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ABSTRACT 

Transportation access is an important indicator of the quality of life and if it is inequitable, 

it will limit the work, leisure, and other essential opportunities for people and worsen the access 

for the disadvantaged groups. In the U.S., increased auto-dependency and the lack of other feasible 

alternative transportation modes exacerbate the negative impacts of this inequity, especially for 

the people without automobiles. The transportation equity in terms of the number of feasible 

transportation mode alternatives to serve a trip (i.e. mobility option equity) has not been 

extensively evaluated in the literature. Existing studies mainly analyzed the access to 

transportation infrastructures (e.g., bus stops, bike lanes, shared bike stations) based on the 

proximity at the zonal level. However, having access to a certain trip mode based on proximity 

does not necessarily add to the mobility option equity. First, mismatch may exist between the 

infrastructure and an individual’s travel demand. For example, if someone lives closely to a bus 

station but the bus route that can be accessed does not align with this person’s trip destination, they 

will not be able to use bus as a feasible mode for this trip. Second, existing accessibility-based 

studies often lack consideration of the trip feasibility (in terms of cost, quality, and safety) of using 

transportation infrastructures at the route level. For example, if a walking trip route is generated 

without considering the existence of sidewalks, the individual might have to walk on a unsafe busy 

road. In this case they will not be able to walk to satisfy their travel demand. Therefore, better 

transportation equity metrics concerning the feasibility of using transportation infrastructures to 

serve individuals’ travel demands are needed.  

To address this gap, this thesis defined the “travel-demand-relevant access” (mobility-need-

relevant access) metric to evaluate transportation access in the context of individual travel demands 

and route-level infrastructure constraints and developed a framework to use GPS data to quantify 

the proposed metric for transportation equity analysis. Assessing which transportation modes are 

feasible alternatives to serve a trip, requires trip-level disaggregated travel demand data and 

detailed transportation infrastructure information. The recent development of information and 

communication technologies and open data efforts provide unprecedented opportunities for such 

trip-level analysis. With these developments it is now possible to evaluate the feasibility of a mode 

both the cost- and quality-based measures. The cost-based method estimates the monetary and time 

cost of using each mobility option and compares it with prominent trip mode (car) to examine 
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“forced car use” concerning the travel demand. The quality-based method comprises accessibility 

and mobility-based performance measures to evaluate the feasibility of a certain trip mode 

regarding the ease of use and safety with relation to the infrastructure characteristics. The mobility 

options/alternatives deemed feasible with these two methods were used in the equity analysis, 

where the travel-demand-relevant access on the spatial and sociodemographic level was evaluated.  

The proposed framework was applied to the Indianapolis Metropolitan Planning Area (MPA) 

as a case study. The key insights of this study can be listed as (1) it is important to consider travel-

demand-relevant access to evaluate transportation equity because we found that 40% of the trips 

that were identified as accessible by public transit are not feasible when travel-demand-relevant 

access is considered; (2) suburban areas on average have 12% less mobility options available 

compared with  the urban core which forces high car ownership in these areas; amd (3) people 

with non-college educational attainment, households with more crowded rooms, and larger 

families are the negatively impacted disadvantaged groups while census block groups with high 

composition of white middle-class suburban families have the lowest number of options (1.5 on 

average) available.  

 The suburban populations with a low number of mobility options (with a vehicle) are not 

necessarily at a disadvantage in terms of mobility option equity, since suburban areas are by design 

made to be car dependent. However, the lower number of feasible mobility options in these areas 

possesses a risk for the future if the consequences are not evaluated carefully. In terms of urban 

migration, if out-migration from the urban core to suburban areas keeps increasing as the pandemic 

trend suggests, the forced car ownership in suburban areas could increase and create/worsen 

transport deserts. This increase in vehicle ownership contradicts equity and environmental goals 

regarding transportation. If we observe an increase in the suburban to urban core migration trend, 

it can force disadvantaged groups to move into suburban areas because of gentrification and 

increasing prices. These disadvantaged groups could suffer from the limited amount of mobility 

options in suburban areas, since their access to opportunities would decrease.  
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 INTRODUCTION 

The literature has extensively recognized the transportation quality and mobility option 

access as one of the key indicators of quality of life in the literature. In the National Cooperative 

Highway Research Program (NCHRP) report 184, transportation has been described as “being 

fundamental to achieving national goals, sustaining community values, and promoting personal 

well-being” (NCHRP, 2011). Until recently, transportation equity was only concerned with driver-

related aspects such as fairness of transportation funding, while the impacts on non-drivers were 

considered with little concern (Litman, 2021). The long-term projects such as construction of 

highways did not include the external impacts, such as air pollution, reduced access, and livability 

of a certain area. As Reichmuth  (2019) pointed out, the air pollution burden due to transportation 

(mainly highways) is not equally shared among different sociodemographic groups. Additionally, 

access to economic opportunities is distributed inequitably both on spatial and socioeconomic 

levels (Jones & Lucas, 2012; Martens et al., 2012; Pyrialakou et al., 2016). If the spatial and 

sociodemographic distribution of impacts of transportation (such as air quality and access) is not 

equitable, unemployment and social exclusion are likely to rise while the quality of life of 

disadvantaged groups is likely to decline (Jones & Lucas, 2012; Preston & Rajé, 2007; Pyrialakou 

et al., 2016). The most commonly and severely affected groups by this inequity are the individuals 

without automobiles, low-income groups, people with disabilities, and people of color and 

minorities (Golub & Martens, 2014). Furthermore, providing equitable transportation to the 

individuals and neighborhoods with disadvantages was recently recognized as a current federal 

issue by the Biden administration with Executive Order (EO) 13985 “Advancing Racial Equity 

and Support for Underserved Communities through the Federal Government” (Executive Order 

No. 13985, 2021). In addition, transportation-related capabilities (bodily integrity, affiliation, play, 

and control over one’s environment) from Nussbaum’s Central Human Functional Capabilities 

(CHFC) depicted transportation as a basic human right and freedom (Nussbaum, 2001). Lastly, 

adequate and fair access to transportation was highlighted in the United Nations Sustainable 

Development Goals (UN SDGs) at the goal 11.2 as “By 2030, provide access to safe, affordable, 

accessible and sustainable transport systems for all.” (United Nations, 2015).  

The most common description of transportation equity comes from Litman (2021): “Equity 

(also called justice and fairness) refers to the distribution of transportation impacts (benefits and 
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costs) and whether they are appropriate”. This definition is generally accepted without careful 

consideration and evaluation of their appropriateness for the specific case (Lewis et al., 2021). 

However, it is important to identify underlying social justice philosophies because how the equity 

is desribed has an important effect on the analysis (Lewis et al., 2021). Another common definition 

comes from Karel Martens’s 2017 book “Transport Justice”, as he defended the thesis that “a 

transportation system is fair if, and only if, it provides sufficient level of accessibility of all under 

most circumstances”, hence implying the sufficientarian (discrete cut-off between sufficient versus 

insufficient) and prioritarian (continuous curve of need) justice theories (Martens, 2017). Both 

approaches are advocating for reducing the “misery” by distributing resources favorably toward 

already suffering groups, rather than aiming for total equality Martha Nussbaum’s advancement 

of Amartya Sen’s Capabilities Approach also adopted a similar school of thought with 

transportation justice and recognized the improvements on the threshold for “misery” is more 

important than trying to aim for total equality (Nussbaum, 2001). Additionally, it is important to 

recognize amending the situation for these worse off groups might have unwanted effects on the 

urban space and further exacerbate the inequities through gentrification (Sheller, 2018, p.35). 

(Please refer to Lewis et al., 2021; Martens, 2017 for more information about social justice 

theories and their applications in transportation). 

Various research papers have studied the implications of equity on transportation systems 

with the two main isolated perspectives: mobility versus accessibility (Litman, 2003). In general, 

we can describe mobility as the ability of a person to physically travel from one location to another 

(Lefrançois, 1998). The mobility based measures, such as cost, in vehicle and out of vehicle travel 

time, are the most common variables used when developing these mode choice models (Hillel et 

al., 2021). These types of studies rely heavily on stated preference surveys or making underlying 

assumptions about people’s travel behavior, thus limiting their applicability (Guo et al., 2020). 

Since mobility can also be described as as “how far you can go in a given amount of time?”, it 

favors faster travel modes. This can limit the benefits of non-motorized travel compared to the 

motor vehicles if only mobility based measures are used (Litman, 2021). This issue is also 

exacerbated by the lack of standardized and generalized values for benefits from non-motorized 

travel that can be adopted in an individual mode choice model. These mode-choice models assign 

a larger intercept value in utility functions for non-motorized travel to account for the benefits 

from faster travel (such as in Reck et al. (2022)), however, they use sociodemographic 
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characteristics as input which may limit their transferability to other study areas and population. 

To the best of our knowledge, there are no travel mode choice models that used disaggregated 

(per-mile, per-hour) values for benefits from non-motorized travel. This is likely because of the 

benefits of non-motorized modes (walking, bike, etc.), such as the safety benefits (accidents 

prevented), health benefits (healthier individuals, less missed workdays), and environmental 

benefits (reduced greenhouse gas emissions), being considered through total annual vehicle miles 

rather individual trip level, thus making it difficult to convert per-mile/per-hour benefits for a 

certain trip (Caltrans, 2022). The disaggregated values can better help evaluate the utility from 

each individual trip when no sociodemographic characteristics of the individual is known, thus 

making it easier to compare potential mobility options that can be used to satisfy the travel demand.  

On the other hand, accessibility-based studies are concerned with the ability to reach 

certain opportunities or places in a given amount of time (how many opportunities you can get to 

in a given amount of time). For example, Páez et al. (2012) developed a two-component approach 

to evaluate accessibility to day-care centers which considered distribution of opportunities and cost 

of travel. Other accessibility studies, such as Golub & Martens (2014), Minocha et al. (2008), 

Pyrialakou et al. (2016) evaluate “potential” opportunities that are reachable from a certain 

location (how many opportunities are reachable from home) or they evaluate the destination that 

is reachable in certain time threshold (e.g., can people reach work locations in a given time). 

Although these studies are very beneficial in identifying general patterns, they lack the spatial 

resolution to understand individual level impacts. While quality of service metrics help identify if 

a mobility option is equitable among different groups in ideal situations, they cannot consider if 

the actual destination can be reached with adequate options because these studies lack the spatial 

resolution to understand the accessibility in the context of travel demand (Kamruzzaman & Hine, 

2011, 2012). In general, accessibility-based studies do not consider multiple trip modes (Golub & 

Martens, 2014; Karner, 2018; Minocha et al., 2008) and even when they do, the infrastructure 

conditions are not accounted for (there are some studies that consider quality of service such as 

Welch & Mishra (2013) but they are rare in the U.S.).  

The transportation equity literature agrees upon that an automobile-oriented development 

can cause unequal benefits and opportunities for some disadvantaged groups who do not have a 

car or cannot drive because of other reasons (Jones & Lucas, 2012; Litman, 2021). The forced 

automobile ownership, or willingness to purchase an automobile to avoid consequences, was 
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explored to assess the high vehicle ownership in urban low-income groups and rural areas as a 

limiting factor rather than a prospering advantage in Melbourne (Currie & Senbergs, 2007) and in 

the United Kingdom (UK) and Germany (Mattioli, 2017). Since communities in the United States 

(U.S.) are usually very automobile-dependent, the groups without automobile access face 

disadvantages and potentially suffer from forced-automobile ownership (Kamruzzaman & Hine, 

2012; Pyrialakou et al., 2016). Furthermore, unequal share of air pollution burdens among 

sociodemographic groups are mainly driven by this automobile oriented transportation 

development which signals the need for better mobility options (Reichmuth, 2019). Newer and 

cleaner mobility options can help reduce these unequal environmental and health related impacts 

while helping disadvantaged communities to improve their economic and social outcomes (Cohen 

& Cabansagan, 2017). However, the existing literature on transportation equity generally only 

analyzed one individual travel mode, such as public transit, bike sharing, or walking, limiting their 

understanding of the system level impacts of the transportation network. In the past, the studies 

that concerned with the benefits and costs of highway projects did not account for negative impacts 

on other modes (walking) for residents living along the proposed highway, thus degrading urban 

neighborhoods’ walking access (Litman, 2021). Understanding system level impacts of the 

transportation network is important because not every option could be feasible for everyone. 

Simply having access to one mode of transportation does not ensure that an individual will have 

the means to fulfill their travel needs. Physical conditions (disability) or preferences can make this 

feasible trip mode infeasible in an individual context. Moreover, travel modes such as walking and 

biking are considered being better for health and climate, thus highlighting their importance for 

better quality of life (CARB, 2018; Vale et al., 2015). Therefore, simply having a car to perform a 

trip versus having an option to walk or bike to satisfy that demand does not show the same level 

of access. This is because only having a car as an option can be classified as “forced” vehicle 

ownership, while having options available brings freedom to people to choose their travel mode to 

satisfy their travel demand.  

To the best of our knowledge, transportation equity studies have not used travel demand 

data with high spatial resolution (with exact locations of trip origin and destination known). Travel 

surveys used in the transportation equity studies only report trip characteristics, such as trip 

distance, trip duration, trip mode, trip purpose, and trip start time. National Household of Travel 

Survey (NHTS) is the most commonly used data source for U.S. based transportation equity 
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studies (Federal Highway Administration, 2017). Other sources such as Longitudinal Employer-

Household Dynamics Survey (LEHD) aggregate the travel demand information on lower spatial 

resolution (origin and destinations at the census blocks level) because of privacy concerns. This 

type of data has limitations because it may make the issues invisible when certain disadvantaged 

groups’ travel needs were not met if they were grouped with majority advantaged neighbors. Their 

travel demands could be completely different, but due to aggregated trip data, this difference is not 

captured. In conclusion, the three gaps identified from the literature are only focusing on single 

travel mode, the use of isolated measures of either mobility or accessibility, and not evaluating 

feasibility in the context of disaggregated travel demand.  

The goal of this thesis is to assess the transportation equity considering individual travel 

demand and feasibility of trip mode alternatives. Based on this, in this thesis we define the 

disadvantage as having a lesser number of feasible mobility options available for an individual to 

serve their travel demands. The research question that this study is trying to answer is: “What is 

the relationship between the number of feasible mobility options available for an individual with 

the place he/she lives and his/her sociodemographic characteristics?” To address the three 

research gaps, and answer the main research question, this study defined the “travel-demand-

relevant access” (mobility-need-relevant access) metric to evaluate transportation access in the 

context of individual travel demands and route-level infrastructure constraints and developed a 

framework to use GPS data to quantify the proposed metric for transportation equity analysis. 

Travel-demand-relevant access can be defined as having feasible mobility options to satisfy an 

individual’s observed travel demand concerning infrastructure constraints. For example, having 

travel-demand-relevant access for public transit can be described as having a bus stop in proximity 

which also has a transit route that goes to the destination in the time frame that the trip needs to 

happen. With the recent development of information and communication technologies and open 

data efforts it is now possible to evaluate the feasibility of a trip mode both the cost and quality-

based measures. The cost-based method estimates the monetary and time cost of using each 

mobility option and compares it with prominent trip mode (car) to examine “forced car use” 

concerning the travel demand. The quality-based method comprises accessibility and mobility-

based performance measures to evaluate the feasibility of a certain trip mode regarding the ease 

and of use and safety with relation to the infrastructure characteristics. The trip mode alternatives 
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deemed feasible with these two methods were used in the equity analysis, where the travel-

demand-relevant access on the spatial and sociodemographic level was evaluated.  

The structure of the rest of the thesis is as follows. The detailed literature review is 

discussed in Chapter 2. The characteristics of the empirical study area of Indianapolis Metropolitan 

Planning Area (MPA) boundary and the rationale for it selection is discussed in Chapter 3. The 

data and methods used in this framework are introduced in Chapter 4. The overview of the 

framework developed is introduced in Chapter 4.1 while the data sources used in this study are 

explained in Chapter 4.2. The GPS data processing steps are explained in Chapter 4.3 while the 

methods used in assessing travel-demand-relevant access are discussed in Chapter 4.4. The 

methods used to evaluate transportation equity based on the feasible trip modes identified in this 

chapter are discussed in Chapter 4.5. The results are presented in three categories: validation of 

trip origin and destination identified by GPS data processing steps in Chapter 5.1, feasible mobility 

options and travel demand relevant access in Chapter 5.2, and equity analysis in spatial and 

sociodemographic level in Chapter 5.3. Last, Chapter 6 summarized the conclusion and discusses 

the limitation of this study and future research directions.  

 

.  
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 LITERATURE REVIEW  

In this chapter, we first look at the existing literature on transportation equity, which differs 

in three categories. We can list these differences as the number of travel modes considered, the 

performance measures used, and the data source and data characteristics. To the best of our 

knowledge, the existing transportation equity studies that evaluate equity in the context of travel 

demand and regarding the infrastructure constraints are highly limited in the U.S. The existent 

studies usually focus on one mode of transportation (no consideration for forced use), use either 

mobility or accessibility-based measures, and lack the necessary disaggregated travel demand data. 

Below, we discuss all three gaps, while Table 2-1 presents an overview of the existing literature. 

The transportation equity literature widely recognizes that spatial discrepancy, unequal 

levels of accessibility and mobility among different areas, is existent because of uneven 

distribution of proximity and availability of transportation services (Jones & Lucas, 2012; Martens 

et al., 2012). Accessibility-based studies are important in assessing access to opportunities (work, 

grocery store, day care, etc.). However these opportunities are not evaluated in the context of 

individual travel demands (the feasibility of trip mode is not known) (Kamruzzaman & Hine, 2011). 

On the other hand, mobility based studies can capture the feasibility (ease of travel) and forced 

ownership of a certain mode, but they cannot account for availability of the opportunities or 

mobility option alternatives (Kamruzzaman & Hine, 2011, 2012; Pyrialakou et al., 2016). Since 

the distinction between accessibility and mobility-based measures is not always very clear, it is 

hard to find studies that only evaluated mobility-based measures. Some studies also evaluate 

mobility-based measures in accessibility-based studies without addressing limitations of mobility-

based measures. To make this distinction clear, this study categorized studies that evaluated equity 

only regarding the observed travel demand (aggregated or disaggregated) with no consideration 

for opportunities into the studies as mobility-based studies, studies that evaluated the equity in 

terms of opportunities as accessibility-based studies and lastly studies that explicitly evaluated 

both measures. Some studies define accessibility using the travel demand data, but if this travel 

demand data is aggregated and feasibility of individual trips is not considered (due to lack of origin 

and destination data), we still defined those studies as accessibility-based studies.  
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Accessibility-based studies are generally used to analyze the equity with public transit 

systems. Minocha et al. (2008) laid the groundwork for equity analysis for public transit using 

accessibility-based composite measure and availability of transit in census tract level. They simply 

used four categories to describe each tract level to show census tracts’ transit availability and need 

In their analysis, they found that census tracts with low transit availability and low transit 

employment accessibility were the areas where automobile dependency is the highest while the 

areas with low transit availability and high transit employment accessibility to be in need for 

additional transit investments (Minocha et al., 2008). Griffin & Sener (2016) used accessibility-

based measures for evaluating the spatial equity regarding income level. They used nine large auto-

oriented cities’ public transit system (including Indianapolis) to develop spatial screening tool 

using the measure of employed population able to access the census block group within a 45-

minute transit commute from their home location as a percentage of total regional employed 

population. They found all cities had a mismatch between low-wage workers and accessibility to 

work destinations, meaning low-income groups (those who need it most) do not have more access 

to public transit compared to other groups. Karner (2018) explored the route level accessibility 

(the ease with destinations can be reached) measures for low and high-wage jobs using a gravity 

model and found that there is no difference in accessibility level. While the methods used in this 

thesis addressed some limitations of accessibility-based studies such as consideration of route 

availability based on the travel demand between census blocks, the only trips that were considered 

in this study were commuting trips that started during morning peak (7-9 am) and origin locations 

were transit stops. Additionally, they evaluated access only based on the public transit, comparing 

no other feasible mobility options. Golub & Martens (2014) looked at the differences between auto 

trips and public transit trips in terms of access to opportunities reachable within certain time limits 

from Traffic Analysis Zones (TAZ). They found almost all Bay Area neighborhoods to suffer from 

significant service gap (accessibility) between modes. Even though their findings provided 

valuable conclusions, the use of spatially aggregated travel demand data for measuring equity 

cannot capture the reality of the observed travel behavior. The opportunities are not based on the 

exact travel demand, which could change the level of access certain individuals have based on 

having feasible routes to their destinations. Smith evaluated accessibility of station based bike 

sharing systems (BSS). They evaluated large bike sharing system around the U.S. with more 

traditional accessibility (proximity base) analysis regarding the station placement and found that 
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75.4% of stations are in communities with low or lowest economic hardship. Similarly, Aside from 

BSS (Braun et al., 2019) looked at the bike-lane infrastructure at 23 U.S. cities and found that 

some disadvantaged groups (lower education attainment, higher proportions of Hispanic residents 

and lower composite socioeconomic index) have unequal access to bike-lane infrastructure. 

Interestingly, this disadvantage did not exist in groups with higher black population, lower median 

income, and higher poverty rate groups. McNeil (2011) and Winters et al. (2016) evaluated the 

access for active transportation modes: walking and biking using emerging metrics such as walk 

score (mainly destination based opportunities), bike score, and bikeway quality index (BQI). Walk 

score measure the comfort and feasibility of walking using population density and road 

characteristics, but the exact method is proprietary. Bike score on the other is based on four 

characteristics: bike lane availability, hilliness, destinations & connectivity (opportunities), and 

bicycle mode share (more people that bike the better the score) (Winters et al., 2016). McNeil 

(2011) used land topography and land use factor along with BQI which includes, motor vehicle 

speeds and volumes, number (width) of travel lanes, bicycle lane availability, quality of 

infrastructure and number of stops to assess feasibility of biking “bikeability”. McNeil (2011) 

found that there are spatial access differences between inner Portland and East Portland. They also 

showed lack of access to grocery stores as the main factor for low bikeability scores. Winters et al. 

(2016) found that topography as the main factor for certain cities’ low bike scores, while also 

noting that it does not create as big of a barrier for walking. Chen & Wang (2020) studied the green 

transportation modes, transit, and cycling, in Cincinnati and Fresno which are both very similar to 

size of Indianapolis. Their results showed that, for these cities, cycling provides a larger access 

than transit, which shows the need for improvement in the quality of transit. They also found that 

disadvantaged groups at the urban core do not suffer from low accessibility, depending on the trip 

duration threshold. Meng & Brown (2021) expanded upon the other green transportation modes 

such as BSS and e-scooter and evaluated their equity in terms of availability for 32 U.S. cities. 

Their results showed docked BSS are less equitable compared with the dockless services. They 

also highlighted that spatial distribution is the primary obstacle for accessing equitable services 

and the cities where policies aimed to ensure equity (Chicago) achieved lower Gini scores (higher 

means more inequitable in terms of formal equality-equal for all) compared with others in terms 

of spatial distribution. 
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Studies that use only mobility-based measures to assess equity are very limited compared 

with the studies that only focus on accessibility-based measures. This is likely due to the distinction 

between accessibility and mobility-based measures not being defined clearly. Generally these 

studies that focus only on mobility based measures analyze the overview of travel survey’s such 

as NHTS trip characteristics (distance, mode share) regarding socio-economic characteristics and 

urban-rural differences as Pucher & Renne (2005) did. In their paper, they observed high car 

ownership and dependence independent of age, income, or race, once again showing the high 

automobile dependence in U.S. Their findings support the forced car ownership in U.S. that was 

discussed previously. Similarly, Shirmohammadli et al. (2016) looked at the number of trips by 

each trip mode regionally in Aachen Germany, and among 5 different groups. Their analysis based 

on formal equality showed that automobile is the most equitable trip mode on spatial level among 

all, meaning that there are not differences between regions in terms of car access. This is in line 

with the Pucher & Renne (2005) study which found similar results on national level in U.S.. 

Shirmohammadli et al. (2016) also reported that inner core achieved more mobility through bus 

and non-motorized modes compared with the outer core (urban core vs suburban). It is important 

to note that they concluded improving the access for public transit and non-motorized modes may 

lead to the increase in number of trips, but it would not shift the car trips to these modes because 

of no significant correlation between trip modes. Additionally, they found students use the public 

transit as their first choice of mode trip mode, which is likely because of the lower fare structures 

for them. Age was also found to be not a significant barrier to car mobility, meaning older people 

are still capable of driving (Shirmohammadli et al., 2016). Brown & Taylor (2018) looked at the 

ride sharing and ride hailing services using mobility-based measures such as the number of trips 

on spatial and sociodemographic level. They found that ride-hailing services can improve car 

access and do so equitability (no differences between different sociodemographic groups). Brown 

& Taylor (2018) also evaluated at the physical accessibility which differs from the accessibility 

that has been described so far. Physical accessibility mainly refers to the feasibility of a trip mode 

regarding physical conditions, such as disability or age, rather than having transport access in terms 

of proximity-based measures or cumulative opportunities. We consider this evaluation as part of 

the mobility-based measures rather than accessibility-based measures, since it is regarding the ease 

of access to ride hailing and ride sharing for certain populations rather than opportunities.  
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There are several studies that evaluated access in terms of feasibility of trip modes, which 

puts them into the last category of studies which evaluated equity in terms of accessibility and 

mobility-based measures. Welch & Mishra (2013) developed an integrated index of accessibility 

and mobility to create a quality index for assessing public transit equity. This quality index is based 

on connectivity, which includes frequency, speed, distance, capacity, required transfers, and 

activity density of land use served by a transit node. Their analysis showed differences between 

transit equity levels in Washington and Baltimore region. However, the methods used in this thesis 

are not asserting if the current system is fair or not, but providing a way for assessing equity before 

and after a transit project. This was mainly due to not having travel demand data incorporated in 

the model (Welch & Mishra, 2013). Pyrialakou et al. (2016) evaluated transportation equity 

regarding accessibility, mobility, and outcome-based measures for car, public transit, and non-

motorized trip modes. Their study based on Indiana found that rural areas and small urban areas 

suffer from lack of opportunities and lack of transit supply. Mooney et al. (2019) looked at the 

availability of dockless bikes in different neighborhoods and found that dockless bikes are not 

distributed equitably on a spatial level. They also did not find any disparities in racial and ethical 

composition of neighborhoods with more or less access to dockless bikes. It is worth noting, their 

study evaluated the “realized access” rather than “potential access” so equity was evaluated in the 

context of travel demand. However, the travel demand was on aggregate level, which they showed 

on their paper as sensitive to results when different units of spatial aggregation were used (Mooney 

et al., 2019). Chen et al. (2019) evaluated the reachability for bike sharing stations using walking 

thresholds to incorporate willingness to walk for bike sharing trips for high resolution simulated 

trip origin and destinations. While their study incorporated necessary elements (such as exact 

origin and destination), they did not evaluate alternative travel modes or the infrastructure 

constraints. They found that distribution of bike sharing accessibility was unevenly distributed 

spatially and between sociodemographic groups. Their results showed downtown areas have 

higher accessibility with bike sharing, while they found white non-middle class (low and upper) 

males to have the most accessibility. 

Although the existent research is extremely beneficial for identifying equity implications 

of the specific mode, they lack painting a complete picture. Using only a single mode of 

transportation in transportation equity analysis limits the comprehensiveness of the findings and 

makes them less applicable to policy discussions. In addition, it is agreed upon in the literature 
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there is an unequal distribution of benefits of a transportation system in highly automobile 

dependent communities of U.S. (Jones & Lucas, 2012; Martens et al., 2012). The negative health 

and environmental impacts of this automobile dependency also impact people of color 

disproportionally (Reichmuth, 2019). Therefore, we need to focus on alternative mobility options 

and their feasibility to understand the forced automobile ownership and the negative impacts of 

this forced automobile ownership. Griffin & Sener (2016), Minocha et al. (2008), Welch & Mishra 

(2013) used public transit as the only mode of interest while Chen & Wang (2020), Golub & 

Martens (2014), Karner (2018) integrated bike, auto, and walking to public transit respectively in 

their analysis. While Chen & Wang (2020) and Golub & Martens (2014) compared different modes, 

bike-public transit & auto-public transit, specifically, Karner (2018) incorporated pedestrian 

network into transit trips thus indirectly analyzed if walking is equitable or not. While others have 

also used walking time as first-mile, last mile connection criteria for transit as well, only Karner 

(2018) explicitly pointed out the use of a pedestrian network for assessing walking time. This is 

important because using walking versus biking as first and last mile travel mode can drastically 

change the accessibility of public transit since bike can allow individuals to travel longer distances 

compared with walking. We assumed for all other papers used walking as the first & last mile 

mode if it wasn’t explicitly stated. Meng & Brown (2021) looked at emerging mobility options 

(station-based BSS, dockless BSS, and e-scooters) together and were able to understand what type 

of systems are more equitable. Last, Pyrialakou et al. (2016) and Shirmohammadli et al. (2016) 

evaluated the transportation system equity as a whole by comparing auto, transit, and non-

motorized modes. Their results showed automobile as the most equal (not equitable since they 

adopted formal equality as equity) mode compared with the others. Studies that evaluated multiple 

modes could identify equity problems more frequently than studies that used single mode could. 

This is because of the ability to compare travel modes with each other and understanding the forced 

use of certain trip modes. Evaluating multiple modes is also helpful in identifying what type of 

trip modes can be beneficial in improving certain regions' travel-demand-relevant access. 

As highlighted above, many studies rely on aggregated data in evaluating equity. The 

spatial resolution lacking from aggregate data prevents evaluating feasibility of mobility options 

in the context of the travel demand. Without evaluating the quality of service and infrastructure 

constraints, travel-demand-relevant access can’t be analyzed in individual level. The limitation 

with aggregated data is, they overlook detailed geolocation and the actual travel demand. For 
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example, as pointed out earlier, simply living near a bus stop does not guarantee access unless a 

transit route can be taken to reach the exact destination. Additionally, having a travel demand that 

can be satisfied by walking based on the trip distance does not directly show access to the route 

characteristics might make that walking trip infeasible. From the reviewed literature, only Chen et 

al. (2019) used disaggregated data (from a simulation) while a majority of the literature that was 

reviewed used some sort of aggregated travel data. Some studies try to eliminate these problems 

by using travel survey data with higher spatial resolution (census block level) such as Pyrialakou 

et al. (2016) and Karner (2018). LEHD dataset both papers used only includes commuting trips, 

which is not ideal. Compared with the existent literature, knowing the exact location of the trip 

origin and destination allows for having individual level trip characteristics and evaluates everyone 

independently of others. Recently, with the emergence of tech-based mobility options created a 

unique opportunity for determining the disaggregated travel demand. Using the Global Positioning 

System (GPS) data, some studies could expand the level of detail with their analysis by eliminating 

the limitation associated with the aggregated travel survey data by using origin and destination 

pairs. The GPS studies can provide trip origin and destination information for all modes without 

the burden on participants for travel surveys and the need for specific data collection methods 

(Schuessler & Axhausen, 2009). Other advantages of using GPS data are related to the sample size 

for analysis and the continuity component of the data. Since data is collected in relative frequency, 

it is possible to generate trip chain information, which is not possible with any other methods on a 

large scale. As for our knowledge, there is no literature that generated origin and destination pairs 

from raw GPS data and used this information in the transportation equity field. A multi-modal 

(mixed modes and single modes are both included) study based on the real observed trip behavior 

derived from mobile phone sensors in U.S. can address the spatial resolution need however 

sociodemographic characteristics of these individuals can’t be reported because of privacy 

concerns. Having the exact location of origin and destination can enable assessment of feasibility 

of each trip mode based on the ease of use and with respect to the infrastructure constraints. In 

addition, evaluating the feasibility of mobility options with mobility and accessibility-based 

measures in a multi-modal transportation system can aid more comprehensive understanding of 

forced use of certain trip modes and can help explain the specific limitations of access.  
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Table 2-1. Literature review for transportation equity (organized based on transport measures used, mobility, accessibility, or both) 

Study 
Transport Measures Used 

(Mobility, accessibility, etc.) 
Travel Modes Considered Data Sources / Contents  

(Shirmohammadli et 

al., 2016) 
Mobility—number of trips 

Car–Driver 

Car–Passenger 

Bus 

Non-motorized (Walking 

and cycling) 

Travel survey with trip mode and spatially aggregated 

travel demand (on regional level), along with socio-

economic data to identify 5 groups (students, seniors, 

people without cars, unemployed, and employed 

people) 

(Pucher & Renne, 

2005) 
Mobility—mode share, average trip distance 

Car–Single/High occupancy 

Transit  

Non-motorized (walking 

and cycling) 

School bus  

Travel survey (NHTS)—mode share and average trip 

distance regarding urban-rural spatial differences. 

Sociodemographic characteristics and mode share 

relationships are also used.   

(Brown & Taylor, 

2018) 

Mobility—total trips, trips per capita 

(residents + job), ease of access for physically 

disadvantaged populations 

Ride hailing 

Ride sharing 

Lyft trip-level records: origins and destinations are 

aggregated on the census tract level. Trip start time, 

trip price, and trip distance are all aggregated in 

intervals  

(Griffin & Sener, 

2016) 

Accessibility—comparison between transit 

access (being able to access work within 45-

minute transit commute–walking, waiting, and 

transit time included) for low-wage workers 

and all workers  

Public Transit (Bus and Rail 

for all cities besides 

Indianapolis where only bus 

was evaluated)  

EPA’s Access to Jobs and Workers  

via Transit database (spatial aggregation on census 

block group level) This paper used% of low-wage 

workers with transit access and% of all workers with 

transit access 

(Minocha et al., 

2008) 

Accessibility—infrastructure level transit 

quality (frequency, hours of service, service 

coverage of 0.25 mile for bus and 0.5 for rail)  

Public Transit (Bus and 

Rail) 

Individual bus route and rail line schedule charts were 

evaluated to create a transit availability index. 

Compared census tracts with high vehicle ownership 

and low vehicle ownership for socioeconomic 

characteristics.  

(Karner, 2018) 

Accessibility—stop (bus)-level gravity 

measures for low and high-wage jobs derived 

from travel times (only during morning peak) 

to service areas (0.25 mile for bus and 0.5 for 

rail)  

Public Transit (Bus and 

Rail) 

Travel survey (LEHD): Database with estimates for 

number of resident workers, jobs, and flows of 

resident workers to jobs in census block level. Data is 

on the aggregate level where origins are transit stops 

(with service area) and destinations are work 

locations.  
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Table 2.1 (continued): Literature review for transportation equity (organized based on transport measures used, mobility, accessibility, 

or both)  

Study 
Transport Measures Used 

(Mobility, accessibility, etc.) 
Travel Modes Considered Data Sources / Contents 

(Smith et al., 2015) Accessibility—bike station availability Bike sharing (station based) Bike station data for 42 bike sharing systems 

(Braun et al., 2019) Accessibility—bike lane access Biking (infrastructure) 

GIS shapefiles for unprotected, buffered, and 

protected bike lanes from local and regional data 

sources 

(McNeil, 2011) 

Accessibility—bikeability based on adjacent 

motor vehicle speeds, number of lanes, bike 

lane existence, quality of pavement and 

number of stops. Land use and land 

topography were also incorporated. 

Biking (personal) 

Infrastructure information for measuring bike quality 

index and travel surveys for determining trip 

characteristics such as trip distances that are feasible 

for biking 

(Winters et al., 

2016) 

Accessibility—bike score which includes bike 

lane availability, hilliness, destinations & 

connectivity (opportunities), and bicycle mode 

share 

Biking (personal) 
Infrastructure and topographical values for bike 

score, travel surveys for mode share  

(Meng & Brown, 

2021) 

Accessibility—mode availability 

 

Station-based bike sharing 

Dockless bike sharing 

E-scooter 

Aggregated General Bike Feed Specification (GBFS) 

data for parking space for dockless systems and 

station locations for docked systems 

(Golub & Martens, 

2014) 

Accessibility—cumulative opportunity, 

destinations reachable in certain time limit 

(manufacturing and service jobs) 

 

Automobile 

Public Transit 
Generated travel demand 

(Chen & Wang, 

2020) 

Accessibility—number of opportunities 

(dining, jobs, social activities, and schools) 

reachable in certain time thresholds 

 

Public transit 

Cycling 

Location of jobs, dining, physical activities, social 

activities, and schools. 

LEHD for aggregated block level trips for 

commuting travel demand  
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Table 2.1 (continued): Literature review for transportation equity (organized based on transport measures used, mobility, accessibility, 

or both)  

Study 
Transport Measures Used 

(Mobility, accessibility, etc.) 
Travel Modes Considered Data Sources / Contents  

(Chen et al., 2019) 
Accessibility—travel distance for walking and 

cycling (single trip and tour-based approach) 
Bike sharing (station based) 

Disaggregated activity (trip origin and destination) 

and sociodemographic data (simulated) 

(Welch & Mishra, 

2013) 

Accessibility and mobility interestedly 

considered- quality index based on 

connectivity, which includes frequency, 

speed, distance, capacity, required transfers, 

and activity density of land use served by a 

transit node 

Public Transit 

Transit network data (stations, stops, lines, 

operational capacity etc.), and urban form 

characteristics  

(Pyrialakou et al., 

2016) 

Accessibility—opportunities reachable in 

certain time thresholds 

Mobility—need based measures from travel 

behavior 

 

Walking 

Automobile 

Public Transit 

National Household Travel Survey and Bureau of 

Transportation Statistics average household person 

and vehicle trips/trip-miles 

(Mooney et al., 

2019) 

Accessibility—(availability and idle 

times/rebalanced bikes) 
Bike sharing (dockless bike) 

Spatially aggregated bike availability data for 

neighborhoods 
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This thesis developed an integrated quality index of mobility and accessibility-based 

measures to eliminate problems arising from using them separately. This is because an integrated 

index can provide a more comprehensive perspective on evaluating the quality of each mobility 

option alternative in the context of travel demand and with respect to the infrastructure constraints. 

In Chapter 4.4, these methods with these integrated measures are explained in more detail. 

Naturally, this method will require a multi-modal approach rather than focusing on a single mode 

of transportation. Last, by using disaggregated mobile phone based sensory data, trip-chain 

information and detailed travel behavior can be extracted to identify the feasible mobility options 

available for a specific user. This individual information will be used to draw a holistic picture of 

the transportation equity. Since privacy concerns limit access to disaggregated sociodemographic 

data, this part will be aggregated. However, by using a large dataset, a bottom-up approach can be 

adapted, thus reduce the issues with using aggregated data.    
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 EMPIRICAL SETTING 

This study used Indiana as a case study based on data availability and local knowledge. The 

state of Indiana spans an area of 36,418 sq mi (94,321 km2), has 6,785,528 residents, and is in the 

Midwest Region of the United States of America (Census, 2020a). The empirical setting that was 

used in this study is the greater Indianapolis Metropolitan Planning Area (MPA) boundary area. 

The Indianapolis Metropolitan Planning Organization (MPO) indicates:  

“The MPA is the urbanized area of Central Indiana (the areas that are already 

mostly developed, identified on the map by the Urbanized Area Boundary - UAB) 

plus the areas that are expected to urbanize over the next 20 years. The MPO guides 

the development of a multi-modal transportation system within the MPA. (MPO, 

2012)”  

This area spans outside of Indianapolis and includes the surrounding suburbs’ block groups and 

its population according to the 2020 Census is estimated to be 1,769,964 (Census, 2020b). The 

MPA boundary used in this study was not drawn with respect to census block group boundaries, 

which is why there were some census block groups that were cut off by the boundary. To account 

for this, this study used census block groups that have their centroid inside the boundary (please 

see Appendix A.1 for details) for equity analysis in Chapter 4.5. Most of the area inside this 

boundary are well connected with interstates, state highways, and urban arterials. While in this 

area only 6.53% of both owner and renter occupied households do not own private vehicles, 34.53% 

of households that have at least one private vehicle and remaining 59% of households own multiple 

vehicles (ACS, 2018). This shows that there is a high level of car dependency, which could 

exacerbate the negative impacts on households without vehicles.  

This study selected Indianapolis MPA as the empirical study area due to its high auto 

dependency and similarity with other mid-size cities around the world. Additionally, the empirical 

setting for this thesis, Indianapolis, had one of the greatest discrepancies in terms of transit access 

when Griffin & Sener (2016) looked at nine mid-size U.S. cities. Since the MPA area is based on 

the urbanized areas (or expected to be) rather than using urban/rural classification, urban core 

/suburban classification was adopted when discussing the results. This classification of urban-

core/suburban is based on the classification scheme adopted by National Center for Health 

Statistics (NCHS) derived from Office of Management and Budget’s (OMB) February 2013 
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delineation of metropolitan and micropolitan statistical areas (Ingram & Franco, 2012). Based on 

the method used by NCHS, this thesis adopted an urban core–suburban definition based on the 

classification of counties as large “central” metro (inner cities, urban core) and large “fringe” metro 

(suburban). Consequently, Marion County was denoted as large central metro, Boone, Hamilton, 

Hancock, Hendricks, Johnson, Morgan, and Shelby Counties were denoted as large fringe metro. 

For the rest of this thesis, any census block group inside the Marion County is denoted as urban 

core, while any other area in the empirical setting is denoted as suburban.  

In August 2017, inside the MPA boundary, there were only three fixed route public transit 

systems (IndyGo, CIRTA, and Johnson County) and four appointment-based public transit 

systems (Boone, Hamilton, Hancock, and Hendricks County). The four appointment-based 

systems are all tailored for senior citizens and passenger must request these services. Indianapolis 

has a large-scale station-based bike sharing system (50 stations) while surrounding towns such as 

Carmel (six stations), Noblesville (two stations), Lawrance (two stations), Fishers (two stations) 

have small scale bike sharing systems. The two stations in Fishers only post the membership costs 

on the bike sharing app and, unfortunately, we could not find the membership costs for these two 

stations. This is why we removed those two stations from the study. In Figure 3-1 the fixed route 

public transit systems and the bike sharing station location inside the study area are shown. We 

assumed the two separate bikes sharing systems were not used during the same trip, thus making 

each trip mutually exclusive. There are also three e-scooter companies (Bird, Lime, Spin) that have 

operations inside the MPA boundary. In addition, there are several bike lanes and walking trails in 

Indianapolis that can be used for active travel modes. Lyft and Uber serve as ride hailing services 

inside the boundary. Bike sharing systems outside of Indianapolis did not exist in August 2017, 

but the assumption is that the same travel demand will hold true on the current day in 2022. For 

the Chapter 4.4, even though those stations might not exist in August 2017, the current 

infrastructure (in 2022) is considered as the infrastructure criteria. 
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Figure 3-1. Public transportation networks and bike sharing stations in the study area.  
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 METHODS 

4.1 Overview 

In this thesis, we developed a three-step method to evaluate travel-demand-relevant access. 

This three-part framework includes the GPS data processing, mobility option comparability and 

feasibility evaluation, and lastly the equity analysis in Indianapolis MPA. The overview of data 

and methods used for each part can be seen in Figure 4-1. Although the main output of GPS data 

processing step is to find the trip origin and destinations, this step also included any necessary pre-

processing steps. These pre-processing steps are discussing in detail in Chapter 4.3.1. The origin 

and destination pairs that were identified were then evaluated for feasibility of different mobility 

options using two separate methods; cost based, and quality based. This step is the main 

contribution of this study, where we highlighted a framework for how to do travel-demand-

relevant access analysis using multiple trip modes. For this step, we used publicly available Python 

and R packages and data to evaluate routing (trip planning) using different trip modes regarding 

infrastructure constraints. These infrastructure constraints were integrated based on several 

publicly available datasets, such as OpenStreetMap (OSM). These data sources are discussed in 

detail in Chapter 4.2. After identifying the feasibility of each mobility option, we compared spatial 

and sociodemographic characteristics at the census block level to assess spatial and 

sociodemographic equity inside MPA. GPS data processing step is discussed in more detail in 

Chapter 4.3, mobility option comparability and feasibility evaluation is discussed in Chapter 4.4 

and lastly equity analysis is discussed in more detail in Chapter 4.5. In summary, this study’s 

objective is to analyze spatial and sociodemographic equity based on travel-demand-relevant 

access using GPS data.  
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Figure 4-1. Overview of data and methods used in this study  
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4.2 Data 

4.2.1 GPS Data 

Modern smart phones are usually equipped with assisted GPS (A-GPS) to determine GPS 

location of the user. These systems prevent the warm-up period required for traditional GPS 

devices (Vallina-Rodriguez et al., 2013). Although this warm-up period is the main source of errors 

in traditional GPS devices, A-GPS systems are less accurate than traditional GPS receivers 

(Zandbergen & Barbeau, 2021). The accuracy of A-GPS sensors varies given the environment they 

are used in, the time of the day, and the model of the mobile phone. In general, accuracy can be 

placed between 8 and 13 meters when compared to the actual path for each point in a controlled 

experiment in an urban environment (Merryid & Bettinger, 2019). The GPS data used in this 

research is provided by SafeGraph. SafeGraph is a private company that collects GPS location 

information from several mobile applications with permission from the users. Data attributes used 

in this study are unique user ID, geographical latitude, and longitude coordinates in the WGS 84 

reference system, UNIX timestamp in Universal Time Coordinated (UTC), and 9-character 

geohash code based on the public domain geocode system (Niemeyer, 2008), which separates the 

world into rectangular grids of 4.77 m x 4.77 m. By only using the first 7 characters of this 9-

character geohash variable, a larger grid of (153 m x 153 m) was created using the same geocode 

system. The users analyzed in this study were selected based on having their estimated home 

locations within the borders of Indianapolis MPA. These home locations were determined by the 

most frequent 7-character geohash during nighttime (7 PM–7 AM) for each unique user. The 

assumption is that the GPS location where most data points were collected is either in the exact 

location of the house or very close. Please see Appendix A.2 for an example of this method. This 

filtering resulted in with a dataset which had a little over 60 million GPS points from 171,739 

unique users. The homes that were inside the census block groups that were not included in the 

empirical setting (e.g., orange block group from Fig A.1 in Appendix A.1) were also removed 

from the final dataset used for equity analysis during the trip aggregation stage. This operation 

reduced the number of users to 153,391 and 3,807,003 GPS data points. The UNIX timestamp was 

converted into local time based on the geolocation with respect to the daylight-saving time changes. 

The 10-day time-period used in this study was between “2017-08-21 00:00:00” and “2017-08-31 

23:59:59” at local time. The time interval between points is irregular and varies substantially by 
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the user. Aside from these parameters, the haversine distance, time interval, and average speed 

between two consecutive points were calculated to create the final input matrix of 𝒕𝒓𝒊𝒑 𝒎𝒂𝒕𝒓𝒊𝒙. 

It is also worth noting that we assumed that even though the time difference between two 

consecutive GPS points might be longer than a day, there are no missing trips in between those 

two points. This assumption is based on the data characteristics and might not hold true if app 

stopped collecting location information from users while they were still traveling. 

4.2.2 Transportation System and Geographical Data 

OpenStreetMap (OSM) 

OpenStreetMap (OSM) data is used to provide the transportation network information such 

as road types, posted speed limits, road segment lengths (OpenStreetMap, 2022). It is possible to 

create the networks from OSM for a given geographic area using a very useful Python package 

called “OSMNx”. OSMNx was developed by Geoff Boeing to analyze street networks by utilizing 

publicly available OSM data (Boeing, 2017). Besides the OSMNx, the network analysis package 

“NetworkX”“ (Hagberg et al., 2008) and its tools were heavily used with routing algorithms. These 

trip planning (routing) algorithms were used to find if optimal conditions are assumed how many 

options would be feasible for user for a specific O/D-pair. Both packages were used without 

modifications for shortest path routing with driving, walking, biking (personal and bike sharing), 

and ride hailing. Specific details and tags used for each travel mode are discussed in their 

respective chapter below. In addition, the shortest path algorithm from NetworkX and OSMNx 

both use the Dijkstra method for finding the shortest network path given the edge weights (Dijkstra, 

1959). 

Topographical Data 

Topographical data is downloaded as 1/3 arc-second (10 meter) Lidar data from U.S. 

Geological Survey for Indiana was used (USGS, 2021). This data was used to build a bike network 

with elevation so that gradient (slope) of each segment can be calculated and used in routing 

decision. Please see Chapter 4.4 for the details.  
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Sidewalk Rating 

Not all streets have sidewalks to support safe walking. To assess the feasibility and quality 

of a walking trip, this theis used the 2018 sidewalk rating data compiled by the Indianapolis 

Department of Public Works (DPW, 2018). This dataset rates sidewalks with scores ranging from 

zero to three, with zero representing no concrete sidewalk or curb (or in very bad ondition) on that 

section. Sidewalks with good rating (1,2,3) showed that some sort of sidewalk infrastructure is 

present, but there might be some vegetation growth for sidewalks with rating one or two. The 

sections with sidewalk rating of zero were eliminated from walk network because of this reason. 

Interestingly, out of 69,767 sidewalks listed in the dataset, 39,742 (56.96%) were rated 0; 167 

(0.24%) were rated as 1; 3,438 (4.93%) were rated 2; and 26,420 (37.87%) were rated 3. There 

has been 20 years of sidewalk moratorium in Indianapolis (K. Dwyer & J. Ryan, 2021), which is 

likely the reason the majority of sidewalks are non-existent or in a bad condition. One limitation 

of this dataset is that it only has the sidewalks inside the Marion County, which meant that the 

remaining area outside of MPA boundaries were assumed to have a proper sidewalk for all network 

edges. Figure 4-2 shows the sidewalks with a bad rating (0) and a good rating (1,2,3) in Marion 

County.  

 

Figure 4-2. Sidewalk quality in Marion County (bad rating: no sidewalk or curb or sidewalk with 

a terrible condition, good rating: sidewalk with at most some vegetation growth) 
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Bike Sharing Stations  

As described in the empirical setting, there are 61 bike sharing stations inside the MPA 

boundary. The geographic location of these stations is publicly available. Indiana Pacers Bikeshare 

station data was pulled from the General Bikeshare Feed Specification (GBFS) data, while Carmel, 

Noblesville, Fishers, and Lawrance bike share stations were manually listed based on the pin 

locations on the official app for all systems “Movatic”. Indiana Pacers Bikesharing, which is the 

primary bike sharing system (BSS) in Indianapolis, indicates on their website that they have 50 

stations while the GBFS data has only 49 stations. Similarly, the Carmel Bike Share shows that 

they have 7 stations while the official app “Movatic” only shows six stations. In total, we consider 

59 total stations that location information was found. All stations that had longitude and latitude 

data that were used for assessing bike sharing as a mode option.   

Public Transit Data 

For public transit information, Global Transit Feed Specification (GTFS) data for 

Indianapolis in June 2017 was used. This data was the closest schedule that we could find to the 

GPS data (August 2017). As described in Chapter 3, some other public transit systems exist inside 

the MPA boundary. Out of seven systems, only three have fixed route and schedule while four 

others are appointment based public transit systems tailored for senior citizens. Unfortunately, out 

of three fixed route systems, only IndyGo GTFS data was publicly available, thus neither Johnson 

County nor CIRTA systems were considered in this analysis. The GTFS data for IndyGo had 32 

routes with 3641 stops in total and included the schedules, timetables for each route.  

4.2.3 Sociodemographic Data 

For this study, census block groups of Indiana determined by the 2010 Census were used 

as the spatial areas of interest. Census block groups are the second smallest geographic area after 

census block, and they are the smallest area for which the decennial census tabulates and publishes 

sample data (Census, 2021). Because of the trip observation data that was used in this study is 

from August 2017, all sociodemographic data has been collected from 2017 ACS 5-year estimates 

to ensure consistency in our analysis. As described in the empirical setting (Chapter 3), only the 

block groups that were identified to be within the MPA boundary were considered in this study. 
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This theiss identified race, vehicle ownership, educational attainment, age, economic 

characteristics (median income, poverty, median property value), and physical disability as the 

most important sociodemographic variables. Please see Appendix B for which variable is used in 

which studies in existing literature. The descriptive statistics of all sociodemographic variables 

used in this study are represented in Table 4-1 below.  

Table 4-1. Descriptive statistics of sociodemographic data used in this study regarding the study 

area (MPA boundary) 

Variable Description Mean 1ST 

Quartile  

Median 3rd 

Quartile  

Economic  

Income 

Property Value  

Poverty 

 

Median household income 

Median property value 

% Of population 20 to 64 years under 

poverty line 

 

$57,461 

$146,892 

16.04% 

 

$34,398 

$86,175 

4.61% 

 

$50,257 

$129,600 

11.51% 

 

$71,956 

$175,800 

24.3% 

Education 

Degree 

 

 

 

% Of population over 25 with no 

schooling 

% Of people over 25 with highest level 

of education high school and below 

 

1.15% 

 

36.98% 

 

0 

 

21.65% 

 

0 

 

37.12% 

 

1.6% 

 

51% 

Social Conditions 

Age 

Ethnicity 

Race 

 

% Of under 20 and over 65 population 

% Of Hispanic or Latino population  

% Of non-white population 

 

39.54% 

7.85% 

28.87% 

 

34.54% 

0.91% 

6.11% 

 

40.21% 

3.85% 

18.20% 

 

44.92% 

10.58% 

45.92% 

Occupancy  

Room Occupancy  

 

% Of households with 1+ average room 

occupancy 

 

1.73% 

 

0 

 

0 

 

2.57% 

Transportation 

Vehicle Ownership 

 

% Of households with zero vehicle  

 

8.48% 

 

1% 

 

4.88% 

 

12.83% 

Physical Condition 

Disability 

 

% Of population with disability under 

poverty line 

% Of population with disability over 

poverty line 

 

3.9% 

 

8.78% 

 

0 

 

4.55% 

 

1.66% 

 

8.11% 

 

5.55% 

 

11.8% 

 

Number of observations (census block groups)  

 

912 

4.3 GPS Trajectory Data Processing 

There are several steps required to generate trip origin and destination pairs (O/D pairs) from 

raw GPS data. This is because GPS data has likely to have errors / jump points that need to be 

filtered out before any operation for identifying trip origins and destinations. Below, we explained 

the methods used for processes used for data pre-processing (Chapter 4.3.1) and illustrated the 

rule-based methods used for extracting O/D pairs (Chapter 4.3.2).  
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The variable notations used in trip origin and destination algorithm is shown below and each 

variable will be defined as: 𝑣𝑖𝑗 where 𝑖 refers to user and 𝑗 refers to the index value of the point 𝑗 

where calculated values (distance, time difference, and average speed) are from the transition from 

point 𝑗 − 1 𝑡𝑜 𝑗. Orange text in algorithms throughout the text shows comments.  

Input Data: 

// Point j could refer to either an individual point or cluster of points (bundle) for below variables  

 𝑈𝑠𝑒𝑟 𝑖 = {1, … , 𝐼}, 𝑝𝑜𝑖𝑛𝑡 𝑗 = {1, … . , 𝐽}, 𝑡𝑟𝑖𝑝 𝑘 = {1, … , 𝐾}𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢𝑠𝑒𝑟  

𝒕𝒊𝒋 = 𝑢𝑛𝑖𝑥 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 

𝒍𝒐𝒏𝒊𝒋 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 //updated as centroid longitude after bundling 

𝒍𝒂𝒕𝒊𝒋 =  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 //updated as centroid latitude after bundling  

𝒔𝒈𝒊𝒋 = 𝑠𝑚𝑎𝑙𝑙 𝑔𝑟𝑖𝑑 (4.77𝑚 ×  4.77𝑚 ) 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 𝑤𝑜𝑟𝑙𝑑 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖, 𝑔𝑒𝑜ℎ𝑎𝑠ℎ 𝑠𝑡𝑟𝑖𝑛𝑔  

𝒍𝒈𝒊𝒋 = 𝑙𝑎𝑟𝑔𝑒 𝑔𝑟𝑖𝑑 (153𝑚 × 153𝑚 ) 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑤𝑜𝑟𝑙𝑑 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖, 𝑔𝑒𝑜ℎ𝑎𝑠ℎ 𝑠𝑡𝑟𝑖𝑛𝑔  

𝚫𝒅𝒊𝒋 = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 miles   𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗 𝑎𝑛𝑑 𝑗 − 1)   

𝚫𝒕𝒊𝒋 = 𝑒𝑙𝑎𝑠𝑝𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 seconds  𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗 𝑎𝑛𝑑 𝑗 − 1) 

𝒗𝒊𝒋 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 mph  𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗 𝑎𝑛𝑑 𝑗 − 1)  (𝚫𝒅𝒊𝒋 /(𝚫𝒕𝒊𝒋/𝟑𝟔𝟎𝟎)) 

Output Data from pre-processing steps and trip O/D algorithm:  

𝜷𝒊𝒋 = 𝑔𝑝𝑠 𝑗𝑢𝑚𝑝 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟, 𝑓𝑎𝑢𝑙𝑡𝑦 𝐺𝑃𝑆 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑗𝑢𝑚𝑝 𝑝𝑜𝑖𝑛𝑡, 𝑗𝑢𝑚𝑝 𝑝𝑜𝑖𝑛𝑡} 

𝒏𝒊𝒋 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑛𝑑𝑙𝑒 𝑗 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖  

𝝋𝒊𝒋 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑏𝑢𝑛𝑑𝑙𝑒 𝑗 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖  

𝝓𝒊𝒋 = 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑏𝑢𝑛𝑑𝑙𝑒 𝑗 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖  

𝒔𝒊𝒋 = 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖, {𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡, 𝑛𝑜𝑡 𝑚𝑜𝑣𝑖𝑛𝑔, 𝑚𝑜𝑣𝑖𝑛𝑔}  

𝒐𝒊𝒋 = 𝑜𝑟𝑖𝑔𝑖𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 {𝑘 𝑜𝑟 0)  

𝒅𝒊𝒋 = 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑖 {𝑘 𝑜𝑟 0) 

𝚶𝒊𝒌 = 𝑜𝑟𝑖𝑔𝑖𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 (𝑙𝑎𝑡, 𝑙𝑜𝑛)  

𝚬𝒊𝒌 = 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 (𝑙𝑎𝑡, 𝑙𝑜𝑛) 

𝚻𝒊𝒌 = 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖  

𝚫𝑫𝒊𝒌 = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑶𝒊𝒌𝑎𝑛𝑑 𝑫𝒊𝒌 

𝚫𝑻𝒊𝒌 = 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑶𝒊𝒌𝑎𝑛𝑑 𝑫𝒊𝒌 

𝝎𝒊𝒌 = 𝑠𝑝𝑒𝑒𝑑 (𝑣𝑖𝑗) 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 

𝚭𝒊𝒌 = 𝑗𝑢𝑚𝑝 𝑝𝑜𝑖𝑛𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 

𝜻𝒚 = 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝜼𝒚 = 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒  

𝜶𝒌𝒊 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 (𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡𝑖𝑚𝑒) 

𝝈𝒌𝒊 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑘 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑖 (𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡𝑖𝑚𝑒) 
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4.3.1 Data Cleaning and Pre-processing  

GPS Jump Points  

General method for identifying the jump points is to use a maximum speed threshold value. 

There is one limitation of this method where the high speeds are caused by the previous point being 

a jump point, so points that are part of the trip trajectory are excluded if speed is used independently. 

Schuessler & Axhausen (2009) used 50 m/s (112 mph) as the maximum speed threshold and in 

this thesis speed limit was rounded up to the nearest whole number of 120 mph to have a more 

relaxed speed threshold. To ensure real trip trajectory points were not excluded, a method was 

identified based on the characteristics of our GPS dataset. When looking at the different users of 

the dataset, the GPS jump points were found to be clustered around the same geolocation. (Please 

see Appendix A.3 for an example user and how jump points look like on a map.) At most, they 

were concentrated into one large cluster or two large clusters for each user. This is likely because 

of having multiple accounts using different electronic devices at the same time. For example, as a 

user is moving along with a trip trajectory, their GPS data point suddenly jumps back to their home 

location and then jumps back to the location they were supposed to be. Since these clusters were 

matching with the frequently traveled locations, a process was developed to identify jump points 

based on the frequency and speed. By using the existent grid variable geohash (9-character), we 

extracted the two most frequent small grids for each user. These points are later described as 

potential jump points or jump points, the distinction being made if the maximum speed threshold 

of 120 mph is exceeded. If a point was neither a jump point nor a potential jump point, it was 

denoted as normal. Potential jump points were further examined when later the trip origin and 

destinations were identified. If an origin or destination is found to be a potential jump point and 

this trip created an impossible trip chain; these trips were trusted less than another trip that might 

not have an origin or destination denoted as potential jump point. With that, the jump point 

identification process can be listed as a three-step process. In this process, the model used both 

small and large grids. Small grids (4.77𝑚 ×  4.77𝑚 ) almost exactly match with standard home 

sizes when considered with their neighboring grids, which is why we choose this to capture all 

GPS points that might spread around the house. Large grids (153𝑚 × 153𝑚 ) allow for clustering 

all the points around the areas where jump points most frequently happen. The jump point 

identification can be described as three step process as it is explained below.  



 

 

41 

1. Identify the two most frequent small grids and the neighboring grids. All these 

points that are inside these 14.31 𝑚 ×  14.31 𝑚 areas will be labeled as “potential 

jump point”. All others are labeled as “normal”.  

2. Identify the two most frequent large grids and for the points inside this grid 

a. If a point has high speed, change the status as “jump point” 

b. If it doesn’t satisfy speed criteria, do not change the jump point status 

3. For points that did not move, copy jump point status  

 

The method we identified as fitting to our dataset most likely will not work any other data 

source that might have different attributes so when replicating this research better methodologies 

for filtering out the jump points such as the Kalman filter and Gauss kernel smoothing approach 

should be used. These methods were not used because the end goal of this project focused on trip 

origin and destination rather than on the trip trajectory. For further reference on these, please refer 

to Zheng & Zhou (2011). With this jump point identification process, a new variable represents 

the jump point status of each point as one of the following: “normal”, “potential jump point”, and 

“jump point”. The points with jump point status were eliminated from the GPS data and distance, 

time, and speed variables were recalculated to eliminate the effects of jump points (such as having 

high speed because of the jump points).  

Clustering / Bundling  

After eliminating jump points from the dataset, a clustering / bundling operation was 

performed to streamline finding the trip origin and destination. By creating these bundles, we 

aimed to understand how long the user stayed at one location for over one consecutive GPS point 

collections. The assumption for bundling these points together is that if a user stayed at a location 

for an extended amount of time without changing locations (less than 0.25 miles location change), 

they are not likely to be in the middle of a trip. For clustering, the existent geohash variable was 

once again used. The python library ‘geolib’ was used to extract the neighborhood for each grid 

(4.77 m × 4.77m), surrounding eight grids and the grid itself (Veness, 2014). If a point is located 

inside this 14.31m × 14.31m square of the previous point, it was placed in the same bundle as the 

previous point. The following point is then checked with this point and placed in the same bundle 

if it is located inside this point’s neighborhood square. With every additional point this method 
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add, the centroid of all points in a bundle was calculated and the next point was evaluated based 

on its relationship to this center. The arrival time (𝜑𝑖𝑘) is the timestamp of this first point while 

the departure time (𝜙𝑖𝑘) is assigned as the timestamp of the last point of the bundle. The number 

of points in each bundle is also recorded as: 𝑛𝑖𝑘. After this operation, all closely located points in 

a likely stay are combined into one “point” to be used in the Trip O/D extraction algorithm. From 

this point forward, these bundles were referred to as a point for the rest of the Chapter 4.3. This 

means that a point could comprise multiple GPS data points or a single point.  

4.3.2 Trip Origin / Destination (O/D) Extraction 

After removing jump points and creating bundles, status of each point can be identified. 

This status is different from the jump point status identified in Chapter 4.3.1. Since the end goal is 

to identify the trip O/Ds, the status can be one of the “end point”, “not moving”, and “moving”. 

“End point” will indicate the point of interest is the destination of a trip started at an earlier point. 

“Not moving” categorization is for the points that are closer to the previous point than the 

minimum distance threshold. The minimum distance threshold of 0.25 miles which was derived 

from the 2017 NHTS average person trip length data for under 20 minutes trips (Federal Highway 

Administration, 2017). “Moving” on the hand other indicates all other points that are part of an 

individual trip trajectory. The general idea with the Trip O/D algorithm is to use rule-based 

algorithms to detect these statuses. This is consistent with the existing literature where the dwell 

time threshold between two consecutive points is evaluated for identifying trip O/D’s (Shen & 

Stopher, 2014; Wang et al., 2018). This study adapts a variation of the existing methodologies by 

checking both transitions, arrival to point and departure from it. This means that if the point of 

interest is defined as 𝑝𝑜𝑖𝑛𝑡 𝑗, the transition from 𝑗 − 1 𝑡𝑜 𝑗 and the transition from 𝑗 𝑡𝑜 𝑗 + 1 will 

be used to decide the status of 𝑝𝑜𝑖𝑛𝑡 𝑗. In some cases, transition from 𝑗 − 2 𝑡𝑜 𝑗 − 1 was also used.  

To identify all trips precisely, three-time thresholds were used for these transitions’ dwell 

times. The most used time threshold in literature for dwell time is 120 seconds (Feng & 

Timmermans, 2014; Schuessler & Axhausen, 2009; Wang et al., 2018) while some studies used a 

higher time 900-second threshold (Schuessler & Axhausen, 2009). Values between 900 seconds 

and 1200 (20 minutes) seconds with 60 seconds increments was tried on previously mentioned 8 

manually created user trip trajectory files and 1200 seconds was the best fitting for these users in 

identifying the correct trip origin and destinations. The max commuting threshold is determined 
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as one hour, since this was the approximate maximum time that would be required to travel from 

one end of the MPA to another end. Higher time threshold value was needed because of irregular 

time intervals between pairs of bundled points and among users. By keeping this threshold large, 

it can also be ensured that fewer trips are likely to end abruptly. The three dwell time thresholds 

are identified as 120, 1200 and 3600 seconds accordingly. These three-time thresholds allowed 

identification of trips with different purposes by differentiating the stay time at a certain location. 

Shorter stays at a location (2 minutes threshold) identified trips with very low time stayed at the 

destination (e.g., drive through) while slightly longer time threshold (20 minutes) helped to 

identify most of other trip destinations (e.g., grocery shopping). Last, the longest time threshold (1 

hour) helped with identifying trip destinations with longer activities (e.g., work). To validate the 

results from the trip O/D algorithm, this study compared the trip origin and destination locations 

identified by the algorithm with the manually evaluated 8 user files. These user’s trips were 

evaluated by projecting their GPS point onto the map and identifying the origin and destination by 

analyzing these points and the distance, time, and speed values of each point. Aside from time-

based classification, speed was a secondary criterion used to identify the status of a point. The 

minimum speed threshold which represents the average walking speed was calculated using the 

average gait speed of people between ages 20-79 for all genders (3 𝑚𝑝ℎ) from the meta-analysis 

of walking speeds (Bohannon & Andrews, 2011). Based on the speed of the point 𝑗 − 1, 𝑗, 𝑎𝑛𝑑 𝑗 +

1 it is possible to understand if the point 𝑗 was part of an individual trip trajectory (moving) or an 

endpoint by evaluating trip continuation. Meaning the speed of these three points is like each other 

and above the speed threshold, it is more likely they will be part of the same trip trajectory. All 

thresholds used in this chapter are represented in the Table 4.2 below.  

Table 4-2. Threshold values used in the Trip OD algorithm. 

Threshold Value Name Represented by Value 

Short Time Threshold  𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡  120 seconds (2 minutes) 

Medium Time Threshold  𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 1200 seconds (20 minutes) 

Long Time Threshold  𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔 3600 seconds (1 hour) 

Distance Threshold 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  0.25 miles 

Speed Threshold  𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  3 mph 
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 In Algorithm 1, we describe the rule-based algorithm used to identify the status of a point. 

First, bundle information was evaluated to check if the user stayed at the same location for over 

120 seconds and while multiple GPS points were recorded. If the distance between this bundle and 

the previous one was larger than the threshold, we assigned this point as “end point” since the user 

stayed at this location for more 2 minutes. The status will be set to not moving if they didn't move 

more than the threshold. Check branch 1 on Algorithm 1 for this group. If either of the transition 

times is longer than an hour, these could only indicate end point or not moving status because the 

assumption is that points that have longer than one hour time gap between them will not be part of 

the same trip trajectory (trips where other points are part of the same trip). Branches 2 and 6 show 

the other criteria used the determine these points’ status. However, when the time between point 

𝑗 − 1 and 𝑗 is between 20 minutes and one hour, this assumption regarding points being in same 

trip trajectory is relaxed, because when evaluating manually created user files, it was noted that 

some points in an individual trip trajectory can be apart from each other for more than 20 minutes. 

Additionally, it is also more plausible for points to be part of the same trip trajectory if the time 

between them are less than an hour because of the size of the study area. Branch 3, 4, and 5 in 

Algorithm 1 depicts the points that fall into this category. The difference between these branches 

is the different values for Δ𝑡𝑖𝑗+1(the time gap between point 𝑗 and 𝑗 + 1). We checked the speed 

of point 𝑗 − 1, 𝑗, 𝑎𝑛𝑑 𝑗 + 1 to distinguish moving points from end point or not moving statuses. 

The assumption with these branches is that if the speed is consistently larger than the threshold, it 

would indicate continuation rather than an ending. For branches 7, 8, and 9, since the time is less 

than 20 minutes, all transitions need to be carefully examined. Since some points that does not 

satisfy the distance threshold criteria were also included as end point to not miss any trips.   
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Algorithm 1: Initial Trip O/D Algorithm  

Input:  𝑻𝒓𝒊𝒑 𝒎𝒂𝒕𝒓𝒊𝒙: {𝑣𝑖𝑗 , ∆𝑑𝑖𝑗 , ∆𝑡𝑖𝑗 , 𝛽𝑖𝑗 , 𝜙𝑖𝑗 , 𝜑𝑖𝑗 , 𝑛𝑖𝑗} 

Output:  𝒕𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚: {𝑣𝑖𝑗 , 𝛽𝑖𝑗 , 𝜙𝑖𝑗 , 𝑠𝑖𝑗} 

For each user,  𝑗 = 1 to N do  

1) If  𝑛𝑖𝑗 ≥ 2 𝑎𝑛𝑑 𝜙𝑖𝑗 − 𝜑𝑖𝑗 ≥ 𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡  𝐝𝐨 

If ∆𝑑𝑖𝑗  ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //the user moved more than distance threshold to stay in a location for more than 120 seconds with 2+ recordings 

Else  

Assign: 𝑠𝑖𝑗  = not moving //the user stayed in a location for more than 120 seconds but this location is very close to the previous one 

End 

2) Else if Δ𝑡𝑖𝑗 ≥ 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔 or ( Δ𝑡𝑖𝑗  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔)  and Δ𝑡𝑖𝑗+1 ≥ 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) do 

If ∆𝑑𝑖𝑗  ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do 

Assign: 𝑠𝑖𝑗  = end point //if either one of the times is more than an hour, we assume that they can’t be part of same trip trajectory since the 

point 𝑗 is farther than 𝑗 − 1, it is assigned end point status 

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End 

3) Else if Δ𝑡𝑖𝑗  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) and Δ𝑡𝑖𝑗+1  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) do 

If ∆𝑑𝑖𝑗  ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   do 

If 𝑣𝑖𝑗−1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑and 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do   

Assign: 𝑠𝑖𝑗  = moving //consecutive points are more than 20 minutes but less than one hour away from each other can be part of 

same trajectory if the speed is consistently above the speed threshold 

Else  

Assign: 𝑠𝑖𝑗  = end point //due to Δ𝑡𝑖𝑗  being longer than 20 minutes if speed was not consistent this will indicate trip between j-1&j 

End 

Else Assign: 𝑠𝑖𝑗  = not moving  

End 

4) Else if Δ𝑡𝑖𝑗  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) and Δ𝑡𝑖𝑗+1  ∈  [𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡 , 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚) do  

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //only these two speeds needs to be checked because Δ𝑡𝑖𝑗+1 < 20 minutes away, likely to be part of the same trip  

Else if ∆𝑑𝑖𝑗 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //if speed condition not met it is likely because of the 𝑣𝑖𝑗+1 thus only check distance now 

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End 

5) Else if Δ𝑡𝑖𝑗  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) and Δ𝑡𝑖𝑗+1 < 𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡  do 
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If ∆𝑑𝑖𝑗 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   do 

 If 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //since the next point is less than 2 minutes away if speed criteria is satisfied it means that trip is continuing 

Else  

Assign: 𝑠𝑖𝑗  = end point //if speed criteria is not satisfied the point j is an end point  

End 

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End  

6) Else if Δ𝑡𝑖𝑗 < 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚  and Δ𝑡𝑖𝑗+1 ≥ 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔  do 

If ∆𝑑𝑖𝑗 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do //since the next point is more than one hour away this point can only be end point or not moving0 

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //the trip ended at point j and a there is a trip between j and j+1 

Else  

Assign: 𝑠𝑖𝑗  = not moving //if the speed criteria not satisfied this means that distance is very low. Even though this point is 

identified as not moving the destination for the previous trip is in very low distance.   

End 

Else  

Assign: 𝑠𝑖𝑗  = end point  

End 

7) Else if Δ𝑡𝑖𝑗 < 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚  and Δ𝑡𝑖𝑗+1  ∈  [𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚, 𝑡𝑖𝑚𝑒𝑙𝑜𝑛𝑔) do 

If ∆𝑑𝑖𝑗 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   do 

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do   

Assign: 𝑠𝑖𝑗  = moving //in this case consecutive speed threshold is necessary because time threshold for point j is less than 20 

minutes 

 Else  

Assign: 𝑠𝑖𝑗  = end point  

End 

Else  

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //in this case consecutive speed threshold is necessary because time threshold for point j is less than 20 

minutes 

 Else if 𝑣𝑖𝑗−1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑and 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 < 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //this will indicate a sudden change in the speed which assumed to  

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End  

End  
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8) Else if Δ𝑡𝑖𝑗 < 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚  and Δ𝑡𝑖𝑗+1 𝑖𝑛 [𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡 , 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚) do 

If ∆𝑑𝑖𝑗 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   do 

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //in this case consecutive speed threshold is necessary because time threshold for point j is less than 20 

minutes 

Else if 𝑣𝑖𝑗 < 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑do  

Assign: 𝑠𝑖𝑗  = end point //since the distance criteria is already satisfied  

Else  

Assign: 𝑠𝑖𝑗  = end point //since the distance criteria is already satisfied 

End  

Else 

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //in this case consecutive speed threshold is necessary because time threshold for point j is less than 20 

minutes 

Else if 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //this condition might create extra trips but without trips will be missed,  

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End 

  End  

 9) Else if Δ𝑡𝑖𝑗 < 𝑡𝑖𝑚𝑒𝑚𝑒𝑑𝑖𝑢𝑚  and Δ𝑡𝑖𝑗+1 < 𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡 do 

If ∆𝑑𝑖𝑗 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   do 

If 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving //next point is less than 2 minutes away so if the speed criteria is satisfied it will be part of the trip 

Else  

Assign: 𝑠𝑖𝑗  = end point //distance criteria satisfies so it can’t be not moving point  

End 

Else 

If 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = moving 

Else if 𝑣𝑖𝑗 ≥ 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑣𝑖𝑗+1 < 𝑠𝑝𝑒𝑒𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do  

Assign: 𝑠𝑖𝑗  = end point //this condition might create extra trips but without trips will be missed, but short trips are deleted later 

Else  

Assign: 𝑠𝑖𝑗  = not moving  

End 

  End 

 End  

End  
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Since “end point” status represents the destination points, only the points where the trip 

originated from needed to be found. To find origins, statues that were determined from Algorithm 

1 were used. If a point had status of end point, the next trip was assumed to start from the same 

point. For example, if the point 𝑗 was assigned to the trip 𝑘 as the destination, it will also be 

assigned as the origin for trip 𝑘 + 1. This is because of the trip chain assumption with GPS data 

used in this study. If a bundle was found to be destination or origin, we used respective arrival and 

departure times to find trip characteristics. The speed and the jump point status of origin and 

destinations were also recorded to be used in trip O/D filtering algorithm. Aside from “end point” 

status, “not moving” status was used to indicate the next point as the start of the next trip. “Moving” 

status was only used to differentiate between the trip trajectory points and the points that do not 

belong to any trips. The details of this algorithm can be seen below in Algorithm 2. 

 

Algorithm 2: Trip O/D Assignment Algorithm  

Input:  𝒕𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚::{𝑣𝑖𝑗 , 𝛽𝑖𝑗 , 𝜑𝑖𝑗 , 𝑠𝑖𝑗} 

Output:  𝒕𝒓𝒊𝒑𝑶𝑫: {𝚶𝒊𝒌, 𝚬𝒊𝒌, 𝚻𝒊𝒌, 𝚫𝑫𝒊𝒌, 𝝎𝒊𝒌, 𝚭𝒊𝒌} 

Initialize 𝑘 = 1 for each user 

Initialize Ο𝑖𝑘 = [𝑙𝑎𝑡𝑖1, 𝑙𝑜𝑛𝑔𝑖1] and Τ𝑖𝑘 =  𝜑𝑖1 and 𝜔𝑖𝑘 = 𝑣𝑖1 

For all 𝑢𝑖 , 𝑗 = 1 to N do  

If 𝑠𝑖𝑗 = "𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡" do 

Assign 𝑑𝑖𝑗 = 𝑘 , 𝑜𝑖𝑗 = 𝑘 + 1  

Assign Ε𝑖𝑘 = [𝑙𝑎𝑡𝑖𝑗 , 𝑙𝑜𝑛𝑔𝑖𝑗] Ο𝑖𝑘+1 = [𝑙𝑎𝑡𝑖𝑗, 𝑙𝑜𝑛𝑔𝑖𝑗], Τ𝑖𝑘+1 =  𝜑𝑖𝑗, 𝜔𝑖𝑘+1 = 𝑣𝑖𝑗 , and Ζ𝑖𝑘+1 = 𝑠𝑖𝑗  

Calculate Δ𝐷𝑖𝑘 = haversine distance between the Ο𝑖𝑘  & Ε𝑖𝑘   
Calculate Δ𝑇𝑖𝑘 = 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑶𝒊𝒌𝑎𝑛𝑑 𝑫𝒊𝒌 

Increment 𝑘 

 Elif 𝑠𝑖𝑗 = "𝑛𝑜𝑡_moving" do 

Assign 𝑜𝑖𝑗−1 = 0, 𝑜𝑖𝑗 = 𝑘 //to ensure if status is not moving there is no trip between 𝑗 𝑎𝑛𝑑 𝑗 − 1 

Assign Ο𝑖𝑘 = [𝑙𝑎𝑡𝑖𝑗 , 𝑙𝑜𝑛𝑔𝑖𝑗] and Τ𝑖𝑘 =  𝜑𝑖𝑗  and 𝜔𝑖𝑘 = 𝑣𝑖𝑗   

 End 

End   

 

 

After identifying the trip origin and destination and necessary characteristics (total trip 

distance, total trip duration, jump point status of the origin and destination, arrival time to bundle, 

departure time from bundle, and the speed of the origin and destination) were recorded. Since it is 

impossible to account for all combination of distance, time interval, and speed there were a good 

number of trips that were identified wrongfully, such as extremely short trips (less than 0.25 miles) 

or some trips that were identified because of unidentified jump points (e.g. 5 mile trip in 5 seconds). 

To make sure these trips do not change the results of thiis study, a secondary filtering algorithm 
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was developed. This algorithm evaluated the total haversine distance between origin and 

destination, and the total trip time and checked if any modification on destination points would 

make the trip possible if they did not satisfy time or distance criteria. This modification included 

testing and updating eligible points for assigning new destination and origin locations to ensure 

trip distance criteria was satisfied. The eligible points here were defined as the “free” points 

between two consecutive trips. For example, after ordering all points by time, if the trip 𝑘 ended 

at point 85 and the trip 𝑘 + 1 started at point 90. Here, free points would be points 86 to 90. By 

checking the distance between the origin and the eligible destination points, we identified some 

trips that would have been deleted if the modification was not made. Same method was also applied 

to find new origins if there were no eligible destination points. If we didn’t find any points that 

make this trip possible based on the trip distance criteria, those trips will be deleted. In addition, 

the trips that had “potential jump point” tag for their jump point status as an origin or destination 

were checked one more time to ensure that there are no inconsistencies with previous and later 

trips. One example of these inconsistencies was the trips that were identified because of a large 

distance between two points but relatively small-time interval. Since in our algorithm, distance 

was the final and most important criteria for checking trip status (meaning distance only could be 

an indicator for assigning an end point status even if nothing else is meets the conditions), these 

sudden jumps between two distant points could be defined as trips. As described in Chapter 4.3.1, 

the trips that have potential jump points as their origin or destination were trusted less than another 

trip that might not have an origin or destination at a point described as potential jump point. If the 

origin of the trip k was tagged as “potential jump point”, and the algorithm said there was trip 

between 𝑝𝑜𝑖𝑛𝑡 𝑗 and 𝑗 + 1 with high-speed value between them, the trip 𝑘 was deleted based on 

proximity criteria (less than 0.25 miles) between the destination of trip 𝑘 − 1 and point 𝑗 + 1. 

Please see Algorithm 3 below for details of this method. The total number of trips from the 153,391 

users whose home is located inside the MPA boundary was 4,248,320 in a ten-day span. These 

trips were then filtered, as both trip origin and destination would be inside the MPA boundary. 

With this filtering operation, the total number of trips that were used in the Chapters 4.4 and 4.5 

resulted in 3,807,003. This is a relatively large sample of trip origin and destination pairs compared 

with the number of observations used in the literature.
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Algorithm 3: Trip O/D Filtering Algorithm  

For all 𝑢𝑖 , 𝑘 = 1 to K do 

 If  𝜔𝑖𝑘 > 120 𝑚𝑝ℎ do  

//origin having high speed value is a problem because trip chain between trip 𝑘 − 1 and trip 𝑘 is noted 

as impossible  

Calculate 𝜉 = haversine distance between the Ε𝑖𝑘−2 & Ο𝑖𝑘   
//check the distance between the destination of trip k-2 and origin of the trip k  

If Ζ𝑖𝑘−1 = “potential jump point” do //since we trust potential jump points less  

 If 𝜉 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do 

Delete trip k-1 from trip chain (delete Ο𝑖𝑘−1, Ε𝑖𝑘−1,  Τ𝑖𝑘+1, 𝜔𝑖𝑘−1, and Ζ𝑖𝑘−1 ) 

Connect trip 𝑘 − 2 and 𝑘  //reforge the trip chain as trip k following trip k-2, change trip 

numbers respectively  

  End 

Else //Ζ𝑖𝑘−1 = “normal” since jump points were removed  

 If Δ𝐷𝑖𝑘 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

For 𝑦 =  𝜎𝑖𝑘 to 𝛼𝑖𝑘+”do 

 𝜁𝑦 = haversine distance between the Ο𝑖𝑘  & [𝑙𝑎𝑡𝑖𝑦 , 𝑙𝑜𝑛𝑔𝑖𝑦]  

 If 𝜁𝑦 > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  do 

Assign Ε𝑖𝑘 = [𝑙𝑎𝑡𝑖𝑦 , 𝑙𝑜𝑛𝑔𝑖𝑦] //assign a new destination, remove the old one  

   Else  

If 𝑦 = 𝛼𝑖𝑘+1 do 

 Delete Ο𝑖𝑘, Ε𝑖𝑘,  Τ𝑖𝑘, 𝜔𝑖𝑘, and Ζ𝑖𝑘 //loop trips are deleted 

  Connect trip 𝑘 − 1 and 𝑘 + 1   

//reforge the trip chain as 𝑘 − 2 → 𝑘 − 1 → 𝑘 + 1 → 𝑘 + 2 

End if 

   End  

End for 

  End  

End   

 Else  

If Δ𝐷𝑖𝑘 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and Δ𝑇𝑖𝑘 < 𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡  do 

For 𝑦 =  𝜎𝑖𝑘 to 𝛼𝑖𝑘+1do 

𝜁𝑦 = haversine distance between the Ο𝑖𝑘  & [𝑙𝑎𝑡𝑖𝑦 , 𝑙𝑜𝑛𝑔𝑖𝑦] 

𝜂𝑦 = time between  Ο𝑖𝑘  & [𝑙𝑎𝑡𝑖𝑦 , 𝑙𝑜𝑛𝑔𝑖𝑦] 

If 𝜁𝑦 > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝜂𝑦 > 𝑡𝑖𝑚𝑒𝑠ℎ𝑜𝑟𝑡   do 

Assign Ε𝑖𝑘 = [𝑙𝑎𝑡𝑖𝑦 , 𝑙𝑜𝑛𝑔𝑖𝑦] //assign a new destination, remove the old one 

Else  

If 𝑦 = 𝛼𝑖𝑘+1 do 

Delete Ο𝑖𝑘, Ε𝑖𝑘,  Τ𝑖𝑘, 𝜔𝑖𝑘, and Ζ𝑖𝑘 //loop trips are deleted 

Connect trip 𝑘 − 1 and 𝑘 + 1   

//reforge the trip chain as 𝑘 − 2 → 𝑘 − 1 → 𝑘 + 1 → 𝑘 + 2 

End  

End  

End for 

End  

  End 

End for



 

 

51 

4.4 Mobility Option Comparability and Feasibility Evaluation   

Generally, comparing and evaluating different trip modes has been done using mode choice 

models. These models use different trip values and sociodemographic characteristics to determine 

how users choose the mode they use for their trip. To apply this general method for comparing trip 

modes, this thesis defined general cost functions for all modes considered in this study. Since the 

focus of this study is not to determine these functions from preference surveys, this study used 

generalized costs from literature and transportation agencies around the nation. The cost function 

method enables straightforward comparisons between trip modes, thus aiding in our understanding 

of actions of a rational person. However, the cost-based methods evaluate trip modes independent 

of the build environment and quality characteristics. This means that a walking on a relaxing and 

safe walking trail is evaluated with same criteria as walking alongside an unsafe high-speed road 

with no proper sidewalk infrastructure. This limitation arises from using only mobility-based 

measures with these naïve cost functions, since mobility is concerned about how far you can in a 

given amount of time, but not how comfortable that trip is. Additionally, this creates another 

limitation, as pointed out in Litman (2003) where faster travel modes such as cars are favored 

highly compared with non-motorized modes (biking and walking). This is a problem because the 

cost function method could identify non-motorized (active) travel modes as not feasible 

(comparable to the baseline trip mode which is car) for especially for leisure and activity focused 

trips might be costlier but also preferable. Consequently, we also developed an alternative decision 

criterion for which travel-demand-relevant access based measures were prioritized in 

understanding the feasible mobility options. The idea with this method is to develop a binary index 

to assess the quality of each trip mode and evaluate each mode within its own context. For this 

quality criteria method, the condition of the infrastructure, topographical characteristics of the 

routes, and quality of the mobility option were evaluated for each trip based on the relevance of 

each criterion. Since we do not have any information regarding the trip-purpose, all trips are 

assumed to be all-purpose trips as defined in (DOT, 2016).  

This chapter used OSMNx package for Python (Boeing, 2017) and OpenTripPlanner (OTP) 

package for R (Morgan et al., 2019) to build network graphs for different trip modes (driving 

network, biking network, walking network, and combination of all with time dependent public 

transit network). We found the routes for each 3,807,003 trips within their respective networks and 

relevant trip characteristics were used in cost function and quality criteria methods. OSMNx was 
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used for walking, biking, and bike sharing on their respective built networks (walking network, 

biking network, and combination of both) because of the ease of modifications on the network 

nodes and edges thus allowing for incorporating build environment condition for these trip modes. 

Please see details of the modifications for these three (walking, biking, and bike sharing) modes 

below in Chapter 4.4.1 and 4.4.2. OTP package was used for the trip modes: car, ride hailing, and 

public transit with walking and as first & last mile and public transit with biking as first & last 

mile trip modes. Since OTP routing algorithm accounts for time dependent nodes, meaning public 

transit trips can only be satisfied if the trip start time and additional time required to reach the 

station were matching with the route that passed by the location of the destination and its stop time 

at that station. The default routing algorithm for OSMNx networks is Dijkstra’s algorithm (Dijkstra, 

1959) for finding routing with minimum travel time. OTP uses A* algorithm (Hart et al., 1968) 

for path searching with minimum travel time with time dependent nodes (for the public transit 

portion of the routing) and allows for configuration on routing parameters. Please see Appendix 

A.4 for details about drivable, bikeable, and walkable road types in their respective networks 

created with OSMNx and OPT. Also see Appendix A.4 for more details about the tools and routing 

configurations used with these packages. Below, we discuss the cost function and quality criteria 

methods for each mobility option considered in this study.  

4.4.1 Mobility Option Comparability with Cost Function 

The list of variables and notations used in this chapter  

Notations:  

 

𝐶𝐴𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑊𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑃𝐵𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑏𝑖𝑘𝑒 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑆𝐵𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑠ℎ𝑎𝑟𝑒𝑑 𝑏𝑖𝑘𝑒 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑃𝑇𝑊𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑤𝑖𝑡ℎ 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑎𝑠 𝑓𝑖𝑟𝑠𝑡 & 𝑙𝑎𝑠𝑡 𝑚𝑖𝑙𝑒 𝑚𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑃𝑇𝑊𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑤𝑖𝑡ℎ 𝑏𝑖𝑘𝑖𝑛𝑔 𝑎𝑠 𝑓𝑖𝑟𝑠𝑡 & 𝑙𝑎𝑠𝑡 𝑚𝑖𝑙𝑒 𝑚𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝐶𝑅𝐻𝑘
= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑢𝑠𝑖𝑛𝑔 𝑟𝑖𝑑𝑒 ℎ𝑎𝑖𝑙𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 
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Variables:  

𝑡𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝑥𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝑡𝐼𝑉𝑘
= 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑖𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝑡𝑂𝑉𝑘
= 𝑜𝑢𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑖𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝑥𝐼𝑉𝑘
= 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

𝑥𝑂𝑉𝑘
= 𝑜𝑢𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡𝑟𝑖𝑝 𝑘 

 

 

For routing with an automobile, this study used OTP as the primary tool with assistance from 

the OSMNx driving network map when we found no routes because of the mismatch in terms of 

timestamp between the travel demand data and timestamp of the networks used. This study 

generated the routes using the drivable road types listed in Appendix A.4. Based on these drivable 

network edges; we found the minimum travel time path (with respect to the speed limits of each 

road edges) between the origin and destination and noted total driving distance in miles and total 

driving duration in hours. It is important to note that the driving path between some origin and 

destination pairs were not found with OTP which is why OSMNx driving network was used to 

identify the paths for those OD pairs. The most plausible explanation for these unidentified routes 

is the time difference between the travel demand and the OSM based networks. While trip origin 

and destination information are from August 2017, OSM map that was used to build the OTP 

graphs was from July 2021. This time gap could mean some trips that was possible in 2017 are not 

possible anymore. This idea of mismatch between times can also explain the extra trips identified 

by using OSMNx which used OSM data from March 2021. 

In general, utility/cost functions for automobiles include a combination of trip duration and 

its relative value of time cost and per mile costs, such as fuel and vehicle operating costs. Equation 

4.1 shows the generalized cost function for a car. The coefficients represent the value of time (time 

cost) and driving costs (fuel, ownership, maintenance, etc.) respectively. The value of time is from 

the U.S. Department of Transportation (DOT) based on the all-purpose in-vehicle travel for 

intercity travel in 2016 from their Valuation of Travel Time guideline, which was noted as $20.40 

(DOT, 2016). This price is then adjusted by the Consumer Price Index from September 2016 to 

August 2017 (1.02) to ensure consistency with travel demand data. The driving costs per mile are 

from American Automobile Association (AAA) for driving 10,000 miles per year. The value is 

listed as 73.54 cents and include ownership (insurance license, depreciation etc.), fuel, and 
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maintenance (repair and tires) costs. This driving costs do not cover parking costs but Indianapolis 

in general does not have a large parking problem thus parking costs can be negligible. Because 

more than 92% of trips in Indianapolis are made with car (Census, 2020a), driving is also 

considered as the baseline value to compare with other modes to determine their comparability 

based on the cost function method.  

 

𝐶𝐴𝑘
= − ($20.75 𝒕𝒌 + $0.7354 𝒙𝒌)          (4.1) 

 

This thesis did the routing with walking on a new network build from OSMNx using 

walkable roads (please see Appendix A.4). These roads include all roads besides the ones 

pedestrians are not allowed to get on such as highways. The closest network nodes of origin and 

destination were found and the path with the minimum travel time between these nodes was 

calculated using this walk network. The cost function for walking trips is only based on the DOT 

guidelines which has the same value as car ($20.75) when walking is the main mode of 

transportation for all-purpose trips. Equation 4.2 shows the cost function for walking trips. Since 

cost function is based on per hour, the speed of 3 mph (Bohannon & Andrews, 2011) for walking 

is used to calculate trip duration from trip distance when finding the minimum travel time path 

(since speed is constant this is same as finding the shortest length path).  

 

𝐶𝑊𝑘
= − ($20.75 𝒕𝒌)          (4.2) 

 

The routing with biking (personal bikes) was done on the biking network map created with 

OSMNx. The bikeable road segments from OSM are noted Appendix A.4. The elevation data 

discussed in Chapter 4.2.2, is incorporated into the biking network to enable impedance-based 

routing. Impedance based routing for biking allows for finding the most suitable paths for cyclists. 

The impedance function is based on findings from (Broach et al., 2012) where they find that 

average non-cyclists are willing to travel 1.72 miles if the alternative is 1 mile 2-4% up-slope for 

non-commuting trips and 1.37 miles for commuting trips. Equation 4.3 represents the relative 

weight based on the slope of an edge assigned to it. These weights are calculated based on the 

relative attribute values from (Broach et al., 2012) for commuting and non-commuting trips and 

taking their average based on DOT methodology for determining all-purpose value of travel time 

(21.4% commuting, 78.6% non-commuting for intercity travel). This means that an edge that has 
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a length of 1 mile with 3% slope will have 1.65 impedance while another one with 2% slope will 

have an impedance of 1. These impedance values were multiplied with the actual length of each 

segment to create a new weighted length attribute for these. The route for personal bike was 

generated by minimizing the sum of these weighted lengths rather direct edge lengths. We assume 

constant speed on all types of roads even if the speed might differ in high impedance routes due to 

topographical characteristics of study area. This assumption is based on the very low likelihood of 

long sections of climbs. It is more likely that high impedance roads are relatively short and unlikely 

to cause noticeable speed differences along the path. Consequently, the total travel time and total 

travel distance are calculated based on the actual edge lengths not the weighted length attributes.  

 

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑤𝑒𝑖𝑔ℎ𝑡: {

𝑠𝑙𝑜𝑝𝑒 ≤ 2% → 𝑤𝑒𝑖𝑔ℎ𝑡 = 1 
 2% < 𝑠𝑙𝑜𝑝𝑒 ≤ 4% → 𝑤𝑒𝑖𝑔ℎ𝑡 = 1.65 
4% < 𝑠𝑙𝑜𝑝𝑒 ≤ 6% → 𝑤𝑒𝑖𝑔ℎ𝑡 = 3.54

𝑠𝑙𝑜𝑝𝑒 > 6% → 𝑤𝑒𝑖𝑔ℎ𝑡 =  10.39

   (4.3) 

 

Similar to the walking and driving trips personal bike use is assumed to be used as the main 

mode of transportation for all-purpose trips which is why the cost function for value of time for 

the trip distance is same as walking and driving, which is $20.75. Outside of the travel time cost, 

personal bike use has associated cost with bike ownership and the energy required to operate the 

bike (food as fuel). Ownership cost per mile was calculated from the tax credit for travel by bike 

in UK which is calculated to be $0.26 per mile (eBikesHQ, 2020). This value is derived from UK 

but considering the similar prices of bike and food, it can be applicable to U.S.. The average speed 

of 10 mph was used for both personal and shared bikes which was derived from (Jensen et al., 

2010) where they found that average speed for intercity travel as 15 km/h for biking which roughly 

translates to 10 mph.  

 

𝐶𝑃𝐵𝑘
= − ($20.75 𝒕𝒌 + $0.26 𝒙𝒌)          (4.4) 

 

Routing for shared bikes used the same bike network as personal bike use but with the 

routing criteria being minimizing the total travel time rather than minimizing the impedance. This 

is because the assumption with bike sharing users is, they would not check elevation data and 

would like to minimize travel time since they are less likely to be aware of the high impedance 

sections. The cost function for station-based shared bikes is very similar to the personal bikes. The 



 

 

56 

only exception is the per hour cost for renting the bike. Indiana Pacers Bikeshare lists the cost as 

$1/ride + 0.15/min ($9/hour, adjusted from January 2022 to August 2017: $7.86) while other bike 

sharing systems list their cost as $1.5 / 30 minutes (in March 2022). Based on the specific bike 

sharing systems used during the trip, two cost functions were created. Equation 4.5 is for bike 

sharing trips where Indiana Pacers Bikeshare was used, and equation 4.6 is for the bike sharing 

trips where other bike sharing systems. In vehicle time for this equation refers to biking portion 

while out of vehicle time refers to the walking portion of the trip. This is because DOT lists walking 

access value of travel time ($27.20 in 2016 dollars) higher than all-purpose travel. Both travel time 

values were converted into August 2017 time using CPI index  

 

𝐶𝐵𝑆1𝑘
= −($20.75 + $7.86) 𝒕𝑰𝑽𝒌

− 1 − ($27.66 𝒕𝑶𝑽𝒌
)       (4.5) 

𝐶𝐵𝑆2𝑘
= −($20.75) 𝒕𝑰𝑽𝒌

− ($27.66 𝒕𝑶𝑽𝒌
)    + $1.5 (𝑒𝑣𝑒𝑟𝑦 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) (4.6) 

 

Public transportation system in Indianapolis has the lowest service area (1.026 sq km) and 

the lowest annual passenger km per capita (130) among all cities of similar size (Griffin & Sener, 

2016). This might indicate the public transportation system in Indianapolis area do not have spatial 

major omissions across the region, meaning there are no areas that lack access compared with their 

neighbors (Griffin & Sener, 2016). The OTP package checks origin and destination geolocation as 

well as trip start time to see if this trip can be satisfied with existing infrastructure (Please see 

Appendix A.4 for default routing configurations and the modified routing attributes used in this 

study). In general, the routing with OTP considers the trip start time along with the origin and 

destination and assigns a route based on the time and distance thresholds. This is important because 

it allows for travel-demand-relevant access.  

OTP has built-in tool where first-last mile trip mode can be defined for the routing 

algorithm. For this study walking and the personal bike was the only travel modes considered due 

to lack of consistent location data for emerging options such as e-scooters. The cost function for 

public transit is similar to the bike sharing option where in-vehicle and out of vehicle time are 

evaluated separately. The time value of in-vehicle time is $20.75 while the value of out of vehicle 

time is $27.66 in August 2017. IndyGo has several options for passes that can be used, but for 

consistency among users, the base ticket cost of $1.75 was used for each trip. Different fare 

structures (monthly fare) were put in sensitivity analysis in Chapter 4.6. Since personal bikes has 
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ownership and fuel costs to account for, cost function for walking as first & last mile and biking 

as first & last mile are different. Cost function for walking as first & last mile option is shown on 

equation 4.7 while cost function for biking as first & last mile option is shown on equation 4.8. 

 

𝐶𝑃𝑇𝑊𝑖
= −($20.75) 𝒕𝑰𝑽𝒌

− ($27.66) 𝒕𝑶𝑽𝒌
− $1.75       (4.7) 

𝐶𝑃𝑇𝐵𝑖
= −($20.75) 𝒕𝑰𝑽𝒌

− ($27.66) 𝒕𝑶𝑽𝒌
− $1.75 −  $0.26 𝒙𝑶𝑽𝒌

  (4.8) 

 

Ride hailing is an emerging transportation mode provided by Uber and Lyft inside the MPA 

boundary. Both companies offer a variety of price options for their ride hailing services but for 

this analysis the focus was on the cheapest alternatives which are the low-cost Lyft and UberX. 

The path was found by the minimum trip duration using the same driving network as the car. Ride 

hailing trips are similar in the sense of shared bike and public transit trips where in vehicle and out 

of vehicle travel time costs are evaluated differently. The average wait time is assumed to be out 

of vehicle travel time. According to the Uphail this value is 5 minutes for Lyft and 2 minutes for 

UberX ride (UPHAIL, 2022). Average of 3.5 minutes was then multiplied by the $27.66 to find 

the cost for out of vehicle travel time per hour ($1.61). The other costs of each system are listed as 

$1.25 base fee and $2.55 safe ride fee, 81 cents per mile, and 15 cents per minute for both options. 

Since the exact date of these values are not indicated, they were assumed to be same in August 

2017. The cost function for ride hailing is shown below in equation 4.9. 

 

𝐶𝑅𝐻 = −($20.75 + $0.0025)𝒕𝑰𝑽𝒊
 − $0.81𝒙𝒊 − $1.61 − $3.8    (4.9) 

 

Cost of using every mobility option was compared to the cost of using a car as the trip 

mode and the trips where cost of using a certain was lower than using a car. Additionally, trip cost 

that are within the 1.3 times of the cost of car were also assumed to be comparable to account non-

commuting trips such as leisure and activity focused. The assumption is these trips can be made 

with costlier alternative if reaching the destinations faster was not the main goal. This percentage 

is derived from the time value differences between business focused travel ($25.40) and personal 

travel ($19) (DOT, 2016). Additionally, this ratio was put in sensitivity analysis to see its impact 

on the final results in Chapter 5.2. 



 

 

58 

4.4.2 Feasibility of Mobility Options with Quality Criteria 

To account for the constraints with the cost function method, a new method to evaluate the 

feasibility of mobility options were developed with several quality criteria. The quality criterion 

for automobiles is dependent upon if the trip started during the morning peak (7 am–8:59 am) or 

any other time. The morning peak was based on the study done by Karner (2018). If a trip started 

during off-peak time regardless of the trip duration, all trips are considered as feasible. The 

assumption here is that trips made during off-peak times represents trips for the user that was 

intentionally taken without much concern for trip duration or length. However, if a trip started 

during morning peak period during weekdays that likely meant that the user had to commute which 

is why a maximum threshold for trip duration was set. The 45 minute commuting trip threshold 

was based on the time threshold used in a similar accessibility study done by (Golub & Martens, 

2014; Karner, 2018). If a trip is deemed to be infeasible, that doesn’t mean the car trip would not 

happen. It is more representative of the limited access these users might have to work opportunities.  

For walking trips, the walking network edges were modified to represent the status of the 

infrastructure when deciding on the route. While the cost function method utilized the entire 

walkable network, the quality criterion for walking modified the network to only have the nodes 

and edges that are walkable with safety and comfort in mind. These safety and comfort criteria 

were created based on the findings and suggestion from the WalkWays initiative (Walkways, 

2016). This initiative is a partnership between non-profit organizations and Indianapolis 

Metropolitan Development Commission developed in 2016. The three criteria decided on by this 

study are listed below:  

1. Sidewalk rating of sidewalks inside the Marion County  

2. Posted speed limit of the adjacent road to all sidewalks in study area  

3. Number of roads at all the intersections that are accessible by pedestrians in the study 

area 

First, as described in Chapter 4.2.2 sidewalk rating dataset from DPW was used to quality 

of sidewalks inside the Marion County. Even though the dataset only had the edges inside Marion 

County, this is not a big limitation because walking is not likely to be used frequently for suburb 

to downtown travel. However, eliminating dangerous edges inside city limits enable capturing 

downtown trips that might not be feasible by walking. The posted speed limits, number of travel 

lanes, traffic volumes, and number of intersections were some of the characteristics that were 
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highlighted in WalkWays report as important for pedestrian safety. We decided to use the number 

of intersections and posted speed limit of adjacent road to sidewalk as the two criteria to check 

since roads with large number of lanes typically also have high posted speed limits. Traffic count 

based on specific road segments data was not publicly available which is why it was not 

implemented in quality criterion. Based on the graphs depicted in the Walkways report (Figure 4-

3), most roads in Indianapolis have a speed limit of 35 or 40, expect the heavily used segments 

which have posted speed limits above 40 mph. In addition, in the same report getting hit by a 

vehicle 40 mph was noted as high risk (1/10 chance of surviving), therefore we decided to 

eliminate edges where posted speed limit was higher than 40 mph (Walkways, 2016).  

 

 

Figure 4-3. Posted speed limit of the roads in Marion County from WalkWays report (Walkways, 

2016) 

This thesis also made sure no intersection with more than 4 roads were part of the route 

generated, since a higher number of roads to cross would make the crossing more unsafe. If a route 
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were to be generated with all these criteria, the feasibility of the trip was determined by the total 

trip distance traveled. For this, 2.4 miles was selected as the threshold which was the largest 

distance threshold in the review paper for active accessibility methods (Vale et al., 2015). The 

reason for selecting the largest threshold is to be able to capture leisure trips as well as the 

commuting trips. 

 When deciding on the quality criterion for bikes this thesis used a similar approach as 

(Winters et al., 2016) took. The methodology is explained in (Bike Score, n.d.) and it is based on 

infrastructure and topographical values. Bike paths and bike lanes are regarded as better options 

than shared structures. In order to check bikes lanes and bike paths, modification on OSMNx 

network was made to create cycleway network built in the OSM using the Python code developed 

by (Thyer, 2021). These cycleways include dedicated bike paths with separation, bike lanes on the 

road network, shared lanes with the bus, and dedicated bike tracks and trails. The quality criterion 

regarding cycleways was, if there are no road segments of the trip that utilize the cycleways and if 

the total trip distance is more than 2.5 miles, the bike trip would not be considered feasible when 

all other criteria (grade related) are satisfied. 2.5 miles was the maximum trip distance found as a 

threshold in active accessibility review paper (Vale et al., 2015) which was from (McNeil, 2011), 

that we decided as the maximum distance a user will be willing to travel for day to day use. If a 

bike route used bike lanes and bike paths for the trips over 2.5 miles, we assumed these trips to be 

activity or leisure related which is why they are left as feasible options. Bike Score also calculates 

the hilliness of an area where 10% would get a score of 0 and 2% would get a score of 100. Based 

on this hilliness quality criterion was defined as, any route with more than 6% mean grade would 

not be a feasible trip. Max grade threshold was set to be 15% to avoid very steep, almost non-

bikeable section. This is to ensure everyone regardless of their athletic status can bike comfortably 

to meet their travel demand. Destinations + connectivity and bicycle mode share criteria were the 

other two criteria in Bike Score which were decided as unrelated for this thesis. Destinations + 

connectivity criteria were mainly concerned with the potential opportunities while in this thesis 

we define the opportunities through the observed travel demand. Bike share criteria was found to 

be not significant since most block groups in study area had 0% commuting trips done by bicycle 

on ACS.  

The quality criterion for station-based bike sharing is mainly based on the maximum 

walking distance to reach a station and final location from the station. One mile distance threshold 
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was used for both reaching to station from origin and to the final location. Any trip that requires 

longer walk time was denoted as unfeasible. This distance is significantly lower than the walking 

distance threshold used in walking as the primary mode, but the assumption is that using bike will 

require some energy thus it is less of a quality option if walking for long distances is required. One 

mile is commonly used in accessibility analysis as reviewed in (Vale et al., 2015) and is almost 

equal to the default value for OTP (1500 meters) for walking to access public transit. The quality 

criterion for public transit is mainly based on the out of vehicle portion of the trip. Maximum 

walking distance was set to be for 1 mile in total, a slightly larger distance than the default value 

of 1500 m defined in OTP package. While maximum biking distance was noted as 2.5 miles since 

this was the threshold value for personal bike use. Besides maximum walking distance number of 

transfers were limited to 2 for comfort. Quality criterion for ride hailing is exact same as the driving 

option. The only exception is the average wait time (3.5 minutes) is added into the total trip 

duration which was then compared with max time threshold if the trip started during morning peak 

time.  

After feasibility of each mobility option was determined with the cost function and quality 

criteria method, we combined these methods into a stricter feasibility metric called “combined 

criteria”. The trips were deemed feasible if and only if they were indicated as feasible with the 

quality criteria and the cost function methods.  

4.5 Equity Analysis  

After we identified the number of feasible mobility options for each trip origin and 

destination pair with cost function, quality criteria, and combined criteria methods, we categorized 

each trip based on their distance (short, medium, and long distance) and aggregated the results 

based on the users’ home locations on census block group level. The average number of options 

for each user represent the feasible supply available regarding their observed travel demand. This 

information was then merged with sociodemographic data to create a dataset in which each census 

block group had an average number of mobility options available for their users with the cost 

function method, quality criteria method, and combined criteria. The sociodemographic data used 

in this portion was related to the disadvantaged groups which were defined in Chapter 4.2.3. 

Regression trees and multivariate multiple linear regression models were built to analyze if any 

certain sociodemographic groups are having fewer mobility options than the others (Please see 
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James et al., 2013; Johnson & Wichern, 2014 for details of these methods ). By using a tree based 

and a parametric model, a more comprehensive understanding of the relationship between number 

of mobility options and sociodemographic characteristics can be achieved. For the multivariate 

multiple linear regression model, we modeled average number of feasible mobility options with 

three methods (quality criteria, cost function, and combined criteria) as the dependent variable. 

After eliminating the highly correlated sociodemographic variables we tested multivariate analysis 

of variance of the model and eliminated the insignificant sociodemographic variables among all 

three models. For the regression tree method we used 10-fold cross validation was used to improve 

the robustness of the model and eliminate multicollinearity (James et al., 2013). With the 

regression tree model, census block groups with a lowest number of mobility options are identified 

and the characteristics of these census block groups are recorded. Furthermore, as part of the social 

justice perspectives that were adopted in this thesis, disadvantaged census block groups were 

identified based on, above average percentage of households with no vehicles, above average 

percentage of population in poverty, above average of population of people of color, above average 

of households with more than one average room occupancy, above average percentage of people 

with disability, above average percentage of non-college educated population, and above average 

percentage of old and young population. These variables are selected as collection of metrics used 

in literature explained in Appendix B and especially with the studies that evaluated equity in terms 

of multiple modes such as (N. Chen & Wang, 2020; Golub & Martens, 2014; Meng & Brown, 

2021). If a census block group satisfied at least three of the seven “disadvantaged” 

sociodemographic criteria, we defined them as the most “disadvantaged” areas. The total number 

of census block groups in this category was 348 (38%). In Appendix A.5, a map of census block 

groups that meet three and above criteria is shown for comparison. These census block groups 

were mainly located in urban core compared with the suburban areas. The number of mobility 

options available for these census block groups were compared with the others to see, if the people 

who need the greatest number of travel modes, have the options available for them. For this test 

Wilcox Test also known as Mann-Whitney test was used (Wilcox et al., 1986). The spatial equity 

was evaluated on county level averages and regarding urban core-suburban differences using 

Anselin Local Moran’s I analysis in ArcGIS (Please see Anselin, 2010 for details of this method) 

by identifying clusters and outlier census block groups.  
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4.6 Sensitivity Analysis  

In this study a lot of assumptions regarding travel behavior needed to be made to capture 

different purpose trips with trip O/D algorithm and to compare feasible mobility options in terms 

of mobility and accessibility related measures. In this chapter, the sensitivity analysis methods for 

these decisions is explained. First, we tested the different fare structures used for the bike sharing 

systems and the public transit system evaluated in Chapter 4.4.1. The reason for this is to identify 

what percentage of trips could have been done with the cheaper fare alternatives. To test this, we 

compared the percentage of public transit and bike sharing trips that were identified as feasible for 

all price structure. For testing the monthly and annual fees, the fare cost was converted into daily 

cost. For bike sharing this was tested with the $5 monthly pass for those who receive social services 

and annual pass of $133.75 which allowed access to unlimited 60 minutes for every day and the 

per minute cost of 15 cents were added after every minute (Indiana Pacers Bike Share, 2022). For 

public transit 31 days pass with full cost ($60) and half cost was evaluated in addition to the base 

fare of 2-hour transfer ticket. Full fare is for everyone while youth (18 and younger), old (65+), 

people with disability can be eligible for half fare ($30) (IndyGo, 2021).  

This thesis also test the sensitivity of the ratio used for comparing cost of alternative mobility 

options with cost of car values between 1-2 with 0.1 increments. The resulting graph is discussed 

in Chapter 5.2. Additionally, as discussed, the medium time threshold used in Chapter 4.3.2 was 

tested with values varying from 900-1200 seconds with 60 seconds increments.  

  



 

 

64 

 RESULTS 

This chapter represents the results in three main categories: trip validation, mobility options, 

and equity analysis. Chapter 5.1 represents the comparison between the trip O/D algorithm 

discussed in Chapter 4.3 and NHTS data to validate the trips used in this study and ensure the 

trips identified by the trip O/D algorithm represent the actual known travel patterns. In addition, 

overall trip characteristics such as average trip distance and average number of trips per day per 

user for the empirical study area on spatial level are presented. We represent the feasibility of 

mobility options with all three methods used in Chapter 4.4 (cost function, quality criteria, and 

combined criteria) on three different trip distance categories (short, medium, and long) and 

regarding two different spatial levels (census block group and county level) in Chapter 5.2. In 

addition, comparison between travel-demand-relevant access with public transit and traditional 

accessibility-based methods are shown to further aid in highlighting the importance of the 

framework identified for this study. Last, we discuss the equity implications of these mobility 

options on spatial and sociodemographic level in Chapter 5.3. For Chapter 5.3, the spatial equity 

is analyzed by identifying clusters of census block groups with high and low number of mobility 

options and the outliers in these clusters, as well as the county level averages. Sociodemographic 

equity is analyzed with multivariate multiple linear regression and regression trees.  

5.1 Trip Validation 

Trips identified with the proposed algorithm in Chapter 4.3 were found to be representative 

of the trip behavior based on the NHTS. The output from Chapter 4.3, trip origin and destination 

pairs, enabled better understanding of travel demand from each individual user and provided the 

input for the mobility option comparability and feasibility evaluation in Chapter 4.4. In Figure 5-

1, the distance distribution of these trips is shown. As seen from the figure, the trips can be roughly 

categorized into equal sized bins, which was described as short distance trips (less than 1 miles), 

medium distance trips (between 1-3.5 miles), and long distance trips (longer than 3.5 miles).  
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Figure 5-1. Distribution of trip distances and the categories determined   

 

For the rest of this chapter when NHTS data is mentioned, it is referring to the weighted 

NHTS Indiana only data. This filtration was done to ensure representatives of NHTS data for the 

empirical study area. If we plot the trip distances to the same categories as weighted (trip based) 

Indiana NHTS as shown in Figure 5-2, many of the bins are consistent among the two, except for 

trips less than a mile and longer than 10 miles. This trip distance differences can also be seen if we 

group trips from NHTS into the same distance categories using the same cutoffs (1 mile and 3.5 

miles), where the short trips (36% in this study and 20% in NHTS) and medium trips (33% in this 

study and 30% in NHTS) would be less common than the long trips (31% in this study and 50% 

in NHTS). For short trips, the difference is because our algorithm can separately identify sub-tips 

based on trajectories (e.g., walking from garage to destination), however as self-reported travel 

diaries used in NHTS only includes the main trips in travel diaries. Additionally, since in this we 

are constricting the trip origin and destinations to be inside the MPA boundary, it is likely that 

longer statewide trips are not recorded as part of our algorithm, thus the differences between longer 

trips. Furthermore, these longer statewide trips would not affect the equity analysis since only 

feasible options would be private vehicle (there are regional bus and rail systems but the feasibility 

methods we developed does not cover those trip modes). Therefore, the small differences between 

NHTS, and our algorithm are negligible, and we can say that trips this thesis identified are 

validated in terms trip distance.  
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Figure 5-2. Distribution of trip distances with our algorithm compared to the NHTS. 

 

We also plotted the spatial differences in terms of trip distances in MPA in Figure 5-3 and 

found that people in suburban areas travel longer distances on average compared with people in 

the urban core. Anselin Local Moran’s I cluster, and outlier analysis showed that people in 

suburban areas are indeed traveling more distances compared with the people living in the urban 

core areas. As it can be seen from Figure 5-4, suburban areas comprise the entire high clusters 

while downtown Indianapolis, Fishers, and Carmel areas make up the low clusters. This also 

indicates that these areas with low trip distance averages have the necessary opportunities in 

proximity.  
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Figure 5-3. Average trip distance per user in miles in census block group level. 

 

Figure 5-4. Anselin Local Moran’s I analysis for trip average trip distance on census block group 

level. 



 

 

68 

In addition to the trip distance, start time and end time of the trips were compared with 

NHTS and temporal pattern was also validated. In Figure 5-5 we plotted the trip start times with 

our algorithm and NHTS data to validate our trips in terms of trip start times. Comparing these 

trips start times with NHTS trip start times reveals almost identical match except during early 

morning hours. This could also indicate some trips that happen at night were captured with our 

method such as drive through trips or trips for socializing. Afternoon peak time (between 4-6 pm) 

is the most common trip time which could be explained by the large number of trips done at the 

end of work hours. Morning peak (between 7-8 am) is also very common for people to start 

traveling but not as much for ending their trips. Interestingly, as seen in Figure 5-6 there are also 

many trips that end around 3-4 am using our algorithm. Comparing the trip end times with the 

number of points in an individual trip trajectory showed that the trips with less than 4 points in 

their trajectory (54% of all trips) have a larger share of trips that end around this compared to all 

others. Furthermore, short trips are two times more likely to have trips that end in this timeframe.  

 

  

Figure 5-5. Distribution of trip start times with trip O/D algorithm and NHTS data. 
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Figure 5-6. Distribution of trip start and end time with trip O/D algorithm. 

 

Lastly, this study also evaluated the ratio of the number of users whose home locations 

were identified inside a certain census block group and the adult (18-64) population from ACS 

2017 to ensure each area is represented somewhat equally. While we see some census block groups 

with very low ratios compared with other census block groups (dark blue areas in Figure 5-7) 

generally other areas have similar number of trips per day per user. The yellow census block groups 

represent the block groups where this study identified more users as having their home location 

than the actual estimate value from Census. The two block groups where the number of users 

estimates were higher than the Census value are where the Lucas Oil Stadium, Indianapolis Zoo 

and Indianapolis Riverwalk are located. This could indicate the method we used for identifying 

home locations falsely identify some user’s home location due to some users having only a small 

number of GPS points at these locations at the nighttime. In addition, most of the areas with low 

percentage coverage around the downtown area are non-residential areas thus the lower spatial 

representation of these areas is negligible. With that we observe spatial representation similar to 

the real world thus ensuring the results gathered in the following chapters will be applicable to the 

study area. 
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Figure 5-7. The ratio of number of user identified with our method and population of 18-64 in  

ACS 2017 

 

5.2 Mobility Options 

5.2.1 Feasible Mobility Options with Trip Distance and Different Methods  

 This thesis found that the number of feasible mobility options changes regarding the 

method (quality criteria, cost function, and combined criteria) used and is spatially heterogenous. 

First, the number of mobility options available is evaluated with comparison between cost function, 

quality criteria, and combined criteria methods with respect to the three trip distance categories. 

Furthermore, individual trip mode characteristics were evaluated in terms of their feasibility and 

which criteria were the reason for assigning trip as unfeasible. Last, this thesis compared the 

number of mobility options in different counties with all three feasibility methods and census 
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blocks inside the MPA boundary with combined criteria method to highlight the spatial differences. 

We found that using a combined criteria of quality and cost-based metrics to assess travel-demand-

relevant access is vital because of the role infrastructure constraints and the individual travel 

demand affect the feasibility substantially. Additionally, number of options were found to be 

spatially heterogenous. 

 First, we draw the percentage of feasible trips with combined criteria method when the cost 

ratio we used for comparing all trip modes (1.3) with values between 1 and 2. Cost ratio of 1 only 

identifies trip modes as feasible if and only if the cost of that certain trip mode is less than the cost 

of car. Cost ratio of 2 means that the cost has to be less than double the cost of car. In Figure 5.8, 

the percentage change in feasible trips is represented for all six of the trip modes that are compared 

with car. From this figure we see that all trip modes plateau even if the cost ratio is increasing. 

This is because the feasibility by quality criteria is the limiting factor in this evaluation. This is 

most clearly seen with bike where the cost of bike being comparable to the car does not affect the 

feasibility with combined criteria method since there are only a little less than 50% of trips that 

are feasible with quality criteria. We also see that the cost plays an important role for public transit 

and ride hailing trips. Last, only a very small percentage of walking trips are feasible showing that 

doubling the price of using the car still results in car being the cheaper option compared with 

walking. This proves the limitation of using only cost-based methods.  
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Figure 5-8 Percentage of feasible trips with combined criteria method when different ratio values 

are used for comparing cost of mobility options with car (1.3 will mean the options with cost 

below 1.3 times of the cost of car will be feasible) 

 

Comparing the number of mobility options determined as feasible with cost function and 

quality criteria shows the importance of using a combined criteria method. First, quality criteria 

method has a higher average number of feasible mobility options than cost function based feasible 

options as it can be seen from the Figure 5-9. This shows that the infrastructure is there, but the 

option is not as desirable comparing with driving with the cost function that this study has used.  

In addition, as the sensitivity analysis on public transit fare shows, high initial costs and higher out 

of vehicle costs associated with multi-modal trip modes such as bike sharing and both public transit 

options and with ride hailing is the main reason for these trip modes to be denoted as infeasible. 

These modes compared with the use of automobile (baseline) likely to be costlier in shorter trips; 

but for longer trips, ride hailing, and public transit are two of the best alternatives in terms of cost 

feasibility. The only trips that were noted with zero options with the cost function method were 

the trips where no car trip route was found based on the available infrastructure in OSM for 

drivable roads. This is either because of location not being accessible by driving or as because of 

the mismatch between trip origin and destinations and the timestamp of the OSM nodes and edges 

(some roads might not be accessible because of construction that was not existing back in 2017). 
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These trips made up only 0.05% of all trips which meant that almost all trips generated by our trip 

O/D algorithm were doable with at least one trip mode with cost function method. On the other 

hand, 2.85% of all trips didn’t have a single feasible option with quality criteria. Most of these 

trips are in the long distance category which is expected because of the time threshold and distance 

thresholds used as part of the quality criteria method. Shorter trips had larger number of mobility 

options identified as feasible with the quality criteria compared with the cost function in the same 

category (short distance and medium distance). This is interesting because some trip modes that 

might be feasible to use might not be preferred due to the higher cost associated with them 

compared with the use of cars. 

  

 

Figure 5-9. Number of mobility options available with quality criteria, cost function, and 

combined criteria; grouped by trip distance (�̅� represents the average) 
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In addition to the cost function and quality criteria methods, the number of mobility options 

based on a combined criteria were evaluated to see if mobility options are heterogenous with 

respect to the distance. As it can be seen from the Figure 5-9 and 5-10, the average number of 

mobility options with combined criteria method goes down as the distance increases. This is 

potentially due to driving being substantially faster (thus cheaper) compared with all other 

alternative mobility options especially in short and medium distance trips and due to infrastructure 

limitations since no bus or bike share cover the larger area served with long distance trips .When 

looking at the individual characteristics of each trip mode and their feasibility in Figure 5-10, we 

see that bike and walking trips are less likely to be feasible as the trip distance increases, while 

public transit trips become more feasible as the trip distance increases. Since time cost is the 

biggest cost component with cost function method and the trip level benefits of other modes 

(especially walking) are not accounted for almost none of the trips being feasible by walking. 

Because of this this study evaluated the feasibility of walking based on the quality criteria only. 

Cost of using bikes is comparable to the automobiles however with quality criteria, percentage of 

feasible bike trips drops substantially by the trip distance. For biking trips with quality criteria, the 

cycleway criteria introduced accounts for 27% of all unfeasible long distance trips and 49% of the 

unfeasible medium distance trips while most trips were noted as infeasible due to max grade for a 

section of the route passed 15% gradient. This further consolidates the idea proposed by (Vale et 

al., 2015) regarding the importance of using road gradient in bike accessibility studies.  

Similar to walking, bike sharing and ride hailing have very small share of feasible trips 

using the cost function method. This is mainly due to high out of vehicle time cost and fare costs 

for using the trip mode. Bike sharing also has a very small share of trips as feasible with quality 

criteria which can be explained by the low number of bike stations located in the area. The 

percentage of trips that can be done with bike sharing system was only 4.89% of the trips with 

quality criteria. To understand if the coverage is the main reason for this, this thesis also looked 

at the census blocks in the downtown area and found these census block groups in close 

proximity to these bike sharing stations had an average of 41% of their trips deemed as feasible 

with bike sharing. This shows us that bike sharing can satisfy the travel demand and can be used 

to increase the alternative options if the spatial coverage is increased. Wait time associated with 

ride hailing did not impact feasibility much more for trips compared to the same trips with car as 

it can be seen from the almost identical quality criteria graph for both car and ride hailing in 
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Figure 5-10. In total only 108 more ride hailing trips were found infeasible compared to the car 

trips with quality criteria. However, when we look at the cost function only almost no ride 

hailing trips for short or medium distances were comparable to cost of car indicating high initial 

fare costs. Those costs become somewhat comparable with long distance trips as the ownership 

cost of a car is dependent on the trip distance.  

Public transit is one of the best alternatives for replacing automobile trips when quality of 

service is the concern since the differences between cost function and quality criteria is minimal. 

As discussed in Chapter 4.6, there different fare structures for public transit and bike sharing 

systems were also tested. For public transit, base fare method identified 13.1% of all trips as 

feasible for public transit with walking and 11.6% of trips as feasible for public transit with 

biking using the cost function method. Full fare monthly pass identified 33.3% of all trips as 

feasible for public transit with walking and 25.5% of all trips as feasible for public transit with 

biking while half fare monthly pass identified 40.1% of all trips as feasible for public transit with 

walking and 30.9% of all trips as feasible for public transit with biking. Bike sharing trips did not 

have significant differences in percentage of trips that were identified as feasible with the cost 

function method. This shows that the value of time is the primary factor for determining the 

feasibility of these modes however the fare cost play a considerable role when determining 

feasibility using the cost function method. Since the differences were minimal for bike sharing 

systems and the monthly cost structure for public transit trips assumed that every trip is doable 

with public transit when calculating the cost (entire travel diary for users is also not know), we 

decided to use the base fare for both options.  
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Figure 5-10. Individual mobility options feasibility from quality criteria based on the trip 

distance. 

 Figure 5-10 also shows the downward trend with relation to distance with biking and 

walking; however, the distance is not the only reason for this downward trend. First, out of all 

short distance trips, 62% of them were determined as feasible with walking while only 23% of 

medium distance walking trips were feasible. For both categories, around 5-6% of the trips were 

deemed infeasible only due to the walking alongside high-speed roads. Interestingly, short trips, 

where the haversine distance between origin and destination is less than one mile, had 2% of the 

trips noted as infeasible due to network walking distance being higher than the threshold. This 

shows the alternative routes had to be taken likely due to the lack of proper infrastructure for 

walking. This is because as described in Chapter 4.4.2, network edges with bad sidewalk rating 

were removed from the walking network for identifying routes with walking using quality criteria. 

In addition, this metric to account for the quality of the existing infrastructure is the reason for the 

biggest proportion of infeasible trips. 29% of the short trips and 37.33% of medium distance trips 

were identified infeasible due to the bad sidewalks and existence of large intersection along the 
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path. The rest of the canceled trips are due to the combination of distance and high-speed criteria 

(0.5% for short, 9% for medium). These percentages could indicate the most important criteria for 

determining feasibility for walking trips is the infrastructure (existence of sidewalk) and pedestrian 

friendly design (easier to cross intersections).  

 

Table 5-1. Percentage of walking trips that were denoted as infeasible with certain quality 

criteria. 

 Short Distance Trips Medium Distance Trips 

Every criterion met 61.8% 23.01% 

Only high-speed criterion 

not met 
6.38% 5.08% 

Only distance criterion not 

met 
2.22%  25.11%  

Distance and high-speed 

criteria not met 
0.52%  9.47% 

Infrastructure constraints  29% 37.33%  

5.2.2 Travel-Demand-Relevant Access  

To understand the differences between proximity-based accessibility and travel-demand-

relevant access this thesis also performed a proximity-based accessibility study. For this we 

evaluated the public transit access based on proximity to transit stops (within ¼ mile) from their 

home location for every user. Then the feasibility of trips that start 400 m (~ ¼ mile) of home 

location of the user were evaluated to find if there are differences between accessibility and 

feasibility. Each trip distance (short, medium, long) and method (cost function, quality criteria, 

combined criteria) pair showed that the incorporating travel demand in to access evaluation 

identifies access with public transit much less compared with the traditional accessibility-based 

studies. This is also shown in Figure 5-11 where the differences between traditional proximity-

based accessibility and travel-demand-relevant access are shown for different trip distance 

categories with combined criteria method. On y-axis in Figure 5-11, the cumulative distribution of 

the ratio between the trips that were identified as feasible with combined criteria method and trips 

that were assumed to be feasible with traditional accessibility method is shown (If a user had 5 

short distance trips and only 4 of them are feasible with either public transit with walking or public 
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transit with biking using the combined criteria method, the ratio will be 80% on y axis since 

accessibility-based study assumed that this user would have 5 accessible trips ). Another important 

takeaway from this graph is more than 15,000 users that were identified as having public transit 

access, do not have any feasible public transit (the 0% on y-axis).   

 

 

Figure 5-11 Cumulative distribution of users with public transit access based on proximity to 

transit stops (within ¼  mile) from their home that also have multiple trips starting from within ¼ 

mile of their home location compared with their feasible public transit with walking or biking as 

first and last mile mobility option. Larger area below the lines shows traditional accessibility-

based method matches with our combined criteria feasibility method. Lower area below lines 

indicates many misidentified public transit access (you live close to the public transit but your 

travel demand can’t be satisfied with the existing bus infrastructure) 

 

If we look at all the trips that were assumed to be accessible, we see that 40% of trips were 

infeasible with quality criteria and 76% with cost function, and 76% with combined criteria method. 

This is an important finding of this study since it indicates that living close to a bus station does 

not mean you have access if the travel-demand-relevant access is not evaluated.  

5.2.3 Feasible Mobility Options on Spatial Level 

Last, this study evaluated the feasible mobility options from the spatial perspective. We 

found that number of mobility options are spatially heterogenous independent of the method used 
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for assessing feasibility. The county level averages, and number of available option percentages 

are shown in Figure 5-12. County level average number of options were evaluated to understand 

if there are differences among different counties inside the MPA boundary. The counties inside 

the MPA boundary and the number of users home locations that located inside each are as follows: 

Shelby (631 users), Morgan (2,746 users), Boone (3,283 users), Hancock (5,685 users), Johnson 

(13,876 users), Hendricks (15,246), Hamilton (32,049), and Marion (79,875 users). From Figure 

5-12, it is clear that Marion County has a greater number of average mobility options compared 

with the other counties. While in this study Marion County was the only one whose public transit 

system was evaluated, as shown in the Figure 3-1 in Chapter 3 Boone, Hendricks, and Johnson 

counties have their respective public transit systems. These systems could increase the number of 

available mobility options for these areas but for the Hamilton, Hancock, and Shelby County no 

unaccounted mobility options exists. The counties with the lowest average mobility options are 

Morgan, Shelby, Hamilton, and Hendricks County in order. Hendricks (2nd), and Hamilton (4th), 

are both in the top 10 in terms of percentage of households with at least one vehicle which likely 

is a result of the forced automobile ownership. Shelby and Morgan counties also have over 95% 

vehicle ownership thus the forced vehicle ownership trend can also be observed from these 

counties as well. These results are similar to the equity study by (Pyrialakou et al., 2016) which 

evaluated accessibility in Indiana and found the limited accessibility in suburban census tracts in 

these counties compared with the Marion county. Same paper also identified census tracts in 

Hancock County and Shelby County as very high transport need but did not identify as much 

transport need in Hamilton or Hendricks County. One other important thing to note is regarding 

the Marion County. Since Marion County is the only county with public transit, we expect the 

average number of mobility options to be substantially higher than the other counties. Even though 

the average is higher, the median value (2) is same as all other counties expect Shelby and Morgan 

(1). This is interesting because Marion County also has the highest standard deviation, indicating 

that some areas in Marion County might have less options compared with others. Therefore, we 

decided to also look at the number mobility options on census block group level. To understand 

which modes are less equitable spatially we looked at percentage of feasible mobility options on 

census block group level with combined criteria method.  
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Figure 5-12 Number of mobility options available based on home location county with quality 

criteria (inner circle), cost function (middle circle), and combined metric (outer circle) overlay 

on MPA boundary with public transit lines and bike sharing stations. Shelby and Morgan County 

were the only two counties with median of 1, the other counties had median of 2 
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 Looking at the spatial characteristics of each trip mode using combined criteria method 

we can see spatial differences in all trip modes. In Figure 5-13, we see that car trips from the edges 

of the MPA boundary had the largest number of trips deemed as infeasible. This indicates that 

people living in these areas need to more than 45 minutes to reach work opportunities.  

 

 

Figure 5-13. Percentage of feasible trips with car based on the combined criteria in census block 

group level. 
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For ride hailing trips there are census block groups around the suburban areas north of 

Indianapolis with very low percentage of trips as feasible as shown on Figure 5-14. This indicates 

that the travel demand from these census block groups is mainly for shorter and medium distance 

trips since we found that ride hailing trips become more feasible as the trips get longer with cost 

criteria (Figure 5-10). It is worth noting that if we vary the wait time for ride hailing trips depending 

on the location the areas with high percentage of feasible ride hailing trips in suburban regions 

likely to see a decrease in these percentages since the wait time will be substantially larger for 

these areas compared with the urban core. Therefore, we can’t say for certain that these areas have 

higher ride hailing access compared with the areas in the urban core. 

 

 

Figure 5-14. Percentage of feasible trips with ride hailing based on the combined criteria in 

census block group level  
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When we look at the percentage of feasible biking trips with combined criteria, we see 

stark differences between Hamilton and Marion County and the other counties. Since bike trips 

are feasible with cost function compared with quality criteria more (see Figure 5-10), the areas 

with a high percentage of feasible bike trips are more likely to have bike friendly infrastructure. 

Affluent suburban areas such as Carmel and Fishers which are marked with a red square on the 

Figure 5-15 is a good example of affluent areas with bike friendly infrastructure. 

 

 

Figure 5-15. Percentage of feasible trips with bike based on the combined criteria in census block 

group level (red square shows the affluent suburban areas: Carmel and Fishers) 
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The bike sharing is not surprisingly is only feasible where the stations are located but 

interestingly, more than 40% of the trips were identified as feasible with bike sharing in downtown 

Indianapolis in Figure 5-16. In this figure percentage of feasible options with quality criteria is 

shown because as seen in Figure 5-10 there are almost no feasible bike sharing trips with combined 

criteria method due to high cost of bike sharing (0.04%). This is also not only because the average 

trip distance being low since we can see that same census blocks with high percentage of feasible 

bike sharing trips (yellow areas) in Figure 5-16 are also shown as high-low outlier in Figure 5-4. 

This means that these census block groups have higher trip distances compared with the 

neighboring census block groups. This indicates that bike sharing can be a feasible alternative for 

more people if the spatial coverage is expanded and the cost is adjusted to be more comparable 

with car similar to public transit. 

 

 

Figure 5-16. Percentage of feasible trips with bike sharing based on the combined criteria in 

census block group level. 
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For walking trips, it is important to note that sidewalks outside of the Marion country were 

all assumed to be in a good condition which could explain the higher percentage of trips being 

feasible outside of the Marion County in Figure 5-17. Even with this assumption since only a small 

percentage of trips are feasible with cost function the spatial differences are harder to distinguish. 

One inference that can be made is the downtown area in urban core has better walking 

infrastructure compared with the outer areas (not the suburban areas). This difference is another 

indication of the importance of the infrastructure characteristics when determining the travel-

demand-relevant access. 

 

 

Figure 5-17. Percentage of feasible trips with walking based on the combined criteria in census 

block group level. 
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For public transit with walking and public transit with biking, we see that the Southwest 

Indianapolis have less feasible trips compared with other places with access. The main reason for 

this is not having a proper public transit route to satisfy the travel demand because we do not see 

any stark differences in terms of feasibility of other mobility options. In addition, Figure 5-18 and 

5-19 shows that using bike with public transit increases the spatial coverage but travel-demand-

relevant access in the Southwest Indianapolis is not satisfied once again showing the importance 

of assessing access regarding travel demand.  

 

 

Figure 5-18. Percentage of feasible trips with public transit and walking as first & last mile based 

on the combined criteria in census block group level. 
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Figure 5-19. Percentage of feasible trips with public transit and biking as first & last mile based 

on the combined criteria in census block group level. 

 

In summary, this thesis found that cost-based methods tend to favor faster trip modes such 

as car since the benefits from walking or similar active modes are harder to represent on trip level. 

Moreover, high initial costs of using certain modes (BSS, ride hailing) makes these modes 

incomparable to using car especially for shorter trips. Because of this when evaluating feasibility 

of certain trip modes quality criteria needs to be considered accounting for people who might prefer 

to use these costlier trip modes (for example for environmental reasons). Assessing the 

combination of both can give a more comprehensive idea of what are the available mobility option 

for people living in a certain area to use. Additionally, comparing the travel-demand-relevant 

access and traditional accessibility-based measures indicated that large percentage of trips that 

might assumed to be feasible with public transit with traditional accessibility-based studies are not 
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feasible when disaggregated travel demand is incorporated. Lastly, the emerging mobility options 

such as bike sharing can satisfy almost half of the travel demand of people living near those stations 

with ease and comfort. Increasing the spatial coverage of these modes and decreasing the cost of 

using them can help increase the feasible mobility options available. 

5.3 Equity Analysis  

This chapter presents the results from the equity analysis methods and identifies 

disadvantaged census block groups (spatial equity), sociodemographic characteristics that have 

lower number of mobility options, and comparison of number of mobility options between pre-

determined disadvantaged groups and the others.  

5.3.1 Spatial Mobility Option Equity  

First, to identify the differences between census block groups in terms of average number of 

feasible mobility options we created the maps depicted in Figure 5-20. As it can be seen from the 

figure using the cost function method, almost exclusively all suburban areas are identified as 

having a low number of mobility options. While quality criteria identified some areas as having 

more options there are only sporadic which means that it might be due to the outliers in these areas. 

As it can be seen from Figure 5-21, there are several regions very close to the downtown with a 

low number of mobility options. The transit lines almost overlap with all the census block groups 

with a high number of mobility options on Eastern, Western and Southeast Indianapolis, indicating 

these areas benefit from the public transit availability the most. However, Southwest Indianapolis 

has significantly fewer options compared with other regions in Marion County which could mean 

that individuals living in these areas have “access” to public transit in a traditional sense however, 

their travel demands can’t be met because the bus is not going to where individual aims to go. This 

is contradicting with the findings from (Griffin & Sener, 2016) which found that Indianapolis do 

not have spatial omission in terms of public transit. Figure 5-21 also shows bike sharing stations 

help with increasing the number of mobility options for the census block groups that have access 

to these stations. Key takeaway from this is that the presence of these alternative mobility options 

can help reduce the increased car ownership and prevent transport deserts.  



 

 

 

8
9
 

 

 

Figure 5-20. Average number of feasible mobility options based on quality criteria, cost function, and combined criteria in census 

block group level.
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Figure 5-21. Average number of mobility options for residents in a census block based on the 

combined criteria, overlaid with public transit lines and bike sharing stations. 

To check the clusters and outliers we created the Anselin Local Moran’s I map for the 

combined criteria method which is represented in Figure 5-22. The Global Moran’s I statistics 

for each trip mode and the number of mobility options also showed that each trip mode 

feasibility and number of mobility options are significantly clustered, meaning spatial 

autocorrelation is present. Please see Appendix A.6 for the Global Moran’s I values and their 

significance level table. Suburban areas (census block groups outside of Marion County) had 

12% fewer feasible mobility option with combined criteria than the urban core census block 

groups.  
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Figure 5-22. Anselin Local Moran’s I cluster and outlier analysis with an average number of 

mobility options with combined criteria method  

 

To understand the forced car ownership, this study mapped the census block groups with 

the lowest number of feasible options and census block groups with high vehicle ownership. 

Plotting the census block groups that are in the bottom 25% in terms of the number of mobility 

options with combined metric in Figure 5-23 showed that urban core areas are almost entirely 

excluded. Suburban areas on the other hand are almost exclusively comprised in the bottom 25%. 

This is also different from the findings from (Pyrialakou et al., 2016) which Northern 

Indianapolis and suburbs in that direction were not found to be clusters of high transport need. 

However, the areas in Morgan and Hancock Counties that are in bottom 25% were also identified 
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as high need in the same study. Comparing the very high vehicle ownership areas (98% and 

above) and the census block groups in the first quantile in terms of feasible mobility options with 

combined criteria method shows that 64% of these census block groups with very high car 

ownership are also in the first quantile. The high car ownership in suburban areas (97% in 

suburban areas compared 89% in urban core) is an expected result because suburban areas by 

design are made to be automobile dependent as noted in Mattioli & Colleoni (2016). Based on 

this we can say that suburban areas are creating transport deserts where no alternative mobility 

options are available besides automobiles. This is a problem because except drive routes, other 

transportation infrastructure does not cover or benefit the suburban residential areas which also 

leads to automobile-oriented travel pattern of Indianapolis. 

 
Figure 5-23. Census block groups in bottom 25% in terms of average number of mobility options 

available with combined criteria and census block groups with very high vehicle ownership   
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5.3.2 Sociodemographic Equity 

To evaluate the equity in terms of sociodemographic characteristics, the results from the 

regression tree and linear regression model are presented. In Figure 5-24 the regression tree for 

sociodemographic characteristics mentioned in 4.2.3 evaluated with the combined number of 

mobility options. One way to interpret the regression trees shown in Figure 5-24 is to follow the 

left branch of each split. Following the leftmost branch in Figure 5-24 census block groups with 

high percentage of middle-class suburban white families have the lowest number of mobility 

options available for satisfying their travel demand, when using the combined metric to define 

feasibility. These characteristics are typical for the suburban areas in the empirical study area, 

implying that suburban areas have a low number of options. This however is likely not a problem 

considering high multiple vehicle ownership in these regions, the need for higher number of 

mobility options is minimal. (Please also see Appendix A.6 for both regression tree with quality 

criteria and cost function.)  

 

 

Figure 5-24 Regression tree with combined criteria mobility options and sociodemographic 

characteristic. 
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The importance ranks for each method which are listed in Table 5-2 below. The ranks in 

Table 5-2. indicate the importance of a variable to split the census block groups with low and high 

mobility options in each branch but it does not indicate if lower or higher values would be 

associated with lower or higher number of mobility options. These ranks allow us to distinguish 

which variables are more important with respect to certain method. Across all three methods 

economic variables are the highest ranked variables. Vehicle ownership and educational 

attainment follows these variables in terms of rank. For the cost function method, the percentage 

of black population is also more important compared to the other two methods. 

 

Table 5-2. Variable importance rank for regression tree for each three methods (lower number 

indicates higher importance and higher the rank the earlier regression tree will split based on the 

criteria)  

Variable Combined criteria  Quality Criteria  Cost Function  

% Of Population in Poverty 1 1 1 

Median Income 2 2 2 

% Of Households with No Vehicle 3 3 3 

Median Property Value 4 4 5 

% Of Non-College Educated Population 5 5 6 

% Of People with Disability 6 6 7 

% Of Black Population 7 7 4 

% Of Young (0-19) and Old (65+) 

Population 

8 8 8 

% Of Hispanic or Latino Population 11 9 11 

% Of Asian Population 9 10 9 

% Of Population with No Schooling 10 11 10 

% Of Native American Population    13 

% Of Households with Room Occupancy 

> 1   

12 - 12 

% Of Hawaiian Population   14 

 

 One limitation with regression trees is that it is hard to distinguish if a certain 

sociodemographic characteristic has a negative or positive relationship with the number of 

mobility options. Therefore, multivariate multiple linear regression models with all three criteria 

were also build. After checking the correlation between variables, percentage of population with 

disability in poverty, percentage of population without disability in poverty, and percentage of 
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Non-White population variables were deleted due to high correlation with other poverty and race 

related variables. Since there is also high correlation between the three methods used to assess 

feasible mobility options multivariate analysis of variance (manova) for all three models were 

checked before finalizing the models. Based on the type 2 manova test Native American population, 

Hawaiian population, population with disability, population with no schooling and median 

property value were found to be insignificant thus removed from the model. Anova test between 

the full and reduced model also indicated taking these variables out does not create a significant 

change. The results from the multivariate multiple linear models for all three methods are presented 

in Table 5-3 below (Please see Appendix A.6 for the correlation importance graph after removing 

the highly correlated variables and results of type 2 manova test with Pillai statistic). The results 

from Table 5-3 indicates that education, high room occupancy, old and young population, and 

median income have a negative relationship with the number of mobility options. The percentage 

of household without vehicle variable having a positive relationship shows proves that forced 

automobile ownership exists in the study area since the results indicate higher the vehicle 

ownership lower number of mobility options. Interestingly, percentage of people in poverty had a 

positive relationship with mobility options. This can be explained by the higher proportion of low-

income households in urban core compared with the suburban areas, where public transit options 

are available. Additionally, race and ethnicity related variables had positive or no significant 

relationship meaning that these groups are not negatively impacted by having a smaller number of 

options. Income and percentage of old-young population had a negative relationship among all 

three methods which could be explained by the suburban-urban core differences once again.  
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Table 5-3. Multivariate multiple linear regression coefficients for mobility options methodologies and sociodemographic variables 

(MPA Boundary) 

 

 

Variable 

Combined Criteria 

Coefficients 

(p-value in parentheses) 

Quality Criteria 

Coefficients 

(p-value in parentheses) 

Cost Function 

Coefficients 

(p-value in parentheses) 

Intercept  1.77 (2.16 × 10−16)∗∗∗  3.65 (2.16 × 10−16)∗∗∗ 2.33 (2.16 × 10−16)∗∗∗ 

% Of Households with No Vehicle 0.0035 (8.09 × 10−6)∗∗∗ 0.0101 (3.51 × 10−7)∗∗∗ 0.0027 (4.06 × 10−5)∗∗∗ 

% Of Black Population 0.0018 (5.81 × 10−12)∗∗∗ 0.0032 (1.14 × 10−6)∗∗∗ 0.0022 (2.16 × 10−16)∗∗∗ 

% Of Hispanic or Latino Population 0.0025 (0.0001)∗∗∗ 0.0063 (0.0001)∗∗∗ 0.0016 (0.002)∗∗ 

% Of Population in Poverty 0.0034 (5.28 × 10−8)∗∗∗ 0.014 (2.16 × 10−16)∗∗∗ 0.0025 (7.12 × 10−7)∗∗∗ 

% Of Non-College Educated Population −0.001 (0.026)∗ −0.0063 (6.6 × 10−8)∗∗∗ −0.0007 (0.08) 

Median Household Income (in thousands) −0.0014 (1.1 × 10−6)∗∗∗ −0.0031(2.17 × 10−5)∗∗∗ −0.0012 (7.11 × 10−7) 

% Of Households with Room Occupancy > 1   −0.0064 (0.002)∗∗ −0.0016 (0.002)∗∗ −0.0052 (0.002)∗∗ 
% Of Young (0-19) and Old (65+) Population −0.0025 (6.49 × 10−5)∗∗∗ −0.0078 (6.3 × 10−7)∗∗∗ −0.0026 (4.56 × 10−7)∗∗∗ 

 Combined Criteria 

Method 
Quality Criteria Cost Function 

𝑅2 0.412 0.428 0.460 

Adjusted 𝑅2 0.406 0.422 0.454 

Durbin-Watson Score 2.09 (0.244) 2.033 (0.086) 2.107 (0.168) 

(Significance level, ***: 0.001, **:0.01, *: 0.05) 
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To understand if these groups are negatively impacted when urban core by itself was 

considered (since urban core and suburban characteristics are different), we selected all the census 

block groups inside the Marion County (only county with public transit system incorporated in the 

study) and evaluated the multivariate multiple linear regression trends as shown in Table 5-4. For 

these models focusing on Marion County similar variable selection process was adopted with 

manova to select the significant variables. Except the race and ethnicity variables (Asian or 

Hispanic population) the relationship between sociodemographic variables and the number of 

mobility options did not change implying that suburban-urban core differences is the main reason 

for the discrepancies regarding feasible mobility options. For all 6 of the models, we have checked 

the Variance Inflation Factor (VIF) to see if any variables had above value of 5. While no variable 

had above 5 value as (Johnston et al., 2018) pointed in their paper, VIF values above 2.5 also 

indicates considerable collinearity which is why income could be the cause for concern for models 

with all counties. However, since Durbin-Watson scores p-values are not less than 0.05, 

autocorrelation is not a cause for concern. It is also important to note that lower values 𝑅2 and 

adjusted 𝑅2  for all 6 of the models imply that there are either non-linear relationships between 

sociodemographic variables and number of mobility options or there are variables that we did not 

consider. 
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Table 5-4. Generalized linear regression results for mobility options methodologies and sociodemographic variables (Marion County) 

 

 

Variable 

Combined Criteria  

(p-value in parentheses) 

Quality Criteria 

(p-value in parentheses) 

Cost Function 

(p-value in parentheses) 

Intercept  1.8 (2.16 × 10−16)∗∗∗  3.6 (2.16 × 10−16)∗∗∗ 2.3 (2.16 × 10−16)∗∗∗ 

% Of Households with No Vehicle 0.0038 (1,43 × 10−5)∗∗∗ 0.0101 (2.23 × 10−6)∗∗∗ 0.003 (1,04 × 10−6)∗∗∗ 

% Of Black Population 0.0008 (0.006)∗∗ 0.0002 (0.7) 0.0011 (9.68 × 10−7)∗∗∗ 

% Of Asian Population −0.0011 (0.4) −0.0087 (0.008)∗∗ −0.0017 (0.1) 

% Of Population in Poverty 0.0035 (3.59 × 10−7)∗∗∗ 0.0141 (3.56 × 10−16)∗∗∗ 0.0025 (3.51 × 10−6)∗∗∗ 

% Of Non-College Educated Population −0.0004 (0.5) −0.0037 (0.009)∗∗ −0.0002 (0.6) 

% Of Households with Room Occupancy > 1   −0.0051 (0.02)∗ −0.0124 (0.02)∗ −0.0046 (0.008)∗∗ 

% Of Young (0-19) and Old (65+) Population −0.0022 (0.001)∗∗∗ −0.0074 (4.05 × 10−5)∗∗∗ −0.0021 (0.0002)∗∗∗ 

 Combined Criteria 

Method 
Quality Criteria Cost Function 

𝑅2 0.236 0.284 0.274 

Adjusted 𝑅2 0.226 0.275 0.265 

Durbin-Watson Score 2.13 (0.132) 2.1 (0.248) 2.05 (0.588) 

(Significance level, ***: 0.001, **:0.01, *: 0.05)
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The adjusted 𝑅2 values for all 6 multivariate multiple linear regression and regression trees 

are shown below in Table 5-5 for comparison. These results indicate that regression trees are better 

in identifying the census block groups with a low number of mobility options. In conclusion, based 

on our different methods it is hard to say certain sociodemographic characteristics are creating 

disadvantages in terms number of mobility options available. Moreover, the innate differences 

between suburban and urban core areas also seem to be the reason for the sociodemographic 

variables we see as indicators for a low number of mobility options in MPA boundary.  

Table 5-5. Adjusted 𝑅2 comparison between linear regression and regression tree with all 

counties and Marion County  

 Multiple Linear 

Regression Adjusted 𝑹𝟐 

Regression Tree 

Adjusted 𝑹𝟐 

Combined Criteria (All Counties) 0.406 0.496 
Combined Criteria (Marion County) 0.226 0.428 
Quality Criteria (All Counties) 0.422 0.562 
Quality Criteria (Marion County) 0.275 0.467 
Cost Function (All Counties) 0.454 0.541 
Cost Function (Marion County) 0.265 0.433 

 

To understand if the disadvantaged census block groups have on average has a smaller number 

of mobility options, this study also compared all census block groups that fit with at least three of 

the seven criteria with all other census block groups. Wilcox test for the overall number of mobility 

options available with all three methods (combined criteria, quality criteria, and cost function) 

between two groups revealed that there is a significant difference between groups. Disadvantaged 

block groups had a higher average and median than the other block groups. This is likely because 

heavier concentration of disadvantaged census block groups in urban core where transit and bike 

sharing options are available. This means that expanding the urban areas with suburban regions 

could create a challenge with providing feasible mobility options for these areas and exaggerate 

the forced car ownership. 
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Figure 5-25. Box plot for disadvantaged block groups and other block groups with Wilcoxon test 

results 
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 DISCUSSIONS AND CONCLUSION 

In this thesis, we have proposed a new framework and travel-demand-relevant access metric 

for evaluating transportation equity using GPS data to construct individual travel demand and 

evaluate the number of feasible mobility options with respect to the quality of service and 

constraints from infrastructure. Our methods incorporated the individual heterogeneity in travel 

demand (collection of trips), considered built environment and system quality, and improved the 

traditional cost-based trip mode models by integrating better routing choice constraints with active 

travel modes. This thesis studied the mobility option equity with respect to the census block groups 

in Indianapolis Metropolitan Planning Organization’s (MPO), Metropolitan Planning Area 

boundary in spatial and sociodemographic level. The key insights of this study can be listed as (1) 

it is important to consider travel-demand-relevant access to evaluate transportation equity because 

we found that both infrastructure constraints and travel demand to be substantially impactful; (2) 

suburban areas on average have 12% less mobility options available (by design) which forces high 

car ownership in these areas; (3) people with non-college educational attainment, households with 

more crowded rooms, and larger families are the negatively impacted disadvantaged groups while 

census block groups with high composition of white middle-class suburban families have the 

lowest number of options available; and (4) in general census block groups with several 

disadvantaged groups have a higher number of mobility options independent of the evaluation 

criteria, which indicates that transportation by itself can’t improve the quality of life for these 

disadvantaged groups.  

The results from this study can provide insightful policy suggestions to improve the 

transportation equity with current migration trends. If out-migration from urban core keeps the 

upward trend as we see during the pandemic (Frey, 2021) becomes the new trend for metropolitan 

areas, providing feasible and affordable transportation options for larger share of the population 

will increasingly become harder. This likely to cause even more dependence on automobiles while 

creating “transport deserts” where no alternative feasible trip modes are available. This increased 

dependence on automobiles are contradicting with the goal of reducing greenhouse gas emissions 

thus is a not desirable environmental outcome for the future. Consequently, continued 

subsidization and policymaking that makes suburbs an option are in stark contrast with equity and 

environmental goals. Furthermore, as the increasing trend in urbanization continues the 
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disadvantaged groups will be forced into moving to outer urban areas due to rising urban core 

prices, gentrification, and lack of affordable housing. This will likely worsen the inequities for 

these communities since their access and opportunities are limited because of the transport deserts. 

Therefore, it is important to have a comprehensive understanding of the direct/indirect impacts of 

the existing and proposed transportation network elements and evaluate equity with respect to the 

observed travel demand with a combination of mobility and accessibility related measures. 

Additionally, understanding the limitations of the existing mobility options and improving them 

with relevant social justice philosophies rather than try to blindly achieve equality among all can 

benefit the groups with the most need. Ultimately it is important understand the role transportation 

plays in social and economic well-being and plan and act accordingly.  

This study has several limitations. First, this study does not have the exact sociodemographic 

characteristics for each user because of the data limitation, thus we only could analyze equity in 

census block group level, assuming all users share the same mode choice preferences. It is possible 

that some people might not use certain trip modes due to bad maintenance and operation or simply 

due to preferences. Another important limitation of this study is that time cost was considered 

constant for everyone while it is likely to be more for people working in higher-wage jobs. 

Furthermore, since individual user characteristics can’t be associated with individual trips, it is 

possible that some aggregation distorted the results toward certain direction. One potential 

improvement is to assign sociodemographic characteristics to everyone based on the distribution 

of the demographics at their identified home location area. While this model tries to incorporate 

preferences in identifying routes with certain travel modes (biking), preferences were based on 

characteristically different population and no heterogeneity between users was considered for 

mode choice nor routing. If relevant data is available, better cost/utility-based models can be 

developed with conjunction of quality of service and infrastructure constraint criteria. For trip 

modes that have a portion of the trip outside (walking, biking, bike sharing, and both public transit 

options) weather was also considered for quality criteria but since the weather forecast between 

August 21 and 31 in MPA did not have any rainy days, comparison regarding weather conditions 

were not included in quality criteria for those modes. Including weather as a feasibility criterion 

can change the overall picture especially for trip modes that large portions of the trip outside so 

future research can benefit from including weather condition constraints as well.  
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Moreover, this study missed some mode-specific attributes when quantifying the feasibility. 

For example, the health and other benefits from active modes such as walking, and biking were 

not included in cost function method. For car, parking cost and the time cost associated with 

walking from parking spot to final destination were also not included. Evaluating the parking cost 

and the walking to actual destination with out of vehicle time cost likely increase the percentage 

of feasible trips with cost function with other trip modes. For ride hailing trips wait time was taken 

as constant of 3.5 minutes but the areas with lower population density have likely higher wait times 

compared with the urban core areas. Last, this thesis did not identify the trip purpose and assumed 

all cost values to be associated with all-purpose trips. This can substantially change the results if 

trip purpose is also assigned based on the origin and destination locations. The cost function 

method likely won’t be as significant for personal trips compared to commuting trips.  

Some other minor limitation includes the trips with no feasible options based on the routing 

algorithm utilized in this study and the streetlight availability for nighttime walking. We 

considered streetlamp availability for safety and comfort for walking trips under dark but no 

publicly available data was found (OSM has a specific tag for streetlights but in the study area 

only a few of them marked). In the future, if the data is available this is something to be considered 

since similar to sidewalks, there has been even longer moratorium on street lights in Indianapolis 

(K. Dwyer & J. Ryan, personal communication, November 23, 2021).  

Last, in terms of sociodemographic equity a more comprehensive definition of disadvantaged 

groups might be needed. In this study we mainly utilized the sociodemographic characteristics that 

were identified as disadvantaged in other transportation equity studies, but disadvantage based on 

the land use characteristics such as living close to highways can also provide important results 

regarding transportation equity regarding the home location of a user.  
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APPENDIX A. SUPPLEMENTAL INSTRUCTIONS  

A.1 Empirical Setting 

Since the MPA boundary shapefile was created in 2012 based on the 2010 census block 

boundaries, it does not completely match with census block group boundaries of respective 2017 

American Community Survey (ACS) and 2020 Decennial Census datasets. Therefore, ‘select by 

location’ tool with ‘have their center in’ relationship in ArcGIS was utilized to select the census 

block groups that fall inside the MPA boundary. In Figure 3-1 two census block groups depicted 

in two colors: blue and orange. The blue block group was considered inside the boundary due to 

having its geographical center inside it even though most of its area was lying outside of the MPA 

boundary. The orange block group was not included in the boundary due to its geographical center 

being located outside the boundary even though it has a relatively large area that falls inside the 

boundary. 

 

 

Figure A-1. Example selection operation for census block group inside the Metropolitan 

Planning Agency Boundary  
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A.2 GPS Trajectory Data Processing  

Home Location Identification 

When identifying the home location all GPS points from a user was evaluated based on the 

pre-assigned 7-character geohash value. In figure below top left picture shows all the data points 

of a user during nighttime (7 PM–7 AM). Bottom left picture is a zoomed in section of the larger 

map. The exact location of this boundary was left ambiguous to prevent identification of exact 

location of the home location. Bottom right picture shows how 9-character geohash values look 

like on the map. The yellow rectangle was the most frequent for this user so that grid is assigned 

as this user’s home location. On top right the size of these grids shown regarding typical house 

around Indianapolis. This house is only for reference and it does not represent the exact house at 

this location.  

 

  

Figure A-2. Example home location identification process (map blurred for privacy protection) 
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A.2 Jump Point Identification  

The figure below depicts one of the users GPS data points (red pins) sorted by timestamp. The 

consecutive points are connected with blue lines to show how the transitions between points look 

without any filtering. Two black boxes on the left figure show the two prevalent locations for this 

user’s GPS points where a lot of sudden jumps were happening between trip trajectories. This 

characteristic for users were observed in all manually created user files which is why when filtering 

jump points we utilized the top two most frequent 7-character geohash values rather than just using 

the most frequent one. The exact 151m x 151m grid not shown to prevent identification of 

prevalent location for the user. The picture on the bottom right shows the pin locations on these 

likely jump points are spread out inside this grid. The top right picture size shows relative size of 

these grids compared to the large size buildings.  

 

  

Figure A-3. Example for identifying jump points for users (map blurred for privacy protection) 
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Since SafeGraph reports this horizontal accuracy data for each GPS point, our first intuition 

was to use these values to determine GPS points that might have digressed from the actual path. 

The idea will use high horizontal accuracy values for finding out the potential GPS jumps that 

might have happened during a trip. To test this hypothesis, trip trajectories were manually created 

for 8 unique users by mapping the GPS points and time of the day a trip might have occurred to 

identify the GPS jump points. These points refer to the sudden gaps between two consecutive GPS 

points where the transition between the two points were unlikely to occur without an interference 

or error on the GPS. Jump points were then compared with the horizontal accuracy using logistic 

regression.   

A.4 Mobility Options Comparability and Feasibility Evaluation 

OSM Networks 

When building the drivable, bikeable, and walking networks it is important understand 

which roads are allowed with each trip mode each tool (OSMNx and OTP).   

OSMNx driving network drivable roads: Roads with highway tag equal to motorway, 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, tertiary, 

tertiary_link, unclassified, residential, living street, road, disused were included in the driving 

network map of MPA boundary 

OSMNx walking network walkable roads: Roads with highway tag equal to trunk, 

trunk_link, primary, primary_link, secondary, secondary_link, tertiary, tertirary_link, 

unclassified, residential, service, footway, path, track, bridleway, living_street, steps, pedestrian, 

road, disused, crossing were included in the walking network map of MPA boundary. 

OSMNx biking network, bikeable roads: Roads with highway tag equal to trunk, trunk_link, 

primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, residential, service, 

cycleway, unclassified, path, track, bridleway, living_street, pedestrian, road, crossing, disused 

were included in the walking network map of MPA boundary.  

OPT driving network drivable roads: Roads with highway tag equal to motorway, 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, tertiary, 

tertiary_link, unclassified, residential, residential_link, service, track, byway, living street, road 

were the road with open to car access.  
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Roads with open to pedestrians on OPT are roads with highway tag equal to primary, 

primary_link, secondary, secondary_link, tertiary, tertiary_link, unclassified, residential, 

residential_link, service, track, byway, living street, road, bridleway, footway, pedestrian, path, 

cycleway, footway (footway = sidewalk, platform, crossing, steps, corridor, and public_transport 

= platform.  

Roads with open to pedestrians on OPT are roads with highway tag equal to primary, 

primary_link, secondary, secondary_link, tertiary, tertiary_link, unclassified, residential, 

residential_link, service, track, byway, living street, road, bridleway, footway, pedestrian, path, 

cycleway, footway (when footway tag is not equal to sidewalk), platform, crossing, steps, corridor.  

 

Routing Configurations and Functions Used with OTP 

 

Table A-1. Default and modified routing values for OTP. 

 Default Values Modified Values 

Max transfers 12 2 

Max walk distance 1500 m 1608 m (1 mile) 

Max bike distance 1500 m 4023 (2.5 miles) 

Walk speed 1.33 m/s 1.34 m/s 

Max transfer distance 

between stations 
2000 m 1608 m (1 mile) 

Bike speed 4.9 m/s (11 mph) 5 m/s (11.2 mph) 
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A.5 Disadvantaged Census Block Groups  

 

 

Figure A-4. Disadvantaged census block groups with sociodemographic criteria  
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A.6 Equity Analysis  

 

Figure A-5. Regression tree with quality criteria mobility options and sociodemographic characteristics  
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Figure A-6. Regression tree with cost function determined mobility options and sociodemographic characteristics
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Table A-1. Global Moran I’s Values (positive significant values indicate clusters)  
 

Quality Criteria Cost Function Combined criteria 

Car 0.092*** 0.146*** 0.092 *** 

Ride Hailing 0.093*** 0.204*** 0.235*** 

Bike 0.36*** 0.369*** 0.357*** 

Bike Sharing 0.468*** 0.387*** 0.39*** 

Walking 0.482*** 0.436*** 0.465*** 

Public Transit & Walk 0.717*** 0.782*** 0.728*** 

Public Transit & Bike 0.809*** 0.799*** 0.799*** 

Number of Options 0.66*** 0.753*** 0.689*** 

(Significance level, ***: 0.001, **:0.01, *: 0.05) 

 

 

 

 

 

Figure A-7. Multivariate analysis of variance test results, insignificant p-value indicates those 

variables are not significant among all three models with three dependent variables (number of of 

feasible options with cost function, quality criteria, and combined criteria) 
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Figure A-8. Ranked cross-correlations graph for variables used in sociodemographic equity part  
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A.7 Addiional Maps  

 

 

Figure A-9. Anselin Local Moran’s I cluster and outlier analysis for average number of trips per 

day per user 
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Figure A-10. Traditional proximity-based accessibility results
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APPENDIX B. ADDITIONAL LITERATURE REVIEW 

Table B.1. Literature review additional information. 

Study Inequity Measurement Location 

Socio-Demographic and Build 

Environment Characteristics Used / 

Location 

(Shirmohammadli et 

al., 2016) 

Horizontal Equity -spatial comparison 

(GINI Index) 

Vertical Equity - Focus on different 

groups) 

Aachen, Germany 

Age 

Employment Status 

Student status 

Vehicle ownership 

 

(Griffin & Sener, 2016) 

Horizontal Equity (Moran 1) 

 

Percent difference in transit service 

between low-wage and all transit 

accessible workers 

 

Atlanta, GA/ Austin, TX / Dallas, TX/ 

Denver, CO / Houston, TX / 

Indianapolis, IN / Los Angeles, CA/ 

Seattle, WA/San Diego, CA 

 

Income 

 

 

(Karner, 2018) 
Vertical equity—accessibility by income 

group 

Phoenix metropolitan region, Arizona 

 

Income 

 

 

(Minocha et al., 2008) 
Horizontal equity—spatial comparison 

(overlay analysis) 

Chicago metropolitan area, Illinois 

 

Vehicle ownership 

 

 

(Welch & Mishra, 

2013) 
Horizontal equity (GINI index) 

Washington–Baltimore region 

 
- 

(Chen et al., 2019) 

Horizontal equity (GINI index) 

Vertical equity (comparison of 

descriptive statistics-ANOVA) 

Tampa, Florida 

 

Age 

Gender 

Income 

Race and Ethnicity 
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Table B.1.(continued) Literature review additional information. 

(Mooney et al., 2019) 

Spatial - sociodemographic equity: no 

specific mention but vertical equity is 

the most similar (Median and IQR 

analysis) 

Seattle, Washington 

 

Age 

Diversity index (race/ethnicity diversity) 

Education 

Income 

 

(Smith et al., 2015) 

Spatial and sociodemographic equity: no 

specific mention but vertical equity is 

the most similar (K-means test) 

42 Bike Sharing Systems (BSS) across 

U.S., more detailed analysis with 

Chicago, Illinois 

 

Economic hardship index (unemployment, 

dependency, education, income, race, percent 

occupied housing, and health insurance) 

Race and Ethnicity 

 

(Meng & Brown, 2021) 

Horizontal equity: spatial analysis (GINI 

index) 

(logistic regression and Tobit regression 

used for neighborhood characteristics) 

32 U.S. cities that have both/either 

docked and dockless micromobility 

systems 

 

Age 

 

Income 

Race and Ethnicity 

Vehicle Ownership 

 

Built environment variables: 

Employment density 

Population density 

Transit stop density 

 

(Brown & Taylor, 

2018) 

Service equity across individuals: 

cancelation rate, wait times, 

(neither horizontal nor vertical equity 

descriptions describe the methodology 

very well but Vertical equity is more 

fitting) 

Los Angeles, California 

 

Age 

Income 

Race and Ethnicity 

Vehicle ownership 

 

Build environment variables: 

Employment density, road network density 

Number of transits stops 

Number of on and off-street parking 

Number of jobs in arts, food, and recreation 

Population density 
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Table B.1.continued Literature review additional information. 

(Golub & Martens, 

2014) 

Spatial analysis by access poverty line 

(jobs accessible by transit users / jobs 

accessible by car) 

San Francisco Bay Area, California 

 

Income 

Minority status 

(N. Chen & Wang, 

2020) 

Spatial and sociodemographic analysis 

(t-test for assessing the difference 

between quartiles 25th, 50th and 75th) 

 

Fresno, California 

Cincinnati, Ohio 

 

Age, Education, Income, Property Value, 

Race, Vehicle ownership 

(Pyrialakou et al., 2016) 

Vertical equity (Moran I used for spatial 

pattern identification and 

Needs gap assessment for transportation) 

Indiana, U.S. 

 

Age, Disabled status, Employment status, 

Income, Single parent/not, Vehicle 

ownership 

(Braun et al., 2019) 
Regression analysis between bike lanes 

and sociodemographic factors 

23 U.S. cities 

 

 

Composite socioeconomic index 

Education 

Income 

Race and Ethnicity 
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