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ABSTRACT

We consider the problem of developing innovative machine learning tools for online ed-

ucation and evaluate their ability to provide instructional resources. Prediction tasks for

student behavior are a complex problem spanning a wide range of topics: we complement

current research in student grade prediction and clickstream analysis by considering data

from three areas of online learning: Social Learning Networks (SLN), Instructor Feedback,

and Learning Management Systems (LMS). In each of these categories, we propose a novel

method for modelling data and an associated tool that may be used to assist students and

instructors. First, we develop a methodology for analyzing instructor-provided feedback and

determining how it correlates with changes in student grades using NLP and NER–based

feature extraction. We demonstrate that student grade improvement can be well approxi-

mated by a multivariate linear model with average fits across course sections approaching

83%, and determine several contributors to student success. Additionally, we develop a series

of link prediction methodologies that utilize spatial and time-evolving network architectures

to pass network state between space and time periods. Through evaluation on six real-world

datasets, we find that our method obtains substantial improvements over Bayesian models,

linear classifiers, and an unsupervised baseline, with AUCs typically above 0.75 and reaching

0.99. Motivated by Federated Learning, we extend our model of student discussion forums to

model an entire classroom as a SLN. We develop a methodology to represent student actions

across different course materials in a shared, low-dimensional space that allows characteris-

tics from actions of different types to be passed jointly to a downstream task. Performance

comparisons against several baselines in centralized, federated, and personalized learning

demonstrate that our model offers more distinctive representations of students in a low-

dimensional space, which in turn results in improved accuracy on a common downstream

prediction task. Results from these three research thrusts indicate the ability of machine

learning methods to accurately model student behavior across multiple data types and sug-

gest their ability to benefit students and instructors alike through future development of

assistive tools.
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1. INTRODUCTION

Over the past decade, higher education has shown a progressive shift towards online and

hybrid environments as a convenient alternative to classroom learning with estimates that

80% of college students have taken an online course [  1 ]. The emergence of open platforms like

edX and Coursera created a trend of making online education available worldwide [  2 ], and

tradiitonal universities have followed suit with their own online course programs. Likewise,

the emergence of a wide variety of Learning Management Systems (LMS) such as Canvas,

Blackboard and EdModo has offered instructors the ability to increasingly digitize course

materials even for traditional classroom learning, making education available ”on-the-go”

with access through mobile devices [ 3 ].

The COVID-19 pandemic significantly disrupted education and increased the number of

online learners since 2020, which in turn has demonstrated online platforms’ viability as an

additional tool in physical classrooms. This growth has not been without challenges, how-

ever; online learning has highlighted the lack of quality tools for both students and instructors

across online learning providers. Specific concerns have been raised about its apparent lack

of quality control, extraordinarily low teacher-to-student ratios, and scarcity of high-quality

teachers [  1 ]. With thousands of students enrolled in a single course, navigation of these mas-

sive communities becomes a daunting or impossible task. Interaction between students and

instructors is frequently asynchronous, e.g., through discussion forums or written feedback.

While recent years have demonstrated the feasibility of online learning environments, there

remain significant challenges to meet individual student learning needs.

The LMS that support both hybrid classrooms and Massively Open Online Courses

(MOOCs) such as Coursera allow automatic and timely documentation of student activity.

This may include social interactions, quiz scores, and video-watching patterns: information

that is costly and difficult to collect in an in-person environment. In turn, machine learn-

ing models can leverage these multi-modal datasets to inform future teaching practices for

instructors: student grade prediction [ 4 ] and link prediction in social learning networks [ 5 ],

[ 6 ] are two current popular avenues of research. We propose three novel machine learning
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approaches for developing instructional tools within online education, informed by previous

data-driven and empirical studies:

1. In Chapter 2, we present a link prediction methodology for Social Learning Networks

(SLNs) informed by spatial and time-evolving network architecture.

2. In Chapter 3, we analyze instructor-provided feedback using Natural Language Pro-

cessing (NLP) techniques, and determine correlations between construction of feedback

and student response.

3. In Chapter 4, we provide a novel framework for representing student actions within

a shared low-dimensional space, allowing characteristics from different actino types to

be passed jointly to a downstream learning task.

1.1 Background

1.1.1 Constructing Social Learning Networks

One of the largest issues faced by students and instructors alike in online courses is the dif-

ficulty of navigating large, online communities. One way course providers have attempted to

mitigate these problems is by establishing online forums where students can learn from each

other, thus compensating for a lack of personalized instruction by posting questions, reply-

ing with answers, and otherwise exchanging ideas. Massive Open Online Courses (MOOCs),

as well as Q&A sites like Piazza, Quora, and StackOverflow, rely on forums extensively,

generating a plethora of data about how users interact with one another online for learn-

ing purposes. These forums generate Social Learning Networks (SLNs) within communities

of student users that evolve over time, facilitating peer-to-peer knowledge transfer in the

absence of instructor intervention.

Predicting how these links develop, however, poses many challenges unique to SLNs.

For example, unlike social networking sites with clearly defined relationships between users

(e.g., follows and friendships), links in a discussion forum are more ambiguous [ 7 ]. Moreover,

whether two users will interact likely depends not only on their social “closeness,” but also on

whether they are interested in discussing similar topics. Further, the topology of a course’s

16



SLN will evolve substantially throughout its duration, starting from the extreme case of no

observable network when the course starts. Data-driven studies on the SLNs emerging from

online learning forums have analyzed the benefits of social learning [  8 ], [  9 ] geared towards

the ultimate goal of improving learning outcomes by, for example, proposing methods for

instructor analytics [ 10 ] and news feed personalization [ 7 ].

1.1.2 Effective Feedback in an Online Setting

Feedback is an important component of instructor-student interactions [  11 ]. When im-

plemented effectively, feedback can be an important tool for identifying and closing gaps in

student knowledge - but the definition of what constitutes “effective” feedback is not well

understood [  12 ]. Recent studies have shown that students in online courses tend to receive

poor quality, sparse, and inconsistent feedback [ 13 ]. Furthermore, feedback is subjective,

with student reaction depending as much on interpretation of the content as the content

itself. Student responses may be shaped by additional factors like past instructional expe-

riences and assumptions about their own performance [  14 ], making the feedback problem

fundamentally one of personalization.

When feedback does not demonstrate effect, attention quickly turns to students and how

they engage with material after receiving feedback [  15 ] [  16 ] [  17 ]. Little past attention has

been given to providing instructors with tools for crafting effective feedback for enhancing

student learning outcomes. This motivates our research question: How do the contents and

construction of assignment feedback affect future student performance, and what factors con-

tribute most significantly to this performance change? Understanding how the construction

of feedback plays a part in student performance would enable several new ways of improv-

ing student-instructor interactions, including: personalization of feedback by student based

on response to previous feedback; suggestions of words/phrases to include in feedback; and

automatic feedback generation for optimal learning outcomes. These techniques could help

mitigate some difficulties of a low teacher/student ratio classroom, as well as provide in-

structors with additional opportunities to make meaningful connections with students in the

course [ 18 ].

17



Developing a holistic model for understanding student response to feedback poses many

challenges due to inconsistencies in human behavior. While it might be intuitive that posi-

tive feedback encourages positive student response, recent data-driven studies have demon-

strated that this type of feedback can cause apathy in already high-performing students

[ 19 ]. Likewise, negative feedback does not always discourage students when it is delivered

constructively [  20 ]. The language, personalization, and tone of the message are all addi-

tional details that may contribute to the response model for a single feedback post, which

is part of a larger sequence of student-instructor interactions whose history adds additional

information to understanding potential student response.

1.1.3 Components of Student Knowledge Modeling

Students interact with many types of course material through an LMS: they may access

written course materials, interact with lecture videos, discuss with other students in class

forums, take quizzes, receive feedback from instructors, and many others. Their ”actions”

form the building blocks of student behavior while learning in an online classroom, catego-

rized by the type of material. Supervised machine learning models so far have attempted

to capture important features from each of these types of actions explicitly [ 21 ]. However,

because these features may differ greatly in shape and scope between action types, it is diffi-

cult to capture inter-category action relationships when comparing impact on a final output

prediction (such as the impact of watching a video vs. quiz performance on final grade).

Further, these models are often computationally expensive and slow to train. While single-

category models offer good prediction accuracy for certain tasks, results are inconsistent

across datasets depending on external factors such as demographic information and prior

student knowledge state.

Much like feedback, student behaviors possess a degree of subjectivity due to learning

differences. While one student may execute a series of clicks on a video and achieve high

marks on the associated quiz, a different student might perform the same series of actions to

a different outcome. Such discrepancies tangle the ability of centralized learning models to
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make useful predictions for all students - while overall model accuracy may be high, students

who do not follow the majority learning behavior are disadvantaged.
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2. PREDICTING LEARNING INTERACTIONS IN SOCIAL

LEARNING NETWORKS: A DEEP-LEARNING ENABLED

APPROACH

Included here with permission from IEEE. Originally Published in IEEE Transactions on

Networking (TON) 2022. Rajeev Sahay* & Serena Nicoll*, Minjun Zhang, Tsung-Yen Yang,

Carlee Joe-Wong, Kerrie A. Douglas, Christopher G. Brinton.

2.1 Background

In this work, we are motivated by the following research question: Can link formation

between learners in an SLN be predicted in advance? Such predictions would enable several

new ways of improving online learning and forum experiences (e.g., encouraging early forma-

tion of learner groups or recommending that learners respond to newly-posted questions that

they are expected to answer/contribute to later), thus helping to reduce the gap between

in-person and online instruction.

Towards this goal, we develop a link prediction methodology which analyzes a set of

features describing (i) learner pairs in an SLN and (ii) the evolution of learner interactions

over time. Our methodology is deep learning-based, allowing consideration for both time-

variable features and latent learner characteristics. We evaluate our methodology on data

collected from four MOOC discussion forums from Coursera and two courses from the School

of Electrical and Computer Engineering at Purdue University. We then investigate how our

methodology can be used to make recommendations that may enhance the timing and quality

of replies to discussion posts, thus encouraging interactions and improving learner experience

in discussion-based forums.

2.1.1 Related Work

The link prediction problem has been studied extensively in the context of online and

digitally-enabled social networks, due to its usefulness in generating recommendations such

as friendships, following, or other forms of interactions [  22 ]–[ 25 ]. Several methods have been
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Figure 2.1. Summary of the application of our SLN link prediction framework
in post-based courses.

proposed for this problem, beginning with unsupervised approaches and eventually transi-

tioning to supervised methods in the past few years. In terms of unsupervised methods, [ 26 ]

proposed using features based on node proximity and properties, while [  27 ] and [  28 ] applied

a model to incorporate additional contextual and temporal features. On the other hand,

supervised approaches have proposed random walk algorithms using labels to increase the

likelihood of traversing formed links [  29 ], while [  30 ] and [ 31 ] proposed deriving features from

exogenous sources and training models on them to predict future link formation. Previous

work has additionally considered using supervised and unsupervised methods simultaneously

for exploratory learning environments [  32 ]. However, these works do not consider charac-

teristics unique to social learning networks: potential dependence on discussion topics, and

the need for time-series modeling. Research into social learning networks until this point

has been largely theoretical, although [ 33 ] provides a first look into application of a deep

learning enabled link prediction algorithm in a classroom setting. Additionally, unsuper-

vised approaches have demonstrated recent popularity for problems related classification of

student behavior [  34 ]. Although the central focus of our research is concerned with social

learning networks, unlike these works, our strictly supervised models specifically consider

student social characteristics for large classrooms.

Other works on online social networks have considered problems related to link forma-

tion, e.g., predicting the strength/repetition (rather than existence) of future links [ 35 ]–[ 37 ],

predicting link types [  34 ], or examining the effects of student confusion on SLNs [  38 ]. The

methods used and developed include linear regression/classification on network features and
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user demographics [ 35 ], [  39 ], latent variable modeling of learner interaction frequencies [  34 ],

and dynamic models to account for the disappearance and strengthening of links over time

[ 31 ]. Our models utilize some similar network features, but we consider the different predic-

tion objective of pinpointing when links will form. In fact, given its high observed quality

(up to 0.96 AUC), we consider a time-series version of [ 40 ] as a potential model.

An SLN is fully described by several datasets that each capture the a subset of student

behavior inside the associated course. Recent papers choose to focus on one or a couple of

these datasets: e.g. Student video-watching behavior [  10 ], student performance [ 41 ], [  42 ],

student physical behavior[ 43 ], or discussion forum data [  44 ]–[ 47 ]. Our work is evaluated on

a similar dataset to [  46 ] in that it provides information gathered on student message passing

behavior in a discussion forum. The models created in these other works fundamentally differ

from our focus on individual student relationships. [  44 ] focuses on making group predictions

from clusters of similar students, while [  47 ] models changes in student behavior at critical

points (e.g. exams, holidays).

Some recent works have focused on other aspects of different types of SLNs, e.g., MOOCs

[ 34 ], [  35 ], [  48 ], Q&A sites [  36 ], [  49 ], and enterprise social networks [  50 ], [  51 ]. Our work

is perhaps most similar to [  1 ], [  35 ] in that we study prediction for SLNs using topological

features. The prediction objectives in these other works, however, are fundamentally different

than our focus of predicting interactions between learners in that they seek to predict course

grades via video-watching behaviors [  48 ] and student knowledge-state via learner post and

reply frequencies [ 49 ].

2.1.2 Our Methodology and Contributions

In this paper, we develop a time-series link prediction framework for an SLN that con-

siders both the SLN network structure and the latent learner post characteristics. Fig.  2.1 

summarizes the main components of our methodology.
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Input Feature Computation

We begin by extracting the discussion data from the considered forum to construct the

SLN (Sec.  2.2.1 ). Next, we engineer a set of features for each learner pair (Sec.  2.2.2 ).

Here, we define three groups of features that we consider: (i) neighborhood-based features

that are determined from common neighborhoods, (ii) path-based features based on paths

between learners, and (iii) post-based features that are determined from latent topic analysis

of learner posts. Because a specific definition of what constitutes link formation between

two users in an SLN does not exist, a key question when quantifying an SLN is how best to

model learner interactions without loss of accuracy [ 7 ]. We address this through inference

from forum data, with consideration for both quality of interaction [ 40 ] and timing.

Prediction Model

The second component of our framework shown in Fig.  2.1 is the prediction model

(Sec.  2.2.3 ). We consider two different classes of predictors: (i) linear classifiers (specifi-

cally, linear discriminant analysis and support vector machines) and (ii) gradient-based deep

learning classifiers (specifically, Bayesian neural networks, fully connected neural networks,

convolutional neural networks, recurrent neural networks, and convolutional recurrent neural

networks). The success of Bayesian models in static link prediction problems[  52 ] motivates

us to consider their performance in the time-evolving SLN setting. However, we develop our

core methodology around deep learning-based classifiers, because the adoption of various

layer types can model spatial or temporal varying features between learners while represent-

ing learner interactions in a high-parameter latent space. To the best of our knowledge, the

methodology we develop for evaluation of various neural network architectures is the first

to encapsulate a variety of deep learning models for link prediction in SLNs and the first to

recommend a methodology around a convolutional recurrent neural network (CRNN).
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Evaluation and Analytics

To assess the quality of our models, we train and evaluate our considered prediction

models on four MOOC discussion forums and two Piazza discussion forums, using an un-

supervised method as a baseline (Sec.  2.2.3 ). Through our evaluation, we also generate

three types of analytics as shown in the third component of Fig.  2.1 . The first analytic is

feature importance, which quantifies the importance of each considered feature and feature

group. The second and third analytics quantify time-dependent model parameters, includ-

ing closeness between time of link prediction and actual link formation. Next, we consider

the application of our method to recommending link formation in a classroom setting(Sec.

IV), which involves analyzing how the features relate to the timing and quality of formed

links. In addition to these analytics, we provide visualizations for instructors to interact

with the results of our model and respond to changes in the course SLN. These visualiza-

tions encapsulate our analytics, allowing for interpretation by those not familiar with our

model.

From the evaluation and associated analytics, our key findings and contributions are as

follows:

• We show that our deep-learning enabled algorithms obtain substantial improvements

over traditional linear and baseline predictors for each dataset, with AUCs above 0.74

and up to 0.99.

• We show that neighborhood-based and path-based features are the most important

for link prediction quality, indicating that post-based content is decreasingly vital for

accurate learner interaction prediction.

• We propose visual and analytical tools for instructors including a recommendation

system, informed by our prediction model, that capture time-sensitive student social

behavior.
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2.2 Social Network Model

In this section, we formalize our prediction model. We first quantify an SLN from forum

data (Sec.  2.2.1 ) and define the particular features that are used as model inputs (Sec.  2.2.2 ).

We then develop our considered linear machine learning models and non-linear gradient-

based deep learning classifiers (Sec.  2.2.3 ) for link prediction.

2.2.1 SLN Graph Model

In order to define our features, we must first describe how link creation in an SLN model

is inferred and quantified from online forum data.

Online forums

The format of online forums differs by host site and by classroom needs. We identify two

main types of forum structures to account for in our methodology:

MOOC forum structure. A large online forum such as those hosted on Coursera is

typically comprised of a series of threads, with each thread in turn being comprised of one

or more posts. Each post is written by a single user. A post, in turn, can have one or

more comments attached to it. Given the observation that SLN forum users do not abide by

the designation of post vs. comment consistently [  7 ], we will not distinguish between them,

instead referring to them both as posts. This structure of thread posts is depicted in Fig.

2a.

Q&A forum structure. Another format, implemented by Piazza, forces a “Ques-

tion/Answer” thread structure. The forum is constructed from a series of questions and

their responses, with allowance for follow-up questions and responses. In contrast to tradi-

tional forums, a response on Piazza may have contributions from multiple users in the same

block, rather than requiring a new comment from each user. Any question may have com-

ments attached to it in the form of “follow ups”, which can in turn generate new responses.

Using the observation listed above from [ 7 ] again, we do not distinguish between types of
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follow-up responses and label all responses after the initial question as posts. This alternate

structure of thread posts is depicted in Fig. 2b.

Quantifying SLN link creation

We let T denote a given thread in an online forum and use pn ∈ T to denote the nth post

created in the thread, made by user u at time tn. We set p0 to refer to the initial post or

question, made at time t0. A post pn will contain a body of text xn written by u. A link (u, v)

is observed between learner u and another learner v if, at a later time tn,0 > tn, v contributes

to a post pn,0 ∈ T in the same thread. We use this as the criterion for establishing the link

(u, v) in the SLN because it signifies the fact that learner u and learner v have exchanged

ideas and interacted in the same thread.

To model the evolution of an SLN, we group its posts into different time intervals. To this

end, we let Tc = tN − t0 be the time elapsed between the first p0 and last pN posts made in a

forum. We divide all posts in this forum into L equally spaced intervals of lengthmL = Tc/L.

Formally, we say that post j will belong to interval i iff tj ∈ (t1 + (i−1) ·mL, t1 + i ·mL). Fig.

2 illustrates this procedure for two example threads. We use yuv(i) as an indicator variable

for the formation of link (u, v): yuv(i) = 1 if a link between u and v has been created in

any interval 1, . . . , i ≤ L and yuv(i) = 0 otherwise. Thus, as in most social networks [ 51 ][ 29 ],

links persist over time in our SLN model. Furthermore, we define wuv(i) as a weighted

indicator variable for the strength of link (u, v): wuv(i) > 0 if a link between u and v has

been created in any interval, otherwise wuv(i) = 0. The value of wuv(i) is set by the number

of interactions between users u and v. The SLN graph structure in any given interval i

is then comprised of nodes corresponding to the learners u and edges (u, v) corresponding

to links between them. For the purpose of predicting future responses, we consider this

interaction to be bidirectional, i.e., the resulting SLN is an undirected graph. Formally, we

define G(i) = [yuv(i)] as the binary adjacency matrix of the SLN during interval i; since links

are bidirectional, G(i) is symmetric.

We can also define subgraphs of G(i) focusing on particular students. Fig.  2.3 visualizes

the neighborhood for an individual, randomly selected student at a particular time instance,
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Figure 2.2. Example of how posts in two different forum structures are
divided into time periods and how SLN link creation between the learners
authoring these posts is modeled. Fig. 2a (left): model for a Coursera forum.
Fig. 2b (right): model for a Piazza Forum.

where first and second degree connections are considered. In addition to capturing detailed

link-formation behavior evaluated later in this study, evaluating a visual representation from

the perspective of a single student provides an intuition for individual student contributions

and demonstrates the presence of “hub” students. The lack of multiple paths between

students highlights the underlying sparse nature of G(i), requiring users to traverse one

long path rather than choose from several short connections. Additionally, the relative small

false positive rate (denoted by blue links in Fig.  2.3 ) demonstrates our framework’s efficacy

for link prediction, as we will describe further in Sec.  2.3.3 .

Two particular subsets of G(i) are of interest in the link prediction problem. We define

Ω = (u, v) : u, v ∈ N(G), u 6= v, (2.1)

i.e., all possible learner pairs in the SLN. We then define two subsets of Ω : G(L), which is

the set of formed links at the final time i = L (i.e., with yuv(L) = 1), and Gc(L) = Ω \ G(L),

the complement graph of un-formed links (i.e., yuv(L) = 0). Note that |Gc(L)| � |G(L)|

for each dataset (i.e., most learners are never linked). This large class imbalance between

formed and unformed links informs our link prediction framework in Sec.  2.2.3 

27



Table 2.1. Descriptive metrics on our six considered forum datasets. The
title, beginning date (m/dd/yy), duration (weeks), number of users, threads,
learner pairs, and posts by the end. All courses were broken into 20 time
instances.

Forum Course Title Beginning Duration Users Threads Learner Pairs Posts
ml Machine Learning 4/29/13 12 4263 4217 73315 25481

algo Algorithms: Design and Analysis I 9/22/14 13 3013 4656 50006 16276
shake Shakespeare in Community 4/22/15 5 958 1389 66217 7484
comp English Composition I 7/01/13 8 1862 1286 20083 8255
f19 Python for Data Science 8/20/19 18 115 669 17000 2013
s20 Python for Data Science 1/17/20 17 290 1129 44964 4955

2.2.2 SLN Feature Engineering

We now define our features, computed for each learner pair (u, v), u 6= v. These quantities

serve as the inputs to our prediction algorithms in Sec.  2.2.3 .

Neighborhood-based Features: These features, as well as path-based features dis-

cussed next, are extracted from the topology of the graph. Letting N(G) be the set of nodes

in the SLN G and Γu(i) ⊆ N(G) denote the set of neighbors of u at time i, the neighborhood-

based features qualitatively measure the “similarity” of u and v’s neighborhoods [  53 ]. They

are quantified as follows:

1. Jaccard coefficient: Jauv = |Γu(i) ∩ Γv(i)|/|Γu(i) ∪ Γv(i)|

2. Adamic-Adar index: Aduv = ∑
n∈Γu(i)∩Γv(i) 1/log|Γn(i)|

3. Resource allocation index: Reuv = ∑
n∈Γu(i)∩Γv(i) 1/|Γn(i)|

4. Preferential attachment score: Pruv = |Γu(i)| · |Γv(i)|

We let buv denote the vector of these features for pair (u, v). Note that a larger value

of each of these features, roughly speaking, indicates that u and v share more common, low

degree neighbors than they do with others.

Path-based Features: These features measure the proximity of u and v in the SLN.

They are as follows:

5. Shortest path length (Lpuv): The length of the shortest path between u and v.
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Figure 2.3. A snapshot of the SLN graph model for a single user (represented
by a unique ID string) and their close neighborhood. The visual demonstrates
the lack of multiple paths between users, underlying the sparse nature of the
graph.

6. Number of paths (Npuv): The number of shortest paths between u and v.

We let auv denote the vector of these features. Note that as Lp decreases, u and v become

more closely connected, while a larger Np indicates more redundancy in these paths.

Post-based Features: Besides topology-based attributes, learners’ interests in different

course topics will also influence their probability of forming links in an SLN. In particular,

we would expect those with similar topic interests to be more likely to post in the same

thread, i.e., form links. We thus compare the topics of different learners’ posts to compute

another feature that shows the learners’ similarity in interests.

To do this, we let dn = (dn,1, dn,2, . . .) be the sequence of word indices for post n from

the dictionary of all course words X = x1 ∪ x2 ∪ . . .. We then apply the Latent Dirichlet

Allocation (LDA) algorithm across the dn to extract a set of latent topics K and to model

each post pn as different combinations of these topics, arriving at vn = {vn,k|k ∈ K}, i.e.,

the topic with highest proportion, to serve as a main topic for pn. Then, for each learner, we

obtain the set of main topics across their posts through time i as Ku(i) = {kn|n ∈ Pu(i)},

where Pu(i) is the set of posts written by learner u through time i. With this, we define the

last feature:
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7. Number of common topics (To): |Ku(i) ∩Kv(i)|

We use cuv as the time-series version of To, i.e., the number of common topics discussed

by u and v.

2.2.3 Link Prediction Methodology

As discussed in Sec.  2.2.2 , the features extracted from the graph topology contain spa-

tially and temporally correlated patterns between learner pairs. Therefore, we employ pre-

diction models that are capable of exploiting these patterns for accurate link prediction. In

this capacity, we consider the efficacy of four distinct deep learning architectures for our

proposed framework: (i) the fully connected neural network (FCNN), which offers effective

latent space prediction; (ii) the convolutional neural network (CNN), which is highly effec-

tive for processing spatially correlated patterns; (iii) the long-short-term memory (LSTM)

based recurrent neural network (RNN), which is desirable for time-series modeling; (iv) the

convolutional recurrent neural network (CRNN), which extracts both spatial and tempo-

ral correlations. As baselines to these methods, and to demonstrate the necessity of the

aforementioned classifiers and their corresponding architectures, we compare our proposed

deep learning prediction framework to four traditional prediction models: an unsupervised

predictor, a Bayesian neural network (as proposed in [ 52 ]), and two linear prediction models

(support vector machines and linear discriminant analysis).

For a given pair of users (u, v), the input feature vector into each of the following models

is given by euv = [buv, auv, cuv], as defined in Sec.  2.2.2 , while the target output is the link

state yuv(i) ∈ {0, 1}. In the following, we describe the latent state of each model as well as

their corresponding training procedures.

Unsupervised Predictor

We begin by using a simple prediction algorithm as a benchmark for the parameter-based

models described below. Choosing the feature most associated with link formation, we follow

[ 29 ] and turn the resource allocation index (Re) feature into an unsupervised predictor. To
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do this, we compute Re for each (u, v) ∈ Ω, normalize the vector of values to [0, 1], and use

this as ŷuv(i).

Linear Classifiers

Next, we consider two relatively simple linear models for SLN link prediction: linear

discriminant analysis (LinDA) and support vector machines (SVMs). Both models attempt

to find a separating linear hyper-plane between learners who did and did not form links.

However, both models are learned using different methodologies, which are described below.

Linear Discriminant Analysis (LinDA): LinDA aims to probabilistically discern

distinct classes given an input feature vector (i.e., P (yuv|euv)). Specifically, link predictions

for each feature vector are given by

P (yuv|euv) = P (euv|yuv)P (yuv)∑1
i=0P (euv|i)P (i)

. (2.2)

The class conditional probability, P (euv|yuv), is modeled by the multivariate Gaussian distri-

bution, where P (euv|yuv = 0) and P (euv|yuv = 1) are assumed to share the same covariance

matrix, Σ. The PDF, where | · | denotes the determinant operation, is given by

P (euv|yuv = i) = 1√
(2π)d|Σ|

exp
(
− 1

2(euv − µi)T Σ−1(euv − µi)
)
. (2.3)

Substituting ( 2.3 ) into ( 2.2 ) results in the log-posterior of LinDA given by

logP (yuv = i|euv) = wT
i euv + wi0 + C, (2.4)

where wi = Σ−1µi and wi0 = −(1/2)µT
i Σ−1µi + logP (yuv = i) are the model parameters

fitted during training. The class prediction of a sample, x ∈ Rd, is then given from ( 2.4 )

using the learned parameters estimated from the training data.
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Support Vector Machine (SVM): The Linear SVM aims to learn a separating hy-

perplane, which maximizes the margin between learner pairs (u, v) that do and do not form

links. Specifically, for each training sample, euv the Linear SVM model is given by

ŷuv = wT euv + b, (2.5)

where w ∈ Rd and b ∈ R are the model parameters learned during training. The model

parameters are fitted by employing the hinge loss in the objective function

min
w,b

1
2wT w +

∑
i

(yi(wT euv + b))+. (2.6)

The learned w and b from (  2.6 ) are used to construct the model shown in ( 2.5 ). Finally, given

an input testing sample, euv, and the optimized parameters, w and b, the SVM prediction

is given by

ŷ = sgn(wT euv + b), (2.7)

where sgn(·) is the sign of the resulting vector corresponding to y ∈ {0, 1}.

Deep Learning Classifiers

One potential limitation of linear classifiers, which have been proposed for link prediction

in the past, is their small parameter space, which prevents learning intricate non-linear

relationships between input features extracted from an SLN. To address this challenge, we

propose a deep learning enabled approach for link prediction in which various characteristics

of (u, v) (e.g., spatial and time-varying properties) are expected to be learned for stronger

prediction performance.

Specifically, we propose five deep architectures for link prediction: the Bayesian neural

network (BNN), the fully connected neural network (FCNN), the convolutional neural net-

work (CNN), the recurrent neural network (RNN), and the convolutional recurrent neural

network (CRNN). Each model (excluding the Bayesian Neural Network) applies the Recti-
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Table 2.2. Summary statistics – SNR, mean and standard deviation (s.d.) –
for the network features of the two link groups. The top row for each feature
corresponds to formed links (yuv(L) = 1), and the bottom to non-formed links
(yuv(L) = 0). Taken individually, the neighborhood-based features Re and Ad
have the strongest correlations with link formation, while the topic-based To
tends to have the least.

(a) ml

Features SNR Mean s.d

Ja 0.5741 0.1467 0.1818
0.0224 0.0345

Ad 0.8069 2.6963 2.6556
0.2121 0.4783

Re 0.8221 0.2838 0.3108
0.0085 0.0241

Pr 0.3478 5413.9 12436
512.37 1653.8

Lp -0.7037 0.8712 0.3454
1.6186 0.7165

Np -0.1603 2.0779 9.1893
9.3004 35.855

To 0.2019 1.0201 1.6955
0.4904 0.9276

(b) algo

Features SNR Mean s.d

Ja 0.6614 0.2312 0.2727
0.0246 0.0396

Ad 0.8254 3.1919 3.3436
0.1748 0.3116

Re 0.9411 0.3503 0.3355
0.0092 0.0268

Pr 0.3812 1797.6 3253.4
270.87 752.06

Lp -0.6638 0.7974 0.3091
1.4348 0.6511

Np -0.2191 1.3389 3.8776
4.9092 12.421

To 0.1668 0.5875 0.9624
0.3364 0.5426

(c) comp

Features SNR Mean s.d

Ja 0.2535 0.1608 0.2207
0.0721 0.1291

Ad 0.7276 1.8286 2.1686
0.0956 0.2131

Re 0.7648 0.2959 0.3434
0.0045 0.0376

Pr 0.3836 1041.8 2325.5
38.123 291.32

Lp -0.7048 0.9248 0.3497
1.8233 0.9251

Np -0.2498 1.3182 3.2174
5.9579 15.352

To 0.1258 0.5703 0.8587
0.4039 0.4637

(d) shake

Features SNR Mean s.d

Ja 0.3527 0.1354 0.1318
0.0565 0.0914

Ad 0.7148 2.6913 2.8538
0.2612 0.5453

Re 0.6648 0.2934 0.3647
0.0143 0.0551

Pr 0.4871 1904.1 3074.1
142.67 541.58

Lp -0.7802 0.9519 0.2995
1.7221 0.6874

Np -0.2414 1.8512 4.3331
7.3385 18.397

To 0.3151 1.3249 1.6287
0.5906 0.7009

(e) f19

Features SNR Mean s.d

Ja 0.5807 0.1413 0.1294
0.0323 0.0582

Ad 0.6414 1.8429 2.0376
0.2099 0.5084

Re 0.5999 0.2633 0.3315
0.0241 0.0673

Pr 0.6066 360.11 449.03
32.847 90.413

Lp -1.1082 1.3231 0.3538
2.1759 0.4158

Np -0.4079 1.7306 1.4857
3.9584 3.9746

To 0.6042 2.6515 2.8861
0.3702 0.8893

(f) s20

Features SNR Mean s.d

Ja 0.6901 0.1341 0.1088
0.0266 0.0468

Ad 0.6628 2.5344 2.8694
0.2289 0.6088

Re 0.6149 0.2347 0.3019
0.0164 0.0531

Pr 0.5902 1109.7 1469.8
81.076 273.16

Lp -0.9782 1.4292 0.3748
2.1761 0.3887

Np -0.2908 2.9899 2.9203
6.0636 7.6483

To 0.6691 2.8634 2.9075
0.3679 0.8221

fied Linear Unit (ReLU) activation function, given by σ(a) = max{0, a}, in its hidden layers

followed by a two-unit output layer, which applies the softmax activation function given by

σ(a)i = exp(ai)
2∑

j=1
exp(aj)

, (2.8)

which allows a probabilistic interpretation of the likelihood of link formation for a learner

pair (u, v). The model architecture for each of our considered models are discussed below.

The hyper-parameter selection of each model was empirically determined to best fit the

diverse datasets utilized in Sec.  2.3 .
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Table 2.3. Summary of the top five topics extracted by LDA for each online
discussion forum. For each course, the topics tend to be reasonably disjoint,
with the exception of common words

(a) ml

k Support Top 3 Words
1 0.1257 class question svm
2 0.1078 computer work image
3 0.0895 gradient set lambda
4 0.0835 code problem exercise
5 0.0741 octave line column

(b) algo

k Support Top 3 Words
1 0.2287 thought fast graphs
2 0.0872 heap length max
3 0.0713 algorithm time run
4 0.0684 file sort merge
5 0.0676 set problem line

(c) comp

k Support Top 3 Words
1 0.1141 project composition https
2 0.0736 annotated idea good
3 0.0541 great word read
4 0.0486 writ time read
5 0.0425 feedback hope find

(d) shake

k Support Top 3 Words
1 0.2607 shakespeare play time
2 0.1671 family bad sentence
3 0.1185 romeo juliet scene
4 0.1009 time play text
5 0.0528 love night dream

(e) f19

k Support Top 3 Words
1 0.1108 readme want fix
2 0.0822 standard test sample
3 0.0765 dataset issue
4 0.0746 https pip install
5 0.0688 file git ngrams

(f) s20

k Support Top 3 Words
1 0.1369 data correct question
2 0.0968 true points array
3 0.0787 test case import
4 0.0762 error redirect prefix
5 0.0615 point report fine
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(a) Ja (b) Ad (c) Re (d) Pr (e) Np

(f) Lp (g) To

Figure 2.4. Cumulative distribution functions (CDFs) for each of the seven
feature vectors from the s20. CDFs of non-formed links are marked in blue,
and CDFs of formed links are shown in orange. These demonstrate that (a)
there is an observable difference in distribution between the two populations
for each feature and (b) as expected, there is an inverse relationship between
number of shortest paths and shortest path length.

ver

Bayesian Neural Network (BNN): The Bayesian Network (BNet) model [  52 ] defines

the probability density of latent variable zuv as a Gaussian:

P (zuv|euv) = N (wT euv, σ
2), (2.9)

where w is the weight vector and σ2 is the variance, both to be estimated when the model

is trained. From this, yuv is estimated according to

P (yuv = 1|zuv) = σ(φφφT zuv + b), (2.10)

where φφφ and b are a vector and scalar, respectively, to be estimated during training, and σ(·)

is the logistic sigmoid function given by σ(·) = 1/(1 + e−(·)).

Our BNN architecture is composed of a hidden layer encoding the latent variable zuv.

This hidden layer has 10 units, each represents a normal distribution with weight wi and
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variance σ2. Following this hidden layer is a dense output layer with softmax activation

function given in [ 52 ].

Fully Connected Neural Network (FCNN): Our fully connected multi-layer artifi-

cial neural network is composed of two hidden layers each containing 128 units. Each unit in

a particular layer is connected to each unit in the preceding layer by a weight, wi, where the

sequence of all weights inputted into a single unit is given by w = [w1, . . . , wn]. The unit’s

output is calculated by

σ

(∑
i
wixi + b

)
, (2.11)

where σ is the ReLU activation function given and b is a bias threshold.

Convolutional Neural Network (CNN): In addition to FCNN models, we also con-

sider deep convolutional neural networks (CNNs), which in addition to providing a large

parameter space for learning, capture spatial characteristics between features for each learn-

ing pair (u, v). In the domain of link prediction, capturing spatial correlations between signal

features is especially important since the majority of features (e.g., buv and auv) are extracted

from the topology of the SLN graph. In a CNN, each convolutional layer is composed of

feature maps, h(u) where u = 1, . . . , K denoting K feature maps, which contain parameters

that are learned during the training process. The output of a particular convolutional unit,

with input x, is calculated according to

(x ∗ h(u))i,j = σ

(∑
n

∑
m

x[n,m]h(u)[i− n][j−m]
)
, (2.12)

where i and j denote the resulting indexed element of the calculated matrix. Our proposed

CNN for link prediction is composed of two convolutional layers with 64 3× 1 feature maps

and 32 2× 1 feature maps, respectively, followed by a 32-unit fully connected layer.

Recurrent Neural Network (RNN): BNNs, FCNNs and CNNs, as well as linear

classifiers, lack the ability to model the evolution of latent space variables over time based

on euv. This could be important to modeling an SLN for a number of reasons, particularly so

that the predictor could respond to sudden changes in the input relative to the prior state.
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This may occur, for example, when the topic of the course shifts, which could be reflected

in a sudden change in cuv.

To address this challenge, we propose using a long-short-term memory (LSTM) based

RNN with input duv = [euv,huv(t−1)]T , where h(0) = 0 and h(t − 1) is the output vector

from the previous time. We then define the interaction gate, relationship gain gate, and

relationship fading gate vectors at each time interval, i, as

guv(i) = ψ(Wgduv(i) + bg) (2.13)

iuv(i) = σ(Widuv(i) + bi) (2.14)

fuv(i) = σ(Wfduv(i) + bf ) (2.15)

respectively. Here, ψ(·) and σ(·) are the tanh and sigmoid functions, respectively, and the

matrices Wg, Wi, and Wf as well as the vectors bg, bi, and bf contain parameters that are

estimated during the model training procedure. By these definitions, the interaction vector,

g, will contain new candidate values from duv, the gain gate, i, will specify the degree to

which the input values in duv will be used in updating z (the latent cell state), and the

fading gate, f , indicates the degree to which prior elements from z will be used in the new

state. Formally, zuv is updated as

zuv = guv(i)� iuv(i) + zuv(i− 1)� fuv(i), (2.16)

where � denotes element-wise matrix multiplication. We then use an output gate, o to

determine the factor to which each element of z should be used in the definition of h:

ouv(i) = σ(woduv(i) + bo),huv(i) = σ(zuv(i)� ouv(i)). (2.17)
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With this, yuv(i) is estimated as

P (yuv(i) = 1|zuv(i)) = σ(h1(i)), (2.18)

where h1(i) is the first element of h(i). Our implemented RNN is composed of 64-cell LSTM

layer followed by 128-unit fully connected layer.

Convolutional Recurrent Neural Network (CRNN): Convolutional recurrent neu-

ral networks contain both convolutional layers and recurrent LSTM layers. Although such

models are typically computationally costly to train, they capture both spatial and time-

varying correlations between learner pair feature vectors, thus providing the advantages of

high parameter deep learning models with CNNs and RNNs. Our proposed CRNN archi-

tecture consists of two convolutional layers, containing 64 3 × 1 and 32 2 × 1 feature maps

respectively, followed by a 32-cell LSTM layer, and a 32 unit fully connected layer.

In addition, to evaluating the performance of link prediction on euv, we also evaluate our

model’s performance on subsets of the considered feature groups to assess feature importance.

To evaluate smaller groups of features using the CNN and CRNN models, a modification

in model architecture is required to avoid excessive zero-padding. Our implementation of

the CRNN model for computing links with all features contained both a 3 × 1 kernel layer

and a 2 × 1 kernel layer. To classify samples using a subset of less than five of the seven

features, the second convolutional layer using a 2 × 1 kernel was removed, leaving a single

convolutional layer with a 3× 1 kernel before the fully connected and output layers.

Deep Learning Parameter Training

We train each deep learning algorithm using the Adam optimizer as well as the categorical

cross entropy loss function, which for our link prediction setup is given by

L = − 1
N

N∑
n=1

2∑
j=1

yjlog(ŷj), (2.19)

where N is the total number of samples being used to calculate the loss and ŷ is the prob-

ability of link formation. Each model uses a batch size of 64 as well as a learning rate of
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(a) Algorithms: Design
and Analysis I

(b) Machine Learning (c) Shakespeare in Com-
munity

(d) English Composition
I

(e) Data Science Fall (f) Data Science Spring

Figure 2.5. A snapshot of the SLN model topology for each of the six datasets
used in this study. From the visuals we demonstrate that levels of interaction
in each course are not solely dictated by course size.

0.001. Finally, each model is trained using 300 epochs, which is sufficient for convergence on

each dataset but simultaneously allows for convergence at slightly different optima, resulting

in robust and reliable evaluation when used with k-fold cross validation as further discussed

in Sec.  2.3.2 .

2.3 Model Evaluation

In this section, we begin by describing our considered courses along with their corre-

sponding datasets (Sec.  4.3.1 ) as well as our model evaluation procedure (Sec  2.3.2 ). We

then evaluate our framework’s performance for predicting link formation (Sec.  2.3.3 ) and

examine the time-accuracy of our prediction model (Sec.  2.3.4 ).
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2.3.1 Datasets

We consider the SLNs formed in six courses: four Coursera-based MOOC courses and two

traditional courses offered by the School of Electrical and Computer Engineering at Purdue

University. The four MOOC courses – “Machine Learning” (ml), “Algorithms: Design and

Analysis, Part 1” (algo), “English Composition I” (comp), and “Shakespeare in Community”

(shake) – were selected to represent a diverse set of subjects: two quantitative in nature and

two in the humanities. In addition, we also consider the course “Python for Data Science”

hosted through Purdue University over two semesters: “Fall 2019” (f19) and “Spring 2020”

(s20). The availability of data from two offerings of a single course provides a unique

opportunity to evaluate behavior in a single course over multiple semesters. The s20 dataset

is of particular interest because of its relation with the COVID-19 pandemic. Specifically,

this course was held in-person from January - March, allowing students to begin forming

in-person links, which carried into their relationship in the course’s SLN. However, with

the pandemic forcing a transition to fully online learning, link formation between students

became completely dependent on discussion forum communication. The inclusion of the

f19 and s20 datasets, which differ both in size and in format, demonstrate our framework’s

broad applicability to different online course formats in dynamic environments. Table  2.1 

summarizes detailed metrics of the six considered datasets.

Fig.  2.5 demonstrates the completed graph topology at the termination of each course

under evaluation. The diverse nature of the considered courses is evident in the shape and

density of each graph, demonstrating that a large number of enrolled students does not

imply a densely connected graph. Specifically, the (smaller) humanities-related MOOCs

demonstrate a large increase in student connections over the (larger) quantitative MOOCs.

This is an expected outcome, as courses in humanities encourage and sometimes even require

discussion of class material between students. We also observe the difference in population

between the Fall 2019 and Spring 2020 offerings of Purdue’s “Python for Data Science”

course, which demonstrates the increase in student utilization of discussion forums in the

absence of in-person instruction.
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In what follows, we describe the SLNs in terms of the features in Sec.  2.2.2 . We make

several observations on associations with link formation within and across datasets before

evaluating the link-prediction portion of our proposed framework.

Data Preparation

To obtain a representative set of student behavior from a course, and to ensure that

data gathered from each source is uniformly formatted, we filter each considered dataset.

Specifically, we remove the instructors from the list of learners and remove all links formed

between learners and instructors, since we are interested in developing models targeted to-

wards peer-to-peer interaction, with the goal of requiring less direct instructor intervention.

Furthermore, interactions before the beginning of a course are removed; only links formed

during a course are considered. Both course-hosting sites offer an option for full anonymity

to learners – posts made with anonymity are ignored, as we cannot make meaningful con-

nections with unknown users. Enrolled learners who did not access the forum (i.e., an empty

adjacency matrix), are not considered to remove confusion – a lack of behavior excludes a

helpful metric for predicting future behavior. Such students would likely benefit from more

traditional intervention. After filtering, less than 2% of the learner pairs in each dataset

demonstrated a formed link. This underscores an extreme sparsity of learner pairs for link

prediction; the methodology applied to avoid overfitting will be discussed further in Section

 2.3.2 .

Topic extraction

To obtain the post similarities cuv(i), we must first extract the topics K and distributions

dn for each post. We do so with Latent Dirichlet allocation (LDA), a generative model for

extracting topics from a set of documents [ 54 ]. In our application, we view each post as

a separate “document,” since learners are likely to discuss many distinct topics over time.

Prior to building the dictionary X , all URLs, punctuations, and stopwords are removed from

each post’s text, xn, and all words are stemmed. Table  2.3 summarizes the topic extraction

results for each dataset using |K| = 20 topics; the top three words shown are from the five
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topics that have the highest supports across posts. With this value of |K|, the topics are

reasonably disjoint but have broad supports.

Table 2.4. Performance of the each considered link prediction model. The
CNN model has the best performance across all six datasets with respect to the
AUC and ACC metrics.

Model ml algo shake comp f19 s20

Re
AUC 0.5005 ± 0.0004 0.5188 ± 0.0322 0.5061 ± 0.0034 0.5167 ± 0.0266 0.5689 ± 0.0401 0.5238 ± 0.0121
ACC 0.5995 ± 0.0054 0.8338 ± 0.0104 0.8296 ± 0.0073 0.8349 ± 0.0082 0.9524 ± 0.0057 0.9599 ± 0.0020

BNet
AUC 0.9053 ± 0.0106 0.9488 ± 0.0058 0.8603 ± 0.0095 0.8684 ± 0.0116 0.7413 ± 0.0546 0.7495 ± 0.0269
ACC 0.9175 ± 0.0066 0.9805 ± 0.0019 0.9472 ± 0.0035 0.9492 ± 0.0026 0.9600 ± 0.0053 0.9672 ± 0.0013

FCNN
AUC 0.9766 ± 0.0033 0.9706 ± 0.0039 0.9670 ± 0.0059 0.9714 ± 0.0084 0.8991 ± 0.0367 0.8844 ± 0.0330
ACC 0.9782 ± 0.0027 0.9871 ± 0.0029 0.9853 ± 0.0019 0.9850 ± 0.0022 0.9688 ± 0.0037 0.9729 ± 0.0022

SVM
AUC 0.9122 ± 0.0027 0.9523 ± 0.0050 0.8982 ± 0.0071 0.8618 ± 0.0071 0.8437 ± 0.0343 0.8203 ± 0.0113
ACC 0.9137 ± 0.0026 0.9755 ± 0.0035 0.9608 ± 0.0031 0.9462 ± 0.0022 0.9670 ± 0.0040 0.9700 ± 0.0015

LinDA
AUC 0.8486 ± 0.0056 0.8361 ± 0.0064 0.7521 ± 0.0116 0.7331 ± 0.0123 0.6940 ± 0.0146 0.6692 ± 0.0205
ACC 0.8674 ± 0.0051 0.9425 ± 0.0018 0.9117 ± 0.0050 0.9084 ± 0.0056 0.9582 ± 0.0046 0.9620 ± 0.0026

RNN
AUC 0.9880 ± 0.0011 0.9808 ± 0.0026 0.9807 ± 0.0054 0.9770 ± 0.0071 0.8304 ± 0.0373 0.8329 ± 0.0349
ACC 0.9890 ± 0.0010 0.9902 ± 0.0013 0.9906 ± 0.0019 0.9877 ± 0.0030 0.9653 ± 0.0040 0.9710 ± 0.0024

CNN
AUC 0.9881 ± 0.0019 0.9817 ± 0.0029 0.9754 ± 0.0057 0.9763 ± 0.0055 0.9187 ± 0.0318 0.9221 ± 0.0169
ACC 0.9894 ± 0.0015 0.9916 ± 0.0009 0.9888 ± 0.0025 0.9882 ± 0.0022 0.9711 ± 0.0033 0.9740 ± 0.0015

CRNN
AUC 0.9680 ± 0.0094 0.9704 ± 0.0087 0.9608 ± 0.0066 0.9725 ± 0.0070 0.8903 ± 0.0468 0.8845 ± 0.0347
ACC 0.9713 ± 0.0090 0.9846 ± 0.0036 0.9803 ± 0.0028 0.9859 ± 0.0020 0.9705 ± 0.0016 0.9724 ± 0.0020

2.3.2 Model Evaluation Procedure

To evaluate the models proposed in Sec.  2.2 , we use the following metrics, training

procedures, and evaluation criteria.

Metrics

We use three metrics to evaluate prediction performance. First, we compute the overall

Accuracy (ACC), or the fraction of predictions over all time that are correct. For iteration

k, it is obtained as:
1

|Ωk
e | · L

∑
(u,v)∈Ωk

e

L∑
i=1

1{yuv(i) = ȳuv(i)}, (2.20)

where yuv(i) ∈ {0, 1} is the binary prediction made based on ỹuv(i) and 1 is the indicator

function. Second, we compute the Area Under the ROC Curve (AUC), which assesses

the tradeoff between true and false positive rates for a classifier [  10 ]. Third, we define a

metric called Time Accuracy (TAC) to be the fraction of links that are predicted to form

within a fixed window w of when they actually form (among those that eventually form).
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Letting nuv = mini{yuv(i) = 1} be the actual time at which link (u, v) ∈ Ωf
k forms and

ñuv = mini{ỹuv(i) = 1} the predicted time, the TAC is defined as

1
|Ωf

k |
∑

(u,v)∈Ωf
k

1{|ñuv − nuv| ≤ w} (2.21)

for iteration k, where Ωk
f ⊂ Ωk

e is the set of correctly predicted links in the test set that will

eventually form. We compute the mean and standard deviation of each metric across three

evaluation iterations.

Training and Testing

k-fold cross validation is used to evaluate each predictor with k = 10. Following Sec.

 4.3.1 , we again consider the link sets G(L) and Gc(L). Our objective here is to train models

capable of accurate link prediction despite the large class imbalance between G(L) and Gc(L)

during training and deployment. For consistency, we perform a random equal class propor-

tion split for each fold of the validation run resulting in a training and testing set. Then, for

each validation iteration, we calculate the metrics of interest on the respective testing set

of the validation run. This sampling, along with the utilization of the AUC measurement,

allows us to quantify the false alarm versus true positive rate, since the prediction accuracies

on a poorly trained model could be very high due to the large class imbalance.

In each of the k iterations, we consider each time i = 1, ..., L sequentially. At time i, the

model parameters are estimated considering each pair (u, v) ∈ Ωr
k, using the procedures in

Sec.  2.3.2 . Then, for each (u, v) ∈ Ωe
k, the inputs are used to make a prediction ỹuv(i) ∈ [0, 1]

of the link state yuv(i).

2.3.3 Link Prediction Evaluation

Table  2.4 gives the overall performance of the baseline, linear, and deep learning models

in terms of the AUC and ACC metrics. Overall, we see that the CRNN and the CNN models

consistently outperform the other predictors for the f19 and the s20 datasets, while the RNN

and the CNN models provide the better performance for the other four datasets. Furthermore,
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there is no significant difference between the performance of the CNN and CRNN for four of

the six datasets.

Of particular interest is the application of the deep-learning models to the s20 dataset and

its performance relative to the other five datasets. Because s20 was held partially in-person

prior to the COVID-19 outbreak in March 2020, the behavior represented includes both in-

person and online interactions. Furthermore, it contains a rapid change in behavior midway

through the semester that models must account for. It follows from the high accuracies and

AUCs demonstrated by each deep-learning model on this dataset that our prediction model

can be applied to hybrid-online courses with a similar level of accuracy to fully online courses.

It also suggests that our proposed model is responsive to large-scale shifts in student behavior.

As a result, we find that our proposed framework is capable of increasing both course quality

and learner interactions during the pandemic; an attribute that can be leveraged to improve

instruction in a post-pandemic course offering.

Considering all courses, the CNN model has slightly higher performance across the metrics

and datasets, reaching average AUCs between 0.92 and 0.99 and average ACCs between 0.97

and 0.99. The AUC of Re is nearly random, but demonstrates a high accuracy in all cases

because of the large class imbalance present. Similarly, the linear classifiers demonstrate

high ACC and AUC values because of the large class imbalance. Although the Bayesian

model consistently outperforms the baseline models, the lower accuracy and AUC relative

to the CNN and CRNN models confirms our hypothesis from Sec.  2.2 that capturing spatial

and temporal variance leads to improvement in the model. More specifically, the evolution

of the state of an SLN between different time periods is important to predicting learner

interactions; this aspect is effectively included in the LSTM-based CRNN. We further observe

that the CNN model, capturing spatial variance, and the RNN capturing temporal variance,

each outperform the CRNN model for several datasets. This suggests that while spatial and

temporal variance both individually assist in prediction, when taken together they may

obfuscate student behavior.

Although an accurate prediction is most informative on the efficacy of a connection

between learners, recommendations may also be supported by false predictions. If a high-

accuracy model falsely predicts that two users will connect, we may infer that the formation
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(a) ml (b) algo (c) shake (d) comp (e) f19 (f) s20

Figure 2.6. TAC with different windows w. The TAC curves all exhibit
sharp increases initially, indicating many links form around the time they are
predicted to. The links at higher w, on the other hand, indicate potential for
recommending early link formation and future reconnection.

of a link between these two users would be beneficial based on model parameters. Conversely,

there is a strong correlation between false negative predictions and weak links between learn-

ers, implying that the benefits of forming a connection between two such user would be trivial

compared to other, more highly-weighted connections.

2.3.4 Early Detection of Link Formation

The models proposed in Sec.  2.3.3 consider the ability to predict link formation in

subsequent time intervals up until the end of the course. However, it does not consider

links that will form at an earlier or later interval. These occurrences of a delay between link

formation and prediction can lend additional information of importance to learners: if we can

predict in advance which learners may form connections, we may encourage them to connect

sooner, potentially resulting in a stronger connection or faster replies from learners expected

to have delayed responses. On the other hand, if we find that a link forms much sooner than

predicted by our model, this may indicate that learners would benefit from re-connecting on

the current topic later in the course.

To study these cases, we evaluate the TAC metric from Sec.  2.3.2 for our RNN, CNN, FCNN,

and CRNN models; i.e., we measure whether links form within a given window w of when

they are predicted to. Note that the TAC metric was only calculated for the deep learning

models, since they were consistently the best performing link formation predictors. The

granular value of 20 time intervals used to generate the SLN graph model gives the predictive

model access to more frequently updated features, and allows the model to respond quickly
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to changes in SLN behavior. Fig.  2.6 shows the TAC values as w is increased from 0 to 20

for several of our proposed deep learning prediction models. The sharp increase of each TAC

curve for small w indicates that many links form close to when they are predicted to form,

reinforcing our observations of model quality from other performance metrics in Sec.  2.3.3 .

A window of w = 2, for example, is already sufficient for all six forums to reach a TAC of

0.5 or above.

Observing Fig.  4.4e , which represents the TAC curve of the f19 dataset, it is clear that

our TAC metric demonstrates a lower accuracy for small datasets but the performance of

individual models has more variation. This is largely attributed to the smaller number of

learner pairs contained in the f19 dataset with which to train the model compared to a

MOOC forum. However, with the exception of the CNN, we can observe the same curve

shape and sharp initial increase present for larger datasets, indicating that TAC is both a

consistent and useful evaluation metric of model performance.

Furthermore, there are very few links with large w, once again reinforcing the results of

other performance metrics. The small quantity of links with large w in each forum present a

significant opportunity to recommend early formation of links (when predictions are early)

and potential times for learners to reconnect (when predictions are late). Though there

is less room for change on links with smaller w, learners may be more willing to act on

recommendations in these cases since they induce less modification to actual behavior [ 7 ];

after all, a learner may be reluctant to reach out to others on the basis of outdated threads

or on the assumption that they will eventually collaborate.

2.4 Link Formation Analytics

In this section, we consider several descriptive analytic tools and visualizations for in-

structors. We first describe the evolution of model parameters during prediction (Sec.  2.4.1 ).

We then examine the correlations between features (Sec.  2.4.2 ) and analyze their individual

and collective impact on prediction (Sec.  2.4.3 ).

46



(a) fuv(i) (b) guv(i) (c) huv(i) (d) iuv(i) (e) ouv(i) (f) zuv(i)

Figure 2.7. : Neuron activations of each gate g, i, f ,o and the state z and
output h over time of the LSTM layer inside the CRNN model for two par-
ticular links (u, v) in algo. The fact that several gate dimensions are non-zero
indicates that information is propagating across multiple time periods for pre-
diction. The first line of plots demonstrates activations for a link formed late in
the course, and the bottom row demonstrates activations for an early-formed
link.

2.4.1 Time-Series Variable Evolution

Because the hidden layers of deep-learning models cannot be understood intuitively, we

provide an alternate form of visualizing their behavior. It is possible to observe the decisions

made by the deep learning model during prediction by investigating changes in state for each

model gate over time, and make inferences about the final prediction from these observations.

The stability exhibited by the gates over time supports the viability of early link formation

prediction from Sec.  2.3.4 . To demonstrate this, we consider an example of how the CRNN

LSTM model parameters specified in Sec.  2.2.3 for deep learning prediction models evolve

over time.

By examining the relationship fading gate, f , in particular, we are able to demonstrate

how the inputs from time interval i − 1 affect the model output at time interval i, i.e.,

how much information is carried over from interval to interval. To do so, we choose a link

(u, v) ∈ G(L) at random from algo, and feed euv(i) into the trained model for L = 20 to

generate the predictions ỹuv(i). The prediction has high accuracy on the chosen link, which

forms within one time interval of when it is predicted to form.
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The neuron activation values for the gates g, i, f , o and the state z and output h are

additionally considered and shown in Fig.  2.7 . The vertical axis is the vector dimension

(i.e., neuron number), and the horizontal is the time instance i. A few of the input gate

dimensions, g, change at about the time the link is formed (around i = 17). These changes

propagate through the network, causing the output, h, as well as some dimensions of the

intermediate gates (e.g., f , i, and o) to change around i = 17 as well, thus forming an

accurate prediction. The fact that i and f in particular tend to take extreme values indicates

that the input, g, and prior state, z, are either fully passed or blocked.

We also observe that several dimensions in z evolve gradually over time, with several

non-zero dimensions in f passing information across multiple time periods. This result helps

explain why models using an LSTM layer in conjunction with other methods perform better

than the Bayesian model: passing information from one time interval to another increases

the prediction quality compared to only updating the input features at each time interval.

2.4.2 Feature correlations

Investigating the relationship between individual features provides insights into the shape

of an SLN in a different capacity than the predictions made by our deep-learning model, and

provides an analytical tool with which instructors can monitor an online classroom. Table

 2.2 summarizes the distributions of G(L) (top row) and Gc(L) (bottom row), with the top 5%

of outliers removed. We show the means and standard deviations (s.d.) of each feature for

both groups, as well as the signal-to-noise ratio (SNR) for each feature. The large difference

in magnitude for both mean and s.d. between formed and unformed links indicates a clear

difference in behavior between these two groups. The large gap in values reinforces the results

of our predictive algorithms discussed in Sec.  2.3.2 . The SNR measures how effectively a

feature can distinguish between the two groups, with a higher magnitude indicating more

efficacy [  55 ]. We make a few impactful observations for link prediction from these statistics:

(i) Infrequent short paths: The length Lp and number Np of shortest paths between

learners are both negatively associated with link formation. The result in Lp is consistent

with the intuition that learners who are closer together (i.e., smaller shortest path lengths)
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are more likely to form links. The finding for Np, however, indicates that links are more likely

to form when fewer such shortest paths exist, i.e., the paths should be unique. An interesting

analogy can be drawn here to the small world phenomenon, where users can discover short

paths in a social network even when only one or a few exist [ 53 ].

(ii) Low-degreed shared neighbors: In order of increasing SNR, Ja, Re and Ad are each

positively associated with link formation. Each of these measures the common neighborhood

of two learners, with increasing penalty placed on the degrees of these neighbors (i.e., Ja

does not include degree at all, while Re is inversely proportional to it). The fact that Ad

has the highest SNR, then, implies that shared neighbors with fewer links are more prone to

facilitate link formation.

(iii) Low ceiling values: Taking the statistics present in Table  2.2 in conjunction with

each feature’s cumulative distribution function (CDF), shown in Fig.  2.4 , it is evident for

several features including To and Pr that no learner pairs reach the maximum possible value

for the feature. Most notably with respect to To, the maximum number of shared topics

between two connected users is always less than 15 of the 20 extracted topics. Given the

highly connected nature of “hub” students that possess a large number of shortest path

connections, it would be expected that the maximum number of shared topics would be 20.

This discrepancy in number of shared topics suggests that hub students connect frequently

with less-engaged students, but rarely interact with each other, creating smaller student

ecosystems within the course. Another possibility is a difference in student knowledge state,

indicating that learners are more motivated to post about topics they are confident in and

avoid topics they are not.

(iv) Topology vs. post properties: Pr and To are both positively associated with link

formation, as one would expect: those with higher degrees (Pr) and focusing on similar

topics (To) should be more likely to interact in the discussions. Surprisingly, though, these

features have lower SNRs than the other neighborhood-based features, indicating that the

network topology drives link formation in an SLN more than individual learner properties

like a learner’s tendency to post, for example, or topic interest. Furthermore, the SNR of

To is higher in less densely populated courses, indicating that it may play a more important

role in prediction in the absence of other features.
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(v) Quantitative vs. humanities: Pr is higher in comp and shake (particularly shake)

than in ml and algo. This is consistent with humanities courses tending to invite more open-

ended discussions, whereas quantitative courses have questions requiring explicit answers [ 7 ].

More learners would then be motivated to post in the forums of humanities courses – in fact,

such participation may be a course requirement – leading to more links forming. Table  2.1 

confirms the intuition that even with a smaller class size, comp and shake have a higher ratio

of learner pairs to learners.

2.4.3 Feature Importance Analysis

Table 2.5. Performance of the CRNN Model with selected input feature groups.
The top two highest performing groups for each course metric are bolded. The
combinations of Nei + Path and Path + Post outperform Nei + Post consis-
tently, indicating that while neighborhood-based features are most important
for prediction, the other feature types contribute significantly to link prediction
as well.

Set ml algo shake comp f19 s20

Nei + Path
AUC 0.9487 ± 0.0241 0.9647 ± 0.0091 0.8978 ± 0.0303 0.9609 ± 0.0093 0.8945 ± 0.0330 0.9035 ± 0.0261
ACC 0.9528 ± 0.0196 0.9844 ± 0.0035 0.9693 ± 0.0071 0.9801 ± 0.0044 0.9695 ± 0.0064 0.9732 ± 0.0027

Nei + Post
AUC 0.9398 ± 0.0011 0.9399 ± 0.0015 0.8541 ± 0.0024 0.8922 ± 0.0078 0.6735 ± 0.0519 0.6346 ± 0.0118
ACC 0.9446 ± 0.0008 0.9753 ± 0.0006 0.9314 ± 0.0050 0.9482 ± 0.0029 0.9538 ± 0.0015 0.9627 ± 0.0011

Path + Post
AUC 0.9332 ± 0.0034 0.9455 ± 0.0058 0.9255 ± 0.0096 0.9444 ± 0.0078 0.8832 ± 0.0358 0.8848 ± 0.0175
ACC 0.9418 ± 0.0031 0.9659 ± 0.0028 0.9650 ± 0.0038 0.9736 ± 0.0039 0.9679 ± 0.0051 0.9736 ± 0.0022

Recall in Sec.  2.2.2 that we define three groups of features: (i) Neighborhood-based

(Nei), which quantify the overlap between learner neighborhoods, (ii) Path-based (Path),

which are the length and number of shortest paths, and (iii) Post-based (Post), or the

similarity in what learners discuss. To complement the correlation analysis in Table  2.2 that

was done for each feature individually, we now analyze the contribution of each feature type

to the prediction quality of our CRNN model, by evaluating it using different input feature

combinations.

Table  2.5 shows the results when each course is broken into 20 time periods. None of the

combinations reach the performance of the original model with all input variables in Table

IV, indicating that each feature group contributes to the prediction quality. The Nei + Path

and Path + Post combinations show the highest overall performance across all six forums,
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indicating that the combination of Nei + Path has a confounding effect on the model – we

would expect both Nei-based groups to share a higher AUC. Combining these values with

the SNRs in Table  2.2 indicates that the Nei features contribute the most to model accuracy,

followed by Post and then Path.

If we compare the individual feature groups, we generally find that the Nei features

perform the best, followed by Path, and then Post. This is consistent with the behavior of

these features within groups as well. This ordering of Post and Path is opposite of the SNR

magnitudes from Table  2.2 : here, the single feature To outperforms the combined impact of

Path. Given that Table  2.2 is concerned with the eventual formation of links but not the

time at which they form, we conjecture that in the absence of Nei, Post is more important

to pinpointing the time of link formation while Path is more important to whether they

form at all. After all, the timing of particular topic coverage should influence when learners

interested in those topics connect.

2.5 Conclusion

In this paper, we implemented a time-series methodology for predicting link formation

in Social Learning Networks (SLNs) formed in a various types of courses. In particular,

we examined the efficacy of our methodology on a course forced online after approximately

eight weeks of traditional instruction due to the COVID-19 pandemic. In addition, we

considered the SLNs formed in four Massive Open Online Courses (MOOCs) as well as

one traditional undergraduate course, with a heavy reliance on student participation in an

online discussion forum, offered through the School of Electrical and Computer Engineering

at Purdue University. Our proposed framework used neighborhood-based, path-based, and

post-based quantities between learners as modeling features. Through evaluation in six

different courses, we demonstrated our framework’s ability to perform effective and accurate

link prediction in a variety of learning environments.

Furthermore, we found that the Convolutional Recurrent Neural Network (CRNN) and

the Convolutional Neural Network (CNN) models outperform benchmark models such as

linear classifiers and fully-connected neural networks with respect to both accuracy and
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AUC. This indicates that both spatial patterns and time-varying modeling are critical for

performing link prediction in SLNs. By examining the contribution of each type of input

feature individually and in combination, we also confirmed that, while neighborhood-based

features are most important, path-based features contribute significantly to accurate link

prediction. In contrast, post-based features contributed little to link prediction accuracy and

had high potential to introduce noise into the model. In future work, we anticipate examining

how to best apply post-based features to the SLN modelling problem. We demonstrate that

our models are able to predict both if and when students will connect with high accuracy,

which can be leveraged for an early link recommender system.

While our work establishes an initial framework and results for link prediction in SLNs,

many avenues remain for exploring the challenges of link prediction in this new type of online

social network. One is additional feature engineering: other features that we did not consider

– such as learners’ background knowledge, level of education, and personal goals – may also

be associated with link formation, and may allow further improvements in link prediction

quality. As demonstrated here, the prediction model is applicable across multiple datasets

– additional evaluation variants on forums or classes with different structures, such as those

present in K-12 education, may be beneficial. The results found here can be compared with

other types of time series predictors and other types of SLN, e.g., those on organization-

specific MOOCs. Last but not least is forum implementation: we showed how our method

can be used as the basis for a link recommendation system to improve learner experiences

and proposed suggestions for creating a pipeline between results and a recommendation

algorithm. However, our analyses indicate that the model would benefit from additional

post-based predictors for evaluating quality, as well as the test application to a concurrently

running course.
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3. GIVING FEEDBACK ON FEEDBACK: AN ASSESSMENT

OF GRADER FEEDBACK CONSTRUCTION ON STUDENT

PERFORMANCE

Previously published in Proceedings of the 2022 Learning and Analytics Conference (LAK)

and used here with permission from ACM. Article Number: 161. Serena Nicoll, Kerrie

Douglas, and Christopher G. Brinton.

3.1 Background

3.1.1 Defining Effective Feedback

Feedback is generally accepted as a crucial part of the education process to identify

areas of deficit knowledge and address gaps between current and ideal student performance.

Over two decades ago,[ 56 ] noted the clear relationship between feedback and pedagogy,

and how teaching methods in turn impact feedback best practices. As feedback has been

further characterized, this understanding has been sharpened: more recently, [  57 ] added that

feedback should inspire student reflection and spark student action. From this idea, several

data-driven studies focused on higher education have demonstrated the need for actionable

feedback to encourage student learning ([ 58 ], [ 59 ]).

In order to accomplish this, Nicol and McFarlane-Dick [  60 ] proposed seven principles

of good feedback practices addressing intent and outcome, while Hattie & Timperley [ 12 ]

proposed a three-principle model for considering different strata of feedback with a concen-

tration on written feedback. These strata are centered on (i) Learning Tasks, (ii) Learning

Process, and (iii) Student Self-Reflection. Because these categories are more generally ap-

plicable to the process rather than the medium of giving feedback, they have been employed

as a benchmark for good feedback in both written, verbal, and online environments thus

far [ 61 ]. Previous avenues to understanding feedback effectiveness focus on several areas

of interest: robustness and specificity of feedback [  11 ], frequency and timing of feedback

[ 11 ], valence (i.e. whether performance meets learning objectives), congruence (i.e. whether

feedback matches student expectations) [  14 ] and many others. The features defined in our
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approach are motivated by these previous findings, but our approach deviates from accepted

models to generate a set of guidelines informed by a data-driven approach, focusing attention

on how feedback is crafted in addition to its content.

3.1.2 Online Feedback

Protocols for presenting feedback that center on the assumption of a classroom setting

become inapplicable and potentially detrimental in an online class. Body language and

non-verbal communication are not present in textual feedback, leaving greater freedom of

interpretation for the recipient and leaving students unclear on the intent of feedback [ 62 ].

An additional barrier to quality feedback in an online setting comes from large class sizes,

making it difficult for instructors to keep track of individual student knowledge gaps over

time. To overcome these barriers, studies in recent years have diverged from traditional

feedback best practices to leverage educational databases, creating data-driven approaches

to understanding the effects of feedback ([  63 ], [ 64 ]). An example is Course Signals [ 65 ], which

uses a predictive model to identify at-risk students in need of feedback.

Recently, research has begun to delineate different online feedback categories: written

summary feedback, in-line feedback, and code feedback [ 66 ]. For example, [  19 ] examines stu-

dent’s response to personalized feedback and subsequent performance on exams. Sentiment

analysis has emerged as a popular way to understand how online feedback may cause differ-

ences in student response - for example, [ 67 ] demonstrates the ability of sentiment to capture

student emotions and tailor feedback. In contrast to previous findings like [  61 ] and [  67 ], we

utilize a data-driven model with features informed by feedback content and construction to

analyze the impact of many features on feedback construction. In particular, we identify

that in the presence of a descriptive feature set, sentiment is not correlated strongly with a

change in student grade.

3.2 Methods

We develop a methodology which extracts a set of features motivated by theoretical

frameworks including [ 61 ] and [ 68 ]. Using the categories outlined by [  56 ], we limit our
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Figure 3.1. Hierarchical effects structure for each course in the dataset.
Dependencies and effects are color-coded.

discussion of feedback to assessment-based courses. Our features encapsulate (i) feedback

content, (ii) feedback sentiment, and (iii) feedback structure. Using feedback data collected

from three first year engineering courses at Purdue University, we employ multivariate linear

regression techniques to determine factors that contribute most significantly to changes in

future student performance. One of our most interesting findings, for example, is that the

presence of student name at the beginning of a feedback post is significantly correlated with

an increase in future grade. Other findings discussed in Section  4.4 validate previous empiri-

cal results such as those by [ 69 ]. We then discuss how our methodology can be implemented

to make recommendations to instructors during the feedback writing process.

3.2.1 Datasets

We consider feedback posts from student assignments in a sequence of three First Year

Engineering courses at Purdue University. As introductory engineering courses, our datasets

include a wide range of assignment types including traditional homework problems and

project assignments, offering a unique opportunity to study feedback across a diverse set

of student-instructor interactions. Furthermore, the availability of data from subsequent

semesters in each course offers an additional opportunity to evaluate consistency, both of
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instruction and of the model, between semesters. Courses were held during the Fall and

Spring semesters of the 2020-21 academic school year, necessitating the use of online and/or

hybrid learning due to the COVID-19 pandemic. This reliance on online aids for instruction

further motivates our research question, as most student-instructor interaction would be

performed asynchronously where observing body language and non-verbal cues to interpret

tone is not possible.

Table 3.1. Summary of course attributes for each of the three courses we analyze.
Year Semester Course Sections Students Submissions Submissions with Feedback

2020 Fall 131 17 2753 32916 6326
2021 Spring 131 2 228 3761 1203
2021 Spring 132 9 1377 5286 121

Table  4.1 summarizes detailed metrics for the three considered datasets: Fall131, Spring131,

and Spring132. These courses contain different amounts of feedback with varied assignment

subjects and categories, allowing investigation into the generalizability of our approach.

Because course 131 is a first-semester course taken by incoming students, the number of

enrolled students is markedly smaller in the spring semester offering. Due to program drop-

off, the number of enrolled students in course Spring132 is also comparatively small. Each

course offering is divided further into course sections with non-mutually-exclusive instruc-

tors and graders. The content of individual course sections is determined by the instructor

with varying numbers of assignments; to achieve an accurate and non-biased comparison,

we divide feedback posts within separate sections into distinct datasets. We further consider

that grader-student interactions are not mutually exclusive by pairs: graders will interact

with a majority of students while providing feedback. The hierarchical effects model for our

datasets is described in Fig.  3.1 , with color used to indicate impact between hierarchical

layers. Motivated by this hierarchical model, we employ a mixed-effects regression model to

understand the effects of difference in grader distribution among students.

Table  3.2 illustrates the distribution of increasing, decreasing, and unchanging student

grades for each course offering. To account for variable assignment difficulty as well as consis-

tently above- and below-average students, we normalize the change in student grade relative
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Table 3.2. Summary of grade change distribution across three classes for each course.
Year Semester Course Total Feedback Posts Grade Increase No Grade Change Grade Decrease

2020 Fall 131 6188 1835 2570 1783
2021 Spring 131 1183 316 629 238
2021 Spring 132 121 57 38 26

to the class average on an assignment. We define the set of all feedback posts in the dataset

as S. We then define y′
u = yu −

∑
n∈S yn

|S| as the normalization scheme, where yu represents

the un-normalized grade for feedback post u in S and y′
u represents the normalized grade

relative to the class grade average. The un-normalized yu are each percentages, implying

y′
u ∈ [− 1, 1]. Additionally, we introduce a 0± 0.05% threshold to account for standard fluc-

tuations in student grade, classifying these cases as ”no grade change.” Grade changes are

well-distributed between the three groups, preventing the need for oversampling to evaluate

the regression model.

Data Preparation

We format our data into feedback-grade pairs, with each pair corresponding to feedback

post u on assignment n and the difference in grade between assignments n and n + 1. To

obtain a representative dataset from all course sections and to ensure uniform formatting

between sections, we implement filters on all datasets. Before implementing these filters, we

removed all personally identifiable information from all posts, replacing names and informa-

tion with generic tags to preserve sentence structure.

Because we are interested in observing the specific impact of feedback construction on

student learning outcomes, we omit any entries for which assignment n contains empty or

null feedback. We do however consider entries in which assignment n+1 contains no feedback

but assignment n has feedback. We further omit feedback given on the last assignment in

a course, as it is not possible to compare against any further assignment grade and student

learning outcomes are not affected. We discount any entries where feedback has not been

read by the student, as any changes in grade would be due to external stimuli. Each course

also hosts a variety of assignments - as we are primarily interested in learning outcomes as
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they relate to course subject, we exclude assignments graded for completion, participation,

or that pertain to non-course-relevant material. Column 2 of Table  3.2 describes the number

of data points available from each course after these filtering steps have been applied.

3.2.2 Feature Extraction

We define a set of features computed for each feedback-grade pair. This set of features is

used to fit our regression models in Sec.  4.3.3 . Letting N be the set of words in feedback post

u, we further define three categories of features that make up our vector: Post-dependent

features, Sentence-dependent features, and Word-dependent features.

Post-dependent Features: These features describe the feedback post as a whole, and

examine the impact of feedback presentation when analyzed as one unit. Post-dependent

features capture relationships and large patterns present in the text to analyze the tone of

each feedback’s presentation.

1. Post sentiment: We use the sentiment analysis tool VADER-Sentiment [  70 ] to deter-

mine a compound score in the range [-1,1] for each post. This score is computed from

the summation of individual lexical contributions and syntax-dependent weights. We

describe this method further in Section  3.2.2 .

2. Occurrence of a Student Name: We use a combination of NER and compiled datasets

as described in Section  3.2.2 to count the number of times a name occurs in the first

half of a feedback post.

3. Occurrence of an Instructor Name: Using the method outlined above, we count the

number of occurrences of a name in the second half of a feedback post.

Sentence-dependent Features: These features describe the characteristics of each

sentence individually, and address the impact.

1. Sentence Type: Each sentence in a feedback post is classified into one of four classes

based on syntax: Expository, Interrogative, Exclamatory, and Directive. The method

for accomplishing this is described further in Section  3.2.2 .
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2. Sentence Voice: Sentences are classified as either Active or Passive by using NLP

techniques to determine subject-verb relationships.

Word-dependent Features: We define several models which include both unigram and

bigram feature sets.

1. Unigrams: We prepare each feedback post for unigram processing through a combi-

nation of stopword removal and stemming enabled by the Python NLTK library. All

non-alphanumeric characters are removed and common stopwords as identified by the

NLTK English stopwords corpus are also removed. These words occur frequently and

provide little to no meaningful impact on understanding a sentence. We then stem all

remaining words to create more general word categories. From the remaining words,

we create a set N of all unigrams present in the dataset and create a document-term

matrix which will become the feature set.

2. Bigrams: We create a setM with cardinality |N |P2 of all bigrams present in a dataset

after performing labeling as described in Section  3.2.2 , and create a document-term

matrix. Unlike in unigram modeling, we do not remove stopwords or stem - this is

to allow a higher degree of accuracy when assigning parts of speech during labeling,

as disjoint sentences cause errors in the NLP process. We do not normalize the gen-

erated document vectors using a tf-idf score; this is because word combinations will

demonstrate similar effect regardless of their uniqueness.

Sentence Typing

We determine a set of rules for identifying sentence types based on the outline presented

in [  71 ]. These features are motivated by the empirical findings of [ 69 ]. We first apply a high-

level filter to classify sentences by punctuation - question marks indicate an interrogative,

and exclamation points are majorly associated with exclamatory sentences. These initial

labels are recorded as a guide, to be assessed for correctness with further filtering. We then

proceed as in Section  3.2.2 by encoding each word with its part-of-speech (POS) tag and

type dependency (i.e. direct object, auxiliary verb, etc.). These type dependencies capture
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relationships between different words and allow chunking into larger phrases. A Python regex

parser is employed to identify patterns of dependencies and create larger groups dependent on

order. We next evaluate the tagged sentence for noun and verb phrases, noting the position

of these phrases relative to other words in the sentence. Specifically, phrases beginning

with a verb after any number of modal verbs or adverbs are considered a verb phrase;

phrases beginning with a noun after any number of adjectives, prepositions, and articles are

considered a noun phrase.

Sentences containing a noun phrase and verb phrase in sequence are labeled as ”clauses”

and are a marker for distinguishing expository and exclamatory sentence types. Conversely,

beginning with a verb or verb phrase is a marker for distinguishing directive and interrogative

sentences. As not all interrogatives end with question marks, we investigate for the presence

of modal verbs, ”wh” words, and personal pronouns at the beginning of a sentence to identify

interrogatives that were not identified with the punctuation filter. Likewise, we evaluate for

directive statements by observing the presence of verbs without a subject at the head of the

sentence accompanied by optional modifiers (auxiliary verbs, adverbs, etc). The results of

pattern-based sentence analysis are compared with punctuation labeling to determine the

correct label for each sentence.

To verify the accuracy of our sentence typing approach, we evaluate our algorithm on the

SPAADIA dataset [ 72 ], containing 35 conversations between a call-center agent and clients.

Each conversation contains on average 50 sentences. An interaction (sentence) is labeled with

a speech-action type: command, question, interjection, or statement. We test the accuracy

of our classification algorithm over the entire SPAADIA corpus, demonstrating an accuracy

of 89.67%.

Text Labeling

Standard bigram chunking of text in a large corpus often results in bigrams that are

associated uniquely with one document. In a regression model, this one-to-one correlation

is detrimental to fitting a generalizable model as there is no way to assess whether observed

change is due to feedback or to external factors. To create meaningful bigrams that assess
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impact on student feedback, we encode the text of each post in two ways. First, we analyze

the text for specific markers: names, positive and negatively associated adjectives, and

academic language. Second, we assign labels to all other words by their part of speech.

We accomplish the labeling of keywords through a combination of Named Entity Recogni-

tion (NER) with the Python SpaCy library and lexicon matching from established databases

of names. The first pass for our label filter leverages the database of international names

and variants collected and published by NameDataset2021. To ensure that any names

not present in this database are caught and properly labeled, we employ a second filter using

NER to identify names based on post context. We leverage the collection of 6800 positively

and negatively associated adjectives from [  73 ] to label commonly occurring adjectives within

the text. As adjectives are the primary carriers of sentiment, we are specifically interested in

analyzing whether positive language correlates with a positive grade change and vice versa.

Additionally, we intuit that language pertaining to academics or grades may trigger specific

responses by the student: we generate a list of 20 academically-charged words and encode

this language with a separate marker to investigate its significance.

Remaining words that do not fall into one of the above four categories are encoded by

their part of speech as identified by the NLP algorithm from the Python SpaCy library.

Part-of-speech (POS) tagging allows us to examine the most important parts of speech for

characterizing a text post, as well as those that contribute most significantly to student

response. Further analysis of POS tagging and feature importance is described in Section

 3.3.2 .

Sentiment Analysis

Perception of feedback tone demonstrates a large impact on student reaction [  67 ]. We

utilize the VADER-Sentiment tool implemented in Python by [  70 ] to generate sentiment

scores between -1 and 1 for each feedback post, with -1 being “absolutely negative” and

1 being “absolutely positive.” The VADER-Sentiment tool is a lexical- and syntax-based

algorithm that considers both the relational and absolute impact of a word. It differs from

other text-encoding algorithms used for sentiment analysis such as GloVe and Doc2Vec
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because of its ability to consider punctuation and capitalization emphasis, as well as word

modifiers such as “not” and “very” in tandem with their associated adjective.

3.2.3 Model Selection and Evaluation

As discussed in Section  3.2.2 , we wish to understand the contributions of factors present

in feedback on student response. Therefore, we employ a fitting model capable of evaluating

individual feature contribution to the overall model fit. Although prediction algorithms such

as random forest [  61 ] and naive bayes [ 74 ] have previously been used to accurately predict on

similar questions, these do not produce human-interpretable results to turn into actionable

recommendations. We consider the efficacy of three types of linear regression model: (i) Ordi-

nary Linear Regression (OLR) which provides a benchmark for comparing additional models

and equally considers impact of all features, (ii) Ridge Regression which reduces impact of

highly correlated features through introduction of sparsity, and (iii) Random-Intercept Mixed

Effects Regression which accounts for impacts of external categorical variables.

From the features defined in Sec.  3.2.2 , we define three types of feature combinations to

implement:

1. N-grams: A regression model using a feature set comprised only of n-grams (uni, bi,

or tri).

2. N-grams/NER: A regression model using a feature set including n-grams, with NER-

identified keywords encoded as described in Sec.  3.2.2 . Additionally, we introduce

structural features as described in Section  3.2.2 .

3. N-grams/NER/POS : A regression model using a feature set, encoded using both NER

keywords and POS tagging as described in Section  3.2.2 . We also include features

described in  3.2.2 .

The inclusion of different combinations of feature groups allows us to observe both the impact

of specific words on student grade both individually and in combination, and the underlying

patterns present in word combinations and labeling.
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For a given feedback post u, the input feature vector into each of the models is given by a

combination of n-gram and sentence structure features, as defined in Section  3.2.2 , while the

target output is the change in grade y′
u ∈ [−1, 1]. Naturally, there is observed co-correlation

between features due to differences in scope; furthermore, it is impossible to completely

separate any feedback post by word without losing critical meaning. The correlation matrix

for one section of Fall131 is shown below in Fig.  3.2 , with highly correlated features

highlighted in blue. This correlation matrix motivates our use of ridge regression to normalize

impact from large numbers of highly correlated features and obtain a representative fit.

Figure 3.2. Correlation matrices for one section of Course Fall131. Fig.
 3.2 a (left) shows a correlation matrix between all features with >80% corre-
lation, and Fig.  3.2 b (right) shows a correlation matrix between the top-n
grammatical features for n = 10.

We previously defined separate and distinct datasets for all sections offered within a

course because of differences in course structure and material covered by the instructor.

This follows precedent from [  75 ] which determines that course-specific regression models

yield the highest prediction accuracy. However, there are further external factors that impact

student grade, most prominently which grader is assigned. Students with harsh graders may

demonstrate negative or no grade change between assignments regardless of response; in

contrast, students with lenient graders may show significant increase in grade. Fig.  3.3 

demonstrates grade distributions by grader for a representative sample of course sections.

We observe evidence of disparity between the grade distributions of each grader particularly
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in Fig.  3.3 a, where the difference is visible both in absolute grade and in relative grade

change. Fig.  3.3 b demonstrates an instance of uneven absolute grade distributions with

similarly distributed grade changes.

A large majority of course sections follow the trend expressed in Fig.  3.3 b, indicating

that while grader identity demonstrates impact on overall student grade, it has little impact

on the magnitude of student response and subsequent grade change. In course sections

that demonstrate large difference in grade change between graders as well as a disparity in

absolute grades, we must consider additional contributing factors. A student who performs

below average and whose grade consistently lowers between assignments may be impacted

by a lack of material understanding or a lack of interest in the course. We concentrate on the

difference in average grade and distribution between graders and motivate an exploration of

a mixed effects model with fixed slope and random intercept. The intuition is that while

student grades may begin lower relative to the average, students will show the same trend

in grade change afterwards.

Figure 3.3. Grade distributions for two sections of course Fall131, separated
by grader. The top example demonstrates a visible difference in both absolute
scores by grader and in relative grade changes. The bottom example demon-
strates a visible difference in absolute grade distributions but little observable
difference in grade change.
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3.3 Results

3.3.1 Regression Evaluation

Table  3.3 gives the average, minimum, and maximum r2 fit value for each of the three

course datasets, with individual regressions performed over each course section. We im-

mediately notice a discrepancy in overall fit values between course Fall131 and courses

Spring131 and Spring132, which demonstrate significantly lower average fit values. If we

refer back to Tables  4.1 and  3.2 , we observe that the datasets from courses Spring131 and

Spring132 are significantly smaller than the dataset from course Fall131 with regards to

both number of students and number of feedback posts, suggesting that the difference in

fit is caused by the small sample size from these two courses. Therefore, we propose that

our model is best implemented in classrooms which use feedback frequently and regularly.

Despite this difference, we find the importance of several features consistent across datasets

as discussed in Section  3.4 . We define three baseline regression r2 fit values, generated by

fitting one regression model over all course sections and ignoring potential contributions by

external factors. These are presented as the first line in each category in Table  3.3 .

Of the models described in Table  3.3 , we observe that the unigram/NER Linear Model

and bigram/NER/POS model demonstrate the highest fit values across all three datasets.

Compared to the regression baseline, we observe between 18% and 31% increases in model

fit using the unigram/NER linear regression model. The regression determines the impact

of specific words on student performance as well as including specific keyword categories

of interest as described in Section  4.3.3 . The bigram/NER/POS model analyzes the cor-

relation between presence of patterns within the text and student grade performance, and

demonstrates up to a 13% improvement over the bigram baseline model. It is worth noting

that although the unigram model provides a better overall fit than the bigram models, we

maintain the importance of these features for understanding individual contributors to stu-

dent grade at multiple levels. Information about which words occur most frequently, along

with determining individual words that have great demonstrable impact, is worthwhile in

combination with the understandings of feedback structure provided by the bigram/NER/-

POS model. Additionally, even in the case where a model which includes NER and/or POS
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tagging performs with a lower fit value, we observe that the variance also remains smaller

than the basic linear model. This indicates that the N-gram/NER and N-gram/NER/POS

models are more stable in the presence of varied data, and are more adaptable to differences

observed between course sections.

An interesting distinction observed in the regression results in Table  3.3 is that different

feature combinations provide the highest r2 fit value for unigram and bigram models. For

the unigram-based model, a unigram/NER model which preserves specific words but adds

keyword categories and sentence structure features provides the highest fit value. In contrast,

the most successful bigram model uses both NER and POS feature combinations which

removes specific word IDs in favor of grouping words into more general categories based

on impact on sentence structure (either keywords or parts of speech). This difference in

performance can be understood through the following: the set of features described by a

unigram model consists of all words N in the set of feedback posts. Grouping these words

into categories fundamentally reduces the feature space from N to |Number of parts of speech

+ keyword categories|, which is a decrease by a factor greater than 10. Furthermore, grouping

individual words by their part of speech loses critical detail when considering interpretation.

In contrast, the bigram model begins with a feature space with |N |P2, which is significantly

larger than N . Therefore, compressing the feature space does not demonstrate as great

an impact on model accuracy. Furthermore, we are better able to observe patterns within

the text when considering categories of word: the model is rarely able to observe a non-

POS-tagged bigram with high frequency over many feedback posts, so this tagging assists in

interpreting observed patterns of word types.

The results from the two highest performing regression models show the importance

of considering the impact of both unigram and bigram features in addition to structural

features. We explore the contributions of some features of particular interest in Section

 3.3.4 . In general, without the addition of NER or POS features we observe a decreasing

trend in average fit over all sections when increasing the N-gram value – while intuition

suggests that a trigram model should outperform a bi- or unigram model because it captures

larger combinations, as noted in Table  3.3 , the trigram model performs significantly worse

than both the basic uni- and bigram models. We posit that this difference is because at
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the trigram level, word sequences become increasingly stratified by feedback post; a trigram

sequence may only occur within one feedback post in the corpus, making evaluation of

contribution to performance impossible.

Table 3.3. Performance of linear and ridge regression models on our three
course datasets. We demonstrate the average, minimum, maximum, and std.
dev. of r2 for each course as a representative view of performance.

Regression Model Fall131 Spring131 Spring132
Min Max Avg Std Min Max Avg Std Min Max Avg Std

Baseline Unigram 0.515
Unigram 0.724 0.928 0.828 0.065 0.317 0.699 0.436 0.072 0.454 0.997 0.689 0.278

Unigram/NER 0.743 0.928 0.833 0.059 0.685 0.701 0.693 0.001 0.454 0.997 0.689 0.278
Unigram/NER/POS 0.656 0.934 0.766 0.094 0.167 0.192 0.179 0.017 0.015 0.997 0.557 0.382

Baseline Bigram 0.547
Bigram 0.305 0.856 0.567 0.151 0.168 0.371 0.269 0.142 0.451 0.997 0.671 0.299

Bigram/NER 0.467 0.856 0.659 0.114 0.381 0.403 0.392 0.011 0.451 0.997 0.671 0.299
Ridge Bigram/NER/POS 0.425 0.834 0.602 0.125 0.467 0.473 0.471 0.003 0.416 0.987 0.574 0.314

Bigram/NER/POS 0.504 0.872 0.678 0.128 0.481 0.504 0.492 0.011 0.416 0.997 0.671 0.297
Top n Bigram 0.249 0.999 0.661 0.195 0.321 0.456 0.388 0.068 0.353 0.997 0.651 0.358

Baseline Trigram 0.574
Trigram 0.257 0.843 0.445 0.174 0.129 0.312 0.221 0.129 0.002 0.997 0.425 0.335

Table 3.4. Performance of linear and ridge regression models using the spec-
ified feature subsets. We use data from 17 sections of course Fall131 to gen-
erate this display. We determine that the absence of features including nouns
and verbs demonstrates the largest loss in understanding between feedback
and student performance with respect to average fit.

Feature Linear Regression Ridge Regression
Min Max Avg Min Max Avg

Noun 0.106 0.872 0.622 0.381 0.803 0.554
Adj 0.464 0.851 0.651 0.401 0.812 0.577
Verb 0.448 0.851 0.653 0.382 0.797 0.564
Adv 0.474 0.872 0.672 0.401 0.825 0.584
Pos 0.463 0.872 0.656 0.392 0.797 0.571
Neg 0.494 0.872 0.672 0.413 0.827 0.587
Pron 0.475 0.872 0.663 0.408 0.825 0.586
Aux 0.468 0.872 0.671 0.406 0.823 0.583
Grade 0.303 0.872 0.631 0.405 0.831 0.587

Sent. Type 0.496 0.842 0.656 0.412 0.829 0.589
Sentiment 0.475 0.872 0.671 0.418 0.831 0.598
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3.3.2 Feature Importance

Investigating the impact of individual features on the fit of our model provides insight into

the strength and direction of how a feature affects student performance. In turn, this allows

instructors to concentrate feedback effort on specific areas for maximum return, streamlining

the feedback process. To generate these results, we perform an ablation study using the

feature groups previously identified in Section  3.2.2 . Because word-dependent features make

up a disproportional number of features relative to other feature categories, we further break

them into categories of features containing a particular tag (i.e. Noun, Neg, etc.). Table

 3.4 summarizes the results of our ablation study for each group of features. It is worth

observing that the lowest fit value demonstrates a 5% drop in fit, indicating that the large

number of other available features offsets the absence of even critical features. Additionally,

this supports an understanding that many external contributors beyond feedback also affect

student grade. From this analysis, we make a few impactful observations:

(i) Importance of Nouns and Verbs: Of the bigram related feature groups, the Noun and

Verb classes demonstrate high loss in ability to characterize the relation between feedback

and student performance when removed from the feature pool, with average r2 values of .622

and .652 respectively. These results correspond with understanding of sentence structure:

they represent the actors and actions of any given task around which all other parts of speech

are built. In the context of feedback, this translates to an emphasis on actors and actions

rather than how actors accomplish a kind of action. This conclusion is further reinforced by

the p-values shown in Table  3.6 .

(ii) Ambivalence of Sentiment: Although analyzing post sentiment is a common method

of predicting effect on student performance [  67 ], we observe no change in r2 values when

sentiment is removed as a predictor. This suggests that post sentiment is not a feature of

concern when constructing and evaluating feedback. This is counter to the intuition that

a harsh, negative feedback would cause student discouragement and decrease performance

and instead informs that the impact of feedback is dependent on structure rather than tone.

(iii) Importance of Sentence Type: We determine that among the non-bigram-related

feature groups, the absence of sentence type demonstrates the highest change in fit with an
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average linear r2 value of 0.656. This change r2 value is understandably lower than bigram

related feature groups because of the relatively low number of considered features. However,

the relative decrease in fit compared to other structural feature groups suggests that the

construction of a sentence is important when considering student response. Furthermore,

we may consider that bigram features and sentence type features are correlated because of

their common relation to word order – therefore, consideration of sentence type is a crucial

addition to bigram analysis to understand larger observed word patterns. The significance

of impact on feedback by these features is supported by past empirical findings by [ 69 ].

(iv) Impact of Grade-Related Words: Removal of grade-associated words and features

demonstrates a large drop in fit value, with an average r2 value of just .632 when compared

to the all-features average of 0.67. This indicates that sentences associated with direct ad-

dressing of a student’s grade are informative when assessing student response, which follows

our intuition of an emotional response to direct mention of grade-related subjects.

Using the information gathered from results of the ablation study summarized in table

 3.4 , we implement an additional regression model using the ten features that demonstrate

best fit independently. As demonstrated in fig.  3.2 , many features are highly correlated;

creating a model tailored to best features allows reduction of noise due to high colinearity. It

is important to note that in the ablation study, we remove all features with at least one entry

corresponding to the feature of interest. To further reduce model noise when implementing

our top-10 regression model, we consider only features that are entirely composed of features

present in the set of 10. For example, a bigram composed of aux + noun would be removed

during the noun and aux categories during ablation, but would not be included at all during

top-n regression.

We achieve an average linear r2 value of 0.66 and an average ridge r2 value of 0.58 with

this model across 17 sections of course Fall131. Minimum, maximum, and average values for

courses Spring131 and Spring132 are described in table  3.3 . While the updated linear model

is capable of achieving higher fits than the original with r2 values up to 0.99, it also shows

greater instability of fit when considering courses with sparser occurrences of each feature.

We can conclude that while considering only a subset of features based on importance yields
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opportunity for high-accuracy models, the redundancy offered by additional features allows

the model to be more stable against sparse or highly correlated data.

3.3.3 Classifier

We implement a logistic regression classifier for predicting student performance based on

feedback characterization to investigate whether the observed r2 values from linear regression

still hold in the presence of previously unseen (and potentially highly variant) data. To

accomplish this, for each assignment-feedback pair we classify student grade change into

two categories: class 1 represents all data points demonstrating a normalized grade change

> 0.05, and class 0 represents all data points demonstrating negligible or negative grade

change. We split our data 70/30 into training and testing sets, and evaluate the response

of the model using a categorical cross-entropy loss metric. The data is well-divided between

the two classes as demonstrated in Table  3.2 , allowing us to perform the split randomly. We

evaluate the logistic regression classifier over all sections of the Fall131 course, observing

an average accuracy of 79%.

Table 3.5. Accuracy (ACC) and Area under the Curve (AUC) metrics for
the proposed logistic regression classifier over all sections of Fall131.

Min Max Avg Std Dev
AUC 0.653 0.904 0.766 0.072
ACC 0.608 0.892 0.791 0.084

Table  3.5 describes the training and testing behavior for our logistic regression model in

terms of accuracy and Area Under the Curve (AUC) metrics. Overall, we see that the logistic

regression model successfully performs classification of the data, with robust AUC values in-

dicating that the model is able to accurately distinguish between both classes. Furthermore,

we observe that in several cases, the accuracy of the logistic regression model outstrips the fit

of a linear regression model, suggesting (i) logistic regression is most viable for determining

whether student grade increases independent of individual feature contributions, and (ii)

logistic regression offers additional robustness against highly varied data and succeeds on

large, dispersed datasets where linear regression shows a decrease in effectiveness. However,
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the binary nature of logistic regression inhibits the ability to determine the magnitude of

student grade change given a feature set, suggesting that it would benefit more alongside a

linear regression model for an all-encompassing model. The accuracy of the logistic regres-

sion classifier demonstrates its viability for use in an classroom setting, allowing instructors

to understand the potential effect of feedback before it is sent to the student, and make

appropriate changes to encourage student performance increase.

3.3.4 Feature Significance

Table 3.6. Calculated p-values for a subset of features of interest using the
mixed-effects model detailed in sec.  4.3.3 . ”N/A” entries indicate that the
feature was not present in the section’s feedback data.

Feature Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7 Sec. 8 Sec. 9
Name 0.5988 0.514 0.392 0.072 0.158 0.104 0.033 0.0148 0.364
Pleas 0.506 0.285 N/A 0.0005 0.447 0.072 0.886 0.0008 0.919
Regrad 0.0007 0.021 N/A N/A 0.318 0.727 0.931 0.152 0.028

Noun + Noun 0.577 0.0609 0.0001 0.0656 0.043 0.0001 0.012 0.064 0.007
Adj + Noun 0.003 0.857 0.28 0.613 0.078 4.72e-5 0.99 0.011 0.0009
Noun + Adj 0.020 N/A 0.99 0.99 0.775 0.421 N/A N/A 0.99
Pos + Noun 0.64 0.93 0.277 0.99 0.126 0.0103 0.99 0.99 N/A
Noun + Pos N/A 0.0004 0.484 N/A 0.932 1.71e-5 0.56 N/A 0.99

Grade + Verb 0.176 N/A 0.002 N/A 0.544 0.005 0.99 N/A 0.164
Noun + Verb 0.055 0.29 0.99 0.106 0.643 0.030 0.87 0.84 0.021
Verb + Noun 0.99 0.99 0.99 0.99 0.136 0.0003 0.99 0.99 0.99
Directive 0.0078 0.014 0.932 1.87e-5 0.038 0.2915 0.945 0.069 0.0429
Question 0.007 0.367 4.28e-9 0.0025 0.009 0.1865 0.0007 0.914 0.005
Active N/A 0.042 0.012 0.016 3.36e-9 N/A 0.2901 0.5101 0.0953

Table  3.6 describes the p-values for a selection of interesting features present in 9 sections

of the course Fall131 dataset. These include unigram, bigram/NER/POS, and structural

features from the two highest performing models as outlined in Sec.  3.3.1 . From the p-values

identified by the mixed-effects regression model, we make a few key observations:

(i) When the Grade + Verb bigram appears in a feedback post, it is significantly corre-

lated with an increase in student performance. We may interpret this result one of several

ways: (i) The direct mention of words associated with grade in tandem with an action
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item identifies specific tasks students may complete in the future and (ii) students become

motivated by fear of failing through mentions of poor grade (i.e. “assignment rejected”).

(ii) A combination of two Noun objects in sequence indicates improvement in student

grade across the majority of sections where it occurs. This is an unsurprising result, matching

the discoveries from Section  3.3.2 that nouns are one of the three most critical characterizers

of feedback posts. In particular, a sequence of two Noun objects frequently corresponds with

a keyword (i.e. “exercise bike”) that corresponds with the assignment subject. From this, we

conclude that inclusion of specific references to the assignment material is strongly correlated

with an increase in grade. This makes intuitive sense: providing students with specific topic

feedback will be more effective than boilerplate feedback.

(iii) The p-value and impact of a bigram is dependent on its permutation, rather than

its combination. We identify that the order of the bigram (i.e. Noun + Verb vs Verb + Noun)

is important when determining significance of impact. This in turn reinforces the conclusion

that sentence structure and word order are important considerations when characterizing a

feedback post. Referring back to the example of a Noun + Verb combination, a Noun + Verb

feature likely correlates with a subject + action, while a Verb + Noun feature likely correlates

with an action + an (in)direct object. Therefore, subjects (actors) are a more important

detail compared to the what is being completed, once more suggesting that inclusion of

personalization increases student performance as first noted in (ii).

(iv) When directive sentences are present, they demonstrate a significant negative corre-

lation with student grade. Conversely, the presence of questions is strongly correlated with

an increase in student grade. This disparity in significant effects from different sentence

types offers insight into how students interpret feedback on a large scale: commanding state-

ments elicit a negative, defensive response, whereas comments that encourage the student

to further consider the problem prove more successful. Because the majority of sentences in

any feedback post are expository, we propose that the inclusion of more frequent questions

can assist in further increasing student response.
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3.4 Discussion

From the understanding of individual feature correlations with student performance dis-

cussed in  3.3.4 , we suggest an idea for a machine-learning enabled, real-time recommender

tool to assist instructors in feedback construction. Because impact of individual features

varies between course sections due to a combination of grader and student bias, the tool

must collect data in real-time as the course progresses – pre-training the model is not pre-

dicted to assist in early determination of feedback impact due to this variance. The model

will collect student data and calculate the features outlined in Sec.  3.2.2 for each assignment

as it is submitted, and provide the instructor with an assistive tool while writing feedback.

Specifically, we propose a section for displaying the top k most impactful features by course

section, with a positive or negative label depending on the predicted direction of student

performance. An interactive text area for writing feedback is provided, where the instructor

may enable a number of filters to observe the predicted impact of sections of text in the

feedback draft. These filters would include “individual words”, “bigrams”, and “sentence

structure”, allowing the instructor to analyze the construction of feedback and take actions.

Finally, the tool will include a calculated change in student grade for the next assignment us-

ing features extracted from the feedback draft, and will update this number as the instructor

edits their feedback.

We acknowledge several limitations of our study. Most prominent is the presence of non-

measurable features such as time spent in office hours or study groups outside class time that

have additional impact on student performance. Our model can only offer a best estimate of

feedback importance without evaluating these additional categories of impactful behavior.

Additionally, our work considers three datasets from first-year college courses. While these

courses are generally representative, further work should consider the generalizability of our

feedback model to different course types and subjects which contain these non-measurable

features. An implementation of the proposed tool must also be left to future work along

with further examination of feature importance across different course subjects.
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3.5 Conclusion

In this paper, we present a methodology for understanding the impact of feedback con-

tent and construction on future student performance in hybrid and online higher education

courses. Our methodology was evaluated on three undergraduate First Year Engineering

courses held partially or fully online during the COVID-19 pandemic, requiring heavy par-

ticipation by both students and teachers in online forms of interaction. We extracted features

from feedback content, sentiment, structure, and feedback history. Through evaluation on

17 different course sections held across 2 semesters, we demonstrate the effectiveness of the

selected features to comprehensively represent written feedback and use the extracted infor-

mation to demonstrate a high level of correlation between the construction of feedback and

student performance.

Furthermore, we demonstrate the efficacy of several types of linear regression model in

identifying significant contributors to student performance increase. Our findings reveal

that nouns, verbs, and adjectives are most critical for fully characterizing a feedback post.

We understand that noun-based bigrams are more likely to represent assignment-relevant

keywords, demonstrating that the inclusion of specific details in feedback is correlated with

higher performance. Likewise, we identify that inclusion of student name at the beginning of

feedback is strongly correlated with a future increase in student grade. Counter to our pre-

vious intuition, feedback sentiment shows little impact on student grade in either direction.

By utilizing a random-intercept, fixed-slope model we demonstrate that significant features

identified through Ordinary Linear Regression hold even in the presence of grader bias, indi-

cating that our model is generalizable to higher education environments. These findings can

be leveraged to create a real-time recommender tool for instructors while writing feedback

to consistently encourage student learning outcomes.

Our work suggests future construction of a recommender system for enhancing feedback

written by instructors – however, there are many avenues to continue exploring the problem

of providing actionable and effective online feedback. In this work, we consider specifically

summary feedback, but future avenues exist for exploring the effectiveness of other feedback

formats: i.e. most effective placement of inline feedback or automatic generation and popu-
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lation of rubrics. The accuracy of our implemented model suggests that there are additional

features beyond those that we consider which contribute to understanding the link between

feedback and student performance. The model would benefit from additional inquiry into

features of interest for increasing model fit and providing actionable feedback.
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4. FEDERATED LEARNING FOR SHARED

REPRESENTATION IN ONLINE EDUCATION

4.1 Background

4.1.1 Student Knowledge Modeling

Student and domain knowledge modeling are important problems in the educational data

mining community. While effective in-classroom assessment tools motivated by pedagogy

exist for instructors, translating these methods into the scope of Machine Learning has proved

challenging. A student knowledge ML model should be personalized to capture differences in

learning style between students [  76 ], [  77 ] and understand the relationships and dependencies

between learning from various concepts. Knowledge Tracing (KT) is a technique that has

been successfully applied to several student knowledge modeling problems such as video

clickstream analysis [  78 ], [  79 ], grade prediction [ 4 ], [  80 ], [  81 ], and concept mastery [  82 ].

Using a recurrent neural network, KT seeks to predict the success or failure of a student on

an exercise, given the series of exercises a student has attempted previously. Alternatively,

it can predict what action a student will take next based on previous behavior, allowing

instructors to provide timely assistance. In current studies, input features are informed

by educational measurement theory [ 83 ] and pedagogy [  76 ], with context-relevant quantities

such as utilization of hints, response time, and characteristics of the specific exercise. Despite

KT’s recent successes in modeling student behavior, it neglects an integral part of learning

pedagogy: students learn from many types of materials during a course [  84 ].

KT’s lack of ability to represent more than one type of learning material is tied to the

model architecture which it uses. Inputs to a deep learning model are expected to have the

same feature dimensions - when features are informed explicitly by educational measurement

theory, dimensions do not match between different learning material types, which may require

different amounts of information to fully characterize. For example, the sequence of actions

taken by a student while watching a video has neither the same scope nor the same context as

the same student taking a quiz. Therefore, even if features from multiple learning materials

were padded before input to a KT model such that they achieved the same final dimension,
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Figure 4.1. Representation of a proposed pipeline and use case for our fed-
erated approach. (a) Model architecture for determining a latent encoding.
(b) Formulation of federated learning with message passing between each stu-
dent and the server. (c) Example of a low-dimensional representation and
downstream task.

representing them as equivalent inputs in scope and context would be incorrect. Recent forays

into modeling multiple learning material types address this with the addition of context- and

time-aware feature vectors for each material type during processing [  85 ], [  86 ], and by using

representation learning to identify a shared latent space in which materials may be directly

related [  87 ]. However, these methods are still costly to train and require significant overhead.

Motivated by the findings of these studies, we employ a representation-learning based model

which builds upon approaches such as [  88 ] and [ 89 ] by including personalization layers for

each student while seeking to minimize necessary computations at each device.

4.1.2 Personalized Federated Learning

Federated Learning (FL) is a family of methods originally used in Wireless Communi-

cations Networks to address privacy [  90 ] and computation concerns [  91 ] on edge devices.

However, it has found significant success in applications beyond this field in areas such as

medicine [  92 ], [  93 ], social networks [ 94 ], and education [ 95 ], [  96 ]. Unlike centralized Ma-

chine Learning (ML) that creates one model and trains/tests all data on a single server, FL
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distributes data and computations across several ”local” edge devices with limited compu-

tational resources [ 97 ]. These locally-trained models are then aggregated at the server to

generate a ”global” model. Several current strategies exist for aggregation at the server:

McMahan et al. first proposed FedAvg [ 98 ] in 2016, after which followed methods such as

FedAttn [  99 ] and FedProx [  100 ]. However, most existing FL aggregation strategies focus

on achieving a good average performance at the server: this significantly disadvantages net-

works with Non-IID data [  101 ], and is potentially damaging to under-represented groups in

an education environment.

More recently, techniques have begun emerging for Personalized Federated Learning,

which seeks to solve the problem of Non-IID data at the edge. Instead of aggregating a

single global model, these methods learn local models for each client that are both person-

alized and generalizable to new, incoming data. Two such methods that we compare in

our discussion are FedPer [  101 ] and FedMAML [  102 ]. FedPer extends the method of Fe-

dAvg with the inclusion of a localized last layer that is not shared among users [  101 ], while

FedMAML introduces meta-learning to the Federated setting and performs an additional

local training step after model aggregation. Unlike previous personalized FL techniques, our

model introduces a contrastive block to simultaneously train the last layer of each model in

a personalized manner, as outlined in [  88 ]. Each of these personalization techniques seeks

to mitigate the effect of a ”majority group” bias overwhelming smaller groups of data -

for example, disabled students may demonstrate different patterns of behavior that lead to

personal success relative to abled students, who make up the large majority.

4.1.3 Our Contributions

Translating distinct categories of student action into a shared representation space offers

multiple benefits. First, multiple data types may be passed to downstream classification/pre-

diction tasks as demonstrated in Fig.  4.1 c, minimizing the total computation needed. second,

actions may be more directly compared in terms of their relative contributions to student

knowledge state. In turn, this allows more successful recommendations for future student

behavior and more data on which models may train. However, student behavior is highly
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individual in nature, and one action may possess a different feature set depending on the

student taking the action. Therefore, it is important to include a personalization component

into this modeling, such that learned encodings capture information both about relationships

between actions and relationships between students.

Motivated by these benefits, we seek a methodology that will discover a shared feature

representation between action categories in an unsupervised manner, to capture underlying

relationships between student actions. To develop this encoding method, we are motivated by

Federated Learning techniques for coordinating between local and global model construction

over networks. Previous data-driven studies demonstrate the effectiveness of modeling a

classroom of students as a social learning network [  5 ], motivating our use of network-based

techniques. Federated learning distributes model updates across a set of devices, in this

case corresponding to each student, such that they host a local and personalized model

that communicates with a central server during training. Local model management greatly

reduces the required frequency of interaction between user devices and servers. As a greater

number of students are using mobile devices to access course materials, this lightweight

structure is beneficial when considering (i) the limited battery life of these devices and (ii) the

ability of students to take courses anywhere on earth with potentially intermittent Internet

access. Furthermore, federated learning allows us to leverage a number of personalization

techniques to ensure that each student has access to an accurate predictive model. Our key

findings and contributions are as follows:

• We propose an encoding methodology for representing an arbitrary number of student

data types (e.g., video-watching behavior, discussion forum interactions) in a multi-

modal shared latent space (Sec.  4.2.1 ). Our encodings adapt to the onset of new data

types in an online manner.

• We facilitate personalized student modeling in the federated setting through a similarity-

aware model aggregation technique that accounts for clusters of student parameters

(Sec.  4.2.3 ). Further, we introduce a contrastive training step to encourage distinctions

between data types for each user (Sec.  4.2.2 ).
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• Using three datasets from online classrooms at a large midwestern university, we

demonstrate that use of personalized federated learning techniques achieves better

separation within a low-dimensional representation space between students and action

types (Sec.  4.4.2 ).

• Additionally, our experiments demonstrate that student modeling using personalized

federated learning achieves significantly better performance in a downstream knowledge

tracing prediction task compared to centralized and non-personalized approaches (Sec.

 4.4.3 ).

4.2 Federated Student Modeling

4.2.1 Autoencoder Block

Our encoder/decoder model seeks to account for multiple modalities of student behav-

ioral data. Formally, it consists of a set of data heads M with defined weight parameters

{φ1, ..., φm}, where each φi is a vector. The number of data heads for a user u is defined by

the number of data types du that have been previously encountered. Secondly, it consists of

an encoder/decoder block with weights θ, and a contrastive block with weights ψ and output

of a one-hot vector with length d.

Data Heads

Each student u stores a number of data heads Mu,t equal to the number of distinct data

types encountered until time t. Mu,t is adaptive - that is, it does not rely on any pre-

defined number of data types that will be encountered during model training - and is able

to initialize new data heads as unfamiliar data is encountered. As in [  103 ], we allow users

to communicate with the server to query for a stored global model, and initialize weights to

any pre-existing values rather than beginning from random initialization each time. Data

heads share a common output dimension, allowing outputs from each data head to be fed

jointly into the contrastive classifier and low-dimension encoder, respectively. As shown in
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Fig.  4.1 a, a data head is composed of two parts: an encoder as first model layer, and a

decoder to produce the final reconstruction.

Motivated by traditional approaches to time-series modeling, each data head is composed

of an LSTM model with input du = [Fu,hu(t−1)]T , where Fu is a combination of one-hot

vectors defined in Eq.  4.6 that represents the input feature vectors for user u at time i,

hu(0) = 0 and hu(t − 1) is the output vector from the previous time. We then define the

interaction gate, relationship gain gate, and relationship fading gate vectors at each time

interval i as

guv(i) = ψ(Wgduv(i) + bg (4.1)

iuv(i) = σ(Widuv(i) + bi) (4.2)

fuv(i) = σ(Wfduv(i) + bf ) (4.3)

respectively. Here, ψ(·) and σ(·) are the tanh and sigmoid functions, respectively. The

matrices φg, φi, and φf contain the parameters for estimation during model training, while

the vectors bg, bi, and bf are the associated biases. In federated learning, local updates are

typically conducted via stochastic gradient descent (SGD).

Our implemented LSTM model is composed of 128 units in both the encoder and decoder,

followed by a dense layer in the decoder with the original input dimensions as output and

a sigmoid activation. We compute the reconstruction loss Lu
r as the binary cross-entropy

between each value in the input Fu and reconstructed vector F̃u defined as:

Lu
r = − 1

N
ΣN

i=1Fu ∗ log(F̃u) + (1− Fu) ∗ log(1− F̃u) (4.4)

During each aggregation, each data head is aggregated with other data heads of the same

type according to Alg.  1 .
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Encoder/Decoder

To ensure that final encodings for each student and data type are situated in the same

low-dimensional representation space, we create a fully-connected encoder/decoder model

to generate the shared final encoding from combined outputs of all local data heads. The

weights for our encoder are updated in two phases: the encoder in Fig.  4.1 a is shaded in

both red and blue, indicating that its weights are updated both by reconstruction training

(blue) and by the contrastive block (red). This encoder is a shallow fully-connected network

with 8 units, output dimension of (latent dim,) and and a ReLU activation so that latent

representations may take on values within (0, inf). The decoder reverses the operation of the

encoder, with input dimensions of (latent dim,) and output dimensions of the intermediate

encoding to be passed to the reconstruction decoder of the appropriate data head.

Both the encoder and decoder possess a single layer with 8 and 128 units, respectively.

Each unit in the hidden layer is connected to each unit in the input layer by a weight, θi,

where the sequence of all weights inputted into a single unit is given by θ = [θ1, . . . , θn]. The

unit’s output is calculated by

σ

(∑
i
θixi + b

)
, (4.5)

where σ is the ReLU activation function given, xi is the features at layer i, and b is a bias

threshold.

Like the data heads, which are dependent on the input size of data received, the encoder

and decoder are aggregated among all students during the communication round to ensure

that the latent space remains shared. Furthermore, the weights of the encoder layer are

adjusted after aggregation at each student by a round of training on the contrastive block

to encourage divergence in weights between data of different types.

4.2.2 Contrastive Model

To encourage divergence in the latent space between data points of different types, we

implement an additional local training step that remains unique to each user. We implement

a multi-layer, fully-connected contrastive block Cu for each user u which seeks to predict the
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category label from dt
u, the set of all categories of action encountered by user u until time t,

for each action that passes through the encoder. This block consists of two Fully-Connected

layers with 32 and dt
u. Layers are constructed in the same manner as in  4.5 , replacing

the weight matrices θ with a new weight matrix ψ = [ψ1, . . . , ψn]. After each round of

aggregation, a small set of previously unseen validation data is trained using the contrastive

block (corresponding to the red path in Fig.  4.1 a. We report the prediction loss Lu
c as

the categorical cross-entropy between observed one-hot label ỹu and correct one-hot label yu

in tandem with the reconstruction loss. Weights of each data head are frozen before this

training step, such that only the weights at the encoder are adjusted in the main encoding

framework.

Like the set of data heads stored by each student, the contrastive block is adaptive to

encountering new data types. Because the model performs aggregations after a certain period

t has elapsed in the course, it is possible that during that time a student has taken a new

action of previously unseen data type. This necessitates expanding the output dimension of

the contrastive block to accommodate a new category, and adding additional fully-connected

nodes within the model architecture before continuing training. When this occurs, the

local model stores the weights of its previous contrastive block and requests new contrastive

weights from the Server if the appropriate dimension block is available. The local contrastive

block aggregates its previously trained weights with any new node weights received from the

server to account for the new data type, and proceeds with classification.

4.2.3 Aggregation Model

The formulation for each round of interaction between the server and the student devices

are summarized in Algorithm  1 (Update) and Algorithm  2 (New data type).

At the start of aggregation, all clients send their local data head weights φt
u,d for each

data type d in dt
u and their encoder/decoder weights θt

u for aggregation. The server computes

the cosine similarity layer by layer between each user’s local model and the globally stored

model from last aggregation (k− 1)T . Cosine similarity scores are normalized for each layer

by the number of users participating in aggregation (i.e. the number of users that have active
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Algorithm 1 Client and Server Behavior
ServerUpdate
Server receives batch of data head parameters Mt

Server receive batch of Enc./Dec. parameters θt

for each φt
u,m ∈Mt do

λu,m ← COS(φt
u,m, φ′t−1

m )
φ

′t
m = φ

′t
m + (λu,m ∗ φt

u,m)/||Mt||
end for
for each θt

u ∈ θt do
λu ← COS(θt

u, θ′t−1)
θ′t = θ′t + (λu ∗ θt

u)/||θt||
end for
for each φt

u,m ∈Mt do
λ′

u,m ← COS(φt
u,m, φ′t

m)
φ

′t
u,m = λ

′
u,m ∗ φ

′t
m + (1− λ′

u,m) ∗ φt
u,m

Client ← φ
′t
u,m

end for
for each θt

u ∈ θt do
λ′

u ← COS(θt
u, θ

′t)
θ

′t
u = λ′

u ∗ θ
′t + (1− λ′

u) ∗ θt
u

Client ← θ
′t
u

end for

ClientUpdate
while t! = kT do
φt+1

u,m ← SGD(α, fu(φt+1
u,m))

end while
ServerUpdate(φt

1, ..., φ
i
U)

Clients receive φ′t+1
u,m , θ

′t+1
u

for client u ∈ U do
θt+1

u , ψt+1
u,m ← SGD(α, fu

c (θt+1
u ))

end for

models at time t = kT ). The new global model θ′t is computed by the weighted average of

all local models θt
u and their normalized cosine similarity score λu. The process is repeated

for all data heads within each category m. To preserve personalization, contrastive layers

are not aggregated among users.

Once the new model θ′t has been compiled, a second round of cosine similarity scoring

is computed between the new global model and each previous local model. Unlike the first
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Algorithm 2 Data Type Handler
if Client encounters unknown new data type then

Client checks server for global model
if No global model then

Server sends aggregated θ to client
Client initializes φu,m+1, ψu,m+1
ClientUpdate(φn,m+1)

else
φu,m+1 ← φ′

m+1
ψu,m+1 ← ψ′

m+1
ClientUpdate(φu,m)

end if
end if

round, these scores are not normalized by the set of users participating in aggregation - each

similarity score is assessed individually. Because local models may differ greatly by layer

from the global model, θ′t
u is computed by the weighted average of the updated global model

such that previous learned weights are not completely overwritten. Models are returned to

clients, after which clients perform a round of local updates on their respective contrastive

pipelines with D′
u to update θ′

u and ψu.

Year Semester Course Enrolled Active Total Actions Forum Video Access
2020 Spring A 1689 860 19408 0.671± 5.244 4.183± 7.689 17.71± 35.03
2020 Spring B 2841 169 3787 2.041± 7.256 4.296± 7.207 16.07± 35.43
2020 Fall C 352 133 8174 11.10± 33.48 5.692± 7.521 44.66± 55.17

Table 4.1. Summary of dataset attributes for each of the three courses we
analyze, including the enrolled vs. active students, average number of forum
actions, video-watching actions, and course accesses by student.

4.3 Experiments

We now conduct experiments to evaluate our methods using time-aware simulations over

real-world course datasets. We describe our datasets (Sec.  4.3.1 ), baseline predictors and

personalized comparison models (Sec.  4.3.2 ), and experimental setup (Sec.  4.3.3 .
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4.3.1 Datasets

We consider sequences of student actions from a set of three online Master’s elective

courses in the department of Electrical and Computer Engineering hosted at a large Mid-

western University. Courses were held in the Fall and Spring semesters of the 2020 calendar

year, further necessitating the use of online learning due to the COVID-19 pandemic. Each of

these courses was held asynchronously with course materials distributed through a Learning

Management System (LMS). We select these courses because as electives, their content and

structure differ greatly from each other both in quantity and spacing of student behavior -

allowing a better evaluation of our model performance over a diverse dataset.

Table  4.1 summarizes detailed metrics for the three considered datasets: CourseA, CourseB,

and CourseC. ”Enrolled” students are all students who appear on the course roster, while

”Active” students are all students who have interacted with the online course interface at

least once. Because these online masters’ courses can be enrolled in as an ”auditor”, the

number of active students is much smaller than the total number enrolled. For our study,

we consider only ”active” students. Each course utilizes the types of resources available

through the LMS in different proportions. We categorize these types of resources into three

general categories: Discussion Forums, Lecture Videos, and Supplementary Course Material.

All three courses demonstrate the same average number of videos watched by each student,

with similar standard deviations - this is intuitive, as lecture videos form the backbone of

instructor-student interaction in an online course. Course A shows very little activity in its

discussion forums, while in contrast course C strongly utilizes them. The total number of

student actions is also quite different between each course - although course C has the small-

est active student population, it contains a larger overall dataset than Course B. Motivated

by this difference in dataset size and distribution, we seek to explore the ability of our model

to provide accurate and useful results even on a sparse dataset.

Data Preparation

We format our data into a time-series of actions for each student: formally, Xu =

{Xu
1 , X

u
2 , ..., X

u
n} where n is the total number of actions taken by student u. The time
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at which each action occurred is recorded so that it may enter the simulation at the correct

time. We split these actions into training and testing sets using a 70/30 split, while ensuring

that each student is represented proportionally in each subset. For training, each action Xu
i

is assigned a label yu
i to represent its category (’post’, ’click’, or ’event’). This labeling is

self-supervised and may be applied over any unknown combination of action categories.

Because we are interested in modeling an unsupervised pipeline where important features

are discovered by the model, we perform minimal data preparation on the contents of each

action. Raw data available for each action is categorized and one-hot encoded over the set of

possible values, such that actions within the same data type share a feature space but actions

from different data types do not. The resulting features for an action are a high-dimensional

sparse vector which will be compressed by the model. Specifically, each feature vector can

be represented:

Fa,n = Ta,n + Sa,n (4.6)

Where Ta is the set of all event sub-types within action type a, and Ta,n is the one-hot

encoded vector of length |Ta| representing the event sub-type of action Xn. Similarly, Sa is

the set of all items of action type a (i.e. all discussion posts, all videos) and Sa,n the one-hot

vector describing the item with which action Xn corresponds.

4.3.2 Models

To assess the performance of our proposed personalization method, we compare the

performance of several other federated personalization models and two non-personalized

baselines.

FedAvg

We compare our model with one federated but un-personalized baseline, FedAvg. McMa-

han et al. [ 98 ] proposed the first aggregation method for working with federated clients.

FedAvg aggregates models naively by taking the average over all local weights θu as the new

global model θ, which is sent back to all clients to overwrite their previous model. In this
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Algorithm 3 FedAvg
1: Server Executes:
2: initialize θ0
3: for each round t = 0, 1, 2, ... do
4: Server receives batch of parameters θt

5: for each θt
u ∈ θt in parallel do

6: θt+1
u ← ClientUpdate(u, θt)

7: end for
8: θt+1 ← ΣU

u=1
nu

n
θt+1

u

9: end for
10: ClientUpdate(u, θ):
11: B ← (split Fu into batches of size B)
12: for each local epoch i from 1 to E do
13: for each batch b in B do
14: θ ← θ − ηδ`(θ; b)
15: end for
16: end for
17: return θ to server

way, FedAvg benefits from a larger training set while requiring less computation on any single

device. However, FedAvg is not a personalized model – naive averaging cannot account for

large variance in datasets between users or identify contexts unique to each user’s dataset.

FedPer

FedPer extends the functionality of FedAvg to include a simple personalization method

that addresses the shortcomings of naive aggregation. The primary difference between

FedPer and FedAvg is the omission of averaging the model’s last layer - in our case, en-

coder/decoder dense layers - during server aggregation. The general algorithm is the same

as in Algorithm  3 , with the addition of the following initialization between lines 2 and 3:

initialize θ0 ← {θ0
0, ..., θ

0
d−1} (4.7)

Where d is the number of layers in the model.
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Algorithm 4 FedMAML
ClientUpdate(u, θ):
B ← (split Fu into batches of size B)
for each local epoch i from 1 to E do

for each batch b in B do
θ ← θ − ηδ`(θ; b)

end for
end for
θ → ServerUpdate
θ′ ← ServerUpdate
θ′ ← θ′ − ηδ`(θ′; b)

FedMAML

Rather than omitting the aggregation of a layer to encourage personalization like FedPer,

[ 102 ] uses ”Model-Agnostic Meta-Learning” to motivate the addition of a second round of

gradient descent after aggregation at the server has finished. The original training dataset at

each user Du is split into training and validation sets Du and D′
u, respectively. After server

aggregation completes, the model at each user is trained for a single epoch on D′
u, adjusting

aggregated weights for each user in a personalized manner. We define a new client update

model for FedMAML in Alg.  4 below:

4.3.3 Model Evaluation Procedure

We perform our simulations in the following manner: we separate the course duration

into k = 10 periods, each with length T . During each time period T , clients perform

j = 10 rounds of local SGD using a learning rate of 0.001 through the encoder/decoder and

contrastive framework using training data points that have occurred prior to time t = kT .

As we will demonstrate in Sec.  4.4.1 , adding a greater number of aggregations and/or local

training epochs does not significantly improve model convergence, while fewer than this

number does not guarantee model convergence. Each client records the accuracy of its local

models before sending them at each time kt to the server for aggregation.

We propose three methods of analyzing performance over our two baselines and three

personalized approaches. Firstly, we compare reconstruction accuracy across students for
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(a) 5 local, 5 global(b) 5 local, 10
global

(c) 10 local, 10
global

(d) 20 local, 10
global

(e) 20 local, 20
global

Figure 4.2. Reconstruction loss curves for different numbers of local and
global aggregations using the FedContrast scheme. The first student to per-
form an action is in blue, the last student to perform an action is in orange,
and a student active mid-way through the course is in green.

each model. We then visualize the low-dimensional encodings using tSNE to better under-

stand how feature vectors are grouped within the latent space, and compare performance

of a downstream prediction classifier using encodings as inputs. We ensure that training

and testing data is identical across simulations and models so that comparisons may be

made directly. Specifically, when considering the downstream prediction task, we sample a

training/testing split from each student using an initialized pseudo-random state, and con-

catenate these individual splits to form our final training and testing sets. This ensures that

all students are represented proportionally in both groups.

Table 4.2. Accuracy of data type classification over several training epochs
of Course A. Aggregation 3 marks the first time all data types are encountered
by at least one student.

Model 3 4 5 6 7 8 9 10
FedAvg 0.8915 0.9933 0.9996 0.9998 0.9998 0.9998 0.9998 0.9998
FedPer 0.8943 0.9127 0.9188 0.9203 0.9246 0.9275 0.9291 0.9301

FedMAML 0.8926 0.9979 0.9979 0.9986 0.9987 0.9988 0.9988 0.9989
FedContrast 0.9339 0.9528 0.958 0.9606 0.9648 0.9648 0.9656 0.9662

4.4 Experimental Results

We describe our results from the experiments outlined in Sec.  4.3.3 in terms of three

metrics: ability to reconstruct our data from the encoding (Sec  4.4.1 ), visualization in the

latent space (Sec.  4.4.2 ), and ability to benefit a downstream KT predictor task (Sec.  4.4.3 ).
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4.4.1 Reconstruction

We assess the ability of our proposed method to learn a good representation within

the latent space by measuring its ability to reconstruct the original feature vector from

the encoding vector. Specifically, we are interested not only in achieving a good overall

reconstruction accuracy, but also in minimizing the variance in accuracy between individual

student models. Furthermore, we are interested in demonstrating that the time-aware and

adaptive nature of our algorithm is able to benefit students who begin taking actions later in

the course. Fig.  4.2 demonstrates reconstruction loss curves for three representative students

using different combinations of local epochs and global aggregations. The loss curve in blue

represents the training loss of the first student to take an action in the course, and the orange

line represents the last student to take an action. We add a third line in green, representing a

student who began taking actions sometime during the middle of the course, as a comparison.

We observe that for a combination of less than 50 total global and local iterations, the model

does not converge. Likewise, training the model for over 100 epochs demonstrates no benefit

to convergence - and in the case of Fig.  4.2 e, actually harms the final model. Furthermore,

we observe that by initializing new models with pre-trained weights rather than using a

random initialization, we are able to benefit the convergence time of later-starting students.

In addition, we assess the ability of each model to classify encoded vectors by their ap-

propriate data type using the contrastive model. This assessment gives a good metric of

whether encoded vectors have learned clear distinctions between different data types, a de-

sired result. We report these values for each considered model in Table  4.2 for every epoch

during model operation. We use 10 local training epochs and 10 global aggregations for the

Course A dataset. We begin at aggregation 3: this is the first aggregation during which

all three of our test data types have been observed by at least one user, allowing a good

comparison between all data types. We observe that all federated models are able to distin-

guish clearly between actions of different categories, including the non-personalized FedAvg

algorithm. This finding is further supported by diagrams in Fig.  4.4 , which demonstrates

clear distinctions in encoding groups by category. Interestingly, we observe that FedAvg

is more successful than FedPer and FedContrast in distinguishing between different data
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(a) Central (b) FedAvg (c) FedPer (d) FedMAML (e) FedContrast

Figure 4.3. TSNE representations for the latent encodings of Course A, with
data type ‘event’. Personalized models achieve localized separation between
students in the course, with students represented by color: groups of student
actions become well-separated, clustered and distinct.

(a) Central (b) FedAvg (c) FedPer (d) FedMAML (e) FedContrast

Figure 4.4. TSNE representations for the latent encodings of Course A, for
all three data types. Type ‘event’ is in blue, ‘click’ in magenta, and ‘post’
in yellow. It is evident that federated and personalized methods are able to
learm more distinct encodings than the centralized model.

types. This indicates that perhaps there are tradeoffs between modeling different numbers

of categories, and that FedAvg may be sufficient on its own for less complex applications.

4.4.2 Latent Encoding Visualization

We consider visualization of our latent space encodings using tSNE: a tool to represent

high-dimension data in a lower-dimension space. Visualizations in this study reduce dimen-

sions from 8 to 2. Figure  4.4 demonstrates a tSNE visualization of the distribution of latent

encodings for all data points in Course A for different aggregation methods. Each action

data type is represented in a different color: discussion posts in yellow, video watching data

in magenta, and course materials access data in cyan. We use Fig.  4.4 a as a baseline for

comparison without federated aggregation; evidently, centralized encoding methods fail to

learn important differences between data point encodings in the latent space.
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Figure 4.5. Accuracy of a downstream knowledge tracing model using en-
codings generated by three non-personalized baselines and three personalized
methods. Our FedContrast method is the highest performing model overall –
particularly over non-personalized baselines – except for on the limited dataset
size of Course B.

It is clear that introducing federated aggregation between local student models greatly

increases the ability of the underlying model to distinguish between different data types, a

finding which is supported by data in Table  4.2 . Using FedAvg, we are able to generate a

distribution that is tight to data type - indeed, even more tight than the representations

offered by personalized aggregation methods in Figs  4.4 c-e. This is consistent with FedAvg

relying exclusively on the separation of data heads during averaging to distinguish between

groups, while personalized methods are informed by additional factors such as weighting,

local-only layers, and additional training which will adjust encoding groups.

However, FedAvg falls short of personalized approaches when considering the context

of both data type and which student took the action. Figure  4.3 demonstrates the tSNE

representations for the course materials access category, with colors representing distinct

students in the course. In the FedAvg representation, most students remain clustered around

a small area, making it difficult for downstream models to identify and adapt based on unique

student behavior. In contrast, it is clear to see in each of the three personalized approaches

that each smaller cluster represented belongs exclusively to one or a few students. While

separation by data type may not be as distinct as in FedAvg, this is a preferred result:
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similarity between the encodings of certain actions may indicate that they have similar effect

on student knowledge state. Additionally, due to the grouping of data points by students,

we are able to discern that students with similar latent space encodings may share patterns

of actions and results during class (i.e. possess a similar learning style) and may benefit from

a combined model.

4.4.3 Downstream KT Task

We demonstrate that our approach is able to generate latent space encodings that are

not only distinguishable between data types and students, but are also informative when

used in a downstream task for knowledge modeling and classification. To quantify this, we

implement a shallow LSTM-based knowledge-tracing model with 4 LSTM units to predict

the next action a student will take based on a sequence of previous actions. We choose a

shallow model to underscore the ability of our low-dimensional encodings to perform well in

prediction tasks even with limited computational resources, making it ideal for applications

where resources are limited (i.e. the educational classroom). We consider only students that

interact with material more than 20 times during the course, and we divide the actions of

each student into sequences of m actions, determined by the minimum number of actions

taken by a student in the course and subtracting one. We apply a 70/30 train/test split on

our data sequences, ensuring that each student is equally represented in both the train and

test sets. Results for our predictive task are summarized in Fig.  4.5 .

We add a final model for comparison when considering this downstream KT prediction

task. Column ”None” in Table  4.5 represents performance of the predictor on unencoded

data, with input vectors zero-padded to the same length. Naively, this will result in feature

vectors with identical representations but different contexts due to varying original lengths,

resulting in frequent mis-classification. This can be seen in the prediction accuracy values for

all classes using no encodings, where less than 50% of predicted actions are classified correctly.

From this, we conclude that the addition of encoding enhances predictive performance.

Referring again to Fig.  4.5 , we can see that the use of personalized encoding methods

yields accuracy gains of between 30-40% over centralized baselines for Courses A and C.
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Specifically, Course A demonstrates an increase in accuracy from 29.6% in the centralized,

unencoded case to 70.6% using our contrastive method. In the case of Course B, the cen-

tralized encoding method actually outperforms all federated approaches with an accuracy of

79.3%. We postulate that this is due to the small number of actions in Course B relative

to courses A and C, especially when considering the low ratio of actions taken to students.

From this result, we hypothesize that there is a threshold of student interaction below which

a centralized model should be used for simplicity and accuracy. Of the federated models,

only FedContrast is able to approach the centralized prediction accuracy of Course B with a

value of 70.9%, indicating that the addition of the contrastive block prevents data obfusca-

tion present in other models. In the cases of Courses A and B, FedAvg performs worse than

both the centralized and personalized approaches. This suggests that FedAvg is unable to

capture important details about the original data in its encoding due to the naive averaging

method of aggregation. Encoding into a latent space gives more power of representation even

in the non-federated case such that different action types may be distinguished accurately

with even a simple encoder-decoder.

4.5 Conclusion

In this paper, we presented a representation model for student behaviors using a combina-

tion of personalized federated learning and local contrastive training. Our model takes in as

input different categories of actions taken by students during a course, and represents them

within a shared low-dimensional space. Important contexts for each action are preserved

within this space, and direct comparison of feature vectors between different action types

is possible. We observe that encoded representations are able to be distinguished both by

action type and by student through preservation of contextual information in the encoding.

The ability to model actions of different types and input dimensions offers benefits for com-

plete student behavior modeling, and opens the door for multi-modal downstream classifiers.

Furthermore, this representation reduces computational complexity for such downstream

tasks by mitigating the number of dimensions to map between and allowing quicker conver-

gence. Through this shared representation, we are able to discover similarities in learning
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style between students and learn feature equivalencies between actions of different types.

We evaluated our methodology on 3 real-world datasets from an Online Master’s program

hosted at a large Midwestern University where the majority of interactions were conducted

through an LMS. Raw data from each student interaction was modeled as a sequence of ac-

tions transformed into one-hot encoded vectors of variable length dependent on action type

and item accessed.

Furthermore, we compare our model with two additional personalized and one non-

personalized federated learning approaches and observe that in all cases, personalized mod-

els outperform centralized and non-personalized federated approaches to the same problem.

While federated learning approaches are able to outperform a centralized model for distin-

guishing between data types in the low-dimensional representation, personalized methods

are able to further generalize to students based on their learning style and learn important

similarities between actions. We develop a time-series prediction task to demonstrate the

efficacy of personalized models, and show increases between 20-40% over centralized models

at predicting the next action a student will take based on previous behavior. Our contrastive

approach also outperforms previous personalized models on this task, and is able to approach

centralized accuracy even for a sparse dataset. Leveraging a larger data set by inclusion of

data points from multiple avenues of exploration (i.e. discussion forum, clickstream, and

course access) further improves representation ability and allows the creation of informative

low-dimensional representations for downstream tasks.

Our work suggests that modeling students in a personalized manner is not only possible,

but recommended for developing good representations for behavior modeling. However, there

are many avenues to continue exploring the challenge of providing a concise, shared repre-

sentation between students in a classroom. In this work, we consider three main branches

of student actions - however, student behavior modeling is complex and may benefit from

more granular categories or a larger set of action categories. While we consider time-series

prediction as an example of a downstream task, many other classes of downstream predictor

exist that may yield different results when combined with our representation. Our results

indicate that the model would benefit from additional inquiry into the relationship between

low-dimensional features and explicit relationships within and between data points.
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5. CONCLUSION

This thesis presents three novel approaches to modeling student behavior and social in-

teractions within an online educational environment. We determine that machine learning

methods may be adapted successfully to problems in education, and present improvements

over state-of-the-art models in the field with regards to several prediction tasks. Specifically,

we investigate the ability of Convolutional Neural Networks (CNNs) to achieve improve-

ments over time-aware Recurrent Neural Networks (RNNs) in the problem of link prediction

within a Social Learning Network. We extend this modeling of a classroom as an SLN to

the problem of representing student behaviors within a shared scope and latent-space using

Federated Learning techniques. Finally, we apply Natural Language Processing techniques

to identify elements of instructor-given feedback construction that impact future student

performance. We summarize the contributions of each study below.

In the problem of link prediction, we observe increases in accuracy and area under the

curve (AUC) metrics by several percent using models informed by the topology of the social

graph. This improvement over RNN models can be explained by understanding that the

grown of a Social Network over time is most informed by the shape and connections of the

graph, rather than how the graph has previously grown. We use this to suggest development

of a tool for both students and instructors to view their classroom ”neighborhood” of links,

and to make recommendations on new connections to form based on expected graph behavior.

We determine that the construction of instructor feedback can inform future student

behavior in several ways, with statistically significant elements contributing both positively

and negatively to performance. These elements include the presence of a greeting and sig-

nature within feedback, the manner in which sentences are constructed, and the presence

of specific subject-relevant details. Our findings are consistent with established pedagogy,

suggesting that this data-driven approach can be extended to build a real-time recommender

tool for instructors while crafting feedback, allowing students to gain maximum benefits from

feedback.

In the problem of multi-type knowledge modeling, we demonstrate the effectiveness

of a personalized federated learning approach in comparison to non-federated and non-
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personalized methods. We present a distributed autoencoder framework capable of rep-

resenting underlying student characteristics within a latent space, such that categories of

action types and students remain distinct. We further determine that latent-space encod-

ings from our model improves accuracy of prediction in downstream knowledge tracing tasks

compared to non-encoded features, with increases up to 30%. While this study would ben-

efit from further exploration into state-of-the-art centralized knowledge tracing approaches,

these preliminary results show promise for developing further lightweight, distributed models

for knowledge modeling.

As emphasized in two of the above studies, education is a field that benefits heavily

from personalization - what is true for one course may differ strongly from other courses

with similar characteristics. For this reason, one of the main future trajectories of this

research should be extension of each proposed model to additional datasets that do not share

characteristics with those already explored. These datasets may include K-12 education,

qualitative courses such as English, and small online classrooms. The development and

assessment of recommender tools mentioned above must also be left to future work.
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