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ABSTRACT

Personalized PageRank with high teleportation probability enables exploring the envi-

ronment of a seed. With this insight, one can use an orthogonal factorization of a set of

personalized PageRank vectors, like SVD, to derive a 2-dimensional representation of the

network. This can be done for the whole network or a smaller piece. The power of this

method lies in the fact that only a few columns, compared to the size of the networks, can

be used to generate a local representation of the part of the network we are interested in.

This technique has the potential to be seamlessly used for higher order structures, such as

hypergraphs which have found a great deal of use for real-world data. This work investigates

the characteristics of personalized PageRank and how it compares to the transition probabil-

ities on the graph in terms of their ability to develop low dimensional representations. A key

focus of the thesis are the similarities between the embeddings generated due to PageRank

and those generated by spectral methods.
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1. INTRODUCTION

PageRank [ 1 ], in its most basic form, is a mechanism to rank nodes, surrounding a seed

node (or a set of seed nodes), based on their connectivity with the latter. Belying its

success for ranking websites is the probability transition matrix of the graph developed

from each element on the internet. The formulation of PageRank relies on a probabilistic

extension of this transition matrix that maintains a random walk with a probability given

by the teleportation factor (also referred to as the damping factor), and resets itself onto

some predetermined nodes otherwise. Although originally designed for the internet, we now

know that equivalent ranking schemes or at least those based on similar formulations of the

probability transition matrix apply to ranking mechanisms in different settings [ 2 ] where the

ranked elements can be arranged in a graph. Besides ranking, PageRank has been shown

to be efficient [ 3 ] for recovering clusters as well compared to other ranking mechanisms.

Apart from ranking and graph partitioning, PageRank has also been used to develop graph

representations [ 4 ] and node embeddings ([ 5 ]).

PageRank can either be characterized by studying its probabilistic nature, in terms of the

teleportation factor, or the geometric series in terms of powers of the probability transition

matrix. Both these perspectives have been widely discussed and documented rigorously

[ 6 ]. These perspectives underscore the various useful properties that PageRank might have

depending on the teleportation factor and the spectral characteristics of the probability

transition matrix (or the symmetric Laplacian). The geometric power series generated by

PageRank , for example, has been compared in terms of its efficiency for clustering, with

exponential power series of the heat kernel [  7 ] and the wave kernel [ 8 ]. It has also been

used to develop techniques for graph representations [ 4 ] in terms of spectral characteristics

of the resultant series (as opposed to the node embeddings developed using the probabilistic

perspective). A consequent line of work concerned with PageRank is its ability to produce

embeddings for the graph.

The different perceptions of PageRank - power series of transition probabilities and dif-

fusion - highlight its nature of incorporating the environment of the seed nodes which hints

at its efficiency as an embedding technique. From the formulation of PageRank, it is to
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be expected that the teleportation probability, that is the probability with which it either

explores the surrounding, or stays focused on the seed nodes, holds most of the strength in

PageRank’s ability to create representations.

This thesis offers insights regarding the role of α, the teleportation probability, in em-

beddings generated by PageRank as compared to those generated by the transition matrix

of the graph. The personalization vectors in this work is comprised of just one node. Thus

it can be interpreted as random sampling of nodes from the given graph, referred to as the

seed nodes, and each PageRank procedure is seeded on one such node.

The columns obtained from the PageRank operation on each of the seed nodes are then

augmented into one matrix that we denote as X. For example, for a 10 node graph with 4

nearest neighbours and a seed set consisting of 4 randomly selected nodes, the matrix would

look as follows.

X =



0.065 0.058 0.065 0.065

0.061 0.091 0.061 0.061

0.056 0.075 0.056 0.056

0.061 0.091 0.061 0.061

0.18 0.086 0.18 0.11

0.11 0.12 0.11 0.11

0.11 0.086 0.11 0.18

0.14 0.22 0.14 0.14

0.14 0.11 0.14 0.14

0.06 0.05 0.06 0.06



(1.1)

The observant reader will notice that the 1st and 3rd columns are equal. This happened

because the corresponding seed nodes sampled were same.

The primary focus of this thesis revolves around the embedding generated by the singular

vectors of X. The tipping point of inspiration for this work was an observation that the

embeddings generated using a high value of α resembled the spectral embeddings that result

from the eigenvectors of the symmetric Laplacian. Moreover, at lower values of α, the

element-wise logarithm operation on the PageRank created a smoothed version of the spectral

picture. We discuss more about this under the Motivation section. This led us to investigate

13



the ”spectrum” of effect that α has on the PageRank and discover relations with other

existing methods of embedding development.

PageRank has also been used on higher order networks such as hypergraphs for clustering

in semi-supervised learning. [ 9 ] defines PageRank for hypergraphs and uses it to for a

clustering algorithm. A more localized method for clustering via PageRank is offered by

[ 10 ]. Developing hypergraph representations for semi-supervised learning have used non-

linear methods with hyperedge expansion techniques([  11 ],[ 12 ]). Non-linearity based learning

models are known to be inexplicable and hyperedge expansion techniques have shown to

cause loss of structural information in the resulting embeddings. Interestingly, the method

discussed in this work offers a theoretical alternative that does not suffer with these issues.

Efficient algorithms for calculating PageRank on hypergraphs already exist, but have not

been used for hypergraph representation. If the success of PageRank embeddings on graph

is to serve as a hint, for analogous definitions, they should also be effective on hypergraphs.

Since most real-world data is better modelled by a hypergraph, this technique be more

efficient and explicable at representing the higher order connections.

1.1 Motivation

Until 2016, when PageRank was a public-facing metric, it used the ranks in a logarithmic

scale. Inspired by this, we ran some experiments of our own for a synthetic - 10000 node

random distributed graph. As a first observation we visualized the PageRank values for

PageRank seeded on a random node, with and without log. Figures  1.1a and  1.1b show

the diffusion of PageRank values for each case. Figure in  1.2a provides another perspective

that we will discuss in later sections. It shows the diffusion of values in powers of the

transition matrix of the graph. The black dot shows the seed. The figure in  1.1b hints

that the logarithm of PageRank might be a better indicator, than PageRank itself, of the

environment around the seed node in the graphs.

The next perspective is offered by an insight shared in [ 13 ]. Given a set of seed nodes, the

PageRank on the entire set can be approximated by taking expectation of the same operation

on each individual nodes in the set, which was further found to be equivalent to the first left

14



(a) PageRank values for a 10000 node
graph with 6 nearest neighbour with
α = 0.999

(b) Log of PageRank values for a 10000
node graph with 6 nearest neighbour
with α = 0.999

Figure 1.1. Diffusion of PageRank and log of PageRank

(a) Normalized
(D−1/2GD−1/2)pD−1/2GD−1/2z where
z is an indicator vector for the seed
used in PageRank above and p = 2000

(b) Normalized
(D−1/2GD−1/2)pD−1/2GD−1/2z where
z is an indicator vector for the seed
used in PageRank above and p = 100

Figure 1.2. Diffusion of transition probabilities
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singular vector of the augmented PageRank matrix. This translates to sampling a random

node at a time to carry out personalized PageRank and augmenting these PageRank columns

into a matrix, whose expectation over the columns then gives the personalized PageRank

on the entire set. For example, for a 10 node graph with 4 nearest neighbors, and a seed

set consisting of 4 randomly selected nodes, the expected value of PageRank with α = 0.9

on each individual seed, its left most singular vector and PageRank on the complete seed

set has the following values respectively. The numbers are rounded to 4 significant figures.

Every vector is normalized to 1.

U =
[
0.06369, 0.06842, 0.06099, 0.06842, 0.1411, 0.1107, 0.1214, 0.1644, 0.1369, 0.06369

]
E[X] =

[
0.06367, 0.06852, 0.06105, 0.06852, 0.1407, 0.1107, 0.1214, 0.1647, 0.1368, 0.06367

]
Y =

[
0.06305, 0.07103, 0.06270, 0.07102, 0.1261, 0.1116, 0.1261, 0.1717, 0.1336, 0.06305

]

Further, an orthogonal component to the PageRank can be obtained using the singu-

lar value decomposition of the matrix obtained from augmenting the individual PageRank

columns. This suggests that the vectors thus obtained can be used as 2-dimensional embed-

dings. Figure  1.3 shows the embeddings generated by the above procedure. In a nutshell, (if

this procedure works, we will see the conditions later in the thesis), this procedure offers the

advantage of using only a small fraction of the nodes to develop the embeddings and create

a low dimensional representation of the entire structure!
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Figure 1.3. Original, spectral and PageRank representation of 10 node near-
est neighbour graphs with 4 neighbors with α = 0.9 where the light coloured
nodes are the sampled seed nodes.

However, for larger graphs, this did not turn out to be completely true as the norm

of difference between the singular vector and the PageRank decreased with increasing tele-

portation probabilities. For a 1000 node graph with 6 nearest neighbours, the difference

between U and Y for α = 0.9 in norm-1 was 168.93% which came down to 39.3% with the

log operation before the singular vectors and for α = 0.99999, it became 0.018%.

As a consequence of the above two observations, we look at the effect of increasing telepor-

tation probability and the logarithm operation in the embeddings obtained from PageRank.

The figures in ( 1.4a ,  1.4b ,  1.5 ) show the embeddings with and without log on PageRank

for the original mesh graph with 5500 nodes at α = 0.9. The next figures ( 1.6a , 1.6b ) show

embeddings for the same graph generated with and without log of PageRank at α = 0.99

while figures (  1.7a , 1.7b ) show the same at α = 0.9999. The next figures serve to exactly

compare the vectors instead of the picture generated by the embeddings. Figures  1.8a - 1.9 

shows the effect on the scale between the embeddings as α grows without the element-wise

log operation while  1.10a -  1.11 show the same with the log operation. Figures  1.12a -  1.13a 

show a case of the graph where the procedure was observed to fail. This graph was generated

by a planted-partition model with in-block edge probability, p = 0.001 and out-block edge

probability, q = 0.005 with 60 blocks of 50 nodes each. Yet, for a planted-partition model

with 3 blocks each with 50 nodes and in-block edge probability of p = 0.25 and out-block

17



(a) Spectral embedding for the original
graph

(b) PageRank embedding with log on
PageRank at α = 0.9

Figure 1.4. PageRank and spectral embeddings at lower α

(a) PageRank embedding without log at
α = 0.99

(b) PageRank embedding with log at
α = 0.99

Figure 1.6. PageRank embeddings at lower α

edge probability, q = 0.001, the method works again at a quite small value of α = 0.99 as

shown in figure  1.13b .

Figure 1.5. PageRank embedding without log on PageRank at α = 0.9

The next figure shows the embeddings generated by similar procedure as above but by

varying the teleportation probability as α = 0.99 and α = 0.9999.

18



(a) PageRank embedding without log at
α = 0.9999

(b) PageRank embedding with log at
α = 0.9999

Figure 1.7. PageRank embeddings at higher α

(a) PageRank embeddings without log
with α = 0.9

(b) PageRank embeddings without log
with α = 0.999

Figure 1.8. Comparison of embedding vectors without log
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(a) PageRank embeddings with log with
α = 0.9

(b) PageRank embeddings with log with
α = 0.999

Figure 1.10. Comparison of embedding vectors with log

Figure 1.9. PageRank embeddings without log with α = 0.99999

Figure 1.11. PageRank embeddings with log with α = 0.99999

The logarithm operation on PageRank for certain graphs, apparently, makes its singular

vectors closer to the eigenvectors of the laplacian and this similarity increases with the

teleportation probability, when it no longer requires the element-wise logarithm operation.

Further, above a certain minimum number of samples, the expected value of the operation

20



(a) PageRank embeddings for a graph
generated through a stochastic block
model with in-block edge probability,
p = 0.001, and out-block edge proba-
bility, q = 0.005 with α = 0.99

(b) PageRank embeddings for the above
graph with log with α = 0.99

Figure 1.12. Comparison of embeddings for planted partition model on low α

(a) PageRank embeddings for the same
graph with with α = 0.99999

(b) PageRank embeddings for a graph
generated through a stochastic block
model with in-block edge probability,
p = 0.25, and out-block edge probabil-
ity, q = 0.001 with α = 0.99

Figure 1.13. Comparison of embeddings for planted partition model on high α
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on a set of nodes approaches that on the entire set. The approximation seen here between

SVD of the PageRank and the eigenvectors breaks for smaller number of samples, and has

negligible improvement for excessive number of samples. This ambiguity with respect to the

teleportation probability and graphs begs more investigation at the trajectory of PageRank

as α tends to 1. Moreover, it is not apparent as to how would the logarithm operation,

for smaller values of α, drive the PageRank to generate embeddings similar to spectral

embeddings. These observations are the basis of the problem statement that this thesis tries

to answer.

1.2 Problem Statement

Given an undirected and connected graph with adjacency matrix, G, the singular vectors,

U, generated by the PageRank procedure personalized on individual seed nodes, resemble

the eigenvectors, Z, of its symmetric Laplacian, L̃, under conditions controlled by the tele-

portation probability, α and G. We quantify the observations under which this resemblance

is found to be true and attempt to justify the following :-

1. For smaller graphs (n ∼ 10), U is similar to Z for comparatively smaller values of the

teleportation probability, 0.9 ≤ α ≤ 0.999.

2. For larger graphs (n ∼ 103), U generated by the element-wise logarithm of the PageR-

ank matrix resemble Z for α = 0.99, but the logarithm operation is not needed for

larger α = 0.9999. That is, for the graph in this case, with α = 0.9999, the PageRank

embeddings are similar to spectral embeddings.

3. This resemblance did not stand true for all graphs, for example, the planted-partition

stochastic block model with almost equal inter-block and intra-block edge probability.

Thus, this thesis formalizes why the teleportation probability seemingly needs to be in-

creased with the number of nodes in the graph and what role does the element-wise logarithm

play for larger graphs working with small α.
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1.3 Results

In an attempt to answer the above questions, this thesis puts forward the following

results.

1. The above resemblance occurs only for graphs where the second order difference at the

Fiedler value is inversely proportional to the size of the graph, that is λ3 − 2λ2 + λ1 =

O(1/n). This is always true for planar graphs because for planar graphs λ2 = O(1/n).

2. Embeddings generated by the PageRank, that is U, resemble the spectral embeddings,

Z, when the teleportation probability, α → 1 − λ2.

3. The element-wise logarithm operation is necessary because, besides maintaining the

distribution of the PageRank values over the graph, for larger graphs, when α << 1 −

λ2, the order of PageRank values are large negative numbers which become significant

after using the logarithm.

4. We establish a closed form expression for Personalized PageRank for chain graph as a

function of the teleportation probability, α, and the distance from the seed node. This

justifies the low order of PageRank values for large graphs and low α.

5. We extend the relation of element-wise logarithm operation and the stationary distri-

bution of a graph to the Personalized PageRank operation.

6. Most importantly, we establish that given the configuration of above-mentioned eigen-

values, and α → 1, log of PageRank behaves like matrix powers of P, that is random

walk on the graph and hence is equally reliable but more precise at creating low-

dimensional representations of a graph.

1.4 Organization

We closely follow the order of results. Chapter  3 introduces the fundamentals of PageR-

ank used to build the results in this thesis. Chapter  4 looks into the spectral properties of

the graphs which do and do not agree with the resemblance. Chapter  5 looks at the Chain
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graph to justify the necessity of logarithm operation. Chapter  7 focuses on other techniques

based on the transition probability matrix, P, and the element-wise logarithm operation

and compares it to PageRank. Chapter  6 looks at the limiting value of PageRank with

respect to the teleportation probability. Finally, chapter  8 concludes with our experiments

and observations with PageRank embeddings for Hypergraphs and other open directions.
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2. NAMED GRAPHS

This chapter shows the named graphs and their details that have been frequently referred

to in this document.

(a) Original mesh graph with
5500 nodes

(b) The Tapir graph with
1024 nodes

(c) The Minnesota railroad
network with 2640 nodes in
the largest connected compo-
nent

Figure 2.1. Named Graphs
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3. BASICS AND RELATED WORKS

This chapter outlines the fundamental definitions that are central to the concepts that this

thesis works with.

3.1 Embeddings

Low dimensional embeddings are the basis of learning representations of any data. The

driving cause of this work was to analyse a technique that produces low dimensional repre-

sentations of a network that is also a reliable representation of its structure. In the context

of this work, we draw our embeddings based on the quadratic energy minimizer defined in

[ 14 ]. Throughout the document, we will maintain the following definition of embedding.

Definition 3.1.1 (Embedding). A d−dimensional embedding is an assignment of d coor-

dinates given by d orthonormal vectors, ⟨u1, u2, · · · , ud⟩ to each of the nodes such that the

d-dimensional representation respects graph automorophism.

In the course of this work, we ensure the above by assigning embeddings such that

ith coordinate of the kth node is given by the kth entry in the ith vector, ui[k]. For

example, the 2 dimensional spectral embeddings, according to the quadratic energy is given

as i : {Q[i, 2], Q[i, 3]}, where Q are the eigenvectors of the Laplacian, L̃, of the graph, G,

defined as L̃ = I − D−1/2GD−1/2. Although for better visualization, we use the degree

scaled version of these vectors, that is D−1/2Q, which are orthonormal with respect to the

inner-product: ⟨u, v⟩ = uTDv.

3.2 PageRank

The math involved in PageRank has been widely studied and documented since its in-

ception ([ 1 ], [ 2 ],[ 15 ], [ 6 ]) in 1998 which would make discussing it here futile. Hence we would

only be looking at the elements that are necessary to understand the arguments in the fol-

lowing chapter that attempt to explain the observations. The PageRank vector, starting
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with the transition probability matrix of a graph, P , can either be seen as an eigenvector to

the following system,

(αP + (1 − α)veT)x = x (3.1)

or as a solution to the linear system

(I − αP)x = (1 − α)v (3.2)

where ( 3.2 ) follows from (  3.1 ) by enforcing eTx = 1. Consequently, the PageRank vector,

x, and the transition probability matrix, P, has the following properties that were of use in

the work.

1. xi ≥ 0

2. P = GD−1 is a column-stochastic matrix

3. Accordingly, P has e as its left eigenvector and the stationary distribution, π, as its

right eigenvector. We denote by Π, the matrix where each column is given by π.

4. P has eigenvalues between -1 and 1

3.3 PageRank calculation

The original work [ 1 ] started by computing the PageRank using the power method. The

main idea behind power method looks as follows.

x(k+1) = αPx(k) + (1 − α)v (3.3)

An expansive range of algorithms that are variants of the power method have been discussed

in [ 15 ]. Our initial experiments started with the same. Not much later, as the motivation

section states, figure  1.5 hinted at effect increasing the value of α might have. But the more

the value of α was increased, the more time the above procedure took to run. This makes

sense if one looks at the convergence criteria of the power method. The vectors produced by
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the iterations in power method converge according to the second eigenvalue of the PageRank

matrix in (  3.1 ), λM , which is directly dependent on α.

λM = αϵ2 (3.4)

For the graphs that we experiment with (more details in section  4.2 ), ϵ1 = 1 and ϵ2 ∼ 1.

This implies that the rate of convergence is directly proportional to α. For our experiments

as α → 1, the number of iterations, hence the runtime, of the power iteration increases.

Therefore, we resort to an alternative method where convergence does not rely on α. An

advantage of using iterative methods such as the power method is these methods are matrix

free, so the algorithm does not deal with matrix operations. Since our experiments are based

on much smaller matrices (∼ 10000) compared to Google’s (where the order of the matrix

was 8.1 billion), we can look beyond matrix-free methods.

From ( 3.2 ),

x = (1 − α)(I − αP)−1v (3.5)

We know that the matrix inverse will exist because I − αP is non-singular. The properties

of this matrix have been well discussed in Chapter 7 of [ 6 ], so we will not repeat it here. We

will only note the fact that for small problems (∼ 10000) as in our case, the above matrix-

inverse can be computed using much less time and computation as compared to the power

iteration method. Further, using LU decomposition of the concerned matrix, the matrix

inverse need not be explicitly calculated, thus making it faster and independent of α. For

example, for a 3000 node graph with 6 nearest neighbours, calculating one PageRank vector

with α = 0.999 with the power iteration method takes 4.5 seconds which scales to 45.17

second for α = 0.9999, while that with the matrix-inversion method takes 0.12 seconds and

stays the same even for larger α. For 200 instances of PageRank, the method based on power

iterations would scale by a factor of 2000 which is impractical. Therefore, throughout the

work reported in this thesis, matrix-inversion was used to calculate PageRank.

Another factor that arise from this discussion is the sensitivity of the PageRank vector

according to α and the Fiedler value of the Laplacian. For embedding purposes, we need
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our PageRank vector to be sensitive to the structural changes, thus giving more weight to

P in the PageRank matrix (and equivalently increasing the condition number of the linear

system of the PageRank vector). Referring to the theory outlined in [ 6 ], we know that closer

the Fiedler value is to 1, the more sensitive the PageRank vector becomes as α approaches

1, which implies, the embeddings generated by the PageRank vector, in that given range of

α, would be more faithful to the structure of the network.

3.4 PageRank as power series

Physically, the personalized PageRank is a diffusion process that starts at the seed node.

Hence, the similarities between PageRank and other diffusion processes such as the heat flow

equation ([ 7 ],[ 4 ]) and the wave flow equation ([ 4 ],[ 8 ]) shed light on the role of the teleportation

probability and significance of the PageRank values on log scale. The series representation

of PageRank ([  7 ])

xα,v = (1 − α)v + αxP → xα,v = (1 − α)
∞∑

k=0
αkPkv (3.6)

representation of PageRank facilitates the development of heat kernel PageRank in [ 7 ],

∂

∂t
ρt,v = −ρt,v((I − P )) → ρt,v = e−t

∞∑
k=0

tk

k!P
kv (3.7)

which offers a localized algorithm for graph partitioning. The heat kernel representation

is also used by [ 4 ] to compare graphs. A similar representation, but with second degree

dependence, is derived with the wave equation in [ 16 ],

∂2u

∂t2 = c2δu → ui(t) = 2ui(t − 1) + ui(t − 2) − c2 ∑
j∈neighbours(i)

Lijuj(t − 1) (3.8)

which helps by keeping intact the information in higher eigenvaectors, which is otherwise

diminished in both PageRank (with higher α) and the heat equation (with higher t). Using

this higher degree information of the eigenvectors and the above formulation, [ 16 ] gives

29



a localized algorithm for eigenvector computation and hence, clustering. Along the same

representation, [ 8 ] used spectral graph wavelet, for a node a

Ψa = UDiag(gs(λ1), · · · , gs(λN))UT δa (3.9)

whose diffusion based probability measure enables learning structural embeddings for nodes.

This method again shares similarities with our technique in the sense that Ψ is N ×N matrix

with the ath column referring to wavelet originating at the ath node. Comparing this with

our observation in terms of the personalized PageRank (PPR) vector, the definitions would

change as,

Xv = (L̃)−1δv = (D−1/2U)Λ−1(UTD1/2)δv

where δv is an indicator for the vertex v. Finally X ∈ RN×N ′ where N ′ is the number of

seed nodes for which the PageRank vector is calculated and is randomly selected (to be 200

in our observations). The characteristic function here is meant to capture all moments of Ψ.

But instead of the calculating the characteristic function in terms of exponential, we take

element-wise log of every element and then take the left singular values (instead of sampling)

to get the embeddings.

All of these studies drawing comparisons between the geometric sum expression of PageR-

ank and an exponential sum expression using the transition or the Laplacian matrix, hints

towards the efficiency of logarithm of PageRank values as compared to the values without

logarithm. Although, we tried to use other similar functions such as negative exponential of

PageRank and the truncated Maclaurin series, but those could not maintain the distribution

of the PageRank values of the graph.

3.5 Inspecting PageRank as optimization problem

The PageRank vector can also be calculated as the solution to the 2-norm optimization

problem as described in [  17 ] and [ 10 ]. Combined with the ideas in this work, it offers a

way to develop embeddings for higher order structures such as hypergraphs. Although while
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working on the technique, we discovered that it needs the PageRank vector to not be sparse,

as in [ 9 ], and hence the overall algorithm loses the advantage of being localized.

3.6 Other embedding techniques using the transition matrix, P

This section looks into some of the techniques that, like PageRank, uses the transition

probability matrix to develop embeddings. While scrounging the literature for element-wise

logarithm operation on the transition probability matrix, we discovered about the technique

known as SkipGram ([ 18 ]) that can be expressed as an implicit matrix factorization([ 19 ]).

Further, [ 20 ] shows the popular network embedding techniques ([ 21 ],[ 22 ],[ 23 ],[ 24 ]) to be ma-

trix factorization of some function of the adjacency matrix. SkipGram, widely used for

natural language understanding, uses the contextual similarity between words to develop a

graph out of the given text. The adjacency matrix of the graph thus formed, [ 19 ] shows, can

be factorized with element-wise logarithm to develop embeddings. Along with the popular

embedding techniques, [  20 ] explains the application of this procedure, using random walks

on generic networks, that are not necessarily text based. The objective of SGNS is to max-

imize the similarity between the embeddings of each word-context pair and decrease that

between the word and its negative samples. Mathematically, this is achieved by maximizing

the log of sigmoid ((1 + e−x)−1) of the dot product of the node (or word) embeddings. [ 19 ]

showed that minimizing that objective function is equivalent to factorizing a matrix and

using an information-theoretic lens, it can be related to the Pointwise Mutual Information

(PMI) between any two words. This perspective drives the Chapter  6 of this thesis.
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4. PAGERANK VS SPECTRAL EMBEDDING

The inception of this problem was the observation in [  13 ] that the average of columns of the

PageRank matrix, personalized on each seed separately, can be approximated by the first

left singular vector. The secondary motivation behind this thesis is a tangential observation

that at sufficiently high teleportation probability, the left singular vectors of the element-wise

logarithm of PageRank, and sometimes only the PageRank, are similar to the eigenvectors

of the symmetric Laplacian. This has been explained in detail in section  1.1 . This section

probes into this observation in terms of the spectral properties of the symmetric Laplacian,

L̃, and the transition probability matrix of the graph, P.

As a primary step, we verified that the concerned equivalence did not stand out to be

true for every graph. We saw a pattern among the eigenvalues. For example, for the graph

in the motivation section, for which the equivalence worked, its symmetric Laplacian had

the following lowest 5 eigenvalues (rounded to 4 significant figures).

Λ =
[
−4.441e−16, 0.005862, 0.02338, 0.05235, 0.09242

]
(4.1)

and for the planted-partition model for which it did not work, had the following eigenvalues.

Λ =
[
0.0, 0.3969, 0.4009, 0.4032, 0.4041

]
(4.2)

Although the pictures provide a qualitative judgement, to quantify the similarity of the

embeddings, we borrow ideas from the Rayleigh quotient, and define a similarity score as

follows,

sim error = s − p

s
(4.3)

where

s = z′
2L̃z2

z′
2z2

(4.4)

and

p = u′
2L̃u2

u′
2u2

(4.5)
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This error for different graphs have been tabulated below in Table  4.1 . For the chain graph,

the error started to go as low as 5.98% for α = 1 − 10−6 without the log operation because

of the order of its Fiedler value. The corresponding reconstructions are shown in Figures

Table 4.1. Error between PageRank embedding and spectral embedding for
different graphs at a low teleportation probability, α = 0.99 and at a higher
one α = 0.99999

Graph α = 0.99 α = 0.99 α = 0.99999 α = 0.99999
with log with log

30-6 nearest neighbour 3.27% 0.06% 2.89% 0.05%
3000-6 nearest neighbour 47.6% 0.37% 5.06% 2.88%
10000-6 nearest neighbour 170.75% 2.13% 13.5% 1.76%

30 chain 26.88% 0.47% 28.42% 6.02%
3000 chain 2858.82% 1.06% 30.38% 0.75%

Minnesota(2640) 16.07% 1.97% 11.15% 0.44%
Tapir(1024) 10.17% 1.13% 15.41% 0.66%

Original(5500) 75.92% 4.11% 81.14% 0.33%
sbm(100,3,0.25,0.001) 8.18% 1.93% 8.24% 2.69%
sbm(50,60,0.001,0.005) 51.77% 15.22% 51.32% 67.25%
sbm(1000,3,0.001,0.005) 47.35% 16.93% 45.78% 89.39%
sbm(50,60,0.25,0.005) 17.88% 15.22% 90.13% 402.27%
sbm(1000,3,0.25,0.001) 53.7% 1.04% 16.21% 15.73%

4.1 Dependence of Rayleigh error on sampling columns

In this section, we investigate the dependence of the error in Table  4.1 with respect to

the seed nodes, that is with respect to which columns of the PageRank matrix are sampled.

For a theoretical understanding, we refer to the theory in [ 6 ] regarding sensitivity to v. From

equation  3.1 and  3.2 , we know fundamentally that as α → 1, the sensitivity on v reduces, as

the PageRank scores become more and more sensitive on the structure of the graph. More

formally, as in [  6 ],

dx
dv

= (1 − α)(I − αP)−1

||dx
dv

||1 = 1
(4.6)
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(a) Embedding for 30
node graph with 6 near-
est neighbours at α =
0.99 without log

(b) Embedding for 30
node graph with 6 near-
est neighbours at α =
0.99 with log

(c) Embedding for 30
node graph with 6 near-
est neighbours at α =
0.99999 without log

(d) Embedding for 30
node graph with 6 near-
est neighbours at α =
0.99999 without log

Figure 4.1. Embedding for 30 node graph with 6 nearest neighbours

(a) Embedding for 3000
node graph with 6 near-
est neighbours at α =
0.99 without log

(b) Embedding for 3000
node graph with 6 near-
est neighbours at α =
0.99 with log

(c) Embedding for 3000
node graph with 6 near-
est neighbours at α =
0.99999 without log

(d) Embedding for 3000
node graph with 6 near-
est neighbours at α =
0.99999 with log

Figure 4.2. Embedding for 3000 node graph with 6 nearest neighbours
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(a) Embedding for 30
node chain graph at α =
0.99 without log

(b) Embedding for 30
node chain graph at at
α = 0.99 with log

(c) Embedding for 30
node chain graph at α =
0.99999 without log

(d) Embedding for 30
node chain graph at α =
0.99999 with log

Figure 4.3. Embedding for 30 node chain graph

(a) Embedding for 3000
node chain graph at α =
0.99 without log

(b) Embedding for 3000
node chain graph at at
α = 0.99 with log

(c) Embedding for 3000
node chain graph at α =
0.99999 without log

(d) Embedding for 3000
node chain graph at α =
0.99999 with log

Figure 4.4. Embedding for 3000 node chain graph
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(a) Embedding for the
Minnesota graph at α =
0.99 without log

(b) Embedding for the
Minnesota graph at at
α = 0.99 with log

(c) Embedding for the
Minnesota graph at α =
0.99999 without log

(d) Embedding for the
Minnesota graph at α =
0.99999 with log

Figure 4.5. Embedding for the Minnesota graph

(a) Embedding for the
Tapir graph at α = 0.99
without log

(b) Embedding for the
Tapir graph at at α =
0.99 with log

(c) Embedding for the
Tapir graph at α =
0.99999 without log

(d) Embedding for the
Tapir graph at α =
0.99999 with log

Figure 4.6. Embedding for the Tapir graph
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(a) Embedding for the
Original graph at α =
0.99 without log

(b) Embedding for the
Original graph at at α =
0.99 with log

(c) Embedding for the
Original graph at α =
0.99999 without log

(d) Embedding for the
Original graph at α =
0.99999 with log

Figure 4.7. Embedding for the Original graph

37



(a) Embedding for the
300 node planted parti-
tion model with 3 blocks
with 100 nodes each an
in-block edge probability
of p = 0.25 and out-
block edge probability of
q = 0.001 at α = 0.99
without log

(b) Embedding for the
300 node planted parti-
tion model at α = 0.99
with log

(c) Embedding for the
300 node planted par-
tition model at α =
0.99999 without log

(d) Embedding for the
300 node planted par-
tition model at α =
0.99999 with log

Figure 4.8. Embedding for the 300 node planted partition model
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(a) Embedding for the
3000 node planted par-
tition model with 60
blocks with 50 nodes
each an in-block edge
probability of p = 0.001
and out-block edge prob-
ability of q = 0.005 at
α = 0.99 without log

(b) Embedding for the
3000 node planted parti-
tion model at α = 0.99
with log

(c) Embedding for the
3000 node planted par-
tition model at α =
0.99999 without log

(d) Embedding for the
3000 node planted par-
tition model at α =
0.99999 with log

Figure 4.9. Embedding for the 3000(60 × 50) node planted partition model
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(a) Embedding for the
3000 node planted parti-
tion model with 3 blocks
with 1000 nodes each an
in-block edge probability
of p = 0.001 and out-
block edge probability of
q = 0.005 at α = 0.99
without log

(b) Embedding for the
3000 3 × 1000 node
planted partition model
at α = 0.99 with log

(c) Embedding for the
3000 3 × 1000 node
planted partition model
at α = 0.99999 without
log

(d) Embedding for the
3000 3 × 1000 node
planted partition model
at α = 0.99999 with log

Figure 4.10. Embedding for the 3000(3 × 1000) node planted partition model
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which hints at a linear relation between the PageRank vector, x, and the personalization

vector v.

The tables below ( 4.2 and  4.3 ) summarize the variance of the error between spectral

embedding and PageRank embedding for the graphs discussed in Table  4.1 with respect

to the columns samples. Since we know that the error has a tendency to go down for

α = 0.99999 or with element-wise log of PageRank at α = 0.99, we will focus on those two

cases for different columns of PageRank. From the tables we note the following points.

1. The reduction in error is not much as the number of sampled columns increases.

2. The variance seems to decrease with increase in size of the graph.

3. For the small graphs(with 30 nodes), the results are elusive.

Table 4.2. Error variation with column for α = 0.99999. The percentage
indicated in the column headings are the fraction of the nodes as seeds. Each
entry is the variance, the maximum and the minimum for 50 trials.

Graph k
n

= 4% 7% 10%
30 - 6 nearest neighbour 23.68, 0.04, 23.5 23.68, 0.04, 23.5 23.68, 0.04, 23.5

3000 - 6 nearest neighbour 0.001,0.05,0.15 0.001,0.04,0.15 0.00096,0.05,0.14
10000 - 6 nearest neighbour 0.0001,0.09,0.13 2.4e-5,0.09,0.11 3.7e-5,0.09,0.12

30 chain 9.2,0.01,17.8 9.2,0.01,17.8 9.2,0.01,17.8
3000 chain 0.02,0.06,0.85 0.01,0.24,0.75 0.01,0.17,0.75

Minnesota(2046) 0.0001,0.09,0.13 6.3e-5,0.09,0.12 4.6e-5,0.09,0.12
Tapir(1024) 0.0006,0.07,0.18 0.0005,0.08,0.18 0.0002,0.11,0.18

Original(5500) 3.1e-7,0.8,0.8 1.5e-7,0.81,0.82 1.0e-7,0.8,0.8

4.2 Embeddings depend on the Fiedler value

This section reports our analysis of the eigenvalues of the symmetric Laplacian for the

graphs and tries to identify their trends to underpin the graph characteristics where PageR-

ank embeddings do not yield meaningful representations. The degree distributions did not

seem to play a large or a consistent role in the deciding factor so we do not analyse them here.

Hence, we will not focus on those here. The plots below show the trajectory of increasing
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Table 4.3. Error variation with column for log of PageRank with α = 0.99.The
percentage indicated in the column headings are the fraction of the nodes as
seeds. Each entry is the variance, the maximum and the minimum for 50 trials.

Graph k
n

= 4% 7% 10%
30 - 6 nearest neighbour 21.5,0.01,22.8 21.5,0.01,22.8 21.5,0.01,22.8

3000 - 6 nearest neighbour 0.0002,0.0003,0.05 0.0002,0.0006,0.05 0.0002,0.0001,0.05
10000 - 6 nearest neighbour 5.1e-5,0.0005,0.02 1.6e-5,0.0006,0.02 1.6e-5,0.001,0.02

30 chain 14.85,0.003,24.6 14.85,0.003,24.6 14.85,0.003,24.6
3000 chain 0.0003,0.0001,0.05 0.0001,0.0003,0.06 0.0001,0.0008,0.04

Minnesota(2046) 5.3e-5,0.004,0.03 2.8e-5,0.01,0.03 1.7e-5,0.01,0.03
Tapir(1024) 1.0e-5,0.0004,0.02 1.1e-5,0.002,0.01 5.0e-6,0.004,0.01

Original(5500) 1.3e-5,0.03,0.04 7.3e-6,0.03,0.04 5.5e-6,0.03,0.04

(a) 5500 node original graph (b) 3000 node Chain graph

Figure 4.11. Eigenvalue trends for the 5500 node original graph and the 3000
node chain graph

eigenvalues of the symmetric Laplacian for nearest neighbor graphs, some real-world graphs,

chain graphs and random graphs.
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(a) 30 node nearest neighbour graph (b) 10000 node nearest neighbour graph

Figure 4.12. Eigenvalue trends for the 30 node nearest neighbour graph and
the 10000 node nearest neighbour graph
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(a) Eigenvalue trends for the 30 node chain
graph

(b) Eigenvalue trends for the 10000 node
chain graph

Figure 4.14. Eigenvalue trends for the 30 node chain graph and the 10000
node chain graph

Figure 4.13. Eigenvalue trends for the 3000 node nearest neighbour graph
with 6 nearest neighbours

Notice the gradual increase in eigenvalues for the planar graphs, as compared to the

abrupt increase to the stochastic block model. We also experimented with some real-world

graphs. Although they are not artificially generated like the nearest neighbour graphs, their

eigenvalues followed the same trend as the above graphs.

The above plots tell us that the graphs for which the equivalence seemed to work should

have a non-zero double differential, while the others should have a zero double differential

because the plots are monotonically increasing. For the discrete eigen-values, a second order

finite difference would be given as

λs = λi+2 − 2λi+1 + λi (4.7)
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(a) 3 blocks each with 100 nodes and p =
0.25 and q = 0.001

(b) 60 blocks each with 50 nodes and p =
0.001 and q = 0.005

Figure 4.15. Eigenvalue trends for the planted-partition model with 3 blocks
each with 100 nodes and p = 0.25 and q = 0.001 and with 60 blocks each with
50 nodes and p = 0.001 and q = 0.005

(a) Tapir network (b) Minnesota network

Figure 4.16. Eigenvalue trends for the Tapir network and the Minnesota network
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(a) Planted-partition model with 60 blocks
each with 50 nodes and p = 0.001 and q =
0.005 (b) Tapir graph

Figure 4.17. Eigenvalue trends for the planted-partition model with 60 blocks
each with 50 nodes and p = 0.001 and q = 0.005 and the Tapir graph without
the trivial eigenvalue ( 4.15b )

AVERAGE SECOND ORDER DIFFERENCE DEFINITION

avg_second_slope = 0

for i=2:(size(lams,1)-2)

avg_second_slope = lams[i+2]-2*lams[i+1]+lams[i]

end

avg_second_slope = avg_s_s/size(lams,1)

Somehow the average second order difference (  4.2 ) for the first 500 eigenvalues could not

differentiate between the two classes of graphs. The value returned by ( 4.2 ) for the Tapir

graph and the 3000 node planted-partition model were similar. On a closer look of the

eigenvalue plots without the first eigenvalue, (  4.17a ) and ( 4.17b ) show a similar trend, as

opposed to the graph in figure ( 4.18 ), while the embedding technique did not work for the

first, but did for the last two.
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Figure 4.18. Eigenvalue trends for the 3000 nearest neighbour graph without
the trivial eigenvalue ( 4.13 )

From the plots in figures ( 4.11a -  4.16b ), if not the second order slope of the graphs, the

only thing that differentiates the two is the abrupt increment of the eigenvalues for  4.15b 

and  4.15a after the trivial eigenvalue. Hence, using their absolute values, we attempted to

differentiate between the two classes of graph using the successive difference between the

lowest 3 eigenvalues of the symmetric Laplacian of the graph through the following ratio,

λq = λ3 − λ2

λ2 − λ1
(4.8)

The value attained by different graphs for this quantity is given in Table  4.4 .

Table 4.4. Eigenvalue Characterization
Graph λq λd

3000-9 nearest neighbour 0.025 0.0010
10000-9 nearest neighbour 0.042 0.00029

3000 chain 2.99 4.39e-6
Minnesota(2640) 1.5 0.00017

Tapir(1024) 0.5 0.00052
sbm(100,3,0.25,0.001) 0.46 0.0068
sbm(50,60,0.001,0.005) 0.0023 0.496

sbm(1000,10,0.001,0.005) 0.0018 0.71
sbm(100,100,0.001,0.005) 0.00096 0.72

Although λq seems to be an indicator of degree of the graph since it decreased as the

degree increased, it is clearly not able to differentiate between the classes because although
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λq for the 3000 node nearest neighbour graph and that for the 10000 node planted-partition

model are almost similar, this technique does not work on the latter. But even so, the order

of the eigenvalues were clearly different for the graphs on which this technique did and did

not work. Hence we define a new quantity in terms of the eigenvalues

λd = |(λ3 − λ2) − (λ2 − λ1)| (4.9)

The value of λd for different graphs have been noted in Table  4.4 . The graphs for which the

embedding technique did not work have a much higher value compared to those where it

worked. From a second perspective, the formulation for λd, corresponds to the second order

finite difference at the Fiedler value where the abrupt change occurs. For example, for the

(50,60,0.001,0.005)-planted partition graph for which the eigenvalue trend is shown in figure

 4.15b , the Fiedler value had an abrupt jump which is characterized well by the definition of

λd. Additionally, the graphs for which it did work, λd, with some dependence on the degree,

seems to be of the order 1
n
. This redirected us to [ 25 ] which gives an upper bound to the

Fiedler value for planar graphs in terms of the size of the graph.

Theorem 4.2.1. Theorem 3.3([ 25 ]): Let G be a planar graph on n nodes of degree at most

δ. The the Fiedler value of G is at most 8δ
n

.

The theory in [  25 ] along with our observations, prove that for planar graphs, spectral

embedding is equivalent to element-wise logarithm of PageRank embedding for a high tele-

portation probability. Having established this crucial piece, we now zoom into the properties

of the planar graphs that help validate (or in-validate) the general existence of the other ob-

servations.

4.2.1 Approximately equal eigenvalues

From Table  4.1 and figures ( 4.1a - 4.8a ) we understand that good reconstructions imply a

constant scale between the spectral and the PageRank embedding as shown in the bottom

subplots of the figures. However for the 3000 node nearest neighbour graph (figure  4.2a ),

even with the low error we see that the scale between the spectral and PageRank embedding
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is not constant as in the other examples ( 4.6a ). The case represented by the Figure  4.2a 

hints at a more general situation where the eigenvalues corresponding to the eigenvectors

are approximately equal. For the cases at hand, the corresponding eigenvalues of the 3000

node nearest neighbour graph (  4.2a ) were as follows

λ = [0.0, 0.00056, 0.00059, 0.0012, 0.0021] (4.10)

and that of the Tapir graph (  4.6a ) were as follows,

λ = [0.0, 0.0012, 0.002, 0.004, 0.004] (4.11)

Using the example of above two cases, we can say that for λ3 − λ2 < 1
n
, we can assume

that the two eigenvalues are close, hence, the corresponding eigenvectors make an almost 2

dimensional invariant subspace. For α → 1, or for PageRank with log at α = 0.99 when

spectral embeddings are similar to PageRank embeddings, the PageRank vectors are sampled

from the same 2 dimensional invariant subspace created by the eigenvectors corresponding

to the equivalent eigenvalues. Therefore, as in the case of the 3000 node nearest neighbour

graph, we have λ3 − λ2 = 3.4e − 5 < 0.0003, and therefore the PageRank embedding vectors

are sampled from the same subspace as the spectral embedding vectors. In other words, the

PageRank embedding vector is a rotated version of the spectral embedding vector and hence

plotting them against each other, creates the rectangular figure as in figure  4.2a . While for

the Tapir graph, λ3 −λ2 = 0.0006 ∼ 0.00097, and hence the corresponding PageRank vectors

are sampled from the 1-dimensional subspace created by the corresponding eigenvector which

ensures the linear scale in the figure  4.6a . Figure  4.19 shows this rotation of the embeddings

where the colours denote the node represented by embedding.
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Figure 4.19. PageRank and the spectral embedding vectors being sampled
from the 2 dimensional invariant subspace created by the eigenvectors corre-
sponding to almost equal eigenvalues

4.3 Theoretical analysis of the spectrum

Following the notations described above, since the similarity is between the PageRank

and the eigenvectors of symmetric Laplacian, we attempted to reason about the above ob-

servations as follows.

L̃ = I − D−1/2GD−1/2 = QΛQT

→ (I − αGD−1)−1 = D1/2Q(I − αE)−1QTD−1/2

X = (1 − α)(I − αGD−1)−1

= (1 − α)DZ(I − αE)−1ZT

(4.12)

where Z = D−1/2Q, E = I − Λ

The above formulation does not offer a conducive enough way to be treated with an

element-wise logarithm operation as expanding the formulation of X would lead to a sum-

mation series for each element. Since the element-wise log seems to be playing a crucial role
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with small teleportation probability for large graphs, we expand the formulation element-wise

and use the properties of the eigenvalues discussed in this section above.

X = (1 − α)DZ(I − αE)−1ZT

X =
[

1−α
1−αϵ1

dz1 · · · 1−α
1−αϵn

dzn

]


z1
T

...

zn
T


where d = De

Xi,j = (1 − α)(I − αGD−1)−1
i,j = di

[ 1 − α

1 − αϵ1
z1iz1j + 1 − α

1 − αϵ2
z2iz2j + · · · + 1 − α

1 − αϵn

zniznj

]
→ Xi,j =

n∑
t=1

1 − α

1 − αϵt

ztiztjdi

log(Xi,j) = log(
n∑

t=1

1 − α

1 − αϵt

ztiztjdi)

= log(1 − α) + log(
n∑

t=1

ztiztj

1 − αϵt

) + log(di)

(4.13)

Before using this formulation for justifying the need for large α and log operation on

PageRank, a computational verification of the above two formulations (with and without

log) generated the following results. We discuss these results here because, although with

respect to this formulation, they only hint at the low rank reconstruction error of PageRank

through the formulation, they also justify the resemblance between PageRank and spectral

embeddings as well as the equivalence between the singular vectors of the PageRank matrix

and the average of the PageRank columns according to the observations mentioned in ( 1.1 ).

The notable implications of the images are that for smaller graphs(∼ 30 nodes), the

approximations fit well for lower values of α and there is negligible improvement on increasing

the value of α. However, the larger the graph became in terms of nodes, α needed to be

increased to decrease the reconstruction error. Recall, we noticed a similar effect for the

approximation of the average of PageRank columns by the left singular vector. Although,

similar to the smaller graphs, for larger graphs, after a particular value of α, the improvement
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(a) PageRank values, seeded
on node 2, for nodes 50 -
100 on the 3000 nodes graph
with 9 nearest neighbours re-
constructed with α = 0.99999
had a reconstruction error of
0.44%

(b) PageRank values, seeded
on node 2, for nodes 50 -
100 on the 3000 nodes graph
with 9 nearest neighbours re-
constructed with α = 0.99
had a reconstruction error of
110.96%

(c) PageRank values, seeded
on node 2, for nodes 1 - 30
on the 30 nodes graph with
9 nearest neighbours recon-
structed with α = 0.99 had a
reconstruction error of e−13%

Figure 4.20. Approximate PageRank values for nearest neighbour graphs

(a) PageRank values, seeded on node 2, for
nodes 50 - 100 on the original graph recon-
structed with α = 0.99999 had a reconstruc-
tion error of 3.7%

(b) PageRank values, seeded on node 2, for
nodes 50 - 100 on the original graph recon-
structed with α = 0.99 had a reconstruction
error of 157.8%

Figure 4.21. Approximate PageRank values for original graph with different α
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(a) PageRank values, seeded on node 2, for
nodes 50 - 100 on the Tapir graph recon-
structed with α = 0.99999 had a reconstruc-
tion error of 0.23%

(b) PageRank values, seeded on node 2, for
nodes 50 - 100 on the Tapir graph recon-
structed with α = 0.99 had a reconstruction
error of 102.8%

Figure 4.22. Approximate PageRank values for Tapir graph with different α
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in reconstruction was negligible. This property seemed to hint at matching order between α

and the size of the graph and hence, ϵt.

This formulation, itself does not work for larger graphs and smaller α, that is the condi-

tions where log operation was necessary. The error for the same can be bounded as a low

rank reconstruction error with α.

X = (1 − α)DZ(I − αE)−1ZT =
n∑

t=1

1 − α

1 − αϵt

ztzt
T (4.14)

For reconstruction, in our experiments, we only use the top 5 vectors regardless of the graph

size. With X̃ as the approximated matrix, the error can be written in terms of the Frobenius

norm,

||X − X̃||F = ||
n∑

t=1

1 − α

1 − αϵt

ztzt
T −

5∑
t=1

1 − α

1 − αϵt

ztzt
T ||F

= ||
n∑

t=6

1 − α

1 − αϵt

ztzt
T ||F

=
n∑

t=6

1
dt

( 1 − α

1 − αϵt

)2

(4.15)

This explains the increasing error in a larger graph compared to a smaller one for the same

α, as the missing number of eigenvectors are more for larger graphs. However the decrease in

error with α, for large graphs with same number of vectors is not apparent. The behavior of

the term 1−α
1−αϵt

explains that. This term reduces for successive eigenvectors, that is creating

a lower weight for the eigenvectors corresponding to the larger eigenvalues. While in a small

graph with α = 0.99, this reduction is significant, in large graphs the same α does not cause

significant reduction in the eigenvectors corresponding to the larger eigenvalues. But with

larger α, the term produces smaller values for larger eigenvectors, hence reducing the error.

Besides reducing the error this term also has other effects on PageRank that we will not

discuss here, but in section ( 5.2 ) where the context makes more sense.

Therefore, this formulation can not be used to explain the significance of element-wise

log operation while working with large graphs and smaller α. And to note the obvious,

none of the above experiments and formulation explain why none of this resemblance work
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for random graphs (or any graph with high second order difference). Having exhausted the

apparent spectral properties, we attempt to dive in details by investigating one of the most

simple graph there is - the chain graph.
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5. CHAIN GRAPH

We derive a closed form expression of PageRank to understand the effect of element-wise log

on it. Since the chain graph is the simplest planar graph there is, we develop the PageRank

expression for chain graphs. This section records the derivation and further analysis of the

spectral and PageRank embeddings with respect to the observations in ( 1.1 ).

Figure 5.1. A Chain graph

We analysed the personalized PageRank equation for a chain graph in terms of the

number of nodes, n, the teleportation probability, α, and the seed node, k. Given a graph

with adjacency matrix, A and a diagonal degree matrix, D, the PageRank equations followed

for this analysis is

(αGD−1 + (1 − α)vkeT)x = x

Enforcing eTx = 1. Refer to [ 2 ] for more details

(I − αGD−1)x = (1 − α)vk

→ αGD−1x = x − (1 − α)vk

(5.1)
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Here vk is the indicator vector for seed k and e is the vector of all ones. The above relation

gives n linear equation is n + 1 variables (including α) as follows,

α/2x2 = x1

αx1 + α/2x3 = x2

α/2x2 + α/2x4 = x3

...

α/2xk−2 + α/2xk = xk−1

α/2xk−1 + α/2xk+1 = xk − (1 − α)

α/2xk + α/2xk+1 = xk+1

...

α/2xn−3 + α/2xn−1 = xn−2

α/2xn−2 + αxn = xn−1

α/2xn−1 = xn

(5.2)

With xk as the seed node, we made an attempt to represent all nodes before xk in terms

of x1 and all nodes after xk in terms of xn. Notice, from the formulation in ( 5.2 ), that the

first k − 1 linear equations, and the last n − k linear equations form two systems of 2nd

order recurrence. Solving them as such, we have the following expressions. For brevity,

(+) = 1+
√

1−α2

α
and (−) = 1−

√
1−α2

α
, and 2 sets of constants (C1, D1) and (Cn, Dn).

xi =



C1(1+
√

1−α2

α )i + D1(1−
√

1−α2

α )i if i = 2, · · · , k − 1
α
2 xk−1 + α

2 xk+1 + (1 − α) if i = k

Cn(1+
√

1−α2

α )n−i+1 + Dn(1−
√

1−α2

α )n−i+1 if i = k + 1, · · · , n − 1


(5.3)
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Comparing the above expression for x2 and x3 with the first two equations in the system

in ( 5.2 ), notice that we have an ambiguity for the expression for x1, which gives us the

following relation,
C1

D1
= 1 −

√
1 − α2

1 +
√

1 − α2
(5.4)

Substituting this ratio in the first equation in ( 5.2 ), we get expressions for C1 and D1 in

terms of x1, as follows,

C1 = αx1

1 +
√

1 + α2
; D1 = αx1

1 −
√

1 + α2
(5.5)

A similar procedure for Cn and Dn gives the following expression

Cn = αxn

1 +
√

1 + α2
; Dn = αxn

1 −
√

1 + α2
(5.6)

Substituting for the definition for the constants, we have the following definition of xi,

xi =



x1(+)i−1 + x1(−)i−1 if i = 2, · · · , k − 1
α
2 [x1(+)k−1 + x1(−)k−1 + xn(+)n−k−1 + xn(−)n−k−1] if i = k

xn(+)n−i + xn(−)n−i if i = k + 1, · · · , n − 1


(5.7)

To find a value for x1, xn, we use the condition that ∑n
i=1 xi = 1 which gives the following

relation,

(x1 + xn)
(

1 + 2(+)k−2 − (+) − (+)n−k−1 − (+)
(+) + 1 + α

2 (+)k−2 + α

2 (+)n−k−1
)

= α (5.8)

and that the value of xk in terms of x1 and xn should be equal. That is,

2
α

x1((+)k−2 + (−)k−2) − x1((+)k−3 + (−)k−3)

= 2
α

xn((+)n−k−1 + (−)n−k−1) − xn((+)n−k−2 + (−)n−k−2)

→ xn

x1
= (+)n−k + (−)n−k

(+)k−1 + (−)k−1

(5.9)
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(a) Comparison of the PageR-
ank values by the closed form
expression on the 10 node
chain graph

(b) Comparison of the PageR-
ank values by the closed form
expression on the 1000 node
chain graph

(c) Comparison of the log
of PageRank values by the
closed form expression on the
1000 node chain graph

Figure 5.2. Closed form PageRank expression for Chain graph

The constraint in ( 5.8 ) simplifies to

x1[(+)k−1 + (−)k−1] + xn[(+)n−k + (−)n−k] = 2 − 2α√
1 − α2

(5.10)

Substituting the above in ( 5.9 ), we get the values of x1 and xn as follows,

xn =

√
(1 − α)/(1 + α)

(+)n−k + (−)n−k
; x1 =

√
(1 − α)/(1 + α)

(+)k−1 + (−)k−1 (5.11)

Thus, substituting this in ( 5.7 ), we have the following definition of PPR in terms of the seed

node k, n, α

xi =



√
(1−α)/(1+α)

(+)k−1+(−)k−1

(
(+)i−1 + (−)i−1

)
if i = 2, · · · , k − 1

α
2

√
1−α
1+α

(
(+)k−2+(−)k−2

(+)k−1+(−)k−1 + (+)n−k−1+(−)n−k−1

(+)n−k+(−)n−k

)
if i = k√

(1−α)/(1+α)
(+)n−k+(−)n−k

(
(+)n−i + (−)n−i

)
if i = k + 1, · · · , n − 1


(5.12)

The following figures verify the accuracy of this closed form expression.

Notice the discontinuity in the expression for x1, xn and xk. We found that, due to the

low magnitude of (−) and high values of the powers, considering only (+) term, reduces the

expression to have an intuitive format, in terms of distance from the seed node, k.
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(a) PageRank for a 2000 node
graph seeded at 818

(b) PageRank for a 2000 node
graph seeded at 1445

(c) PageRank for a 2000 node
graph seeded at 1973

Figure 5.3. Verification of approximate log of PageRank on chain graph

xi =
√

1 − α

1 + α
(+)−|i−k| ; xk =

√
1 − α

1 + α

α

(+) (5.13)

for i = {1, · · · n} − k. Then the logarithm of PageRank expression for xi can be written as,

log xi = −|k − i| log((+)) + log(
√

1 − α

1 + α
) (5.14)

The following figures( 5.3a ) compare the PageRank value calculated for a chain graph,

with 2000 nodes and teleportation probability, α = 0.99999, using (i) the original method

of calculating (I − αGD−1)−1, (ii) the closed form expression (iii) the approximation of

neglecting the factor 1−
√

1−α2

α
. The figures after that ( 5.4 ) compare the embedding generated

by the three procedures.
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Figure 5.4. Embeddings generated by PageRank formulation and the closed
form expression

To quantify the error, like  4.3 , we use Rayleigh Coefficient with the second singular vector

of the log PageRank matrix.

r = uTGu/uTu (5.15)

The error can then be defined as

abs(r1 − r2)/r2 (5.16)

ri, i = 1, 2, 3 refers to each of the 3 different procedures used to calculate the PPR value.

The error between the original embedding and that developed by ( 5.12 ), that is r12, is of the

order −8 whereas the error between original embedding and (  5.13 ), r13 and between ( 5.12 )

and (  5.13 ), r23 is of the order −5.

5.1 Distance from the source matters

This section, using the formulations in the previous section, shows that as in any other

diffusion process, distance from the source (the individual seed node in this case) matters.

The formulation above was extremely helpful in validating the observation noted in sec-

tion ( 1.1 ). The first notable fact is the decay of PageRank values with distance from the
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(a) Heatmap of PageRank values at α =
0.99 for 3000 node chain graph

(b) Heatmap of log of PageRank values
at α = 0.99 for 3000 node chain graph

Figure 5.5. Distance effect in PageRank vs log of PageRank for chain graph for α = 0.99

(a) Heatmap of PageRank values at α =
0.999999 for 3000 node chain graph

(b) Heatmap of log PageRank values at
α = 0.999999 for 3000 node chain graph

Figure 5.6. Distance effect in PageRank vs log of PageRank for chain graph
for α = 0.999999h

seed node which was also observed in figures  1.1a - 1.2b . The same is justified by the approx-

imation in ( 5.13 ) as the value is directly proportional to a constant raised to the negative

power of |i − k|. The following heatmaps exemplify the same.

Numerically, we observed that for a 30 node chain graph, for an α = 0.99, the smallest

element in X had a power of −3, while for a 3000 node chain graph, for α = 0.99, the lowest

power in X was −146, which increases to −5 with α = 0.999999.

This behavior is explained by the PageRank formulation for chain in ( 5.13 ) as for a larger

chain the term |i − k| would grow, therefore, for the same α, negative power in PageRank is

larger in a large chain. But when α is increased, with the same power, the negative powers

in PageRank reduces. The two plots below validate the same. The left one is PageRank
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(a) The order of value on y-axis for α =
0.99 was −187 as was observed in the
PageRank as well

(b) The order of values on the y-axis for
a size of 3000 was −187 which agrees
with the values observed in PageRank

Figure 5.7. The numerical effect of α on the PageRank values for the Chain graph

element in the chain, x (from  5.13 ) vs α with constant power −|i − k| = 3000 and the right

one is x vs the number of nodes (as an indication of how large −|i − k| can get) for constant

α = 0.99. This also explains why using log becomes necessary for larger graphs with lower

α.

We have the following inferences from our experiments on the chain graph.

1. Larger α for larger graph size - We observed that the term |i − k| which refers to the

distance of the current node, i, from the seed node, k, grows with the size of the chain.

This in turn raises the factor (+) = 1+
√

1−α2

α
to a large negative power. This factor is

smaller for larger α; hence, when raised to large negative power, the factor for larger

α will be larger. Hence with increasing α, the PageRank values are more pronounced

than the ones with smaller α.

2. About log - We observed that the element-wise log function was only necessary with

(1) the lower values of α, and (2) large chain graph. In other words, for a small chain,

smaller values of α at 0.99 are sufficient to generate spectral like embeddings; for larger

chains, PageRank developed using small values of α need to use the element wise log

operation, but, again, for larger graph, the PageRank generated using larger value of

α do not need the element wise log operation. The reason for this is obvious after the

previous observation. Large graphs imply large negative power with −|i − k|. In that
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case small α would lead to smaller PageRank values, compared to bigger α. But using

the element-wise logarithm operation, as can be seen from the second equation of the

chain graph, the term (+) is no longer raised to the power and hence becomes large

enough to develop pictures.

5.2 Extension to planar graphs

The crucial takeaway from the formulation in ( 5.13 ) and the above discussion is that the

element-wise logarithm is needed to boost the PageRank values when the distance between

the seed node and the individual nodes are large, as is in large graphs, with lower α. However,

that does not imply anything about its importance for other planar graphs. The next

question that needs answered is how does the significance of the teleportation probability

and the logarithm operation translate to the generic planar graphs that have been studied

other than the chain graphs? Looking at a simple case like chain graph, we know that the

PageRank formulation is given by

xi =
√

1 − α

1 + α
(+)−|i−k|

log xi = −|i − k| log((+)) + log(
√

1 − α

1 + α
)

(5.17)

where (+) = 1+
√

1−α2

α
, and hence the large distance from the seed node accounts for the

large negative power which further necessitates using element-wise logarithm on PageRank

values. However, we don’t have such formulation for a general planar graph which justifies

the above observation.

Interestingly, for other planar graphs as well, we noticed the increase in negative powers

of PageRank with graph size for low α. For a 30 nodes nearest neighbour graph, with a

teleportation probability of α = 0.99, the lowest power in X was −2, but when the same

α = 0.99 was used on a 10000 node nearest neighbour graph, the lowest power in X became

−18. In all cases, that is, for the chain graph, the nearest neighbour graphs and other planar

graphs tried during the experiments, for α far lower compared to the order of the second
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eigen value, the powers in X were very low; it increased only when α was close to the order

of 1 − λ2.

The element-wise expansion of PageRank in terms of the eigenvector of the Laplacian,

Z, ( 4.13 ), along with the matrix powers of the transition probability matrix, P, offer a hint.

Recall ( 4.13 ) and ( 4.12 ),

log(Xi,j) = log
(

n∑
t=1

1 − α

1 − αϵt

ztiztjdi

)

X = DZMZT

(5.18)

where Mt = 1−α
1−αϵt

and ϵt = 1 − λt

Although we don’t have a chain graph like formulation, as we can see from ( 4.13 ), these

powers must be accounted for by the terms in M. We begin by verifying the increase in

powers caused by the denominator in Mt = 1
1−αϵt

. The following plots show the variation

in 1
1−αϵt

vs α for different ϵ2. A higher ϵ2 implies a larger graph. The plot shows that for a

large graph, as α → 1, the value 1
1−αϵt

increases but it does not sufficiently account for the

increment in power.

Figure 5.8. The increase in powers of PageRank because of m = 1
1−αϵt

where
higher ϵ means larger graph

In the above plot, we did not consider the numerator in the terms in M. The terms in

M can be expressed as

Mi,i = 1 − α

1 − αϵi

(5.19)
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(a) The increase in negative values in Z after the
primary vector

(b) The negative values in Z for 3000 node graphs
with 9 nearest neighbours

Figure 5.9. Cumulative effect of the negative values in the eigenvector
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Considering the total expression of Mi, elements in the matrix M for the 3000 node chain

graph with a teleportation probability of α = 0.99 and α = 0.999999 change as follows.

M(α = 0.99) =



1 0 0 0 0

0 0.9998 0 0 0

0 0 0.9991 0 0

0 0 0 0.998 0

0 0 0 0 0.996


(5.20)

M(α = 0.999999) =



1 0 0 0 0

0 0.313 0 0 0

0 0 0.102 0 0

0 0 0 0.048 0

0 0 0 0 0.027


(5.21)

Notice the negative values in all but the primary eigenvector in figures  5.9a and  5.9b .

For α = 0.99, all these vectors add up in almost unit ratio and hence causing large negative

powers in PageRank; whereas, for α = 0.999999, the eigenvectors corresponding to the larger

eigenvalues combine in very small proportion which increases the value of the sum, and hence

increasing the value of each PageRank element. The structure of M can be formalized by

the following lemma.

Lemma 5.2.1. As α → 1, the terms in M begin to concentrate on the first element as

Mi → 0 for i ̸= 1.
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This reasoning applies to the planar graphs as well because of a similar trend in the values

of M and the eigenvectors Z shown in figure  5.9b . For the 3000 node nearest neighbour graph

with 9 nearest neighbors,

M(α = 0.99999) =



1 0 0 0 0

0 0.0095 0 0 0

0 0 0.0093 0 0

0 0 0 0.004 0

0 0 0 0 0.002


(5.22)

M(α = 0.9) =



1 0 0 0 0

0 0.9907 0 0 0

0 0 0.9905 0 0

0 0 0 0.98 0

0 0 0 0 0.96


(5.23)

This was further validated by approximating PageRank using the formulation X = DZMZT.

Since, we discussed that, this formulation works only for large α, we compared the values of

X generated by it for the 3000 node chain graph. The minimum value in the approximated

PageRank for α = 0.99999 was of the order e−10 while for α = 0.999999, it was e−5. Along

the same reasons, for the 3000 node nearest neighbour graph, the minimum value in the

approximated PageRank for α = 0.99999 was of the order e−5 while for α = 0.999, it was

e−10.

This observation justifies the equivalence at higher teleportation probabilities and the

need for element-wise logarithms at lower teleportation probabilities. We strengthen this

argument through another perspective - the power series representation of the PageRank

that involves matrix powers of the probability transition matrix, GD−1 along with their

contribution in the PageRank value determined by powers of the teleportation probability,

α. Recall the progression of the values in symmetric version of the transition matrix in

figures  1.2a and  1.2b , combined with the powers of α in PageRank, that is, X = (1 −

α)∑∞
r=1(α)r(GD−1)r hint at similar powers observed for the chain graph. The table shows
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an example of the order of the values from (GD−1)r for a node in the 3000 node chain graph

and that in the 30 node chain graph, both seeded at node 5 to facilitate comparison for

r = 100 and r = 1000. We compare the order of the value for the node that has smallest

non-zero value at r = 100.

Table 5.1. Matrix powers of GD−1

Graph r node GD−1

30-chain 100 13 e−2

3000-chain 100 106 e−30

3000-chain 1000 106 e−3

30-6 nearest neighbour 100 13 e−1

3000-6 nearest neighbour 100 1792 e−20

3000-6 nearest neighbour 1000 1792 e−4

The powers in Table  5.1 combined with the respective powers of α, that is, (α = 0.9)1000 =

1.74e − 46 and (α = 0.99999)1000 = 0.999 are responsible for the powers in the PageRank

matrix. Both the 30 node graphs (representative of small graphs) attain an order of e−2 for

r = 100 as compared to the 3000 node graphs that attain that order at r = 1000. When

these matrix powers add up in the PageRank with α = 0.9, the higher matrix powers in

larger graphs, where the values are significant, are made negligible for powers of α = 0.9 but

not for powers for α = 0.99999. A larger graph needs more powers of the transition matrix

P to contribute to PageRank to be able to create a low dimensional representation of the

structure, and the contribution of these higher powers become significant in PageRank only

for higher values of α. With the element-wise logarithm operation, although we do not have

a closed form expression for matrix powers, we understand that teleportation probabilities

stay significant for higher powers even with low α, that is (α = 0.99)1000 = 1.74e − 46

but log(α = 0.99)1000 = 1000 log(0.99) = −10.05. Therefore, the PageRank embedding

technique with lower teleportation probabilities still work for larger graphs with the element-

wise logarithm operation. On a graph, these matrix powers translate to steps of random

walk. Larger negative powers in elements for increasing matrix powers imply that the values

reduce as one goes farther from the seed node. Accordingly, since for nodes too far from the

seed node, this value would be minuscule, the element-wise logarithm makes those values
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pronounced enough so that the nodes far from the seed node do not become non-trivial.

According to the random surfer model, a larger teleportation probability would mean that

the surfer continues with their random walk with a larger probability than getting bored

and jumping to the nodes chosen in vk. Both of the above interpretations of PageRank, in

terms of eigenvectors of Laplacian and power series of transition probability matrix, account

for the reduction in negative powers with increasing α and the effect of element-wise log on

PageRank.

The following questions still remain to answer.

1. The element-wise logarithm and normalization by square root of degree, seem to drive

the PageRank embeddings towards spectral embeddings at low α for larger graphs.

A similar effect was observed for embedding with the eigenvectors of the Laplacian,

Q (this is also the reason why we instead use Z = D−1/2Q). With our previous

explanations, it is not apparent as to why the element-wise logarithm operation should

behave similar to degree normalization.

2. Why does this resemblance only work for a certain configuration of eigenvalues? In

other words, why does this embedding technique not work on the planted partition

models studies earlier?
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6. PAGERANK APPROACHES STATIONARY

DISTRIBUTION

One of the important question that this work tries to address is the importance of the

element-wise logarithm operation. In previous sections, we concluded that the element-wise

logarithm was necessary for α << λ2 in large graphs, because of the order of PageRank

values which showed an inverse power dependence on the distance from seed node. In the

course of our experiments with PageRank, we looked into the role that the log function

had to play for larger graphs with smaller teleportation probabilities. We investigated this

through the power series representation.

There are two power series involved in this formulation - the power series representation

of log, and the Neumann series representation of PageRank. While our experiments with the

first one did not lead to any significant observation, we found that the second perspective is

being exercised by the perceptron learning models that work by minimizing the log of error.

This section discusses the same.

6.1 The information theoretic perspective

SkipGram is a popular embedding technique that the analysis in [ 19 ], [ 20 ] and [ 26 ] inspired

us to investigate that works with element-wise logarithm of PageRank from the perspective

of the Markov matrix, P = GD−1.

The minimal essential knowledge required to understand SkipGram is that it treats each

word in the given test as a node, w, and the other words that are semantically associated

with it, as context, c, and creates a dictionary, D, by sampling words from the given text.

Conventionally, SkipGram proceeds by minimizing the following,

log σ(wc) (6.1)
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where σ(x) = 1
1+e−x and w and c are vector representations of those words. It was pointed

out in [ 19 ] that according to this definition of the objective function, the matrix that is being

factorized by the technique can be written in a closed form as,

SGi,j = log( #(w, c)|D|
#(w), #(c))

= log(vol(G)
T

(
T∑

r=1
P rD−1))

(6.2)

where #(w, c) represents the number of times the two words appear together in D and

#w and #c is the number of times each of those words appear in the dictionary. The

procedure calls T as the window length but we will not go into the details of language

processing techniques here, and will just stick to calling it matrix powers. Hence, SkipGram

is essentially factorizing a matrix resulting from the power series of the probability transition

matrix on the graph developed from D. As is well knows, PageRank can also be represented

as,

X = (1 − α)(I − αP)−1

= (1 − α)
∞∑

r=0
αrPr

= (1 − α)
∞∑

r=0
αr(GD−1)r

(6.3)

The similarity in the above two formulations enables us to derive an expression of the

personalized PageRank matrix in the limit of α → 1. As before, we drop the v from further

analysis assuming all the nodes are sampled once.
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Recall here that according to our formulation, P is column stochastic and Pπ = π.

Expanding P in terms of its eigenvectors

P =
n∑

i=1
λiuivi

T

= λ1u1v1
T +

n∑
i=2

λiuivi
T

= πeT +
n∑

i=2
λiuivi

T

→ Pr =
n∑

i=1
λr

i uivi
T

= πeT +
n∑

i=2
λr

i uivi
T

(6.4)

Using the Neumann series expansion of PageRank and the above formulation of Pr,

X(α) = (1 − α)
∞∑

r=0
(αP)r

= (1 − α)
∞∑

r=0
αr

(
πeT +

n∑
i=2

λr
i uivi

T

)

= (1 − α)
(

πeT
∞∑

r=0
αr +

n∑
i=2

∞∑
r=0

(αλi)ruivi
T

)

= (1 − α)
(

πeT

1 − α
+

n∑
i=2

1
1 − αλi

uivi
T

)

= πeT + (1 − α)
n∑

i=2

1
1 − αλi

uivi
T

D−1X(α) = D−1
(

πeT + (1 − α)
n∑

i=2

1
1 − αλi

uivi
T

)

(6.5)

The LHS of the above equation will have the rows scaled by the corresponding degree.

An element-wise logarithm on the matrix will expand as follows.
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log .(D−1X(α)) = log .



x11
d1

x21
d1

· · · xn1
d1

x12
d2

x22
d2

· · · xn2
d2

...
x1n

dn

x2n

d2
· · · xnn

dn


=


log x11 · · · log xn1

...

log x1n · · · log xnn

−


log d1 · · · log d1

...

log dn · · · log dn



log .(D−1X(α)) = log X(α) − log(Π)

(6.6)

For the RHS of the equation, we use the approximation of logarithm that

lim
x→0

log(1 + x) → x

. The formulation can finally be written as

log X(α) − log(Π) = log
(

D−1πeT + D−1
n∑

i=2

1 − α

1 − αλi

uivi
T

)

= log
(

J + (1 − α)D−1
n∑

i=2

1
1 − αλi

uivi
T

) (6.7)

Using the fact that this technique only works for planar graphs where the eigenvalues of

the symmetric Laplacian follow λ2 < O(1/n), we argue that for the first few eigenvalues,

we can say that ϵ → 1, where ϵ = 1 − λ. Since the trajectory followed by the teleportation

probability is similar, that is α → 1, we further say that, α → ϵ. In a limit we denote this as

limα,ϵ→1. Thus, the RHS in the above formulation can be calculated in the limit for planar

graphs, as follows,

lim
α→1

(1 − α)
n∑

i=2

1
1 − α(1 − λi)

= lim
α,ϵ→1

(
(1 − α)

5∑
i=2

1
1 − α(1 − λi)

)
+ lim

α→1
(1 − α)

n∑
i=6

1
1 − αϵi

= 1
2 + 0

(6.8)
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Therefore, using the above LHS and RHS approximations, the logarithm of PageRank

can be written as,

lim
α→1

log X(α) − log(Π) = lim
α→1

log
(

J + (1 − α)D−1
n∑

i=2

1
1 − αλi

uivi
T

)

log X = log
(

J + D−1
(

lim
α,(1−λ)→ϵ

6∑
i=2

1 − α

1 − αλi

+
n∑

i=7
lim
α→1

1 − α

1 − αλi

)
uivi

T

)
+ log(Π)

log X = log(J + 1
2D−1

6∑
i=2

uivi
T ) + log(Π)

(6.9)

According to  4.12 , we have P = D1/2QEQTD−1/2. We denote Z = D−1/2Q, primarily

because we only have access to Z for experimentation. So U = DZ and V = Z, which implies

V = DU → vT
i = uT

i D. So,

log X = log(J + 1
2D−1

6∑
i=2

uiuT
i D) + log(Π)

log X ≈ 1
2D−1UUTD + log(Π)

log X ≈ 1
2D−3/2QQTD1/2 + log(Π)

(6.10)

The above expression shows that for small values of Q, that is for large graphs, we can

approximate the element-wise logarithm of PageRank as,

log X = 1
2D−1

6∑
i=2

uivi
T (6.11)

A different representation of the limiting PageRank in terms of the teleportation proba-

bility was discussed by [ 15 ]. Starting with a Jordan canonical representation, P = XJX−1,

where

J =

I

J1


where J1 is the matrix of Jordan blocks for all |λi| < 1. A curious reader might notice we

don’t consider D1 as in [ 15 ] because the geometric and algebraic multiplicity of λ1 = 1 is
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always 1 in our case. Thus, the personalized PageRank equation in terms of the Jordan

representation can be written as

X(I − αP)X−1 = (1 − α)v

(I − αP)X−1x = (1 − α)X−1vI −

I

J1

α

 z = (1 − α)u

→ 1 − αz1 = (1 − α)u1

→ (I − αJ2)z2 = (1 − α)u2

(6.12)

All values in J2 will be less than 1, so for the last equation to hold with α → 1, z2 → 0.

So, we are left with z1 = u1. Separating X = [X1, X2] and X−1 = [Y1, Y2]T, according to

the values in J, we can write

z0 = u0

x(α) = X0Y0v

lim
α→1

X(α) = X0Y0

(6.13)

where the last equality is because we seed on individual node and assume each seed acts as

a node exactly once. Therefore, we can conclude that

lim
α→1

X(α) = Dz1zT
1 (6.14)

where we use the eigen decomposition of P in terms of Z. At the same time, using the

properties of Markov matrices as in [ 15 ], we know that, by our definition of P = GD−1, the

first right eigenvector will be the stationary distribution, π, and the first left eigenvector
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would be ⌉, both with eigenvalues of 1. Hence, using  6.13 , we have X0 = π = Ge
eTGe and

Y0 = eT. Therefore, the limiting PageRank matrix can be expressed as,

lim
α→1

X(α) = GeeT

eTGe
= GJ

volG

→ lim
α→1

log(X(α)) = log(πeT )

(6.15)

where log(.) is the element-wise logarithm operation and volG is the sum of degrees of all

vertices in G.

Comparing the representation in  6.15 with  6.10 , and if we don’t use the condition of

planar graph on the eigenvalues, both formulation agree that,

lim
α→1

log X(α) = log(πeT ) (6.16)

We can compile the above observations in the following lemma.

Lemma 6.1.1. The PageRank matrix, where each column denotes the personalized PageR-

ank vector seeded on each individual node in the graph, approaches the stationary distribution

matrix as α → 1. That is

lim
α→1

log X(α) = Dz1zT
1 = log(πeT ) (6.17)

However, using the planar graph conditions allows us to make further simplifications

leasing up to the formulation in ( 6.10 ).
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7. THEORETICAL IMPLICATIONS

7.1 Approaching the eigenvectors

This section looks at the singular vectors of personalized PageRank and tries to answer

how the singular vectors become similar to Z as α → 1.

In the previous section we concluded that

X = DZMZT = D
n∑

t=1

1 − α

1 − αϵt

ztzt
T (7.1)

where M = (1 − α)(I − αE)−1 and that for large graphs with α → 1, higher powers of GD−1

are included and the weights of the eigenvectors in z corresponding to larger eigenvalues of

L̃ are diminished. The same perspective also answers the question we are addressing in this

section.

Using Lemma  5.2.1 and the above formulation of X,

lim
α→1

X → Dz1z1
T (7.2)

As a corollary of Lemma  6.1.1 , we have that

z1 = 1√
volG

e (7.3)

This further implies

lim
α→1

X = 1
volG

DeeT

= 1
volG

deT

= Π

(7.4)

where Π is the matrix with the stationary distribution of the graph G as its columns.

During experiments, we only sample a few columns of the above matrix depending on

the seed node which renders a rectangular matrix, which necessitates the singular value

decomposition operation. It is crucial to note that the power of this technique lies in the
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(a) Heatmap of ZTZ for
3000 node nearest neighbour
graph. The plot is top-down
inverted which means the bot-
tom left is the (0, 0) index.

(b) Heatmap of ZTZ for 3000
node chain graph.

(c) Heatmap of ZTZ for the
Minnesota graph.

Figure 7.1. The pattern in ZTZ

fact that only a few columns of the PageRank matrix needs to sampled to create a spectral-

embedding like representation of the graph localized around the seed nodes. We calculate

PageRank with respect to each individual seed node, whose population is much less than

the total graph. Had it been otherwise and one had to sample PageRank personalized on

each node of the graph, the subsequent SVD operation would become expensive and the

technique would lose its edge.

Having noticed the trend followed by the eigenvalues of the graphs that agree with the

equivalence ( 4.2 ) and the elements in M, we can write the expression for singular vectors

used for embedding using the approximation of PageRank from ((  4.12 )) as,

X = DZMZT

→ XXT = DZMZTZMZTD
(7.5)

The above equation is critical because it shows how the singular values and the left

singular vector of the PageRank might be related to α. Recall that for the 3000 node

chain graph, for α = 0.99, M is almost close to I (see  5.23 ) for the first few eigenvectors.

Additionally, we observed that for ZTZ, the ratio of sum of diagonal elements to non-diagonal

elements was more than 99%, as in figures( 7.1a - 7.1c ). For analysis purpose, we treat ZTZ

as identity matrix, I. No helpful structure was observed for ZZT.

79



Hence, effectively, at α = 0.99, for larger graphs (n ∼ 103),

XXT = DZZTD (7.6)

However, for higher values of the teleportation probability, in large graphs the elements

in M begin to concentrate on the first element of the diagonal of the matrix. For the 3000

node nearest neighbour graph with α = 0.999999, the values are as follows.

M =



1.0

0.00096

0.00094

0.000449627

0.000254531


(7.7)

Thus, for larger graphs and higher values of α, the information in the PageRank matrix begins

to concentrate on the dominant eigenvector of L̃ or equivalently the first right eigenvector

of P. Recall that during the process we do not have access to all the eigenvectors as we are

only sampling a small fraction of PageRank columns. While approximating PageRank at

high values of α, using small number (compared to the size of the graph) of eigenvectors is

sufficient because the information is concentrated on the eigenvectors corresponding to the

highest values of M and hence the lowest eigenvalues of the symmetric Laplacian.

So for α → 1, for larger graphs (n ∼ 103),

XXT = DZMZTZMZTD ≈ DZe1eT
1 ZTD (7.8)

This further implies that when the PageRank matrix is developed using only a few columns

of personalized PageRank vectors, the singular vectors will contain more information for

larger values of α because most of the information will be concentrated in the first few

eigenvectors. The observations agree with this theory as the error between actual PageRank

matrix and the PageRank approximated using that formulation are decrease with increasing

α for the same number of eigenvectors used. The exact errors are given in Table( 7.1 ) for
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different graphs with different α. These reconstructions use only the top 5 to 7 eigenvectors

(eigenvectors corresponding to the lowest 5 or 7 eigenvalues of the symmetric Laplacian) and

the error has been measured in terms of 1-norm. This error is also theoretically justified

by ( 4.15 ). To clarify, in this section we focus on the concentration of singular vectors of

PageRank on Z and not on their low reconstruction error. The above formulation delineates

the expression for the embedding vectors, that is, the singular vectors of PageRank.

This formulation, along with the trend of values in M with respect to the graph size and

order of α (see  5.23 and  5.22 ) also explains the insight shared in [ 13 ] regarding the equivalence

of the PageRank on the entire seedset being equal to the first left singular vector of the matrix

generated by PageRank on individual seed. We noted in ( 1.1 ) that is equivalence was only

true when α matched the order of Fiedler value of the respective graph. In the limit of

α → 1, it can be justified as follows. We know from chapter  6 that limα→1 X = Π where Π

has k columns of π. So in the limit that α → 1,

lim
α→1

[(
(1 − α)v1eT + αP

)
x1 · · ·

(
(1 − α)vkeT + αP

)
xk
]

= lim
α→1

[x1 · · · xk]

[Pπ · · · Pπ] = [π · · · π]

Taking column average on both sides

[Pπ · · · Pπ] e = [π · · · π] e

(7.9)

Now we use the fact that z1 = ce, where the constant c depends on the graph and hence, we

can write π = Dz1. Further, using XXT = DZe1eT
1 ZTD as an insight, we computationally

verified that u1 = Dz1.

[PDz1 · · · PDz1] e = [Dz1 · · · Dz1] e

[Pu1 · · · Pu1] e = [u1 · · · u1] e
(7.10)

which proves that u1 can approximate the PageRank on the seedset.

81



Table 7.1. Error in PageRank approximation
Graph α error(%)

3000chain 0.9 192.82
3000chain 0.999999 5.8
30chain 0.99 12.64
3000 NN 0.9 169.21
3000 NN 0.99999 11.4
30 NN 0.99 14.5

Tapir-1024 0.9 158.7
Tapir-1024 0.9999 1.56

Original-5500 0.9 172.89
Original-5500 0.9999 8.1

Minnesota-2640 0.9 186.67
Minnesota-2640 0.9999 7.65
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(a) Embedding with α =
0.99 without log

(b) Embedding with α =
0.99 with log

(c) Embedding with α =
0.99999 without log

(d) Embedding with α =
0.99999 with log

Figure 7.2. PageRank embeddings for planted partition model with 3 blocks
of 10000 nodes each with in block edge probability of 0.25 and out-block edge
probability of 0.001

7.2 Discussion on Random Graphs

Through this section, we try to investigate the planted partition model and its char-

acteristics that promote the resemblance between PageRank embeddings and eigenvector

embeddings. In section  1.1 , we saw that in Figures  1.8a ,  1.8b and  1.9 the technique did not

work for planted partition models. However, through more experiments, we noticed that it

did work for models with p >> q, where p is in-block edge probability and q is out-block

edge probability as can be seen from the Rayleigh quotient error in Table  4.1 . We present

the corresponding pictures here.

The similarity score for these graphs have been reported in Table  4.1 . As expected from

the figures, the overall error was much lower for planted partition model with 3 blocks of

1000 nodes each as compared to the one for 60 blocks of 50 nodes each. Further, the error

for the former was also much lower than the planted partition model with the same node

distribution but where the in-block edge probability was almost equal to the out-block edge

probability, that is p ∼ q.
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(a) Embedding with α =
0.99 without log

(b) Embedding with α =
0.99 with log

(c) Embedding with α =
0.99999 without log

(d) Embedding with α =
0.99999 with log

Figure 7.3. Embedding for planted partition model with 60 blocks of 50 nodes
each with in block edge probability of 0.25 and out-block edge probability of
0.001
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(a) Eigenvalues of the planted partition
model with 60 blocks of 50 nodes each
with in-block edge probability of 0.25
and out-block edge probability of 0.001

(b) Eigenvalues of the planted partition
model with 3 blocks of 1000 nodes each
with in-block edge probability of 0.25
and out-block edge probability of 0.001

Figure 7.4. Eigenvalue patterns in planted partition model

Recall from the earlier discussion on the significance of eigenvalues that for graphs where

this embedding technique works, λd is of the order 1
n
. We also find the same trend of

eigenvalues for these graphs as well as was observed in  4.2 for other graphs that show the

resemblance. The value of λd = |(λ3 − λ2) − (λ2 − λ1)| for these graphs are 0.1281 for

sbm(50, 60, 0.25, 0.001) and 0.011 for sbm(1000, 3, 0.25, 0.001). As expected the graph for

which the embedding technique did not work has a mugh higher 2nd order slope at λ2.
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8. HYPERGRAPHS

Hypergraphs are an higher-order extensions of graphs that are naturally better at modelling

real-world data allowing for multi-way interactions between nodes. PageRank and other

diffusion based techniques have been used for hypergraph clustering ([ 27 ],[ 28 ],[ 9 ]) and em-

bedding ([ 12 ],[ 29 ],[ 11 ]) for learning on hypergraphs. In this section we attempt to extend

the PageRank embedding technique discussed above to hypergraphs.

8.1 A different perspective

PageRank as a solution to an optimization problem was introduced in [  17 ] and [ 10 ]

developed a localized algorithm to compute such a solution. Although we were not successful

in our current efforts, we identify problems for future work.

Consider a hypergraph H = (V, E) and a given set of seeds R ⊆ V . The linear equation

formulation of the PageRank problem can also be described as a solution to the following

optimization problem.

min
x

∑
(i,j)∈E

C(i,j)(xi − xj)2 (8.1)

where C is the edge weight matrix developed according to the H. Individuals curious about

how this relates to the PageRank formulation are redirected to [ 17 ]. Instead we describe the

data we worked with and the identified parts of improvement.

8.2 Results

We attempt to develop embeddings for the amazon dataset([ 30 ]) with given seedsets of 6

different product categories. We sample 4% of nodes from each of the product categories as

seeds and run the PageRank procedure with each of those nodes acting as the personalization

vector. While factorizing the PageRank matrix thus formed, we augmented all the above

PageRank vectors together, across all categories, and performed SVD. The pictures below

depict the embeddings for the new categories, that is, the clusters obtained on performing

sweep-cut of the PageRank vectors. These clusters consist of the unique nodes obtained from

the PageRank vectors seeded on different nodes of the same product type.
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(a) The amazon product graph with
α = 0.99 and without log

(b) The amazon product graph with
α = 0.9 and with log

Figure 8.1. Performance on Hypergraph
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One of the obvious reasons we failed to generate good embeddings in this case is because

the PageRank vector produced for each instance was sparse which is expected given the

localized guarantees of the algorithm. As we saw the case for graph, without the element-wise

log operation, the embeddings produced were not meaningful. While after the element-wise

log operation, the −∞ elements are replaced by the minimum elements in the matrix, which

results in most of the elements being replaced by the same element and thus the resulting

singular vectors do not produce good pictures. This is our primary goal for future work.

8.3 Future directions

Other than sharing the insight about the relation between the singular vectors and the

average of PageRank, [ 13 ] and [ 31 ] show the weakness of spectral embedding, which we saw

a hint of in figure (  1.3 ), where distinct nodes have overlapping embeddings. The PageRank

embedding technique discussed in this thesis was shown to be better than spectral embed-

dings in figure(19) of [ 13 ]. This underscores the efficiency of the former even when it does not

appear to be similar to the latter. Further, [ 9 ] and [ 13 ] share the leaking effect of PageRank

and suggest ways to counteract it. We also intend to address it in our future work.
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