
TOWARDS MORE SCALABLE AND PRACTICAL PROGRAM
SYNTHESIS

by

Yanjun Wang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xiaokang Qiu, Chair

School of Electrical and Computer Engineering

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. Sanjay G. Rao

School of Electrical and Computer Engineering

Dr. Suresh Jagannathan

Department of Computer Science

Approved by:

Dr. Dimitrios Peroulis

2

To my parents.

3

ACKNOWLEDGMENTS

Pursuing Ph.D. is a journey full of adventures and surprises. To this day, It’s still hard

for me to believe that it’s coming to an end. I wish to thank all the people who helped me

throughout this journey.

Words are powerless to express my gratitude to my advisor, Xiaokang Qiu. I feel ex-

tremely lucky to be his student and have the privilege to work with him during the past six

years. He is the best advisor I could ever ask for. I cannot thank him enough for bringing

me to the world of research, which has certainly reshaped my life. He has taught me most of

what I know today about programming languages and all I know of being a good researcher.

He provided a research environment in which I could thrive. Whenever I need help, he never

holds back his time or efforts. His enthusiasm for research has inspired and will continue

inspiring me to become a better researcher in the future. He is more than an ideal advisor,

he is a great friend, who has made my Ph.D. journey an enjoyable, rewarding and regretless

experience. I would not be where I am today without him.

I would also like to thank Milind Kulkarni, Sanjay Rao and Suresh Jagannathan for being

on my dissertation committee. I am grateful for the time they spent reading my preliminary

report and this dissertation. Their many insightful comments and helpful suggestions helped

me broaden and deepen my sense of research. Moreover, I greatly appreciate the guidance

and assistance that Sanjay has offered, particularly in the topics of network synthesis.

I would like to thank all of my collaborators: Sanjay Rao, Zixuan Li, Chuan Jiang,

Kangjing Huang, Peiyuan Shen, Dalin Zhang, Jinwei Liu and all others, for their contri-

butions to this dissertation. I would also like to express my appreciation to my lab mates

at Purdue CAP for providing invaluable input and comments in lab meetings and research

discussions.

Next, there are the friends who helped me maintain my sanity through the tough times.

Thank you for bringing happiness and joy to my life. Among them, I want to express my

special gratitude to Mengyue Hang for her priceless friendship, encouragement and support.

I owe much thanks to brothers and sisters in Greater Lafayette Chinese Alliance Church. I

4

am thankful for all their prayer, sharing and continuous love, making my spiritual journey

in the Midwest much more abundant than I expected.

Last but not least, I am forever grateful for the unconditional love and unfailing support

from my parents. I cannot be more fortunate to be always loved by you, no matter who I

am and no matter what I do. Thank you for supporting me every step of the way. This

dissertation is dedicated to you.

5

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Learning Near-optimal Programs Through Comparative Queries 16

1.2 More Scalable Syntax-Guided Synthesis . 17

1.3 Verifying Tree Traversal Transformations . 17

1.4 Thesis Organization . 18

2 COMPARATIVE SYNTHESIS: LEARNING NEAR-OPTIMAL NETWORK DE-

SIGNS BY QUERY . 19

2.1 Introduction . 19

2.2 Motivation . 22

2.3 Comparative Synthesis, Formally . 26

2.3.1 Quantitative Synthesis with Metric Ranking 26

2.3.2 Interaction Through Comparative Queries 29

2.3.3 The Comparative Synthesis Problem 32

2.4 Voting-Guided Learning Algorithm . 33

2.4.1 A Unified Search Space . 33

2.4.2 Query Informativeness . 35

6

2.4.3 The Algorithm . 38

2.4.4 Convergence . 40

2.4.5 Better Convergence Rate with Sortability 42

2.5 Evaluation . 45

2.5.1 Network Optimization Problems . 45

2.5.2 Implementation . 47

2.5.3 Oracle-Based Evaluation . 47

2.5.4 Pilot User Study . 51

2.6 Related Work . 55

2.7 Conclusions . 57

2.8 Appendix: Additional Experimental Results 58

2.8.1 Evaluation on Perfect Oracle . 58

2.8.2 Evaluation on Imperfect Oracle . 58

2.8.3 Sensitivity to Size of Pre-Computed Pool 58

3 RECONCILING ENUMERATIVE AND DEDUCTIVE PROGRAM SYNTHESIS 61

3.1 Introduction . 61

3.2 Preliminaries . 63

3.2.1 Syntax-Guided Synthesis . 63

3.2.2 Counterexample-Guided Inductive Synthesis 66

3.2.3 Invariant Synthesis . 67

7

3.3 A Cooperative Synthesis Framework . 68

3.3.1 Divide-And-Conquer Splitter . 68

3.3.2 Subproblem Graph . 69

3.3.3 Cooperative Synthesis Algorithm . 70

3.4 Divide-And-Conquer Strategies . 72

3.4.1 Subterm-Based Division . 73

3.4.2 Fixed-Term-Based Division . 74

3.4.3 Weaker-Spec-Based Division . 75

3.4.4 Soundness and Completeness . 76

3.5 Fixed-Height Synthesis . 76

3.5.1 Concrete Height Enumeration . 77

3.5.2 Symbolic Inductive Synthesis . 78

3.6 The Deductive Component . 80

3.7 Experimental Evaluation . 82

3.8 Related Work . 88

3.9 Conclusion . 92

4 REASONING ABOUT RECURSIVE TREE TRAVERSALS 93

4.1 Introduction . 93

4.2 A Tree Traversal Language . 95

4.2.1 Discussion of the Language Design 97

8

4.2.2 Code Blocks . 100

4.3 Iteration Representation . 102

4.3.1 Configuration . 103

4.3.2 Speculative Reachability . 105

4.4 Encoding to Monadic Second-Order Logic 108

4.4.1 Configurations, Schedules and Dependences 109

4.4.2 Schedules and Dependences . 111

4.4.3 Data Race Detection and Equivalence Checking 113

4.5 Evaluation . 116

4.6 Related Work . 122

4.7 Conclusion . 124

5 SUMMARY AND FUTURE DIRECTIONS . 125

REFERENCES . 128

9

LIST OF TABLES

2.1 A Comparative Synthesis run for Example 2.3.5 32

2.2 Example PCS Gex. 37

2.3 Informativeness of queries Compare(c1, c2). 37

2.4 Informativeness of queries Validate(c). 37

2.5 Summary of topologies. 45

2.6 Summary of optimization scenarios. 46

3.1 Number of smallest solutions and median of solution size (in small text). Best
numbers in grey. 85

10

LIST OF FIGURES

2.1 Overview of comparative synthesis. 21

2.2 MCF allocation encoded as a program sketch. 24

2.3 Näıve objective synthesis of Oreal. 25

2.4 Informativeness of queries (with G the current PCS, and r best the running
best program). 36

2.5 Comparing Net10Q and Net10Q-NoPrune with perfect oracle (across all
seven topologies). Curves to the left are better. (More detailed, per-topology
results for NF is available in Appendix 2.8.1) 49

2.6 Performance of Net10Q with imperfect oracle (BW on CWIX) of different
levels of inconsistency evaluated in different case studies on CWIX. Curves to
the left are better. 50

2.7 User background and diversity of chosen policies. 52

2.8 Feedback on Net10Q from real users. 53

2.9 Avg. time per query across users. 53

2.10 Comparing Net10Q and Net10Q-NoPrune with perfect oracle for NF (each
subfigure for a topology). Curves to the left are better. Net10Q outperforms
in all topologies. 59

2.11 Performance of Net10Q with imperfect oracle (p = 10) for MCF, NF and
OSPF on CWIX. 60

2.12 Performance of Net10Q under different level of inconsistency (p = 0, 5, 10, 20)
on CWIX. 60

2.13 Performance of Net10Q with different size of pre-computed pool for BW on
CWIX. 60

3.1 Production rules for Examples 3.2.3 and 3.3.1 65

3.2 Workflow of cooperative synthesis. 69

3.3 Example of subproblem graph. 70

3.4 Deductive rules for divide-and-conquer. 74

3.5 Decision tree normal form. 79

3.6 Representation of the max2 function. 79

3.7 Deductive rules for arbitrary grammar. 82

3.8 Deductive rules for GCLIA . 83

11

3.9 Rewriting sequence for Example 3.6.1 . 84

3.10 Solved benchmarks (breakdown by tracks). 85

3.11 Fastest solved benchmarks (breakdown by tracks). 86

3.12 Comparison of solvers on total solved benchmarks and total solving time. . . 87

3.13 Solving time per benchmark in increasing order. 88

3.14 Cooperative synthesis vs. Plain height-based enumeration. 89

3.15 Cooperative synthesis vs. Plain deduction. 89

3.16 Vanilla DryadSynth vs. EUSolver-backed DryadSynth. 90

4.1 Retreet reasoning framework . 94

4.2 Syntax of Retreet . 96

4.3 Mutually recursive traversals (original) . 97

4.4 Mutually recursive traversals (no-return-value) 100

4.5 Commonly used notations . 101

4.6 Relations between blocks . 102

4.7 Example of configuration encoding . 104

4.8 Weakest precondition . 106

4.9 Examples of configuration . 111

4.10 Relations between consistent configurations 112

4.11 Example of incompleteness . 116

4.12 Fusing two mutually recursive traversals . 117

4.13 CSS minification traversals . 118

4.14 Ordered cycletree construction and routing data computation 120

4.15 Two functions traversing a list . 121

12

ABSTRACT

Program synthesis aims to generate programs automatically from user-provided specifi-

cations and has the potential to aid users in real-world programming tasks from different

domains. Although there have been great achievements of synthesis techniques in specific

domains such as spreadsheet programming, computer-aided education and software engi-

neering, there still exist huge barriers that keep us from achieving scalable and practical

synthesis tools.

This dissertation presents several techniques towards more scalable and practical program

synthesis from three perspectives: 1) intention: Writing formal specification for synthesis

is a major barrier for average programmers. In particular, in some quantitative synthesis

scenarios (such as network design), the first challenge faced by users is expressing their opti-

mization targets. To address this problem, we present comparative synthesis, an interactive

synthesis framework that learns near optimal programs through comparative queries, with-

out explicitly specified optimization targets. 2) invention: Synthesis algorithms are key to

pushing the performance limit of program synthesis. Aiming to solve syntax-guided synthesis

problems efficiently, we introduce a cooperative synthesis technique that combines the mer-

its of enumerative and deductive synthesis. 3) adaptation: Besides functional correctness,

quality of generated code is another important aspect. Towards automated provably-correct

optimization over tree traversals, we propose a stack-based representation for iterations in

tree traversals and an encoding to Monadic Second-Order logic over trees, which enables

reasoning about tree traversal transformations which were not possible before.

13

1. INTRODUCTION

Automation of programming has been a dream longed for a long time. As one of the ef-

fective approaches to automated programming, program synthesis has attracted significant

attention in recent years. Program synthesis is the task that aims to generate implemen-

tations of programs automatically from user-provided intentions specified in some form of

specifications. By unburdening programmers’ efforts to produce programs with every detail,

program synthesis has been identified as having the potential to impact software develop-

ment dramatically. Thanks to the advancements in automated reasoning tools in recent

years, program synthesis has a surge of practical efforts in a variety of applications ranging

from spreadsheet programming, computer-aided education, software engineering.

Unfortunately, due to the inherent challenges in program synthesis, there is still a long

way to go for program synthesis to be used more widely. To facilitate this goal, two central

problems need to be considered.

The first challenge is practicality. When dealing with real-life synthesis tasks, one of the

challenges is expressing the user’s intent and interpreting it accurately. Program synthesis

systems usually expect users tell the machine what they need via some form of specifications.

One of the widely adopted specifications is logical predicate, which on it own is challenging for

users who do not have any programming expertise to construct. Besides formal specifications,

informal ones, such as input-output examples, execution traces and partial programs etc.,

often cause ambiguity on the expected behavior of the synthesized programs. In many cases,

user intent can be too complicated to be captured by any existing informal specifications.

How to carefully design interactions between user and the synthesis system in a way that

neither need programming expertise nor cause ambiguity is a major challenge in program

synthesis.

The second major problem is scalability. The goal of program synthesis is finding a

program that satisfies a set of constraints on desired behavior, from a given search space. In

that sense, program synthesis problems are often framed as search problems and are usually

discharged by performing some kind of search over the spaces of candidate programs. Since

the number of potential programs increases exponentially as the size of programs grows, it is

14

notoriously hard for program synthesizers to scale to complex programs. How to exploit the

program space efficiently and find the desired implementation effectively becomes an intense

research topic.

Besides the scalability of the synthesizer, the scalability of the synthesized programs is

another important aspect to be considered. Generating an arbitrary program that satisfy

the functional specification is sometimes not enough. There can be many different programs

that satisfy the same functional specification, where user expect a high quality program in

terms of program size, execution time or readability etc. How to generate programs of high

quality and how to automatically adapt user-unfriendly programs to user-friendly programs

are problems that have not been fully resolved yet.

The challenges in program synthesis closely relate to three technical pillars of machine

programming [1]: intention, invention and adaptation. Each pillar focuses on one of three

components of program synthesis systems: input specification, synthesizer and output pro-

gram, respectively. Intention emphasizes on capturing user’s intention. People find it easier

to provide informal specifications instead of formal ones. Based on this observation, Flash-

Fill [2] system embedded in Microsoft Excel uses input-output examples to construct string

transformation programs. Similarly, the Sketch system [3] takes a partial program template

(program sketch) as input and generates the unknowns in the program sketch. While these

informal specifications are effective in specific domains, they are not applicable or sufficient

in other domains. Research in invention pillar emphasizes the design of algorithms used for

accomplishing synthesis tasks. The search techniques used in program synthesis are typically

based on enumeration [4], deduction [5]–[7], constraint solving [3] or machine learning [8]. It

requires discovering new algorithms, in order to improve the efficiency of existing techniques.

The adaptation pillar emphasizes on developing techniques that adapt or maintain the soft-

ware to run efficiently. Program optimization techniques [9]–[11] facilitate programs running

efficiently on one or different platforms. Synthesizing program optimizations automatically

and proving the validity of transformations becomes another burgeoning research area.

In this thesis, we present a suite of techniques aiming towards more scalable and practical

program synthesis. Specifically, the techniques proposed in this thesis achieves the following:

15

• Introduce a novel human-computer interface to learn near-optimal programs.

• Increase the scalability of syntax-guided synthesizers.

• Enable the capability of verifying more sophisticated tree traversal optimizations.

Below, we provide an overview for each direction.

1.1 Learning Near-optimal Programs Through Comparative Queries

Our work presented in Chapter 2 considers a novel way to interact with users when

input-output examples are hard to obtain. We consider the quantitative synthesis problems

in network design domain, where the first challenge faced by users is expressing their opti-

mization targets in the form of either closed-form functions or input-output examples. We

propose comparative synthesis [12], an interactive synthesis framework which produces near-

optimal programs (network designs) through two kinds of comparative queries (Validate

and Compare), without an objective function explicitly given. The key idea is to make

comparative queries to learn the user’s preference over candidate programs, with which ob-

jectives can be conjectured. These objectives, which are indeterminate as they can be refined

along the course of user interaction, guide the search of satisfying programs.

Within the comparative synthesis framework, we developed the first learning algorithm

for comparative synthesis in which a voting-guided learner picks the most informative query

in each iteration. We present theoretical analysis of the convergence rate of the algorithm

and identify a class of comparative synthesis problems on which our algorithm converges

faster. We implemented Net10Q, a system based on our approach, and demonstrate its

effectiveness on four real-world network case studies using black-box oracles and simulation

experiments, as well as a pilot user study comprising network researchers and practitioners.

Experiments show that our framework can successfully synthesize satisfying solutions by

making a budgeted number of queries, without a priori knowledge about the quantitative

objective.

16

1.2 More Scalable Syntax-Guided Synthesis

In Chapter 3 , we present a novel cooperative synthesis framework [13] designed for the

syntax-guided synthesis problem. As one of the critical thrusts of program synthesis, Syntax-

guided Synthesis (SyGuS) allows user to provide syntactic constraints along with the se-

mantic specifications, so that the correctness of implementations are ensured as long as the

software quality. Currently, there are two main synthesis techniques adopted by most syn-

thesizers: enumerative synthesis and deductive synthesis. Enumerative synthesis repeatedly

enumerates possible candidate programs following a specific order and checks those programs

satisfy the synthesis constraints. Enumerative synthesis is very generally applicable but be-

comes inefficient as search space grows. Deductive synthesis is usually very efficient, as it

tries to reduce the specification to the desired implementation. Since deductive synthesis

relies on a set of pre-defined deduction rules, it is hard to extend to other grammars or

applications.

In order to combine the best of the two worlds, we propose a cooperative synthesis

technique for SyGuS problems with the conditional linear integer arithmetic (CLIA) back-

ground theory, as a novel integration of the two approaches. The technique exploits several

novel divide-and-conquer strategies to split a large synthesis problem to smaller subprob-

lems. The subproblems are solved separately and their solutions are combined to form a

final solution. The technique integrates two synthesis engines: a pure deductive component

that can efficiently solve some problems, and a height-based enumeration algorithm that

can handle arbitrary grammar. We implemented the cooperative synthesis technique, and

evaluated it on a wide range of benchmarks. Experiments showed that our technique can

solve many challenging synthesis problems not possible before, and tends to be more scalable

than state-of-the-art synthesis algorithms.

1.3 Verifying Tree Traversal Transformations

In Chapter 4 , we consider the problem of reasoning about tree traversals, which paves the

way to automated tree traversal transformations. Traversals are commonly seen in tree data

structures, and performance-enhancing transformations between tree traversals are critical

17

for many applications. Existing approaches to reasoning about tree traversals and their

transformations are ad hoc, with various limitations on the classes of traversals they can

handle, the granularity of dependence analysis, and the types of possible transformations.

We propose Retreet [14], a framework in which one can describe general recursive tree

traversals, precisely represent iterations, schedules and dependences, and automatically check

data-race-freeness and transformation correctness. The crux of the framework is a stack-

based representation for iterations and an encoding to Monadic Second-Order (MSO) logic

over trees. Experiments show that Retreet can automatically verify optimizations for

complex traversals on real-world data structures, such as CSS and cycletrees, which are not

possible before. Our framework is also integrated with other MSO-based analysis techniques

to verify even more challenging program transformations.

1.4 Thesis Organization

The rest of this document is organized as follows.

• In Chapter 2 , we propose comparative synthesis, an interactive synthesis framework,

that learns user intent by making comparative queries, which produces near-optimal

programs through queries, without specifying an objective function.

• In Chapter 3 , We present a cooperative synthesis technique that combines enumerative

and deductive synthesis for SyGuS problems with conditional linear integer arithmetic

(CLIA) background theory.

• In Chapter 4 , we introduce a framework in which one can describe general tree traver-

sals and automatically reason about data-race-freeness and transformation correctness.

• Finally, Chapter 5 concludes with a summary of our contributions and looks ahead to

future research directions.

18

2. COMPARATIVE SYNTHESIS: LEARNING

NEAR-OPTIMAL NETWORK DESIGNS BY QUERY

In this chapter, we present an interactive synthesis framework that learns near optimal

program for quantitative synthesis problems through comparative queries.

2.1 Introduction

Synthesizing wide-area computer network designs typically involves solving multi-objective

optimization problems. For instance, consider the task of managing the traffic of a wide-area

network — deciding the best routes and allocating bandwidth for them — the architect must

consider myriad considerations. She must choose from different routing approaches — e.g.,

shortest path routing [15], and routing along pre-specified paths [16], [17]. The traffic may

correspond to different classes of applications — e.g., latency-sensitive applications such as

Web search and video conferencing, and elastic applications such as video streaming, and

file transfer applications [16], [18], [19]. The architect may need to decide how much traffic

to admit for each class of applications. It is desirable to make decisions that can ensure high

throughput, low latency, and fairness across different applications, yet not all these goals may

be simultaneously achievable. Likewise, a network must not only perform acceptably under

normal conditions, but also under failures — however, providing guaranteed performance

under failures may require being sacrificing normal performance [17], [20].

Traffic engineering formulates network design problems as optimization problems [15],

[18]–[21], e.g., minimizing a weighted sum of link utilization and latency subject to con-

straints. In this context, architect must provide the objectives as well-defined mathematical

functions (which we henceforth refer to as target functions), which is a challenging task in

the first place. Even the simplest target functions may involve several knobs to capture the

relative importance of different criteria (e.g., throughput, latency, and fairness, performance

under normal conditions vs. failures). These knobs must be manually tuned by the archi-

tect in a “trial and error” fashion to result in a desired design. Further, many optimization

problems (e.g., [19]) require architects to use abstract functions that capture the utility an

19

application sees if a given design is deployed. Utility functions are often non-linear (e.g.,

logarithmic) and may involve weights, which are not intuitive for a designer to specify in

practice [22]. Finally, objectives are often chosen in a manner to ensure tractability, rather

than necessarily reflecting the true intent of the architect.

This paper presents one of the first attempts to learn near-optimal network designs with

indeterminate objectives. Our work adopts an interactive, program-synthesis-based approach

based on the key insight that when a user has difficulty in providing a concrete objective,

it is relatively easy and natural to give preferences between pairs of concrete candidates.

The approach may be viewed as a new variant of programming-by-example (PBE), where

preference pairs are used as “examples” instead of input-output pairs in traditional PBE

systems.

In this paper, we make the following contributions:

• A novel user-interaction paradigm (§ 2.3). We present a rigorous formulation

of an interactive synthesis framework which we refer to as comparative synthesis. As

Fig 2.1 shows, the framework consists of two major components: a comparative learner and a

teacher (a user or a black-box oracle). The learner takes as input a clearly defined qualitative

synthesis problem (including a parameterized program and a specification), a metric group

and a target function space, and is tasked to find a near-optimal program w.r.t. the teacher’s

quantitative intent through two kinds of queries — Validate and Compare.

The notion of comparative synthesis stems from a recent position paper [23]. The prelim-

inary work lacks formal foundation and query selection guidance, and may involve impracti-

cally many rounds of user interaction (see § 2.2). In contrast, the formalism of our framework

enables the design and analysis of learning algorithms that strive to minimize the number of

queries, and are amenable for real user interaction.

• The first algorithm for comparative synthesis (§ 2.4). We develop the first,

voting-guided learning algorithm for comparative synthesis, which provides a provable guar-

antee on the quality of the found program. The key insight behind the algorithm is that

objective learning and program search are mutually beneficial and should be done in tan-

dem. The idea of the algorithm is to search over a special, unified search space we call Pareto

20

Voting-Guided

Learner

Qualitative Spec

+ Metrics

Parameterized

Program

Teacher

Compare ,()

Near-Optimal program

Metric

preference >

Propose ()

Target Function Space Approve/

Decline /

Figure 2.1. Overview of comparative synthesis.

candidate set, and to pick the most informative query in each iteration using a voting-guided

estimation.

We analyze the convergence of voting-guided algorithm, i.e., how fast the solution ap-

proaches the real optimal as more queries are made. We prove that the algorithm guarantees

the median quality of solutions to converge logarithmically to the optimal. When the target

function space is sortable, which covers a commonly seen class of problems, a better con-

vergence rate can be achieved — the median quality of solutions converges linearly to the

optimal.

• Evaluations on network case studies and pilot user study (§ 2.5). We developed

Net10Q, an interactive network optimization system based on our approach. We evaluated

Net10Q on four real-world scenarios using oracle-based evaluation. Experiments show

that Net10Q only makes half or less queries than the baseline system to achieve the same

solution quality, and robustly produces high-quality solutions with inconsistent teachers. We

conducted a pilot study with Net10Q among networking researchers and practitioners. Our

study shows that user policies are diverse, and Net10Q is effective in finding allocations

meeting the diverse policy goals in an interactive fashion.

A Lookahead: While our motivation and evaluation are from the context of network

design, the challenge of indeterminate objectives is commonly seen in many quantitative

21

synthesis problems beyond the networking domain. For example, the default ranker for the

FlashFill synthesizer is manually designed and highly tuned by experts [24]. In quantitative

syntax-guided synthesis (qSyGuS) [25], the objective should be provided as a weighted gram-

mar, which is nontrivial for average programmers. Therefore, the problem we address in this

paper can be viewed as an instance of specification mining [26], a long-standing problem in

the formal methods community which recognizes that a precise specification may not always

be available. The key contributions of the paper, including comparison-based interaction

(§ 2.3) and the voting-guided algorithm (§ 2.4), are thus potentially applicable in other more

traditional program synthesis domains in the future.

2.2 Motivation

In this section, we present background on network design, how it may be formulated as

a program synthesis problem, and discuss challenges that we propose to tackle.

Network design background. In designing Wide-Area Networks (WANs), Internet

Service Providers (ISPs) and cloud providers must decide how to provision their networks,

and route traffic so their traffic engineering goals are met. Typically WANs carry multiple

classes of traffic (e.g., higher priority latency sensitive traffic, and lower priority elastic

traffic). Traffic is usually specified as a matrix with cell (i, j) indicating the total traffic

which enters the network at router i and that exits the network at router j. We refer to

each pair (i, j) as a flow, or a source-destination pair. It is typical to pre-decide a set of

tunnels (paths) for each flow, with traffic split across these tunnels in a manner decided by

the architect, though traffic may also be routed along a routing algorithm that determines

shortest paths (§ 2.5.1).

Given constraints on link capacities, it may not be feasible to meet the requirements

of all traffic of all flows. An architect must decide how to allocate bandwidth to different

flows of different classes and how to route traffic (split each flow’s traffic across it paths)

so desired objectives are met. In doing so, an architect must reconcile multiple metrics

including throughput, latency, and link utilizations [16], [18], [27], [28], ensure fairness

across flows [19], [22], [29], and consider performance under failures [17], [20], [21], [30], [31].

22

Network design as program synthesis problems. Consider a variant of the classical

multi-commodity flow problem used in Microsoft’s Software Defined Networking Controller

SWAN [16], which we refer to as MCF. MCF allocates traffic to tunnels optimally trading

off the total throughput seen by all flows with the weighted average flow latency [16]. We

consider a single class (see § 2.5.1 for multiple classes).

Fig 2.2 shows how the demand-capacity constraints may be described as a sketch-based

synthesis problem, in which the programmer specifies a sketch — a program that contains

unknowns to be solved for, and assertions to constrain the choice of unknowns. The Topology

struct represents the network topology (we use the Abilene topology [32] with 11 nodes, 14

links and 220 flows as a running example). The allocate function should determine the

bandwidth allocation (denoted by ??), which is missing and should be generated by the

synthesizer. The function also serves as a test harness and checks that the synthesized

allocation is valid, satisfying all demand and capacity constraints (lines 12 – 13). Finally, the

main function takes the generated allocation, and computes and returns the total throughput

and weighted latency.

Now Fig 2.2 has encoded all hard constraints and represented a qualitative synthesis

problem, which can be solved by Sketch [3] easily. The bandwidth allocations generated

by the synthesizer (the values of bw) is just a network design solving the MCF problem.

1

However, there are many different ways to fill the ??, corresponding to many different ways

of assigning paths and leading to different throughput-latency combinations as computed in

main. Which solution is the most desirable one? Traditionally, the architect has to explicitly

provide a target function which maps each possible solution to a numerical value indicating

the preference. Given a well-specified target function, the bandwidth allocation problem

becomes a quantitative synthesis problem and can be solved using existing techniques from

both synthesis and optimization communities. E.g., in Fig 2.2 , one can explicitly add a

target function Oreal and use the minimize construct (cf. Sketch manual [33]) to find the

optimal solution.
1

 ↑ We will use network design and network program interchangeably in the paper, as network design can
always be extracted from the synthesized network program.

23

1 struct Topology {
2 int n_nodes; int n_links; int n_flows;
3 bit[n_nodes][n_nodes] links;
4 /∗ every link has a capacity and a weight, every flow consists of multiple links and

has a demand ∗/
5 float[n_links] capacity; int[n_links] wght;
6 bit[n_links][n_flows] l_in_f; float[n_flows] demand; ...
7 }
8 Topology abilene = new Topology(n_nodes=11, n_links=220, . . .);
9 float[] allocate(Topology T) {

10 float[T.n_flows] bw = ??; // generate bandwidth allocation
11 /∗ assert that every flow’s demand is satisfied and every link’s bandwidth is not

exceeded ∗/
12 assert

∧
i

bw[i] <= T.demand[i];

13 assert
∧
j

(∑
i

l_in_f[j][i] ? bw[i] : 0
)
≤ T.capacity[j];

14 return bw; }
15 float[] main() {
16 float[] alloc = allocate(abilene);
17 /∗compute the throughput and weighted latency∗/
18 float throughput =

∑
i

alloc[i];

19 float latency =
∑

i

(
alloc[i] ·

∑
j

l in f[j][i]? wght[j] : 0
)

;

20 return {throughput, latency}; }

Figure 2.2. MCF allocation encoded as a program sketch.

Why synthesis with indeterminate objectives? Unfortunately, in practice, it is

hard for network architects to precisely express their true intentions using target functions.

For example, to capture the intuition that once the throughput (resp. latency) reaches a

certain level, the marginal benefit (resp. penalty) may be smaller (resp. larger), an architect

may need to use a target function like below:

Oreal(throughput, latency) def= 2 · throughput− 9 · latency

−max(throughput− 350, 0)− 10 ·max(latency− 28, 0) (2.2.1)

24

20 40 60 80 100
Number of queries

0
20
40
60
80

100

Re
wa

rd
 o

n
gr

ou
nd

 tr
ut

h
(%

)

Figure 2.3. Näıve objective synthesis of Oreal.

More generally, the marginal reward in obtaining a higher bandwidth allocation is smaller

capturing which may require a target function of the form O(throughput, latency) def= 1 ·

logn(throughput/tmax + 1) + 5 · logn(lmin/latency + 1) where tmax is the maximum possible

throughput and lmin is the minimum possible latency. Expressing such abstract target

functions is not trivial, let alone the parameters associated with the functions. We present

several other examples in § 2.5.1 .

Näıve objective synthesis is not enough. A preliminary effort [23] argued for syn-

thesizing target functions by having the learner (synthesizer) iteratively query the teacher

(user) on its preference between two concrete network designs. In each iteration, any pair

of designs may be compared as long as there exist two target functions that (i) disagree

on how they rate these designs, and (ii) both satisfy preferences expressed by the teacher

in prior iterations. The process continues until no disagreeing target functions are found.

However, this work only discusses objective learning and does not explicitly consider design

synthesis. Moreover, it does not address how to generate good preference pairs to minimize

queries. These limitations make this näıve approach not amenable for real user interaction.

Fig 2.3 shows the performance of a design optimal for a target function synthesized using

this procedure if it were terminated after a given number of queries. The resulting designs

achieve a reward only 60% of the true optimal design under the ground truth (Eq 2.2.1),

and there is hardly any performance improvement in the first 100 queries.

25

2.3 Comparative Synthesis, Formally

In this section, we provide a formal foundation for the comparative synthesis framework,

based on which we design and analyze learning algorithms. The key novelty of our framework

compared to past work on quantitative synthesis [25], [34]–[38] is that comparative synthesis

does not require the user to explicitly specify the objective. Instead, we approach synthesis

via interaction through comparative queries where queries simply involve the users comparing

two alternative programs and indicating which is more preferable. Since a user will only be

willing to answer a small number of queries and may choose to stop at any point of the

interactions, finding a perfect quantitative objective can be unrealistic. Therefore, our goal

is to generate a near-optimal program within a budgeted number of queries. As the real

ground truth optimal is not accessible, we also introduce a natural notion, called quality of

solution, to estimate how close a solution is to optimal.

Roadmap. In § 2.3.1 , we formally define quantitative synthesis, a necessary first step for

us to formally treat comparative synthesis. Rather than restrict quantitative synthesis to

objectives which are closed-form mathematical functions, we formulate quantitative synthesis

more generally as we motivate and discuss in § 2.3.1 . We formally define comparative queries,

and solution quality in § 2.3.2 . We conclude with a formal definition of comparative synthesis

in § 2.3.3 .

2.3.1 Quantitative Synthesis with Metric Ranking

In this section, we present a formal definition of quantitative synthesis, as a first step

towards defining comparative synthesis more precisely. Quantitative synthesis may be viewed

as a goal of synthesizing a program that meets a set of ”hard constraints”, while performing

well on a quantitative objective. Rather than restrict quantitative synthesis to objectives

which are closed-form mathematical functions, we formulate quantitative synthesis when

given a ranking over all possible programs (which we refer to as a metric ranking). This

more general formulation is motivated by the fact that we wish to capture a rich set of

user policies in terms of relative preferences across programs, and not restrict the user to

objectives that are closed-form mathematical functions.

26

We start by defining qualitative synthesis (which captures the “hard constraints” that

any acceptable program must meet), and then discuss quantitative synthesis with metric

ranking.

Definition 2.3.1 (Qualitative synthesis problem). A qualitative synthesis problem is repre-

sented as a tuple (P , C, Φ) where P is a parameterized program, C is the space of parameters

for P, and Φ is a verification condition with a single free variable ranging among C. The

synthesis problem is to find a value ctr ∈ C such that Φ(ctr) is valid.

Example 2.3.1. Our running example can be formally described as a qualitative synthesis

problem LMCF = (Pabilene,R220, Φabilene), where Pabilene is the program sketch presented in

Fig 2.2 , R220 is the search space of unknown hole (line 10) which includes 220 bandwidth

values of the Abilene network, Φabilene is the verification condition, taking a candidate solution

c ∈ R220 as input and checking whether Pabilene[c] satisfies all assertions in Fig 2.2 . Any

solution that satisfies assertions in Fig 2.2 is a feasible program to the qualitative synthesis

problem LMCF .

While a qualitative synthesis problem captures all hard constraints, there are potentially

infinitely many solutions. Which one is the most desirable? Quantitative synthesis concerns

itself with this question and extends a qualitative synthesis problem with a quantitative goal,

which is evaluated using a metric group, as defined below.

Definition 2.3.2 (Metric). Given a parameterized program P [c] where c ranges from a search

space C, a metric with respect to P is a computable function mP : C → R. In other words,

mP takes as input a concrete program in the search space and computes a real value.

Definition 2.3.3 (Metric group). Given a parameterized program P, a d-dimensional metric

group M w.r.t. P is a sequence of d metrics w.r.t. P. We write Mi for the i-th metric in

the group and M(c) for the value vector
(
M1(c), . . . , Md(c)

)
.

Example 2.3.2. A metric can be computed from the syntactical aspects of the program.

For example, a metric sizeP(c) can be defined as the size of the parse tree for P [c].

27

Example 2.3.3. A metric can simply be the value of a variable on a particular input (or

with no input). In our running example in Fig 2.2 , the two variables throughput and latency

of the main function can be used to define two metrics. As the latency as a metric is not

beneficial, i.e., smaller latency is better, we can simply use its inverse -latency as a beneficial

metric. The two metrics form a metric group MMCF = (throughput, -latency).

Now given a metric group, the quantitative intent of a user can be captured either

syntactically (using a target function) or semantically (using a metric ranking). We formally

define them below and discuss their relationship.

Definition 2.3.4 (Target function). Given a metric group M , a target function with respect

to M is a computable function R|M | → R.

Definition 2.3.5 (Metric ranking). Given a d-dimensional metric group M , a metric rank-

ing for M is a total preorder ≲M over Rd. In other words, ≲M satisfies the following

properties: for any u ∈ Rd, u ≲M u (reflexivity); for any three vectors u, v, w ∈ Rd, if

u ≲M v and v ≲M w, then u ≲M w (transitivity); for any two vectors u, v ∈ Rd, u ≲M v or

v ≲M u (connexivity).

We write u ∼M v if u ≲M v and v ≲M u. In this paper, we also flexibly write u ≳M v,

u <M v, u >M v and u ≁M v with the expected meaning. Moreover, we also abuse ≲M and

other derived symbols we just described as relations between programs: when the metric

group M is clear from the context, for any two program parameters c1, c2 ∈ dom(M), we

write c1 ≲M c2 to indicate that M(c1) ≲M M(c2).

Why metric ranking? Target function and metric ranking are closely related, but

metric ranking is a more general and unique representation for quantitative intent, and can

capture a richer set of user policies in terms of which of two feasible programs is preferable.

First, every target function implicitly determines a metric ranking (see Def 2.3.6 below).

Second, multiple target functions may have the same metric ranking. For example, any

target functions O and O′ such that O′(v) = 2 ·O(v) for any v ∈ R|M | have the same metric

ranking. Third, some metric ranking does not correspond to any target function, e.g., one

can define a metric ranking ≲ between integer metric values such that n1 ≲ n2 if and only

28

if the n1-th digit of Ω is less than or equal to the n2-th digit of Ω, where Ω is a Chaitin’s

constant [39] representing the probability that a randomly generated program halts. To this

end, we define quantitative synthesis problem below using metric ranking.

Definition 2.3.6. Given a target function O w.r.t. a d-dimensional metric group M , the

corresponding metric ranking ≲O⊂ Rd × Rd is defined as follows: for any two program

parameters c1, c2 ∈ dom(M), c1 ≲O c2 if and only if O(M(c1)) ≤ O(M(c2)). It can be easily

verified that ≲O is indeed a metric ranking.

Definition 2.3.7 (Quantitative synthesis problem). A quantitative synthesis problem is rep-

resented as a tuple Q = (P , C, Φ, M,≲M) where (P , C, Φ) forms a qualitative synthesis prob-

lem Qqual, M is a metric group w.r.t. P and ≲M is a metric ranking for M . The synthesis

problem is to find a solution ctr to Qqual such that for any other solution ctr’, ctr’ ≲M ctr.

Example 2.3.4. With the metric group MMCF defined in Example 2.3.3 , the function Oreal

defined in Equation 2.2.1 is a 2-dimensional target function with the corresponding metric

ranking ≲real. Then the qualitative synthesis problem LMCF = (Pabilene,R220, Φabilene) can be

extended to a quantitative synthesis problem QMCF
def= (Pabilene, R220, Φabilene, MMCF , ≲real

).

2.3.2 Interaction Through Comparative Queries

Quantitative synthesis problem as defined in Def 2.3.7 expects a metric ranking explicitly

or implicitly (e.g., through a target function). Comparative synthesis is more challenging as it

seeks to synthesize a program that is near-optimal in terms of the objective, but without being

explicitly given the objective. To achieve the goal, our comparative synthesis framework is

interactive between a learner and a teacher (see Fig 2.1). As the teacher may choose

to stop at any point of the interactions, our comparative synthesis framework maintains

the best candidate solution found through the synthesis process and recommends the best

solution confirmed by the teacher when terminated.

As the quantitative objective is assumed to be very complex and not direct accessible

from the teacher, the comparative learner can only make several types of queries to the

29

teacher, whose responses provide indirect access to the specifications. The query types serve

as an interface between the learner and the teacher, and different query types lead to different

synthesis power (e.g., see the query types discussed in [40]). What makes our framework

special is that the learner can make queries about the metric ranking — queries that compare

two program (based on their corresponding metric value vectors).

Let us fix a parameterized program P and a metric group M . The learner and the teacher

interact using two types of queries:

2

• Compare(c1, c2) query: The learner provides two concrete programs P [c1] and P [c2],

and asks “Which one is better under the target metric ranking ≲M?” The teacher responds

with < or > if one is strictly better than the other, or = if P [c1] and P [c2] are considered

equally good.

• Validate(c) query:

3
 The learner proposes a candidate program P [c] and asks “Is

P [c] better than the running best candidate r best?” If the teacher finds that P [c] is not

better than the running best, she can respond with ⊥. Otherwise, the teacher considers that

P [c] is better and responds with ⊤; in that case, the running best will be updated to P [c].

Now in comparative synthesis, the specification (a metric ranking R) is hidden to the

learner. Instead, the learner can approximate/guess the specifications by making queries to

the teacher. Ideally, the teacher should be perfect, i.e., the responses she makes to queries

are always consistent and satisfiable. Formally,

Definition 2.3.8 (Perfect teacher). A teacher T is perfect if there exists a metric ranking

≲M such that: 1) for any query Compare(v1, v2), the response is “<” if v1 ≲M v2 and

v2 ̸≲M v1, or “>” if v1 ̸≲M v2 and v2 ≲M v1, or “=” if v1 ≲M v2 and v2 ≲M v1; 2) for any

query Validate(c) with the current running best r best, the response is “⊤” if c >M r best;

or “⊥” otherwise.

We denote the perfect teacher w.r.t. ≲M as T≲M
. We also denote the metric ranking

≲M represented by a perfect teacher T as ≲T . A perfect teacher guarantees that an optimal
2

 ↑ We believe our framework can be extended in the future to support more types of queries.
3

 ↑ Note that Validate(c) can be viewed as a special Compare query between c and r best, the goal of the
query is slightly different: Validate(c) intends to beat the running best using c, while Compare(c1, c2)
intends to distinguish very close solutions c1 and c2 to learn the teacher’s intent. Compare(c1, c2) will not
update the running best.

30

solution exists among all candidates. For now, let us assume that the teacher is perfect, i.e.,

consistent and able to answer all queries; but in the real world, a human teacher may be

inconsistent and responds incorrectly. We do consider imperfect teachers in our evaluation

(see § 2.5.3).

Why budgeted number of queries? Ideally, the goal of the learner is to find an

objective target (in the form of target function or metric ranking) that matches the teacher’s

mind and the corresponding optimal program that optimizes the objective. However, find-

ing the target function can be impossible as the objective target may have no closed-form

representation and not in the target function space. As the teacher is free to terminate the

synthesis process at any point, pinpointing the target function in a potentially infinitely large

space can also be impossible, even if the target function is in the target function space.

Therefore, the goal of the learner is to spend a budgeted number of queries and to produce

a near-optimal program from the perspective of the teacher. Note that the learner may use a

conjectured objective to guide the search process, finding a perfect target function is not a

goal. This is also a key insight for our algorithm design (cf. § 2.4).

Now to determine how close a solution is to the ground truth optimal, we introduce

a natural notion called quality of solution which is intuitively the “relative rank” of the

solution among all solutions. E.g., a solution of quality 0.9 is better than or equal to 90% of

possible solutions. From a probability theory point of view, the quality is just the cumulative

distribution function (CDF). Below we formally define the quality of solutions.

Definition 2.3.9 (Quality of solution). Let Q = (P , C, Φ, M,≲M) be a quantitative synthe-

sis problem and let ctr be a solution to Qqual. The quality of ctr is defined as

QualityQ(ctr) def= P (ctr ≥T XM
Q)

where XM
Q is a variable randomly sampled from the uniform distribution for Solutions(Qqual).

In particular, when QualityQ(c) = 1, c is better than or equal to all other possible

solutions, i.e., is the optimal solution under the teacher’s preference. Note that computing

31

Table 2.1. A Comparative Synthesis run for Example 2.3.5

Iter Candidate Allocation Query Response Running Best Quality
1 P0(thrpt = 205.2, ltncy = 10.3) Validate(P0) ⊤ P0 32.8%
2 P1(thrpt = 470.2, ltncy = 33.0) Validate(P1) ⊤ P1 73.6%
3 P2(thrpt = 385.2, ltncy = 24.5) Validate(P2) ⊤ P2 92.8%

.

6 P6(thrpt = 405.4, ltncy = 26.5) Compare(P6, P7) P6 P2 92.8%
P7(thrpt = 377.8, ltncy = 23.8)

7 P8(thrpt = 392.9, ltncy = 25.3) Validate(P8) ⊤ P8 97.8%

the exact quality can be very expensive, if not impossible. However we can estimate the

quality by sampling, as we do in evaluation (see § 2.5.3).

Example 2.3.5. The quantitative synthesis problem QMCF in Example 2.3.4 involves a

metric ranking ≲real. Let Treal be a perfect teacher w.r.t. ≲real. Table 2.1 illustrates how a

voting-guided learning algorithm (which we present later in § 2.4) serves as the learner and

learns a near-optimal solution to QMCF through queries to ≲real. In the first iteration, the

learner solves the synthesis problem in Fig 2.2 and gets a first mediocre allocation P0 and

presents it to the architect, using query Validate(P0). The teacher accepts the proposal

as this is the first running best. In the sixth iteration, the learner presents two programs

P6 and P7 to the teacher and asks her to compare them. Based on the feedback that the

architect prefers P6 to P7, the learner proposes P8 which is confirmed by the teacher to be

the best program so far. After seven queries, the running best is already very close to the

optimal under the real objective (Quality of this solution has already achieved 97.8%). If

the teacher wishes to answer more queries, the solution quality can be further improved.

2.3.3 The Comparative Synthesis Problem

Given the approximation nature of query-based interaction and the quality of solution

defined above, the learner is tasked to solve what we call comparative synthesis problem,

which is formally defined below.

Definition 2.3.10 (Comparative synthesis problem). A comparative synthesis problem is

represented as a tuple C = (P , C, Φ, M, T) where P is a parameterized program, C is the

32

space of parameters for P, Φ is a verification condition for P, M is a metric group w.r.t. P

and T is a perfect teacher, such that (P , C, Φ, M,≲T) forms a quantitative synthesis problem,

which is denoted as Q. The synthesis problem is to find, by making a sequence of Compare

and Validate queries to the teacher T , a near-optimal solution ctr to Q with a provable

guarantee on QualityQ(ctr).

2.4 Voting-Guided Learning Algorithm

In this section, we focus on the learner side of the framework and propose a voting-guided

learning algorithm that can play the role of the comparative learner and solve the comparative

synthesis problem. Below we propose a novel search space combining the program search

and objective learning, then present an estimation of query informativeness, based on which

our voting-guided algorithm is designed. We discuss the convergence of the algorithm at

last.

2.4.1 A Unified Search Space

A syntactical and natural means to describing quantitative specification is target func-

tions (in contrast to the semantically defined metric ranking in Def 2.3.5). Now to solve a

comparative synthesis problem efficiently, an explicit task of the learner is program search:

the goal is to minimize human interaction (i.e., the number of queries) and maximize the

quality of the solution (see Def 2.3.9) proposed through Validate queries. Another im-

plicit task of the learner is objective learning: to steer program search faster to the optimal

and minimize the query count, the learner should conjecture target functions that fit the

teacher-provided preferences, and use them to determine which programs are more likely to

be optimal. Note that the conjectured target function need not (and sometimes cannot) be

perfect — the goal is just to approximates the teacher’s metric ranking ≲T .

Our key insight is that the two tasks are inherently tangled and better be done together.

On one hand, the quantitative synthesis task needs to be guided by an appropriate objective;

otherwise the search is blind and unlikely to steer to those candidates satisfying the user.

On the other hand, learning a perfect target function can be extremely expensive (if not

33

impossible — see the “why metric ranking” discussion in § 2.3) and unnecessary — even an

inaccurate target function may guide the program search. We first define the target function

space.

Definition 2.4.1 (Target function space). A target function space O is a set of target

functions with respect to a d-dimensional metric group M such that for any metric ranking

≲M⊂ Rd × Rd and any finite subset S ⊂fin Rd, there exists a target function O ∈ O such

that for any u, v ∈ S, u ≲M v if and only if O(u) ≤ O(v).

Example 2.4.1. The class of conditional linear integer arithmetic (CLIA) functions forms a

target function space. A CLIA target function, intuitively, uses linear conditions over metrics

to divide the domain into multiple regions, and defines in each region as a linear combination

of metric values. Formally, for any d-dimensional metric group M , a target function space

Od
CLIA can be defined as the class of expressions derived from the nonterminal T of the

following grammar:

T ::= E | if B then T else T

B ::= E ≥ 0 | B ∧B | B ∨B

E ::= v1 | . . . | vd | c | E + E | E − E

where c ∈ Z is a constant integer, and vi is the i-th value of the metric vector. It is not

hard to see that Od
CLIA is indeed a target function space, because with arbitrarily many

conditionals, one function can be constructed to fit any finite subset of any metric ranking.

Example 2.4.2. While the CLIA space is general enough for arbitrary metric group, it can

be too large to be efficiently searched. For many concrete metric groups, more target function

spaces usually exist. For our running example, a commonly used function to quantify this

trade-off is the multi-commodity flow functions used in software-driven WAN [16]. The

Oreal function (Equation 2.2.1) in our running example is an instance of the generalized,

two-segment MCF function space, which can be described in the following form:

34

O(throughput, latency) def= throughput ∗ ?? − max(throughput−??, 0) ∗ ??

− latency ∗ ?? − max(latency − ??, 0) ∗ ??

where ?? can be arbitrary weights or thresholds. Note that the two-segment template is

insufficient to characterize arbitrary finite metric ranking. In that case, the template may

be extended to more segments. We call the whole target function space OMCF .

Now as the learner’s task is to search two spaces — one for programs and one for target

functions — we merge the two tasks into a single one, searching over a unified search space

which we call Pareto candidate set:

Definition 2.4.2 (Pareto candidate set). Let C = (P , C, Φ, M, T) be a comparative synthesis

problem and O be a target function space w.r.t. M . A Pareto candidate set (PCS) with

respect to C and O is a finite partial mapping G : O ↛ C from a space of target functions

O to a space of program parameters C, such that for any O ∈ O, G (O) is the effectively

optimal solution under target function O, i.e., a solution c ∈ C such that G (O) ≲O c, if

exists, cannot be effectively found. Specifically, for any other O′ ∈ O, G (O′) ≲O G (O).

Intuitively, a Pareto candidate set (PCS) G maintains a set of candidate target functions,

a set of candidate programs, and a mapping between the two sets, and guarantees that every

candidate target function O is mapped to the best candidate program under O.

4

2.4.2 Query Informativeness

Now with the unified search space — PCS in Def 2.4.2 — comparative synthesis becomes

a game between the learner and the teacher: a PCS G is maintained as the current search

space; and in each iteration, the learner makes a query and the teacher gives her response,

based on which G is shrunken. The learner’s goal should be, in each iteration, to pick the

most informative query in the sense that it can reduce the size of G as fast as possible. The

key question is how to evaluate the informativeness of a query.
4

 ↑ Note that in general, the best candidate program under O is not necessarily unique. To break the tie and
make G uniquely determined by the component sets of target functions and programs, when two candidate
programs c1 and c2 both get the highest reward under O, we assume G (O) is c1 if M(c1) is smaller than
M(c2) in lexicographical order, or c2 otherwise.

35

Quality
(
Compare(c1, c2)

) def= min
(∣∣c1 ≲O c2

∣∣, ∣∣c1 ≳O c2
∣∣, ∣∣c1 ≁O c2

∣∣)
Quality

(
Validate(c)

) def= min
(∣∣NewBest(c)

∣∣, ∣∣c >O r best
∣∣)∣∣φ∣∣ def=

∣∣∣{x | ∀O ∈ dom(G) : G (O) = x ⇒ φ
}∣∣∣∣∣NewBest(c)

∣∣ def= r best <O c ∨ ∀y ∈ image(G).y ≲O c

Figure 2.4. Informativeness of queries (with G the current PCS, and r best
the running best program).

In this paper, we develop a greedy strategy which evaluates the informativeness by com-

puting how many candidate programs from G can be removed immediately with the teacher’s

response. As the teacher’s response can be arbitrary, our evaluation considers all possible

responses and take the minimum number among all cases. The formulation is shown in

Fig 2.4 and explained below.

• Compare query: For Compare(c1, c2), recall the teacher may prefer P [c1] to P [c2], or

vice versa, or consider the two programs equally good (corresponding to the three responses:

<, > and =). In each case, we can remove all the candidate target functions that have a

different relative ordering of P [c1] and P [c2] than the teacher’s preference. We denote the

number of candidates that can be removed when the teacher prefers P [c1] (resp. P [c2]) as∣∣∣c1 ≲O c2

∣∣∣ (resp.
∣∣∣c1 ≳O c2

∣∣∣). Further let
∣∣∣c2 ≁O c1

∣∣∣ denote the candidates that can be

removed if the user indicates both programs are equally good. The overall informativeness

is just the minimum of the three cases.

• Validate query: For Validate(c), recall the teacher may confirm that P [c] is in-

deed better than the running best P [r best] (response ⊤), or keep the current running best

(response ⊥). Like the compare query, in each case, we can eliminate all candidate target

functions that do not satisfy this relative preference between P [c] and P [r best] expressed

by the user. However, in the case that the user prefers P [c], we can additionally remove all

candidate target functions for which P [c] is already the best choice, i.e., more queries are

not needed for further improvement — we use
∣∣∣NewBest(c)

∣∣∣ in Fig 2.4 to denote the total

36

Table 2.2. Example PCS Gex.
Trgt func O Optimal solution Gex(O) Ranking of all candidate programs under O

O0 P2 P0 < r best < P1 < P2
O1 P2 P1 < P0 < r best < P2
O2 P0 P1 = P2 < r best < P0
O3 P1 r best < P0 < P2 < P1
O4 P2 r best < P0 < P1 < P2

Table 2.3. Informativeness of queries Compare(c1, c2).
c1 c2

∣∣∣c1 ≲O c2

∣∣∣ ∣∣∣c1 ≳O c2

∣∣∣ ∣∣∣c1 ≁O c2

∣∣∣ Quality
P0 P1 1 1 3 1
P1 P2 2 2 2 2
P0 P2 2 1 3 1
P0 r best 0 2 3 0
P1 r best 1 1 3 1
P2 r best 1 2 3 1

Table 2.4. Informativeness of queries Validate(c).
c

∣∣∣NewBest(c)
∣∣∣ ∣∣∣c >O r best

∣∣∣ Quality
P0 1 2 1
P1 2 1 1
P2 2 2 2

number of eliminated candidate programs in this case. The overall informativeness is just

the minimum of the two cases.

Example 2.4.3. Table 2.2 shows a PCS Gex that consists of 5 candidate target functions,

namely Oi for 0 ≤ i ≤ 4, and 3 candidate programs, namely P0, P1 and P2. The rankings

of all candidate programs and the current running best r best under target functions are

also shown in Table 2.2 . The informativeness of Compare and Validate queries for PCS

Gex is presented in Tables 2.3 and 2.4 , respectively. Take Compare(P1, P2) as an example,∣∣∣P1 ≲O P2

∣∣∣ is 2 since all candidate target function except O3 believes P1 ≲O P2 and removing

these four target functions essentially removes P0 and P2 from PCS Gex. As per Fig 2.4 ,∣∣∣P1 ≳O P2

∣∣∣ and
∣∣∣P1 ≁O P2

∣∣∣ are also 2. The informativeness of Compare(P1, P2) is therefore

2, the minimum of the three cases above, which means at least 2 candidate programs will

37

be removed from Gex no matter which the user prefers. Consider Validate(P2) as another

example,
∣∣∣NewBest(P2)

∣∣∣ is 2, since O2 prefers r best over P2 and P2 is the best choice under

O0, O1 and O4. Candidate program P1 and P2 will be removed from Gex as their target

functions either do not satisfy user preference or can not improve the running best further.

Given PCS Gex, both Validate(P2) and Compare(P1, P2) share highest informativeness,

which is 2. In this case, Validate(P2) will be presented to the user.

2.4.3 The Algorithm

Our learning algorithm is almost straightforward: for each iteration, compute the infor-

mativeness of every possible query and make the most informative query. The remaining

issue is that it is not realistic to keep a PCS that contains all possible candidates, because

the number of candidates is usually very large, if not infinite. For example, LMCF in Exam-

ple 2.3.1 has infinitely many Pareto optimal solutions, ranging in the continuous spectrum

from maximizing throughput to minimizing latency. To this end, our voting-guided algo-

rithm maintains a moderate-sized PCS, from which queries are generated and selected based

on their informativeness.

Algorithm 1 illustrates the voting-guided algorithm. The algorithm takes as input a

comparative synthesis problem C and a target function space O, and maintains a PCS

G w.r.t. C and O and set of preferences R, both empty initially. In each iteration, the

algorithm computes the informativeness of all possible queries that can be made about the

current candidates image(G), and picks the highest-informativeness query according to the

computation presented in Fig 2.4 (line 7). After the query is made and the response is

received, an compare-update subroutine is invoked to update G and remove all candidates

violating the preference (lines 11 – 15). Moreover, the algorithm also checks at the beginning

of every iteration the size of G ; if image(G) is below a fixed threshold Thresh, the algorithm

attempts to extend G using a generate-more subroutine. The algorithm terminates and

returns the current running best when G becomes 0 or NQuery queries have been made,

where NQuery is the number of queries that the teacher promises to answer (line 17).

Table 2.1 shows an example run of this algorithm.

38

input : A comparative synthesis problem C = (P , C, Φ, M, T) and a target
function space O with respect to M

output: A quasi-optimal solution to C
1 def voting-guided-learn(P , C, Φ, M, T ,O):
2 R← ⊤, count← 0, G ← ∅ // collected preferences, query count and

the PCS
3 r best← SynProg(P , C, ϕP) // get the first solution and initialize

the running best
4 repeat
5 if |image(G)| < Thresh :
6 generate-more (P , M , R, r best, G) // generate more candidates

/* pick and make the most informative query */
7 q type, c1, c2 ← BestQuery (G)
8 response← MakeQuery (q type, c1, c2)
9 if q type = Validate // if Validate(c1) :

10 update (M(P [c1]), M(P [r best]), response) // update R and G
11 if response = (⊤) :

// if P [c1] is better than running best
12 G ← G |{O|G (O)>OP[c1]}
13 r best← c1
14 elif q type = Compare // if Compare(c1, c2) :
15 update (M(P [c1]), M(P [c2]), response) // update R and G
16 count + +
17 until G = ∅ ∨ count ≥ NQuery ;
18 return r best

Algorithm 1: The voting-guided learning algorithm.

The subroutines involved in the algorithm are shown as Algorithm 2 . The compare-

update subroutine is straightforward, taking a new preference pair and shrinking G accord-

ingly. The generate-more subroutine is tasked to expand G as much as possible within a

time limit. Each time, it tries to find a pair (O, c) such that O satisfies all existing prefer-

ences and prefers P [c] to P [r best], and P [c] is effectively optimal under O. Note that this

subroutine delegates several heavy-lifting tasks to off-the-shelf, domain-specific procedures:

SynProg for qualitative synthesis, SynObj for objective synthesis, and Improve for op-

timization under a known objective. For example, the qualitative synthesis and objective

synthesis problem of our running example can be encoded to a logical query and discharged

by any SMT solvers, such as Z3 [41]. The optimization problem under known objectives can

also be solved by a linear programming solver, such as Gurobi [42].

39

input : Two program metric vectors m, n and their comparison result response
modifies: The current metric vector preferences R and the current PCS G

1 def update (m, n, response):
2 if response = (>) :
3 R← R ∧m > n
4 elif response = (<) :
5 R← R ∧ n > m
6 else:
7 R← R ∧m = n
8 G ← G |{O|O|=R}
9 return

input : A parameterized program P , a metric group M , current metric vector
preferences R and current running best r best

modifies: The Pareto candidate set G
10 def generate-more (P, M , R, r best, G):
11 repeat
12 c← SynProg(P, M) ; // synthesize an arbitrary (Pareto optimal)

program
13 O ← SynObj(R ∧M(P [c]) > M(P [r best])) // synthesize an objective

that prefers the new c over r best
14 if O ̸= ⊥ :
15 c← Improve(O, P, M , c) // this is optional: try to improve

P [c]
16 else:
17 O ← SynObj(R) // synthesize an arbitrary objective

satisfying R
18 c← Improve(O, P, M , r best) // synthesize a best possible

program under O, but at least better than r best

19 G ← G ⊎ (O, c)
20 until timeout;

Algorithm 2: The subroutines involved in the voting-guided learning algorithm.

2.4.4 Convergence

In the rest of the section, we discuss the convergence of the algorithm. Recall that our

algorithm only produces quasi-optimal programs as the ground-truth target function is not

present. Therefore, the algorithm should be evaluated on the rate of convergence [43], i.e.,

40

how fast the median quality

5
 of solutions (see Def 2.3.9) approaches 1 as more queries are

made. Our first result is that the algorithm guarantees a logarithmic rate of convergence.

Theorem 2.4.1. Given a comparative synthesis problem C and a target function space O as

input, if Algorithm 1 terminates after n queries, the median quality of the output solutions

is at least 2
−1

n+1 .

Proof. Note that every query will discard at least one candidate program from the PCS,

regardless of the query type. In other words, the final output c must be the optimal among

at least (n + 1) randomly selected candidates from the uniform distribution. Therefore, the

quality of c is at least the (n + 1)-th order statistic of the uniform distribution, which is a

beta distribution Beta(n + 1, 1), whose median is 2
−1

n+1 .

The proved lower-bound in the theorem above is tight only when each query only removes

one candidate from the PCS G . Unfortunately, the following lemma shows that in general,

this scenario is always realizable:

Theorem 2.4.2. The bound in Theorem 2.4.1 is tight.

The PCS constructed for the following lemma serves as a witness of the bound tightness:

Lemma 2.4.1. Let S = (P , C, Φ) be a qualitative synthesis problem with infinitely many

solutions and O be a target function space. For any integer n > 0, there exist a PCS G : O ↛

C and a parameter r best ∈ C such that: (1) |image(G)| = n; (2) for any c1, c2 ∈ image(G),

Quality(Compare(c1, c2)) = 1; (3) for any c ∈ image(G), Quality(Validate(c)) = 1.

Proof. As C has infinitely many solution, we can pick arbitrary n solutions, say c1, . . . , cn.

For each 1 ≤ i ≤ n, one can construct a total order ≲i such that cn ≲i . . . ci+1 ≲i ci−1 . . . c1 ≲i

ci. According to the definition of target function space (Def 2.4.1), there exists a target

function Oi that fits ≲i. Now we can construct G such that dom(G) = {O1, . . . , On}, and

G (Oi) = ci for each i. It can be verified G is a Pareto candidate set satisfying the required

conditions.
5

 ↑ The algorithm involves random sampling and results we prove below are for the median quality of output
solutions; the proofs can be easily adapted to get similar results for the mean quality of solutions.

41

2.4.5 Better Convergence Rate with Sortability

We have shown that our voting-guided algorithm guarantees a logarithmic rate of con-

vergence in general, but are there scenarios for which the algorithm guarantees faster con-

vergence? We next show that when the comparative synthesis problem is convex and the

target function space is concave with two metrics, our algorithm guarantees a faster, linear

convergence. The conditions are commonly seen in practice — satisfied by half of optimiza-

tion scenarios studied in § 2.5 — and intuitively, capture the assumption that there are two

competing metrics (e.g., throughput and latency) such that for each metric continued im-

provement leads to diminishing marginal utility (e.g., increasing throughput from 1Gbps to

2Gbps is more favorable than increasing throughput from 2Gbps to 3Gbps).

The idea of the proof bears a similarity to the convergence guarantee for many algorithms

in traditional convex optimization [44]; but the key difference is that the objective is inde-

terminate for our algorithm. We first introduce a key enabling notion for the proof called

sortability, which makes sure that the candidates in the PCS can be ordered appropriately

such that every target function with corresponding candidate c always prefers its nearer

neighbors to farther neighbors.

Definition 2.4.3 (Sortability). A PCS G is sortable if there exists a total order ≺ over

image(G) such that for any target functions O, P, Q ∈ dom(G) such that G (O) ≺ G (P) ≺

G (Q), the following two conditions hold: G (P) >O G (Q), and G (P) >Q G (O) A target

function space O is sortable with respect to a comparative synthesis problem C if any PCS

G w.r.t. C and O is sortable.

The following lemma shows that if a PCS is sortable, one can make a query to cut at

least half of the candidates, no matter what the teacher’s response is.

Lemma 2.4.2. If a Pareto candidate set G is finite and sortable, then there exists a query

whose quality for G as computed in Fig 2.4 is ⌊|image(G)|
2 ⌋.

Proof. Let n =|image(G)| and m = ⌊|image(G)|
2 ⌋. As G is sortable, by Def 2.4.3 , there exists

a total order G (O1) ≺ · · · ≺ G (On). Now we claim that Quality
(

Compare
(
G (Om), G (Om+1)

))
=

42

m. By Def 2.4.3 , for any 1 ≤ i ≤ m, G (Om) >Oi G (Om+1), and for any m + 1 ≤ j ≤

n, G (Om) <Oj G (Om+1). Then according to the query quality estimation described in

Fig 2.4 , both #RemNEQ
(
G (Om), G (Om+1)

)
and #RemNEQ

(
G (Om+1), G (Om)

)
are at least

m. Therefore, Quality
(
Compare(G (Om), G (Om+1))

)
= m, which is ⌊|image(G)|

2 ⌋.

With the lower bound of removed candidates guaranteed by Lemma 2.4.2 , our voting-

guided synthesis algorithm guarantees to produce a unique best candidate after a logarithmic

amount of queries:

Theorem 2.4.3. Given a comparative synthesis problem C with metric group M and a

sortable target function space O w.r.t. M as input, if Algorithm 1 terminates after n queries,

the median quality of the output solutions is at least
(
1− 1

Ω(1.5n)
)
.

Proof. Note that Algorithm 1 generates candidates for the Pareto candidate set G (through

the generate-more subroutine) through random sampling. Therefore, if a query cuts the

size of current candidate pool (G and the running best) by a ratio of r, the search space

(those candidates satisfying all preferences in R) is cut by an equal or higher ratio in that

iteration (extra candidates may be discarded by generate-more, before the query). Now

as G is sortable, by Lemma 2.4.2 , after the highest-informativeness query, the number of

candidates remaining in G is at most ⌈ |image(G)|
2 ⌉. In other words, the query reduces the size

of G by a ratio of at least 2
3 (when |image(G)| = 2, the total number of candidates including

the running best, reduces from 3 to 2), except for the last query. Therefore, the output is the

best among O(1.5n) randomly selected candidates, which is Beta(1.5n, 1)-distributed. Hence

by Def 2.3.9 , the median of the quality of the output is 1

2
(

1
1.5n

) , which is asymptotically

equivalent to
(
1− 1

Ω(1.5n)
)
.

We now formally define the convexity of the comparative synthesis problem and the

concavity of the target function space, and build the main convergence result by proving the

sortability.

Definition 2.4.4 (Convexity of comparative synthesis problem). A comparative synthesis

problem C with metric group M is convex if for any two solutions c1, c2 to C qual and any

43

α ∈ [0, 1], a solution c3 to C qual can be effectively found such that M(c3) ≳ α ·M(c1) + (1−

α) ·M(c2).

Definition 2.4.5 (Concavity of target function space). Let O be a target function space

w.r.t. a d-dimensional metric group M . O is concave if for any O ∈ O, for any v1, v2 ∈ Rd

and any α ∈ [0, 1], O(α · v1 + (1− α) · v2) ≥ max(O(v1), O(v2)).

Example 2.4.4. Our running example falls in this subclass. The comparative synthesis

problem CMCF in Example 2.3.5 is convex. As shown in Fig 2.2 , both throughput and

latency are weighted sum of allocations to every link. Therefore given any two solutions c1 and

c2, their convex combination is still feasible, and the metric vector is also the corresponding

convex combination of M(c1) and M(c2). Moreover, it is not hard to verify that the target

function space OMCF in Example 2.4.2 is concave, as both the weights of throughput and

latency decrease when their values are good enough and exceed a threshold.

Theorem 2.4.4. Let C be a convex comparative synthesis problem with a 2-dimensional

metric group M and O be a concave target function space w.r.t. M , then O is sortable w.r.t.

C qual.

Proof. We shall show the sortability of any Pareto candidate set G w.r.t. C qual and O.

We claim that the lexicographic order ≺lex over R2 (i.e., (a1, a2) ≺lex (b1, b2) if and only if

a1 < b1 or a1 = b1∧a2 < b2) witnesses the sortability. Per Def 2.4.3 , for any target functions

O, P, Q ∈ dom(G) such that G (O) ≺lex G (P) ≺lex G (Q), we shall show G (P) >O G (Q)

below. It can be similarly proved that G (P) >Q G (O).

Let M(G (O)) = (o1, o2), M(G (P)) = (p1, p2), and M(G (Q)) = (q1, q2). Note that

by Def 2.4.2 , each of G (O), G (P) and G (Q) is optimal under a distinct target function,

therefore M(G (O)), M(G (P)), and M(G (Q)) are pairwise incomparable, i.e., {o1, p1, q1} and

{o2, p2, q2} are all distinct values. Due to the lexicographic order ≺lex, we have o1 < p1 < q1

and o2 > p2 > q2. Now by Def 2.4.4 , one can effectively find a solution c such that

M(c) ≥
((q1 − p1) · o1 + (p1 − o1) · q1

q1 − o1
,
(q1 − p1) · o2 + (p1 − o1) · q2

q1 − o1

)
=
(
p1,

(q1 − p1) · o2 + (p1 − o1) · q2
q1 − o1

)

44

Table 2.5. Summary of topologies.

Topology Abilene B4 CWIX BTNorthAmerica Tinet Deltacom Ion
#nodes 11 12 21 36 48 103 114
#links 14 19 26 76 84 151 135

Then by Def 2.4.2 , G (P) is at least as good as c and p2 ≥
(q1 − p1) · o2 + (p1 − o1) · q2

q1 − o1
. Fi-

nally, by Def 2.4.5 , we have O((p1, p2)) ≥ O((p1,
(q1 − p1) · o2 + (p1 − o1) · q2

q1 − o1
)) ≥ O((q1, q2)).

In other words, G (P) >O G (Q).

2.5 Evaluation

We have prototyped the comparative synthesis framework and the voting-guided learning

algorithm as Net10Q — an interactive system that produces near-optimal network design

by asking 10 questions to the user — through which we evaluate the effectiveness and effi-

ciency of our approach. We selected four real-world network design scenarios and conducted

experiments with both oracles and human users. Our evaluations were conducted on seven

real-world, large-scale internet backbone topologies obtained from [18], [32] (sizes summa-

rized in Table 2.5). Note that the size of our largest topologies, namely Deltacom and Ion,

are already beyond the ones typically considered in the traffic engineering community.

2.5.1 Network Optimization Problems

We summarize the four optimization scenarios in Table 2.6 , including their metric groups,

target function spaces and sortability. We present some details below.

Balancing throughput and latency (MCF). This is our running example based

on [16] described throughout the paper. This bandwidth allocation problem focuses on a

single traffic class and considers balancing the throughput and latency in the network.

Utility maximization with multiple traffic classes (BW). A well-studied opti-

mization problem is maximizing utility when allocating bandwidth to traffic of different

classes [19], [22], [45]. Many applications such as file transfer have concave utility functions

which indicate that as more traffic is received, the marginal utility in obtaining a higher al-

45

Table 2.6. Summary of optimization scenarios.
Scenario Metric group Target function space Sortable?

MCF (throughput, -latency) throughput ∗ ?? − max(throughput−??, 0) ∗ ??
−latency ∗ ?? − max(latency − ??, 0) ∗ ?? Yes

BW
(

avgk: average allocation to
the flows in the k-th class

) ∑
1≤k≤K

wk log
(
avgk

)
(wk > 0) No

NF

(
zni, zfi: guaranteed fraction of the

traffic demand of group i under normal
conditions and failures respectively

) ∑
i

wni ∗ zni + wfi ∗ zfi (wni, wfi > 0) No

OSPF (−latency,−utilization)


utilization utilization >??
latency ∗ ?? + utilization ∗ ?? ?? < utilization <??
latency otherwise

Yes

location is smaller. A common concave utility function which is widely used is a logarithmic

utility function, where a flow that receives a bandwidth allocation of x gets a utility of log x.

Consider N flows, and K classes. Each flow belongs to one of the classes with F k denoting

the set of flows belonging to class k. The weight of class k is denoted by wk and is a knob

manually tuned today to control the priority of the class, which we treat as an unknown in

our framework.

Performance with and without failures (NF). Resilient routing mechanisms guar-

antee the network does not experience congestion on failures [17], [20], [21], [30], [31] by

solving optimization problems that conservatively allocate bandwidth to flows while plan-

ning for a desired set of failures. We consider the model used in [17] to determine how to

allocating bandwidth to flows while being robust to single link failure scenarios. We consider

an objective with (unknown) knobs wni and wf i that trade off performance under normal

conditions and failures tuned differently for each group of flows i.

Balancing latency and link utilization (OSPF). Open Shortest Path First (OSPF)

is a widely used link-state routing protocol for intra-domain internet and the traffic flows are

routed on shortest paths [15]. A variant of OSPF routing protocol assigns a weight to each

link in the network topology and traffic is sent on paths with the shortest weight and equally

split if multiple shortest paths with same weight exist. By configuring the link weights,

network architect can tune the traffic routes to meet network demands and optimize the

network on different metrics [15]. We consider a version of the OSPF problem where link

46

weights must be tuned to ensure link utilizations are small while still ensuring low latency

paths [46]. Intuitively, when utilization is higher than a threshold, it becomes the primary

metric to optimize, and when lower than a threshold, minimizing latency is the primary goal.

In between the thresholds, both latency and utilization are important, and can be scaled in

a manner chosen by the network architect. We treat the thresholds and the scale factors as

unknowns in the objective.

2.5.2 Implementation

Note that in Net10Q, once the scenario and the topology are fixed, we can pre-compute

a large pool of objective-program pairs, from which the PCS is generated. For each scenario-

topology combination, we used the templates shown in Table 2.6 to generate a pool of random

target functions. Then for all scenarios except for OSPF, we generate their corresponding

optimal allocations using Gurobi [42], a state-of-the-art solver for linear and mixed-integer

programming problems. For OSPF, as we are not aware of any existing tools that can

symbolically solve the optimization problem, we used traditional synthesis approaches (cf.

Fig 2.2) to generate numerous feasible link weight assignments. The pre-computed target

functions and allocations are paired to form a large PCS serving as the candidate pool.

When the teacher is an imperfect oracle or a human user, inconsistent answers may po-

tentially result in the algorithm unable to determine objectives that meet all user preferences.

To ensure Net10Q robust to an imperfect oracle, inspired by the ensemble methods [47],

we implemented Net10Q as a multi-threaded application where a primary thread accepts

all inputs and the backup threads run the same algorithm but randomly discard some user

inputs. In case no objective could satisfy all user preferences, a backup thread with the

largest satisfiable subset of user inputs would take over.

2.5.3 Oracle-Based Evaluation

We used Net10Q to solve all scenario-topology combinations described above, through

interaction with (both perfect and imperfect) oracles who answer queries based on their

internal objectives. As a first-of-its-kind system, Net10Q does not have any similar systems

47

to compare with. Therefore, we developed a variant of Net10Q which adopts a simple

but aggressive strategy: repeatedly proposing optimal candidates generated from randomly

picked target functions. We call this baseline algorithm Net10Q-NoPrune, as the teacher’s

preference is not used to prune extra candidates from the search space. As a solution’s real

quality (per Def 2.3.9) is not practically computable, we approximate its quality using its

rank in our pre-computed candidate pool.

6
 Moreover, as Net10Q involves random sampling,

we ran each synthesis task 301 times and reported the median of the (approximated) solution

quality achieved after every query.

Evaluation on perfect teacher

We built an oracle to play the role of a perfect teacher who answers all queries correctly

based on a ground truth objective. For each scenario, we as experts manually crafted a

target function that fits the template and reflects practical domain knowledge.

7

We presents the performance of Net10Q and Net10Q-NoPrune on solving four network

optimization problems (cf. Table 2.6) on seven different topologies (cf. Table 2.5). Our key

observation is that Net10Q performed constantly better than Net10Q-NoPrune in every

scenario-topology combination. In the interest of space, we collected the quality of solutions

achieved over all seven topologies for each optimization scenario and presented the median

(shown as dots) and the range from max to min (shown as bars). As Fig 2.5 shows, our voting-

guided algorithm is very effective. Net10Q always only needs 5 or fewer queries to obtain a

solution quality achieved by Net10Q-NoPrune in 10 queries. We note that although the all-

topology range for Net10Q sometimes overlaps with the corresponding range for Net10Q-

NoPrune (primarily for the NF scenario), Net10Q still outperformed Net10Q-NoPrune

for every topology. We leave the topology-wise results for NF in Appendix 2.8.1 . Further,

in all the cases where we could compute the optimal under the ground truth objective, we

confirmed that programs recommended by Net10Q achieved at least 99% of the optimal.
6

 ↑ The quality is computed among Pareto optimal solutions only. In other words, the solution quality as per
Definition 2.3.9 should be higher than what we report here.
7

 ↑ The ground truth does not have to match the template; see § 2.5.4 for human teacher who is oblivious to
the template.

48

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100
So

lu
tio

n
qu

al
ity

 (A
pp

ro
xi

m
at

ed
) (

%
)

Net10Q
Net10Q-NoPrune

(a) MCF.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q
Net10Q-NoPrune

(b) BW.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q
Net10Q-NoPrune

(c) NF.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100
So

lu
tio

n
qu

al
ity

 (A
pp

ro
xi

m
at

ed
) (

%
)

Net10Q
Net10Q-NoPrune

(d) OSPF.

Figure 2.5. Comparing Net10Q and Net10Q-NoPrune with perfect oracle
(across all seven topologies). Curves to the left are better. (More detailed,
per-topology results for NF is available in Appendix 2.8.1)

Evaluation on imperfect teacher

We also adapt the oracle to simulate imperfect teachers whose responses are potentially

inconsistent, based on an error model described below. When an allocation candidate is

presented, the imperfect oracle assigns a random reward that is sampled from a normal dis-

tribution, whose expectation is the true reward under corresponding ground truth objective.

49

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100
So

lu
tio

n
qu

al
ity

 (A
pp

ro
xi

m
at

ed
) (

%
)

Net10Q
Net10Q-NoPrune

(a) Net10Q vs. Net10Q-NoPrune (p = 10).

1 2 3 4 5 6 7 8 9 10
Number of queries

65

70

75

80

85

90

95

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

p=0
p=5
p=10
p=20

(b) Sensitivity to p.

Figure 2.6. Performance of Net10Q with imperfect oracle (BW on CWIX)
of different levels of inconsistency evaluated in different case studies on CWIX.
Curves to the left are better.

The standard deviation is p percentage of the distance between average reward and optimal

reward under ground truth objective.

Fig 2.6 shows our experimental results with imperfect teacher on BW with the CWIX

topology. In the interest of space, we defer results of other scenarios to Appendix 2.8.2 , from

which we see similar trend. Fig 2.6a compares Net10Q with Net10Q-NoPrune under the

inconsistency level p = 10. Net10Q continues to outperform Net10Q-NoPrune. Fig 2.6b

presents the sensitivity of Net10Q on the inconsistency level (p = 0, 5, 10, 20). Although

the solution quality degrades with higher inconsistency p, Net10Q achieves relatively high

solution quality even when p is as high as 20. The results show that Net10Q tends to be able

to handle moderate feedback inconsistency from an imperfect teacher, although investigating

ways to achieve even higher robustness is an interesting area for future work.

Runtime and Scaling

We first discuss the online query time experienced by users. For every synthesis task

mentioned above, and across all topologies, the average running time spent by Net10Q for

each interactive user query is less than 0.15 seconds. The approach scales well with topology

size since a pool of objective-program pairs is created offline. When creating a pool, the

50

solving time for a single optimization problem is under a second for most topologies on all

scenarios on a 2.6 GHz 6-Core Intel Core i7 laptop with 16 GB memory, and we used a

pool size of 1000 objectives. The only exception was the NF on the two largest topologies,

Deltacom and Ion, which took 11.8 and 15.5 seconds respectively, and we used a smaller

pool size in these cases to limit the pool generation time. Note that the pool creation occurs

offline. Further, it involves solving multiple distinct optimization problems, and is trivially

parallelizable.

To examine sensitivity to pool size, we first generated 5000 objective-program pairs and

then randomly sampled a given number of objective-program pairs to form a candidate pool.

Evaluating on candidate pools of size ranging from 10 to 5000, we found that pools with

300 objective-program pairs are sufficient for Net10Q to achieve over 99% optimal after 10

iterations. Please find details in Appendix 2.8.3 .

2.5.4 Pilot User Study

We next report on a small-scale study involving 17 users. The primary goal of the user

study is to evaluate Net10Q when the real objective is arbitrarily chosen by the user, and

even the actual shape is unknown to Net10Q. This is in contrast to the oracle experiments

where the ground truth objectives are drawn from a template (with only the parameters

unknown to Net10Q). Further, like with imperfect oracles, users may not always correctly

express relative preferences.

The user study was conducted online using an IRB-approved protocol. Participants were

recruited with a minimal qualifying requirement being they have taken a university course

in computer networking. Figs 2.7a and 2.7b show the background of users. 88% of them are

computer networking researchers or practitioners. 53% of users have more than 2 years of

experience managing networks.

Our user study used an earlier version of Algorithm 1 implemented as an online web

application. Specifically, the PCSes were generated on the fly, rather than pre-generated. To

ensure responsiveness, the deployed algorithm set the threshold Thresh = 2. We note that

the cloud application for our user study was developed and tested over multiple months, and

51

in parallel to refinements we developed to the algorithm. We were conservative in deploying

the latest version given the need for a robust user-facing system, and to ensure all participants

saw the same version of the algorithm.

The study focused on the BW scenario (with four classes of traffic) and the Abilene

topology. The user was free to choose any policy on how bandwidth allocations were to be

made, and answer queries based on their policy. In each iteration, the user was asked to

choose between two different bandwidth allocations generated by Net10Q. The user could

either pick which allocation was better, or indicate it was too hard to call if the decisions

were close. The study terminated after the user answered 10 questions, or when the user

indicated she was ready to terminate the study.

12%

41%

47%

Networking researcher
Network manager/engineer
Rest

(a) User background.

29%

24%

47%< 2 years
2-5 years
> 5 years

(b) User experience.

Pe
rc

en
ta

ge
 o

f u
se

rs
 (%

)

0

20

40

60

80

100

Balance Priority No-Starvation

23.5%

52.9%
64.7%

70.6%
29.4%5.9%

5.9%17.6%
29.4%

Not important Very important Somewhat important

(c) Diversity of user policies.

Figure 2.7. User background and diversity of chosen policies.

52

18%

41%

41%Consistent
Somewhat consistent
Not consistent
Qualitatively consistent

(a) Quality of recommendations.

6%

94%

Usually
Sometimes
Rarely

(b) Was time taken acceptable?

Figure 2.8. Feedback on Net10Q from real users.

0 1 2 3 4 5 6 7 8 9 10 11 12
Average time of each user (seconds)

0.2

0.4

0.6

0.8

1.0

CD
F

(fr
ac

tio
n

of
 u

se
rs

) Net10Q time
User think time

Figure 2.9. Avg. time per query across users.

In the post-study questionnaire, users were asked to characterize their policy by choosing

how important it was to achieve each of three criteria below: (i) Balance, indicating allocation

across classes is balanced; (ii) Priority, indicating how important it is to achieve a solution

with more allocation to a higher priority class if a lower priority class does poorly; and (iii)

No-Starvation, indicating how important it is to ensure lower priority classes get at least

some allocation. Fig 2.7c presents a breakdown of user policies. 70.6% of users indicated

Balance were somewhat or very important. 82.3% of users indicated Priority were somewhat

or very important, while 94.1% of users indicated No-Starvation was somewhat or very

important. The results were consistent with the qualitative description each user provided

53

regarding his/her policy. Overall, almost all users were seeking to achieve Balance and

Priority avoiding the extremes (starvation) - however, they differed considerably in terms of

where they lay in the spectrum based on their qualitative comments.

Results

Fig 2.8a summarizes how well the recommended allocations generated by Net10Q met

user policy goals. 82% of the users indicated that the final recommendation is consistent,

or somewhat consistent with their policies. The remaining 18% of the users took the study

before we explicitly added the objective question to ask users to rate how well the recom-

mended policy met their goals. However, the qualitative feedback provided by these users

indicated Net10Q produced allocations consistent with user goals. For instance, one ex-

pert user said: “The study was well done in my opinion. It put the engineer/architect in a

position to make a qualified decision to try and chose the most reasonable outcome.”

Fig 2.8b shows that 94% of users indicated the response time with Net10Q was usually

acceptable, while 6% indicated the time was sometimes acceptable. Fig 2.9 shows a cumu-

lative distribution across users of the average Net10Q time (i.e., the average time taken

by Net10Q between receiving the user’s choice and presenting the next set of allocations).

For comparison, the figure also shows a distribution of the average user think time (i.e., the

average time taken by a user between when Net10Q presents the options and when the

user submits her/his choice). The time taken by Net10Q was hardly a second, and much

smaller than the user think time which varied from 8 to 12 seconds, indicating Net10Q can

be used interactively.

Across all users, Net10Q was always able to find a satisfiable objective that met all

of the user’s preferences (it never needed to invoke the fallback approach (§ 2.5.2) of only

considering a subset of user preferences). This indicates users express their preferences in a

relatively consistent fashion in practice. Inconsistent responses may still allow for satisfiable

objectives, however we are unable to characterize this in the absence of the exact ground

truth objective.

54

Overall, the results show the promise of a comparative synthesis approach even when

dealing with complex user chosen objectives of unknown shape. We believe there is poten-

tial for further improvements with all the optimizations in Algorithm 1 , and other future

enhancements.

2.6 Related Work

Network verification/synthesis. As we discussed in § 2.2 , the näıve approach to

comparative synthesis proposed in [23] is preliminary and may involve prohibitively many

queries. In contrast, we generalize and formalize the framework, design the first synthesis

algorithm with the explicit goal of minimizing queries, present formal convergence results,

and conduct extensive evaluations including a user study.

Much recent work applies program languages techniques to networking. Several works fo-

cus on synthesizing forwarding tables or router configurations based on predefined rules [48]–

[54], or synthesizing provably-correct network updates [55], [56]. Much research focuses on

verifying network configurations and dataplanes [27], [57], [58], and does not consider syn-

thesis. Recent works mine network specification from configurations [59], generate code for

programmable switches from program sketches [60], [61], or focus on generating network

classification programs from raw network traces [62]. In contrast to these works, we focus on

synthesizing network designs to meet quantitative objectives, with the objectives themselves

not fully specified.

Optimal synthesis. There is a rich literature on synthesizing optimal programs with

respect to a fixed or user-provided quantitative objective. Some of these techniques aims to

solve optimal syntax-guided synthesis problems by minimizing given cost functions [25], [35].

Other approaches either generate optimal parameter holes in a program through probabilistic

reasoning [38] or solve SMT-based optimization problems [63], under specific target functions.

In example-based synthesis, the examples as a specification can be insufficient or incom-

patible. Hence quantitative objectives can be used to determine to which extent a program

satisfies the specification or whether some extra properties hold. Gulwani et al. [24] and

Drosos et al. [64] defined the problem of quantitative PBE (qPBE) for synthesizing string-

55

manipulating programs that satisfy input-output examples as well as minimizing a given

quantitative cost function.

Our work is different from all optimal synthesis work mentioned above as in our setting,

the objective is unknown and automatically learnt/approximated from queries.

Human interaction. Many novel human interaction techniques have been developed

for synthesizing string-manipulating programs. A line of work focuses on proposing user

interaction models to help resolve ambiguity in the examples [65] and/or accelerate pro-

gram synthesis [66], [67]. Using interactive approaches to solve multiobjective optimization

problems has been studied by the optimization community for decades (as surveyed by Mi-

ettinen et al. [68]). Morpheus [69] is a routing control platform that allows users to flexibly

specify their policy preferences. Morpheus requires pairwise comparisons on relative weights

of metrics as input, which can be viewed as a special form of target functions.

Our novelty on the interaction method is to proactively ask comparative queries on

concrete network designs, with the aim of minimizing the number of queries and maximizing

the desirability of the found solution. The comparison of concrete candidates is easier than

asking the user to provide rank scale, marginal rates of substitution or aspiration level, which

is done by most existing approaches. The objectives we target to learn for network design

also involve guard conditions, which is beyond what most existing methods can handle.

Oracle-guided synthesis. The learner-teacher interaction paradigm we use in the paper

has been studied in the context of programming-by-example (PBE), aiming at minimizing

the sequence of queries. Jha et al. [70] presented an oracle-based learning approach to

automatic synthesis of bit-manipulating programs and malware deobfuscation over a given

set of components. Their synthesizer generates inputs that distinguishes between candidate

programs and then queries to the oracle for corresponding outputs. Ji et al. [71] followed up

and studied how to minimize the sequence of queries. This line of work allows input-output

queries only (“what is the output for this input?”) to distinguish different programs. If two

programs are distinguishable, they consider them equivalent or a ranking function is given.

In invariant synthesis, Garg et al. [72] followed this paradigm and synthesized inductive

invariants by checking hypotheses (equivalent to Validate queries in our setting) with the

teacher. Jha and Seshia [40] proposed a theoretical framework, called oracle-guided inductive

56

synthesis (OGIS) for inductive synthesis. The framework OGIS captures a class of synthesis

techniques that operate via a set of queries to an oracle. Our comparative synthesis can be

viewed as a new instantiation of the OGIS framework.

Active learning. Our algorithm for comparative synthesis has parallels to active learn-

ing [73], [74] in the machine learning community, which interactively queries a user to label

data in settings where labeling is expensive. Query-by-committee (QBC) [75] is a general

query strategy framework that chooses the most informative query based on the disagree-

ments among a committee of models. How to construct the committee space and how

to measure the disagreements among committee members are questions must be answered

when instantiating the QBC framework. In contrast, we interactively query users to learn

objectives using a carefully designed search space PCS and propose ways to estimate query

informativeness specific to our setting.

2.7 Conclusions

In this paper, we have presented comparative synthesis for learning near-optimal pro-

grams with indeterminate objectives, and applied it to network design. First, we have de-

veloped a formal framework for comparative synthesis through queries with users. Second,

we have developed the first learning algorithm for our framework that combines program

search and objective learning, and seeks to achieve high solution quality with relatively few

queries. We proved that the algorithm guarantees the median quality of solutions converges

logarithmically to the optimal, or even linearly when the target function space is sortable (a

property satisfied by two of our case studies). Third, we have developed Net10Q, a system

implementing our approach. Experiments show that Net10Q only makes half or less queries

than the baseline system to achieve the same solution quality, and robustly produces high-

quality solutions with inconsistent teachers. A pilot user study with network practitioners

and researchers shows Net10Q is effective in finding allocations that meet diverse user pol-

icy goals in an interactive fashion. Overall, the results show the promise of our framework,

which we believe can help in domains beyond networking in the future.

57

2.8 Appendix: Additional Experimental Results

2.8.1 Evaluation on Perfect Oracle

The range of solution quality achieved by Net10Q sometimes overlaps with Net10Q-

NoPrune in Fig 2.5c – however Net10Q outperformed Net10Q-NoPrune in every scenario-

topology combination. To demonstrate this for the NF scenario which saw the most overlap

in Fig 2.5c , consider Fig 2.10 which presents a detailed breakdown of results by topology,

and clearly illustrates Net10Q’s out-performance.

2.8.2 Evaluation on Imperfect Oracle

Fig 2.6a showed Net10Q outperforms Net10Q-NoPrune for BW on CWIX. Fig 2.11

shows the performance of Net10Q and Net10Q-NoPrune when p = 10 for the other three

scenarios, namely, MCF, NF and OSPF. Net10Q outperforms in these scenarios as well.

Fig 2.12 presents the performance of Net10Q on CWIX when p = 0, 5, 10, 20 for MCF, NF

and OSPF. While Net10Q shows some performance degradation at higher inconsistency

levels (p = 20), it still achieved good solution quality.

2.8.3 Sensitivity to Size of Pre-Computed Pool

To examine how sensitive Net10Q is to the size of the pre-computed pool, we evaluated

Net10Q with pools of different size for BW on CWIX, sampled from a larger pool of size

5000. Fig 2.13 shows the solution quality achieved by Net10Q after 10 queries. The solution

quality in all cases was based on the rank computed on the entire pool of size 5000. The

results indicate that performance does not substantially improve beyond a pool size of 300.

58

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(a) Abilene.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(b) B4.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(c) CWIX.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100
So

lu
tio

n
qu

al
ity

 (A
pp

ro
xi

m
at

ed
) (

%
)

Net10Q (NF)
Net10Q-NoPrune (NF)

(d) BTNorthAmerica.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(e) Tinet.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(f) Deltacom.

1 2 3 4 5 6 7 8 9 10
Number of queries

40

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q (NF)
Net10Q-NoPrune (NF)

(g) Ion.

Figure 2.10. Comparing Net10Q and Net10Q-NoPrune with perfect oracle
for NF (each subfigure for a topology). Curves to the left are better. Net10Q
outperforms in all topologies.

59

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q
Net10Q-NoPrune

(a) MCF.

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q
Net10Q-NoPrune

(b) NF.

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

Net10Q
Net10Q-NoPrune

(c) OSPF.

Figure 2.11. Performance of Net10Q with imperfect oracle (p = 10) for
MCF, NF and OSPF on CWIX.

1 2 3 4 5 6 7 8 9 10
Number of queries

60

70

80

90

100

So
lu

tio
n

qu
al

ity
 (A

pp
ro

xi
m

at
ed

) (
%

)

MCF

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100 NF

1 2 3 4 5 6 7 8 9 10
Number of queries

50

60

70

80

90

100 OSPF

p=0
p=5
p=10
p=20

Figure 2.12. Performance of Net10Q under different level of inconsistency
(p = 0, 5, 10, 20) on CWIX.

10 30 50 100 300 500 1000 3000 5000
Number of objective-program pairs

75

80

85

90

95

100

So
lu

tio
n

qu
al

ity
 a

ch
ie

ve
d

af
te

r 1
0

qu
er

ie
s (

%
)

Figure 2.13. Performance of Net10Q with different size of pre-computed
pool for BW on CWIX.

60

3. RECONCILING ENUMERATIVE AND DEDUCTIVE

PROGRAM SYNTHESIS

In this chapter, we present a cooperative synthesis framework that combines enumerative

and deductive synthesis with the aim of pushing the performance limit of syntax-guided

synthesis.

3.1 Introduction

Syntax-guided synthesis (SyGuS) is a common theme underlying many program syn-

thesis systems. The insight behind SyGuS is that to synthesize a large-scale program

automatically, the user needs to provide not only a semantic specification but also a syntac-

tic specification, i.e., a grammar of candidate programs as the search space. SyGuS has

seen great success in the last decade, including the Sketch [3], [33], [76] synthesizer and the

FlashFill feature of Microsoft Excel [2], [77]. The research community has also developed

a standard interchange format for SyGuS problems and organized an annual competition,

which encourages a plethora of syntax-guided synthesizers [78], [79].

The community usually categorizes synthesis techniques into two classes

1
 : enumerative

synthesis — which systematically enumerates possible implementations of the function to

be synthesized and checks if it satisfies the desired specification; and deductive synthesis —

which tries to reduce the specification to a desired program, purely symbolically by applying

a series of deductive rules. Neither strategy clearly outperforms the other.

Enumerative synthesis traverses the search space following a specific strategy. The sim-

plest strategy begins the search from smaller-sized candidates and moves toward larger-

sized candidates. This näıve strategy guarantees to produce the smallest possible program,

and is proven efficient for a wide spectrum of syntax-guided synthesis tasks. For example,

EUSolver [4] adopts this strategy and has been the winner of the general track in 2016

and 2017 SyGuS competition [82], [83]. Other search strategies may perform better for

different classes of problems. Stimulated by earlier success stories and the community’s

effort of standardization and competition [78], [79], researchers have proposed many novel
1

 ↑ E.g., see Sec 1.1 of [80], Lectures 2 and 17 of [81], and Table 2 of [1].

61

search strategies, including abstraction-based [66], [84]–[88], stochastic enumeration [36], [37],

constraint-based [89], [90] and learning-based [8], [91]. Note that the appealing programming-

by-example (PBE) and counterexample-guided inductive synthesis (CEGIS) techniques can

also be viewed as a class of enumerative synthesis: the synthesizer is given a set of input-

output examples and the search will be restricted to the programs whose behavior matches

the given examples. As an example, LoopInvGen [92] leverages a learning-based variant

of the CEGIS framework and won the invariant track in 2017 and 2018 SyGuS competi-

tion [83], [93]. Despite these algorithmic innovation, enumerative search is difficult to scale to

large programs, because the search space grows exponentially with the size of the program.

Deductive synthesis is the oldest form of synthesis, dating back to Manna and Waldinger’s

field-defining paper [94] and even earlier work of Burstall and Darlington [95]. The deduc-

tion process essentially accepts a specification S and builds a constructive proof for the

theorem “there exists a program satisfying S.” Representative examples include Spiral [5],

Paraglide [7], Fiat [6] and SusLik [96]. In general, the commonly known challenge for this

paradigm of synthesis is the degree of automation, because critical steps of rule applica-

tions for synthesizing sophisticated programs, e.g., those involving loops, still rely on some

guidance from the user. In recent years, researchers have automated deductive synthesis

to symbolic synthesis procedures for several classes of synthesis problems, which run very

efficiently. For example, CVC4 [97] embodies a symbolic synthesis algorithm called CEGQI

to handle a class of integer arithmetic synthesis problems with the so called single invoca-

tion properties, and won the CLIA track of SyGuS competition four years in a row [79].

However, these procedures usually focus on synthesis problems in special domains with fixed

grammars, and not applicable to more general synthesis tasks with arbitrary, user-provided

grammars.

In recent years, the community has recognized the power of combining enumeration and

deduction for synthesis [88], [98]–[100]. Nonetheless, existing techniques are not directly

applicable to SyGuS for arbitrary grammars. In this paper, we focus on the class of

SyGuS problems with the CLIA background theory but arbitrary grammar, and seek novel

and amenable synergies of enumeration and deduction. We present a cooperative synthesis

technique which switches between the two synthesis strategies to push the scalability. We

62

develop several divide-and-conquer strategies to split a large synthesis problem to smaller

subproblems. The subproblems are solved separately and their solutions are combined to

form a final solution. The technique integrates two synthesis engines: a pure deductive

component for efficiently solving/simplifying the current problem whenever possible, and

a height-based enumeration algorithm, as the last resort for handling arbitrary problem

instances.

In this paper, we show our technique performs better than existing algorithms, and

successfully solves many challenging problems not possible before. We summarize the con-

tributions of this paper as below:

1. a cooperative synthesis framework that splits a synthesis problem into subprob-

lems which are solved by deduction or enumeration separately (Section 3.3);

2. three novel divide-and-conquer strategies which allow splitting a wide variety of

sophisticated synthesis problems (Section 3.4);

3. a height-based enumeration algorithm that splits the search space based on the

height of the tree representation of the program and searches for each height symboli-

cally (Section 3.5);

4. a set of general deductive rules that are powerful enough to solve/simplify many

synthesis problems (Section 3.6);

5. the cooperative synthesis technique has been embodied in a SyGuS solver called

DryadSynth, which solved more benchmarks than state-of-the-art solvers in every

class of benchmarks, and tended to be more scalable for sophisticated benchmarks. 58

out of 715 benchmarks were solved uniquely by DryadSynth (Section 3.7).

3.2 Preliminaries

3.2.1 Syntax-Guided Synthesis

Definition 3.2.1 (Language). A language L is a tuple (Σ, τ) where Σ is an alphabet and

τ maps every n-ary function name f ∈ Σ to its signature τ(f) ∈ {Bool, U}n+1 (where U

63

represents a universe). An L-expression is an expression over symbols from Σ that conforms

to their signatures τ . An L-term is an L-expression of type U . An L-formula is a boolean

L-expression.

Definition 3.2.2 (Background Theory). A decidable background theory T with respect to

a language L is a set of L-formulae such that there is a decision procedure that takes a

quantifier-free Σ-formula φ(x) as input, and determines if T |= φ, generates a counterex-

ample vector C such that T ̸|= φ(C), if such an C exists.

Example 3.2.1. Consider a language ({0, 1, +,−,≥, ite}, τ), where τ(0) = τ(1) = (Z) as

both 0 and 1 are constants, τ(+) = τ(−) = (U, U, U) as they are binary functions over U ,

τ(≥) = (U, U, Bool) as ≥ is a binary relation. And finally, ite represents the if-then-else

combination of a formula and two terms; therefore τ(ite) = (Bool, U, U, U). Then we let

CLIA denote the standard theory for this language interpreted over Z.

Definition 3.2.3 (Interpreted Function). An interpreted function for a language L is a

tuple (f, Φ(x1, . . . , xn)), where f is the function name, and Φ(x1, . . . , xn) is a well-typed

L-expression, i.e., each xi is of type U or Bool, and the whole expression can be typed U or

Bool.

Example 3.2.2. Consider a binary function qm in the CLIA theory that returns the first

non-negative argument. We declare this interpreted function as (qm, ite(x1 < 0), x2, x1).

Now we define the expression grammar, which essentially describes syntactic constraints

for the expected program using a context-free grammar.

Definition 3.2.4 (Expression Grammar). An expression grammar G is a tuple (T ,R,N , S,P),

where T is a background theory with alphabet Σ, R is a set of interpreted functions for L,

N a set of non-terminal symbols (to be typed Bool or U , denoted as Nb and Nu), S ∈ N is

the start symbol, and P ⊆ N × Exprs(Σ,R,N) is a set of production rules of form T → ϵ

or T → r(a1, . . . , an), where T ∈ N , r ∈ R ∪ Σ, ai is a free variable or a non-terminal in

N . Let JGK denote the set of all expressions generated by G: {e | S −→
P

∗ e}.

64

S → 0 | 1 | S + S | S − S
S → qm(S, S)

(a) Grammar Gqm

S ′ → 0 | 1 | S ′ + S ′ | S ′ − S ′

S ′ → qm(S ′, S ′) | aux(S ′, S ′)

(b) Grammar G+
qm

qm(x1, x2) def= ite(x1 < 0, x2, x1)
aux(x1, x2) def= ite(x1 ≥ x2, x1, x2)

(c) Interpreted functions

Figure 3.1. Production rules for Examples 3.2.3 and 3.3.1 .

Example 3.2.3. Consider all possible expressions built using the qm function defined in

Example 3.2.2 , as well as variables x, y, z, and arbitrary constants. We call these expressions

qm-normal form (QNF). Then formally QNF can be defined as an expression grammar

Gqm
def= (CLIA , {qm}, {S}, S, {x, y, z},P)

where P is the set of production rules presented in Figure 3.1a .

Example 3.2.4. We define GCLIA as a special grammar. It takes CLIA as the background

theory and allows all standard CLIA expressions.

Definition 3.2.5 (Uninterpreted Function). An n-ary uninterpreted function f is a se-

quence
(
(x1, t1), . . . , (xn, t1), rt

)
where every pair (xi, ti) represents that the name of the i-th

argument is xi with type ti ∈ {Bool, U}, and rt ∈ {Bool, U} is the return type of the function.

Example 3.2.5. To synthesize a ternary function max3, we declare it as an uninterpreted

function

((x, U), (y, U), (z, U), U)

.

Now we are ready to define the syntax-guided synthesis (SyGuS) problem we address in

this paper.

Definition 3.2.6 (SyGuS Problem). An instance of the SyGuS problem is given by a tu-

ple (T , f, Φ,G) where T is a background theory with alphabet Σ, f is an n-ary uninterpreted

function to be synthesized, Φ is a formula over Σ∪ {f}, and G = (T ,R,N , {x1, . . . , xn},P)

65

is an expression grammar. A solution to the SyGuS problem is an expression E ≡

λx1, . . . , xn.e(x1, . . . , xn) such that: a) e(x1, . . . , xn) ∈ JGK; b) Φ[E/f] is valid, i.e., in-

stantiating f with E makes Φ valid. We use (T , f, Φ,G)⇝ E to denote that E is a solution

to the SyGuS problem (T , f, Φ,G).

Example 3.2.6. Recall the max3 function declared in Example 3.2.5 . Now we want to find

an implementation of max3 in Gqm that matches the semantics of the authentic implementa-

tion in CLIA . This is a SyGuS problem (CLIA , max3, Φ,Gqm) where Φ is the specification

for the synthesis task:

max3(x, y, z) = ite(x ≥ y ∧ x ≥ z, x, ite(y ≥ z, y, z)) (3.2.1)

One solution to this problem is the following expression

max3 sol def= λx, y, z.
(
z + qm(x− z + qm(y − x, 0), 0)

)
(3.2.2)

Remark: To simplify the presentation, we assume there is a single function to be syn-

thesized. However, the SyGuS definition can be easily extended to synthesize multiple

functions. In the rest of the paper, we omit the background theory T when it is CLIA from

the context. Unless stated otherwise, we also assume the function to be synthesized is always

f . Then these components can be omitted from the tuples.

3.2.2 Counterexample-Guided Inductive Synthesis

The SyGuS problem is typically very challenging. Let (T , f, Φ,G) be a SyGuS problem.

Note that the specification Φ involves a vector of variables x, and the synthesizer needs to

find an implementation of f such that ∀x.Φ(x) holds. Checking this quantified formula is

already undecidable for most background theories.

A common approach to addressing this problem is the Counterexample Guided Inductive

Synthesis (CEGIS) framework [3], [90]. The basic idea is that a set of representative value

66

assignments C is usually sufficient to find a solution that works for all inputs. So the synthesis

problem can be reduced to a constraint of the following form:

∃f.
∧

c∈C

Φ(c) (3.2.3)

The set C is usually initialized to contain a random value. The synthesizer tries to solve

(3.2.3) and find a candidate expression q. Then a verifier can check if the candidate works

for all inputs, i.e.,

T |= Φ[q/f](x) (3.2.4)

Note that this query can be solved by the background decision procedure. If true, then q

is a valid solution and the algorithm terminates; otherwise, a counterexample can be found,

and the algorithm continues by adding the counterexample to C and the synthesizer tries to

solve the inductive constraint again. The loop repeats until it finds a valid solution or hits

a timeout.

3.2.3 Invariant Synthesis

In this paper we also address invariant synthesis, a special class of synthesis problems.

Definition 3.2.7 (Invariant synthesis problem). An invariant synthesis problem can be rep-

resented as ∃inv∀xφ(inv; x), where inv is the predicate to be synthesized and φ(inv; x) is of

the form
φ(inv; x) ≡

(
pre(x)→ inv(x)

)
∧
(

inv(x)→ inv(trans(x))
)

∧
(

inv(x)→ post(x)
)

where pre(x) and post(x) are CLIA formulae , trans(x) defines a vector of CLIA terms

such that |trans(x)| =|x|.

Intuitively, (pre(x), trans(x), post(x)) represents a program with a set of variables x.

pre(x) and post(x) are the pre- and post-conditions, respectively. trans(x) represents the

iterative transition: x := trans(x). The loop terminates when trans(x) = x. The goal of

67

the synthesis problem is to find a loop invariant guaranteeing the partial correctness of the

program with respect to pre and post.

Example 3.2.7. Consider a simple program of increasing variable x in a loop by 1 each

iteration until it reaches 100:

int x = 0; while (x < 100) x = x + 1; assert x == 100;

The invariant synthesis problem for this program could be encoded to the following way:

pre(x) ≡ (x = 0)

trans(x) ≡ ite(x < 100, x + 1, x)

post(x) ≡ (¬(x < 100)⇒ (x = 100))

(3.2.5)

3.3 A Cooperative Synthesis Framework

In this section, we present a cooperative synthesis framework as a novel synergy of enu-

merative and deductive synthesis. In a nutshell, this framework encompasses a deductive

synthesis engine and an enumerative synthesis engine, and solves synthesis problems by

divide-and-conquer: it splits a synthesis problem into subproblems and solves them sepa-

rately using deduction or enumeration.

3.3.1 Divide-And-Conquer Splitter

The cooperative synthesis framework features a divide-and-conquer splitter. The common

pattern for these strategies is as follows: when the current synthesis problem p cannot be

directly solved, the algorithm tries to identify a simpler problem (we call Type-A Subproblem)

such that a solution to it can help simplify p to an easier-to-solve problem (we call Type-

B Subproblem). We have identified several strategies that divide the original problem into

subproblems A and B in different ways (see more details in Section 3.4).

Figure 3.2 illustrates the workflow of cooperative synthesis. Given a synthesis problem

p, the deductive synthesis engine attempts to simplify/solve the input synthesis problem p

purely deductively. If p is not completely solved, the divide-and-conquer splitter takes over

68

Deductive
Synthesizer

Divide-and-Conquer
Splitter

Type-A Subproblem of p

Simplified Problem

Solution

Fixed-Height
Synthesizer

Indivisible

Sibling Type-B
Subproblem of p

Problem p

Height increase

Figure 3.2. Workflow of cooperative synthesis.

and attempts to split the problem using a strategy. If the problem is divisible, the synthesis

switches to the Type-A subproblem of p and starts over from the deductive synthesizer.

Otherwise, as the last resort, the problem is sent to the enumerative synthesizer. Notice

that every possible solution has a syntax-tree representation, and the synthesizer just enu-

merates every height h and searches for syntax trees of fixed-height h, starting from 1, until a

solution is found. Notice that this height-based enumeration guarantees to find the smallest

possible solution, which is critical for many synthesis tasks that prefer compact solutions.

Whenever p is solved as a Type-A subproblem of another parent problem, the solution is

used to generate the corresponding Type-B subproblem, for which the synthesis procedure

repeats similarly.

3.3.2 Subproblem Graph

Notice that a problem can be split in multiple ways, split problem can be further split,

and a subproblem can be generated and shared between multiple parent problems. We use

a subproblem graph to represent the relations between problems.

Definition 3.3.1 (Subproblem Graph). Given a SyGuS problem S, a subproblem graph

with respect to S is a directed acyclic graph (DAG) with a unique source (the node with no

incoming edge) such that:

• every node represents a SyGuS problem; in particular, the source node represents S;

69

Φ ∧∆ ∧Ψ

Φ ∧∆ ∆ ∧Ψ

∆

source

P Q

R.

Figure 3.3. Example of subproblem graph.

• if there is an edge from the node representing P to the node representing Q, then Q

is a type-A subproblem of P based on any divide-and-conquer strategy described in

Section 3.6 (subterm-based, fixed-term-based, and weaker-spec-based).

For example, Figure 3.3 shows the subproblem graph, in which every node is annotated

with the specification of the problem it represents. The source node represents the full spec-

ification Φ ∧∆ ∧ Ψ. According to weaker-spec-based division (see Section 3.4.3), there are

two Type-A subproblems Φ∧∆ and ∆∧Ψ, represented by the two successors P and Q, re-

spectively. Moreover, the two subproblems can be further split to even simpler subproblems,

among which R is their common subproblem because the specification ∆ is the common

conjunct of P and Q.

3.3.3 Cooperative Synthesis Algorithm

Algorithm 3 presents the overall cooperative synthesis algorithm. The algorithm takes as

input a SyGuS problem (f, Φ,G) and maintains three data structures. PG is a subproblem

graph with respect to the synthesis problem, initially built by buildGraph(f, Φ,G) (line 2).

The procedure just builds a graph with a single source node representing Φ. DedQueue is

a queue of (sub)problems to be solved by deduction; EnumQueue is a priority queue of

(sub)problems to be solved by height-based enumeration. A (sub)problem of priority h is to

be solved by fixed-height synthesis at height h (cf. Algorithm 4). Initially, EnumQueue is

empty and DedQueue contains the source node of PG only.

The main part of the algorithm is a cooperative loop (lines 6 – 23) of deductive and

enumerative synthesis which ends when a solution to the original problem is found. In each

70

input : A SyGuS problem (f, Φ,G)
output: A solution λx.e(x), if any; otherwise ⊥

1 def cooperative-synth(f, Φ, G):
2 PG← buildGraph(f , Φ, G)
3 DedQueue← emptyQueue()
4 EnumQueue← emptyPriorityQueue()
5 enqueue (DedQueue, PG.source)
6 repeat
7 if DedQueue ̸= ∅ :
8 p← dequeue (DedQueue); h← 0
9 p.solution ← deduct (p)

10 if p.solution = ⊥ :
11 p.succ ← TypeASubproblems (p)
12 foreach c ∈ p.succ :
13 enqueue (DedQueue, c)
14 elif EnumQueue ̸= ∅ :
15 (p, h)← dequeue (EnumQueue)
16 p.solution ← fixed-height (p, h)
17 if p.solution = ⊥ :
18 enqueue (EnumQueue, p, h + 1)
19 elif p ̸= PG.source :
20 foreach t ∈ p.pred :
21 t← TypeBSubproblem(t, p.solution)
22 enqueue (DedQueue, t)
23 until PG.source.solution ̸= ⊥ ;
24 return PG.source.solution

Algorithm 3: Cooperative synthesis framework.

iteration of the loop, the algorithm dequeues one task p from DedQueue or EnumQueue.

As deductive synthesis has higher priority, the task p is always dequeued from DedQueue if

it is nonempty; otherwise from EnumQueue.

If p is from DedQueue (lines 7 – 13), it will be handled by the deduct function which

conducts pure deductive synthesis (which will be elaborated in Section 3.6). If p can’t be

solved, the algorithm will expand PG with all possible type-A subproblems of p, adding

each one as successor of the node representing p. All these newly created problems will

be added to DedQueue for solving in future iterations. If p is from EnumQueue and has

priority h (lines 14 – 16), the algorithm invokes the fixed-height function (cf. Algorithm 4

in Section 3.5) to find a solution of p at height h.

71

For both cases, if no solution to p is found, the problem will be added back to EnumQueue

with priority h + 1 (lines 17 – 18).

2
 Otherwise, if a solution of p is found, as long as p is

not the original problem, the solution will help simplify every parent problem of p to the

corresponding type-B subproblem. The algorithm does the simplification through the Type-

BSubproblem procedure and add the updated problem to DedQueue for future iterations

(lines 19 – 22).

Example 3.3.1. Let us consider Example 3.2.6 and see how Algorithm 3 solves this problem.

Recall that there is no specific rule in our deductive synthesis algorithm for the ad hoc

operator qm, hence the deduct function cannot solve the original problem and adds it

to EnumQueue. However, the algorithm finds that the reference implementation has a

subterm ite(y ≥ z, y, z), which allows a subterm-based division (cf. Section 3.4.1). Again,

the deduct function cannot solve subproblem A and add it to EnumQueue. Then in the

next several iterations, the fixed-height function takes over and tries to find a height-1

solution of the original problem or the subproblem and fails; when the height is moved up to

2, solution (3.4.1) is found for subproblem A and simplify the original problem to subproblem

B. Finally, fixed-height finds a solution subproblem B at height 2 as well and combine the

two solutions to form the final solution to the whole problem, as shown in Equation 3.4.2 .

The whole procedure takes only 4 seconds to solve this problem. In contrast, this problem

can be solved by neither height-based enumeration nor pure deduction alone. State-of-the-art

SyGuS solver CVC4 [97] spent 28 minutes to solve it and EUSolver [4] timed out.

3.4 Divide-And-Conquer Strategies

In this section, we describe the three divide-and-conquer strategies we developed for

splitting SyGuS problems. The cooperative synthesis technique can be extended with more

splitting strategies in the future. We explain each of them through examples.
2

 ↑ Note that h is set to 0 for the deduction case and the next search will be at height 1.

72

3.4.1 Subterm-Based Division

Let us start from subexpression-based division. Let us continue on Example 3.2.6 . The

solution to the SyGuS problem (max3, Φ,Gqm) (Expression 3.2.2) has a large syntax-tree

representation (height 6 and size 13) and is difficult to be synthesized. If a synthesizer is

stuck with this problem, one may wonder if it is possible to synthesize a simpler, auxiliary

function equivalent to a subexpression of the target expression (3.2.1). For example, can

we synthesize an auxiliary function aux such that aux(y, z) = ite(y ≥ z, y, z)? Then the

original synthesis problem has been divided into two subproblems:

• Subproblem A: synthesize the auxiliary function aux;

• Subproblem B: once an implementation of aux is found, add aux to the grammar and

synthesize f with the new grammar.

For example, assume the following solution for Subproblem A has been found:

aux(x1, x2) def= x1 + qm(x2 − x1, 0) (3.4.1)

Then we can extend the grammar Gqm with the new operator aux. The grammar extension

forms Subproblem B and allows us to find the following solution:

f(x, y, z) def= aux(z, aux(x, y)) (3.4.2)

Note that both solutions (3.4.1) and (3.4.2) are small and easier to be synthesized than the

original problem, and inlining the implementation of aux in (3.4.1) into (3.4.2) just yields

the expected solution (3.2.2).

Formally, this divide-and-conquer strategy is formulated as the rule Subterm in Fig-

ure 3.4 : when e′ is a subexpression of e (denoted as e′ ≼ e), we first solve f(y) = e′ as

subproblem A, then solve g(y, e′) = e as subproblem B, which is simpler than the original

problem because g is allowed to use an extra argument e′.

73

Subterm
(T , f, f(y) = e′,G)⇝ P (T , g, g(y, e′) = e,G)⇝ Q

(T , f, f(y) = e,G)⇝ λy, y′.Q(y, y′)[P (y)/y′]
if e′ ≼ e

FixedTerm
(T , g, Φ[e/f(e)] ∨ Φ[g/f],G)⇝ P (T , f, f(y, y′) = ite(Φ[e/f(e)], e, y′),G)⇝ Q

(T , f, Φ,G)⇝ λy.Q(y, P (y))
if f(e) ∼ e ≼ Φ for a connective ∼

WeakerSpec
(T , f, Ψ,G)⇝ P (T , g, Φ[λy.

(
P (y)⊕ g(y)

)
/f],G)⇝ Q

(T , f, Φ,G)⇝ P ⊕Q
if T |= Ψ ≼⊕ Φ

Figure 3.4. Deductive rules for divide-and-conquer.

3.4.2 Fixed-Term-Based Division

To understand fixed-term-based division, consider solving Example 3.6.1 using the CEGIS

algorithm. Suppose a candidate solution max2(x, y) is generated, even though it is not the

expected solution, the candidate allows us to divide and simplify the synthesis problem.

Notice that max2(x, y) is a good implementation and satisfies the specification Φ when the

inputs to the program satisfies Φ[max2(x, y)/f]. Therefore, the synthesis problem can be

divided into the following subproblems:

• Subproblem A: synthesize a function g that satisfies the specification only when the

input does not satisfy Φ[max2(x, y)/f]. In other words, the specification for g is

Φ[max2(x, y)/f] ∨ Φ[g/f];

• Subproblem B: Combine max2(x, y) and the synthesized function g to form an im-

plementation that satisfies Φ for all inputs, no matter Φ[max2(x, y)/f] is satisfied or

not.

Formally, this divide-and-conquer strategy can be formulated as the rule FixedTerm in

Figure 3.4 . Note that we apply this strategy only when f(e) ∼ e ≼ Φ, which means f(e) ∼ e

occurs in Φ and ∼ is an arbitrary connective.

74

3.4.3 Weaker-Spec-Based Division

We illustrate how weaker-spec-based division works through the loop invariant synthesis

problem defined in Definition 3.2.7 . Recall that the specification consists of three parts:

pre(x)→ inv(x)︸ ︷︷ ︸
Φ

∧ inv(x)→ inv(trans(x))︸ ︷︷ ︸
∆

∧ inv(x)→ post(x)︸ ︷︷ ︸
Ψ

When the whole synthesis problem is challenging and it is hard to generate appropriate

inv(x) to satisfy Φ, ∆ and Ψ in tandem, one may divide the problem as follows:

• Subproblem A: synthesize an expression P (x) that satisfies Φ ∧∆ (resp. ∆ ∧Ψ);

• Subproblem B: synthesize an expression Q(x) such that P (x) ∧ Q(x) (resp. P (x) ∨

Q(x)) satisfies the original specification Φ ∧∆ ∧Ψ.

Notice that both the two subproblems have weaker specifications than the original problem.

Subproblem A is obviously easier as P (x) only needs to satisfy two of the all three conjuncts.

Subproblem B is also easier: imagine there is a solution Q(x) to the original problem, it is

also a solution to the subproblem B.

In loop invariant synthesis, the solutions P and Q from the subproblems are combined

using conjunction or disjunction. However, weaker-spec-based division allows the combina-

tion P and Q using arbitrary binary functor ⊕. Now we define weaker specification in the

most general way:

Definition 3.4.1 (Weaker Specification). Let (T , f, Φ,G) be a SyGuS problem where f ’s

return type is τ , and let ⊕ be a binary functor whose two input functions and output function

are all of type τ , and ⊕ def= λg1, g2.λy.E(g1(y), g2(y)) where E(x, y) ∈ JG(x, y)K. Then Ψ

is a weaker specification of Φ with respect to ⊕, denoted as T |= Ψ ≼⊕ Φ, if the following

conditions hold:

1. T |= Φ→ Ψ;

2. T |= ∀g1, g2 : Ψ[g1/f] ∧Ψ[g2/f]→ Ψ[g1 ⊕ g2/f];

3. T |= ∀g1, g2 :
(
Ψ[g1/f] ∧Ψ[g1 ⊕ g2/f]

)
→ (Φ[g1/f]→ Φ[g1 ⊕ g2/f]).

75

With this general definition, we formulate the weaker-spec-based division as the rule

WeakerSpec in Figure 3.4 . Note that the loop invariant synthesis example we discussed

above is just instances of the rule, in which ⊕ is instantiated to ∧ or ∨.

3.4.4 Soundness and Completeness

All divide-and-conquer rules in Figure 3.4 are sound, as readers can verify. Although

not all problems are splittable, these rules are complete in the sense that whenever a divide-

and-conquer rule is applicable, the problem can be safely divided into subproblems without

missing any possible solution. We formulate the completeness as the following theorem:

Theorem 3.4.1. Let Ω be a SyGuS problem, and let ΩA and ΩB be a pair of subproblems

obtained by dividing Ω using a divide-and-conquer strategy. If Ω has a solution P , then P is

also a solution to ΩA and ΩB.

Proof. The completeness can be verified for each rule in Figure 3.4 separately. In particular,

if the division is a WeakerSpec division with respect to a weaker specification Ψ ≼⊕ Φ,

then according to Definition 3.4.1 , the first and second conditions guarantee that P is also

a solution to ΩA and ΩB, respectively.

3.5 Fixed-Height Synthesis

Recall that the height-based enumeration algorithm sticks to a fixed size/height limit and

searches for a solution within the limit symbolically, and gradually increase the limit when

a solution of smaller size can’t be found. While the algorithm is straightforward, it has its

own merit and the idea does not seem be explored by any existing techniques. On the one

hand, it still guarantees to synthesize the smallest satisfying program; on the other hand, it

leverages as much power of symbolic solving as possible. In this section, we elaborate how

the fixed-height synthesis component is implemented.

76

input : A SyGuS problem p = (f, Φ,G) and a positive integer h
output: A solution λx.e(x) such that the syntax-tree representation of e(x) is a full

tree of height h, if any; otherwise ⊥
// EΦ is the set of counterexamples for spec Φ

1 def fixed-height(p, h) :
2 f ← p.target; Φ← p.spec; G ← p.grammar
3 if h = 1 :
4 EΦ ← ∅
5 q ← Init(G, h)
6 repeat
7 result← verify(¬Φ[q/f])
8 if result = unsat :
9 break

10 else:
11 EΦ ← EΦ ∪ {result}
12 q ← ind-synth(

∧
e∈E

Φ[e/x], G, h)

13 until q = ⊥;
14 return q

Algorithm 4: Fixed-height synthesis.

3.5.1 Concrete Height Enumeration

Algorithm 3 solves the fixed-height synthesis problem through a function fixed-height.

When the height of the solution’s syntax tree is fixed to h, the synthesis problem is simplified

and usually can be solved purely symbolically. In Algorithm 4 , we present a simple imple-

mentation of fixed-height based on the standard CEGIS framework [3]. The algorithm

assumes there are function verify as the verifier and function ind-synth as the inductive

synthesizer for fixed-height solutions, and maintains a set of counterexamples E. The algo-

rithm starts with a random candidate solution Init(G, h) (line 5). In each following iteration,

the synthesizer proposes a height-h candidate solution q that satisfies the specification when

x is assigned values from E (line 12). Then the verifier checks condition (3.2.4), i.e., whether

the candidate satisfies the specification Φ (line 7). If the result is unsat, then q is the desired

implementation and the algorithm terminates; otherwise the verifier reports a counterexam-

ple as the witness of the failed verification and add it to E (line 11). Then the CEGIS loop

continues with the next iteration repeatedly, until a solution is found.

77

Parallelization. While the näıve height-based enumeration in Algorithm 3 incremen-

tally searches all possible heights of the decision tree, starting from 1, the enumeration can

be naturally parallelized. If there are n cores available on the machine, the parallelized

version runs the fixed-height algorithm at n different heights on n threads while sharing

the set of counterexamples among them with proper synchronization. The algorithm starts

with the n smallest heights, {1, . . . , n}. It also maintains a variable k as the next height to

search, starting from n + 1. Whenever a thread concludes that there is no solution at the

current height, it starts a new CEGIS loop at height k, and the value of k gets increased.

The whole algorithm stops whenever a thread finds a solution.

3.5.2 Symbolic Inductive Synthesis

In Algorithm 4 , verify is just the standard background decision procedure, and ind-

synth is an inductive synthesizer with the assumption that the solution’s height is up to h.

In our framework, this synthesis task is encoded and symbolically solved by the background

decision procedure. We first illustrate the idea with the assumption that the grammar is

GCLIA , then extend the encoding to arbitrary grammar G.

Decision Tree Representation. Let the input SyGuS problem be (f, Φ,GCLIA), then

any implementation of f can be represented in a decision tree normal form, as described in

Figure 3.5 . It is not hard to see that every CLIA expression can be converted to this normal

form. The decision tree representation of a CLIA expression is a binary tree in which every

node with id i contains a vector ci of integer constants and an extra constant di. Then each

decision node (non-leaf node) tests whether ci · (x⊕ (1)) ≥ 0 and according to the test result

proceeds to the “true” child or “false” child. Each leaf node determines the value of the

function as ci · (x⊕ (1)). For example, if f is a binary function and the solution is a binary

max function of height 2: f(x1, x2) def= ite(x1 ≥ x2, x1, x2). It can be represented as the tree

shown in Figure 3.6 . Notice that the full decision tree of height h consists of 2h − 1 nodes,

and the node id’s can be fixed in the range between 0 and 2h − 2. This allows us to reduce

ind-synth to the problem of searching for the vector ci for each node i.

78

Int Const Vector: ci Int Const: di
Atom Expr: e ::= ci · x + di

Atom Cond: α ::= e ≥ 0
Expr: E, E1, E2 ::= e

∣∣∣ ite(α, E1, E2)
Condition: φ ::= α

∣∣∣ ite(α, φ1, φ2)

Figure 3.5. Decision tree normal form.

c1 : (1, 0, 0) c2 : (0, 1, 0)

c0 : (1,−1, 0)

true false

Figure 3.6. Representation of the max2 function.

Interpret Function. Then for a fixed height h, we can build an interpreth function

that interprets the vectors back to the function of height h. For any function f of height

h, its decision tree can be represented as 2h−1 vectors c0, . . . , c2h−1. Then for any vector of

constants d, interpreth essentially interprets the decision tree on d and determines the value

of f(d). In other words, interpreth(c0, . . . , c2h−1, d) = f(d). For example, continuing on the

example of Figure 3.6 . Assume d = (1,−2), then the value of f(d) can be computed as:

interpret2(c0, c1, c2, d)

= ite
(
c0 · d⊕ (1) ≥ 0, c1 · d⊕ (1), c2 · d⊕ (1)

)
= ite

(
c0 · (1,−2, 0) ≥ 0, c1 · (1,−2, 0), c2 · (1,−2, 0)

)

Now to solve ind-synth(
∧

e∈E

Φ[e/x], G, h), we can replace every occurrences of f in Φ[e/x]

with a corresponding interpret function. The resulting CLIA formula involves variables

c0, c1, c2 only and can be solved by a single SMT query.

Extension to General Grammar. We have generalized above encoding to arbitrary

grammar G . As an example, consider the Gqm grammar defined in Figure 3.1a . In the

79

decision-tree representation, non-leaf nodes will represent the qm function invocation, which

can be interpreted by the following adapted interpret2 function:

interpret2(c0, c1, c2, d)

= qm
(
interpret1(c1, d), interpret1(c2, d)

)
= ite

(
c1 · (1,−2, 0) < 0, c1 · (1,−2, 0), c2 · (1,−2, 0)

)
This generalization allows us to solve arbitrary SyGuS problems with the CLIA background

theory (see the General track benchmarks in Section 3.7). We leave further generalization to

other background theories, e.g., bit vectors, to future work.

3.6 The Deductive Component

In this section, we introduce the deductive component of the framework (i.e., the deduct

function in Algorithm 3). This component integrates a set of deductive rules that can

simplify the specification Φ or find a solution directly. The implementation, as shown in

Algorithm 5 , just repeatedly and exhaustively applies these rules to simplify the specification

Φ. If the simplified Φ is already a solution (of the form f(x1, . . . , xn) = e), return the solution;

otherwise return ⊥. As deduction can be performed very efficiently, this component serves

as the first step for all (sub)problems.

Note that our deductive rules are designed as a component for the cooperative synthesis

framework, they are not expected to be complete in any sense. That said, they are already

powerful enough to solve many synthesis problems. For instance, the rules in Figures 3.7

and 3.8 have already superseded the class of Single Invocation Problems, a common class

of problems that can be solved using the counterexample-guided quantifier instantiation

algorithm [97].

We next present deductive rules that are general and applicable to arbitrary grammar,

followed by special simplification for two special classes of problems. To the best of our

knowledge, these rules are not explicitly integrated in any existing deductive synthesizer.

Our framework can also integrate more deductive rules in the future.

80

input : A SyGuS problem p = (f, Φ,G)
output: A solution λx.e(x), if any; otherwise ⊥

1 def deduct(p):
2 f ← p.target; Φ← p.spec; G ← p.grammar
3 Φ← Simplify(f , Φ, G); p.spec ← Φ
4 if IsSolution(Φ, G) :
5 return Φ
6 else:
7 return ⊥

Algorithm 5: Deductive synthesis.

General Deduction. Figure 3.7 shows a set of general deductive rules for arbitrary

grammar. Assuming f is the function to be synthesized, these rules soundly substitute

occurrences of f , arguments or variables with a concrete implementation. Most of the rules

are self explanatory. In particular, the last rule Match applies when the specification is a

reference implementation f(y) = e but e does not conform to the grammar G. In that case,

we can exhaustively match and replace subexpressions of e with interpreted functions in G,

and check if the final expression falls in JGK. For example, let e be x + x + x + x and let G

be a grammar that contains only one operator double(x) def= x + x, then e can be rewritten

to double(double(x)).

Merging and Substituting for CLIA. For GCLIA , a very common grammar for syntax-

guided synthesis, we designed a set of ad hoc rules as illustrated in Figure 3.8 . Intuitively,

these rules find two occurrences of f and merge them into a single occurrence.

Example 3.6.1. Let G be a grammar with only an operator max2(x, y) def= ite(x ≥ y, x, y).

Our deductive synthesis algorithm can synthesize a ternary maximum function f(x, y, z)

using the rewriting sequence shown in Figure 3.9 .

Loop Summary for Invariant Synthesis. We also developed a special class of sim-

plification rules for loop invariant synthesis. The idea is to find a predicate that precisely

summarizes the effect of arbitrary k-steps of loop transformation. Formally, if there exists a

binary predicate fast-trans such that

fast-trans(x, y)⇔ ∃k ≥ 0.transk(x) = y

81

IntEq
f(y) = e ∧Ψ =⇒ f(y) = e ∧Ψ[λy.e/f]

IntNeq
f(y) ̸= e ∨Ψ =⇒ f(y) ̸= e ∨Ψ[λy.e/f]

BoolPos
(f(y) ∨ Φ) ∧Ψ =⇒ Ψ[λy.((¬Φ) ∨ f(y))/f]

if f does not occur in Φ
BoolNeg
(¬f(y) ∨ Φ) ∧Ψ =⇒ Ψ[λy.(Φ ∧ f(y))/f]

if f does not occur in Φ
RemoveVar

Ψ =⇒ Ψ[0/yi] if T |= Φ↔ Φ[y′
i/yi]

RemoveArg
(f, Φ,G) =⇒ (g, Φ[g(e, e′)/f(e, C, e′)],G)

if the i-th arg of f is always constant C
Match
(f, f(y) = e,G) =⇒ (f, f(y) = e′,G)

if e =⇒∗
G e′ and e′ ∈ JG(y)K

Figure 3.7. Deductive rules for arbitrary grammar.

then the original specification can be reduced to a simpler constraint:

((
pre(x) ∧ fast-trans(x, y)

)
→ inv(y)

)
∧
(

inv(y)→ post(y)
)

For example, the loop transformation in Example 3.2.7 can be summarized as:

fast-trans(x, y) ≡ (x < 100 ∧ x ≤ y) ∨ x = y

3.7 Experimental Evaluation

We have prototyped our cooperative synthesis technique as a system called DryadSynth,

3

which supports the CLIA background theory. DryadSynth is written in Java with around

11k LOC, and employs Z3 [41] as the constraint solving engine. This is a relatively small

and lightweight implementation in terms of engineering (Comparing to, e.g. 343k+ LOC of

the CVC4 code base and 33k+ LOC of the EUSolver code base).
3

 ↑ https://github.com/purdue-cap/DryadSynth

82

GeMax
f(e) ≥ e1 ∧ f(e) ≥ e2 =⇒ f(e) ≥ ite(e1 ≥ e2, e1, e2)
LeMin
f(e) ≤ e1 ∧ f(e) ≤ e2 =⇒ f(e) ≤ ite(e1 ≥ e2, e2, e1)
GeMin
f(e) ≥ e1 ∨ f(e) ≥ e2 =⇒ f(e) ≥ ite(e1 ≥ e2, e2, e1)
LeMax
f(e) ≤ e1 ∨ f(e) ≤ e2 =⇒ f(e) ≤ ite(e1 ≥ e2, e1, e2)
Eq
f(e) ≥ e1 ∧ f(e) ≤ e2 =⇒ f(e) = e1

if T |= e1 = e2
NotEq
f(e) ≥ e1 ∨ f(e) ≤ e2 =⇒ f(e) ̸= e1 − 1

if T |= e1 = e2 + 2
CNF
(Φ ∨Ψ1) ∧ (Φ ∨Ψ2) =⇒ Φ ∨ (Ψ1 ∧Ψ2)

if f does not occur in Ψ1 or Ψ2

Figure 3.8. Deductive rules for GCLIA .

To evaluate our algorithms, we compared DryadSynth with state-of-the-art SyGuS solvers,

CVC4, EUSolver and LoopInvGen.

4
 They are winning solvers in recent years’ Sy-

GuS competition and we used the latest version from their public repositories. CVC4 and

EUSolver are two general-purpose solvers that participate in the General, CLIA and INV

tracks. LoopInvGen focuses on INV track only.

Experimental Setting. Experiments were conducted on the StarExec platform [102],

on which each solver is executed on a 4-core, 2.4GHz CPU and 128GB memory node, with a

30-minute timeout. We adopted 403 INV benchmarks, 88 CLIA benchmarks, and 224 General

track benchmarks with the CLIA background theory included in the SyGuS competition of

2019.

5
 We excluded 372 General benchmarks that are based on the BitVector background

theory and 426 INV benchmarks that contain let-macros, which DryadSynth does not

support at present. It wound up with all of 715 benchmarks.
4

 ↑ We omitted other solvers as they focus on other background theories and not comparable with ours. For
example, while Euphony’s AI-guided algorithm [101] is promising, it supports String and BitVector theories
only, and its old algorithm was not competitive in the CLIA theories.
5

 ↑ We slightly adapted 21 of General benchmarks to remove the let-macros.

83

f(x, y, z) ≥ x ∧ f(x, y, z) ≥ y ∧ f(x, y, z) ≥ z ∧(
f(x, y, z) = x ∨ f(x, y, z) = y ∨ f(x, y, z) = z

) CNF===⇒
f(x, y, z) ≥ x ∧ f(x, y, z) ≥ y ∧ f(x, y, z) ≥ z

∧
(
f(x, y, z) ≥ x ∨ f(x, y, z) ≥ y ∨ f(x, y, z) ≥ z

)
∧
(
f(x, y, z) ≤ x ∨ f(x, y, z) ≤ y ∨ f(x, y, z) ≤ z

)
∧ . . .

GeMax,LeMax,...===========⇒
f(x, y, z) ≥ ite(ite(x ≥ y, x, y) ≥ z, ite(x ≥ y, x, y), z)
∧ f(x, y, z) ≤ ite(ite(x ≥ y, x, y) ≥ z, ite(x ≥ y, x, y), z)
∧ . . .

Eq,IntEq======⇒
f(x, y, z) = ite(ite(x ≥ y, x, y) ≥ z, ite(x ≥ y, x, y), z)
Match====⇒ f(x, y, z) = max2(max2(x, y), z)

Figure 3.9. Rewriting sequence for Example 3.6.1 .

We summarize the experimental results through a set of figures. Figures 3.10 and 3.11

compare the number of benchmarks correctly solved within the 30-minute limit and the

number of benchmarks solved the fastest among all solvers, respectively.

6
 Figure 3.12 shows

the comparison of the solvers in terms of the number of benchmarks solved and the total

amount of time spent. Figure 3.13 shows the amounts of time spent for every benchmark,

sorted in ascending order. All figures break down the comparison by tracks. It is noteworthy

that DryadSynth allows us to solve 58 benchmarks which were not solvable by other

synthesizers, while LoopInvGen have 9 benchmarks uniquely solved.

Observation. Observing the figures, we are encouraged by the following facts: 1) Fig-

ures 3.10 and 3.11 show that DryadSynth solved and fastest solved more benchmarks

than all other solvers in all tracks. 2) Figure 3.12 indicates that DryadSynth solved

more CLIA and General benchmarks than all other solvers, with less total time spent. 3)

Figure 3.13 shows that DryadSynth has better scalability than all other synthesizers: al-

though DryadSynth had a constant overhead on easier-to-solve problems, the solving time

increases more mildly toward more challenging benchmarks than other synthesizers.
6

 ↑ Following the criterion of SyGuS competition, the time amounts are classified into buckets of pseudo-
logarithmic scales: [0, 1), [1, 3), [3, 10), . . . , [1000, 1800).

84

346
287

171
272

88
85

82

188

141

166

0

90

180

270

360

450

540

630

DryadSynth CVC4 EUSolver LoopInvGen

INV CLIA General

Figure 3.10. Solved benchmarks (breakdown by tracks).

Table 3.1. Number of smallest solutions and median of solution size (in small
text). Best numbers in grey.

Track DryadSynth CVC4 EUSolver LoopInvGen
INV 132 38 118 26 171 3 220 7
CLIA 56 278.5 56 361 67 201.5 -

General 141 19 124 19 166 19 -

In summary, our cooperative synthesis technique outperforms state-of-the-art synthesiz-

ers in both scalability and diversity of the solved problems, and tends to be a general and

efficient synthesis engine for syntax-guided synthesis.

Remark: We also roughly compared the size of solutions as our deductive compo-

nent does not control the solution size, as shown in Table 3.1 . Based on the number of

smallest solutions

7
 and the median size of solutions for the commonly solved benchmarks,

DryadSynth is slightly better than CVC4 but worse than EUSolver (purely enumerative)

and LoopInvGen (for INV track only).
7

 ↑ Following the criterion of SyGuS competition, the size amounts are classified into buckets of pseudo-
logarithmic scales: [1,10), [10,30), [30,100), [100,300), [300,1000), ≥ 1000.

85

217 208

28

216

83 72

28

161

106

77

0

75

150

225

300

375

450

DryadSynth CVC4 EUSolver LoopInvGen

INV CLIA General

Figure 3.11. Fastest solved benchmarks (breakdown by tracks).

Ablation Studies. To evaluate whether the combination of enumerative and deduc-

tive synthesis improves the performance, we also compare DryadSynth, in which the

full-fledged cooperative synthesis framework is implemented, with our implementation of

the plain height-based enumeration synthesis algorithm (Algorithm 4), the plain deductive

synthesis algorithm (Algorithm 5), and our cooperative synthesis framework with the height-

based enumeration synthesis algorithm replaced by EUSolver, a representative enumerative

synthesizer.

Figure 3.14 compares the solving time of the full-fledged cooperative synthesis framework

and the plain height-based enumeration synthesis algorithm on all benchmarks. As the figure

illustrates, with the help of divide-and-conquer deduction, our cooperative synthesis clearly

outperformed the plain height-based enumeration for the vast majority of all benchmarks.

The plain height-based enumeration procedure performed slightly better for several easier-

to-solve problems, though, as they are simple enough and divide-and-conquer cannot help

much.

Figure 3.15 shows the number of solved benchmarks by the plain deductive synthesis

algorithm (per category) and the number of extra benchmarks solved with the help of the

86

DryadSynth
CVC4

EUSolver

LoopInvGen
0

7500

15000

22500

30000

0 75 150 225 300 375 450 525 600

To
ta

l s
ol

vi
ng

 ti
m

e
(s

ec
)

Number of solved benchmarks (All tracks)

DryadSynth
CVC4

EUSolver

0

400

800

1200

1600

2000

0 15 30 45 60 75 90

To
ta

l s
ol

vi
ng

 ti
m

e
(s

ec
)

Number of solved benchmarks (CLIA)

DryadSynth

CVC4
EUSolver

LoopInvGen

0

4000

8000

12000

16000

0 60 120 180 240 300 360

To
ta

l s
ol

vi
ng

 ti
m

e
(s

ec
)

Number of solved benchmarks (INV)

DryadSynth
CVC4

EUSolver

0

2500

5000

7500

10000

12500

0 40 80 120 160 200
To

ta
l s

ol
vi

ng
 ti

m
e

(s
ec

)

Number of solved benchmarks (General)

Figure 3.12. Comparison of solvers on total solved benchmarks and total solving time.

height-based enumeration (per category). Figure 3.15 shows that among all the benchmarks

solved by the cooperative synthesis framework, only 32.6% of them were solved by pure

divide-and-conquer deduction. The vast majority of all benchmarks were further solved with

the help of height-based enumeration.

Figure 3.16 compares the amounts of time spent for benchmarks between the vanilla

DryadSynth and a version using EUSolver as the enumerative synthesis component. In

the EUSolver-backed DryadSynth, every invocation to the fixed-height synthesis algorithm

(Algorithm 4) is replaced with a query to EUSolver. As we could not find a proper way to

control the search space when invoking EUSolver, the query to EUSolver searches with un-

bounded height. Therefore, while our height-based enumeration was parallelized, it became

ineffectual to parallelize EUSolver. We omitted those benchmarks purely solved by the de-

ductive synthesis algorithm. That wound up with a comparison on 496 benchmarks. The

87

0.01

0.1

1

10

100

1000
So

lv
in

g
tim

e
(s

ec
)

Benchmarks (All tracks)

DryadSynth CVC4 EUSolver LoopInvGen

0.01

0.1

1

10

100

1000

So
lv

in
g

tim
e

(s
ec

)

Benchmarks (CLIA)

DryadSynth CVC4 EUSolver

0.01

0.1

1

10

100

1000

So
lv

in
g

tim
e

(s
ec

)

Benchmarks (INV)

DryadSynth CVC4 EUSolver LoopInvGen

0.01

0.1

1

10

100

1000

So
lv

in
g

tim
e

(s
ec

)

Benchmarks (General)

DryadSynth CVC4 EUSolver

Figure 3.13. Solving time per benchmark in increasing order.

figure indicates that the vanilla DryadSynth consistently performed better and solved 135

more benchmarks than the EUSolver-backed DryadSynth.

In short, our studies show that the cooperation of our enumerative and deductive algo-

rithms improves the performance from the standalone enumeration, and solves more bench-

marks than the standalone deduction. Our height-based enumeration algorithm also per-

forms better than an existing enumeration algorithm when serving as the enumerative syn-

thesis component.

3.8 Related Work

Syntax-Guided Synthesis. As we mentioned in Section 3.1 , the most important di-

mension along which we characterize existing syntax-guided synthesis approaches is their syn-

thesis strategies. For example, among the winning SyGuS synthesizers we compared with,

EUSolver [4] adopts a purely enumerative search strategy, and CVC4 [97] solves synthesis

88

0.1

1

10

100

1000

0.1 1 10 100 1000

So
lv

in
g

tim
e

by
 h

ei
gh

t-
ba

se
d

en
um

er
at

io
n

(s
ec

)

Solving time by cooperative synthesis (sec)

Figure 3.14. Cooperative synthesis vs. Plain height-based enumeration.

86
14

103

2
332

85

CLIA-deduct INV-deduct General-deduct

CLIA-coop INV-coop General-coop

Figure 3.15. Cooperative synthesis vs. Plain deduction.

problems purely symbolically through a procedure called counterexample guided quantifier

instantiation. The Counterexample-Guided Inductive Synthesis (CEGIS) framework [90]

has been a common theme underlying several solvers which differ in how the synthesizer

generates candidates from counterexamples: Sketch [33], [76] solves constraints that encode

the counterexamples; Alchemist [103] and ICE-DT [104] find likely candidates using learning

algorithms.

89

0.1

1

10

100

1000

So
lv

in
g

tim
e

(s
ec

)

Benchmarks

DryadSynth DryadSynth-EUSolver-backed

Figure 3.16. Vanilla DryadSynth vs. EUSolver-backed DryadSynth.

The decision tree representation for fixed-height synthesis (Sec 3.5.2) is similar to the

representations used in the ICE-DT learning algorithm [104] and the enumerative search

algorithm underlying EUSolver [4]. Our decision tree for CLIA (e.g., Figure 3.6) is different:

it assumes a fixed height for the decision tree and represents the whole function as a vector

of coefficients, and helps us encode the fixed-height synthesis problem to a CLIA query.

A lot of general search-based algorithms for syntax-guided synthesis have been devel-

oped in the past few years, including learning-based ones [72], [103], [104] and enumerative

ones [105], [106]. Caulfield et al. [107] identified several decidable fragments of synthesis

problems in the theories of EUF and BitVector. The SyGuS solver Euphony [101] pre-

dicts the likelihood of candidate programs, and enumerates them starting from the most

likely correct candidates. Their algorithm focuses on theories of String and BitVector.

Combining Concrete and Symbolic Search. The idea of height-based enumeration

is inspired by a recent trend of combining concrete and symbolic search, but differs from

existing approaches in the target program and/or the enumeration method.

The work of Gulwani et al. [108] is, to the best of our knowledge, the first attempt

of combining enumerative and symbolic search. Their system enumerates the number of

components and encodes each case as a symbolic constraint. The Adaptive Concretization

algorithm [84], [85] developed for Sketch is another instance of enumerative-symbolic com-

bination. As a Sketch-based algorithm, adaptive concretization supports a general class

of SyGuS problems. Its algorithm statistically determines a class of highly influential un-

knowns and explicitly enumerates all possible values of these unknowns. Unlike our decision-

90

tree-based enumeration, their enumeration strategy is not supported by integer arithmetic

decision procedures and seems not competitive in synthesizing CLIA functions [82]. Syn-

quid [86] synthesizes recursive functional programs using an algorithm that enumerates the

top part of the program and synthesizes the remaining part of the program through liquid

abduction. Hades [87] is a system that synthesizes transformations on hierarchical data

trees. A key component of Hades is an algorithm for synthesizing path transformations

from examples, which enumerates all possible partitions of the examples, checks the unifi-

ability of each partitioned set using SMT solvers, and combines the unifiers into a decision

tree through machine learning.

Our height-based enumeration is different: the shapes (or sketches) of the syntax tree

are not explicitly enumerated or learned, but grouped by their heights and then enumerated

and solved symbolically. This is a nice combination as it still guarantees to synthesize the

smallest satisfying program while leveraging more power of symbolic solving. To the best of

our knowledge, this idea is not explored by any existing techniques.

Deductive Synthesis. There has been significant research effort on deductive synthesis.

Spiral [5] is an automatic system that synthesizes digital signal processing algorithms and

programs. Paraglide [7] derives algorithms for concurrent programs from their sequential

implementations using domain specific knowledge to constraint the search space. Fiat [6]

also utilizes deductive synthesis to synthesize abstract data types that package methods

with private data. As an interactive system, the synthesizer also requires user’s guidance

to help with the synthesis. Recently, Polikarpova et al. [96] present SusLik as a deductive-

based synthesizer that generates imperative heap-manipulating programs. The synthesizer

takes a pair of pre- and post- conditions written in separation logic as input and derives the

programs based on a set of deductive rules with structural constraints of the heap baked

in. Above deductive synthesizers are all designed to serve a specific application and seem

hard to extend to other synthesis purposes, as domain specific knowledge is critical for these

systems. Our approach is more general and not limited to a fixed grammar.

Combining Deduction and Enumeration. We are not the first to combine deduction

and enumeration. λ2 [98] and FleshMeta [99] have used deduction in novel ways (inverse

semantics or refutation) to decompose the synthesis task and guide the program search.

91

They can be perceived as special type-directed search algorithms [81] and comparable to

other search strategies. More recently, Morpheus [88] also combines deduction and enu-

meration to synthesize programs manipulating tabular data. Morpheus uses enumerative

search to find possible candidate programs and uses deduction to prune the search space.

With similar ideas, Neo [100] synthesizes programs in several domains, including tabular

data transformation and list manipulation, by supplying a DSL of the target domain. Our

deduction-enumeration combination is different from the techniques above: it repeatedly per-

forms divide-and-conquer and solves subproblems by deduction or enumeration separately.

Li et al. [109] present a technique for searching proofs for program correctness. They

use abductive inference to decompose the verification task to several lemmas then discharge

each lemma separately. Our idea of divide-and-conquer deduction is similar to their lemma

abductive inference. The difference from the prior technique is that we focus on syntax-

guided program synthesis and design our own deductive rules that are general enough for

arbitrary grammars.

3.9 Conclusion

We introduced cooperative synthesis, a syntax-guided synthesis technique in which enu-

merative and deductive synthesis strategies are combined for solving SyGuS problems with

CLIA background. The framework repeatedly splits large synthesis problems to smaller

subproblems and have them solved by a deductive synthesis engine or a height-based enu-

meration algorithm. Then the solutions are combined to form a final solution. We found

that, compared to state-of-the-art synthesizers, cooperative synthesis has better scalability

and solved many benchmarks not possible before. This synthesis technique may be extended

to handle other background theories in the future.

92

4. REASONING ABOUT RECURSIVE TREE TRAVERSALS

In this chapter, towards provably-correct optimizations over tree traversals, we present a

fined-grained representation for iterations in tree traversals and an encoding to Monadic

Second-Order logic over trees.

4.1 Introduction

Trees are one of the most widely used data structures in computer programming and

data representations. Traversal is a common means of manipulating tree data structures

for various systems, as diverse as syntax trees for compilers [110], k-d trees for scientific

simulation [111]–[114], and DOM trees for web browsers [115]. Due to dependence and

locality reasons, these traversals may iterate over the tree in many different orders: pre-

order, post-order, in-order or more complex, and in parallel for disjoint regions of the tree.

A tree traversal can be regarded as a sequence of iterations (each executing a code block

on a tree node)

1
 and many transformations essentially tweak the order of iterations for

better performance or code quality, with the hope that no dependence between iterations is

violated.

Matching this wide variety of applications, orders, and transformations, there has been a

fragmentation of mechanisms that represent and analyze tree traversal programs, each mak-

ing different assumptions and tackling a different class of traversals and transformations,

using a different formalism. For instance, Meyerovich et al. [115], [116] use attribute gram-

mars to represent webpage rendering passes and automatically compose/parallelize them,

but the traversals representable and fusible are limited, as the dependence analysis is coarse-

grained at the attribute level. TreeFuser [117] uses a general imperative language to represent

traversals, but the dependence graph it can build is similarly coarse-grained. In contrast,

the recently developed PolyRec [118] framework supports precise instance-wise analyses for

tree traversals, but the underlying transducer representation limits the traversals they can

handle to a class called perfectly nested programs, which excludes mutual recursion and tree

mutation. All these mechanisms are ad hoc and incompatible, making it impossible to
1

 ↑ We call it an iteration because it is akin to a loop iteration in a loop.

93

code
block

run

Runtime Iterations

Break down

Dependences between

 Iterations

Abstract

r

u

nil
Cc0, Cc1

v

w

Lmain, Ls9

Ls6

Ls1

Ls5, Ls3

Configurations

Encode

Encode

!"#$% &' ("% $% &) *!

MSO Formulae

Solve

MONA Solver(Section 2)

(Section 3)

.retreet

Traversal

Data Structure

(Section 4)

Figure 4.1. Retreet reasoning framework

represent more complex traversals or combine heterogeneous code transformations. For in-

stance, a simple, mutually recursive tree traversal is already beyond the scope of all existing

approaches (see our running example later).

Therefore, toward automated reasoning about tree traversals arising from emerging com-

puting applications, we believe that there are two fundamental research questions. First,

how to generally represent tree traversals and analyze the dependences between iterations?

An expressive language in which one can freely write and combine complex tree traversals

is a precursor of handling many new applications. Second, how to automatically verify the

validity of subtle transformations between tree traversals? From the perspective of static

analyses, the key challenge is how to design an appropriate abstraction of the program such

that it is as precise as possible yet amenable for automated reasoning. Our answers to these

questions are Retreet, a general framework (as illustrated in Figure 4.1) in which one

can write almost arbitrary tree traversals, reason about dependences between iterations of

fine granularity, and check correctness of transformations automatically. This framework

features an abstract yet detailed characterization of iterations, schedules and dependences,

which we call Configuration, as well as a powerful reasoning algorithm.

94

In this paper, we first present Retreet (“REcursive TREE Traversal”) as an expressive

intermediate language that allows the user to flexibly describe tree traversals in a recur-

sive fashion (Section 4.2). Remarkably, Retreet can express mutually recursive traver-

sals, which cannot be handled by existing techniques. Second, we propose Configuration

as a detailed, stack-based abstraction for dynamic instances in a traversal (Section 4.3).

Intuitively, a configuration profiles the call stack maintained during the execution; it pre-

serves the full computation history except for function calls, i.e., recursive calls become

abstract and may return arbitrary values. Furthermore, this abstraction can be encoded

to Monadic Second-Order (MSO) logic over trees, which allows us to reason about depen-

dences and check data-race-freeness and equivalence of Retreet programs (Section 4.4).

The encoded formulae can be checked using MSO-based decision procedures such as the one

implemented in Mona [119]. Our framework is sound and incomplete. In other words, all

verified programs are indeed data-race-free/equivalent, but there is no guarantee that all

data-race-free/equivalent programs can be verified. Therefore, finally, we show our frame-

work is practically useful by synthesizing or verifying provably-correct optimizations for four

different classes of programs, including real-world applications such as CSS minification and

Cycletree routing, for the first time. One of these case studies also shows how Retreet is

integrated with other MSO-based analysis techniques to verify list-traversal transformations

that cannot be handled by Retreet alone (Section 4.5).

4.2 A Tree Traversal Language

In this section, we present Retreet, our imperative, general tree traversal language.

While Retreet is syntactically simple and not intended to serve as an end-user program-

ming language, we envision Retreet as an intermediate language for automatic analyses

and many language features commonly used in practice should be translated to Retreet

through a preprocessor. See more discussion in Section 4.2.1 .

Retreet programs execute on a tree-shaped heap which consists of a set of locations.

Each location, also called node, is the root of a (sub)tree and associated with a set dir of

95

dir ∈ Loc Fields v ∈ Int Vars n ∈ Loc Vars
f ∈ Int Fields g : Function IDs

LExpr ::= n
∣∣ LExpr.dir

AExpr ::= 0
∣∣ 1

∣∣ n.f
∣∣ v

∣∣ AExpr + AExpr
∣∣ AExpr−AExpr

BExpr ::= LExpr == nil
∣∣ true

∣∣ AExpr > 0
∣∣ ! BExpr∣∣ BExpr && BExpr

Assgn ::= n.f = AExpr
∣∣ v = AExpr

Block ::= v̄ = g(LExpr, AExpr)
∣∣ Assgn+

Stmt ::= Block
∣∣ if (BExpr) Stmt else Stmt

∣∣ Stmt ; Stmt∣∣ {Stmt ∥ Stmt}
Func ::= g(n, v̄){ Stmt }
Prog ::= Func+

Figure 4.2. Syntax of Retreet

pointer fields and a set f of local fields. Pointer fields dir contain the references to the

children of the original location; local fields f store the local Int values.

The syntax of Retreet is shown in Figure 4.2 . A program consists of a set of functions;

each has a single Loc parameter and optionally, a vector of Int parameters. We assume every

program has a Main function as the entry point of the program. The body of a function

comprises Blocks of code combined using conditionals, sequentials and parallelizations.

A block of code is either a function call or a straight-line sequence of assignments. A

function call takes as input a LExpr which can be the current Loc parameter or any of its

descendants, and a sequence of AExpr ’s of length as expected. Each AExpr is an integer

expression combining Int parameters and local fields of the Loc parameter. Non-call as-

signments compute values of AExpr ’s and assign them to Int parameters, fields or special

return variables. Note that the functions in Retreet can be mutually recursive, i.e., two

or more functions call each other. However, there is a special syntactic restriction: every

function g(n, v̄) should not call, directly or indirectly through inlining, itself, i.e., g(n, . . .)

with arbitrary Int arguments (see more discussion below).

The semantics of Retreet is common as expected and we omit the formal definition.

In particular, all function parameters are call-by-value; the parallel execution adopts the

statement-level interleaving semantics (every execution is a serialized interleaving of atomic

statements).

96

Odd(n)
if (n == nil) return 0
else return Even(n.l) + Even(n.r) + 1

Even(n)
if (n == nil) return 0
else return Odd(n.l) + Odd(n.r)

Main(n)
{ o = Odd(n) ∥ e = Even(n) }
return (o, e)

Figure 4.3. Mutually recursive traversals (original)

Example 4.2.1. Figure 4.3 illustrates our running example, which is a pair of mutually

recursive tree traversals. Odd(n) and Even(n) count the number of nodes at the odd and

even layers of the tree n, respectively (n is at layer 1, n.l is at layer 2, and so forth). Odd and

Even recursively call each other; and the Main function runs Odd and Even in parallel, and

returns the two computed numbers. Note that the mutual recursion is beyond the capability

of all existing automatic frameworks that handle tree traversals [115]–[118], [120], [121].

4.2.1 Discussion of the Language Design

We remark about some critical design features of Retreet. Served as an intermediate

language for analyses, Retreet is semantically expressive but syntactically simple. In a

nutshell, Retreet has been carefully designed to be maximally permissible of describing

tree traversals, yet encodable to the MSO logic.

Key Language Restrictions

Three major design features make possible our MSO encoding presented in Section 4.4 :

obviously terminating, single node traversal and no-tree-mutation. Despite these restrictions,

Retreet is still more general and more expressive than the state of the art—to the best of

our knowledge, all the restrictions we discuss below can be seen in all existing approaches

(find more discussion in Section 4.6).

97

Termination: Retreet allows obviously terminating tree traversals. Any function g(n, v̄)

should not contain recursive calls to g(n, . . .), regardless of directly in Stmt or indirectly

through inlining arbitrarily many calls in Stmt. The restriction guarantees not only

the termination, but also a bound of the steps of executions. With this restriction,

every function call makes progress toward traversing the tree downward. Hence, the

height of the call stack will be bounded by the height of the tree, and every statement

2

is executed on a node at most once. Therefore, running a Retreet program P on a

tree T will terminate in O(|P |h(T)) steps where h(T) is the height of the tree. This

bound is critical as it allows us to encode the program execution to a tree model, with

only a fixed amount of information on each node. In contrast, Retreet excludes the

following program:

A(n, k)

if (k <= 0) return 0

else return A(n, k–1) + ...

The program terminates, but the length of execution on node n is determined by

the input value k, which can be arbitrarily large and makes our tree-based encoding

impossible.

Single node traversal: In Retreet, all functions take only one Loc parameter. Intu-

itively, this means the tree traversal is not allowed to manipulate more than one node

at one time. For example, traversing two trees at the same time to find the max height

is not allowed in Retreet. This is a nontrivial restriction and necessary for our MSO

encoding. The insight of this restriction will be clearer in Section 4.4 .

No tree mutation: Mutation to the tree topology is generally disallowed in Retreet.

General tree mutations will possibly affect the tree-ness of the topology, where our

tree-based encoding cannot fit in.
2

 ↑ Notice that two different call sites of the same function are considered two different statements. So the
number of statements is bounded by the size of the program.

98

Other Restrictions for Simplification

As an intermediate language, Retreet has more syntactic restrictions, which are not

fundamental and does not jeopardize the expressivity. In particular, Retreet does not

support loops, global variables, return statements or integer arguments. These restrictions

are not essential because loops or global variables can be rewritten to recursion and local

variables, respectively. Return values or integer arguments can also be rewritten to local

fields. As long as the rewritten program satisfies the real restrictions we set forth above, it

can be handled by our framework. See our discussions below.

Loop-freeness: The Retreet language does not allow iterative loops. Recall that

Retreet is meant to describe tree traversals, and the no-loop restriction guarantees that the

program manipulates every node only a bounded number of times, and hence the termination

of the program. That said, most typical loops or even nested loops traversing a tree only

compute a limited number of steps on each node, and hence can be naturally converted to

recursive functions in Retreet.

No global variables: We omit global variables in Retreet. However, it is not difficult

to extend for global variables. Note that when the program is sequential, i.e., no concurrency,

one can simply replace a global variable with an extra parameter for every function, which

copies in and copies out the value of the global variable. In the presence of concurrency, we

need to refine the current syntax to reason about the schedule of manipulations to global

variables. Basically, every statement accessing a global variable forms a separate Block, so

that we can compare the order between any two global variable operations.

No return statements and no integer arguments: We handle recursive calls with

return values with the following preprocessing. For every function, we introduce a special

local field with the function name (if no conflict occurs) in each node to store the return

value of the function call. Each return statement can be rewritten to a writing to the special

local field in the callee (the unique Loc argument of the call). For each recursive call to

a function in the program, we ignore the return value from the call and instead read from

the corresponding special local field of the callee. Recursive calls with integer arguments

are handled with similar preprocessing: the caller writes to special local fields of the callee

99

Odd(n)
if (n == nil) // c0

n.Odd = 0 // s0
else

Even(n.l) // s1
Even(n.r) // s2
n.Odd = n.l.Even +

n.r.Even + 1 // s3

Even(n)
if (n == nil) // c1

n.Even = 0 // s4
else

Odd(n.l) // s5
Odd(n.r) // s6
n.Even = n.l.Odd + n.r.Odd // s7

Main(n)
{ Odd(n) ∥ // s8

Even(n) } // s9
n.Main = (n.Odd, n.Even) // s10

Figure 4.4. Mutually recursive traversals (no-return-value)

such that the callee can read them as integer arguments. After this preprocessing step, the

running example shown in Figure 4.3 are rewritten to the one in Figure 4.4 .

3

For the simplification of presentation, in the rest of the paper, we also assume: all trees

are binary with two pointer fields l and r, every function only calls itself or other functions

on n.l or n.r, and returns only a single Int value (which is rewritten to a special local field),

and every boolean expression is atomic, i.e., of the form LExpr == nil or AExpr > 0. Calls

to other functions on n are always inlined to make all operations on fields of n explicit. In

addition, we assume the program is free of null dereference, i.e., every term le.dir is preceded

by a guard le != nil. Note that relaxing these assumptions will not affect any result of this

paper, because any Retreet program violating these assumptions can be easily rewritten

to a version satisfying the assumptions.

4.2.2 Code Blocks

With assumptions made above, Retreet programs can be decomposed to code blocks,

which are a key to our framework. Each code block is a function call or a sequence of straight-

line, non-call assignments derived from the Block symbol of the grammar (see Figure 4.2). We
3

 ↑ Composed expressions, such as n.l.Even, are used for code readability. Accesses to the special local field
are allowed when n == nil, since the transformed program is not executable and used for analysis only. In
our MSO encoding (described in Section 4.4), isN il is a special MSO predicate.

100

AllFuncs the set of all functions
AllParams the set of all Int function parameters
AllBlocks the set of all blocks
AllCalls the set of all blocks for function calls

AllNonCalls the set of all blocks for straight-line non-call
assignments

Blocks(f) the set of all blocks belonging to a function f
Calls(f) Blocks(f) ∩ AllCalls

Params(f) the set of Int parameters for f
Nodes(T) the set of all nodes in the tree T

Paths(t)
the set of all possible paths (through statement-
level interleaving) to t from the entry point
of the function that t belongs to

Figure 4.5. Commonly used notations

use some necessary notations for blocks, of which the meaning is determined by the syntactic

structure of the program. Figure 4.5 lists common sets of functions, blocks, parameters and

nodes that will be frequently used in this paper.

We also define the possible relations between blocks, as shown in Figure 4.6 . Every

function’s body can be represented as a syntax tree whose leaves are statement blocks and

non-leaf nodes are sequentials, conditionals or parallels. Then the relation between two

statement blocks is determined by their positions in the syntax tree. In particular, when two

blocks s ∼ t belong to the same function f, there are three possible relations, determined by

the least common ancestor (LCA) node of s and t that is a sequential, conditional or parallel.

Example 4.2.2. In our running example (Figure 4.4), there are 11 blocks. We number

the blocks with s0 through s10, as shown in the comment following each block. There

are six call blocks: AllCalls = {s1, s2, s5, s6, s8, s9}; and five non-call blocks: AllNonCalls =

{s0, s3, s4, s7, s10}. Take s6 for example, Path(s6) is just the path from the beginning of

function Even (which s6 belongs to) to s6, i.e., from ¬ c1 to s5 then s6. The ∼ relation holds

between any two blocks from the same group: s0 through s3, s4 through s7, or s8 through

s10. s2 ◁ s7 because s2 calls Even and s7 ∈ Blocks(Even); s5 ≺ s7 because s5 precedes s7;

s0 ↑ s1 because s0 belongs to the if-branch and s1 belongs to the else-branch; s8 ∥ s9 because

they are running in parallel.

101

LCA(s, t) The least common ancestor (LCA) of blocks s
and t in the syntax tree.

s ◁ t s is a function call to f and t ∈ Blocks(f).

s ∼ t s and t are from the same function definition,
i.e., s, t ∈ Blocks(f) for some function f.

s ≺ t LCA(s, t) is a sequential, i.e., s precedes t.

s ↑ t
LCA(s, t) is a conditional, i.e., there is a condi-
tional if (...) then A else B such that s and t
belong to A and B, respectively.

s ∥ t LCA(s, t) is a parallel, i.e., s and t can be exe-
cuted in arbitrary order.

Figure 4.6. Relations between blocks

Lemma 4.2.1. For any two statement blocks s and t, s ∼ t if and only if exactly one of the

following relations holds: s ≺ t, s ↑ t, t ≺ s, t ↑ s or s ∥ t.

Read&Write analysis.

In our framework, data dependences are represented and analyzed at the block level. We

perform a static analysis over the program to extract the sets of local fields and variables

being accessed in each non-call block. Intuitively, we use several read sets and write sets

to represent local fields and global variables being read or written, respectively, in each

statement block.

For every non-call block s, we build the read set Rs by adding all data fields and local

variables that occur on the RHS of an assignment. The data fields can be from the current

node (such as n.v) or a neighbor node (such as n.l.v). The write set Ws can be built similarly:

all data fields and local variables that occur on the LHS of an assignment are added.

4.3 Iteration Representation

As we mentioned above, code blocks (function calls or straight-line assignments) are

building blocks of Retreet programs and are a key to our framework. In our running

example (Figure 4.4), there are 11 blocks. Then the execution of a Retreet program is

a sequence of iterations, each running a non-call code block on a tree node. For example,

102

consider executing our running example on a single-node u (i.e., u.l = u.r = nil), one possible

execution is a sequence of iterations (also called instances in the literature):

(s0, u.l), (s0, u.r), (s7, u), (s4, u.l), (s4, u.r), (s3, u)

Note that every iteration is unique and appears at most once in a traversal, as per the obvi-

ously terminating restriction of Retreet. However, this representation is not sufficient to

reason about the dependences between steps. For example, if the middle steps (s7, u), (s4, u.l)

were swapped, is that still a possible sequence of execution? The question can’t be answered

unless we track back the contexts in which the two steps are executed: (s7, u) is executed in

the call to Even(u) (block s9); (s4, u.l) is executed in the call to Even(u.l) (block s1), which is

further in Odd(u) (block s8). As the two calls are running in parallel, swapping the two steps

yields another legal sequence of execution. Automating this kind of reasoning is extremely

challenging. In fact, even determining if an iteration exists is already undecidable:

Theorem 4.3.1. Determining if an iteration may occur in a Retreet program execution

is undecidable.

Proof. We prove the undecidability through a reduction from the halting problem of 2-

counter machines [122]. We can build a Retreet program to simulate the execution of

a 2-counter machine. Given a 2-counter machine M , every line of non-halt instruction

c in M can be converted to a function in a Retreet program. The function is of the

form fc(n, v1, v2): n is a Loc parameter and v1, v2 are Int parameters. It treats v1, v2 as the

current values of the two counters, updates the two counter values to u1, u2 by simulating the

execution of c, then recursively calls fc′(n.l) if c′ the next instruction. for the halt instruction,

a special function fhalt will pass up the signal by recursive calls, and finally run a special line

of code s on the root. Then M halts if and only if the iteration (s, root) occurs.

4.3.1 Configuration

As precise reasoning about Retreet is undecidable, we propose an iteration representa-

tion called configuration, which is a right level of abstraction for which automated reasoning

103

R# Content
0 (main, r, s8 = 5, . . .)
1 (s9, r, s5 = 3, . . .)
2 (s6, p, . . .)
3 (s1, q, . . .)
4 (s5, w, s1 = 0, s2 = 0)
5 (s3, w)

(a) A configuration

r

p

nil
Cc0, Cc1

q

w m

Lmain, Ls9

Ls6

Ls1

Ls5, Ls3

(b) Represented as labels on the tree

Figure 4.7. Example of configuration encoding

is possible. Intuitively, a configuration looks like a snapshot of the call stack, which consists

of multiple records. The last record describes the current running block as we discussed

above. Each other record describes a call context which includes: the callee block, the single

Loc parameter, and other Int variables’ values. These Int values include: first, for each Int

parameter, the context records its initial value received when the call begins; second, for

each function call within the current call, the context uses ghost variables to predict the

return values.

Example 4.3.1. Figure 4.7a gives an example of a configuration, which consists of 6 records.

The last record (record #5) indicates that the current step is running block s3 on tree node

w, and the current values of local variables. In other records, we only show the callee stack,

the Loc parameter, and other relevant Int variables. For example, the value s8 = 5 means

that the call in s8 is predicted to finish and return value 5, which might be relevant to the

next call context, s9.

Obviously, not all stacks of records are valid configurations. In particular, the beginning

record should run main and the last record should run a non-call block. More importantly,

for any non-beginning record, one of the path conditions

4
 of the block should be satisfied,

i.e., this block of code can be reached from the beginning of the function it belongs to. While

a precise characterization of these constraints is expensive and leads to undecidability as per
4

 ↑ We consider all the finitely many possible statement-level interleavings.

104

Theorem 4.3.1 , we make two key assumptions below which make it possible for configurations

to be abstractions of real call stacks in an execution:

1. all function calls not shown in the stack can return arbitrary values;

2. a call stack is valid if every pair of adjacent records in the stack are consistent.

With these two assumptions, we can now formally define configuration:

Definition 4.3.1 (Configuration). A configuration of length k on a tree T is a mapping

C : [k]→ AllBlocks× Nodes(T)× (AllParams ∪ AllCalls ⇀ Z) such that:

• For any 0 ≤ i < k, C(i) is of the form (s, u, M) where s ∈ AllCalls is a call to a function

f , and M is only defined on Params(f) ∪ Blocks(f).

• The last record C(k) is of the form (s, u, ∅), where s ∈ AllNonCalls.

• The first record C(0) is of the form (main, rootT , ...).

• For any two adjacent records C(i − 1) = (s, u, M), C(i) = (t, v, N), s is a call to

the function that t belongs to (denoted as s ◁ t, see Figure 4.6). Moreover, (s, u, M)

speculatively reaches (t, v, N).

The speculative reachability mentioned in the last condition of the definition above does

not relate to any concrete run of a program and is a key notion that captures the second

assumption we made above. In other words, we consider two adjacent records consistent if

the first one can speculatively reaches the second one. We next define speculative reachability

formally.

4.3.2 Speculative Reachability

Intuitively, a record (s, u, M) speculatively reaches (or just reaches for short) another

record (t, v, N) if an execution triggered by (s, u, M) can lead to the next record (t, v, N).

More concretely, if s is a call to a function f , then one can run f on node u, with initial integer

arguments from M |Params(f). Whenever a function call within the body of f is encountered,

one just skips the call and returns the speculative output from M |Calls(f). The execution

105

wp(n.f = AExpr, φ, M) = φ[AExpr/n.f]
wp(v = AExpr, φ, M) = φ[AExpr/v]
wp(v̄ = t(. . .), φ, M) = φ[M(s)/v]

where s is the id of the current statement
wp(l ; l’, φ, M) = wp(l, wp(l′, φ))

Figure 4.8. Weakest precondition

should lead to a run of block t on node v. If t is also a function call, the input arguments

for the call should match the expected, speculative inputs from N . We call this execution

process a speculative execution:

Definition 4.3.2 (Speculative Execution). Given a function f , a group of initial values

I : Params(f) → Z and a group of speculative outputs O : Calls(f) → Z, a speculative

execution of f with respect to I and O follows the following steps:

1. initialize each parameter p with value I(p), and let the current block c be the first block

in f ;

2. if c is not a call, then simulate the execution of c, and move to the next block;

3. if c is a call of the form v = g(le, īe), then update the special field le.g’s value with

O(c).

With the formal definition above, we can formulate the speculative reachability using

logical formulae. Note that the speculative execution may be nondeterministic due to the

concurrency. However, there are only finitely many possible paths with statement-level

interleaving and each path is of finite length. Then for each concrete path, the speculative

execution of a function is completely deterministic as all initial parameters and return values

from function calls are determined by M . More specifically, for every code snippet l without

branching and every logical constraint φ that should be satisfied after running l, we can

compute the weakest precondition wp(l, φ, M) that must be satisfied before running l. The

definition of wp is shown in Figure 4.8 .

106

Now if s is a call to function g, we can determine if the speculative execution of g with

respect to M hits block t. The path from the entry point of g to t will be a straight-line

sequence of statements of the form

l1; assume(c1); . . . ; assume(cn−1); ln; Block t

where every branch condition is converted to a corresponding assume(ci). Then we can

compute the path condition for t by computing the weakest precondition for every condition

ci on the path:

WP(ci, M) ≡ wp(l1; . . . ; li, ci, M)[M(p̄)/p̄]

where p̄ is the sequence of arguments for g.

Moreover, when t is another call block, we also need to make sure that the initial param-

eters in N match the speculative execution of the above code sequence w.r.t. M . We denote

this condition as Matchs,t(u, v, M, N).

Lemma 4.3.1. Let (s, u, M) and (t, v, N) be two records such that s ◁ t (as defined in Fig-

ure 4.6). Then (s, u, M) speculatively reaches (t, v, N) if (u, v, M, N) satisfies

PathConds,t(u, v, M, N) ≡

Matchs,t(u, v, M, N) ∧
∨

P ∈Paths(t)

(∧
c∈P

WP(c, M)
)

Examples

We present several examples to illustrate how the paths and path conditions are deter-

mined.

Example 4.3.2. Consider a code block s calling a function foo(n, p, r0) { n.f = p + 1 ; r1

= r0; if (n.f < r1) {...} else { foo(n.l, p, r0) // Block t } }. For record (s, u, M) to reach

record (t, v, N), there is only one path on which there is one condition, n.f < r1, which occurs

negatively. In other words, the code sequence reaching t is n.f = p + 1 ; r1 = r0; assume

(n.f ≥ r1); Block t . In addition, since code blocks s and t invoke function foo on nodes n

107

and n.l, respectively, Match(u, v, M, N) should ensure that v is the left child of u, i.e. in this

case, Match(u, v, M, N) ≡ u.l = v. Therefore the path condition can be represented as

PathConds,t(u, v, M, N) ≡M(p) + 1 ≥M(r0) ∧ u.l = v

Example 4.3.3. This example illustrates how paths are determined in the presence of

concurrency. Consider a function foo(n) { v = 0; if (v == 1) { foo(n.l) // Block t; } || v =

1; } in which the recursive call to foo(n.l) is parallel to the assignment v = 1. Since every

possible statement-level interleaving is considered, weakest preconditions for all the three

possible paths are computed: 1) v=0; v=1; assume v==1; foo(n.l); 2) v=0; assume v==1;

v=1; foo(n.l); 3) v=0; assume v==1; foo(n.l); v=1;. The recursive call foo(n.l) is reachable

in the first possible path.

Example 4.3.4. This example illustrates that non-recursive calls can be precisely handled

without any speculation. Consider the code snippet foo(n) { n.f = 0; bar(n); if (n.f == 1) {
foo(n.l) // Block t } } bar(n) { n.f = 1; } where function bar is indeed a single assignment

manipulating the local field f of n. As we mentioned in Section 4.2.1 , during preprocessing of

function foo, calls to other functions on n are always inlined to make all operations on fields

of n explicit. Function call to bar(n) in foo(n) will be inlined to n.f = 1, thus the recursive

call to foo(n.l) is obviously reachable.

4.4 Encoding to Monadic Second-Order Logic

The configuration-based abstraction described above allows us to encode the schedules

and dependences between configurations to Monadic Second-Order (MSO) logic over trees,

a well known decidable logic. Furthermore, some common dependence analysis queries can

be checked by checking MSO formulae. We show the encoding in this section. The syntax

of the logic contains a unique root, two basic operators left and right. There is a binary

predicate reach as the transitive closure of left and right, and a special isNil predicate with

constraint ∀v.
(
isNil(v)→ isNil(left(v)) ∧ isNil(right(v))

)
.

108

4.4.1 Configurations, Schedules and Dependences

First of all, we need to encode configurations we presented in Section 4.3 . Given a

Retreet program, we define the following labels (each of which is a second-order variable):

• for each code block s, introduce a label (a second-order variable) Ls such that Ls(u)

denotes that there exists a record (s, u, . . .) in the configuration;

• for each branch condition c, introduce a label Cc such that Cc(u) denotes that

WP(c, M) is satisfied by a record of the form (s, u, M);

• for each pair of blocks s and t such that s ◁ t, introduce a label Ks,t such that Ks,t(u, v)

denotes that Matchs,t(u, v, M, N) is satisfied by records (s, u, M) and (t, v, N).

Note that these labels allow us to build an MSO predicate PathConds,t as an abstracted

version of the path condition PathConds,t defined in Lemma 4.3.1 :

PathConds,t(u, v) ≡ Ks,t(u, v) ∧
∨

P ∈Paths(t)

(∧
c∈P

Cc(u)
)

Example 4.4.1. The configuration in Figure 4.7a can be encoded to labels on the tree in

Figure 4.7b . Note that the labels Cc0 and Cc1 are labeled on nil nodes only. If a node has a

particular label, the node belongs to the set represented by the corresponding second-order

variable. For example, node u is in Ls6 but nodes r, v and w are not.

As the set of blocks and the set of conditions are fixed and known, we can simply represent

these second-order variables using labeling predicates L ⊆ AllCalls ∪ AllNonCalls× Nodes(T)

and C ⊆ AllConds × Nodes(T) such that L(s, u) if and only if Ls(u), C(c, u) if and only if

Cc(u). In other words, L(s, u) is the syntactic sugar for Ls(u) and C(c, u) is the syntactic

sugar for Cc(u).

Now we are ready to encode configurations to MSO. We define a formula

Configuration(L, C, q, v) below, which means L and C correctly represent a configuration

with (q, v, . . .) as the current record, for some non-call block q:

109

Configuration(L, C, q, v) ≡ L(main, root)

∧ Current(L, q, v) ∧ ∀u.
(
u ̸= v →

∧
s∈AllNonCalls

¬L(s, u)
)

∧ ∀u.
∧

s∈AllCalls

(
L(s, u)→

∨
s◁t

(
Next(L, C, u, s, t)

∧ ∧
t∼t’,t̸=t’

¬Next(L, C, u, s, t’)
))

∧ ∀u.
∧

t∈AllCalls∪AllNonCalls

(
L(t, u)→ Prev(L, C, u, t)

)
∧ ∀u.

∨
C∈ConsistentCondSet

(∧
c∈C
C(c, u) ∧

∧
c/∈C
¬C(c, u)

)

The first three lines claim that main is marked on the root, and q is the only non-call block

marked on the tree, where Current(L, q, v) is a subformula indicating that for the current

node v, a record (q, v, . . .) is in the stack for exactly one non-call block q:

Current(L, q, v) ≡ L(q, v) ∧
∧

q’∈AllNonCalls,q’ ̸=q
¬L(q’, v)

The next two lines, intuitively, say that every record has a unique successor (and prede-

cessor) that can reach to (and from). Predicates Next and Prev are defined as below:

Next(L, C, u, s, t) ≡ ∃v.
(
L(t, v) ∧ PathConds,t(u, v)

)

Prev(L, C, u, t) ≡ ∃v.

(∨
s◁t

(
L(s, v) ∧ PathConds,t(v, u)

∧ ∧
s’◁t,s′ ̸=s

¬
(
L(s’, v) ∧ PathConds,t(v, u)

)))

Next(L, C, u, s, t) indicates that a record (t, v, . . .) exists and is reachable from record

(s, u, . . .). Prev(L, C, u, t) constrains that, for a record (t, u, . . .), there should exist one and

only one record (s, v, . . .) that can reach (t, u, . . .).

The last line makes sure that for each node u, the set of satisfied conditions C is consistent,

i.e.,
∧
c∈C

WP(c, M) is satisfiable for every record (s, u, M). In other words, a consistent condi-

tion set for a node u represents a feasible conditional path from the root of the tree to reach

node u. Notice that this is a linear integer arithmetic constraint and SMT-solvable. Hence

110

r

p

nil
Cc0, Cc1

q

w m

Lmain, Ls9

Ls6

Ls1

Ls6, Ls3

(a) A configuration running s3 on m

r

p

nil
Cc0, Cc1

q

w m

Lmain, Ls9

Ls6

Ls1, Ls7

(b) A configuration running s7 on q

Figure 4.9. Examples of configuration

we can assume the set of all possible consistent condition set, denoted by ConsistentCondSet,

has been computed a priori.

Example 4.4.2. Let us continue on Figure 4.7b . The labels on the tree show a valid instance

of configuration for the running example in Figure 4.4 . The root node r belongs to the second

order variable Lmain. Block s3 running on node w is the only non-call block marked on the

tree and node w is the only node that is running a non-call block. Along with the execution

path (r → p → q → w), each record has a unique successor and predecessor. For example,

node w labeled Ls5 is the only successor of label Ls1 running on node q and s1 ◁ s5. In

contrast, if the label Ls5 on w is changed to Ls2, the whole model is no longer a configuration

because s1 does not call s2 directly (hence the third line of the formula is violated).

4.4.2 Schedules and Dependences

The definition and encoding of configurations above have paved the way for reasoning

about Retreet programs. Given two configurations, a basic query one would like to make

is about their order in a possible execution: can the two configurations possibly coexist? If

so, are they always ordered? Or can they occur in arbitrary order due to the parallelization

between them? To answer these questions, intuitively, we need to pairwisely compare the

111

Ordered(L1,L2, C1, C2) ≡
∨

s,t1,t2
s◁t1,s◁t2,t1≺t2

Consistents,t1,t2(L1,L2, C1, C2)

Parallel(L1,L2, C1, C2) ≡
∨

s,t1,t2
s◁t1,s◁t2,t1∥t2

Consistents,t1,t2(L1,L2, C1, C2)

Figure 4.10. Relations between consistent configurations

records in the two configurations from the beginning and find the place where they diverge.

We define the following predicate:

Consistents,t1,t2(L1,L2, C1, C2) ≡ ∃z.
[

∀v.

(
reach(v, z)→

(∧
s

(
L1(s, v)↔ L2(s, v)

)
∧
∧
c

(
C1(c, v)↔ C2(c, v)

)))
∧ L1(s, z) ∧ L2(s, z) ∧ Next(L1, C1, z, s, t1) ∧ Next(L2, C2, z, s, t2)

]

The predicate assumes that there are two sequences of records represented as (L1, C1)

and (L2, C2), respectively, and indicates that there is a diverging record (s, z, . . .) in both

sequences such that: 1) the two configurations match on all records prior to the diverging

record; 2) the next records after the diverging one are (t1, . . .) and (t2, . . .), respectively, and

they can be reached at the same time (i.e., C1 and C2 agree on the diverging node z).

Blocks t1 and t2 are obviously in the same function. If t1 ̸= t2, there are two possible

relations between them: a) if t1 precedes t2 (or symmetrically, t2 precedes t1), then configu-

ration (L1, C1) always precedes (L2, C2) (or vice versa); b) otherwise, t1 and t2 must be two

parallel blocks, then the two configurations occur in arbitrary order. Both relations can be

described in MSO (see Figure 4.10).

Example 4.4.3. Let the configuration shown in Figure 4.7b be denoted as (L3, C3). Consider

another configuration (L4, C4) shown in Figure 4.9a with execution path r → p → q → m.

Instead of labeling Ls5 and Ls3 on node w, Ls6 and Ls3 is labeled on node m. All the

other labels on nodes r, p, q in L4, C4 are the same with the ones in L3, C3. In this case,

Consistents1,s5,s6(L3,L4, C3, C4) and q is the node where two configurations diverge. Since

s1 ◁ s5, s1 ◁ s6 and s5 ≺ s6, Ordered(L3,L4, C3, C4). In other words, configurations (L3, C3)

and (L4, C4) are ordered.

112

Another set of relations is necessary to describe the data dependences. Recall that we

use a read&write analysis to compute the read set Rs and write set Ws for each non-call

block s. These sets allow us to define two binary predicates: Writes(u, v) if running s on

u will write to v; ReadWrites(u, v) if running s on u will read or write to v. The following

predicate describes two configurations (L1, C1, s, u) and (L2, C2, t, v) with data dependence

if both last records (s, u, . . .) and (t, v, . . .) access the same node z and at least one of the

accesses is a write:

Dependences,t(u, v,L1,L2, C1, C2) ≡ Configuration(L1, C1, s, u) ∧ Configuration(L2, C2, t, v)

∧ ∃z.
((

ReadWrites(u, z) ∧Writet(v, z)
)
∨
(
Writes(u, z) ∧ ReadWritet(v, z)

))

Example 4.4.4. Considering another configuration (L5, C5) with execution path r → p→ q

shown in Figure 4.9b . The labels in configuration (L5, C5) on nodes r, p are the same with

the ones in configuration (L3, C3). Labels Ls1 and Ls7 are on node q. Thus Dependences3,s5

(w, q,L3,L5, C3, C5) is true since s3 is writing n.Odd on node w while s7 is reading n.Odd on

w.

4.4.3 Data Race Detection and Equivalence Checking

Now we are ready to encode some common dependence analysis queries to MSO. A data

race may occur in a Retreet program P if there exist two parallel configurations between

which there is data dependence:

DataRaceJP K ≡
∨

q1,q2∈AllNonCalls
∃x1, x2,L1,L2, C1, C2.

(
Dependenceq1,q2(x1, x2,L1,L2, C1, C2) ∧ Parallel(L1,L2, C1, C2)

)

Theorem 4.4.1. A Retreet program P is data-race-free if DataRaceJP K is invalid.

Proof. If P is not data-race-free, there must exist two iterations, represented as (L1, C1)

and (L2, C2) and running blocks q1 and q2 on nodes x1 and x2, respectively, such that there

is data dependence but no happens-before relation between them. This pair witnesses the

113

validity of the formula DataRaceJP K, as Dependence encodes data dependences and Parallel

encodes the absence of happens-before.

Besides data race detection, another critical query is the equivalence between two Retreet

programs, which is common in program optimization. For example, when two sequential

tree traversals A(); B() are fused into a single traversal AB(), one needs to check if this

optimization is valid, i.e., if A(); B() is equivalent to AB(). Again, while the equivalence

checking is a classical and extremely challenging problem, we focus on comparing programs

that are built on the same set of straight-line blocks and simulate each other. The comparison

is sufficient since the goal of the Retreet framework is to automate the verification of

common program transformations such as fusion or parallelization, which only reorder the

operations of a program.

Definition 4.4.1. Two Retreet programs P and P ′ bisimulate if there exists a mapping

between blocks Sim : AllBlocks(P)→ AllBlocks(P ′) such that

• for any q ∈ AllNonCalls, q and Sim(q) are identical (modulo variable renaming).

• Sim is a bijective mapping between AllNonCalls(P) and AllNonCalls(P ′).

• for any call s ∈ AllCalls(P), s and Sim(s) are calling the same node.

• if s ◁ t in P , then Sim(s) ◁ Sim(t) in P ′.

• if s′ ◁ t′ in P ′ and Sim(t) = t′, then there is a unique s such that s ◁ t and Sim(s) = s′.

• for any nodes u, v, s, speculative values M, N , and any blocks s′, t, t′ such that Sim(s) =

s′ and Sim(t) = t′, the path conditions PathConds,t(u, v, M, N) and

PathConds’,t’(u, v, M, N) are equivalent.

Intuitively, P and P ′ bisimulate if any configuration for P can be converted to a corre-

sponding configuration for P ′, and vice versa. It is not hard to develop a naive bisimulation-

checking algorithm to check if two Retreet programs P and P ′ bisimulate: just enumerate

all possible relations between P blocks and P ′ blocks, by brute force.

114

The correspondence between configurations can be extended to executions, i.e., every

execution of P corresponds to an execution of P ′ that runs exactly the same blocks of

code on the same nodes, and vice versa. To guarantee the equivalence, it suffices to make

sure that the correspondence does not swap any pair of ordered configurations with data

dependences.

5
 In the following formula, the predicates DependenceP

q1,q2 and DependenceP ′

q1,q2

guarantee four configurations, two on P and two on P ′, and pair-wisely bisimulating (as they

end with the same blocks).

ConflictJP, P ′K ≡
∨

q1,q2∈AllNonCalls
∃x1, x2,L1,L2, C1, C2,L′

1,L′
2, C ′

1, C ′
2.
(

DependenceP
q1,q2(x1, x2,L1,L2, C1, C2) ∧ DependenceP ′

q1,q2(x1, x2,L′
1,L′

2, C ′
1, C ′

2)

∧ OrderedP (L1,L2, C1, C2) ∧ OrderedP ′(L′
2,L′

1, C ′
2, C ′

1)
)

Theorem 4.4.2. For any two data-race-free Retreet programs P and P ′ that bisimulate,

they are equivalent if ConflictJP, P ′K is invalid.

Proof. According to Definition 4.4.1 , it can be proved by recursion that there is a one-to-one

correspondence between the configurations for P and the configurations for P ′ such that

the corresponding configurations are running the same block of code. Therefore for any

execution of P , P ′ can run exactly the same set of iterations, and vice versa. Furthermore,

as ConflictJP, P ′K is invalid, the corresponding executions keep the same order for all pairs

of dependent iterations. Therefore the two executions are equivalent. The correctness of the

formula encoding can be verified by readers.

Theorem 4.4.3. The MSO encoding for Theorems 4.4.1 and 4.4.2 is incomplete.

Proof. Since the outputs of speculative execution are arbitrary, the precision of the path

conditions is lost. Consider a function f as shown in Figure 4.11 where height and size recur-

sively compute the height and size of the tree, respectively. Due to speculative execution,

the call to f(n.l) is considered reachable since arbitrary h and s values are legal. However,
5

 ↑ We assume both programs are free of data races; otherwise the equivalence between them is undefined.

115

f(n)
...
h = height(n.l)
s = size(n.l)
if (h == 5 && s == 3)

f(n.l)
...

Figure 4.11. Example of incompleteness

f(n.l) is unreachable during real computation since height of a tree can never be greater the

size of the tree.

4.5 Evaluation

We prototyped the Retreet framework, which implements all techniques presented

above and also incorporates other existing MSO-based analysis techniques. We evaluated

the effectiveness and efficiency of the framework through four case studies: mutually re-

cursive size-counting traversals, CSS minification, cycletree routing, and list sum-and-shift

traversals. For the first two case studies, we synthesized provably-correct optimizations

(parallelizing a traversal and/or fusing multiple traversals) using MSO encoding. More con-

cretely, our prototype constructed a candidate fused program by heuristically enumerating

possible mappings that establish the bisimulation relation between the original and fused

programs, and finally checked their data-race-freeness and equivalence using the MSO en-

coding presented in this paper. For cycletree routing, our prototype automatically verified

some manually-crafted optimizations. The list sum-and-shift traversals, our prototype veri-

fied known optimizations using a combination of configuration-based abstraction presented

in this paper and the Streaming Register Transducer (SRT) techniques for streaming list

traversals [123]. To the best of our knowledge, none of these verification tasks can be auto-

matically done by existing techniques before Retreet.

Our framework leverages Mona [119], a state-of-the-art WS2S (weak MSO with two

successors) logic solver as our back-end constraint solver. All experiments were run on a

server with a 40-core, 2.2GHz CPU and 128GB memory running Fedora 26. The bisimulation

116

Fused(n)
if (n == nil) return (0, 0)
else

(ls, lv) = Fused(n.l)
(rs, rv) = Fused(n.r)
return (ls + rs + 1, lv + rv)

(a) A valid fusion

Fused(n)
if (n == nil) return (0, 0)
else

(ret1, ret2) = (ls + rs + 1, lv + rv)
(ls, lv) = Fused(n.l)
(rs, rv) = Fused(n.r)
return (ret1, ret2)

(b) An invalid fusion

Figure 4.12. Fusing two mutually recursive traversals

checking step is currently done by hand but can be automated in the future. The time spent

on program construction and encoding is negligible. Remember our MSO encodings of data-

race-freeness and equivalence are sound but not complete, the negative answers could be

spurious. To this end, whenever Mona returned a counterexample, we manually investigated

if it corresponds to a real evidence of violation.

Mutually Recursive Size-Counting This is our running example presented in Fig-

ure 4.4 . We synthesized a fused traversal shown in Figure 4.12a and verified that the mutually

recursive traversals Odd and Even can be fused to the single traversal (solved by Mona in

0.14s). This simple synthesis and verification task, to our knowledge, is already beyond the

capability of all existing approaches. We also designed an invalid fused traversal (shown

in Figure 4.12b) and encode the fusibility to MSO. Mona returned a counterexample in

0.14s that illustrates how the data dependence is violated. Basically, the read-after-write

dependence between a child and its parent in traversal Even is violated after the fusion. We

manually verified that the counterexample is a true positive.

We also checked the data-race-freeness of the original program. The two parallel traversals

Odd(n) and Even(n) in the main function are independent because in every layer of the tree

there is exactly one Odd call and one Even call and they belong to different traversals on

each layer of the tree. The data-race-freeness was checked in 0.02s.

CSS Minification Cascading Style Sheets (CSS) are a widely-used style sheet language

for web pages. In order to lessen the page loading time, many minification techniques are

adapted to reduce the size of CSS document so that the time spent on delivering CSS doc-

117

ConvertValues(n)
if (n == nil) return 0
else

for each child p: ConvertValues(n.p)
if (n.type == ’’word’’ || n.type == ’’func’’)

n.value = TransValue(n.value)
MinifyFont(n)

if (n == nil) return 0
else

for each child p: MinifyFont(n.p)
if (n.prop == ’’font–weight’’)

n.value = MinifyWeight(n.value)
ReduceInit(n)

if (n == nil) return 0
else

for each child p: ReduceInit(n.p)
if (length(n.value) < initialLength)

n.value = ReduceInitial(n.value)

Main(n)
ConvertValues(n)
MinifyFont(n)
ReduceInit(n)

Figure 4.13. CSS minification traversals

uments can be reduced [124]–[128]. When minifying the CSS file, the Abstract Syntax Tree

(AST) of the CSS code is traversed several times to perform different kinds of minifications,

such as shortening identifiers, reducing whitespaces, etc. In the case that the same AST is

traversed multiple times, fusing the traversals together would be desirable to enhance the

performance of minification process.

Hence, we consider fusing three CSS minification traversals. Traversal ConvertValues

converts values to use different units when conversion result in smaller CSS size. For instance,

100ms will be represented as .1s. Traversal MinifyFont will try to minimize the font weight in

the code. For example, font-weight: normal will be rewritten to font-weight: 400. Traversal

ReduceInit reduces the CSS size by converting the keyword initial to corresponding value

when keyword initial is longer than the property value. For example, min-width: initial will

be converted to min-width: 0. Notice that these programs involve conditions on string

which are not supported by Retreet. Nonetheless, since the traversals in Figure 4.13 only

manipulate the local fields of the AST, these conditions can be replaced by some simple

arithmetic conditions. Moreover, as the ASTs of CSS programs are typically not binary

118

trees and cannot be handled by Mona directly, we converted the ASTs to left-child right-

sibling binary trees and then simplify the traversals to match Retreet syntax. The three

minification traversals are fused and their fusibility was checked in 6.88s.

We believe Retreet is the first framework to synthesize and verify these CSS traversal

fusions. The CSS minification technique proposed by Hague et al. [129] also aims to generate

minimized CSS file with the original semantics of the file preserved. However, they focus on

one type of CSS minification method, called rule-merging, only, while Retreet can reason

about the fusibility of different kinds of CSS minification methods.

Cycletree Routing Our most challenging case study is about Cycletrees [130], a special

class of binary trees with an additional set of edges. These additional edges serve the purpose

of constructing a Hamiltonian cycle. Hence, cycletrees are especially useful when it comes to

different communication patterns in parallel and distributed computation. For instance, a

broadcast can be efficiently processed by the tree structure while the cycle order is suitable

for point-to-point communication. Cycletrees are proven to be an efficient network topology

in terms of degree and number of communication links [130]–[132].

We consider two traversals regarding cycletrees. A traversal, called RootMode, is a mu-

tually recursive traversal that constructs the cyclic order on a binary tree to transform the

binary tree to a cycletree. Another traversal ComputeRouting computes the router data of

each node which are essential for an efficient cycletree routing algorithm presented in [130].

In the event of cyclic order traversal and routing had to be performed repeatedly—in case

of link failures—it would be useful to think about ways we can optimize these procedures by

fusion or parallelization. Figure 4.14 shows the code for these two traversals.

We first consider checking the fusibility of these two traversals RootMode and Comput-

eRouting. Since the mapping relation between the unfused traversals and expected fused one

is very subtle and does not satisfy the bisimulation relation defined in Definition 4.4.1 , we

designed the fused traversal manually and apply Retreet to verify the correctness of the

fusion. The total time spent to verify the fusibility of these two traversals was 490.55s.

We then considered whether the two traversals can run in parallel. This time Mona

spent 0.95s and returned a counterexample which allows us to discover a data race that

119

RootMode(n, number)
if (n == nil) return
else

n.num = number
number = number+1
PreMode(n.l, number)
PostMode(n.r, number)

PreMode(n, number)
if (n == nil) return
else

n.num = number
number = number+1
PreMode(n.l, number)
InMode(n.r, number)

InMode(n, number)
if (n == nil) return
else

PostMode(n.l, number)
n.num = number
number = number+1
PreMode(n.r, number)

PostMode(n, number)
if (n == nil) return
else

InMode(n.l, number)
PostMode(n.r, number)
n.num = number
number = number+1

ComputeRouting(n)
if (n == nil) return
else

ComputeRouting(n.l)
ComputeRouting(n.r)
n.lmin = n.l.min
n.rmin = n.r.min
n.lmax = n.l.max
n.rmax = n.r.max
n.max = MAX(n.lmax, n.rmax, n.num)
n.min = MIN(n.lmin, n.rmin, n.num)

Main(n)
RootMode(n, 0)
ComputeRouting(n)

Figure 4.14. Ordered cycletree construction and routing data computation

violates a read-after-write dependence. We manually verified that the counterexample is

indeed a true positive.

List Sum and Shift In this case study, we show how Retreet integrates other MSO-

based techniques and enables optimizations not possible with any of the techniques alone.

Consider the two list traversals discussed in [133] (as shown in Figure 4.15a). Traversal Sum

updates the local fields v in the list to the aggregation of values v in the list. Traversal

Shift shifts the element in the list to the left and sets the last element in the list to be 0. A

120

Sum(n)
if (n == nil) return
else

Sum(n.next)
nv = n.next ? 0 : n.next.v
n.v = nv + n.v

Shift(n)
if (n == nil) return
else

nv = n.next ? 0 : n.next.v
n.v = nv
Shift(n.next)

(a) Traversals on list

Fused(n)
if (n == nil) return
else

nv = n.next ? 0 : n.next.v
n.v = nv
Fused(n.next)
nv = n.next ? 0 : n.next.v
n.v = nv + n.v

(b) Single fused traversal (swapped order)

Figure 4.15. Two functions traversing a list

program invokes Sum followed by Shift. Sakka [133] shows the two traversals can be fused at

the cost of an extra field for each node. However, if one swaps the order of the two traversals

(step 1, from Sum(n);Shift(n) to Shift(n);Sum(n)), they can be fused without introducing the

extra field and form the optimal program (step 2, from Shift(n);Sum(n) to Figure 4.15b).

While the core Retreet can verify step 2, unfortunately, it is not sufficient to verify step

1, since there does not exist a relation between the original and the swapped traversals that

preserves all data dependences in the original program.

Nonetheless, we extended Retreet to support other existing MSO-based analysis tech-

niques. For example, both Sum and Shift can be described by streaming register transducer

(SRT) [123], an automaton-based machine model for what they call streaming transforma-

tions with additive operations, which are essentially list traversals. It is also shown in [123]

that these traversals are closed under composition and can be defined in MSO. The crux of

the proof is: for every node y of the output list, there exists a set of nodes N(y) from the

input list such that the data value stored in y is the sum of values stored in N(y). Following

their encoding, we can define two MSO predicates:

sum(x, y) ≡ x ≤ y

121

shift(x, y) ≡ x.next = y

such that sum(x, y) (resp. shift(x, y)) means x belongs to the set N(y) for traversal Sum

(resp. Shift). We can further encode similar predicates for “sum then shift” and “shift then

sum”, respectively:

sum shift(x, y) ≡ ∃z.shift(x, z) ∧ sum(z, y)

shift sum(x, y) ≡ ∃z.sum(x, z) ∧ shift(z, y)

Then Retreet verifies the validity of step 1 by checking the validity of the following formula:

shift sum(x, y)↔ sum shift(x, y)

Furthermore, Retreet verifies the validity of step 2. The whole chain of optimization was

verified automatically, for the first time, in 0.11s.

4.6 Related Work

There has been much prior work on program dependence analysis for tree data struc-

tures. Using shape analyses [134], Ghiya et al. [135] detect function calls that access disjoint

subtrees for parallel computation in programs with recursive data structures. Rugina et

al. [136] extract symbolic lower and upper bounds for the regions of memory that a program

accesses. Instead of providing a framework that describes dependences in programs, these

works only focus on detecting the data races and the potential of parallel computing so that

is not able to handle fusion or other transformations.

Amiranoff et al. [120] propose instance-wise analysis to perform dependence analysis

for recursive programs involving trees. This framework represents each dynamic instance

of a statement by an execution trace, and then abstracts the execution trace to a finitely-

presented control word. Nonetheless, the framework does not support applications other than

parallelization and they cannot handle programs with tree mutation. Weijiang et al. [121]

also present a tree dependence analysis framework that reason the legality of point blocking,

122

traversal slicing and parallelization of traversals with the assumption that all traversals are

identical preorder traversals. Their framework allows restricted tree mutations including

nullifying or creating a subtree but the traversals that they consider are also single node

traversals like Retreet. Deforestation [137]–[141] is a technique widely applied to fusion,

but it either does not support fusion over arbitrary tree traversals, or does not handle

reasoning about imperative programs.

The last decade has seen significant efforts on reasoning transformations over recursive

tree traversals. Meyerovich et al. [115], [116] focus on fusing tree traversals over ASTs of

CSS files. They specify tree traversals as attribute grammars and present a synthesizer

that automatically fuses and parallelizes the attribute grammars. Their framework only

supports traversals that can be written as attribute grammars, basically layout traversals.

Rajbhandari et al. [112] provide a domain specific fusion compiler that fuses traversals of k-d

trees in computational simulations. Both frameworks are ad hoc, designed to serve specific

applications. The tree traversals they can handle are less general than Retreet.

Most recently, TreeFuser [117] is an automatic framework that fuses tree traversals writ-

ten in a general language. TreeFuser supports code motion and partial fusion, i.e., parts of

a traversal (left subtree or right subtree) can be fused together when possible, even if the

traversals cannot be fully fused. Their approach cannot handle transformations other than

fusion. In other words, parallelization of traversals is beyond the scope of TreeFuser. Besides,

TreeFuser also suffers from the restrictions that Retreet has, i.e. no tree mutation and

single node traversal. PolyRec [118] is a framework that can handle schedule transformations

for nested recursive programs only. PolyRec targets a limited class of tree traversals, called

perfectly nested recursive programs, hence the framework is not able to handle arbitrary re-

cursive tree traversals. Also PolyRec does not handle dependence analysis and suffers from

the restriction that no tree mutation is allowed. The transformations that they handle are

interchange, inlining and code motion rather than fusion and parallelization. Another de-

forestation transformation proposed by Sakka [133] combines fusion and tupling to optimize

functional programming. Their framework focuses on runtime complexity and termination

guarantees, hence they do not handle dependence analysis either. None of the dependence

analysis in the frameworks above is expressive enough to handle mutual recursion.

123

4.7 Conclusion

We introduced Retreet, a general tree-traversal-describing language, and developed a

stack-based, fine-grained representation of dynamic instances in a tree traversal. Based on

the new language and new representation, we presented a MSO encoding that can check

data-race-freeness and transformation correctness automatically. Our approach is more gen-

eral than existing approaches and allows us to efficiently reason about traversals with so-

phisticated mutual recursion on real-world data structures such as CSS and cycletrees, and

synthesize provably-correct optimizations. We also show our approach can be integrated

with other MSO-based analysis techniques.

124

5. SUMMARY AND FUTURE DIRECTIONS

Program synthesis is a well-unknown technique to automate programming and have the

potential to make life easier for both programmers and end-users without programming

expertise. However, the inherent challenges in program synthesis keep it from being used

more widely. In this thesis, we present three techniques towards more scalable and prac-

tical program synthesis from three perspectives: one comparative synthesis framework to

capture optimization targets for quantitative program synthesis; one cooperative synthesis

technique for pushing the scalability limit of syntax-guided synthesis; one reasoning approach

for provably-correct tree traversal optimizations.

In the case of comparative synthesis, we have two key observations: 1) users find it much

easier to provide their preferences on concrete programs, when it is hard to specify their

optimization targets in the form of either closed-form functions or input-output examples.

2) program search and objective learning are closely related and better be done together.

Utilizing observation 1, we propose an interactive synthesis framework that learns near opti-

mal programs through comparative queries. Given observation 2, we define a unified search

space for programs and objectives. Based on the unified search space, we design the first

algorithm that combines program search and objective learning for comparative synthesis.

In the case of cooperative synthesis, the key observations are that enumerative synthesis

and deductive synthesis have their own merits and limitations and better be combined to-

gether, and subproblems that are decomposed from a syntax-guided synthesis problem are

usually more solvable than the original problem. We therefore propose a set of divide-and-

conquer rules to split the synthesis problem into subproblems and solve each subproblem

either by enumerative synthesis or by deductive synthesis.

In the case of Retreet, we observe that finding the right level of abstraction of program

is key for automating fine-grained tree traversal reasoning. We therefore propose the stack-

based representation for iterations in tree traversals which allows us to describe dependences

between iterations of fine granularity, which were not possible before, yet still amenable for

automated reasoning.

125

Looking to the future, we believe that this thesis opens up several further research direc-

tions.

Human-computer interaction In Chapter 2 , we propose a novel human-computer

interaction paradigm that is based on comparative queries. We believe that our framework

can be extended with other query types besides Compare and Validate. Proposing single

program to the user and asking for a counterexample or some revision suggestions can be a

typical kind of query to incorporate. Another interesting direction could be presenting partial

programs, which require less efforts to generate, and still have the potential to discover user

intent from their feedback.

Robustness Existing synthesizers, which expect informal specifications, rely heavily on

quality of feedback provided by users. However, as we discussed in Chapter 2 , users are very

likely to provide inconsistent answers. We envision that multiple ways could be utilized to

improve robustness. For example, a future direction is to investigate synthesis techniques

that are less sensitive to inconsistent feedback. Another direction could be identifying con-

flicting inputs by formal methods techniques, such as minimal unsat core, MaxSat, etc., then

discard conflicts when synthesizing programs.

Solution Quality Existing works which focuses on syntax-guided synthesis, including

the one we present in Chapter 3 , focuses on the functional correctness of generated pro-

gram and pay less attention to the quality of solutions. Although the cooperative synthesis

framework allows us to automatically discover complicated functions that were considered

intractable before, the synthesized program satisfies the functional specification but may be

too complicated to be readable. One promising future direction would be combining the

qualitative synthesis algorithm with other quantitative synthesis tools, e.g. the comparative

synthesis framework presented in Chapter 2 , in order to synthesize high-quality programs.

Furthermore, the programs generated by syntax-guided synthesizers are usually logical ex-

pressions. How to further generate user level code is also an interesting future work.

Automated program optimization Our work presented in Chapter 4 considers the

problem of verifying the validity of program transformations. In many real-world scenarios,

there may be multiple transformations applicable to the same program. These transforma-

tions may not be compatible with each other and applying transformations in different order

126

may impose completely different quality of transformed program. How to generate optimal

program transformation automatically remains an open question.

127

REFERENCES

[1] J. Gottschlich, A. Solar-Lezama, N. Tatbul, et al., “The three pillars of machine pro-
gramming,” Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages - MAPL 2018, 2018. doi: 10.1145/3211346.3211355 .
[Online]. Available: http://dx.doi.org/10.1145/3211346.3211355 .

[2] S. Gulwani, “Automating string processing in spreadsheets using input-output exam-
ples,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ser. POPL ’11, Austin, Texas, USA: ACM, 2011, pp. 317–
330, isbn: 978-1-4503-0490-0. doi: 10 . 1145 / 1926385 . 1926423 . [Online]. Available: http :
//doi.acm.org/10.1145/1926385.1926423 .

[3] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial
sketching for finite programs,” in ASPLOS’06, San Jose, California, USA: ACM, 2006,
pp. 404–415.

[4] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program synthesis via
divide and conquer,” in Tools and Algorithms for the Construction and Analysis of Sys-
tems, A. Legay and T. Margaria, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
pp. 319–336, isbn: 978-3-662-54577-5.

[5] M. Puschel, J. Moura, J. Johnson, et al., “Spiral: Code generation for dsp transforms,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005, issn: 1558-2256. doi: 10.
1109/JPROC.2004.840306 .

[6] B. Delaware, C. Pit–Claudel, J. Gross, and A. Chlipala, “Fiat: Deductive synthesis of
abstract data types in a proof assistant,” in POPL’15, ACM, 2015, pp. 689–700.

[7] M. Vechev and E. Yahav, “Deriving linearizable fine-grained concurrent objects,” in
PLDI’08, ACM, 2008, pp. 125–135.

[8] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deepcoder:
Learning to write programs,” CoRR, vol. abs/1611.01989, 2016. arXiv: 1611.01989 . [Online].
Available: http://arxiv.org/abs/1611.01989 .

[9] J. Ansel, S. Kamil, K. Veeramachaneni, et al., “Opentuner: An extensible framework for
program autotuning,” in 2014 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2014, pp. 303–315. doi: 10.1145/2628071.2628092 .

128

https://doi.org/10.1145/3211346.3211355
http://dx.doi.org/10.1145/3211346.3211355
https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306
https://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
https://doi.org/10.1145/2628071.2628092

[10] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken, “Taso: Op-
timizing deep learning computation with automatic generation of graph substitutions,” in
Proceedings of the 27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19,
Huntsville, Ontario, Canada: Association for Computing Machinery, 2019, pp. 47–62, isbn:
9781450368735. doi: 10.1145/3341301.3359630 . [Online]. Available: https://doi .org/10.
1145/3341301.3359630 .

[11] P. M. Phothilimthana, A. S. Elliott, A. Wang, et al., “Swizzle inventor: Data movement
synthesis for gpu kernels,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
’19, Providence, RI, USA: Association for Computing Machinery, 2019, pp. 65–78, isbn:
9781450362405. doi: 10.1145/3297858.3304059 . [Online]. Available: https://doi .org/10.
1145/3297858.3304059 .

[12] Y. Wang, C. Jiang, X. Qiu, and S. G. Rao, “Learning network design objectives using
a program synthesis approach,” in Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, ser. HotNets ’19, Princeton, NJ, USA: Association for Computing Machinery,
2019, pp. 69–76, isbn: 9781450370202. doi: 10.1145/3365609.3365861 . [Online]. Available:

 https://doi.org/10.1145/3365609.3365861 .

[13] K. Huang, X. Qiu, P. Shen, and Y. Wang, “Reconciling enumerative and deductive
program synthesis,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2020, London, UK: Association for Comput-
ing Machinery, 2020, pp. 1159–1174, isbn: 9781450376136. doi: 10.1145/3385412.3386027 .
[Online]. Available: https://doi.org/10.1145/3385412.3386027 .

[14] Y. Wang, J. Liu, D. Zhang, and X. Qiu, “Reasoning about recursive tree traversals,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’21, Virtual Event, Republic of Korea: Association for Computing
Machinery, 2021, pp. 47–61, isbn: 9781450382946. doi: 10.1145/3437801.3441617 . [Online].
Available: https://doi.org/10.1145/3437801.3441617 .

[15] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf weights,” in
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE, 2000, pp. 519–528.

[16] C.-Y. Hong, S. Kandula, R. Mahajan, et al., “Achieving high utilization with software-
driven wan,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIG-
COMM ’13, Hong Kong, China: ACM, 2013, pp. 15–26, isbn: 978-1-4503-2056-6. doi: 10.
1145/2486001.2486012 . [Online]. Available: http://doi.acm.org/10.1145/2486001.2486012 .

129

https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3365609.3365861
https://doi.org/10.1145/3365609.3365861
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3437801.3441617
https://doi.org/10.1145/3437801.3441617
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2486001.2486012
http://doi.acm.org/10.1145/2486001.2486012

[17] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic engineering
with forward fault correction,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14, Chicago, Illinois, USA: Association for Computing Machinery, 2014,
pp. 527–538, isbn: 9781450328364. doi: 10.1145/2619239.2626314 . [Online]. Available: https:
//doi.org/10.1145/2619239.2626314 .

[18] S. Jain, A. Kumar, S. Mandal, et al., “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Aug. 2013, issn:
0146-4833. doi: 10.1145/2534169.2486019 . [Online]. Available: https://doi.org/10.1145/
2534169.2486019 .

[19] A. Kumar, S. Jain, U. Naik, et al., “Bwe: Flexible, hierarchical bandwidth allocation
for wan distributed computing,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 1–
14, Aug. 2015, issn: 0146-4833. doi: 10.1145/2829988.2787478 . [Online]. Available: https:
//doi.org/10.1145/2829988.2787478 .

[20] C. Jiang, S. Rao, and M. Tawarmalani, “Pcf: Provably resilient flexible routing,” in
Proceedings of the Annual Conference of the ACM Special Interest Group on Data Com-
munication on the Applications, Technologies, Architectures, and Protocols for Computer
Communication, ser. SIGCOMM ’20, Virtual Event, USA: Association for Computing Ma-
chinery, 2020, pp. 139–153, isbn: 9781450379557. doi: 10.1145/3387514.3405858 . [Online].
Available: https://doi.org/10.1145/3387514.3405858 .

[21] Y. Wang, H. Wang, A. Mahimkar, et al., “R3: Resilient routing reconfiguration,” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10, New Delhi, India:
Association for Computing Machinery, 2010, pp. 291–302, isbn: 9781450302012. doi: 10.
1145/1851182.1851218 . [Online]. Available: https://doi.org/10.1145/1851182.1851218 .

[22] R. Srikant, The Mathematics of Internet Congestion Control (Systems and Control:
Foundations and Applications). SpringerVerlag, 2004, isbn: 0817632271. [Online]. Available:

 https://doi.org/10.1007/978-0-8176-8216-3 .

[23] Y. Wang, C. Jiang, X. Qiu, and S. G. Rao, “Learning network design objectives using
a program synthesis approach,” in Proceedings of the 18th ACM Workshop on Hot Topics in
Networks, ser. HotNets ’19, Princeton, NJ, USA: ACM, 2019, pp. 69–76, isbn: 978-1-4503-
7020-2. doi: 10.1145/3365609.3365861 . [Online]. Available: http://doi.acm.org/10.1145/
3365609.3365861 .

[24] S. Gulwani, K. Pathak, A. Radhakrishna, A. Tiwari, and A. Udupa, Quantitative pro-
gramming by examples, 2019. arXiv: 1909.05964 [cs.PL] .

[25] Q. Hu and L. D’Antoni, “Syntax-guided synthesis with quantitative syntactic objec-
tives,” in Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds., Cham:
Springer International Publishing, 2018, pp. 386–403, isbn: 978-3-319-96145-3.

130

https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2829988.2787478
https://doi.org/10.1145/2829988.2787478
https://doi.org/10.1145/2829988.2787478
https://doi.org/10.1145/3387514.3405858
https://doi.org/10.1145/3387514.3405858
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1007/978-0-8176-8216-3
https://doi.org/10.1145/3365609.3365861
http://doi.acm.org/10.1145/3365609.3365861
http://doi.acm.org/10.1145/3365609.3365861
https://arxiv.org/abs/1909.05964

[26] G. Ammons, R. Bodık, and J. R. Larus, “Mining specifications,” in Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’02, Portland, Oregon: Association for Computing Machinery, 2002, pp. 4–16,
isbn: 1581134509. doi: 10.1145/503272.503275 . [Online]. Available: https://doi.org/10.
1145/503272.503275 .

[27] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, “Detecting network
load violations for distributed control planes,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI 2020, London,
UK: Association for Computing Machinery, 2020, pp. 974–988, isbn: 9781450376136. doi:

 10.1145/3385412.3385976 . [Online]. Available: https://doi.org/10.1145/3385412.3385976 .

[28] P. Kumar, Y. Yuan, C. Yu, et al., “Semi-oblivious traffic engineering: The road not
taken,” in 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), Renton, WA: USENIX Association, Apr. 2018, pp. 157–170, isbn: 978-1-939133-
01-4. [Online]. Available: https://www.usenix.org/conference/nsdi18/presentation/kumar .

[29] E. Danna, S. Mandal, and A. Singh, “A practical algorithm for balancing the max-
min fairness and throughput objectives in traffic engineering,” in 2012 Proceedings IEEE
INFOCOM, 2012, pp. 846–854. doi: 10.1109/INFCOM.2012.6195833 .

[30] Y. Chang, S. Rao, and M. Tawarmalani, “Robust validation of network designs under
uncertain demands and failures,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017, pp. 347–362.

[31] J. Bogle, N. Bhatia, M. Ghobadi, et al., “Teavar: Striking the right utilization-availability
balance in wan traffic engineering,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’19, Beijing, China: Association for Computing Machinery,
2019, pp. 29–43, isbn: 9781450359566. doi: 10.1145/3341302.3342069 . [Online]. Available:

 https://doi.org/10.1145/3341302.3342069 .

[32] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet
topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765–
1775, Oct. 2011, issn: 1558-0008. doi: 10.1109/JSAC.2011.111002 .

[33] A. Solar-Lezama, The sketch programmers manual, Version 1.7.2, 2016.

[34] P. Černý and T. A. Henzinger, “From boolean to quantitative synthesis,” in Proceed-
ings of the Ninth ACM International Conference on Embedded Software, ser. EMSOFT ’11,
Taipei, Taiwan: Association for Computing Machinery, 2011, pp. 149–154, isbn: 9781450307147.
doi: 10 .1145/2038642 .2038666 . [Online]. Available: https ://doi .org/10 .1145/2038642 .
2038666 .

131

https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/3385412.3385976
https://doi.org/10.1145/3385412.3385976
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://doi.org/10.1109/INFCOM.2012.6195833
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/2038642.2038666
https://doi.org/10.1145/2038642.2038666
https://doi.org/10.1145/2038642.2038666

[35] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze, “Optimizing synthesis with metas-
ketches,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, ser. POPL ’16, St. Petersburg, FL, USA: Association for
Computing Machinery, 2016, pp. 775–788, isbn: 9781450335492. doi: 10 . 1145/2837614 .
2837666 . [Online]. Available: https://doi.org/10.1145/2837614.2837666 .

[36] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in Proceed-
ings of the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13, Houston, Texas, USA: ACM, 2013,
pp. 305–316, isbn: 978-1-4503-1870-9. doi: 10.1145/2451116.2451150 . [Online]. Available:

 http://doi.acm.org/10.1145/2451116.2451150 .

[37] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization of floating-point pro-
grams with tunable precision,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, Edinburgh, United King-
dom: ACM, 2014, pp. 53–64, isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594302 . [On-
line]. Available: http://doi.acm.org/10.1145/2594291.2594302 .

[38] S. Chaudhuri, M. Clochard, and A. Solar-Lezama, “Bridging boolean and quantitative
synthesis using smoothed proof search,” in Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’14, San Diego, California,
USA: Association for Computing Machinery, 2014, pp. 207–220, isbn: 9781450325448. doi:

 10.1145/2535838.2535859 . [Online]. Available: https://doi.org/10.1145/2535838.2535859 .

[39] G. J. Chaitin, “A theory of program size formally identical to information theory,” J.
ACM, vol. 22, no. 3, pp. 329–340, Jul. 1975, issn: 0004-5411. doi: 10.1145/321892.321894 .
[Online]. Available: https://doi.org/10.1145/321892.321894 .

[40] S. Jha and S. A. Seshia, “A theory of formal synthesis via inductive learning,” Acta
Informatica, vol. 54, no. 7, pp. 693–726, Feb. 2017, issn: 1432-0525. doi: 10.1007/s00236-
017-0294-5 . [Online]. Available: http://dx.doi.org/10.1007/s00236-017-0294-5 .

[41] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS’08, 2008,
pp. 337–340. doi: 10.1007/978-3-540-78800-3 24 . [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-78800-3 24 .

[42] L. Gurobi Optimization, Gurobi optimizer reference manual, 2020. [Online]. Available:
 http://www.gurobi.com .

[43] W. Gautschi, “Numerical analysis: An introduction,” in Birkhäuser, 1997, ch. 4, p. 215.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge University Press,
2004, isbn: 0521833787.

132

https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
https://doi.org/10.1145/2594291.2594302
http://doi.acm.org/10.1145/2594291.2594302
https://doi.org/10.1145/2535838.2535859
https://doi.org/10.1145/2535838.2535859
https://doi.org/10.1145/321892.321894
https://doi.org/10.1145/321892.321894
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/s00236-017-0294-5
http://dx.doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://www.gurobi.com

[45] A. Ghosh, S. Ha, E. Crabbe, and J. Rexford, “Scalable multi-class traffic management
in data center backbone networks,” IEEE Journal on Selected Areas in Communications,
vol. 31, pp. 2673–2684, 2013.

[46] N. Gvozdiev, S. Vissicchio, B. Karp, and M. Handley, “On low-latency-capable topolo-
gies, and their impact on the design of intra-domain routing,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, ser. SIGCOMM
’18, Budapest, Hungary: Association for Computing Machinery, 2018, pp. 88–102, isbn:
9781450355674. doi: 10.1145/3230543.3230575 . [Online]. Available: https://doi .org/10.
1145/3230543.3230575 .

[47] T. G. Dietterich, “Ensemble methods in machine learning,” Lecture Notes in Computer
Science, pp. 1–15, 2000, issn: 0302-9743. doi: 10.1007/3-540-45014-9 1 . [Online]. Available:

 http://dx.doi.org/10.1007/3-540-45014-9 1 .

[48] K. Subramanian, L. D’Antoni, and A. Akella, “Genesis: Synthesizing forwarding ta-
bles in multi-tenant networks,” in Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL 2017, Paris, France: ACM, 2017, pp. 572–
585, isbn: 978-1-4503-4660-3. doi: 10 . 1145 / 3009837 . 3009845 . [Online]. Available: http :
//doi.acm.org/10.1145/3009837.3009845 .

[49] S. Saha, S. Prabhu, and P. Madhusudan, “Netgen: Synthesizing data-plane configu-
rations for network policies,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, ser. SOSR ’15, Santa Clara, California: ACM, 2015,
17:1–17:6, isbn: 978-1-4503-3451-8. doi: 10.1145/2774993.2775006 . [Online]. Available: http:
//doi.acm.org/10.1145/2774993.2775006 .

[50] R. Soulé, S. Basu, P. J. Marandi, et al., “Merlin: A language for provisioning network
resources,” in Proceedings of the 10th ACM International on Conference on Emerging Net-
working Experiments and Technologies, ser. CoNEXT ’14, Sydney, Australia: ACM, 2014,
pp. 213–226, isbn: 978-1-4503-3279-8. doi: 10.1145/2674005.2674989 . [Online]. Available:

 http://doi.acm.org/10.1145/2674005.2674989 .

[51] L. Ryzhyk, N. Bjørner, M. Canini, et al., “Correct by construction networks using step-
wise refinement,” in 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), Boston, MA: USENIX Association, 2017, pp. 683–698, isbn: 978-1-
931971-37-9. [Online]. Available: https://www.usenix .org/conference/nsdi17/technical -
sessions/presentation/ryzhyk .

[52] Y. Yuan, D. Lin, R. Alur, and B. T. Loo, “Scenario-based programming for sdn poli-
cies,” in Proceedings of the 11th ACM Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’15, Heidelberg, Germany: ACM, 2015, 34:1–34:13, isbn: 978-
1-4503-3412-9. doi: 10.1145/2716281.2836119 . [Online]. Available: http://doi.acm.org/10.
1145/2716281.2836119 .

133

https://doi.org/10.1145/3230543.3230575
https://doi.org/10.1145/3230543.3230575
https://doi.org/10.1145/3230543.3230575
https://doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1145/3009837.3009845
http://doi.acm.org/10.1145/3009837.3009845
http://doi.acm.org/10.1145/3009837.3009845
https://doi.org/10.1145/2774993.2775006
http://doi.acm.org/10.1145/2774993.2775006
http://doi.acm.org/10.1145/2774993.2775006
https://doi.org/10.1145/2674005.2674989
http://doi.acm.org/10.1145/2674005.2674989
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk
https://doi.org/10.1145/2716281.2836119
http://doi.acm.org/10.1145/2716281.2836119
http://doi.acm.org/10.1145/2716281.2836119

[53] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide configuration
synthesis,” in Computer Aided Verification, R. Majumdar and V. Kunčak, Eds., Cham:
Springer International Publishing, 2017, pp. 261–281, isbn: 978-3-319-63390-9.

[54] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Netcomplete: Practical network-
wide configuration synthesis with autocompletion,” in 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), Renton, WA: USENIX Association,
2018, pp. 579–594, isbn: 978-1-931971-43-0. [Online]. Available: https://www.usenix.org/
conference/nsdi18/presentation/el-hassany .

[55] J. McClurg, H. Hojjat, P. Černý, and N. Foster, “Efficient synthesis of network updates,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15, Portland, OR, USA: Association for Computing Machinery,
2015, pp. 196–207, isbn: 9781450334686. doi: 10.1145/2737924.2737980 . [Online]. Available:

 https://doi.org/10.1145/2737924.2737980 .

[56] J. McClurg, H. Hojjat, N. Foster, and P. Černý, “Event-driven network programming,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’16, Santa Barbara, CA, USA: Association for Computing
Machinery, 2016, pp. 369–385, isbn: 9781450342612. doi: 10.1145/2908080.2908097 . [On-
line]. Available: https://doi.org/10.1145/2908080.2908097 .

[57] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpretation of dis-
tributed network control planes,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec. 2019.
doi: 10.1145/3371110 . [Online]. Available: https://doi.org/10.1145/3371110 .

[58] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev, “Probabilistic verifi-
cation of network configurations,” in Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, ser. SIGCOMM ’20, Virtual Event,
USA: Association for Computing Machinery, 2020, pp. 750–764, isbn: 9781450379557. doi:

 10.1145/3387514.3405900 . [Online]. Available: https://doi.org/10.1145/3387514.3405900 .

[59] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Config2spec: Mining
network specifications from network configurations,” in Proceedings of 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’20), 2020.

[60] A. Sivaraman, A. Cheung, M. Budiu, et al., “Packet transactions: High-level program-
ming for line-rate switches,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIG-
COMM ’16, Florianopolis, Brazil: Association for Computing Machinery, 2016, pp. 15–28,
isbn: 9781450341936. doi: 10.1145/2934872.2934900 . [Online]. Available: https://doi.org/
10.1145/2934872.2934900 .

134

https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/3371110
https://doi.org/10.1145/3371110
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/2934872.2934900

[61] X. Gao, T. Kim, A. K. Varma, A. Sivaraman, and S. Narayana, “Autogenerating fast
packet-processing code using program synthesis,” in Proceedings of the 18th ACM Workshop
on Hot Topics in Networks, ser. HotNets ’19, Princeton, NJ, USA: Association for Com-
puting Machinery, 2019, pp. 150–160, isbn: 9781450370202. doi: 10.1145/3365609.3365858 .
[Online]. Available: https://doi.org/10.1145/3365609.3365858 .

[62] L. Shi, Y. Li, B. T. Loo, and R. Alur, “Network traffic classification by program syn-
thesis,” in Tools and Algorithms for the Construction and Analysis of Systems, J. F. Groote
and K. G. Larsen, Eds., Cham: Springer International Publishing, 2021, pp. 430–448, isbn:
978-3-030-72016-2.

[63] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik, “Symbolic optimiza-
tion with smt solvers,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’14, San Diego, California, USA: Asso-
ciation for Computing Machinery, 2014, pp. 607–618, isbn: 9781450325448. doi: 10.1145/
2535838.2535857 . [Online]. Available: https://doi.org/10.1145/2535838.2535857 .

[64] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A unified programming-
by-example interaction for synthesizing readable code for data scientists,” in Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, ser. CHI ’20, Honolulu,
HI, USA: Association for Computing Machinery, 2020, pp. 1–12, isbn: 9781450367080. doi:

 10.1145/3313831.3376442 . [Online]. Available: https://doi.org/10.1145/3313831.3376442 .

[65] M. Mayer, G. Soares, M. Grechkin, et al., “User interaction models for disambiguation
in programming by example,” in Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, ser. UIST ’15, Charlotte, NC, USA: Association for Com-
puting Machinery, 2015, pp. 291–301, isbn: 9781450337793. doi: 10.1145/2807442.2807459 .
[Online]. Available: https://doi.org/10.1145/2807442.2807459 .

[66] D. Drachsler-Cohen, S. Shoham, and E. Yahav, “Synthesis with abstract examples,” in
Computer Aided Verification, R. Majumdar and V. Kunčak, Eds., Cham: Springer Interna-
tional Publishing, 2017, pp. 254–278, isbn: 978-3-319-63387-9.

[67] H. Peleg, S. Shoham, and E. Yahav, “Programming not only by example,” in Proceedings
of the 40th International Conference on Software Engineering, ser. ICSE ’18, Gothenburg,
Sweden: Association for Computing Machinery, 2018, pp. 1114–1124, isbn: 9781450356381.
doi: 10 .1145/3180155 .3180189 . [Online]. Available: https ://doi .org/10 .1145/3180155 .
3180189 .

[68] K. Miettinen, F. Ruiz, and A. P. Wierzbicki, “Introduction to multiobjective optimiza-
tion: Interactive approaches,” in Multiobjective Optimization: Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. S lowiński, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 27–57, isbn: 978-3-540-88908-3. doi: 10.1007/978-3-
540-88908-3 2 . [Online]. Available: https://doi.org/10.1007/978-3-540-88908-3 2 .

135

https://doi.org/10.1145/3365609.3365858
https://doi.org/10.1145/3365609.3365858
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1007/978-3-540-88908-3_2
https://doi.org/10.1007/978-3-540-88908-3_2
https://doi.org/10.1007/978-3-540-88908-3_2

[69] Y. Wang, I. Avramopoulos, and J. Rexford, “Design for configurability: Rethinking
interdomain routing policies from the ground up,” IEEE Journal on Selected Areas in Com-
munications, vol. 27, no. 3, pp. 336–348, 2009. doi: 10.1109/JSAC.2009.090409 .

[70] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-based pro-
gram synthesis,” in Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ser. ICSE ’10, Cape Town, South Africa: Association for Com-
puting Machinery, 2010, pp. 215–224, isbn: 9781605587196. doi: 10.1145/1806799.1806833 .
[Online]. Available: https://doi.org/10.1145/1806799.1806833 .

[71] R. Ji, J. Liang, Y. Xiong, L. Zhang, and Z. Hu, “Question selection for interactive
program synthesis,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2020, London, UK: Association for Comput-
ing Machinery, 2020, pp. 1143–1158, isbn: 9781450376136. doi: 10.1145/3385412.3386025 .
[Online]. Available: https://doi.org/10.1145/3385412.3386025 .

[72] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A robust framework for
learning invariants,” in CAV’14, 2014, pp. 69–87. doi: 10 . 1007 / 978 - 3 - 319 - 08867 - 9 5 .
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08867-9 5 .

[73] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 6, no. 1, pp. 1–114, 2012. doi: 10 . 2200 / S00429ED1V01Y201207AIM018 .
eprint: https://doi.org/10.2200/S00429ED1V01Y201207AIM018 . [Online]. Available: https:
//doi.org/10.2200/S00429ED1V01Y201207AIM018 .

[74] D. Angluin, “Queries revisited,” Theoretical Computer Science, vol. 313, no. 2, pp. 175–
194, 2004, Algorithmic Learning Theory, issn: 0304-3975. doi: https://doi.org/10.1016/
j.tcs.2003.11.004 . [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S030439750300608X .

[75] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, ser. COLT ’92, Pitts-
burgh, Pennsylvania, USA: Association for Computing Machinery, 1992, pp. 287–294, isbn:
089791497X. doi: 10.1145/130385.130417 . [Online]. Available: https://doi.org/10.1145/
130385.130417 .

[76] A. Solar-Lezama, “Program Synthesis By Sketching,” Ph.D. dissertation, EECS Dept.,
UC Berkeley, 2008.

[77] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation using exam-
ples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, Aug. 2012, issn: 0001-0782. doi: 10.1145/
2240236.2240260 . [Online]. Available: http://doi.acm.org/10.1145/2240236.2240260 .

136

https://doi.org/10.1109/JSAC.2009.090409
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1007/978-3-319-08867-9_5
http://dx.doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/https://doi.org/10.1016/j.tcs.2003.11.004
https://doi.org/https://doi.org/10.1016/j.tcs.2003.11.004
http://www.sciencedirect.com/science/article/pii/S030439750300608X
http://www.sciencedirect.com/science/article/pii/S030439750300608X
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260

[78] R. Alur, R. Bodık, G. Juniwal, et al., “Syntax-guided synthesis,” in Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, 2013,
pp. 1–8. [Online]. Available: http://ieeexplore.ieee.org/document/6679385/ .

[79] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based program synthesis,”
Communications of the ACM, vol. 61, no. 12, pp. 84–93, Nov. 2018, issn: 0001-0782. doi:

 10.1145/3208071 . [Online]. Available: http://dx.doi.org/10.1145/3208071 .

[80] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations and TrendsÂ®
in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017, issn: 2325-1107. doi: 10.1561/
2500000010 . [Online]. Available: http://dx.doi.org/10.1561/2500000010 .

[81] A. Solar-Lezama, Introduction to program synthesis, 2018. [Online]. Available: https :
//people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm .

[82] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Sygus-comp 2016: Results and
analysis,” https://arxiv.org/abs/1611.07627, 2016. eprint: 1611.07627 .

[83] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Sygus-comp 2017: Results and
analysis,” Nov. 2017. eprint: 1711.11438 . [Online]. Available: https://arxiv.org/abs/1711.
11438 .

[84] J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster, “Adaptive Concretization for Parallel
Program Synthesis,” in Computer Aided Verification (CAV), ser. Lecture Notes in Computer
Science, vol. 9207, Jul. 2015, pp. 377–394.

[85] J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster, “An empirical study of adaptive
concretization for parallel program synthesis,” Formal Methods in System Design, vol. 50,
no. 1, pp. 75–95, Mar. 2017, issn: 1572-8102. doi: 10.1007/s10703-017-0269-8 . [Online].
Available: https://doi.org/10.1007/s10703-017-0269-8 .

[86] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis from polymorphic
refinement types,” in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’16, Santa Barbara, CA, USA: ACM, 2016,
pp. 522–538, isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.2908093 . [Online]. Available:

 http://doi.acm.org/10.1145/2908080.2908093 .

[87] N. Yaghmazadeh, C. Klinger, I. Dillig, and S. Chaudhuri, “Synthesizing transformations
on hierarchically structured data,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’16, Santa Barbara, CA,
USA: ACM, 2016, pp. 508–521, isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.2908088 .
[Online]. Available: http://doi.acm.org/10.1145/2908080.2908088 .

137

http://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1145/3208071
http://dx.doi.org/10.1145/3208071
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm
1611.07627
1711.11438
https://arxiv.org/abs/1711.11438
https://arxiv.org/abs/1711.11438
https://doi.org/10.1007/s10703-017-0269-8
https://doi.org/10.1007/s10703-017-0269-8
https://doi.org/10.1145/2908080.2908093
http://doi.acm.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908088
http://doi.acm.org/10.1145/2908080.2908088

[88] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri, “Component-based
synthesis of table consolidation and transformation tasks from examples,” in Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI 2017, Barcelona, Spain: ACM, 2017, pp. 422–436, isbn: 978-1-4503-4988-8. doi:

 10 . 1145 / 3062341 . 3062351 . [Online]. Available: http : / / doi . acm . org / 10 . 1145 / 3062341 .
3062351 .

[89] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to program
synthesis,” in POPL’10, Madrid, Spain: ACM, 2010, pp. 313–326.

[90] A. Solar-Lezama, “Program sketching,” International Journal on Software Tools for
Technology Transfer, vol. 15, no. 5, pp. 475–495, Oct. 2013, issn: 1433-2787. doi: 10.1007/
s10009-012-0249-7 . [Online]. Available: https://doi.org/10.1007/s10009-012-0249-7 .

[91] V. Murali, S. Chaudhuri, and C. Jermaine, “Bayesian sketch learning for program syn-
thesis,” CoRR, vol. abs/1703.05698, 2017. arXiv: 1703.05698 . [Online]. Available: http://
arxiv.org/abs/1703.05698 .

[92] S. Padhi and T. Millstein, “Data-driven loop invariant inference with automatic feature
synthesis,” Jul. 2017. eprint: 1707.02029 . [Online]. Available: https://arxiv.org/abs/1707.
02029 .

[93] R. Alur, D. Fisman, S. Padhi, R. Singh, and A. Solar-Lezama, “Sygus-comp 2018:
Results and analysis,” https://sygus.org/comp/2018/report.pdf, 2018.

[94] Z. Manna and R. Waldinger, “Synthesis: Dreams =¿ programs,” IEEE Transactions on
Software Engineering, vol. 5, no. 4, pp. 294–328, 1979.

[95] R. M. Burstall and J. Darlington, “A transformation system for developing recursive
programs,” Journal of the ACM, vol. 24, no. 1, pp. 44–67, Jan. 1977, issn: 0004-5411. doi:

 10.1145/321992.321996 . [Online]. Available: http://dx.doi.org/10.1145/321992.321996 .

[96] N. Polikarpova and I. Sergey, “Structuring the synthesis of heap-manipulating pro-
grams,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, pp. 1–30,
Jan. 2019, issn: 2475-1421. doi: 10.1145/3290385 . [Online]. Available: http://dx.doi.org/
10.1145/3290385 .

[97] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett, “Counterexample-
guided quantifier instantiation for synthesis in SMT,” in Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part II, 2015, pp. 198–216. doi: 10.1007/978-3-319-21668-3 12 . [Online]. Available:

 https://doi.org/10.1007/978-3-319-21668-3 12 .

138

https://doi.org/10.1145/3062341.3062351
http://doi.acm.org/10.1145/3062341.3062351
http://doi.acm.org/10.1145/3062341.3062351
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://arxiv.org/abs/1703.05698
http://arxiv.org/abs/1703.05698
http://arxiv.org/abs/1703.05698
1707.02029
https://arxiv.org/abs/1707.02029
https://arxiv.org/abs/1707.02029
https://doi.org/10.1145/321992.321996
http://dx.doi.org/10.1145/321992.321996
https://doi.org/10.1145/3290385
http://dx.doi.org/10.1145/3290385
http://dx.doi.org/10.1145/3290385
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12

[98] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure transformations
from input-output examples,” in PLDI’15, Portland, OR, USA: ACM, 2015, pp. 229–239.

[99] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive program synthesis,”
in Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA 2015, Pittsburgh, PA,
USA: ACM, 2015, pp. 107–126, isbn: 978-1-4503-3689-5. doi: 10.1145/2814270.2814310 .
[Online]. Available: http://doi.acm.org/10.1145/2814270.2814310 .

[100] Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis using conflict-driven
learning,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2018, Philadelphia, PA, USA: ACM, 2018, pp. 420–
435, isbn: 978-1-4503-5698-5. doi: 10 . 1145 / 3192366 . 3192382 . [Online]. Available: http :
//doi.acm.org/10.1145/3192366.3192382 .

[101] W. Lee, K. Heo, R. Alur, and M. Naik, “Accelerating search-based program synthesis
using learned probabilistic models,” in Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2018, Philadelphia, PA,
USA: ACM, 2018, pp. 436–449, isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192410 .
[Online]. Available: http://doi.acm.org/10.1145/3192366.3192410 .

[102] A. Stump, G. Sutcliffe, and C. Tinelli, “Starexec: A cross-community infrastructure
for logic solving,” in Automated Reasoning, S. Demri, D. Kapur, and C. Weidenbach, Eds.,
Cham: Springer International Publishing, 2014, pp. 367–373, isbn: 978-3-319-08587-6.

[103] S. Saha, P. Garg, and P. Madhusudan, “Alchemist: Learning guarded affine functions,”
in CAV’15, 2015, pp. 440–446. doi: 10.1007/978- 3- 319- 21690- 4 26 . [Online]. Available:

 http://dx.doi.org/10.1007/978-3-319-21690-4 26 .

[104] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants using decision
trees and implication counterexamples,” in POPL’16, ser. POPL ’16, St. Petersburg, FL,
USA: ACM, 2016, pp. 499–512, isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837664 .
[Online]. Available: http://doi.acm.org/10.1145/2837614.2837664 .

[105] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and R. Alur,
“TRANSIT: Specifying Protocols with Concolic Snippets,” in PLDI, 2013, pp. 287–296.

[106] R. Alur, P. Cerný, and A. Radhakrishna, “Synthesis through unification,” in CAV (2),
ser. Lecture Notes in Computer Science, vol. 9207, Springer, 2015, pp. 163–179.

[107] B. Caulfield, M. N. Rabe, S. A. Seshia, and S. Tripakis, “What’s decidable about syntax-
guided synthesis?,” Oct. 2015. eprint: 1510.08393 . [Online]. Available: https://arxiv.org/
abs/1510.08393 .

139

https://doi.org/10.1145/2814270.2814310
http://doi.acm.org/10.1145/2814270.2814310
https://doi.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192410
http://doi.acm.org/10.1145/3192366.3192410
https://doi.org/10.1007/978-3-319-21690-4_26
http://dx.doi.org/10.1007/978-3-319-21690-4_26
https://doi.org/10.1145/2837614.2837664
http://doi.acm.org/10.1145/2837614.2837664
1510.08393
https://arxiv.org/abs/1510.08393
https://arxiv.org/abs/1510.08393

[108] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-free programs,”
in Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’11, San Jose, California, USA: ACM, 2011, pp. 62–73, isbn:
978-1-4503-0663-8. doi: 10.1145/1993498.1993506 . [Online]. Available: http://doi.acm.org/
10.1145/1993498.1993506 .

[109] B. Li, I. Dillig, T. Dillig, K. McMillan, and M. Sagiv, “Synthesis of circular compositional
program proofs via abduction,” in Tools and Algorithms for the Construction and Analysis of
Systems, N. Piterman and S. A. Smolka, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 370–384, isbn: 978-3-642-36742-7.

[110] D. Petrashko, O. Lhoták, and M. Odersky, “Miniphases: Compilation using modular
and efficient tree transformations,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2017, Barcelona, Spain:
ACM, 2017, pp. 201–216, isbn: 978-1-4503-4988-8. doi: 10.1145/3062341.3062346 . [Online].
Available: http://doi.acm.org/10.1145/3062341.3062346 .

[111] S. Rajbhandari, J. Kim, S. Krishnamoorthy, et al., “On fusing recursive traversals of
kd trees,” in Proceedings of the 25th International Conference on Compiler Construction,
ACM, 2016, pp. 152–162.

[112] S. Rajbhandari, J. Kim, S. Krishnamoorthy, et al., “A domain-specific compiler for
a parallel multiresolution adaptive numerical simulation environment,” in Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’16, Salt Lake City, Utah: IEEE Press, 2016, 40:1–40:12, isbn: 978-1-4673-
8815-3. [Online]. Available: http://dl.acm.org/citation.cfm?id=3014904.3014958 .

[113] Y. Jo and M. Kulkarni, “Enhancing locality for recursive traversals of recursive struc-
tures,” in Proceedings of the 2011 ACM international conference on Object oriented program-
ming systems languages and applications, ser. OOPSLA ’11, Portland, Oregon, USA: ACM,
2011, pp. 463–482, isbn: 978-1-4503-0940-0. doi: http://doi.acm.org/10.1145/2048066.
2048104 . [Online]. Available: http://doi.acm.org/10.1145/2048066.2048104 .

[114] Y. Jo and M. Kulkarni, “Automatically enhancing locality for tree traversals with traver-
sal splicing,” in Proceedings of the 2012 ACM international conference on Object oriented
programming systems languages and applications, ser. OOPSLA ’12, New York, NY, USA:
ACM, 2012.

[115] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik, “Parallel schedule synthesis
for attribute grammars,” ser. PPoPP ’13, 2013.

140

https://doi.org/10.1145/1993498.1993506
http://doi.acm.org/10.1145/1993498.1993506
http://doi.acm.org/10.1145/1993498.1993506
https://doi.org/10.1145/3062341.3062346
http://doi.acm.org/10.1145/3062341.3062346
http://dl.acm.org/citation.cfm?id=3014904.3014958
https://doi.org/http://doi.acm.org/10.1145/2048066.2048104
https://doi.org/http://doi.acm.org/10.1145/2048066.2048104
http://doi.acm.org/10.1145/2048066.2048104

[116] L. A. Meyerovich and R. Bodik, “Fast and parallel webpage layout,” in Proceedings of the
19th International Conference on World Wide Web, ser. WWW ’10, Raleigh, North Carolina,
USA: ACM, 2010, pp. 711–720, isbn: 978-1-60558-799-8. doi: 10.1145/1772690.1772763 .
[Online]. Available: http://doi.acm.org/10.1145/1772690.1772763 .

[117] L. Sakka, K. Sundararajah, and M. Kulkarni, “Treefuser: A framework for analyzing and
fusing general recursive tree traversals,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
76:1–76:30, Oct. 2017, issn: 2475-1421. doi: 10 .1145/3133900 . [Online]. Available: http :
//doi.acm.org/10.1145/3133900 .

[118] K. Sundararajah and M. Kulkarni, “Composable, sound transformations of nested re-
cursion and loops,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2019, Phoenix, AZ, USA: ACM, 2019,
pp. 902–917, isbn: 978-1-4503-6712-7. doi: 10.1145/3314221.3314592 . [Online]. Available:

 http://doi.acm.org/10.1145/3314221.3314592 .

[119] J. Elgaard, N. Klarlund, and A. Møller, “Mona 1.x: New techniques for ws1s and ws2s,”
in Computer Aided Verification, A. J. Hu and M. Y. Vardi, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 516–520, isbn: 978-3-540-69339-0.

[120] P. Amiranoff, A. Cohen, and P. Feautrier, “Beyond iteration vectors: Instancewise re-
lational abstract domains,” in Proceedings of the 13th International Conference on Static
Analysis, ser. SAS’06, Seoul, Korea: Springer-Verlag, 2006, pp. 161–180, isbn: 3-540-37756-
5, 978-3-540-37756-6. doi: 10.1007/11823230\textunderscore11 . [Online]. Available: http:
//dx.doi.org/10.1007/11823230%5Ctextunderscore11 .

[121] Y. Weijiang, S. Balakrishna, J. Liu, and M. Kulkarni, “Tree dependence analysis,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 314–325, isbn: 978-
1-4503-3468-6. doi: 10.1145/2737924.2737972 . [Online]. Available: http://doi.acm.org/10.
1145/2737924.2737972 .

[122] M. L. Minsky, Computation: Finite and Infinite Machines. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1967, isbn: 0-13-165563-9.

[123] X. Qiu, Streaming transformations of infinite ordered-data words, 2020. arXiv: 2001.
06952 [cs.FL] . [Online]. Available: https://arxiv.org/abs/2001.06952 .

[124] J. Bleuzen, Cssmin, 2015. [Online]. Available: https : / / www . npmjs . com / package /
cssmin .

[125] B. Briggs, Cssnano, 2015. [Online]. Available: https://cssnano.co/ .

[126] S. Clay, Minify, 2007. [Online]. Available: https://github.com/mrclay/minify .

141

https://doi.org/10.1145/1772690.1772763
http://doi.acm.org/10.1145/1772690.1772763
https://doi.org/10.1145/3133900
http://doi.acm.org/10.1145/3133900
http://doi.acm.org/10.1145/3133900
https://doi.org/10.1145/3314221.3314592
http://doi.acm.org/10.1145/3314221.3314592
https://doi.org/10.1007/11823230\textunderscore11
http://dx.doi.org/10.1007/11823230%5Ctextunderscore11
http://dx.doi.org/10.1007/11823230%5Ctextunderscore11
https://doi.org/10.1145/2737924.2737972
http://doi.acm.org/10.1145/2737924.2737972
http://doi.acm.org/10.1145/2737924.2737972
https://arxiv.org/abs/2001.06952
https://arxiv.org/abs/2001.06952
https://arxiv.org/abs/2001.06952
https://www.npmjs.com/package/cssmin
https://www.npmjs.com/package/cssmin
https://cssnano.co/
https://github.com/mrclay/minify

[127] R. Dvornov, Csso, 2011. [Online]. Available: https://github.com/css/csso .

[128] J. Pawlowicz, Clean-css, 2011. [Online]. Available: https://github.com/jakubpawlowicz/
clean-css .

[129] M. Hague, A. W. Lin, and C.-D. Hong, “Css minification via constraint solving,” ACM
Trans. Program. Lang. Syst., vol. 41, no. 2, Jun. 2019, issn: 0164-0925. doi: 10.1145/3310337 .
[Online]. Available: https://doi.org/10.1145/3310337 .

[130] M. Veanes and J. Barklund, “Natural cycletrees: Flexible interconnection graphs,” J.
Parallel Distrib. Comput., vol. 33, pp. 44–54, Feb. 1996. doi: 10.1006/jpdc.1996.0023 .

[131] M. Veanes and J. Barklund, “Construction of natural cycletrees,” Inf. Process. Lett.,
vol. 60, no. 6, pp. 313–318, 1996. doi: 10.1016/S0020-0190(96)00179-2 . [Online]. Available:

 https://doi.org/10.1016/S0020-0190(96)00179-2 .

[132] M. Veanes and J. Barklund, “On the number of edges in cycletrees,” Inf. Process. Lett.,
vol. 57, no. 4, pp. 225–229, 1996. doi: 10.1016/0020-0190(95)00183-2 . [Online]. Available:

 https://doi.org/10.1016/0020-0190(95)00183-2 .

[133] L. Sakka, “Techniques for automatic fusion of general tree traversals,” Ph.D. disserta-
tion, Purdue University, 2020.

[134] N. D. Jones and S. S. Muchnick, “A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures,” in Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL ’82, Albuquerque,
New Mexico: ACM, 1982, pp. 66–74, isbn: 0-89791-065-6. doi: 10.1145/582153.582161 . [On-
line]. Available: http://doi.acm.org/10.1145/582153.582161 .

[135] R. Ghiya, L. J. Hendren, and Y. Zhu, “Detecting parallelism in c programs with recursive
darta structures,” in Proceedings of the 7th International Conference on Compiler Construc-
tion, ser. CC ’98, London, UK, UK: Springer-Verlag, 1998, pp. 159–173, isbn: 3-540-64304-4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647474.727598 .

[136] R. Rugina and M. C. Rinard, “Symbolic Bounds Analysis of Pointers, Array Indices, and
Accessed Memory Regions,” ACM Trans. Program. Lang. Syst., vol. 27, no. 2, pp. 185–235,
Mar. 2005.

[137] P. Wadler, “Deforestation: Transforming programs to eliminate trees,” Theoretical com-
puter science, vol. 73, no. 2, pp. 231–248, 1990.

[138] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut to deforestation,” in Pro-
ceedings of the conference on Functional programming languages and computer architecture,
ACM, 1993, pp. 223–232.

142

https://github.com/css/csso
https://github.com/jakubpawlowicz/clean-css
https://github.com/jakubpawlowicz/clean-css
https://doi.org/10.1145/3310337
https://doi.org/10.1145/3310337
https://doi.org/10.1006/jpdc.1996.0023
https://doi.org/10.1016/S0020-0190(96)00179-2
https://doi.org/10.1016/S0020-0190(96)00179-2
https://doi.org/10.1016/0020-0190(95)00183-2
https://doi.org/10.1016/0020-0190(95)00183-2
https://doi.org/10.1145/582153.582161
http://doi.acm.org/10.1145/582153.582161
http://dl.acm.org/citation.cfm?id=647474.727598

[139] M. Martınez and A. Pardo, “A shortcut fusion approach to accumulations,” Science of
Computer Programming, vol. 78, no. 8, pp. 1121–1136, 2013.

[140] T. Rompf, A. K. Sujeeth, N. Amin, et al., “Optimizing data structures in high-level pro-
grams: New directions for extensible compilers based on staging,” in Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’13, Rome, Italy: ACM, 2013, pp. 497–510, isbn: 978-1-4503-1832-7. doi: 10.
1145/2429069.2429128 . [Online]. Available: http://doi.acm.org/10.1145/2429069.2429128 .

[141] L. D’Antoni, M. Veanes, B. Livshits, and D. Molnar, “Fast: A transducer-based lan-
guage for tree manipulation,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, 2014, pp. 384–394.

143

https://doi.org/10.1145/2429069.2429128
https://doi.org/10.1145/2429069.2429128
http://doi.acm.org/10.1145/2429069.2429128

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Learning Near-optimal Programs Through Comparative Queries
	More Scalable Syntax-Guided Synthesis
	Verifying Tree Traversal Transformations
	Thesis Organization

	COMPARATIVE SYNTHESIS: LEARNING NEAR-OPTIMAL NETWORK DESIGNS BY QUERY
	Introduction
	Motivation
	Comparative Synthesis, Formally
	Quantitative Synthesis with Metric Ranking
	Interaction Through Comparative Queries
	The Comparative Synthesis Problem

	Voting-Guided Learning Algorithm
	A Unified Search Space
	Query Informativeness
	The Algorithm
	Convergence
	Better Convergence Rate with Sortability

	Evaluation
	Network Optimization Problems
	Implementation
	Oracle-Based Evaluation
	Pilot User Study

	Related Work
	Conclusions
	Appendix: Additional Experimental Results
	Evaluation on Perfect Oracle
	Evaluation on Imperfect Oracle
	Sensitivity to Size of Pre-Computed Pool

	RECONCILING ENUMERATIVE AND DEDUCTIVE PROGRAM SYNTHESIS
	Introduction
	Preliminaries
	Syntax-Guided Synthesis
	Counterexample-Guided Inductive Synthesis
	Invariant Synthesis

	A Cooperative Synthesis Framework
	Divide-And-Conquer Splitter
	Subproblem Graph
	Cooperative Synthesis Algorithm

	Divide-And-Conquer Strategies
	Subterm-Based Division
	Fixed-Term-Based Division
	Weaker-Spec-Based Division
	Soundness and Completeness

	Fixed-Height Synthesis
	Concrete Height Enumeration
	Symbolic Inductive Synthesis

	The Deductive Component
	Experimental Evaluation
	Related Work
	Conclusion

	REASONING ABOUT RECURSIVE TREE TRAVERSALS
	Introduction
	A Tree Traversal Language
	Discussion of the Language Design
	Code Blocks

	Iteration Representation
	Configuration
	Speculative Reachability

	Encoding to Monadic Second-Order Logic
	Configurations, Schedules and Dependences
	Schedules and Dependences
	Data Race Detection and Equivalence Checking

	Evaluation
	Related Work
	Conclusion

	SUMMARY AND FUTURE DIRECTIONS
	REFERENCES

