
INTELLIGENT HEALTHCARE DATA ANALYTICS COUPLED WITH

SENSOR ASSESSMENT FOR NON-ALCOHOLIC FATTY LIVER

DISEASE (NAFLD)

by

Ridhi Deo

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Engineering Technology

West Lafayette, Indiana

May 2022

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Suranjan Panigrahi, Chair

School of Engineering Technology

Dr. Edward Liechty

Professor Emeritus of Pediatrics

Indiana University School of Medicine

Dr. Jennifer Freeman

School of Health Sciences

Dr. Frederick C. Berry

School of Engineering Technology

Approved by:

Dr. Kathryne A. Newton

3

Dedicated to my Grandpa – Kishore Palsikar. I cannot fully express how much your

encouragement and support mean to me. You fostered my love for reading – and I am forever

grateful to you for this gift. Thank you for always seeing the best in me, I could not have done

this without you.

4

ACKNOWLEDGMENTS

Through the process of researching and writing this dissertation, I was lucky to receive

help from several individuals. With great joy and respect, I would like to acknowledge these

individuals for taking time, effort and patience with helping me get here.

First, I want to thank Dr. Suranjan Panigrahi, my advisor and mentor, who spent many

hours of his time in ensuring I was headed in the right direction before I started my PhD journey,

through my Ph.D., and in choosing my next steps. I am grateful for your consistent support,

direction, advise and overall mentorship. I could not have done this without your support and

encouragement. Thank you for all your help – I am forever grateful.

Thank you to Dr. Edward Liechty, for taking time out from his research and practice, even

during Covid -19. The perspective and feedback you provided helped us frame our work to be

useful in the healthcare domain. I would also like to thank Dr. Jennifer Freeman, not only for her

feedback as a committee member, but also for allowing us to share her lab space and resources. I

received a great education and training in a very short time through yourself, and your graduate

students – thank you. Thank you to Dr. Frederick Berry, for his support and feedback. Some of the

questions you asked made me think more clearly through my work and I thank you very much for

that. Thank you to Dr. Arlene Rothwell and Dr. Anusha Hettiyadura, from the Mass Spectrometry

lab for training me patiently. Your kind help was timely and invaluable.

A huge thank you to Dr. Patrick Connolly and Prof. Abrar Hammoud for supporting me by

providing research and teaching assistantships all through my Ph.D. journey – I am grateful for

your kindness, and I feel lucky to have had an opportunity to work with you both.

I would like to thank my lab-mates, Jiexiong Xu and Jonah Yap for helping me with lab

experiments, providing valuable insights from your own experiments and for being ready to chat

about any bottle-necks. I appreciate the time we spent discussing and brainstorming together. To

my friends– Trevor Mamer, Matthew Scott, Katie Leyba, Ananya Ipsita, and Manav Wadhawan –

thank you for talking through the many ups and downs of person and professional lives. I am

grateful for our friendship.

Other than my professors and colleagues, my family in India and my family in the USA

have played a huge role as my support system. It is with utmost gratitude and love that I express

my thanks to all of them. To my parents – although we live miles apart, your support means the

5

world to me. To my mom – the time we spent on the phone always made me feel like home. Your

kind words of support and affection kept me going, Ma. Thank you! To my dad – you are my

inspiration, and you will always be the best Dr. Deo. To my little brother, Rishabh, – you are the

greatest blessing in my life. To my uncle, Aniketh Ramname – your support all through my

graduate school has kept me going. Thank you for putting your faith in me and helping me see

through this. I could not have done this without any of you.

Finally, I would like to thank my partner, Karthik Sethuraman, for always being on my

side through the ups and downs of graduate school. You are my biggest pillar of support and I

consider myself incredibly lucky to be with you. Thank you for taking time out to read my work,

for meaningfully critiquing it (sometimes critique is hard to take but it was helpful every single

time!) and for always looking out for the best for me. Needless to say, this dissertation would not

have been possible without your support.

6

TABLE OF CONTENTS

LIST OF TABLES .. 9

LIST OF FIGURES .. 11

GLOSSARY ... 13

LIST OF ABBREVIATIONS ... 14

ABSTRACT .. 15

 GENERAL LITERATURE REVIEW .. 21

1.1 Artificial Intelligence: benefits and challenges for healthcare ... 21

1.1.1 Challenges in processing big data .. 22

1.1.2 Challenges specific to healthcare datasets and the need to address them 22

1.1.3 Regulation of healthcare AI: .. 23

1.1.4 Interpretability of black-box models ... 24

1.2 Liver and toxicology ... 25

1.2.1 Liver functionality and importance ... 25

1.3 Heavy metals ... 26

1.3.1 Heavy metal contamination and pathways into the human system 27

1.3.2 Lead: .. 27

1.3.3 Arsenic ... 29

1.4 Heavy metals and NAFLD.. 32

 HEPATIC STEATOSIS (HS) PREDICTION USING MACHINE LEARNING

(PAPER 1) .. 34

2.1 Introduction ... 34

2.2 Literature review ... 35

2.2.1 NAFLD background and epidemiology .. 35

2.2.2 Etiology of NAFLD ... 36

2.2.3 Biomarkers and tools for NAFLD detection ... 38

2.2.4 Machine learning (ML)-based NAFLD detection ... 39

2.3 Objectives ... 41

2.4 Methods... 41

2.4.1 Objective 1A - methods ... 41

7

2.5 Results and discussion .. 54

2.5.1 Objective 1A – results and discussion ... 55

2.5.2 Objective 1B - Results and Discussion .. 55

2.6 Summary & conclusion... 58

2.7 Recommendations for future work ... 59

2.8 Figures – objective 1A .. 60

2.9 Tables – objective 1A ... 62

2.10 Figures – objective 1B .. 63

2.11 Tables - objective 1B .. 65

2.12 References .. 67

APPENDIX A. – CODE FOR OBJECTIVE 1A .. 74

APPENDIX B. - CODE FOR OBJECTIVE 1B ... 94

 EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) APPLIED TO HS-

SCREENING MODELS (PAPER 2).. 136

3.1 Abstract ... 136

3.2 Introduction ... 136

3.3 Literature review ... 137

3.3.1 Background and importance of XAI in healthcare research 137

3.3.2 Tools and techniques for XAI .. 138

3.4 Methods... 141

3.4.1 Data .. 141

3.4.2 Model & explainable AI tool selection .. 141

3.5 Results and discussion .. 146

3.5.1 Analysis of the models for male population .. 148

3.5.2 Analysis of the models for female population ... 153

3.5.3 Top predictors of HS ... 159

3.5.4 Comparison of results in male vs female populations ... 159

3.6 Summary and conclusions .. 160

3.7 Recommendations for future work ... 161

3.8 Figures... 162

3.9 Tables .. 171

8

3.10 References .. 180

APPENDIX C. P2 - CODE ... 183

 ASSESSMENT OF HS PREDICTION MODELS USING HEAVY METAL

EXPOSURE DATA (PAPER 3) ... 204

4.1 Introduction ... 204

4.2 Literature review ... 204

4.3 Methods... 205

4.4 Results and discussion .. 209

4.5 Summary and conclusions .. 211

4.6 Recommendations for future work ... 211

4.7 Tables .. 212

4.8 References ... 214

APPENDIX D. P3 - CODE FOR OBJECTIVE 3 .. 216

 ASSESSMENT OF A COMMERCIALLY AVAILABLE SENSOR FOR

ARSENIC DETECTION IN WATER (PAPER 4) .. 270

5.1 Introduction ... 270

5.2 Methods... 271

5.3 Results & discussion ... 276

5.4 Summary & conclusions ... 281

5.5 Recommendations for future work ... 282

5.6 Figures... 283

5.7 Tables .. 292

5.8 References ... 295

APPENDIX E. P4 - CODE ... 297

GENERAL CONCLUSIONS ... 307

GENERAL REFERENCES .. 309

APPENDIX F. NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) FROM MULTIPLE

SCIENTIFIC PERSPECTIVES AND CONTEMPORARY REVIEWS 316

APPENDIX G – IRB INFORMATION ... 335

9

LIST OF TABLES

Table 2.1: Model performance summary - objective 1A .. 62

Table 2.2: Class balanced datasets using under-sampling .. 65

Table 2.3: Class balanced datasets using SMOTE.. 65

Table 2.4: Model Performance Summary for HS Screening using Under-Sampling 65

Table 2.5: Model Performance Summary for HS Screening using SMOTE 66

Table 2.6: Best performing (sensitivity only) models for HS Screening using SMOTE 66

Table 3.1: Clinically defined normal values for male and female populations 171

Table 3.2: Male quadratic SVM – partial dependency result analysis 171

Table 3.3: Male gaussian I SVM – partial dependency result analysis 172

Table 3.4: Male gaussian II SVM – partial dependency result analysis 173

Table 3.5: Female quadratic SVM – partial dependency result analysis 174

Table 3.6: Female gaussian I SVM – partial dependency result analysis 175

Table 3.7: Female gaussian II SVM – partial dependency result analysis 176

Table 3.8: Male-specific model observations ... 177

Table 3.9: Female-specific model observations.. 178

Table 3.10: Comparison of best performing models in male vs in female populations 179

Table 3.11: Mean of predictor performances – male-specific models .. 179

Table 3.12: Mean of predictor performances – female-specific models 179

Table 4.1: Dataset sizes after applying SMOTE – with heavy metal exposure parameters 212

Table 4.2: Dataset sizes after applying SMOTE – without heavy metal exposure parameters .. 212

Table 4.3: Best performing models using heavy metal exposure data - male populations 212

Table 4.4: Best performing models excluding heavy metal exposure data - male populations .. 213

Table 4.5: Best performing models using heavy metal exposure data - female populations 213

Table 4.6: Best performing models excluding heavy metal exposure data - female populations

... 213

Table 5.1: Visual snapshot - within concentration analysis (4 replicates/concentration) 292

Table 5.2: Visual snapshot - pairwise concentration analysis .. 292

Table 5.3: Mean values of the hue data – all replicates .. 293

10

Table 5.4: Mean and SD of replicates – hue data ... 293

Table 5.5: Mean values of the saturation data – all replicates .. 293

Table 5.6: Mean and SD of replicates – saturation data ... 294

Table 5.7: Confusion matrix of Euclidean distances .. 294

11

LIST OF FIGURES

Figure 2.1: Global NAFLD prevalence [7] ... 60

Figure 2.2: Progression of NAFLD [18] ... 61

Figure 2.3: Summary of the methods used for data cleaning and model training 61

Figure 2.4: Flowchart of methods used in Objective 1B .. 63

Figure 2.5: Logic used for creating synthetic male HS data with SMOTE 64

Figure 2.6: Logic used for creating synthetic female HS data with SMOTE 64

Figure 3.1: Typical machine learning models complexity vs interpretability 162

Figure 3.2: Partial prediction plot with ambiguity zone (0 ± 0.15) .. 162

Figure 3.3: Methods used for explainability analysis ... 163

Figure 3.4: Quadratic SVM - Partial dependency plots for each predictor - male population ... 164

Figure 3.5: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - male population

... 165

Figure 3.6: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - male population

... 166

Figure 3.7: Quadratic SVM - Partial dependency plots for each predictor - female population 167

Figure 3.8: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - female

population ... 168

Figure 3.9: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - female

population ... 169

Figure 3.10: Individual predictor performance - male population .. 170

Figure 3.11: Individual predictor performance - female population ... 170

Figure 5.1: Image of the photography box (purchased from a commercial source) used to capture

images with consistent lighting ... 283

Figure 5.2: Calibration scale provided by the manufacturer* ... 283

Figure 5.3: Results of the Arsenic calibration curve using ICP-Mass spec 284

Figure 5.4: Flowchart indicating the process used for visual analysis 284

Figure 5.5: Flowchart indicating the process used for image analysis and pattern recognition . 285

Figure 5.6: Graphical lay out for the digital images of test kit samples arranged in row for each

concertation (rows) and each replicate (columns) [9] ... 286

12

Figure 5.7: A: 0 ppb (Arsenic in water) test results for four replicates (R1,R2,R3,R4) B:

Manufacturer’s result .. 287

Figure 5.8: A: 10 ppb (Arsenic in water) test results for 4 replicates (R1,R2,R3, R4) B:

Manufacturer’s result .. 287

Figure 5.9: A: 50 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4) B:

Manufacturer’s result .. 287

Figure 5.10: A. 100 ppb (Arsenic in water) test results for four replicates (R1, R2, R3, R4) B:

Manufacturer’s result .. 288

Figure 5.11: A. 200 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4) B:

Manufacturer’s result .. 288

Figure 5.12: 0 ppb vs 10 ppb (Arsenic in water) side by side comparison 288

Figure 5.13: 10 ppb vs 50 ppb (Arsenic in water) side by side comparison 289

Figure 5.14: 50 ppb vs 100 ppb (Arsenic in water) side by side comparison 289

Figure 5.15: 100 ppb vs 200 ppb (Arsenic in water) side by side comparison 289

Figure 5.16: Boxplot of mean hue data, commercial kit testing (four replicates per concentration)

... 290

Figure 5.17: Box plot of mean saturation data, commercial kit testing (four replicates per

concentration) ... 290

Figure 5.18: Mean hue vs mean saturation scatter plot .. 291

13

GLOSSARY

Artificial Intelligence: The umbrella term used to describe a range to tools like Machine

Learning (ML), Artificial Neural Networks (ANN) etc.

Machine Learning (ML): A technique used to train mathematical models using a set of training

data and test them with a set of different, test data points. ML is typically used for

prediction problems like classifying data into groups etc.

Training a model: Using a set of input observations to a mathematical model to “train” the

model to fit the data

Testing a model: Using new data on a trained model to predict a specific output

14

LIST OF ABBREVIATIONS

AI: Artificial Intelligence

ALT: Alanine aminotransferase

As: Arsenic

ASP: Alkaline phosphatase

AST: Aspartate aminotransferase

Cd: Cadmium

GGT: Gamma-glutamyl transferase

Hg: Mercury

HS: Hepatic Steatosis

IR: Insulin Resistance

KNN: K-nearest neighbors

ML: Machine Learning

NAFLD: Non- Alcoholic Fatty Liver Disease

Pb: Lead

PDP: Partial Dependency Plots

SVM: Support vector machines

TAFLD: Toxicant Associated Fatty Liver Disease

TASH: Toxicant Associated Steatohepatitis

XAI: Explainable Artificial Intelligence

15

ABSTRACT

This research was conducted to develop and evaluate a screening tool for Hepatic Steatosis

(or fatty liver) detection using machine learning based models. The developed models are intended

to be used as a potential clinical decision support tool for identifying patients with Non-Alcoholic

Fatty Liver Disease (NAFLD). Two versions of a HS prediction tool are discussed in Paper 1,

Objectives 1A, and 1B, respectively.

Explainability analysis of the developed models is also a major component of this work,

discussed in Paper 2. Models from Paper 1 are analyzed further for interpretability and the results

are then compared with current clinical literature. Insights from the explainability analysis are used

to identify best models that follow the clinical literature logically. Most contributing features

within each model are also identified in this work.

Another aspect of NAFLD management is related to the chronic exposure to heavy metals

in the environment (such as: Arsenic, Lead, Cadmium etc.). The heavy metal exposure component

is explored in two ways in this dissertation. In paper 3, another version of the ML-based screening

tool is explored by including heavy metal exposure data. The results from the model (with heavy

metal data) are then compared with models that exclude the heavy metal exposure data. The results

and their implications are discussed in paper 3.

Arsenic is a major hepatotoxin and the chronic exposure can lead to severe liver injury. In

Paper 4, a commercially available Arsenic detection kit was examined for Arsenic detection in

water at a household level. The kit was evaluated following a short experimental plan and the

obtained results are discussed. Finally, the obtained images were quantified digitally using a

customized image analysis and pattern recognition algorithm. The methods used for quantification

and the obtained results are also discussed.

16

ORGANIZATION OF THIS DISSERTATION

The dissertation starts with a general introduction, a list of research objectives and a general

literature review. Three conference articles (all published in conference proceedings), one under-

review journal article and one future publication are included in this dissertation, with each

research objective organized as an individual chapter. The general literature review is relevant to

the overall theme and content in this dissertation. The general literature review contains literature

related to each of the three objectives with further cross-references included to specific objectives.

Each objective then has a specific literature review section relevant to the topic.

Although all objectives are linked to the goal, each objective is stand-alone. Output of every

objective can be used to create one or more scholarly publications. Attached appendices and

supporting information are available at the end of each chapter.

Note: The structure of this thesis is not in the conventional format. This thesis is structured

using a graduate school approved - article format.

17

GENERAL INTRODUCTION

This Ph.D. dissertation focuses on addressing an important disease called non-alcoholic fatty

liver disease (NAFLD) using health informatics and machine learning models. This research was

conducted in the Integrated Sensing and Smart Solutions laboratory of Purdue University. Before

this research was undertaken, a core concept for a holistic system-based representation of liver

diseases and its association with human lifestyle, food, water, environment was discussed [1].

From this framework, a specific issue of NAFLD using intelligent modeling and health informatics

is discussed below.

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver condition in individuals

with low to moderate alcohol consumption. An estimated 80 million people are affected with

NAFLD in the USA, as of 2016 [2]. The estimates further report a 25% prevalence of NAFLD in

adults around the world [2].

The disease is chronic and can be broken down into broadly four stages, ranging from simple

fatty liver to liver cirrhosis (or even liver carcinoma) [3]. In the final stages, a liver transplant

becomes necessary for survival. Based on 2018 data from the Organ Procurement and Transplant

Network (OPTN), NAFLD was increasingly found to occur in liver transplant waitlist candidates

[4].

NAFLD is associated with several risk factors like obesity, diabetes (type-II), insulin

resistance and, hyperlipidemia [5]. Aside from the typical risk factors, environmental risk factors

like heavy metal exposure are known to worsen liver injury [6]– [9]. Chronic exposure to Arsenic,

lead, mercury, and Cadmium both directly and indirectly (via contaminated food and water) could

worsen liver functionality. Recently, the terms “Toxicant” associated fatty liver disease (TAFLD)

and “Toxicant” associated steatohepatitis (TASH) were coined to identify liver injury caused

specifically due to toxicants [10], [11]. TAFLD and TASH are similar in pathology to NAFLD

and NASH, respectively [10], [11].

To assess liver injury in general, clinicians use Liver function tests (LFTs) as initial

investigation tools. Liver function tests include measurements of the following liver biochemicals:

alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ASP),

Albumin, Gamma-glutamyl transferase (GGT) and Bilirubin. In general, a ratio of AST/AST > 1

is an indicator of hepatocellular injury [12]. The ratio is useful to detect overall liver injury, but it

18

is not specific for NAFLD detection [12]. Further, use of LFTs alone for NAFLD detection can be

misleading. Research shows that use of liver function tests alone has resulted in a steady under-

estimation of NAFLD prevalence [2], [13]– [17]. Based on the LFT results, if there is suspicion of

a liver disease, imaging tests like qualitative or quantitative ultrasound, Magnetic Resonance

Imaging (MRI), or computer tomography (CT) are used for further investigation.

Although imaging tests can be a useful tool for identifying fatty liver, ultrasound tests lack

the sensitivity for NAFLD detection [18]. MRI and CT can also be used, but MRIs are expensive

and unavailable in many locations. CT on the other hand, involves ionizing radiation, which can

be risky for certain individuals. Finally, although liver biopsy is the benchmark for confirmed

diagnosis, it is subject to sampling error, is invasive, risky, and expensive [14]. While tools are

available to detect liver injury in general, there is no specific biomarker being used in clinical

settings for NAFLD detection. The gold standard for NAFLD diagnosis is still liver biopsy [5].

Considering the above reasons, NAFLD detection is currently limited and subject to

availability of medical imaging tools. Further, current clinical guidelines do not recommend

screening for NAFLD, even for high-risk populations (obesity and diabetes), due to a lack of

definitive and inexpensive detection tools [5].

With increasing data and computational power, researchers have used machine learning (ML)

and other artificial intelligence techniques and applied it to health conditions. Considering the

current lack of screening for HS (even in high-risk groups), the use of a ML-based decision support

system would be a novel, complementary approach. Researchers have used ML-based liver disease

prediction by using images (MRI, ultrasound, CT), and biopsy data in the past [19]– [21]. However,

these are expensive and not accessible to everyone, as discussed earlier. The potential of machine

learning to more commonly available multivariate data, has not been implemented before, as per

our literature survey. In this dissertation, the potential of minimally invasive data like

demographics, previous disease conditions, lipid information, and certain lifestyle factors in

identifying NAFLD is investigated. One of the objectives of this thesis is to create ML models that

are suited to be used as decision support systems for clinicians, instead of standalone models, due

to the complexity of the disease and organ system.

Another dimension to the complexity of liver diseases is added due to exposure to heavy

metals or other pollutants. The relationship of these (heavy metals and pollutants) with liver injury

has been investigated and well-documented in the past [9], [10], [22], [23]. Heavy metal exposure

19

is found to leads to various types of skin diseases, kidney malfunctions, and liver problems [24]–

[26]. Majority of the heavy metals are documented carcinogens [27]. Global and national agencies

like the World Health Organization (WHO), United States Environmental and Food Protection

Agency (US-EPA) and, the Food and Drug Administration (FDA) publish their standards for safe

drinking water and food [25], [28]. In accordance with the published standards, local state and

county agencies monitor the quality of food and water. However, at a household level, only limited

options are available for water quality monitoring. If the water in a specific pipeline or area is

polluted, chronic consumption of polluted water can lead to bioaccumulation of the toxins in the

body, leading to liver dysfunction [29]. Arsenic in particular is a well-documented hepatotoxin

that leads to significant bioaccumulation in the liver over time [9].

An easy-to-use sensor for heavy metal detection at a household-level could be useful in

proactive monitoring of individuals’ water quality and can therefore lead to reduced risk for liver

and other organ disorders [30]. The overall research thrust of our lab is related to developing sensor

systems for “Water Linked Health and Wellness” [31]. A combination of the sensor system and

the screening models are postulated to help in a proactive approach to NAFLD identification and

management. The increasing prevalence of the chronic NAFLD condition, combined with the

silent symptoms of the disease can be challenging to identify early. Lack of early identification

can then lead to a sudden onset of advanced symptoms in the later disease stages. Screening and

proactive disease management using the developed sensor system and the ML based screening

tools are targeted in this work. Both the developed tools are aimed for use in low resource settings.

 The overall research goals of our lab are: A) Use of big-data and advanced computational

techniques to detect and manage disease conditions B) Assess, experiment, and evaluate cost-

effective sensors for detection of heavy metals in water. Therefore, the goal of this dissertation is

to investigate the capability of health-informatics (including machine learning techniques) for

identifying specific (early) stages of a progressive liver disease (Hepatic Steatosis) and to explore

the potential of a sensor techniques in determining the level of Arsenic contamination in water- a

contributing medium for liver disease.

20

OBJECTIVES

The goal of this research is to tackle NAFLD from two perspectives: Early screening for

Hepatic Steatosis using ML-based model (and related model explainability) and detection of

Arsenic in contaminated water. Based on the above introduction, and the research goals, this thesis

has the following objectives:

1. Develop models for predicting Hepatic Steatosis (HS) using machine learning tools

and specific datasets:

a. Physiological data only.

b. Liver biochemistry & physiological data.

2. Understand the model predictions using explainable artificial intelligence (XAI) to

enable model interpretability.

3. Further evaluate the effect of specific heavy metal exposure (contaminants) on the

performance of ML-based HS prediction models.

4. Explore and assess specific Arsenic detection technique by testing and evaluating an

existing commercial sensor and assessing its performance.

21

 GENERAL LITERATURE REVIEW

1.1 Artificial Intelligence: benefits and challenges for healthcare

The increasing collection and storage of data via personal devices, sensors, and other digital

sources has led to a spike in data availability. The combination of large amounts of data with

powerful computation has given rise to multiple domains such as data analytics, data science,

informatics, database management, data mining & statistical analyses etc. These domains are

applied to solve problems in various fields such as manufacturing, finance, technology,

communications, transportation, education, and healthcare.

Data analytics has also been applied to medical/healthcare data to solve specific clinical

problems. Due to the large amounts of medical data being collected by hospitals, sensors, and

wearable devices, etc. the electronic health records (EHR) are now available for analyses. EHR

and other forms of medical data (image data (like MRI, Ultrasound etc.), time-series data (like

EEG, ECG, EKG etc.), doctor’s notes and annotations etc.) are now being used to predict or detect

specific health conditions. Disease progression modeling, disease/condition predictions, specific

motion detection (fall detection, gait detection, sleep analysis etc.) have been researched

previously. Further, Human Activity Detection (HAR) using wearable sensors and video-based

detection are being increasingly researched recently.

The motivation and need for healthcare related analytics arise from a combination of scarcity

of clinical resources, clinical manpower and access to medical devices/technologies. Use of data

and technology for healthcare is also being applied in the mobile-Health or m-Health domain.

Using machine learning (ML) or other artificial intelligence techniques (AI), m-health services can

now be provided remotely, using tele-medicine or tele-health. Personalized recommendations,

clinical services and health predictions can all be made remotely.

Although the computational power and motivation for clinical analytics is high, it has several

challenges. Processing a large amount of data, making sense of the trends in big data, handling

challenges with poor quality of healthcare data (missing information, class imbalance etc.), data

privacy, design and implementation, interpretability of the ML/AI models etc. are some of the

major challenges. These need to be tackled carefully as the impact of health-related predictions is

very high. Some of these challenges are explained in detail below.

22

1.1.1 Challenges in processing big data

Large number of features/parameters and many observations/samples exist in big datasets.

Such high-dimensional data is challenging to process for several reasons. First, large datasets often

contain noise (undesirable features or observations), missing information, sparsity, and irregularity.

Solutions need to be designed on a case-by-case basis to tackle the above-mentioned issues. The

challenges are often unique based on the problem statement and the dataset in question. Therefore,

customized solutions are often required. This step is commonly termed as data ‘pre-processing’.

Development of custom solutions to pre-process the data is time-consuming and difficult but is

also necessary to avoid future biases and poorly trained AI/ML models.

Second, the selection of relevant features for a particular use-case and processing them to

better train the model is called ‘feature selection’ and ‘feature-engineering’, respectively. Feature

selection is important to make sure the model performs optimally and does not learn from

undesired parameters (noise). Any confounding/redundant parameters are also eliminated in this

step. Feature-engineering can be then used to process the features further. For example, converting

a continuous feature into discrete, segmenting a time-series dataset into segments, or applying

specific scaling or normalizations to any feature. Such data transformation techniques are used to

further improve the model performance and eliminate any irregularities/outliers.

1.1.2 Challenges specific to healthcare datasets and the need to address them

In addition to the challenges presented by big data in general, there are certain challenges

that are inherent to healthcare datasets. Class-imbalance is one of the common challenges with any

specific disease related data. Typically, a higher percentage of the population does not have a

certain disease/condition, while a smaller percentage of the same population has the disease. For

example, a study reporting on incidence of cancers in the USA found that intrahepatic bile duct

cancel was the most common cancer with an incidence rate of 1.49 per 100,000 persons [32].

Direct use of such population health data, without adjusting or rebalancing the disease vs no-

disease classes could lead to a mis-trained AI/ML model with severe implications. Therefore,

class-balancing is an important aspect as part of training an AI/ML model for healthcare

applications.

23

 Noise in time-series data (such as EEG, ECG etc.) is inherent to healthcare datasets for

especially related to neurology, cardiology, etc. Various noise artifacts are part of the data, some

due to the patient’s motion (general motion, scratching etc.), some others as baseline noise, line

noise, etc. The use of such datasets requires very specific and intensive data cleaning and

processing before the data can be meaningfully used. More details about the challenges specific to

healthcare are elaborated in a 2017 book related to big data in healthcare [33].

1.1.3 Regulation of healthcare AI:

As such, the domain of developing prediction models for human health is also very highly

regulated. The Food and Drug Administration (FDA) in the United States launched a ‘Digital

Health’ division in 2019 with ‘new regulatory standards for AI based technologies’ [34], [35].

This division regulates any standalone algorithms as that can be used as ‘medical devices. Further,

the International Medical Device Regulators Forum (IMDRF) also treats software that can be used

for one or more medical needs without any hardware requirements as ‘Software as a Medical

Device (SaMD)’ [34]. The FDA also treats such medical standalone software as SaMD. AI-based

algorithms that are made for treatment, cure, prediction, mitigation and/or prevention of any

disease/condition need to be approved by both the FDA and IMDRF [34].

Most AI-based models are black-box in nature. Black-box models use input parameters to

predict or produce output(s), but the internal working of the model is not explained. These black-

box models are quick solution providers, used to replace certain tests that could take a long time

and resources [36]. FDA regulates any such black-box models [35].

 Although the extensive regulations surrounding healthcare analytics/ healthcare AI could

be challenging, such regulations are required to ensure that the AI models are thoroughly tested

and validated before being implemented in the clinical system [33], [34]. However, the laws are

different based on different regions and some countries, such as India, do not yet have any

regulatory framework to patent algorithms [34]. Algorithms are the base of any AI system, and

they need to be regulated especially when implemented in fields like healthcare.

Finally, data privacy is essential in all domains where data is collected, analyzed, stored, and

used for recommendations/predictions etc. But in healthcare, patient data and its use in an AI

model can have severe impact, if it is not handled with care. Preserving the privacy of patient data

during collection, storage, analyses, and transfer of patient related information is critical, as

24

mandated by the Health Information Portability and Accountability Act’s (HIPPA) [36]. While

adhering with these rules can be a challenge, they are critical and need to be integrated into the

first steps of any model development pipeline.

1.1.4 Interpretability of black-box models

Use of AI for medical applications has been of interest for both researchers and for clinicians.

The commonly used AI/ML models are black box in nature, as explained earlier. The reasoning

behind a black-box model in producing a specific output is not given. This lack of explanation

makes the models un-interpretable. Typically, as the model complexity increases, the model

performance increases but its interpretability decreases.

Potential biases in a black-box model, combined with a lack of trust and understanding of

the model’s internal working are especially detrimental when applied to healthcare. Such a lack of

trust has been expressed previously by clinical practitioners [37]. Therefore, developing tools for

explaining the predictions of AI-based models is warranted. This need has led to an increasing

interest in explainable artificial intelligence (XAI), specifically in medical applications, and a

surge in research has been observed since 2015 [38].

Although previous research was mostly focused on the use of ML and other AI based models

as black boxes, more research is recently being conducted in understanding how the model

behaves. There are two ways to understand model behavior: 1) Explainability 2) Interpretability.

Although these two terms are often used interchangeably, they are different. Interpretability

analysis is used to understand how a model is interpreting a certain feature. Explainability is used

to understand how a certain input effects the model’s output.

As mentioned earlier, an increase in the research articles related to explainable AI in

medicine was noted since 2015 [38], [39]. XAI and its applications have several benefits including

but not limited to identifying potential bias in the data, gaining better insights about the use of

input parameters, improving model understanding, interpretability and overall building higher trust

in the model’s predictions [37], [40], [41]. However, when XAI is applied to health care, it poses

several unique challenges.

The first challenge is that unlike in other physical systems where the underlying behaviors

can be quantified using mathematical equations, such behaviors cannot be obtained in most

healthcare applications [37]. That is, the exact relationship, in a cause-and-effect manner, cannot

25

be obtained for multiple healthcare applications [37]. In fact, for the same medical condition, the

diagnosis and treatment provided by different clinicians could vary [37]. The subjectivity among

clinicians and lack of the knowledge regarding the exact behavior are a major challenge in

developing XAI methods for healthcare applications.

Secondly, the availability of sufficient data, longitudinal parameters, and quality of the data,

lack of structure within data pose another challenge when applying XAI to healthcare/medicine

[38], [39], [41]. Further, an inherent challenge with any XAI tool is that the tool estimates the

provided interpretations and could therefore have errors in estimation itself [42]. Potential errors

in estimation, coupled with other errors in the underlying AI model could significantly impact the

interpretation of the model’s predictions [42]. Finally, the regulation laws regarding software as a

medical device by the Food & Drug Administration (FDA) [43], General Data Protection

Regulation (GDPR) in Europe [44], have extensive requirements for use of AI models and

explainability tools. Based on these challenges, multiple researchers recommend the use of current

XAI tools in healthcare to augment the decision of clinicians, instead of using such tools in a

standalone manner [37], [39], [42]. In the future, more robust XAI techniques, combined with

richer datasets could lead to significant breakthroughs in this domain, but remain an open challenge

for now [45].

Although XAI has its challenges, its potential to improve medical decision making has led

to the use of XAI in some healthcare/medical models. The XAI methods in medicine have been

developed for intraoperative decision support [45], for predicting acute critical illness using EHRs

[46], for simulation-based training in surgery [47] and also for prediction of deteriorating Hepatitis

[48]. Recent literature related to such methods is outlined in the literature review section specific

to Paper 2.

1.2 Liver and toxicology

1.2.1 Liver functionality and importance

The human liver is the major organ for metabolism and synthesis of carbohydrate and lipids

in the body. The synthesis of all food and liquids makes the human liver highly prone to toxicity

[9], [22]. Further, the liver functionality depends on several factors. These factors can be internal

agents or external agents. Viruses, toxins (like pollutants or heavy metals) and drugs are the major

26

external factors that can impact the liver’s ability to function. On the other hand, genetic conditions

or cancers can also impact the liver’s functionality internally.

Viral infections can lead to various hepatitis conditions (A, B or C) while toxins can cause

chronic conditions due to their bioaccumulation in the liver [8], [24], [49]. While certain trace

metals like Zinc, Copper, Manganese etc., are essential for metabolism and homeostasis [50],

certain other metals like Arsenic, Lead, Mercury and Cadmium can severely deter the liver’s

functionality [9], [22], [51]– [54].

Chronic liver disease (CLD) can occur due to a variety of reasons. Some of the chronic liver

conditions are Alcoholic Liver Disease (ALD), Non-Alcoholic Fatty Liver Disease (NAFLD),

Chronic Viral Hepatitis, Genetic conditions (Alpha-1 antitrypsin deficiency, Hereditary

hemochromatosis, Wilson disease), Autoimmune hepatitis, Primary biliary cirrhosis, primary

sclerosing cholangitis and other drug, vascular conditions [55].

1.3 Heavy metals

Metals are unique in comparison with other toxic substances in multiple ways. Unlike other

pollutants that are man-made (plastic, manufactured chemicals, pharmaceutical products,

cosmetics, etc.), metals occur naturally in the environment [49]. Metals are also used in various

industrial processes, leading to the creation of synthetic heavy metals [56]. Although some metals

are essential to the proper functioning of several biological species, their presence is required in

very low amounts [56]. Essential metals like copper, Iron, and zinc are required in trace amounts

for the proper functioning of enzymes and other cellular operations [56]. Certain other metals,

however, are non-essential and in fact, toxic to biological organisms in any quantity (e.g.: lead)

[56].

Heavy metals differ from other metals based on their high atomic density (relative) and their

insolubility [49]. Heavy metals exist both naturally and in synthetic forms. However, the difference

in their chemical species varies their toxicity [49]. It is not possible to create or destroy metals

completely [49]. They are non-biodegradable which makes them accumulate inside biological

organisms (bioaccumulation) [49]. They can also travel across biological systems from water to

seafood and eventually to the human system. Fish, rice, and other foodstuffs were found to contain

heavy metals when farmed in a contaminated environment [8]. Environmental disasters and spills

related to metals, particularly heavy metals, can also cause acute toxicity.

27

The use of heavy metals in industries leads to unavoidable human exposure (even though it

is in trace and regulated amounts) [49]. Some examples of industries with occupational exposure

hazards are pharmaceutical, manufacturing, packaging, agricultural, and construction industries

[56]. The extent of metal usage makes their concentrations in the environment vary (air, water,

soil) [56]. The levels of heavy metals in air, soil, and water differ by area; point-source areas such

as those with mining activity, anthropological activity, foundries, smelters, etc. are prone to high

heavy-metal contamination [56].

1.3.1 Heavy metal contamination and pathways into the human system

Heavy metals exist in different forms (organic, inorganic, etc.) based on their stability and

form (solid, liquid, gas etc.). The metabolism of heavy metals by the body (toxic mechanisms),

their rate of dispersion into the body (Toxicokinetics) and their routes of exposure are also

different. In some cases, the same heavy metal can be exposed to the human body via multiple

pathways like ingestion, dermal exposure, absorption etc. Mechanisms of some of the common

heavy metals (Lead and Arsenic) are elaborated below.

1.3.2 Lead:

Routes of exposure

Lead has multiple routes of exposure to the human environment via air, water, soil, and

consumer products [25]. Further, lead exposure routes can also be related to past uses of lead [25].

The use of fossil fuels (use of leaded gasoline in the past), lead-based paints, ceramics, corroding

plumbing materials inside households, and industrial activities are some of the common routes of

exposure to lead [25]. Industrial sources, contaminated past lead smelters, mining, and refining

activities also lead to increased lead concentrations in the environment (soil, water) [25]. Lead

travels from the soil into water, based on the type of lead compound and soil properties [25].

Industrial contamination also releases lead particles in the air, which can travel and fall onto the

soil, polluting both soil and air [25]. Five categories of potential lead sources are air, dust, soil,

water, household materials.

1. Air: Lead smelters, metals processing, piston-engine aircraft operations using leaded

aviation fuel, waste incinerators, utilities, and lead-acid battery manufacturers.

28

2. Dust: Lead paint dust from old homes, home development activities that release dust with

lead in it.

3. Soil: Past use of leaded fuel could be present in soil (travel via dust, settled into the soil),

exterior building paints from past lead use in paints can become flaky and deposit on soil,

industrial sources.

4. Water: Contamination from nearby industrial sources and corrosion of plumbing fittings

and other plumbing material.

5. Household materials: Painted toys, furniture, jewelry, cosmetics, certain types of food, and

liquid containers.

Toxic mechanisms

Lead toxicity was found to cause cell death by reducing the antioxidant defense mechanism

and increasing ROS production, leading to oxidative stress and eventual cell death [57]. Lead

toxicity also disrupts the protein, lipid, and DNA pathways in the body via protein oxidation

(altering the function), lipid peroxidation (disrupting membrane), and nucleic acid oxidation

(cancer/mutation), respectively [57].

The health consequences of lead toxicity were found to majorly affect the central and

peripheral nervous systems compared to any other organ systems in the human body [57]. Some

of the established health hazards caused by lead are encephalopathy, paralysis, coma, neurological

problems with fetuses and growing children, anemia, renal dysfunction, hypertension,

cardiovascular diseases, ischemic coronary heart disease, cerebrovascular accidents and peripheral

vascular disease, reproductive disorders in both men and women, lead storage and mobilization

from bones [57].

Toxicokinetics

Lead exposure can be absorbed by the respiratory tract (inhalation), GI tract (ingestion), and

by touching (dermal exposure). Dermal exposure is much less lethal compared to oral or inhalation

routes. Children can absorb lead at a higher rate (40-50%) compared to adults (3-10%) when

exposed to water-soluble lead [58].

29

Once absorbed by the body, lead distribution primarily occurs via absorption by bones

through the bloodstream (In adults, 94% of body burden is in the bones, compared to 73% in

children [58]. In the bloodstream, lead travels through the red blood cells. The metabolism of lead

(inorganic) leads to complex formation with proteins and ligands [58]. The liver actively

metabolizes organic lead compounds [58]. Independent of the exposure route, lead is excreted

mainly by urine and feces [58]. Smaller elimination routes are via hair, nails, breast milk, sweat,

and saliva [58]. Elimination time for lead is dependent on the retention rate. Elimination time for

lead ranges from 1 week to 2 years, however, lead from bones is excreted at a much slower rate of

1-2 decades [58].

Sensitive populations

Children, pregnant women, and adults at risk of occupational exposure are the most sensitive

populations for lead exposure [25]. In children, lead absorption occurs at a higher rate than in

adults, leading to higher brain and nervous system damage [25]. During pregnancy, lactation,

menopause, and osteoporosis increase the exchange rate between blood and bones, leading to a

higher rate of lead in the blood for these populations. It can also be transferred between the mother

and the fetus or the mother and the baby (via breast milk) [25]. Occupational exposure due to the

breathing of dust or air particles with lead is also a health concern [25].

1.3.3 Arsenic

Routes of exposure

Arsenic (As) has multiple routes of exposure through ingestion, inhalation, and dermal

exposure. In human beings, the primary route of exposure to Arsenic is via consumption of

contaminated food and water [24], [59]. Geological characteristics of soil and drinking water

quality can lead to health complications in the exposed populations via the transfer of heavy metals

[24]. In food, the order of Arsenic concentration from highest to lowest is as follows: seafood 16.7

mg/kg in marine fish, 3.5 mg/kg in mussels, and more than 100 mg/kg in certain crustaceans),

followed by meats, cereals, vegetables, fruit, and dairy products [59].

Inhalation, particularly via cigarette smoking and as an occupational exposure in miners is

another route [24]. Arsenic exposure through particulate matter in air occurs through the inorganic

30

compound, arsenic trioxide [24]. These levels of arsenic in the air vary by area based on

anthropogenic activities and industrial zones [24]. Although exposure via skin contact is also

possible with Arsenic, it is not a common route of exposure when compared to exposure via

contaminated water and food [24].

Arsenic sources of exposure are both natural (deposits of Arsenic, volcanic activity, erosion,

Arsenic in water bodies like aquifers) and manufactured (like mining, anthropological activities,

etc.) [24]. The primary source of Arsenic exposure currently is mining, which leads to mineral

dissolution into water and soil. Soil concentration of Arsenic ranges from 1 to 40 ppm (mean: 5

ppm) [24]. Volcanic areas have a soil Arsenic concentration of 20 ppm [24]. The natural presence

of Arsenic in drinking water due to geological features is also a major contributor to Arsenic

pollution [24]. The second-largest source of exposure is the use of pesticides and by-products from

industrial activities [24].

Arsenic exists in three different forms: Organic Arsenic, inorganic Arsenic, and arsine gas

[59]. The compounds in each form are listed below.

1. Organic Arsenic compounds: Arsanilic acid, Methylarsonic acid, Dimethylarsinic acid

(cacodylic acid), and Arsenobetaine [59].

2. Inorganic Arsenic compounds: Arsenic Trioxide, Sodium Arsenite, Arsenic Trichloride,

Arsenic Pentoxide, Arsenic acid, and Arsenates (like Lead Arsenate, Calcium Arsenate)

[59]. Inorganic Arsenic is the most toxic form and a confirmed carcinogen [9]. Organic

Arsenic present in seafood is considered less harmful [60].

3. Inhalation of Arsine gas in significant quantities can be fatal [61].

Toxic mechanisms

Arsenic has multiple complex metabolic pathways inside living organisms, which are

further dependent on the chemical species [60]. Arsenic is stored and metabolized primarily in the

liver, where it is prepared for elimination via urine [24]. The major detoxification pathway of

inorganic Arsenic from the human body is via demethylation. However, intermediate metabolites

released during demethylation were found to have toxic effects and cause DNA damage [60]. A

high methylation index was also associated with skin lesions and skin cancer [60].

Neurotoxicity due to Arsenic exposure impacts the peripheral and central nervous systems,

particularly the glial component of the central nervous system [60]. Mitochondria are highly prone

31

to neurotoxicity by Arsenic [60]. Further, a class of Arsenic compounds: arseno-lipids, arseno-

hydrocarbons, was found to be toxic to human neurons and was able to cross an in vitro brain

barrier [60]. Hence, compounds of this class might have the potential for neurodevelopmental

toxicity [60].

The Arsenic (III) compounds are believed to be the most toxic and carcinogenic form of

Arsenic [60]. DNA repair system inhibition, interference with redox regulation, and ROS (reactive

oxygen species) production were also found to be linked with carcinogenic mechanisms [60]. As

(III) compounds have a strong affinity for SH-groups, contributing to acute toxicity [60]. Further,

Arsenic (III)-compounds inhibit cytosolic SH-enzymes such as glutathione reductase [60].

Long- term Arsenic exposure was found to be associated with lasting epigenetic changes,

potentially causing heritable gene expression changes (histone modification, RNA interference,

and DNA methylation) [60]. However, organic Arsenical arsenobetaine was found to be excreted

unchanged and is therefore not classified as carcinogenic [60].

Toxicokinetics

Arsenic exposure can advance into the human body via ingestion (food, water), inhalation

(air, Arsine gas), skin penetration (via touch). The toxicokinetic mechanism of Arsenic is

dependent on the chemical species, duration of exposure, and physiochemical properties of the

exposed compound.

Ingestion of inorganic Arsenic leads to absorption of 70-90% of Arsenic into the

gastrointestinal (GI) tract [24]. From the GI tract, it spreads mainly to the liver, kidneys, lungs,

and bladder via the bloodstream [24]. The highest accumulation occurs in the liver during this

phase. A portion of the absorbed Arsenic is excreted through urine. Cells in the body disperse

Arsenic through the phosphate transport system, aquaporins and transporters of hexose permeases

[24]. pKa and intestinal microbiota also contribute to the absorption and toxicity of As. The affinity

of Arsenic (III) compounds with SH-groups results in high Arsenic deposition in hair, skin, and

nails [24]. Once in the body, the majority of Arsenic metabolism occurs in the liver (especially in

mammals) [24]. The processing in the liver facilitates the elimination of Arsenic via urination from

the body [24]. The majority of eliminated Arsenic is in demethylated forms (60-80%), while the

remainder is inorganic (10-30%) and monomethylated (10- 20%) forms [24].

32

Sensitive populations

Certain populations are more likely to be exposed to Arsenic based on geographical

location and occupation. Individuals working in wood preservation work, metal manufacturing,

glass production, and electronics industries are most susceptible aside from individuals living in

areas with high natural levels of Arsenic [62]. Children are also more susceptible than adults based

on health impacts [62]. Further, pregnant women and unborn babies could also be harmed due to

Arsenic exposure [62].

1.4 Heavy metals and NAFLD

Heavy metals and other toxicants are an additional burden for patients suffering with

chronic liver conditions like NAFLD. Upon examination of liver biopsies of workers exposed to

vinyl chloride, it was found that 80% prevalence of steatohepatitis existed in workers with

occupational exposure [11]. It is critical to note that these workers were specifically identified to

not have any other identifiable risk factors, other than occupational exposure [11]. Several other

studies have also found a positive association between exposure to toxicants and increased

prevalence of NAFLD [9], [10], [63]– [65]. In fact, in cases of high chronic exposure, these

conditions are labelled as Toxicant Associated Fatty Liver Disease (TAFLD) and Toxicant-

Associated Steatohepatitis (TASH). As mentioned earlier in the introduction section, TAFLD and

TASH are similar in pathobiology to NAFLD and NASH, respectively [10], [11].

Chronic exposure to heavy metals is dangerous and can lead to several other health

conditions as well. US-EPA, WHO and other agencies around the world establish the acceptable

levels of heavy metals and other pollutants in drinking water. Local agencies then monitor and

ensure compliance of public water sources with the established standards. However, private

sources of water like wells, springs or surface water sources are not monitored. Contamination of

drinking water sources by heavy metals leeching into could occur via faults in “household

plumbing, service lines, mining operations, petroleum refineries, electronics manufacturers,

municipal waste disposal, cement plants, and natural mineral deposits” [66]. Chronic exposure to

such contaminated drinking water can potentially initiate liver dysfunction or exacerbate existing

liver injuries.

33

Recent studies have shown that an association between NAFLD and exposure to heavy

metals like Mercury [63], Arsenic [9], and Lead [67]. Several animal models were explored to

understand the relationship between abnormal liver biochemistry and heavy metal exposure. For

instance, chronic Lead exposure in adult mice was found to lead to both hepatotoxicity and change

in multiple signaling pathways, fatty acid metabolism, and drug metabolism [68]. Further, the same

study also reported an increase in the levels of three liver biochemicals (AST, ALT, and ALP)

with an increase in Lead exposure [68]. A similar finding was reported using Common Carp from

the Topolnitsa reservoir [69]. Similarly, it was found that chronic Arsenic exposure (> 9 months)

led to induced hepatic steatosis in mice when fed with drinking water contaminated with Arsenic

(3.2 mg/L) [70].

In human studies, researchers reported abnormal levels of liver biochemicals when

individuals were exposed to heavy metals. For example, a clear ‘demographic and mechanistic

overlap’ was reported between Arsenic exposure and NAFLD in individuals [9]. Higher incidences

of obesity and NAFLD were also reported from states within the USA where Arsenic was

contaminating the drinking water [71].

In summary, chronic heavy metal exposure is reported to be linked with abnormal liver

biochemistry, with NAFLD and, with liver damage in general. The liver cannot metabolize heavy

metals and therefore the screening, diagnosis, and early intervention for individuals living with

chronic heavy metal exposure is critical.

34

 HEPATIC STEATOSIS (HS) PREDICTION USING

MACHINE LEARNING (PAPER 1)

A portion of the work in this paper was published in two peer-reviewed conference

proceedings. 1) 3rd International Conference on Computational Biology and Bioinformatics

(ICCBB 2019), and 2) IEEE – Engineering in Medical & Biological society Conference (EMBC

2021).

2.1 Introduction

Despite the increasing prevalence of NAFLD, there is no clinical procedure for screening,

yet. Further, the exact cause for Non-Alcoholic Fatty Liver Disease (NAFLD) is unknown and

currently there are no specific biomarkers that can identify the disease with specificity. However,

multiple factors contribute to the disease condition and are established as risk factors (obesity,

hyperlipidemia, diabetes etc.) [1]. Due to the complexity of the disease condition and the lack of

clear detection options, the American Association for Liver Diseases (AASLD), does not

recommend screening for NAFLD, even within the high-risk categories (obesity and diabetes) [1].

Therefore, there are two potential ways in which NAFLD can be detected in asymptomatic

adults, currently. They are: 1) Annual liver functionality tests (LFTs) (only in certain high-resource

settings) 2) Incidental detection when the adult is getting treatment/ diagnosis for a different

condition. In both the above ways, the health care practitioner recommends a suspected NAFLD

patient for further investigation via additional testing/screening based on the liver functionality

and related physiological parameters of an individual (ultrasound, MRI, etc.). However, this

recommendation is subjective among healthcare practitioners. Note that in this condition, the

practitioner makes the decision solely based on available individual data (liver functionality,

physiological data, etc.). Therefore, a lack of systematic screening of NAFLD currently exists.

Use of healthcare data to detect disease conditions is currently increasing due to the

combination of increased data availability and increased computational power. In this research,

the gap in screening of NAFLD is identified and machine learning based models are developed.

Background relevant to the disease condition, its prevalence, etiology, and risk factors are

elaborated in the literature review section below. Specific gaps are highlighted, and research

objectives are presented at the end of the literature review.

35

2.2 Literature review

Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the major causes for chronic liver

condition globally, with increasing prevalence in the recent years. It occurs in individuals who

consume limited or no alcohol. However, as explained earlier, the exact cause for NAFLD is not

known [2]. While there is no known cause, several risk factors have been identified for this disease

[1]. Briefly, obesity, diabetes, dyslipidemia, metabolic syndrome, insulin resistance, polycystic

ovary syndrome (PCOS), and chronic heavy metal exposure are all linked to NAFLD risk [1], [3]–

[6]. These risk factors and their relationships with NAFLD are elaborated in detail in the sections

below along with the etiology and epidemiology of the condition.

2.2.1 NAFLD background and epidemiology

The prevalence of NAFLD has been increasing globally. A global meta-analysis of

epidemiological NAFLD data conducted in 2016 reported a 10% increase in global prevalence

from 2005 to 2010 [7]. Other researchers have also found similar spikes in NAFLD prevalence in

the recent past [1], [8], [9]. The prevalence was found to vary by region and is the highest in the

Middle East (31.8%) and South America (30.4%) [7]. The lowest prevalence was reported in

Africa at 13.48% [7]. In the USA alone, the prevalence rose from 5.5% to 11% in two decades

(1988-08) [7]. As of 2016, an estimated 80 million individuals have NAFLD in the USA [9].

Within Asia, the prevalence across regions was found to be significantly different based on

a 2013 study [10]. Within a group of regions in Asia (India, Sri Lanka, Malaysia, Singapore,

Indonesia, Korea, Japan, and Taiwan) the prevalence varied between 15 to 45% [10]. China has a

reported prevalence of 20%, Japan has 17% and Hong Kong has 27%, with all three regions having

increasing prevalence between 2003 to 2013 [10]. Within highly populated regions like China and

India, such high prevalence percentages imply that many people are impacted by the disease.

The incidence of NAFLD in diabetics (specially type -2 diabetics) was also found to be rising

sharply [1], [9]. It was found to be 55.5% (with patients from 20 different countries) in a 2019

meta-analysis [9]. Of the patients with NAFLD and diabetes, 17% had the advanced form of

NAFLD (fibrosis) [9]. In Iran, Saudi Arabia and Turkey combined, a 59.20% of NAFLD

prevalence was reported within type-2 diabetics [9]. Similar numbers were reported in India and

36

Pakistan at 57.46% [9]. However, Europe was reported to have the highest prevalence at 68.82%

within the type-2 diabetics [9].

Other disease conditions, like insulin resistance, hypertension and dyslipidemia are also

linked with increasing NAFLD incidences [8]. Although obesity is a major risk factor for NAFLD

[1], it was also found in lean populations in Asia and in the United States [10], [11]. Increasing

age was another factor in increasing NAFLD prevalence, especially in the 40–50-year age range

[8]. Different ethnicities were found to be linked to NAFLD, with Hispanic population having the

highest prevalence, when compared with non-Hispanic Caucasians and African Americans [12].

Sex-based NAFLD prevalence was found to be significantly different by several researchers [13]–

[17]. Researchers consistently report a higher NAFLD risk for men, when compared with women

[13]– [17]. Differences between menopausal women vs pre-menopausal women have also been

noted, with postulations of specific hormones inducing a protective effect in women [14], [15].

Though the prevalence of NAFLD is higher in men vs in women, the advancement of NAFLD

from simple fatty liver to fibrosis was reported to be faster in women than in men [15]. Due to the

complexity of the condition and its association with several factors, it is important to review what

is known about the etiology of NAFLD.

2.2.2 Etiology of NAFLD

NAFLD is a chronic condition and can be broadly classified into four stages. In the first

stage, the liver starts building up fatty deposits but there are no signs of inflammation [18]. In this

stage, the liver shows no symptoms, and the disease could continue to progress undetected. This

stage is also called as simple fatty liver or Non- Alcoholic Fatty Liver (NAFL) [18]. In the second

stage, signs of inflammation begin to appear as the liver attempts to repair the damaged tissue [18].

If the tissue is not repaired quickly enough to the point of excessive inflammation, liver scarring

may occur [18]. At the time of liver scarring, the condition is categorized as stage 3 [18]. However,

the liver can continue to function well in this advanced stage [18]. Over a period, excessive

presence of scar tissue and low amounts of normal tissue can lead into the final stage called liver

cirrhosis [18]. At this point, the liver struggles to function normal and symptoms such as yellowing

of the skin, eyes, and a dull ache in the lower ribs appear [18]. The progression can also be seen

diagrammatically in Figure 2.2.

37

The interaction between multiple factors like inflammation, IR, diabetes, obesity, general

diet, and lifestyle can have an impact of the progression of the disease. It is known to commonly

co-exist with obesity, dyslipidemia, and insulin resistance [19]. Based on multiple studies from

various regions (Italy, China, UK) and through meta-analyses, it has been found that NAFLD

prevalence is much higher in population with either obesity and/or with type-2 diabetes [9], [19].

In both high-risk groups (obesity and diabetes type -2), the prevalence of NAFLD is roughly

double that of the prevalence in normal population [9], [19]. While obesity is a significant risk

factor for NAFLD, recent studies have also shown that it can occur in subjects with BMI <25

Kg/m2 as well [11], [20]. Studies from various regions indicate prevalence rates as follows in those

with BMI < 25 kg/m2: India (20%) [21], Japan (15.2%) [22], China (15%) [23], Greece (12%)

[24], and South Korea (12.6%) [20], [25]. It was found that non-obese subjects with NAFLD are

more insulin-resistant than those without NAFLD [26].

Insulin-resistance (IR) was found to be the standalone parameter to determine high risk of

NAFLD [27]. While NAFLD can occur in those with IR and in those with hyperinsulinemia, there

is a high presence of circulating free fatty acids (FFA) in those with IR [28]. The presence of FFAs

in the blood can then lead to an uptake of these FFAs by hepatic cells which further leads to

increased gluconeogenesis and decreased storage of glycogen [28]. Further, liver IR was found to

be linked to FFA levels in the liver, but not to the levels of visceral fat [29]. Explanations about

lean individuals (particularly Asians) with high IR in the liver could be related to the previous

finding [30], [31].

Another condition that is often correlated with NAFLD prevalence is Metabolic Syndrome

(MS). Several researchers have detailed studies regarding the relationship of NAFLD with MS

[27], [28], [32], [33]. Definitions of MS differ slightly between different agencies like the WHO,

European Group for the Study of Insulin Resistance (EGIR), National Cholesterol Education

Program (NCEP) Adult Treatment Panel III (ATP III) [34], [35]. A definition from ATP III

identifies MS when three of the following five conditions are met:

1. High abdominal obesity

2. High triglycerides

3. Low HDL

4. High blood pressure

5. High fasting glucose

38

While MS and NAFLD have common risk factors, there is no clear indication of which

condition occurs first [27], [28], [36]. Further, a difference in the prevalence rates of NAFLD in

patients with MS is found based on race and ethnicity [28].

In addition to the disease conditions discussed above, hormones could also play a role in

NAFLD prevalence and progression. Several hormones in the body are related to the promotion

of obesity and inflammation. Two such hormones derived that are related to NAFLD are a)

glucagon-like peptide 1 (GLP-1) and b) Ghrelin [32]. The role of GLP-1 is the activation of reward

centers of the brain when fructose and other macronutrients are consumed. On the other hand,

Ghrelin concentrations promote hunger.

Reduced secretion of GLP – 1 along with reduced receptors for the same have been found

in NAFLD patients [32]. This reduction damages the glucose and lipid metabolism in the liver

[32]. The concentration of acylated/deacylated Ghrelin in NAFLD patients was found to be

elevated on the other hand [32]. The simultaneous decrease in GLP-1 and increase in Ghrelin could

be severely damaging for NAFLD progression.

Overall, of the various chronic liver conditions, NAFLD was found to be one of the major

etiologies. Among chronic liver conditions in young adults in United States, 22% of cases were

attributed to NAFLD [37]. Similarly, 39.7% of chronic liver cases among adults in India were

attributed to NAFLD [38]. NASH, the second stage of the NAFLD condition was found to be a

common and increasing etiology of end-stage liver disease in the US [39]. Finally, NAFLD and

NASH are growing all around the world. Early detection of the condition and disease management

are not only critical but also urgent.

2.2.3 Biomarkers and tools for NAFLD detection

Majority of the findings related to NAFLD biomarkers are still in the research phase. As

indicated earlier, there are no established, specific biomarkers for NAFLD currently. However,

some researchers have identified potential biomarkers for NAFLD and NASH. Some of those are

discussed here.

Adipose tissue was previously thought of as a passive energy storage unit. However, more

recent studies have identified the ability of the adipose tissue in synthesizing and releasing

hormones and cytokines [40]. Therefore, increasing researchers are now investigating these in the

context of NAFLD. Four adipokines: “Leptin, adiponectin, ghrelin, interleukin-6, and tumor

39

necrosis factor-a” were found to be associated with NASH [41], [42]. Research is also continuing

to investigate the relationship of fatty acid-binding proteins: adipokine binding protein (A-FABP),

retinol-binding protein (RBP4), and lipocalin-2 due to their association with obesity, IR, and MS

[43]. Fibroblast growth factor 21 (FGF21) is a hormone released by the liver. It has been found to

be related with “lowering blood glucose, lipids, and insulin levels, reversing hepatic steatosis, and

increasing insulin sensitivity” in individuals [44]. These features have led to investigation of

FGF21 as a potential early biomarker for NAFLD [44].

While the research to identify biomarkers for NAFLD is ongoing, it is important to find ways

to detect NAFLD in patients in the early stages. Early identification is critical for an increasingly

prevalent chronic condition like NAFLD. Due to the complex etiology of the disease and the

relationship of multiple other conditions with NAFLD, the use of machine-learning based tools for

early detection would be a timely solution.

2.2.4 Machine learning (ML)-based NAFLD detection

Use of ML/AI tools for healthcare applications is a fast-growing domain. The availability of

large amounts of healthcare data and increasing computational power are enabling this domain.

Upon surveying the recent literature for ML/AI tools in the context of NAFLD, research related to

the following three areas was found: 1) liver fat quantification, 2) fibrosis pattern detection, and

3) assessment of the severity of the liver disease. These research tools use multi-modal data to

train the ML/AI models. Overall, four different modalities of data were used, per our literature

search. They are:

i. Imaging modalities (Ultrasound, MRI)

ii. Omics data (genetics, transcriptomics, metabolomics, etc.)

iii. Images of liver biopsies (on a microscopic slide)

iv. Physiological parameters (BMI, age, etc.) in combination with one of the other

modalities

Images provide a large amount of data and have the potential to be used for identifying

damage in the liver or quantifying the extent of the damage. While there are three different liver

imaging tools (Ultrasound, MRI, and Computer tomography (CT)), Ultrasound (US) based images

were most used by researchers for training ML/AI models. Further, US tests are of two types: 1)

Conventional US (CUS) 2) Quantitative US (QUS). While CUS is available more commonly than

40

QUS, the use of QUS was found to be more accurate (68.3%) in quantifying steatosis when

compared to CUS (51.7%) [45]. Other studies using QUS also reported similar findings [46]– [48].

While some researchers have used ML and other AI tools in the context of NAFLD, most of

these tools require images for detection or quantification of NAFLD [45]– [56].

One research study also combined the use of image-data and physiological-data to extract

rules for Fatty Liver Disease (FLD) detection using artificial neural networks (ANN) [57].

Although the use of US images shows potential, particularly for quantification of the extent of

liver damage, the use of US for screening purposes can be harder to implement. Medical imaging

exams are more expensive and less accessible when compared to other, minimally invasive options

like blood tests. In low-resource settings, where NAFLD is prevalent, the access to medical

imaging tests is not reliable. Under these constraints, the use of physiological parameters that can

be obtained using minimally invasive tests (like oral glucose test, blood test etc.) are better suited

for screening purposes.

There is a need to develop tools to help doctors in making better recommendation so that

patients with HS can be screened at an early stage. To address this need, mathematical models are

developed in this research. Recent developments in Machine Learning (ML) technology as

described earlier are utilized in this work to screen for HS. The overall goal of this project is to

address the need of early HS detection by developing medical decision support tools using machine

learning and existing data.

The hypotheses used in this work are as follows:

1. Six physiological parameters: age, sex, BMI, triglycerides, HDL, and total cholesterol

relate to NAFLD/HS occurrence in individuals and can therefore be used to predict HS

using ML.

2. The liver functionality parameters (ALT, AST, ASP) in addition to some physiological

parameters (Age, BMI, HDL, plasma-glucose) can improve HS prediction.

To address the goal described above, two different objectives were developed and tested. The

methodologies for each objective were independently developed and analyzed.

41

2.3 Objectives

1. Objective 1A: Develop and explore the performance capability of a ML model in predicting

HS in using only physiological parameters.

2. Objective 1B: Develop and evaluate a HS screening model to be used as a clinical decision

support tool using physiological and liver biochemistry parameters.

2.4 Methods

2.4.1 Objective 1A - methods

The NHANES III data were processed relevant to the hypothesis of this objective. In the

sections below, detailed data processing steps, statistical model selection, model development and

pseudo code used in the model are provided.

a. Dataset description

The dataset from the third National Health and Nutrition Examination Survey (NHANES

III) was used in this research [58]. It contains data from the USA (N = 33,994) for individuals

older than 2 months. The data are organized in four categories: “NHANES III Household Adult,

NHANES III Household Youth, NHANES III Examination, and NHANES III Laboratory” [58].

Additional files regarding the “Hepatic/Gallbladder Ultrasound and Hepatic Steatosis (HGUHS)”

were also used from NHANES III [59]. For hepatic steatosis (HS) assessments, the liver was

grouped as “normal”, “mild”, “moderate”, or “severe hepatic steatosis” [59]. The HS variable was

recoded by the data providers (NHANES III) using ultrasound (US) exams and double radiologist

reviews to determine the presence or absence of HS in ages between 20 - 74 [59].

The output variable used in this research was hepatic steatosis (HS). The NHANES III

Household Youth data (age range 2 months - 16 years) were specifically excluded, and only ages

greater than 20 years were included in this research. Alcohol related variables from the dataset

were processed to exclude individuals who consumed > 7 drinks per week, for women and > 14

drinks per week, for men. The data used here were from NHANES III. While the NHANES III

website provides sample weights [60], they were not used in this research. Other researchers who

used NHANES data have also chosen not to use sample weight adjustment [61]– [63]. Therefore,

42

in this research, it is assumed that the impact of not using sample weights is minimal. The use of

the NHANES III dataset for the current study was approved by Purdue Institutional Review Board

(IRB) (PROPEL # 17975020). A copy of the IRB approval is in Appendix G.

b. Data processing

Data from NHANES III were first read into SAS software [64] as four different files. Data

features relevant to this research were retained and the other features were discarded. See code in

Appendix A.1 for details. Each observation in the dataset is provided (by NHANES III) with a

unique sequential number (SEQN). These SEQN numbers were used to combine the data from the

four different files into one file using a customized SAS code (Appendix A.2). Observations with

missing information pertaining to alcohol consumption were eliminated using the code in

Appendix A.3. The reduced dataset was then exported out of SAS and imported into MATLAB

[65].

Additional processing was performed on the data in MATLAB using a customized code

[65]. The imported data had a size of 17,704 x 11. After importing, any missing values were re-

labelled to indicate “Not a Number (NaN)” for ease of data representation in MATLAB. After

eliminating observations with any missing data and applying alcohol related exclusions, the dataset

size reduced to 8,703 samples. Six predictor variables (predictors) were selected and used in this

study. The predictors were: Age, sex, BMI, triglycerides, HDL and, total cholesterol. These

parameters were selected based on previous literature and their relationship with NAFLD. A

summary of the methods used in this paper are summarized in Figure 2.3. Additional details about

the MATLAB code are explained in the sections to follow.

c. Model selection

The following ML model families were selected based on the binary nature of the output

variable and the size of the dataset in this study. The details regarding each of these model families

are further elaborated in the following sections.

i. Support Vector Machines (SVM)

ii. Bagged trees

iii. Boosted trees

43

Within these model families, a total of five models were trained and tested (Fine gaussian

SVM, medium gaussian SVM, bagged trees, gentle boosted tree and ADA boosted tree).

Support Vector Machines (SVM)

SVM are a family of supervised ML techniques which separate output classes using an

optimal-hyper plane. The hyper-plane may be linear or non-linear. SVM are particularly useful

when the output class is binary (for example in this study: HS/no-HS). SVM are also appropriate

to be used when the datasets are mixed in nature [66], [67]. Mixed datasets include data that is a

continuous parameter (For example: Age), and data that is discrete or categorical in nature (For

example: Sex). Considering that the six selected input features are a mixture of continuous and

discrete parameters, the use of SVM is well-suited for this study.

The governing equations for SVMs are different based on the separability of the data. For

linearly separable data, the equations are as shown in (1) and (2). A set of inputs are indicated by

ij′, their corresponding output categories by oj′, and dimension by d. Since the SVMs are being

used for binary classification, 𝑜𝑗 = ±1. ∝ is a vector with coefficients that are orthogonal to those

of the separating hyperplane and c is a constant [66]– [68]. The equation of a hyperplane to separate

one category of inputs from the other would then be indicated by equation (1).

𝑓(𝑖) = 𝑖′ ∝ + 𝑐 = 0 (1)

To optimize the separating hyperplane, the following constraint is used (shown in [2]) [66]–

[68]. This constraint ensures that the distance between the different output classes is maximized.

𝑜𝑗 𝑓(𝑖𝑗) ≥ 1 (2)

In case of data that cannot be linearly separated, a soft margin is used. The mathematical

description of soft margin is shown in equation (3). It is also called the ‘Kernel Trick’. In the

equation, 𝑐̂ indicates the estimate of the bias, 𝛽𝑗̂ indicates the jth estimate of the vector 𝛽̂ and

𝐺(𝑖𝑗 , 𝑖𝑘) provides a result from the ‘Gram Matrix’ which is calculated using an inner product of

∅(𝑖𝑗), ∅(𝑖𝑘) where ∅ is the kernel function [66]–[68]. The kernel function varies based on the

specific kernel used.

44

𝑓(𝑖) = ∑ 𝛽𝑗̂

𝑛

𝑗=1

𝑜𝑗𝐺(𝑖𝑗 , 𝑖𝑘) + 𝑐̂ (3)

𝛽𝑗 is subject to an additional constraint shown by equation 4 [66]– [68]

 0 < 𝛽𝑗 < 𝑐̂ (4)

In this work, a gaussian kernel was implemented. The equation specific to a gaussian kernel

is shown in equation (5)

𝐺(𝑖𝑗 , 𝑖𝑘) = 𝑒𝑥𝑝 (− ||𝑖𝑗 − 𝑖𝑘||
2

) (5)

Bagged trees

Bagged and boosted tree methods are ensemble algorithms that involve growing a group of

decision trees and aggregating their results. The trees are also called “learners”. A split criteria

needs to be used for growing a decision tree. In this work, “Gini’s Diversity Index (GDI)” was

used [69]. GDI splits the nodes of any decision tree based on a condition. The condition is

mathematically described in equation (6). ‘𝑖’ is the total number of groups for any decision and

f(i) represents the groups that match with group 𝑖 and arrive at the node.

𝐺𝐷𝐼 𝑜𝑓 𝑎 𝑛𝑜𝑑𝑒 = 1 − ∑ 𝑓2(𝑖)

𝑖

 (6)

Bagged trees algorithm is also called random forest, because it groups or bags random predictor

selections at each split. The number of splits is capped at one less than the number of observations

in this algorithm. The number of predictors is decided using the square root of the total number of

predictors. This formula allows bagged trees algorithm to have deeper trees when compared to

other tree-based algorithms [69].

Boosted trees

Boosted trees are like bagged trees as both algorithms are ensemble methods based on

generating decision trees. The boosted tree methods also use GDI to split nodes in its trees, but in

this case, the number of splits is limited to 10. The limit leads to multiple shallow trees, as opposed

45

to deep trees in bagged trees algorithm. Two types of boosted trees were implemented in this

research: 1) ADA boost 2) Gentle boost

The ADA boost algorithm trains the trees (or learners) one after the other, in a sequential

pattern. The weighted classification error (𝜀𝑖) for each tree, ‘t’ is computed using the equation (7)

[69]. The error is summed up over ‘n’ observations. The prediction made by each tree is

represented by ℎ𝑡 and the weight of each observation is represented by 𝑑𝑛
(𝑡)

. The variable I is used

as an indicator.

𝜀𝑖 = ∑ 𝑑𝑛
(𝑡)

𝑁

𝑛=1

𝐼(𝑡𝑛 ≠ ℎ𝑡(𝑝𝑛)) [7]

After training is completed, predictions are made using equations (8) & (9) [69]

𝑓(𝑝) = ∑ ∝𝑡 ℎ𝑡(𝑝)

𝑇

𝑡=1

 [8]

∝𝑡 = 0.5 log (
1 − 𝜀𝑡

𝜀𝑡
) [9]

∝t is the weight associated with the weak trees (learners) in the group of trees [69]?

Gentle boost algorithm uses a combination of ADA boost and Logit Boost. The first part of

gentle boost is same as that of ADA boost. That is the loss function is the same in both gentle book

and ADA boost. But in gentle boost, the weak learners are fitted into a regression model. The

output of the regression model forces the observations to be classified into one of two groups: [-1,

+1]. The mean squared error for Gentle boost is as shown in equation (10). Again, the variable

𝑑𝑛
(𝑡)

represents the weight of the observation at step ‘t’. and ℎ𝑡(𝑝𝑛) represents the prediction of the

regression model at response 𝑜𝑛 [69].

𝜀𝑖 = ∑ 𝑑𝑛
(𝑡)

𝑁

𝑛=1

(𝑜𝑛 − ℎ𝑡(𝑝𝑛))
2

 (10)

Both the bagged and boosted trees are suitable for use with classifying multi-dimensional

datasets and were therefore used in this research.

46

d. Model development

As discussed in the general literature review section of this dissertation, there are multiple

challenges in developing ML models, specifically in the healthcare domain. Two such challenges

were encountered during the development of this objective. The first challenge is inherent to all

healthcare datasets called ‘Class Imbalance’. The second challenge is small datasets. Both

challenges were tackled in this project and the methods used are described in the section below.

e. Challenges

Class imbalance:

Health care datasets are inherently class imbalanced, i.e., most observations in any given

population dataset fall in the “normal” or no-disease category, whereas a minority of observations

fall in the “disease” category. Training ML models using imbalanced data can lead to skewed or

biased results in the favor of no-disease [70]. The idea of screening for disease cases can therefore

be completely missed if trained with imbalanced data. Use of balanced training and test datasets

is therefore recommended [70].

In this research, after the initial data processing, the class distribution was as follows: 2,008

observations with HS (disease category) and 6,695 observations with no-HS (no disease category).

To balance the datasets, a combination of two separate statistical techniques was implemented in

this research. Minority class data (disease category) were synthetically generated and combined

with existing data by implementing the Synthetic Minority Oversampling Technique (SMOTE)

[71]. However, typical SMOTE implementation is implemented in datasets with all discrete or all

continuous features [71]. The distance metric used within the SMOTE algorithm is the bottleneck

for mixed features. Since the data used in this research had mixed features, as explained earlier, a

typical SMOTE implementation was not appropriate.

Therefore, in this research, a different distance metric called “Gower’s Distance” [72] was

implemented in combination with the SMOTE algorithm. A pseudo code of the implemented

algorithm is presented in the section below. Detailed code is available in Appendix A.

47

f. Pseudo code for objective 1A

Start of code

Input: Original dataset of size: 8,703 x 6 observations

Output: Synthetically generated disease class samples

1. The original dataset was split into sub-datasets based on the output category (disease (HS),

no-disease (No-HS)). See code in Appendix A.4 for details.

a. Disease class (HS): 2,008 x 6

b. No-Disease class (No- HS): 6,695 x 6

2. The disease class sub-dataset was used as input to synthetically generate more disease class

data. The following parameters were used:

a. N = 2 (i.e., 200% data was synthetically generated) (

b. K = 2 (number of nearest neighbors used)

c. T = 2,008 (number of diseased samples)

d. Sample (m, n) = 2,008 x 6 (2D array for original disease samples)

e. New Index = 4,016 (Empty variable to keep a count of new samples generated)

f. Synthetic (o, n) = 4,016 x 6 (2D array for synthetic samples)

3. Using the above variables, Gower’s Distance [72] was computed between each observation

‘i’ for each other observation ‘j’ and every feature/attribute (‘attr’) using equation (11)

below [72].

 𝐺𝐷(𝑖) =
∑ (1 − |𝑠𝑎𝑚𝑝𝑙𝑒(𝑖, 𝑎𝑡𝑡𝑟) − 𝑠𝑎𝑚𝑝𝑙𝑒(𝑗, 𝑎𝑡𝑡𝑟)|)𝑎𝑡𝑡𝑟 + 𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 + (1 − 𝑑)
 (11)

where, 𝑎 = +1, 𝑤ℎ𝑒𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑚𝑎𝑡𝑐ℎ, 𝑒𝑙𝑠𝑒 0

 d = +1, 𝑤ℎ𝑒𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑑𝑜 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐ℎ, 𝑒𝑙𝑠𝑒 0

4. After computing the distances, they were sorted in ascending order to find the neighbors

(nearest distances). Distance of an observation from itself was ignored.

5. The distances were used to generate synthetic data using SMOTE algorithm [71], applied

separately to continuous and discrete features.

a. For continuous features, equation (12) was implemented

 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑛, 𝑎𝑡𝑡𝑟) = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖, 𝑎𝑡𝑡𝑟) = 𝑑𝑖𝑓 ∗ 𝑔𝑎𝑝 (12)

where,

48

dif = a randomly picked difference between sample (i, attr) and one of its two

nearest neighbors (since K = 2)

gap = any random number between 0 and 1

b. For binary features, equation (13) was implemented

 Synthetic (n, attr)=majority of sample(i, attr) and two nearest neighbors (13)

6. After completing the synthetic generation at 200%, 4,016 synthetic disease class

samples were combined with the original 2,008 disease class data. The new disease

class dataset was now at 6,024 observations. The no-disease class dataset was at

6,695 samples (same as before)

7. The data were then divided into 70:30 ratio in a class-balanced manner to obtain

training and test datasets

8. Five chosen ML models were then trained using the training datasets, including 5-fold

cross validation. Detailed code is available in Appendix A.5

9. The trained models were tested using the separate test dataset and their

performances were analyzed. Results regarding model performance are provided in

the Results (Objective 1A) portion.

End of code

2.4.2 Objective 1B - methods

NAFLD is impacted by multiple risk factors as explained earlier. While there are no

specific biomarkers for NAFLD yet, there is a liver function test (LFT) available to assess the

general health of the liver. In current clinical practice, LFTs are used to understand liver

functionality and identify if an injury to the liver is hepatitic or cholestatic in nature [73]. It

measures multiple liver enzymes and other hormone levels, and these values are examined by

clinicians who then identify the nature of the injury [73]. Specific liver enzyme ratios are also

identified and elaborated in clinical literature to narrow down a suspect or cause for the liver injury

[73].

In this research, specific liver biochemistry data from the liver function tests was utilized

to train ML models. These models were developed and assessed with the potential to be used as

decision support tools for HS screening. The model development is broken down in specific stages

and elaborated in the sections to follow.

49

As explained in the literature review portion (NAFLD background and epidemiology), the

condition is known to impact men and women in different ways [12]– [14]. While research in this

domain is ongoing, it is unclear exactly why the sex disparity exists [12]– [14]. Researchers have

identified hormones to be potentially linked with the pathobiology of the disease, with some

research suggesting a protective effect of estrogen against NAFLD [13]. Since hormonal data (or

other such parameters) were not used in this research, HS screening models were developed

separately for male and female populations, considering the difference in pathobiology of NAFLD.

In this research, the following features were chosen to be used as inputs to train the ML

models: Age, BMI, HDL (high density lipids), plasma glucose, AST (aspartate aminotransferase),

ALT (alanine aminotransferase), and ASP (aspartate transaminase). These parameters were chosen

based on clinical literature and their link with fatty liver disease [9], [73], [74]. The sex feature

was used to separate out male and female populations into sub-datasets but was not used thereafter.

The output feature of HS was used, same as that in Objective 1A.

a. Data processing

Adult data from the NHANES III dataset [58], [59] were used in this research objective as

well. Data was again extracted using SAS and then further processed using MATLAB. Initial data

processing like retaining parameters of interest and merging multiple datasets into one were

conducted in SAS [64]. The SAS code is presented in detail in appendices B.1 and B.2.

After initial processing in SAS, the data was exported into MATLAB [65] for further

processing. In this step, any observations with missing data were deleted. Alcohol related

exclusions were applied. Men who consumed > 2 alcoholic drinks/day and women who consumed

> 1 drink per day were excluded. The size of the available data was considered, and next steps

were identified. After applying the necessary exclusions and eliminating missing data, the dataset

size reduced from 20, 050 to 9,619 samples.

To aid the model with better learning, data normalization was applied to four features:

ALT, AST, BMI, and Plasma glucose. Four normalized features were derived from this process,

called: ALT%, AST%, BMI% and Plasma glucose%. The formula used for normalization is shown

in equations (14) – (17). Normal values for ALT, AST, BMI and Glucose were used from existing

literature [75]– [78].

50

 𝐴𝐿𝑇𝑖% =
𝐴𝐿𝑇𝑖 −𝐴𝐿𝑇𝑈𝐿𝑁

𝐴𝐿𝑇𝑈𝐿𝑁
 𝑥 100 (14)

 𝐴𝑆𝑇𝑖% =
𝐴𝑆𝑇𝑖 −𝐴𝑆𝑇𝑈𝐿𝑁

𝐴𝑆𝑇𝑈𝐿𝑁
 𝑥 100 (15)

 𝐵𝑀𝐼𝑖% =
𝐵𝑀𝐼𝑖−25

25
 𝑥 100 (16)

 𝑃𝑙𝑎𝑠𝑚𝑎 𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖% =
𝑃𝑙𝑎𝑠𝑚𝑎𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖−120

120
 𝑥 100 (17)

Where:

i = ith sample in the dataset

ULN = Upper limit of normal

ALTULN: 33U/L - male, 25 U/L – female [75], [76]

ASTULN: 30 U/L – male, 20 U/L – female [75], [76]

After normalizing the data using the clinical normal values, the negative values (< 0) in the

derived variables were recoded as zero (indicating normal) and the positive values were retained

as is – indicating a deviation from normal. The normalization was applied separately to male and

female datasets. The clinically defined parameters were different between the sexes, and they were

used as such in this research. The derived features along with the other input features were used in

training the ML models.

b. Model selection

In addition to the three model families discussed in objective 1A (SVM, Bagged Trees, and

Boosted Trees), two additional ML families were explored in this research. The two additional

families were: K-nearest neighbors (KNN) and Logistic Regression.

K-Nearest Neighbors (KNN)

 KNN is a distance-based supervised ML algorithm. It is a commonly used technique that

works with classification or regression problems. In this case, the output is a binary classification

problem, therefore a KNN-classifier was implemented. The distance metric used in this research

was Euclidean Distance. If ‘I’ is an input matrix, treated in terms of row vectors i1, i2, i3, … ia and

‘O’ is an output matrix treated as row vectors of o1, o2, o3, …oa. Then the pair-wise Euclidean

distances between different input and output points are defined using equation (18) [79].

51

 𝑒𝑑𝑚𝑛
2 = (𝑖𝑚 − 𝑜𝑛)(𝑖𝑚 − 𝑜𝑛)′ (18)

 The distance between different observations is sorted and then used by the KNN algorithm

to classify observations into one of the output classes.

Logistic regression

 Logistic regression is a form of linear regression, applied to classification problems. It is

the simplest ML algorithm and is often used as a benchmark method to compare with other, more

complex ML algorithm performances. Like simple linear regression, logistic regression associates

weights with each input feature (or independent variable) to fit the data and find the output value

(or dependent variable) accurately. However, unlike linear regression where the output is a

continuous, numerical value, the output of logistic regression is categorical in nature. In this

research, binary logistic regression was used. Binary logistic regression uses the sigmoidal or logit

function to then map the output variable from numerical range to a binary value. The sigmoidal

function expression is shown in equation (19). Here, s(x) represents the sigmoidal value of any

input ‘x’. The output of the sigmoidal function always lies between 0 and 1.

 𝑠(𝑥) =
1

1+𝑒−𝑥 (19)

The overall equation for logistic regression involving ‘i’ input and ‘o’ predicted output can

be described as shown in equation (20). b0 is the term representing bias and b1 represents the weight

of the input feature. While logistic regression is a linear method, the output predictions are

transformed using a logit function.

 𝑜 =
𝑒𝑏0+𝑏1𝑖

1+𝑒𝑏0+𝑏1𝑖 (20)

 Five ML families in total were evaluated in this research objective, as explained earlier.

Details related to how class imbalance was handled, and the following results are outlined below.

52

c. Class imbalance

Similar to that in objective 1A, class imbalance was found to be a recurring challenge with

in pursuing this research objective as well. The data distribution between the classes was as follows

(combined data from both sexes):

i) Observations with HS: 2, 956

ii) Observations without HS: 9,959

To avoid class imbalance, two different approaches were implemented and compared in

this research. The first approach called ‘under-sampling’ is discussed here. The second approach

was to synthetically generate minority samples using SMOTE (similar to objective 1A). Methods

and results from both these approaches are discussed here. Objective 1B – Under Sampling refers

to the first approach and Objective 1B – SMOTE refers to the second approach used to tackle class

imbalance. The flowchart of the methods used is shown in Figure 2.4 below for clarity.

Under-sampling

This approach is different from synthetic data generation. In this method, existing data is

used to balance out the classes. As a result, using this approach, only real-world data is used to

train and test the ML models. In this technique, data from the majority class (no-HS) is randomly

sampled to match the size of the minority class (HS). This way, the class sizes are balanced but

the overall size of the dataset is reduced significantly. In this case, the under sampling was applied

separately to male and female datasets. The results from under sampling are shown in below in

Tables - objective 1B

Table 2.2. Code is available in appendices B.4A and B.4B (for male and female,

respectively)

Synthetic data generation using SMOTE

Although the under-sampling approach only uses real-world data, it can severely reduce

the size of the dataset. Therefore, an alternate approach of generating synthetic data using SMOTE

was also implemented and the results were compared with those from under sampling. 200%

synthetic data generation was implemented for each male and female dataset. Size of the dataset

53

increases in this approach due to imputing the data using synthetic methods. The sizes of the

specific datasets are shown in

Table 2.3. Detailed steps in the process of creating synthetic data are explained using

flowcharts in Figure 2.5 Figure 2.6. Code is available in appendices B.6A and B.6B (for male and

female, respectively)

d. Model development

The male and female processed datasets were divided into separate class-balanced training

and test in a 70:30 ratio, respectively (refer to Figure 2.5 Figure 2.6). The models were trained on

17 ML-based models (belonging to the five model families) using 11 features (7 selected features

+ 4 derived features). The trained models were then used for testing the results using separate test

datasets. Code is available for Objective 1B – under sampling in Appendix B.4. and P1.B.4.B Code

for objective 1B – SMOTE is available in Appendix B.6.A and P1.B.6.B. In this case, five models

of support vector machines (SVM) family were found to perform better among the 17 ML models.

Code related to training and testing is the same for both under-sampling and SMOTE approaches.

This code is available in Appendix B.4. A summary of the best performing models is provided in

Table 2.4 below.

Overall, compared to objective 1A, additional data processing was applied in this research

objective for two reasons:

1) To enhance the use of liver biochemistry by incorporating clinically defined “normal”

values

2) To incorporate the differences in NAFLD pathobiology between male and female

populations, these datasets were processed separately. This encourages the model to learn

from these two datasets independently

3) To compare the results by implementing two types of data imputation (to handle class

imbalance)

The relevant model performances and the discussion of these results is presented in the Results

and Discussion – 1B section.

The results and discussion have been evaluated independently for Objectives 1A and 1B.

54

2.5 Results and discussion

Three families of machine learning models were trained and tested on the dataset described

in section 2.4.c. Each model was run independently, and each run was repeated 10-times for

robustness. Then, the model’s performances were measured on the following four parameters:

1. Training Accuracy

2. Test Accuracy

3. Test Sensitivity

4. Test Specificity

Training accuracy is a measure of the model’s accuracy in predicting HS vs no-HS while

using 70% of the entire data (stored and used as training data). The 10- fold cross-validation

(commonly known as k-fold validation) is used to compute the training accuracy as follows. The

training dataset is split up into 10-sub datasets. Each ‘kth’ sub dataset is used to compute the

accuracy by measuring the number correctly classified observations in the kth dataset divided by

the total observations in the kth dataset. The accuracy over each of the ‘k’ folds is computed and

averaged to obtain the training accuracy. The training accuracies of the best performing models in

objective 1A are reported in Table 2.1.

Test accuracy is similarly computed but using 30% of the entire dataset (stored separately

and labelled as test dataset). It is important to note that none of the data from the test dataset were

used in the training or cross-validation process. The test accuracy can be defined as the ratio of

correctly classified observations divided by the total number of observations in the test dataset.

Test sensitivity is computed using test data only. The model’s ability to identify the

observations with HS correctly is measured using sensitivity. In more general terms, model

sensitivity can be defined as the ability of the model to correctly predict true positives. Test

sensitivity is computed by the ratio of number of true positives divided by the number of disease

class observations.

Test specificity on the other hand measures the model’s ability to predict true negatives. In

this case, test sensitivity is used to inform the models prediction ability in identifying observations

with no-HS. Test specificity is computed by the ratio of number of true negatives divided by the

total number of non-disease observations.

 In general, when screening models are used in clinical settings, the primary idea is to find

those candidates with the disease so that they can be provided with the appropriate

55

treatment/further testing. Therefore, in this work, the focus is more on sensitivity compared to

specificity. While both the parameters are measured and the results are provided, the emphasis of

model performance is focused on sensitivity and the general test accuracy as well.

2.5.1 Objective 1A – results and discussion

Of the five models, a maximum accuracy of approximately 79% and a maximum sensitivity

of 77% was found. Overall, the model sensitivities ranged from 69 – 77% whereas the specificities

ranged from 72 – 82%. The test accuracies ranged from 71 – 79%. Detailed results are presented

in Table 2.1.

The best performing model (in terms of highest test accuracy) was found to be the ‘Gentle

Boosted Tree’ with a test accuracy of 79%. It also had a high specificity of almost 82%. The

sensitivity of this model was approximately 76%. While the gentle boosted tree model was the

best in terms of both test accuracy and specificity, the best model when considering sensitivity was

‘bagged trees. The bagged trees model had a sensitivity of approximately 72%. It had a specificity

of 79% and test accuracy of almost 78%.

Overall, the tree-based models were found to perform well in predicting HS using the six

predictor variables: age, sex, BMI, triglycerides, HDL, and total cholesterol. Further work is

needed to improve the performance of the models either by using other AI tools or by processing

the features to aid with learning. These models also need to be validated on a much larger dataset

with demographics that are representative of the population. The data used here was from

NHANES III. While the NHANES III dataset website provides sample weights, they were not

used in this research. Additional analyses with weighted data and/or larger datasets are required

before the models can be implemented in clinical settings.

2.5.2 Objective 1B - Results and Discussion

Results (objective 1B – under-sampling)

Five families of ML models (17 models total) were assessed in this research objective.

Using the first approach of under-sampling, the majority class data were randomly sampled to

match the size of the minority class data. This method significantly reduces the size of the dataset,

but in this case, the data were all real-world and no synthetic data generation was required in this

56

step. The under sampled dataset (size: 2,076 Male; 2,424 Female) was then divided into training

and test datasets in a 70:30 ratio, respectively. Dataset sizes before and after under sampling are

provided in

Table 2.2.

In this research objective, the models were developed separately for each sex to

accommodate the potential differences in pathobiology, as explained earlier. Five best performing

models for each sex were identified and the results are in

Table 2.4. As with objective 1A, the four parameters, training accuracy, test accuracy, test

sensitivity and test specificity were used as model performance indicators.

Overall, the best performing male-specific models demonstrated test accuracy ranging

from 66 – 69%, sensitivity ranging from 63 – 72% and specificity ranging from 61 – 72%. The

best model in terms of test accuracy was found to be Gaussian SVM scale II (69%), whereas the

best model in terms of sensitivity was found to be Gaussian SVM scale I (72%). The sensitivity of

the prediction models is emphasized in this work, as this metric identifies the model’s ability to

find those with the disease. Therefore, after conducting additional validation with larger, diverse

datasets, the model with highest sensitivity would be recommended. In this case, the Gaussian

SVM I model resulted in the highest sensitivity.

Similarly, the performance of the female-specific models was as follows. The test accuracy

ranged between 69 – 71%. The sensitivity ranged from 67-71% and specificity from 68 – 75%.

The model with highest test accuracy (69%) was observed in the Quadratic SVM model and the

highest sensitivity (71%) was found in the Gaussian SVM I model. While the Quadratic SVM

model also had a high specificity of 75%, the emphasis of this objective is on sensitivity as

explained earlier.

Overall, in terms of high sensitivities, the Gaussian Scale I SVM model was found to be

the best performing for both Male and Female – specific models. Additional investigation is

needed to understand the model performance. Future direction might include improving the

Gaussian Scale I model further using other statistical techniques/methods.

Results (objective 1B – SMOTE)

A second approach to handling class imbalance for data in objective 1B was implemented.

SMOTE was used to synthetically generate HS data and augment the original datasets instead of

57

under sampling. The data were then split into training, test and the performances were measured.

A summary of the logic used for SMOTE implementation in male and female datasets can be seen

in Figure 2.5 and Figure 2.6.

 Creating synthetic data and imputing the existing datasets increased the male dataset size

from 2,076 to 6,291. Similarly, the female dataset size increased from 2,424 to 9,439. Use of

SMOTE instead of under-sampling to handle class imbalance, increases the size of the original

dataset. Increased dataset sizes provide more training data for the model to learn from. After the

data imputation, the rest of the ML-based training and testing was conducted.

The model performance summaries using SMOTE are shown in Table 2.5. The best

performing models were identified as those with high performance across all four metrics (training

accuracy, test accuracy, sensitivity, and specificity). These models perform well over-all the

measured metrics and are considered to be best performing in this work. For male-specific models

the results indicate that the test accuracy ranges between 71- 77%, sensitivity ranges between 70

– 76% and specificity ranges between 71 – 79%. Best performing model inters of test accuracy

was found to be the Bagged Trees model with 77% accuracy, 76% sensitivity and 79% specificity.

Similarly for female-specific models, the ranges of performance were as follows: Test

accuracy 73 – 82%, sensitivity 74 – 81% and specificity 71 – 79%. Best performance in terms of

test accuracy was found in the Bagged trees model as well with 82% test accuracy, 81% sensitivity

and 82% specificity.

Note that the best performing model across all metrics was found to be Bagged Trees for

both male and female-specific models. However, the performance of the female-specific Bagged

Trees model was higher than its male counterpart by about 4.4% in test accuracy and 5.5% in

sensitivity. It is postulated that the increase in accuracy for the female-specific models could be

driven by the larger dataset size for the female population (9,439) vs the male population (6,291).

More testing with much larger datasets is required to confirm this postulation and is out of scope

for this research.

Since the focus of screening models is to maximize sensitivity, the models that perform

well with respect to sensitivity alone were identified. Some of these models might have very poor

specificity performances but they are presented here due to their high sensitivity results. The

models that perform well when only sensitivity is considered are in Table 6. The weighted KNN

model resulted in a sensitivity of approximately 83% for male-specific and 86% for female-

58

specific models. Other models like Fine KNN and Fine Gaussian SVM also showed high

sensitivity results. When creating screening tools, often the focus is on sensitivity – to identify

positive cases and recommend them for further testing. In screening for HS, the models that

perform well with respect to sensitivity might be useful and therefore are included in this section.

On comparing the results of under-sampling with those of SMOTE, a clear increase in

performance with SMOTE is observed. Test accuracy performances of the models using SMOTE

were 8% and 11% higher in male and female specific models, respectively, when compared with

those using under sampling. Similarly, the sensitivity performance was 11% (Male) and 15%

(Female) higher with SMOTE vs under-sampling approach. Sensitivity was 5% (Male) and 7%

(Female) higher as well.

This increase in performance across all metrics can be attributed to the increase in dataset

sizes significantly when using SMOTE instead of under sampling. Larger dataset sizes are

typically considered to be better for training ML models as more data provides more opportunity

to learn. In summary, while both the techniques were separately implemented to handle class

imbalance, the SMOTE approach resulted in higher performance across Male and Female -specific

models. Additional testing and validation of these screening tools is recommended. The tools

developed in this work show promising results and could be used in the future as potential decision

support tools for clinicians to screen for HS.

2.6 Summary & conclusion

In this research, models were developed to predict Hepatic Steatosis (HS) using ML-

techniques. In developing decision support systems based on ML for HS prediction, a hierarchical

approach was used in exploring different input parameters. Models developed as part of objective

1A used only six physiological parameters. The models in objective 1B used seven physiological

and liver biochemistry parameters.

The maximum accuracies of models using physiological, and liver biochemical parameters

were 77.2% and 81.6% for male and female, respectively (using the SMOTE approach). Maximum

sensitivities were 75.8% and 81.3% for male and female, respectively. Maximum specificities

were 78.6% and 81.9% for male and female, respectively. When sensitives alone are considered,

the models developed in the SMOTE approach (obj 1B) out-perform other models developed in

using only physiological parameters (obj 1A) and under sampling approach (obj 1B). The

59

weighted KNN model resulted in sensitivities of 82.6% (male) and 86% (female) using only seven

input features.

Finally, the models developed in this work need more validation on a much larger and

much more diverse dataset. These models need to be tested for robustness before they can be

implemented in clinical settings. However, the work in this dissertation shows promising results

and a potential for the use of such screening tools, especially when no specific clinical screening

is available. Early detection of NAFLD can potentially lead to remission or halt the progression of

the disease. Therefore, low-cost, early detection tools are crucial to handle the increasing NAFLD

condition.

Based on the work described above, the following are concluded:

1. Physiological parameters alone can predict HS using 79% accuracy, 76% sensitivity and

82% specificity

2. Models with only seven parameters (vital and liver biochemical) led screening models with

sensitivities of 82.6% for male-specific models and 86% for female specific models. It is

logical to use both physiological and liver biochemical parameters to maximize the

sensitivity and therefore, screening capability of these models.

2.7 Recommendations for future work

Based on the reported work, the following are recommended as potential future work.

1. Testing and validation of the developed models using larger and diverse datasets is

recommended.

2. Utilizing the sample weights provided by NHANES and developing models using

weighted observations are recommended.

60

2.8 Figures – objective 1A

Figure 2.1: Global NAFLD prevalence [7]

32 31

27.37

23.71
21.09

14

0

5

10

15

20

25

30

35

Middle
East

South
Africa

Asia Europe North
America

Africa

P
R

EV
A

LE
N

C
E

%

REGION

Prevalence (%) by Region

61

Figure 2.2: Progression of NAFLD [18]

Figure 2.3: Summary of the methods used for data cleaning and model training

Gradual fat
build up in

the liver
(NAFL/HS)

Symptom free
disease

progression

Inflammation
starts- Non-

alcoholic
steatohepatiti

s (NASH)

Detection is
possible through
ultrasound but no

symptoms

Scar tissues
develop -
Fibrosis

Liver scarring
occurs but liver

functions
normally

Cirrhosis
(lumpy
liver)

Liver stops
working all

together

Input raw data imported
to MATLAB: N = 17,

704
Eliminate missing data

Apply exclusions based
on alcohol consumption:
N = 2,008 (HS), 6,695

(non- HS)

Split data into disease
and no-disease classes

Synthesize data and
combine it with real

data: N = 6,024 (HS,)
6,695 (non-HS)

Split data into training
(N = 8,903) and test (N
= 3,816) in 70:30 ratio
(ensure class balance)

Train 5 models using
training data and test the
models using test dataset

62

2.9 Tables – objective 1A

Table 2.1: Model performance summary - objective 1A

Models Accuracy (%) Sensitivity (%) Specificity (%)

Fine Gaussian SVM 76.58 75.76 77.35

Medium Gaussian SVM 71.06 69.24 72.72

Bagged Trees 77.96 76.62 79.14

Gentle Boosted Trees 79.03 75.88 81.86

ADA Boosted Trees 71.24 70.58 71.83

63

2.10 Figures – objective 1B

Figure 2.4: Flowchart of methods used in Objective 1B

Raw Data from
NHANES III

Data processing in
SAS

Initial data Processing
in MATLAB, handle

class imbalance

Under-Sampling

Split data into train
and test

Train 17 different ML
models, seperate for

Male and Female

Analyze performances
and identify best

models

SMOTE

Split data into train
and test

Train 17 different ML
models, seperate for

Male and Female

Analyze performances
and identify best

models

64

Figure 2.5: Logic used for creating synthetic male HS data with SMOTE

Figure 2.6: Logic used for creating synthetic female HS data with SMOTE

Sizes: male-hs-data
(1,038 x 7); male-

no-hs-data (3,177 x
7)

Use the Male-HS-
data for SMOTE

Apply 200%
synthetic data

generation.

New male-hs-data
size is 3,114 x 7.
No HS: 3,177 x 7
(same as before)

Proceed as usual
with generating 4
derived features

Seperate into train
and test in 70:30

ratio

Analyze
performances

Sizes: female-hs-
data (1,212 x 7);

female-no-hs-data
(4591 x 7)

Use the female-hs-
data for SMOTE

Apply 300%
synthetic data

generation.

New female-hs-data
size is 4,848 x 7.
No HS: 4,591 x 7
(same as before)

Proceed as usual
with generating 4
derived features

Seperate into train
and test in 70:30

ratio

Analyze
performances

65

2.11 Tables - objective 1B

Table 2.2: Class balanced datasets using under-sampling

Sex HS
No-HS (before

under sampling)

No-HS (after

under sampling)

Total (after under

sampling)

Male 1,038 3,177 1,038 2,076

Female 1,212 4,591 1,212 2,424

Table 2.3: Class balanced datasets using SMOTE

Sex
HS (before

SMOTE)

HS (after

SMOTE)
No-HS Total

Male 1,038 3,114 3,177 6,291

Female 1,212 4,848 4,591 9,439

Table 2.4: Model Performance Summary for HS Screening using Under-Sampling

aMale, bFemale, SD = Standard Deviation

SVM

Models

Performance Metrics

Training

Accuracy (%)

 ± SD

Test Accuracy

(%) ± SD

Test Sensitivity

(%) ± SD

Test Specificity

(%) ± SD

Sex Ma Fb M F M F M F

Linear
69.360

± 0.007

71.385

± 0.011

68.553

± 0.011

70.865

± 0.016

65.852

± 0.022

68.104

± 0.026

71.254

± 0.026

73.626

± 0.023

Quadratic
68.954

± 0.009

71.362

± 0.010

68.778

± 0.014

71.002

± 0.014

65.562

±0.02

66.620

± 0.027

71.993

± 0.021

75.384

± 0.027

Gaussian

scale 1

66.334

± 0.010

69.504

± 0.013

66.559

± 0.011

69.148

± 0.011

72.122

± 0.023

70.659

± 0.02

60.996

± 0.028

67.637

± 0.021

Gaussian

scale 2

69.133

± 0.009

71.462

± 0.011

68.987

± 0.018

70.659

± 0.012

66.463

± 0.015

67.032

± 0.02

71.511

± 0.027

74.285

± 0.015

Gaussian

scale 3

68.954

± 0.007

71.409

± 0.009

68.794

± 0.011

70.178

± 0.009

63.826

± 0.021

67.225

± 0.015

73.762

± 0.026

73.131

± 0.02

66

Table 2.5: Model Performance Summary for HS Screening using SMOTE

Models

Performance Metrics

Training

Accuracy (%)
Test Accuracy

(%) ± SD

Test Sensitivity (%)

± SD

Test Specificity (%)

± SD
 ± SD

Sex Ma Fb M F M F M F

Bagged

Trees

76.4 ±

0.006

80.2 ±

0.005

77.2 ±

0.009

81.6 ±

0.010

75.8 ±

0.010

81.3 ±

0.018

78.6 ±

0.011

81.9 ±

0.011

Boosted

Trees

72.5 ±

0.009

75.0 ±

0.004

72.7 ±

0.009

75.3 ±

0.008

72.5 ±

0.016

75.3 ±

0.014

72.9 ±

0.011

75.4 ±

0.020

Medium

KNN

71.2 ±

0.006

72.9 ±

0.005

71.8 ±

0.010

74.4 ±

0.008

72.7 ±

0/016

75.6 ±

0.016

70.9 ±

0.010

73.0 ±

0.011

Cubic

KNN

70.8 ±

0.005

72.5 ±

0.003

71.0 ±

0.009

73.4 ±

0.010

71.4 ±

0.017

74.3 ±

0.016

70.7 ±

0.011

72.5 ±

0.013

Cosine

KNN

71.1 ±

0.004

73.0 ±

0.005

71.4 ±

0.006

74.2 ±

0.007

69.5 ±

0.011

73.6 ±

0.014

73.3 ±

0.012

74.8 ±

0.016

Table 2.6: Best performing (sensitivity only) models for HS Screening using SMOTE

Models

Performance Metrics

Training Accuracy

(%)
Test Accuracy (%)

± SD

Test Sensitivity

(%) ± SD

Test Specificity

(%) ± SD
 ± SD

Sex Ma Fb M F M F M F

Fine

Gaussian

SVM

73.0 ±

0.003

74.1 ±

0.003

73.4 ±

0.008

75.4 ±

0.008

78.1 ±

0.013

78.4 ±

0.012

68.9 ±

0.013

72.3 ±

0.016

Fine KNN
73.4 ±

0.005

75.1 ±

0.003

73.8 ±

0.007

76.6 ±

0.004

82.1 ±

0.015

85.7 ±

0.007

65.6 ±

0.009

67.0 ±

0.009

Weighted

KNN

74.1 ±

0.004

76.0 ±

0.005

74.5 ±

0.008

77.3 ±

0.007

82.6 ±

0.009

86.0 ±

0.013

66.5 ±

0.011

68.1 ±

0.010

67

2.12 References

[1] N. Chalasani et al., “The diagnosis and management of nonalcoholic fatty liver disease:

Practice guidance from the American Association for the Study of Liver Diseases:

Hepatology,” Hepatology, vol. 67, no. 1, pp. 328–357, Jan. 2018, doi:

10.1002/hep.29367.

[2] “Symptoms & Causes of NAFLD & NASH | NIDDK.”

https://www.niddk.nih.gov/health-information/liver-disease/nafld-nash/symptoms-causes

(accessed Oct. 19, 2020).

[3] G. E. Arteel, “Hepatotoxicity,” in Arsenic, John Wiley & Sons, Ltd, 2015, pp. 249–265.

doi: 10.1002/9781118876992.ch11.

[4] B. Wahlang et al., “Toxicant-associated Steatohepatitis,” Toxicol. Pathol., vol. 41, no. 2,

pp. 343–360, Feb. 2013, doi: 10.1177/0192623312468517.

[5] M. Cave et al., “Toxicant-associated steatohepatitis in vinyl chloride workers,”

Hepatology, vol. 51, no. 2, pp. 474–481, Feb. 2010, doi: 10.1002/hep.23321.

[6] D. N. G. Mazumder et al., “Chronic arsenic toxicity from drinking tubewell water in rural

West Bengal,” p. 8.

[7] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer, “Global

epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,

incidence, and outcomes,” Hepatology, vol. 64, no. 1, pp. 73–84, Jul. 2016, doi:

10.1002/hep.28431.

[8] U. Iqbal, B. Perumpail, D. Akhtar, D. Kim, and A. Ahmed, “The Epidemiology, Risk

Profiling and Diagnostic Challenges of Nonalcoholic Fatty Liver Disease,” Medicines,

vol. 6, no. 1, p. 41, Mar. 2019, doi: 10.3390/medicines6010041.

[9] Z. M. Younossi et al., “The global epidemiology of NAFLD and NASH in patients with

type 2 diabetes: A systematic review and meta-analysis,” J. Hepatol., vol. 71, no. 4, pp.

793–801, Oct. 2019, doi: 10.1016/j.jhep.2019.06.021.

[10] G. C. Farrell, V. W.-S. Wong, and S. Chitturi, “NAFLD in Asia—as common and

important as in the West,” Nat. Rev. Gastroenterol. Hepatol., vol. 10, no. 5, pp. 307–318,

May 2013, doi: 10.1038/nrgastro.2013.34.

[11] Z. M. Younossi et al., “Nonalcoholic Fatty Liver Disease in Lean Individuals in the

United States:” Medicine (Baltimore), vol. 91, no. 6, pp. 319–327, Nov. 2012, doi:

10.1097/MD.0b013e3182779d49.

[12] A. Lonardo et al., “Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art

and Identification of Research Gaps,” Hepatology, vol. 70, no. 4, pp. 1457–1469, Oct.

2019, doi: 10.1002/hep.30626.

68

[13] S. Ballestri, F. Nascimbeni, E. Baldelli, A. Marrazzo, D. Romagnoli, and A. Lonardo,

“NAFLD as a Sexual Dimorphic Disease: Role of Sex and Reproductive Status in the

Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent

Cardiovascular Risk,” Adv. Ther., vol. 34, no. 6, pp. 1291–1326, 2017, doi:

10.1007/s12325-017-0556-1.

[14] J. D. Yang et al., “Sex and menopause impact severity of fibrosis among patients with

nonalcoholic steatohepatitis,” Hepatology, vol. 59, no. 4, pp. 1406–1414, Apr. 2014, doi:

10.1002/hep.26761.

[15] M. Balakrishnan et al., “Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease

but a Higher Risk of Progression Vs Men: A Systematic Review and Meta-analysis,”

Clin. Gastroenterol. Hepatol., p. S1542356520306121, Apr. 2020, doi:

10.1016/j.cgh.2020.04.067.

[16] M. Gambarin–Gelwan, S. V. Kinkhabwala, T. D. Schiano, C. Bodian, H. Yeh, and W.

Futterweit, “Prevalence of Nonalcoholic Fatty Liver Disease in Women With Polycystic

Ovary Syndrome,” Clin. Gastroenterol. Hepatol., vol. 5, no. 4, pp. 496–501, Apr. 2007,

doi: 10.1016/j.cgh.2006.10.010.

[17] C. E. Kelley, “Review of nonalcoholic fatty liver disease in women with polycystic ovary

syndrome,” World J. Gastroenterol., vol. 20, no. 39, p. 14172, 2014, doi:

10.3748/wjg.v20.i39.14172.

[18] D. L. Wyness, “The four stages of Non-Alcoholic Fatty Liver Disease (NAFLD),” liver-

health-uk, Oct. 09, 2017. https://www.liverhealthuk.com/post/the-four-stages-of-nafld

(accessed Mar. 11, 2022).

[19] T. Marjot, A. Moolla, J. F. Cobbold, L. Hodson, and J. W. Tomlinson, “Nonalcoholic

Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and

Management,” Endocr. Rev., vol. 41, no. 1, pp. 66–117, Feb. 2020, doi:

10.1210/endrev/bnz009.

[20] J. Wattacheril and A. J. Sanyal, “Lean NAFLD: an Underrecognized Outlier,” Curr.

Hepatol. Rep., vol. 15, no. 2, pp. 134–139, Jun. 2016, doi: 10.1007/s11901-016-0302-1.

[21] G. Bhat and C. S. Baba, “Insulin resistance and metabolic syndrome in nonobese Indian

patients with non-alcoholic fatty liver disease,” Trop. Gastrology, vol. 34, no. 1, pp. 18–

24, Mar. 2013, doi: 10.7869/tg.2012.86.

[22] K. Nishioji et al., “Prevalence of and risk factors for non-alcoholic fatty liver disease in a

non-obese Japanese population, 2011–2012,” J. Gastroenterol., vol. 50, no. 1, pp. 95–

108, Jan. 2015, doi: 10.1007/s00535-014-0948-9.

[23] R.-N. Feng et al., “Lean-non-alcoholic fatty liver disease increases risk for metabolic

disorders in a normal weight Chinese population,” World J. Gastroenterol., vol. 20, no.

47, pp. 17932–17940, Dec. 2014, doi: 10.3748/wjg.v20.i47.17932.

69

[24] E. Margariti, M. Deutsch, S. Manolakopoulos, and G. V. Papatheodoridis, “Non-

alcoholic fatty liver disease may develop in individuals with normal body mass index,”

Ann. Gastroenterol., vol. 25, no. 1, pp. 45–51, 2012.

[25] H. J. Kim et al., “Metabolic Significance of Nonalcoholic Fatty Liver Disease in

Nonobese, Nondiabetic Adults,” Arch. Intern. Med., vol. 164, no. 19, p. 2169, Oct. 2004,

doi: 10.1001/archinte.164.19.2169.

[26] K. Cusi, “Nonalcoholic steatohepatitis in nonobese patients: Not so different after all,”

Hepatology, vol. 65, no. 1, pp. 4–7, Jan. 2017, doi: 10.1002/hep.28839.

[27] A. Lonardo, S. Ballestri, G. Marchesini, P. Angulo, and P. Loria, “Nonalcoholic fatty

liver disease: A precursor of the metabolic syndrome,” Dig. Liver Dis., vol. 47, no. 3, pp.

181–190, Mar. 2015, doi: 10.1016/j.dld.2014.09.020.

[28] R. M. Carr, A. Oranu, and V. Khungar, “Nonalcoholic Fatty Liver Disease,”

Gastroenterol. Clin. North Am., vol. 45, no. 4, pp. 639–652, Dec. 2016, doi:

10.1016/j.gtc.2016.07.003.

[29] E. Fabbrini et al., “Intrahepatic fat, not visceral fat, is linked with metabolic

complications of obesity,” Proc. Natl. Acad. Sci., vol. 106, no. 36, pp. 15430–15435, Sep.

2009, doi: 10.1073/pnas.0904944106.

[30] K. Azuma et al., “Higher liver fat content among Japanese in Japan compared with non-

Hispanic whites in the United States,” Metabolism, vol. 58, no. 8, pp. 1200–1207, Aug.

2009, doi: 10.1016/j.metabol.2009.03.021.

[31] B. Sears and M. Perry, “The role of fatty acids in insulin resistance,” Lipids Health Dis.,

vol. 14, no. 1, p. 121, Dec. 2015, doi: 10.1186/s12944-015-0123-1.

[32] S. Petta et al., “Pathophysiology of Non-Alcoholic Fatty Liver Disease,” Int. J. Mol. Sci.,

vol. 17, no. 12, p. 2082, Dec. 2016, doi: 10.3390/ijms17122082.

[33] P.-C. Chen, K.-L. Chien, H.-C. Hsu, T.-C. Su, F.-C. Sung, and Y.-T. Lee, “Metabolic

syndrome and C-reactive protein in stroke prediction: a prospective study in Taiwan.,”

Metabolism., vol. 58, no. 6, pp. 772–778, Jun. 2009, doi: 10.1016/j.metabol.2009.01.006.

[34] P. L. Huang, “A comprehensive definition for metabolic syndrome,” Dis. Model. Mech.,

vol. 2, no. 5–6, pp. 231–237, May 2009, doi: 10.1242/dmm.001180.

[35] S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith, and C. Lenfant, “Definition of

Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American

Heart Association Conference on Scientific Issues Related to Definition,” Circulation,

vol. 109, no. 3, pp. 433–438, Jan. 2004, doi: 10.1161/01.CIR.0000111245.75752.C6.

70

[36] A. Chowdhury and Z. M. Younossi, “Global Epidemiology and Risk Factors for

Nonalcoholic Fatty Liver Disease,” in Alcoholic and Non-Alcoholic Fatty Liver Disease:

Bench to Bedside, N. Chalasani and G. Szabo, Eds. Cham: Springer International

Publishing, 2016, pp. 21–40. doi: 10.1007/978-3-319-20538-0_2.

[37] I. Doycheva et al., “Increasing Burden of Chronic Liver Disease Among Adolescents and

Young Adults in the USA: A Silent Epidemic,” Dig. Dis. Sci., vol. 62, no. 5, pp. 1373–

1380, May 2017, doi: 10.1007/s10620-017-4492-3.

[38] G. Choudhuri, S. Chaudhari, D. Pawar, and D. S. Roy, “Etiological Patterns, Liver

Fibrosis Stages and Prescribing Patterns of Hepato-Protective Agents in Indian Patients

with Chronic Liver Disease,” J. Assoc. Physicians India, vol. 66, no. 12, pp. 58–63, Dec.

2018.

[39] G. Cholankeril et al., “Liver Transplantation for Nonalcoholic Steatohepatitis in the US:

Temporal Trends and Outcomes,” Dig. Dis. Sci., vol. 62, no. 10, pp. 2915–2922, Oct.

2017, doi: 10.1007/s10620-017-4684-x.

[40] F. A. Cimini et al., “Relationship between adipose tissue dysfunction, vitamin D

deficiency and the pathogenesis of non-alcoholic fatty liver disease,” World J.

Gastroenterol., vol. 23, no. 19, pp. 3407–3417, May 2017, doi:

10.3748/wjg.v23.i19.3407.

[41] E. Vilar-Gomez and N. Chalasani, “Non-invasive assessment of non-alcoholic fatty liver

disease: Clinical prediction rules and blood-based biomarkers,” J. Hepatol., vol. 68, no.

2, pp. 305–315, Feb. 2018, doi: 10.1016/j.jhep.2017.11.013.

[42] M. V. Machado, J. Coutinho, F. Carepa, A. Costa, H. Proença, and H. Cortez-Pinto,

“How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity

of nonalcoholic fatty liver disease,” Eur. J. Gastroenterol. Hepatol., vol. 24, no. 10, p.

1166, Oct. 2012, doi: 10.1097/MEG.0b013e32835609b0.

[43] J.-B. Suh, S. M. Kim, G.-J. Cho, and K. M. Choi, “Serum AFBP levels are elevated in

patients with nonalcoholic fatty liver disease,” Scand. J. Gastroenterol., vol. 49, no. 8,

pp. 979–985, Aug. 2014, doi: 10.3109/00365521.2013.836754.

[44] X. Gong et al., “Membraneless reproducible MoS2 field-effect transistor biosensor for

high sensitive and selective detection of FGF21,” Sci. China Mater., vol. 62, no. 10, pp.

1479–1487, Oct. 2019, doi: 10.1007/s40843-019-9444-y.

[45] J. S. Paige et al., “A Pilot Comparative Study of Quantitative Ultrasound, Conventional

Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult

Nonalcoholic Fatty Liver Disease,” Am. J. Roentgenol., vol. 208, no. 5, pp. W168–W177,

May 2017, doi: 10.2214/AJR.16.16726.

71

[46] S. C. Lin et al., “Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and

Quantification of Liver Fat Using a New Quantitative Ultrasound Technique,” Clin.

Gastroenterol. Hepatol., vol. 13, no. 7, pp. 1337-1345.e6, Jul. 2015, doi:

10.1016/j.cgh.2014.11.027.

[47] A. Han et al., “Inter-platform reproducibility of ultrasonic attenuation and backscatter

coefficients in assessing NAFLD,” Eur. Radiol., vol. 29, no. 9, pp. 4699–4708, Sep.

2019, doi: 10.1007/s00330-019-06035-9.

[48] W. Cao, X. An, L. Cong, C. Lyu, Q. Zhou, and R. Guo, “Application of Deep Learning in

Quantitative Analysis of 2‐Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver

Disease,” J. Ultrasound Med., vol. 39, no. 1, pp. 51–59, Jan. 2020, doi:

10.1002/jum.15070.

[49] C.-C. Wu et al., “Prediction of fatty liver disease using machine learning algorithms,”

Comput. Methods Programs Biomed., vol. 170, pp. 23–29, Mar. 2019, doi:

10.1016/j.cmpb.2018.12.032.

[50] M. Biswas et al., “Symtosis: A liver ultrasound tissue characterization and risk

stratification in optimized deep learning paradigm,” Comput. Methods Programs

Biomed., vol. 155, pp. 165–177, Mar. 2018, doi: 10.1016/j.cmpb.2017.12.016.

[51] P. Sorino et al., “Selecting the best machine learning algorithm to support the diagnosis

of Non-Alcoholic Fatty Liver Disease: A meta learner study,” PLOS ONE, vol. 15, no.

10, p. e0240867, Oct. 2020, doi: 10.1371/journal.pone.0240867.

[52] G. I. Rajathi and G. W. Jiji, “Chronic Liver Disease Classification Using Hybrid Whale

Optimization with Simulated Annealing and Ensemble Classifier,” Symmetry, vol. 11, no.

1, p. 33, Jan. 2019, doi: 10.3390/sym11010033.

[53] T. Renukadevi and S. Karunakaran, “Optimizing deep belief network parameters using

grasshopper algorithm for liver disease classification,” Int. J. Imaging Syst. Technol., vol.

30, no. 1, pp. 168–184, Mar. 2020, doi: 10.1002/ima.22375.

[54] K. B. Kim, G. H. Kim, D. H. Song, H. J. Park, and C. W. Kim, “Automatic segmentation

of liver/kidney area with double-layered fuzzy C-means and the utility of hepatorenal

index for fatty liver severity classification,” J. Intell. Fuzzy Syst., vol. 39, no. 1, pp. 925–

936, Jul. 2020, doi: 10.3233/JIFS-191850.

[55] Y. Huo et al., “Fully automatic liver attenuation estimation combing CNN segmentation

and morphological operations,” Med. Phys., vol. 46, no. 8, pp. 3508–3519, Aug. 2019,

doi: 10.1002/mp.13675.

[56] A. E. Bohte, J. R. van Werven, S. Bipat, and J. Stoker, “The diagnostic accuracy of US,

CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy:

a meta-analysis,” Eur. Radiol., vol. 21, no. 1, pp. 87–97, Jan. 2011, doi: 10.1007/s00330-

010-1905-5.

72

[57] M. Shahabi, H. Hassanpour, and H. Mashayekhi, “Rule extraction for fatty liver detection

using neural networks,” Neural Comput. Appl., vol. 31, no. 4, pp. 979–989, Apr. 2019,

doi: 10.1007/s00521-017-3130-5.

[58] Centers for Disease Control and Prevention (CDC). National Center for Health Statistics

(NCHS). National Health and Nutrition Examination Survey Data, “NHANES III (1988-

1994) - Data Files.” https://wwwn.cdc.gov/nchs/nhanes/nhanes3/datafiles.aspx#core

(accessed Apr. 23, 2021).

[59] “NHANES 1988-1994: Hepatic/Gallbladder Ultrasound and Hepatic Steatosis Data

Documentation, Codebook, and Frequencies.”

https://wwwn.cdc.gov/nchs/data/nhanes3/34a/HGUHS.htm#Data_Processing_and_Editin

g (accessed Jan. 30, 2019).

[60] “NHANES Tutorials - Module 3 - Weighting.”

https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx (accessed Apr. 03, 2022).

[61] J. Luo and M. Hendryx, “Metal mixtures and kidney function: An application of machine

learning to NHANES data,” EnvIron. Res., vol. 191, p. 110126, Dec. 2020, doi:

10.1016/j.envres.2020.110126.

[62] F. López-Martínez, E. R. Núñez-Valdez, R. G. Crespo, and V. García-Díaz, “An artificial

neural network approach for predicting hypertension using NHANES data,” Sci. Rep.,

vol. 10, no. 1, p. 10620, Dec. 2020, doi: 10.1038/s41598-020-67640-z.

[63] G. A. Klados et al., “Machine Learning Model for Predicting CVD Risk on NHANES

Data,” in 2021 43rd Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), Mexico, Nov. 2021, pp. 1749–1752. doi:

10.1109/EMBC46164.2021.9630119.

[64] SAS Inc., “The data analysis for this paper was generated using SAS software.

Copyright ©2019 SAS Institute Inc.” 2019.

[65] MATLAB, MATLAB v9.9.0 (R2020b). Natick, Massachusetts: The MathWorks Inc.,

2020.

[66] N. Cristianini, J. Shawe-Taylor, and others, An introduction to support vector machines

and other kernel-based learning methods. Cambridge university press, 2000.

[67] T. Hastie and R. Tibshirani, J. Friedman The Elements of Statistical Learning. Chapter 6.

Springer Verlag, New York, 2001.

[68] “Support Vector Machine Classification - MATLAB & Simulink.”

https://www.mathworks.com/help/stats/support-vector-machine-classification.html

(accessed May 03, 2021).

[69] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

73

[70] Q. Wei and R. L. Dunbrack, “The Role of Balanced Training and Testing Data Sets for

Binary Classifiers in Bioinformatics,” PLoS ONE, vol. 8, no. 7, p. e67863, Jul. 2013, doi:

10.1371/journal.pone.0067863.

[71] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic

Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun.

2002, doi: 10.1613/jair.953.

[72] L. Guzman, “Data sampling improvement by developing SMOTE technique in SAS,” in

Proceedings of the SAS Global Forum 2015 Conference, 2015, pp. 3483–2015.

[73] P. Hall and J. Cash, “What is the real function of the liver ‘function’ tests?,” Ulster Med.

J., vol. 81, no. 1, pp. 30–36, Jan. 2012.

[74] A. Dasgupta and A. Wahed, “Chapter 10 - Liver Diseases and Liver Function Tests,” in

Clinical Chemistry, Immunology and Laboratory Quality Control, A. Dasgupta and A.

Wahed, Eds. San Diego: Elsevier, 2014, pp. 177–195. doi: 10.1016/B978-0-12-407821-

5.00010-3.

[75] P. Y. Kwo, S. M. Cohen, and J. K. Lim, “ACG Clinical Guideline: Evaluation of

Abnormal Liver Chemistries,” Am. J. Gastroenterol., vol. 112, no. 1, pp. 18–35, Jan.

2017, doi: 10.1038/ajg.2016.517.

[76] “Understand Liver Enzyme Test Results — American Liver Foundation.”

https://liverfoundation.org/understand-liver-enzyme-test-results-2/ (accessed Mar. 30,

2021).

[77] “Risk Factors for Diabetes | NIDDK,” National Institute of Diabetes and Digestive and

Kidney Diseases. https://www.niddk.nih.gov/health-information/professionals/clinical-

tools-patient-management/diabetes/game-plan-preventing-type-2-diabetes/prediabetes-

screening-how-why/risk-factors-diabetes (accessed Mar. 30, 2021).

[78] “Hyperglycemia in diabetes - Diagnosis and treatment - Mayo Clinic.”

https://www.mayoclinic.org/diseases-conditions/hyperglycemia/diagnosis-treatment/drc-

20373635 (accessed Mar. 30, 2021).

[79] “Classification Using Nearest Neighbors - MATLAB & Simulink.”

https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html

(accessed Mar. 23, 2022).

74

APPENDIX A. – CODE FOR OBJECTIVE 1A

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%%

% Created on: 02/19/2019

% Input: Raw data from NHANES

% Output: Data with only variables of interest, specific to objective 1A

% Author: Ridhi Deo

% File name: obj1a_sas_1.sas

% Description: Used eliminate the variables that are not required and to only keep the variables

of interest from the raw datasets. This program was developed using SAS 2019 [64].

%%%%%%%%

% set the data path and choose the variables to keep. Variable codes are as provided by

% NHANESIII

LIBNAME NH3 "Raw data path";

data NH3.adult_reduced;

set NH3.adult;

keep SEQN HSAGEIR HSSEX;

proc sort; by seqn; run;

data NH3.lab_reduced;

set NH3.lab;

keep SEQN TGP HDP TCP;

proc sort; by seqn; run;

data NH3.exam_reduced;

set NH3.exam;

keep SEQN BMPBMI MAPE1 MAPE2 MAPE4;

proc sort; by seqn; run;

data NH3.HGUHS_reduced;

set NH3.HGUHS;

keep SEQN GUPHSPFR;

proc sort; by seqn; run;

proc contents data = NH3.adult_reduced;

run;

proc contents data = NH3.lab_reduced;

run;

proc contents data = NH3.exam_reduced;

run;

75

proc contents data = NH3.HGUHS_reduced;

run;

%% Note: The data output from this program has been archive in the Purdue Research

Repository

2. SAS CODE TO MERGE DATASETS

%%%%%%%%

% Created on: 02/19/2019

% Input: Processed data with only variables of interest, specific to objective 1A

% Output: Multiple datasets of interest merged into one dataset

% Author: Ridhi Deo

% File name: obj1a_sas_2.sas

% Description: Used to combine different datasets of interest into one. This program was

developed using SAS 2019 [64].

%%%%%%%%

LIBNAME NH3 "Input data path";

% Sorting data by the sequential number

proc sort data=NH3.adult_reduced;

 by SEQN;

proc sort data=NH3.lab_reduced;

 by SEQN;

proc sort data=NH3.exam_reduced;

 by SEQN;

proc sort data=NH3.hguhs_reduced;

 by SEQN;

%Merging data using the sequential number

 data NH3.merged;

 merge NH3.adult_reduced

 NH3.lab_reduced

 NH3.exam_reduced

 NH3.hguhs_reduced;

 by SEQN;

proc contents data = NH3.merged varnum;

proc means data=NH3.merged N Nmiss min max maxdec=2;

run;

%% Note: The data output from this program has been archive in the Purdue Research

Repository

76

3. SAS CODE TO REMOVE OBSERVATIONS WITH MISSING DATA

%%%%%%%%

% Created on: 02/19/2019

% Input: Merged dataset

% Output: Merged dataset without missing data

% Author: Ridhi Deo

%File name: obj1a_sas_3.sas

%Description: This code was written to eliminate any observations containing missing data

related to alcohol information. This program was developed using SAS 2019 [64].

%%%%%%%%

LIBNAME NH3 " Raw data path ";

data NH3.merged_deletedNaNs;

set NH3.merged;

if nmiss(MAPE1) > 0 then delete;

proc means data=NH3.merged_deletedNaNs N Nmiss min max maxdec=2;

run;

4. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE

DATASETS

%%%%%%%%

% Created on: 01/31/2019

% Input: Processed data exported from SAS

% Output: Processed datasets for disease (HS yes) and no disease (HS no)

% Author: Ridhi Deo

% File name: Obj1a_matlab_1.m (MATLAB R2018b [65])

% Description: This code was written to further clean and process the input dataset (exported

from SAS). Then the data was divided into two sub-datasets based on HS yes or no.

%%%%%%%%

%% Clear Screen

clc;

clear all;

%% Read the merged data text file into MATLAB

data = readtable(Raw data path);

%% Changing the values in the variables to 0s and 1s for clear representation of data

data.TGP(data.TGP == 8888) = NaN;

data.TCP(data.TCP == 8888) = NaN;

data.HDP(data.HDP == 8888) = NaN;

data.BMPBMI(data.BMPBMI == 8888) = NaN;

data.MAPE1(data.MAPE1 == 8) = NaN; % 8 = blank but applicable as per NHANES

data.MAPE1(data.MAPE1 == 2) = 0; % 2 = No as per NHANES %1 is yes..leaving it as is

data.MAPE1(data.MAPE1 == 9) = NaN; % 9 = don't know as per NHANES

77

data.MAPE2(data.MAPE2 == 8) = NaN; % 8 = blank but applicable as per NHANES

data.MAPE2(data.MAPE2 == 2) = 0; % 2 = No as per NHANES %1 is yes..leaving it as is

data.MAPE2(data.MAPE2 == 9) = NaN; % 9 = don't know as per NHANES

data.MAPE4(data.MAPE4 == 999) = NaN; % 999 = don't know as per NHANES

data.MAPE4(data.MAPE4 == 888) = NaN; % 888 = blank but applicable as per NHANES

data.GUPHSPFR(data.GUPHSPFR == 8) = NaN; %No image as per NHANES

data.GUPHSPFR(data.GUPHSPFR == 7) = NaN; %Image is present, but ungradable as per

NHANES

data.GUPHSPFR(data.GUPHSPFR == 1) = 0; % 1 is Normal-Mild as per NHANES. Changing

it to 0 to indicate no risk

data.GUPHSPFR(data.GUPHSPFR == 2) = 1; % 2 is Moderate - Severe as per NHANES.

Changing it to 1 to indidcate risk

%% Changing the names of the variables to make it easy to understand

data.Properties.VariableNames{'SEQN'} = 'Sequential_Number';

data.Properties.VariableNames{'HSSEX'} = 'Sex';

data.Properties.VariableNames{'HSAGEIR'} = 'Age';

data.Properties.VariableNames{'TGP'} = 'Triglycerides';

data.Properties.VariableNames{'TCP'} = 'Total_Cholestrol';

data.Properties.VariableNames{'HDP'} = 'HDL';

data.Properties.VariableNames{'BMPBMI'} = 'BMI';

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life';

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year';

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day';

data.Properties.VariableNames{'GUPHSPFR'} = 'Fatty_Liver';

%% Filling in missing data for the 12 drinks per year column with information from 12 drinks in

life column

% If a person has not had 12 drinks in their lifetime, the response on the

% variable 12 drinks in past year are missing

% To fix that, individuals who have not had 12 drinks in their life will

% have 0s on the column 12 drinks in past year

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the column

drinks per day

for i = 1: size(data,1)

 if (data.Alcohol_12_life(i) == 0)

 data.Alcohol_12_last_year(i) = 0;

 data.Drinks_per_day(i) = 0;

 end

end

for i = 1: size(data,1)

 if (data.Alcohol_12_last_year(i) == 0)

78

 data.Drinks_per_day(i) = 0;

 end

end

%% Deleting data samples with missing information wrt Fatty_Liver column

idx_FL = find(isnan(data.Fatty_Liver));

data(idx_FL,:) = [];

%% Deleting datasamples with missing information wrt alcohol

idx_alc_life = find(isnan(data.Alcohol_12_life));

data(idx_alc_life,:) = [];

%% Deleting datasamples with missing information wrt triglycerides

idx_Trig = find(isnan(data.Triglycerides));

data(idx_Trig,:) = [];

%% Deleting data samples with > 1 drink per day for women and > 2 drinks per day for men

% As per the exclusion criteria followed by Long et al (They used drinks per week)

 k = 1;

for i = 1: size(data,1)

 if(data.Sex(i) == 1 && data.Drinks_per_day(i) > 2)

 idx(k) = i;

 k = k + 1;

 end

end

data(idx,:) = [];

m = 1;

for i = 1: size(data,1)

 if(data.Sex(i) == 2 && data.Drinks_per_day(i) > 1)

 idx1(m,1) = i;

 m = m+1;

 end

end

data(idx1,:) = [];

%% Changing Sex to 0 and 1

 data.Sex(data.Sex == 2) = 0; % Changing women to 0

% Men remain as 1 (1 is high risk, 0 is low, generally)

%% Deleting data samples with missing information wrt alcohol per day

idx_Drinks = find(isnan(data.Drinks_per_day));

79

data(idx_Drinks,:) = [];

%% Deleting datasamples with missing BMI

idx_BMI = find(isnan(data.BMI));

data(idx_BMI,:) = [];

%% Creating a dataset which is the subset of the above dataset to compare with FHS f atty

liver study

data_FHS = data(:,[1:7,11]);

%% Normalizing Age, BMI,drinks_per_day

data_FHS.Age = normalize(data_FHS.Age,'zscore'); %Normalizing to range between 0

and 1

data_FHS.BMI = normalize(data_FHS.BMI,'zscore'); %Normalizing to range between 0

and 1

%data_FHS.Drinks_per_day = normalize(data_FHS.Drinks_per_day,'zscore');

%Normalizing to range between 0 and 1

data_FHS.HDL = normalize(data_FHS.HDL , 'zscore');

data_FHS.Total_Cholestrol = normalize(data_FHS.Total_Cholestrol , 'zscore');

data_FHS.Triglycerides = normalize(data_FHS.Triglycerides,'zscore');

all_disease = array2table(zeros(sum(data_FHS.Fatty_Liver == 1),8));

all_no_disease = array2table(zeros(size(data_FHS,1) - sum(data_FHS.Fatty_Liver == 1),

8));

%% Saved the disease and no-disease datasets into my hard drive as disease_dataset.mat

and

% no_disease_dataset.mat, respectively

5. CODE TO CREATE SYNTHETIC DATA AND TO TRAIN, TEST ML MODELS

%%%%%%%%

% Created on: 04/23/2019

% Input: Processed disease and no disease datasets from obj1a_matlab_1.m

% Output: Results from the ML models

% Author: Ridhi Deo

%File name: obj1a_matlab_2.m (R2018b [65]))

%Description: This code is a parent code that was used to create synthetic data using the

SMOTE and Gower's distance metrics. Data was then divided into 70:30 training:test ratio,

respectively. Five machine learning models were trained and tested: Fine Gaussian SVM,

Medium Gaussian SVM, Bagged Trees, Gentle Boosted Trees and ADA Boosted Trees.

%This code is written to internally call on the obj1a_matlab_2a.m code.

%The obj1a_matlab_2a.m code further calls on: obj1a_matlab_2b.m,

obj1a_matlab_2c.m, %obj1a_matlab_2d.m, obj1a_matlab_2e.m, and obj1a_matlab_2f.m.

%%%%%%%%

80

clc;

clear all;

% Loading the disease dataset

disease_sample = load(Raw data path);

disease_sample = disease_sample.disease_dataset;

disease_sample(:,[1,8:12]) = [];

T = size(disease_sample,1); %Measure of number of diseased samples

N = 2; % Equivalent of 200% synthetic sample generation

k = 2; % Setting number of nearest neighbours to 2

num_attrs = size(disease_sample,2); %Number of variables

new_index = 0; % Variable to keep a count of newly generated synthetic samples

synthetic_sample.N{2} = zeros(T,num_attrs); %Since we are generating 200% synthetic,

this value is N{2}

nn_array = zeros(T,k+1); %Tp keep a list of nearest neighbours for each sample

R = zeros(5,1); %Range of continous variables is represented by the array R

temp_range = table2array(disease_sample(:,2:6)); %Temporary conversions to array - for

computational ease. This is essential disease_sample

temp_dist = table2array(disease_sample);

distance = zeros(T,T); %Preallocating a matrix to store all the gower's distances

for i = 1:5 %Calculating ranges

 R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i)));

end

for i = 1:T %Computing Gower's distance and populating the distance matrix

 for j = 1:T

 if(temp_dist(i,1) == temp_dist(j,1))

 a = 1;

 d = 0;

 else

 d = 1;

 a = 0;

 end

 for m = 1:5

 part1(m) = 1 - (abs(temp_dist(i,m+1) - temp_dist(j,m+1))/R(m,1));

 end

 part2(i,j) = sum(part1,2);

 part3(i,j) = (part2(i,j) + a)/(5 + (1-d));

 distance(i,j) = 1 - part3(i,j);

 end

 [nn_values(i,:),nn_array(i,:)] = mink(distance(i,:),k+1); %Finding the 5 nearest neighbors

because the nearest one is with the sample itself

% And to remove the column of zeros and still have 2 NN, I am obtaining 3

% to start with

end

81

nn_array(:,1) = []; %Nearest neighbor indices

nn_values(:,1) =[]; %Nearest neighbor values

while (N~=0) %To perform 200% synthetic sampling

 for i = 1:size(temp_dist,1)

 for attr=2:size(temp_dist,2)

 nn = randi([1 k],1);

 dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr);

 gap = 0 + rand(1,1);

 synthetic_sample.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic continous

attributes

 end

 %Synthetic binary attribute

 if(temp_dist(i,1) + sum(temp_dist(nn_array(i,1:k),1)) < 2)

 synthetic_sample.N{N}(i,1) = 0;

 else

 synthetic_sample.N{N}(i,1) = 1;

 end

 end

 N = N-1; %To avoid infinite loops

end

total_synthetic_samples = [synthetic_sample.N{1};synthetic_sample.N{2}];

synthetic_original_disease = [total_synthetic_samples; temp_dist];

synthetic_original_disease(:,7) = ones(size(synthetic_original_disease,1),1);

non_disease_dataset = load(‘file path’);

non_disease_dataset = non_disease_dataset.no_disease_dataset;

non_disease_dataset(:,[1,9:12]) = [];

non_disease_dataset = table2array(non_disease_dataset);

full_data = [synthetic_original_disease; non_disease_dataset];

full_data(:,2:6) = normalize(full_data(:,2:6), 'range'); %Scaling continuous variables

between 0 and 1

synthetic_original_disease = full_data(find(full_data(:,7) == 1), :);

non_disease_dataset = full_data(find(full_data(:,7) == 0), :);

Q = size(synthetic_original_disease,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease = synthetic_original_disease(trainInd,:);

test_disease = synthetic_original_disease(testInd,:);

82

% train_disease.Properties.VariableNames = {'Var2', 'Var3', 'Var4', 'Var5', 'Var6',

'Var7','Var8','Var9','Var10','Var11','Var12'};

% test_disease.Properties.VariableNames = {'Var2', 'Var3', 'Var4', 'Var5', 'Var6',

'Var7','Var8','Var9','Var10','Var11','Var12'};

Q = size(non_disease_dataset,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease = non_disease_dataset(trainInd,:);

test_no_disease = non_disease_dataset(testInd,:);

training = [train_disease; train_no_disease];

test = [test_disease; test_no_disease];

test = test(randperm(size(test,1)),:);

training = training(randperm(size(training,1)),:);

test = array2table(test);

training = array2table(training);

test.Properties.VariableNames = {'Var1','Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7'};

training.Properties.VariableNames = {'Var1','Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7'};

[test_results, train_results] = smote_testing(test, training)

6. CODE TO TRAIN AND TEST ML MODELS

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2.m

% Output: Further calls other matlab functions

% Author: Ridhi Deo

% File name: obj1a_matlab_2a.m (R2018b [65]))

% Description: This code is called internally from obj1a_matlab_2.m. This code is used to train

and test five machine learning models and compute their performances. It outputs the

performances back to its parent code: obj1a_matlab_2.m

%%%%%%%%

function [test_results, train_results] = smote_testing(test, training)

%% Fine Gaussian SVM

[fine_gauss, val_acc_fine_gauss] = smote_fine_gauss(training);

yfit_1 = fine_gauss.predictFcn(test(:,1:end-1));

yfit_1(:,2) = test.Var7;

g1 = yfit_1(:,2)'; %Known values - Ground Truth

g2 = yfit_1(:,1)'; % predicted values

83

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Fine Gaussian SVM')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Fine Gaussian SVM')

txt = ['AUC for Fine Gaussian is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_1 = classperf(g1,g2);

cp_1_accuracy = cp_1.CorrectRate;

%% Medium Gaussian SVM

[med_gauss, val_acc_med_gauss] = smote_med_gauss(training);

yfit_2 = med_gauss.predictFcn(test(:,1:end-1));

yfit_2(:,2) = test.Var7;

g1 = yfit_2(:,2)'; %Known values - Ground Truth

g2 = yfit_2(:,1)'; % predicted values

figure

plotconfusion(g1,g2), title('Medium Gaussian SVM')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

figure

plot(X,Y), title('Medium Gaussian SVM');

txt = ['AUC for Medium Gaussian is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_2 = classperf(g1,g2);

cp_2_accuracy = cp_2.CorrectRate;

%% Ensemble - Bagged Trees

[bagged_trees, val_acc_bagged_trees] = smote_bagged_trees(training);

yfit_3 = bagged_trees.predictFcn(test(:,1:end-1));

yfit_3(:,2) = test.Var7;

g1 = yfit_3(:,2)'; %Known values - Ground Truth

g2 = yfit_3(:,1)'; % predicted values

figure

plotconfusion(g1,g2), title('Bagged Trees')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

figure

plot(X,Y), title('Bagged Trees');

txt = ['AUC for Bagged Trees is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_3 = classperf(g1,g2);

cp_3_accuracy = cp_3.CorrectRate;

%% Ensemble RUS boosted Trees

84

[RUS, val_acc_RUS_boosted] = smote_RUS(training);

yfit_4 = RUS.predictFcn(test(:,1:end-1));

yfit_4(:,2) = test.Var7;

g1 = yfit_4(:,2)'; %Known values - Ground Truth

g2 = yfit_4(:,1)'; % predicted values

figure

plotconfusion(g1,g2), title('Ensemble RUS boosted Trees')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

figure

plot(X,Y), title('Ensemble RUS boosted Trees');

txt = ['AUC for RUS is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_4 = classperf(g1,g2);

cp_4_accuracy = cp_4.CorrectRate;

%% Ensemble Gentle boost

[gentle, val_acc_gentle] = smote_gentle(training);

yfit_5 = gentle.predictFcn(test(:,1:end-1));

yfit_5(:,2) = test.Var7;

g1 = yfit_5(:,2)'; %Known values - Ground Truth

g2 = yfit_5(:,1)'; % predicted values

figure

plotconfusion(g1,g2), title('Ensemble Gentle boost')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

figure

plot(X,Y), title('Ensemble Gentle boost');

txt = ['AUC for Gentle boost is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_5 = classperf(g1,g2);

cp_5_accuracy = cp_5.CorrectRate;

%% Ensemble ADA boost

[ADA, val_acc_ADA] = smote_ADA(training);

yfit_6 = ADA.predictFcn(test(:,1:end-1));

yfit_6(:,2) = test.Var7;

g1 = yfit_6(:,2)'; %Known values - Ground Truth

g2 = yfit_6(:,1)'; % predicted values

figure

plotconfusion(g1,g2), title('Ensemble ADA boost')

[X,Y,T,AUC] = perfcurve(g1,g2,'1');

85

figure

plot(X,Y), title('Ensemble ADA boost');

txt = ['AUC for ADA boost is ',num2str(AUC)];

text(0.5,0.9,txt)

clear X Y T AUC;

cp_6 = classperf(g1,g2);

cp_6_accuracy = cp_6.CorrectRate;

%% Tabulated results

test_results = table(cp_1_accuracy, cp_2_accuracy, cp_3_accuracy, cp_4_accuracy,

cp_5_accuracy, cp_6_accuracy);

test_results.Properties.VariableNames = {'Fine_Gaussian', 'Medium_Gaussian', 'Bagged_Trees',

'RUS', 'Gentle_Boost', 'ADA_boost'};

train_results = table(val_acc_fine_gauss, val_acc_med_gauss, val_acc_bagged_trees,

val_acc_RUS_boosted, val_acc_gentle, val_acc_ADA);

train_results.Properties.VariableNames = {'Fine_Gaussian', 'Medium_Gaussian', 'Bagged_Trees',

'RUS', 'Gentle_Boost', 'ADA_boost'};

A. CODE TO TRAIN FINE GAUSSIAN SVM MODEL

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2a

% Output: Trained Fine Gaussian SVM model

% Author: MATLAB Auto Generation implemented by Ridhi Deo

% File name: obj1a_matlab_2b.m (R2018b [65]))

% Description: Used to train the model fine gaussian SVM. Outputs the trained model back to

obj1a_matlab_2a.m

%%%%%%%%

function [trainedClassifier, validationAccuracy] = smote_fine_gauss(trainingData)

% Auto-generated by MATLAB on 01-May-2019 11:12:40

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

86

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 0.61, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2018b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

87

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

B. CODE TO TRAIN MEDIUM GAUSSIAN SVM

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2a

% Output: Trained Medium Gaussian SVM model

% Author: MATLAB Auto Generation implemented by Ridhi Deo

% File name: obj1a_matlab_2c (R2018b [65]))

% Description: Used to train the model medium gaussian SVM. Outputs the trained model back

to obj1a_matlab_2a

%%%%%%%%

function [trainedClassifier, validationAccuracy] = smote_med_gauss(trainingData)

% Auto-generated by MATLAB on 01-May-2019 11:16:26

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 2.4, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

88

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2018b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

C. CODE TO TRAIN BAGGED TREES

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2a

% Output: Trained bagged trees model

% Author: MATLAB Auto Generation implemented by Ridhi Deo

%File name: obj1a_matlab_2d (R2018b [65]))

%Description: Used to train the model bagged trees. Outputs the trained model back to

obj1a_matlab_2a

%%%%%%%%

89

function [trainedClassifier, validationAccuracy] = smote_bagged_trees(trainingData)

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

template = templateTree(...

 'MaxNumSplits', 8902);

classificationEnsemble = fitcensemble(...

 predictors, ...

 response, ...

 'Method', 'Bag', ...

 'NumLearningCycles', 30, ...

 'Learners', template, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2018b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

90

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

D. CODE TO TRAIN ADA BOOSTED TREES

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2a

% Output: Trained ADA model

% Author: MATLAB Auto Generation implemented by Ridhi Deo

%File name: obj1a_matlab_2e (R2018b [65]))

%Description: Used to train the ADA model. Outputs the trained model back to

obj1a_matlab_2a

%%%%%%%%

function [trainedClassifier, validationAccuracy] = smote_ADA(trainingData)

% Auto-generated by MATLAB on 01-May-2019 11:20:29

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

template = templateTree(...

 'MaxNumSplits', 20);

classificationEnsemble = fitcensemble(...

 predictors, ...

91

 response, ...

 'Method', 'AdaBoostM1', ...

 'NumLearningCycles', 30, ...

 'Learners', template, ...

 'LearnRate', 0.1, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2018b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

92

E. CODE TO TRAIN GENTLE BOOSTED TREES

%%%%%%%%

% Created on: 05/01/2019

% Input: Internally called from obj1a_matlab_2a

% Output: Trained Gentle Boosted model

% Author: MATLAB Auto Generation implemented by Ridhi Deo (R2018b [65]))

%File name: obj1a_matlab_2f

%Description: Used to train the gentle boost model. Outputs the trained model back to

obj1a_matlab_2a

%%%%%%%%

function [trainedClassifier, validationAccuracy] = smote_gentle(trainingData)

% Auto-generated by MATLAB on 01-May-2019 11:19:41

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

template = templateTree(...

 'MaxNumSplits', 20);

classificationEnsemble = fitcensemble(...

 predictors, ...

 response, ...

 'Method', 'GentleBoost', ...

 'NumLearningCycles', 30, ...

 'Learners', template, ...

 'LearnRate', 0.1, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

93

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2018b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'};

predictors = inputTable(:, predictorNames);

response = inputTable.Var7;

isCategoricalPredictor = [false, false, false, false, false, false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

The flow of code is as follows:

Figure P1.A.1: Figure outlining the flow of code used in this research objective (1A)

Raw
data

Code
P1A.1

Code
P1A.2

Code
P1A.3

Code
P1A.4

Code
P1A.5

Code
P1A.6

P1A.6A P1A.6EP1A.6DP1A.6CP1A.6B

Output

94

APPENDIX B. - CODE FOR OBJECTIVE 1B

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%%

% Created on: 03/21/21

% Input: Raw data from NHANES

% Output: Data with only variables of interest, specific to objective 1B

% Author: Ridhi Deo

% File name: obj1b_sas_1.sas

% Description: Used eliminate the variables that are not required and to only keep the variables

of interest from the raw datasets. This program was developed using SAS 2019 [64].

%%%%%%%%

% set the data path and choose the variables to keep. Variable codes are as provided by

% NHANESIII

LIBNAME NH "Raw data path";

data adult;

set NH.adult;

keep SEQN HSAGEIR HSSEX DMARETHN HAD1 HAD6 HAD10;

proc sort; by seqn; run;

data lab;

set NH.lab;

keep SEQN AHP HBP SSP SAP HCP DHP NAPSI SKPSI CLPSI C3PSI SCPSI

PSPSI UAPSI G1P G2P BUPSI TBPSI CEPSI SFPSI CHPSI TRPSI ASPSI ATPSI

GGPSI LDPSI APPSI TPPSI AMPSI GBPSI OSPSI GHP GHPMETH G1PSI

G1PCODE G2PSI C1PSI C2PSI I1PSI I2PSI UDPSI URPSI UBP UIP PLPSI PVPSI

PBPSI FEPSI VBPSI VCPSI ICPSI CAPSI SEPSI VAPSI VEPSI ACPSI BCPSI

TCPSI TGPSI LCPSI HDPSI AAPSI ABPSI LPPSI;

proc sort; by seqn; run;

data exam;

set NH.exam;

keep SEQN PEP6DR BMPBMI BMPWAIST MAPA1 MAPA2A MAPA2B MAPA3

MAPE1 MAPE2 MAPE4;

proc sort; by seqn; run;

data HGUHS;

set NH.HGUHS;

keep SEQN GUPHSQC GUPHSLKC GUPHSPB GUPHSDBA GUPHSVW

GUPHSDGB GUPHSPF GUPHSPFR GUPHSC GUPHSREV;

proc sort; by seqn; run;

95

proc contents data = NH.adult;

run;

proc contents data = NH.lab;

run;

proc contents data = NH.exam;

run;

proc contents data = NH.HGUHS;

run;

2. SAS CODE TO MERGE DATASETS

%%%%%%%%

% Created on: 03/21/21

% Input: Processed data with only variables of interest, specific to objective 1B

% Output: Multiple datasets of interest merged into one dataset

% Author: Ridhi Deo

% File name: obj1b_sas_2.sas

% Description: Used to combine different datasets of interest into one. This program was

developed using SAS 2019 [64].

%%%%%%%%

% Sorting data by the sequential number

proc sort data=work.adult;

 by SEQN;

proc sort data=work.lab;

 by SEQN;

proc sort data=work.exam;

 by SEQN;

proc sort data=work.hguhs;

 by SEQN;

%Merging data using the sequential number

 data NH.merged;

 merge work.adult

 work.lab

 work.exam

 work.hguhs;

 by SEQN;

proc contents data = NH.merged varnum;

proc means data=NH.merged N Nmiss min max maxdec=2;

run;

96

3. MATLAB CODE FOR INITIAL DATA PROCESSING, SPLIT INTO MALE,

FEMALE SUB DATASETS

%%%%%%%%

% Created on: 03/21/21

% Input: Merged dataset from SAS

% Output: Processed data, split into male and female sub-datasets

% Author: Ridhi Deo

% File name: Obj1b_matlab_1.m (R2020b [65]))

% Description: This code was written to process data and split it into male and female sub-

datasets.

%%%%%%%%

clc

clear all;

%% Data import

data7 = data7(:,[1,3,4,24,47,48,51,58,61,72,78:80,88]);

data7.Properties.VariableNames{'HSAGEIR'} = 'Age';

data7.Properties.VariableNames{'HSSEX'} = 'Sex';

data7.Properties.VariableNames{'BMPBMI'} = 'BMI';

data7.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life';

data7.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year';

data7.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day';

data7.Properties.VariableNames{'GUPHSPFR'} = 'HS';

data7.Properties.VariableNames{'ATPSI'} = 'ALT';

data7.Properties.VariableNames{'ASPSI'} = 'AST';

data7.Properties.VariableNames{'APPSI'} = 'ASP';

data7.Properties.VariableNames{'G1P'} = 'Plasma_glucose_1';

data7.Properties.VariableNames{'G2P'} = 'Plasma_glucose_2';

data7.Properties.VariableNames{'HDPSI'} = 'HDL';

%% Alcohol data columns processing

% Filling in missing data for the 12 drinks per year column with information from 12

drinks in life column

% If a person has not had 12 drinks in their lifetime, the response on the

% variable 12 drinks in past year are missing

% To fix that, individuals who have not had 12 drinks in their life will

% have 0s on the column 12 drinks in past year

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the

column drinks per day

for i = 1: size(data7,1)

 if (data7.Alcohol_12_life(i) == 2)

97

 data7.Alcohol_12_last_year(i) = 0;

 data7.Drinks_per_day(i) = 0;

 end

end

for i = 1: size(data7,1)

 if (data7.Alcohol_12_last_year(i) == 2)

 data7.Drinks_per_day(i) = 0;

 end

end

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing

variables of interest

% The information was referred from NHANES 3 documentation

% Since we have not used any youth data, all NaNs in the Age column could

% correspond to that

idx_age = find(isnan(data7.Age));

data7(idx_age,:) = []; %13,149 samples are eliminated in this step

Extra_Hb1AC(idx_age,:) = [];

clear idx_age;

% Sex

% No missing or junk data

% Plasma glucose

% G1P

% 88888 = blank but applicable

data7.Plasma_glucose_1(data7.Plasma_glucose_1 == 88888) = NaN;

% G2P

% 88888 = blank but applicable

data7.Plasma_glucose_2(data7.Plasma_glucose_2 == 88888) = NaN;

% AST

% 888 Blank but applicable

data7.AST(data7.AST == 888) = NaN;

% ALT

% 888 Blank but applicable

data7.ALT(data7.ALT == 888) = NaN;

% ASP

% 888 Blank but applicable

data7.ASP(data7.ASP == 888) = NaN;

data7.ASP(data7.ASP == 8888) = NaN;

98

% BMI

% 8888 was found as junk data. Although I didnt see this on the website for

% NHANES, it is removed because 8888 is not appropriate BMI

data7.BMI(data7.BMI == 8888) = NaN;

% HS

% 7 Image is present, but ungradable

% 8 No image

data7.HS(data7.HS == 7) = NaN;

data7.HS(data7.HS == 8) = NaN;

% HDL

data7.HDL(data7.HDL == 8888) = NaN;

% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic beverage?

Do not count small tastes.

% 8 - Blank but applicable, 9 - dont know.

data7.Alcohol_12_life(data7.Alcohol_12_life == 8) = NaN;

data7.Alcohol_12_life(data7.Alcohol_12_life == 9) = NaN;

% MAPE2 In the past 12 months did you

%have at least 12 drinks of any kind of alcoholic beverage?

% 8 - Blank but applicable, 9 - dont know.

data7.Alcohol_12_last_year(data7.Alcohol_12_last_year == 8) = NaN;

data7.Alcohol_12_last_year(data7.Alcohol_12_last_year == 9) = NaN;

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you have a

day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.)

% 888 - Blank but applicable, 999 - dont know.

data7.Drinks_per_day(data7.Drinks_per_day == 888) = NaN;

data7.Drinks_per_day(data7.Drinks_per_day == 999) = NaN;

%% After executing the code up to this point, I have visually examined all

% the data columns to ensure junk data is removed - 03/21/21

%% Eliminating missing data from HS - we need to eliminate this data because this is our

output variable and groud truth

HS_missing_idx = find(isnan(data7.HS)); %6,194 cases of pmissing HS data

data7(HS_missing_idx,:) = []; %This step eliminates the 6,194 cases of missing HS data

clear HS_missing_idx;

%% Delete missing ALT and AST information

ALT_missing_idx = find(isnan(data7.ALT)); %773 cases of missing ALT data

data7(ALT_missing_idx,:) = [];

AST_missing_idx = find(isnan(data7.AST)); %0 cases of missing AST data after

removing ALT missing samples

99

data7(AST_missing_idx,:) = [];

ASP_missing_idx = find(isnan(data7.ASP)); %2 cases of missing ASP data after

removing ALT missing samples

data7(ASP_missing_idx,:) = [];

% IF there are NaNs in G1P, fill them with G2P. If both G1P and G2P are

% NaNs, then delete the sample

 for i = 1:size(data7,1)

 if(isnan(data7.Plasma_glucose_1(i)))

 if(isnan(data7.Plasma_glucose_2(i)))

 idx_pg(i) = i;

 else

 data7.Plasma_glucose_1(i) = data7.Plasma_glucose_2(i);

 end

 end

 end

data7.Plasma_glucose_2 = [];

Plasma_glucose_idx = find(isnan(data7.Plasma_glucose_1)); %25 cases of missing

plasma glucose samples after combining G1P and G2P

data7(Plasma_glucose_idx,:) = [];

BMI_idx = find(isnan(data7.BMI)); %20 cases of missing BMI

data7(BMI_idx,:) = [];

HDL_idx = find(isnan(data7.HDL)); %121 cases of missing HDL

data7(HDL_idx,:) = [];

clear ALT_missing_idx AST_missing_idx ASP_missing_idx Plasma_glucose_idx

idx_pg BMI_idx HDL_idx;

%% Split datasets into HS and non-HS

data7.HS(data7.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to

indicate no risk

data7.HS(data7.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to

1 to indidcate risk

idx_disease = data7.HS == 1;

dataset_HS = data7(idx_disease,:); %2,956

idx_non_disease = data7.HS == 0;

dataset_non_HS = data7(idx_non_disease,:); % 9,959

clear idx_disease idx_non_disease;

100

%% Split further into Male HS, Non-HS and Female HS, non-HS

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :); % Sex = 1 is male and 2 is

female per NHANES documentation

%1,517

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:); %1,439

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:); %4,533

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:); %5,426

%% Apply exclusion criteria for alcohol

% HS and No-HS male exclusion criteria - > 21 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_male,1)

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3)

 idx_HS_men(k) = i;

 k = k + 1;

 end

end

dataset_HS_male(idx_HS_men,:) = []; %437 samples are eliminated

clear k idx_HS_men;

j = 1;

for i = 1: size(dataset_non_HS_male,1)

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3)

 idx_non_HS_men(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_male(idx_non_HS_men,:) = []; %1,228 samples are elminiated

clear j idx_non_HS_men;

% HS and No-HS female exclusion criteria - > 14 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_female,1)

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2)

 idx_HS_women(k) = i;

 k = k + 1;

 end

end

dataset_HS_female(idx_HS_women,:) = []; %195 are eliminated

clear k idx_HS_women;

j = 1;

101

for i = 1: size(dataset_non_HS_female,1)

if(dataset_non_HS_female.Sex(i) == 2 && dataset_non_HS_female.Drinks_per_day(i)

> 2)

 idx_non_HS_women(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_female(idx_non_HS_women,:) = []; %716 are eliminated

clear j idx_non_HS_women;

%% Delete data related to drinks per day

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day));

dataset_HS_male(idx_male_HS_drinks,:) = []; % 1038 x 13

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day));

dataset_non_HS_male(idx_male_non_HS_drinks,:) = []; %3,177 x 13

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day));

dataset_HS_female(idx_female_HS_drinks,:) = []; %1,212 x 13

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day));

dataset_non_HS_female(idx_female_non_HS_drinks,:) = []; %4,591 x 13

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks

idx_male_non_HS_drinks;

%% Delete alcohol columns from 4 datasets

dataset_HS_male.Alcohol_12_last_year = [];

dataset_HS_male.Alcohol_12_life = [];

dataset_HS_male.Drinks_per_day = [];

dataset_HS_female.Alcohol_12_last_year = [];

dataset_HS_female.Alcohol_12_life = [];

dataset_HS_female.Drinks_per_day = [];

dataset_non_HS_male.Alcohol_12_last_year = [];

dataset_non_HS_male.Alcohol_12_life = [];

dataset_non_HS_male.Drinks_per_day = [];

dataset_non_HS_female.Alcohol_12_last_year = [];

dataset_non_HS_female.Alcohol_12_life = [];

dataset_non_HS_female.Drinks_per_day = [];

%% Delete sex column from all 4 datasets

dataset_HS_male.Sex = [];

dataset_HS_female.Sex = [];

102

dataset_non_HS_male.Sex = [];

dataset_non_HS_female.Sex = [];

4. MATLAB CODE FOR SEX SPECIFIC PROCSESSING – UNDER SAMPLING

A. MALE SPECIFIC CODE

%%%%%%%%

% Created on: 03/21/21

% Input: Male Sub-Dataset

% Output: Training and test datasets for male population

% Author: Ridhi Deo

% File name: Obj1b_matlab_2a.m (R2020b [65]))

% Description: This code was written specifically for male population. Data were processed,

four derived features were created and populated with normalized data. Undersampling was

conducted and data were split into training and test in a class balanced way.

%%%%%%%%

% Creating derived variables to store normalized values

ULN_ALT = 33;

%% Liver foundation vicki shah: Female: AST ULN: 20 IU/L

ULN_AST = 30;

ALT_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(ALT_percent);

dataset_HS_male.Properties.VariableNames{'Var10'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(ALT_percent);

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'ALT_percent';

AST_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(AST_percent);

dataset_HS_male.Properties.VariableNames{'Var11'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(AST_percent);

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'AST_percent';

Plasma_glucose_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(Plasma_glucose_percent);

dataset_HS_male.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent';

Plasma_glucose_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(Plasma_glucose_percent);

103

dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent';

BMI_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(BMI_percent);

dataset_HS_male.Properties.VariableNames{'Var13'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(BMI_percent);

dataset_non_HS_male.Properties.VariableNames{'Var13'} = 'BMI_percent';

%% Computing % values

for i = 1: size(dataset_HS_male,1)

dataset_HS_male.ALT_percent(i) = ((dataset_HS_male.ALT(i) -

ULN__ALT)/ULN__ALT)*100;

dataset_HS_male.AST_percent(i) = ((dataset_HS_male.AST(i) -

ULN__AST)/ULN__AST)*100;

 dataset_HS_male.Plasma_glucose_percent(i) =

((dataset_HS_male.Plasma_glucose_1(i) - 120)/120)*100;

 dataset_HS_male.BMI_percent(i) = ((dataset_HS_male.BMI(i) - 25)/25)*100;

end

for i = 1: size(dataset_non_HS_male,1)

 dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) -

ULN__ALT)/ULN__ALT)*100;

 dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) -

ULN__AST)/ULN__AST)*100;

 dataset_non_HS_male.Plasma_glucose_percent(i) =

((dataset_non_HS_male.Plasma_glucose_1(i) - 120)/120)*100;

 dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) - 25)/25)*100;

end

%% Converting % values to 0 if they are negative - see the top of this script for details

for i = 1: size(dataset_HS_male,1)

 if(dataset_HS_male.ALT_percent(i) <= 0)

 dataset_HS_male.ALT_percent(i) = 0;

 end

 if(dataset_HS_male.AST_percent(i) <= 0)

 dataset_HS_male.AST_percent(i) = 0;

 end

 if(dataset_HS_male.Plasma_glucose_percent(i) <= 0)

 dataset_HS_male.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_HS_male.BMI_percent(i) <= 0)

 dataset_HS_male.BMI_percent(i) = 0;

 end

104

end

for i = 1: size(dataset_non_HS_male,1)

 if(dataset_non_HS_male.ALT_percent(i) <= 0)

 dataset_non_HS_male.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_male.AST_percent(i) <= 0)

 dataset_non_HS_male.AST_percent(i) = 0;

 end

 if(dataset_non_HS_male.Plasma_glucose_percent(i) <= 0)

 dataset_non_HS_male.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_non_HS_male.BMI_percent(i) <= 0)

 dataset_non_HS_male.BMI_percent(i) = 0;

 end

end

%% Randomly select samples without replacement

% Note that MATLAB's datasample function has replace = true as default

dataset_non_HS_male_reduced = datasample(dataset_non_HS_male,

size(dataset_HS_male,1), 'Replace', false);

%% Split into training and test

Q = size(dataset_HS_male,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_male = dataset_HS_male(trainInd,:);

test_disease_male = dataset_HS_male(testInd,:);

Q = size(dataset_non_HS_male_reduced,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_male = dataset_non_HS_male_reduced(trainInd,:);

test_no_disease_male = dataset_non_HS_male_reduced(testInd,:);

training_male = [train_disease_male; train_no_disease_male];

test_male = [test_disease_male; test_no_disease_male];

test_male = test_male(randperm(size(test_male,1)),:);

training_male = training_male(randperm(size(training_male,1)),:);

105

%% Remove SEQN from training and test datasets

training_male.SEQN = [];

test_male.SEQN = [];

%% Reoder training and test datasets to have HS as the end variable

training_male = [training_male(:,1:7) training_male(:,9:12) training_male(:, 8)];

test_male = [test_male(:,1:7) test_male(:,9:12) test_male(:, 8)];

B. FEMALE SPECIFIC CODE

%%%%%%%%

% Created on: 03/21/21

% Input: Female Sub-Dataset

% Output: Training and test datasets for female population

% Author: Ridhi Deo

% File name: Obj1b_matlab_2b.m

% Description: This code was written specifically for female population. Data were processed,

four derived features were created and populated with normalized data. Undersampling was

conducted and data were split into training and test in a class balanced way.

%%%%%%%%

% Creating derived variables to store normalized values

ULN_ALT = 25;

ULN_AST = 20;

ALT_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(ALT_percent);

dataset_HS_female.Properties.VariableNames{'Var10'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(ALT_percent);

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'ALT_percent';

AST_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(AST_percent);

dataset_HS_female.Properties.VariableNames{'Var11'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(AST_percent);

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'AST_percent';

Plasma_glucose_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(Plasma_glucose_percent);

dataset_HS_female.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent';

Plasma_glucose_percent = zeros(size(dataset_non_HS_female, 1),1);

106

dataset_non_HS_female(:,end+1) = array2table(Plasma_glucose_percent);

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent';

BMI_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(BMI_percent);

dataset_HS_female.Properties.VariableNames{'Var13'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(BMI_percent);

dataset_non_HS_female.Properties.VariableNames{'Var13'} = 'BMI_percent';

for i = 1: size(dataset_HS_female,1)

dataset_HS_female.ALT_percent(i) = ((dataset_HS_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_HS_female.AST_percent(i) = ((dataset_HS_female.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_HS_female.Plasma_glucose_percent(i) =

((dataset_HS_female.Plasma_glucose_1(i) - 120)/120)*100;

 dataset_HS_female.BMI_percent(i) = ((dataset_HS_female.BMI(i) - 25)/25)*100;

end

for i = 1: size(dataset_non_HS_female,1)

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_non_HS_female.Plasma_glucose_percent(i) =

((dataset_non_HS_female.Plasma_glucose_1(i) - 120)/120)*100;

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) -

25)/25)*100;

end

%% Converting % values to 0 if they are negative - see the top of this script for details

for i = 1: size(dataset_HS_female,1)

 if(dataset_HS_female.ALT_percent(i) <= 0)

 dataset_HS_female.ALT_percent(i) = 0;

 end

 if(dataset_HS_female.AST_percent(i) <= 0)

 dataset_HS_female.AST_percent(i) = 0;

 end

 if(dataset_HS_female.Plasma_glucose_percent(i) <= 0)

 dataset_HS_female.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_HS_female.BMI_percent(i) <= 0)

 dataset_HS_female.BMI_percent(i) = 0;

107

 end

end

for i = 1: size(dataset_non_HS_female,1)

 if(dataset_non_HS_female.ALT_percent(i) <= 0)

 dataset_non_HS_female.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_female.AST_percent(i) <= 0)

 dataset_non_HS_female.AST_percent(i) = 0;

 end

 if(dataset_non_HS_female.Plasma_glucose_percent(i) <= 0)

 dataset_non_HS_female.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_non_HS_female.BMI_percent(i) <= 0)

 dataset_non_HS_female.BMI_percent(i) = 0;

 end

end

%% Randomly select samples without replacement

% Note that MATLAB's datasample function has replace = true as default

dataset_non_HS_female_reduced = datasample(dataset_non_HS_female,

size(dataset_HS_female,1), 'Replace', false);

%% Split into training and test

Q = size(dataset_HS_female,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_female = dataset_HS_female(trainInd,:);

test_disease_female = dataset_HS_female(testInd,:);

Q = size(dataset_non_HS_female_reduced,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_female = dataset_non_HS_female_reduced(trainInd,:);

test_no_disease_female = dataset_non_HS_female_reduced(testInd,:);

training_female = [train_disease_female; train_no_disease_female];

test_female = [test_disease_female; test_no_disease_female];

test_female = test_female(randperm(size(test_female,1)),:);

training_female = training_female(randperm(size(training_female,1)),:);

108

%% Remove SEQN from training and test datasets

training_female.SEQN = [];

test_female.SEQN = [];

%% Reoder training and test datasets to have HS as the end variable

training_female = [training_female(:,1:7) training_female(:,9:12) training_female(:, 8)];

test_female = [test_female(:,1:7) test_female(:,9:12) test_female(:, 8)];

5. MATLAB CODE FOR TRAINING AND TESTING ML MODELS

%%%%%%%%

% Created on: 03/21/21

% Input: Training and test data

% Output: Model performances

% Author: Ridhi Deo

% File name: Obj1b_matlab_3.m (R2020b [65]))

% Description: This code was written to train and test the models, then compute the model

performances and output them.

%%%%%%%%

test = test_female; % Need to change this depending on male/female

training = training_female; % Need to change this depending on male/female

%% Model 1: fine tree

[mod_1, train_acc_1] = finetree2(training); % Training the model using training set

yfit_1 = mod_1.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_1(:,2) = table2array(test(:,end));% Ground truth

g1 = yfit_1(:,2)'; % Transposed values of Known values - Ground Truth

g2 = yfit_1(:,1)'; % Transposed values of predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('Fine Tree')

[tpr_1, fpr_1,~] = roc(g1, g2); % Extracting the true-positive and false-positive rates

sens_1 = tpr_1(1,2); % Calculating sensitiviy

spec_1 = 1- fpr_1(1,2);% Calculating specificity

[X,Y,~,AUC_1] = perfcurve(g1,g2,'1'); % Extracting values to plot the AUC curve with

the AUC value

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Fine Tree')

txt = ['AUC for Fine Tree is ',num2str(AUC_1)];

text(0.5,0.9,txt)

clear X Y;

cp_1 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_1_accuracy = cp_1.CorrectRate;

109

%% Model 2: logistic regression

[mod_2, train_acc_2] = logisticregression2(training); % Training the model using

training set

yfit_2 = mod_2.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_2(:,2) = table2array(test(:,end));

g1 = yfit_2(:,2)'; %Known values - Ground Truth

g2 = yfit_2(:,1)'; % predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('logistic regression')

[tpr_2, fpr_2,~] = roc(g1, g2);

sens_2 = tpr_2(1,2);

spec_2 = 1- fpr_2(1,2);

[X,Y,~,AUC_2] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('logistic regression')

txt = ['AUC for logistic regression is ',num2str(AUC_2)];

text(0.5,0.9,txt)

clear X Y;

cp_2 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_2_accuracy = cp_2.CorrectRate;

%% Model 3: linear svm

[mod_3, train_acc_3] = linearsvm2(training); % Training the model using training set

yfit_3 = mod_3.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_3(:,2) = table2array(test(:,end));

g1 = yfit_3(:,2)'; %Known values - Ground Truth

g2 = yfit_3(:,1)'; % predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('linear svm')

[tpr_3, fpr_3,~] = roc(g1, g2);

sens_3 = tpr_3(1,2);

spec_3 = 1- fpr_3(1,2);

[X,Y,~,AUC_3] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('linear svm')

txt = ['AUC for linear svm is ',num2str(AUC_3)];

text(0.5,0.9,txt)

clear X Y;

cp_3 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_3_accuracy = cp_3.CorrectRate;

%% Model 4: quadratic svm

[mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set

110

yfit_4 = mod_4.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_4(:,2) = table2array(test(:,end));

g1 = yfit_4(:,2)'; %Known values - Ground Truth

g2 = yfit_4(:,1)'; % predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('quadratic svm')

[tpr_4, fpr_4,~] = roc(g1, g2);

sens_4 = tpr_4(1,2);

spec_4 = 1- fpr_4(1,2);

[X,Y,~,AUC_4] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('quadratic svm')

txt = ['AUC for quadratic svm is ',num2str(AUC_4)];

text(0.5,0.9,txt)

clear X Y;

cp_4 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_4_accuracy = cp_4.CorrectRate;

%% Model 5: fine gaussian svm

[mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training

set

yfit_5 = mod_5.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_5(:,2) = table2array(test(:,end));

g1 = yfit_5(:,2)'; %Known values - Ground Truth

g2 = yfit_5(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('fine gaussian svm')

[tpr_5, fpr_5,~] = roc(g1, g2);

sens_5 = tpr_5(1,2);

spec_5 = 1- fpr_5(1,2);

[X,Y,~,AUC_5] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('fine gaussian svm')

txt = ['AUC for fine gaussian svm is ',num2str(AUC_5)];

text(0.5,0.9,txt)

clear X Y;

cp_5 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_5_accuracy = cp_5.CorrectRate;

%% Model 6: medium gaussian svm

[mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using

training set

yfit_6 = mod_6.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

111

yfit_6(:,2) = table2array(test(:,end));

g1 = yfit_6(:,2)'; %Known values - Ground Truth

g2 = yfit_6(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('medium gaussian svm')

[tpr_6, fpr_6,~] = roc(g1, g2);

sens_6 = tpr_6(1,2);

spec_6 = 1- fpr_6(1,2);

[X,Y,~,AUC_6] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('medium gaussian svm')

txt = ['AUC for medium gaussian svm is ',num2str(AUC_6)];

text(0.5,0.9,txt)

clear X Y;

cp_6 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_6_accuracy = cp_6.CorrectRate;

%% Model 7: coarse gaussian svm

[mod_7, train_acc_7] = coarsegaussiansvm2(training); % Training the model using

training set

yfit_7 = mod_7.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_7(:,2) = table2array(test(:,end));

g1 = yfit_7(:,2)'; %Known values - Ground Truth

g2 = yfit_7(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('coarse gaussian svm')

[tpr_7, fpr_7,~] = roc(g1, g2);

sens_7 = tpr_7(1,2);

spec_7 = 1- fpr_7(1,2);

[X,Y,~,AUC_7] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('coarse gaussian svm')

txt = ['AUC for coarse gaussian svm is ',num2str(AUC_7)];

text(0.5,0.9,txt)

clear X Y;

cp_7 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_7_accuracy = cp_7.CorrectRate;

%% Model 8: fine knn

[mod_8, train_acc_8] = fineknn2(training); % Training the model using training set

yfit_8 = mod_8.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_8(:,2) = table2array(test(:,end));

g1 = yfit_8(:,2)'; %Known values - Ground Truth

112

g2 = yfit_8(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('fine knn')

[tpr_8, fpr_8,~] = roc(g1, g2);

sens_8 = tpr_8(1,2);

spec_8 = 1- fpr_8(1,2);

[X,Y,~,AUC_8] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('fine knn')

txt = ['AUC for fine knn is ',num2str(AUC_8)];

text(0.5,0.9,txt)

clear X Y;

cp_8 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_8_accuracy = cp_8.CorrectRate;

%% Model 9: Medium knn

[mod_9, train_acc_9] = mediumknn2(training); % Training the model using training set

yfit_9 = mod_9.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_9(:,2) = table2array(test(:,end));

g1 = yfit_9(:,2)'; %Known values - Ground Truth

g2 = yfit_9(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Medium knn')

[tpr_9, fpr_9,~] = roc(g1, g2);

sens_9 = tpr_9(1,2);

spec_9 = 1- fpr_9(1,2);

[X,Y,~,AUC_9] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Medium knn')

txt = ['AUC for Medium knn is ',num2str(AUC_9)];

text(0.5,0.9,txt)

clear X Y;

cp_9 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_9_accuracy = cp_9.CorrectRate;

%% Model 10: Coarse knn

[mod_10, train_acc_10] = coarseknn2(training); % Training the model using training set

yfit_10 = mod_10.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_10(:,2) = table2array(test(:,end));

g1 = yfit_10(:,2)'; %Known values - Ground Truth

g2 = yfit_10(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Coarse knn')

113

[tpr_10, fpr_10,~] = roc(g1, g2);

sens_10 = tpr_10(1,2);

spec_10 = 1- fpr_10(1,2);

[X,Y,~,AUC_10] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Coarse knn')

txt = ['AUC for Coarse knn is ',num2str(AUC_10)];

text(0.5,0.9,txt)

clear X Y;

cp_10 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_10_accuracy = cp_10.CorrectRate;

%% Model 11: Cosine knn

[mod_11, train_acc_11] = cosineknn2(training); % Training the model using training set

yfit_11 = mod_11.predictFcn(test(:,1:end-1));% Predicting values from the trained model

using the test dataset

yfit_11(:,2) = table2array(test(:,end));

g1 = yfit_11(:,2)'; %Known values - Ground Truth

g2 = yfit_11(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Cosine knn')

[tpr_11, fpr_11,~] = roc(g1, g2);

sens_11 = tpr_11(1,2);

spec_11 = 1- fpr_11(1,2);

[X,Y,~,AUC_11] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Cosine knn')

txt = ['AUC for Cosine knn is ',num2str(AUC_11)];

text(0.5,0.9,txt)

clear X Y;

cp_11 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_11_accuracy = cp_11.CorrectRate;

%% Model 12: Cubic knn

[mod_12, train_acc_12] = cubicknn2(training); % Training the model using training set

yfit_12 = mod_12.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_12(:,2) = table2array(test(:,end));

g1 = yfit_12(:,2)'; %Known values - Ground Truth

g2 = yfit_12(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Cubic knn')

[tpr_12, fpr_12,~] = roc(g1, g2);

sens_12 = tpr_12(1,2);

spec_12 = 1- fpr_12(1,2);

114

[X,Y,~,AUC_12] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Cubic knn')

txt = ['AUC for Cubic knn is ',num2str(AUC_12)];

text(0.5,0.9,txt)

clear X Y;

cp_12 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_12_accuracy = cp_12.CorrectRate;

%% Model 13: Weighted knn

[mod_13, train_acc_13] = weightedknn2(training); % Training the model using training

set

yfit_13 = mod_13.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_13(:,2) = table2array(test(:,end));

g1 = yfit_13(:,2)'; %Known values - Ground Truth

g2 = yfit_13(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Weighted knn')

[tpr_13, fpr_13,~] = roc(g1, g2);

sens_13 = tpr_13(1,2);

spec_13 = 1- fpr_13(1,2);

[X,Y,~,AUC_13] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Weighted knn')

txt = ['AUC for Weighted knn is ',num2str(AUC_13)];

text(0.5,0.9,txt)

clear X Y;

cp_13 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_13_accuracy = cp_13.CorrectRate;

%% Model 14: Boosted Trees

[mod_14, train_acc_14] = boostedtrees2(training); % Training the model using training

set

yfit_14 = mod_14.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_14(:,2) = table2array(test(:,end));

g1 = yfit_14(:,2)'; %Known values - Ground Truth

g2 = yfit_14(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Boosted Trees')

[tpr_14, fpr_14,~] = roc(g1, g2);

sens_14 = tpr_14(1,2);

spec_14 = 1- fpr_14(1,2);

[X,Y,~,AUC_14] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

115

plot(X,Y), title('Boosted Trees')

txt = ['AUC for Boosted Trees is ',num2str(AUC_14)];

text(0.5,0.9,txt)

clear X Y;

cp_14 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_14_accuracy = cp_14.CorrectRate;

%% Model 15: Bagged Trees

[mod_15, train_acc_15] = baggedtrees2(training); % Training the model using training

set

yfit_15 = mod_15.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_15(:,2) = table2array(test(:,end));

g1 = yfit_15(:,2)'; %Known values - Ground Truth

g2 = yfit_15(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Bagged Trees')

[tpr_15, fpr_15,~] = roc(g1, g2);

sens_15 = tpr_15(1,2);

spec_15 = 1- fpr_15(1,2);

[X,Y,~,AUC_15] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Bagged Trees')

txt = ['AUC for Bagged Trees is ',num2str(AUC_15)];

text(0.5,0.9,txt)

clear X Y;

cp_15 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_15_accuracy = cp_15.CorrectRate;

%% Model 16: Subspace Discriminant

[mod_16, train_acc_16] = subspacedisc2(training); % Training the model using training

set

yfit_16 = mod_16.predictFcn(test(:,1:end-1));

yfit_16(:,2) = table2array(test(:,end));

g1 = yfit_16(:,2)'; %Known values - Ground Truth

g2 = yfit_16(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Subspace Disc')

[tpr_16, fpr_16,~] = roc(g1, g2);

sens_16 = tpr_16(1,2);

spec_16 = 1- fpr_16(1,2);

[X,Y,~,AUC_16] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Subspace Disc')

txt = ['AUC for Subspace Disc is ',num2str(AUC_16)];

text(0.5,0.9,txt)

116

clear X Y;

cp_16 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_16_accuracy = cp_16.CorrectRate;

%% Model 17: RUS Boosted trees

[mod_17, train_acc_17] = rusboostedtrees2(training); % Training the model using

training set

yfit_17 = mod_17.predictFcn(test(:,1:end-1));

yfit_17(:,2) = table2array(test(:,end));

g1 = yfit_17(:,2)'; %Known values - Ground Truth

g2 = yfit_17(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('RUS Boosted trees')

[tpr_17, fpr_17,~] = roc(g1, g2);

sens_17 = tpr_17(1,2);

spec_17 = 1- fpr_17(1,2);

[X,Y,~,AUC_17] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('RUS Boosted trees')

txt = ['AUC for RUS Boosted trees is ',num2str(AUC_17)];

text(0.5,0.9,txt)

clear X Y;

cp_17 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_17_accuracy = cp_17.CorrectRate;

%% Display results in a table

Model =

{'Fine_Tree';'Logistic_Regression';'Linear_SVM';'Quadratic_SVM';'Fine_Gaussian_SV

M';...

'Medium_Gaussian_SVM';'Coarse_Gaussian_SVM';'Fine_KNN';'Medium_KNN';'Coarse

_KNN';...

'Cosine_KNN';'Cubic_KNN';'Weighted_KNN';'Ensemble_Boosted';'Ensemble_Bagged';...

'Ensemble_Subspace_Disc';'Ensemble_RUS_Boosted_Trees'};

Training_Acc = [train_acc_1; train_acc_2; train_acc_3; train_acc_4; train_acc_5;...

 train_acc_6; train_acc_7; train_acc_8; train_acc_9; train_acc_10; train_acc_11;...

 train_acc_12; train_acc_13; train_acc_14; train_acc_15; train_acc_16; train_acc_17];

Test_Acc = [cp_1_accuracy; cp_2_accuracy; cp_3_accuracy; cp_4_accuracy;

cp_5_accuracy;...

cp_6_accuracy; cp_7_accuracy; cp_8_accuracy; cp_9_accuracy; cp_10_accuracy;

cp_11_accuracy;...

cp_12_accuracy; cp_13_accuracy; cp_14_accuracy; cp_15_accuracy; cp_16_accuracy;

cp_17_accuracy];

AUC = [AUC_1; AUC_2; AUC_3; AUC_4; AUC_5;...

 AUC_6; AUC_7; AUC_8; AUC_9; AUC_10; AUC_11;...

117

 AUC_12; AUC_13; AUC_14; AUC_15; AUC_16; AUC_17];

Sensitivity = [sens_1; sens_2; sens_3; sens_4; sens_5;...

 sens_6; sens_7; sens_8; sens_9; sens_10; sens_11;...

 sens_12; sens_13; sens_14; sens_15; sens_16; sens_17];

Specificity = [spec_1; spec_2; spec_3; spec_4; spec_5;...

 spec_6; spec_7; spec_8; spec_9; spec_10; spec_11;...

 spec_12; spec_13; spec_14; spec_15; spec_16; spec_17];

Results = table(Model, Training_Acc, Test_Acc, AUC, Sensitivity, Specificity);

A. TRAINING LINEAR SVM

%%%%%%%%

% Created on: 03/21/21

% Input: Training data

% Output: Trained Linear SVM Model

% Author: Auto-generated by Matlab, implemented by Ridhi Deo

% File name: Obj1b_matlab_3a.m (R2020b [65]))

% Description: This code was called internally from Obj1b_matlab_3.m to train the linear SVM

model. The trained model is returned as output to the Obj1b_matlab_3.m code and processed

further there.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = linearsvm2(trainingData)

% Auto-generated by MATLAB on 21-Mar-2021 18:54:13

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'linear', ...

 'PolynomialOrder', [], ...

118

 'KernelScale', 'auto', ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1],...

 'RemoveDuplicates',true);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1',

'Plasma_glucose_percent'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', ' ALT_percent',

'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

119

B. TRAINING QUADRATIC SVM

%%%%%%%%

% Created on: 03/21/21

% Input: Training data

% Output: Trained Quadratic SVM Model

% Author: Auto-generated by Matlab, implemented by Ridhi Deo

% File name: Obj1b_matlab_3b.m (R2020b [65]))

% Description: This code was called internally from Obj1b_matlab_3.m to train the

QuadraticSVM model. The trained model is returned as output to the Obj1b_matlab_3.m code

and processed further there.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = quadraticsvm2(trainingData)

% Auto-generated by MATLAB on 21-Mar-2021 18:58:33

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'polynomial', ...

 'PolynomialOrder', 2, ...

 'KernelScale', 'auto', ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

120

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1',

'Plasma_glucose_percent'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

C. TRAINING GAUSSIAN SCALE 1 SVM

%%%%%%%%

% Created on: 03/21/21

% Input: Training data

% Output: Trained Gaussian I SVM Model

% Author: Auto-generated by Matlab, implemented by Ridhi Deo

% File name: Obj1b_matlab_3c.m (R2020b [65]))

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian I

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and

processed further there.

121

%%%%%%%%

function [trainedClassifier, validationAccuracy] = finegaussiansvm2(trainingData)

% Auto-generated by MATLAB on 21-Mar-2021 18:59:01

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 0.83, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1',

'Plasma_glucose_percent'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

122

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

D. TRAINING GAUSSIAN SCALE 2 SVM

%%%%%%%%

% Created on: 03/21/21

% Input: Training data

% Output: Trained Gaussian II SVM Model

% Author: Auto-generated by Matlab, implemented by Ridhi Deo

% File name: Obj1b_matlab_3d.m (R2020b [65]))

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian II

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and

processed further there.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = mediumgaussiansvm2(trainingData)

% Auto-generated by MATLAB on 21-Mar-2021 18:59:35

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

123

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 3.3, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1',

'Plasma_glucose_percent'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

124

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

E. TRAINING GAUSSIAN SCALE 3 SVM

%%%%%%%%

% Created on: 03/21/21

% Input: Training data

% Output: Trained Gaussian III SVM Model

% Author: Auto-generated by Matlab, implemented by Ridhi Deo

% File name: Obj1b_matlab_3e.m (R2020b [65]))

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian III

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and

processed further there.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = coarsegaussiansvm2(trainingData)

% Auto-generated by MATLAB on 21-Mar-2021 19:00:16

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

125

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 13, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1',

'Plasma_glucose_percent'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI',

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5);

126

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

6. MATLAB CODE FOR SEX SPECIFIC PROCSESSING – SMOTE

A. MALE – SPECIFIC CODE

%%%%%%%%

% Created on: 03/18/2022

% Input: Male Sub-Dataset with synthetic data

% Output: Training and test datasets for male population

% Author: Ridhi Deo

% File name: obj1b_matlab_4a.m (R2020b [65]))

% Description: This code was written specifically for male population. Data were processed,

SMOTE was applied, four derived features were created and populated with normalized data.

Data were split into training and test in a class balanced way.

%%%%%%%%

%% SMOTE

temp_dataset = dataset_HS_male;

temp_dataset(:,[1,9]) = []; % Removing the SEQN and HS colummns

size_disease = size(temp_dataset,1); %Measure of number of disease samples

N = 2; % Equivalent of N*100% synthetic sample generation

k = 2; % Setting number of nearest neighbours

num_attrs = size(temp_dataset,2); %Number of variables

new_index = 0; % Variable to keep a count of newly generated synthetic samples

synthetic_sample_male.N{N} = zeros(size_disease,num_attrs); %Since we are

generating N*100% synthetic, this value is N{2}

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each

sample

nn_values = zeros(size_disease,k+1);

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R

temp_range = table2array(temp_dataset); %Temporary conversions to array - for

computational ease. This is essential dataset_HS_male

temp_dist = table2array(temp_dataset);

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the

distances

for i = 1:num_attrs %Calculating ranges

127

 R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i)));

end

% Finding the k-nn

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be

itself so we will need to remove that

nn_array(:,1) = []; %Remove the first one because it is the same sample

nn_values(:,1) =[]; %First nn is itself so distance is 0

while (N~=0) %To perform N*100% synthetic sampling

 for i = 1:size_disease

 for attr=1:num_attrs

 nn = randi([1 k],1); % Randomly choose the nearest neighbor

 dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr);

 gap = 0 + rand(1,1);

 synthetic_sample_male.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic

continous attributes

 end

 end

 N = N-1; %To avoid infinite loops

end

total_synthetic_sample_males =

[synthetic_sample_male.N{1};synthetic_sample_male.N{2}];

total_synthetic_sample_males = array2table(total_synthetic_sample_males);

total_synthetic_sample_males.Properties.VariableNames =

temp_dataset.Properties.VariableNames;

hybrid_disease_male = [total_synthetic_sample_males; temp_dataset]; %Hybrid =

synthetic + disease

hybrid_disease_male.HS = ones(size(hybrid_disease_male,1),1);

%% removing seqn

dataset_non_HS_male.SEQN = [];

%% Based on American Liver Foundation video - Vicki Shah

%% Based on American Liver Foundation video - Vicki Shah

% Normal value for ALT: 10 - 55 U/L. Actual levels 30

% AST: 10-40 U/L, but prefer 30

% ASP: 45-115, also based on age

%% AASLD: Male: ALT: 29-33 IU/L

% Using 33 as the ALT ULN for men based on AASLD guidelines

ULN_ALT = 33;

%% Liver foundation vicki shah: Male: AST ULN: 30 IU/L

ULN_AST = 30;

128

%% Creating a new % variable per discussion with Dr. P on March 18th

ALT_percent = zeros(size(hybrid_disease_male, 1),1);

hybrid_disease_male(:,end+1) = array2table(ALT_percent);

hybrid_disease_male.Properties.VariableNames{'Var9'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(ALT_percent);

dataset_non_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent';

AST_percent = zeros(size(hybrid_disease_male, 1),1);

hybrid_disease_male(:,end+1) = array2table(AST_percent);

hybrid_disease_male.Properties.VariableNames{'Var10'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(AST_percent);

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent';

Plasma_glucose_percent = zeros(size(hybrid_disease_male, 1),1);

hybrid_disease_male(:,end+1) = array2table(Plasma_glucose_percent);

hybrid_disease_male.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent';

Plasma_glucose_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(Plasma_glucose_percent);

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent';

BMI_percent = zeros(size(hybrid_disease_male, 1),1);

hybrid_disease_male(:,end+1) = array2table(BMI_percent);

hybrid_disease_male.Properties.VariableNames{'Var12'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(BMI_percent);

dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'BMI_percent';

for i = 1: size(hybrid_disease_male,1)

hybrid_disease_male.ALT_percent(i) = ((hybrid_disease_male.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

hybrid_disease_male.AST_percent(i) = ((hybrid_disease_male.AST(i) -

ULN_AST)/ULN_AST)*100;

hybrid_disease_male.Plasma_glucose_percent(i) =

((hybrid_disease_male.Plasma_glucose_1(i) - 120)/120)*100;

 hybrid_disease_male.BMI_percent(i) = ((hybrid_disease_male.BMI(i) - 25)/25)*100;

end

for i = 1: size(dataset_non_HS_male,1)

dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

129

 dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_non_HS_male.Plasma_glucose_percent(i) =

((dataset_non_HS_male.Plasma_glucose_1(i) - 120)/120)*100;

dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) -

25)/25)*100;

end

%% Converting % values to 0 if they are negative - see the top of this script for details

for i = 1: size(hybrid_disease_male,1)

 if(hybrid_disease_male.ALT_percent(i) <= 0)

 hybrid_disease_male.ALT_percent(i) = 0;

 end

 if(hybrid_disease_male.AST_percent(i) <= 0)

 hybrid_disease_male.AST_percent(i) = 0;

 end

 if(hybrid_disease_male.Plasma_glucose_percent(i) <= 0)

 hybrid_disease_male.Plasma_glucose_percent(i) = 0;

 end

 if(hybrid_disease_male.BMI_percent(i) <= 0)

 hybrid_disease_male.BMI_percent(i) = 0;

 end

end

for i = 1: size(dataset_non_HS_male,1)

 if(dataset_non_HS_male.ALT_percent(i) <= 0)

 dataset_non_HS_male.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_male.AST_percent(i) <= 0)

 dataset_non_HS_male.AST_percent(i) = 0;

 end

 if(dataset_non_HS_male.Plasma_glucose_percent(i) <= 0)

 dataset_non_HS_male.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_non_HS_male.BMI_percent(i) <= 0)

 dataset_non_HS_male.BMI_percent(i) = 0;

 end

end

hybrid_disease_male = [hybrid_disease_male(:,1:7), hybrid_disease_male(:,9:end),

hybrid_disease_male(:,8)];

dataset_non_HS_male = [dataset_non_HS_male(:,1:7), dataset_non_HS_male(:,9:end),

dataset_non_HS_male(:,8)];

130

%% Split into training and test

Q = size(hybrid_disease_male,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_male = hybrid_disease_male(trainInd,:);

test_disease_male = hybrid_disease_male(testInd,:);

Q = size(dataset_non_HS_male,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_male = dataset_non_HS_male(trainInd,:);

test_no_disease_male = dataset_non_HS_male(testInd,:);

training_male = [train_disease_male; train_no_disease_male];

test_male = [test_disease_male; test_no_disease_male];

test_male = test_male(randperm(size(test_male,1)),:);

training_male = training_male(randperm(size(training_male,1)),:);

B. FEMALE – SPECIFIC CODE

%%%%%%%%

% Created on: 03/18/2022

% Input: Female Sub-Dataset with synthetic data

% Output: Training and test datasets for female population

% Author: Ridhi Deo

% File name: obj1b_matlab_4b.m (R2020b [65]))

% Description: This code was written specifically for female population. Data were processed,

SMOTE was applied, four derived features were created and populated with normalized data.

Data were split into training and test in a class balanced way.

%%%%%%%%

%% SMOTE

temp_dataset = dataset_HS_female;

temp_dataset(:,[1,9]) = []; % Removing the SEQN and HS colummns

size_disease = size(temp_dataset,1); %Measure of number of disease samples

N = 3; % Equivalent of N*100% synthetic sample generation

k = 2; % Setting number of nearest neighbours

num_attrs = size(temp_dataset,2); %Number of variables

new_index = 0; % Variable to keep a count of newly generated synthetic samples

synthetic_sample_female.N{N} = zeros(size_disease,num_attrs); %Since we are

generating N*100% synthetic, this value is N{2}

131

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each

sample

nn_values = zeros(size_disease,k+1);

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R

temp_range = table2array(temp_dataset); %Temporary conversions to array - for

computational ease. This is essential dataset_HS_female

temp_dist = table2array(temp_dataset);

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the

distances

for i = 1:num_attrs %Calculating ranges

 R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i)));

end

% Finding the k-nn

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be

itself so we will need to remove that

nn_array(:,1) = []; %Remove the first one because it is the same sample

nn_values(:,1) =[]; %First nn is itself so distance is 0

while (N~=0) %To perform N*100% synthetic sampling

 for i = 1:size_disease

 for attr=1:num_attrs

 nn = randi([1 k],1); % Randomly choose the nearest neighbor

 dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr);

 gap = 0 + rand(1,1);

 synthetic_sample_female.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic

continous attributes

 end

 end

 N = N-1; %To avoid infinite loops

end

total_synthetic_sample_females =

[synthetic_sample_female.N{1};synthetic_sample_female.N{2};synthetic_sample_femal

e.N{3}];

total_synthetic_sample_females = array2table(total_synthetic_sample_females);

total_synthetic_sample_females.Properties.VariableNames =

temp_dataset.Properties.VariableNames;

hybrid_disease_female = [total_synthetic_sample_females; temp_dataset]; %Hybrid =

synthetic + disease

hybrid_disease_female.HS = ones(size(hybrid_disease_female,1),1);

%% removing seqn

dataset_non_HS_female.SEQN = [];

132

%% Based on American Liver Foundation video - Vicki Shah

% Normal value for ALT: 10 - 55, but actually 20.

% AST: 9 - 32, but prefer 20

% ASP: 30 - 100, also based on age

% NAFLD: AST and ALT are up to less than 4 times the ULN

%% AASLD: Female: ALT: 19 - 25 IU/L

% Using 25IU/L as the ULN for female based on the AASLD guidelines

ULN_ALT = 25;

%% Liver foundation vicki shah: Female: AST ULN: 20 IU/L

ULN_AST = 20;

%% Creating a new % variable per discussion with Dr. P on March 18th

ALT_percent = zeros(size(hybrid_disease_female, 1),1);

hybrid_disease_female(:,end+1) = array2table(ALT_percent);

hybrid_disease_female.Properties.VariableNames{'Var9'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(ALT_percent);

dataset_non_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent';

AST_percent = zeros(size(hybrid_disease_female, 1),1);

hybrid_disease_female(:,end+1) = array2table(AST_percent);

hybrid_disease_female.Properties.VariableNames{'Var10'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(AST_percent);

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent';

Plasma_glucose_percent = zeros(size(hybrid_disease_female, 1),1);

hybrid_disease_female(:,end+1) = array2table(Plasma_glucose_percent);

hybrid_disease_female.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent';

Plasma_glucose_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(Plasma_glucose_percent);

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent';

BMI_percent = zeros(size(hybrid_disease_female, 1),1);

hybrid_disease_female(:,end+1) = array2table(BMI_percent);

hybrid_disease_female.Properties.VariableNames{'Var12'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(BMI_percent);

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'BMI_percent';

%% Computing % values

for i = 1: size(hybrid_disease_female,1)

133

hybrid_disease_female.ALT_percent(i) = ((hybrid_disease_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

hybrid_disease_female.AST_percent(i) = ((hybrid_disease_female.AST(i) -

ULN_AST)/ULN_AST)*100;

hybrid_disease_female.Plasma_glucose_percent(i) =

((hybrid_disease_female.Plasma_glucose_1(i) - 120)/120)*100;

hybrid_disease_female.BMI_percent(i) = ((hybrid_disease_female.BMI(i) -

25)/25)*100;

end

for i = 1: size(dataset_non_HS_female,1)

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_non_HS_female.Plasma_glucose_percent(i) =

((dataset_non_HS_female.Plasma_glucose_1(i) - 120)/120)*100;

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) -

25)/25)*100;

end

%% Converting % values to 0 if they are negative - see the top of this script for details

for i = 1: size(hybrid_disease_female,1)

 if(hybrid_disease_female.ALT_percent(i) <= 0)

 hybrid_disease_female.ALT_percent(i) = 0;

 end

 if(hybrid_disease_female.AST_percent(i) <= 0)

 hybrid_disease_female.AST_percent(i) = 0;

 end

 if(hybrid_disease_female.Plasma_glucose_percent(i) <= 0)

 hybrid_disease_female.Plasma_glucose_percent(i) = 0;

 end

 if(hybrid_disease_female.BMI_percent(i) <= 0)

 hybrid_disease_female.BMI_percent(i) = 0;

 end

end

for i = 1: size(dataset_non_HS_female,1)

 if(dataset_non_HS_female.ALT_percent(i) <= 0)

 dataset_non_HS_female.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_female.AST_percent(i) <= 0)

134

 dataset_non_HS_female.AST_percent(i) = 0;

 end

 if(dataset_non_HS_female.Plasma_glucose_percent(i) <= 0)

 dataset_non_HS_female.Plasma_glucose_percent(i) = 0;

 end

 if(dataset_non_HS_female.BMI_percent(i) <= 0)

 dataset_non_HS_female.BMI_percent(i) = 0;

 end

end

hybrid_disease_female = [hybrid_disease_female(:,1:7), hybrid_disease_female(:,9:end),

hybrid_disease_female(:,8)];

dataset_non_HS_female = [dataset_non_HS_female(:,1:7),

dataset_non_HS_female(:,9:end), dataset_non_HS_female(:,8)];

%% Split into training and test

Q = size(hybrid_disease_female,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_female = hybrid_disease_female(trainInd,:);

test_disease_female = hybrid_disease_female(testInd,:);

Q = size(dataset_non_HS_female,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_female = dataset_non_HS_female(trainInd,:);

test_no_disease_female = dataset_non_HS_female(testInd,:);

training_female = [train_disease_female; train_no_disease_female];

test_female = [test_disease_female; test_no_disease_female];

test_female = test_female(randperm(size(test_female,1)),:);

training_female = training_female(randperm(size(training_female,1)),:);

135

Figure P1.B.1: Figure outlining the flow of code used in this research objective (1B)

P1B.5EP1B.5DP1B.5CP1B.5B

Output

Raw
data

Code
P1B.1

Code
P1B.2

Code
P1B.3

Code
P1B.4A

Code
P1B.4B

Code
P1B.5

P1B.5A

Code
P1B.5

Code
P1B.6A

Code
P1B.6B

Code
P1B.5

Code
P1B.5

136

 EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

APPLIED TO HS-SCREENING MODELS (PAPER 2)

A portion of the work in this paper was published in a peer-reviewed conference proceeding

– Healthcare Innovations – Point of Care Technologies (HI-POCT 2022), Houston, Texas,

March 10 – 11, 2022.

3.1 Abstract

Use of computational models for early screening of Hepatic Steatosis (HS) were discussed

in paper 1. Selected models from Paper 1 were further evaluated in this paper to understand more

about how the models interpret their input features. ML models are inherently black box in nature.

Interpreting the models understanding is a critical step towards building transparency in machine

learning models. In this work, a global explainability tool called Partial Dependency was

implemented for the selected models (separately for male and female – specific models). Results

were compared with the clinically defined normal values and the best performing features and

models were identified.

3.2 Introduction

The research objective in paper 1 was to develop screening tools for Hepatic Steatosis (HS)

using machine learning and selected parameters (physiological and liver biochemical data –

objective 1B). These models show potential as clinical decision support tools for HS screening.

However, ML models are inherently black-box in nature, that is, they do not indicate the reasoning

related to the prediction of HS or no-HS. Understanding how a model is learning (the relationship

between the predictors and output variable) is useful. This understanding can improve the trust in

the model’s predictions and provide insights that can be used to improve future model

performance.

Recently, an increased research thrust in the field of explainable AI has been observed [1],

[2]. The goal of XAI is to provide “justification, transparency, and traceability” to the black-box

model-based decisions [1]. Recent developments in the field of XAI and specific tools that can be

used to understand the ML models are provided in the next section.

137

In this research, the models developed using physiological and liver biochemical data

(objective 1B) were explored further using an XAI tool. The XAI tool ‘Partial Dependence’ was

explored to gain insights on mapping the specific input parameters for predicting the output

(HS/no-HS). Detailed background, definitions, and recent work in the XAI domain are outlined in

the literature review section.

3.3 Literature review

3.3.1 Background and importance of XAI in healthcare research

With an increase in data, data availability, and computational power there has been an

increase in the use of machine learning (ML) and artificial neural network (ANN) tools to generate

prediction/estimation models. ML and ANN models are being implemented using large datasets

to predict (classify or estimate) different parameters across multiple application domains. Use of

such models in the healthcare domain has also been an increasing area of research, including in

the Objective 1 of this dissertation. While artificial intelligence-based models are highly useful,

most of them are inherently black-box in nature.

Typically, as the models get more complex in nature, their interpretability decreases. Figure

3.1 shows an example of interpretability vs complexity for some of the commonly used ML

models. Note that increasing size of the circle denotes increasing performance. Typically, complex

models perform better than simple regression or rule-based models, but complex models lack

interpretability. Linear models, rule-based models and simple tree models are highly interpretable

intrinsically. Such models can be called intrinsically open/explainable. On the other hand, neural

networks, support vector machines and K-nearest neighbor methods are more complex in nature

and therefore require post-hoc explainability methods.

Broadly, there are multiple XAI approaches to gain an understanding of a specific model

[3]–[5]. A simple categorization method for XAI tools is model-agnostic vs model-specific tools.

Model-agnostic XAI can be applied to any black-box model, irrespective of which algorithm was

used to train the model. On the other hand, model-specific tools are limited to only a specific

category of AI/ML models. Another way to categorize XAI tools is using a global vs local

interpretation. Global XAI methods are used to estimate the entire logic used by the model (for all

the data points used in the model), whereas local XAI methods can be used to estimate the

138

reasoning for an individual data point or a small group of data points. The choice of the most

relevant XAI method can be made using the specific model in question and its application domain.

Recent surveys have summarized the types of explainable AI tools [6], tools relevant to

health data [1] and more specifically, explainable AI used for electronic health records (EHR) data

[3]. The review of XAI using EHRs identified three major model trends identified in the survey

were: 1) “if-then” rule-based models 2) Use of low complexity ML models first and then

improving model performance using optimization 3) Dimensionality reduction techniques [3]. The

recent tools and techniques developed for XAI are outlined in more detail in the next section.

3.3.2 Tools and techniques for XAI

Broadly, explainable AI techniques for machine learning models can be categorized by the

stage at which they were applied, the scope of the data being used, the type of ML/AI tool, the

type of input and output features [6]. The categorization of the various tools is explained in greater

detail in a recent systematic review article [6]. The definitions of each of these categories are

briefly listed below:

1. Stage: The period when the tool/method is able to provide explanations in of two

stages: “ante-hoc” or “post-hoc” [6]. Ante-hoc models are generated to be interpretable

or transparent from the beginning, whereas post-hoc models use an external explainer

during model testing [6].

2. Scope: The explanation provided by a particular method can either be “global”, “local”

or “cohort” [6], [7]. Global explanations aim to interpret the model’s functionality as a

whole. Local explanations are useful to interpret each observation used in a model.

Cohort explanations provide insights into how the model is interpreting a group of

observations (sub-set of the whole dataset) [6], [7].

3. Type of ML/AI: Classification type models are used for binary or categorical output

whereas regression type models are used for continuous outputs. The type of

explainability being used can depend on the type of the underlying model [6].

4. Input & output data types: Different explainability techniques are useful based on the

type of the input and output data [6]. These data types can be one of the following:

a. Input: Categorical or continuous text data, images, longitudinal (time-series) .

b. Output: Numerical/text, rule-based, images, mixed data.

139

Choice of the tool or technique for explainability is therefore based on different parameters

of the ML/AI model, the complexity of the model and the desired outputs. While several

researchers have specified the importance of using XAI tools for improving model understanding

[3], [4], [8]–[10], some other researchers also warn about the need to use XAI as a supplementary

tool, particularly for healthcare applications [3], [11]. A collaboration between AI developers and

healthcare practitioners is recommended [3], [11]. Further, in healthcare, human expertise is

critical since health-related decisions can have large implications. As such, human-in-loop studies

are recommended and require further research [3].

In this dissertation, the focus is on understanding models developed (in paper 1) as potential

tools for clinical decision support. These models are numerical, black box, non-linear in nature

and could use post-hoc explainability analysis. Therefore, the focus of this literature review is

limited to identifying existing methods for post-hoc analysis of numerical data.

In terms of scope of XAI for model interpretability, there are two types [6]:

i. Local explainability

a. Cohort

b. Individual

ii. Global explainability

Briefly, local explainability is useful in understanding the model’s reasoning for how one

observation (local) or a group of selected observations (cohort) are being classified. In both these

cases, a smaller subset of the training dataset can be used to understand the model reasoning. Local

explainability tools work by fitting smaller, linear models to understand a larger, non-linear model

locally [12]. Local explainability is particularly useful to understand why a particular group of

observations might be misclassified by the model. It can help in identifying any potential biases

within a group of data or for a single observation. Local explainability also helps in understanding

the influence of individual input features on a model’s decision making by bringing to attention

the weight of a feature in a decision [3]. Drawing the user’s attention to insights about an

individual, that may have been initially missed, is extremely impactful, especially for clinicians,

as they work with patients in real-time [3], [8], [9].

Global explainability, on the other hand, is useful to understand the model’s reasoning as

a whole. This is particularly useful in the initial stages of training a model. The overall reasoning

140

is obtained by averaging the model’s decisions across all the predictions. It also allows the

developer to understand to what extent each input feature is contributing to the overall decision

making of the model. Based on the results from a global XAI tool, feature selection and feature

engineering can be modified to align the model with its expectations.

In this research, three XAI methods were considered. They are LIME [12], SHAP [13] and

Partial Dependence [14], [15]. Each of these methods has a different approach to explain a model’s

predictions and provide insights. These methods are explained below.

a. LIME

Local Interpretable Model-Agnostic Explanations or LIME is a local XAI technique that

can approximate any complex machine learning model (linear or non-linear) using a simple

interpretable model (linear model or a decision tree) [12]. The simpler model is used as a

surrogate model to explain the original (complex ML) model. LIME can be used as a tool for

interpreting the “local” behavior of a complex model. The advantage of this method is that it can

be applied to any ML model, irrespective of the complexity of the model.

b. SHAP

Shapley Additive Explanations or SHAP is another XAI technique which ranks the

importance of each input feature for any observation [13]. Like LIME, SHAP is also a local XAI

technique and works with any specific observation of interest. However, SHAP can be modified

to also provide global understanding [16]. The output from SHAP can quantify the deviation of

each predictor from its average, for any given observation. SHAP is also a model-agnostic

technique and can therefore be applied to any machine learning model.

c. Partial dependence

Partial dependence calculates the averaged relationship between any one or two input

feature(s) (predictor variable) and the output feature of a trained classification or regression

model by marginalizing on all other input features [14], [15]. It is a global XAI tool and can be

used to identify the effect that one or two input features have on the overall model prediction.

Partial dependence averages the output of the model over the entire range of input feature values

141

[17]. These partial dependencies can then be plotted to visualize the impact of any chosen input

feature on the model’s predicted output. Partial Dependency is a global XAI tool that provides

insights about the features being used in the model as a whole. This is particularly useful to

identify trends of the input features with respect to the outputs.

In this dissertation, partial dependence plots were implemented using MATLAB R2020b

[17] and the results are elaborated in the sections to follow. The central idea of conducting

explainability analysis is to better explore the individual relationships between each of the seven

predictors with the outcome variable (HS) for selected machine learning models. The specific

research tasks are:

1. To identify the differences between the model interpretability for male vs female data.

2. To identify the top predictors of Hepatic Steatosis in both male and female categories.

3. To identify the ML model(s) that interpret data with highest alignment to the clinically

defined normal values.

3.4 Methods

The overall procedure used for conducting the explainability analysis is described in the

sections to follow.

3.4.1 Data

Of the five SVM models developed in paper 1, three best performing models in terms of

sensitivity and specificity metrics were chosen for explainability analysis. The three selected

models were: Quadratic, Gaussian 1 SVM, and Gaussian 2 SVM. The models for male and female

population were analyzed separately to understand the differences between the male vs female

model interpretability in this chapter.

3.4.2 Model & explainable AI tool selection

a. Model selection

In objective 1B, five ML models were developed for each male and female populations.

These models used the following predictor variables: Age, BMI, HDL, ALT, AST, ASP, and

142

glucose. The highest testing accuracy for male and female models were at 69% and 71%,

respectively. Sensitivity and specificity ranges were between 64 – 72% and 61-74%, respectively

for male population. Similarly for female population, the sensitivity range was from 67 – 71% and

specificity ranged from 68 – 75%.

To assess the performance of healthcare-related ML models, considering both sensitivity

and specificity performance metrics are important instead of only considering the test accuracy.

However, when screening for a disease, sensitivity is important to identify those with the disease

quickly, such that appropriate care can be provided to those with the disease condition.

Overall, the best performing male-specific models demonstrated approximately 72%

sensitivity (Gaussian scale 1) and 74% specificity (Gaussian scale 2). Similarly, the best

performing female-specific models provided 71% (Gaussian scale 1) and 75% (Quadratic SVM)

sensitivity and specificity, respectively. Therefore, the top three models for XAI in this research

were selected to be: Quadratic SVM, Gaussian scale 1 SVM and Gaussian scale 2 SVM.

b. Partial dependency

To gain insights on model’s understanding of the data, a global XAI tool was selected in

this research. Specifically, ‘Partial dependency’ was computed and plotted in this research using

MATLAB [17]. The idea behind using a global XAI tool instead of any other local XAI tools was

to gain an initial understanding of how the data (as a whole) was being interpreted by the model.

This initial understanding is important to first identify any unexpected trends in the models

understanding. This technique will also help in identifying the contribution of each individual

parameter, which is useful in the context of complex datasets like the one used in Objective 1.

Finally, comparing the model’s understanding of each input feature with the clinically

defined normal for each input feature will provide significant insights and help in identifying the

best model. For example, if increasing BMI is considered a risk factor by clinical literature for

hepatic steatosis (HS), then understanding the model’s interpretability of BMI is valuable to

evaluate the model performance. If the model interprets BMI in the same manner that is defined

by clinical literature, then the model can be considered as performing per expectations.

The models were analyzed using an explainable AI tool called ‘Partial Dependency’ in

MATLAB R2020b [17]. Partial dependency is used to identify individual relationships between

one input/predictor variable and the output variable used in any classification ML model. The

143

identified relationships are ‘partial’ in nature because they are obtained by marginalizing over all

other predictor features. Partial dependency for support vector machines utilizes a classification

score. The classification score of any observation can be computed using the ‘predict’ function in

MATLAB R2020b [18]. Classification score for an observation in a SVM model can be defined

as the signed boundary between that observation and the decision boundary in the hyperplane. The

decision boundary is two-dimensional and centered around 0 with a range of (-∞, +∞). Higher

classification score implies that the observation is farther away from the decision boundary,

whereas classification scores closer to 0 imply that the observations are closer. Mathematically,

the classification score can be described using the equation P2.1.

 𝑆𝑐𝑜𝑟𝑒(𝑥) = ∑ 𝑎𝑖𝑦𝑗𝑆(𝑥𝑗 , 𝑥) + 𝑐

100

𝑗=1

 (𝑃2.1)

For each observation used for training, ‘j’, the input predictors ‘x’ and output feature ‘y’

are used. A dot product between the input ‘x’ and the corresponding support vector ‘xj’ is

represented by 𝑆(𝑥𝑗 , 𝑥). The variables ‘a’ and ‘c’ are estimated parameters specific to the SVM.

In this research, the observations that lie on the positive side of zero are in the ‘Disease’/HS

positive category. Observations that lie on the negative side of zero are in the ‘No-Disease’/No-

HS category.

The partial relationships were identified between one input/predictor variable (at a time)

and a subset of output responses (N=100). These values were identified while marginalizing over

the other six predictor variables. Then, the process was repeated for each predictor, for each of the

three selected models, for each sex. For robust interpretation of the partial relationships, each

combination was run 10-times independently and the results were averaged. Therefore, the

presented results are averaged partial relationships.

c. Ambiguity zone

As explained earlier, partial dependencies greater than zero indicate that the observation

lies in the disease category and those less than zero fall in the no-disease category. Higher partial

dependency of a feature implies large contributions made by the feature in the model’s decision

making. For example, a partial dependency score of 3.149 is more helpful (to the model) in making

a prediction, than a score of 0. Therefore, scores closer to zero are less helpful and create

144

ambiguity. Average partial dependencies that lie close to 0 are therefore defined to be in the

“ambiguous” zone, in this research. That is, partial dependencies that fall between (-0.15, 0.15) lie

in the ambiguous zone. A visual of the partial prediction plot with the ambiguity zone centered

around 0 is shown in Figure 3.2.

In this work, the ambiguity percentage (Amb %) of each partial dependency was computed.

A ratio of number of partial dependencies in the (-0.15, 0.15) range divided by the total count of

partial dependencies was used to calculate the Amb %. These values are presented alongside

detailed observations in

Table 3.2.

Features with low Amb % can contribute highly to the model’s decision making. If a feature

has high Amb %, it implies that the usefulness of the feature to the model in making predictions is

low. Therefore, in an ideal case, the Amb % of any feature is expected to be either zero or also low

as possible.

d. Clinical normal values

In this work, the clinically defined normal ranges of the following input parameters were

identified: BMI, HDL, ALT, AST, ASP, and Glucose. Although increasing age is found to increase

the risk for NAFLD in general [19], [20], no specific “normal” for age was used in this study.

Instead, the trend of increasing risk of NAFLD with increasing age was interpreted as “normal”.

It is important to note that a majority of the clinically defined normal values are different

for male populations and for female populations. They were interpreted as such in this work.

Further, the definition of clinical normal varied slightly between different literature sources. The

data from some of the commonly cited literature was used in this research. These normal values

are shown in the Table 3.1 below along with their references. Figure 3.3 shows the summary of

the methods used in this work.

The results from the partial dependency plots were interpreted in a systematic manner for

each model. These results are documented in

Table 3.2 - Table 3.4 for male-specific models and

145

Table 3.5 -

146

Table 3.7 for female-specific models. First, the observations from each graph were

documented – these observations are in the column titled “Layer 1” in each table. Next, the

observations were compared with the clinical normal values. The implications of these

comparisons were documented in the column titled “Layer 2”. The results and their relevant

discussion are presented in the sections to follow.

3.5 Results and discussion

The partial dependencies for each predictor were plotted and were analyzed further by

comparison with clinical normal values (defined in Table 3.1). The partial dependency plots (PDP)

for Quadratic SVM, Gaussian Scale 1 SVM and Gaussian Scale 2 SVM are shown in Figure 3.4 -

Figure 3.9. The X-axis of each plot is the feature value, for example: Age, BMI, HDL, etc. The Y-

axis is the average partial dependence score (or partial dependency) of that specific feature in

predicting HS. For example - partial dependency of Age for HS prediction. If the line on a plot

shows an increasing or upward trend, then it indicates increasing risk for HS. If the line trends

downwards or decreases, then it indicates a decreasing for HS.

Note that red asterisk(s) on each plot indicate the defined normal value or the normal range

as per Table 3.1. The asterisk(s) are provided to highlight how the model interprets data in the

normal range. The “normal” values are defined for six of the seven input features. There is not a

clearly defined “normal” value for the age parameter in the context of risk for HS as explained

earlier. Therefore, an increasing risk for HS with increasing age is the logical, expected trend in

this work.

By examining each of the PDPs within Figure 3.4 to Figure 3.9, the comparisons with

clinical normal values or ranges are documented for male and female – specific models in

147

Table 3.8 &

148

Table 3.9, respectively. In an ideal case, each model would have all the features following

the logical trend as per the clinical literature. However, in the real-world scenario, it might not be

possible for any one model to have all the features following the clinical trend perfectly. Therefore,

in this work, the aim is to find the most optimal models that maximize the number of features

following the logical trend.

Each cell within these tables is color coded to indicate whether a not a feature follows the

logical trend from a clinical standpoint. The cells in green indicate model parameters that follow

the logical trend. Cells in yellow indicate features that follow the logical trend partially whereas

those in red indicate features that do not follow the logical trend and are in fact being interpreted

by the model as the opposite of the defined clinical normal.

The results from male & female - specific population models are discussed in the sections

below. Another section compares and discusses results of male and female – specific models.

3.5.1 Analysis of the models for male population

Results from Figure 3.4 - Figure 3.6 were assessed and the interpretations of XAI analyses

are shown in

Table 3.2 -Table 3.4. A summary of all the male-specific model results is in

149

Table 3.8. The analysis of each model is presented in the sub-sections below.

a. Quadratic SVM

The PDPs related to Quadratic SVM for male population are shown in Figure 3.4. Each

figure within Figure 3.4 corresponds to an input feature. The first graph shows the partial

dependency of Age with respect to HS risk. It is observed that the Quadratic SVM model is

interpreting the feature 'Age' in the clinical range as expected. However, 45% of the Age data fall

in the ambiguity zone. Overall, the input feature ‘Age’ follows the trend as expected from a

general clinical normal perspective

The second feature, BMI, shows a linearly increasing range between normal BMI of 18.5

to 25 but from clinical perspective this should remain steady. That is, the risk between BMI ranges

of 18.5 to 25 is considered to be low and similar, from a clinical standpoint. But in this case, it is

postulated that the model might be indicating additional useful information, and that needs more

investigation. However, the curve above 25 follows the logical, expected trend. Finally, none of

the data from BMI falls in the ambiguity range – this implies that the BMI feature contributes

strongly to the model’s decision making.

HDL shows a decreasing risk trend after 1 mmol/L until approximately 2 mmol/L. While

the HDL PDP makes logical sense in the 1 – 2 mmol/L range, the increase in slope after HDL of

2 mmol/L is not expected. From a clinical perspective, higher values of HDL indicate lower disease

risk. However, other lipid profile information, for example: triglycerides, total cholesterol and

LDL were not included in this study due to lack of sufficient data. It is postulated that inclusion of

these parameters might improve the model performance. Therefore, the increasing trend after 2

mmol/L of HDL might need additional investigation. The HDL curve has 16% data in the

ambiguity zone, which is not ideal but is a low amount.

ALT shows an increasingly linear trend with HS risk. The ALT curve in the normal range

(10 – 55 U/L), is expected to be steady. In this case, the ALT curve in the normal range shows

slightly increasing trend. After the normal range, the ALT PDP shows increasing risk which

follows the logical trend. Therefore, the ALT curve is overall following the clinical trend as

expected. The ALT curve also does not have any data in the ambiguity zone, which indicates the

high contribution of ALT in Quadratic SVM’s decision making.

150

AST shows a similar trend to that of ALT. The AST curve in the normal range of 10 – 40

U/L is close to steady and shows an increasing risk after the normal range. This behavior follows

the clinical trend as expected. The ambiguity % (Amb %) is also very low at 6%, indicating that

AST is also a high contributor in the model’s decision making.

The ASP curve shows a decreasing slope within the normal range of 45 – 115 U/L. From

a clinical perspective, the curve in this range is expected to be steady, not decreasing. However,

the curve after the normal range (after 200 U/L) shows an increasing trend, which follows the

logical trend. Overall, the AST parameter is following the clinical trend to some extent but not

perfectly. 38% of ASP data falls in the ambiguity zone, which is not ideal. Future work might

include processing the ASP parameter to help the model learn the correct trend.

The glucose curve has low and steady risk below 120 mg/dL and increasing/high risk after

120 mg/dL. This trend is perfectly following the clinical normal range. The Amb % related to

glucose was 7%, which is a low amount. Therefore, in this case, glucose is found to be following

the clinical trend and contributing highly to the model’s decision making.

In summary, for the Quadratic SVM model, the following features follow the logical trend

with no or low Amb %: BMI, ALT, AST, and Glucose. Age and ASP follow the clinical trend

partially but have high Amb % values at 45% and 38%, respectively. While HDL has a lower Amb

% of 16%, the increasing HDL trend after 2 mmol/L needs additional investigation. See

Table 3.2 for a summary of the results.

b. Gaussian scale I SVM

The partial dependency plots (PDP) for Gaussian Scale I SVM for male specific models

are shown in Figure 3.5.

The parameter Age shows an increasing trend with a steep increase between 30 – 40 years.

While the Age curve in the PDP is generally following the logical trend, 55% of the values fall in

the ambiguity zone. Therefore, the contribution of Age in Gaussian I SVM’s predictions is low.

BMI shows a decreasing risk curve within the clinical normal range of 18.5 to 25. The

curve within the normal range is expected to be steady and not decreasing but after 25, the risk of

disease increases with increasing BMI until 40, and then plateaus out. Overall, this trend is

following the logical pattern but 33% of the values lie in the ambiguous range.

151

HDL shows a decrease in risk after 1 mmol/L which follows the logical trend but after 2

mmol/L, the risk for HS shows an increase from the PDP. This increase is risk was also observed

in Quadratic SVM’s HDL curve and needs further investigation in the future. 16% of HDL data

lies in the ambiguity zone – therefore, HDL plays a significant role in the model’s decision making.

The ALT curve shows low risk between 6.25 to 25 U/L but increasing risk after 25 and

until 55 U/L. This is not following the logical trend. Per the clinically defined normal, the ALT

values in the 10 – 55 U/L should have low and steady risk. In this case, the ALT feature does not

seem to follow that trend. Therefore, more work is needed to either process the ALT data such that

the model can learn the correct trend or find other models that can read the ALT data as expected.

Like ALT, the AST curve also shows increasing risk in the normal range of 10 – 40 U/L.

This feature also does not follow the logical trend and needs further processing and investigation.

The results from other explainable AI tools can also be explored to understand the interpretation

of this feature better.

The risk curve for ASP shows a fluctuating but low risk between 45 – 115 U/L (clinical

normal). After 115 U/L the risk increases and eventually plateaus out. This feature overall follows

the logical trend but 37% of the feature’s partial dependencies lie in the ambiguity zone. Hence

the feature is not able to contribute as highly to the model’s decisions although its trend is as

expected.

The glucose PDP shows a low risk until 100 mg/dL and increasing risk after that until 150

mg/dL. The risk after 150 mg/dL seems to be plateauing out. This feature does not follow the

logical trend perfectly (with low risk until 100mg/dL instead of 120 mg/dL) but overall, it follows

the trend. Further, only 12% of the feature’s partial dependencies lie in the ambiguous zone.

Overall, the ASP and Glucose parameters in the Gaussian I SVM follow the logical trend

from a clinical normal standpoint and contribute to the model’s decision making. The features

Age, BMI and ASP also follow the logical trend as expected but have high Amb % values of 55%,

33% and 37%, respectively. ALT and AST do not follow the logical trend and need further

investigation. See Table 3.3 for a summary of the results

c. Gaussian scale II SVM

The PDPs related to Gaussian II SVM for male population are shown in Figure 3.6. The

first graph shows the partial dependency of Age with respect to HS risk. The model is interpreting

152

the feature 'Age' in the clinical range as expected. However, 38% of the Age data fall in the

ambiguity zone. Overall, the input feature ‘Age’ follows the trend as expected from a general

clinical normal perspective.

The BMI feature shows a gradual increase in risk between 18.5 to 25. While the curve in

this range is expected to be steady, it is following the general logical trend. After 25, the partial

dependency curve increases steeply and plateaus off after 45. Overall, the BMI feature is following

the logical trend and has only 11% data in the ambiguity zone.

The HDL feature has a decreasing risk after the clinical normal value of 1 mmol/L which

follows the normal trend as expected but after 2.75 mmol/L the risk starts to increase slightly. This

slight increase in risk is not expected and needs additional investigation. Overall, the HDL PDP

follows the logical trend until 2.75 mmol/L and has a low ambiguity percentage of 17%.

The ALT PDP shows a steeply increasing risk in the normal range of 10 – 55 U/L and

thereafter shows a reduced, then plateaued out risk curve. This behavior does not follow the logical

trend and requires additional investigation.

The AST PDP shows slowly increasing risk in the normal range of 10 – 40 U/L but

increasing risk thereafter. Overall, this feature follows the logical trend and has only 12%

ambiguity. Therefore, it contributes significantly to the model’s decision making.

The ASP PDP shows low and steady risk in the normal range, followed by an increasing

risk after the normal range. This behavior is expected and follows the logical trend from a clinical

perspective. However, 85% of its values lie in the ambiguity range and therefore are not useful in

the model’s decision making. Additional data processing in the form of weighing the ASP

parameter might benefit the overall model performance in the future.

The Glucose PDP has low and slowly increasing risk until the clinical normal of 120

mg/dL. After the normal range, the risk increases and plateaus out after 400 mg/dL. This feature

follows the logical trend overall and has a low ambiguity percentage of 9%.

In summary for the Gaussian II SVM Model, the parameters: BMI, HDL, AST and Glucose

follow the logical trend and have low ambiguity percentages. The features Age and ASP also

follow the logical trend but have high percentage ambiguity at 38% and 85%, respectively. ALT

does not follow the logical trend and needs additional investigation. See Table 3.4 for a summary

of the results.

153

d. Comparison of model performances – male specific models

Within the male-specific models, the Quadratic SVM model has maximum features (six of

seven) that follow the logical trend. Except for the HDL feature, which needs additional

investigation, all other features follow the logical trend in the Quadratic SVM model. The gaussian

I and II SVM models have features that do not follow the logical trend. In Gaussian I SVM, the

relationship of ALT and AST with HS (individually) is interpreted by the model against the clinical

understanding. From a clinical standpoint, increasing levels of ALT and AST are associated with

increasing HS risk. However, in this case, the increasing levels are being interpreted as decreasing

risk by the model. Therefore, they are not considered to follow the logical trends. Similarly in

Gaussian II SVM, the ALT parameter alone is being interpreted against the clinical understanding

of ALT with HS risk.

Overall, in this work, the Quadratic SVM model for male data is found to be the best

performing model as six of the seven input parameters in the model follow the logical trend (Age,

BMI, ALT, AST, ASP, and Glucose), and one parameter follows the logical trend partially (HDL).

Within the male – specific models, none of the models had all seven parameters following the

logical trend. This finding can be considered to develop a future hybrid model that combines two

models. It is envisioned that the six parameters following the logical trend are fed into the

Quadratic SVM model and other feature (HDL) could be fed into a different model (possibly a

simple logistic regression or tree based) that every feature is interpreted in the expected, logical

manner. A hybrid model combining Quadratic SVM and tree-based/logistic regression can then be

developed to predict HS.

3.5.2 Analysis of the models for female population

Partial dependency plots related to the female population are shown in Figure 3.7 to

Figure 3.9. The interpretations of these plots are shown in Table 3.5 – 3.7. A summary of the

results for the female specific models is in table 3.9.

a. Quadratic SVM

The PDPs related to Quadratic SVM for female population are shown in Figure 3.7. Each

figure within the figure corresponds to an input feature. It is observed that the Gaussian II SVM

154

model is interpreting the feature 'Age' in the clinical range as expected. However, 27% of the Age

data fall in the ambiguity zone. Overall, the input feature ‘Age’ follows the trend as expected from

a general clinical normal perspective

The BMI feature shows a steadily increasing risk in the normal range with low risk between

50 – 60 kg/m2. Both these behaviors do not follow the clinical normal trend and need further

investigation or feature processing.

The HDL feature shows a consistently decreasing risk with increasing HDL values, which

follows the clinical normal trend logically. This pattern is expected and with only 13% of data in

the ambiguity zone, the HDL feature contributes highly to the model’s decision making.

The ALT feature shows a steady and low risk in the normal range of 10 – 55 U/L. After

the normal range, the risk increases steeply. This trend also follows the clinical normal as expected

and has 0% ambiguity. Therefore, it contributes highly to the model’s decision making.

The AST feature shows highest and steady risk in the normal range with decreasing risk

consistently thereafter. This does not follow the logical trend and is in fact being interpreted in the

opposite of the expected, logical trend. Therefore, an inversion or similar other feature processing

is necessary to potentially gain higher model performance. Additional investigation using other

XAI tools can also be conducted in the future to interpret the feature’s contribution to the Quadratic

SVM model.

The ASP feature shows low but increasing risk in the normal range of 30 – 100 U/L. In an

ideal case, the curve in the normal range should have been steady but is found to be linearly

increasing in this case. However, after the normal value, the risk continues to increase, peaks at

about 300 U/L and slightly decreases thereafter. Overall, the feature’s behavior is interpreted to be

following a logical trend with 22% of the data in the ambiguity zone.

The glucose curve has low and steady risk below 120 mg/dL and increasing/high risk after

120 mg/dL. This trend is perfectly following the clinical normal range. The Amb % related to

glucose was 4%, which is a low amount. Therefore, in this case, glucose is found to be following

the clinical trend and contributing highly to the model’s decision making.

In summary for the Quadratic SVM model (female), the features: HDL, ALT, and Glucose

are found to be following the logical trend from a clinical normal standpoint with zero or low

ambiguity percentages. The features Age and ASP also follow the logical trend but have slightly

higher ambiguity percentages at 27% and 22%, respectively. Finally, the BMI and AST features

155

need additional investigation and/or feature processing as they are not following their respective

trends as expected. See Table 3.5 for a summary of the results.

b. Gaussian scale I SVM

The PDPs related to Gaussian I SVM are in Figure 3.8. The first graph shows the partial

dependence of Age on HS prediction. It is observed that the Age feature is being interpreted in a

logical manner. However, 40% of the Age partial dependence data falls in the ambiguity zone and

therefore, this feature does not contribute well to the model’s decision making.

The BMI feature’s partial dependence curve shows a steady and low risk curve in the

normal range of 18.5 to 25. After 25, the risk increases linearly, peaks at about 35 kg/m2 and

plateaus thereafter. 18% of the BMI partial dependence data falls in the ambiguity zone. Overall,

the BMI feature follows the logical trend and contributes to the Gaussian Scale I SVM’s decision

making.

The PDP of HDL reduces after the normal value of 1 mmol/L until 1.8 mmol/L. The

increase in risk after 1.8 mmol/L does not follow the logical trend and needs further investigation.

Further, the ambiguity percentage of HDL data was 21%. However, like that in the Male – specific

models, the data regarding LDL and triglycerides was not used in this research due to a lack of

data availability and therefore, the behavior of the HDL PDP is not clear.

The ALT PDP indicates linearly rising risk in the clinical normal range of 10 – 55 U/L.

After the normal range, the plot slightly decreases and plateaus out. Both these behaviors do not

follow the logical trend as expected, from a clinical normal standpoint. Although only 2% of the

data is in the ambiguity zone, more investigation is needed in the future to understand and

potentially correct the interpretation of ALT by the model.

The AST plot indicates low but slowly increasing risk in the normal range of 9 – 32 U/L.

After the normal range of 32 U/L, the risk continues to increase until 50 U/L and then plateaus out.

This curve largely follows the logical trend and has only 6% data in the ambiguity zone.

ASP partial dependency plot shows a decreasing and then slowly increasing risk in the

normal range of 30 – 100 U/L. In an ideal case, the curve in the normal range would be steady.

After the normal range, the ASP curve continues to increase and plateaus out eventually. Overall,

this curve follows the logical trend and has only 14% data in the ambiguity range.

156

Glucose PDP has a low but slowly increasing risk in the normal range below 120 mg/dL.

After the normal range, the risk continues to increase until 170 mg/dL and plateaus out thereafter.

This PDP overall follows the logical trend with only 14% of the data in the ambiguity zone.

Overall, for the Gaussian I SVM model, the following features follow the logical trend and

have low ambiguity percentages: BMI, AST, ASP, and Glucose. Age also follows the logical trend

but has a high ambiguity percentage of 40%. ALT does not follow the logical trend and HDL needs

additional investigation. See table 3.6 for a summary of the results.

c. Gaussian scale II SVM

The PDPs related to Gaussian II SVM are in Figure 3.9. The first graph shows the partial

dependence of Age with respect to HS risk. It is observed that the Gaussian II SVM model is

interpreting the feature 'Age' in the clinical range as expected. However, 34% of the Age data fall

in the ambiguity zone. Overall, the input feature ‘Age’ follows the trend as expected from a

general clinical normal perspective

The PDP of the BMI feature shows a slowly increasing risk between the clinical normal

range of 18.5 to 25. After 25, the risk increases steeply, plateauing out after 50. The BMI PDP has

only 11% of its values in the ambiguity zone. Therefore, BMI is considered to be following the

logical and expected trend, while contributing strongly to the model’s decision making.

The plot for HDL indicates that the disease risk decreases after the clinical normal value

of 1.3 mmol/L. However, the risk increases again after 2.5mmol/L. This increase in risk is not

expected from a clinical standpoint. More investigation is required in the future to understand this

trend. Further, in this case, 47% of the values from the PDP lie in the ambiguity zone and are

therefore not very useful to the model.

The ALT PDP indicates steeply rising risk in the clinical normal range of 10 – 55 U/L.

After the normal range, the plot decreases in slope, indicating low risk. Both these behaviors do

not follow the logical trend as expected, when compared to the clinical normal. Although only 3%

of the data is in the ambiguity zone, more investigation is needed to understand and potentially

correct the interpretation of ALT by the model.

The AST curve shows a steady and low risk in the clinical normal range of 9 – 32 U/L.

After the normal range, the risk appears to increase with increase in ALT values. These behaviors

157

are following the clinical normal trend alongside only 17% data in the ambiguity zone. Overall,

AST is following the logical trend as expected and is contributing to the model’s decision making.

The ASP curve also shows steady and low risk in the normal range of 30 – 100 U/L. The

risk after the normal value increases but there is another low-risk period between 300 – 400 U/L.

This low-risk period is does not follow the logical trend but overall, ASP follows the logical trend

between 0 – 300 U/L and 400 to 700 U/L. 36% of the ASP data however lies in the ambiguity

zone. Therefore, this feature might require additional processing to allow the model to capture the

correct/logical trend.

A low and slowly increasing curve under 120 mg/dL is observed in the Glucose PDP. After

120, the curve increases steeply, peaks at around 250 and plateaus out thereafter. Overall, this

pattern is mostly following the logical trend and has only 8% data in the ambiguity zone. Therefore,

this parameter contributes significantly to decision making of the Gaussian II SVM model.

Overall, the parameters: BMI, AST and Glucose are found to be following the logical trend

and have low ambiguity percentages. While Age and HDL also follow the logical trend, they have

high ambiguity percentages of 34% and 47%, respectively. Finally, the parameter ALT is not

following the logical trend and need additional investigation as part of future work in the Gaussian

II SVM – female specific model. See

158

Table 3.7 for a summary of the results.

d. Comparison of model performances – Female specific models

Within the female-specific models, the Quadratic SVM model had two features that did

not follow the logical trend. BMI and AST were being interpreted against the clinical

understanding of their individual relationships with HS risk in this model. Further the HDL feature

followed the logical trend only up to a certain threshold and needs additional investigation. The

gaussian I and II SVM models had similar model interpretabilities. They both had one feature that

does not follow the logical trend - ALT. The relationship of ALT with HS is interpreted by the

models against the clinical understanding of ALT with HS. From a clinical standpoint, increasing

levels of ALT are associated with increasing risk. However, in this case, the increasing levels are

being interpreted as decreasing risk. Both the Gaussian I and II SVM models need additional

investigation of their HDL parameters.

Overall, in this work, the Gaussian I and II models for female data had similar model

interpretabilities. Each had five features that follow the logical trend (Age, BMI, AST, ASP, and

Glucose), one feature that followed the logical trend partially (HDL), and one feature that did not

follow the logical trend (ALT). However, the Gaussian I SVM model had a higher sensitivity of

approximately 70% (compared to 67% sensitivity of Gaussian II SVM), and lower ambiguity for

the HDL parameter. Therefore, the Gaussian I SVM is found to be the best model for female

population in this work.

Like in male-specific models, none of the female-specific models had all seven input

parameters following the expected logical trend. Therefore, using the insights from partial

dependency plots, future development of a hybrid model can also be applied to female –

population. In this case, a combination of Gaussian scale I and Quadratic SVM models can be

implemented to create a hybrid model. Five features (Age, BMI, AST, ASP, and glucose) could

be fed into the Gaussian I model, and two features (HDL and ALT) could be fed into the Quadratic

SVM model. In this way, each model interprets the features in the expected, logical way. The

outputs of both these models could then be combined into a hybrid model for HS prediction. It is

postulated that such a hybrid model would improve the performance of HS prediction models.

159

3.5.3 Top predictors of HS

Model performance in the context of XAI was assessed based on how many parameters are

being interpreted in alignment with the clinical normal definition. To identify the best predictors,

i.e., the features that provide most contribution to the model in decision making, the mean

classification scores of each feature were compared. These results are available in Table 3.11 &

Table 3.12 for male and female – specific models, respectively.

Using data from Table 3.11 & Table 3.12, bar charts were generated, as shown in Figure

3.10 & Figure 3.11. The top three predictors were found to be: ALT, AST, and Glucose, across all

three models for male and female specific models. These results imply that the three parameters

are making the most individual contributions in the model’s decision making. More investigation

of the combined effects of these three parameters will be useful in screening for HS, however it is

out of scope for this research.

3.5.4 Comparison of results in male vs female populations

The top three highly contributing predictors were found to be the same for all the male and

female- specific models: ALT, AST, and Glucose. However, the best performing models were

different for each sex.

In male-specific models, the quadratic SVM model was found to be the best in terms of

following the logical trends from clinical perspective. In female-specific models, the Gaussian I

was found to be the best. However, in both the sexes, none of the models had all seven input

parameters following the logical trend. Therefore, in both cases, a theoretical framework for

developing a hybrid model was provided in sections 3.5.1 d and 3.5.2 d.

Features that follow the logical trend for the best performing male vs female – specific

models are shown in Table 3.10. While six features follow the logical trend for the Quadratic SVM

(male-specific) model, only five features follow the logical trend in the Gaussian I SVM (female-

specific) model. The one parameter that is different between these sexes is ALT. ALT in Quadratic

SVM for male follows the logical trend but ALT in Gaussian I female does not. However, the ALT

feature in Quadratic SVM female specific model also follows the logical trend. While the

Quadratic SVM female is not the best performing model, it could be used within the theoretical

framework described earlier to develop a hybrid model and improve the overall performance.

160

Another difference is in the best model for male vs female. The best model for male-data

uses the quadratic/ polynomial kernel, whereas the best model for female-data uses the gaussian/

radial-basis kernel to create decision boundaries in higher-dimensional spaces. The polynomial

and radial-basis functions are both non-linear kernels, but they utilize different orders of non-linear

transformation to transform the training data. The best kernel choice depends on the input data

used [21], and in this case, the kernel that best fits the male data was found to be Quadratic and

that for female-data was found to be Gaussian Scale I. In general, polynomial kernels are found to

perform better when the input-output relationship is simpler, whereas gaussian/radial-basis kernels

are found to fit the complex relationships better [22]. Therefore, it is postulated that the

relationships of input parameters with HS in female data are more complex (than in male-data)

and fit the gaussian I SVM model better than the Quadratic SVM model.

Future implementation of these models with additional data, like lipid panel information

and other relevant parameters, might improve the fit of the model leading to improved prediction

performances. Comparison of results from other XAI tools might lead to additional insights

regarding the best fitting model for male vs female datasets. Implementation of additional XAI

tools and additional features are out of scope for this work and are provided as recommendations

for future work.

3.6 Summary and conclusions

In this chapter, three selected models (each for male and female specific populations) from

objective 1 were evaluated from an interpretability perspective to include model transparency. The

models for male and female populations were evaluated and interpreted separately for

interpretability. Averaged partial dependency plots for each of seven predictors were plotted using

MATLAB R2020b [17]. The obtained plots were compared with their respective clinically defined

normal ranges. The results from the comparison were discussed and directions for potential future

research were identified.

1. The best performing models were identified as Quadratic SVM in male population and

Gaussian SVM scale 1 in female population.

2. The top three independent predictors for male and female data were identified using

the mean of the partial dependencies. In both sexes, ALT, AST, and Glucose were

161

found to be the most individually contributing features. These three parameters are

found to be individually contributing highly to HS prediction.

3. Results for male and female populations were found to vary slightly with male models

outperforming the female models in terms of alignment with clinical normal values.

These findings need to be investigated further, with larger, richer, and more robust

datasets.

4. Impacts of HDL on NAFLD also need more investigation, particularly the increase of

HDL after a certain threshold and its relationship with NAFLD risk

5. A theoretical framework for developing hybrid models is provided in sections 3.5.1 d

and 3.5.2 d.

3.7 Recommendations for future work

Based on the above summary and conclusions, the following are recommended for future

work.

1. Developing hybrid models using the theoretical framework provided in sections 3.5.1

d and 3.5.2 d. are recommended.

2. Additional testing the combined effect of ALT, AST, and Glucose on model

performances are recommended.

3. Use of other XAI approaches including additional features (hormonal data, other lipid

panel data like triglycerides, total cholesterol and LDL) might provide additional

insights and improve prediction performances.

162

3.8 Figures

Figure 3.1: Typical machine learning models complexity vs interpretability

Figure 3.2: Partial prediction plot with ambiguity zone (0 ± 0.15)

Simple regression

Tree-based models

Non-linear
models

In
te

rp
re

ta
b

ili
ty

Model Complexity

Model Complexity vs Interpretability

163

Figure 3.3: Methods used for explainability analysis

Use ML models
from objective 1B.

Selected top 3

Quadratic SVM,
Gaussian SVM

scale 1, Gaussian
SVM scale 2

Extracted averaged
partial

dependencies

Averaged partial
dependencies over

10 independent
runs

Plotted partial
dependencies for

each feature,
model, and sex

Compared results
with clinically
defined normal

values

164

Figure 3.4: Quadratic SVM - Partial dependency plots for each predictor - male population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

165

Figure 3.5: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - male

population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

166

Figure 3.6: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - male

population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

167

Figure 3.7: Quadratic SVM - Partial dependency plots for each predictor - female population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

168

Figure 3.8: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - female

population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

169

Figure 3.9: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - female

population

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1

170

Figure 3.10: Individual predictor performance - male population

*Note: Data in Gaussian scales 1 & 2 are scaled by 100 for representation purposes

Figure 3.11: Individual predictor performance - female population

*Note: Data in Gaussian scales 1 & 2 are scaled by 100 for representation purposes

-50

0

50

100

150

200

250

300

350

Age BMI HDL ALT AST ASP Glucose

M
ea

n
 p

re
d

ic
to

r
sc

o
re

Features

Predictor Perfomance - Male*

QSVM_Mean Scaled_GSVM1_Mean ScaledGSVM2_Mean

-50

0

50

100

150

200

250

300

350

Age BMI HDL ALT AST ASP Glucose

M
ea

n
 p

re
d

ic
to

r
sc

o
re

Features

Predictor Perfomance - Female*

QSVM_Mean Scaled_GSVM1_Mean Scaled_GSVM2_Mean

171

3.9 Tables

Table 3.1: Clinically defined normal values for male and female populations

Feature
Clinical normal values

Reference
Male Female

BMI 18.5 to 25 kg/m2 18.5 to 25 kg/m2 [23]

HDL >= 1 mmol/L >= 1.3 mmol/L [24]

ALT 10 – 55 U/L 10 – 55 U/L [25]

AST 10 – 40 U/L 9 – 32 U/L [26]

ASP 45 – 115 U/L 30 – 100 U/L [26]

Glucose < 120 mg/dL < 120 mg/dL [27]

Table 3.2: Male quadratic SVM – partial dependency result analysis

Feature
Layer 1 (Observations

from XAI results)

Clinical

Normal

Layer 2 (Implication as

defined by clinical

practices)

Ambiguity

%

Age
Linearly/Consistently

increasing with age
NA

Follows the logical

trend
45

BMI

Steadily increasing with

BMI, even within the

normal range

18.5 to 25

kg/m2

Follows the logical

trend
0

HDL

Decreasing then increasing

curve. High risk between

0.5 to 1. Decreasing risk

after 1 but increasing again

after 2.

>= 1

mmol/L

Follows the logical

trend until 2 mmol/L

but needs additional

investigation after 2

mmol/L

16

ALT

Increasing risk with

increasing ALT, slowly

increasing until 50, then

increases steeply

10 – 55 U/L
Follows the logical

trend
0

AST

Stable, lower risk between

10 to 90, but increasing

risk after 90

10 – 40 U/L
Follows the logical

trend
6

ASP

Decreasing risk curve

from 0 to 200, then

increases after 200 steadily

45 – 115

U/L

Follows the logical

trend
38

Glucose

Low risk until 150. Slow

increase in risk from 150 to

200, then steep increase

after 200

< 120

mg/dL

Follows the logical

trend
7

172

Table 3.3: Male gaussian I SVM – partial dependency result analysis

Feature
Layer 1 (Observations

from XAI results)

Clinical

Normal

Layer 2 (Implication as

defined by clinical

practices)

Ambiguity %

Age

Linear increase in risk

from 30 to 40, then slow

increase in risk after 40

NA
Follows the logical trend

after 30
55

BMI

Decreasing risk until 25.

Especially low risk

between 20 to 25

18.5 to 25

kg/m2
Follows the logical trend 33

HDL

Starts at high risk with

low HDL but decreasing

risk as HDL increases,

until 1.5. Increasing risk

after 1.5

>= 1 mmol/L

Follows the logical trend

until 1.5 mmol/L and

needs additional

investigation after 1.5

mmol/L

16

ALT

Low risk between 6.25

to 25, high risk between

25 to 50. Reduced but

overall stable, high risk

after 50

10 – 55 U/L

Increasing risk curve in

the normal range does

not follow the logical

trend

7

AST

Decreased risk from 0 to

25, steady, high risk

after 25, stable high risk

after 55

10 – 40 U/L

Increasing risk curve in

the normal range does

not follow the logical

trend

7

ASP

Decreasing risk between

0 to 115. Steady increase

in risk after 115, with

highest risk between 115

to 150

45 – 115 U/L Follows the logical trend 37

Glucose

Decreasing risk between

0 to 120. Lowest risk

between 75 to 120.

Increasing risk between

120 to 200. Stable high

risk after 200

< 120 mg/dL Follows the logical trend 12

173

Table 3.4: Male gaussian II SVM – partial dependency result analysis

Feature
Layer 1 (Observations

from XAI results)

Clinical

Normal

Layer 2

(Implication as

defined by clinical

practices)

Ambiguity %

Age
Linearly/Consistently

increasing with age
NA

Follows the logical

trend
38

BMI

Low but increasing risk

between 15 to 25. Highest

risk at 40. Increasing risk

overall with increasing

BMI

18.5 to 25

kg/m2

Follows the logical

trend
11

HDL

Decreasing risk with

increasing HDL until

2.75. Lowest risk at 2.75.

Slow increase in risk after

2.75

>= 1 mmol/L

Follows the logical

trend until 2.75

mmol/L and needs

additional

investigation after

2.75 mmol/L

17

ALT

Low but increasing risk

from 0 to 60. Highest risk

between 60 to 70. Stable,

high risk after 75

10 – 55 U/L

Increasing risk in

the normal range

does not follow the

logical trend

4

AST

Low increasing risk

between 0 to 40. Highest

risk between 50 to 75.

Stable high risk after 75

10 – 40 U/L
Follows the logical

trend
12

ASP

Low, decreasing risk

between 0 to 120.

Increasing risk after 120

with highest risk between

200 to 250

45 – 115 U/L
Follows the logical

trend
85

Glucose

Low increasing risk until

120. Highest risk between

200 to 300. Stable high

risk after 300.

< 120 mg/dL
Follows the logical

trend
9

174

Table 3.5: Female quadratic SVM – partial dependency result analysis

Feature
Layer 1 (Observations

from XAI results)

Clinical

Normal

Layer 2 (Implication

as defined by clinical

practices)

Ambiguity %

Age
Linearly/Consistently

increasing with age
NA

Follows the logical

trend
27

BMI

Increasing with increase

in BMI, but decreasing

risk after 40

18.5 to 25

kg/m2

Increasing risk in the

normal range and

decreasing

thereafter, does not

follow the logical

trend

31

HDL

Decreasing risk with

increase HDL until 2.5,

then increases

>= 1.3

mmol/L

Follows the logical

trend
13

ALT
Low risk from 0 to 50,

then steady increase
10 – 55 U/L

Follows the logical

trend
0

AST
Decreasing risk as AST

increases, almost linearly
9 – 32 U/L

Decreasing risk with

increasing AST does

not follow the

logical trend

2

ASP

Increase until 300, then

decreasing risk with

increasing value

30-100 U/L
Follows the logical

trend
22

Glucose

Linearly/Consistently

increasing with increase in

glucose

< 120 mg/dL
Follows the logical

trend
4

175

Table 3.6: Female gaussian I SVM – partial dependency result analysis

Feature
Layer 1 (Observations

from XAI results)

Clinical

Normal

Layer 2 (Implication as

defined by clinical

practices)

Ambiguity %

Age

Low risk between 20

to 40 with lowest risk

at 30. Increasing risk

from 40 to end

NA
Follows the logical

trend
40

BMI

Decreasing risk from

12.5 to 25. Lowest

risk between 18 to 25.

Increase after 30

18.5 to 25

kg/m2

Follows the logical

trend
18

HDL

Decreasing risk from

0.5 to 1.8. Lowest risk

at 1.5 to 1.7.

Increasing risk after 2.

>= 1.3 mmol/L

Follows the logical

trend until 1.8 mmol/L,

needs additional

investigation after 1.8

mmol/L

21

ALT

Increasing risk from

10 - 50. Highest risk at

50. Slightly reduced

but stable risk after

50.

10 – 55 U/L

Increasing risk in the

normal range does not

follow the logical trend

2

AST

Lowest risk between 0

to 20. Increasing

between 20 to 40 and

steady high risk after

40.

9 – 32 U/L
Follows the logical

trend
6

ASP

Decreasing risk from 0

to 90. Increasing risk

from 90 to 275

30 - 100U/L
Follows the logical

trend
14

Glucose

Low risk from 0 to

110. Slowly

increasing risk after

110. Highest risk after

180

< 120 mg/dL
Follows the logical

trend
14

176

Table 3.7: Female gaussian II SVM – partial dependency result analysis

Feature

Layer 1

(Observations from

XAI results)

Clinical Normal

Layer 2

(Implication as

defined by clinical

practices)

Ambiguity %

Age Increasing with age NA
Follows the logical

trend
34

BMI

Increasing with

BMI. Highest risk

between 40 - 60

18.5 to 25 kg/m2
Follows the logical

trend
11

HDL

Decreasing with

increasing HDL,

lowest at 2.2,

increasing after 2.5

>= 1.3 mmol/L

Follows the logical

trend until 2.5

mmol/L, needs

additional

investigation after

2.5 mmol/L

47

ALT

Increasing until60,

then decreasing and

steady after 100

10 – 55 U/L

Steeply increasing

and high risk in the

normal range does

not follow the

logical trend

2

AST

Low but increasing

until 90. Steady

high after 90

9 – 32 U/L
Follows the logical

trend
17

ASP

Steady low from 25

to 100, increases

slightly after 100.

Lowest risk

between 300 - 400

30-100U/L

Follows the logical

trend except for the

low risk between

300 - 400 U/L

36

Glucose

Increasing but

lowest from 0 to

120. Then

increasing after

that, highest at 250

< 120 mg/dL
Follows the logical

trend
8

177

Table 3.8: Male-specific model observations

Models

(→)
Quadratic Gaussian I Gaussian II

Features

(↓)

Comment on

the trend of

the partial

dependency

plot,

compared to

the clinical

normal

Amb %

Comment on

the trend of

the partial

dependency

plot,

compared to

the clinical

normal

Amb %

Comment on

the trend of

the partial

dependency

plot,

compared to

the clinical

normal

Amb %

Age
Follows the

logical trend
45

Follows the

logical trend

after 30

55
Follows the

logical trend
38

BMI
Follows the

logical trend
0

Follows the

logical trend
33

Follows the

logical trend
11

HDL

Follows the

logical trend

until 2

mmol/L but

needs

additional

investigation

after 2

mmol/L

16

Follows the

logical trend

until 2

mmol/L and

needs

additional

investigation

after 2

mmol/L

16

Follows the

logical trend

until 2.75

mmol/L and

needs

additional

investigation

after 2.75

mmol/L

17

ALT
Follows the

logical trend
0

Increasing

risk curve in

the normal

range does

not follow

the logical

trend

7

Increasing

risk in the

normal range

does not

follow the

logical trend

4

AST
Follows the

logical trend
6

Increasing

risk curve in

the normal

range does

not follow

the logical

trend

7
Follows the

logical trend
12

ASP
Follows the

logical trend
38

Follows the

logical trend
37

Follows the

logical trend
85

Glucose
Follows the

logical trend
7

Follows the

logical trend
12

Follows the

logical trend
9

178

Table 3.9: Female-specific model observations

Models

(→)
Quadratic Gaussian I Gaussian II

Features

(↓)

Comment on

the trend of the

partial

dependency

plot, compared

to the clinical

normal

Amb

%

Comment on the

trend of the

partial

dependency plot,

compared to the

clinical normal

Amb

%

Comment on

the trend of the

partial

dependency

plot, compared

to the clinical

normal

Amb

%

Age
Follows the

logical trend
27

Follows the

logical trend
40

Follows the

logical trend
34

BMI

Increasing risk

in the normal

range and

decreasing

thereafter, does

not follow the

logical trend

31
Follows the

logical trend
18

Follows the

logical trend
11

HDL
Follows the

logical trend
13

Follows the

logical trend

until 1.8

mmol/L, needs

additional

investigation

after 1.8 mmol/L

21

Follows the

logical trend

until 2.5

mmol/L, needs

additional

investigation

after 2.5

mmol/L

47

ALT
Follows the

logical trend
0

Increasing risk

in the normal

range does not

follow the

logical trend

2

Steeply

increasing and

high risk in the

normal range

does not follow

the logical

trend

2

AST

Decreasing risk

with increasing

AST does not

follow the

logical trend

2
Follows the

logical trend
6

Follows the

logical trend
17

ASP
Follows the

logical trend
22

Follows the

logical trend
14

Follows the

logical trend
36

Glucose
Follows the

logical trend
4

Follows the

logical trend
14

Follows the

logical trend
8

179

Table 3.10: Comparison of best performing models in male vs in female populations

Models Features that follow the logical trend

Male –

Quadratic

SVM

Age BMI ALT AST ASP Glucose

Female –

Gaussian I

SVM

Age BMI AST ASP Glucose

Table 3.11: Mean of predictor performances – male-specific models

Param QSVM Mean GSVM1 Mean GSVM2 Mean

Age 0.123 -0.026 -0.058

BMI -2.317 0.252 0.196

HDL 0.969 0.214 0.192

ALT 63.554 0.368 0.732

AST 25.097 0.384 0.545

ASP 0.136 0.203 0.041

Glucose 4.727 0.360 0.595

Table 3.12: Mean of predictor performances – female-specific models

Param QSVM Mean GSVM1 Mean GSVM2 Mean

Age 0.014 -0.048 -0.069

BMI -0.551 0.293 0.278

HDL -0.457 0.191 -0.100

ALT 326.341 0.391 0.459

AST -26.476 0.385 0.299

ASP 0.269 0.332 0.087

Glucose 17.335 0.346 0.395

180

3.10 References

[1] A. Shaban-Nejad, M. Michalowski, and D. L. Buckeridge, “Explainability and

Interpretability: Keys to Deep Medicine,” in Explainable AI in Healthcare and Medicine,

vol. 914, A. Shaban-Nejad, M. Michalowski, and D. L. Buckeridge, Eds. Cham: Springer

International Publishing, 2021, pp. 1–10. doi: 10.1007/978-3-030-53352-6_1.

[2] Y. Li, X. Wang, J. Zhang, S. Zhang, and J. Jiao, “Applications of artificial intelligence

(AI) in researches on non-alcoholic fatty liver disease(NAFLD) : A systematic review,”

Rev. Endocr. Metab. Disord., Aug. 2021, doi: 10.1007/s11154-021-09681-x.

[3] S. N. Payrovnaziri et al., “Explainable artificial intelligence models using real-world

electronic health record data: a systematic scoping review,” J. Am. Med. Inform. Assoc.,

vol. 27, no. 7, pp. 1173–1185, Jul. 2020, doi: 10.1093/jamia/ocaa053.

[4] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,”

in 2018 41st International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), May 2018, pp. 0210–0215. doi:

10.23919/MIPRO.2018.8400040.

[5] J. Duell, X. Fan, B. Burnett, G. Aarts, and S.-M. Zhou, “A Comparison of Explanations

Given by Explainable Artificial Intelligence Methods on Analysing Electronic Health

Records,” in 2021 IEEE EMBS International Conference on Biomedical and Health

Informatics (BHI), Jul. 2021, pp. 1–4. doi: 10.1109/BHI50953.2021.9508618.

[6] G. Vilone and L. Longo, “Explainable Artificial Intelligence: a Systematic Review,”

ArXiv200600093 Cs, Oct. 2020, Accessed: Feb. 24, 2022. [Online]. Available:

http://arxiv.org/abs/2006.00093

[7] “Interpretability.” https://www.mathworks.com/discovery/interpretability.html (accessed

Feb. 24, 2022).

[8] O. Asan, A. E. Bayrak, and A. Choudhury, “Artificial Intelligence and Human Trust in

Healthcare: Focus on Clinicians,” J. Med. Internet Res., vol. 22, no. 6, p. e15154, Jun.

2020, doi: 10.2196/15154.

[9] L. Gordon, T. Grantcharov, and F. Rudzicz, “Explainable Artificial Intelligence for Safe

Intraoperative Decision Support,” JAMA Surg., vol. 154, no. 11, pp. 1064–1065, Nov.

2019, doi: 10.1001/jamasurg.2019.2821.

[10] S. M. Lauritsen et al., “Explainable artificial intelligence model to predict acute critical

illness from electronic health records,” Nat. Commun., vol. 11, no. 1, p. 3852, Jul. 2020,

doi: 10.1038/s41467-020-17431-x.

[11] M. Ghassemi, L. Oakden-Rayner, and A. L. Beam, “The false hope of current approaches

to explainable artificial intelligence in health care,” Lancet Digit. Health, vol. 3, no. 11,

pp. e745–e750, Nov. 2021, doi: 10.1016/S2589-7500(21)00208-9.

181

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the

Predictions of Any Classifier,” ArXiv160204938 Cs Stat, Aug. 2016, Accessed: Sep. 29,

2021. [Online]. Available: http://arxiv.org/abs/1602.04938

[13] S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,”

ArXiv170507874 Cs Stat, Nov. 2017, Accessed: Feb. 24, 2022. [Online]. Available:

http://arxiv.org/abs/1705.07874

[14] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,” Ann.

Stat., vol. 29, no. 5, pp. 1189–1232, Oct. 2001, doi: 10.1214/aos/1013203451.

[15] T. Hastie and R. Tibshirani, J. Friedman The Elements of Statistical Learning. Chapter 6.

Springer Verlag, New York, 2001.

[16] H. Chen, S. Lundberg, and S.-I. Lee, “Explaining Models by Propagating Shapley Values

of Local Components,” ArXiv191111888 Cs Stat, Nov. 2019, Accessed: Oct. 07, 2021.

[Online]. Available: http://arxiv.org/abs/1911.11888

[17] “Compute partial dependence - MATLAB partialDependence.”

https://www.mathworks.com/help/stats/regressiontree.partialdependence.html (accessed

Nov. 01, 2021).

[18] “Classify observations using support vector machine (SVM) classifier - MATLAB

predict.”

https://www.mathworks.com/help/stats/classreg.learning.classif.compactclassificationsv

m.predict.html (accessed Nov. 01, 2021).

[19] P. Golabi, J. Paik, R. Reddy, E. Bugianesi, G. Trimble, and Z. M. Younossi, “Prevalence

and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals

from the United States,” BMC Gastroenterol., vol. 19, no. 1, p. 56, Dec. 2019, doi:

10.1186/s12876-019-0972-6.

[20] J. Frith, C. P. Day, E. Henderson, A. D. Burt, and J. L. Newton, “Non-Alcoholic Fatty

Liver Disease in Older People,” Gerontology, vol. 55, no. 6, pp. 607–613, 2009, doi:

10.1159/000235677.

[21] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch, “Support Vector

Machines and Kernels for Computational Biology,” PLoS Comput. Biol., vol. 4, no. 10, p.

e1000173, Oct. 2008, doi: 10.1371/journal.pcbi.1000173.

[22] M. F. Hussain, R. R. Barton, and S. B. Joshi, “Metamodeling: Radial basis functions,

versus polynomials,” Eur. J. Oper. Res., vol. 138, no. 1, pp. 142–154, Apr. 2002, doi:

10.1016/S0377-2217(01)00076-5.

[23] “Hyperglycemia in diabetes - Diagnosis and treatment - Mayo Clinic.”

https://www.mayoclinic.org/diseases-conditions/hyperglycemia/diagnosis-treatment/drc-

20373635 (accessed Mar. 30, 2021).

182

[24] N. C. for B. Information, U. S. N. L. of M. 8600 R. Pike, B. MD, and 20894 Usa, High

cholesterol: Overview. Institute for Quality and Efficiency in Health Care (IQWiG),

2017. Accessed: Mar. 15, 2022. [Online]. Available:

https://www.ncbi.nlm.nih.gov/books/NBK279318/

[25] P. Y. Kwo, S. M. Cohen, and J. K. Lim, “ACG Clinical Guideline: Evaluation of

Abnormal Liver Chemistries,” Am. J. Gastroenterol., vol. 112, no. 1, pp. 18–35, Jan.

2017, doi: 10.1038/ajg.2016.517.

[26] “Understand Liver Enzyme Test Results — American Liver Foundation.”

https://liverfoundation.org/understand-liver-enzyme-test-results-2/ (accessed Mar. 30,

2021).

[27] “Risk Factors for Diabetes | NIDDK,” National Institute of Diabetes and Digestive and

Kidney Diseases. https://www.niddk.nih.gov/health-information/professionals/clinical-

tools-patient-management/diabetes/game-plan-preventing-type-2-diabetes/prediabetes-

screening-how-why/risk-factors-diabetes (accessed Mar. 30, 2021).

183

APPENDIX C. P2 - CODE

1. MATLAB CODE TO EXTRACT PLOT PARTIAL DEPENDENCIES

%%%%%%%%

% Created on: 08/09/2021

% Input: Selected trained models from paper 1

% Output: Partial dependence plots

% Author: Ridhi Deo

% File name: obj2_matlab_3 (R2020b [17]))

% Description: This code was testing the ML models from paper 1, and plot their partial

dependencies

%%%%%%%%

%% For marking the clinically normal values for Male or female, make sure to

% change the values based on male/female runs

%% Male clinically defined normals:

% BMI: 18.5 to 25

% HDL: 1mmol/L or higher

% ALT: 10 to 55 U/L

% AST: 10 - 40 U/L

% ASP: 45 - 115 U/L

% Glucose: 120mg/dL or lower

%% Female clinically defined normals:

% BMI: 18.5 to 25

% HDL: 1.3 mmol/L or higher

% ALT: 10 to 55 U/L

% AST: 9 - 32 U/L

% ASP: 30 - 100 U/L

% Glucose: 120mg/dL or lower

test = test_male; % Need to change this depending on female/male

training = training_male; % Need to change this depending on female/male

%% Model 4: quadratic svm

QSVM_Age_pd = zeros(100,10);

QSVM_Age_x = zeros(100,10);

QSVM_BMI_pd = zeros(100,10);

QSVM_BMI_x = zeros(100,10);

QSVM_HDL_pd = zeros(100,10);

QSVM_HDL_x = zeros(100,10);

QSVM_ALT_pd = zeros(100,10);

184

QSVM_ALT_x = zeros(100,10);

QSVM_AST_pd = zeros(100,10);

QSVM_AST_x = zeros(100,10);

QSVM_ASP_pd = zeros(100,10);

QSVM_ASP_x = zeros(100,10);

QSVM_Glucose_pd = zeros(100,10);

QSVM_Glucose_x = zeros(100,10);

for i = 1:10

 [mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set

 [Age_pd,Age_x] = partialDependence(mod_4.ClassificationSVM,'Age',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_Age_pd(:,i) = Age_pd';

 QSVM_Age_x(:,i) = Age_x';

 [BMI_pd,BMI_x] = partialDependence(mod_4.ClassificationSVM,'BMI',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_BMI_pd(:,i) = BMI_pd';

 QSVM_BMI_x(:,i) = BMI_x';

 [HDL_pd,HDL_x] = partialDependence(mod_4.ClassificationSVM,'HDL',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_HDL_pd(:,i) = HDL_pd';

 QSVM_HDL_x(:,i) = HDL_x';

 [ALT_pd,ALT_x] = partialDependence(mod_4.ClassificationSVM,'ALT',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_ALT_pd(:,i) = ALT_pd';

 QSVM_ALT_x(:,i) = ALT_x';

 [AST_pd,AST_x] = partialDependence(mod_4.ClassificationSVM,'AST',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_AST_pd(:,i) = AST_pd';

 QSVM_AST_x(:,i) = AST_x';

 [ASP_pd,ASP_x] = partialDependence(mod_4.ClassificationSVM,'ASP',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_ASP_pd(:,i) = ASP_pd';

 QSVM_ASP_x(:,i) = ASP_x';

 [Glucose_pd,Glucose_x] =

partialDependence(mod_4.ClassificationSVM,'Plasma_glucose_1',...

 mod_4.ClassificationSVM.ClassNames(2));

 QSVM_Glucose_pd(:,i) = Glucose_pd';

 QSVM_Glucose_x(:,i) = Glucose_x';

end

% Average the pd and x values and plot using nexttile

QSVM_Age_pd_avg = mean(QSVM_Age_pd, 2);

QSVM_BMI_pd_avg = mean(QSVM_BMI_pd, 2);

QSVM_HDL_pd_avg = mean(QSVM_HDL_pd, 2);

QSVM_ALT_pd_avg = mean(QSVM_ALT_pd, 2);

QSVM_AST_pd_avg = mean(QSVM_AST_pd, 2);

185

QSVM_ASP_pd_avg = mean(QSVM_ASP_pd, 2);

QSVM_Glucose_pd_avg = mean(QSVM_Glucose_pd, 2);

QSVM_Age_x_avg = mean(QSVM_Age_x, 2);

QSVM_BMI_x_avg = mean(QSVM_BMI_x, 2);

QSVM_HDL_x_avg = mean(QSVM_HDL_x, 2);

QSVM_ALT_x_avg = mean(QSVM_ALT_x, 2);

QSVM_AST_x_avg = mean(QSVM_AST_x, 2);

QSVM_ASP_x_avg = mean(QSVM_ASP_x, 2);

QSVM_Glucose_x_avg = mean(QSVM_Glucose_x, 2);

%% Writing the excel file to save and use the data for plotting later

QSVM_Male_data = table(Age_x, QSVM_Age_pd_avg, BMI_x, QSVM_BMI_pd_avg , ...

 HDL_x, QSVM_HDL_pd_avg , ALT_x, QSVM_ALT_pd_avg , AST_x,

QSVM_AST_pd_avg ,...

 ASP_x, QSVM_ASP_pd_avg , Glucose_x, QSVM_Glucose_pd_avg);

writetable(QSVM_Male_data,'QSVM_Male_code2_plotting_data.xlsx');

%% plotting

figure

t = tiledlayout(3,3,'TileSpacing','compact');

title(t,'Quadratic SVM-Disease - Averaged Partial Dependency Plot')

nexttile; plot(Age_x,QSVM_Age_pd_avg); title('');

xlabel("Age"), ylabel("Scores"), xticks(20:20:80)

nexttile; plot(BMI_x,QSVM_BMI_pd_avg); title('');

xlabel("BMI"), ylabel("Scores"), xticks(20:10:80)

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18

hold on; plot(BMI_x(idx_BMI_1),QSVM_BMI_pd_avg(idx_BMI_1),'*r'); hold off;

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25

hold on; plot(BMI_x(idx_BMI_2),QSVM_BMI_pd_avg(idx_BMI_2),'*r'); hold off;

nexttile; plot(HDL_x,QSVM_HDL_pd_avg); title('');

xlabel("HDL"), ylabel("Scores"), xticks(0:1:4)

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest');

hold on; plot(HDL_x(idx_HDL),QSVM_HDL_pd_avg(idx_HDL),'*r'); hold off;

nexttile; plot(ALT_x,QSVM_ALT_pd_avg); title('');

xlabel("ALT"), ylabel("Scores"), xticks(0:100:400)

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10

hold on; plot(ALT_x(idx_ALT_1),QSVM_ALT_pd_avg(idx_ALT_1),'*r'); hold off;

186

idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55

hold on; plot(ALT_x(idx_ALT_2),QSVM_ALT_pd_avg(idx_ALT_2),'*r'); hold off;

nexttile; plot(AST_x,QSVM_AST_pd_avg); title('');

xlabel("AST"), ylabel("Scores"), xticks(0:100:400)

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest');

hold on; plot(AST_x(idx_AST_1),QSVM_AST_pd_avg(idx_AST_1),'*r'); hold off;

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest');

hold on; plot(AST_x(idx_AST_2),QSVM_AST_pd_avg(idx_AST_2),'*r'); hold off;

nexttile; plot(ASP_x,QSVM_ASP_pd_avg); title('');

xlabel("ASP"), ylabel("Scores"), xticks(0:100:400)

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest');

hold on; plot(ASP_x(idx_ASP_1),QSVM_ASP_pd_avg(idx_ASP_1),'*r'); hold off;

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest');

hold on; plot(ASP_x(idx_ASP_2),QSVM_ASP_pd_avg(idx_ASP_2),'*r'); hold off;

nexttile; plot(Glucose_x,QSVM_Glucose_pd_avg); title('');

xlabel("Glucose"), ylabel("Scores"), xticks(0:100:600)

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest');

hold on; plot(Glucose_x(idx_Glucose),QSVM_Glucose_pd_avg(idx_Glucose),'*r'); hold off;

%% Model 5: Gaussian Scale 1 svm

GSVM1_Age_pd = zeros(100,10);

GSVM1_Age_x = zeros(100,10);

GSVM1_BMI_pd = zeros(100,10);

GSVM1_BMI_x = zeros(100,10);

GSVM1_HDL_pd = zeros(100,10);

GSVM1_HDL_x = zeros(100,10);

GSVM1_ALT_pd = zeros(100,10);

GSVM1_ALT_x = zeros(100,10);

GSVM1_AST_pd = zeros(100,10);

GSVM1_AST_x = zeros(100,10);

GSVM1_ASP_pd = zeros(100,10);

GSVM1_ASP_x = zeros(100,10);

GSVM1_Glucose_pd = zeros(100,10);

GSVM1_Glucose_x = zeros(100,10);

for i = 1:10

 [mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training set

 [Age_pd,Age_x] = partialDependence(mod_5.ClassificationSVM,'Age',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_Age_pd(:,i) = Age_pd';

 GSVM1_Age_x(:,i) = Age_x';

 [BMI_pd,BMI_x] = partialDependence(mod_5.ClassificationSVM,'BMI',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_BMI_pd(:,i) = BMI_pd';

187

 GSVM1_BMI_x(:,i) = BMI_x';

 [HDL_pd,HDL_x] = partialDependence(mod_5.ClassificationSVM,'HDL',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_HDL_pd(:,i) = HDL_pd';

 GSVM1_HDL_x(:,i) = HDL_x';

 [ALT_pd,ALT_x] = partialDependence(mod_5.ClassificationSVM,'ALT',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_ALT_pd(:,i) = ALT_pd';

 GSVM1_ALT_x(:,i) = ALT_x';

 [AST_pd,AST_x] = partialDependence(mod_5.ClassificationSVM,'AST',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_AST_pd(:,i) = AST_pd';

 GSVM1_AST_x(:,i) = AST_x';

 [ASP_pd,ASP_x] = partialDependence(mod_5.ClassificationSVM,'ASP',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_ASP_pd(:,i) = ASP_pd';

 GSVM1_ASP_x(:,i) = ASP_x';

 [Glucose_pd,Glucose_x] =

partialDependence(mod_5.ClassificationSVM,'Plasma_glucose_1',...

 mod_5.ClassificationSVM.ClassNames(2));

 GSVM1_Glucose_pd(:,i) = Glucose_pd';

 GSVM1_Glucose_x(:,i) = Glucose_x';

end

% Average the pd and x values and plot using nexttile

GSVM1_Age_pd_avg = mean(GSVM1_Age_pd, 2);

GSVM1_BMI_pd_avg = mean(GSVM1_BMI_pd, 2);

GSVM1_HDL_pd_avg = mean(GSVM1_HDL_pd, 2);

GSVM1_ALT_pd_avg = mean(GSVM1_ALT_pd, 2);

GSVM1_AST_pd_avg = mean(GSVM1_AST_pd, 2);

GSVM1_ASP_pd_avg = mean(GSVM1_ASP_pd, 2);

GSVM1_Glucose_pd_avg = mean(GSVM1_Glucose_pd, 2);

GSVM1_Age_x_avg = mean(GSVM1_Age_x, 2);

GSVM1_BMI_x_avg = mean(GSVM1_BMI_x, 2);

GSVM1_HDL_x_avg = mean(GSVM1_HDL_x, 2);

GSVM1_ALT_x_avg = mean(GSVM1_ALT_x, 2);

GSVM1_AST_x_avg = mean(GSVM1_AST_x, 2);

GSVM1_ASP_x_avg = mean(GSVM1_ASP_x, 2);

GSVM1_Glucose_x_avg = mean(GSVM1_Glucose_x, 2);

%% Writing the excel file to save and use the data for plotting later

GSVM1_Male_data = table(Age_x, GSVM1_Age_pd_avg, BMI_x, GSVM1_BMI_pd_avg , ...

188

 HDL_x, GSVM1_HDL_pd_avg , ALT_x, GSVM1_ALT_pd_avg , AST_x,

GSVM1_AST_pd_avg ,...

 ASP_x, GSVM1_ASP_pd_avg , Glucose_x, GSVM1_Glucose_pd_avg);

writetable(GSVM1_Male_data,'GSVM1_Male_code2_plotting_data.xlsx');

%% Plotting

figure

t = tiledlayout(3,3,'TileSpacing','compact');

title(t,'Gaussian 1 SVM-Disease - Averaged Partial Dependency Plot')

nexttile; plot(Age_x,GSVM1_Age_pd_avg); title('');

xlabel("Age"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(20:20:80)

nexttile; plot(BMI_x,GSVM1_BMI_pd_avg); title('');

xlabel("BMI"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(20:10:50)

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18

hold on; plot(BMI_x(idx_BMI_1),GSVM1_BMI_pd_avg(idx_BMI_1),'*r'); hold off;

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25

hold on; plot(BMI_x(idx_BMI_2),GSVM1_BMI_pd_avg(idx_BMI_2),'*r'); hold off;

nexttile; plot(HDL_x,GSVM1_HDL_pd_avg); title('');

xlabel("HDL"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:1:4)

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest');

hold on; plot(HDL_x(idx_HDL),GSVM1_HDL_pd_avg(idx_HDL),'*r'); hold off;

nexttile; plot(ALT_x,GSVM1_ALT_pd_avg); title('');

xlabel("ALT"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:50:300)

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10

hold on; plot(ALT_x(idx_ALT_1),GSVM1_ALT_pd_avg(idx_ALT_1),'*r'); hold off;

idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55

hold on; plot(ALT_x(idx_ALT_2),GSVM1_ALT_pd_avg(idx_ALT_2),'*r'); hold off;

nexttile; plot(AST_x,GSVM1_AST_pd_avg); title('');

xlabel("AST"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:50:300)

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest');

hold on; plot(AST_x(idx_AST_1),GSVM1_AST_pd_avg(idx_AST_1),'*r'); hold off;

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest');

hold on; plot(AST_x(idx_AST_2),GSVM1_AST_pd_avg(idx_AST_2),'*r'); hold off;

nexttile; plot(ASP_x,GSVM1_ASP_pd_avg); title('');

xlabel("ASP"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:100:400)

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest');

hold on; plot(ASP_x(idx_ASP_1),GSVM1_ASP_pd_avg(idx_ASP_1),'*r'); hold off;

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest');

189

hold on; plot(ASP_x(idx_ASP_2),GSVM1_ASP_pd_avg(idx_ASP_2),'*r'); hold off;

nexttile; plot(Glucose_x,GSVM1_Glucose_pd_avg); title('');

xlabel("Glucose"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:200:600)

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest');

hold on; plot(Glucose_x(idx_Glucose),GSVM1_Glucose_pd_avg(idx_Glucose),'*r'); hold off;

%% Model 6: Gaussian Scale 2 svm

GSVM2_Age_pd = zeros(100,10);

GSVM2_Age_x = zeros(100,10);

GSVM2_BMI_pd = zeros(100,10);

GSVM2_BMI_x = zeros(100,10);

GSVM2_HDL_pd = zeros(100,10);

GSVM2_HDL_x = zeros(100,10);

GSVM2_ALT_pd = zeros(100,10);

GSVM2_ALT_x = zeros(100,10);

GSVM2_AST_pd = zeros(100,10);

GSVM2_AST_x = zeros(100,10);

GSVM2_ASP_pd = zeros(100,10);

GSVM2_ASP_x = zeros(100,10);

GSVM2_Glucose_pd = zeros(100,10);

GSVM2_Glucose_x = zeros(100,10);

for i = 1:10

 [mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using training

set

 [Age_pd,Age_x] = partialDependence(mod_6.ClassificationSVM,'Age',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_Age_pd(:,i) = Age_pd';

 GSVM2_Age_x(:,i) = Age_x';

 [BMI_pd,BMI_x] = partialDependence(mod_6.ClassificationSVM,'BMI',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_BMI_pd(:,i) = BMI_pd';

 GSVM2_BMI_x(:,i) = BMI_x';

 [HDL_pd,HDL_x] = partialDependence(mod_6.ClassificationSVM,'HDL',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_HDL_pd(:,i) = HDL_pd';

 GSVM2_HDL_x(:,i) = HDL_x';

 [ALT_pd,ALT_x] = partialDependence(mod_6.ClassificationSVM,'ALT',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_ALT_pd(:,i) = ALT_pd';

 GSVM2_ALT_x(:,i) = ALT_x';

 [AST_pd,AST_x] = partialDependence(mod_6.ClassificationSVM,'AST',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_AST_pd(:,i) = AST_pd';

 GSVM2_AST_x(:,i) = AST_x';

190

 [ASP_pd,ASP_x] = partialDependence(mod_6.ClassificationSVM,'ASP',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_ASP_pd(:,i) = ASP_pd';

 GSVM2_ASP_x(:,i) = ASP_x';

 [Glucose_pd,Glucose_x] =

partialDependence(mod_6.ClassificationSVM,'Plasma_glucose_1',...

 mod_6.ClassificationSVM.ClassNames(2));

 GSVM2_Glucose_pd(:,i) = Glucose_pd';

 GSVM2_Glucose_x(:,i) = Glucose_x';

end

% Average the pd and x values and plot using nexttile

GSVM2_Age_pd_avg = mean(GSVM2_Age_pd, 2);

GSVM2_BMI_pd_avg = mean(GSVM2_BMI_pd, 2);

GSVM2_HDL_pd_avg = mean(GSVM2_HDL_pd, 2);

GSVM2_ALT_pd_avg = mean(GSVM2_ALT_pd, 2);

GSVM2_AST_pd_avg = mean(GSVM2_AST_pd, 2);

GSVM2_ASP_pd_avg = mean(GSVM2_ASP_pd, 2);

GSVM2_Glucose_pd_avg = mean(GSVM2_Glucose_pd, 2);

GSVM2_Age_x_avg = mean(GSVM2_Age_x, 2);

GSVM2_BMI_x_avg = mean(GSVM2_BMI_x, 2);

GSVM2_HDL_x_avg = mean(GSVM2_HDL_x, 2);

GSVM2_ALT_x_avg = mean(GSVM2_ALT_x, 2);

GSVM2_AST_x_avg = mean(GSVM2_AST_x, 2);

GSVM2_ASP_x_avg = mean(GSVM2_ASP_x, 2);

GSVM2_Glucose_x_avg = mean(GSVM2_Glucose_x, 2);

%% Writing the excel file to save and use the data for plotting later

GSVM2_Male_data = table(Age_x, GSVM2_Age_pd_avg, BMI_x, GSVM2_BMI_pd_avg , ...

 HDL_x, GSVM2_HDL_pd_avg , ALT_x, GSVM2_ALT_pd_avg , AST_x,

GSVM2_AST_pd_avg ,...

 ASP_x, GSVM2_ASP_pd_avg , Glucose_x, GSVM2_Glucose_pd_avg);

writetable(GSVM2_Male_data,'GSVM2_Male_code2_plotting_data.xlsx');

%% Plotting

figure

t = tiledlayout(3,3,'TileSpacing','compact');

title(t,'Gaussian 2 SVM-Disease - Averaged Partial Dependency Plot')

nexttile; plot(Age_x,GSVM2_Age_pd_avg); title('');

xlabel("Age"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(20:20:80)

nexttile; plot(BMI_x,GSVM2_BMI_pd_avg); title('');

191

xlabel("BMI"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(20:10:50)

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18

hold on; plot(BMI_x(idx_BMI_1),GSVM2_BMI_pd_avg(idx_BMI_1),'*r'); hold off;

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25

hold on; plot(BMI_x(idx_BMI_2),GSVM2_BMI_pd_avg(idx_BMI_2),'*r'); hold off;

nexttile; plot(HDL_x,GSVM2_HDL_pd_avg); title('');

xlabel("HDL"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:1:4)

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest');

hold on; plot(HDL_x(idx_HDL),GSVM2_HDL_pd_avg(idx_HDL),'*r'); hold off;

nexttile; plot(ALT_x,GSVM2_ALT_pd_avg); title('');

xlabel("ALT"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400)

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10

hold on; plot(ALT_x(idx_ALT_1),GSVM2_ALT_pd_avg(idx_ALT_1),'*r'); hold off;

idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55

hold on; plot(ALT_x(idx_ALT_2),GSVM2_ALT_pd_avg(idx_ALT_2),'*r'); hold off;

nexttile; plot(AST_x,GSVM2_AST_pd_avg); title('');

xlabel("AST"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400)

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest');

hold on; plot(AST_x(idx_AST_1),GSVM2_AST_pd_avg(idx_AST_1),'*r'); hold off;

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest');

hold on; plot(AST_x(idx_AST_2),GSVM2_AST_pd_avg(idx_AST_2),'*r'); hold off;

nexttile; plot(ASP_x,GSVM2_ASP_pd_avg); title('');

xlabel("ASP"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400)

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest');

hold on; plot(ASP_x(idx_ASP_1),GSVM2_ASP_pd_avg(idx_ASP_1),'*r'); hold off;

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest');

hold on; plot(ASP_x(idx_ASP_2),GSVM2_ASP_pd_avg(idx_ASP_2),'*r'); hold off;

nexttile; plot(Glucose_x,GSVM2_Glucose_pd_avg); title('');

xlabel("Glucose"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:500)

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest');

hold on; plot(Glucose_x(idx_Glucose),GSVM2_Glucose_pd_avg(idx_Glucose),'*r'); hold off;

2. MATLAB CODE TO EXTRACT STATISTICS FROM PARTIAL DEPENDENCY

DATA

%%%%%%%%

% Created on: 08/09/2021

% Input: Partial dependency data

192

% Output: Computed statistics

% Author: Ridhi Deo

% File name: obj2_matlab_4 (R2020b [17]))

% Description: This code extracts the means and standard deviations from partial dependency

data

%%%%%%%%

%% Quadratic

QSVM_Age_pd = QSVM_Female_data.QSVM_Age_pd_avg;

QSVM_BMI_pd = QSVM_Female_data.QSVM_BMI_pd_avg;

QSVM_HDL_pd = QSVM_Female_data.QSVM_HDL_pd_avg;

QSVM_ALT_pd = QSVM_Female_data.QSVM_ALT_pd_avg;

QSVM_AST_pd = QSVM_Female_data.QSVM_AST_pd_avg;

QSVM_ASP_pd = QSVM_Female_data.QSVM_ASP_pd_avg;

QSVM_Glucose_pd = QSVM_Female_data.QSVM_Glucose_pd_avg;

QSVM_Age_pd_avg = mean(QSVM_Age_pd, 2);

QSVM_BMI_pd_avg = mean(QSVM_BMI_pd, 2);

QSVM_HDL_pd_avg = mean(QSVM_HDL_pd, 2);

QSVM_ALT_pd_avg = mean(QSVM_ALT_pd, 2);

QSVM_AST_pd_avg = mean(QSVM_AST_pd, 2);

QSVM_ASP_pd_avg = mean(QSVM_ASP_pd, 2);

QSVM_Glucose_pd_avg = mean(QSVM_Glucose_pd, 2);

QSVM_pds_only = QSVM_Female_data(:,[2,4,6,8,10,12,14]);

[QSVM_age_amb, ~] = find(QSVM_pds_only.QSVM_Age_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_Age_pd_avg < 0.15);

QSVM_Age_amb_percentage =

(size(QSVM_age_amb,1)/size(QSVM_pds_only.QSVM_Age_pd_avg,1))*100;

[QSVM_bmi_amb, ~] = find(QSVM_pds_only.QSVM_BMI_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_BMI_pd_avg < 0.15);

QSVM_BMI_amb_percentage =

(size(QSVM_bmi_amb,1)/size(QSVM_pds_only.QSVM_BMI_pd_avg,1))*100;

[QSVM_HDL_amb, ~] = find(QSVM_pds_only.QSVM_HDL_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_HDL_pd_avg < 0.15);

QSVM_HDL_amb_percentage =

(size(QSVM_HDL_amb,1)/size(QSVM_pds_only.QSVM_HDL_pd_avg,1))*100;

[QSVM_ALT_amb, ~] = find(QSVM_pds_only.QSVM_ALT_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_ALT_pd_avg < 0.15);

QSVM_ALT_amb_percentage =

(size(QSVM_ALT_amb,1)/size(QSVM_pds_only.QSVM_ALT_pd_avg,1))*100;

193

[QSVM_AST_amb, ~] = find(QSVM_pds_only.QSVM_AST_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_AST_pd_avg < 0.15);

QSVM_AST_amb_percentage =

(size(QSVM_AST_amb,1)/size(QSVM_pds_only.QSVM_AST_pd_avg,1))*100;

[QSVM_ASP_amb, ~] = find(QSVM_pds_only.QSVM_ASP_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_ASP_pd_avg < 0.15);

QSVM_ASP_amb_percentage =

(size(QSVM_ASP_amb,1)/size(QSVM_pds_only.QSVM_ASP_pd_avg,1))*100;

[QSVM_Glucose_amb, ~] = find(QSVM_pds_only.QSVM_Glucose_pd_avg > -0.15 & ...

 QSVM_pds_only.QSVM_Glucose_pd_avg < 0.15);

QSVM_Glucose_amb_percentage =

(size(QSVM_Glucose_amb,1)/size(QSVM_pds_only.QSVM_Glucose_pd_avg,1))*100;

Ambiguity_QSVM = [QSVM_Age_amb_percentage, QSVM_BMI_amb_percentage,

QSVM_HDL_amb_percentage,...

 QSVM_ALT_amb_percentage, QSVM_AST_amb_percentage,

QSVM_ASP_amb_percentage,...

 QSVM_Glucose_amb_percentage];

%% Quadratic SVM Score extraction for pd

figure;histfit(QSVM_Age_pd_avg),title('QSVM-Age');

[QSVM_Age_pd_mean,QSVM_Age_pd_SD,QSVM_Age_pd_var,QSVM_Age_pd_min,QSVM

_Age_pd_max,QSVM_Age_pd_range] ...

 = grpstats(QSVM_Age_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_Age_pd_Quantiles = quantile(QSVM_Age_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_BMI_pd_avg),title('QSVM-BMI');

[QSVM_BMI_pd_mean,QSVM_BMI_pd_SD,QSVM_BMI_pd_var,QSVM_BMI_pd_min,QSV

M_BMI_pd_max,QSVM_BMI_pd_range] ...

 = grpstats(QSVM_BMI_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_BMI_pd_Quantiles = quantile(QSVM_BMI_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_HDL_pd_avg),title('QSVM-HDL');

[QSVM_HDL_pd_mean,QSVM_HDL_pd_SD,QSVM_HDL_pd_var,QSVM_HDL_pd_min,QS

VM_HDL_pd_max,QSVM_HDL_pd_range] ...

 = grpstats(QSVM_HDL_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_HDL_pd_Quantiles = quantile(QSVM_HDL_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_ALT_pd_avg),title('QSVM-ALT');

[QSVM_ALT_pd_mean,QSVM_ALT_pd_SD,QSVM_ALT_pd_var,QSVM_ALT_pd_min,QSV

M_ALT_pd_max,QSVM_ALT_pd_range] ...

 = grpstats(QSVM_ALT_pd_avg,[],{'mean','std','var','min','max','range'});

194

QSVM_ALT_pd_Quantiles = quantile(QSVM_ALT_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_AST_pd_avg),title('QSVM-AST');

[QSVM_AST_pd_mean,QSVM_AST_pd_SD,QSVM_AST_pd_var,QSVM_AST_pd_min,QSV

M_AST_pd_max,QSVM_AST_pd_range] ...

 = grpstats(QSVM_AST_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_AST_pd_Quantiles = quantile(QSVM_AST_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_ASP_pd_avg),title('QSVM-ASP');

[QSVM_ASP_pd_mean,QSVM_ASP_pd_SD,QSVM_ASP_pd_var,QSVM_ASP_pd_min,QSV

M_ASP_pd_max,QSVM_ASP_pd_range] ...

 = grpstats(QSVM_ASP_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_ASP_pd_Quantiles = quantile(QSVM_ASP_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(QSVM_Glucose_pd_avg),title('QSVM-Glucose');

[QSVM_Glucose_pd_mean,QSVM_Glucose_pd_SD,QSVM_Glucose_pd_var,QSVM_Glucose_

pd_min,QSVM_Glucose_pd_max,QSVM_Glucose_pd_range] ...

 = grpstats(QSVM_Glucose_pd_avg,[],{'mean','std','var','min','max','range'});

QSVM_Glucose_pd_Quantiles = quantile(QSVM_Glucose_pd_avg,[0.25,0.5,0.75,1]);

%% Display results in a table for QSVM

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'};

QSVM_Mean =

{QSVM_Age_pd_mean;QSVM_BMI_pd_mean;QSVM_HDL_pd_mean;QSVM_ALT_pd_mea

n;...

 QSVM_AST_pd_mean;QSVM_ASP_pd_mean;QSVM_Glucose_pd_mean};

SD ={QSVM_Age_pd_SD;QSVM_BMI_pd_SD;QSVM_HDL_pd_SD;QSVM_ALT_pd_SD;...

 QSVM_AST_pd_SD;QSVM_ASP_pd_SD;QSVM_Glucose_pd_SD};

Min =

{QSVM_Age_pd_min;QSVM_BMI_pd_min;QSVM_HDL_pd_min;QSVM_ALT_pd_min;...

 QSVM_AST_pd_min;QSVM_ASP_pd_min;QSVM_Glucose_pd_min};

Max =

{QSVM_Age_pd_max;QSVM_BMI_pd_max;QSVM_HDL_pd_max;QSVM_ALT_pd_max;...

 QSVM_AST_pd_max;QSVM_ASP_pd_max;QSVM_Glucose_pd_max};

Range =

{QSVM_Age_pd_range;QSVM_BMI_pd_range;QSVM_HDL_pd_range;QSVM_ALT_pd_rang

e;...

 QSVM_AST_pd_range;QSVM_ASP_pd_range;QSVM_Glucose_pd_range};

Q25 =

{QSVM_Age_pd_Quantiles(1,1);QSVM_BMI_pd_Quantiles(1,1);QSVM_HDL_pd_Quantiles(1

,1);QSVM_ALT_pd_Quantiles(1,1);...

195

QSVM_AST_pd_Quantiles(1,1);QSVM_ASP_pd_Quantiles(1,1);QSVM_Glucose_pd_Quantile

s(1,1)};

Q50 =

{QSVM_Age_pd_Quantiles(1,2);QSVM_BMI_pd_Quantiles(1,2);QSVM_HDL_pd_Quantiles(1

,2);QSVM_ALT_pd_Quantiles(1,2);...

QSVM_AST_pd_Quantiles(1,2);QSVM_ASP_pd_Quantiles(1,2);QSVM_Glucose_pd_Quantile

s(1,2)};

Q75 =

{QSVM_Age_pd_Quantiles(1,3);QSVM_BMI_pd_Quantiles(1,3);QSVM_HDL_pd_Quantiles(1

,3);QSVM_ALT_pd_Quantiles(1,3);...

QSVM_AST_pd_Quantiles(1,3);QSVM_ASP_pd_Quantiles(1,3);QSVM_Glucose_pd_Quantile

s(1,3)};

Q100 =

{QSVM_Age_pd_Quantiles(1,4);QSVM_BMI_pd_Quantiles(1,4);QSVM_HDL_pd_Quantiles(1

,4);QSVM_ALT_pd_Quantiles(1,4);...

QSVM_AST_pd_Quantiles(1,4);QSVM_ASP_pd_Quantiles(1,4);QSVM_Glucose_pd_Quantile

s(1,4)};

QSVM_pd_Stats = table(Param, QSVM_Mean, SD, Min, Max, Range, Q25, Q50, Q75, Q100);

%writetable(QSVM_pd_Stats,'Female_QSVM_pd_code2_stats_pd_03_30.xlsx');

%% Gaussian 1

GSVM1_Age_pd = GSVM1_Female_data.GSVM1_Age_pd_avg;

GSVM1_BMI_pd = GSVM1_Female_data.GSVM1_BMI_pd_avg;

GSVM1_HDL_pd = GSVM1_Female_data.GSVM1_HDL_pd_avg;

GSVM1_ALT_pd = GSVM1_Female_data.GSVM1_ALT_pd_avg;

GSVM1_AST_pd = GSVM1_Female_data.GSVM1_AST_pd_avg;

GSVM1_ASP_pd = GSVM1_Female_data.GSVM1_ASP_pd_avg;

GSVM1_Glucose_pd = GSVM1_Female_data.GSVM1_Glucose_pd_avg;

GSVM1_Age_pd_avg = mean(GSVM1_Age_pd, 2);

GSVM1_BMI_pd_avg = mean(GSVM1_BMI_pd, 2);

GSVM1_HDL_pd_avg = mean(GSVM1_HDL_pd, 2);

GSVM1_ALT_pd_avg = mean(GSVM1_ALT_pd, 2);

GSVM1_AST_pd_avg = mean(GSVM1_AST_pd, 2);

GSVM1_ASP_pd_avg = mean(GSVM1_ASP_pd, 2);

GSVM1_Glucose_pd_avg = mean(GSVM1_Glucose_pd, 2);

GSVM1_pds_only = GSVM1_Female_data(:,[2,4,6,8,10,12,14]);

[GSVM1_age_amb, ~] = find(GSVM1_pds_only.GSVM1_Age_pd_avg > -0.15 & ...

196

 GSVM1_pds_only.GSVM1_Age_pd_avg < 0.15);

GSVM1_Age_amb_percentage =

(size(GSVM1_age_amb,1)/size(GSVM1_pds_only.GSVM1_Age_pd_avg,1))*100;

[GSVM1_bmi_amb, ~] = find(GSVM1_pds_only.GSVM1_BMI_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_BMI_pd_avg < 0.15);

GSVM1_BMI_amb_percentage =

(size(GSVM1_bmi_amb,1)/size(GSVM1_pds_only.GSVM1_BMI_pd_avg,1))*100;

[GSVM1_HDL_amb, ~] = find(GSVM1_pds_only.GSVM1_HDL_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_HDL_pd_avg < 0.15);

GSVM1_HDL_amb_percentage =

(size(GSVM1_HDL_amb,1)/size(GSVM1_pds_only.GSVM1_HDL_pd_avg,1))*100;

[GSVM1_ALT_amb, ~] = find(GSVM1_pds_only.GSVM1_ALT_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_ALT_pd_avg < 0.15);

GSVM1_ALT_amb_percentage =

(size(GSVM1_ALT_amb,1)/size(GSVM1_pds_only.GSVM1_ALT_pd_avg,1))*100;

[GSVM1_AST_amb, ~] = find(GSVM1_pds_only.GSVM1_AST_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_AST_pd_avg < 0.15);

GSVM1_AST_amb_percentage =

(size(GSVM1_AST_amb,1)/size(GSVM1_pds_only.GSVM1_AST_pd_avg,1))*100;

[GSVM1_ASP_amb, ~] = find(GSVM1_pds_only.GSVM1_ASP_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_ASP_pd_avg < 0.15);

GSVM1_ASP_amb_percentage =

(size(GSVM1_ASP_amb,1)/size(GSVM1_pds_only.GSVM1_ASP_pd_avg,1))*100;

[GSVM1_Glucose_amb, ~] = find(GSVM1_pds_only.GSVM1_Glucose_pd_avg > -0.15 & ...

 GSVM1_pds_only.GSVM1_Glucose_pd_avg < 0.15);

GSVM1_Glucose_amb_percentage =

(size(GSVM1_Glucose_amb,1)/size(GSVM1_pds_only.GSVM1_Glucose_pd_avg,1))*100;

Ambiguity_GSVM1 = [GSVM1_Age_amb_percentage, GSVM1_BMI_amb_percentage,

GSVM1_HDL_amb_percentage,...

 GSVM1_ALT_amb_percentage, GSVM1_AST_amb_percentage,

GSVM1_ASP_amb_percentage,...

 GSVM1_Glucose_amb_percentage];

%% Gaussian Scale 1 Score extraction

figure;histfit(GSVM1_Age_pd_avg),title('GSVM1-Age');

[GSVM1_Age_pd_mean,GSVM1_Age_pd_SD,GSVM1_Age_pd_var,GSVM1_Age_pd_min,G

SVM1_Age_pd_max,GSVM1_Age_pd_range] ...

 = grpstats(GSVM1_Age_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_Age_pd_Quantiles = quantile(GSVM1_Age_pd_avg,[0.25,0.5,0.75,1]);

197

figure;histfit(GSVM1_BMI_pd_avg),title('GSVM1-BMI');

[GSVM1_BMI_pd_mean,GSVM1_BMI_pd_SD,GSVM1_BMI_pd_var,GSVM1_BMI_pd_min,

GSVM1_BMI_pd_max,GSVM1_BMI_pd_range] ...

 = grpstats(GSVM1_BMI_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_BMI_pd_Quantiles = quantile(GSVM1_BMI_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM1_HDL_pd_avg),title('GSVM1-HDL');

[GSVM1_HDL_pd_mean,GSVM1_HDL_pd_SD,GSVM1_HDL_pd_var,GSVM1_HDL_pd_mi

n,GSVM1_HDL_pd_max,GSVM1_HDL_pd_range] ...

 = grpstats(GSVM1_HDL_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_HDL_pd_Quantiles = quantile(GSVM1_HDL_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM1_ALT_pd_avg),title('GSVM1-ALT');

[GSVM1_ALT_pd_mean,GSVM1_ALT_pd_SD,GSVM1_ALT_pd_var,GSVM1_ALT_pd_min,

GSVM1_ALT_pd_max,GSVM1_ALT_pd_range] ...

 = grpstats(GSVM1_ALT_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_ALT_pd_Quantiles = quantile(GSVM1_ALT_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM1_AST_pd_avg),title('GSVM1-AST');

[GSVM1_AST_pd_mean,GSVM1_AST_pd_SD,GSVM1_AST_pd_var,GSVM1_AST_pd_min,

GSVM1_AST_pd_max,GSVM1_AST_pd_range] ...

 = grpstats(GSVM1_AST_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_AST_pd_Quantiles = quantile(GSVM1_AST_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM1_ASP_pd_avg),title('GSVM1-ASP');

[GSVM1_ASP_pd_mean,GSVM1_ASP_pd_SD,GSVM1_ASP_pd_var,GSVM1_ASP_pd_min,

GSVM1_ASP_pd_max,GSVM1_ASP_pd_range] ...

 = grpstats(GSVM1_ASP_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_ASP_pd_Quantiles = quantile(GSVM1_ASP_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM1_Glucose_pd_avg),title('GSVM1-Glucose');

[GSVM1_Glucose_pd_mean,GSVM1_Glucose_pd_SD,GSVM1_Glucose_pd_var,GSVM1_Glu

cose_pd_min,GSVM1_Glucose_pd_max,GSVM1_Glucose_pd_range] ...

 = grpstats(GSVM1_Glucose_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM1_Glucose_pd_Quantiles = quantile(GSVM1_Glucose_pd_avg,[0.25,0.5,0.75,1]);

%% Display results in a table for GSVM1

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'};

198

GSVM1_Mean =

{GSVM1_Age_pd_mean;GSVM1_BMI_pd_mean;GSVM1_HDL_pd_mean;GSVM1_ALT_pd_

mean;...

 GSVM1_AST_pd_mean;GSVM1_ASP_pd_mean;GSVM1_Glucose_pd_mean};

SD

={GSVM1_Age_pd_SD;GSVM1_BMI_pd_SD;GSVM1_HDL_pd_SD;GSVM1_ALT_pd_SD;..

.

 GSVM1_AST_pd_SD;GSVM1_ASP_pd_SD;GSVM1_Glucose_pd_SD};

Min =

{GSVM1_Age_pd_min;GSVM1_BMI_pd_min;GSVM1_HDL_pd_min;GSVM1_ALT_pd_min;

...

 GSVM1_AST_pd_min;GSVM1_ASP_pd_min;GSVM1_Glucose_pd_min};

Max =

{GSVM1_Age_pd_max;GSVM1_BMI_pd_max;GSVM1_HDL_pd_max;GSVM1_ALT_pd_ma

x;...

 GSVM1_AST_pd_max;GSVM1_ASP_pd_max;GSVM1_Glucose_pd_max};

Range =

{GSVM1_Age_pd_range;GSVM1_BMI_pd_range;GSVM1_HDL_pd_range;GSVM1_ALT_pd

_range;...

 GSVM1_AST_pd_range;GSVM1_ASP_pd_range;GSVM1_Glucose_pd_range};

Q25 =

{GSVM1_Age_pd_Quantiles(1,1);GSVM1_BMI_pd_Quantiles(1,1);GSVM1_HDL_pd_Quantil

es(1,1);GSVM1_ALT_pd_Quantiles(1,1);...

GSVM1_AST_pd_Quantiles(1,1);GSVM1_ASP_pd_Quantiles(1,1);GSVM1_Glucose_pd_Quan

tiles(1,1)};

Q50 =

{GSVM1_Age_pd_Quantiles(1,2);GSVM1_BMI_pd_Quantiles(1,2);GSVM1_HDL_pd_Quantil

es(1,2);GSVM1_ALT_pd_Quantiles(1,2);...

GSVM1_AST_pd_Quantiles(1,2);GSVM1_ASP_pd_Quantiles(1,2);GSVM1_Glucose_pd_Quan

tiles(1,2)};

Q75 =

{GSVM1_Age_pd_Quantiles(1,3);GSVM1_BMI_pd_Quantiles(1,3);GSVM1_HDL_pd_Quantil

es(1,3);GSVM1_ALT_pd_Quantiles(1,3);...

GSVM1_AST_pd_Quantiles(1,3);GSVM1_ASP_pd_Quantiles(1,3);GSVM1_Glucose_pd_Quan

tiles(1,3)};

Q100 =

{GSVM1_Age_pd_Quantiles(1,4);GSVM1_BMI_pd_Quantiles(1,4);GSVM1_HDL_pd_Quantil

es(1,4);GSVM1_ALT_pd_Quantiles(1,4);...

GSVM1_AST_pd_Quantiles(1,4);GSVM1_ASP_pd_Quantiles(1,4);GSVM1_Glucose_pd_Quan

tiles(1,4)};

199

GSVM1_pd_Stats = table(Param, GSVM1_Mean, SD, Min, Max, Range, Q25, Q50, Q75,

Q100);

%writetable(GSVM1_pd_Stats,'Female_GSVM1_pd_code2_stats_pd_03_30.xlsx');

%% Gaussian 2

GSVM2_Age_pd = GSVM2_Female_data.GSVM2_Age_pd_avg;

GSVM2_BMI_pd = GSVM2_Female_data.GSVM2_BMI_pd_avg;

GSVM2_HDL_pd = GSVM2_Female_data.GSVM2_HDL_pd_avg;

GSVM2_ALT_pd = GSVM2_Female_data.GSVM2_ALT_pd_avg;

GSVM2_AST_pd = GSVM2_Female_data.GSVM2_AST_pd_avg;

GSVM2_ASP_pd = GSVM2_Female_data.GSVM2_ASP_pd_avg;

GSVM2_Glucose_pd = GSVM2_Female_data.GSVM2_Glucose_pd_avg;

GSVM2_Age_pd_avg = mean(GSVM2_Age_pd, 2);

GSVM2_BMI_pd_avg = mean(GSVM2_BMI_pd, 2);

GSVM2_HDL_pd_avg = mean(GSVM2_HDL_pd, 2);

GSVM2_ALT_pd_avg = mean(GSVM2_ALT_pd, 2);

GSVM2_AST_pd_avg = mean(GSVM2_AST_pd, 2);

GSVM2_ASP_pd_avg = mean(GSVM2_ASP_pd, 2);

GSVM2_Glucose_pd_avg = mean(GSVM2_Glucose_pd, 2);

GSVM2_pds_only = GSVM2_Female_data(:,[2,4,6,8,10,12,14]);

[GSVM2_age_amb, ~] = find(GSVM2_pds_only.GSVM2_Age_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_Age_pd_avg < 0.15);

GSVM2_Age_amb_percentage =

(size(GSVM2_age_amb,1)/size(GSVM2_pds_only.GSVM2_Age_pd_avg,1))*100;

[GSVM2_bmi_amb, ~] = find(GSVM2_pds_only.GSVM2_BMI_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_BMI_pd_avg < 0.15);

GSVM2_BMI_amb_percentage =

(size(GSVM2_bmi_amb,1)/size(GSVM2_pds_only.GSVM2_BMI_pd_avg,1))*100;

[GSVM2_HDL_amb, ~] = find(GSVM2_pds_only.GSVM2_HDL_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_HDL_pd_avg < 0.15);

GSVM2_HDL_amb_percentage =

(size(GSVM2_HDL_amb,1)/size(GSVM2_pds_only.GSVM2_HDL_pd_avg,1))*100;

[GSVM2_ALT_amb, ~] = find(GSVM2_pds_only.GSVM2_ALT_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_ALT_pd_avg < 0.15);

GSVM2_ALT_amb_percentage =

(size(GSVM2_ALT_amb,1)/size(GSVM2_pds_only.GSVM2_ALT_pd_avg,1))*100;

[GSVM2_AST_amb, ~] = find(GSVM2_pds_only.GSVM2_AST_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_AST_pd_avg < 0.15);

200

GSVM2_AST_amb_percentage =

(size(GSVM2_AST_amb,1)/size(GSVM2_pds_only.GSVM2_AST_pd_avg,1))*100;

[GSVM2_ASP_amb, ~] = find(GSVM2_pds_only.GSVM2_ASP_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_ASP_pd_avg < 0.15);

GSVM2_ASP_amb_percentage =

(size(GSVM2_ASP_amb,1)/size(GSVM2_pds_only.GSVM2_ASP_pd_avg,1))*100;

[GSVM2_Glucose_amb, ~] = find(GSVM2_pds_only.GSVM2_Glucose_pd_avg > -0.15 & ...

 GSVM2_pds_only.GSVM2_Glucose_pd_avg < 0.15);

GSVM2_Glucose_amb_percentage =

(size(GSVM2_Glucose_amb,1)/size(GSVM2_pds_only.GSVM2_Glucose_pd_avg,1))*100;

Ambiguity_GSVM2 = [GSVM2_Age_amb_percentage, GSVM2_BMI_amb_percentage,

GSVM2_HDL_amb_percentage,...

 GSVM2_ALT_amb_percentage, GSVM2_AST_amb_percentage,

GSVM2_ASP_amb_percentage,...

 GSVM2_Glucose_amb_percentage];

%% Gaussian_Scale_2 SVM Score extraction

figure;histfit(GSVM2_Age_pd_avg),title('GSVM2-Age');

[GSVM2_Age_pd_mean,GSVM2_Age_pd_SD,GSVM2_Age_pd_var,GSVM2_Age_pd_min,G

SVM2_Age_pd_max,GSVM2_Age_pd_range] ...

 = grpstats(GSVM2_Age_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_Age_pd_Quantiles = quantile(GSVM2_Age_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_BMI_pd_avg),title('GSVM2-BMI');

[GSVM2_BMI_pd_mean,GSVM2_BMI_pd_SD,GSVM2_BMI_pd_var,GSVM2_BMI_pd_min,

GSVM2_BMI_pd_max,GSVM2_BMI_pd_range] ...

 = grpstats(GSVM2_BMI_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_BMI_pd_Quantiles = quantile(GSVM2_BMI_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_HDL_pd_avg),title('GSVM2-HDL');

[GSVM2_HDL_pd_mean,GSVM2_HDL_pd_SD,GSVM2_HDL_pd_var,GSVM2_HDL_pd_mi

n,GSVM2_HDL_pd_max,GSVM2_HDL_pd_range] ...

 = grpstats(GSVM2_HDL_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_HDL_pd_Quantiles = quantile(GSVM2_HDL_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_ALT_pd_avg),title('GSVM2-ALT');

[GSVM2_ALT_pd_mean,GSVM2_ALT_pd_SD,GSVM2_ALT_pd_var,GSVM2_ALT_pd_min,

GSVM2_ALT_pd_max,GSVM2_ALT_pd_range] ...

201

 = grpstats(GSVM2_ALT_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_ALT_pd_Quantiles = quantile(GSVM2_ALT_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_AST_pd_avg),title('GSVM2-AST');

[GSVM2_AST_pd_mean,GSVM2_AST_pd_SD,GSVM2_AST_pd_var,GSVM2_AST_pd_min,

GSVM2_AST_pd_max,GSVM2_AST_pd_range] ...

 = grpstats(GSVM2_AST_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_AST_pd_Quantiles = quantile(GSVM2_AST_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_ASP_pd_avg),title('GSVM2-ASP');

[GSVM2_ASP_pd_mean,GSVM2_ASP_pd_SD,GSVM2_ASP_pd_var,GSVM2_ASP_pd_min,

GSVM2_ASP_pd_max,GSVM2_ASP_pd_range] ...

 = grpstats(GSVM2_ASP_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_ASP_pd_Quantiles = quantile(GSVM2_ASP_pd_avg,[0.25,0.5,0.75,1]);

figure;histfit(GSVM2_Glucose_pd_avg),title('GSVM2-Glucose');

[GSVM2_Glucose_pd_mean,GSVM2_Glucose_pd_SD,GSVM2_Glucose_pd_var,GSVM2_Glu

cose_pd_min,GSVM2_Glucose_pd_max,GSVM2_Glucose_pd_range] ...

 = grpstats(GSVM2_Glucose_pd_avg,[],{'mean','std','var','min','max','range'});

GSVM2_Glucose_pd_Quantiles = quantile(GSVM2_Glucose_pd_avg,[0.25,0.5,0.75,1]);

%% Display results in a table for GSVM2

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'};

GSVM2_Mean =

{GSVM2_Age_pd_mean;GSVM2_BMI_pd_mean;GSVM2_HDL_pd_mean;GSVM2_ALT_pd_

mean;...

 GSVM2_AST_pd_mean;GSVM2_ASP_pd_mean;GSVM2_Glucose_pd_mean};

SD

={GSVM2_Age_pd_SD;GSVM2_BMI_pd_SD;GSVM2_HDL_pd_SD;GSVM2_ALT_pd_SD;..

.

 GSVM2_AST_pd_SD;GSVM2_ASP_pd_SD;GSVM2_Glucose_pd_SD};

Min =

{GSVM2_Age_pd_min;GSVM2_BMI_pd_min;GSVM2_HDL_pd_min;GSVM2_ALT_pd_min;

...

 GSVM2_AST_pd_min;GSVM2_ASP_pd_min;GSVM2_Glucose_pd_min};

Max =

{GSVM2_Age_pd_max;GSVM2_BMI_pd_max;GSVM2_HDL_pd_max;GSVM2_ALT_pd_ma

x;...

 GSVM2_AST_pd_max;GSVM2_ASP_pd_max;GSVM2_Glucose_pd_max};

202

Range =

{GSVM2_Age_pd_range;GSVM2_BMI_pd_range;GSVM2_HDL_pd_range;GSVM2_ALT_pd

_range;...

 GSVM2_AST_pd_range;GSVM2_ASP_pd_range;GSVM2_Glucose_pd_range};

Q25 =

{GSVM2_Age_pd_Quantiles(1,1);GSVM2_BMI_pd_Quantiles(1,1);GSVM2_HDL_pd_Quantil

es(1,1);GSVM2_ALT_pd_Quantiles(1,1);...

GSVM2_AST_pd_Quantiles(1,1);GSVM2_ASP_pd_Quantiles(1,1);GSVM2_Glucose_pd_Quan

tiles(1,1)};

Q50 =

{GSVM2_Age_pd_Quantiles(1,2);GSVM2_BMI_pd_Quantiles(1,2);GSVM2_HDL_pd_Quantil

es(1,2);GSVM2_ALT_pd_Quantiles(1,2);...

GSVM2_AST_pd_Quantiles(1,2);GSVM2_ASP_pd_Quantiles(1,2);GSVM2_Glucose_pd_Quan

tiles(1,2)};

Q75 =

{GSVM2_Age_pd_Quantiles(1,3);GSVM2_BMI_pd_Quantiles(1,3);GSVM2_HDL_pd_Quantil

es(1,3);GSVM2_ALT_pd_Quantiles(1,3);...

GSVM2_AST_pd_Quantiles(1,3);GSVM2_ASP_pd_Quantiles(1,3);GSVM2_Glucose_pd_Quan

tiles(1,3)};

Q100 =

{GSVM2_Age_pd_Quantiles(1,4);GSVM2_BMI_pd_Quantiles(1,4);GSVM2_HDL_pd_Quantil

es(1,4);GSVM2_ALT_pd_Quantiles(1,4);...

GSVM2_AST_pd_Quantiles(1,4);GSVM2_ASP_pd_Quantiles(1,4);GSVM2_Glucose_pd_Quan

tiles(1,4)};

GSVM2_pd_Stats = table(Param, GSVM2_Mean, SD, Min, Max, Range, Q25, Q50, Q75,

Q100);

%writetable(GSVM2_pd_Stats,'Female_GSVM2_pd_code2_stats_pd_03_30.xlsx');

%% Combined Female Results

Combined_pd_Stats = table(Param, QSVM_Mean, GSVM1_Mean, GSVM2_Mean);

writetable(Combined_pd_Stats, 'Female_pd_combined_means_03_30.xlsx');

Combined_ambiguity = table(Ambiguity_QSVM', Ambiguity_GSVM1', Ambiguity_GSVM2');

Combined_ambiguity.Properties.RowNames = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'};

Combined_ambiguity.Properties.VariableNames = {'Ambiguity%_QSVM',...

 'Ambiguity%_GSVM1','Ambiguity%_GSVM2'};

writetable(Combined_ambiguity, 'Female_ambiguity_03_30.xlsx');

203

Figure P2.1: Figure outlining the flow of code used in this research objective

P1B.5DP1B.5CP1B.5B

P2.1

Raw
data

Code
P1B.1

Code
P1B.2

Code
P1B.3

Code
P1B.4A

Code
P1B.4B

Code
P1B.5

Code
P1B.5

P2.2

Output

204

 ASSESSMENT OF HS PREDICTION MODELS USING

HEAVY METAL EXPOSURE DATA (PAPER 3)

4.1 Introduction

Liver is the major detoxification organ in the human system and is therefore susceptible to

toxicity [1]. All endogenous as well as exogenous toxicants pass through the liver and the liver is

responsible for their metabolism [1]. The toxic mechanisms of most toxicants involve passing

through the liver [1]–[3]. This process can cause harm to the liver, especially if the human body is

chronically exposed to toxicants. Exposure to Cadmium [4], [5], Arsenic [2], Lead [5], [6], and

Mercury [7]–[10] are all found to be linked with liver dysfunction. Interestingly, high levels of

Iron are also related to liver disease [11], [12].

Researchers have found a significant impact of toxicants on the liver, and the terms

“Toxicant” Associated Fatty Liver Disease (TAFLD) and “Toxicant” Associated Steatohepatitis

(TASH) were coined to label liver injury caused specifically due to toxicants [13], [14]. It is

important to note that TAFLD and TASH are similar in pathology to NAFLD and NASH,

respectively [13], [14].

4.2 Literature review

A detailed literature review of heavy metals and their relationship with NAFLD was

covered in the general literature review section of this work (section 2.3). Several studies have

found associations between liver dysfunction and heavy metal exposure.

One study used NHANES data to identify the relationship between NAFLD and Arsenic

(urinary Arsenic levels) [15]. A “positive association” between Arsenic exposure and risk of

NAFLD was reported [15]. However, it is important to note that they used elevated levels of the

ALT enzyme as a proxy marker for NAFLD. Specifically, the used ALT levels greater than 25

U/L and 22 U/L for boys and girls (under 17 years), respectively, as a marker for liver dysfunction

[15]. Levels over 30 U/L and 19 U/L were used to define liver dysfunction for men and women,

respectively, in their work [15]. It is important to note here that while elevated ALT indicates liver

dysfunction, it is not a biomarker for NAFLD [16].

205

Another research group used NHANES data to measure the associations between Lead,

Mercury and liver disease [6]. They also reported a dose-dependent association between heavy

metal exposure and ALT elevation [6]. Increasing levels of Lead and Mercury in the blood were

individually found to be associated with ALT elevation [6].

In this work, a preliminary study and was intended to understand the relationship, if any,

between HS and heavy metal exposure, within the specific NHANES III dataset. However, all the

data of interest were not available within the NHANES III dataset. For example, Arsenic is a

known hepatotoxin, but Arsenic exposure data were not available within NHANES III. While a

different NHANES dataset – ‘Continuous NHANES’, includes urinary Arsenic information, it

does not include the Hepatic Steatosis data (using Ultrasound tests).

The relationship of heavy metal exposure and the biological mechanism leading to HS is

complex. Although other researchers have used continuous NHANES data with Arsenic exposure

to understand its association with NAFLD, they did not use the ultrasound-based HS parameter to

assess NAFLD presence [15]. Instead, they used a proxy parameter, ALT, with an assumption that

it could represent the presence or absence of NAFLD [15]. In this work, the abnormal ALT levels

are not considered as a determinant of NAFLD or HS to build ML models. In this research, the

presence or absence of HS is determined using ultrasound-based HS detection. The use of heavy

metal exposure and HS (ultrasound-based) was not found in any other research, based on the

literature review conducted in this work.

Therefore, the hypothesis used in this work is as follows:

Heavy metal exposure is related to NAFLD and could be useful in predicting HS (using a

ML-based model).

Based on the above hypothesis, the research objective of this work is to:

Assess the effect of using specific heavy metal exposure information (along with other

physiological and liver biochemistry data) in human system on the predictability of HS model.

4.3 Methods

The effect of heavy metal exposure on the liver is explained in the general literature review

portion of this dissertation. Toxicant associated fatty liver disease (TAFLD) and Toxicant

associated steatohepatitis (TASH) were also discussed. The association between NAFLD and

chronic heavy metal exposure was also briefly reviewed.

206

In this research objective, the link between heavy metal exposure and HS was evaluated

by including exposure-related parameters to predict HS. The effect of heavy metal exposure data

was tested by subsequent inclusion and exclusion of the relevant parameters and comparing their

results.

a. Data processing

Data from NHANES III were used in this research objective [17], [18]. Compared with

previous objectives, additional parameters related to heavy metal exposure were incorporated in

this objective. The following parameters were chosen as input features in this objective: Age, BMI,

HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. The parameter Insulin

resistance was derived using two other parameters: Fasting insulin and fasting glucose. Insulin

resistance was found to be one of the largest risk factors associated with HS [19]–[22]. The output

parameter was HS. The same dataset as that in objective 1B was imported from SAS into

MATLAB.

All observations with any missing information were deleted. Any observations with fasting

time of under eight hours were excluded from this research [23]. The derived parameter of insulin

resistance was computed using the formula in equation (21). The equation for computing insulin

resistance was referred to from previous literature [24].

 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑥 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

22.5
 (21)

Data were then split into male and female sub-datasets. Alcohol related exclusions were

applied. Again, class imbalance was an inherent challenge and SMOTE was applied to augment

the original data with generate synthetic HS data. After the processing, the dataset sizes were as

shown in

Table 4.1 &

Table 4.2.

207

b. Model selection

To identify the best ML model, the data were used to train 17 different models. These

models belonged to the five model families: tree-based, ensemble-based (random forest, boosted

trees), K-nearest neighbors, support vector machines (SVM), and logistic regression. Each of these

model families is explained in detail in chapter 2 & 3. The next step of selecting relevant features

is explained in the section below.

c. Feature selection

A comparison of model performance was designed in this objective. First, a cluster of

parameters called heavy metal exposure data was included in training the ML models. The heavy

metal exposure data used in this research contains three parameters: Lead (Pb), Iron (Fe) and

Cadmium (Cd). Although the initial research plan included the use of Arsenic data as well, it was

not available in NHANES III. While Arsenic data is available in the larger continuous NHANES

datasets, the ultrasound-based HS data was only available in NHANES III. Therefore, the research

methods in this objective do not include Arsenic, although it is a critical hepatotoxin [2].

The models trained using the heavy metal exposure data had a total 10 input features: Age,

BMI, HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. These trained models

were then tested, and the best performing models were identified.

In the second approach, the features in the heavy metal exposure data were removed from

the dataset and the ML models were trained again. The models trained using this approach had

only seven input parameters: Age, BMI, HDL, ALT, AST, ASP, and Insulin resistance. The

models were tested again, and the best performing models were identified.

The data were divided into training and test in a 70:30 ratio, respectively. Training data

was fed to the models first and then they were tested on the separate test dataset. 10-fold cross

validation was used to ensure the models do not overfit the data. Each training and test session was

repeated 10-times for every model and the performance results were averaged. The average results

of the best perfuming models are shown in

A comparison of the performances of models trained and tested with and without the heavy

metal exposure data is presented in the results and discussion section.

208

209

4.4 Results and discussion

A comparison of the models with and without heavy metal exposure data is presented in

this section. The main research interest is to identify the impact of using Lead, Cadmium, and Iron

data on model performance. For a quick reference, the models without the heavy metal exposure

data have the following input parameters: Age, BMI, HDL, ALT, AST, ASP, and Insulin

resistance. The models including the heavy metal exposure data have the following input

parameters: Age, BMI, HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. In

both the approaches (with and without heavy metal exposure data), 17 models from five model

families were trained separately for male and female populations.

The detailed dataset sizes are shown in

Table 4.1 &

Table 4.2. The performance results for male- specific models with heavy metal exposure

data are in Table 4.3, without heavy metal exposure data are in . For female specific models with

heavy metal exposure data are in

Table 4.5 and without the heavy metal exposure data are in Table 4.6.

Male – specific models

The results of the models with heavy metal exposure data had the following performance

ranges: test accuracy: 66 – 74%, sensitivity: 66 – 81% and specificity: 51 – 83%. The model with

highest test accuracy was Coarse KNN. The model with highest sensitivity was Gaussian SVM I

at 83%. However, it has a very poor specificity of only 51%. These results imply that although the

Gaussian SVM I model is 83% accurate at predicting those with HS, it does not perform well when

predicting those without HS.

The results of the models without heavy metal exposure data had the following

performance ranges: test accuracy: 70 - 72%, sensitivity: 66 - 78% and specificity: 62 - 79%. The

model with highest test accuracy was Gaussian SVM II at 72%. The model with highest sensitivity

was Gaussian SVM I at 78%. Similar to the models with heavy metal exposure data included, the

210

Gaussian SVM I has the best sensitivity performance. However, it continues to result in poor

specificity (62% for the models without heavy metal exposure data).

Interestingly, the use of heavy metal exposure data only improved the performance of the

models by 2% (test accuracy), 3% (sensitivity), and 4% (specificity). In both the cases, the model

with highest sensitivity was Gaussian SVM I. But due to the significantly low specificity

performance of the Gaussian SVM I, this model would require more training, and validation before

use. Additional analysis to these models is out of scope for this dissertation but can be explored in

the future.

It is postulated that including time-series heavy metal exposure data might be more

beneficial in predicting HS than stationary data (which is used in this research). Further, additional

research regarding the impacts of toxins on liver health might lead to intermediate

parameters/biomarkers. In the future, if such research becomes available, those parameters can be

included in the model to improve the HS prediction.

Female – specific models

The results of the models with the heavy metal exposure data had the following

performance ranges: test accuracy: 66 – 72 %, sensitivity: 67 – 78 % and specificity: 54 – 76 %.

The models with highest test accuracies were Logistic Regression and Ensemble Subspace

Discriminant, both with a test accuracy of 72 %. The model with highest sensitivity was Gaussian

SVM 1 at 78%. However, the specificity of the Gaussian SVM I model was very poor at 54%.

The results of the models without heavy metal exposure data had the following

performance ranges: test accuracy: 70 – 73%, sensitivity: 69 – 74% and specificity: 66 – 77%. The

model with highest test accuracies were Logistic Regression and Linear SVM with a test accuracy

of 73%. The model with highest sensitivity was Gaussian Scale I SVM at 74%. Although the

specificity of the Gaussian SVM I was still low at 66%, it was higher than the model with heavy

metal exposure data.

Overall, the difference in performances was still minimal at 1% test accuracy, 4%

sensitivity and 1% specificity. The models without heavy metal exposure data resulted in better

test accuracy and better specificity than those with heavy metal exposure data. However, the

sensitivity of the model with heavy metal exposure data included as higher than that of the model

without.

211

While the impact of using toxicological data (Lead, Cadmium, and Iron) levels did not

show a significant improvement with ML model performance, these parameters need additional

investigation. Increasing research related to heavy metal exposure and the liver might benefit the

prediction of HS using ML in the future.

4.5 Summary and conclusions

Models were developed to test the impact of including vs excluding a cluster of heavy

metal exposure data (Lead, Iron, and Cadmium). The best performing models (with heavy metal

exposure) had 74% and 72% test accuracies for male and female, respectively. The best performing

models without heavy metal exposure had test accuracies of 72% and 73% for male and female,

respectively. Interestingly, while the use of heavy metal exposure data improved the Male -specific

model performance by 2%, it decreased the performance of the female-specific model by 1%.

Overall, the use of heavy metal exposure parameters did not impact the model performance (less

than 3%) in this work.

The conclusion of this research was:

Inclusion of heavy metal exposure (Lead, Iron, and Cadmium) did not have a numerically

significant impact on the model performance in predicting HS.

4.6 Recommendations for future work

Future research regarding heavy metal exposure and its impact on the liver might lead to

discovery of biomarkers for liver related heavy metal exposure. Any such potential biomarkers

would be a good feature to include in screening of NAFLD. To understand the impact of heavy

metal exposure on HS prediction, use of longitudinal/time-series data is recommended. Additional

data related to heavy metal exposure like: Arsenic, mercury and other heavy metals is also

recommended to be used along with Lead, Cadmium, and Iron data. Utilizing the sample weights

provided by NHANES and developing models using weighted observations are also

recommended.

212

4.7 Tables

Table 4.1: Dataset sizes after applying SMOTE – with heavy metal exposure

parameters

Sex
HS (before

SMOTE)

HS (after

SMOTE)
No-HS Total

Male 581 2,324 1,962 4,286

Female 684 2,736 2,803 5,539

Table 4.2: Dataset sizes after applying SMOTE – without heavy metal exposure

parameters

Sex
HS (before

SMOTE)

HS (after

SMOTE)
No-HS Total

Male 588 2,352 1,978 4,330

Female 690 2,760 2,830 5,590

Table 4.3: Best performing models using heavy metal exposure data - male populations

Models Training (%) Testing (%) Sensitivity (%) Specificity (%)

Gaussian SVM I 64.5 66.1 81.0 51.1

Coarse KNN 67.2 74.4 65.5 83.3

Ensemble Boosted 67.6 71.8 71.8 71.8

Ensemble RUS Boosted

Trees
68.2 73.5 74.7 72.4

213

Table 4.4: Best performing models excluding heavy metal exposure data - male populations

Models Training (%) Testing (%)
Sensitivity

(%)

Specificity

(%)

Logistic Regression 71.3 71.9 69.4 74.6

Linear SVM 70.8 71.9 66.6 77.3

Gaussian SVM I 67.2 69.6 77.5 61.7

Gaussian SVM II 70.5 72.4 70.1 74.7

Gaussian SVM III 70.2 71.5 64.2 78.7

Table 4.5: Best performing models using heavy metal exposure data - female populations

Models Training Testing Sensitivity Specificity

Logistic Regression 71.9 71.9 68.5 75.4

Gaussian SVM I 66.5 65.9 77.7 54.1

Gaussian SVM II 71.5 71.4 67.2 75.6

Gaussian SVM III 71.5 71.4 67.1 75.8

Ensemble Subspace

Discriminant
72.1 71.9 68.0 75.9

Table 4.6: Best performing models excluding heavy metal exposure data - female populations

Models
Training

(%)

Testing

(%)

Sensitivity

(%)

Specificity

(%)

Logistic Regression 72.2 73.0 68.9 77.1

Linear SVM 72.2 73.0 68.8 77.2

Gaussian SVM I 69.6 70.2 74.3 66.1

Ensemble Subspace

Discriminant
72.7 72.8 69.6 76.1

214

4.8 References

[1] J. Ozougwu, “Physiology of the liver,” vol. 4, pp. 13–24, Jan. 2017.

[2] G. E. Arteel, “Hepatotoxicity,” in Arsenic, John Wiley & Sons, Ltd, 2015, pp. 249–265.

doi: 10.1002/9781118876992.ch11.

[3] H. Jaeschke, “Mechanisms of Hepatotoxicity,” Toxicol. Sci., vol. 65, no. 2, pp. 166–176,

Feb. 2002, doi: 10.1093/toxsci/65.2.166.

[4] T. Bhattacharjee, S. Bhattacharjee, and D. Choudhuri, “HEPATOTOXIC AND

NEPHROTOXIC EFFECTS OF CHRONIC LOW DOSE EXPOSURE TO A MIXTURE

OF HEAVY METALS – LEAD, CADMIUM AND ARSENIC,” p. 10, 2016.

[5] Y. Chen, X. Xu, Z. Zeng, X. Lin, Q. Qin, and X. Huo, “Blood lead and Cadmium levels

associated with hematological and hepatic functions in patients from an e-waste-polluted

area,” Chemosphere, vol. 220, pp. 531–538, Apr. 2019, doi:

10.1016/j.chemosphere.2018.12.129.

[6] Cave Matt, Appana Savitri, Patel Mihir, Falkner Keith Cameron, McClain Craig J., and

Brock Guy, “Polychlorinated Biphenyls, Lead, and Mercury Are Associated with Liver

Disease in American Adults: NHANES 2003–2004,” EnvIron. Health Perspect., vol.

118, no. 12, pp. 1735–1742, Dec. 2010, doi: 10.1289/ehp.1002720.

[7] J. Choi et al., “Mercury Exposure in Association With Decrease of Liver Function in

Adults: A Longitudinal Study,” J. Prev. Med. Pub. Health, vol. 50, no. 6, pp. 377–385,

Nov. 2017, doi: 10.3961/jpmph.17.099.

[8] H. Lee, Y. Kim, C.-S. Sim, J.-O. Ham, N.-S. Kim, and B.-K. Lee, “Associations between

blood mercury levels and subclinical changes in liver enzymes among South Korean

general adults: Analysis of 2008–2012 Korean national health and nutrition examination

survey data,” EnvIron. Res., vol. 130, pp. 14–19, Apr. 2014, doi:

10.1016/j.envres.2014.01.005.

[9] M.-R. Lee, Y.-H. Lim, B.-E. Lee, and Y.-C. Hong, “Blood mercury concentrations are

associated with decline in liver function in an elderly population: a panel study,”

EnvIron. Health, vol. 16, no. 1, p. 17, Mar. 2017, doi: 10.1186/s12940-017-0228-2.

[10] Y.-S. Lin et al., “Association of body burden of mercury with liver function test status in

the U.S. population,” EnvIron. Int., vol. 70, pp. 88–94, Sep. 2014, doi:

10.1016/j.envint.2014.05.010.

[11] A. Pietrangelo, “Iron and the liver,” Liver Int., vol. 36, pp. 116–123, Jan. 2016, doi:

10.1111/liv.13020.

[12] A. Pietrangelo, “Iron in NASH, chronic liver diseases and HCC: How much Iron is too

much?,” J. Hepatol., vol. 50, no. 2, pp. 249–251, Feb. 2009, doi:

10.1016/j.jhep.2008.11.011.

215

[13] B. Wahlang et al., “Toxicant-associated Steatohepatitis,” Toxicol. Pathol., vol. 41, no. 2,

pp. 343–360, Feb. 2013, doi: 10.1177/0192623312468517.

[14] M. Cave et al., “Toxicant-associated steatohepatitis in vinyl chloride workers,”

Hepatology, vol. 51, no. 2, pp. 474–481, Feb. 2010, doi: 10.1002/hep.23321.

[15] J. K. Frediani, E. A. Naioti, M. B. Vos, J. Figueroa, C. J. Marsit, and J. A. Welsh,

“Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S.

adolescents and adults: an association modified by race/ethnicity, NHANES 2005–2014,”

EnvIron. Health, vol. 17, no. 1, Dec. 2018, doi: 10.1186/s12940-017-0350-1.

[16] “Understand Liver Enzyme Test Results — American Liver Foundation.”

https://liverfoundation.org/understand-liver-enzyme-test-results-2/ (accessed Mar. 30,

2021).

[17] Centers for Disease Control and Prevention (CDC). National Center for Health Statistics

(NCHS). National Health and Nutrition Examination Survey Data, “NHANES III (1988-

1994) - Data Files.” https://wwwn.cdc.gov/nchs/nhanes/nhanes3/datafiles.aspx#core

(accessed Apr. 23, 2021).

[18] “NHANES 1988-1994: Hepatic/Gallbladder Ultrasound and Hepatic Steatosis Data

Documentation, Codebook, and Frequencies.”

https://wwwn.cdc.gov/nchs/data/nhanes3/34a/HGUHS.htm#Data_Processing_and_Editin

g (accessed Jan. 30, 2019).

[19] Z. M. Younossi et al., “The global epidemiology of NAFLD and NASH in patients with

type 2 diabetes: A systematic review and meta-analysis,” J. Hepatol., vol. 71, no. 4, pp.

793–801, Oct. 2019, doi: 10.1016/j.jhep.2019.06.021.

[20] G. Bhat and C. S. Baba, “Insulin resistance and metabolic syndrome in nonobese Indian

patients with non-alcoholic fatty liver disease,” Trop. Gastrology, vol. 34, no. 1, pp. 18–

24, Mar. 2013, doi: 10.7869/tg.2012.86.

[21] B. Sears and M. Perry, “The role of fatty acids in insulin resistance,” Lipids Health Dis.,

vol. 14, no. 1, p. 121, Dec. 2015, doi: 10.1186/s12944-015-0123-1.

[22] H. Kitade, G. Chen, Y. Ni, and T. Ota, “Nonalcoholic fatty liver disease and insulin

resistance: new insights and potential new treatments,” Nutrients, vol. 9, no. 4, p. 387,

2017.

[23] “The A1C Test & Diabetes | NIDDK,” National Institute of Diabetes and Digestive and

Kidney Diseases. https://www.niddk.nih.gov/health-information/diagnostic-tests/a1c-test

(accessed Jun. 23, 2021).

[24] “Association Between Serum Concentrations of Persistent Organic Pollutants and Insulin

Resistance Among Nondiabetic Adults | Diabetes Care | American Diabetes Association.”

https://diabetesjournals.org/care/article/30/3/622/25699/Association-Between-Serum-

Concentrations-of (accessed Mar. 24, 2022).

216

APPENDIX D. P3 - CODE FOR OBJECTIVE 3

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%%

% Created on: 02/17/2022

% Input: Raw data from NHANES

% Output: Data with only variables of interest, specific to objective 3

% Author: Ridhi Deo

% File name: obj1c_sas_1.sas

% Description: Used eliminate the variables that are not required and to only keep the variables

of interest from the raw datasets. This program was developed using SAS 2019 [64].

%%%%%%%%

% set the data path and choose the variables to keep. Variable codes are as provided by

% NHANESIII

LIBNAME NH "Raw data path";

data adult;

set NH.adult;

keep SEQN HSAGEIR HSSEX DMARETHN HAD1 HAD6 HAD10;

proc sort; by seqn; run;

data lab;

set NH.lab;

keep SEQN AHP HBP SSP SAP HCP DHP NAPSI SKPSI CLPSI C3PSI SCPSI PSPSI

UAPSI G1P G2P BUPSI TBPSI CEPSI SFPSI CHPSI TRPSI ASPSI ATPSI GGPSI

LDPSI APPSI TPPSI AMPSI GBPSI OSPSI GHP GHPMETH G1PSI G1PCODE G2PSI

C1PSI C2PSI I1PSI I2PSI UDP UDPSI URPSI UBP UIP PLPSI PVPSI PBP PBPSI FEP

FEPSI VBPSI VCPSI ICPSI CAPSI SEPSI VAPSI VEPSI ACPSI BCPSI TCPSI TGPSI

LCPSI HDPSI AAPSI ABPSI LPPSI PHPFAST;

proc sort; by seqn; run;

data exam;

set NH.exam;

keep SEQN PEP6DR BMPBMI BMPWAIST MAPA1 MAPA2A MAPA2B MAPA3

MAPE1 MAPE2 MAPE4;

proc sort; by seqn; run;

data HGUHS;

set NH.HGUHS;

keep SEQN GUPHSQC GUPHSLKC GUPHSPB GUPHSDBA GUPHSVW

GUPHSDGB GUPHSPF GUPHSPFR GUPHSC GUPHSREV;

proc sort; by seqn; run;

217

proc contents data = NH.adult;

run;

proc contents data = NH.lab;

run;

proc contents data = NH.exam;

run;

proc contents data = NH.HGUHS;

run;

2. SAS CODE TO MERGE DATASETS

%%%%%%%%

% Created on: 02/17/2022

% Input: Processed data with only variables of interest, specific to objective 3

% Output: Multiple datasets of interest merged into one dataset

% Author: Ridhi Deo

% File name: obj1c_sas_2.sas

% Description: Used to combine different datasets of interest into one. This program was

developed using SAS 2019 [64].

%%%%%%%%

% Sorting data using sequential numbers

proc sort data=work.adult;

 by SEQN;

proc sort data=work.lab;

 by SEQN;

proc sort data=work.exam;

 by SEQN;

proc sort data=work.hguhs;

 by SEQN;

%Merging data using the sequential number

 data NH.merged;

 merge work.adult

 work.lab

 work.exam

 work.hguhs;

 by SEQN;

proc contents data = NH.merged varnum;

proc means data=NH.merged N Nmiss min max maxdec=2;

run;

218

3. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE

DATASETS (WITH HEAVY METAL EXPOSURE DATA)

%%%%%%%%

% Created on: 02/17/22

% Input: Merged dataset from SAS

% Output: Processed data, split into male and female sub-datasets

% Author: Ridhi Deo

% File name: Obj1c_matlab_1a.m

% Description: This code was written to process data (with heavy metal exposure data) and split

it into male and female sub-datasets. This program was developed using SAS 2019 [64].

%%%%%%%%

clc

close all;

%% Data import

data = readtable(data directory);

%% Extracting the following features

% SEQN, Age, Sex, Lead, Iron, Cadmium

% Will also need to extract alcohol data so that exclusions can be applied

data = data(:,[1,3,4,8,12,14,27,50,51,54,62,65,68,69,71,76,82:84,92]);

data.Properties.VariableNames{'HSAGEIR'} = 'Age';

data.Properties.VariableNames{'HSSEX'} = 'Sex';

data.Properties.VariableNames{'BMPBMI'} = 'BMI';

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life';

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year';

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day';

data.Properties.VariableNames{'GUPHSPFR'} = 'HS';

data.Properties.VariableNames{'ATPSI'} = 'ALT';

data.Properties.VariableNames{'ASPSI'} = 'AST';

data.Properties.VariableNames{'APPSI'} = 'ASP';

data.Properties.VariableNames{'G1PSI'} = 'Plasma_glucose_1';

data.Properties.VariableNames{'G2PSI'} = 'Plasma_glucose_2';

data.Properties.VariableNames{'I1PSI'} = 'Insulin_1';

data.Properties.VariableNames{'I2PSI'} = 'Insulin_2';

data.Properties.VariableNames{'HDPSI'} = 'HDL';

data.Properties.VariableNames{'PBPSI'} = 'Lead';

data.Properties.VariableNames{'FEPSI'} = 'Iron';

data.Properties.VariableNames{'UDPSI'} = 'Cadmium';

data.Properties.VariableNames{'PHPFAST'} = 'Fasting_time_hours';

%% Alcohol data columns processing

% Filling in missing data for the 12 drinks per year column with information from 12

drinks in life column

% If a person has not had 12 drinks in their lifetime, the response on the

% variable 12 drinks in past year are missing

% To fix that, individuals who have not had 12 drinks in their life will

219

% have 0s on the column 12 drinks in past year

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the

column drinks per day

for i = 1: size(data,1)

 if (data.Alcohol_12_life(i) == 2)

 data.Alcohol_12_last_year(i) = 0;

 data.Drinks_per_day(i) = 0;

 end

end

for i = 1: size(data,1)

 if (data.Alcohol_12_last_year(i) == 2)

 data.Drinks_per_day(i) = 0;

 end

end

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing

variables of interest

% The information was referred from NHANES 3 documentation

% Since we have not used any youth data, all NaNs in the Age column could

% correspond to that

idx_age = find(isnan(data.Age)); % Eliminated 13,149 samples

data(idx_age,:) = [];

clear idx_age; % Sample size: 20,050 x 17

% Sex

% No missing or junk data

% Fasting time

data.Fasting_time_hours(data.Fasting_time_hours == 88888) = NaN;

% Lead,Cadmium, Iron

data.Lead(data.Lead == 88888) = NaN;

data.Cadmium(data.Cadmium == 888888) = NaN;

data.Iron(data.Iron == 88888) = NaN;

% HS

% 7 Image is present, but ungradable

% 8 No image

data.HS(data.HS == 7) = NaN;

data.HS(data.HS == 8) = NaN;

% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic

beverage? Do not count small tastes.

% 8 - Blank but applicable, 9 - dont know.

data.Alcohol_12_life(data.Alcohol_12_life == 8) = NaN;

220

data.Alcohol_12_life(data.Alcohol_12_life == 9) = NaN;

% MAPE2 In the past 12 months did you

%have at least 12 drinks of any kind of alcoholic beverage?

% 8 - Blank but applicable, 9 - dont know.

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 8) = NaN;

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 9) = NaN;

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you

have a day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.)

% 888 - Blank but applicable, 999 - dont know.

data.Drinks_per_day(data.Drinks_per_day == 888) = NaN;

data.Drinks_per_day(data.Drinks_per_day == 999) = NaN;

% Glucose and insulin related junk data

data.Plasma_glucose_1(data.Plasma_glucose_1 == 888888) = NaN;

data.Plasma_glucose_2(data.Plasma_glucose_2 == 888888) = NaN;

data.Insulin_1(data.Insulin_1 == 8888888) = NaN;

data.Insulin_2(data.Insulin_2 == 8888888) = NaN;

%% Eliminating missing data from HS - we need to eliminate this data because this is our

output variable and groud truth

HS_missing_idx = find(isnan(data.HS)); %6,194 samples with missing HS

data(HS_missing_idx,:) = [];

clear HS_missing_idx;

% Lead, Cadmium, Iron

Lead_missing_idx = find(isnan(data.Lead)); %457 with missing lead data

data(Lead_missing_idx, :) = [];

Cd_missing_idx = find(isnan(data.Cadmium)); %149 with missing Cd data

data(Cd_missing_idx, :) = [];

Iron_missing_idx = find(isnan(data.Iron)); %0 missing Iron data

data(Iron_missing_idx, :) = [];

Fasting_missing_idx = find(isnan(data.Fasting_time_hours));

data(Fasting_missing_idx,:) = []; % 12 missing Fasting information

clear Iron_missing_idx Cd_missing_idx Lead_missing_idx Fasting_missing_idx;

%% Junk and missing data - ALT, AST, ASP, HDL, BMI

% AST

% 888 Blank but applicable

data.AST(data.AST == 888) = NaN;

% ALT

221

% 888 Blank but applicable

data.ALT(data.ALT == 888) = NaN;

% ASP

% 8888 Blank but applicable

data.ASP(data.ASP == 8888) = NaN;

% BMI

% 8888 was found as junk data via visual examination of data. Although I didnt see this

on the website for

% NHANES, it is removed because 8888 is not appropriate BMI

data.BMI(data.BMI == 8888) = NaN;

% HDL

data.HDL(data.HDL == 8888) = NaN;

ALT_missing_idx = find(isnan(data.ALT));

data(ALT_missing_idx,:) = [];

AST_missing_idx = find(isnan(data.AST));

data(AST_missing_idx,:) = [];

ASP_missing_idx = find(isnan(data.ASP));

data(ASP_missing_idx,:) = [];

BMI_idx = find(isnan(data.BMI));

data(BMI_idx,:) = [];

HDL_idx = find(isnan(data.HDL));

data(HDL_idx,:) = [];

clear ALT_missing_idx AST_missing_idx ASP_missing_idx BMI_idx HDL_idx;

%% IF there are NaNs in G1PSI, fill them with G2PSI. If both G1PSI and G2PSI are

% NaNs, then delete the sample

 for i = 1:size(data,1)

 if(isnan(data.Plasma_glucose_1(i)))

 if(isnan(data.Plasma_glucose_2(i)))

 idx_pg(i) = i;

 else

 data.Plasma_glucose_1(i) = data.Plasma_glucose_2(i);

 end

 end

 end

data.Plasma_glucose_2 = [];

Plasma_glucose_idx = find(isnan(data.Plasma_glucose_1)); %25 cases of missing plasma

glucose samples after combining G1PSI and G2PSI

data(Plasma_glucose_idx,:) = [];

222

%% IF there are NaNs in I1PSI, fill them with I2PSI. If both I1PSI and I2PSI are

% NaNs, then delete the sample

 for i = 1:size(data,1)

 if(isnan(data.Insulin_1(i)))

 if(isnan(data.Insulin_2(i)))

 idx_in(i) = i;

 else

 data.Insulin_1(i) = data.Insulin_2(i);

 end

 end

 end

data.Insulin_2 = [];

Insulin_idx = find(isnan(data.Insulin_1)); %62 cases of missing insulin samples after

combining I1PSI and I2PSI

data(Insulin_idx,:) = [];

clear idx_pg idx_in Plasma_glucose_idx Insulin_idx

%% Convert Insulin_1 from pmol/L to mU/L by multiplying with 0.144

data.Insulin_1 = data.Insulin_1*0.144;

% Glucose unit is correct for G1PSI so no need to convert

%% Exclude data related to less than permissible fasting time (X hours)

idx_fasting = find(data.Fasting_time_hours<8); %Identify data that has fasting hours < 8

hours

data(idx_fasting,:)=[]; %Eliminate data

%% Delete fasting hours variable

data.Fasting_time_hours = [];

%% Calculating Insulin resistance

data(:,end+1) = array2table(zeros(size(data,1),1));

data.Properties.VariableNames{'Var18'} = 'Insulin_resistance';

% Fasting insulin [mU/L] x fasting glucose [mmol/L] / 22.5

data.Insulin_resistance = data.Insulin_1.*data.Plasma_glucose_1/22.5;

%% Delete plasma glucose and insulin resistance

data.Plasma_glucose_1 = [];

data.Insulin_1 = [];

%% Split datasets into HS and non-HS

data.HS(data.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to

indicate no risk

data.HS(data.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to 1

to indidcate risk

idx_disease = data.HS == 1;

223

dataset_HS = data(idx_disease,:);

idx_non_disease = data.HS == 0;

dataset_non_HS = data(idx_non_disease,:);

clear idx_disease idx_non_disease;

%% Split further into Male HS, Non-HS and Female HS, non-HS

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :);

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:);

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:);

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:);

%% Apply exclusion criteria for alcohol

% HS and No-HS male exclusion criteria - > 21 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_male,1)

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3)

 idx_HS_men(k) = i;

 k = k + 1;

 end

end

dataset_HS_male(idx_HS_men,:) = [];

clear k idx_HS_men;

j = 1;

for i = 1: size(dataset_non_HS_male,1)

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3)

 idx_non_HS_men(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_male(idx_non_HS_men,:) = [];

clear j idx_non_HS_men;

% HS and No-HS female exclusion criteria - > 14 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_female,1)

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2)

 idx_HS_women(k) = i;

 k = k + 1;

 end

end

224

dataset_HS_female(idx_HS_women,:) = [];

clear k idx_HS_women;

j = 1;

for i = 1: size(dataset_non_HS_female,1)

if(dataset_non_HS_female.Sex(i) == 2 && dataset_non_HS_female.Drinks_per_day(i)

> 2)

 idx_non_HS_women(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_female(idx_non_HS_women,:) = [];

clear j idx_non_HS_women;

%% Delete missing data related to drinks per day

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day));

dataset_HS_male(idx_male_HS_drinks,:) = [];

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day));

dataset_non_HS_male(idx_male_non_HS_drinks,:) = [];

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day));

dataset_HS_female(idx_female_HS_drinks,:) = [];

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day));

dataset_non_HS_female(idx_female_non_HS_drinks,:) = [];

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks

idx_male_non_HS_drinks;

%% Delete alcohol columns from 4 datasets

dataset_HS_male.Alcohol_12_last_year = [];

dataset_HS_male.Alcohol_12_life = [];

dataset_HS_male.Drinks_per_day = [];

dataset_HS_female.Alcohol_12_last_year = [];

dataset_HS_female.Alcohol_12_life = [];

dataset_HS_female.Drinks_per_day = [];

dataset_non_HS_male.Alcohol_12_last_year = [];

dataset_non_HS_male.Alcohol_12_life = [];

dataset_non_HS_male.Drinks_per_day = [];

dataset_non_HS_female.Alcohol_12_last_year = [];

dataset_non_HS_female.Alcohol_12_life = [];

dataset_non_HS_female.Drinks_per_day = [];

%% Delete sex column from all 4 datasets

dataset_HS_male.Sex = [];

225

dataset_HS_female.Sex = [];

dataset_non_HS_male.Sex = [];

dataset_non_HS_female.Sex = [];

clear i;

4. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE

DATASETS (WITHOUT HEAVY METAL EXPOSURE DATA)

%%%%%%%%

% Created on: 02/17/22

% Input: Merged dataset from SAS

% Output: Processed data, split into male and female sub-datasets

% Author: Ridhi Deo

% File name: Obj1c_matlab_1b.m

% Description: This code was written to process data (without heavy metal exposure data) and

split it into male and female sub-datasets

%%%%%%%%

clc

close all;

%% Data import

data = readtable(Raw data path);

%% Extracting the following features based on discussion with Dr. P

% SEQN, Age, Sex, Lead, Iron, Cadmium

% Will also need to extract alcohol data so that exclusions can be applied

data = data(:,[1,3,4,8,12,14,27,50,51,54,62,65,68,69,71,76,82:84,92]);

data.Properties.VariableNames{'HSAGEIR'} = 'Age';

data.Properties.VariableNames{'HSSEX'} = 'Sex';

data.Properties.VariableNames{'BMPBMI'} = 'BMI';

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life';

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year';

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day';

data.Properties.VariableNames{'GUPHSPFR'} = 'HS';

data.Properties.VariableNames{'ATPSI'} = 'ALT';

data.Properties.VariableNames{'ASPSI'} = 'AST';

data.Properties.VariableNames{'APPSI'} = 'ASP';

data.Properties.VariableNames{'G1PSI'} = 'Plasma_glucose_1';

data.Properties.VariableNames{'G2PSI'} = 'Plasma_glucose_2';

data.Properties.VariableNames{'I1PSI'} = 'Insulin_1';

data.Properties.VariableNames{'I2PSI'} = 'Insulin_2';

data.Properties.VariableNames{'HDPSI'} = 'HDL';

data.Properties.VariableNames{'PBPSI'} = 'Lead';

data.Properties.VariableNames{'FEPSI'} = 'Iron';

data.Properties.VariableNames{'UDPSI'} = 'Cadmium';

226

data.Properties.VariableNames{'PHPFAST'} = 'Fasting_time_hours';

%% Alcohol data columns processing

% Filling in missing data for the 12 drinks per year column with information from 12

drinks in life column

% If a person has not had 12 drinks in their lifetime, the response on the

% variable 12 drinks in past year are missing

% To fix that, individuals who have not had 12 drinks in their life will

% have 0s on the column 12 drinks in past year

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the

column drinks per day

for i = 1: size(data,1)

 if (data.Alcohol_12_life(i) == 2)

 data.Alcohol_12_last_year(i) = 0;

 data.Drinks_per_day(i) = 0;

 end

end

for i = 1: size(data,1)

 if (data.Alcohol_12_last_year(i) == 2)

 data.Drinks_per_day(i) = 0;

 end

end

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing

variables of interest

% The information was referred from NHANES 3 documentation

% Since we have not used any youth data, all NaNs in the Age column could

% correspond to that

idx_age = find(isnan(data.Age)); % Eliminated 13,149 samples

data(idx_age,:) = [];

clear idx_age; % Sample size: 20,050 x 17

% Sex

% No missing or junk data

% Fasting time

data.Fasting_time_hours(data.Fasting_time_hours == 88888) = NaN;

% HS

% 7 Image is present, but ungradable

% 8 No image

data.HS(data.HS == 7) = NaN;

data.HS(data.HS == 8) = NaN;

227

% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic

beverage? Do not count small tastes.

% 8 - Blank but applicable, 9 - dont know.

data.Alcohol_12_life(data.Alcohol_12_life == 8) = NaN;

data.Alcohol_12_life(data.Alcohol_12_life == 9) = NaN;

% MAPE2 In the past 12 months did you

%have at least 12 drinks of any kind of alcoholic beverage?

% 8 - Blank but applicable, 9 - dont know.

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 8) = NaN;

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 9) = NaN;

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you

have a day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.)

% 888 - Blank but applicable, 999 - dont know.

data.Drinks_per_day(data.Drinks_per_day == 888) = NaN;

data.Drinks_per_day(data.Drinks_per_day == 999) = NaN;

% Glucose and insulin related junk data

data.Plasma_glucose_1(data.Plasma_glucose_1 == 888888) = NaN;

data.Plasma_glucose_2(data.Plasma_glucose_2 == 888888) = NaN;

data.Insulin_1(data.Insulin_1 == 8888888) = NaN;

data.Insulin_2(data.Insulin_2 == 8888888) = NaN;

%% Eliminating missing data from HS - we need to eliminate this data because this is our

output variable and groud truth

HS_missing_idx = find(isnan(data.HS)); %6,194 samples with missing HS

data(HS_missing_idx,:) = [];

clear HS_missing_idx;

Fasting_missing_idx = find(isnan(data.Fasting_time_hours));

data(Fasting_missing_idx,:) = []; % 12 missing Fasting information

clear Fasting_missing_idx;

%% Junk and missing data - ALT, AST, ASP, HDL, BMI

% AST

% 888 Blank but applicable

data.AST(data.AST == 888) = NaN;

% ALT

% 888 Blank but applicable

data.ALT(data.ALT == 888) = NaN;

% ASP

% 8888 Blank but applicable

data.ASP(data.ASP == 8888) = NaN;

% BMI

228

% 8888 was found as junk data via visual examination of data. Although I didnt see this

on the website for

% NHANES, it is removed because 8888 is not appropriate BMI

data.BMI(data.BMI == 8888) = NaN;

% HDL

data.HDL(data.HDL == 8888) = NaN;

ALT_missing_idx = find(isnan(data.ALT));

data(ALT_missing_idx,:) = [];

AST_missing_idx = find(isnan(data.AST));

data(AST_missing_idx,:) = [];

ASP_missing_idx = find(isnan(data.ASP));

data(ASP_missing_idx,:) = [];

BMI_idx = find(isnan(data.BMI));

data(BMI_idx,:) = [];

HDL_idx = find(isnan(data.HDL));

data(HDL_idx,:) = [];

clear ALT_missing_idx AST_missing_idx ASP_missing_idx BMI_idx HDL_idx;

%% IF there are NaNs in G1PSI, fill them with G2PSI. If both G1PSI and G2PSI are

% NaNs, then delete the sample

 for i = 1:size(data,1)

 if(isnan(data.Plasma_glucose_1(i)))

 if(isnan(data.Plasma_glucose_2(i)))

 idx_pg(i) = i;

 else

 data.Plasma_glucose_1(i) = data.Plasma_glucose_2(i);

 end

 end

 end

data.Plasma_glucose_2 = [];

Plasma_glucose_idx = find(isnan(data.Plasma_glucose_1)); %25 cases of missing plasma

glucose samples after combining G1PSI and G2PSI

data(Plasma_glucose_idx,:) = [];

%% IF there are NaNs in I1PSI, fill them with I2PSI. If both I1PSI and I2PSI are

% NaNs, then delete the sample

 for i = 1:size(data,1)

 if(isnan(data.Insulin_1(i)))

 if(isnan(data.Insulin_2(i)))

229

 idx_in(i) = i;

 else

 data.Insulin_1(i) = data.Insulin_2(i);

 end

 end

 end

data.Insulin_2 = [];

Insulin_idx = find(isnan(data.Insulin_1)); %62 cases of missing insulin samples after

combining I1PSI and I2PSI

data(Insulin_idx,:) = [];

clear idx_pg idx_in Plasma_glucose_idx Insulin_idx

%% Convert Insulin_1 from pmol/L to mU/L by multiplying with 0.144

data.Insulin_1 = data.Insulin_1*0.144;

% Glucose unit is correct for G1PSI so no need to convert

%% Exclude data related to less than permissible fasting time (X hours)

idx_fasting = find(data.Fasting_time_hours<8); %Identify data that has fasting hours < 8

hours

data(idx_fasting,:)=[]; %Eliminate data

%% Delete fasting hours variable

data.Fasting_time_hours = [];

%% Calculating Insulin resistance

data(:,end+1) = array2table(zeros(size(data,1),1));

data.Properties.VariableNames{'Var18'} = 'Insulin_resistance';

% Fasting insulin [mU/L] x fasting glucose [mmol/L] / 22.5

data.Insulin_resistance = data.Insulin_1.*data.Plasma_glucose_1/22.5;

%% Delete plasma glucose and insulin resistance

data.Plasma_glucose_1 = [];

data.Insulin_1 = [];

%% Split datasets into HS and non-HS

data.HS(data.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to

indicate no risk

data.HS(data.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to 1

to indidcate risk

idx_disease = data.HS == 1;

dataset_HS = data(idx_disease,:);

idx_non_disease = data.HS == 0;

230

dataset_non_HS = data(idx_non_disease,:);

clear idx_disease idx_non_disease;

%% Split further into Male HS, Non-HS and Female HS, non-HS

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :);

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:);

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:);

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:);

%% Apply exclusion criteria for alcohol

% HS and No-HS male exclusion criteria - > 21 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_male,1)

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3)

 idx_HS_men(k) = i;

 k = k + 1;

 end

end

dataset_HS_male(idx_HS_men,:) = [];

clear k idx_HS_men;

j = 1;

for i = 1: size(dataset_non_HS_male,1)

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3)

 idx_non_HS_men(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_male(idx_non_HS_men,:) = [];

clear j idx_non_HS_men;

% HS and No-HS female exclusion criteria - > 14 drinks/week should be

% excluded

k = 1;

for i = 1: size(dataset_HS_female,1)

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2)

 idx_HS_women(k) = i;

 k = k + 1;

 end

end

dataset_HS_female(idx_HS_women,:) = [];

clear k idx_HS_women;

231

j = 1;

for i = 1: size(dataset_non_HS_female,1)

if(dataset_non_HS_female.Sex(i) == 2 && dataset_non_HS_female.Drinks_per_day(i)

> 2)

 idx_non_HS_women(j) = i;

 j = j + 1;

 end

end

dataset_non_HS_female(idx_non_HS_women,:) = [];

clear j idx_non_HS_women;

%% Delete missing data related to drinks per day

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day));

dataset_HS_male(idx_male_HS_drinks,:) = [];

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day));

dataset_non_HS_male(idx_male_non_HS_drinks,:) = [];

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day));

dataset_HS_female(idx_female_HS_drinks,:) = [];

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day));

dataset_non_HS_female(idx_female_non_HS_drinks,:) = [];

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks

idx_male_non_HS_drinks;

%% Delete alcohol columns from 4 datasets

dataset_HS_male.Alcohol_12_last_year = [];

dataset_HS_male.Alcohol_12_life = [];

dataset_HS_male.Drinks_per_day = [];

dataset_HS_female.Alcohol_12_last_year = [];

dataset_HS_female.Alcohol_12_life = [];

dataset_HS_female.Drinks_per_day = [];

dataset_non_HS_male.Alcohol_12_last_year = [];

dataset_non_HS_male.Alcohol_12_life = [];

dataset_non_HS_male.Drinks_per_day = [];

dataset_non_HS_female.Alcohol_12_last_year = [];

dataset_non_HS_female.Alcohol_12_life = [];

dataset_non_HS_female.Drinks_per_day = [];

%% Delete sex column from all 4 datasets

dataset_HS_male.Sex = [];

dataset_HS_female.Sex = [];

dataset_non_HS_male.Sex = [];

dataset_non_HS_female.Sex = [];

232

clear i;

%% Delete heavy metal exposure parameters from all datasets

dataset_HS_male.Lead = [];

dataset_HS_female.Lead = [];

dataset_non_HS_male.Lead = [];

dataset_non_HS_female.Lead = [];

dataset_HS_male.Iron = [];

dataset_HS_female.Iron = [];

dataset_non_HS_male.Iron = [];

dataset_non_HS_female.Iron = [];

dataset_HS_male.Cadmium = [];

dataset_HS_female.Cadmium = [];

dataset_non_HS_male.Cadmium = [];

dataset_non_HS_female.Cadmium = [];

MATLAB Code specific to process MALE datasets

%%%%%%%%

% Created on: 02/17/22

% Input: Datasets from obj_1c_matlab_1a.m (for heavy metal exposure data) or

obj_1c_matlab_1b.m (without heavy metal exposure data)

% Output: Processed data, split into training and test sub datasets

% Author: Ridhi Deo

% File name: Obj1c_matlab_2a.m

% Description: This code was written to process male population data, apply SMOTE, additional

processing and create training and test datasets in a 70:30 ratio, respectively.

%%%%%%%%

%% SMOTE

temp_dataset = dataset_HS_male;

temp_dataset(:,[1,8]) = []; % Removing the SEQN and HS colummns

size_disease = size(temp_dataset,1); %Measure of number of disease samples

N = 3; % Equivalent of N*100% synthetic sample generation

k = 2; % Setting number of nearest neighbours

num_attrs = size(temp_dataset,2); %Number of variables

new_index = 0; % Variable to keep a count of newly generated synthetic samples

synthetic_sample_male.N{N} = zeros(size_disease,num_attrs); %Since we are

generating N*100% synthetic, this value is N{2}

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each

sample

nn_values = zeros(size_disease,k+1);

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R

temp_range = table2array(temp_dataset); %Temporary conversions to array - for

computational ease. This is essential dataset_HS_male

233

temp_dist = table2array(temp_dataset);

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the

distances

for i = 1:num_attrs %Calculating ranges

 R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i)));

end

% Finding the k-nn

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be

itself so we will need to remove that

nn_array(:,1) = []; %Remove the first one because it is the same sample

nn_values(:,1) =[]; %First nn is itself so distance is 0

while (N~=0) %To perform N*100% synthetic sampling

 for i = 1:size_disease

 for attr=1:num_attrs

 nn = randi([1 k],1); % Randomly choose the nearest neighbor

 dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr);

 gap = 0 + rand(1,1);

 synthetic_sample_male.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic

continous attributes

 end

 end

 N = N-1; %To avoid infinite loops

end

total_synthetic_sample_males =

[synthetic_sample_male.N{1};synthetic_sample_male.N{2};synthetic_sample_male.N{3

}];

total_synthetic_sample_males = array2table(total_synthetic_sample_males);

total_synthetic_sample_males.Properties.VariableNames =

temp_dataset.Properties.VariableNames;

hybrid_disease_male = [total_synthetic_sample_males; temp_dataset]; %Hybrid =

synthetic + disease

hybrid_disease_male.HS = ones(size(hybrid_disease_male,1),1);

%% removing seqn

dataset_non_HS_male.SEQN = [];

dataset_HS_male.SEQN = [];

%% Based on American Liver Foundation video - Vicki Shah

% Normal value for ALT: 10 - 55, but actually 20.

% AST: 9 - 32, but prefer 20

% ASP: 30 - 100, also based on age

% NAFLD: AST and ALT are up to less than 4 times the ULN

%% Data normalization

234

%% AASLD: male: ALT: 19 - 25 IU/L

% Using 25IU/L as the ULN for male based on the AASLD guidelines

% Pre-sets

% Pre-sets

ULN_ALT = 33;

ULN_AST = 30;

ULN_BMI = 25;

ULN_HDL = 1;

%% Creating a new % variables

ALT_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(ALT_percent);

dataset_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(ALT_percent);

dataset_non_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent';

AST_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(AST_percent);

dataset_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(AST_percent);

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent';

BMI_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(BMI_percent);

dataset_HS_male.Properties.VariableNames{'Var11'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(BMI_percent);

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'BMI_percent';

HDL_percent = zeros(size(dataset_HS_male, 1),1);

dataset_HS_male(:,end+1) = array2table(HDL_percent);

dataset_HS_male.Properties.VariableNames{'Var12'} = 'HDL_percent';

HDL_percent = zeros(size(dataset_non_HS_male, 1),1);

dataset_non_HS_male(:,end+1) = array2table(HDL_percent);

dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'HDL_percent';

%% Normalization equations

for i = 1: size(dataset_HS_male,1)

dataset_HS_male.ALT_percent(i) = ((dataset_HS_male.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

235

dataset_HS_male.AST_percent(i) = ((dataset_HS_male.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_HS_male.BMI_percent(i) = ((dataset_HS_male.BMI(i) -

ULN_BMI)/ULN_BMI)*100;

dataset_HS_male.HDL_percent(i) = ((dataset_HS_male.HDL(i) -

ULN_HDL)/ULN_HDL)*100;

end

clear i;

for i = 1: size(dataset_non_HS_male,1)

dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) -

ULN_BMI)/ULN_BMI)*100;

dataset_non_HS_male.HDL_percent(i) = ((dataset_non_HS_male.HDL(i) -

ULN_HDL)/ULN_HDL)*100;

end

% Converting negative to 0

for i = 1: size(dataset_HS_male,1)

 if(dataset_HS_male.ALT_percent(i) <= 0)

 dataset_HS_male.ALT_percent(i) = 0;

 end

 if(dataset_HS_male.AST_percent(i) <= 0)

 dataset_HS_male.AST_percent(i) = 0;

 end

 if(dataset_HS_male.BMI_percent(i) <= 0)

 dataset_HS_male.BMI_percent(i) = 0;

 end

 if(dataset_HS_male.HDL_percent(i) >= 0)

 dataset_HS_male.HDL_percent(i) = 0;

 end

end

for i = 1: size(dataset_non_HS_male,1)

 if(dataset_non_HS_male.ALT_percent(i) <= 0)

 dataset_non_HS_male.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_male.AST_percent(i) <= 0)

 dataset_non_HS_male.AST_percent(i) = 0;

 end

236

 if(dataset_non_HS_male.BMI_percent(i) <= 0)

 dataset_non_HS_male.BMI_percent(i) = 0;

 end

 if(dataset_non_HS_male.HDL_percent(i) >= 0)

 dataset_non_HS_male.HDL_percent(i) = 0;

 end

end

% %% Remove SEQN

%% Randomly select samples without replacement

% Note that MATLAB's datasample function has replace = true as default

dataset_non_HS_male_reduced = datasample(dataset_non_HS_male,

size(dataset_HS_male,1), 'Replace', false);

%% Split into training and test

Q = size(dataset_HS_male,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_male = dataset_HS_male(trainInd,:);

test_disease_male = dataset_HS_male(testInd,:);

Q = size(dataset_non_HS_male_reduced,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_male = dataset_non_HS_male_reduced(trainInd,:);

test_no_disease_male = dataset_non_HS_male_reduced(testInd,:);

training_male = [train_disease_male; train_no_disease_male];

test_male = [test_disease_male; test_no_disease_male];

test_male = test_male(randperm(size(test_male,1)),:);

training_male = training_male(randperm(size(training_male,1)),:);

%% Reoder training and test datasets to have HS as the end variable

training_male = [training_male(:,1:6) training_male(:,8:12) training_male(:, 7)];

test_male = [test_male(:,1:6) test_male(:,8:12) test_male(:,7)];

MATLAB Code specific to process feMALE datasets

%%%%%%%%

% Created on: 02/17/22

% Input: Datasets from obj_1c_matlab_1a.m (for heavy metal exposure data) or

obj_1c_matlab_1b.m (without heavy metal exposure data)

% Output: Processed data, split into training and test sub datasets

237

% Author: Ridhi Deo

% File name: Obj1c_matlab_2b.m

% Description: This code was written to process female population data, apply SMOTE,

additional processing and create training and test datasets in a 70:30 ratio, respectively.

%%%%%%%%

%% SMOTE

temp_dataset = dataset_HS_female;

temp_dataset(:,[1,8]) = []; % Removing the SEQN and HS colummns

size_disease = size(temp_dataset,1); %Measure of number of disease samples

N = 3; % Equivalent of N*100% synthetic sample generation

k = 2; % Setting number of nearest neighbours

num_attrs = size(temp_dataset,2); %Number of variables

new_index = 0; % Variable to keep a count of newly generated synthetic samples

synthetic_sample_female.N{N} = zeros(size_disease,num_attrs); %Since we are

generating N*100% synthetic, this value is N{2}

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each

sample

nn_values = zeros(size_disease,k+1);

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R

temp_range = table2array(temp_dataset); %Temporary conversions to array - for

computational ease. This is essential dataset_HS_female

temp_dist = table2array(temp_dataset);

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the

distances

for i = 1:num_attrs %Calculating ranges

 R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i)));

end

% Finding the k-nn

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be

itself so we will need to remove that

nn_array(:,1) = []; %Remove the first one because it is the same sample

nn_values(:,1) =[]; %First nn is itself so distance is 0

while (N~=0) %To perform N*100% synthetic sampling

 for i = 1:size_disease

 for attr=1:num_attrs

 nn = randi([1 k],1); % Randomly choose the nearest neighbor

 dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr);

 gap = 0 + rand(1,1);

 synthetic_sample_female.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic

continuous attributes

 end

 end

238

 N = N-1; %To avoid infinite loops

end

total_synthetic_sample_females =

[synthetic_sample_female.N{1};synthetic_sample_female.N{2};synthetic_sample_femal

e.N{3}];

total_synthetic_sample_females = array2table(total_synthetic_sample_females);

total_synthetic_sample_females.Properties.VariableNames =

temp_dataset.Properties.VariableNames;

hybrid_disease_female = [total_synthetic_sample_females; temp_dataset]; %Hybrid =

synthetic + disease

hybrid_disease_female.HS = ones(size(hybrid_disease_female,1),1);

%% removing seqn

dataset_non_HS_female.SEQN = [];

dataset_HS_female.SEQN = [];

%% Based on American Liver Foundation video - Vicki Shah

% Normal value for ALT: 10 - 55, but actually 20.

% AST: 9 - 32, but prefer 20

% ASP: 30 - 100, also based on age

% NAFLD: AST and ALT are up to less than 4 times the ULN

%% Data normalization

%% AASLD: Female: ALT: 19 - 25 IU/L

% Using 25IU/L as the ULN for female based on the AASLD guidelines

% Pre-sets

ULN_ALT = 25;

ULN_AST = 20;

ULN_BMI = 25;

%ULN_Cadmium = ;

ULN_HDL = 1.3; %https://www.mayoclinic.org/diseases-conditions/high-blood-

cholesterol/in-depth/hdl-cholesterol/art-20046388

%% Creating a new % variables

ALT_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(ALT_percent);

dataset_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent';

ALT_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(ALT_percent);

dataset_non_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent';

AST_percent = zeros(size(dataset_HS_female, 1),1);

239

dataset_HS_female(:,end+1) = array2table(AST_percent);

dataset_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent';

AST_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(AST_percent);

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent';

BMI_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(BMI_percent);

dataset_HS_female.Properties.VariableNames{'Var11'} = 'BMI_percent';

BMI_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(BMI_percent);

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'BMI_percent';

HDL_percent = zeros(size(dataset_HS_female, 1),1);

dataset_HS_female(:,end+1) = array2table(HDL_percent);

dataset_HS_female.Properties.VariableNames{'Var12'} = 'HDL_percent';

HDL_percent = zeros(size(dataset_non_HS_female, 1),1);

dataset_non_HS_female(:,end+1) = array2table(HDL_percent);

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'HDL_percent';

%% Normalization equations

for i = 1: size(dataset_HS_female,1)

dataset_HS_female.ALT_percent(i) = ((dataset_HS_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_HS_female.AST_percent(i) = ((dataset_HS_female.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_HS_female.BMI_percent(i) = ((dataset_HS_female.BMI(i) -

ULN_BMI)/ULN_BMI)*100;

dataset_HS_female.HDL_percent(i) = ((dataset_HS_female.HDL(i) -

ULN_HDL)/ULN_HDL)*100;

end

clear i;

for i = 1: size(dataset_non_HS_female,1)

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) -

ULN_ALT)/ULN_ALT)*100;

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) -

ULN_AST)/ULN_AST)*100;

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) -

ULN_BMI)/ULN_BMI)*100;

dataset_non_HS_female.HDL_percent(i) = ((dataset_non_HS_female.HDL(i) -

ULN_HDL)/ULN_HDL)*100;

240

end

% Converting negative to 0

for i = 1: size(dataset_HS_female,1)

 if(dataset_HS_female.ALT_percent(i) <= 0)

 dataset_HS_female.ALT_percent(i) = 0;

 end

 if(dataset_HS_female.AST_percent(i) <= 0)

 dataset_HS_female.AST_percent(i) = 0;

 end

 if(dataset_HS_female.BMI_percent(i) <= 0)

 dataset_HS_female.BMI_percent(i) = 0;

 end

 if(dataset_HS_female.HDL_percent(i) >= 0)

 dataset_HS_female.HDL_percent(i) = 0;

 end

end

for i = 1: size(dataset_non_HS_female,1)

 if(dataset_non_HS_female.ALT_percent(i) <= 0)

 dataset_non_HS_female.ALT_percent(i) = 0;

 end

 if(dataset_non_HS_female.AST_percent(i) <= 0)

 dataset_non_HS_female.AST_percent(i) = 0;

 end

 if(dataset_non_HS_female.BMI_percent(i) <= 0)

 dataset_non_HS_female.BMI_percent(i) = 0;

 end

 if(dataset_non_HS_female.HDL_percent(i) >= 0)

 dataset_non_HS_female.HDL_percent(i) = 0;

 end

end

% %% Remove SEQN

%% Randomly select samples without replacement

% Note that MATLAB's datasample function has replace = true as default

dataset_non_HS_female_reduced = datasample(dataset_non_HS_female,

size(dataset_HS_female,1), 'Replace', false);

%% Split into training and test

Q = size(dataset_HS_female,1);

valRatio = 0;

trainRatio = 0.70;

241

testRatio = 0.30;

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_disease_female = dataset_HS_female(trainInd,:);

test_disease_female = dataset_HS_female(testInd,:);

Q = size(dataset_non_HS_female_reduced,1);

valRatio = 0;

trainRatio = 0.70;

testRatio = 0.30;

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);

train_no_disease_female = dataset_non_HS_female_reduced(trainInd,:);

test_no_disease_female = dataset_non_HS_female_reduced(testInd,:);

training_female = [train_disease_female; train_no_disease_female];

test_female = [test_disease_female; test_no_disease_female];

test_female = test_female(randperm(size(test_female,1)),:);

training_female = training_female(randperm(size(training_female,1)),:);

%% Reoder training and test datasets to have HS as the end variable

training_female = [training_female(:,1:6) training_female(:,8:12) training_female(:, 7)];

test_female = [test_female(:,1:6) test_female(:,8:12) test_female(:,7)];

5. MATLAB CODE TO TRAIN THE MODELS

%%%%%%%%

% Created on: 02/17/22

% Input: Datasets from obj_1c_matlab_2a.m or obj_1c_matlab_2b.m

% Output: Trained models

% Author: Ridhi Deo

% File name: Obj1c_matlab_3.m

% Description: This code was written to train ML models. This code internally calls several

other functions to train specific models.

%%%%%%%%

close all;

test = test_male; % Need to change this depending on male/female

training = training_male; % Need to change this depending on male/female

%% Model 1: fine tree

[mod_1, train_acc_1] = finetree2(training); % Training the model using training set

yfit_1 = mod_1.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_1(:,2) = table2array(test(:,end));% Ground truth

g1 = yfit_1(:,2)'; % Transposed values of Known values - Ground Truth

242

g2 = yfit_1(:,1)'; % Transposed values of predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('Fine Tree')

[tpr_1, fpr_1,~] = roc(g1, g2); % Extracting the true-positive and false-positive rates

sens_1 = tpr_1(1,2); % Calculating sensitiviy

spec_1 = 1- fpr_1(1,2);% Calculating specificity

[X,Y,~,AUC_1] = perfcurve(g1,g2,'1'); % Extracting values to plot the AUC curve with

the AUC value

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Fine Tree')

txt = ['AUC for Fine Tree is ',num2str(AUC_1)];

text(0.5,0.9,txt)

clear X Y;

cp_1 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_1_accuracy = cp_1.CorrectRate;

%% Model 2: logistic regression

[mod_2, train_acc_2] = logisticregression2(training); % Training the model using

training set

yfit_2 = mod_2.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_2(:,2) = table2array(test(:,end));

g1 = yfit_2(:,2)'; %Known values - Ground Truth

g2 = yfit_2(:,1)'; % predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('logistic regression')

[tpr_2, fpr_2,~] = roc(g1, g2);

sens_2 = tpr_2(1,2);

spec_2 = 1- fpr_2(1,2);

[X,Y,~,AUC_2] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('logistic regression')

txt = ['AUC for logistic regression is ',num2str(AUC_2)];

text(0.5,0.9,txt)

clear X Y;

cp_2 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_2_accuracy = cp_2.CorrectRate;

%% Model 3: linear svm

[mod_3, train_acc_3] = linearsvm2(training); % Training the model using training set

yfit_3 = mod_3.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_3(:,2) = table2array(test(:,end));

g1 = yfit_3(:,2)'; %Known values - Ground Truth

g2 = yfit_3(:,1)'; % predicted values

figure %Plotting confusion matrix

243

plotconfusion(g1,g2), title('linear svm')

[tpr_3, fpr_3,~] = roc(g1, g2);

sens_3 = tpr_3(1,2);

spec_3 = 1- fpr_3(1,2);

[X,Y,~,AUC_3] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('linear svm')

txt = ['AUC for linear svm is ',num2str(AUC_3)];

text(0.5,0.9,txt)

clear X Y;

cp_3 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_3_accuracy = cp_3.CorrectRate;

%% Model 4: quadratic svm

[mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set

yfit_4 = mod_4.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_4(:,2) = table2array(test(:,end));

g1 = yfit_4(:,2)'; %Known values - Ground Truth

g2 = yfit_4(:,1)'; % predicted values

figure %Plotting confusion matrix

plotconfusion(g1,g2), title('quadratic svm')

[tpr_4, fpr_4,~] = roc(g1, g2);

sens_4 = tpr_4(1,2);

spec_4 = 1- fpr_4(1,2);

[X,Y,~,AUC_4] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('quadratic svm')

txt = ['AUC for quadratic svm is ',num2str(AUC_4)];

text(0.5,0.9,txt)

clear X Y;

cp_4 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_4_accuracy = cp_4.CorrectRate;

%% Model 5: fine gaussian svm

[mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training

set

yfit_5 = mod_5.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_5(:,2) = table2array(test(:,end));

g1 = yfit_5(:,2)'; %Known values - Ground Truth

g2 = yfit_5(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('fine gaussian svm')

[tpr_5, fpr_5,~] = roc(g1, g2);

244

sens_5 = tpr_5(1,2);

spec_5 = 1- fpr_5(1,2);

[X,Y,~,AUC_5] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('fine gaussian svm')

txt = ['AUC for fine gaussian svm is ',num2str(AUC_5)];

text(0.5,0.9,txt)

clear X Y;

cp_5 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_5_accuracy = cp_5.CorrectRate;

%% Model 6: medium gaussian svm

[mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using

training set

yfit_6 = mod_6.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_6(:,2) = table2array(test(:,end));

g1 = yfit_6(:,2)'; %Known values - Ground Truth

g2 = yfit_6(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('medium gaussian svm')

[tpr_6, fpr_6,~] = roc(g1, g2);

sens_6 = tpr_6(1,2);

spec_6 = 1- fpr_6(1,2);

[X,Y,~,AUC_6] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('medium gaussian svm')

txt = ['AUC for medium gaussian svm is ',num2str(AUC_6)];

text(0.5,0.9,txt)

clear X Y;

cp_6 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_6_accuracy = cp_6.CorrectRate;

%% Model 7: coarse gaussian svm

[mod_7, train_acc_7] = coarsegaussiansvm2(training); % Training the model using

training set

yfit_7 = mod_7.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_7(:,2) = table2array(test(:,end));

g1 = yfit_7(:,2)'; %Known values - Ground Truth

g2 = yfit_7(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('coarse gaussian svm')

[tpr_7, fpr_7,~] = roc(g1, g2);

sens_7 = tpr_7(1,2);

spec_7 = 1- fpr_7(1,2);

245

[X,Y,~,AUC_7] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('coarse gaussian svm')

txt = ['AUC for coarse gaussian svm is ',num2str(AUC_7)];

text(0.5,0.9,txt)

clear X Y;

cp_7 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_7_accuracy = cp_7.CorrectRate;

%% Model 8: fine knn

[mod_8, train_acc_8] = fineknn2(training); % Training the model using training set

yfit_8 = mod_8.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_8(:,2) = table2array(test(:,end));

g1 = yfit_8(:,2)'; %Known values - Ground Truth

g2 = yfit_8(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('fine knn')

[tpr_8, fpr_8,~] = roc(g1, g2);

sens_8 = tpr_8(1,2);

spec_8 = 1- fpr_8(1,2);

[X,Y,~,AUC_8] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('fine knn')

txt = ['AUC for fine knn is ',num2str(AUC_8)];

text(0.5,0.9,txt)

clear X Y;

cp_8 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_8_accuracy = cp_8.CorrectRate;

%% Model 9: Medium knn

[mod_9, train_acc_9] = mediumknn2(training); % Training the model using training set

yfit_9 = mod_9.predictFcn(test(:,1:end-1)); % Predicting values from the trained model

using the test dataset

yfit_9(:,2) = table2array(test(:,end));

g1 = yfit_9(:,2)'; %Known values - Ground Truth

g2 = yfit_9(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Medium knn')

[tpr_9, fpr_9,~] = roc(g1, g2);

sens_9 = tpr_9(1,2);

spec_9 = 1- fpr_9(1,2);

[X,Y,~,AUC_9] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

246

plot(X,Y), title('Medium knn')

txt = ['AUC for Medium knn is ',num2str(AUC_9)];

text(0.5,0.9,txt)

clear X Y;

cp_9 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_9_accuracy = cp_9.CorrectRate;

%% Model 10: Coarse knn

[mod_10, train_acc_10] = coarseknn2(training); % Training the model using training set

yfit_10 = mod_10.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_10(:,2) = table2array(test(:,end));

g1 = yfit_10(:,2)'; %Known values - Ground Truth

g2 = yfit_10(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Coarse knn')

[tpr_10, fpr_10,~] = roc(g1, g2);

sens_10 = tpr_10(1,2);

spec_10 = 1- fpr_10(1,2);

[X,Y,~,AUC_10] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Coarse knn')

txt = ['AUC for Coarse knn is ',num2str(AUC_10)];

text(0.5,0.9,txt)

clear X Y;

cp_10 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_10_accuracy = cp_10.CorrectRate;

%% Model 11: Cosine knn

[mod_11, train_acc_11] = cosineknn2(training); % Training the model using training set

yfit_11 = mod_11.predictFcn(test(:,1:end-1));% Predicting values from the trained model

using the test dataset

yfit_11(:,2) = table2array(test(:,end));

g1 = yfit_11(:,2)'; %Known values - Ground Truth

g2 = yfit_11(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Cosine knn')

[tpr_11, fpr_11,~] = roc(g1, g2);

sens_11 = tpr_11(1,2);

spec_11 = 1- fpr_11(1,2);

[X,Y,~,AUC_11] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Cosine knn')

txt = ['AUC for Cosine knn is ',num2str(AUC_11)];

text(0.5,0.9,txt)

clear X Y;

247

cp_11 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_11_accuracy = cp_11.CorrectRate;

%% Model 12: Cubic knn

[mod_12, train_acc_12] = cubicknn2(training); % Training the model using training set

yfit_12 = mod_12.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_12(:,2) = table2array(test(:,end));

g1 = yfit_12(:,2)'; %Known values - Ground Truth

g2 = yfit_12(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Cubic knn')

[tpr_12, fpr_12,~] = roc(g1, g2);

sens_12 = tpr_12(1,2);

spec_12 = 1- fpr_12(1,2);

[X,Y,~,AUC_12] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Cubic knn')

txt = ['AUC for Cubic knn is ',num2str(AUC_12)];

text(0.5,0.9,txt)

clear X Y;

cp_12 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_12_accuracy = cp_12.CorrectRate;

%% Model 13: Weighted knn

[mod_13, train_acc_13] = weightedknn2(training); % Training the model using training

set

yfit_13 = mod_13.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_13(:,2) = table2array(test(:,end));

g1 = yfit_13(:,2)'; %Known values - Ground Truth

g2 = yfit_13(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Weighted knn')

[tpr_13, fpr_13,~] = roc(g1, g2);

sens_13 = tpr_13(1,2);

spec_13 = 1- fpr_13(1,2);

[X,Y,~,AUC_13] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Weighted knn')

txt = ['AUC for Weighted knn is ',num2str(AUC_13)];

text(0.5,0.9,txt)

clear X Y;

cp_13 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_13_accuracy = cp_13.CorrectRate;

248

%% Model 14: Boosted Trees

[mod_14, train_acc_14] = boostedtrees2(training); % Training the model using training

set

yfit_14 = mod_14.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_14(:,2) = table2array(test(:,end));

g1 = yfit_14(:,2)'; %Known values - Ground Truth

g2 = yfit_14(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Boosted Trees')

[tpr_14, fpr_14,~] = roc(g1, g2);

sens_14 = tpr_14(1,2);

spec_14 = 1- fpr_14(1,2);

[X,Y,~,AUC_14] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Boosted Trees')

txt = ['AUC for Boosted Trees is ',num2str(AUC_14)];

text(0.5,0.9,txt)

clear X Y;

cp_14 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_14_accuracy = cp_14.CorrectRate;

%% Model 15: Bagged Trees

[mod_15, train_acc_15] = baggedtrees2(training); % Training the model using training

set

yfit_15 = mod_15.predictFcn(test(:,1:end-1)); % Predicting values from the trained

model using the test dataset

yfit_15(:,2) = table2array(test(:,end));

g1 = yfit_15(:,2)'; %Known values - Ground Truth

g2 = yfit_15(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Bagged Trees')

[tpr_15, fpr_15,~] = roc(g1, g2);

sens_15 = tpr_15(1,2);

spec_15 = 1- fpr_15(1,2);

[X,Y,~,AUC_15] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Bagged Trees')

txt = ['AUC for Bagged Trees is ',num2str(AUC_15)];

text(0.5,0.9,txt)

clear X Y;

cp_15 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_15_accuracy = cp_15.CorrectRate;

%% Model 16: Subspace Discriminant

249

[mod_16, train_acc_16] = subspacedisc2(training); % Training the model using training

set

yfit_16 = mod_16.predictFcn(test(:,1:end-1));

yfit_16(:,2) = table2array(test(:,end));

g1 = yfit_16(:,2)'; %Known values - Ground Truth

g2 = yfit_16(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('Subspace Disc')

[tpr_16, fpr_16,~] = roc(g1, g2);

sens_16 = tpr_16(1,2);

spec_16 = 1- fpr_16(1,2);

[X,Y,~,AUC_16] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('Subspace Disc')

txt = ['AUC for Subspace Disc is ',num2str(AUC_16)];

text(0.5,0.9,txt)

clear X Y;

cp_16 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_16_accuracy = cp_16.CorrectRate;

%% Model 17: RUS Boosted trees

[mod_17, train_acc_17] = rusboostedtrees2(training); % Training the model using

training set

yfit_17 = mod_17.predictFcn(test(:,1:end-1));

yfit_17(:,2) = table2array(test(:,end));

g1 = yfit_17(:,2)'; %Known values - Ground Truth

g2 = yfit_17(:,1)'; % predicted values

figure %PLotting confusion matrix

plotconfusion(g1,g2), title('RUS Boosted trees')

[tpr_17, fpr_17,~] = roc(g1, g2);

sens_17 = tpr_17(1,2);

spec_17 = 1- fpr_17(1,2);

[X,Y,~,AUC_17] = perfcurve(g1,g2,'1');

figure %Plotting ROC with AUC value printed on the graph

plot(X,Y), title('RUS Boosted trees')

txt = ['AUC for RUS Boosted trees is ',num2str(AUC_17)];

text(0.5,0.9,txt)

clear X Y;

cp_17 = classperf(g1,g2); % Extracting the accuracy of the testing dataset

cp_17_accuracy = cp_17.CorrectRate;

%% Display results in a table

Model =

{'Fine_Tree';'Logistic_Regression';'Linear_SVM';'Quadratic_SVM';'Fine_Gaussian_SV

M';...

250

'Medium_Gaussian_SVM';'Coarse_Gaussian_SVM';'Fine_KNN';'Medium_KNN';'Coarse

_KNN';...

'Cosine_KNN';'Cubic_KNN';'Weighted_KNN';'Ensemble_Boosted';'Ensemble_Bagged';..

'Ensemble_Subspace_Disc';'Ensemble_RUS_Boosted_Trees'};

Training_Acc = [train_acc_1; train_acc_2; train_acc_3; train_acc_4; train_acc_5;...

 train_acc_6; train_acc_7; train_acc_8; train_acc_9; train_acc_10; train_acc_11;...

 train_acc_12; train_acc_13; train_acc_14; train_acc_15; train_acc_16; train_acc_17];

Test_Acc = [cp_1_accuracy; cp_2_accuracy; cp_3_accuracy; cp_4_accuracy;

cp_5_accuracy;...

cp_6_accuracy; cp_7_accuracy; cp_8_accuracy; cp_9_accuracy; cp_10_accuracy;

cp_11_accuracy;...

cp_12_accuracy; cp_13_accuracy; cp_14_accuracy; cp_15_accuracy; cp_16_accuracy;

cp_17_accuracy];

AUC = [AUC_1; AUC_2; AUC_3; AUC_4; AUC_5;...

 AUC_6; AUC_7; AUC_8; AUC_9; AUC_10; AUC_11;...

 AUC_12; AUC_13; AUC_14; AUC_15; AUC_16; AUC_17];

Sensitivity = [sens_1; sens_2; sens_3; sens_4; sens_5;...

 sens_6; sens_7; sens_8; sens_9; sens_10; sens_11;...

 sens_12; sens_13; sens_14; sens_15; sens_16; sens_17];

Specificity = [spec_1; spec_2; spec_3; spec_4; spec_5;...

 spec_6; spec_7; spec_8; spec_9; spec_10; spec_11;...

 spec_12; spec_13; spec_14; spec_15; spec_16; spec_17];

Results = table(Model, Training_Acc, Test_Acc, AUC, Sensitivity, Specificity);

A. CODE TO TRAIN LOGISTIC REGRESSION

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Logistic Regression Model

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3a.m

% Description: This code was written to train the logistic regression model.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = logisticregression2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:02:57

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

251

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

% For logistic regression, the response values must be converted to zeros

% and ones because the responses are assumed to follow a binomial

% distribution.

% 1 or true = 'successful' class

% 0 or false = 'failure' class

% NaN - missing response.

successClass = double(1);

failureClass = double(0);

% Compute the majority response class. If there is a NaN-prediction from

% fitglm, convert NaN to this majority class label.

numSuccess = sum(response == successClass);

numFailure = sum(response == failureClass);

if numSuccess > numFailure

 missingClass = successClass;

else

 missingClass = failureClass;

end

successFailureAndMissingClasses = [successClass; failureClass; missingClass];

isMissing = isnan(response);

zeroOneResponse = double(ismember(response, successClass));

zeroOneResponse(isMissing) = NaN;

% Prepare input arguments to fitglm.

concatenatedPredictorsAndResponse = [predictors, table(zeroOneResponse)];

% Train using fitglm.

GeneralizedLinearModel = fitglm(...

 concatenatedPredictorsAndResponse, ...

 'Distribution', 'binomial', ...

 'link', 'logit');

% Convert predicted probabilities to predicted class labels and scores.

convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses(

~isnan(p).*((p<0.5) + 1) + isnan(p)*3);

returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};

scoresFcn = @(p) [1-p, p];

predictionsAndScoresFcn = @(p) returnMultipleValuesFcn(con

 vertSuccessProbsToPredictions(p), scoresFcn(p));

252

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

logisticRegressionPredictFcn = @(x) predictionsAndScoresFcn(pred

 ict(GeneralizedLinearModel, x));

trainedClassifier.predictFcn = @(x) log

 isticRegressionPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', ' AST_percent',

'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.GeneralizedLinearModel = GeneralizedLinearModel;

trainedClassifier.SuccessClass = successClass;

trainedClassifier.FailureClass = failureClass;

trainedClassifier.MissingClass = missingClass;

trainedClassifier.ClassNames = {successClass; failureClass};

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

KFolds = 10;

cvp = cvpartition(response, 'KFold', KFolds);

% Initialize the predictions to the proper sizes

validationPredictions = response;

numObservations = size(predictors, 1);

numClasses = 2;

validationScores = NaN(numObservations, numClasses);

for fold = 1:KFolds

253

 trainingPredictors = predictors(cvp.training(fold), :);

 trainingResponse = response(cvp.training(fold), :);

 foldIsCategoricalPredictor = isCategoricalPredictor;

 % Train a classifier

 % This code specifies all the classifier options and trains the classifier.

 % For logistic regression, the response values must be converted to zeros

 % and ones because the responses are assumed to follow a binomial

 % distribution.

 % 1 or true = 'successful' class

 % 0 or false = 'failure' class

 % NaN - missing response.

 successClass = double(1);

 failureClass = double(0);

 % Compute the majority response class. If there is a NaN-prediction from

 % fitglm, convert NaN to this majority class label.

 numSuccess = sum(trainingResponse == successClass);

 numFailure = sum(trainingResponse == failureClass);

 if numSuccess > numFailure

 missingClass = successClass;

 else

 missingClass = failureClass;

 end

 successFailureAndMissingClasses = [successClass; failureClass; missingClass];

 isMissing = isnan(trainingResponse);

 zeroOneResponse = double(ismember(trainingResponse, successClass));

 zeroOneResponse(isMissing) = NaN;

 % Prepare input arguments to fitglm.

 concatenatedPredictorsAndResponse = [trainingPredictors, table(zeroOneResponse)];

 % Train using fitglm.

 GeneralizedLinearModel = fitglm(...

 concatenatedPredictorsAndResponse, ...

 'Distribution', 'binomial', ...

 'link', 'logit');

 % Convert predicted probabilities to predicted class labels and scores.

 convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses(~isnan(p).*(

(p<0.5) + 1) + isnan(p)*3);

 returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};

 scoresFcn = @(p) [1-p, p];

 predictionsAndScoresFcn = @(p) returnMultipleValuesFcn(

convertSuccessProbsToPredictions(p), scoresFcn(p));

 % Create the result struct with predict function

 logisticRegressionPredictFcn = @(x) predictionsAndScoresFcn(

predict(GeneralizedLinearModel, x));

254

 validationPredictFcn = @(x) logisticRegressionPredictFcn(x);

 % Add additional fields to the result struct

 % Compute validation predictions

 validationPredictors = predictors(cvp.test(fold), :);

 [foldPredictions, foldScores] = validationPredictFcn(validationPredictors);

 % Store predictions in the original order

 validationPredictions(cvp.test(fold), :) = foldPredictions;

 validationScores(cvp.test(fold), :) = foldScores;

end

% Compute validation accuracy

correctPredictions = (validationPredictions == response);

isMissing = isnan(response);

correctPredictions = correctPredictions(~isMissing);

validationAccuracy = sum(correctPredictions)/length(correctPredictions);

B. CODE TO TRAIN LOGISTIC REGRESSION

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Linear SVM model

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3b.m

% Description: This code was written to train Linear SVM model.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = linearsvm2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:03:18

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

255

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'linear', ...

 'PolynomialOrder', [], ...

 'KernelScale', 'auto', ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

256

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

C. CODE TO TRAIN GAUSSIAN SVM I

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Gaussian Scale I

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3c.m

% Description: This code was written to train Gaussian Scale I.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = finegaussiansvm2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:04:26

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 0.83, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

257

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

D. CODE TO TRAIN GAUSSIAN SVM II

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Gaussian Scale II

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3d.m

258

% Description: This code was written to train Gaussian Scale II.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = mediumgaussiansvm2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:04:48

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false,

false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 3.3, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

259

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

E. CODE TO TRAIN GAUSSIAN SVM III

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Gaussian Scale III

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3e.m

% Description: This code was written to train Gaussian Scale III.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = coarsegaussiansvm2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:05:07

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

260

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationSVM = fitcsvm(...

 predictors, ...

 response, ...

 'KernelFunction', 'gaussian', ...

 'PolynomialOrder', [], ...

 'KernelScale', 13, ...

 'BoxConstraint', 1, ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

svmPredictFcn = @(x) predict(classificationSVM, x);

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationSVM = classificationSVM;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

261

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

F. CODE TO TRAIN COARSE KNN

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Coarse KNN

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3f.m

% Description: This code was written to train coarse KNN.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = coarseknn2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:06:19

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

classificationKNN = fitcknn(...

 predictors, ...

 response, ...

 'Distance', 'Euclidean', ...

 'Exponent', [], ...

262

 'NumNeighbors', 100, ...

 'DistanceWeight', 'Equal', ...

 'Standardize', true, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

knnPredictFcn = @(x) predict(classificationKNN, x);

trainedClassifier.predictFcn = @(x) knnPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationKNN = classificationKNN;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', ' ALT_percent',

'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationKNN, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

263

G. CODE TO TRAIN BOOSTED TREES

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Boosted Trees

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3g.m

% Description: This code was written to train Boosted Trees.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = boostedtrees2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:08:09

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

template = templateTree(...

 'MaxNumSplits', 20);

classificationEnsemble = fitcensemble(...

 predictors, ...

 response, ...

 'Method', 'AdaBoostM1', ...

 'NumLearningCycles', 30, ...

 'Learners', template, ...

 'LearnRate', 0.1, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

264

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

H. CODE TO TRAIN SUBSPACE DISCRIMINANT

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained Subspace Discriminant Model

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3h.m

% Description: This code was written to train Subspace Discriminant.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = subspacedisc2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:08:51

265

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

subspaceDimension = max(1, min(6, width(predictors) - 1));

classificationEnsemble = fitcensemble(...

 predictors, ...

 response, ...

 'Method', 'Subspace', ...

 'NumLearningCycles', 30, ...

 'Learners', 'discriminant', ...

 'NPredToSample', subspaceDimension, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

266

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

I. CODE TO TRAIN RUS BOOSTED MODEL

%%%%%%%

% Created on: 02/17/22

% Input: Internally called from obj1c_matlab_3.m

% Output: Trained RUS Boosted Model

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo

% File name: Obj1c_matlab_3i.m

% Description: This code was written to train RUS Boosted Model.

%%%%%%%%

function [trainedClassifier, validationAccuracy] = rusboostedtrees2(trainingData)

% Auto-generated by MATLAB on 17-Feb-2022 13:09:13

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 'ALT_percent',

'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, false];

% Train a classifier

% This code specifies all the classifier options and trains the classifier.

template = templateTree(...

267

 'MaxNumSplits', 20);

classificationEnsemble = fitcensemble(...

 predictors, ...

 response, ...

 'Method', 'RUSBoost', ...

 'NumLearningCycles', 30, ...

 'Learners', template, ...

 'LearnRate', 0.1, ...

 'ClassNames', [0; 1]);

% Create the result struct with predict function

predictorExtractionFcn = @(t) t(:, predictorNames);

ensemblePredictFcn = @(x) predict(classificationEnsemble, x);

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST',

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'};

trainedClassifier.ClassificationEnsemble = classificationEnsemble;

trainedClassifier.About = 'This struct is a trained model exported from Classification

Learner R2020b.';

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.,

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the

original training data. \nAdditional variables are ignored. \n \nFor more information, see

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),

''appclassification_exportmodeltoworkspace'')">How to predict using an exported

model.');

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

inputTable = trainingData;

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance',

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'};

predictors = inputTable(:, predictorNames);

response = inputTable.HS;

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false,

false];

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10);

% Compute validation predictions

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

268

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');

269

Figure P3.1: Figure outlining the flow of code used in this research objective

P1B.5IP3.5BP3.5A

Output

Raw
data

Code
P3.1

Code
P3.2

Code
P3.3

Code
P3.4

Code
P3.5

Code
P3.5

…

270

 ASSESSMENT OF A COMMERCIALLY AVAILABLE

SENSOR FOR ARSENIC DETECTION IN WATER (PAPER 4)

5.1 Introduction

Chronic heavy metal exposure (As, Pb, Hg and Cd) is found to correlate with abnormal

liver biochemistry, with NAFLD and, with liver damage in general [1]–[3]. The inability of the

liver to metabolize heavy metals warrants the screening, diagnosis, and early intervention for

individuals living with chronic heavy metal exposure. The impact chronic of heavy metal exposure

and its relationship with NAFLD is reviewed in detail in an under-review paper, attached in

Appendix H.

While any amount of heavy metal exposure is not ideal for the human system, there are

certain permissible levels of heavy metal (in drinking water), determined by agencies like US –

Environmental Protection Agency (EPA) and the World Health Organization (WHO) [4], [5]. In

the USA, the safe water drinking act requires the US – EPA to ‘establish and enforce’ standards

for public water systems [6]. While these standards are enforced by local agencies for public water

sources, there are no specific regulations for private sources of water like wells. Further, any leaks

or damages in the plumbing could lead to an unexpected heavy metal exposure at a household

level.

Monitoring of drinking water quality at a home/field-level can be used in a preventative

way to avoid the risk of liver disease. Use of a sensor that does not involve elaborate or

sophisticated equipment can be useful for an at home test. Recently, a few commercially available

sensor kits were found in the marketplace. One such kit used a color-based Arsenic detection

concept. Although color-based output is easy to use, human beings are subjective in color

assessment and there many other associated challenges associated with this approach. A need for

a proof the concept assessment for such a kit in laboratory condition was therefore justified.

Thus, the objective of this study was to assess a commercially available Arsenic sensor kit

under lab conditions. The associated tasks are:

1. To evaluate the performance of the selected kit in laboratory conditions.

2. To develop and test a computer imaging algorithm for quantitative assessment of the color

information on the sensor testing strip.

271

5.2 Methods

Background

A commercial test kit – “Industrial Test Systems Quick 481396 Arsenic for Water Quality

Testing, 100 Tests, 12 Minutes Test Time” was purchased from Amazon’s website and was tested

under lab conditions. The detailed instructions can be found on the manufacturer’s site [7]. The kit

detects Arsenic based on color change and the manufacturer provides a scale for visual color

comparison and result determination. Figure 5.2 has the color scale provided by the manufacturer

[7].

Experiment design

In this study, a total of five concentrations of Arsenic and four replicates per concentration

were used. The concentrations were: blank (0 ppb (micrograms/liter)), 10 ppb, 50 ppb, 100 ppb

and 200 ppb Arsenic in water. The concentrations are henceforward labelled as C0 (blank), C1,

C2, C3 and C4, for 10, 50, 100, and 200 ppb, respectively. The four replicates are labelled as R1,

R2, R3, and R4.

All samples were prepared using Nalgene grade plastic labware. All labware was cleaned

five to six times with distilled water. Distilled water was also used to prepare the five different

Arsenic concentrations. The Arsenic concentrations were prepared in the Mass Spectrometry lab

(Chemistry building), Purdue University. Arsenic stock solution from Exaxol, Florida, USA (1000

ppm Arsenic in 2% nitric acid) was purchased and used to prepare the samples. Refrigerated stock

solution was allowed to thaw and reach room temperature two hours before the sample preparation.

Serial dilution was conducted to obtain the five Arsenic concentrations. The samples used

in the commercial kit were diluted using DI water and the appropriate Arsenic stock solution. The

commercial kit requires that the samples do not have nitric acid in them. Each concentration was

prepared four times to obtain four replicates. All samples and replicates were prepared on the same

day. All the experiments with the test kit using the prepared samples were also conducted on the

same day.

Samples were analyzed on an ELEMENT2 High Resolution Inductively Coupled Plasma

Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany). Samples were introduced into

the ICP via an Aridus II Desolvating Sample Introduction system with a 100ul/min PFA low flow

272

concentric nebulizer (Teledyne Cetac Technologies, 14306 Industrial Rd, Omaha, NE 68144). A

Teledyne Cetac Autosampler ASX-112FR was used. After tuning and calibration using the 1ppb

Thermo Fisher Tune-Up solution, the samples were analyzed for Arsenic.

Note that one replicate from each concentration was sent to the chemistry lab for analysis

as a part of the ICP-MS calibration. All the twenty samples were not analyzed by ICP-MS. Results

from the ICP-MS are shown in Figure 5.3. A R2 value of 0.9998 was obtained and thus it validated

the appropriateness of the sample preparation method. The ICP-MS analysis was conducted by Dr.

Anusha Hettiyadura, who is affiliated with the Department of Chemistry at Purdue University.

The experiments to test for Arsenic in water using the selected kit were conducted in the

laboratory at Purdue University. The reagents and test strips were part of the Arsenic kit and were

used for evaluating the kit [7]. The instructions provided with the kit were followed. Briefly,

Arsenic samples or blank were added to a reaction bottle (provided with the kit) and the reagents

were added as per the kit instructions [7]. The provided test strip was added in the last step to the

cap of the reaction bottle and 10 minutes were allowed to pass for the color change to occur on the

test strip [7]. The timing and measurements were followed as instructed in the kit manual [7]. After

10 minutes, the test strip was extracted and transferred into a photography box for digital image

capture.

The photography box was purchased and used to capture images consistently with fixed

lighting and camera position (Figure 5.1). Note that the photography box is not a part of the Arsenic

kit and was separately purchased to allow consistent image capture conditions. Images of five

concentrations, each with four replicates were captured (total 20 images), one at a time, using an

iPhone XR. Each image was then exported into a Windows PC for further processing. Every image

was individually examined and if needed, the image was straightened using the window photo

viewer tool. In this step, any background from the images was also removed manually.

Next, all the images were re-sized using the “imresize()" function which part of the image

processing toolbox in MATLAB R2020b [8]. The resize function is used to convert all the images

into standard pixel dimensions. In this case, the pixel dimensions of the smallest image were

identified (“final_dim”). The final_dim was used as a reference to convert all images to the same

size as final_dim. The output of this step was 20 images of the same pixel dimensions. The resized

images were then used as part of the visual snapshot analysis. The summary of the steps used, are

273

shown in a flowchart (Figure 5.4). The code written to resize the images is in Appendix E.1. All

the digital images were then processed using two methods:

1. Visual snapshot analysis.

2. Customized image analysis and pattern recognition algorithm.

Step 1: Visual snapshot analysis

The concept of visual snapshot analysis, a new analysis method [9] was applied in this

analysis. The method uses more than one replication to identify Arsenic concentration instead of

just one reference image provided by the test kit [9]. As the kit uses a paper-based sensor, the color

development on the strip might not be uniform across it.

In the visual snapshot analysis, there are ‘Nsc’ replicates. In this case, Nsc= 4. In the future,

it is recommended to increase Nsc as at least 10 for better analysis. Note that this is a preliminary

study and will not take into consideration the reference images provided by the test kit [9].

Process used for visual snapshot analysis [9]:

The digital images of all concentrations were collected, and their replicates were placed in

a tabular manner, on a single screen (Figure 5.6) [9]. It was ensured that the computer screen on

which these images are displayed was color calibrated and the background was a uniform color

(black in this case). The surrounding environment of the display screen was also well lit with

daylight spectrum. The visual snapshot analysis was conducted in two stages:

1. Within concentration analysis

2. Pairwise concentration analysis

Parameters for within concentration analysis [9]

1. Minimum concentration for discrimination:

The concentrations Ci (i = 1, 2, 3, or 4) were compared with the blank (C0) to

identify which concentration had all its replicates different from C0. This process was

still based on visual color perception. Based on this visual analysis, a concentration

Cmin was identified as the minimum concentration that the kit could differentiate from

274

the blank. This is an important finding alternate to the process provided by the

manufacturer of the commercial kit.

2. Similarity within a concentration and repeatability [9]:

A parameter Vsc is defined here. Vsc describes the similarity among the replicates

within a given concentration. It was defined as the number of images that are visually

perceived to be similar, divided by the total replicates. It was expressed in percentages

(%). For example, if the Nsc = 4, the minimum resolution is ¼ = 25%. That is, testing

with Nsc = 4 leads to a 25%, 50%, 75% or 100% similarity. Ideally, a Vsc of 100% would

be desired but in this case, a Vsc of 90% would be acceptable [9]. Again, for this study,

as Nsc = 4, the resolution does not allow to capture a 90% Vsc. Therefore, a Vsc of 100%

is required in this study [9].

The Vsc reflects how different variables (variations among the test kits, the

experimental variations due to any human error or any unforeseen situation) affect the

color output on the test kit for a given concentration [9]. In this study, one of the goals

was to identify how many concentrations met the defined Vsc. Let this parameter be

Vcm. Say maximum number of concentrations being tested is Ct. Then, a repeatability

factor can be defined as [9]:

𝑅𝐹 =
𝑉𝑐𝑚

𝐶𝑡
𝑥 100 (4.1)

This was calculated and RF [9] was determined. The maximum RF is 100%.

Parameters for pairwise concentration analysis & identification of seed images [9]

Two concentrations Ci and Cj were chosen from Ct. The concentration pair was labelled

Cij. For each pair, the sample images (Figure 5.6) were observed and identified how many images

were visually different from each other. Then the percentage differentiability was defined as [9]:

𝑃𝐷𝐼𝐹 % =
𝑉𝑑𝑐

𝑁𝑠𝑐
 𝑥 100 (4.2)

Aside from calculating the PDIF value, another benefit of this analysis was the

identification of sample images that can be used as seed images for subsequent development of

image analysis and pattern recognition [9].

275

Step 2: Customized image analysis and pattern recognition algorithm

The resized images from the above step (Figure 5.4) were further processed using

MATLAB R2020b image processing toolbox [8] as part of the image analysis. The aim of this

analysis was to quantify the image concentrations using a preliminary algorithm such that the

subjectivity in visually examining the images is minimized.

The resized images were used and smoothed to reduce any image noises and improve the

overall image appearance. The function imgaussfilt() was used to smooth the images [10]. The

code used to smooth the resized images is in Appendix E.2. The original image scale was Red,

Green, Blue (RGB), by default. However, a different color model was used in this work to interpret

the color of the test strips.

Hue, saturation, value or HSV color scale is a transformation of the RGB color scale. The

HSV scale was developed in 1978 [11]. HSV scale is used commonly when human perception of

color is required for various applications. Some examples are in agriculture (fruit or crop color

identification), in the medical domain (bio image color identification) or in other industries like

manufacturing etc. [12]–[16]. While the RGB scale defines color in terms of the dominant red,

green or blue colors, the HSV scale represents the image as a mixture of hue, saturation and

intensity/brightness [11]. Hue is the part of the image that represents different colors in a wheel

like model. The hue wheel can for example range as: blue, magenta, red, yellow, green, cyan, and

back to blue again. Hue of an image is measured in angles, and it ranges from 0 – 360 degrees

[11], [16]. Saturation on the other hand, refers to the intensity of a particular Hue [16]. Saturation

is measured in pixel intensities and ranges from 0 – 255 with 0 being the lowest intensity (black)

and 255 being the highest intensity (white). Value refers to image brightness and is also measured

from 0 – 255. However, in this work, the focus is on identifying the hue and saturation of the

images of interest.

Since the visual color perception is required in this case, the RGB images were converted

to HSV scale using the rgb2hsv() function in MATLAB. The code used to convert the RGB images

into HSV is in Appendix E.3. The hue and saturation data of each image were then processed to

determine the mean hue and mean saturation values for each of the 20 images (5 concentrations, 4

replicates/concentration). The MATLAB code used to extract these descriptive statistics is in

Appendix E.4. The hue and saturation data for each replicate are in Table 5.3 -

276

Table 5.5, respectively.

To determine the hue and saturation data for every concentration, the data from four

replicates were further processed to identify mean and standard deviations (SD). These data for

hue and saturation are in Table 5.4 &Table 5.6, respectively. Boxplots were plotted using the mean

and SD data. These plots are in Figure 5.16 & Figure 5.17. The results pertaining to this section

are discussed below.

The hue and saturation data were transformed to a 2-dimensional plane by plotting a scatter

plot of Hue vs Saturation using the mean hue and saturation data points for each concentration

(e.g.: Hi and Si where i, j = 0, 10, 50, 100, or 200 ppb) (Figure 5.18) [9]. Next, the distance between

each geometric coordinate (Hi, Si), and (Hj, Sj) were computed for all combinations of i and j. In

this work, the Euclidean distance metric was used [9]. The distances between each coordinate are

shown as a confusion matrix in Table 5.7.

5.3 Results & discussion

Visual snapshot analysis

Each of the processed images was observed visually and their observations were recorded.

Upon visually observing the Figure 5.6, the Cmin concentration was found to be 100 ppb of Arsenic

in water. That is each replicate of the 100-ppb concentration (Arsenic in water) was found to be

visually different from all replicates of the blank. It is important to note here that the WHO and

EPA limits for permissible amounts of Arsenic in drinking water are 1 ppb and 10 ppb, respectively

[4], [5]. Based on the limited testing conducted in this work, the test kit was not able to detect

Arsenic in water below 100 ppb reliably. Additional details from the visual inspection are outlined

in the sections below.

Within concentration observations from visual snapshot analysis:

In this section, the focus was to identify how much similarity can be visually identified

within four replicates (R1, R2, R3, and R4) for each concentration. Brief comments regarding the

comparison of sample strips with manufacturer provided results are also mentioned for every

concentration. Note that images of both the sample strips and the manufacturer provided results

were captured under the same conditions in our lab.

277

1. 0 ppb/Blank: Of the four replicates, three appear whitish (R2, R3, R4), but one appears a

very light shade of yellow (R1) (ref Figure 5.7A). Three of the four replicates appear

consistent (R2, R3, R4) but one does not (R1). When compared to the manufacture-

provided result, the sample images (R2, R3 and R4) appear to be brighter shades of white

in our testing, than in the manufacturer’s provided reference chart [7] (Figure 5.7B).

2. 10 ppb Arsenic in water: Among the four replicates, R1 and R3 appear whitish but R2 &

R4 are pale yellow in appearance (in Figure 5.8A). R2, R4 appear inconsistently yellow

and white in patches over the strip area. Overall, there is no consistency between the

replicates in the 10 ppb (in Figure 5.8A) test results. Visually, none of the replicates from

the testing in this work were found to match the manufacturer’s provided reference chart

[7].

3. 50 ppb Arsenic in water: The replicates R1, R2, and R4 appear alike with similar shades

of yellow (Figure 5.9). However, R3 looks completely whitish. Although R1, R2 and R4

are yellowish in color, they vary in the intensity with R2 being the darkest and R1, R4

being lighter in comparison to R4. None of the replicates from our testing look like the

manufacturer’s provided image, although three of the four replicates appear consistent. The

results from our testing of the commercial kit for 50 ppb look a lighter intensity of yellow

than the provided result. In this case, the provided image and the obtained results can be

very misleading and there could be a high chance on misinterpreting the 50 ppb result as a

lower concentration – which can have significant impact of the health and safety of the

user.

4. 100 ppb Arsenic in water: The R2, R3 and R4 images appear similar in this case. However,

R3 and R4 have a darker outer border around them, compared to R2 (Figure 5.10). R1

appears to be different from the rest of the replicates and has an unexpected whitish spot

on it. The test images (all replicates in Figure 5.10A) and the manufacturer’s result (Figure

5.10B) are all captured under the same light conditions using a photo box. R2, R3, and R4

obtained using the test kit look similar in shade to the manufacturer’s provided reference

chart [7]. But R1 appears much darker in intensity compared to the other three replicates.

5. 200 ppb Arsenic in water: The R2 and R3 images appear similar to each other but have a

darker outer border and a lighter shade in the center. R4 has no outer border but a consistent

yellow shade all through the image. Overall, there is no uniformity in color across the test

278

strip surface in any of the replicates. The intensity of the yellow shade varies within a

replicate and across replicates. The test images (all replicates in Figure 5.11A) and the

manufacturer’s provided reference chart [7] (in Figure 5.11B) are all captured under the

same light conditions using a photo box. When compared with the manufacturer provided

result, the replicates R1, R2, and R3 have an outer border effect. Overall, the consistent

shade of yellow seen in the central part of the manufacturer’s provided reference chart [7]

was not observed in the replicates obtained in our testing.

Between concentration observations from visual snapshot analysis:

In this section, observations are made by comparing neighboring concentrations in a

pairwise manner. Concentrations are compared in the following pairs: 0 vs 10 ppb, 10 ppb vs 50

ppb, 50 ppb vs 100 ppb, and 100 ppb vs 200 ppb. The differentiability between these

concentrations is quantified based on visual observations. In each comparison below, eight images,

four each from a concentration in the pair are visually compared with each other and a

differentiability percentage (PDIF %) is noted.

1. Blank vs 10 ppb Arsenic in water: The eight images (in Figure 5.12) look mostly whitish

to the eye when compared side by side. The 10 ppb R1, R3 and 0 ppb R2, R3 look whitish

in color but overall, they look very similar to each other. The other images, i.e., 0 ppb R1,

R4 and 10 ppb R2, R4 also look similar to each other. Visually, it would be very difficult

to distinguish between 0 ppb and 10 ppb based on our testing. The PDIF % in this case

was found to be 0%.

2. 10 vs 50 ppb Arsenic in water: The comparison of 10 vs 50 ppb is a bit more distinguishable

(see Figure 5.13) than that of 0 vs 10 ppb. However, 50 ppb R3 looks very similar to most

of the 10 ppb replicates and could be misleading to a user. Based on our testing, we see

that three of the four 50 ppb replicates are yellow in shade and are visually different from

the 10 ppb replicates. The 10 ppb can be differentiated using two of the four replicates. In

total five test strips (10 ppb R1, R3 and 50 ppb R1, R2, R4) are clearly distinguishable.

Therefore, the PDIF % was found to be 62.5.

3. 50 vs 100 ppb Arsenic in water: Refer to Figure 5.14 for comparing 50 vs 100 ppb detection

using four replicates each. There is a clear difference in color between the 50 and 100 ppb

sensors except for one of the 50 ppb (R3) which looks entirely whitish. The R1 100 ppb

279

also has a whitish spot on the sensor surface and is not consistent with the other replicates.

However, the difference in yellow intensity between 50 to 100 ppb is a good indicator of

the increasing Arsenic concentration and the PDIF % was 75%.

4. 100 vs 200 ppb Arsenic in water: Figure 5.15 shows the comparison of 100 vs 200 ppb

replicates. Overall, all the eight replicates look similar visually and are very hard to

distinguish from each other. Particularly, replicates R2, R3, R4 100 ppb and R1 200 ppb

represent a similar shade of yellow. R1 100 ppb is darker (and has an unexpected white

patch) and looks like R3, R4 200 ppb in terms of the intensity of yellow. Further most of

the images seem to have a border effect and uneven intensity of yellow across the sensor

surface. The differentiability percentage is therefore 0 in this case.

In summary, based on the pairwise comparison of neighboring concentrations, it was found

that visual difference in color is not differentiable in 0 vs 10 ppb and 100 vs 200 ppb (Arsenic in

water). The differentiability of 10 vs 50 ppb is better at 62.5% but it still does not meet the high

differentiability criteria (of 100%). The 50 vs 100 ppb (Arsenic in water) had the best performance

among all other concentrations at a PDIF % of 75 but it still does not meet the required PDIF of

100%.

Based on the limited testing conducted under lab conditions, the commercial kit was found

to be able to detect the presence or absence of Arsenic in water, but it was unable to differentiate

between Arsenic concentrations with high PDIF. While the test strips showed difference in results

between 50 ppb and 100 ppb Arsenic, these concentrations might be too high in terms of

permissible Arsenic concentrations in drinking water. The WHO and EPA standards are 1ppb and

10 ppb, respectively [4], [5].

Image analysis & pattern recognition algorithm

The test strip images were analyzed using a preliminary image processing algorithm and

the obtained results are elaborated in this section. For reference, the flowchart of the methods used

is in Figure 5.5.

The hue and saturation data were captured, and their means and standard deviations were

computed as described in the methods section. A boxplot for Hue and another for Saturation data

were plotted (Figure 5.16 & Figure 5.17).

280

The results from hue box plot indicate that the mean hue for 0 ppb and 10 ppb (Arsenic in

water) varied significantly within the replicates (as shown by the large ranges on the boxplot). The

Hue range for 0 ppb replicates (Arsenic in water) was 16 to 49 and the hue range for 10 ppb

replicates (Arsenic in water) was 36 to 53. The hues of 0 and 10 ppb (Arsenic in water) have an

overlap region between 36 to 49, which indicates that the 0 and 10 ppb cannot be differentiated

based on the hue data. It is important to note that the hue parameter is generally used to measure

how humans view color. Therefore, the overlap of hue between 0 and 10 ppb indicates that the test

strips for 0 and 10 ppb (Arsenic in water) cannot be differentiated both visually and using the hue

data. Similar result was found based on the visual snapshot analysis of 0 and 10 ppb test strips. 10

ppb and 50 ppb (Arsenic in water) showed an overlap from 42-29 and therefore were not

differentiable.

The 50 ppb (Arsenic in water) mean Hue range was very low (42-43) and therefore

indicated consistent Hue within the replicates. The mean hue for 100 ppb (Arsenic in water) was

between 33-38 and that of 200 ppb was between 27 – 35. The clear difference in Hue between 50

and 100 ppb indicated that the test strips for these concentrations were clearly differentiable. While

the 50 ppb also had low variability within the hues for its replicates, the 100 ppb had a slightly

higher hue range. However, the hue values for 100 and 200 ppb (Arsenic in water) had an overlap

between 33-35 and this overlap again indicated that these two concentrations could not be

differentiated using the hue data. The visual snapshot analysis also provided the same conclusions

as seen with the hue data.

The results from the Saturation box plot can be used to understand the intensity of the color

on each test strip. The saturations of 0 ppb test replicates ranged from 1 – 17 and that of 10 ppb

test replicates range from 4 – 23. There was a large overlap of 4 – 17 between the 0 and 10 ppb

(Arsenic in water) test replicates. This also indicated that the color saturation of the 0 and 10 ppb

images are similar and could not be differentiated from each other.

The 50-ppb (Arsenic in water) saturation ranged from 6 to 95, whereas the 100-ppb

(Arsenic in water) saturation ranged from 200 – 235. There was no overlap in the 50 and 100 ppb

test strip saturations, and these could be separated from one another. Interestingly, the 200-ppb

(Arsenic in water) saturation ranged from 174 – 222. This not only had a significant overlap with

100 ppb saturation (overlap from 200 to 222) but also the 200 ppb had lower saturation than that

in 100 ppb. With increasing Arsenic concentrations, an increasing color saturation was expected

281

(See Figure 5.2). However, based on these results, the saturation was found to be decreasing

slightly from 100 to 200 ppb, with a large overlap between these two concentrations. Therefore,

based on saturation data, it was concluded that the 100 and 200 ppb (Arsenic in water) were not

differentiable using the kit while testing in lab conditions.

The results from the visual snapshot and the image analysis were similar. Both methods

indicated that the test kit was not 100% accurate is differentiating any of the concentrations.

However, the differentiability was highest with the 50 ppb and 100 ppb (Arsenic in water). 0 ppb

and 10 ppb (Arsenic in water) were not differentiable at all. Similarly, 100 ppb and 200 ppb

(Arsenic in water) were also not differentiable using the test kit under lab conditions.

The results from the Euclidean distance confusion matrix (Table 5.7) indicated that the

increase in distances between concentrations were not linear. For example, distance between 0 and

10 ppb, say Δ0,10 is 13.2, which was similar to the increase in 10 to 50 ppb at Δ10,50 = 51.5. But

after that, the distance between 50 to 100 ppb was very high (Δ50, 100 = 151.2). And finally, the

distance between 100 and 200 ppb was very low at Δ100,200 = 36.2. These results indicated that the

color saturation as the concentration increased was not linear.

It is important to note that only four replicates per concentration were tested in this work

due to a constraint of time and resources. Additional testing is recommended in the future, to

further assess the test kit performance in detecting Arsenic in water.

5.4 Summary & conclusions

A commercially available Arsenic detection kit was tested for determining Arsenic in

water, and the results were examined. From the visual inspection, differentiating some

concentrations were not clear (example 0 and 10, 10 and 50, 100 and 200 ppb Arsenic in water).

The instructions provided in the commercial kit were found not to be sufficient for the user to

quantify the color of the test strips. Visual inspection of the images was recommended by matching

it with the reference color to determine the Arsenic concentration.

Thus, an alternate method [9] without relying on the use of the test kit reference images

was adapted and evaluated in this study. The associated testing parameters were systematically

analyzed. The following conclusions are outlined below:

282

1. The following concentrations were not differentiable based on our testing: 0 vs 10 ppb

(Arsenic in water), 10 vs 50 ppb (Arsenic in water) and 100 vs 200 ppb (Arsenic in

water).

2. The 50-ppb vs 100-ppb (Arsenic in water) were the most differentiable at 75% PDIF.

3. The increase in Euclidean distance measure (computed using hue and saturation data -

8 bit with 0 to 255 scale) was not linear with increase in concentration of Arsenic in

water.

A limitation of the study: All the samples for the Arsenic experiment were prepared using

the same protocol and on the same day. Only one sub-sample of the four samples for each

concentration was sent for ICP-MS analysis. It was assumed that all the samples have the same

concentration as that of the sub-sample. Therefore, it might be possible that a specific replicate

might not have the exact expected concentration.

5.5 Recommendations for future work

In the future, additional experiments using the same test kit or similar other kits for

detecting Arsenic in water using multiple concentrations and/or multiple replicates are

recommended.

Disclaimer:

Mention of a company’s name, product(s) or trademark(s) does not constitute any

endorsement or recommendation or any lack of endorsement or any lack of recommendation by

the author, and/or the faculty members associated with the study, and their affiliated employers,

their affiliated organizations and/or entities.

283

5.6 Figures

Figure 5.1: Image of the photography box (purchased from a commercial source) used to capture

images with consistent lighting

Figure 5.2: Calibration scale provided by the manufacturer*

*Note: Images of the scale provided by the manufacturer were captured in our lab using the same photography box

used to capture sample images in this work

284

Figure 5.3: Results of the Arsenic calibration curve using ICP-Mass spec

Note: Only 1 replicate per concentration was analyzed using ICP-MS

Figure 5.4: Flowchart indicating the process used for visual analysis

9.93

49.92

99.92

149.92

199.92

y = 42113x
R² = 0.9995

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

0 50 100 150 200

In
te

n
si

ty
 A

V
G

 (
cp

c)

Concentration (ppb)

As75 (HR)

1. Open raw images (N = 20)
and check if the strip images

need straightening.

2A. Extract ROI in the image
related to padded region

using the cropping function
in the windows photo viewer

tool manually by visual
verification

2B. The extracted images
have different pixel

dimensions (width & height).
Extracted images do not have

any background.

3. Read all images (N = 20)
in MATLAB, find minimum
image dim (final_dim). Use
final_dim to resize all the
images using imresize().

Output = 20 images of equal
dim. (Appendix E.1)

4. Extract the resized images
of same concetrations side by

side and visually compare.

5. Extract the resized images
of neighboring

concentrations side by side
and visally compare.

285

Figure 5.5: Flowchart indicating the process used for image analysis and pattern recognition

1. Use resized images (N =
20) and convert it to

smoothed images using
imgaussfilt(). Appendix E.2

2. Use the smoothed images
and convert the image scale to

HSV. Appendix E.3

3. Use the HSV images and
extract Hue and Saturation

data

4. Find the mean of Hue
(hue_mean) and the mean of

saturation (sat_mean) for each
replicate of every

concentration (20 total)
Appendix E.4

4. Use hue_mean of each
replicate and find the mean

and SD over 4 replicates (e.g.
hue_mean_0 ppb and

hue_SD_0 ppb). Repeat for
all 5 concentraions. Appendix

E.4

5. Use sat_mean of each
replicate and find the mean

and SD over 4 replicates (e.g.:
sat_mean_0 ppb, sat_SD_0

ppb). Repeat for all 5
concentrations. Appendix E.4

6. Plot boxplots for Hue and
Saturation using their

respective mean and standard
deviation data Appendix E.4

286

Figure 5.6: Graphical lay out for the digital images of test kit samples arranged in row for each

concertation (rows) and each replicate (columns) [9]
Note: Only one replicate was confirmed by ICP-MS analysis

287

Figure 5.7: A: 0 ppb (Arsenic in water) test results for four replicates (R1,R2,R3,R4)

 B: Manufacturer’s result

Figure 5.8: A: 10 ppb (Arsenic in water) test results for 4 replicates (R1,R2,R3, R4) B:

Manufacturer’s result

Figure 5.9: A: 50 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4) B:

Manufacturer’s result

288

Figure 5.10: A. 100 ppb (Arsenic in water) test results for four replicates (R1, R2, R3, R4) B:

Manufacturer’s result

Figure 5.11: A. 200 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4) B:

Manufacturer’s result

Figure 5.12: 0 ppb vs 10 ppb (Arsenic in water) side by side comparison

289

Figure 5.13: 10 ppb vs 50 ppb (Arsenic in water) side by side comparison

Figure 5.14: 50 ppb vs 100 ppb (Arsenic in water) side by side comparison

Figure 5.15: 100 ppb vs 200 ppb (Arsenic in water) side by side comparison

290

Figure 5.16: Boxplot of mean hue data, commercial kit testing (four replicates per concentration)

Error bars are plotted using standard deviation data

Figure 5.17: Box plot of mean saturation data, commercial kit testing (four replicates per

concentration)

Error bars are plotted using standard deviation data

291

Figure 5.18: Mean hue vs mean saturation scatter plot

0 ppb 10 ppb

50 ppb

100 ppb
200 ppb

0.00

50.00

100.00

150.00

200.00

250.00

0.00 10.00 20.00 30.00 40.00 50.00

Sa
tu

ra
ti

o
n

Hue

292

5.7 Tables

Table 5.1: Visual snapshot - within concentration analysis (4 replicates/concentration)

Concentration

(ppb)
Comment on the similarity within a concentration

%

Similarity

(Vsc)

0 3 of the 4 replicates are similar, one replicate is yellowish Vsc = 75%

10 2 of the 4 replicates are whitish and 2 others are yellowish Vsc = 50%

50 3 of the 4 replicates are similar but one is totally different Vsc = 75%

100
3 of the 4 replicates are similar but one is different and has an

unexpected white patch
Vsc = 75%

200 3 replicates have a darker border, one replicate does not Vsc = 75%

Table 5.2: Visual snapshot - pairwise concentration analysis

Concentrations
% Pairwise

Differentiability (PDIF)
Comments

0 vs 10 C0,10 = 0 %
Six of the eight test strips look whitish. The two other

strips look pale yellow but are not differentiable.

10 vs 50 C10,50 = 62.5 %
The 10 ppb is differentiable 2 of 4 times. The 50 ppb is

differentiable 3 out of 4 times.

50 vs 100 C50,100 = 75 %

50 ppb and 100 ppb are very different in color intensity.

Except for 50 ppb R3, all other test strips appear clearly

different

100 vs 200 C100,200 = 0%

Three of the 100 ppb replicates (R2, R3, R4) look like

one of the 200 ppb (R1). Overall, it is hard to distinguish

100 and 200 ppb apart.

293

Table 5.3: Mean values of the hue data – all replicates

Parameters 0 10 ppb 50 ppb 100 ppb 200 ppb

R1_hue
48.85 51.94 41.98 35.18 34.30

R2_hue
9.82 44.57 42.97 32.37 30.99

R3_hue
30.67 32.86 42.52 36.76 30.98

R4_hue
39.18 47.20 42.56 36.21 27.64

Table 5.4: Mean and SD of replicates – hue data

Parameters 0 ppb 10 ppb 50 ppb 100 ppb 200 ppb

Mean of all

replicates
32.13 44.14 42.51 35.13 3.89

SD of all

replicate means
16.62 8.12 0.41 1.95 2.72

SD = Standard Deviation

Table 5.5: Mean values of the saturation data – all replicates

Parameters 0 10 ppb 50 ppb 100 ppb 200 ppb

R1_Sat
17.34 6.33 6.39 199.64 221.53

R2_Sat
0.98 22.65 80.37 234.57 196.21

R3_Sat
3.24 4.25 71.78 219.26 192.14

R4_Sat
4.03 14.02 94.78 203.94 174.36

294

Table 5.6: Mean and SD of replicates – saturation data

Parameters 0 ppb 10 ppb 50 ppb 100 ppb 200 ppb

Mean of all

replicates
6.40 11.81 63.33 214.35 196.06

SD of all

replicate means
7.41 8.36 39.13 15.89 19.45

Table 5.7: Confusion matrix of Euclidean distances

 0 ppb 10 ppb 50 ppb 100 ppb 200 ppb

0 ppb 0.0 13.2 57.9 208.0 191.8

10 ppb 13.2 0.0 51.5 202.7 188.6

50 ppb 57.9 51.5 0.0 151.2 138.2

100 ppb 208.0 202.7 151.2 0.0 36.2

200 ppb 191.8 188.6 138.2 36.2 0.0

295

5.8 References

[1] G. E. Arteel, “Hepatotoxicity,” in Arsenic, John Wiley & Sons, Ltd, 2015, pp. 249–265.

doi: 10.1002/9781118876992.ch11.

[2] B. Wahlang et al., “Toxicant-associated Steatohepatitis,” Toxicol. Pathol., vol. 41, no. 2,

pp. 343–360, Feb. 2013, doi: 10.1177/0192623312468517.

[3] G. Azeh Engwa, P. Udoka Ferdinand, F. Nweke Nwalo, and M. N. Unachukwu,

“Mechanism and Health Effects of Heavy Metal Toxicity in Humans,” in Poisoning in

the Modern World - New Tricks for an Old Dog?, O. Karcioglu and B. Arslan, Eds.

IntechOpen, 2019. doi: 10.5772/intechopen.82511.

[4] O. US EPA, “National Primary Drinking Water Regulations,” US EPA, Nov. 30, 2015.

https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-

regulations (accessed Nov. 01, 2020).

[5] World Health Organization, Ed., Guidelines for drinking-water quality, 4th ed. Geneva:

World Health Organization, 2011.

[6] O. US EPA, “Basic Information about Your Drinking Water,” Jun. 17, 2013.

https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-your-

drinking-water (accessed Apr. 14, 2022).

[7] Industrial Test Systems, “Quick Arsenic Test Kit,” Dec. 2020. Accessed: Jan. 17, 2021.

[Online]. Available: https://sensafe.com/content/481396.pdf

[8] “Image Processing Toolbox - MATLAB.”

https://www.mathworks.com/products/image.html (accessed Apr. 09, 2022).

[9] Suranjan Panigrahi, “Algorithmic framework for analysis of the images of the test

strips/display paper linked with heavy metal sensor kit.,” Purdue University, Internal

Document, 2022.

[10] “2-D Gaussian filtering of images - MATLAB imgaussfilt.”

https://www.mathworks.com/help/images/ref/imgaussfilt.html (accessed Apr. 09, 2022).

[11] A. R. Smith, “Color gamut transform pairs,” in Proceedings of the 5th annual conference

on Computer graphics and interactive techniques - SIGGRAPH ’78, Not Known, 1978,

pp. 12–19. doi: 10.1145/800248.807361.

[12] K. Choi, G. Lee, Y. J. Han, and J. M. Bunn, “Tomato Maturity Evaluation Using Color

Image Analysis,” Trans. ASAE, vol. 38, no. 1, pp. 171–176, 1995, doi:

10.13031/2013.27827.

[13] A. Vadivel, S. Sural, and A. K. Majumdar, “Human color perception in the HSV space

and its application in histogram generation for image retrieval,” San Jose, CA, Jan. 2005,

p. 598. doi: 10.1117/12.586823.

296

[14] I. S. Ahmad and J. F. Reid, “Evaluation of Colour Representations for Maize Images,” J.

Agric. Eng. Res., vol. 63, no. 3, pp. 185–195, Mar. 1996, doi: 10.1006/jaer.1996.0020.

[15] K. Cantrell, M. M. Erenas, I. de Orbe-Payá, and L. F. Capitán-Vallvey, “Use of the Hue

Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical

Parameter for Bitonal Optical Sensors,” Anal. Chem., vol. 82, no. 2, pp. 531–542, Jan.

2010, doi: 10.1021/ac901753c.

[16] L. Georgieva, T. Dimitrova, and N. Angelov, “RGB and HSV colour models in colour

identification of digital traumas images,” in International conference on computer

systems and technologies, 2005, vol. 12, no. 1.

297

APPENDIX E. P4 - CODE

1. CODE TO RESIZE ALL IMAGES TO A STANDARD SIZE

%%%%%%%%

% Created on 010/25/2021

% Input: raw images

% Output: resized images

% Author: Ridhi Deo

% File name: obj3b_matlab_1.m (R2020b [8])

% Description: This code was written to resize all the images to a standard reference size

%%%%%%%%

clc;

clear all;

close all;

%% Load data

input_img = imread(‘input image’);

%% Set up a standard size

% Load the standard image (image with minimum size)

std_img = imread(‘standard image’);

[rowsstd, colstd, numberOfColorChannelsstd] = size(std_img);

%% Resize the image %each of the 20 images need to be read, one at a time

out_img = imresize(input_img, [rowsstd, colstd]); %Lowest image size, found manually

for the cropped squares (50 ppb, R2)

%% Display

figure, imshow(input_img), figure, imshow(out_img)

%% Save image

imwrite(out_img,'Output path’)

2. CODE TO SMOOTH IMAGES

%%%%%%%%

% Created on 010/26/2021

% Input: resized images

% Output: smoothed images

% Author: Ridhi Deo

% File name: obj3b_matlab_2.m (R2020b [8]))

% Description: This code was written to smooth all the resized images using a gaussian filter

298

%%%%%%%%

%% Apply a smoothing effect to the image

clc;

clear all;

close all;

%% Load data

% The inpu to this step is the resized image

input_img = imread(input image’);

%% Apply smoothing filter

out_img = imgaussfilt(input_img,2);

%% Display

figure, imshow(input_img), figure, imshow(out_img)

%% Save the smoothed image

imwrite(out_img,output path)

3. CODE TO CONVERT RGB IMAGES TO HSV

%%%%%%%%

% Created on: 10/26/2021

% Input: Smoothed RGB images

% Output: smoothed HSV images

% Author: Ridhi Deo

% File name: obj3b_matlab_3.m (R2020b [8]))

% Description: This code was written to convert the default RGB images into HSV scale

%%%%%%%%

clc;

clear all;

close all;

%% Load data

% Input to this function will be the smoothed images

input_img = imread(input image); %each of the 20 images need to be read, one at a time

%% Convert to HSV

out_img = rgb2hsv(input_img);

%% Display

figure, imshow(input_img), figure, imshow(out_img)

%% Save image

imwrite(out_img,output path)

299

4. CODE TO COMPUTE MEANS AND SD

%%%%%%%%

% Created on: 11/08/2021

% Input: Smoothed HSV images

% Output: statistics related to each image and box plots

% Author: Ridhi Deo

% File name: obj3b_matlab_4

% Description: This code was written extract statistics and make box plots

%%%%%%%%

clear all;

%% Extracting Hue data

clear all;

R1_0_hue = xlsread(excel sheet path);(excel sheet path);

R1_0_mean_hue = mean(R1_0_hue,'all');

R1_0_SD_hue = std(R1_0_hue,0,'all');

R2_0_hue = xlsread(excel sheet path);(excel sheet path);

R2_0_mean_hue = mean(R2_0_hue,'all');

R2_0_SD_hue = std(R2_0_hue,0,'all');

R3_0_hue = xlsread(excel sheet path);

R3_0_mean_hue = mean(R3_0_hue,'all');

R3_0_SD_hue = std(R3_0_hue,0,'all');

R4_0_hue = xlsread(excel sheet path);

R4_0_mean_hue = mean(R4_0_hue,'all');

R4_0_SD_hue = std(R4_0_hue,0,'all');

R1_10_hue = xlsread(excel sheet path);

R1_10_mean_hue = mean(R1_10_hue,'all');

R1_10_SD_hue = std(R1_10_hue,0,'all');

R2_10_hue = xlsread(excel sheet path);

R2_10_mean_hue = mean(R2_10_hue,'all');

R2_10_SD_hue = std(R2_10_hue,0,'all');

R3_10_hue = xlsread(excel sheet path);

R3_10_mean_hue = mean(R3_10_hue,'all');

R3_10_SD_hue = std(R3_10_hue,0,'all');

300

R4_10_hue = xlsread(excel sheet path);

R4_10_mean_hue = mean(R4_10_hue,'all');

R4_10_SD_hue = std(R4_10_hue,0,'all');

R1_50_hue = xlsread(excel sheet path);

R1_50_mean_hue = mean(R1_50_hue,'all');

R1_50_SD_hue = std(R1_50_hue,0,'all');

R2_50_hue = xlsread(excel sheet path);

R2_50_mean_hue = mean(R2_50_hue,'all');

R2_50_SD_hue = std(R2_50_hue,0,'all');

R3_50_hue = xlsread(excel sheet path);

R3_50_mean_hue = mean(R3_50_hue,'all');

R3_50_SD_hue = std(R3_50_hue,0,'all');

R4_50_hue = xlsread(excel sheet path);

R4_50_mean_hue = mean(R4_50_hue,'all');

R4_50_SD_hue = std(R4_50_hue,0,'all');

R1_100_hue = xlsread(excel sheet path);

R1_100_mean_hue = mean(R1_100_hue,'all');

R1_100_SD_hue = std(R1_100_hue,0,'all');

R2_100_hue = xlsread(excel sheet path);

R2_100_mean_hue = mean(R2_100_hue,'all');

R2_100_SD_hue = std(R2_100_hue,0,'all');

R3_100_hue = xlsread(excel sheet path);

R3_100_mean_hue = mean(R3_100_hue,'all');

R3_100_SD_hue = std(R3_100_hue,0,'all');

R4_100_hue = xlsread(excel sheet path);

R4_100_mean_hue = mean(R4_100_hue,'all');

R4_100_SD_hue = std(R4_100_hue,0,'all');

R1_200_hue = xlsread(excel sheet path);

R1_200_mean_hue = mean(R1_200_hue,'all');

R1_200_SD_hue = std(R1_200_hue,0,'all');

301

R2_200_hue = xlsread(excel sheet path);

R2_200_mean_hue = mean(R2_200_hue,'all');

R2_200_SD_hue = std(R2_200_hue,0,'all');

R3_200_hue = xlsread(excel sheet path);

R3_200_mean_hue = mean(R3_200_hue,'all');

R3_200_SD_hue = std(R3_200_hue,0,'all');

R4_200_hue = xlsread(excel sheet path);

R4_200_mean_hue = mean(R4_200_hue,'all');

R4_200_SD_hue = std(R4_200_hue,0,'all');

Param_hue = {'0-mean';'0-Std';'10-mean';'10-Std';'50-mean';'50-Std';'100-mean';'100-

Std';'200-mean';'200-Std'};

R1_hue =

{R1_0_mean_hue;R1_0_SD_hue;R1_10_mean_hue;R1_10_SD_hue;R1_50_mean_hue;

R1_50_SD_hue;R1_100_mean_hue;R1_100_SD_hue;R1_200_mean_hue;R1_200_SD_h

ue};

R2_hue =

{R2_0_mean_hue;R2_0_SD_hue;R2_10_mean_hue;R2_10_SD_hue;R2_50_mean_hue;

R2_50_SD_hue;R2_100_mean_hue;R2_100_SD_hue;R2_200_mean_hue;R2_200_SD_h

ue};

R3_hue =

{R3_0_mean_hue;R3_0_SD_hue;R3_10_mean_hue;R3_10_SD_hue;R3_50_mean_hue;

R3_50_SD_hue;R3_100_mean_hue;R3_100_SD_hue;R3_200_mean_hue;R3_200_SD_h

ue};

R4_hue =

{R4_0_mean_hue;R4_0_SD_hue;R4_10_mean_hue;R4_10_SD_hue;R4_50_mean_hue;

R4_50_SD_hue;R4_100_mean_hue;R4_100_SD_hue;R4_200_mean_hue;R4_200_SD_h

ue};

Stats_hue = table(Param_hue, R1_hue,R2_hue,R3_hue, R4_hue);

Stats_hue = rows2vars(Stats_hue);

Stats_hue(1,:) = [];

Stats_hue.Properties.VariableNames = {'Param', '0-mean', '0-Std', ...

 '10-mean', '10-Std', '50-mean', '50-Std', '100-mean', ...

 '100-Std', '200-mean', '200-Std'};

%% Creating box plots of Hue means of replicates

302

Avg_0_hue = mean([R1_0_mean_hue, R2_0_mean_hue, R3_0_mean_hue,

R4_0_mean_hue]);

Avg_10_hue = mean([R1_10_mean_hue, R2_10_mean_hue, R3_10_mean_hue,

R4_10_mean_hue]);

Avg_50_hue = mean([R1_50_mean_hue, R2_50_mean_hue, R3_50_mean_hue,

R4_50_mean_hue]);

Avg_100_hue = mean([R1_100_mean_hue, R2_100_mean_hue, R3_100_mean_hue,

R4_100_mean_hue]);

Avg_200_hue = mean([R1_200_mean_hue, R2_200_mean_hue, R3_200_mean_hue,

R4_200_mean_hue]);

SD_0_hue = std([R1_0_mean_hue, R2_0_mean_hue, R3_0_mean_hue,

R4_0_mean_hue]);

SD_10_hue = std([R1_10_mean_hue, R2_10_mean_hue, R3_10_mean_hue,

R4_10_mean_hue]);

SD_50_hue = std([R1_50_mean_hue, R2_50_mean_hue, R3_50_mean_hue,

R4_50_mean_hue]);

SD_100_hue = std([R1_100_mean_hue, R2_100_mean_hue, R3_100_mean_hue,

R4_100_mean_hue]);

SD_200_hue = std([R1_200_mean_hue, R2_200_mean_hue, R3_200_mean_hue,

R4_200_mean_hue]);

x_hue = [0, 10, 50, 100, 200];

y_hue = [Avg_0_hue, Avg_10_hue, Avg_50_hue, Avg_100_hue, Avg_200_hue];

err_hue = [SD_0_hue, SD_10_hue, SD_50_hue, SD_100_hue, SD_200_hue];

figure;errorbar(x_hue,y_hue,err_hue), xlim([-5,210])

xlabel('Concentrations'), ylabel('Mean Hue values'), title('Hue Plot');

%% Extracting Sat data

R1_0_Sat = xlsread(excel sheet path);

R1_0_mean_Sat = mean(R1_0_Sat,'all');

R1_0_SD_Sat = std(R1_0_Sat,0,'all');

R2_0_Sat = xlsread(excel sheet path);

R2_0_mean_Sat = mean(R2_0_Sat,'all');

R2_0_SD_Sat = std(R2_0_Sat,0,'all');

R3_0_Sat = xlsread(excel sheet path);

R3_0_mean_Sat = mean(R3_0_Sat,'all');

R3_0_SD_Sat = std(R3_0_Sat,0,'all');

303

R4_0_Sat = xlsread(excel sheet path);

R4_0_mean_Sat = mean(R4_0_Sat,'all');

R4_0_SD_Sat = std(R4_0_Sat,0,'all');

R1_10_Sat = xlsread(excel sheet path);

R1_10_mean_Sat = mean(R1_10_Sat,'all');

R1_10_SD_Sat = std(R1_10_Sat,0,'all');

R2_10_Sat = xlsread(excel sheet path);

R2_10_mean_Sat = mean(R2_10_Sat,'all');

R2_10_SD_Sat = std(R2_10_Sat,0,'all');

R3_10_Sat = xlsread(excel sheet path);

R3_10_mean_Sat = mean(R3_10_Sat,'all');

R3_10_SD_Sat = std(R3_10_Sat,0,'all');

R4_10_Sat = xlsread(excel sheet path);

R4_10_mean_Sat = mean(R4_10_Sat,'all');

R4_10_SD_Sat = std(R4_10_Sat,0,'all');

R1_50_Sat = xlsread(excel sheet path);

R1_50_mean_Sat = mean(R1_50_Sat,'all');

R1_50_SD_Sat = std(R1_50_Sat,0,'all');

R2_50_Sat = xlsread(excel sheet path);

R2_50_mean_Sat = mean(R2_50_Sat,'all');

R2_50_SD_Sat = std(R2_50_Sat,0,'all');

R3_50_Sat = xlsread(excel sheet path);

R3_50_mean_Sat = mean(R3_50_Sat,'all');

R3_50_SD_Sat = std(R3_50_Sat,0,'all');

R4_50_Sat = xlsread(excel sheet path);

R4_50_mean_Sat = mean(R4_50_Sat,'all');

R4_50_SD_Sat = std(R4_50_Sat,0,'all');

R1_100_Sat = xlsread(excel sheet path);

R1_100_mean_Sat = mean(R1_100_Sat,'all');

R1_100_SD_Sat = std(R1_100_Sat,0,'all');

304

R2_100_Sat = xlsread(excel sheet path);

R2_100_mean_Sat = mean(R2_100_Sat,'all');

R2_100_SD_Sat = std(R2_100_Sat,0,'all');

R3_100_Sat = xlsread(excel sheet path);

R3_100_mean_Sat = mean(R3_100_Sat,'all');

R3_100_SD_Sat = std(R3_100_Sat,0,'all');

R4_100_Sat = xlsread(excel sheet path);

R4_100_mean_Sat = mean(R4_100_Sat,'all');

R4_100_SD_Sat = std(R4_100_Sat,0,'all');

R1_200_Sat = xlsread(excel sheet path);

R1_200_mean_Sat = mean(R1_200_Sat,'all');

R1_200_SD_Sat = std(R1_200_Sat,0,'all');

R2_200_Sat = xlsread(excel sheet path);

R2_200_mean_Sat = mean(R2_200_Sat,'all');

R2_200_SD_Sat = std(R2_200_Sat,0,'all');

R3_200_Sat = xlsread(excel sheet path);

R3_200_mean_Sat = mean(R3_200_Sat,'all');

R3_200_SD_Sat = std(R3_200_Sat,0,'all');

R4_200_Sat = xlsread(excel sheet path);

R4_200_mean_Sat = mean(R4_200_Sat,'all');

R4_200_SD_Sat = std(R4_200_Sat,0,'all');

Param_Sat = {'0-mean';'0-Std';'10-mean';'10-Std';'50-mean';'50-Std';'100-mean';'100-Std';'200-

mean';'200-Std'};

R1_Sat =

{R1_0_mean_Sat;R1_0_SD_Sat;R1_10_mean_Sat;R1_10_SD_Sat;R1_50_mean_Sat;R1_50_S

D_Sat;R1_100_mean_Sat;R1_100_SD_Sat;R1_200_mean_Sat;R1_200_SD_Sat};

R2_Sat =

{R2_0_mean_Sat;R2_0_SD_Sat;R2_10_mean_Sat;R2_10_SD_Sat;R2_50_mean_Sat;R2_50_S

D_Sat;R2_100_mean_Sat;R2_100_SD_Sat;R2_200_mean_Sat;R2_200_SD_Sat};

R3_Sat =

{R3_0_mean_Sat;R3_0_SD_Sat;R3_10_mean_Sat;R3_10_SD_Sat;R3_50_mean_Sat;R3_50_S

D_Sat;R3_100_mean_Sat;R3_100_SD_Sat;R3_200_mean_Sat;R3_200_SD_Sat};

305

R4_Sat =

{R4_0_mean_Sat;R4_0_SD_Sat;R4_10_mean_Sat;R4_10_SD_Sat;R4_50_mean_Sat;R4_50_S

D_Sat;R4_100_mean_Sat;R4_100_SD_Sat;R4_200_mean_Sat;R4_200_SD_Sat};

Stats_Sat = table(Param_Sat, R1_Sat,R2_Sat,R3_Sat, R4_Sat);

Stats_Sat = rows2vars(Stats_Sat);

Stats_Sat(1,:) = [];

Stats_Sat.Properties.VariableNames = {'Param', '0-mean', '0-Std', ...

 '10-mean', '10-Std', '50-mean', '50-Std', '100-mean', ...

 '100-Std', '200-mean', '200-Std'};

%% Creating box plots of Sat means of replicates

Avg_0_Sat = mean([R1_0_mean_Sat, R2_0_mean_Sat, R3_0_mean_Sat,

R4_0_mean_Sat]);

Avg_10_Sat = mean([R1_10_mean_Sat, R2_10_mean_Sat, R3_10_mean_Sat,

R4_10_mean_Sat]);

Avg_50_Sat = mean([R1_50_mean_Sat, R2_50_mean_Sat, R3_50_mean_Sat,

R4_50_mean_Sat]);

Avg_100_Sat = mean([R1_100_mean_Sat, R2_100_mean_Sat, R3_100_mean_Sat,

R4_100_mean_Sat]);

Avg_200_Sat = mean([R1_200_mean_Sat, R2_200_mean_Sat, R3_200_mean_Sat,

R4_200_mean_Sat]);

SD_0_Sat = std([R1_0_mean_Sat, R2_0_mean_Sat, R3_0_mean_Sat, R4_0_mean_Sat]);

SD_10_Sat = std([R1_10_mean_Sat, R2_10_mean_Sat, R3_10_mean_Sat,

R4_10_mean_Sat]);

SD_50_Sat = std([R1_50_mean_Sat, R2_50_mean_Sat, R3_50_mean_Sat,

R4_50_mean_Sat]);

SD_100_Sat = std([R1_100_mean_Sat, R2_100_mean_Sat, R3_100_mean_Sat,

R4_100_mean_Sat]);

SD_200_Sat = std([R1_200_mean_Sat, R2_200_mean_Sat, R3_200_mean_Sat,

R4_200_mean_Sat]);

x_Sat = [0, 10, 50, 100, 200];

y_Sat = [Avg_0_Sat, Avg_10_Sat, Avg_50_Sat, Avg_100_Sat, Avg_200_Sat];

err_Sat = [SD_0_Sat, SD_10_Sat, SD_50_Sat, SD_100_Sat, SD_200_Sat];

figure;errorbar(x_Sat,y_Sat,err_Sat), xlim([-5,210])

xlabel('Concentrations'), ylabel('Mean Sat values'), title('Saturation Plot');

%% Exporting results into an excel table

writetable(Stats_hue, 'Stats_Hue_Comkit.xlsx');

writetable(Stats_Sat, 'Stats_Sat_Comkit.xlsx');

306

Figure P4.1: Figure outlining the flow of code used in this research objective

Raw data Code P4.1 Code P4.2 Code P4.3 Code P4.4

307

GENERAL CONCLUSIONS

In this research, models were developed in paper 1 to predict Hepatic Steatosis (HS) using

ML-techniques. In developing decision support systems based on ML for HS prediction, a

hierarchical approach was used in exploring different input parameters. Models developed as part

of objective 1A used only six physiological parameters. The models in objective 1B used seven

physiological and liver biochemistry parameters. In paper 2, three selected models (each for male

and female specific populations) from objective 1B were evaluated from an interpretability

perspective to include model transparency.

In paper 3, ML-based models were developed to test the impact of including vs excluding

a cluster of heavy metal exposure data (Lead, Iron, and Cadmium). In paper 4, a commercially

available Arsenic detection kit was tested, and the results were examined visually and using a

customized image analysis algorithm.

Based on the work described above, the following are concluded:

1. Physiological parameters alone can predict HS using 79% accuracy, 76% sensitivity and

82% sensitivity.

2. Models with only seven parameters (vital and liver biochemical) led screening models with

sensitivities of 82.6% for male-specific models and 86% for female specific models. It is

logical to use both physiological and liver biochemical parameters to maximize the

sensitivity and therefore, screening capability of these models.

3. The best performing models from an explainability perspective were identified as

Quadratic SVM in male population and Gaussian SVM scale 1 in female population.

4. The top three independent predictors for male and female data were identified using the

mean of the partial dependencies. In both sexes, ALT, AST, and Glucose were found to be

the most individually contributing features. These three parameters were found to be

individually contributing highly to HS prediction.

5. Results for male and female populations were found to vary slightly with male models

outperforming the female models in terms of alignment with clinical normal values.

6. A theoretical framework for developing hybrid models is provided in sections 3.5.1 d and

3.5.2 d.

308

7. Inclusion of heavy metal exposure (Lead, Iron, and Cadmium) did not have a numerically

significant impact on the model performance in predicting HS.

8. The minimum concentration identifiable using the commercial kit was 100 ppb (under lab

conditions).

9. The commercial kit was not able to differentiate the following concentrations based on our

testing: 0 vs 10 ppb, 10 vs 50 ppb and 100 vs 200 ppb. The 50-ppb vs 100-ppb

concentrations (Arsenic in water) were the most differentiable at 75% PDIF.

10. The increase in Euclidean distance metric (computed using Hue and saturation) was not

linear with increase in concentration of Arsenic in water.

309

GENERAL REFERENCES

[1] Suranjan Panigrahi, “A comprehensive system-based representation of the liver disease

and it associated components. Internal document.” Purdue University, West Lafayette,

IN, 2019.

[2] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer, “Global

epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,

incidence, and outcomes,” Hepatology, vol. 64, no. 1, pp. 73–84, Jul. 2016, doi:

10.1002/hep.28431.

[3] D. L. Wyness, “The four stages of Non-Alcoholic Fatty Liver Disease (NAFLD),” liver-

health-uk, Oct. 09, 2017. https://www.liverhealthuk.com/post/the-four-stages-of-nafld

(accessed Mar. 11, 2022).

[4] “OPTN/SRTR 2018 Annual Data Report: Liver.”

https://srtr.transplant.hrsa.gov/annual_reports/2018/Liver.aspx (accessed Aug. 28, 2020).

[5] N. Chalasani et al., “The diagnosis and management of nonalcoholic fatty liver disease:

Practice guidance from the American Association for the Study of Liver Diseases:

Hepatology,” Hepatology, vol. 67, no. 1, pp. 328–357, Jan. 2018, doi:

10.1002/hep.29367.

[6] J.-Y. Chung, S.-D. Yu, and Y.-S. Hong, “Environmental Source of Arsenic Exposure,” J.

Prev. Med. Pub. Health, vol. 47, no. 5, pp. 253–257, Sep. 2014, doi:

10.3961/jpmph.14.036.

[7] Hopenhayn-Rich C, Biggs M L, Smith A H, Kalman D A, and Moore L E, “Methylation

study of a population environmentally exposed to arsenic in drinking water.,” EnvIron.

Health Perspect., vol. 104, no. 6, pp. 620–628, Jun. 1996, doi: 10.1289/ehp.96104620.

[8] H. Ali, E. Khan, and I. Ilahi, “Environmental Chemistry and Ecotoxicology of Hazardous

Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation,” J. Chem.,

vol. 2019, pp. 1–14, Mar. 2019, doi: 10.1155/2019/6730305.

[9] G. E. Arteel, “Hepatotoxicity,” in Arsenic, John Wiley & Sons, Ltd, 2015, pp. 249–265.

doi: 10.1002/9781118876992.ch11.

[10] B. Wahlang et al., “Toxicant-associated Steatohepatitis,” Toxicol. Pathol., vol. 41, no. 2,

pp. 343–360, Feb. 2013, doi: 10.1177/0192623312468517.

[11] M. Cave et al., “Toxicant-associated steatohepatitis in vinyl chloride workers,”

Hepatology, vol. 51, no. 2, pp. 474–481, Feb. 2010, doi: 10.1002/hep.23321.

310

[12] A. R. Murali and W. D. Carey, “Liver Test Interpretation - Approach to the Patient with

Liver Disease: A Guide to Commonly Used Liver Tests,” Cleveland Clinic - Center for

Continuing Education, Apr. 2014.

https://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/hepatology/gui

de-to-common-liver-tests/ (accessed Oct. 27, 2020).

[13] L. C. Bertot et al., “Nonalcoholic fatty liver disease-related cirrhosis is commonly

unrecognized and associated with hepatocellular carcinoma: Hepatology

Communications, Month 2017,” Hepatol. Commun., vol. 1, no. 1, pp. 53–60, Feb. 2017,

doi: 10.1002/hep4.1018.

[14] R. Loomba, “Role of imaging-based biomarkers in NAFLD: Recent advances in clinical

application and future research directions,” J. Hepatol., vol. 68, no. 2, pp. 296–304, Feb.

2018, doi: 10.1016/j.jhep.2017.11.028.

[15] L. A. Adams et al., “The Natural History of Nonalcoholic Fatty Liver Disease: A

Population-Based Cohort Study,” Gastroenterology, vol. 129, no. 1, pp. 113–121, Jul.

2005, doi: 10.1053/j.gastro.2005.04.014.

[16] S. Mitra, A. De, and A. Chowdhury, “Epidemiology of non-alcoholic and alcoholic fatty

liver diseases,” Transl. Gastroenterol. Hepatol., vol. 5, pp. 16–16, Apr. 2020, doi:

10.21037/tgh.2019.09.08.

[17] A. Ofosu, “Non-alcoholic fatty liver disease: controlling an emerging epidemic,

challenges, and future directions,” Ann. Gastroenterol., 2018, doi:

10.20524/aog.2018.0240.

[18] E. Carey, A. Wieckowska, and W. D. Carey, “Nonalcoholic Fatty Liver Disease,”

Cleveland Clinic - Center for Continuing Education, Mar. 2013.

https://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/hepatology/non

alcoholic-fatty-liver-disease-march-13/ (accessed Oct. 22, 2020).

[19] S. C. Lin et al., “Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and

Quantification of Liver Fat Using a New Quantitative Ultrasound Technique,” Clin.

Gastroenterol. Hepatol., vol. 13, no. 7, pp. 1337-1345.e6, Jul. 2015, doi:

10.1016/j.cgh.2014.11.027.

[20] J. S. Paige et al., “A Pilot Comparative Study of Quantitative Ultrasound, Conventional

Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult

Nonalcoholic Fatty Liver Disease,” Am. J. Roentgenol., vol. 208, no. 5, pp. W168–W177,

May 2017, doi: 10.2214/AJR.16.16726.

[21] A. Han et al., “Inter-platform reproducibility of ultrasonic attenuation and backscatter

coefficients in assessing NAFLD,” Eur. Radiol., vol. 29, no. 9, pp. 4699–4708, Sep.

2019, doi: 10.1007/s00330-019-06035-9.

311

[22] J. Choi et al., “Mercury Exposure in Association With Decrease of Liver Function in

Adults: A Longitudinal Study,” J. Prev. Med. Pub. Health, vol. 50, no. 6, pp. 377–385,

Nov. 2017, doi: 10.3961/jpmph.17.099.

[23] M. Colombo et al., “EASL Clinical Practice Guideline: Occupational liver diseases,” J.

Hepatol., vol. 71, no. 5, pp. 1022–1037, Nov. 2019, doi: 10.1016/j.jhep.2019.08.008.

[24] I. Palma-Lara et al., “Arsenic exposure: A public health problem leading to several

cancers,” Regul. Toxicol. Pharmacol., vol. 110, p. 104539, Feb. 2020, doi:

10.1016/j.yrtph.2019.104539.

[25] O. US EPA, “Learn about Lead,” US EPA, Feb. 12, 2013.

https://www.epa.gov/lead/learn-about-lead (accessed Nov. 28, 2020).

[26] World Health Organization, “Chemical fact Sheets,” in Guidelines for drinking -water

quality, 4th ed., Geneva: World Health Organization, 2011. Accessed: Nov. 01, 2020.

[Online]. Available:

https://www.who.int/water_sanitation_health/publications/2011/9789241548151_ch12.pd

f

[27] H. S. Kim, Y. J. Kim, and Y. R. Seo, “An Overview of Carcinogenic Heavy Metal:

Molecular Toxicity Mechanism and Prevention,” J. Cancer Prev., vol. 20, no. 4, pp. 232–

240, Dec. 2015, doi: 10.15430/JCP.2015.20.4.232.

[28] World Health Organization, Ed., Guidelines for drinking-water quality, 4th ed. Geneva:

World Health Organization, 2011.

[29] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, “Toxic

Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic,”

Front. Pharmacol., vol. 12, p. 643972, Apr. 2021, doi: 10.3389/fphar.2021.643972.

[30] Suranjan Panigrahi, “Verbal discussion of the need of heavy metal detection sensor at the

household level.” Purdue University, West Lafayette, IN, 2020.

[31] S. Panigrahi, “A System-Based Analysis and Approach for Water-Linked Health and

Wellness in Low-Resource Setting,” p. 7.

[32] T. D. Ellington, B. Momin, R. J. Wilson, S. J. Henley, M. Wu, and A. B. Ryerson,

“Incidence and Mortality of Cancers of the Biliary Tract, Gallbladder, and Liver by Sex,

Age, Race/Ethnicity, and Stage at Diagnosis: United States, 2013 to 2017,” Cancer

Epidemiol. Biomarkers Prev., vol. 30, no. 9, pp. 1607–1614, Sep. 2021, doi:

10.1158/1055-9965.EPI-21-0265.

[33] S. U. Khan, A. Y. Zomaya, and A. Abbas, Eds., Handbook of Large-Scale Distributed

Computing in Smart Healthcare. Cham: Springer International Publishing, 2017. doi:

10.1007/978-3-319-58280-1.

312

[34] K. Ganapathy, “Artificial Intelligence and Healthcare Regulatory and Legal Concerns,”

Telehealth Med. Today, Apr. 2021, doi: 10.30953/tmt.v6.252.

[35] C. for D. and R. Health, “Artificial Intelligence and Machine Learning in Software as a

Medical Device,” FDA, Oct. 2020, Accessed: Nov. 30, 2020. [Online]. Available:

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-

intelligence-and-machine-learning-software-medical-device

[36] W. Nicholson Price II, “Artificial Intelligence in Health Care: Applications and Legal

Implications,” SciTech Lawyer, vol. 14, no. 1, p. 5, 2017.

[37] O. Asan, A. E. Bayrak, and A. Choudhury, “Artificial Intelligence and Human Trust in

Healthcare: Focus on Clinicians,” J. Med. Internet Res., vol. 22, no. 6, p. e15154, Jun.

2020, doi: 10.2196/15154.

[38] S. N. Payrovnaziri et al., “Explainable artificial intelligence models using real-world

electronic health record data: a systematic scoping review,” J. Am. Med. Inform. Assoc.,

vol. 27, no. 7, pp. 1173–1185, Jul. 2020, doi: 10.1093/jamia/ocaa053.

[39] A. Shaban-Nejad, M. Michalowski, and D. L. Buckeridge, “Explainability and

Interpretability: Keys to Deep Medicine,” in Explainable AI in Healthcare and Medicine,

vol. 914, A. Shaban-Nejad, M. Michalowski, and D. L. Buckeridge, Eds. Cham: Springer

International Publishing, 2021, pp. 1–10. doi: 10.1007/978-3-030-53352-6_1.

[40] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,”

in 2018 41st International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), May 2018, pp. 0210–0215. doi:

10.23919/MIPRO.2018.8400040.

[41] G. Vilone and L. Longo, “Explainable Artificial Intelligence: a Systematic Review,”

ArXiv200600093 Cs, Oct. 2020, Accessed: Feb. 24, 2022. [Online]. Available:

http://arxiv.org/abs/2006.00093

[42] M. Ghassemi, L. Oakden-Rayner, and A. L. Beam, “The false hope of current approaches

to explainable artificial intelligence in health care,” Lancet Digit. Health, vol. 3, no. 11,

pp. e745–e750, Nov. 2021, doi: 10.1016/S2589-7500(21)00208-9.

[43] C. for D. and R. Health, “Software as a Medical Device (SAMD): Clinical Evaluation,”

U.S. Food and Drug Administration, Mar. 02, 2020. https://www.fda.gov/regulatory-

information/search-fda-guidance-documents/software-medical-device-samd-clinical-

evaluation (accessed Nov. 30, 2020).

[44] T. W. Kim and B. R. Routledge, “Informational Privacy, A Right to Explanation, and

Interpretable AI,” in 2018 IEEE Symposium on Privacy-Aware Computing (PAC),

Washington, DC, Sep. 2018, pp. 64–74. doi: 10.1109/PAC.2018.00013.

313

[45] L. Gordon, T. Grantcharov, and F. Rudzicz, “Explainable Artificial Intelligence for Safe

Intraoperative Decision Support,” JAMA Surg., vol. 154, no. 11, pp. 1064–1065, Nov.

2019, doi: 10.1001/jamasurg.2019.2821.

[46] S. M. Lauritsen et al., “Explainable artificial intelligence model to predict acute critical

illness from electronic health records,” Nat. Commun., vol. 11, no. 1, p. 3852, Jul. 2020,

doi: 10.1038/s41467-020-17431-x.

[47] N. Mirchi, V. Bissonnette, R. Yilmaz, N. Ledwos, A. Winkler-Schwartz, and R. F. Del

Maestro, “The Virtual Operative Assistant: An explainable artificial intelligence tool for

simulation-based training in surgery and medicine,” PLOS ONE, vol. 15, no. 2, p.

e0229596, Feb. 2020, doi: 10.1371/journal.pone.0229596.

[48] J. Peng et al., “An Explainable Artificial Intelligence Framework for the Deterioration

Risk Prediction of Hepatitis Patients,” J. Med. Syst., vol. 45, no. 5, p. 61, May 2021, doi:

10.1007/s10916-021-01736-5.

[49] Erik J. Tokar, Windy A. Boyd, Jonathan H. Freedman, and Michael P. Waalkes, “Chapter

23: Toxic Effects of Metals,” in Essentials of Toxicology, 3rd ed., McGraw Hill

Professional, 2015.

[50] O. Wada, “What are Trace Elements ? — Their deficiency and excess states —,”

undefined, 2004, Accessed: Feb. 23, 2022. [Online]. Available:

https://www.semanticscholar.org/paper/What-are-Trace-Elements-%E2%80%94-Their-

deficiency-and-%E2%80%94-Wada/1ab535fdde462592695589f05280de9ba8cffab0

[51] A. P. Ebokaiwe et al., “Assessment of heavy metals around Abakaliki metropolis and

potential bioaccumulation and biochemical effects on the liver, kidney, and erythrocyte

of rats,” Hum. Ecol. Risk Assess. Int. J., vol. 24, no. 5, pp. 1233–1255, Jul. 2018, doi:

10.1080/10807039.2017.1410695.

[52] D. N. G. Mazumder et al., “Chronic arsenic toxicity from drinking tubewell water in rural

West Bengal,” p. 8.

[53] H. Lee, Y. Kim, C.-S. Sim, J.-O. Ham, N.-S. Kim, and B.-K. Lee, “Associations between

blood mercury levels and subclinical changes in liver enzymes among South Korean

general adults: Analysis of 2008–2012 Korean national health and nutrition examination

survey data,” EnvIron. Res., vol. 130, pp. 14–19, Apr. 2014, doi:

10.1016/j.envres.2014.01.005.

[54] R. Khan et al., “Toxicological effects of toxic metals (Cadmium and mercury) on blood

and the thyroid gland and pharmacological intervention by vitamin C in rabbits,”

EnvIron. Sci. Pollut. Res., vol. 26, no. 16, pp. 16727–16741, Jun. 2019, doi:

10.1007/s11356-019-04886-9.

[55] A. Sharma and S. Nagalli, “Chronic Liver Disease,” in StatPearls, Treasure Island (FL):

StatPearls Publishing, 2022. Accessed: Feb. 26, 2022. [Online]. Available:

http://www.ncbi.nlm.nih.gov/books/NBK554597/

314

[56] P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, “Heavy Metal Toxicity

and the Environment,” in Molecular, Clinical and Environmental Toxicology, vol. 101,

A. Luch, Ed. Basel: Springer Basel, 2012, pp. 133–164. doi: 10.1007/978-3-7643-8340-

4_6.

[57] G. Flora, D. Gupta, and A. Tiwari, “Toxicity of lead: a review with recent updates,”

Interdiscip. Toxicol., vol. 5, no. 2, pp. 47–58, Nov. 2012, doi: 10.2478/v10102-012-0009-

2.

[58] S. T. Cherng, J. Tam, P. J. Christine, and R. Meza, “Modeling the Effects of E-cigarettes

on Smoking Behavior: Implications for Future Adult Smoking Prevalence,”

Epidemiology, vol. 27, no. 6, pp. 819–826, Nov. 2016, doi:

10.1097/EDE.0000000000000497.

[59] International Agency for Research on Cancer and Weltgesundheitsorganisation, Eds.,

IARC monographs on the evaluation of carcinogenic risks to humans, volume 100 C,

arsenic, metals, fibres, and dusts: this publication represents the views and expert

opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to

Humans, which met in Lyon, 17 - 24 March 2009. Lyon: IARC, 2012.

[60] V. M. Nurchi, A. Buha Djordjevic, G. Crisponi, J. Alexander, G. Bjørklund, and J.

Aaseth, “Arsenic Toxicity: Molecular Targets and Therapeutic Agents,” Biomolecules,

vol. 10, no. 2, p. 235, Feb. 2020, doi: 10.3390/biom10020235.

[61] “ATSDR - Medical Management Guidelines (MMGs): Arsine.”

https://www.atsdr.cdc.gov/MMG/MMG.asp?id=1199&tid=278 (accessed Nov. 28, 2020).

[62] “Arsenic Toxicity | Winchester Hospital.” https://www.winchesterhospital.org/health-

library/article?id=120795 (accessed Nov. 28, 2020).

[63] Cave Matt, Appana Savitri, Patel Mihir, Falkner Keith Cameron, McClain Craig J., and

Brock Guy, “Polychlorinated Biphenyls, Lead, and Mercury Are Associated with Liver

Disease in American Adults: NHANES 2003–2004,” EnvIron. Health Perspect., vol.

118, no. 12, pp. 1735–1742, Dec. 2010, doi: 10.1289/ehp.1002720.

[64] A. Michailova, T. Kuneva, and T. Popov, “A comparative assessment of liver function in

workers in the petroleum industry,” Int. Arch. Occup. EnvIron. Health, vol. 71 Suppl, pp.

S46-49, Sep. 1998.

[65] H. P. Cotrim, Z. A. Andrade, R. Parana, M. Portugal, L. G. Lyra, and L. A. R. Freitas,

“Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers,” Liver Int., vol.

19, no. 4, pp. 299–304, Aug. 1999, doi: 10.1111/j.1478-3231.1999.tb00053.x.

[66] O. US EPA, “Potential Well Water Contaminants and Their Impacts,” May 06, 2015.

https://www.epa.gov/privatewells/potential-well-water-contaminants-and-their-impacts

(accessed Mar. 14, 2022).

315

[67] H. Zhai et al., “Blood lead level is associated with non-alcoholic fatty liver disease in the

Yangtze River Delta region of China in the context of rapid urbanization,” EnvIron.

Health, vol. 16, no. 1, p. 93, Aug. 2017, doi: 10.1186/s12940-017-0304-7.

[68] T. Luo et al., “Chronic exposure to low doses of Pb induces hepatotoxicity at the

physiological, biochemical, and transcriptomic levels of mice,” EnvIron. Toxicol., vol.

34, no. 4, pp. 521–529, 2019, doi: 10.1002/tox.22706.

[69] E. Georgieva et al., “Histological and biochemical changes in liver of common carp

(Cyprinus carpio L.) under metal exposure,” p. 10.

[70] A. Santra et al., “Hepatic Damage Caused by Chronic Arsenic Toxicity in Experimental

Animals,” J. Toxicol. Clin. Toxicol., vol. 38, no. 4, pp. 395–405, Jan. 2000, doi:

10.1081/CLT-100100949.

[71] A. H. Welch, D. B. Westjohn, D. R. Helsel, and R. B. Wanty, “Arsenic in Ground Water

of the United States: Occurrence and Geochemistry,” Groundwater, vol. 38, no. 4, pp.

589–604, 2000, doi: 10.1111/j.1745-6584.2000.tb00251.x.

316

APPENDIX F. NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)

FROM MULTIPLE SCIENTIFIC PERSPECTIVES AND

CONTEMPORARY REVIEWS

This manuscript was submitted to a peer review journal – IEEE EMB – Reviews in Biomedical

Engineering in April 2021. The manuscript is currently under-review.

Ridhi Deo, Suranjan Panigrahi, and Edward Liechty

Abstract: In the past three decades, the prevalence of NAFLD has been rising consistently across the globe, including in

the USA. The progression of NAFLD into cirrhosis, fibrosis, and other complications is predicted to cause a high clinical

burden in the upcoming years. Although NAFLD prevalence is increasing along with the increasing co-morbidities of obesity

and diabetes, the exact cause of NAFLD is unknown. Non-invasive and low-cost screening options for NAFLD are limited to

ultrasound-based imaging, while liver biopsy is the required benchmark for diagnosis. Lack of specific biomarkers makes it

challenging to identify and screen the disease early-on. Moreover, chronic heavy metal exposure (Arsenic, Lead, Mercury,

and Cadmium) was found to be associated with NAFLD occurrence. Considering the complex pathway and multiple factors

associated with NAFLD, it is appropriate to conduct a benchmark literature review related to this disease (NAFLD) and its

associated factors. Thus, this mini review identifies: 1) Recent research related to the enzymes indicative of NAFLD 2)

Overlap between NAFLD and heavy metal exposure and, 3) Contemporary tools and techniques being researched for NAFLD

detection. This review also reflects on NAFLD as an associated risk factor for other diseases like PCOS, cardiovascular

diseases, and hepatocellular carcinoma.

I. INTRODUCTION

The liver plays a key role in xenobiotic metabolism while

maintaining the body’s metabolic homeostasis and

synthesizing carbohydrates and lipids. It is the most

important detoxifying organ in the body and is therefore

highly susceptible to toxicity [1],[2].

There are multiple sources of liver problems, caused by

external or internal agents.

The liver’s functionality can be impaired by external

agents like viruses or toxins. Additionally, liver functionality

could also be impaired due to cancer or other genetic

conditions (e.g.: Wilson’s disease).

Viruses cause liver diseases like hepatitis A, B, and C in

humans. Toxins, on the other hand, can cause liver diseases

by accumulation. The toxins that accumulate in the liver can

stem from various sources like medicinal drugs, alcohol

consumption, or heavy metal exposure. In this review, the

focus is on heavy metal-induced toxicity and its impact on

liver functionality. Heavy metals: Arsenic (As), Lead (Pb),

Mercury (Hg), and Cadmium (Cd) have been previously

researched in the context of toxicity and their impact on the

human body [1]–[13], [13]–[31].

The major source of heavy metal exposure in humans

occurs via drinking water [11], food [26] and, environmental

exposure - particularly due to occupational hazards [32],

[33]. These heavy metals usually accumulate over time in

the liver, causing it to inflame and eventually leading to liver

dysfunction [1], [15].

Liver diseases initiated by exposure to toxins or other

pollutants like heavy metals, tend to progress with time.

Chronic liver diseases either caused by or due to excessive

alcohol consumption, exposure to heavy metals or other

toxic chemicals, etc. lead to fibrosis, cirrhosis, and

eventually cancer, when left undiagnosed and/or untreated.

Non-alcoholic fatty liver disease (NAFLD) is a chronic

disease, similar in progression to alcoholic fatty liver disease

(ALD) [34].

The scope of this review paper is limited to the

consequences of exposure to heavy metals on the liver,

leading up to or progressing the NAFLD condition.

It is important to point out that the exact cause for

NALFD is unknown [35], however, heavy metal exposure is

a known risk factor for NAFLD [1], [11], [36]. Recent

studies have indicated the occurrence of NAFLD in

individuals with the exposure of heavy metals Hg [21], As

[1], and Pb [14]. Moreover, one of the causes of liver enzyme

modification was found to be linked with the presence of

heavy metals (in adult mice) [26]. Thus, this paper focuses

on the impact of specific heavy metals (Hg, As, Cd, and Pb)

on the liver, with a special emphasis on NAFLD.

The prevalence of NAFLD has been increasing in the

recent years [37]. Increased urbanization led by

industrialization has encouraged a sedentary lifestyle in

many parts of the world [14], [38], [39]. This shift has

resulted in increasing cases of obesity worldwide. One of the

outcomes of this shift, combined with rising obesity, has

been an increase in the prevalence of NAFLD [40]. Younossi

et al. identified a 10% increase in the global prevalence of

NAFLD between 2005 to 2010 [37]. The prevalence of

NAFLD by country is shown in figure 1 [37]. The

prevalence estimate (as of 2016) included studies from 1989

– 2015, with a sample size of 8,515,431 adults, in a meta-

analysis by Younossi et al. [37].

317

Fig 1. Prevalence estimate of NAFLD around the world [37]

Considering that an exact cause for NAFLD is not known

[35], [41], and its increasing prevalence, a systems

perspective is needed, accounting the different factors linked

to the liver and its functionality. For instance, it is important

to know the pathway of heavy metals from the environment

into the human system and further impacting the liver. Thus,

we justify conducting a state-of-art literature review related

to the topics described below:

1) The enzymes indicative of non-alcoholic fatty

liver disease (NAFLD) and related liver

diseases

2) Effect of heavy metal exposure on

biomarkers/enzymes indicative of liver

functionality

3) Emerging biomarkers and techniques for

NAFLD detection

Typical biomarkers related to NAFLD and more specific

biomarkers in the context of heavy metal toxicity are

reviewed in this paper. Biomarkers at different levels of

abstraction – protein biomarkers, gene mutations, and

enzyme biomarkers are included in this paper. Detection

strategies based on these biomarkers are also discussed.

Further, detection devices based on specific biomarkers are

part of the review as well.

In this review, three databases (PubMed, Engineering

Village, and Web of Science) were used to find relevant

literature. Combinations of keywords: heavy metal toxicity,

liver functionality, liver enzymes, liver dysfunction,

NAFLD biomarkers and, mathematical models were used.

Papers published in the last six years (2014- 20) were

included. A total of 676 abstracts were initially obtained.

After abstract review and de-duplication, 97 papers were

selected for further review. Of these 97 papers, selected

studies that are related to this review’s research objectives

are cited in our paper, along with other cross-references that

stemmed from the literature. The organization of the review

is shown in fig 2.

Fig 2. Organization of this review

II. LIVER FUNCTIONALITY

Liver’s role in detoxification: The specificity of the

liver’s role in detoxifying can be highlighted using the

results of research, specifically with liver tissues in animal

models [9], [42].

Geng et al. researched five specific tissues of fish species

in Shanghai [42]. They investigated the nutritional and toxic

contents in the dorsal, abdominal and tail muscles and also

liver, and abdominal fat tissues [42]. Hg levels in all tissues

were found to be under the limit of 500 g/kg, except in the

liver tissue; Hg levels were very high (range: < 500 – 1567

g/kg) in the liver compared to other muscle tissues in their

study [42]. The disproportionate amount of toxicity in the

liver tissue compared to other muscles highlights the burden

of toxic exposure specifically on the liver.

Another research group explored the contamination levels

in fish from a reservoir, in an area with rigorous copper

mining [9]. The heavy metal concentrations in the livers of

fish in the reservoir (N = 45, 15 per season) vs water heavy

metal concentrations in the reservoir itself (three seasons)

were measured. They found the metal concentrations in the

fish livers to be higher than in the reservoir (p<0.05) [9]. The

aspartate aminotransferase (AST) activity was also found to

be significantly different (p<0.05) [9]. Furthermore, hepatic

histological alterations were found in the fish livers,

including degenerations, necrosis and, blood vessel changes,

indicating liver dysfunctionality at the tissue and cellular

level when exposed to metal-contaminated water [9].

The association between liver health and heavy metal

exposure was also explored in human models by some

researchers. These are elaborated on in section III of this

paper.

As mentioned in section I of this paper, a liver’s

functionality can be impaired by various external agents like

viruses (cause hepatitis A, B, C), toxins (cause fatty liver

disease (FLD), cirrhosis), or genetic conditions (that cause

Wilson’s disease) [43]. This paper focuses on Non-

Alcoholic Fatty Liver Disease (NAFLD). NAFLD is

13.48%

21.09%

23.71%

27.37%

30.45%
31.79%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Africa North

America

Europe Asia South

America

Middle

East

NAFLD Prevalence Estimate

This review

I. Introduction

II. Liver functionality

Epidemiology

Etiology

III. NAFLD and heavy
metal exposure

IV. Emerging biomarkers
& tools for NAFLD

detection

Physiological markers

Omics

Use of computational
tools

NAFLD as a risk factor
for other diseases

Summary and Future
Outlook

318

described by the storage of additional liver fat, leading to

either a simple fatty liver or Non-Alcoholic Steatohepatitis

(NASH) [41]. NASH is defined as the presence of liver

inflammation and liver damage in addition to fat

accumulation [41]. NASH can lead to further complications

over time. Liver cirrhosis and liver cancer are complications

associated with NASH [41]. For patients with severe liver

cirrhosis leading to organ failure, a liver transplant is usually

required for survival [41]. The incidence of NAFLD is

increasing in both developed and developing countries [37].

In a multiethnic study of 106,458 individuals living in the

USA, NAFLD was found to be the major cause (52%) of

chronic liver diseases (CLD) [44].

Current clinical practices define the normal ranges of

clinical parameters (enzymes, proteins) from the liver

function test as follows:

i) ALT (alanine aminotransferase): 29-33 U/L for men,

19-25 U/L for women [45]

ii) AST (aspartate aminotransferase): 0-35 U/L [46]

iii) ALP (alkaline phosphatase): 30-120 U/L [46]

iv) Albumin: 4.0-6.0 g/dL [46]

v) GGT (gamma-glutamyl transferase): 0-30 U/L [46]

vi) Bilirubin: 2-17 µM/L [46]

In this review, the guidelines and references related to

liver diseases in the USA are included. Other guidelines

from Europe, Asia pacific etc. are not a part of this review.

They can be found in the references [8], [47], [48].

Although clinical practitioners conduct imaging tests or

biopsies for confirmed NAFLD and NASH diagnoses, if

liver enzymes are elevated, the hepatocellular pattern for

NAFLD and NASH screening is AST/ALT ratio < 1 [49].

Note that the liver enzymes are not always elevated in the

case of NAFLD and NASH [49]. Additional details about

albumin, bilirubin, total protein etc. are not covered in this

paper. Details related to these proteins/enzymes can be

found in the references [50], [51].

A. Epidemiology

A 10% increase in the global prevalence of NAFLD

between 2005 – 10 was identified in an epidemiological

study [37]. This finding is consistent with other studies that

have also found increasing prevalence rates both globally

and specifically in the USA [52], [53]. Although the primary

target region of this mini-review is the USA, it is pertinent

to highlight the magnitude of the NAFLD prevalence in

other regions around the globe.

Fig 1 shows the prevalence of NAFLD around the world

(from 1989 – 2015) [37]. The Middle East and South

America were identified as highly prevalent regions at

31.8% and 30.4% respectively [37]. A similar statistic was

observed in the USA based on National Health and Nutrition

Examination Survey (NHANES) data [52]. The prevalence

of NAFLD in the USA rose from 5.5% to 11% from 1988

to 2008. [52], [54].

In Asia, the epidemiology of NAFLD has continued to

rise since the year 1990 [55]. Japan, for instance,

experienced an increase in NAFLD prevalence by 17% from

1990 to 1998 – with varying sex prevalence, as of 2008

(~32% male vs 17% female) [55]. Similarly, the NAFLD

prevalence ranged from 15 – 45% in southeast Asia

(includes India, Sri Lanka, Malaysia, Singapore, and

Indonesia), Korea, Japan, and Taiwan [55]. China (20%) and

Hong Kong (27%) were also found to show an increasing

prevalence of NAFLD during 2003-13 [55].

Translating these prevalence rates into absolute numbers

(individuals), in highly populated countries like China and

India highlights the significance of addressing this disease

(prevention, early diagnosis, and management).

A global meta-analysis of 49,419 individuals (from 80

studies in 20 countries) revealed that 55.5% and 37.3% of

type 2 diabetes (T2DM) patients had NAFLD and NASH

(non-alcoholic steatohepatitis) respectively, between

January 1989 to September 2018 [56]. A combined NAFLD

prevalence (within group of type 2 diabetes patients) of

59.20% was reported in Iran, Saudi Arabia, and Turkey (via

meta-analysis based on four separate reports) [56]. The same

meta-analysis further reported a prevalence of 57.46% in

India and Pakistan (within group of type 2 diabetes patients,

based on six separate reports). Interestingly, the NAFLD

prevalence rose to 68.82% in type 2 diabetic patients in

Europe (based on 26 reports) [56].

Another recent review paper outlined the increasing

prevalence of NAFLD risk factors like insulin resistance,

hypertension, and dyslipidemia alongside increasing

NAFLD prevalence [54]. Aside from high prevalence with

obese, overweight, and diabetic populations, approximately

5-15% of the lean population (based on BMI) were found to

have NAFLD [55], [57]. Further, it was found that older

adults, specifically in the range of 40-50 have been affected

by NAFLD, NASH risk, and fibrosis [54]. Greater

prevalence in patients with Hispanic ethnicity when

compared to non-Hispanic Caucasians and African

Americans was also found [58].

According to the United States Organ Procurement and

Transplantation Network’s (OPTN) annual report, the

number of liver transplants for NASH continued to rise in

2018 [59]. The number of candidates on the waitlist for liver

transplant in 2018 were increasingly found to have NAFLD

[59]. Obesity (defined as BMI >= 30 kg/m2) and diabetes

were found to be consistent with adult liver recipients at

34.6% and 29.2% respectively in 2018 [59]. Further, the

United Network for Organ Sharing (UNOS) recorded that

obesity and diabetes increased by approximately 1.7% and

4.3% respectively over the past decade [59].

1) NAFLD and sex disparities:

Sex disparities have been observed in NAFLD prevalence

around the globe. In a recent paper, Lonardo et al.

summarized population-based studies (10 studies on

NAFLD in adult populations) that report higher prevalence

in men, than in women [60]. It is important to note that

multiple diverse investigations led to a consistent finding of

men being more prone to NAFLD than women are [60]–

319

[62]. The possible linkage of estrogen as a protective factor

for NAFLD has been reported [61]. The report further

alluded that men and women (post-menopause) have a larger

risk of NAFLD compared to risk in pre-menopausal women

[61].

NAFLD prevalence was found to increase with the

increase in BMI for both men and women [63]. However, in

445 normal BMI (18.5 to 23.9) individuals, NAFLD

prevalence was higher among men than that for women

(14.4%; for men vs 11.9%; for women; p = 0.0156, 95% CI).

Although NAFLD prevalence, in general, is lower among

women than among men, the progression of NAFLD to

advanced fibrosis is faster among women as compared to

that for men [62].

Therefore, we argue that a comparatively lower NAFLD

prevalence percentage among women needs to be carefully

interpreted. In a populated country(ies), this percentage can

translate to a high, concerning, absolute number of women

affected by NAFLD.

Overall, the literature does not indicate any specific

reason for the difference in NAFLD prevalence among men

and women. Additional investigation is needed to address

this disparity.

Aside from the traditional risk factors for NAFLD,

toxicant-associated risk factors for NAFLD have been

identified to induce NAFLD and NASH like pathology.

These conditions are named Toxicant-induced fatty liver

disease (TAFLD) and Toxicant-associated steatohepatitis

(TASH) [36], [64].

2) TAFLD and TASH:

These conditions are induced via occupational hazards in

jobs that involve chronic exposure to heavy metals. TAFLD

is similar in pathology to NAFLD and ALD, while NASH

and TASH are similar, pathologically [36].

Upon evaluation of liver biopsies of 25 highly exposed

vinyl chloride workers, Cave et al. found an 80% prevalence

of steatohepatitis [64]. It is important to note that the 25

workers were not obese and had no other identifiable risk

factor for steatohepatitis, other than occupational exposure

[64].

In an attempt to estimate the prevalence of unexplained

NAFLD in the US adult population, a population study based

on 4,582 individuals was conducted (using NHANES data)

and compared with their Pb, Hg, and Cd exposure [21].

Upon extrapolation using sample weights, an estimated

10.6% of the US adult population was found to have an

unexplained elevation of the liver enzyme – ALT [21].

Elevated ALT was defined as - Men: 18-20 years: ≥ 37 IU/L,

≥ 21 years: ≥ 48 IU/L; Women: 18–20 years: ≥ 30 IU/L, ≥

21 years: ≥ 31 IU/L and was used as a proxy for unexplained

NAFLD [21]. Blood Pb concentration and total Hg

concentration were associated with elevated ALTs at p-

values of 0.006 and 0.010 respectively (95% CI) [21].

However, Cd was not found to correlate with the elevated

ALTs [21]. Researchers find this unexplained NAFLD to be

possibly associated with exposure to toxicants [21]. Other

such studies that evaluate the prevalence of NAFLD or

NASH in workers with occupational exposure to toxicants

(volatile petrochemicals, vinyl chloride) have shown similar

results [65], [66].

Overall, the American Liver Foundation estimates that

25% of the US population has NAFLD [67]. NAFLD was

also found to be the most common chronic liver condition in

the USA by the American Liver Foundation [67]. However,

research shows that a majority of the NAFLD diagnoses are

incidental [68]–[70]. In a study with 100 adults with NAFLD

(from west Australia between 2009 – 15), it was found that

66% of NAFLD-related cirrhosis was diagnosed

incidentally, of which 74% was further diagnosed with

NAFLD incidentally [68]. This finding is indicative of a lack

of systematic screening and diagnostic patterns for an

increasingly prevalent disease like NAFLD. The various

intricate factors impacting NAFLD, and their interactions

are outlined in the etiology section below.

B. Etiology

Multiple complex parameters like inflammation, insulin

resistance, diabetes, obesity, diet, and lifestyle play a role in

the etiology of NAFLD [25], [71], [72]. The interaction of

these parameters promotes disease progression. These

parameters are analyzed in detail in the sections below.

3) NAFLD and diabetes:

A global meta-analysis study of 49,419 type-2 diabetes

patients was conducted. 55.5% of them had NAFLD and

37.3% had NASH [56]. This observation indicates the co-

existence of diabetes with NAFLD/NASH.

Similar to NAFLD, the prevalence of diabetes is also

different for men and women. According to the International

Diabetes Foundation, an additional 17.2 million men were

diagnosed with diabetes in 2019, as compared to that among

women [73]. Although obesity is observed in both diabetic

[74] and NAFLD patients [71], the contribution of NAFLD

to diabetes hazard factor (3.59) is higher than that (1.99)

contributed by ‘over-weight’ (BMI >= 23) condition [75].

4) NAFLD and Metabolic Syndrome (MS):

Researchers have found a strong association between

NAFLD and MS [71], [72], [76]. Multiple agencies around

the globe like the World Health Organization (WHO),

European Group for the Study of Insulin Resistance (EGIR),

National Cholesterol Education Program (NCEP) Adult

Treatment Panel III (ATP III), and others have defined MS

[27]–[29]. The more recent definition by NCEP-ATP III in

2005 identifies MS when three of the five criteria in table 1

apply [77], [78]:
TABLE I

DEFINITION OF MS BY NCEP-ATP III [77], [78]

Parameter Men Women

Abdominal obesity > 40 inches > 35 inches

Triglycerides > 150 mg/dL > 150 mg/dL

HDL < 40 mg/dL < 50 mg/dL

Blood Pressure > 130/> 85 mm
of Hg

> 130/> 85 mm
of Hg

Fasting Glucose > 110 mg/dl > 110 mg/dl

320

Although there isn’t a unanimous opinion about NAFLD

manifesting itself as MS or NAFLD as a precursor for MS,

some researchers have found data that supports the latter

[58], [71], [79]. While MS is a common risk factor for

NAFLD patients, differences in prevalence were found

based on race and ethnicity [71]. Further, exposure to heavy

metals was found to contribute to MS in individuals –

although the available data is conflicting [43]. MS is defined

as the co-occurrence of several known factors; the central

pathophysiology being insulin resistance (IR) [78].

5) NAFLD and IR:

IR was reported as a stand-alone parameter associated

with risk of NAFLD, with or without MS [80]. Cases of IR

and hyperinsulinemia are both persistent in NAFLD patients

but in the case of NAFLD patients who develop IR, high

circulating free fatty acids (FFAs) are created [71]. Hepatic

uptake of FFAs results in reduced glycogen storage and

increased gluconeogenesis [71]. The combined effect of IR

and hyperinsulinemia have been linked with steatosis and

excessive release of triglycerides [71]. These triglycerides

are in the form of very-low-density particles that assist

oxidative stress in the liver and prompt atherosclerosis [71],

[72].

6) NAFLD and hormone dysfunction:

Various hormones are related to the promotion of obesity,

inflammation, and lifestyle habits. Two such hormones

derived in the gut and related to NAFLD are 1.) glucagon-

like peptide – 1 (GLP-1) and 2.) Ghrelin [72]. GLP-1 is the

hormone responsible for the activation of reward centers of

the brain upon the consumption of macronutrients like

fructose. Ghrelin concentrations promote hunger. Weakened

GLP – 1 secretion and reduced receptors for GLP-1 have

been found in the livers of NAFLD patients, damaging the

hepatic glucose and lipid metabolism [72]. In NAFLD

patients, the concentration of acylated/deacylated Ghrelin

was found to be elevated [72]. The association of

dysregulated hormones and NAFLD needs to be further

explored.

Largely, NAFLD was found to be one of the emerging

etiologies of chronic liver disease. For example, NAFLD

contributed to 22% of all chronic liver diseases in young

adults in the USA [82] and 39.7% among adults in India

[25]. NASH, is a fast-growing etiology of end-stage liver

disease [83]. In a nutshell, NAFLD and NASH are rapidly

growing both globally and regionally (in the USA). Early

detection and intervention are not only critical but also

urgent.

III. HEAVY METAL EXPOSURE AND NAFLD

A. Impact of heavy metal exposure on the liver’s

functionality:

Various studies have shown the impacts of heavy metal

exposure to general human health [1], [8], [11], [32], [33],

[84]–[87]. Heavy metal exposure leads to various types of

skin diseases, kidney malfunctions, and liver problems [88],

[89]. Almost all heavy metals are categorized as carcinogens

[84]. Occupational exposure was found to occur via

environmental pollutants like industrial waste, mining

activities, and ore smelting [32], [33]. Drinking water

standards for As, Cd, Pb, and Hg as defined by the US –

Environmental Protection Agency (US EPA) and the World

Health Organization (WHO) are shown in table 2. The routes

and sources of exposure of As, Pb, Hg, and Cd are outlined

below.
TABLE II

HEAVY METAL LIMITS IN DRINKING WATER

* “Lead and copper are regulated by a treatment technique

that requires systems to control the corrosiveness of their
water. If more than 10% of tap water samples exceed the
action level, water systems must take additional steps. For
copper, the action level is 1.3 mg/L, and for lead is
0.015 mg/L” [90].
** The guideline value is provisional based on treatment
performance and analytical achievability.

Arsenic exists in three forms: Organic, Inorganic, and Arsine

gas [92]. Inorganic As is the most toxic form of As and is a

confirmed carcinogen [93]. Arsenic exposure to human

beings can occur from multiple routes: ingestion

(consumption), inhalation, and dermal exposure. However,

the primary route of As exposure is mostly through

consumption of contaminated food and water [88], [92].

Geological characteristics in certain regions of the world

lead to higher Arsenic levels in drinking water. Population

living in that area is vulnerable to exposure [88].

Contaminated groundwater flows through rivers and is used

directly for consumption or irrigation purposes. Food that is

grown in arsenic polluted regions also leads to exposure via

diet [32]. Moreover, multiple food products are

contaminated with Arsenic. Some examples of food

contaminated with Arsenic are rice, seafood, food and

vegetables, meats, cereals, and dairy products [92], [94].

Rice is a primary staple for a large population in the world.

In a study involving rice and other grains, white rice grown

in Thailand, India, and Italy had higher median heavy metal

concentrations compared to white rice from the USA

Element US EPA limit [90] WHO limit [91]

Arsenic 0.01 mg/L 0.01 mg/l

Cadmium 0.005 mg/L 0.003 mg/l

Lead
Action level* =
0.015 mg/L

Action level** =
0.01 mg/l

Mercury 0.002 mg/L 0.006 mg/l

321

(Arsenic 155 vs 131 µg/kg, Pb 3.6 vs 2.8 µg/kg and Cd 17.4

vs 6.5 µg/kg) [95]. Populations consuming white rice as a

staple could be chronically exposed to heavy metals like As,

Pb, and Cd.

Lead, another heavy metal, exists in three forms:

elemental lead, inorganic and organic lead. The organic form

of lead is highly toxic [96]. Pb occurs in the environment

(soil, water, dust) and industrial waste as well as in

household products [89]. It also has multiple exposure routes

into aquatic life, seafood, food produce, and ultimately into

the human body [26]. Seafood (canned and fresh samples of

fish, mussels, and other seafood) from different geographical

regions were found to have varying degrees of inorganic lead

in them [97]. Chronic consumption of seafood or vegetables

farmed in contaminated soil or water can lead to lead

exposure.

Mercury exists in three main forms – elemental Hg,

organic Hg (methyl Hg), and inorganic mercury (in the

mercurous and mercuric types) [2]. In humans, the most

common exposure route of Hg (methyl Hg) is via seafood

consumption [98]. A study comparing the Asian and non-

Asian population in the USA found that Asian adults (> 50

years old) had higher methyl Hg compared to their non-

Asian equivalents (mean concentrations: 1.69 μg/L vs 0.58

μg/L, respectively) [99]. The impact of chronic consumption

of seafood can lead to methyl Hg exposure.

Cadmium exists in the environment but not in its refined

form. Cadmium in the environment occurs as an ore in two

forms: Cadmium sulfide, Cadmium with zinc [100]. It is

refined during zinc production [100]. Cadmium has various

industrial applications like batteries (Nickel-Cadmium

batteries), fertilizers, pigments, plastics, and coatings [100].

The human use of Cadmium enables widespread Cadmium

dispersion into the air. Transfer of Cd from the air into the

rain and soil introduces Cd into drinking water, food, and

finally into the human system [100]. Certain animal meats,

shellfish, mushrooms, and plant produce such as rice, grain,

potatoes were found to contain Cadmium [100]. The rates of

Cd in food are especially high when farmed in contaminated

areas close to mines and smelters [100]. Populations living

closer to Cd contaminated areas are at a higher risk of

chronic Cd exposure via inhalation of contaminated air and

ingestion of food and water contaminated with Cd.

Further, exposure to a mixture of heavy metals was found

to have a larger impact on the liver cell function,

susceptibility to liver injury and, histopathological changes

in the liver, compared to individual heavy metal exposure

[28], [33], [43]. The individual impact of the above four

heavy metals (As, Pb, Hg, and Cd) on NAFLD are outlined

below.

1) NAFLD and Arsenic:

NAFLD occurrence and heavy metal exposure were

found to be overlapping based on recent studies. Arteel et al.

found striking similarities in ‘demographic and mechanistic

overlap’ between As exposure and NAFLD occurrence in

individuals [1]. States in the USA with higher levels of

Arsenic in their drinking water found higher incidences of

obesity and NAFLD in their residents [1], [101], [102].

Effects of chronic Arsenic exposure were researched in

prior studies involving animal models [1]. It was found that

Arsenic exposure for longer than nine months induced

hepatic steatosis, potentially leading to diabetes and insulin

resistance when exposure is combined with an MCD

(methionine choline-deficient diet) diet [1], [103], [104].

Increased hepatic injury through low-grade inflammation,

was found to increase lipid accumulation in the liver [1].

In humans, low dose exposure to Arsenic can result in

Arsenosis while chronic exposure can cause liver injury. The

toxicokinetic mechanism of As upon exposure results in

absorption of 70-90% of As by the gastrointestinal tract (GI

tract). From the GI tract, As mainly spreads to the liver,

kidneys, lungs, and bladder via the bloodstream, and the

highest accumulation of As occurs in the liver [88]. The

majority of As metabolism also occurs in the liver [88]. A

portion of absorbed As is eventually eliminated via urine but

the remainder bioaccumulates inside the body [94], [105].

The major detoxification pathway of inorganic As from the

human body is via methylation [106]. However,

intermediate metabolites released during methylation were

found to have toxic effects and cause DNA damage [106].

Most of the biochemical processes in the human system

involve proteins and enzymes [107]. DNA damage caused

by heavy metal exposure (via induction of reactive oxygen

species) can impact the DNA repair pathways and the

maintenance of cell health in the human body [107].

Increased oxidative stress in the liver cells of zebrafish was

observed when exposed to chronic Arsenic concentrations

(six months, 50 ppb to 300 ppb As) [108]. Therefore, chronic

exposure to heavy metals might also affect the human liver

enzymes which are the basis of liver functionality.

2) NAFLD and Mercury:

A research group hypothesized that the body burden of

Hg exposure is apparent in the functionality of the liver

based on urine and blood Hg values (N = 3,769) [30]. Blood

Hg was indirectly measured as MeHg in their work [30].

They found serum and urinary Hg levels to be correlated (r

= 0.54, p < 0.001) [30]. To determine the liver functionality,

enzymes AST, ALT, and GGT were used from the dataset

[30]. They defined liver enzyme values as follows: ALT:

greater than 47 U/L and 30 U/L for men and women,

respectively; AST: greater than 33 U/L both for men and

women; GGT: greater than 65 U/L and 36 U/L for men and

women, respectively [30]. In cases of elevated AST, ALT,

and GGT together, lower urine Hg levels at a given Hg

exposure were found [30]. This relationship, however, was

only marginally significant (p = 0.06 – 0.08) when ALT,

AST and GGT were used together in the multivariate

regression analyses [30]. They found that urinary Hg

analysis may not be optimal because of the possible

dependence of urinary Hg on liver functionality [30]. On the

other hand, they found MeHg concentrations to be higher in

individuals with all three liver enzymes elevated (p=0.01),

which was found to be consistent with other studies [30].

Based on their study results, they suggest that increased

MeHg levels may be due to decreased demethylation, as

indicated by elevated liver enzymes [30].

322

In an elderly population study in Seoul, Korea (> 60

years, N = 560), Lee et al. also found the presence of Hg in

the blood (mean: 2.81 μg/L (2.73, 2.89), 95% CI) to be

associated with abnormal liver enzyme levels (AST, ALT,

and GGT) at p < 0.05, 95% CI, leading to reduced liver

functionality [22]. Their definition of abnormal liver

enzymes was: ALT > 35 U/L for men and women; AST >

34 U/L men and >40 U/L women; GGT > 48 U/L for men

and > 29 U/L for women [22]. Despite adjusting for age, sex,

smoking, drinking, and other lifestyle and clinical habits, the

liver enzyme concentrations were abnormal in the high

blood Hg group [22]. However, when blood Hg levels were

combined with alcohol consumption data, the liver

functionality deteriorated further in the patients who

consumed alcohol regularly [22]. The specific role of Hg

exposure on the development of metabolic syndrome was

also explored in a review paper [3]. However, the scope of

this paper is limited to NAFLD and heavy metal exposure.

3) NAFLD and Lead

Luo et al. found that chronic exposure of Pb in mice led

not only to hepatotoxicity but also influenced multiple

signaling pathways, fatty acid metabolism, and drug

metabolism [26]. The levels of three liver enzymes (AST,

ALT, and ALP) were found to rise with an increase in Pb

exposure in adult mice [26]. The obtained result is aligned

with that from Georgieva et al.’s work with common carp

undergoing chronic exposure in the Topolnitsa reservoir [9].

In both these animal models, it was found that the

interference caused by heavy metal exposure in liver enzyme

concentrations lead to hepatic injury at the tissue and cellular

level, interrupting several signaling pathways [9], [26]

High levels of Pb in the blood (Median value: 4.49 μg/dL

(2.97–6.59) for women; 5.29 μg/dL (3. 60–7.28) for men)

were also found to be related to NAFLD occurrence in China

[14]. Although ALT blood levels were measured in this

study, abdominal ultrasound (US) was used to diagnose liver

health [14]. Blood Pb levels were found to positively

correlate with NAFLD, independent of ALT levels. The

correlation was more pronounced in women (p for trend <

0.001, 95% CI, N= 610, vs control N = 876) than in men (P

for trend = 0.033, 95% CI, N = 214 vs control N = 311).

Exposure to Pb was found to increase liver injury, via an

intermediate agent – Glutathione [109]. Glutathione is a

detoxifying agent synthesized from amino acids, which is

crucial for detoxification and cell physiology [110].

Exposure to Pb impacts the Glutathione levels in the body

up to 40% [85]. Further, the regeneration time for

glutathione slowed down to 40 mins, from the standard 20

minutes [85].

4) NAFLD + Cadmium and NAFLD + mixture

of heavy metals

 Prystupa et al. conducted a study in Lublin (Southeastern

Poland), a region majoring in agriculture [4]. Study subjects

were farmers and unemployed people who had advanced

alcoholic liver cirrhosis (N = 62 with 46 Male, 16 Female).

Essential trace elements required for the proper functioning

of the body - (copper (Cu), Zinc (Zn), Nickle (Ni), and

Cobalt (Co)) were found to be lower in study subjects

compared to controls (N = 18). Contrastingly, they found

serum Cd concentrations to be higher in advanced cirrhosis

patients (Control: 0.0054 ± 0.0007 mg/L vs advanced

cirrhosis: 0.0078 ± 0.0044 mg/L) [4]. Cd is a toxic heavy

metal, capable of causing hepatocyte damage [4].

A study conducted in Taiwan found up to 26.5%

prevalence of fatty liver disease in men (n = 1,137) who are

exposed to higher levels of soil heavy metals [111]. The

study investigated the presence of As, Hg, Cd, Cr, Cu, Ni,

Pb, and Zn in soil and their association with fatty liver

disease [111]. They used abdominal sonography to identify

fatty liver instead of liver biopsy [111]. The association was

highest for men with BMI < 24 kg/m2 [111]. However, in

comparison with the Framingham Steatosis Index (FSI),

they found that heavy metal exposure in FSI was also

positively correlated with men (with BMI < 24).

However, this result needs to be validated in the context

of pre-and post-menopausal women to understand the

impact of heavy metals on the liver for a diverse population.

The liver enzymes and heavy metal exposure relationship

need to be researched further to assist with the early

detection of heavy metal related liver toxicity.

Studies have also found an association between

significant quantities of other heavy metals like Iron and zinc

with liver dysfunction in various populations [112]–[114].

The scope of the present study only focuses on As, Pb, Hg,

and Cd. Therefore, the impact of other heavy metals is out

of the scope of this review. Researchers have also explored

the association between NAFLD and metabolic syndrome,

as detailed in section 2(b) in this paper [71], [72], [76], [80],

[115].

Although these studies need to be extensively validated in

human models with diverse populations and demographics,

the initial impact on the liver in human and animal models

for liver damage is crucial. The inability of the liver to

metabolize heavy metals, especially in advance diseased

stages indicates the importance of early diagnosis and

treatment of liver disease for individuals living with chronic

exposure.

As mentioned earlier in section 2a, NAFLD progresses

with time, making it crucial to identify the disease early

enabling intervention and care. Current evidence-based

practice in NAFLD screening is the use of circulating

enzyme concentration in blood plasma [49], [117], [118].

However, it is important to note that the detection of NAFLD

based on liver enzymes alone can be misleading [49]. All

cases of NAFLD do not exhibit elevated liver enzymes, the

prevalence of NAFLD was under-estimated consistently

when liver enzymes were used for diagnoses instead of

imaging [68]–[70], [119]–[121]. Ultrasound (US) imaging

of the liver is conducted when clinicians suspect

NAFLD/NASH in a patient. However, due to lack of

sensitivity with US (in case of obese patients or liver cells

with fat droplets), computer tomography (CT) or magnetic

resonance imaging (MRI) are also used [118]. The current

standard for confirmatory diagnosis of steatosis,

steatohepatitis, and fibrosis is liver biopsy [118].

323

Although these methods can detect NAFLD, US tests lack

the sensitivity to diagnose the disease, and liver biopsies are

expensive, invasive, and risky [69]. In the search for

alternate, specific biomarkers for NAFLD, researchers have

found potential genetic, proteomic, blood-based, enzyme-

based, and urine-based biomarkers.

TABLE 3
IMPACT OF HEAVY METAL EXPOSURE ON THE HUMAN SYSTEM

IV. EMERGING BIOMARKERS AND TOOLS FOR NAFLD

DETECTION

This section focuses on emerging and contemporary

methods or tools for NAFLD (and HS, NASH) detection. It

is important to note that these findings are currently in the

research investigation/exploratory phase. Although most of

these methods are not currently used in the clinical setting,

they show potential for use in the future and have therefore

been reviewed below.

1) Physiological biomarkers

Previously, adipose tissue was considered to be a passive

storage unit for excess energy, but current research shows

the ability of the adipose tissue to synthesize and release

multiple hormones and cytokines that circulate

throughout the body [122]. Adipose tissue dysfunction

has since been researched in the context of NAFLD

association [122]. Adipokines like “leptin, adiponectin,

ghrelin, interleukin-6, and, tumor necrosis factor-a” have

shown an association with NASH [123], [124].

Imbalanced adipokines initiate a proinflammatory and

insulin-resistant response which exasperate the

progression of NAFLD, eventually leading to NASH in

severe NAFLD patients (N = 82) [124]. A formula that

includes the use of serum levels of adipokines to

determine NASH was developed. The value of:

adiponectin (ng/ml) / (2 x leptin (ng/ml) x ghrelin

(pg/ml)) < 0.31 resulted in an AUROC of 0.789 with

81.8% sensitivity and 76.1% specificity with a negative

predictive value of 96.4% and positive predictive value of

34.6% for diagnosing NASH [124]. However, it is

important to note that their patient demographic was

limited to “morbidly obese individuals, with biopsy-

proven NAFLD” [124].

The relationship of BMI with various adipokines was

also researched. It was found that leptin had positive

correlation (r=0.45, P<0.001) whereas ghrelin had

negative correlation (r=−0.28, P=0.012) with BMI [124].

Adiponectin on the other had negative correlation with

waist to hip ratio (r=−0.34, P=0.007) and showed no

correlation with BMI [124]. However, BMI does not

consider the fat percentage in the body, so conclusions

from the above study should be drawn with caution. In

short, ghrelin was found to be associated with diabetes

occurrence whereas adiponectin was associated with

“insulin resistance, hypertension, dyslipidemia, and

metabolic syndrome” [124]. A review paper also found

that circulating adipokines are related to NAFLD

pathogenesis and NASH progression [122].

The correlation of NAFLD and leptin was used for

NAFLD detection by researchers [125]. Cai et al.

developed an immunosensor using “porous graphene

functionalized black phosphorus (PG-BP)” [125]. Anti-

leptin was fixed firmly on the surface of the electrode

which led to high sensitivity (LOD: 0.036 pg/ml) and

reduced interferences with other enzymes [125]. In their

approach, a label-free and environment-friendly leptin

sensor were developed for very low levels of leptin detection

(up to 0.036pg/ml, with a linear range of detection in 0.150–

2500 pg/mL) [125]. The results of the immunosensor based

detection were found to surpass those of ELISA (enzyme-

linked immunosorbent assay) or other previous

electrochemical methods [125]. Upon further validation,

Heavy
metal

The affected biological entity in the
human body (Organ, enzyme, cell,
etc.)

Reference

Arsenic

Liver toxicity [1]
Skin cancer, bladder cancer, and
other cancers

[102]

Chronic Arsenical dermatosis and
hepatomegaly

[11]

Skin lesions, respiratory and
nervous system problems, cancer

[32]

Elevated ALT correlated with (p =
0.07) higher urinary Arsenic values

[15]

Cadmiu
m
exposure

Reduced levels of essential trace
elements (Cu, Zi, Ni, and Co).

[4]

High serum Cd levels correlated
with advanced cirrhosis patients.

[4]

Liver cell damage, liver carcinoma [19]

Lead
exposure

Elevated B-Pb correlated with
NAFLD, especially in women
(probability < 0.001, 95% CI). For
men: probability = 0.033

[14]

Hematopoietic and renal
toxicology

[12]

Slowed glutathione regeneration
and reduced glutathione levels

[85]

Mercury
exposure

Elevated ALT, AST & GGT (p = 0.06 -
0.08)

[30]

Abnormal AST, ALT & GGT (p < 0.05,
95% CI)

[22][112][112][
111][110][109][
105][104][103][
102][101][100][
99][98][97][96]
[95][94][92][91
][90][89][88][8
7][86] [84]

Mixture
effects

Pb and Hg exposure correlated with
ALT elevation (p for trend = 0.006
and 0.010 respectively)

[21]

324

such sensors can be effectively used for early detection of

NAFLD, thereby allowing early intervention and care.

Further, fatty acid-binding proteins like adipokine

binding protein (A-FABP), retinol-binding protein (RBP4),

and lipocalin-2 “are associated with obesity, insulin

resistance, and metabolic syndrome” [126]. A study based in

a South Korean hospital found A-FABP levels were found

to be high in the NAFLD group (N = 73) when compared to

the normal group (N = 67): “18.42 ± 7.24 ng/mL vs. 15.74 ±

7.02 ng/mL vs., p = 0.022” [126]. Upon conducting a logistic

regression analysis, patients in the highest quartile of A-

FABP levels corresponded to three times the risk of NAFLD

than that of those in the lowest quartile (p-trend: 0.039, 95%

CI) [126]. The explanation of this association could be the

modulation of inflammatory responses based on A-FABP

levels in the body [126], [127]. However, their study

presented contradictory results regarding the serum RBP4

and lipocalin-2 levels compared to other studies [126].

Although their results need to be validated with a diverse

population, they were obtained independent of age and sex,

indicative of the potential A-FABP could have in NAFLD

diagnosis.

A hormone secreted by the liver called fibroblast growth

factor 21 (FGF21) has been implicated to indicate “lowering

blood glucose, lipids, and insulin levels, reversing hepatic

steatosis, and increasing insulin sensitivity” and therefore, as

an early biomarker for NAFLD [128]. Gong et al. developed

a field-effect transistor (FET) which is also label-free and

very sensitive to FGF21 levels in human serum samples (1

fg/ml) [128]. They used a “molybdenum disulfide (MoS2)”

surface for non-aqueous environment detection of FGF21

and achieved a limit of detection of 10 fg/mL [128].

2) Biomarkers related to NASH:

Long term NAFLD prognosis has implicated the

prevalence of non-alcoholic steatohepatitis (NASH) in

patients [118]. NASH prediction via blood biomarkers was

reviewed by Gomez et al. In their research, the gap in

specifically and sensitively identifying NASH from NAFLD

is highlighted. They suggest combining blood-based

biomarkers with existing diagnostics [123].

Methionine choline-deficient diet (MCD diet) was used

by researchers performing studies in animal models in this

domain to induce NASH like symptoms. After the NASH

symptoms were induced in mice, Clarke et al. analyzed the

serum levels of microRNA – 122: RNA specific to the liver

[129]. They found a 40-fold average increase in the levels of

miRNA-122 in mice induced with an MCD diet for three

days [129]. ALT and AST levels were only 4.8 fold and 3.3

fold elevated compared to miRNA-122 (at 40- fold) [129].

3) Omics:

Research towards specific biomarkers for NAFLD or

other liver diseases (FLD, NASH, etc.) has led to the

identification of multi-omics compounds associated with the

disease. Urinary steroid metabolome, multi-omics, serum-

based omics, and a combination of clinical features with

omics are being studied concerning liver diseases [130]–

[132].

Researchers used volatile organic compounds from the

NAFLD breath sample to develop indirect, sensitive

detection methods for NAFLD [133]. A micro gas

chromatography column was used by researchers to separate

the VOCs in the breath condensate [133]. The breath

condensate was separated from the gas pentane, considered

to be a potential biomarker for NAFLD based on its ability

to predict fibrosis [133]. Their findings indicate that the

micro GC column was able to separate gases C5 – C12

within 5 minutes [133]. However, their micro-GC column

needs to be installed inside a conventional GC instrument,

requiring high temperatures and expensive equipment. The

reliability of pentane as a potential biomarker for NAFLD

remains to be researched.

4) Use of computational tools:

With the increasing availability of data and computational

power, research in the field of health care analytics and

model-based disease prediction has accelerated. Machine

learning (ML) and Artificial Neural Network (ANN) based

models have been created in various disease domains to

assist with diagnosis and screening [131], [132], [134]–

[148].

A computational approach to NAFLD screening or

diagnosis, liver fat quantification, fibrosis pattern detection,

assessment of the severity of the liver disease can be

classified into four different modalities, per our literature

search.

i. Physiological parameters (serum triglyceride

levels, BMI, age, etc.)

ii. Imaging modalities (US, MRI)

iii. Omics to find associations with liver disease

(genetics, transcriptomics, metabolomics, etc.)

iv. Images of liver biopsies

The scope of this review is limited to the initial

benchmarking of minimally invasive or non-invasive

techniques for quantifying liver diseases. Hence, we did not

include liver biopsy related work in this review.

5) Physiological parameters & Machine

Learning:

Use of physiological parameters as ‘risk factors’ to

predict a disease has been applied to several disease

domains. In this approach, researchers use electronic

medical health records, or physiological data like age, BMI,

blood glucose, etc. in combination with machine learning or

deep learning algorithms [134], [135], [141], [142].

In this regard, our previous research was to predict the

occurrence of fatty liver (HS) based on previously

established risk factors [134]. We used data from NHANES

III (N = 12,719), and the model was able to classify HS and

no-HS with an accuracy of 79.03% using a gentle boosted

tree algorithm. Another research group developed ML

models to predict FLD using data from a hospital (N = 577)

in Taiwan [135]. They used nine predictor variables (similar

to risk factors) as model inputs. Their best performing model

325

(Random forest, 10-fold validated) had an accuracy of

86.48% [135]. Similarly, other models to support NAFLD

diagnosis and to assess NAFLD severity were also

developed by other researchers [141], [142]. These models

show potential as screening tools for fatty liver disease,

especially in populations with low or no alcohol

consumption. However, the results from such models need

validation from large, diverse datasets.

6) Imaging modality:

 Imaging modalities have significant scope in NAFLD

detection and quantification. In general, three imaging

modalities are of importance in the context of NAFLD and

they are: 1) Ultrasound (US), 2) MRI and 3) Computerized

tomography (CT) [149]. Ultrasound scans are of two types:

qualitative or conventional ultrasound (CUS) and,

quantitative US (QUS) [150]. Although MRI is emerging as

a quantitative imaging biomarker, US-based studies were

more commonly used by researchers, per our literature

search. Computer tomography can also be used to detect

liver fat but is more commonly used for tumor diagnosis.

Further, the radiation exposure associated with CT makes it

an uncommon tool for NAFLD detection [151].

A meta-analysis of 49 studies using conventional

ultrasound (CUS) from October 1967 to March 2010 was

conducted to assess the diagnostic performance of CUS

[152]. They reported the performance metrics for use of CUS

to detect “moderate to severe fatty liver” in the absence of

steatosis. The values for sensitivity (84.8%) as well as

specificity (93.6%) were reported [152]. However, the use

of CUS as a differentiator of fatty liver, hepatitis, fibrosis, or

normal liver had slightly different metrics for sensitivity

(87.2%) and specificity (79.2%) [152]. CUS is safe, and

generally widely accessible, as compared to MRI. CUS is

relatively less expensive than other imaging modalities.

However, CUS scans lack sensitivity and specificity to

quantify liver fat [153]. As the CUS is qualitative, it suffers

from the subjectivity of the interpreter, the operator, and the

sensitivity/capability of the machine, thus contributing to

lower accuracy [154]. Therefore, the use of quantitative

ultrasound (QUS) with backscatter coefficients has been

explored in the context of hepatic fat quantification and

NAFLD detection, as an alternative to CUS [150], [151],

[154].

A preliminary comparison study consisting of ultrasonic

scans from 60 different subjects found quantitative

ultrasound (QUS) to be more accurate (68.3%) when

compared to CUS (51.7%) [151]. They used histologic

steatosis grading as a reference standard for NAFLD

detection [151]. The use of QUS instead of CUS to quantify

steatosis has also been supported by other studies [148],

[150], [154]. In recent years, researchers are exploring the

capabilities of machine learning (ML) or advanced pattern

recognition techniques (i.e., deep learning (DL) and artificial

neural networks (ANN)) techniques for NAFLD diagnosis

[136], [139], [140], [143]–[148]. Selected example

applications of ML, DL, and ANN techniques to US images

are discussed below.

A study used 63 conventional ultrasound (CUS) images

from a hospital in Portugal for fatty liver detection and risk

stratification [136]. They used features extracted from a

region of interest (ROI) (128 x 128 pixels) in the CUS

images [136]. No other clinical features (aside from those

obtained via analysis ROI) were used [136]. Their best

performing model used a deep learning technique with an

accuracy of 100% [136]. They reported better results using

deep learning paradigm compared to machine learning

models (Support Vector Machine (SVM) and Extreme

learning machine (ELM) at 82% and 92% accuracies,

respectively) [136]. Although the above study shows

encouraging results, it does not specify the type of fatty liver

disease. Therefore, we assess that the use of ML on CUS

requires validation with larger datasets, for potential

NAFLD, hepatic steatosis (HS), and NASH screening.

Another study used radiofrequency (RF) signals from

quantitative ultrasound of 140 NAFLD patients and 64

controls [147]. They used one dimensional artificial neural

network (ANN) classifier with equally split training and test

datasets. The classifier showed 96% accuracy with 97%

sensitivity and 94% specificity (95% CI) in diagnosing

NAFLD [147]. Additionally, they also developed a fat

fraction estimator using RF signals as input to a one-

dimensional ANN [147]. Their estimates correlated with

MRI- proton density fat fraction (PDFF) at r = 0.85

(Pearson’s correlation) [147]. However, this study did not

use histological steatosis as reference grade. Thus, we assess

that this method needs to be further evaluated for adaption

in clinical settings.

More recently, a combination of imaging and non-

imaging (physiological) parameters has been implemented

with machine learning (ML) and artificial neural network

(ANN) tools [139]. The study used clinical data (HDL, LDL,

triglycerides, fasting blood sugar, BMI, Forns score [155])

and ultrasound images from 726 patient to extract rules for

FLD detection using ANN model [139]. Their derived rules

were able to detect FLD with an accuracy ranging from

80.58% - 100%, based on different model parameters. They

used reference standards from FibroScan (transient

elastography) instead of using liver biopsy. It is to be noted

here that the use of FibroScan is limited by the demographic

it can be performed on. For instance, FibroScan is not

recommended for subjects with a history of ascites, those

with morbid obesity, and/or with significant quantities of fat

in the chest wall [156]. Thus, the results from the study [139]

reported above that used FibroScan as a reference, needs

additional careful evaluation for the adaption in clinical

practice. Moreover, as the study [139] also used a small

dataset, further validation is recommended.

Alternatively, magnetic resonance imaging– (MRI)-

proton density fat fraction (PDFF) measures the liver fat by

computing the ratio of liver fat signals to total signals [153].

A study comparing conventional ultrasound (CUS),

quantitative ultrasound (QUS) and MRI found MRI-PDFF

to be more accurate (76.7%) in NAFLD detection when

compared to US techniques (QUS: 68.3%, CUS: 51.7%),

against a histological grading reference [151].

Previous studies have also demonstrated the accuracy,

326

repeatability and precision of MRI – PDFF compared to

histological reference for NAFLD detection [149], [151],

[153], [157]–[159]. The sensitivity and specificity of some

of these studies over all grades of steatosis ranged between

0.64-1.0 and 0.76 – 0.96, respectively [149], [151], [157]–

[159]. Further, MRI-PDFF enables volumetric steatosis

assessment of the liver which is not possible with ultrasound

scans [153]. Although MRI-PDFF has many advantages for

non-invasive detection of NAFLD, some of the pressing

limitations are its cost and limited access to instrument and

expertise, in low-resource settings, where NAFLD is

prevalent. Additionally, for certain patients with metal

implants, MRI-PDFF needs additional preparation and

precautions. Current research efforts in developing and

validating portable, cost-effective MRI systems [160] might

contribute to improve the limitations described above in near

future.

In the context of non-invasive and rapid detection of

NAFLD, MRI-PDFF is the preferred imaging modality for

resource-intensive locations. The use of advanced pattern

recognition techniques with MRI-PDFF interpretation can

increase the adoption of this technology for NAFLD

detection. In low-resource settings, where NAFLD is

prevalent, the lack of access to instruments and expertise is

a problem. In such cases, QUS with advanced pattern

recognition techniques using physiological parameters

(detection with comparable or acceptable accuracy for initial

screening) are promising compared to those provided by

MRI-PDFF and CUS.

In summary, each imaging modality (ultrasound, MRI,

CT) has its own merits and limitations, in varying degrees,

for NAFLD detection. Additional analysis is required to

assess the breadth and depth of each imaging modality. In

this review, we intend to highlight the importance of the

three imaging modalities in the context of NAFLD detection.

However, the details of each modality or their combination

is out of scope of the defined objective of this paper.

7) Machine learning integrated omics:

Recently developed omics-based studies that use ML or

DL paradigms are included in this review [130]–[132].

A study with LASSO (least absolute shrinkage and

selection operator) select and a random forest model

obtained an ROAUC of 0.84 (95% CI, p < 0.001) [131].

Multi-omics (genetic, transcriptomic, proteomic,

metabolomic) and clinical (liver enzymes, serum

biomarkers, lifestyle etc.) data comprised the key input

variables for fatty liver disease [131]. Although their model

has the potential to avoid liver biopsies, they require data

through RNA sequencing, protein-coding and metabolomic

assays which makes diagnosis complicated from a

patient/clinical perspective. Further, their study was limited

in their demographics to northern European population.

We anticipate that sensor-based systems integrated with

computational models to explain predictor contribution of

heavy metals (ingested in the body) on liver disease will be

useful to further understand the dynamics of the disease.

8) NAFLD as a risk factor for other diseases

Aside from leading the liver to failure in its’ advanced

stages (like liver scarring and liver failure), the occurrence

of NAFLD also leads to increased risk for other diseases like

PCOS (polycystic ovary syndrome), diabetes,

cardiovascular diseases and is linked highly to diabetes type

II and obesity [115], [161], [162].

In a study on PCOS patients, it was found that 48 out of a

total 88 patients (55%) had NAFLD along with a high insulin

resistance score; highly associating PCOS with NAFLD,

high BMI, and high insulin resistance [40], [162]. In a

review paper linking PCOS and NAFLD, Kelly et al.

propose screening of high-risk PCOS women to identify

NAFLD [115].

The link between NAFLD and cardiovascular diseases

like heart valve calcification (in the mitral and aortic valves)

was researched in a cross-sectional study of diabetic patients

(N = 247) [161]. Approximately 71% of these patients were

found to have NAFLD (via US tests) [161]. They found

NAFLD to be linked with aortic valve sclerosis and/or mitral

annulus calcification with unadjusted-odds ratio: 3.51 (95%

CI, p < 0.001) [161].

The progression of NAFLD with time can lead to liver

cancer or hepatocellular carcinoma (HCC) [163]. 14.1% of

the HCC cases were related to NAFLD in a study consisting

of 4,929 HCC cases (with 14,937 controls) [163]. The

development of NAFLD to HCC further reduces patient’s

survival rate along with a decreased chance for liver

transplant [163].

NAFLD is linked with many metabolic parameters in the

body and therefore it is further associated with conditions

like diabetes, insulin resistance, PCOS and increased

cardiovascular risk. However, specific interactions between

NAFLD and other conditions is out of scope for this paper.

V. SUMMARY AND FUTURE OUTLOOK

A contemporary scientific review is conducted on non-

alcoholic fatty liver disease (NAFLD) between 2014 – 2020

in this paper. In the recent years, more emphasis has been

placed on NAFLD, therefore relevant literature from the past

six years was reviewed. The focus of this review is on heavy

metal toxicity and NAFLD. Three main objectives are

elaborated in this paper: major enzymes and biomarkers

indicative of chronic liver conditions (particularly NAFLD),

the effect of heavy metal exposure on liver health and,

emerging biomarkers and techniques for NAFLD detection.

The increasing prevalence of NAFLD globally, as

elaborated in section II a, indicates the urgent need to

address NAFLD diagnosis and management. Further, it is

important to note that NAFLD progresses with time to cause

fibrosis, cirrhosis and potentially leading to hepatocellular

carcinoma. NAFLD etiology is complex and associated with

multiple other conditions (i.e., metabolic syndrome, diabetes

type-II and insulin resistance etc.) – as outlined in section II

b. Current evidence-based practice uses liver enzyme ratios

327

for NAFLD and NASH screening. However, enzyme ratios

do not identify all NAFLD cases. While imaging tools (like

ultrasound and MRI) and liver biopsies (required for

confirmatory for NAFLD diagnosis) are used, a majority of

NAFLD cases are diagnosed incidentally. A gap in NAFLD

screening and potential diagnosis is therefore noted.

The relationship of NAFLD with heavy metal exposure is

explored in section III. Chronic heavy metal exposure (As,

Pb, Hg and Cd) is found to correlate with abnormal liver

enzyme values, with NAFLD and, with liver damage in

general. The inability of the liver to metabolize heavy metals

warrants the screening, diagnosis, and early intervention for

individuals living with chronic heavy metal exposure.

Toxicant-induced fatty liver disease (TAFLD) and Toxicant-

associated steatohepatitis (TASH) are similar in pathology

to NAFLD and NASH, respectively. TAFLD and TASH are

induced due to chronic heavy metal exposure and need

further investigation as part of future research.

Potential biomarkers for NAFLD detection: adipokines

(leptin, adiponectin etc.), fatty acid-binding proteins (A-

FABP) and hormones (fibroblast growth factor 21 (FGF21))

are being researched. More details regarding these

biomarkers are introduced in section IV (a, b, c) of this

paper. Recent implementations of potential biomarkers via

computational tools for liver disease diagnosis are reviewed

in section IV d. Artificial intelligence (AI) tools like machine

learning, deep learning, and artificial neural networks are

being implemented to detect NAFLD using physiological

parameters, imaging data, and omics data (section IV e). The

merits and limitations of conventional ultrasound (CUS),

quantitative ultrasound (QUS), and MRI-PDFF were

discussed in detail in IV f. This review highlighted the

implementation of quantitative ultrasound (QUS) instead of

conventional ultrasound (CUS) to be promising, especially

when QUS data is combined with AI tools for increased

detection accuracy.

As mentioned earlier, NAFLD is a widely prevalent

disease of significance in the global domain. Therefore, it is

important to reiterate the significance of NAFLD by citing a

few recent statistics. For example, as of 2020, the global

estimated prevalence of NAFLD was at 25% and that in the

USA was at 30% [164]. The prevalence of NASH in the

USA was estimated to be at 5% [164]. Similar estimates for

NAFLD are found in Asia, where the estimated pooled

prevalence is at 27.4% [164].

From a broader perspective, NAFLD is a silent disease

and can progress over time to cirrhosis and other

complications or liver failure. NASH progressing into

cirrhosis is estimated to have caused 3.3 million cases of

advanced fibrosis in the USA in 2015 [164]. In regions,

where regular health checkups are not conducted or

available, the health outcomes of NAFLD incidence can be

fatal. Further, the etiology and the pathobiology for the

disease is connected with heterogeneous factors (including

contaminated food and water). This paper has reflected on

multiple such relevant factors.

In recent times, the emphasis on the prevention and

management of NAFLD has increased. As per our

knowledge, the cure for the disease, at the time of writing

this paper, is not available. The current treatment methods

emphasize on management of the disease or delaying

progression of the disease. Additional understanding (via

research and development) of different factors contributing

to NAFLD and other chronic liver diseases is needed

towards effective treatment and management of the disease.

REFERENCES:

[1] G. E. Arteel, “Hepatotoxicity,” in Arsenic, John Wiley

& Sons, Ltd, 2015, pp. 249–265.

[2] J. Choi et al., “Mercury Exposure in Association With

Decrease of Liver Function in Adults: A Longitudinal

Study,” J. Prev. Med. Pub. Health, vol. 50, no. 6, pp.

377–385, Nov. 2017, doi: 10.3961/jpmph.17.099.

[3] A. A. Tinkov et al., “Mercury and metabolic

syndrome: a review of experimental and clinical

observations,” BioMetals, vol. 28, no. 2, pp. 231–254,

Apr. 2015, doi: 10.1007/s10534-015-9823-2.

[4] A. Prystupa, A. Błażewicz, P. Kiciński, J. J. Sak, J.

Niedziałek, and W. Załuska, “Serum Concentrations

of Selected Heavy Metals in Patients with Alcoholic

Liver Cirrhosis from the Lublin Region in Eastern

Poland,” Int. J. EnvIron. Res. Public. Health, vol. 13,

no. 6, p. 582, Jun. 2016, doi: 10.3390/ijerph13060582.

[5] A. P. Ebokaiwe et al., “Assessment of heavy metals

around Abakaliki metropolis and potential

bioaccumulation and biochemical effects on the liver,

kidney, and erythrocyte of rats,” Hum. Ecol. Risk

Assess. Int. J., vol. 24, no. 5, pp. 1233–1255, Jul.

2018, doi: 10.1080/10807039.2017.1410695.

[6] C. S. Carvalho, H. S. M. Utsunomiya, T. Pasquoto, R.

Lima, M. J. Costa, and M. N. Fernandes, “Blood cell

responses and metallothionein in the liver, kidney and

muscles of bullfrog tadpoles, Lithobates catesbeianus,

following exposure to different metals,” EnvIron.

Pollut., vol. 221, pp. 445–452, Feb. 2017, doi:

10.1016/j.envpol.2016.12.012.

[7] D. A. Omran et al., “Serum Zinc Deficiency and its

Relation to Liver Fibrosis in Chronic HCV: a Real-

Life Egyptian Study,” Biol. Trace Elem. Res., vol.

179, no. 1, pp. 1–7, Sep. 2017, doi: 10.1007/s12011-

017-0938-x.

[8] M. Colombo et al., “EASL Clinical Practice

Guideline: Occupational liver diseases,” J. Hepatol.,

vol. 71, no. 5, pp. 1022–1037, Nov. 2019, doi:

10.1016/j.jhep.2019.08.008.

[9] E. Georgieva et al., “Histological and biochemical

changes in liver of common carp (Cyprinus carpio L.)

under metal exposure,” p. 10.

[10] G. Malaguarnera, “Toxic hepatitis in occupational

exposure to solvents,” World J. Gastroenterol., vol.

18, no. 22, p. 2756, 2012, doi:

10.3748/wjg.v18.i22.2756.

[11] D. N. G. Mazumder et al., “Chronic arsenic toxicity

from drinking tubewell water in rural West Bengal,”

p. 8.

[12] H. Wan, J. Wu, P. Sun, and Y. Yang, “Investigation of

delta-aminolevulinic acid dehydratase polymorphism

affecting hematopoietic, hepatic and renal toxicity

from lead in Han subjects of southwestern China,”

328

Acta Physiol. Hung., vol. 101, no. 1, pp. 59–66, Mar.

2014, doi: 10.1556/APhysiol.101.2014.1.7.

[13] H. Lee, Y. Kim, C.-S. Sim, J.-O. Ham, N.-S. Kim, and

B.-K. Lee, “Associations between blood mercury

levels and subclinical changes in liver enzymes

among South Korean general adults: Analysis of

2008–2012 Korean national health and nutrition

examination survey data,” EnvIron. Res., vol. 130, pp.

14–19, Apr. 2014, doi: 10.1016/j.envres.2014.01.005.

[14] H. Zhai et al., “Blood lead level is associated with

non-alcoholic fatty liver disease in the Yangtze River

Delta region of China in the context of rapid

urbanization,” EnvIron. Health, vol. 16, no. 1, p. 93,

Aug. 2017, doi: 10.1186/s12940-017-0304-7.

[15] J. K. Frediani, E. A. Naioti, M. B. Vos, J. Figueroa, C.

J. Marsit, and J. A. Welsh, “Arsenic exposure and risk

of nonalcoholic fatty liver disease (NAFLD) among

U.S. adolescents and adults: an association modified

by race/ethnicity, NHANES 2005–2014,” EnvIron.

Health, vol. 17, no. 1, Dec. 2018, doi:

10.1186/s12940-017-0350-1.

[16] J. Marmur et al., “Hepcidin levels correlate to liver

Iron content, but not steatohepatitis, in non-alcoholic

fatty liver disease,” BMC Gastroenterol., vol. 18, no.

1, Dec. 2018, doi: 10.1186/s12876-018-0804-0.

[17] K. Karunanidhi, R. Rajendran, D. Pandurangan, and

G. Arumugam, “First report on distribution of heavy

metals and proximate analysis in marine edible puffer

fishes collected from Gulf of Mannar Marine

Biosphere Reserve, South India,” Toxicol. Rep., vol.

4, pp. 319–327, 2017, doi:

10.1016/j.toxrep.2017.06.004.

[18] K. C. Makris et al., “Association between exposures

to brominated trihalomethanes, hepatic injury and

type II diabetes mellitus,” EnvIron. Int., vol. 92–93,

pp. 486–493, Jul. 2016, doi:

10.1016/j.envint.2016.04.012.

[19] L. Zhang, Y. Huang, Y. Zhu, Z. Yu, M. Shao, and Y.

Luo, “Identification and Characterization of

Cadmium-Related Genes in Liver Carcinoma,” Biol.

Trace Elem. Res., vol. 182, no. 2, pp. 238–247, Apr.

2018, doi: 10.1007/s12011-017-1106-z.

[20] M. Stepien et al., “Circulating copper and zinc levels

and risk of hepatobiliary cancers in Europeans,” Br. J.

Cancer, vol. 116, no. 5, pp. 688–696, Feb. 2017, doi:

10.1038/bjc.2017.1.

[21] Cave Matt, Appana Savitri, Patel Mihir, Falkner Keith

Cameron, McClain Craig J., and Brock Guy,

“Polychlorinated Biphenyls, Lead, and Mercury Are

Associated with Liver Disease in American Adults:

NHANES 2003–2004,” EnvIron. Health Perspect.,

vol. 118, no. 12, pp. 1735–1742, Dec. 2010, doi:

10.1289/ehp.1002720.

[22] M.-R. Lee, Y.-H. Lim, B.-E. Lee, and Y.-C. Hong,

“Blood mercury concentrations are associated with

decline in liver function in an elderly population: a

panel study,” EnvIron. Health, vol. 16, no. 1, p. 17,

Mar. 2017, doi: 10.1186/s12940-017-0228-2.

[23] R. Khan et al., “Toxicological effects of toxic metals

(Cadmium and mercury) on blood and the thyroid

gland and pharmacological intervention by vitamin C

in rabbits,” EnvIron. Sci. Pollut. Res., vol. 26, no. 16,

pp. 16727–16741, Jun. 2019, doi: 10.1007/s11356-

019-04886-9.

[24] S. Rajeshkumar, Y. Liu, J. Ma, H. Y. Duan, and X. Li,

“Effects of exposure to multiple heavy metals on

biochemical and histopathological alterations in

common carp, Cyprinus carpio L.,” Fish Shellfish

Immunol., vol. 70, pp. 461–472, Nov. 2017, doi:

10.1016/j.fsi.2017.08.013.

[25] G. Choudhuri, S. Chaudhari, D. Pawar, and D. S. Roy,

“Etiological Patterns, Liver Fibrosis Stages and

Prescribing Patterns of Hepato-Protective Agents in

Indian Patients with Chronic Liver Disease,” J. Assoc.

Physicians India, vol. 66, no. 12, pp. 58–63, Dec.

2018.

[26] T. Luo et al., “Chronic exposure to low doses of Pb

induces hepatotoxicity at the physiological,

biochemical, and transcriptomic levels of mice,”

EnvIron. Toxicol., vol. 34, no. 4, pp. 521–529, 2019,

doi: 10.1002/tox.22706.

[27] U. K. Singh, A. L. Ramanathan, and V. Subramanian,

“Groundwater chemistry and human health risk

assessment in the mining region of East Singhbhum,

Jharkhand, India,” Chemosphere, vol. 204, pp. 501–

513, Aug. 2018, doi:

10.1016/j.chemosphere.2018.04.060.

[28] X. Lin, Y. Gu, Q. Zhou, G. Mao, B. Zou, and J. Zhao,

“Combined toxicity of heavy metal mixtures in liver

cells,” J. Appl. Toxicol., vol. 36, no. 9, pp. 1163–

1172, 2016, doi: 10.1002/jat.3283.

[29] J. Yin et al., “A transcriptomics study on hepatic lipid

metabolism in mice exposed to contaminated drinking

water,” Int. J. EnvIron. Sci. Technol., vol. 12, no. 3,

pp. 847–856, Mar. 2015, doi: 10.1007/s13762-013-

0424-8.

[30] Y.-S. Lin et al., “Association of body burden of

mercury with liver function test status in the U.S.

population,” EnvIron. Int., vol. 70, pp. 88–94, Sep.

2014, doi: 10.1016/j.envint.2014.05.010.

[31] G. Cano-Sancho, S. Marin, A. J. Ramos, J. Peris-

Vicente, and V. Sanchis, “Occurrence of aflatoxin M1

and exposure assessment in Catalonia (Spain),” Rev.

Iberoam. Micol., vol. 27, no. 3, pp. 130–135, Jul.

2010, doi: 10.1016/j.riam.2010.05.003.

[32] J.-Y. Chung, S.-D. Yu, and Y.-S. Hong,

“Environmental Source of Arsenic Exposure,” J.

Prev. Med. Pub. Health, vol. 47, no. 5, pp. 253–257,

Sep. 2014, doi: 10.3961/jpmph.14.036.

[33] Hopenhayn-Rich C, Biggs M L, Smith A H, Kalman

D A, and Moore L E, “Methylation study of a

population environmentally exposed to arsenic in

drinking water.,” EnvIron. Health Perspect., vol. 104,

no. 6, pp. 620–628, Jun. 1996, doi:

10.1289/ehp.96104620.

[34] N. Toshikuni, “Clinical differences between alcoholic

liver disease and nonalcoholic fatty liver disease,”

World J. Gastroenterol., vol. 20, no. 26, p. 8393,

2014, doi: 10.3748/wjg.v20.i26.8393.

[35] “Symptoms & Causes of NAFLD & NASH |

NIDDK.” https://www.niddk.nih.gov/health-

information/liver-disease/nafld-nash/symptoms-

causes (accessed Oct. 19, 2020).

329

[36] B. Wahlang et al., “Toxicant-associated

Steatohepatitis,” Toxicol. Pathol., vol. 41, no. 2, pp.

343–360, Feb. 2013, doi:

10.1177/0192623312468517.

[37] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel,

L. Henry, and M. Wymer, “Global epidemiology of

nonalcoholic fatty liver disease—meta-analytic

assessment of prevalence, incidence, and outcomes,”

Hepatology, vol. 64, no. 1, pp. 73–84, 2016.

[38] B. M. Jarrar and Z. N. Mahmoud, “Histochemical

demonstration of changes in the activity of hepatic

phosphatases induced by experimental lead poisoning

in male white rats (Rattus norvegicus),” Toxicol. Ind.

Health, vol. 16, no. 1, pp. 7–15, Feb. 2000, doi:

10.1177/074823370001600102.

[39] R. C. Patra, D. Swarup, and S. K. Dwivedi,

“Antioxidant effects of α tocopherol, ascorbic acid

and l-methionine on lead induced oxidative stress to

the liver, kidney and brain in rats,” Toxicology, vol.

162, no. 2, pp. 81–88, May 2001, doi: 10.1016/S0300-

483X(01)00345-6.

[40] G. Vernon, A. Baranova, and Z. Younossi,

“Systematic review: the epidemiology and natural

history of non-alcoholic fatty liver disease and non-

alcoholic steatohepatitis in adults,” Aliment.

Pharmacol. Ther., vol. 34, no. 3, pp. 274–285, 2011.

[41] “Definition & Facts of NAFLD & NASH | NIDDK,”

National Institute of Diabetes and Digestive and

Kidney Diseases. https://www.niddk.nih.gov/health-

information/liver-disease/nafld-nash/definition-facts

(accessed Aug. 29, 2020).

[42] J.-J. Geng et al., “Nutrients and contaminants in

tissues of five fish species obtained from Shanghai

markets: risk–benefit evaluation from human health

perspectives,” Sci. Total EnvIron., vol. 536, pp. 933–

945, 2015.

[43] B. O. Anyanwu, A. N. Ezejiofor, Z. N. Igweze, and O.

E. Orisakwe, “Heavy Metal Mixture Exposure and

Effects in Developing Nations: An Update,” Toxics,

vol. 6, no. 4, p. 65, Dec. 2018, doi:

10.3390/toxics6040065.

[44] V. W. Setiawan, D. O. Stram, J. Porcel, S. C. Lu, L.

Le Marchand, and M. Noureddin, “Prevalence of

chronic liver disease and cirrhosis by underlying

cause in understudied ethnic groups: The multiethnic

cohort,” Hepatology, vol. 64, no. 6, pp. 1969–1977,

Dec. 2016, doi: 10.1002/hep.28677.

[45] P. Y. Kwo, S. M. Cohen, and J. K. Lim, “ACG

Clinical Guideline: Evaluation of Abnormal Liver

Chemistries,” Am. J. Gastroenterol., vol. 112, no. 1,

pp. 18–35, Jan. 2017, doi: 10.1038/ajg.2016.517.

[46] V. Lala, A. Goyal, P. Bansal, and D. A. Minter,

“Liver Function Tests,” in StatPearls, Treasure Island

(FL): StatPearls Publishing, 2020.

[47] A. Lonardo et al., “AISF position paper on

nonalcoholic fatty liver disease (NAFLD): Updates

and future directions,” Dig. Liver Dis., vol. 49, no. 5,

pp. 471–483, May 2017, doi:

10.1016/j.dld.2017.01.147.

[48] S. Chitturi et al., “The Asia-Pacific Working Party on

Non-alcoholic Fatty Liver Disease guidelines 2017-

Part 2: Management and special groups,” J.

Gastroenterol. Hepatol., vol. 33, no. 1, pp. 86–98,

Jan. 2018, doi: 10.1111/jgh.13856.

[49] A. R. Murali and W. D. Carey, “Liver Test

Interpretation - Approach to the Patient with Liver

Disease: A Guide to Commonly Used Liver Tests,”

Cleveland Clinic - Center for Continuing Education,

Apr. 2014.

https://www.clevelandclinicmeded.com/medicalpubs/

diseasemanagement/hepatology/guide-to-common-

liver-tests/ (accessed Oct. 27, 2020).

[50] A. Dasgupta and A. Wahed, “Chapter 10 - Liver

Diseases and Liver Function Tests,” in Clinical

Chemistry, Immunology and Laboratory Quality

Control, A. Dasgupta and A. Wahed, Eds. San Diego:

Elsevier, 2014, pp. 177–195.

[51] N. Chalasani et al., “The diagnosis and management

of nonalcoholic fatty liver disease: Practice guidance

from the American Association for the Study of Liver

Diseases: Hepatology, Vol. XX, No. X, 2017,”

Hepatology, vol. 67, no. 1, pp. 328–357, Jan. 2018,

doi: 10.1002/hep.29367.

[52] Z. M. Younossi et al., “Changes in the Prevalence of

the Most Common Causes of Chronic Liver Diseases

in the United States From 1988 to 2008,” Clin.

Gastroenterol. Hepatol., vol. 9, no. 6, pp. 524-530.e1,

Jun. 2011, doi: 10.1016/j.cgh.2011.03.020.

[53] S. Kojima, N. Watanabe, M. Numata, T. Ogawa, and

S. Matsuzaki, “Increase in the prevalence of fatty liver

in Japan over the past 12 years: analysis of clinical

background,” J. Gastroenterol., vol. 38, no. 10, pp.

954–961, Oct. 2003, doi: 10.1007/s00535-003-1178-

8.

[54] U. Iqbal, B. Perumpail, D. Akhtar, D. Kim, and A.

Ahmed, “The Epidemiology, Risk Profiling and

Diagnostic Challenges of Nonalcoholic Fatty Liver

Disease,” Medicines, vol. 6, no. 1, p. 41, Mar. 2019,

doi: 10.3390/medicines6010041.

[55] G. C. Farrell, V. W.-S. Wong, and S. Chitturi,

“NAFLD in Asia—as common and important as in

the West,” Nat. Rev. Gastroenterol. Hepatol., vol. 10,

no. 5, pp. 307–318, May 2013, doi:

10.1038/nrgastro.2013.34.

[56] Z. M. Younossi et al., “The global epidemiology of

NAFLD and NASH in patients with type 2 diabetes:

A systematic review and meta-analysis,” J. Hepatol.,

vol. 71, no. 4, pp. 793–801, Oct. 2019, doi:

10.1016/j.jhep.2019.06.021.

[57] Z. M. Younossi et al., “Nonalcoholic Fatty Liver

Disease in Lean Individuals in the United States:,”

Medicine (Baltimore), vol. 91, no. 6, pp. 319–327,

Nov. 2012, doi: 10.1097/MD.0b013e3182779d49.

[58] A. Lonardo et al., “Epidemiological modifiers of non-

alcoholic fatty liver disease: Focus on high-risk

groups,” Dig. Liver Dis., vol. 47, no. 12, pp. 997–

1006, Dec. 2015, doi: 10.1016/j.dld.2015.08.004.

330

[59] “OPTN/SRTR 2018 Annual Data Report: Liver.”

https://srtr.transplant.hrsa.gov/annual_reports/2018/Li

ver.aspx (accessed Aug. 28, 2020).

[60] A. Lonardo et al., “Sex Differences in Nonalcoholic

Fatty Liver Disease: State of the Art and Identification

of Research Gaps,” Hepatology, vol. 70, no. 4, pp.

1457–1469, Oct. 2019, doi: 10.1002/hep.30626.

[61] S. Ballestri, F. Nascimbeni, E. Baldelli, A. Marrazzo,

D. Romagnoli, and A. Lonardo, “NAFLD as a Sexual

Dimorphic Disease: Role of Sex and Reproductive

Status in the Development and Progression of

Nonalcoholic Fatty Liver Disease and Inherent

Cardiovascular Risk,” Adv. Ther., vol. 34, no. 6, pp.

1291–1326, 2017, doi: 10.1007/s12325-017-0556-1.

[62] M. Balakrishnan et al., “Women Have a Lower Risk

of Nonalcoholic Fatty Liver Disease but a Higher

Risk of Progression Vs Men: A Systematic Review

and Meta-analysis,” Clin. Gastroenterol. Hepatol., p.

S1542356520306121, Apr. 2020, doi:

10.1016/j.cgh.2020.04.067.

[63] L. Wang, J. Guo, and J. Lu, “Risk factor compositions

of nonalcoholic fatty liver disease change with body

mass index in males and females,” Oncotarget, vol. 7,

no. 24, pp. 35632–35642, Jun. 2016, doi:

10.18632/oncotarget.9691.

[64] M. Cave et al., “Toxicant-associated steatohepatitis in

vinyl chloride workers,” Hepatology, vol. 51, no. 2,

pp. 474–481, Feb. 2010, doi: 10.1002/hep.23321.

[65] A. Michailova, T. Kuneva, and T. Popov, “A

comparative assessment of liver function in workers

in the petroleum industry,” Int. Arch. Occup. EnvIron.

Health, vol. 71 Suppl, pp. S46-49, Sep. 1998.

[66] H. P. Cotrim, Z. A. Andrade, R. Parana, M. Portugal,

L. G. Lyra, and L. A. R. Freitas, “Nonalcoholic

steatohepatitis: a toxic liver disease in industrial

workers,” Liver Int., vol. 19, no. 4, pp. 299–304, Aug.

1999, doi: 10.1111/j.1478-3231.1999.tb00053.x.

[67] “NASH Definition & Prevalence — American Liver

Foundation.” https://liverfoundation.org/for-

patients/about-the-liver/diseases-of-the-

liver/nonalcoholic-steatohepatitis-information-

center/nash-definition-prevalence/ (accessed Aug. 28,

2020).

[68] L. C. Bertot et al., “Nonalcoholic fatty liver disease-

related cirrhosis is commonly unrecognized and

associated with hepatocellular carcinoma: Hepatology

Communications, Month 2017,” Hepatol. Commun.,

vol. 1, no. 1, pp. 53–60, Feb. 2017, doi:

10.1002/hep4.1018.

[69] R. Loomba, “Role of imaging-based biomarkers in

NAFLD: Recent advances in clinical application and

future research directions,” J. Hepatol., vol. 68, no. 2,

pp. 296–304, Feb. 2018, doi:

10.1016/j.jhep.2017.11.028.

[70] L. A. Adams et al., “The Natural History of

Nonalcoholic Fatty Liver Disease: A Population-

Based Cohort Study,” Gastroenterology, vol. 129, no.

1, pp. 113–121, Jul. 2005, doi:

10.1053/j.gastro.2005.04.014.

[71] R. M. Carr, A. Oranu, and V. Khungar, “Nonalcoholic

Fatty Liver Disease,” Gastroenterol. Clin. North Am.,

vol. 45, no. 4, pp. 639–652, Dec. 2016, doi:

10.1016/j.gtc.2016.07.003.

[72] S. Petta et al., “Pathophysiology of Non Alcoholic

Fatty Liver Disease,” Int. J. Mol. Sci., vol. 17, no. 12,

p. 2082, Dec. 2016, doi: 10.3390/ijms17122082.

[73] International Diabetes Foundation, “IDF Diabetes

Atlas, Ninth Edition, 2019,” pdf, 2019. Accessed:

Nov. 24, 2020. [Online]. Available:

https://www.idf.org/e-library/epidemiology-

research/diabetes-atlas/159-idf-diabetes-atlas-ninth-

edition-2019.html.

[74] A. Kautzky-Willer, J. Harreiter, and G. Pacini, “Sex

and Sex Differences in Risk, Pathophysiology and

Complications of Type 2 Diabetes Mellitus,” Endocr.

Rev., vol. 37, no. 3, pp. 278–316, 2016, doi:

10.1210/er.2015-1137.

[75] T. Fukuda et al., “The impact of non-alcoholic fatty

liver disease on incident type 2 diabetes mellitus in

non-overweight individuals,” Liver Int., vol. 36, no. 2,

pp. 275–283, Feb. 2016, doi: 10.1111/liv.12912.

[76] Z.-J. Xu, J.-P. Shi, D.-R. Yu, L.-J. Zhu, J.-D. Jia, and

J.-G. Fan, “Evaluating the Relationship Between

Metabolic Syndrome and Liver Biopsy-Proven Non-

Alcoholic Steatohepatitis in China: A Multicenter

Cross-Sectional Study Design,” Adv. Ther., vol. 33,

no. 11, pp. 2069–2081, Nov. 2016, doi:

10.1007/s12325-016-0416-4.

[77] S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C.

Smith, and C. Lenfant, “Definition of Metabolic

Syndrome: Report of the National Heart, Lung, and

Blood Institute/American Heart Association

Conference on Scientific Issues Related to

Definition,” Circulation, vol. 109, no. 3, pp. 433–438,

Jan. 2004, doi:

10.1161/01.CIR.0000111245.75752.C6.

[78] P. L. Huang, “A comprehensive definition for

metabolic syndrome,” Dis. Model. Mech., vol. 2, no.

5–6, pp. 231–237, May 2009, doi:

10.1242/dmm.001180.

[79] A. Chowdhury and Z. M. Younossi, “Global

Epidemiology and Risk Factors for Nonalcoholic

Fatty Liver Disease,” in Alcoholic and Non-Alcoholic

Fatty Liver Disease: Bench to Bedside, N. Chalasani

and G. Szabo, Eds. Cham: Springer International

Publishing, 2016, pp. 21–40.

[80] A. Lonardo, S. Ballestri, G. Marchesini, P. Angulo,

and P. Loria, “Nonalcoholic fatty liver disease: A

precursor of the metabolic syndrome,” Dig. Liver

Dis., vol. 47, no. 3, pp. 181–190, Mar. 2015, doi:

10.1016/j.dld.2014.09.020.

[81] N. Chalasani and G. Szabo, Eds., Alcoholic and Non-

Alcoholic Fatty Liver Disease. Cham: Springer

International Publishing, 2016.

[82] I. Doycheva et al., “Increasing Burden of Chronic

Liver Disease Among Adolescents and Young Adults

in the USA: A Silent Epidemic,” Dig. Dis. Sci., vol.

62, no. 5, pp. 1373–1380, May 2017, doi:

10.1007/s10620-017-4492-3.

[83] G. Cholankeril et al., “Liver Transplantation for

Nonalcoholic Steatohepatitis in the US: Temporal

331

Trends and Outcomes,” Dig. Dis. Sci., vol. 62, no. 10,

pp. 2915–2922, Oct. 2017, doi: 10.1007/s10620-017-

4684-x.

[84] H. S. Kim, Y. J. Kim, and Y. R. Seo, “An Overview

of Carcinogenic Heavy Metal: Molecular Toxicity

Mechanism and Prevention,” J. Cancer Prev., vol. 20,

no. 4, pp. 232–240, Dec. 2015, doi:

10.15430/JCP.2015.20.4.232.

[85] A. A. Hunaiti and M. Soud, “Effect of lead

concentration on the level of glutathione, glutathione

S-transferase, reductase and peroxidase in human

blood,” Sci. Total EnvIron., vol. 248, no. 1, pp. 45–50,

Mar. 2000, doi: 10.1016/S0048-9697(99)00548-3.

[86] I. A. Grasso, M. R. Blattner, T. Short, and J. W.

Downs, “Severe Systemic Lead Toxicity Resulting

From Extra-Articular Retained Shrapnel Presenting as

Jaundice and Hepatitis: A Case Report and Review of

the Literature,” Mil. Med., vol. 182, no. 3, pp. e1843–

e1848, Mar. 2017, doi: 10.7205/MILMED-D-16-

00231.

[87] X. Wu, S. J. Cobbina, G. Mao, H. Xu, Z. Zhang, and

L. Yang, “A review of toxicity and mechanisms of

individual and mixtures of heavy metals in the

environment,” EnvIron. Sci. Pollut. Res., vol. 23, no.

9, pp. 8244–8259, May 2016, doi: 10.1007/s11356-

016-6333-x.

[88] I. Palma-Lara et al., “Arsenic exposure: A public

health problem leading to several cancers,” Regul.

Toxicol. Pharmacol., vol. 110, p. 104539, Feb. 2020,

doi: 10.1016/j.yrtph.2019.104539.

[89] O. US EPA, “Learn about Lead,” US EPA, Feb. 12,

2013. https://www.epa.gov/lead/learn-about-lead

(accessed Nov. 28, 2020).

[90] O. US EPA, “National Primary Drinking Water

Regulations,” US EPA, Nov. 30, 2015.

https://www.epa.gov/ground-water-and-drinking-

water/national-primary-drinking-water-regulations

(accessed Nov. 01, 2020).

[91] World Health Organization, “Chemical fact Sheets,”

in Guidelines for drinking -water quality, 4th ed.,

Geneva: World Health Organization, 2011.

[92] International Agency for Research on Cancer and

Weltgesundheitsorganisation, Eds., IARC monographs

on the evaluation of carcinogenic risks to humans,

volume 100 C, arsenic, metals, fibres, and dusts: this

publication represents the views and expert opinions

of an IARC Working Group on the Evaluation of

Carcinogenic Risks to Humans, which met in Lyon, 17

- 24 March 2009. Lyon: IARC, 2012.

[93] “Arsenic.” https://www.who.int/news-room/fact-

sheets/detail/arsenic (accessed Nov. 28, 2020).

[94] H. Ali, E. Khan, and I. Ilahi, “Environmental

Chemistry and Ecotoxicology of Hazardous Heavy

Metals: Environmental Persistence, Toxicity, and

Bioaccumulation,” J. Chem., vol. 2019, pp. 1–14,

Mar. 2019, doi: 10.1155/2019/6730305.

[95] M. TatahMentan et al., “Toxic and Essential Elements

in Rice and Other Grains from the United States and

Other Countries,” Int. J. EnvIron. Res. Public. Health,

vol. 17, no. 21, p. 8128, Nov. 2020, doi:

10.3390/ijerph17218128.

[96] ATSDR, “Lead (Pb) Toxicity: What is Lead? |

ATSDR - Environmental Medicine & Environmental

Health Education - CSEM.”

https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&

po=4 (accessed Nov. 29, 2020).

[97] G. Chiocchetti, C. Jadán-Piedra, D. Vélez, and V.

Devesa, “Metal(loid) contamination in seafood

products,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 17,

pp. 3715–3728, Nov. 2017, doi:

10.1080/10408398.2016.1161596.

[98] Y. Liu, S. Buchanan, H. A. Anderson, Z. Xiao, V.

Persky, and M. E. Turyk, “Association of

methylmercury intake from seafood consumption and

blood mercury level among the Asian and Non-Asian

populations in the United States,” EnvIron. Res., vol.

160, pp. 212–222, Jan. 2018, doi:

10.1016/j.envres.2017.09.031.

[99] O. Adeoye et al., “Recommendations for the

Establishment of Stroke Systems of Care: A 2019

Update: A Policy Statement From the American

Stroke Association,” Stroke, vol. 50, no. 7, Jul. 2019,

doi: 10.1161/STR.0000000000000173.

[100] ATSDR, “Cadmium (Cd) Toxicity: Where is

Cadmium Found? | ATSDR - Environmental

Medicine & Environmental Health Education -

CSEM.”

https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&p

o=5 (accessed Dec. 15, 2020).

[101] A. H. Mokdad et al., “Prevalence of Obesity,

Diabetes, and Obesity-Related Health Risk Factors,

2001,” JAMA, vol. 289, no. 1, pp. 76–79, Jan. 2003,

doi: 10.1001/jama.289.1.76.

[102] A. H. Welch, D. B. Westjohn, D. R. Helsel, and

R. B. Wanty, “Arsenic in Ground Water of the United

States: Occurrence and Geochemistry,” Groundwater,

vol. 38, no. 4, pp. 589–604, 2000, doi:

10.1111/j.1745-6584.2000.tb00251.x.

[103] D. S. Paul, F. S. Walton, R. J. Saunders, and M.

Stýblo, “Characterization of the Impaired Glucose

Homeostasis Produced in C57BL/6 Mice by Chronic

Exposure to Arsenic and High-Fat Diet,” EnvIron.

Health Perspect., vol. 119, no. 8, pp. 1104–1109,

Aug. 2011, doi: 10.1289/ehp.1003324.

[104] A. Santra et al., “Hepatic Damage Caused by

Chronic Arsenic Toxicity in Experimental Animals,”

J. Toxicol. Clin. Toxicol., vol. 38, no. 4, pp. 395–405,

Jan. 2000, doi: 10.1081/CLT-100100949.

[105] Erik J. Tokar, Windy A. Boyd, Jonathan H.

Freedman, and Michael P. Waalkes, “Chapter 23:

Toxic Effects of Metals,” in Essentials of Toxicology,

3rd ed., McGraw Hill Professional, 2015.

[106] V. M. Nurchi, A. Buha Djordjevic, G. Crisponi,

J. Alexander, G. Bjørklund, and J. Aaseth, “Arsenic

Toxicity: Molecular Targets and Therapeutic Agents,”

Biomolecules, vol. 10, no. 2, p. 235, Feb. 2020, doi:

10.3390/biom10020235.

332

[107] M. E. Morales et al., “Heavy Metal Exposure

Influences Double Strand Break DNA Repair

Outcomes,” PLOS ONE, vol. 11, no. 3, p. e0151367,

Mar. 2016, doi: 10.1371/journal.pone.0151367.

[108] J. Hallauer, X. Geng, H.-C. Yang, J. Shen, K.-J.

Tsai, and Z. Liu, “The Effect of Chronic Arsenic

Exposure in Zebrafish,” Zebrafish, vol. 13, no. 5, pp.

405–412, Oct. 2016, doi: 10.1089/zeb.2016.1252.

[109] S. C. Lu, “Dysregulation of glutathione synthesis

in liver disease,” Liver Res., vol. 4, no. 2, pp. 64–73,

Jun. 2020, doi: 10.1016/j.livres.2020.05.003.

[110] N. Kaplowitz, “The importance and regulation of

hepatic glutathione,” Yale J. Biol. Med., vol. 54, no. 6,

pp. 497–502, Dec. 1981.

[111] Y.-C. Lin et al., “Association between soil heavy

metals and fatty liver disease in men in Taiwan: a

cross sectional study,” BMJ Open, vol. 7, no. 1, Jan.

2017, doi: 10.1136/bmjopen-2016-014215.

[112] S. Eskreis-Winkler et al., “IDEAL-IQ in an

oncologic population: meeting the challenge of

concomitant liver fat and liver Iron,” Cancer Imaging,

vol. 18, no. 1, p. 51, Dec. 2018, doi: 10.1186/s40644-

018-0167-3.

[113] S. S. Martinez et al., “Low Plasma Zinc Is

Associated with Higher Mitochondrial Oxidative

Stress and Faster Liver Fibrosis Development in the

Miami Adult Studies in HIV Cohort,” J. Nutr., vol.

147, no. 4, pp. 556–562, Apr. 2017, doi:

10.3945/jn.116.243832.

[114] F. Albarede et al., “Medical applications of Cu,

Zn, and S isotope effects,” Metallomics, vol. 8, no. 10,

pp. 1056–1070, 2016, doi: 10.1039/C5MT00316D.

[115] C. E. Kelley, “Review of nonalcoholic fatty liver

disease in women with polycystic ovary syndrome,”

World J. Gastroenterol., vol. 20, no. 39, p. 14172,

2014, doi: 10.3748/wjg.v20.i39.14172.

[116] K. R. Lee, K. D. Ko, I. C. Hwang, H. S. Suh, and

K. K. Kim, “Association between blood lead levels

and blood pressures in a non-smoking healthy Korean

population,” Postgrad. Med. J., vol. 93, no. 1103, pp.

513–518, Sep. 2017, doi: 10.1136/postgradmedj-

2016-134208.

[117] “Liver function tests - Mayo Clinic.”

https://www.mayoclinic.org/tests-procedures/liver-

function-tests/about/pac-20394595 (accessed Oct. 27,

2020).

[118] E. Carey, A. Wieckowska, and W. D. Carey,

“Nonalcoholic Fatty Liver Disease,” Cleveland Clinic

- Center for Continuing Education, Mar. 2013.

https://www.clevelandclinicmeded.com/medicalpubs/

diseasemanagement/hepatology/nonalcoholic-fatty-

liver-disease-march-13/ (accessed Oct. 22, 2020).

[119] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y.

Fazel, L. Henry, and M. Wymer, “Global

epidemiology of nonalcoholic fatty liver disease-

Meta-analytic assessment of prevalence, incidence,

and outcomes: HEPATOLOGY, Vol. XX, No. X

2016,” Hepatology, vol. 64, no. 1, pp. 73–84, Jul.

2016, doi: 10.1002/hep.28431.

[120] S. Mitra, A. De, and A. Chowdhury,

“Epidemiology of non-alcoholic and alcoholic fatty

liver diseases,” Transl. Gastroenterol. Hepatol., vol.

5, pp. 16–16, Apr. 2020, doi:

10.21037/tgh.2019.09.08.

[121] A. Ofosu, “Non-alcoholic fatty liver disease:

controlling an emerging epidemic, challenges, and

future directions,” Ann. Gastroenterol., 2018, doi:

10.20524/aog.2018.0240.

[122] F. A. Cimini et al., “Relationship between

adipose tissue dysfunction, vitamin D deficiency and

the pathogenesis of non-alcoholic fatty liver disease,”

World J. Gastroenterol., vol. 23, no. 19, pp. 3407–

3417, May 2017, doi: 10.3748/wjg.v23.i19.3407.

[123] E. Vilar-Gomez and N. Chalasani, “Non-invasive

assessment of non-alcoholic fatty liver disease:

Clinical prediction rules and blood-based

biomarkers,” J. Hepatol., vol. 68, no. 2, pp. 305–315,

Feb. 2018, doi: 10.1016/j.jhep.2017.11.013.

[124] M. V. Machado, J. Coutinho, F. Carepa, A.

Costa, H. Proença, and H. Cortez-Pinto, “How

adiponectin, leptin, and ghrelin orchestrate together

and correlate with the severity of nonalcoholic fatty

liver disease,” Eur. J. Gastroenterol. Hepatol., vol.

24, no. 10, p. 1166, Oct. 2012, doi:

10.1097/MEG.0b013e32835609b0.

[125] J. Cai et al., “Porous graphene-black phosphorus

nanocomposite modified electrode for detection of

leptin,” Biosens. Bioelectron., vol. 137, pp. 88–95,

Jul. 2019, doi: 10.1016/j.bios.2019.04.045.

[126] J.-B. Suh, S. M. Kim, G.-J. Cho, and K. M. Choi,

“Serum AFBP levels are elevated in patients with

nonalcoholic fatty liver disease,” Scand. J.

Gastroenterol., vol. 49, no. 8, pp. 979–985, Aug.

2014, doi: 10.3109/00365521.2013.836754.

[127] M. Furuhashi and G. S. Hotamisligil, “Fatty acid-

binding proteins: role in metabolic diseases and

potential as drug targets,” Nat. Rev. Drug Discov.,

vol. 7, no. 6, pp. 489–503, Jun. 2008, doi:

10.1038/nrd2589.

[128] X. Gong et al., “Membraneless reproducible

MoS2 field-effect transistor biosensor for high

sensitive and selective detection of FGF21,” Sci.

China Mater., vol. 62, no. 10, pp. 1479–1487, Oct.

2019, doi: 10.1007/s40843-019-9444-y.

[129] J. D. Clarke, T. Sharapova, A. D. Lake, E.

Blomme, J. Maher, and N. J. Cherrington,

“Circulating microRNA 122 in the methionine and

choline-deficient mouse model of non-alcoholic

steatohepatitis: miRNA 122 and NASH,” J. Appl.

Toxicol., vol. 34, no. 6, pp. 726–732, Jun. 2014, doi:

10.1002/jat.2960.

[130] A. Moolla et al., “Accurate non-invasive

diagnosis and staging of non-alcoholic fatty liver

disease using the urinary steroid metabolome,”

Aliment. Pharmacol. Ther., vol. 51, no. 11, pp. 1188–

1197, Jun. 2020, doi: 10.1111/apt.15710.

[131] N. Atabaki-Pasdar et al., “Predicting and

elucidating the etiology of fatty liver disease: A

machine learning modeling and validation study in the

IMI DIRECT cohorts,” PLOS Med., vol. 17, no. 6, p.

e1003149, Jun. 2020, doi:

10.1371/journal.pmed.1003149.

333

[132] N. Perakakis et al., “Non-invasive diagnosis of

non-alcoholic steatohepatitis and fibrosis with the use

of omics and supervised learning: A proof of concept

study,” Metabolism, vol. 101, p. 154005, Dec. 2019,

doi: 10.1016/j.metabol.2019.154005.

[133] B. Han et al., “A semi-packed micro GC column

for separation of the NAFLD exhaled breath VOCs,”

Surf. Coat. Technol., vol. 363, pp. 322–329, Apr.

2019, doi: 10.1016/j.surfcoat.2019.02.049.

[134] R. Deo and S. Panigrahi, “Prediction of Hepatic

Steatosis (Fatty Liver) using Machine Learning,” in

Proceedings of the 2019 3rd International Conference

on Computational Biology and Bioinformatics -

ICCBB ’19, Nagoya, Japan, 2019, pp. 8–12, doi:

10.1145/3365966.3365968.

[135] C.-C. Wu et al., “Prediction of fatty liver disease

using machine learning algorithms,” Comput.

Methods Programs Biomed., vol. 170, pp. 23–29,

Mar. 2019, doi: 10.1016/j.cmpb.2018.12.032.

[136] M. Biswas et al., “Symtosis: A liver ultrasound

tissue characterization and risk stratification in

optimized deep learning paradigm,” Comput. Methods

Programs Biomed., vol. 155, pp. 165–177, Mar. 2018,

doi: 10.1016/j.cmpb.2017.12.016.

[137] C. L. Fanola et al., “A novel risk prediction score

in atrial fibrillation for a net clinical outcome from the

ENGAGE AF-TIMI 48 randomized clinical trial.,”

Eur. Heart J., vol. 38, no. 12, pp. 888–896, Mar.

2017, doi: 10.1093/eurheartj/ehw565.

[138] M. Chen, Y. Hao, K. Hwang, L. Wang, and L.

Wang, “Disease Prediction by Machine Learning

Over Big Data From Healthcare Communities,” IEEE

Access, vol. 5, pp. 8869–8879, 2017, doi:

10.1109/ACCESS.2017.2694446.

[139] M. Shahabi, H. Hassanpour, and H. Mashayekhi,

“Rule extraction for fatty liver detection using neural

networks,” Neural Comput. Appl., vol. 31, no. 4, pp.

979–989, Apr. 2019, doi: 10.1007/s00521-017-3130-

5.

[140] U. R. Acharya et al., “Decision support system

for fatty liver disease using GIST descriptors

extracted from ultrasound images,” Inf. Fusion, vol.

29, pp. 32–39, May 2016, doi:

10.1016/j.inffus.2015.09.006.

[141] A. Canbay et al., “Non-invasive assessment of

NAFLD as systemic disease—A machine learning

perspective,” PLOS ONE, vol. 14, no. 3, p. e0214436,

Mar. 2019, doi: 10.1371/journal.pone.0214436.

[142] P. Sorino et al., “Selecting the best machine

learning algorithm to support the diagnosis of Non-

Alcoholic Fatty Liver Disease: A meta learner study,”

PLOS ONE, vol. 15, no. 10, p. e0240867, Oct. 2020,

doi: 10.1371/journal.pone.0240867.

[143] G. I. Rajathi and G. W. Jiji, “Chronic Liver

Disease Classification Using Hybrid Whale

Optimization with Simulated Annealing and

Ensemble Classifier,” Symmetry, vol. 11, no. 1, p. 33,

Jan. 2019, doi: 10.3390/sym11010033.

deep belief network parameters using grasshopper

algorithm for liver disease classification,” Int. J.

Imaging Syst. Technol., vol. 30, no. 1, pp. 168–184,

Mar. 2020, doi: 10.1002/ima.22375.

[145] K. B. Kim, G. H. Kim, D. H. Song, H. J. Park,

and C. W. Kim, “Automatic segmentation of

liver/kidney area with double-layered fuzzy C-means

and the utility of hepatorenal index for fatty liver

severity classification,” J. Intell. Fuzzy Syst., vol. 39,

no. 1, pp. 925–936, Jul. 2020, doi: 10.3233/JIFS-

191850.

[146] Y. Huo et al., “Fully automatic liver attenuation

estimation combing CNN segmentation and

morphological operations,” Med. Phys., vol. 46, no. 8,

pp. 3508–3519, Aug. 2019, doi: 10.1002/mp.13675.

[147] A. Han et al., “Noninvasive Diagnosis of

Nonalcoholic Fatty Liver Disease and Quantification

of Liver Fat with Radiofrequency Ultrasound Data

Using One-dimensional Convolutional Neural

Networks,” Radiology, vol. 295, no. 2, pp. 342–350,

May 2020, doi: 10.1148/radiol.2020191160.

[148] W. Cao, X. An, L. Cong, C. Lyu, Q. Zhou, and R.

Guo, “Application of Deep Learning in Quantitative

Analysis of 2‐Dimensional Ultrasound Imaging of

Nonalcoholic Fatty Liver Disease,” J. Ultrasound

Med., vol. 39, no. 1, pp. 51–59, Jan. 2020, doi:

10.1002/jum.15070.

[149] A. E. Bohte, J. R. van Werven, S. Bipat, and J.

Stoker, “The diagnostic accuracy of US, CT, MRI and

1H-MRS for the evaluation of hepatic steatosis

compared with liver biopsy: a meta-analysis,” Eur.

Radiol., vol. 21, no. 1, pp. 87–97, Jan. 2011, doi:

10.1007/s00330-010-1905-5.

[150] S. C. Lin et al., “Noninvasive Diagnosis of

Nonalcoholic Fatty Liver Disease and Quantification

of Liver Fat Using a New Quantitative Ultrasound

Technique,” Clin. Gastroenterol. Hepatol., vol. 13,

no. 7, pp. 1337-1345.e6, Jul. 2015, doi:

10.1016/j.cgh.2014.11.027.

[151] J. S. Paige et al., “A Pilot Comparative Study of

Quantitative Ultrasound, Conventional Ultrasound,

and MRI for Predicting Histology-Determined

Steatosis Grade in Adult Nonalcoholic Fatty Liver

Disease,” Am. J. Roentgenol., vol. 208, no. 5, pp.

W168–W177, May 2017, doi: 10.2214/AJR.16.16726.

[152] R. Hernaez et al., “Diagnostic accuracy and

reliability of ultrasonography for the detection of fatty

liver: A meta-analysis,” Hepatology, vol. 54, no. 3,

pp. 1082–1090, Sep. 2011, doi: 10.1002/hep.24452.

[153] Y. N. Zhang et al., “Liver fat imaging—a clinical

overview of ultrasound, CT, and MR imaging,” Br. J.

Radiol., p. 20170959, Jun. 2018, doi:

10.1259/bjr.20170959.

[154] A. Han et al., “Inter-platform reproducibility of

ultrasonic attenuation and backscatter coefficients in

assessing NAFLD,” Eur. Radiol., vol. 29, no. 9, pp.

4699–4708, Sep. 2019, doi: 10.1007/s00330-019-

06035-9.

334

[155] X. Forns et al., “Identification of chronic

hepatitis C patients without hepatic fibrosis by a

simple predictive model: Identification of chronic

hepatitis C patients without hepatic fibrosis by a

simple predictive model,” Hepatology, vol. 36, no. 4,

pp. 986–992, Oct. 2002, doi:

10.1053/jhep.2002.36128.

[156] N. H. Afdhal, “Fibroscan (transient elastography)

for the measurement of liver fibrosis,” Gastroenterol.

Hepatol., vol. 8, no. 9, pp. 605–607, Sep. 2012.

[157] I. S. Idilman et al., “Hepatic Steatosis:

Quantification by Proton Density Fat Fraction with

MR Imaging versus Liver Biopsy,” Radiology, vol.

267, no. 3, pp. 767–775, Jun. 2013, doi:

10.1148/radiol.13121360.

[158] M. S. Middleton et al., “Agreement Between

Magnetic Resonance Imaging Proton Density Fat

Fraction Measurements and Pathologist-Assigned

Steatosis Grades of Liver Biopsies From Adults With

Nonalcoholic Steatohepatitis,” Gastroenterology, vol.

153, no. 3, pp. 753–761, Sep. 2017, doi:

10.1053/j.gastro.2017.06.005.

[159] A. Tang et al., “Accuracy of MR Imaging–

estimated Proton Density Fat Fraction for

Classification of Dichotomized Histologic Steatosis

Grades in Nonalcoholic Fatty Liver Disease,”

Radiology, vol. 274, no. 2, pp. 416–425, Feb. 2015,

doi: 10.1148/radiol.14140754.

[160] L. L. Wald, P. C. McDaniel, T. Witzel, J. P.

Stockmann, and C. Z. Cooley, “Low‐cost and portable

MRI,” J. Magn. Reson. Imaging, vol. 52, no. 3, pp.

686–696, Sep. 2020, doi: 10.1002/jmri.26942.

[161] A. Mantovani et al., “Heart valve calcification in

patients with type 2 diabetes and nonalcoholic fatty

liver disease,” Metabolism, vol. 64, no. 8, pp. 879–

887, Aug. 2015, doi: 10.1016/j.metabol.2015.04.003.

[162] M. Gambarin–Gelwan, S. V. Kinkhabwala, T. D.

Schiano, C. Bodian, H. Yeh, and W. Futterweit,

“Prevalence of Nonalcoholic Fatty Liver Disease in

Women With Polycystic Ovary Syndrome,” Clin.

Gastroenterol. Hepatol., vol. 5, no. 4, pp. 496–501,

Apr. 2007, doi: 10.1016/j.cgh.2006.10.010.

[163] Z. M. Younossi et al., “Association of

nonalcoholic fatty liver disease (NAFLD) with

hepatocellular carcinoma (HCC) in the United States

from 2004 to 2009: Hepatology, Vol. XX, No. X,

2015 Younossi et al.,” Hepatology, vol. 62, no. 6, pp.

1723–1730, Dec. 2015, doi: 10.1002/hep.28123.

[164] T. G. Cotter and M. Rinella, “Nonalcoholic Fatty

Liver Disease 2020: The State of the Disease,”

Gastroenterology, vol. 158, no. 7, pp. 1851–1864,

May 2020, doi: 10.1053/j.gastro.2020.01.052.

335

APPENDIX G – IRB INFORMATION

Subject: PROPEL Determination Letter - PROPEL # 17975020

Date: Thursday, January 31, 2019, at 12:03:10 PM Eastern Standard Time

From: Purdue HRPP

To: Ridhi Deo

HUMAN RESEARCH PROTECTION PROGRAM INSTITUTIONAL REVIEW BOARDS

To: Suranjan Panigrahi

From: Purdue University Human Research Protections Program (HRPP) Title: Prediction model for Fatty Liver Disease

Date: 2019-01-31

Re: Exempt on Determination

Through the answers you provided in response to questions in the Purdue Research Online Portal Exemption Logic (PROPEL), Purdue’s HRPP

has determined that the research project identified above qualifies as exempt from IRB review, under federal human subjects research

regulations Exemption Category 4 [Existing, Deidentified Biospecimens or Data; e.g., 45 CFR 46.101(b)(4)].

The answers provided in PROPEL indicate your plans to:

Utilize existing data, documents records, or specimens that are either publicly available or were recorded in such a manner that the identity of

the subjects cannot be identified directly or indirectly by you or your research team.

Follow the terms and conditions of any contracts or access agreements regarding data security measures.

What are your responsibleness now, as you move forward with your research?

You (and any staff collecting or analyzing data from this study) must renew your training in human subjects research via CITI

(www.citiprogram.org) every 5 years, based on the date of your last CITI training certificate. CITI will notify you via email when your current

training certification is close to expiration.

You must keep all study records for a minimum of 3 years following closure of the study.

You and the members of your research team acknowledge that this study is subject to review at any time by Purdue’s HRPP staff, Institutional

Review Board, and or Research Quality Assurance unit. At any time, this project may be subject to post exemption- determination monitoring

by these Purdue entities to confirm the applicability of this exemption status.

336

This determination constitutes the Purdue HRPP assessment of regulations related to human subjects research protections. This determination

does not constitute approval from any other Purdue campus department or outside agency. The Principal Investigator and all researchers are

required to affirm that the research meets all applicable local, state, and federal laws that may apply.

Finally, if any changes occur with respect to this research project, recognize that such changes could result in change in need for review by

HRPP/IRB. Therefore, it is important that you again complete PROPEL to ensure that your research remains exempt from IRB review.

Should you have any questions about your rights and responsibilities regarding conducting research with people, on this project or any other,

please do not hesitate to contact Purdue’s HRPP at irb@purdue.edu. We are here to help!

