(3.67)

0.002

(1.35)

0.007***

(5.23)

0.002

(1.21)

0.005***

(3.88)

0.004**

(2.53)

Constant
0.246***

(10.50)

0.232***

(10.09)

0.354***

(13.88)

0.374***

(13.95)

0.227***

(9.8)

0.225***

(9.81)

0.219***

(9.47)

0.287***

(11.47)

# Obs 1286 1143 1168 1154 1286 1143 1174 1190

Notes: This tables shows the coefficients from the OLS regression (robust SE) of average cooperation rate (all periods) on the
supergame. t-statistics are in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table C.2. Change in Cooperation Rate over Supergame (First Period)
High State Low State

Asym-Alt Asym-Ran Sym-Alt Sym-Ran Asym-Alt Asym-Ran Sym-Alt Sym-Ran

Supergame
0.005**

(2.54)

-0.001

(-0.65)

0.007***

(2.95)

0.003

(1.19)

0.007***

(3.21)

0.002

(1.24)

0.004*

(1.82)

0.002

(0.8)

Constant
0.321***

(8.77)

0.316***

(8.8)

0.435***

(11.00)

0.446***

(11.08)

0.303***

(8.33)

0.272***

(7.85)

0.249***

(6.97)

0.380***

(10.55)

# Obs 720 690 662 668 720 690 658 772

Notes: This tables shows the coefficients from the OLS regression (robust SE) of average cooperation rate (first period) on the
supergame. t-statistics are in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table C.3. Average Cooperation and Treatment Effects (Last 15 supergames,
First Period)

High State Low State All States

Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric

Alternating
0.472

(0.086)

∼

(0.231)

0.589

(0.031)

0.427

(0.054)

∼

(0.299)

0.335

(0.143)

0.45

(0.068)

∼

(0.861)

0.465

(0.087)

<*

(0.061)

∼

(0.518)

∼

(0.153)

∼

(0.276)

<*

(0.098)

∼

(0.946)

Random
0.306

(0.14)

<**

(0.018)

0.527

(0.112)

0.301

(0.128)

∼

(0.133)

0.436

(0.116)

0.304

(0.124)

<**

(0.056)

0.471

(0.12)

Notes: This table shows the average cooperation in the last 15 supergames of the experiment for first period. Clustered bootstrap S.E. for the

cooperation levels are reported in parenthesis below. We also provide treatment effects in terms of greater than, less than or equality. For this

we provide the p-values of the two-sided test of comparison of average cooperation levels of two treatments using Non-parametric permutation

test in the parenthesis below.

* p < 0.1, ** p < 0.05, *** p < 0.01

C.2 Experimental Details
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C.2.1 Otree Application

Instructions
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Quiz
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Main Application
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