
INTELLIGENT HEALTHCARE DATA ANALYTICS COUPLED WITH 

SENSOR ASSESSMENT FOR NON-ALCOHOLIC FATTY LIVER 

DISEASE (NAFLD) 

by 

Ridhi Deo 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

 

School of Engineering Technology 

West Lafayette, Indiana 

May 2022 

  



 

 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Suranjan Panigrahi, Chair 

School of Engineering Technology 

Dr. Edward Liechty 

Professor Emeritus of Pediatrics                                                                                                             

Indiana University School of Medicine 

Dr. Jennifer Freeman 

School of Health Sciences 

Dr. Frederick C. Berry 

School of Engineering Technology 

 

Approved by: 

Dr.  Kathryne A. Newton 

 

 



 

 

3 

Dedicated to my Grandpa – Kishore Palsikar. I cannot fully express how much your 

encouragement and support mean to me. You fostered my love for reading – and I am forever 

grateful to you for this gift. Thank you for always seeing the best in me, I could not have done 

this without you.



 

 

4 

ACKNOWLEDGMENTS 

Through the process of researching and writing this dissertation, I was lucky to receive 

help from several individuals. With great joy and respect, I would like to acknowledge these 

individuals for taking time, effort and patience with helping me get here.  

First, I want to thank Dr. Suranjan Panigrahi, my advisor and mentor, who spent many 

hours of his time in ensuring I was headed in the right direction before I started my PhD journey, 

through my Ph.D., and in choosing my next steps. I am grateful for your consistent support, 

direction, advise and overall mentorship. I could not have done this without your support and 

encouragement. Thank you for all your help – I am forever grateful. 

Thank you to Dr. Edward Liechty, for taking time out from his research and practice, even 

during Covid -19. The perspective and feedback you provided helped us frame our work to be 

useful in the healthcare domain. I would also like to thank Dr. Jennifer Freeman, not only for her 

feedback as a committee member, but also for allowing us to share her lab space and resources. I 

received a great education and training in a very short time through yourself, and your graduate 

students – thank you. Thank you to Dr. Frederick Berry, for his support and feedback. Some of the 

questions you asked made me think more clearly through my work and I thank you very much for 

that. Thank you to Dr. Arlene Rothwell and Dr. Anusha Hettiyadura, from the Mass Spectrometry 

lab for training me patiently. Your kind help was timely and invaluable.  

A huge thank you to Dr. Patrick Connolly and Prof. Abrar Hammoud for supporting me by 

providing research and teaching assistantships all through my Ph.D. journey – I am grateful for 

your kindness, and I feel lucky to have had an opportunity to work with you both. 

I would like to thank my lab-mates, Jiexiong Xu and Jonah Yap for helping me with lab 

experiments, providing valuable insights from your own experiments and for being ready to chat 

about any bottle-necks. I appreciate the time we spent discussing and brainstorming together. To 

my friends– Trevor Mamer, Matthew Scott, Katie Leyba, Ananya Ipsita, and Manav Wadhawan – 

thank you for talking through the many ups and downs of person and professional lives. I am 

grateful for our friendship.  

Other than my professors and colleagues, my family in India and my family in the USA 

have played a huge role as my support system. It is with utmost gratitude and love that I express 

my thanks to all of them. To my parents – although we live miles apart, your support means the 



 

 

5 

world to me. To my mom – the time we spent on the phone always made me feel like home. Your 

kind words of support and affection kept me going, Ma. Thank you! To my dad – you are my 

inspiration, and you will always be the best Dr. Deo. To my little brother, Rishabh, – you are the 

greatest blessing in my life. To my uncle, Aniketh Ramname – your support all through my 

graduate school has kept me going. Thank you for putting your faith in me and helping me see 

through this. I could not have done this without any of you. 

Finally, I would like to thank my partner, Karthik Sethuraman, for always being on my 

side through the ups and downs of graduate school. You are my biggest pillar of support and I 

consider myself incredibly lucky to be with you. Thank you for taking time out to read my work, 

for meaningfully critiquing it (sometimes critique is hard to take but it was helpful every single 

time!) and for always looking out for the best for me. Needless to say, this dissertation would not 

have been possible without your support.  

 



 

 

6 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 9 

LIST OF FIGURES ...................................................................................................................... 11 

GLOSSARY ................................................................................................................................. 13 

LIST OF ABBREVIATIONS ....................................................................................................... 14 

ABSTRACT .................................................................................................................................. 15 

 GENERAL LITERATURE REVIEW ................................................................ 21 

1.1 Artificial Intelligence: benefits and challenges for healthcare ......................................... 21 

1.1.1 Challenges in processing big data .............................................................................. 22 

1.1.2 Challenges specific to healthcare datasets and the need to address them .................. 22 

1.1.3 Regulation of healthcare AI: ...................................................................................... 23 

1.1.4 Interpretability of black-box models ......................................................................... 24 

1.2 Liver and toxicology ......................................................................................................... 25 

1.2.1 Liver functionality and importance ........................................................................... 25 

1.3 Heavy metals ..................................................................................................................... 26 

1.3.1 Heavy metal contamination and pathways into the human system ........................... 27 

1.3.2 Lead: .......................................................................................................................... 27 

1.3.3 Arsenic ....................................................................................................................... 29 

1.4 Heavy metals and NAFLD................................................................................................ 32 

 HEPATIC STEATOSIS (HS) PREDICTION USING MACHINE LEARNING 

(PAPER 1)  ............................................................................................................................ 34 

2.1 Introduction ....................................................................................................................... 34 

2.2 Literature review ............................................................................................................... 35 

2.2.1 NAFLD background and epidemiology .................................................................... 35 

2.2.2 Etiology of NAFLD ................................................................................................... 36 

2.2.3 Biomarkers and tools for NAFLD detection ............................................................. 38 

2.2.4 Machine learning (ML)-based NAFLD detection ..................................................... 39 

2.3 Objectives ......................................................................................................................... 41 

2.4 Methods............................................................................................................................. 41 

2.4.1 Objective 1A - methods ............................................................................................. 41 



 

 

7 

2.5 Results and discussion ...................................................................................................... 54 

2.5.1 Objective 1A – results and discussion ....................................................................... 55 

2.5.2 Objective 1B - Results and Discussion ...................................................................... 55 

2.6 Summary & conclusion..................................................................................................... 58 

2.7 Recommendations for future work ................................................................................... 59 

2.8 Figures – objective 1A ...................................................................................................... 60 

2.9 Tables – objective 1A ....................................................................................................... 62 

2.10 Figures – objective 1B .................................................................................................... 63 

2.11 Tables - objective 1B ...................................................................................................... 65 

2.12 References ...................................................................................................................... 67 

APPENDIX A. – CODE FOR OBJECTIVE 1A .......................................................................... 74 

APPENDIX B. - CODE FOR OBJECTIVE 1B ........................................................................... 94 

 EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) APPLIED TO HS-

SCREENING MODELS (PAPER 2).......................................................................................... 136 

3.1 Abstract ........................................................................................................................... 136 

3.2 Introduction ..................................................................................................................... 136 

3.3 Literature review ............................................................................................................. 137 

3.3.1 Background and importance of XAI in healthcare research .................................... 137 

3.3.2 Tools and techniques for XAI .................................................................................. 138 

3.4 Methods........................................................................................................................... 141 

3.4.1 Data .......................................................................................................................... 141 

3.4.2 Model & explainable AI tool selection .................................................................... 141 

3.5 Results and discussion .................................................................................................... 146 

3.5.1 Analysis of the models for male population ............................................................ 148 

3.5.2 Analysis of the models for female population ......................................................... 153 

3.5.3 Top predictors of HS ............................................................................................... 159 

3.5.4 Comparison of results in male vs female populations ............................................. 159 

3.6 Summary and conclusions .............................................................................................. 160 

3.7 Recommendations for future work ................................................................................. 161 

3.8 Figures............................................................................................................................. 162 

3.9 Tables .............................................................................................................................. 171 



 

 

8 

3.10 References .................................................................................................................... 180 

APPENDIX C. P2 - CODE ......................................................................................................... 183 

 ASSESSMENT OF HS PREDICTION MODELS USING HEAVY METAL 

EXPOSURE DATA (PAPER 3) ................................................................................................. 204 

4.1 Introduction ..................................................................................................................... 204 

4.2 Literature review ............................................................................................................. 204 

4.3 Methods........................................................................................................................... 205 

4.4 Results and discussion .................................................................................................... 209 

4.5 Summary and conclusions .............................................................................................. 211 

4.6 Recommendations for future work ................................................................................. 211 

4.7 Tables .............................................................................................................................. 212 

4.8 References ....................................................................................................................... 214 

APPENDIX D. P3 - CODE FOR OBJECTIVE 3 ...................................................................... 216 

 ASSESSMENT OF A COMMERCIALLY AVAILABLE SENSOR FOR 

ARSENIC DETECTION IN WATER (PAPER 4) .................................................................... 270 

5.1 Introduction ..................................................................................................................... 270 

5.2 Methods........................................................................................................................... 271 

5.3 Results & discussion ....................................................................................................... 276 

5.4 Summary & conclusions ................................................................................................. 281 

5.5 Recommendations for future work ................................................................................. 282 

5.6 Figures............................................................................................................................. 283 

5.7 Tables .............................................................................................................................. 292 

5.8 References ....................................................................................................................... 295 

APPENDIX E. P4 - CODE ......................................................................................................... 297 

GENERAL CONCLUSIONS ..................................................................................................... 307 

GENERAL REFERENCES ........................................................................................................ 309 

APPENDIX F. NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) FROM MULTIPLE 

SCIENTIFIC PERSPECTIVES AND CONTEMPORARY REVIEWS ................................... 316 

APPENDIX G – IRB INFORMATION ..................................................................................... 335 

  



 

 

9 

LIST OF TABLES 

Table 2.1: Model performance summary - objective 1A .............................................................. 62 

Table 2.2: Class balanced datasets using under-sampling ............................................................ 65 

Table 2.3: Class balanced datasets using SMOTE........................................................................ 65 

Table 2.4: Model Performance Summary for HS Screening using Under-Sampling ................... 65 

Table 2.5: Model Performance Summary for HS Screening using SMOTE ................................ 66 

Table 2.6: Best performing (sensitivity only) models for HS Screening using SMOTE ............. 66 

Table 3.1: Clinically defined normal values for male and female populations .......................... 171 

Table 3.2: Male quadratic SVM – partial dependency result analysis ....................................... 171 

Table 3.3: Male gaussian I SVM – partial dependency result analysis ...................................... 172 

Table 3.4: Male gaussian II SVM – partial dependency result analysis ..................................... 173 

Table 3.5: Female quadratic SVM – partial dependency result analysis .................................... 174 

Table 3.6: Female gaussian I SVM – partial dependency result analysis ................................... 175 

Table 3.7: Female gaussian II SVM – partial dependency result analysis ................................. 176 

Table 3.8: Male-specific model observations ............................................................................. 177 

Table 3.9: Female-specific model observations.......................................................................... 178 

Table 3.10: Comparison of best performing models in male vs in female populations ............. 179 

Table 3.11: Mean of predictor performances – male-specific models ........................................ 179 

Table 3.12: Mean of predictor performances – female-specific models .................................... 179 

Table 4.1: Dataset sizes after applying SMOTE – with heavy metal exposure parameters ....... 212 

Table 4.2: Dataset sizes after applying SMOTE – without heavy metal exposure parameters .. 212 

Table 4.3: Best performing models using heavy metal exposure data - male populations ......... 212 

Table 4.4: Best performing models excluding heavy metal exposure data - male populations .. 213 

Table 4.5: Best performing models using heavy metal exposure data - female populations ...... 213 

Table 4.6: Best performing models excluding heavy metal exposure data - female populations

..................................................................................................................................................... 213 

Table 5.1: Visual snapshot - within concentration analysis (4 replicates/concentration) ........... 292 

Table 5.2: Visual snapshot - pairwise concentration analysis .................................................... 292 

Table 5.3: Mean values of the hue data – all replicates .............................................................. 293 



 

 

10 

Table 5.4: Mean and SD of replicates – hue data ....................................................................... 293 

Table 5.5: Mean values of the saturation data – all replicates .................................................... 293 

Table 5.6: Mean and SD of replicates – saturation data ............................................................. 294 

Table 5.7: Confusion matrix of Euclidean distances .................................................................. 294 

 

 

  



 

 

11 

LIST OF FIGURES 

Figure 2.1: Global NAFLD prevalence [7] ................................................................................... 60 

Figure 2.2: Progression of NAFLD [18] ....................................................................................... 61 

Figure 2.3: Summary of the methods used for data cleaning and model training ........................ 61 

Figure 2.4: Flowchart of methods used in Objective 1B .............................................................. 63 

Figure 2.5: Logic used for creating synthetic male HS data with SMOTE .................................. 64 

Figure 2.6: Logic used for creating synthetic female HS data with SMOTE ............................... 64 

Figure 3.1: Typical machine learning models complexity vs interpretability ............................ 162 

Figure 3.2: Partial prediction plot with ambiguity zone (0 ± 0.15) ............................................ 162 

Figure 3.3: Methods used for explainability analysis ................................................................. 163 

Figure 3.4: Quadratic SVM - Partial dependency plots for each predictor - male population ... 164 

Figure 3.5: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - male population

..................................................................................................................................................... 165 

Figure 3.6: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - male population

..................................................................................................................................................... 166 

Figure 3.7: Quadratic SVM - Partial dependency plots for each predictor - female population 167 

Figure 3.8: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - female 

population ................................................................................................................................... 168 

Figure 3.9: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - female 

population ................................................................................................................................... 169 

Figure 3.10: Individual predictor performance - male population .............................................. 170 

Figure 3.11: Individual predictor performance - female population ........................................... 170 

Figure 5.1: Image of the photography box (purchased from a commercial source) used to capture 

images with consistent lighting ................................................................................................... 283 

Figure 5.2: Calibration scale provided by the manufacturer* ..................................................... 283 

Figure 5.3: Results of the Arsenic calibration curve using ICP-Mass spec ................................ 284 

Figure 5.4: Flowchart indicating the process used for visual analysis ....................................... 284 

Figure 5.5: Flowchart indicating the process used for image analysis and pattern recognition . 285 

Figure 5.6: Graphical lay out for the digital images of test kit samples arranged in row for each 

concertation (rows) and each replicate (columns) [9] ................................................................. 286 



 

 

12 

Figure 5.7: A: 0 ppb (Arsenic in water) test results for four replicates (R1,R2,R3,R4)  ................ B: 

Manufacturer’s result .................................................................................................................. 287 

Figure 5.8: A: 10 ppb (Arsenic in water) test results for 4 replicates (R1,R2,R3, R4)     B: 

Manufacturer’s result .................................................................................................................. 287 

Figure 5.9: A: 50 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4)     B: 

Manufacturer’s result .................................................................................................................. 287 

Figure 5.10: A. 100 ppb (Arsenic in water) test results for four replicates (R1, R2, R3, R4)     B: 

Manufacturer’s result .................................................................................................................. 288 

Figure 5.11: A. 200 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4)    B: 

Manufacturer’s result .................................................................................................................. 288 

Figure 5.12: 0 ppb vs 10 ppb (Arsenic in water) side by side comparison ................................. 288 

Figure 5.13: 10 ppb vs 50 ppb (Arsenic in water) side by side comparison ............................... 289 

Figure 5.14: 50 ppb vs 100 ppb (Arsenic in water) side by side comparison ............................. 289 

Figure 5.15: 100 ppb vs 200 ppb (Arsenic in water) side by side comparison ........................... 289 

Figure 5.16: Boxplot of mean hue data, commercial kit testing (four replicates per concentration)

..................................................................................................................................................... 290 

Figure 5.17: Box plot of mean saturation data, commercial kit testing (four replicates per 

concentration) ............................................................................................................................. 290 

Figure 5.18: Mean hue vs mean saturation scatter plot .............................................................. 291 

 

 

  



 

 

13 

GLOSSARY 

Artificial Intelligence: The umbrella term used to describe a range to tools like Machine 

Learning (ML), Artificial Neural Networks (ANN) etc.   

Machine Learning (ML): A technique used to train mathematical models using a set of training 

data and test them with a set of different, test data points. ML is typically used for 

prediction problems like classifying data into groups etc. 

Training a model: Using a set of input observations to a mathematical model to “train” the 

model to fit the data 

Testing a model: Using new data on a trained model to predict a specific output 
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ABSTRACT 

This research was conducted to develop and evaluate a screening tool for Hepatic Steatosis 

(or fatty liver) detection using machine learning based models. The developed models are intended 

to be used as a potential clinical decision support tool for identifying patients with Non-Alcoholic 

Fatty Liver Disease (NAFLD). Two versions of a HS prediction tool are discussed in Paper 1, 

Objectives 1A, and 1B, respectively.  

Explainability analysis of the developed models is also a major component of this work, 

discussed in Paper 2. Models from Paper 1 are analyzed further for interpretability and the results 

are then compared with current clinical literature. Insights from the explainability analysis are used 

to identify best models that follow the clinical literature logically. Most contributing features 

within each model are also identified in this work. 

Another aspect of NAFLD management is related to the chronic exposure to heavy metals 

in the environment (such as: Arsenic, Lead, Cadmium etc.). The heavy metal exposure component 

is explored in two ways in this dissertation. In paper 3, another version of the ML-based screening 

tool is explored by including heavy metal exposure data. The results from the model (with heavy 

metal data) are then compared with models that exclude the heavy metal exposure data. The results 

and their implications are discussed in paper 3.  

Arsenic is a major hepatotoxin and the chronic exposure can lead to severe liver injury. In 

Paper 4, a commercially available Arsenic detection kit was examined for Arsenic detection in 

water at a household level. The kit was evaluated following a short experimental plan and the 

obtained results are discussed. Finally, the obtained images were quantified digitally using a 

customized image analysis and pattern recognition algorithm. The methods used for quantification 

and the obtained results are also discussed.  
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ORGANIZATION OF THIS DISSERTATION 

The dissertation starts with a general introduction, a list of research objectives and a general 

literature review. Three conference articles (all published in conference proceedings), one under-

review journal article and one future publication are included in this dissertation, with each 

research objective organized as an individual chapter. The general literature review is relevant to 

the overall theme and content in this dissertation. The general literature review contains literature 

related to each of the three objectives with further cross-references included to specific objectives.  

Each objective then has a specific literature review section relevant to the topic.  

Although all objectives are linked to the goal, each objective is stand-alone. Output of every 

objective can be used to create one or more scholarly publications. Attached appendices and 

supporting information are available at the end of each chapter.  

 

Note: The structure of this thesis is not in the conventional format. This thesis is structured 

using a graduate school approved - article format. 
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GENERAL INTRODUCTION 

This Ph.D. dissertation focuses on addressing an important disease called non-alcoholic fatty 

liver disease (NAFLD) using health informatics and machine learning models. This research was 

conducted in the Integrated Sensing and Smart Solutions laboratory of Purdue University. Before 

this research was undertaken, a core concept for a holistic system-based representation of liver 

diseases and its association with human lifestyle, food, water, environment was discussed [1]. 

From this framework, a specific issue of NAFLD using intelligent modeling and health informatics 

is discussed below. 

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver condition in individuals 

with low to moderate alcohol consumption. An estimated 80 million people are affected with 

NAFLD in the USA, as of 2016 [2]. The estimates further report a 25% prevalence of NAFLD in 

adults around the world [2].   

The disease is chronic and can be broken down into broadly four stages, ranging from simple 

fatty liver to liver cirrhosis (or even liver carcinoma) [3]. In the final stages, a liver transplant 

becomes necessary for survival. Based on 2018 data from the Organ Procurement and Transplant 

Network (OPTN), NAFLD was increasingly found to occur in liver transplant waitlist candidates 

[4].   

NAFLD is associated with several risk factors like obesity, diabetes (type-II), insulin 

resistance and, hyperlipidemia [5]. Aside from the typical risk factors, environmental risk factors 

like heavy metal exposure are known to worsen liver injury [6]– [9]. Chronic exposure to Arsenic, 

lead, mercury, and Cadmium both directly and indirectly (via contaminated food and water) could 

worsen liver functionality. Recently, the terms “Toxicant” associated fatty liver disease (TAFLD) 

and “Toxicant” associated steatohepatitis (TASH) were coined to identify liver injury caused 

specifically due to toxicants [10], [11]. TAFLD and TASH are similar in pathology to NAFLD 

and NASH, respectively [10], [11].  

To assess liver injury in general, clinicians use Liver function tests (LFTs) as initial 

investigation tools. Liver function tests include measurements of the following liver biochemicals: 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ASP), 

Albumin, Gamma-glutamyl transferase (GGT) and Bilirubin. In general, a ratio of AST/AST > 1 

is an indicator of hepatocellular injury [12]. The ratio is useful to detect overall liver injury, but it 
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is not specific for NAFLD detection [12]. Further, use of LFTs alone for NAFLD detection can be 

misleading. Research shows that use of liver function tests alone has resulted in a steady under-

estimation of NAFLD prevalence [2], [13]– [17]. Based on the LFT results, if there is suspicion of 

a liver disease, imaging tests like qualitative or quantitative ultrasound, Magnetic Resonance 

Imaging (MRI), or computer tomography (CT) are used for further investigation.  

Although imaging tests can be a useful tool for identifying fatty liver, ultrasound tests lack 

the sensitivity for NAFLD detection [18]. MRI and CT can also be used, but MRIs are expensive 

and unavailable in many locations. CT on the other hand, involves ionizing radiation, which can 

be risky for certain individuals. Finally, although liver biopsy is the benchmark for confirmed 

diagnosis, it is subject to sampling error, is invasive, risky, and expensive [14]. While tools are 

available to detect liver injury in general, there is no specific biomarker being used in clinical 

settings for NAFLD detection. The gold standard for NAFLD diagnosis is still liver biopsy [5].  

Considering the above reasons, NAFLD detection is currently limited and subject to 

availability of medical imaging tools. Further, current clinical guidelines do not recommend 

screening for NAFLD, even for high-risk populations (obesity and diabetes), due to a lack of 

definitive and inexpensive detection tools [5].  

With increasing data and computational power, researchers have used machine learning (ML) 

and other artificial intelligence techniques and applied it to health conditions. Considering the 

current lack of screening for HS (even in high-risk groups), the use of a ML-based decision support 

system would be a novel, complementary approach. Researchers have used ML-based liver disease 

prediction by using images (MRI, ultrasound, CT), and biopsy data in the past [19]– [21]. However, 

these are expensive and not accessible to everyone, as discussed earlier. The potential of machine 

learning to more commonly available multivariate data, has not been implemented before, as per 

our literature survey. In this dissertation, the potential of minimally invasive data like 

demographics, previous disease conditions, lipid information, and certain lifestyle factors in 

identifying NAFLD is investigated. One of the objectives of this thesis is to create ML models that 

are suited to be used as decision support systems for clinicians, instead of standalone models, due 

to the complexity of the disease and organ system.  

Another dimension to the complexity of liver diseases is added due to exposure to heavy 

metals or other pollutants. The relationship of these (heavy metals and pollutants) with liver injury 

has been investigated and well-documented in the past [9], [10], [22], [23]. Heavy metal exposure 
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is found to leads to various types of skin diseases, kidney malfunctions, and liver problems [24]– 

[26]. Majority of the heavy metals are documented carcinogens [27]. Global and national agencies 

like the World Health Organization (WHO), United States Environmental and Food Protection 

Agency (US-EPA) and, the Food and Drug Administration (FDA) publish their standards for safe 

drinking water and food [25], [28]. In accordance with the published standards, local state and 

county agencies monitor the quality of food and water. However, at a household level, only limited 

options are available for water quality monitoring. If the water in a specific pipeline or area is 

polluted, chronic consumption of polluted water can lead to bioaccumulation of the toxins in the 

body, leading to liver dysfunction [29]. Arsenic in particular is a well-documented hepatotoxin 

that leads to significant bioaccumulation in the liver over time [9].  

An easy-to-use sensor for heavy metal detection at a household-level could be useful in 

proactive monitoring of individuals’ water quality and can therefore lead to reduced risk for liver 

and other organ disorders [30]. The overall research thrust of our lab is related to developing sensor 

systems for “Water Linked Health and Wellness” [31]. A combination of the sensor system and 

the screening models are postulated to help in a proactive approach to NAFLD identification and 

management. The increasing prevalence of the chronic NAFLD condition, combined with the 

silent symptoms of the disease can be challenging to identify early. Lack of early identification 

can then lead to a sudden onset of advanced symptoms in the later disease stages. Screening and 

proactive disease management using the developed sensor system and the ML based screening 

tools are targeted in this work. Both the developed tools are aimed for use in low resource settings.  

 The overall research goals of our lab are: A) Use of big-data and advanced computational 

techniques to detect and manage disease conditions B) Assess, experiment, and evaluate cost-

effective sensors for detection of heavy metals in water. Therefore, the goal of this dissertation is 

to investigate the capability of health-informatics (including machine learning techniques) for 

identifying specific (early) stages of a progressive liver disease (Hepatic Steatosis) and to explore 

the potential of a sensor techniques in determining the level of Arsenic contamination in water- a 

contributing medium for liver disease. 
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OBJECTIVES 

The goal of this research is to tackle NAFLD from two perspectives: Early screening for 

Hepatic Steatosis using ML-based model (and related model explainability) and detection of 

Arsenic in contaminated water. Based on the above introduction, and the research goals, this thesis 

has the following objectives: 

1. Develop models for predicting Hepatic Steatosis (HS) using machine learning tools 

and specific datasets: 

a. Physiological data only. 

b. Liver biochemistry & physiological data. 

2. Understand the model predictions using explainable artificial intelligence (XAI) to 

enable model interpretability. 

3. Further evaluate the effect of specific heavy metal exposure (contaminants) on the 

performance of ML-based HS prediction models. 

4. Explore and assess specific Arsenic detection technique by testing and evaluating an 

existing commercial sensor and assessing its performance. 
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 GENERAL LITERATURE REVIEW 

1.1 Artificial Intelligence: benefits and challenges for healthcare 

The increasing collection and storage of data via personal devices, sensors, and other digital 

sources has led to a spike in data availability. The combination of large amounts of data with 

powerful computation has given rise to multiple domains such as data analytics, data science, 

informatics, database management, data mining & statistical analyses etc. These domains are 

applied to solve problems in various fields such as manufacturing, finance, technology, 

communications, transportation, education, and healthcare.  

Data analytics has also been applied to medical/healthcare data to solve specific clinical 

problems. Due to the large amounts of medical data being collected by hospitals, sensors, and 

wearable devices, etc. the electronic health records (EHR) are now available for analyses. EHR 

and other forms of medical data (image data (like MRI, Ultrasound etc.), time-series data (like 

EEG, ECG, EKG etc.), doctor’s notes and annotations etc.) are now being used to predict or detect 

specific health conditions. Disease progression modeling, disease/condition predictions, specific 

motion detection (fall detection, gait detection, sleep analysis etc.) have been researched 

previously. Further, Human Activity Detection (HAR) using wearable sensors and video-based 

detection are being increasingly researched recently. 

The motivation and need for healthcare related analytics arise from a combination of scarcity 

of clinical resources, clinical manpower and access to medical devices/technologies. Use of data 

and technology for healthcare is also being applied in the mobile-Health or m-Health domain. 

Using machine learning (ML) or other artificial intelligence techniques (AI), m-health services can 

now be provided remotely, using tele-medicine or tele-health. Personalized recommendations, 

clinical services and health predictions can all be made remotely.  

Although the computational power and motivation for clinical analytics is high, it has several 

challenges. Processing a large amount of data, making sense of the trends in big data, handling 

challenges with poor quality of healthcare data (missing information, class imbalance etc.), data 

privacy, design and implementation, interpretability of the ML/AI models etc. are some of the 

major challenges. These need to be tackled carefully as the impact of health-related predictions is 

very high. Some of these challenges are explained in detail below. 
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1.1.1  Challenges in processing big data 

Large number of features/parameters and many observations/samples exist in big datasets. 

Such high-dimensional data is challenging to process for several reasons. First, large datasets often 

contain noise (undesirable features or observations), missing information, sparsity, and irregularity. 

Solutions need to be designed on a case-by-case basis to tackle the above-mentioned issues. The 

challenges are often unique based on the problem statement and the dataset in question. Therefore, 

customized solutions are often required. This step is commonly termed as data ‘pre-processing’. 

Development of custom solutions to pre-process the data is time-consuming and difficult but is 

also necessary to avoid future biases and poorly trained AI/ML models.  

Second, the selection of relevant features for a particular use-case and processing them to 

better train the model is called ‘feature selection’ and ‘feature-engineering’, respectively. Feature 

selection is important to make sure the model performs optimally and does not learn from 

undesired parameters (noise). Any confounding/redundant parameters are also eliminated in this 

step. Feature-engineering can be then used to process the features further. For example, converting 

a continuous feature into discrete, segmenting a time-series dataset into segments, or applying 

specific scaling or normalizations to any feature. Such data transformation techniques are used to 

further improve the model performance and eliminate any irregularities/outliers.    

1.1.2  Challenges specific to healthcare datasets and the need to address them 

In addition to the challenges presented by big data in general, there are certain challenges 

that are inherent to healthcare datasets. Class-imbalance is one of the common challenges with any 

specific disease related data. Typically, a higher percentage of the population does not have a 

certain disease/condition, while a smaller percentage of the same population has the disease. For 

example, a study reporting on incidence of cancers in the USA found that intrahepatic bile duct 

cancel was the most common cancer with an incidence rate of 1.49 per 100,000 persons [32]. 

Direct use of such population health data, without adjusting or rebalancing the disease vs no-

disease classes could lead to a mis-trained AI/ML model with severe implications. Therefore, 

class-balancing is an important aspect as part of training an AI/ML model for healthcare 

applications.  
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 Noise in time-series data (such as EEG, ECG etc.) is inherent to healthcare datasets for 

especially related to neurology, cardiology, etc. Various noise artifacts are part of the data, some 

due to the patient’s motion (general motion, scratching etc.), some others as baseline noise, line 

noise, etc. The use of such datasets requires very specific and intensive data cleaning and 

processing before the data can be meaningfully used. More details about the challenges specific to 

healthcare are elaborated in a 2017 book related to big data in healthcare [33].  

1.1.3  Regulation of healthcare AI:  

As such, the domain of developing prediction models for human health is also very highly 

regulated. The Food and Drug Administration (FDA) in the United States launched a ‘Digital 

Health’ division in 2019 with ‘new regulatory standards for AI based technologies’ [34], [35].  

This division regulates any standalone algorithms as that can be used as ‘medical devices. Further, 

the International Medical Device Regulators Forum (IMDRF) also treats software that can be used 

for one or more medical needs without any hardware requirements as ‘Software as a Medical 

Device (SaMD)’ [34]. The FDA also treats such medical standalone software as SaMD. AI-based 

algorithms that are made for treatment, cure, prediction, mitigation and/or prevention of any 

disease/condition need to be approved by both the FDA and IMDRF [34].  

Most AI-based models are black-box in nature. Black-box models use input parameters to 

predict or produce output(s), but the internal working of the model is not explained. These black-

box models are quick solution providers, used to replace certain tests that could take a long time 

and resources [36]. FDA regulates any such black-box models [35].  

 Although the extensive regulations surrounding healthcare analytics/ healthcare AI could 

be challenging, such regulations are required to ensure that the AI models are thoroughly tested 

and validated before being implemented in the clinical system [33], [34]. However, the laws are 

different based on different regions and some countries, such as India, do not yet have any 

regulatory framework to patent algorithms [34]. Algorithms are the base of any AI system, and 

they need to be regulated especially when implemented in fields like healthcare.  

Finally, data privacy is essential in all domains where data is collected, analyzed, stored, and 

used for recommendations/predictions etc. But in healthcare, patient data and its use in an AI 

model can have severe impact, if it is not handled with care. Preserving the privacy of patient data 

during collection, storage, analyses, and transfer of patient related information is critical, as 
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mandated by the Health Information Portability and Accountability Act’s (HIPPA) [36]. While 

adhering with these rules can be a challenge, they are critical and need to be integrated into the 

first steps of any model development pipeline.  

1.1.4  Interpretability of black-box models 

Use of AI for medical applications has been of interest for both researchers and for clinicians. 

The commonly used AI/ML models are black box in nature, as explained earlier. The reasoning 

behind a black-box model in producing a specific output is not given. This lack of explanation 

makes the models un-interpretable. Typically, as the model complexity increases, the model 

performance increases but its interpretability decreases.  

Potential biases in a black-box model, combined with a lack of trust and understanding of 

the model’s internal working are especially detrimental when applied to healthcare. Such a lack of 

trust has been expressed previously by clinical practitioners [37]. Therefore, developing tools for 

explaining the predictions of AI-based models is warranted. This need has led to an increasing 

interest in explainable artificial intelligence (XAI), specifically in medical applications, and a 

surge in research has been observed since 2015 [38]. 

Although previous research was mostly focused on the use of ML and other AI based models 

as black boxes, more research is recently being conducted in understanding how the model 

behaves. There are two ways to understand model behavior: 1) Explainability 2) Interpretability. 

Although these two terms are often used interchangeably, they are different. Interpretability 

analysis is used to understand how a model is interpreting a certain feature. Explainability is used 

to understand how a certain input effects the model’s output.   

As mentioned earlier, an increase in the research articles related to explainable AI in 

medicine was noted since 2015 [38], [39]. XAI and its applications have several benefits including 

but not limited to identifying potential bias in the data, gaining better insights about the use of 

input parameters, improving model understanding, interpretability and overall building higher trust 

in the model’s predictions [37], [40], [41]. However, when XAI is applied to health care, it poses 

several unique challenges.  

The first challenge is that unlike in other physical systems where the underlying behaviors 

can be quantified using mathematical equations, such behaviors cannot be obtained in most 

healthcare applications [37]. That is, the exact relationship, in a cause-and-effect manner, cannot 
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be obtained for multiple healthcare applications [37]. In fact, for the same medical condition, the 

diagnosis and treatment provided by different clinicians could vary [37]. The subjectivity among 

clinicians and lack of the knowledge regarding the exact behavior are a major challenge in 

developing XAI methods for healthcare applications. 

Secondly, the availability of sufficient data, longitudinal parameters, and quality of the data, 

lack of structure within data pose another challenge when applying XAI to healthcare/medicine 

[38], [39], [41]. Further, an inherent challenge with any XAI tool is that the tool estimates the 

provided interpretations and could therefore have errors in estimation itself [42]. Potential errors 

in estimation, coupled with other errors in the underlying AI model could significantly impact the 

interpretation of the model’s predictions [42]. Finally, the regulation laws regarding software as a 

medical device by the Food & Drug Administration (FDA) [43], General Data Protection 

Regulation (GDPR) in Europe [44], have extensive requirements for use of AI models and 

explainability tools. Based on these challenges, multiple researchers recommend the use of current 

XAI tools in healthcare to augment the decision of clinicians, instead of using such tools in a 

standalone manner [37], [39], [42]. In the future, more robust XAI techniques, combined with 

richer datasets could lead to significant breakthroughs in this domain, but remain an open challenge 

for now [45]. 

Although XAI has its challenges, its potential to improve medical decision making has led 

to the use of XAI in some healthcare/medical models. The XAI methods in medicine have been 

developed for intraoperative decision support [45], for predicting acute critical illness using EHRs 

[46], for simulation-based training in surgery [47] and also for prediction of deteriorating Hepatitis 

[48]. Recent literature related to such methods is outlined in the literature review section specific 

to Paper 2.  

1.2 Liver and toxicology 

1.2.1  Liver functionality and importance 

The human liver is the major organ for metabolism and synthesis of carbohydrate and lipids 

in the body. The synthesis of all food and liquids makes the human liver highly prone to toxicity 

[9], [22]. Further, the liver functionality depends on several factors. These factors can be internal 

agents or external agents. Viruses, toxins (like pollutants or heavy metals) and drugs are the major 
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external factors that can impact the liver’s ability to function.  On the other hand, genetic conditions 

or cancers can also impact the liver’s functionality internally.  

Viral infections can lead to various hepatitis conditions (A, B or C) while toxins can cause 

chronic conditions due to their bioaccumulation in the liver [8], [24], [49]. While certain trace 

metals like Zinc, Copper, Manganese etc., are essential for metabolism and homeostasis [50], 

certain other metals like Arsenic, Lead, Mercury and Cadmium can severely deter the liver’s 

functionality [9], [22], [51]– [54]. 

Chronic liver disease (CLD) can occur due to a variety of reasons. Some of the chronic liver 

conditions are Alcoholic Liver Disease (ALD), Non-Alcoholic Fatty Liver Disease (NAFLD), 

Chronic Viral Hepatitis, Genetic conditions (Alpha-1 antitrypsin deficiency, Hereditary 

hemochromatosis, Wilson disease), Autoimmune hepatitis, Primary biliary cirrhosis, primary 

sclerosing cholangitis and other drug, vascular conditions [55].  

1.3  Heavy metals 

Metals are unique in comparison with other toxic substances in multiple ways. Unlike other 

pollutants that are man-made (plastic, manufactured chemicals, pharmaceutical products, 

cosmetics, etc.), metals occur naturally in the environment [49]. Metals are also used in various 

industrial processes, leading to the creation of synthetic heavy metals [56]. Although some metals 

are essential to the proper functioning of several biological species, their presence is required in 

very low amounts [56]. Essential metals like copper, Iron, and zinc are required in trace amounts 

for the proper functioning of enzymes and other cellular operations [56]. Certain other metals, 

however, are non-essential and in fact, toxic to biological organisms in any quantity (e.g.: lead) 

[56]. 

Heavy metals differ from other metals based on their high atomic density (relative) and their 

insolubility [49]. Heavy metals exist both naturally and in synthetic forms. However, the difference 

in their chemical species varies their toxicity [49]. It is not possible to create or destroy metals 

completely [49]. They are non-biodegradable which makes them accumulate inside biological 

organisms (bioaccumulation) [49]. They can also travel across biological systems from water to 

seafood and eventually to the human system. Fish, rice, and other foodstuffs were found to contain 

heavy metals when farmed in a contaminated environment [8]. Environmental disasters and spills 

related to metals, particularly heavy metals, can also cause acute toxicity. 
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The use of heavy metals in industries leads to unavoidable human exposure (even though it 

is in trace and regulated amounts) [49]. Some examples of industries with occupational exposure 

hazards are pharmaceutical, manufacturing, packaging, agricultural, and construction industries 

[56]. The extent of metal usage makes their concentrations in the environment vary (air, water, 

soil) [56]. The levels of heavy metals in air, soil, and water differ by area; point-source areas such 

as those with mining activity, anthropological activity, foundries, smelters, etc. are prone to high 

heavy-metal contamination [56].  

1.3.1 Heavy metal contamination and pathways into the human system 

Heavy metals exist in different forms (organic, inorganic, etc.) based on their stability and 

form (solid, liquid, gas etc.). The metabolism of heavy metals by the body (toxic mechanisms), 

their rate of dispersion into the body (Toxicokinetics) and their routes of exposure are also 

different. In some cases, the same heavy metal can be exposed to the human body via multiple 

pathways like ingestion, dermal exposure, absorption etc. Mechanisms of some of the common 

heavy metals (Lead and Arsenic) are elaborated below.  

1.3.2 Lead:   

Routes of exposure 

Lead has multiple routes of exposure to the human environment via air, water, soil, and 

consumer products [25]. Further, lead exposure routes can also be related to past uses of lead [25]. 

The use of fossil fuels (use of leaded gasoline in the past), lead-based paints, ceramics, corroding 

plumbing materials inside households, and industrial activities are some of the common routes of 

exposure to lead [25]. Industrial sources, contaminated past lead smelters, mining, and refining 

activities also lead to increased lead concentrations in the environment (soil, water) [25]. Lead 

travels from the soil into water, based on the type of lead compound and soil properties [25]. 

Industrial contamination also releases lead particles in the air, which can travel and fall onto the 

soil, polluting both soil and air [25]. Five categories of potential lead sources are air, dust, soil, 

water, household materials.  

1. Air: Lead smelters, metals processing, piston-engine aircraft operations using leaded 

aviation fuel, waste incinerators, utilities, and lead-acid battery manufacturers. 
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2. Dust: Lead paint dust from old homes, home development activities that release dust with 

lead in it.  

3. Soil: Past use of leaded fuel could be present in soil (travel via dust, settled into the soil), 

exterior building paints from past lead use in paints can become flaky and deposit on soil, 

industrial sources. 

4. Water: Contamination from nearby industrial sources and corrosion of plumbing fittings 

and other plumbing material. 

5. Household materials: Painted toys, furniture, jewelry, cosmetics, certain types of food, and 

liquid containers. 

Toxic mechanisms 

Lead toxicity was found to cause cell death by reducing the antioxidant defense mechanism 

and increasing ROS production, leading to oxidative stress and eventual cell death [57]. Lead 

toxicity also disrupts the protein, lipid, and DNA pathways in the body via protein oxidation 

(altering the function), lipid peroxidation (disrupting membrane), and nucleic acid oxidation 

(cancer/mutation), respectively [57].  

The health consequences of lead toxicity were found to majorly affect the central and 

peripheral nervous systems compared to any other organ systems in the human body [57]. Some 

of the established health hazards caused by lead are encephalopathy, paralysis, coma, neurological 

problems with fetuses and growing children, anemia, renal dysfunction, hypertension, 

cardiovascular diseases, ischemic coronary heart disease, cerebrovascular accidents and peripheral 

vascular disease, reproductive disorders in both men and women, lead storage and mobilization 

from bones [57].  

Toxicokinetics 

Lead exposure can be absorbed by the respiratory tract (inhalation), GI tract (ingestion), and 

by touching (dermal exposure). Dermal exposure is much less lethal compared to oral or inhalation 

routes. Children can absorb lead at a higher rate (40-50%) compared to adults (3-10%) when 

exposed to water-soluble lead [58]. 
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Once absorbed by the body, lead distribution primarily occurs via absorption by bones 

through the bloodstream (In adults, 94% of body burden is in the bones, compared to 73% in 

children [58]. In the bloodstream, lead travels through the red blood cells. The metabolism of lead 

(inorganic) leads to complex formation with proteins and ligands [58]. The liver actively 

metabolizes organic lead compounds [58]. Independent of the exposure route, lead is excreted 

mainly by urine and feces [58]. Smaller elimination routes are via hair, nails, breast milk, sweat, 

and saliva [58]. Elimination time for lead is dependent on the retention rate. Elimination time for 

lead ranges from 1 week to 2 years, however, lead from bones is excreted at a much slower rate of 

1-2 decades [58]. 

Sensitive populations 

Children, pregnant women, and adults at risk of occupational exposure are the most sensitive 

populations for lead exposure [25]. In children, lead absorption occurs at a higher rate than in 

adults, leading to higher brain and nervous system damage [25]. During pregnancy, lactation, 

menopause, and osteoporosis increase the exchange rate between blood and bones, leading to a 

higher rate of lead in the blood for these populations. It can also be transferred between the mother 

and the fetus or the mother and the baby (via breast milk) [25]. Occupational exposure due to the 

breathing of dust or air particles with lead is also a health concern [25]. 

1.3.3 Arsenic 

Routes of exposure 

Arsenic (As) has multiple routes of exposure through ingestion, inhalation, and dermal 

exposure. In human beings, the primary route of exposure to Arsenic is via consumption of 

contaminated food and water [24], [59]. Geological characteristics of soil and drinking water 

quality can lead to health complications in the exposed populations via the transfer of heavy metals 

[24]. In food, the order of Arsenic concentration from highest to lowest is as follows: seafood 16.7 

mg/kg in marine fish, 3.5 mg/kg in mussels, and more than 100 mg/kg in certain crustaceans), 

followed by meats, cereals, vegetables, fruit, and dairy products [59].  

Inhalation, particularly via cigarette smoking and as an occupational exposure in miners is 

another route [24]. Arsenic exposure through particulate matter in air occurs through the inorganic 
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compound, arsenic trioxide [24]. These levels of arsenic in the air vary by area based on 

anthropogenic activities and industrial zones [24]. Although exposure via skin contact is also 

possible with Arsenic, it is not a common route of exposure when compared to exposure via 

contaminated water and food [24].  

Arsenic sources of exposure are both natural (deposits of Arsenic, volcanic activity, erosion, 

Arsenic in water bodies like aquifers) and manufactured (like mining, anthropological activities, 

etc.) [24]. The primary source of Arsenic exposure currently is mining, which leads to mineral 

dissolution into water and soil. Soil concentration of Arsenic ranges from 1 to 40 ppm (mean: 5 

ppm) [24]. Volcanic areas have a soil Arsenic concentration of 20 ppm [24]. The natural presence 

of Arsenic in drinking water due to geological features is also a major contributor to Arsenic 

pollution [24]. The second-largest source of exposure is the use of pesticides and by-products from 

industrial activities [24].  

Arsenic exists in three different forms: Organic Arsenic, inorganic Arsenic, and arsine gas 

[59]. The compounds in each form are listed below.  

1. Organic Arsenic compounds: Arsanilic acid, Methylarsonic acid, Dimethylarsinic acid 

(cacodylic acid), and Arsenobetaine [59]. 

2. Inorganic Arsenic compounds: Arsenic Trioxide, Sodium Arsenite, Arsenic Trichloride, 

Arsenic Pentoxide, Arsenic acid, and Arsenates (like Lead Arsenate, Calcium Arsenate) 

[59]. Inorganic Arsenic is the most toxic form and a confirmed carcinogen [9]. Organic 

Arsenic present in seafood is considered less harmful [60].  

3. Inhalation of Arsine gas in significant quantities can be fatal [61].  

Toxic mechanisms 

Arsenic has multiple complex metabolic pathways inside living organisms, which are 

further dependent on the chemical species [60]. Arsenic is stored and metabolized primarily in the 

liver, where it is prepared for elimination via urine [24]. The major detoxification pathway of 

inorganic Arsenic from the human body is via demethylation. However, intermediate metabolites 

released during demethylation were found to have toxic effects and cause DNA damage [60]. A 

high methylation index was also associated with skin lesions and skin cancer [60].  

Neurotoxicity due to Arsenic exposure impacts the peripheral and central nervous systems, 

particularly the glial component of the central nervous system [60]. Mitochondria are highly prone 
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to neurotoxicity by Arsenic [60]. Further, a class of Arsenic compounds: arseno-lipids, arseno-

hydrocarbons, was found to be toxic to human neurons and was able to cross an in vitro brain 

barrier [60]. Hence, compounds of this class might have the potential for neurodevelopmental 

toxicity [60].  

The Arsenic (III) compounds are believed to be the most toxic and carcinogenic form of 

Arsenic [60]. DNA repair system inhibition, interference with redox regulation, and ROS (reactive 

oxygen species) production were also found to be linked with carcinogenic mechanisms [60]. As 

(III) compounds have a strong affinity for SH-groups, contributing to acute toxicity [60]. Further, 

Arsenic (III)-compounds inhibit cytosolic SH-enzymes such as glutathione reductase [60].  

Long- term Arsenic exposure was found to be associated with lasting epigenetic changes, 

potentially causing heritable gene expression changes (histone modification, RNA interference, 

and DNA methylation) [60]. However, organic Arsenical arsenobetaine was found to be excreted 

unchanged and is therefore not classified as carcinogenic [60].  

Toxicokinetics 

Arsenic exposure can advance into the human body via ingestion (food, water), inhalation 

(air, Arsine gas), skin penetration (via touch). The toxicokinetic mechanism of Arsenic is 

dependent on the chemical species, duration of exposure, and physiochemical properties of the 

exposed compound.  

Ingestion of inorganic Arsenic leads to absorption of 70-90% of Arsenic into the 

gastrointestinal (GI) tract [24]. From the GI tract, it spreads mainly to the liver, kidneys, lungs, 

and bladder via the bloodstream [24]. The highest accumulation occurs in the liver during this 

phase. A portion of the absorbed Arsenic is excreted through urine. Cells in the body disperse 

Arsenic through the phosphate transport system, aquaporins and transporters of hexose permeases 

[24]. pKa and intestinal microbiota also contribute to the absorption and toxicity of As. The affinity 

of Arsenic (III) compounds with SH-groups results in high Arsenic deposition in hair, skin, and 

nails [24]. Once in the body, the majority of Arsenic metabolism occurs in the liver (especially in 

mammals) [24]. The processing in the liver facilitates the elimination of Arsenic via urination from 

the body [24]. The majority of eliminated Arsenic is in demethylated forms (60-80%), while the 

remainder is inorganic (10-30%) and monomethylated (10- 20%) forms [24].  
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Sensitive populations 

Certain populations are more likely to be exposed to Arsenic based on geographical 

location and occupation. Individuals working in wood preservation work, metal manufacturing, 

glass production, and electronics industries are most susceptible aside from individuals living in 

areas with high natural levels of Arsenic [62]. Children are also more susceptible than adults based 

on health impacts [62]. Further, pregnant women and unborn babies could also be harmed due to 

Arsenic exposure [62].  

1.4  Heavy metals and NAFLD 

Heavy metals and other toxicants are an additional burden for patients suffering with 

chronic liver conditions like NAFLD. Upon examination of liver biopsies of workers exposed to 

vinyl chloride, it was found that 80% prevalence of steatohepatitis existed in workers with 

occupational exposure [11]. It is critical to note that these workers were specifically identified to 

not have any other identifiable risk factors, other than occupational exposure [11]. Several other 

studies have also found a positive association between exposure to toxicants and increased 

prevalence of NAFLD [9], [10], [63]– [65]. In fact, in cases of high chronic exposure, these 

conditions are labelled as Toxicant Associated Fatty Liver Disease (TAFLD) and Toxicant-

Associated Steatohepatitis (TASH). As mentioned earlier in the introduction section, TAFLD and 

TASH are similar in pathobiology to NAFLD and NASH, respectively [10], [11].  

Chronic exposure to heavy metals is dangerous and can lead to several other health 

conditions as well. US-EPA, WHO and other agencies around the world establish the acceptable 

levels of heavy metals and other pollutants in drinking water. Local agencies then monitor and 

ensure compliance of public water sources with the established standards. However, private 

sources of water like wells, springs or surface water sources are not monitored. Contamination of 

drinking water sources by heavy metals leeching into could occur via faults in “household 

plumbing, service lines, mining operations, petroleum refineries, electronics manufacturers, 

municipal waste disposal, cement plants, and natural mineral deposits” [66]. Chronic exposure to 

such contaminated drinking water can potentially initiate liver dysfunction or exacerbate existing 

liver injuries.  
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Recent studies have shown that an association between NAFLD and exposure to heavy 

metals like Mercury [63], Arsenic [9], and Lead [67]. Several animal models were explored to 

understand the relationship between abnormal liver biochemistry and heavy metal exposure. For 

instance, chronic Lead exposure in adult mice was found to lead to both hepatotoxicity and change 

in multiple signaling pathways, fatty acid metabolism, and drug metabolism [68]. Further, the same 

study also reported an increase in the levels of three liver biochemicals (AST, ALT, and ALP) 

with an increase in Lead exposure [68]. A similar finding was reported using Common Carp from 

the Topolnitsa reservoir [69].  Similarly, it was found that chronic Arsenic exposure (> 9 months) 

led to induced hepatic steatosis in mice when fed with drinking water contaminated with Arsenic 

(3.2 mg/L) [70].  

In human studies, researchers reported abnormal levels of liver biochemicals when 

individuals were exposed to heavy metals. For example, a clear ‘demographic and mechanistic 

overlap’ was reported between Arsenic exposure and NAFLD in individuals [9]. Higher incidences 

of obesity and NAFLD were also reported from states within the USA where Arsenic was 

contaminating the drinking water [71].  

In summary, chronic heavy metal exposure is reported to be linked with abnormal liver 

biochemistry, with NAFLD and, with liver damage in general. The liver cannot metabolize heavy 

metals and therefore the screening, diagnosis, and early intervention for individuals living with 

chronic heavy metal exposure is critical. 
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 HEPATIC STEATOSIS (HS) PREDICTION USING 

MACHINE LEARNING (PAPER 1) 

A portion of the work in this paper was published in two peer-reviewed conference 

proceedings. 1) 3rd International Conference on Computational Biology and Bioinformatics 

(ICCBB 2019), and 2) IEEE – Engineering in Medical & Biological society Conference (EMBC 

2021).  

2.1 Introduction 

Despite the increasing prevalence of NAFLD, there is no clinical procedure for screening, 

yet. Further, the exact cause for Non-Alcoholic Fatty Liver Disease (NAFLD) is unknown and 

currently there are no specific biomarkers that can identify the disease with specificity. However, 

multiple factors contribute to the disease condition and are established as risk factors (obesity, 

hyperlipidemia, diabetes etc.) [1]. Due to the complexity of the disease condition and the lack of 

clear detection options, the American Association for Liver Diseases (AASLD), does not 

recommend screening for NAFLD, even within the high-risk categories (obesity and diabetes) [1].  

Therefore, there are two potential ways in which NAFLD can be detected in asymptomatic 

adults, currently. They are: 1) Annual liver functionality tests (LFTs) (only in certain high-resource 

settings) 2) Incidental detection when the adult is getting treatment/ diagnosis for a different 

condition. In both the above ways, the health care practitioner recommends a suspected NAFLD 

patient for further investigation via additional testing/screening based on the liver functionality 

and related physiological parameters of an individual (ultrasound, MRI, etc.). However, this 

recommendation is subjective among healthcare practitioners. Note that in this condition, the 

practitioner makes the decision solely based on available individual data (liver functionality, 

physiological data, etc.). Therefore, a lack of systematic screening of NAFLD currently exists.  

Use of healthcare data to detect disease conditions is currently increasing due to the 

combination of increased data availability and increased computational power. In this research, 

the gap in screening of NAFLD is identified and machine learning based models are developed. 

Background relevant to the disease condition, its prevalence, etiology, and risk factors are 

elaborated in the literature review section below. Specific gaps are highlighted, and research 

objectives are presented at the end of the literature review. 
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2.2 Literature review 

Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the major causes for chronic liver 

condition globally, with increasing prevalence in the recent years. It occurs in individuals who 

consume limited or no alcohol. However, as explained earlier, the exact cause for NAFLD is not 

known [2]. While there is no known cause, several risk factors have been identified for this disease 

[1]. Briefly, obesity, diabetes, dyslipidemia, metabolic syndrome, insulin resistance, polycystic 

ovary syndrome (PCOS), and chronic heavy metal exposure are all linked to NAFLD risk [1], [3]– 

[6]. These risk factors and their relationships with NAFLD are elaborated in detail in the sections 

below along with the etiology and epidemiology of the condition.  

2.2.1 NAFLD background and epidemiology 

The prevalence of NAFLD has been increasing globally. A global meta-analysis of 

epidemiological NAFLD data conducted in 2016 reported a 10% increase in global prevalence 

from 2005 to 2010 [7].  Other researchers have also found similar spikes in NAFLD prevalence in 

the recent past [1], [8], [9]. The prevalence was found to vary by region and is the highest in the 

Middle East (31.8%) and South America (30.4%) [7]. The lowest prevalence was reported in 

Africa at 13.48% [7].  In the USA alone, the prevalence rose from 5.5% to 11% in two decades 

(1988-08) [7]. As of 2016, an estimated 80 million individuals have NAFLD in the USA [9].  

Within Asia, the prevalence across regions was found to be significantly different based on 

a 2013 study [10]. Within a group of regions in Asia (India, Sri Lanka, Malaysia, Singapore, 

Indonesia, Korea, Japan, and Taiwan) the prevalence varied between 15 to 45% [10]. China has a 

reported prevalence of 20%, Japan has 17% and Hong Kong has 27%, with all three regions having 

increasing prevalence between 2003 to 2013 [10]. Within highly populated regions like China and 

India, such high prevalence percentages imply that many people are impacted by the disease.  

The incidence of NAFLD in diabetics (specially type -2 diabetics) was also found to be rising 

sharply [1], [9]. It was found to be 55.5% (with patients from 20 different countries) in a 2019 

meta-analysis [9]. Of the patients with NAFLD and diabetes, 17% had the advanced form of 

NAFLD (fibrosis) [9]. In Iran, Saudi Arabia and Turkey combined, a 59.20% of NAFLD 

prevalence was reported within type-2 diabetics [9]. Similar numbers were reported in India and 
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Pakistan at 57.46% [9]. However, Europe was reported to have the highest prevalence at 68.82% 

within the type-2 diabetics [9].  

Other disease conditions, like insulin resistance, hypertension and dyslipidemia are also 

linked with increasing NAFLD incidences [8]. Although obesity is a major risk factor for NAFLD 

[1], it was also found in lean populations in Asia and in the United States [10], [11]. Increasing 

age was another factor in increasing NAFLD prevalence, especially in the 40–50-year age range 

[8]. Different ethnicities were found to be linked to NAFLD, with Hispanic population having the 

highest prevalence, when compared with non-Hispanic Caucasians and African Americans [12]. 

Sex-based NAFLD prevalence was found to be significantly different by several researchers [13]– 

[17]. Researchers consistently report a higher NAFLD risk for men, when compared with women 

[13]– [17]. Differences between menopausal women vs pre-menopausal women have also been 

noted, with postulations of specific hormones inducing a protective effect in women [14], [15]. 

Though the prevalence of NAFLD is higher in men vs in women, the advancement of NAFLD 

from simple fatty liver to fibrosis was reported to be faster in women than in men [15]. Due to the 

complexity of the condition and its association with several factors, it is important to review what 

is known about the etiology of NAFLD. 

2.2.2 Etiology of NAFLD 

NAFLD is a chronic condition and can be broadly classified into four stages. In the first 

stage, the liver starts building up fatty deposits but there are no signs of inflammation [18]. In this 

stage, the liver shows no symptoms, and the disease could continue to progress undetected. This 

stage is also called as simple fatty liver or Non- Alcoholic Fatty Liver (NAFL) [18]. In the second 

stage, signs of inflammation begin to appear as the liver attempts to repair the damaged tissue [18]. 

If the tissue is not repaired quickly enough to the point of excessive inflammation, liver scarring 

may occur [18]. At the time of liver scarring, the condition is categorized as stage 3 [18]. However, 

the liver can continue to function well in this advanced stage [18]. Over a period, excessive 

presence of scar tissue and low amounts of normal tissue can lead into the final stage called liver 

cirrhosis [18]. At this point, the liver struggles to function normal and symptoms such as yellowing 

of the skin, eyes, and a dull ache in the lower ribs appear [18].  The progression can also be seen 

diagrammatically in Figure 2.2.  
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The interaction between multiple factors like inflammation, IR, diabetes, obesity, general 

diet, and lifestyle can have an impact of the progression of the disease. It is known to commonly 

co-exist with obesity, dyslipidemia, and insulin resistance [19]. Based on multiple studies from 

various regions (Italy, China, UK) and through meta-analyses, it has been found that NAFLD 

prevalence is much higher in population with either obesity and/or with type-2 diabetes [9], [19].  

In both high-risk groups (obesity and diabetes type -2), the prevalence of NAFLD is roughly 

double that of the prevalence in normal population [9], [19]. While obesity is a significant risk 

factor for NAFLD, recent studies have also shown that it can occur in subjects with BMI <25 

Kg/m2 as well [11], [20]. Studies from various regions indicate prevalence rates as follows in those 

with BMI < 25 kg/m2: India (20%) [21], Japan (15.2%) [22], China (15%) [23], Greece (12%) 

[24], and South Korea (12.6%) [20], [25]. It was found that non-obese subjects with NAFLD are 

more insulin-resistant than those without NAFLD [26].  

Insulin-resistance (IR) was found to be the standalone parameter to determine high risk of 

NAFLD [27]. While NAFLD can occur in those with IR and in those with hyperinsulinemia, there 

is a high presence of circulating free fatty acids (FFA) in those with IR [28]. The presence of FFAs 

in the blood can then lead to an uptake of these FFAs by hepatic cells which further leads to 

increased gluconeogenesis and decreased storage of glycogen [28]. Further, liver IR was found to 

be linked to FFA levels in the liver, but not to the levels of visceral fat [29]. Explanations about 

lean individuals (particularly Asians) with high IR in the liver could be related to the previous 

finding [30], [31]. 

Another condition that is often correlated with NAFLD prevalence is Metabolic Syndrome 

(MS). Several researchers have detailed studies regarding the relationship of NAFLD with MS 

[27], [28], [32], [33]. Definitions of MS differ slightly between different agencies like the WHO, 

European Group for the Study of Insulin Resistance (EGIR), National Cholesterol Education 

Program (NCEP) Adult Treatment Panel III (ATP III) [34], [35]. A definition from ATP III 

identifies MS when three of the following five conditions are met: 

1. High abdominal obesity 

2. High triglycerides 

3. Low HDL 

4. High blood pressure 

5. High fasting glucose 
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While MS and NAFLD have common risk factors, there is no clear indication of which 

condition occurs first [27], [28], [36]. Further, a difference in the prevalence rates of NAFLD in 

patients with MS is found based on race and ethnicity [28].  

In addition to the disease conditions discussed above, hormones could also play a role in 

NAFLD prevalence and progression. Several hormones in the body are related to the promotion 

of obesity and inflammation. Two such hormones derived that are related to NAFLD are a) 

glucagon-like peptide 1 (GLP-1) and b) Ghrelin [32]. The role of GLP-1 is the activation of reward 

centers of the brain when fructose and other macronutrients are consumed. On the other hand, 

Ghrelin concentrations promote hunger.  

Reduced secretion of GLP – 1 along with reduced receptors for the same have been found 

in NAFLD patients [32]. This reduction damages the glucose and lipid metabolism in the liver 

[32]. The concentration of acylated/deacylated Ghrelin in NAFLD patients was found to be 

elevated on the other hand [32]. The simultaneous decrease in GLP-1 and increase in Ghrelin could 

be severely damaging for NAFLD progression.  

Overall, of the various chronic liver conditions, NAFLD was found to be one of the major 

etiologies. Among chronic liver conditions in young adults in United States, 22% of cases were 

attributed to NAFLD [37]. Similarly, 39.7% of chronic liver cases among adults in India were 

attributed to NAFLD [38]. NASH, the second stage of the NAFLD condition was found to be a 

common and increasing etiology of end-stage liver disease in the US [39]. Finally, NAFLD and 

NASH are growing all around the world. Early detection of the condition and disease management 

are not only critical but also urgent. 

2.2.3 Biomarkers and tools for NAFLD detection 

Majority of the findings related to NAFLD biomarkers are still in the research phase. As 

indicated earlier, there are no established, specific biomarkers for NAFLD currently. However, 

some researchers have identified potential biomarkers for NAFLD and NASH. Some of those are 

discussed here.  

Adipose tissue was previously thought of as a passive energy storage unit. However, more 

recent studies have identified the ability of the adipose tissue in synthesizing and releasing 

hormones and cytokines [40]. Therefore, increasing researchers are now investigating these in the 

context of NAFLD. Four adipokines: “Leptin, adiponectin, ghrelin, interleukin-6, and tumor 



 

 

39 

necrosis factor-a” were found to be associated with NASH [41], [42]. Research is also continuing 

to investigate the relationship of fatty acid-binding proteins: adipokine binding protein (A-FABP), 

retinol-binding protein (RBP4), and lipocalin-2 due to their association with obesity, IR, and MS 

[43]. Fibroblast growth factor 21 (FGF21) is a hormone released by the liver. It has been found to 

be related with “lowering blood glucose, lipids, and insulin levels, reversing hepatic steatosis, and 

increasing insulin sensitivity” in individuals [44]. These features have led to investigation of 

FGF21 as a potential early biomarker for NAFLD [44].  

While the research to identify biomarkers for NAFLD is ongoing, it is important to find ways 

to detect NAFLD in patients in the early stages. Early identification is critical for an increasingly 

prevalent chronic condition like NAFLD. Due to the complex etiology of the disease and the 

relationship of multiple other conditions with NAFLD, the use of machine-learning based tools for 

early detection would be a timely solution.  

2.2.4 Machine learning (ML)-based NAFLD detection 

Use of ML/AI tools for healthcare applications is a fast-growing domain. The availability of 

large amounts of healthcare data and increasing computational power are enabling this domain. 

Upon surveying the recent literature for ML/AI tools in the context of NAFLD, research related to 

the following three areas was found: 1) liver fat quantification, 2) fibrosis pattern detection, and 

3) assessment of the severity of the liver disease. These research tools use multi-modal data to 

train the ML/AI models. Overall, four different modalities of data were used, per our literature 

search. They are: 

i. Imaging modalities (Ultrasound, MRI) 

ii. Omics data (genetics, transcriptomics, metabolomics, etc.) 

iii. Images of liver biopsies (on a microscopic slide) 

iv. Physiological parameters (BMI, age, etc.) in combination with one of the other 

modalities 

Images provide a large amount of data and have the potential to be used for identifying 

damage in the liver or quantifying the extent of the damage. While there are three different liver 

imaging tools (Ultrasound, MRI, and Computer tomography (CT)), Ultrasound (US) based images 

were most used by researchers for training ML/AI models. Further, US tests are of two types: 1) 

Conventional US (CUS) 2) Quantitative US (QUS). While CUS is available more commonly than 
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QUS, the use of QUS was found to be more accurate (68.3%) in quantifying steatosis when 

compared to CUS (51.7%) [45]. Other studies using QUS also reported similar findings [46]– [48].  

While some researchers have used ML and other AI tools in the context of NAFLD, most of 

these tools require images for detection or quantification of NAFLD [45]– [56]. 

One research study also combined the use of image-data and physiological-data to extract 

rules for Fatty Liver Disease (FLD) detection using artificial neural networks (ANN) [57]. 

Although the use of US images shows potential, particularly for quantification of the extent of 

liver damage, the use of US for screening purposes can be harder to implement. Medical imaging 

exams are more expensive and less accessible when compared to other, minimally invasive options 

like blood tests. In low-resource settings, where NAFLD is prevalent, the access to medical 

imaging tests is not reliable. Under these constraints, the use of physiological parameters that can 

be obtained using minimally invasive tests (like oral glucose test, blood test etc.) are better suited 

for screening purposes.   

There is a need to develop tools to help doctors in making better recommendation so that 

patients with HS can be screened at an early stage. To address this need, mathematical models are 

developed in this research. Recent developments in Machine Learning (ML) technology as 

described earlier are utilized in this work to screen for HS. The overall goal of this project is to 

address the need of early HS detection by developing medical decision support tools using machine 

learning and existing data.  

The hypotheses used in this work are as follows:  

1.  Six physiological parameters: age, sex, BMI, triglycerides, HDL, and total cholesterol 

relate to NAFLD/HS occurrence in individuals and can therefore be used to predict HS 

using ML.  

2.  The liver functionality parameters (ALT, AST, ASP) in addition to some physiological 

parameters (Age, BMI, HDL, plasma-glucose) can improve HS prediction. 

To address the goal described above, two different objectives were developed and tested. The 

methodologies for each objective were independently developed and analyzed. 
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2.3 Objectives 

1. Objective 1A: Develop and explore the performance capability of a ML model in predicting 

HS in using only physiological parameters.  

2. Objective 1B: Develop and evaluate a HS screening model to be used as a clinical decision 

support tool using physiological and liver biochemistry parameters.  

2.4 Methods 

2.4.1 Objective 1A - methods  

The NHANES III data were processed relevant to the hypothesis of this objective. In the 

sections below, detailed data processing steps, statistical model selection, model development and 

pseudo code used in the model are provided.  

a. Dataset description 

The dataset from the third National Health and Nutrition Examination Survey (NHANES 

III) was used in this research [58]. It contains data from the USA (N = 33,994) for individuals 

older than 2 months. The data are organized in four categories: “NHANES III Household Adult, 

NHANES III Household Youth, NHANES III Examination, and NHANES III Laboratory” [58].  

Additional files regarding the “Hepatic/Gallbladder Ultrasound and Hepatic Steatosis (HGUHS)” 

were also used from NHANES III [59]. For hepatic steatosis (HS) assessments, the liver was 

grouped as “normal”, “mild”, “moderate”, or “severe hepatic steatosis” [59]. The HS variable was 

recoded by the data providers (NHANES III) using ultrasound (US) exams and double radiologist 

reviews to determine the presence or absence of HS in ages between 20 - 74  [59]. 

The output variable used in this research was hepatic steatosis (HS). The NHANES III 

Household Youth data (age range 2 months - 16 years) were specifically excluded, and only ages 

greater than 20 years were included in this research. Alcohol related variables from the dataset 

were processed to exclude individuals who consumed > 7 drinks per week, for women and > 14 

drinks per week, for men. The data used here were from NHANES III. While the NHANES III 

website provides sample weights [60], they were not used in this research. Other researchers who 

used NHANES data have also chosen not to use sample weight adjustment [61]– [63]. Therefore, 
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in this research, it is assumed that the impact of not using sample weights is minimal. The use of 

the NHANES III dataset for the current study was approved by Purdue Institutional Review Board 

(IRB) (PROPEL # 17975020). A copy of the IRB approval is in Appendix G.  

b. Data processing 

Data from NHANES III were first read into SAS software [64] as four different files. Data 

features relevant to this research were retained and the other features were discarded. See code in 

Appendix A.1 for details. Each observation in the dataset is provided (by NHANES III) with a 

unique sequential number (SEQN). These SEQN numbers were used to combine the data from the 

four different files into one file using a customized SAS code (Appendix A.2). Observations with 

missing information pertaining to alcohol consumption were eliminated using the code in 

Appendix A.3. The reduced dataset was then exported out of SAS and imported into MATLAB 

[65].  

Additional processing was performed on the data in MATLAB using a customized code 

[65]. The imported data had a size of 17,704 x 11. After importing, any missing values were re-

labelled to indicate “Not a Number (NaN)” for ease of data representation in MATLAB. After 

eliminating observations with any missing data and applying alcohol related exclusions, the dataset 

size reduced to 8,703 samples. Six predictor variables (predictors) were selected and used in this 

study. The predictors were: Age, sex, BMI, triglycerides, HDL and, total cholesterol. These 

parameters were selected based on previous literature and their relationship with NAFLD. A 

summary of the methods used in this paper are summarized in Figure 2.3. Additional details about 

the MATLAB code are explained in the sections to follow. 

c. Model selection 

The following ML model families were selected based on the binary nature of the output 

variable and the size of the dataset in this study. The details regarding each of these model families 

are further elaborated in the following sections.  

i. Support Vector Machines (SVM) 

ii. Bagged trees 

iii. Boosted trees  



 

 

43 

Within these model families, a total of five models were trained and tested (Fine gaussian 

SVM, medium gaussian SVM, bagged trees, gentle boosted tree and ADA boosted tree).  

Support Vector Machines (SVM) 

SVM are a family of supervised ML techniques which separate output classes using an 

optimal-hyper plane. The hyper-plane may be linear or non-linear. SVM are particularly useful 

when the output class is binary (for example in this study: HS/no-HS). SVM are also appropriate 

to be used when the datasets are mixed in nature [66], [67]. Mixed datasets include data that is a 

continuous parameter (For example: Age), and data that is discrete or categorical in nature (For 

example: Sex). Considering that the six selected input features are a mixture of continuous and 

discrete parameters, the use of SVM is well-suited for this study.   

The governing equations for SVMs are different based on the separability of the data. For 

linearly separable data, the equations are as shown in (1) and (2). A set of inputs are indicated by 

ij′, their corresponding output categories by oj′, and dimension by d. Since the SVMs are being 

used for binary classification, 𝑜𝑗  = ±1. ∝ is a vector with coefficients that are orthogonal to those 

of the separating hyperplane and c is a constant [66]– [68]. The equation of a hyperplane to separate 

one category of inputs from the other would then be indicated by equation (1).     

𝑓(𝑖) = 𝑖′ ∝  + 𝑐 = 0  (1) 

To optimize the separating hyperplane, the following constraint is used (shown in [2]) [66]– 

[68]. This constraint ensures that the distance between the different output classes is maximized.  

𝑜𝑗 𝑓(𝑖𝑗) ≥ 1 (2) 

In case of data that cannot be linearly separated, a soft margin is used. The mathematical 

description of soft margin is shown in equation (3). It is also called the ‘Kernel Trick’. In the 

equation, 𝑐̂  indicates the estimate of the bias, 𝛽𝑗̂  indicates the jth estimate of the vector 𝛽̂  and 

𝐺(𝑖𝑗 , 𝑖𝑘) provides a result from the ‘Gram Matrix’ which is calculated using an inner product of 

∅(𝑖𝑗), ∅(𝑖𝑘) where ∅ is the kernel function [66]–[68]. The kernel function varies based on the 

specific kernel used.  
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𝑓(𝑖) =  ∑ 𝛽𝑗̂

𝑛

𝑗=1

𝑜𝑗𝐺(𝑖𝑗 , 𝑖𝑘) +  𝑐̂ (3) 

𝛽𝑗 is subject to an additional constraint shown by equation 4 [66]– [68] 

                                                                       0 <  𝛽𝑗  <  𝑐̂                                                                             (4) 

In this work, a gaussian kernel was implemented. The equation specific to a gaussian kernel 

is shown in equation (5) 

𝐺(𝑖𝑗 , 𝑖𝑘) = 𝑒𝑥𝑝 (− ||𝑖𝑗 −  𝑖𝑘||
2

) (5) 

Bagged trees 

Bagged and boosted tree methods are ensemble algorithms that involve growing a group of 

decision trees and aggregating their results. The trees are also called “learners”. A split criteria 

needs to be used for growing a decision tree. In this work, “Gini’s Diversity Index (GDI)” was 

used [69]. GDI splits the nodes of any decision tree based on a condition. The condition is 

mathematically described in equation (6). ‘𝑖’ is the total number of groups for any decision and 

f(i) represents the groups that match with group 𝑖 and arrive at the node. 

𝐺𝐷𝐼 𝑜𝑓 𝑎 𝑛𝑜𝑑𝑒 = 1 −  ∑ 𝑓2(𝑖)

𝑖

  (6) 

Bagged trees algorithm is also called random forest, because it groups or bags random predictor 

selections at each split. The number of splits is capped at one less than the number of observations 

in this algorithm. The number of predictors is decided using the square root of the total number of 

predictors. This formula allows bagged trees algorithm to have deeper trees when compared to 

other tree-based algorithms [69].  

Boosted trees  

Boosted trees are like bagged trees as both algorithms are ensemble methods based on 

generating decision trees. The boosted tree methods also use GDI to split nodes in its trees, but in 

this case, the number of splits is limited to 10. The limit leads to multiple shallow trees, as opposed 
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to deep trees in bagged trees algorithm. Two types of boosted trees were implemented in this 

research: 1) ADA boost 2) Gentle boost 

The ADA boost algorithm trains the trees (or learners) one after the other, in a sequential 

pattern. The weighted classification error (𝜀𝑖) for each tree, ‘t’ is computed using the equation (7) 

[69]. The error is summed up over ‘n’ observations. The prediction made by each tree is 

represented by ℎ𝑡 and the weight of each observation is represented by 𝑑𝑛
(𝑡)

. The variable I is used 

as an indicator. 

𝜀𝑖 =  ∑ 𝑑𝑛
(𝑡)

𝑁

𝑛=1

𝐼(𝑡𝑛 ≠ ℎ𝑡(𝑝𝑛))   [7] 

After training is completed, predictions are made using equations (8) & (9) [69] 

𝑓(𝑝) =  ∑ ∝𝑡 ℎ𝑡(𝑝)

𝑇

𝑡=1

  [8] 

∝𝑡 =  0.5 log (
1 −  𝜀𝑡

𝜀𝑡
)  [9] 

∝t is the weight associated with the weak trees (learners) in the group of trees [69]?  

Gentle boost algorithm uses a combination of ADA boost and Logit Boost.  The first part of 

gentle boost is same as that of ADA boost. That is the loss function is the same in both gentle book 

and ADA boost. But in gentle boost, the weak learners are fitted into a regression model. The 

output of the regression model forces the observations to be classified into one of two groups: [-1, 

+1]. The mean squared error for Gentle boost is as shown in equation (10). Again, the variable 

𝑑𝑛
(𝑡)

represents the weight of the observation at step ‘t’. and ℎ𝑡(𝑝𝑛) represents the prediction of the 

regression model at response 𝑜𝑛 [69].  

𝜀𝑖 =  ∑ 𝑑𝑛
(𝑡)

𝑁

𝑛=1

(𝑜𝑛 − ℎ𝑡(𝑝𝑛))
2

  (10) 

Both the bagged and boosted trees are suitable for use with classifying multi-dimensional 

datasets and were therefore used in this research.  
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d. Model development 

As discussed in the general literature review section of this dissertation, there are multiple 

challenges in developing ML models, specifically in the healthcare domain. Two such challenges 

were encountered during the development of this objective. The first challenge is inherent to all 

healthcare datasets called ‘Class Imbalance’. The second challenge is small datasets. Both 

challenges were tackled in this project and the methods used are described in the section below.  

e. Challenges 

Class imbalance: 

Health care datasets are inherently class imbalanced, i.e., most observations in any given 

population dataset fall in the “normal” or no-disease category, whereas a minority of observations 

fall in the “disease” category. Training ML models using imbalanced data can lead to skewed or 

biased results in the favor of no-disease [70]. The idea of screening for disease cases can therefore 

be completely missed if trained with imbalanced data. Use of balanced training and test datasets 

is therefore recommended [70].  

In this research, after the initial data processing, the class distribution was as follows: 2,008 

observations with HS (disease category) and 6,695 observations with no-HS (no disease category). 

To balance the datasets, a combination of two separate statistical techniques was implemented in 

this research. Minority class data (disease category) were synthetically generated and combined 

with existing data by implementing the Synthetic Minority Oversampling Technique (SMOTE) 

[71]. However, typical SMOTE implementation is implemented in datasets with all discrete or all 

continuous features [71]. The distance metric used within the SMOTE algorithm is the bottleneck 

for mixed features. Since the data used in this research had mixed features, as explained earlier, a 

typical SMOTE implementation was not appropriate.   

Therefore, in this research, a different distance metric called “Gower’s Distance” [72] was 

implemented in combination with the SMOTE algorithm. A pseudo code of the implemented 

algorithm is presented in the section below. Detailed code is available in Appendix A.  
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f. Pseudo code for objective 1A 

Start of code 

Input: Original dataset of size: 8,703 x 6 observations 

Output: Synthetically generated disease class samples 

1. The original dataset was split into sub-datasets based on the output category (disease (HS), 

no-disease (No-HS)). See code in Appendix A.4 for details.  

a. Disease class (HS): 2,008 x 6 

b. No-Disease class (No- HS): 6,695 x 6 

2. The disease class sub-dataset was used as input to synthetically generate more disease class 

data. The following parameters were used: 

a. N = 2 (i.e., 200% data was synthetically generated) ( 

b. K = 2 (number of nearest neighbors used) 

c. T = 2,008 (number of diseased samples)  

d. Sample (m, n) = 2,008 x 6 (2D array for original disease samples) 

e. New Index = 4,016 (Empty variable to keep a count of new samples generated) 

f. Synthetic (o, n) = 4,016 x 6 (2D array for synthetic samples) 

3. Using the above variables, Gower’s Distance [72] was computed between each observation 

‘i’ for each other observation ‘j’ and every feature/attribute (‘attr’) using equation (11) 

below [72]. 

                                   𝐺𝐷(𝑖) =
∑ (1 − |𝑠𝑎𝑚𝑝𝑙𝑒(𝑖, 𝑎𝑡𝑡𝑟) − 𝑠𝑎𝑚𝑝𝑙𝑒(𝑗, 𝑎𝑡𝑡𝑟)|)𝑎𝑡𝑡𝑟 + 𝑎 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 + (1 − 𝑑)
                       (11) 

where,  𝑎 =  +1, 𝑤ℎ𝑒𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑚𝑎𝑡𝑐ℎ, 𝑒𝑙𝑠𝑒 0 

  d =  +1, 𝑤ℎ𝑒𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑑𝑜 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐ℎ, 𝑒𝑙𝑠𝑒 0 

4. After computing the distances, they were sorted in ascending order to find the neighbors 

(nearest distances). Distance of an observation from itself was ignored.    

5. The distances were used to generate synthetic data using SMOTE algorithm [71], applied 

separately to continuous and discrete features.  

a. For continuous features, equation (12) was implemented 

                                 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑛, 𝑎𝑡𝑡𝑟) = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖, 𝑎𝑡𝑡𝑟) = 𝑑𝑖𝑓 ∗ 𝑔𝑎𝑝                                (12) 

where,  
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dif = a randomly picked difference between sample (i, attr) and one of its two 

nearest neighbors (since K = 2) 

gap = any random number between 0 and 1 

b. For binary features, equation (13) was implemented 

                    Synthetic (n, attr)=majority of sample(i, attr) and two nearest neighbors     (13) 

6. After completing the synthetic generation at 200%, 4,016 synthetic disease class 

samples were combined with the original 2,008 disease class data. The new disease 

class dataset was now at 6,024 observations. The no-disease class dataset was at 

6,695 samples (same as before) 

7. The data were then divided into 70:30 ratio in a class-balanced manner to obtain 

training and test datasets 

8. Five chosen ML models were then trained using the training datasets, including 5-fold 

cross validation. Detailed code is available in Appendix A.5 

9. The trained models were tested using the separate test dataset and their 

performances were analyzed. Results regarding model performance are provided in 

the Results (Objective 1A) portion.  

End of code 

2.4.2 Objective 1B - methods 

NAFLD is impacted by multiple risk factors as explained earlier. While there are no 

specific biomarkers for NAFLD yet, there is a liver function test (LFT) available to assess the 

general health of the liver. In current clinical practice, LFTs are used to understand liver 

functionality and identify if an injury to the liver is hepatitic or cholestatic in nature [73]. It 

measures multiple liver enzymes and other hormone levels, and these values are examined by 

clinicians who then identify the nature of the injury [73]. Specific liver enzyme ratios are also 

identified and elaborated in clinical literature to narrow down a suspect or cause for the liver injury 

[73].  

In this research, specific liver biochemistry data from the liver function tests was utilized 

to train ML models. These models were developed and assessed with the potential to be used as 

decision support tools for HS screening. The model development is broken down in specific stages 

and elaborated in the sections to follow. 
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As explained in the literature review portion (NAFLD background and epidemiology), the 

condition is known to impact men and women in different ways [12]– [14]. While research in this 

domain is ongoing, it is unclear exactly why the sex disparity exists [12]– [14]. Researchers have 

identified hormones to be potentially linked with the pathobiology of the disease, with some 

research suggesting a protective effect of estrogen against NAFLD [13]. Since hormonal data (or 

other such parameters) were not used in this research, HS screening models were developed 

separately for male and female populations, considering the difference in pathobiology of NAFLD.  

In this research, the following features were chosen to be used as inputs to train the ML 

models: Age, BMI, HDL (high density lipids), plasma glucose, AST (aspartate aminotransferase), 

ALT (alanine aminotransferase), and ASP (aspartate transaminase). These parameters were chosen 

based on clinical literature and their link with fatty liver disease [9], [73], [74]. The sex feature 

was used to separate out male and female populations into sub-datasets but was not used thereafter. 

The output feature of HS was used, same as that in Objective 1A. 

a. Data processing 

Adult data from the NHANES III dataset [58], [59] were used in this research objective as 

well. Data was again extracted using SAS and then further processed using MATLAB. Initial data 

processing like retaining parameters of interest and merging multiple datasets into one were 

conducted in SAS [64]. The SAS code is presented in detail in appendices B.1 and B.2. 

After initial processing in SAS, the data was exported into MATLAB [65] for further 

processing. In this step, any observations with missing data were deleted. Alcohol related 

exclusions were applied. Men who consumed > 2 alcoholic drinks/day and women who consumed 

> 1 drink per day were excluded. The size of the available data was considered, and next steps 

were identified. After applying the necessary exclusions and eliminating missing data, the dataset 

size reduced from 20, 050 to 9,619 samples.  

To aid the model with better learning, data normalization was applied to four features: 

ALT, AST, BMI, and Plasma glucose. Four normalized features were derived from this process, 

called: ALT%, AST%, BMI% and Plasma glucose%. The formula used for normalization is shown 

in equations (14) – (17). Normal values for ALT, AST, BMI and Glucose were used from existing 

literature [75]– [78].  
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                                                                    𝐴𝐿𝑇𝑖% =
𝐴𝐿𝑇𝑖 −𝐴𝐿𝑇𝑈𝐿𝑁

𝐴𝐿𝑇𝑈𝐿𝑁
 𝑥 100                                   (14) 

                                                                    𝐴𝑆𝑇𝑖% =
𝐴𝑆𝑇𝑖 −𝐴𝑆𝑇𝑈𝐿𝑁

𝐴𝑆𝑇𝑈𝐿𝑁
 𝑥 100                                   (15) 

                                                                       𝐵𝑀𝐼𝑖% =
𝐵𝑀𝐼𝑖−25

25
 𝑥 100                                        (16)  

                                                 𝑃𝑙𝑎𝑠𝑚𝑎 𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖% =
𝑃𝑙𝑎𝑠𝑚𝑎𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖−120

120
 𝑥 100                     (17) 

Where: 

i = ith sample in the dataset 

ULN = Upper limit of normal 

ALTULN: 33U/L - male, 25 U/L – female [75], [76] 

ASTULN: 30 U/L – male, 20 U/L – female [75], [76] 

After normalizing the data using the clinical normal values, the negative values (< 0) in the 

derived variables were recoded as zero (indicating normal) and the positive values were retained 

as is – indicating a deviation from normal. The normalization was applied separately to male and 

female datasets. The clinically defined parameters were different between the sexes, and they were 

used as such in this research. The derived features along with the other input features were used in 

training the ML models.  

b. Model selection 

In addition to the three model families discussed in objective 1A (SVM, Bagged Trees, and 

Boosted Trees), two additional ML families were explored in this research. The two additional 

families were: K-nearest neighbors (KNN) and Logistic Regression.  

K-Nearest Neighbors (KNN) 

 KNN is a distance-based supervised ML algorithm. It is a commonly used technique that 

works with classification or regression problems. In this case, the output is a binary classification 

problem, therefore a KNN-classifier was implemented. The distance metric used in this research 

was Euclidean Distance. If ‘I’ is an input matrix, treated in terms of row vectors i1, i2, i3, … ia and 

‘O’ is an output matrix treated as row vectors of o1, o2, o3, …oa. Then the pair-wise Euclidean 

distances between different input and output points are defined using equation (18) [79].  
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                                            𝑒𝑑𝑚𝑛
2 = (𝑖𝑚 − 𝑜𝑛)(𝑖𝑚 − 𝑜𝑛)′                                                 (18) 

 

 The distance between different observations is sorted and then used by the KNN algorithm 

to classify observations into one of the output classes.  

Logistic regression 

 Logistic regression is a form of linear regression, applied to classification problems. It is 

the simplest ML algorithm and is often used as a benchmark method to compare with other, more 

complex ML algorithm performances. Like simple linear regression, logistic regression associates 

weights with each input feature (or independent variable) to fit the data and find the output value 

(or dependent variable) accurately. However, unlike linear regression where the output is a 

continuous, numerical value, the output of logistic regression is categorical in nature. In this 

research, binary logistic regression was used.  Binary logistic regression uses the sigmoidal or logit 

function to then map the output variable from numerical range to a binary value. The sigmoidal 

function expression is shown in equation (19). Here, s(x) represents the sigmoidal value of any 

input ‘x’. The output of the sigmoidal function always lies between 0 and 1. 

                                                               𝑠(𝑥) =
1

1+𝑒−𝑥                                                           (19) 

 

The overall equation for logistic regression involving ‘i’ input and ‘o’ predicted output can 

be described as shown in equation (20). b0 is the term representing bias and b1 represents the weight 

of the input feature. While logistic regression is a linear method, the output predictions are 

transformed using a logit function.  

                                                                     𝑜 =
𝑒𝑏0+𝑏1𝑖

1+𝑒𝑏0+𝑏1𝑖                                                      (20) 

 

 Five ML families in total were evaluated in this research objective, as explained earlier. 

Details related to how class imbalance was handled, and the following results are outlined below. 
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c. Class imbalance 

Similar to that in objective 1A, class imbalance was found to be a recurring challenge with 

in pursuing this research objective as well. The data distribution between the classes was as follows 

(combined data from both sexes):  

i) Observations with HS: 2, 956  

ii) Observations without HS: 9,959  

To avoid class imbalance, two different approaches were implemented and compared in 

this research. The first approach called ‘under-sampling’ is discussed here. The second approach 

was to synthetically generate minority samples using SMOTE (similar to objective 1A). Methods 

and results from both these approaches are discussed here. Objective 1B – Under Sampling refers 

to the first approach and Objective 1B – SMOTE refers to the second approach used to tackle class 

imbalance. The flowchart of the methods used is shown in Figure 2.4 below for clarity.  

Under-sampling 

This approach is different from synthetic data generation. In this method, existing data is 

used to balance out the classes. As a result, using this approach, only real-world data is used to 

train and test the ML models. In this technique, data from the majority class (no-HS) is randomly 

sampled to match the size of the minority class (HS). This way, the class sizes are balanced but 

the overall size of the dataset is reduced significantly. In this case, the under sampling was applied 

separately to male and female datasets. The results from under sampling are shown in below in 

Tables - objective 1B 

Table 2.2. Code is available in appendices B.4A and B.4B (for male and female, 

respectively) 

Synthetic data generation using SMOTE 

Although the under-sampling approach only uses real-world data, it can severely reduce 

the size of the dataset. Therefore, an alternate approach of generating synthetic data using SMOTE 

was also implemented and the results were compared with those from under sampling. 200% 

synthetic data generation was implemented for each male and female dataset. Size of the dataset 
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increases in this approach due to imputing the data using synthetic methods. The sizes of the 

specific datasets are shown in  

Table 2.3. Detailed steps in the process of creating synthetic data are explained using 

flowcharts in Figure 2.5 Figure 2.6. Code is available in appendices B.6A and B.6B (for male and 

female, respectively) 

d. Model development 

The male and female processed datasets were divided into separate class-balanced training 

and test in a 70:30 ratio, respectively (refer to Figure 2.5 Figure 2.6). The models were trained on 

17 ML-based models (belonging to the five model families) using 11 features (7 selected features 

+ 4 derived features). The trained models were then used for testing the results using separate test 

datasets. Code is available for Objective 1B – under sampling in Appendix B.4. and P1.B.4.B Code 

for objective 1B – SMOTE is available in Appendix B.6.A and P1.B.6.B. In this case, five models 

of support vector machines (SVM) family were found to perform better among the 17 ML models. 

Code related to training and testing is the same for both under-sampling and SMOTE approaches. 

This code is available in Appendix B.4. A summary of the best performing models is provided in  

Table 2.4 below. 

Overall, compared to objective 1A, additional data processing was applied in this research 

objective for two reasons: 

1) To enhance the use of liver biochemistry by incorporating clinically defined “normal” 

values 

2) To incorporate the differences in NAFLD pathobiology between male and female 

populations, these datasets were processed separately. This encourages the model to learn 

from these two datasets independently 

3) To compare the results by implementing two types of data imputation (to handle class 

imbalance) 

The relevant model performances and the discussion of these results is presented in the Results 

and Discussion – 1B section. 

The results and discussion have been evaluated independently for Objectives 1A and 1B. 
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2.5 Results and discussion 

Three families of machine learning models were trained and tested on the dataset described 

in section 2.4.c. Each model was run independently, and each run was repeated 10-times for 

robustness. Then, the model’s performances were measured on the following four parameters: 

1. Training Accuracy 

2. Test Accuracy 

3. Test Sensitivity 

4. Test Specificity 

Training accuracy is a measure of the model’s accuracy in predicting HS vs no-HS while 

using 70% of the entire data (stored and used as training data). The 10- fold cross-validation 

(commonly known as k-fold validation) is used to compute the training accuracy as follows. The 

training dataset is split up into 10-sub datasets. Each ‘kth’ sub dataset is used to compute the 

accuracy by measuring the number correctly classified observations in the kth dataset divided by 

the total observations in the kth dataset. The accuracy over each of the ‘k’ folds is computed and 

averaged to obtain the training accuracy. The training accuracies of the best performing models in 

objective 1A are reported in Table 2.1.  

Test accuracy is similarly computed but using 30% of the entire dataset (stored separately 

and labelled as test dataset). It is important to note that none of the data from the test dataset were 

used in the training or cross-validation process. The test accuracy can be defined as the ratio of 

correctly classified observations divided by the total number of observations in the test dataset.   

Test sensitivity is computed using test data only. The model’s ability to identify the 

observations with HS correctly is measured using sensitivity. In more general terms, model 

sensitivity can be defined as the ability of the model to correctly predict true positives. Test 

sensitivity is computed by the ratio of number of true positives divided by the number of disease 

class observations.  

Test specificity on the other hand measures the model’s ability to predict true negatives. In 

this case, test sensitivity is used to inform the models prediction ability in identifying observations 

with no-HS. Test specificity is computed by the ratio of number of true negatives divided by the 

total number of non-disease observations.  

 In general, when screening models are used in clinical settings, the primary idea is to find 

those candidates with the disease so that they can be provided with the appropriate 
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treatment/further testing. Therefore, in this work, the focus is more on sensitivity compared to 

specificity. While both the parameters are measured and the results are provided, the emphasis of 

model performance is focused on sensitivity and the general test accuracy as well.  

2.5.1 Objective 1A – results and discussion 

Of the five models, a maximum accuracy of approximately 79% and a maximum sensitivity 

of 77% was found. Overall, the model sensitivities ranged from 69 – 77% whereas the specificities 

ranged from 72 – 82%. The test accuracies ranged from 71 – 79%. Detailed results are presented 

in Table 2.1.  

The best performing model (in terms of highest test accuracy) was found to be the ‘Gentle 

Boosted Tree’ with a test accuracy of 79%. It also had a high specificity of almost 82%. The 

sensitivity of this model was approximately 76%.  While the gentle boosted tree model was the 

best in terms of both test accuracy and specificity, the best model when considering sensitivity was 

‘bagged trees. The bagged trees model had a sensitivity of approximately 72%. It had a specificity 

of 79% and test accuracy of almost 78%.  

Overall, the tree-based models were found to perform well in predicting HS using the six 

predictor variables: age, sex, BMI, triglycerides, HDL, and total cholesterol. Further work is 

needed to improve the performance of the models either by using other AI tools or by processing 

the features to aid with learning. These models also need to be validated on a much larger dataset 

with demographics that are representative of the population. The data used here was from 

NHANES III. While the NHANES III dataset website provides sample weights, they were not 

used in this research. Additional analyses with weighted data and/or larger datasets are required 

before the models can be implemented in clinical settings.  

2.5.2 Objective 1B - Results and Discussion 

Results (objective 1B – under-sampling) 

Five families of ML models (17 models total) were assessed in this research objective. 

Using the first approach of under-sampling, the majority class data were randomly sampled to 

match the size of the minority class data. This method significantly reduces the size of the dataset, 

but in this case, the data were all real-world and no synthetic data generation was required in this 
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step. The under sampled dataset (size: 2,076 Male; 2,424 Female) was then divided into training 

and test datasets in a 70:30 ratio, respectively. Dataset sizes before and after under sampling are 

provided in  

Table 2.2.  

In this research objective, the models were developed separately for each sex to 

accommodate the potential differences in pathobiology, as explained earlier. Five best performing 

models for each sex were identified and the results are in  

Table 2.4. As with objective 1A, the four parameters, training accuracy, test accuracy, test 

sensitivity and test specificity were used as model performance indicators. 

Overall, the best performing male-specific models demonstrated test accuracy ranging 

from 66 – 69%, sensitivity ranging from 63 – 72% and specificity ranging from 61 – 72%. The 

best model in terms of test accuracy was found to be Gaussian SVM scale II (69%), whereas the 

best model in terms of sensitivity was found to be Gaussian SVM scale I (72%). The sensitivity of 

the prediction models is emphasized in this work, as this metric identifies the model’s ability to 

find those with the disease. Therefore, after conducting additional validation with larger, diverse 

datasets, the model with highest sensitivity would be recommended. In this case, the Gaussian 

SVM I model resulted in the highest sensitivity.  

Similarly, the performance of the female-specific models was as follows. The test accuracy 

ranged between 69 – 71%. The sensitivity ranged from 67-71% and specificity from 68 – 75%. 

The model with highest test accuracy (69%) was observed in the Quadratic SVM model and the 

highest sensitivity (71%) was found in the Gaussian SVM I model. While the Quadratic SVM 

model also had a high specificity of 75%, the emphasis of this objective is on sensitivity as 

explained earlier.  

Overall, in terms of high sensitivities, the Gaussian Scale I SVM model was found to be 

the best performing for both Male and Female – specific models. Additional investigation is 

needed to understand the model performance. Future direction might include improving the 

Gaussian Scale I model further using other statistical techniques/methods.  

Results (objective 1B – SMOTE) 

A second approach to handling class imbalance for data in objective 1B was implemented. 

SMOTE was used to synthetically generate HS data and augment the original datasets instead of 
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under sampling. The data were then split into training, test and the performances were measured. 

A summary of the logic used for SMOTE implementation in male and female datasets can be seen 

in Figure 2.5 and Figure 2.6.  

 Creating synthetic data and imputing the existing datasets increased the male dataset size 

from 2,076 to 6,291. Similarly, the female dataset size increased from 2,424 to 9,439. Use of 

SMOTE instead of under-sampling to handle class imbalance, increases the size of the original 

dataset. Increased dataset sizes provide more training data for the model to learn from. After the 

data imputation, the rest of the ML-based training and testing was conducted.  

The model performance summaries using SMOTE are shown in Table 2.5. The best 

performing models were identified as those with high performance across all four metrics (training 

accuracy, test accuracy, sensitivity, and specificity). These models perform well over-all the 

measured metrics and are considered to be best performing in this work. For male-specific models 

the results indicate that the test accuracy ranges between 71- 77%, sensitivity ranges between 70 

– 76% and specificity ranges between 71 – 79%. Best performing model inters of test accuracy 

was found to be the Bagged Trees model with 77% accuracy, 76% sensitivity and 79% specificity.  

Similarly for female-specific models, the ranges of performance were as follows: Test 

accuracy 73 – 82%, sensitivity 74 – 81% and specificity 71 – 79%. Best performance in terms of 

test accuracy was found in the Bagged trees model as well with 82% test accuracy, 81% sensitivity 

and 82% specificity.  

Note that the best performing model across all metrics was found to be Bagged Trees for 

both male and female-specific models. However, the performance of the female-specific Bagged 

Trees model was higher than its male counterpart by about 4.4% in test accuracy and 5.5% in 

sensitivity. It is postulated that the increase in accuracy for the female-specific models could be 

driven by the larger dataset size for the female population (9,439) vs the male population (6,291). 

More testing with much larger datasets is required to confirm this postulation and is out of scope 

for this research. 

Since the focus of screening models is to maximize sensitivity, the models that perform 

well with respect to sensitivity alone were identified. Some of these models might have very poor 

specificity performances but they are presented here due to their high sensitivity results. The 

models that perform well when only sensitivity is considered are in Table 6. The weighted KNN 

model resulted in a sensitivity of approximately 83% for male-specific and 86% for female-
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specific models. Other models like Fine KNN and Fine Gaussian SVM also showed high 

sensitivity  results. When creating screening tools, often the focus is on sensitivity – to identify 

positive cases and recommend them for further testing. In screening for HS, the models that 

perform well with respect to sensitivity might be useful and therefore are included in this section. 

On comparing the results of under-sampling with those of SMOTE, a clear increase in 

performance with SMOTE is observed. Test accuracy performances of the models using SMOTE 

were 8% and 11% higher in male and female specific models, respectively, when compared with 

those using under sampling. Similarly, the sensitivity performance was 11% (Male) and 15% 

(Female) higher with SMOTE vs under-sampling approach.  Sensitivity was 5% (Male) and 7% 

(Female) higher as well.  

This increase in performance across all metrics can be attributed to the increase in dataset 

sizes significantly when using SMOTE instead of under sampling. Larger dataset sizes are 

typically considered to be better for training ML models as more data provides more opportunity 

to learn. In summary, while both the techniques were separately implemented to handle class 

imbalance, the SMOTE approach resulted in higher performance across Male and Female -specific 

models.  Additional testing and validation of these screening tools is recommended. The tools 

developed in this work show promising results and could be used in the future as potential decision 

support tools for clinicians to screen for HS. 

2.6 Summary & conclusion 

In this research, models were developed to predict Hepatic Steatosis (HS) using ML-

techniques. In developing decision support systems based on ML for HS prediction, a hierarchical 

approach was used in exploring different input parameters. Models developed as part of objective 

1A used only six physiological parameters. The models in objective 1B used seven physiological 

and liver biochemistry parameters.  

The maximum accuracies of models using physiological, and liver biochemical parameters 

were 77.2% and 81.6% for male and female, respectively (using the SMOTE approach). Maximum 

sensitivities were 75.8% and 81.3% for male and female, respectively. Maximum specificities 

were 78.6% and 81.9% for male and female, respectively. When sensitives alone are considered, 

the models developed in the SMOTE approach (obj 1B) out-perform other models developed in 

using only physiological parameters (obj 1A) and under sampling approach (obj 1B).  The 
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weighted KNN model resulted in sensitivities of 82.6% (male) and 86% (female) using only seven 

input features.  

Finally, the models developed in this work need more validation on a much larger and 

much more diverse dataset. These models need to be tested for robustness before they can be 

implemented in clinical settings. However, the work in this dissertation shows promising results 

and a potential for the use of such screening tools, especially when no specific clinical screening 

is available. Early detection of NAFLD can potentially lead to remission or halt the progression of 

the disease. Therefore, low-cost, early detection tools are crucial to handle the increasing NAFLD 

condition.  

Based on the work described above, the following are concluded: 

1. Physiological parameters alone can predict HS using 79% accuracy, 76% sensitivity and 

82% specificity 

2. Models with only seven parameters (vital and liver biochemical) led screening models with 

sensitivities of 82.6% for male-specific models and 86% for female specific models. It is 

logical to use both physiological and liver biochemical parameters to maximize the 

sensitivity and therefore, screening capability of these models. 

2.7 Recommendations for future work 

Based on the reported work, the following are recommended as potential future work.  

1. Testing and validation of the developed models using larger and diverse datasets is 

recommended. 

2. Utilizing the sample weights provided by NHANES and developing models using 

weighted observations are recommended. 
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2.8 Figures – objective 1A 

 

Figure 2.1: Global NAFLD prevalence [7] 
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Figure 2.2: Progression of NAFLD [18] 

 

 

 

 

Figure 2.3: Summary of the methods used for data cleaning and model training 
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2.9 Tables – objective 1A 

 

Table 2.1: Model performance summary - objective 1A

Models Accuracy (%) Sensitivity (%) Specificity (%) 

Fine Gaussian SVM 76.58 75.76 77.35 

Medium Gaussian SVM 71.06 69.24 72.72 

Bagged Trees 77.96 76.62 79.14 

Gentle Boosted Trees 79.03 75.88 81.86 

ADA Boosted Trees 71.24 70.58 71.83 
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2.10 Figures – objective 1B 

 

 

Figure 2.4: Flowchart of methods used in Objective 1B 
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Figure 2.5: Logic used for creating synthetic male HS data with SMOTE 

 

 

 

Figure 2.6: Logic used for creating synthetic female HS data with SMOTE
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2.11 Tables - objective 1B 

Table 2.2: Class balanced datasets using under-sampling 

Sex HS 
No-HS (before 

under sampling) 

No-HS (after 

under sampling) 

Total (after under 

sampling) 

Male 1,038 3,177 1,038 2,076 

Female 1,212 4,591 1,212 2,424 

 

Table 2.3: Class balanced datasets using SMOTE 

Sex 
HS (before 

SMOTE) 

HS (after 

SMOTE) 
No-HS Total 

Male 1,038 3,114 3,177 6,291 

Female 1,212 4,848 4,591 9,439 

 

Table 2.4: Model Performance Summary for HS Screening using Under-Sampling 

 

aMale, bFemale, SD = Standard Deviation

SVM 

Models 

Performance Metrics 

Training 

Accuracy (%) 

 ± SD 

Test Accuracy 

(%) ± SD 

Test Sensitivity 

(%) ± SD 

Test Specificity 

(%) ± SD 

Sex Ma Fb M F M F M F 

Linear  
69.360 

± 0.007 

71.385 

± 0.011  

68.553 

± 0.011 

70.865 

± 0.016 

65.852 

± 0.022 

68.104 

± 0.026 

71.254 

± 0.026 

73.626 

± 0.023 

Quadratic  
68.954 

± 0.009 

71.362 

± 0.010  

68.778 

± 0.014 

71.002 

± 0.014 

65.562 

±0.02 

66.620 

± 0.027 

71.993 

± 0.021 

75.384 

± 0.027 

Gaussian 

scale 1 

66.334 

± 0.010 

69.504 

± 0.013 

66.559 

± 0.011 

69.148 

± 0.011 

72.122 

± 0.023 

70.659 

± 0.02 

60.996 

± 0.028 

67.637 

± 0.021 

Gaussian 

scale 2 

69.133 

± 0.009 

71.462 

± 0.011 

68.987 

± 0.018 

70.659 

± 0.012 

66.463 

± 0.015 

67.032 

± 0.02 

71.511 

± 0.027 

74.285 

± 0.015 

Gaussian 

scale 3 

68.954 

± 0.007 

71.409 

± 0.009 

68.794 

± 0.011 

70.178 

± 0.009 

63.826 

± 0.021 

67.225 

± 0.015 

73.762 

± 0.026 

73.131 

± 0.02 
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Table 2.5: Model Performance Summary for HS Screening using SMOTE 

Models 

Performance Metrics 

Training 

Accuracy (%) 
Test Accuracy 

(%) ± SD 

Test Sensitivity (%) 

± SD 

Test Specificity (%) 

± SD 
 ± SD 

Sex Ma Fb M F M F M F 

Bagged 

Trees 

76.4 ± 

0.006 

80.2 ± 

0.005 

77.2 ± 

0.009 

81.6 ± 

0.010 

75.8 ± 

0.010 

81.3 ± 

0.018 

78.6 ± 

0.011 

81.9 ± 

0.011 

Boosted 

Trees 

72.5 ± 

0.009 

75.0 ± 

0.004 

72.7 ± 

0.009 

75.3 ± 

0.008 

72.5 ± 

0.016 

75.3 ± 

0.014 

72.9 ± 

0.011 

75.4 ± 

0.020 

Medium 

KNN 

71.2 ± 

0.006 

72.9 ± 

0.005 

71.8 ± 

0.010 

74.4 ± 

0.008 

72.7 ± 

0/016 

75.6 ± 

0.016 

70.9 ± 

0.010 

73.0 ± 

0.011 

Cubic 

KNN 

70.8 ± 

0.005 

72.5 ± 

0.003 

71.0 ± 

0.009 

73.4 ± 

0.010 

71.4 ± 

0.017 

74.3 ± 

0.016 

70.7 ± 

0.011 

72.5 ± 

0.013 

Cosine 

KNN 

71.1 ± 

0.004 

73.0 ± 

0.005 

71.4 ± 

0.006 

74.2 ± 

0.007 

69.5 ± 

0.011 

73.6 ± 

0.014 

73.3 ± 

0.012 

74.8 ± 

0.016 

 

 

 

 

Table 2.6: Best performing (sensitivity only) models for HS Screening using SMOTE 

Models 

Performance Metrics 

Training Accuracy 

(%) 
Test Accuracy (%) 

± SD 

Test Sensitivity 

(%) ± SD 

Test Specificity 

(%) ± SD 
 ± SD 

Sex Ma Fb M F M F M F 

Fine 

Gaussian 

SVM 

73.0 ± 

0.003 

74.1 ± 

0.003 

73.4 ± 

0.008 

75.4 ± 

0.008 

78.1 ± 

0.013 

78.4 ± 

0.012 

68.9 ± 

0.013 

72.3 ± 

0.016 

Fine KNN 
73.4 ± 

0.005 

75.1 ± 

0.003 

73.8 ± 

0.007 

76.6 ± 

0.004 

82.1 ± 

0.015 

85.7 ± 

0.007 

65.6 ± 

0.009 

67.0 ± 

0.009 

Weighted 

KNN 

74.1 ± 

0.004 

76.0 ± 

0.005 

74.5 ± 

0.008 

77.3 ± 

0.007 

82.6 ± 

0.009 

86.0 ± 

0.013 

66.5 ± 

0.011 

68.1 ± 

0.010 
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APPENDIX A. – CODE FOR OBJECTIVE 1A 

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%% 

% Created on: 02/19/2019 

% Input: Raw data from NHANES 

% Output: Data with only variables of interest, specific to objective 1A 

% Author: Ridhi Deo 

% File name: obj1a_sas_1.sas 

% Description: Used eliminate the variables that are not required and to only keep the variables 

of interest from the raw datasets. This program was developed using SAS 2019 [64]. 

%%%%%%%% 

 

% set the data path and choose the variables to keep. Variable codes are as provided by  

% NHANESIII 

LIBNAME NH3 "Raw data path"; 

data NH3.adult_reduced; 

set NH3.adult; 

keep SEQN HSAGEIR HSSEX; 

proc sort; by seqn; run;  

 

data NH3.lab_reduced; 

set NH3.lab; 

keep SEQN TGP HDP TCP; 

proc sort; by seqn; run;  

 

data NH3.exam_reduced; 

set NH3.exam; 

keep SEQN BMPBMI MAPE1 MAPE2 MAPE4; 

proc sort; by seqn; run;  

 

data NH3.HGUHS_reduced; 

set NH3.HGUHS; 

keep SEQN GUPHSPFR; 

 

proc sort; by seqn; run;  

 

proc contents data = NH3.adult_reduced; 

run; 

 

proc contents data = NH3.lab_reduced; 

run; 

proc contents data = NH3.exam_reduced; 

run; 
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proc contents data = NH3.HGUHS_reduced; 

run; 

 

%% Note: The data output from this program has been archive in the Purdue Research 

Repository 

 

 

2. SAS CODE TO MERGE DATASETS 

%%%%%%%% 

% Created on: 02/19/2019 

% Input: Processed data with only variables of interest, specific to objective 1A 

% Output: Multiple datasets of interest merged into one dataset 

% Author: Ridhi Deo 

% File name: obj1a_sas_2.sas 

% Description: Used to combine different datasets of interest into one. This program was 

developed using SAS 2019 [64]. 

%%%%%%%% 

 

LIBNAME NH3 "Input data path"; 

 

% Sorting data by the sequential number 

proc sort data=NH3.adult_reduced; 

 by SEQN; 

proc sort data=NH3.lab_reduced; 

 by SEQN; 

proc sort data=NH3.exam_reduced; 

 by SEQN; 

proc sort data=NH3.hguhs_reduced; 

 by SEQN; 

 

%Merging data using the sequential number 

 data NH3.merged; 

 merge NH3.adult_reduced 

    NH3.lab_reduced 

    NH3.exam_reduced 

    NH3.hguhs_reduced; 

 by SEQN; 

 

proc contents data = NH3.merged varnum; 

proc means data=NH3.merged N Nmiss min max maxdec=2; 

run; 

 

%% Note: The data output from this program has been archive in the Purdue Research 

Repository 
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3. SAS CODE TO REMOVE OBSERVATIONS WITH MISSING DATA 

%%%%%%%% 

% Created on: 02/19/2019 

% Input: Merged dataset 

% Output: Merged dataset without missing data 

% Author: Ridhi Deo 

%File name: obj1a_sas_3.sas 

%Description: This code was written to eliminate any observations containing missing data 

related to alcohol information. This program was developed using SAS 2019 [64]. 

%%%%%%%% 

 

LIBNAME NH3 " Raw data path "; 

data NH3.merged_deletedNaNs; 

set NH3.merged; 

if nmiss(MAPE1) > 0 then delete; 

 

proc means data=NH3.merged_deletedNaNs N Nmiss min max maxdec=2; 

run; 

 

 

4. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE 

DATASETS 

%%%%%%%% 

% Created on: 01/31/2019 

% Input: Processed data exported from SAS 

% Output: Processed datasets for disease (HS yes) and no disease (HS no) 

% Author: Ridhi Deo  

% File name: Obj1a_matlab_1.m (MATLAB R2018b [65])  

% Description: This code was written to further clean and process the input dataset (exported 

from SAS). Then the data was divided into two sub-datasets based on HS yes or no. 

%%%%%%%% 

 

%% Clear Screen 

clc; 

clear all; 

%% Read the merged data text file into MATLAB 

data = readtable(Raw data path); 

 

%% Changing the values in the variables to 0s and 1s for clear representation of data 

data.TGP(data.TGP == 8888) = NaN; 

data.TCP(data.TCP == 8888) = NaN; 

data.HDP(data.HDP == 8888) = NaN; 

data.BMPBMI(data.BMPBMI == 8888) = NaN; 

data.MAPE1(data.MAPE1 == 8) = NaN; % 8 = blank but applicable as per NHANES 

data.MAPE1(data.MAPE1 == 2) = 0;   % 2 = No as per NHANES %1 is yes..leaving it as is 

data.MAPE1(data.MAPE1 == 9) = NaN; % 9 = don't know as per NHANES 
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data.MAPE2(data.MAPE2 == 8) = NaN; % 8 = blank but applicable as per NHANES 

data.MAPE2(data.MAPE2 == 2) = 0;   % 2 = No as per NHANES %1 is yes..leaving it as is 

data.MAPE2(data.MAPE2 == 9) = NaN; % 9 = don't know as per NHANES 

data.MAPE4(data.MAPE4 == 999) = NaN; % 999 = don't know as per NHANES 

data.MAPE4(data.MAPE4 == 888) = NaN; % 888 = blank but applicable as per NHANES 

data.GUPHSPFR(data.GUPHSPFR == 8) = NaN; %No image as per NHANES 

data.GUPHSPFR(data.GUPHSPFR == 7) = NaN; %Image is present, but ungradable as per 

NHANES 

data.GUPHSPFR(data.GUPHSPFR == 1) = 0; % 1 is Normal-Mild as per NHANES. Changing 

it to 0 to indicate no risk 

data.GUPHSPFR(data.GUPHSPFR == 2) = 1; % 2 is Moderate - Severe as per NHANES. 

Changing it to 1 to indidcate risk 

 

%% Changing the names of the variables to make it easy to understand 

data.Properties.VariableNames{'SEQN'} = 'Sequential_Number'; 

data.Properties.VariableNames{'HSSEX'} = 'Sex'; 

data.Properties.VariableNames{'HSAGEIR'} = 'Age'; 

data.Properties.VariableNames{'TGP'} = 'Triglycerides'; 

data.Properties.VariableNames{'TCP'} = 'Total_Cholestrol'; 

data.Properties.VariableNames{'HDP'} = 'HDL'; 

data.Properties.VariableNames{'BMPBMI'} = 'BMI'; 

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life'; 

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year'; 

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day'; 

data.Properties.VariableNames{'GUPHSPFR'} = 'Fatty_Liver'; 

 

%% Filling in missing data for the 12 drinks per year column with information from 12 drinks in 

life column 

% If a person has not had 12 drinks in their lifetime, the response on the 

% variable 12 drinks in past year are missing 

% To fix that, individuals who have not had 12 drinks in their life will 

% have 0s on the column 12 drinks in past year 

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the column 

drinks per day 

for i = 1: size(data,1) 

     

    if (data.Alcohol_12_life(i) == 0)  

        data.Alcohol_12_last_year(i) = 0; 

        data.Drinks_per_day(i) = 0; 

    end 

 

end 

 

for i = 1: size(data,1) 

     

    if (data.Alcohol_12_last_year(i) == 0)  
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        data.Drinks_per_day(i) = 0; 

    end 

 

end 

 

%% Deleting data samples with missing information wrt Fatty_Liver column 

idx_FL = find(isnan(data.Fatty_Liver)); 

data(idx_FL,:) = []; 

 

%% Deleting datasamples with missing information wrt alcohol 

idx_alc_life = find(isnan(data.Alcohol_12_life)); 

data(idx_alc_life,:) = []; 

 

%% Deleting datasamples with missing information wrt triglycerides 

idx_Trig = find(isnan(data.Triglycerides)); 

data(idx_Trig,:) = []; 

 

%% Deleting data samples with > 1 drink per day for women and > 2 drinks per day for men 

% As per the exclusion criteria followed by Long et al (They used drinks per week) 

 k = 1; 

for i = 1: size(data,1) 

 if(data.Sex(i) == 1 && data.Drinks_per_day(i) > 2) 

  idx(k) = i; 

        k = k + 1; 

    end 

end 

 

data(idx,:) = []; 

 

m = 1; 

for i = 1: size(data,1) 

  

 if(data.Sex(i) == 2 && data.Drinks_per_day(i) > 1) 

  idx1(m,1) = i; 

        m = m+1; 

 end 

end 

 

data(idx1,:) = []; 

 

%% Changing Sex to 0 and 1 

 data.Sex(data.Sex == 2) = 0; % Changing women to 0 

% Men remain as 1 (1 is high risk, 0 is low, generally) 

 

%% Deleting data samples with missing information wrt alcohol per day 

idx_Drinks = find(isnan(data.Drinks_per_day)); 
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data(idx_Drinks,:) = []; 

%% Deleting datasamples with missing BMI 

idx_BMI = find(isnan(data.BMI)); 

data(idx_BMI,:) = []; 

 

%% Creating a dataset which is the subset of the above dataset to compare with FHS f atty 

liver study 

 

data_FHS = data(:,[1:7,11]); 

 

%% Normalizing Age, BMI,drinks_per_day 

data_FHS.Age = normalize(data_FHS.Age,'zscore'); %Normalizing to range between 0 

and 1 

data_FHS.BMI = normalize(data_FHS.BMI,'zscore'); %Normalizing to range between 0 

and 1 

%data_FHS.Drinks_per_day = normalize(data_FHS.Drinks_per_day,'zscore'); 

%Normalizing to range between 0 and 1 

data_FHS.HDL = normalize(data_FHS.HDL , 'zscore'); 

data_FHS.Total_Cholestrol = normalize(data_FHS.Total_Cholestrol , 'zscore'); 

data_FHS.Triglycerides = normalize(data_FHS.Triglycerides,'zscore'); 

 

 

all_disease = array2table(zeros(sum(data_FHS.Fatty_Liver == 1),8)); 

all_no_disease = array2table(zeros( size(data_FHS,1) - sum(data_FHS.Fatty_Liver == 1), 

8)); 

 

%% Saved the disease and no-disease datasets into my hard drive as disease_dataset.mat 

and  

% no_disease_dataset.mat, respectively  

 

 

5. CODE TO CREATE SYNTHETIC DATA AND TO TRAIN, TEST ML MODELS 

%%%%%%%% 

% Created on: 04/23/2019 

% Input: Processed disease and no disease datasets from obj1a_matlab_1.m 

% Output: Results from the ML models 

% Author: Ridhi Deo 

%File name: obj1a_matlab_2.m (R2018b [65]) ) 

%Description: This code is a parent code that was used to create synthetic data using the 

SMOTE and Gower's distance metrics. Data was then divided into 70:30 training:test ratio, 

respectively. Five machine learning models were trained and tested: Fine Gaussian SVM, 

Medium Gaussian SVM, Bagged Trees, Gentle Boosted Trees and ADA Boosted Trees.  

%This code is written to internally call on the obj1a_matlab_2a.m code.  

%The obj1a_matlab_2a.m code further calls on:  obj1a_matlab_2b.m, 

obj1a_matlab_2c.m, %obj1a_matlab_2d.m, obj1a_matlab_2e.m, and obj1a_matlab_2f.m. 

%%%%%%%% 
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clc; 

clear all; 

% Loading the disease dataset 

disease_sample = load(Raw data path); 

disease_sample = disease_sample.disease_dataset; 

disease_sample(:,[1,8:12]) = []; 

T = size(disease_sample,1); %Measure of number of diseased samples 

N = 2; % Equivalent of 200% synthetic sample generation 

k = 2; % Setting number of nearest neighbours to 2 

num_attrs = size(disease_sample,2); %Number of variables 

new_index = 0; % Variable to keep a count of newly generated synthetic samples 

synthetic_sample.N{2} = zeros(T,num_attrs); %Since we are generating 200% synthetic, 

this value is N{2} 

nn_array = zeros(T,k+1); %Tp keep a list of nearest neighbours for each sample 

R = zeros(5,1); %Range of continous variables is represented by the array R 

temp_range = table2array(disease_sample(:,2:6)); %Temporary conversions to array - for 

computational ease. This is essential disease_sample 

temp_dist = table2array(disease_sample); 

distance = zeros(T,T); %Preallocating a matrix to store all the gower's distances 

for i = 1:5 %Calculating ranges 

    R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i))); 

end 

for i = 1:T %Computing Gower's distance and populating the distance matrix 

    for j = 1:T 

        if(temp_dist(i,1) == temp_dist(j,1)) 

            a = 1; 

            d = 0; 

        else 

            d = 1; 

            a = 0; 

        end 

             

        for m = 1:5 

            part1(m) = 1 - (abs(temp_dist(i,m+1) - temp_dist(j,m+1))/R(m,1)); 

        end 

         

        part2(i,j) = sum(part1,2); 

        part3(i,j) = (part2(i,j) + a)/(5 + (1-d)); 

        distance(i,j) = 1 - part3(i,j); 

    end 

    [nn_values(i,:),nn_array(i,:)] = mink(distance(i,:),k+1); %Finding the 5 nearest neighbors 

because the nearest one is with the sample itself  

% And to remove the column of zeros and still have 2 NN, I am obtaining 3 

% to start with 

end 
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nn_array(:,1) = []; %Nearest neighbor indices 

nn_values(:,1) =[]; %Nearest neighbor values 

while (N~=0) %To perform 200% synthetic sampling 

  for i = 1:size(temp_dist,1)   

    for attr=2:size(temp_dist,2) 

        nn = randi([1 k],1);  

        dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr); 

        gap = 0 + rand(1,1); 

        synthetic_sample.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic continous 

attributes 

    end 

    %Synthetic binary attribute 

     if(temp_dist(i,1) + sum(temp_dist(nn_array(i,1:k),1)) < 2) 

         synthetic_sample.N{N}(i,1) = 0;  

     else 

         synthetic_sample.N{N}(i,1) = 1;    

     end     

  end 

  N = N-1; %To avoid infinite loops 

end 

 

total_synthetic_samples = [synthetic_sample.N{1};synthetic_sample.N{2}];  

 

synthetic_original_disease = [total_synthetic_samples; temp_dist];   

synthetic_original_disease(:,7) = ones(size(synthetic_original_disease,1),1); 

non_disease_dataset = load(‘file path’); 

 

non_disease_dataset = non_disease_dataset.no_disease_dataset; 

non_disease_dataset(:,[1,9:12]) = []; 

non_disease_dataset = table2array(non_disease_dataset); 

 

full_data = [synthetic_original_disease; non_disease_dataset]; 

full_data(:,2:6) = normalize(full_data(:,2:6), 'range'); %Scaling continuous variables 

between 0 and 1 

synthetic_original_disease = full_data(find(full_data(:,7) == 1), :); 

non_disease_dataset = full_data(find(full_data(:,7) == 0), :); 

 

Q = size(synthetic_original_disease,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease = synthetic_original_disease(trainInd,:); 

test_disease = synthetic_original_disease(testInd,:); 
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% train_disease.Properties.VariableNames = {'Var2', 'Var3', 'Var4', 'Var5', 'Var6', 

'Var7','Var8','Var9','Var10','Var11','Var12'}; 

% test_disease.Properties.VariableNames = {'Var2', 'Var3', 'Var4', 'Var5', 'Var6', 

'Var7','Var8','Var9','Var10','Var11','Var12'}; 

 

Q = size(non_disease_dataset,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease = non_disease_dataset(trainInd,:); 

test_no_disease = non_disease_dataset(testInd,:); 

 

training = [train_disease; train_no_disease]; 

test = [test_disease; test_no_disease]; 

test = test(randperm(size(test,1)),:); 

training = training(randperm(size(training,1)),:); 

 

test = array2table(test); 

training = array2table(training); 

test.Properties.VariableNames = {'Var1','Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7'}; 

training.Properties.VariableNames = {'Var1','Var2', 'Var3', 'Var4', 'Var5', 'Var6', 'Var7'}; 

 

[test_results, train_results] = smote_testing(test, training) 

 

 

6. CODE TO TRAIN AND TEST ML MODELS  

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2.m 

% Output: Further calls other matlab functions 

% Author: Ridhi Deo 

% File name: obj1a_matlab_2a.m (R2018b [65]) ) 

% Description: This code is called internally from obj1a_matlab_2.m. This code is used to train 

and test five machine learning models and compute their performances. It outputs the 

performances back to its parent code: obj1a_matlab_2.m 

%%%%%%%% 

 

function [test_results, train_results] = smote_testing(test, training) 

 

%% Fine Gaussian SVM 

[fine_gauss, val_acc_fine_gauss] = smote_fine_gauss(training); 

yfit_1 = fine_gauss.predictFcn(test(:,1:end-1)); 

yfit_1(:,2) = test.Var7; 

g1 = yfit_1(:,2)'; %Known values - Ground Truth 

g2 = yfit_1(:,1)'; % predicted values 
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figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Fine Gaussian SVM') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Fine Gaussian SVM') 

txt = ['AUC for Fine Gaussian is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_1 = classperf(g1,g2); 

cp_1_accuracy = cp_1.CorrectRate; 

 

%% Medium Gaussian SVM 

[med_gauss, val_acc_med_gauss] = smote_med_gauss(training); 

yfit_2 = med_gauss.predictFcn(test(:,1:end-1)); 

yfit_2(:,2) = test.Var7; 

g1 = yfit_2(:,2)'; %Known values - Ground Truth 

g2 = yfit_2(:,1)'; % predicted values 

figure 

plotconfusion(g1,g2), title('Medium Gaussian SVM') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 

figure 

plot(X,Y), title('Medium Gaussian SVM'); 

txt = ['AUC for Medium Gaussian is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_2 = classperf(g1,g2); 

cp_2_accuracy = cp_2.CorrectRate; 

 

%% Ensemble - Bagged Trees 

[bagged_trees, val_acc_bagged_trees] = smote_bagged_trees(training); 

yfit_3 = bagged_trees.predictFcn(test(:,1:end-1)); 

yfit_3(:,2) = test.Var7; 

g1 = yfit_3(:,2)'; %Known values - Ground Truth 

g2 = yfit_3(:,1)'; % predicted values 

figure 

plotconfusion(g1,g2), title('Bagged Trees') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 

figure 

plot(X,Y), title('Bagged Trees'); 

txt = ['AUC for Bagged Trees is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_3 = classperf(g1,g2); 

cp_3_accuracy = cp_3.CorrectRate; 

 

%% Ensemble RUS boosted Trees 
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[RUS, val_acc_RUS_boosted] = smote_RUS(training); 

yfit_4 = RUS.predictFcn(test(:,1:end-1)); 

yfit_4(:,2) = test.Var7; 

g1 = yfit_4(:,2)'; %Known values - Ground Truth 

g2 = yfit_4(:,1)'; % predicted values 

figure 

plotconfusion(g1,g2), title('Ensemble RUS boosted Trees') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 

figure 

plot(X,Y), title('Ensemble RUS boosted Trees'); 

txt = ['AUC for RUS is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_4 = classperf(g1,g2); 

cp_4_accuracy = cp_4.CorrectRate; 

 

 

%% Ensemble Gentle boost 

 

[gentle, val_acc_gentle] = smote_gentle(training); 

yfit_5 = gentle.predictFcn(test(:,1:end-1)); 

yfit_5(:,2) = test.Var7; 

g1 = yfit_5(:,2)'; %Known values - Ground Truth 

g2 = yfit_5(:,1)'; % predicted values 

figure 

plotconfusion(g1,g2), title('Ensemble Gentle boost') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 

figure 

plot(X,Y), title('Ensemble Gentle boost'); 

txt = ['AUC for Gentle boost is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_5 = classperf(g1,g2); 

cp_5_accuracy = cp_5.CorrectRate; 

 

 

%% Ensemble ADA boost 

 

[ADA, val_acc_ADA] = smote_ADA(training); 

yfit_6 = ADA.predictFcn(test(:,1:end-1)); 

yfit_6(:,2) = test.Var7; 

g1 = yfit_6(:,2)'; %Known values - Ground Truth 

g2 = yfit_6(:,1)'; % predicted values 

figure 

plotconfusion(g1,g2), title('Ensemble ADA boost') 

[X,Y,T,AUC] = perfcurve(g1,g2,'1'); 
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figure 

plot(X,Y), title('Ensemble ADA boost'); 

txt = ['AUC for ADA boost is ',num2str(AUC)]; 

text(0.5,0.9,txt) 

clear X Y T AUC;  

cp_6 = classperf(g1,g2); 

cp_6_accuracy = cp_6.CorrectRate; 

 

 

%% Tabulated results 

test_results = table(cp_1_accuracy, cp_2_accuracy, cp_3_accuracy, cp_4_accuracy, 

cp_5_accuracy, cp_6_accuracy); 

test_results.Properties.VariableNames = {'Fine_Gaussian', 'Medium_Gaussian', 'Bagged_Trees', 

'RUS', 'Gentle_Boost', 'ADA_boost'}; 

 

train_results = table(val_acc_fine_gauss, val_acc_med_gauss, val_acc_bagged_trees, 

val_acc_RUS_boosted, val_acc_gentle, val_acc_ADA); 

train_results.Properties.VariableNames = {'Fine_Gaussian', 'Medium_Gaussian', 'Bagged_Trees', 

'RUS', 'Gentle_Boost', 'ADA_boost'}; 

 

 

A. CODE TO TRAIN FINE GAUSSIAN SVM MODEL 

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2a 

% Output: Trained Fine Gaussian SVM model 

% Author: MATLAB Auto Generation implemented by Ridhi Deo  

% File name: obj1a_matlab_2b.m (R2018b [65]) ) 

% Description: Used to train the model fine gaussian SVM. Outputs the trained model back to 

obj1a_matlab_2a.m 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = smote_fine_gauss(trainingData) 

 

% Auto-generated by MATLAB on 01-May-2019 11:12:40 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 
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% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 0.61, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2018b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 
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% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

B. CODE TO TRAIN MEDIUM GAUSSIAN SVM  

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2a 

% Output: Trained Medium Gaussian SVM model 

% Author: MATLAB Auto Generation implemented by Ridhi Deo  

% File name: obj1a_matlab_2c (R2018b [65]) ) 

% Description: Used to train the model medium gaussian SVM. Outputs the trained model back 

to obj1a_matlab_2a 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = smote_med_gauss(trainingData) 

 

% Auto-generated by MATLAB on 01-May-2019 11:16:26 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 2.4, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 
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% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2018b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

C. CODE TO TRAIN BAGGED TREES 

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2a 

% Output: Trained bagged trees model 

% Author: MATLAB Auto Generation implemented by Ridhi Deo  

%File name: obj1a_matlab_2d (R2018b [65]) ) 

%Description: Used to train the model bagged trees. Outputs the trained model back to 

obj1a_matlab_2a 

%%%%%%%% 
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function [trainedClassifier, validationAccuracy] = smote_bagged_trees(trainingData) 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

template = templateTree(... 

    'MaxNumSplits', 8902); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'Bag', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2018b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 
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predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

D. CODE TO TRAIN ADA BOOSTED TREES 

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2a 

% Output: Trained ADA model 

% Author: MATLAB Auto Generation implemented by Ridhi Deo  

%File name: obj1a_matlab_2e (R2018b [65]) ) 

%Description: Used to train the ADA model. Outputs the trained model back to 

obj1a_matlab_2a 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = smote_ADA(trainingData) 

 

% Auto-generated by MATLAB on 01-May-2019 11:20:29 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

template = templateTree(... 

    'MaxNumSplits', 20); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 
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    response, ... 

    'Method', 'AdaBoostM1', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'LearnRate', 0.1, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2018b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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E. CODE TO TRAIN GENTLE BOOSTED TREES  

%%%%%%%% 

% Created on: 05/01/2019 

% Input: Internally called from obj1a_matlab_2a 

% Output: Trained Gentle Boosted model 

% Author: MATLAB Auto Generation implemented by Ridhi Deo (R2018b [65]) ) 

%File name: obj1a_matlab_2f 

%Description: Used to train the gentle boost model. Outputs the trained model back to 

obj1a_matlab_2a 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = smote_gentle(trainingData) 

 

% Auto-generated by MATLAB on 01-May-2019 11:19:41 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

template = templateTree(... 

    'MaxNumSplits', 20); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'GentleBoost', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'LearnRate', 0.1, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 
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trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2018b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Var1', 'Var2', 'Var3', 'Var4', 'Var5', 'Var6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Var7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

The flow of code is as follows: 

 

 

Figure P1.A.1: Figure outlining the flow of code used in this research objective (1A)  
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APPENDIX B. - CODE FOR OBJECTIVE 1B 

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%% 

% Created on: 03/21/21 

% Input: Raw data from NHANES 

% Output: Data with only variables of interest, specific to objective 1B 

% Author: Ridhi Deo 

% File name: obj1b_sas_1.sas 

% Description: Used eliminate the variables that are not required and to only keep the variables 

of interest from the raw datasets. This program was developed using SAS 2019 [64]. 

%%%%%%%% 

 

% set the data path and choose the variables to keep. Variable codes are as provided by  

% NHANESIII 

 

LIBNAME NH "Raw data path"; 

 

data adult; 

set NH.adult; 

keep SEQN HSAGEIR HSSEX DMARETHN HAD1 HAD6 HAD10; 

proc sort; by seqn; run;   

 

data lab; 

set NH.lab; 

keep SEQN AHP HBP SSP SAP HCP DHP NAPSI SKPSI CLPSI C3PSI SCPSI 

PSPSI UAPSI G1P G2P BUPSI TBPSI CEPSI SFPSI CHPSI TRPSI ASPSI ATPSI 

GGPSI LDPSI APPSI TPPSI AMPSI GBPSI OSPSI GHP GHPMETH G1PSI 

G1PCODE G2PSI C1PSI C2PSI I1PSI I2PSI UDPSI URPSI UBP UIP PLPSI PVPSI 

PBPSI FEPSI VBPSI VCPSI ICPSI CAPSI SEPSI VAPSI VEPSI ACPSI BCPSI 

TCPSI TGPSI LCPSI HDPSI AAPSI ABPSI LPPSI; 

proc sort; by seqn; run;  

 

data exam; 

set NH.exam; 

keep SEQN PEP6DR BMPBMI BMPWAIST MAPA1 MAPA2A MAPA2B MAPA3 

MAPE1 MAPE2 MAPE4; 

proc sort; by seqn; run;  

  

data HGUHS; 

set NH.HGUHS; 

keep SEQN GUPHSQC GUPHSLKC GUPHSPB GUPHSDBA GUPHSVW 

GUPHSDGB GUPHSPF GUPHSPFR GUPHSC GUPHSREV; 

proc sort; by seqn; run; 
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proc contents data = NH.adult; 

run; 

 

proc contents data = NH.lab; 

run; 

 

proc contents data = NH.exam; 

run; 

 

proc contents data = NH.HGUHS; 

run; 

 

 

2. SAS CODE TO MERGE DATASETS 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Processed data with only variables of interest, specific to objective 1B 

% Output: Multiple datasets of interest merged into one dataset 

% Author: Ridhi Deo 

% File name: obj1b_sas_2.sas 

% Description: Used to combine different datasets of interest into one. This program was 

developed using SAS 2019 [64]. 

%%%%%%%% 

 

% Sorting data by the sequential number 

proc sort data=work.adult; 

 by SEQN; 

proc sort data=work.lab; 

 by SEQN; 

proc sort data=work.exam; 

 by SEQN; 

proc sort data=work.hguhs; 

 by SEQN; 

%Merging data using the sequential number 

 data NH.merged; 

 merge work.adult 

    work.lab 

    work.exam 

    work.hguhs; 

 by SEQN; 

 

proc contents data = NH.merged varnum; 

proc means data=NH.merged N Nmiss min max maxdec=2; 

run; 
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3. MATLAB CODE FOR INITIAL DATA PROCESSING, SPLIT INTO MALE, 

FEMALE SUB DATASETS 

 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Merged dataset from SAS 

% Output: Processed data, split into male and female sub-datasets 

% Author: Ridhi Deo 

% File name: Obj1b_matlab_1.m (R2020b [65]) ) 

% Description: This code was written to process data and split it into male and female sub-

datasets.  

%%%%%%%% 

 

clc 

clear all; 

%% Data import  

 

 

data7 = data7(:,[1,3,4,24,47,48,51,58,61,72,78:80,88 ]); 

 

data7.Properties.VariableNames{'HSAGEIR'} = 'Age'; 

data7.Properties.VariableNames{'HSSEX'} = 'Sex'; 

data7.Properties.VariableNames{'BMPBMI'} = 'BMI'; 

data7.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life'; 

data7.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year'; 

data7.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day'; 

data7.Properties.VariableNames{'GUPHSPFR'} = 'HS'; 

data7.Properties.VariableNames{'ATPSI'} = 'ALT'; 

data7.Properties.VariableNames{'ASPSI'} = 'AST'; 

data7.Properties.VariableNames{'APPSI'} = 'ASP'; 

data7.Properties.VariableNames{'G1P'} = 'Plasma_glucose_1'; 

data7.Properties.VariableNames{'G2P'} = 'Plasma_glucose_2'; 

data7.Properties.VariableNames{'HDPSI'} = 'HDL'; 

 

 

%% Alcohol data columns processing 

% Filling in missing data for the 12 drinks per year column with information from 12 

drinks in life column 

% If a person has not had 12 drinks in their lifetime, the response on the 

% variable 12 drinks in past year are missing 

% To fix that, individuals who have not had 12 drinks in their life will 

% have 0s on the column 12 drinks in past year 

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the 

column drinks per day 

for i = 1: size(data7,1) 

    if (data7.Alcohol_12_life(i) == 2)  
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        data7.Alcohol_12_last_year(i) = 0; 

        data7.Drinks_per_day(i) = 0; 

    end 

end 

 

for i = 1: size(data7,1) 

    if (data7.Alcohol_12_last_year(i) == 2)  

        data7.Drinks_per_day(i) = 0; 

    end 

end 

 

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing 

variables of interest 

% The information was referred from NHANES 3 documentation 

% Since we have not used any youth data, all NaNs in the Age column could 

% correspond to that 

idx_age = find(isnan(data7.Age)); 

data7(idx_age,:) = []; %13,149 samples are eliminated in this step 

Extra_Hb1AC(idx_age,:) = []; 

clear idx_age; 

 

% Sex 

% No missing or junk data 

 

% Plasma glucose 

% G1P 

% 88888 = blank but applicable 

data7.Plasma_glucose_1(data7.Plasma_glucose_1 == 88888) = NaN; 

 

% G2P 

% 88888 = blank but applicable 

data7.Plasma_glucose_2(data7.Plasma_glucose_2 == 88888) = NaN; 

 

 

% AST 

% 888 Blank but applicable 

data7.AST(data7.AST == 888) = NaN; 

 

% ALT 

% 888 Blank but applicable 

data7.ALT(data7.ALT == 888) = NaN; 

 

% ASP 

% 888 Blank but applicable 

data7.ASP(data7.ASP == 888) = NaN; 

data7.ASP(data7.ASP == 8888) = NaN; 
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% BMI 

% 8888 was found as junk data. Although I didnt see this on the website for 

% NHANES, it is removed because 8888 is not appropriate BMI 

data7.BMI(data7.BMI == 8888) = NaN; 

 

% HS 

% 7 Image is present, but ungradable 

% 8 No image 

data7.HS(data7.HS == 7) = NaN; 

data7.HS(data7.HS == 8) = NaN; 

 

% HDL 

data7.HDL(data7.HDL == 8888) = NaN; 

 

% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic beverage? 

Do not count small tastes. 

% 8 - Blank but applicable, 9 - dont know.  

data7.Alcohol_12_life(data7.Alcohol_12_life == 8) = NaN; 

data7.Alcohol_12_life(data7.Alcohol_12_life == 9) = NaN; 

 

% MAPE2 In the past 12 months did you 

%have at least 12 drinks of any kind of alcoholic beverage? 

% 8 - Blank but applicable, 9 - dont know.  

data7.Alcohol_12_last_year(data7.Alcohol_12_last_year == 8) = NaN; 

data7.Alcohol_12_last_year(data7.Alcohol_12_last_year == 9) = NaN; 

 

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you have a 

day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.) 

% 888 - Blank but applicable, 999 - dont know.  

data7.Drinks_per_day(data7.Drinks_per_day == 888) = NaN; 

data7.Drinks_per_day(data7.Drinks_per_day == 999) = NaN; 

 

%% After executing the code up to this point, I have visually examined all 

% the data columns to ensure junk data is removed  - 03/21/21 

%% Eliminating missing data from HS - we need to eliminate this data because this is our 

output variable and groud truth 

HS_missing_idx = find(isnan(data7.HS)); %6,194 cases of pmissing HS data 

data7(HS_missing_idx,:) = []; %This step eliminates the 6,194 cases of missing HS data 

clear HS_missing_idx; 

 

%% Delete missing ALT and AST information 

ALT_missing_idx = find(isnan(data7.ALT)); %773 cases of missing ALT data 

data7(ALT_missing_idx,:) = []; 

 

AST_missing_idx = find(isnan(data7.AST)); %0 cases of missing AST data after 

removing ALT missing samples 
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data7(AST_missing_idx,:) = []; 

 

ASP_missing_idx = find(isnan(data7.ASP)); %2 cases of missing ASP data after 

removing ALT missing samples 

data7(ASP_missing_idx,:) = []; 

 

% IF there are NaNs in G1P, fill them with G2P. If both G1P and G2P are 

% NaNs, then delete the sample 

 for i = 1:size(data7,1) 

     if(isnan(data7.Plasma_glucose_1(i))) 

         if(isnan(data7.Plasma_glucose_2(i))) 

             idx_pg(i) = i;  

         else 

             data7.Plasma_glucose_1(i) = data7.Plasma_glucose_2(i); 

         end 

     end 

 end 

  

data7.Plasma_glucose_2 = []; 

Plasma_glucose_idx = find(isnan(data7.Plasma_glucose_1)); %25 cases of missing 

plasma glucose samples after combining G1P and G2P 

data7(Plasma_glucose_idx,:) = []; 

 

BMI_idx = find(isnan(data7.BMI)); %20 cases of missing BMI 

data7(BMI_idx,:) = []; 

 

HDL_idx = find(isnan(data7.HDL)); %121 cases of missing HDL 

data7(HDL_idx,:) = []; 

  

clear ALT_missing_idx AST_missing_idx ASP_missing_idx Plasma_glucose_idx 

idx_pg BMI_idx HDL_idx; 

 

%% Split datasets into HS and non-HS 

 

data7.HS(data7.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to 

indicate no risk 

data7.HS(data7.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to 

1 to indidcate risk 

 

idx_disease = data7.HS == 1; 

dataset_HS = data7(idx_disease,:); %2,956 

 

idx_non_disease = data7.HS == 0; 

dataset_non_HS = data7(idx_non_disease,:); % 9,959 

clear idx_disease  idx_non_disease; 
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%% Split further into Male HS, Non-HS and Female HS, non-HS 

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :); % Sex = 1 is male and 2 is 

female per NHANES documentation 

%1,517 

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:); %1,439 

 

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:); %4,533 

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:); %5,426 

 

%% Apply exclusion criteria for alcohol 

% HS and No-HS male exclusion criteria - > 21 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_male,1) 

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3) 

        idx_HS_men(k) = i; 

        k = k + 1; 

    end 

end 

dataset_HS_male(idx_HS_men,:) = []; %437 samples are eliminated 

clear k  idx_HS_men; 

 

j = 1; 

for i = 1: size(dataset_non_HS_male,1) 

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3) 

        idx_non_HS_men(j) = i; 

        j = j + 1; 

    end 

end 

 

dataset_non_HS_male(idx_non_HS_men,:) = []; %1,228 samples are elminiated 

clear j  idx_non_HS_men; 

 

% HS and No-HS female exclusion criteria - > 14 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_female,1) 

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2) 

        idx_HS_women(k) = i; 

        k = k + 1; 

    end 

end 

dataset_HS_female(idx_HS_women,:) = []; %195 are eliminated 

clear k  idx_HS_women; 

 

j = 1; 
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for i = 1: size(dataset_non_HS_female,1) 

if(dataset_non_HS_female.Sex(i) == 2  && dataset_non_HS_female.Drinks_per_day(i) 

> 2) 

        idx_non_HS_women(j) = i; 

        j = j + 1; 

    end 

end 

dataset_non_HS_female(idx_non_HS_women,:) = []; %716 are eliminated 

clear j idx_non_HS_women; 

 

%% Delete data related to drinks per day 

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day)); 

dataset_HS_male(idx_male_HS_drinks,:) = []; % 1038 x 13 

 

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day)); 

dataset_non_HS_male(idx_male_non_HS_drinks,:) = []; %3,177 x 13 

 

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day)); 

dataset_HS_female(idx_female_HS_drinks,:) = []; %1,212 x 13 

 

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day)); 

dataset_non_HS_female(idx_female_non_HS_drinks,:) = []; %4,591 x 13 

 

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks 

idx_male_non_HS_drinks; 

 

%% Delete alcohol columns from 4 datasets 

dataset_HS_male.Alcohol_12_last_year = []; 

dataset_HS_male.Alcohol_12_life = []; 

dataset_HS_male.Drinks_per_day = []; 

 

dataset_HS_female.Alcohol_12_last_year = []; 

dataset_HS_female.Alcohol_12_life = []; 

dataset_HS_female.Drinks_per_day = []; 

 

dataset_non_HS_male.Alcohol_12_last_year = []; 

dataset_non_HS_male.Alcohol_12_life = []; 

dataset_non_HS_male.Drinks_per_day = []; 

 

dataset_non_HS_female.Alcohol_12_last_year = []; 

dataset_non_HS_female.Alcohol_12_life = []; 

dataset_non_HS_female.Drinks_per_day = []; 

 

%% Delete sex column from all 4 datasets 

dataset_HS_male.Sex = []; 

dataset_HS_female.Sex = []; 
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dataset_non_HS_male.Sex = []; 

dataset_non_HS_female.Sex = []; 

 

 

4. MATLAB CODE FOR SEX SPECIFIC PROCSESSING – UNDER SAMPLING 

 

A. MALE SPECIFIC CODE 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Male Sub-Dataset 

% Output: Training and test datasets for male population 

% Author: Ridhi Deo 

% File name: Obj1b_matlab_2a.m (R2020b [65]) ) 

% Description: This code was written specifically for male population. Data were processed, 

four derived features were created and populated with normalized data. Undersampling was 

conducted and data were split into training and test in a class balanced way. 

%%%%%%%% 

 

% Creating derived variables to store normalized values 

 

ULN_ALT = 33; 

%% Liver foundation vicki shah: Female: AST ULN: 20 IU/L  

ULN_AST = 30; 

 

ALT_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(ALT_percent); 

dataset_HS_male.Properties.VariableNames{'Var10'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'ALT_percent'; 

 

AST_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(AST_percent); 

dataset_HS_male.Properties.VariableNames{'Var11'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(AST_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'AST_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(Plasma_glucose_percent); 

dataset_HS_male.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(Plasma_glucose_percent); 
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dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent'; 

 

BMI_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(BMI_percent); 

dataset_HS_male.Properties.VariableNames{'Var13'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var13'} = 'BMI_percent'; 

%% Computing % values 

for i = 1: size(dataset_HS_male,1) 

dataset_HS_male.ALT_percent(i) = ((dataset_HS_male.ALT(i) - 

ULN__ALT)/ULN__ALT)*100; 

dataset_HS_male.AST_percent(i) = ((dataset_HS_male.AST(i) - 

ULN__AST)/ULN__AST)*100; 

   dataset_HS_male.Plasma_glucose_percent(i) = 

((dataset_HS_male.Plasma_glucose_1(i) - 120)/120)*100; 

   dataset_HS_male.BMI_percent(i) = ((dataset_HS_male.BMI(i) - 25)/25)*100; 

 

end 

 

for i = 1: size(dataset_non_HS_male,1) 

   dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) - 

ULN__ALT)/ULN__ALT)*100; 

   dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) - 

ULN__AST)/ULN__AST)*100; 

   dataset_non_HS_male.Plasma_glucose_percent(i) = 

((dataset_non_HS_male.Plasma_glucose_1(i) - 120)/120)*100; 

   dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) - 25)/25)*100; 

end 

 

%% Converting % values to 0 if they are negative - see the top of this script for details 

 

for i = 1: size(dataset_HS_male,1) 

   if(dataset_HS_male.ALT_percent(i) <= 0) 

       dataset_HS_male.ALT_percent(i) = 0; 

   end 

   if(dataset_HS_male.AST_percent(i) <= 0) 

       dataset_HS_male.AST_percent(i) = 0; 

   end 

    if(dataset_HS_male.Plasma_glucose_percent(i) <= 0) 

       dataset_HS_male.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_HS_male.BMI_percent(i) <= 0) 

      dataset_HS_male.BMI_percent(i) = 0; 

    end 
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end 

 

 

for i = 1: size(dataset_non_HS_male,1) 

   if(dataset_non_HS_male.ALT_percent(i) <= 0) 

       dataset_non_HS_male.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_male.AST_percent(i) <= 0) 

       dataset_non_HS_male.AST_percent(i) = 0; 

   end 

    if(dataset_non_HS_male.Plasma_glucose_percent(i) <= 0) 

       dataset_non_HS_male.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_non_HS_male.BMI_percent(i) <= 0) 

      dataset_non_HS_male.BMI_percent(i) = 0; 

    end 

end 

 

%% Randomly select samples without replacement 

% Note that MATLAB's datasample function has replace = true as default 

 

dataset_non_HS_male_reduced = datasample(dataset_non_HS_male, 

size(dataset_HS_male,1), 'Replace', false); 

 

 

%% Split into training and test 

Q = size(dataset_HS_male,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_male = dataset_HS_male(trainInd,:); 

test_disease_male = dataset_HS_male(testInd,:); 

 

Q = size(dataset_non_HS_male_reduced,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_male = dataset_non_HS_male_reduced(trainInd,:); 

test_no_disease_male = dataset_non_HS_male_reduced(testInd,:); 

 

training_male = [train_disease_male; train_no_disease_male]; 

test_male = [test_disease_male; test_no_disease_male]; 

test_male = test_male(randperm(size(test_male,1)),:); 

training_male = training_male(randperm(size(training_male,1)),:); 
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%% Remove SEQN from training and test datasets 

training_male.SEQN = []; 

test_male.SEQN = []; 

%% Reoder training and test datasets to have HS as the end variable 

training_male = [training_male(:,1:7) training_male(:,9:12) training_male(:, 8)]; 

test_male = [test_male(:,1:7) test_male(:,9:12) test_male(:, 8)]; 

 

 

B. FEMALE SPECIFIC CODE 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Female Sub-Dataset 

% Output: Training and test datasets for female population 

% Author: Ridhi Deo 

% File name: Obj1b_matlab_2b.m 

% Description: This code was written specifically for female population. Data were processed, 

four derived features were created and populated with normalized data. Undersampling was 

conducted and data were split into training and test in a class balanced way. 

%%%%%%%% 

 

% Creating derived variables to store normalized values 

 

ULN_ALT = 25; 

ULN_AST = 20; 

 

ALT_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(ALT_percent); 

dataset_HS_female.Properties.VariableNames{'Var10'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'ALT_percent'; 

 

AST_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(AST_percent); 

dataset_HS_female.Properties.VariableNames{'Var11'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(AST_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'AST_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(Plasma_glucose_percent); 

dataset_HS_female.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_non_HS_female, 1),1); 
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dataset_non_HS_female(:,end+1) = array2table(Plasma_glucose_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'Plasma_glucose_percent'; 

 

BMI_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(BMI_percent); 

dataset_HS_female.Properties.VariableNames{'Var13'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var13'} = 'BMI_percent'; 

for i = 1: size(dataset_HS_female,1) 

dataset_HS_female.ALT_percent(i) = ((dataset_HS_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_HS_female.AST_percent(i) = ((dataset_HS_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_HS_female.Plasma_glucose_percent(i) = 

((dataset_HS_female.Plasma_glucose_1(i) - 120)/120)*100; 

   dataset_HS_female.BMI_percent(i) = ((dataset_HS_female.BMI(i) - 25)/25)*100; 

 

end 

 

for i = 1: size(dataset_non_HS_female,1) 

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_non_HS_female.Plasma_glucose_percent(i) = 

((dataset_non_HS_female.Plasma_glucose_1(i) - 120)/120)*100; 

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) - 

25)/25)*100; 

end 

 

%% Converting % values to 0 if they are negative - see the top of this script for details 

 

for i = 1: size(dataset_HS_female,1) 

   if(dataset_HS_female.ALT_percent(i) <= 0) 

       dataset_HS_female.ALT_percent(i) = 0; 

   end 

   if(dataset_HS_female.AST_percent(i) <= 0) 

       dataset_HS_female.AST_percent(i) = 0; 

   end 

    if(dataset_HS_female.Plasma_glucose_percent(i) <= 0) 

       dataset_HS_female.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_HS_female.BMI_percent(i) <= 0) 

      dataset_HS_female.BMI_percent(i) = 0; 
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    end 

end 

 

 

for i = 1: size(dataset_non_HS_female,1) 

   if(dataset_non_HS_female.ALT_percent(i) <= 0) 

       dataset_non_HS_female.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_female.AST_percent(i) <= 0) 

       dataset_non_HS_female.AST_percent(i) = 0; 

   end 

    if(dataset_non_HS_female.Plasma_glucose_percent(i) <= 0) 

       dataset_non_HS_female.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_non_HS_female.BMI_percent(i) <= 0) 

      dataset_non_HS_female.BMI_percent(i) = 0; 

    end 

end 

 

%% Randomly select samples without replacement 

% Note that MATLAB's datasample function has replace = true as default 

 

dataset_non_HS_female_reduced = datasample(dataset_non_HS_female, 

size(dataset_HS_female,1), 'Replace', false); 

 

%% Split into training and test 

Q = size(dataset_HS_female,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_female = dataset_HS_female(trainInd,:); 

test_disease_female = dataset_HS_female(testInd,:); 

 

Q = size(dataset_non_HS_female_reduced,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_female = dataset_non_HS_female_reduced(trainInd,:); 

test_no_disease_female = dataset_non_HS_female_reduced(testInd,:); 

 

training_female = [train_disease_female; train_no_disease_female]; 

test_female = [test_disease_female; test_no_disease_female]; 

test_female = test_female(randperm(size(test_female,1)),:); 

training_female = training_female(randperm(size(training_female,1)),:); 
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%% Remove SEQN from training and test datasets 

training_female.SEQN = []; 

test_female.SEQN = []; 

 

%% Reoder training and test datasets to have HS as the end variable 

training_female = [training_female(:,1:7) training_female(:,9:12) training_female(:, 8)]; 

test_female = [test_female(:,1:7) test_female(:,9:12) test_female(:, 8)]; 

 

 

5. MATLAB CODE FOR TRAINING AND TESTING ML MODELS 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training and test data 

% Output: Model performances 

% Author: Ridhi Deo 

% File name: Obj1b_matlab_3.m (R2020b [65]) ) 

% Description: This code was written to train and test the models, then compute the model 

performances and output them. 

%%%%%%%% 

 

test = test_female; % Need to change this depending on male/female 

training = training_female; % Need to change this depending on male/female 

 

%% Model 1: fine tree 

[mod_1, train_acc_1] = finetree2(training); % Training the model using training set 

yfit_1 = mod_1.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_1(:,2) = table2array(test(:,end));% Ground truth 

g1 = yfit_1(:,2)'; % Transposed values of Known values - Ground Truth 

g2 = yfit_1(:,1)'; % Transposed values of predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('Fine Tree') 

[tpr_1, fpr_1,~] = roc(g1, g2);  % Extracting the true-positive and false-positive rates 

sens_1 = tpr_1(1,2); % Calculating sensitiviy 

spec_1 = 1- fpr_1(1,2);% Calculating specificity 

[X,Y,~,AUC_1] = perfcurve(g1,g2,'1'); % Extracting values to plot the AUC curve with 

the AUC value 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Fine Tree')  

txt = ['AUC for Fine Tree is ',num2str(AUC_1)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_1 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_1_accuracy = cp_1.CorrectRate; 
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%% Model 2: logistic regression 

[mod_2, train_acc_2] = logisticregression2(training); % Training the model using 

training set 

yfit_2 = mod_2.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_2(:,2) = table2array(test(:,end)); 

g1 = yfit_2(:,2)'; %Known values - Ground Truth 

g2 = yfit_2(:,1)'; % predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('logistic regression') 

[tpr_2, fpr_2,~] = roc(g1, g2); 

sens_2 = tpr_2(1,2); 

spec_2 = 1- fpr_2(1,2); 

[X,Y,~,AUC_2] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('logistic regression') 

txt = ['AUC for logistic regression is ',num2str(AUC_2)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_2 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_2_accuracy = cp_2.CorrectRate; 

 

%% Model 3: linear svm 

[mod_3, train_acc_3] = linearsvm2(training); % Training the model using training set 

yfit_3 = mod_3.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_3(:,2) = table2array(test(:,end)); 

g1 = yfit_3(:,2)'; %Known values - Ground Truth 

g2 = yfit_3(:,1)'; % predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('linear svm') 

[tpr_3, fpr_3,~] = roc(g1, g2); 

sens_3 = tpr_3(1,2); 

spec_3 = 1- fpr_3(1,2); 

[X,Y,~,AUC_3] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('linear svm') 

txt = ['AUC for linear svm is ',num2str(AUC_3)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_3 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_3_accuracy = cp_3.CorrectRate; 

 

 

%% Model 4: quadratic svm 

[mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set 
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yfit_4 = mod_4.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_4(:,2) = table2array(test(:,end)); 

g1 = yfit_4(:,2)'; %Known values - Ground Truth 

g2 = yfit_4(:,1)'; % predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('quadratic svm') 

[tpr_4, fpr_4,~] = roc(g1, g2); 

sens_4 = tpr_4(1,2); 

spec_4 = 1- fpr_4(1,2); 

[X,Y,~,AUC_4] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('quadratic svm') 

txt = ['AUC for quadratic svm is ',num2str(AUC_4)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_4 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_4_accuracy = cp_4.CorrectRate; 

 

%% Model 5: fine gaussian svm 

[mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training 

set 

yfit_5 = mod_5.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_5(:,2) = table2array(test(:,end)); 

g1 = yfit_5(:,2)'; %Known values - Ground Truth 

g2 = yfit_5(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('fine gaussian svm') 

[tpr_5, fpr_5,~] = roc(g1, g2); 

sens_5 = tpr_5(1,2); 

spec_5 = 1- fpr_5(1,2); 

[X,Y,~,AUC_5] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('fine gaussian svm') 

txt = ['AUC for fine gaussian svm is ',num2str(AUC_5)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_5 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_5_accuracy = cp_5.CorrectRate; 

 

%% Model 6: medium gaussian svm 

[mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using 

training set 

yfit_6 = mod_6.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  



 

111 

yfit_6(:,2) = table2array(test(:,end)); 

g1 = yfit_6(:,2)'; %Known values - Ground Truth 

g2 = yfit_6(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('medium gaussian svm') 

[tpr_6, fpr_6,~] = roc(g1, g2); 

sens_6 = tpr_6(1,2); 

spec_6 = 1- fpr_6(1,2); 

[X,Y,~,AUC_6] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('medium gaussian svm') 

txt = ['AUC for medium gaussian svm is ',num2str(AUC_6)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_6 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_6_accuracy = cp_6.CorrectRate; 

 

%% Model 7: coarse gaussian svm 

[mod_7, train_acc_7] = coarsegaussiansvm2(training); % Training the model using 

training set 

yfit_7 = mod_7.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_7(:,2) = table2array(test(:,end)); 

g1 = yfit_7(:,2)'; %Known values - Ground Truth 

g2 = yfit_7(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('coarse gaussian svm') 

[tpr_7, fpr_7,~] = roc(g1, g2); 

sens_7 = tpr_7(1,2); 

spec_7 = 1- fpr_7(1,2); 

[X,Y,~,AUC_7] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('coarse gaussian svm') 

txt = ['AUC for coarse gaussian svm is ',num2str(AUC_7)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_7 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_7_accuracy = cp_7.CorrectRate; 

 

 

%% Model 8: fine knn 

[mod_8, train_acc_8] = fineknn2(training); % Training the model using training set 

yfit_8 = mod_8.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_8(:,2) = table2array(test(:,end)); 

g1 = yfit_8(:,2)'; %Known values - Ground Truth 
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g2 = yfit_8(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('fine knn') 

[tpr_8, fpr_8,~] = roc(g1, g2); 

sens_8 = tpr_8(1,2); 

spec_8 = 1- fpr_8(1,2); 

[X,Y,~,AUC_8] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('fine knn') 

txt = ['AUC for fine knn is ',num2str(AUC_8)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_8 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_8_accuracy = cp_8.CorrectRate; 

 

 

%% Model 9: Medium knn 

[mod_9, train_acc_9] = mediumknn2(training); % Training the model using training set 

yfit_9 = mod_9.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_9(:,2) = table2array(test(:,end)); 

g1 = yfit_9(:,2)'; %Known values - Ground Truth 

g2 = yfit_9(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Medium knn') 

[tpr_9, fpr_9,~] = roc(g1, g2); 

sens_9 = tpr_9(1,2); 

spec_9 = 1- fpr_9(1,2); 

[X,Y,~,AUC_9] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Medium knn') 

txt = ['AUC for Medium knn is ',num2str(AUC_9)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_9 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_9_accuracy = cp_9.CorrectRate; 

 

%% Model 10: Coarse knn 

[mod_10, train_acc_10] = coarseknn2(training); % Training the model using training set 

yfit_10 = mod_10.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_10(:,2) = table2array(test(:,end)); 

g1 = yfit_10(:,2)'; %Known values - Ground Truth 

g2 = yfit_10(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Coarse knn') 
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[tpr_10, fpr_10,~] = roc(g1, g2); 

sens_10 = tpr_10(1,2); 

spec_10 = 1- fpr_10(1,2); 

[X,Y,~,AUC_10] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Coarse knn') 

txt = ['AUC for Coarse knn is ',num2str(AUC_10)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_10 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_10_accuracy = cp_10.CorrectRate; 

 

%% Model 11: Cosine knn 

[mod_11, train_acc_11] = cosineknn2(training); % Training the model using training set 

yfit_11 = mod_11.predictFcn(test(:,1:end-1));% Predicting values from the trained model 

using the test dataset  

yfit_11(:,2) = table2array(test(:,end)); 

g1 = yfit_11(:,2)'; %Known values - Ground Truth 

g2 = yfit_11(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Cosine knn') 

[tpr_11, fpr_11,~] = roc(g1, g2); 

sens_11 = tpr_11(1,2); 

spec_11 = 1- fpr_11(1,2); 

[X,Y,~,AUC_11] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Cosine knn') 

txt = ['AUC for Cosine knn is ',num2str(AUC_11)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_11 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_11_accuracy = cp_11.CorrectRate; 

 

 

%% Model 12: Cubic knn 

[mod_12, train_acc_12] = cubicknn2(training); % Training the model using training set 

yfit_12 = mod_12.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_12(:,2) = table2array(test(:,end)); 

g1 = yfit_12(:,2)'; %Known values - Ground Truth 

g2 = yfit_12(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Cubic knn') 

[tpr_12, fpr_12,~] = roc(g1, g2); 

sens_12 = tpr_12(1,2); 

spec_12 = 1- fpr_12(1,2); 
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[X,Y,~,AUC_12] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Cubic knn') 

txt = ['AUC for Cubic knn is ',num2str(AUC_12)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_12 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_12_accuracy = cp_12.CorrectRate; 

 

%% Model 13: Weighted knn 

[mod_13, train_acc_13] = weightedknn2(training); % Training the model using training 

set 

yfit_13 = mod_13.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_13(:,2) = table2array(test(:,end)); 

g1 = yfit_13(:,2)'; %Known values - Ground Truth 

g2 = yfit_13(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Weighted knn') 

[tpr_13, fpr_13,~] = roc(g1, g2); 

sens_13 = tpr_13(1,2); 

spec_13 = 1- fpr_13(1,2); 

[X,Y,~,AUC_13] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Weighted knn') 

txt = ['AUC for Weighted knn is ',num2str(AUC_13)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_13 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_13_accuracy = cp_13.CorrectRate; 

 

%% Model 14:  Boosted Trees 

[mod_14, train_acc_14] = boostedtrees2(training); % Training the model using training 

set 

yfit_14 = mod_14.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_14(:,2) = table2array(test(:,end)); 

g1 = yfit_14(:,2)'; %Known values - Ground Truth 

g2 = yfit_14(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Boosted Trees') 

[tpr_14, fpr_14,~] = roc(g1, g2); 

sens_14 = tpr_14(1,2); 

spec_14 = 1- fpr_14(1,2); 

[X,Y,~,AUC_14] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 
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plot(X,Y), title('Boosted Trees') 

txt = ['AUC for Boosted Trees is ',num2str(AUC_14)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_14 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_14_accuracy = cp_14.CorrectRate; 

 

%% Model 15: Bagged Trees 

[mod_15, train_acc_15] = baggedtrees2(training); % Training the model using training 

set 

yfit_15 = mod_15.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_15(:,2) = table2array(test(:,end)); 

g1 = yfit_15(:,2)'; %Known values - Ground Truth 

g2 = yfit_15(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Bagged Trees') 

[tpr_15, fpr_15,~] = roc(g1, g2); 

sens_15 = tpr_15(1,2); 

spec_15 = 1- fpr_15(1,2); 

[X,Y,~,AUC_15] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Bagged Trees') 

txt = ['AUC for Bagged Trees is ',num2str(AUC_15)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_15 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_15_accuracy = cp_15.CorrectRate; 

 

%% Model 16: Subspace Discriminant 

[mod_16, train_acc_16] = subspacedisc2(training); % Training the model using training 

set 

yfit_16 = mod_16.predictFcn(test(:,1:end-1));  

yfit_16(:,2) = table2array(test(:,end)); 

g1 = yfit_16(:,2)'; %Known values - Ground Truth 

g2 = yfit_16(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Subspace Disc') 

[tpr_16, fpr_16,~] = roc(g1, g2); 

sens_16 = tpr_16(1,2); 

spec_16 = 1- fpr_16(1,2); 

[X,Y,~,AUC_16] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Subspace Disc') 

txt = ['AUC for Subspace Disc is ',num2str(AUC_16)]; 

text(0.5,0.9,txt) 
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clear X Y;  

cp_16 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_16_accuracy = cp_16.CorrectRate; 

 

%% Model 17: RUS Boosted trees 

[mod_17, train_acc_17] = rusboostedtrees2(training); % Training the model using 

training set 

yfit_17 = mod_17.predictFcn(test(:,1:end-1)); 

yfit_17(:,2) = table2array(test(:,end)); 

g1 = yfit_17(:,2)'; %Known values - Ground Truth 

g2 = yfit_17(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('RUS Boosted trees') 

[tpr_17, fpr_17,~] = roc(g1, g2); 

sens_17 = tpr_17(1,2); 

spec_17 = 1- fpr_17(1,2); 

[X,Y,~,AUC_17] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('RUS Boosted trees') 

txt = ['AUC for RUS Boosted trees is ',num2str(AUC_17)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_17 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_17_accuracy = cp_17.CorrectRate; 

 

 

%% Display results in a table 

Model = 

{'Fine_Tree';'Logistic_Regression';'Linear_SVM';'Quadratic_SVM';'Fine_Gaussian_SV

M';... 

'Medium_Gaussian_SVM';'Coarse_Gaussian_SVM';'Fine_KNN';'Medium_KNN';'Coarse

_KNN';... 

'Cosine_KNN';'Cubic_KNN';'Weighted_KNN';'Ensemble_Boosted';'Ensemble_Bagged';... 

'Ensemble_Subspace_Disc';'Ensemble_RUS_Boosted_Trees'}; 

 

Training_Acc = [train_acc_1; train_acc_2; train_acc_3; train_acc_4; train_acc_5;... 

    train_acc_6; train_acc_7; train_acc_8; train_acc_9; train_acc_10; train_acc_11;... 

    train_acc_12; train_acc_13; train_acc_14; train_acc_15; train_acc_16; train_acc_17]; 

Test_Acc = [cp_1_accuracy; cp_2_accuracy; cp_3_accuracy; cp_4_accuracy; 

cp_5_accuracy;... 

cp_6_accuracy; cp_7_accuracy; cp_8_accuracy; cp_9_accuracy; cp_10_accuracy; 

cp_11_accuracy;... 

cp_12_accuracy; cp_13_accuracy; cp_14_accuracy; cp_15_accuracy; cp_16_accuracy; 

cp_17_accuracy]; 

AUC = [AUC_1; AUC_2; AUC_3; AUC_4; AUC_5;... 

    AUC_6; AUC_7; AUC_8; AUC_9; AUC_10; AUC_11;... 
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    AUC_12; AUC_13; AUC_14; AUC_15; AUC_16; AUC_17]; 

Sensitivity = [sens_1; sens_2; sens_3; sens_4; sens_5;... 

    sens_6; sens_7; sens_8; sens_9; sens_10; sens_11;... 

    sens_12; sens_13; sens_14; sens_15; sens_16; sens_17]; 

Specificity = [spec_1; spec_2; spec_3; spec_4; spec_5;... 

    spec_6; spec_7; spec_8; spec_9; spec_10; spec_11;... 

    spec_12; spec_13; spec_14; spec_15; spec_16; spec_17]; 

Results = table(Model, Training_Acc, Test_Acc, AUC, Sensitivity, Specificity); 

 

 

A. TRAINING LINEAR SVM 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training data 

% Output: Trained Linear SVM Model 

% Author: Auto-generated by Matlab, implemented by Ridhi Deo 

% File name: Obj1b_matlab_3a.m (R2020b [65]) ) 

% Description: This code was called internally from Obj1b_matlab_3.m to train the linear SVM 

model. The trained model is returned as output to the Obj1b_matlab_3.m code and processed 

further there.  

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = linearsvm2(trainingData) 

 

% Auto-generated by MATLAB on 21-Mar-2021 18:54:13 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 
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    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1],... 

    'RemoveDuplicates',true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1', 

'Plasma_glucose_percent'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', ' ALT_percent', 

'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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B. TRAINING QUADRATIC SVM 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training data 

% Output: Trained Quadratic SVM Model 

% Author: Auto-generated by Matlab, implemented by Ridhi Deo 

% File name: Obj1b_matlab_3b.m (R2020b [65]) ) 

% Description: This code was called internally from Obj1b_matlab_3.m to train the 

QuadraticSVM model. The trained model is returned as output to the Obj1b_matlab_3.m code 

and processed further there.  

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = quadraticsvm2(trainingData) 

 

% Auto-generated by MATLAB on 21-Mar-2021 18:58:33 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 2, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 
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trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1', 

'Plasma_glucose_percent'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

C. TRAINING GAUSSIAN SCALE 1 SVM 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training data 

% Output: Trained Gaussian I SVM Model 

% Author: Auto-generated by Matlab, implemented by Ridhi Deo 

% File name: Obj1b_matlab_3c.m (R2020b [65]) ) 

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian I 

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and 

processed further there.  
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%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = finegaussiansvm2(trainingData) 

 

% Auto-generated by MATLAB on 21-Mar-2021 18:59:01 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 0.83, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1', 

'Plasma_glucose_percent'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  
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c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 
D. TRAINING GAUSSIAN SCALE 2 SVM 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training data 

% Output: Trained Gaussian II SVM Model 

% Author: Auto-generated by Matlab, implemented by Ridhi Deo 

% File name: Obj1b_matlab_3d.m (R2020b [65]) ) 

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian II 

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and 

processed further there.  

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = mediumgaussiansvm2(trainingData) 

% Auto-generated by MATLAB on 21-Mar-2021 18:59:35 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 
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inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 3.3, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1', 

'Plasma_glucose_percent'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 
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predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 
E. TRAINING GAUSSIAN SCALE 3 SVM 

 

%%%%%%%% 

% Created on: 03/21/21 

% Input: Training data 

% Output: Trained Gaussian III SVM Model 

% Author: Auto-generated by Matlab, implemented by Ridhi Deo 

% File name: Obj1b_matlab_3e.m (R2020b [65]) ) 

% Description: This code was called internally from Obj1b_matlab_3.m to train the Gaussian III 

SVM model. The trained model is returned as output to the Obj1b_matlab_3.m code and 

processed further there.  

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = coarsegaussiansvm2(trainingData) 

% Auto-generated by MATLAB on 21-Mar-2021 19:00:16 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 
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% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 13, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'Plasma_glucose_1', 

'Plasma_glucose_percent'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'Plasma_glucose_1', 'BMI', 

'ALT_percent', 'AST_percent', 'Plasma_glucose_percent', 'BMI_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 
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% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

6. MATLAB CODE FOR SEX SPECIFIC PROCSESSING – SMOTE 

 

A. MALE – SPECIFIC CODE 

%%%%%%%% 

% Created on: 03/18/2022 

% Input: Male Sub-Dataset with synthetic data 

% Output: Training and test datasets for male population 

% Author: Ridhi Deo 

% File name: obj1b_matlab_4a.m (R2020b [65]) ) 

% Description: This code was written specifically for male population. Data were processed, 

SMOTE was applied, four derived features were created and populated with normalized data. 

Data were split into training and test in a class balanced way. 

%%%%%%%% 

 

 

 

%% SMOTE 

temp_dataset = dataset_HS_male; 

temp_dataset(:,[1,9]) = []; % Removing the SEQN and HS colummns 

size_disease = size(temp_dataset,1); %Measure of number of disease samples 

N = 2; % Equivalent of N*100% synthetic sample generation 

k = 2; % Setting number of nearest neighbours 

num_attrs = size(temp_dataset,2); %Number of variables 

new_index = 0; % Variable to keep a count of newly generated synthetic samples 

synthetic_sample_male.N{N} = zeros(size_disease,num_attrs); %Since we are 

generating N*100% synthetic, this value is N{2} 

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each 

sample 

nn_values = zeros(size_disease,k+1);  

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R 

temp_range = table2array(temp_dataset); %Temporary conversions to array - for 

computational ease. This is essential dataset_HS_male 

temp_dist = table2array(temp_dataset); 

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the 

distances 

for i = 1:num_attrs %Calculating ranges 
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    R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i))); 

end 

% Finding the k-nn 

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be 

itself so we will need to remove that 

            

 

nn_array(:,1) = []; %Remove the first one because it is the same sample  

nn_values(:,1) =[]; %First nn is itself so distance is 0 

while (N~=0) %To perform N*100% synthetic sampling 

  for i = 1:size_disease  

    for attr=1:num_attrs 

        nn = randi([1 k],1); % Randomly choose the nearest neighbor 

        dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr); 

        gap = 0 + rand(1,1); 

        synthetic_sample_male.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic 

continous attributes 

    end 

  end 

  N = N-1; %To avoid infinite loops 

end 

 

 

total_synthetic_sample_males = 

[synthetic_sample_male.N{1};synthetic_sample_male.N{2}];  

total_synthetic_sample_males = array2table(total_synthetic_sample_males); 

total_synthetic_sample_males.Properties.VariableNames = 

temp_dataset.Properties.VariableNames; 

hybrid_disease_male = [total_synthetic_sample_males; temp_dataset];  %Hybrid = 

synthetic + disease 

hybrid_disease_male.HS = ones(size(hybrid_disease_male,1),1); 

 

%% removing seqn 

dataset_non_HS_male.SEQN = []; 

 

%% Based on American Liver Foundation video - Vicki Shah 

%% Based on American Liver Foundation video - Vicki Shah 

% Normal value for ALT: 10 - 55 U/L. Actual levels 30 

% AST: 10-40 U/L, but prefer 30 

% ASP: 45-115, also based on age 

 

%% AASLD: Male: ALT: 29-33 IU/L 

% Using 33 as the ALT ULN for men based on AASLD guidelines 

ULN_ALT = 33; 

%% Liver foundation vicki shah: Male: AST ULN: 30 IU/L  

ULN_AST = 30; 
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%% Creating a new % variable per discussion with Dr. P on March 18th 

ALT_percent = zeros(size(hybrid_disease_male, 1),1); 

hybrid_disease_male(:,end+1) = array2table(ALT_percent); 

hybrid_disease_male.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

AST_percent = zeros(size(hybrid_disease_male, 1),1); 

hybrid_disease_male(:,end+1) = array2table(AST_percent); 

hybrid_disease_male.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(AST_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

Plasma_glucose_percent = zeros(size(hybrid_disease_male, 1),1); 

hybrid_disease_male(:,end+1) = array2table(Plasma_glucose_percent); 

hybrid_disease_male.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(Plasma_glucose_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent'; 

 

BMI_percent = zeros(size(hybrid_disease_male, 1),1); 

hybrid_disease_male(:,end+1) = array2table(BMI_percent); 

hybrid_disease_male.Properties.VariableNames{'Var12'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'BMI_percent'; 

for i = 1: size(hybrid_disease_male,1) 

hybrid_disease_male.ALT_percent(i) = ((hybrid_disease_male.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

hybrid_disease_male.AST_percent(i) = ((hybrid_disease_male.AST(i) - 

ULN_AST)/ULN_AST)*100; 

hybrid_disease_male.Plasma_glucose_percent(i) = 

((hybrid_disease_male.Plasma_glucose_1(i) - 120)/120)*100; 

   hybrid_disease_male.BMI_percent(i) = ((hybrid_disease_male.BMI(i) - 25)/25)*100; 

 

end 

 

for i = 1: size(dataset_non_HS_male,1) 

dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 
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   dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_non_HS_male.Plasma_glucose_percent(i) = 

((dataset_non_HS_male.Plasma_glucose_1(i) - 120)/120)*100; 

dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) - 

25)/25)*100; 

end 

 

%% Converting % values to 0 if they are negative - see the top of this script for details 

 

 

for i = 1: size(hybrid_disease_male,1) 

   if(hybrid_disease_male.ALT_percent(i) <= 0) 

       hybrid_disease_male.ALT_percent(i) = 0; 

   end 

   if(hybrid_disease_male.AST_percent(i) <= 0) 

       hybrid_disease_male.AST_percent(i) = 0; 

   end 

    if(hybrid_disease_male.Plasma_glucose_percent(i) <= 0) 

       hybrid_disease_male.Plasma_glucose_percent(i) = 0; 

    end 

    if(hybrid_disease_male.BMI_percent(i) <= 0) 

      hybrid_disease_male.BMI_percent(i) = 0; 

    end 

end 

 

 

for i = 1: size(dataset_non_HS_male,1) 

   if(dataset_non_HS_male.ALT_percent(i) <= 0) 

       dataset_non_HS_male.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_male.AST_percent(i) <= 0) 

       dataset_non_HS_male.AST_percent(i) = 0; 

   end 

    if(dataset_non_HS_male.Plasma_glucose_percent(i) <= 0) 

       dataset_non_HS_male.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_non_HS_male.BMI_percent(i) <= 0) 

      dataset_non_HS_male.BMI_percent(i) = 0; 

    end 

end 

 

hybrid_disease_male = [hybrid_disease_male(:,1:7), hybrid_disease_male(:,9:end), 

hybrid_disease_male(:,8)]; 

dataset_non_HS_male = [dataset_non_HS_male(:,1:7), dataset_non_HS_male(:,9:end), 

dataset_non_HS_male(:,8)]; 
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%% Split into training and test 

Q = size(hybrid_disease_male,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_male = hybrid_disease_male(trainInd,:); 

test_disease_male = hybrid_disease_male(testInd,:); 

 

Q = size(dataset_non_HS_male,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_male = dataset_non_HS_male(trainInd,:); 

test_no_disease_male = dataset_non_HS_male(testInd,:); 

 

training_male = [train_disease_male; train_no_disease_male]; 

test_male = [test_disease_male; test_no_disease_male]; 

test_male = test_male(randperm(size(test_male,1)),:); 

training_male = training_male(randperm(size(training_male,1)),:); 

 

 

B. FEMALE – SPECIFIC CODE 

%%%%%%%% 

% Created on: 03/18/2022 

% Input: Female Sub-Dataset with synthetic data 

% Output: Training and test datasets for female population 

% Author: Ridhi Deo 

% File name: obj1b_matlab_4b.m (R2020b [65]) ) 

% Description: This code was written specifically for female population. Data were processed, 

SMOTE was applied, four derived features were created and populated with normalized data. 

Data were split into training and test in a class balanced way. 

%%%%%%%% 

 

 

%% SMOTE 

temp_dataset = dataset_HS_female; 

temp_dataset(:,[1,9]) = []; % Removing the SEQN and HS colummns 

size_disease = size(temp_dataset,1); %Measure of number of disease samples 

N = 3; % Equivalent of N*100% synthetic sample generation 

k = 2; % Setting number of nearest neighbours 

num_attrs = size(temp_dataset,2); %Number of variables 

new_index = 0; % Variable to keep a count of newly generated synthetic samples 

synthetic_sample_female.N{N} = zeros(size_disease,num_attrs); %Since we are 

generating N*100% synthetic, this value is N{2} 
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nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each 

sample 

nn_values = zeros(size_disease,k+1);  

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R 

temp_range = table2array(temp_dataset); %Temporary conversions to array - for 

computational ease. This is essential dataset_HS_female 

temp_dist = table2array(temp_dataset); 

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the 

distances 

for i = 1:num_attrs %Calculating ranges 

    R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i))); 

end 

% Finding the k-nn 

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be 

itself so we will need to remove that 

            

 

nn_array(:,1) = []; %Remove the first one because it is the same sample  

nn_values(:,1) =[]; %First nn is itself so distance is 0 

while (N~=0) %To perform N*100% synthetic sampling 

  for i = 1:size_disease  

    for attr=1:num_attrs 

        nn = randi([1 k],1); % Randomly choose the nearest neighbor 

        dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr); 

        gap = 0 + rand(1,1); 

        synthetic_sample_female.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic 

continous attributes 

    end 

  end 

  N = N-1; %To avoid infinite loops 

end 

 

 

total_synthetic_sample_females = 

[synthetic_sample_female.N{1};synthetic_sample_female.N{2};synthetic_sample_femal

e.N{3}];  

total_synthetic_sample_females = array2table(total_synthetic_sample_females); 

total_synthetic_sample_females.Properties.VariableNames = 

temp_dataset.Properties.VariableNames; 

hybrid_disease_female = [total_synthetic_sample_females; temp_dataset];  %Hybrid = 

synthetic + disease 

hybrid_disease_female.HS = ones(size(hybrid_disease_female,1),1); 

 

%% removing seqn 

dataset_non_HS_female.SEQN = []; 
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%% Based on American Liver Foundation video - Vicki Shah 

% Normal value for ALT: 10 - 55, but actually 20.  

% AST: 9 - 32, but prefer 20 

% ASP: 30 - 100, also based on age 

% NAFLD: AST and ALT are up to less than 4 times the ULN 

%% AASLD: Female: ALT: 19 - 25 IU/L 

% Using 25IU/L as the ULN for female based on the AASLD guidelines 

 

ULN_ALT = 25; 

%% Liver foundation vicki shah: Female: AST ULN: 20 IU/L  

ULN_AST = 20; 

%% Creating a new % variable per discussion with Dr. P on March 18th 

ALT_percent = zeros(size(hybrid_disease_female, 1),1); 

hybrid_disease_female(:,end+1) = array2table(ALT_percent); 

hybrid_disease_female.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

AST_percent = zeros(size(hybrid_disease_female, 1),1); 

hybrid_disease_female(:,end+1) = array2table(AST_percent); 

hybrid_disease_female.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(AST_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

Plasma_glucose_percent = zeros(size(hybrid_disease_female, 1),1); 

hybrid_disease_female(:,end+1) = array2table(Plasma_glucose_percent); 

hybrid_disease_female.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent'; 

 

Plasma_glucose_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(Plasma_glucose_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'Plasma_glucose_percent'; 

 

BMI_percent = zeros(size(hybrid_disease_female, 1),1); 

hybrid_disease_female(:,end+1) = array2table(BMI_percent); 

hybrid_disease_female.Properties.VariableNames{'Var12'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'BMI_percent'; 

%% Computing % values 

 

for i = 1: size(hybrid_disease_female,1) 
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hybrid_disease_female.ALT_percent(i) = ((hybrid_disease_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

hybrid_disease_female.AST_percent(i) = ((hybrid_disease_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

hybrid_disease_female.Plasma_glucose_percent(i) = 

((hybrid_disease_female.Plasma_glucose_1(i) - 120)/120)*100; 

hybrid_disease_female.BMI_percent(i) = ((hybrid_disease_female.BMI(i) - 

25)/25)*100; 

 

end 

 

for i = 1: size(dataset_non_HS_female,1) 

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_non_HS_female.Plasma_glucose_percent(i) = 

((dataset_non_HS_female.Plasma_glucose_1(i) - 120)/120)*100; 

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) - 

25)/25)*100; 

end 

 

%% Converting % values to 0 if they are negative - see the top of this script for details 

 

 

for i = 1: size(hybrid_disease_female,1) 

   if(hybrid_disease_female.ALT_percent(i) <= 0) 

       hybrid_disease_female.ALT_percent(i) = 0; 

   end 

   if(hybrid_disease_female.AST_percent(i) <= 0) 

       hybrid_disease_female.AST_percent(i) = 0; 

   end 

    if(hybrid_disease_female.Plasma_glucose_percent(i) <= 0) 

       hybrid_disease_female.Plasma_glucose_percent(i) = 0; 

    end 

    if(hybrid_disease_female.BMI_percent(i) <= 0) 

      hybrid_disease_female.BMI_percent(i) = 0; 

    end 

end 

 

 

for i = 1: size(dataset_non_HS_female,1) 

   if(dataset_non_HS_female.ALT_percent(i) <= 0) 

       dataset_non_HS_female.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_female.AST_percent(i) <= 0) 
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       dataset_non_HS_female.AST_percent(i) = 0; 

   end 

    if(dataset_non_HS_female.Plasma_glucose_percent(i) <= 0) 

       dataset_non_HS_female.Plasma_glucose_percent(i) = 0; 

    end 

    if(dataset_non_HS_female.BMI_percent(i) <= 0) 

      dataset_non_HS_female.BMI_percent(i) = 0; 

    end 

end 

 

hybrid_disease_female = [hybrid_disease_female(:,1:7), hybrid_disease_female(:,9:end), 

hybrid_disease_female(:,8)]; 

dataset_non_HS_female = [dataset_non_HS_female(:,1:7), 

dataset_non_HS_female(:,9:end), dataset_non_HS_female(:,8)]; 

 

%% Split into training and test 

Q = size(hybrid_disease_female,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_female = hybrid_disease_female(trainInd,:); 

test_disease_female = hybrid_disease_female(testInd,:); 

 

Q = size(dataset_non_HS_female,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_female = dataset_non_HS_female(trainInd,:); 

test_no_disease_female = dataset_non_HS_female(testInd,:); 

 

training_female = [train_disease_female; train_no_disease_female]; 

test_female = [test_disease_female; test_no_disease_female]; 

test_female = test_female(randperm(size(test_female,1)),:); 

training_female = training_female(randperm(size(training_female,1)),:); 
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Figure P1.B.1: Figure outlining the flow of code used in this research objective (1B) 
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 EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 

APPLIED TO HS-SCREENING MODELS (PAPER 2) 

A portion of the work in this paper was published in a peer-reviewed conference proceeding 

– Healthcare Innovations – Point of Care Technologies (HI-POCT 2022), Houston, Texas, 

March 10 – 11, 2022.   

3.1 Abstract 

Use of computational models for early screening of Hepatic Steatosis (HS) were discussed 

in paper 1. Selected models from Paper 1 were further evaluated in this paper to understand more 

about how the models interpret their input features. ML models are inherently black box in nature. 

Interpreting the models understanding is a critical step towards building transparency in machine 

learning models. In this work, a global explainability tool called Partial Dependency was 

implemented for the selected models (separately for male and female – specific models). Results 

were compared with the clinically defined normal values and the best performing features and 

models were identified.  

3.2 Introduction  

The research objective in paper 1 was to develop screening tools for Hepatic Steatosis (HS) 

using machine learning and selected parameters (physiological and liver biochemical data – 

objective 1B). These models show potential as clinical decision support tools for HS screening. 

However, ML models are inherently black-box in nature, that is, they do not indicate the reasoning 

related to the prediction of HS or no-HS. Understanding how a model is learning (the relationship 

between the predictors and output variable) is useful. This understanding can improve the trust in 

the model’s predictions and provide insights that can be used to improve future model 

performance.  

Recently, an increased research thrust in the field of explainable AI has been observed [1], 

[2]. The goal of XAI is to provide “justification, transparency, and traceability” to the black-box 

model-based decisions [1]. Recent developments in the field of XAI and specific tools that can be 

used to understand the ML models are provided in the next section.  
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In this research, the models developed using physiological and liver biochemical data 

(objective 1B) were explored further using an XAI tool. The XAI tool ‘Partial Dependence’ was 

explored to gain insights on mapping the specific input parameters for predicting the output 

(HS/no-HS). Detailed background, definitions, and recent work in the XAI domain are outlined in 

the literature review section.  

3.3 Literature review 

3.3.1 Background and importance of XAI in healthcare research 

With an increase in data, data availability, and computational power there has been an 

increase in the use of machine learning (ML) and artificial neural network (ANN) tools to generate 

prediction/estimation models. ML and ANN models are being implemented using large datasets 

to predict (classify or estimate) different parameters across multiple application domains. Use of 

such models in the healthcare domain has also been an increasing area of research, including in 

the Objective 1 of this dissertation. While artificial intelligence-based models are highly useful, 

most of them are inherently black-box in nature.  

Typically, as the models get more complex in nature, their interpretability decreases. Figure 

3.1 shows an example of interpretability vs complexity for some of the commonly used ML 

models. Note that increasing size of the circle denotes increasing performance. Typically, complex 

models perform better than simple regression or rule-based models, but complex models lack 

interpretability. Linear models, rule-based models and simple tree models are highly interpretable 

intrinsically. Such models can be called intrinsically open/explainable. On the other hand, neural 

networks, support vector machines and K-nearest neighbor methods are more complex in nature 

and therefore require post-hoc explainability methods.  

Broadly, there are multiple XAI approaches to gain an understanding of a specific model 

[3]–[5]. A simple categorization method for XAI tools is model-agnostic vs model-specific tools. 

Model-agnostic XAI can be applied to any black-box model, irrespective of which algorithm was 

used to train the model. On the other hand, model-specific tools are limited to only a specific 

category of AI/ML models.  Another way to categorize XAI tools is using a global vs local 

interpretation. Global XAI methods are used to estimate the entire logic used by the model (for all 

the data points used in the model), whereas local XAI methods can be used to estimate the 
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reasoning for an individual data point or a small group of data points. The choice of the most 

relevant XAI method can be made using the specific model in question and its application domain.  

Recent surveys have summarized the types of explainable AI tools [6], tools relevant to 

health data [1] and more specifically, explainable AI used for electronic health records (EHR) data 

[3]. The review of XAI using EHRs identified three major model trends identified in the survey 

were: 1) “if-then” rule-based models 2) Use of low complexity ML models first and then 

improving model performance using optimization 3) Dimensionality reduction techniques [3]. The 

recent tools and techniques developed for XAI are outlined in more detail in the next section.  

3.3.2 Tools and techniques for XAI 

Broadly, explainable AI techniques for machine learning models can be categorized by the 

stage at which they were applied, the scope of the data being used, the type of ML/AI tool, the 

type of input and output features [6]. The categorization of the various tools is explained in greater 

detail in a recent systematic review article [6]. The definitions of each of these categories are 

briefly listed below: 

1. Stage: The period when the tool/method is able to provide explanations in of two 

stages: “ante-hoc” or “post-hoc” [6]. Ante-hoc models are generated to be interpretable 

or transparent from the beginning, whereas post-hoc models use an external explainer 

during model testing [6]. 

2. Scope: The explanation provided by a particular method can either be “global”, “local” 

or “cohort” [6], [7]. Global explanations aim to interpret the model’s functionality as a 

whole. Local explanations are useful to interpret each observation used in a model. 

Cohort explanations provide insights into how the model is interpreting a group of 

observations (sub-set of the whole dataset) [6], [7]. 

3. Type of ML/AI: Classification type models are used for binary or categorical output 

whereas regression type models are used for continuous outputs. The type of 

explainability being used can depend on the type of the underlying model [6].   

4. Input & output data types: Different explainability techniques are useful based on the 

type of the input and output data [6]. These data types can be one of the following: 

a. Input: Categorical or continuous text data, images, longitudinal (time-series) . 

b. Output: Numerical/text, rule-based, images, mixed data. 
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Choice of the tool or technique for explainability is therefore based on different parameters 

of the ML/AI model, the complexity of the model and the desired outputs. While several 

researchers have specified the importance of using XAI tools for improving model understanding 

[3], [4], [8]–[10], some other researchers also warn about the need to use XAI as a supplementary 

tool, particularly for healthcare applications [3], [11]. A collaboration between AI developers and 

healthcare practitioners is recommended [3], [11]. Further, in healthcare, human expertise is 

critical since health-related decisions can have large implications. As such, human-in-loop studies 

are recommended and require further research [3].  

In this dissertation, the focus is on understanding models developed (in paper 1) as potential 

tools for clinical decision support. These models are numerical, black box, non-linear in nature 

and could use post-hoc explainability analysis. Therefore, the focus of this literature review is 

limited to identifying existing methods for post-hoc analysis of numerical data.  

In terms of scope of XAI for model interpretability, there are two types [6]:  

i. Local explainability 

a. Cohort 

b. Individual 

ii. Global explainability 

 

Briefly, local explainability is useful in understanding the model’s reasoning for how one 

observation (local) or a group of selected observations (cohort) are being classified. In both these 

cases, a smaller subset of the training dataset can be used to understand the model reasoning. Local 

explainability tools work by fitting smaller, linear models to understand a larger, non-linear model 

locally [12]. Local explainability is particularly useful to understand why a particular group of 

observations might be misclassified by the model. It can help in identifying any potential biases 

within a group of data or for a single observation. Local explainability also helps in understanding 

the influence of individual input features on a model’s decision making by bringing to attention 

the weight of a feature in a decision [3]. Drawing the user’s attention to insights about an 

individual, that may have been initially missed, is extremely impactful, especially for clinicians, 

as they work with patients in real-time [3], [8], [9].  

Global explainability, on the other hand, is useful to understand the model’s reasoning as 

a whole. This is particularly useful in the initial stages of training a model. The overall reasoning 
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is obtained by averaging the model’s decisions across all the predictions. It also allows the 

developer to understand to what extent each input feature is contributing to the overall decision 

making of the model. Based on the results from a global XAI tool, feature selection and feature 

engineering can be modified to align the model with its expectations.  

In this research, three XAI methods were considered. They are LIME [12], SHAP [13] and 

Partial Dependence [14], [15]. Each of these methods has a different approach to explain a model’s 

predictions and provide insights. These methods are explained below. 

a. LIME 

Local Interpretable Model-Agnostic Explanations or LIME is a local XAI technique that 

can approximate any complex machine learning model (linear or non-linear) using a simple 

interpretable model (linear model or a decision tree) [12]. The simpler model is used as a 

surrogate model to explain the original (complex ML) model. LIME can be used as a tool for 

interpreting the “local” behavior of a complex model. The advantage of this method is that it can 

be applied to any ML model, irrespective of the complexity of the model.  

b. SHAP  

Shapley Additive Explanations or SHAP is another XAI technique which ranks the 

importance of each input feature for any observation [13]. Like LIME, SHAP is also a local XAI 

technique and works with any specific observation of interest. However, SHAP can be modified 

to also provide global understanding [16]. The output from SHAP can quantify the deviation of 

each predictor from its average, for any given observation. SHAP is also a model-agnostic 

technique and can therefore be applied to any machine learning model. 

c. Partial dependence 

Partial dependence calculates the averaged relationship between any one or two input 

feature(s) (predictor variable) and the output feature of a trained classification or regression 

model by marginalizing on all other input features [14], [15]. It is a global XAI tool and can be 

used to identify the effect that one or two input features have on the overall model prediction. 

Partial dependence averages the output of the model over the entire range of input feature values 
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[17]. These partial dependencies can then be plotted to visualize the impact of any chosen input 

feature on the model’s predicted output. Partial Dependency is a global XAI tool that provides 

insights about the features being used in the model as a whole. This is particularly useful to 

identify trends of the input features with respect to the outputs.  

In this dissertation, partial dependence plots were implemented using MATLAB R2020b 

[17] and the results are elaborated in the sections to follow. The central idea of conducting 

explainability analysis is to better explore the individual relationships between each of the seven 

predictors with the outcome variable (HS) for selected machine learning models. The specific 

research tasks are: 

1. To identify the differences between the model interpretability for male vs female data. 

2. To identify the top predictors of Hepatic Steatosis in both male and female categories. 

3. To identify the ML model(s) that interpret data with highest alignment to the clinically 

defined normal values. 

3.4 Methods  

The overall procedure used for conducting the explainability analysis is described in the 

sections to follow. 

3.4.1 Data 

Of the five SVM models developed in paper 1, three best performing models in terms of 

sensitivity and specificity metrics were chosen for explainability analysis. The three selected 

models were: Quadratic, Gaussian 1 SVM, and Gaussian 2 SVM. The models for male and female 

population were analyzed separately to understand the differences between the male vs female 

model interpretability in this chapter.  

3.4.2 Model & explainable AI tool selection 

a. Model selection 

In objective 1B, five ML models were developed for each male and female populations. 

These models used the following predictor variables: Age, BMI, HDL, ALT, AST, ASP, and 
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glucose. The highest testing accuracy for male and female models were at 69% and 71%, 

respectively. Sensitivity and specificity ranges were between 64 – 72% and 61-74%, respectively 

for male population. Similarly for female population, the sensitivity range was from 67 – 71% and 

specificity ranged from 68 – 75%.  

To assess the performance of healthcare-related ML models, considering both sensitivity 

and specificity performance metrics are important instead of only considering the test accuracy. 

However, when screening for a disease, sensitivity is important to identify those with the disease 

quickly, such that appropriate care can be provided to those with the disease condition.  

Overall, the best performing male-specific models demonstrated approximately 72% 

sensitivity (Gaussian scale 1) and 74% specificity (Gaussian scale 2). Similarly, the best 

performing female-specific models provided 71% (Gaussian scale 1) and 75% (Quadratic SVM) 

sensitivity and specificity, respectively. Therefore, the top three models for XAI in this research 

were selected to be: Quadratic SVM, Gaussian scale 1 SVM and Gaussian scale 2 SVM.  

b. Partial dependency 

To gain insights on model’s understanding of the data, a global XAI tool was selected in 

this research. Specifically, ‘Partial dependency’ was computed and plotted in this research using 

MATLAB [17]. The idea behind using a global XAI tool instead of any other local XAI tools was 

to gain an initial understanding of how the data (as a whole) was being interpreted by the model. 

This initial understanding is important to first identify any unexpected trends in the models 

understanding. This technique will also help in identifying the contribution of each individual 

parameter, which is useful in the context of complex datasets like the one used in Objective 1.  

Finally, comparing the model’s understanding of each input feature with the clinically 

defined normal for each input feature will provide significant insights and help in identifying the 

best model. For example, if increasing BMI is considered a risk factor by clinical literature for 

hepatic steatosis (HS), then understanding the model’s interpretability of BMI is valuable to 

evaluate the model performance. If the model interprets BMI in the same manner that is defined 

by clinical literature, then the model can be considered as performing per expectations.     

The models were analyzed using an explainable AI tool called ‘Partial Dependency’ in 

MATLAB R2020b [17]. Partial dependency is used to identify individual relationships between 

one input/predictor variable and the output variable used in any classification ML model. The 
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identified relationships are ‘partial’ in nature because they are obtained by marginalizing over all 

other predictor features. Partial dependency for support vector machines utilizes a classification 

score. The classification score of any observation can be computed using the ‘predict’ function in 

MATLAB R2020b [18]. Classification score for an observation in a SVM model can be defined 

as the signed boundary between that observation and the decision boundary in the hyperplane. The 

decision boundary is two-dimensional and centered around 0 with a range of (-∞, +∞). Higher 

classification score implies that the observation is farther away from the decision boundary, 

whereas classification scores closer to 0 imply that the observations are closer. Mathematically, 

the classification score can be described using the equation P2.1.  

                                                          𝑆𝑐𝑜𝑟𝑒(𝑥) =  ∑ 𝑎𝑖𝑦𝑗𝑆(𝑥𝑗 , 𝑥) + 𝑐 

100

𝑗=1

              (𝑃2.1)                             

For each observation used for training, ‘j’, the input predictors ‘x’ and output feature ‘y’ 

are used. A dot product between the input ‘x’ and the corresponding support vector ‘xj’ is 

represented by 𝑆(𝑥𝑗 , 𝑥). The variables ‘a’ and ‘c’ are estimated parameters specific to the SVM. 

In this research, the observations that lie on the positive side of zero are in the ‘Disease’/HS 

positive category. Observations that lie on the negative side of zero are in the ‘No-Disease’/No-

HS category.  

The partial relationships were identified between one input/predictor variable (at a time) 

and a subset of output responses (N=100). These values were identified while marginalizing over 

the other six predictor variables. Then, the process was repeated for each predictor, for each of the 

three selected models, for each sex. For robust interpretation of the partial relationships, each 

combination was run 10-times independently and the results were averaged. Therefore, the 

presented results are averaged partial relationships.  

c. Ambiguity zone 

As explained earlier, partial dependencies greater than zero indicate that the observation 

lies in the disease category and those less than zero fall in the no-disease category. Higher partial 

dependency of a feature implies large contributions made by the feature in the model’s decision 

making. For example, a partial dependency score of 3.149 is more helpful (to the model) in making 

a prediction, than a score of 0.  Therefore, scores closer to zero are less helpful and create 
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ambiguity. Average partial dependencies that lie close to 0 are therefore defined to be in the 

“ambiguous” zone, in this research. That is, partial dependencies that fall between (-0.15, 0.15) lie 

in the ambiguous zone. A visual of the partial prediction plot with the ambiguity zone centered 

around 0 is shown in Figure 3.2.  

In this work, the ambiguity percentage (Amb %) of each partial dependency was computed. 

A ratio of number of partial dependencies in the (-0.15, 0.15) range divided by the total count of 

partial dependencies was used to calculate the Amb %. These values are presented alongside 

detailed observations in  

Table 3.2.  

Features with low Amb % can contribute highly to the model’s decision making. If a feature 

has high Amb %, it implies that the usefulness of the feature to the model in making predictions is 

low. Therefore, in an ideal case, the Amb % of any feature is expected to be either zero or also low 

as possible. 

d. Clinical normal values 

In this work, the clinically defined normal ranges of the following input parameters were 

identified: BMI, HDL, ALT, AST, ASP, and Glucose. Although increasing age is found to increase 

the risk for NAFLD in general [19], [20], no specific “normal” for age was used in this study. 

Instead, the trend of increasing risk of NAFLD with increasing age was interpreted as “normal”.  

It is important to note that a majority of the clinically defined normal values are different 

for male populations and for female populations. They were interpreted as such in this work. 

Further, the definition of clinical normal varied slightly between different literature sources. The 

data from some of the commonly cited literature was used in this research. These normal values 

are shown in the Table 3.1 below along with their references. Figure 3.3 shows the summary of 

the methods used in this work.  

The results from the partial dependency plots were interpreted in a systematic manner for 

each model. These results are documented in  

Table 3.2 - Table 3.4 for male-specific models and   
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Table 3.5 -   
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Table 3.7 for female-specific models. First, the observations from each graph were 

documented – these observations are in the column titled “Layer 1” in each table. Next, the 

observations were compared with the clinical normal values. The implications of these 

comparisons were documented in the column titled “Layer 2”. The results and their relevant 

discussion are presented in the sections to follow.  

3.5 Results and discussion 

The partial dependencies for each predictor were plotted and were analyzed further by 

comparison with clinical normal values (defined in Table 3.1). The partial dependency plots (PDP) 

for Quadratic SVM, Gaussian Scale 1 SVM and Gaussian Scale 2 SVM are shown in Figure 3.4 -

Figure 3.9. The X-axis of each plot is the feature value, for example: Age, BMI, HDL, etc. The Y-

axis is the average partial dependence score (or partial dependency) of that specific feature in 

predicting HS. For example - partial dependency of Age for HS prediction. If the line on a plot 

shows an increasing or upward trend, then it indicates increasing risk for HS. If the line trends 

downwards or decreases, then it indicates a decreasing for HS.  

Note that red asterisk(s) on each plot indicate the defined normal value or the normal range 

as per Table 3.1. The asterisk(s) are provided to highlight how the model interprets data in the 

normal range. The “normal” values are defined for six of the seven input features. There is not a 

clearly defined “normal” value for the age parameter in the context of risk for HS as explained 

earlier. Therefore, an increasing risk for HS with increasing age is the logical, expected trend in 

this work. 

By examining each of the PDPs within Figure 3.4 to Figure 3.9, the comparisons with 

clinical normal values or ranges are documented for male and female – specific models in   
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Table 3.8 &   
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Table 3.9, respectively. In an ideal case, each model would have all the features following 

the logical trend as per the clinical literature. However, in the real-world scenario, it might not be 

possible for any one model to have all the features following the clinical trend perfectly. Therefore, 

in this work, the aim is to find the most optimal models that maximize the number of features 

following the logical trend.  

Each cell within these tables is color coded to indicate whether a not a feature follows the 

logical trend from a clinical standpoint. The cells in green indicate model parameters that follow 

the logical trend. Cells in yellow indicate features that follow the logical trend partially whereas 

those in red indicate features that do not follow the logical trend and are in fact being interpreted 

by the model as the opposite of the defined clinical normal. 

The results from male & female - specific population models are discussed in the sections 

below. Another section compares and discusses results of male and female – specific models.  

3.5.1 Analysis of the models for male population 

Results from Figure 3.4 - Figure 3.6 were assessed and the interpretations of XAI analyses 

are shown in  

Table 3.2 -Table 3.4. A summary of all the male-specific model results is in   
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Table 3.8. The analysis of each model is presented in the sub-sections below.  

a. Quadratic SVM 

The PDPs related to Quadratic SVM for male population are shown in Figure 3.4. Each 

figure within Figure 3.4 corresponds to an input feature. The first graph shows the partial 

dependency of Age with respect to HS risk. It is observed that the Quadratic SVM model is 

interpreting the feature 'Age' in the clinical range as expected. However, 45% of the Age data fall 

in the ambiguity zone.  Overall, the input feature ‘Age’ follows the trend as expected from a 

general clinical normal perspective 

The second feature, BMI, shows a linearly increasing range between normal BMI of 18.5 

to 25 but from clinical perspective this should remain steady. That is, the risk between BMI ranges 

of 18.5 to 25 is considered to be low and similar, from a clinical standpoint. But in this case, it is 

postulated that the model might be indicating additional useful information, and that needs more 

investigation. However, the curve above 25 follows the logical, expected trend. Finally, none of 

the data from BMI falls in the ambiguity range – this implies that the BMI feature contributes 

strongly to the model’s decision making. 

HDL shows a decreasing risk trend after 1 mmol/L until approximately 2 mmol/L. While 

the HDL PDP makes logical sense in the 1 – 2 mmol/L range, the increase in slope after HDL of 

2 mmol/L is not expected. From a clinical perspective, higher values of HDL indicate lower disease 

risk. However, other lipid profile information, for example: triglycerides, total cholesterol and 

LDL were not included in this study due to lack of sufficient data. It is postulated that inclusion of 

these parameters might improve the model performance. Therefore, the increasing trend after 2 

mmol/L of HDL might need additional investigation.  The HDL curve has 16% data in the 

ambiguity zone, which is not ideal but is a low amount. 

ALT shows an increasingly linear trend with HS risk. The ALT curve in the normal range 

(10 – 55 U/L), is expected to be steady. In this case, the ALT curve in the normal range shows 

slightly increasing trend. After the normal range, the ALT PDP shows increasing risk which 

follows the logical trend. Therefore, the ALT curve is overall following the clinical trend as 

expected. The ALT curve also does not have any data in the ambiguity zone, which indicates the 

high contribution of ALT in Quadratic SVM’s decision making.  
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AST shows a similar trend to that of ALT. The AST curve in the normal range of 10 – 40 

U/L is close to steady and shows an increasing risk after the normal range. This behavior follows 

the clinical trend as expected. The ambiguity % (Amb %) is also very low at 6%, indicating that 

AST is also a high contributor in the model’s decision making.  

The ASP curve shows a decreasing slope within the normal range of 45 – 115 U/L. From 

a clinical perspective, the curve in this range is expected to be steady, not decreasing. However, 

the curve after the normal range (after 200 U/L) shows an increasing trend, which follows the 

logical trend. Overall, the AST parameter is following the clinical trend to some extent but not 

perfectly. 38% of ASP data falls in the ambiguity zone, which is not ideal. Future work might 

include processing the ASP parameter to help the model learn the correct trend.   

The glucose curve has low and steady risk below 120 mg/dL and increasing/high risk after 

120 mg/dL. This trend is perfectly following the clinical normal range. The Amb % related to 

glucose was 7%, which is a low amount. Therefore, in this case, glucose is found to be following 

the clinical trend and contributing highly to the model’s decision making. 

In summary, for the Quadratic SVM model, the following features follow the logical trend 

with no or low Amb %: BMI, ALT, AST, and Glucose. Age and ASP follow the clinical trend 

partially but have high Amb % values at 45% and 38%, respectively. While HDL has a lower Amb 

% of 16%, the increasing HDL trend after 2 mmol/L needs additional investigation.  See  

Table 3.2 for a summary of the results. 

b. Gaussian scale I SVM 

The partial dependency plots (PDP) for Gaussian Scale I SVM for male specific models 

are shown in Figure 3.5.  

The parameter Age shows an increasing trend with a steep increase between 30 – 40 years. 

While the Age curve in the PDP is generally following the logical trend, 55% of the values fall in 

the ambiguity zone. Therefore, the contribution of Age in Gaussian I SVM’s predictions is low.  

BMI shows a decreasing risk curve within the clinical normal range of 18.5 to 25. The 

curve within the normal range is expected to be steady and not decreasing but after 25, the risk of 

disease increases with increasing BMI until 40, and then plateaus out. Overall, this trend is 

following the logical pattern but 33% of the values lie in the ambiguous range.  
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HDL shows a decrease in risk after 1 mmol/L which follows the logical trend but after 2 

mmol/L, the risk for HS shows an increase from the PDP. This increase is risk was also observed 

in Quadratic SVM’s HDL curve and needs further investigation in the future. 16% of HDL data 

lies in the ambiguity zone – therefore, HDL plays a significant role in the model’s decision making.  

The ALT curve shows low risk between 6.25 to 25 U/L but increasing risk after 25 and 

until 55 U/L. This is not following the logical trend. Per the clinically defined normal, the ALT 

values in the 10 – 55 U/L should have low and steady risk. In this case, the ALT feature does not 

seem to follow that trend. Therefore, more work is needed to either process the ALT data such that 

the model can learn the correct trend or find other models that can read the ALT data as expected.  

Like ALT, the AST curve also shows increasing risk in the normal range of 10 – 40 U/L. 

This feature also does not follow the logical trend and needs further processing and investigation. 

The results from other explainable AI tools can also be explored to understand the interpretation 

of this feature better.  

The risk curve for ASP shows a fluctuating but low risk between 45 – 115 U/L (clinical 

normal). After 115 U/L the risk increases and eventually plateaus out. This feature overall follows 

the logical trend but 37% of the feature’s partial dependencies lie in the ambiguity zone. Hence 

the feature is not able to contribute as highly to the model’s decisions although its trend is as 

expected. 

The glucose PDP shows a low risk until 100 mg/dL and increasing risk after that until 150 

mg/dL. The risk after 150 mg/dL seems to be plateauing out. This feature does not follow the 

logical trend perfectly (with low risk until 100mg/dL instead of 120 mg/dL) but overall, it follows 

the trend. Further, only 12% of the feature’s partial dependencies lie in the ambiguous zone.  

Overall, the ASP and Glucose parameters in the Gaussian I SVM follow the logical trend 

from a clinical normal standpoint and contribute to the model’s decision making. The features 

Age, BMI and ASP also follow the logical trend as expected but have high Amb % values of 55%, 

33% and 37%, respectively. ALT and AST do not follow the logical trend and need further 

investigation. See Table 3.3 for a summary of the results 

c. Gaussian scale II SVM 

The PDPs related to Gaussian II SVM for male population are shown in Figure 3.6. The 

first graph shows the partial dependency of Age with respect to HS risk. The model is interpreting 
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the feature 'Age' in the clinical range as expected. However, 38% of the Age data fall in the 

ambiguity zone.  Overall, the input feature ‘Age’ follows the trend as expected from a general 

clinical normal perspective. 

The BMI feature shows a gradual increase in risk between 18.5 to 25. While the curve in 

this range is expected to be steady, it is following the general logical trend. After 25, the partial 

dependency curve increases steeply and plateaus off after 45. Overall, the BMI feature is following 

the logical trend and has only 11% data in the ambiguity zone.  

The HDL feature has a decreasing risk after the clinical normal value of 1 mmol/L which 

follows the normal trend as expected but after 2.75 mmol/L the risk starts to increase slightly. This 

slight increase in risk is not expected and needs additional investigation. Overall, the HDL PDP 

follows the logical trend until 2.75 mmol/L and has a low ambiguity percentage of 17%. 

The ALT PDP shows a steeply increasing risk in the normal range of 10 – 55 U/L and 

thereafter shows a reduced, then plateaued out risk curve. This behavior does not follow the logical 

trend and requires additional investigation. 

The AST PDP shows slowly increasing risk in the normal range of 10 – 40 U/L but 

increasing risk thereafter. Overall, this feature follows the logical trend and has only 12% 

ambiguity. Therefore, it contributes significantly to the model’s decision making.  

The ASP PDP shows low and steady risk in the normal range, followed by an increasing 

risk after the normal range. This behavior is expected and follows the logical trend from a clinical 

perspective. However, 85% of its values lie in the ambiguity range and therefore are not useful in 

the model’s decision making. Additional data processing in the form of weighing the ASP 

parameter might benefit the overall model performance in the future.  

The Glucose PDP has low and slowly increasing risk until the clinical normal of 120 

mg/dL. After the normal range, the risk increases and plateaus out after 400 mg/dL. This feature 

follows the logical trend overall and has a low ambiguity percentage of 9%. 

In summary for the Gaussian II SVM Model, the parameters: BMI, HDL, AST and Glucose 

follow the logical trend and have low ambiguity percentages. The features Age and ASP also 

follow the logical trend but have high percentage ambiguity at 38% and 85%, respectively. ALT 

does not follow the logical trend and needs additional investigation. See Table 3.4 for a summary 

of the results. 
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d. Comparison of model performances – male specific models 

Within the male-specific models, the Quadratic SVM model has maximum features (six of 

seven) that follow the logical trend. Except for the HDL feature, which needs additional 

investigation, all other features follow the logical trend in the Quadratic SVM model. The gaussian 

I and II SVM models have features that do not follow the logical trend. In Gaussian I SVM, the 

relationship of ALT and AST with HS (individually) is interpreted by the model against the clinical 

understanding. From a clinical standpoint, increasing levels of ALT and AST are associated with 

increasing HS risk. However, in this case, the increasing levels are being interpreted as decreasing 

risk by the model. Therefore, they are not considered to follow the logical trends. Similarly in 

Gaussian II SVM, the ALT parameter alone is being interpreted against the clinical understanding 

of ALT with HS risk.  

Overall, in this work, the Quadratic SVM model for male data is found to be the best 

performing model as six of the seven input parameters in the model follow the logical trend (Age, 

BMI, ALT, AST, ASP, and Glucose), and one parameter follows the logical trend partially (HDL). 

Within the male – specific models, none of the models had all seven parameters following the 

logical trend. This finding can be considered to develop a future hybrid model that combines two 

models. It is envisioned that the six parameters following the logical trend are fed into the 

Quadratic SVM model and other feature (HDL) could be fed into a different model (possibly a 

simple logistic regression or tree based) that every feature is interpreted in the expected, logical 

manner. A hybrid model combining Quadratic SVM and tree-based/logistic regression can then be 

developed to predict HS.  

3.5.2 Analysis of the models for female population 

Partial dependency plots related to the female population are shown in Figure 3.7 to 

Figure 3.9. The interpretations of these plots are shown in Table 3.5 – 3.7. A summary of the 

results for the female specific models is in table 3.9. 

a. Quadratic SVM 

The PDPs related to Quadratic SVM for female population are shown in Figure 3.7. Each 

figure within the figure corresponds to an input feature. It is observed that the Gaussian II SVM 
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model is interpreting the feature 'Age' in the clinical range as expected. However, 27% of the Age 

data fall in the ambiguity zone.  Overall, the input feature ‘Age’ follows the trend as expected from 

a general clinical normal perspective 

The BMI feature shows a steadily increasing risk in the normal range with low risk between 

50 – 60 kg/m2. Both these behaviors do not follow the clinical normal trend and need further 

investigation or feature processing.  

The HDL feature shows a consistently decreasing risk with increasing HDL values, which 

follows the clinical normal trend logically. This pattern is expected and with only 13% of data in 

the ambiguity zone, the HDL feature contributes highly to the model’s decision making.  

The ALT feature shows a steady and low risk in the normal range of 10 – 55 U/L. After 

the normal range, the risk increases steeply. This trend also follows the clinical normal as expected 

and has 0% ambiguity. Therefore, it contributes highly to the model’s decision making. 

The AST feature shows highest and steady risk in the normal range with decreasing risk 

consistently thereafter. This does not follow the logical trend and is in fact being interpreted in the 

opposite of the expected, logical trend. Therefore, an inversion or similar other feature processing 

is necessary to potentially gain higher model performance. Additional investigation using other 

XAI tools can also be conducted in the future to interpret the feature’s contribution to the Quadratic 

SVM model. 

The ASP feature shows low but increasing risk in the normal range of 30 – 100 U/L. In an 

ideal case, the curve in the normal range should have been steady but is found to be linearly 

increasing in this case. However, after the normal value, the risk continues to increase, peaks at 

about 300 U/L and slightly decreases thereafter. Overall, the feature’s behavior is interpreted to be 

following a logical trend with 22% of the data in the ambiguity zone. 

The glucose curve has low and steady risk below 120 mg/dL and increasing/high risk after 

120 mg/dL. This trend is perfectly following the clinical normal range. The Amb % related to 

glucose was 4%, which is a low amount. Therefore, in this case, glucose is found to be following 

the clinical trend and contributing highly to the model’s decision making. 

In summary for the Quadratic SVM model (female), the features: HDL, ALT, and Glucose 

are found to be following the logical trend from a clinical normal standpoint with zero or low 

ambiguity percentages. The features Age and ASP also follow the logical trend but have slightly 

higher ambiguity percentages at 27% and 22%, respectively. Finally, the BMI and AST features 
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need additional investigation and/or feature processing as they are not following their respective 

trends as expected. See Table 3.5 for a summary of the results. 

b. Gaussian scale I SVM 

The PDPs related to Gaussian I SVM are in Figure 3.8. The first graph shows the partial 

dependence of Age on HS prediction. It is observed that the Age feature is being interpreted in a 

logical manner. However, 40% of the Age partial dependence data falls in the ambiguity zone and 

therefore, this feature does not contribute well to the model’s decision making.  

The BMI feature’s partial dependence curve shows a steady and low risk curve in the 

normal range of 18.5 to 25. After 25, the risk increases linearly, peaks at about 35 kg/m2 and 

plateaus thereafter. 18% of the BMI partial dependence data falls in the ambiguity zone. Overall, 

the BMI feature follows the logical trend and contributes to the Gaussian Scale I SVM’s decision 

making. 

The PDP of HDL reduces after the normal value of 1 mmol/L until 1.8 mmol/L. The 

increase in risk after 1.8 mmol/L does not follow the logical trend and needs further investigation. 

Further, the ambiguity percentage of HDL data was 21%.  However, like that in the Male – specific 

models, the data regarding LDL and triglycerides was not used in this research due to a lack of 

data availability and therefore, the behavior of the HDL PDP is not clear. 

The ALT PDP indicates linearly rising risk in the clinical normal range of 10 – 55 U/L. 

After the normal range, the plot slightly decreases and plateaus out. Both these behaviors do not 

follow the logical trend as expected, from a clinical normal standpoint. Although only 2% of the 

data is in the ambiguity zone, more investigation is needed in the future to understand and 

potentially correct the interpretation of ALT by the model. 

The AST plot indicates low but slowly increasing risk in the normal range of 9 – 32 U/L. 

After the normal range of 32 U/L, the risk continues to increase until 50 U/L and then plateaus out. 

This curve largely follows the logical trend and has only 6% data in the ambiguity zone.  

ASP partial dependency plot shows a decreasing and then slowly increasing risk in the 

normal range of 30 – 100 U/L. In an ideal case, the curve in the normal range would be steady. 

After the normal range, the ASP curve continues to increase and plateaus out eventually. Overall, 

this curve follows the logical trend and has only 14% data in the ambiguity range.  
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Glucose PDP has a low but slowly increasing risk in the normal range below 120 mg/dL. 

After the normal range, the risk continues to increase until 170 mg/dL and plateaus out thereafter. 

This PDP overall follows the logical trend with only 14% of the data in the ambiguity zone.  

Overall, for the Gaussian I SVM model, the following features follow the logical trend and 

have low ambiguity percentages: BMI, AST, ASP, and Glucose. Age also follows the logical trend 

but has a high ambiguity percentage of 40%. ALT does not follow the logical trend and HDL needs 

additional investigation. See table 3.6 for a summary of the results. 

c. Gaussian scale II SVM 

The PDPs related to Gaussian II SVM are in Figure 3.9. The first graph shows the partial 

dependence of Age with respect to HS risk. It is observed that the Gaussian II SVM model is 

interpreting the feature 'Age' in the clinical range as expected. However, 34% of the Age data fall 

in the ambiguity zone.  Overall, the input feature ‘Age’ follows the trend as expected from a 

general clinical normal perspective 

The PDP of the BMI feature shows a slowly increasing risk between the clinical normal 

range of 18.5 to 25. After 25, the risk increases steeply, plateauing out after 50. The BMI PDP has 

only 11% of its values in the ambiguity zone. Therefore, BMI is considered to be following the 

logical and expected trend, while contributing strongly to the model’s decision making. 

The plot for HDL indicates that the disease risk decreases after the clinical normal value 

of 1.3 mmol/L. However, the risk increases again after 2.5mmol/L. This increase in risk is not 

expected from a clinical standpoint. More investigation is required in the future to understand this 

trend. Further, in this case, 47% of the values from the PDP lie in the ambiguity zone and are 

therefore not very useful to the model.  

The ALT PDP indicates steeply rising risk in the clinical normal range of 10 – 55 U/L. 

After the normal range, the plot decreases in slope, indicating low risk. Both these behaviors do 

not follow the logical trend as expected, when compared to the clinical normal. Although only 3% 

of the data is in the ambiguity zone, more investigation is needed to understand and potentially 

correct the interpretation of ALT by the model. 

The AST curve shows a steady and low risk in the clinical normal range of 9 – 32 U/L. 

After the normal range, the risk appears to increase with increase in ALT values. These behaviors 
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are following the clinical normal trend alongside only 17% data in the ambiguity zone. Overall, 

AST is following the logical trend as expected and is contributing to the model’s decision making. 

The ASP curve also shows steady and low risk in the normal range of 30 – 100 U/L. The 

risk after the normal value increases but there is another low-risk period between 300 – 400 U/L. 

This low-risk period is does not follow the logical trend but overall, ASP follows the logical trend 

between 0 – 300 U/L and 400 to 700 U/L.  36% of the ASP data however lies in the ambiguity 

zone. Therefore, this feature might require additional processing to allow the model to capture the 

correct/logical trend. 

A low and slowly increasing curve under 120 mg/dL is observed in the Glucose PDP. After 

120, the curve increases steeply, peaks at around 250 and plateaus out thereafter. Overall, this 

pattern is mostly following the logical trend and has only 8% data in the ambiguity zone. Therefore, 

this parameter contributes significantly to decision making of the Gaussian II SVM model.  

Overall, the parameters: BMI, AST and Glucose are found to be following the logical trend 

and have low ambiguity percentages. While Age and HDL also follow the logical trend, they have 

high ambiguity percentages of 34% and 47%, respectively. Finally, the parameter ALT is not 

following the logical trend and need additional investigation as part of future work in the Gaussian 

II SVM – female specific model. See   
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Table 3.7 for a summary of the results. 

 

d. Comparison of model performances – Female specific models 

Within the female-specific models, the Quadratic SVM model had two features that did 

not follow the logical trend. BMI and AST were being interpreted against the clinical 

understanding of their individual relationships with HS risk in this model. Further the HDL feature 

followed the logical trend only up to a certain threshold and needs additional investigation. The 

gaussian I and II SVM models had similar model interpretabilities. They both had one feature that 

does not follow the logical trend - ALT. The relationship of ALT with HS is interpreted by the 

models against the clinical understanding of ALT with HS. From a clinical standpoint, increasing 

levels of ALT are associated with increasing risk. However, in this case, the increasing levels are 

being interpreted as decreasing risk. Both the Gaussian I and II SVM models need additional 

investigation of their HDL parameters.   

Overall, in this work, the Gaussian I and II models for female data had similar model 

interpretabilities. Each had five features that follow the logical trend (Age, BMI, AST, ASP, and 

Glucose), one feature that followed the logical trend partially (HDL), and one feature that did not 

follow the logical trend (ALT). However, the Gaussian I SVM model had a higher sensitivity of 

approximately 70% (compared to 67% sensitivity of Gaussian II SVM), and lower ambiguity for 

the HDL parameter. Therefore, the Gaussian I SVM is found to be the best model for female 

population in this work.  

Like in male-specific models, none of the female-specific models had all seven input 

parameters following the expected logical trend. Therefore, using the insights from partial 

dependency plots, future development of a hybrid model can also be applied to female – 

population. In this case, a combination of Gaussian scale I and Quadratic SVM models can be 

implemented to create a hybrid model. Five features (Age, BMI, AST, ASP, and glucose) could 

be fed into the Gaussian I model, and two features (HDL and ALT) could be fed into the Quadratic 

SVM model. In this way, each model interprets the features in the expected, logical way. The 

outputs of both these models could then be combined into a hybrid model for HS prediction. It is 

postulated that such a hybrid model would improve the performance of HS prediction models. 
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3.5.3 Top predictors of HS 

Model performance in the context of XAI was assessed based on how many parameters are 

being interpreted in alignment with the clinical normal definition. To identify the best predictors, 

i.e., the features that provide most contribution to the model in decision making, the mean 

classification scores of each feature were compared. These results are available in Table 3.11 & 

Table 3.12 for male and female – specific models, respectively.  

Using data from Table 3.11 & Table 3.12, bar charts were generated, as shown in Figure 

3.10 & Figure 3.11. The top three predictors were found to be: ALT, AST, and Glucose, across all 

three models for male and female specific models. These results imply that the three parameters 

are making the most individual contributions in the model’s decision making. More investigation 

of the combined effects of these three parameters will be useful in screening for HS, however it is 

out of scope for this research.  

3.5.4 Comparison of results in male vs female populations 

The top three highly contributing predictors were found to be the same for all the male and 

female- specific models: ALT, AST, and Glucose. However, the best performing models were 

different for each sex.  

In male-specific models, the quadratic SVM model was found to be the best in terms of 

following the logical trends from clinical perspective. In female-specific models, the Gaussian I 

was found to be the best.  However, in both the sexes, none of the models had all seven input 

parameters following the logical trend. Therefore, in both cases, a theoretical framework for 

developing a hybrid model was provided in sections 3.5.1 d and 3.5.2 d.  

Features that follow the logical trend for the best performing male vs female – specific 

models are shown in Table 3.10. While six features follow the logical trend for the Quadratic SVM 

(male-specific) model, only five features follow the logical trend in the Gaussian I SVM (female-

specific) model. The one parameter that is different between these sexes is ALT. ALT in Quadratic 

SVM for male follows the logical trend but ALT in Gaussian I female does not. However, the ALT 

feature in Quadratic SVM female specific model also follows the logical trend. While the 

Quadratic SVM female is not the best performing model, it could be used within the theoretical 

framework described earlier to develop a hybrid model and improve the overall performance. 
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Another difference is in the best model for male vs female. The best model for male-data 

uses the quadratic/ polynomial kernel, whereas the best model for female-data uses the gaussian/ 

radial-basis kernel to create decision boundaries in higher-dimensional spaces. The polynomial 

and radial-basis functions are both non-linear kernels, but they utilize different orders of non-linear 

transformation to transform the training data. The best kernel choice depends on the input data 

used [21], and in this case, the kernel that best fits the male data was found to be Quadratic and 

that for female-data was found to be Gaussian Scale I. In general, polynomial kernels are found to 

perform better when the input-output relationship is simpler, whereas gaussian/radial-basis kernels 

are found to fit the complex relationships better [22]. Therefore, it is postulated that the 

relationships of input parameters with HS in female data are more complex (than in male-data) 

and fit the gaussian I SVM model better than the Quadratic SVM model.  

Future implementation of these models with additional data, like lipid panel information 

and other relevant parameters, might improve the fit of the model leading to improved prediction 

performances. Comparison of results from other XAI tools might lead to additional insights 

regarding the best fitting model for male vs female datasets. Implementation of additional XAI 

tools and additional features are out of scope for this work and are provided as recommendations 

for future work.   

3.6 Summary and conclusions 

In this chapter, three selected models (each for male and female specific populations) from 

objective 1 were evaluated from an interpretability perspective to include model transparency. The 

models for male and female populations were evaluated and interpreted separately for 

interpretability. Averaged partial dependency plots for each of seven predictors were plotted using 

MATLAB R2020b [17]. The obtained plots were compared with their respective clinically defined 

normal ranges. The results from the comparison were discussed and directions for potential future 

research were identified.  

1. The best performing models were identified as Quadratic SVM in male population and 

Gaussian SVM scale 1 in female population.  

2. The top three independent predictors for male and female data were identified using 

the mean of the partial dependencies. In both sexes, ALT, AST, and Glucose were 
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found to be the most individually contributing features. These three parameters are 

found to be individually contributing highly to HS prediction. 

3. Results for male and female populations were found to vary slightly with male models 

outperforming the female models in terms of alignment with clinical normal values. 

These findings need to be investigated further, with larger, richer, and more robust 

datasets.  

4. Impacts of HDL on NAFLD also need more investigation, particularly the increase of 

HDL after a certain threshold and its relationship with NAFLD risk 

5. A theoretical framework for developing hybrid models is provided in sections 3.5.1 d 

and 3.5.2 d. 

3.7 Recommendations for future work 

Based on the above summary and conclusions, the following are recommended for future 

work.  

1. Developing hybrid models using the theoretical framework provided in sections 3.5.1 

d and 3.5.2 d. are recommended. 

2. Additional testing the combined effect of ALT, AST, and Glucose on model 

performances are recommended. 

3. Use of other XAI approaches including additional features (hormonal data, other lipid 

panel data like triglycerides, total cholesterol and LDL) might provide additional 

insights and improve prediction performances.  
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3.8 Figures 

 

  

Figure 3.1: Typical machine learning models complexity vs interpretability 

 

 

 

Figure 3.2: Partial prediction plot with ambiguity zone (0 ± 0.15) 
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Figure 3.3: Methods used for explainability analysis  
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Figure 3.4: Quadratic SVM - Partial dependency plots for each predictor - male population 

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1 



 

165 

 

Figure 3.5: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - male 

population 

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1 
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Figure 3.6: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - male 

population  

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1 
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Figure 3.7: Quadratic SVM - Partial dependency plots for each predictor - female population  

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1 
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Figure 3.8: Gaussian SVM – Scale 1 - Partial dependency plots for each predictor - female 

population  

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1
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Figure 3.9: Gaussian SVM – Scale 2 - Partial dependency plots for each predictor - female 

population  

Note: The asterisk(s) on each plot indicates the clinically defined normal value or the normal range as per Table 3.1
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Figure 3.10: Individual predictor performance - male population  

*Note: Data in Gaussian scales 1 & 2 are scaled by 100 for representation purposes 

 

 

 

 

Figure 3.11: Individual predictor performance - female population 

*Note: Data in Gaussian scales 1 & 2 are scaled by 100 for representation purposes 
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3.9 Tables 

 

Table 3.1: Clinically defined normal values for male and female populations 

Feature 
Clinical normal values 

Reference 
Male Female 

BMI 18.5 to 25 kg/m2 18.5 to 25 kg/m2 [23] 

HDL >= 1 mmol/L >= 1.3 mmol/L [24] 

ALT 10 – 55 U/L 10 – 55 U/L [25] 

AST 10 – 40 U/L 9 – 32 U/L [26] 

ASP 45 – 115 U/L 30 – 100 U/L [26] 

Glucose < 120 mg/dL < 120 mg/dL [27] 

 

 

Table 3.2: Male quadratic SVM – partial dependency result analysis 

Feature 
Layer 1 (Observations 

from XAI results) 

Clinical 

Normal 

Layer 2 (Implication as 

defined by clinical 

practices) 

Ambiguity 

% 

Age 
Linearly/Consistently 

increasing with age 
NA 

Follows the logical 

trend 
45 

BMI 

Steadily increasing with 

BMI, even within the 

normal range 

18.5 to 25 

kg/m2 

Follows the logical 

trend 
0 

HDL 

Decreasing then increasing 

curve. High risk between 

0.5 to 1. Decreasing risk 

after 1 but increasing again 

after 2. 

>= 1 

mmol/L 

Follows the logical 

trend until 2 mmol/L 

but needs additional 

investigation after 2 

mmol/L 

16 

ALT 

Increasing risk with 

increasing ALT, slowly 

increasing until 50, then 

increases steeply 

10 – 55 U/L 
Follows the logical 

trend 
0 

AST 

Stable, lower risk between 

10 to 90, but increasing 

risk after 90  

10 – 40 U/L 
Follows the logical 

trend 
6 

ASP 

Decreasing risk curve 

from 0 to 200, then 

increases after 200 steadily 

45 – 115 

U/L 

Follows the logical 

trend 
38 

Glucose 

Low risk until 150. Slow 

increase in risk from 150 to 

200, then steep increase 

after 200 

< 120 

mg/dL 

Follows the logical 

trend 
7 
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Table 3.3: Male gaussian I SVM – partial dependency result analysis 

Feature 
Layer 1 (Observations 

from XAI results) 

Clinical 

Normal 

Layer 2 (Implication as 

defined by clinical 

practices) 

Ambiguity % 

Age 

Linear increase in risk 

from 30 to 40, then slow 

increase in risk after 40 

NA 
Follows the logical trend 

after 30 
55 

BMI 

Decreasing risk until 25. 

Especially low risk 

between 20 to 25 

18.5 to 25 

kg/m2 
Follows the logical trend 33 

HDL 

Starts at high risk with 

low HDL but decreasing 

risk as HDL increases, 

until 1.5. Increasing risk 

after 1.5 

>= 1 mmol/L 

Follows the logical trend 

until 1.5 mmol/L and 

needs additional 

investigation after 1.5 

mmol/L 

16 

ALT 

Low risk between 6.25 

to 25, high risk between 

25 to 50. Reduced but 

overall stable, high risk 

after 50 

10 – 55 U/L 

Increasing risk curve in 

the normal range does 

not follow the logical 

trend 

7 

AST 

Decreased risk from 0 to 

25, steady, high risk 

after 25, stable high risk 

after 55 

10 – 40 U/L 

Increasing risk curve in 

the normal range does 

not follow the logical 

trend 

7 

ASP 

Decreasing risk between 

0 to 115. Steady increase 

in risk after 115, with 

highest risk between 115 

to 150 

45 – 115 U/L Follows the logical trend 37 

Glucose 

Decreasing risk between 

0 to 120. Lowest risk 

between 75 to 120. 

Increasing risk between 

120 to 200. Stable high 

risk after 200 

< 120 mg/dL Follows the logical trend 12 
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Table 3.4: Male gaussian II SVM – partial dependency result analysis 

Feature 
Layer 1 (Observations 

from XAI results) 

Clinical 

Normal 

Layer 2 

(Implication as 

defined by clinical 

practices) 

Ambiguity % 

Age 
Linearly/Consistently 

increasing with age 
NA 

Follows the logical 

trend 
38 

BMI 

Low but increasing risk 

between 15 to 25. Highest 

risk at 40. Increasing risk 

overall with increasing 

BMI 

18.5 to 25 

kg/m2 

Follows the logical 

trend 
11 

HDL 

Decreasing risk with 

increasing HDL until 

2.75. Lowest risk at 2.75. 

Slow increase in risk after 

2.75 

>= 1 mmol/L 

Follows the logical 

trend until 2.75 

mmol/L and needs 

additional 

investigation after 

2.75 mmol/L 

17 

ALT 

Low but increasing risk 

from 0 to 60. Highest risk 

between 60 to 70. Stable, 

high risk after 75 

10 – 55 U/L 

Increasing risk in 

the normal range 

does not follow the 

logical trend 

4 

AST 

Low increasing risk 

between 0 to 40. Highest 

risk between 50 to 75. 

Stable high risk after 75 

10 – 40 U/L 
Follows the logical 

trend 
12 

ASP 

Low, decreasing risk 

between 0 to 120.  

Increasing risk after 120 

with highest risk between 

200 to 250 

45 – 115 U/L 
Follows the logical 

trend 
85 

Glucose 

Low increasing risk until 

120. Highest risk between 

200 to 300. Stable high 

risk after 300. 

< 120 mg/dL 
Follows the logical 

trend 
9 
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Table 3.5: Female quadratic SVM – partial dependency result analysis 

Feature 
Layer 1 (Observations 

from XAI results) 

Clinical 

Normal 

Layer 2 (Implication 

as defined by clinical 

practices) 

Ambiguity % 

Age 
Linearly/Consistently 

increasing with age 
NA 

Follows the logical 

trend 
27 

BMI 

Increasing with increase 

in BMI, but decreasing 

risk after 40 

18.5 to 25 

kg/m2 

Increasing risk in the 

normal range and 

decreasing 

thereafter, does not 

follow the logical 

trend 

31 

HDL 

Decreasing risk with 

increase HDL until 2.5, 

then increases 

>= 1.3 

mmol/L 

Follows the logical 

trend 
13 

ALT 
Low risk from 0 to 50, 

then steady increase 
10 – 55 U/L 

Follows the logical 

trend 
0 

AST 
Decreasing risk as AST 

increases, almost linearly 
9 – 32 U/L 

Decreasing risk with 

increasing AST does 

not follow the 

logical trend 

2 

ASP 

Increase until 300, then 

decreasing risk with 

increasing value 

30-100 U/L 
Follows the logical 

trend 
22 

Glucose 

Linearly/Consistently 

increasing with increase in 

glucose 

< 120 mg/dL 
Follows the logical 

trend 
4 
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Table 3.6: Female gaussian I SVM – partial dependency result analysis 

Feature 
Layer 1 (Observations 

from XAI results) 

Clinical 

Normal 

Layer 2 (Implication as 

defined by clinical 

practices) 

Ambiguity % 

Age 

Low risk between 20 

to 40 with lowest risk 

at 30. Increasing risk 

from 40 to end 

NA 
Follows the logical 

trend 
40 

BMI 

Decreasing risk from 

12.5 to 25. Lowest 

risk between 18 to 25. 

Increase after 30 

18.5 to 25 

kg/m2 

Follows the logical 

trend 
18 

HDL 

Decreasing risk from 

0.5 to 1.8. Lowest risk 

at 1.5 to 1.7. 

Increasing risk after 2. 

>= 1.3 mmol/L 

Follows the logical 

trend until 1.8 mmol/L, 

needs additional 

investigation after 1.8 

mmol/L 

21 

ALT 

Increasing risk from 

10 - 50. Highest risk at 

50. Slightly reduced 

but stable risk after 

50. 

10 – 55 U/L 

Increasing risk in the 

normal range does not 

follow the logical trend 

2 

AST 

Lowest risk between 0 

to 20. Increasing 

between 20 to 40 and 

steady high risk after 

40. 

9 – 32 U/L 
Follows the logical 

trend 
6 

ASP 

Decreasing risk from 0 

to 90. Increasing risk 

from 90 to 275 

30 - 100U/L 
Follows the logical 

trend 
14 

Glucose 

Low risk from 0 to 

110. Slowly 

increasing risk after 

110. Highest risk after 

180 

< 120 mg/dL 
Follows the logical 

trend 
14 
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Table 3.7: Female gaussian II SVM – partial dependency result analysis 

Feature 

Layer 1 

(Observations from 

XAI results) 

Clinical Normal 

Layer 2 

(Implication as 

defined by clinical 

practices) 

Ambiguity % 

Age Increasing with age NA 
Follows the logical 

trend 
34 

BMI 

Increasing with 

BMI. Highest risk 

between 40 - 60 

18.5 to 25 kg/m2 
Follows the logical 

trend 
11 

HDL 

Decreasing with 

increasing HDL, 

lowest at 2.2, 

increasing after 2.5 

>= 1.3 mmol/L 

Follows the logical 

trend until 2.5 

mmol/L, needs 

additional 

investigation after 

2.5 mmol/L 

47 

ALT 

Increasing until60, 

then decreasing and 

steady after 100 

10 – 55 U/L 

Steeply increasing 

and high risk in the 

normal range does 

not follow the 

logical trend 

2 

AST 

Low but increasing 

until 90. Steady 

high after 90 

9 – 32 U/L 
Follows the logical 

trend 
17 

ASP 

Steady low from 25 

to 100, increases 

slightly after 100. 

Lowest risk 

between 300 - 400 

30-100U/L 

Follows the logical 

trend except for the 

low risk between 

300 - 400 U/L 

36 

Glucose 

Increasing but 

lowest from 0 to 

120. Then 

increasing after 

that, highest at 250 

< 120 mg/dL 
Follows the logical 

trend 
8 
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Table 3.8: Male-specific model observations 

Models 

(→) 
Quadratic Gaussian I  Gaussian II 

Features 

(↓) 

Comment on 

the trend of 

the partial 

dependency 

plot, 

compared to 

the clinical 

normal 

Amb % 

Comment on 

the trend of 

the partial 

dependency 

plot, 

compared to 

the clinical 

normal 

Amb % 

Comment on 

the trend of 

the partial 

dependency 

plot, 

compared to 

the clinical 

normal 

Amb % 

Age 
Follows the 

logical trend 
45 

Follows the 

logical trend 

after 30 

55 
Follows the 

logical trend 
38 

BMI 
Follows the 

logical trend 
0 

Follows the 

logical trend 
33 

Follows the 

logical trend 
11 

HDL 

Follows the 

logical trend 

until 2 

mmol/L but 

needs 

additional 

investigation 

after 2 

mmol/L 

16 

Follows the 

logical trend 

until 2 

mmol/L and 

needs 

additional 

investigation 

after 2 

mmol/L 

16 

Follows the 

logical trend 

until 2.75 

mmol/L and 

needs 

additional 

investigation 

after 2.75 

mmol/L 

17 

ALT 
Follows the 

logical trend 
0 

Increasing 

risk curve in 

the normal 

range does 

not follow 

the logical 

trend 

7 

Increasing 

risk in the 

normal range 

does not 

follow the 

logical trend 

4 

AST 
Follows the 

logical trend 
6 

Increasing 

risk curve in 

the normal 

range does 

not follow 

the logical 

trend 

7 
Follows the 

logical trend 
12 

ASP 
Follows the 

logical trend 
38 

Follows the 

logical trend 
37 

Follows the 

logical trend 
85 

Glucose 
Follows the 

logical trend 
7 

Follows the 

logical trend 
12 

Follows the 

logical trend 
9 
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Table 3.9: Female-specific model observations 

Models 

(→) 
Quadratic Gaussian I  Gaussian II 

Features 

(↓) 

Comment on 

the trend of the 

partial 

dependency 

plot, compared 

to the clinical 

normal 

Amb 

% 

Comment on the 

trend of the 

partial 

dependency plot, 

compared to the 

clinical normal 

Amb 

% 

Comment on 

the trend of the 

partial 

dependency 

plot, compared 

to the clinical 

normal 

Amb 

% 

Age 
Follows the 

logical trend 
27 

Follows the 

logical trend 
40 

Follows the 

logical trend 
34 

BMI 

Increasing risk 

in the normal 

range and 

decreasing 

thereafter, does 

not follow the 

logical trend 

31 
Follows the 

logical trend 
18 

Follows the 

logical trend 
11 

HDL 
Follows the 

logical trend 
13 

Follows the 

logical trend 

until 1.8 

mmol/L, needs 

additional 

investigation 

after 1.8 mmol/L 

21 

Follows the 

logical trend 

until 2.5 

mmol/L, needs 

additional 

investigation 

after 2.5 

mmol/L 

47 

ALT 
Follows the 

logical trend 
0 

Increasing risk 

in the normal 

range does not 

follow the 

logical trend 

2 

Steeply 

increasing and 

high risk in the 

normal range 

does not follow 

the logical 

trend 

2 

AST 

Decreasing risk 

with increasing 

AST does not 

follow the 

logical trend 

2 
Follows the 

logical trend 
6 

Follows the 

logical trend 
17 

ASP 
Follows the 

logical trend 
22 

Follows the 

logical trend 
14 

Follows the 

logical trend 
36 

Glucose 
Follows the 

logical trend 
4 

Follows the 

logical trend 
14 

Follows the 

logical trend 
8 
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Table 3.10: Comparison of best performing models in male vs in female populations 

Models Features that follow the logical trend 

Male – 

Quadratic 

SVM 

Age BMI ALT AST ASP Glucose 

Female – 

Gaussian I 

SVM 

Age BMI AST ASP Glucose 

  

 

Table 3.11: Mean of predictor performances – male-specific models 

Param QSVM Mean GSVM1 Mean GSVM2 Mean 

Age 0.123 -0.026 -0.058 

BMI -2.317 0.252 0.196 

HDL 0.969 0.214 0.192 

ALT 63.554 0.368 0.732 

AST 25.097 0.384 0.545 

ASP 0.136 0.203 0.041 

Glucose 4.727 0.360 0.595 

 

 

Table 3.12: Mean of predictor performances – female-specific models 

Param QSVM Mean GSVM1 Mean GSVM2 Mean 

Age 0.014 -0.048 -0.069 

BMI -0.551 0.293 0.278 

HDL -0.457 0.191 -0.100 

ALT 326.341 0.391 0.459 

AST -26.476 0.385 0.299 

ASP 0.269 0.332 0.087 

Glucose 17.335 0.346 0.395 
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APPENDIX C. P2 - CODE 

1. MATLAB CODE TO EXTRACT PLOT PARTIAL DEPENDENCIES 

%%%%%%%% 

% Created on: 08/09/2021 

% Input: Selected trained models from paper 1 

% Output: Partial dependence plots 

% Author: Ridhi Deo 

% File name: obj2_matlab_3 (R2020b [17]) ) 

% Description: This code was testing the ML models from paper 1, and plot their partial 

dependencies 

%%%%%%%% 

 

%% For marking the clinically normal values for Male or female, make sure to  

% change the values based on male/female runs 

 

%% Male clinically defined normals: 

% BMI: 18.5 to 25 

% HDL: 1mmol/L or higher 

% ALT: 10 to 55 U/L 

% AST: 10 - 40  U/L 

% ASP: 45 - 115  U/L 

% Glucose: 120mg/dL or lower 

 

%% Female clinically defined normals: 

% BMI: 18.5 to 25 

% HDL: 1.3 mmol/L or higher 

% ALT: 10 to 55 U/L 

% AST: 9 - 32  U/L 

% ASP: 30 - 100  U/L 

% Glucose: 120mg/dL or lower 

 

 

test = test_male; % Need to change this depending on female/male 

training = training_male; % Need to change this depending on female/male 

 

%% Model 4: quadratic svm 

QSVM_Age_pd = zeros(100,10); 

QSVM_Age_x = zeros(100,10); 

QSVM_BMI_pd = zeros(100,10); 

QSVM_BMI_x = zeros(100,10); 

QSVM_HDL_pd = zeros(100,10); 

QSVM_HDL_x = zeros(100,10); 

QSVM_ALT_pd = zeros(100,10); 
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QSVM_ALT_x = zeros(100,10); 

QSVM_AST_pd = zeros(100,10); 

QSVM_AST_x = zeros(100,10); 

QSVM_ASP_pd = zeros(100,10); 

QSVM_ASP_x = zeros(100,10); 

QSVM_Glucose_pd = zeros(100,10); 

QSVM_Glucose_x = zeros(100,10); 

for i = 1:10 

    [mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set 

    [Age_pd,Age_x] = partialDependence(mod_4.ClassificationSVM,'Age',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_Age_pd(:,i) = Age_pd'; 

    QSVM_Age_x(:,i) = Age_x'; 

    [BMI_pd,BMI_x] = partialDependence(mod_4.ClassificationSVM,'BMI',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_BMI_pd(:,i) = BMI_pd'; 

    QSVM_BMI_x(:,i) = BMI_x'; 

    [HDL_pd,HDL_x] = partialDependence(mod_4.ClassificationSVM,'HDL',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_HDL_pd(:,i) = HDL_pd'; 

    QSVM_HDL_x(:,i) = HDL_x'; 

    [ALT_pd,ALT_x] = partialDependence(mod_4.ClassificationSVM,'ALT',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_ALT_pd(:,i) = ALT_pd'; 

    QSVM_ALT_x(:,i) = ALT_x'; 

    [AST_pd,AST_x] = partialDependence(mod_4.ClassificationSVM,'AST',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_AST_pd(:,i) = AST_pd'; 

    QSVM_AST_x(:,i) = AST_x'; 

    [ASP_pd,ASP_x] = partialDependence(mod_4.ClassificationSVM,'ASP',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_ASP_pd(:,i) = ASP_pd'; 

    QSVM_ASP_x(:,i) = ASP_x'; 

    [Glucose_pd,Glucose_x] = 

partialDependence(mod_4.ClassificationSVM,'Plasma_glucose_1',... 

        mod_4.ClassificationSVM.ClassNames(2));  

    QSVM_Glucose_pd(:,i) = Glucose_pd'; 

    QSVM_Glucose_x(:,i) = Glucose_x'; 

end 

 

% Average the pd and x values and plot using nexttile 

QSVM_Age_pd_avg = mean(QSVM_Age_pd, 2); 

QSVM_BMI_pd_avg = mean(QSVM_BMI_pd, 2); 

QSVM_HDL_pd_avg = mean(QSVM_HDL_pd, 2); 

QSVM_ALT_pd_avg = mean(QSVM_ALT_pd, 2); 

QSVM_AST_pd_avg = mean(QSVM_AST_pd, 2); 
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QSVM_ASP_pd_avg = mean(QSVM_ASP_pd, 2); 

QSVM_Glucose_pd_avg = mean(QSVM_Glucose_pd, 2); 

 

 

QSVM_Age_x_avg = mean(QSVM_Age_x, 2); 

QSVM_BMI_x_avg = mean(QSVM_BMI_x, 2); 

QSVM_HDL_x_avg = mean(QSVM_HDL_x, 2); 

QSVM_ALT_x_avg = mean(QSVM_ALT_x, 2); 

QSVM_AST_x_avg = mean(QSVM_AST_x, 2); 

QSVM_ASP_x_avg = mean(QSVM_ASP_x, 2); 

QSVM_Glucose_x_avg = mean(QSVM_Glucose_x, 2); 

 

%% Writing the excel file to save and use the data for plotting later 

 

QSVM_Male_data = table(Age_x, QSVM_Age_pd_avg, BMI_x, QSVM_BMI_pd_avg , ... 

    HDL_x, QSVM_HDL_pd_avg , ALT_x, QSVM_ALT_pd_avg , AST_x, 

QSVM_AST_pd_avg ,... 

    ASP_x, QSVM_ASP_pd_avg , Glucose_x, QSVM_Glucose_pd_avg); 

writetable(QSVM_Male_data,'QSVM_Male_code2_plotting_data.xlsx'); 

 

%% plotting 

 

figure 

t = tiledlayout(3,3,'TileSpacing','compact'); 

title(t,'Quadratic SVM-Disease - Averaged Partial Dependency Plot') 

nexttile; plot(Age_x,QSVM_Age_pd_avg); title(''); 

xlabel("Age"), ylabel("Scores"), xticks(20:20:80) 

 

 

nexttile; plot(BMI_x,QSVM_BMI_pd_avg); title(''); 

xlabel("BMI"), ylabel("Scores"), xticks(20:10:80) 

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18 

hold on; plot(BMI_x(idx_BMI_1),QSVM_BMI_pd_avg(idx_BMI_1),'*r'); hold off; 

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25 

hold on; plot(BMI_x(idx_BMI_2),QSVM_BMI_pd_avg(idx_BMI_2),'*r'); hold off; 

 

nexttile; plot(HDL_x,QSVM_HDL_pd_avg); title(''); 

xlabel("HDL"), ylabel("Scores"), xticks(0:1:4) 

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest'); 

hold on; plot(HDL_x(idx_HDL),QSVM_HDL_pd_avg(idx_HDL),'*r'); hold off; 

 

 

nexttile; plot(ALT_x,QSVM_ALT_pd_avg); title(''); 

xlabel("ALT"), ylabel("Scores"),  xticks(0:100:400) 

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10 

hold on; plot(ALT_x(idx_ALT_1),QSVM_ALT_pd_avg(idx_ALT_1),'*r'); hold off; 
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idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55 

hold on; plot(ALT_x(idx_ALT_2),QSVM_ALT_pd_avg(idx_ALT_2),'*r'); hold off; 

 

nexttile; plot(AST_x,QSVM_AST_pd_avg); title(''); 

xlabel("AST"), ylabel("Scores"),  xticks(0:100:400) 

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest'); 

hold on; plot(AST_x(idx_AST_1),QSVM_AST_pd_avg(idx_AST_1),'*r'); hold off; 

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest'); 

hold on; plot(AST_x(idx_AST_2),QSVM_AST_pd_avg(idx_AST_2),'*r'); hold off; 

 

nexttile; plot(ASP_x,QSVM_ASP_pd_avg); title(''); 

xlabel("ASP"), ylabel("Scores"), xticks(0:100:400) 

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest'); 

hold on; plot(ASP_x(idx_ASP_1),QSVM_ASP_pd_avg(idx_ASP_1),'*r'); hold off; 

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest'); 

hold on; plot(ASP_x(idx_ASP_2),QSVM_ASP_pd_avg(idx_ASP_2),'*r'); hold off; 

 

nexttile; plot(Glucose_x,QSVM_Glucose_pd_avg); title(''); 

xlabel("Glucose"), ylabel("Scores"), xticks(0:100:600) 

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest'); 

hold on; plot(Glucose_x(idx_Glucose),QSVM_Glucose_pd_avg(idx_Glucose),'*r'); hold off; 

 

%% Model 5: Gaussian Scale 1 svm 

GSVM1_Age_pd = zeros(100,10); 

GSVM1_Age_x = zeros(100,10); 

GSVM1_BMI_pd = zeros(100,10); 

GSVM1_BMI_x = zeros(100,10); 

GSVM1_HDL_pd = zeros(100,10); 

GSVM1_HDL_x = zeros(100,10); 

GSVM1_ALT_pd = zeros(100,10); 

GSVM1_ALT_x = zeros(100,10); 

GSVM1_AST_pd = zeros(100,10); 

GSVM1_AST_x = zeros(100,10); 

GSVM1_ASP_pd = zeros(100,10); 

GSVM1_ASP_x = zeros(100,10); 

GSVM1_Glucose_pd = zeros(100,10); 

GSVM1_Glucose_x = zeros(100,10); 

for i = 1:10 

    [mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training set 

    [Age_pd,Age_x] = partialDependence(mod_5.ClassificationSVM,'Age',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_Age_pd(:,i) = Age_pd'; 

    GSVM1_Age_x(:,i) = Age_x'; 

    [BMI_pd,BMI_x] = partialDependence(mod_5.ClassificationSVM,'BMI',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_BMI_pd(:,i) = BMI_pd'; 
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    GSVM1_BMI_x(:,i) = BMI_x'; 

    [HDL_pd,HDL_x] = partialDependence(mod_5.ClassificationSVM,'HDL',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_HDL_pd(:,i) = HDL_pd'; 

    GSVM1_HDL_x(:,i) = HDL_x'; 

    [ALT_pd,ALT_x] = partialDependence(mod_5.ClassificationSVM,'ALT',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_ALT_pd(:,i) = ALT_pd'; 

    GSVM1_ALT_x(:,i) = ALT_x'; 

    [AST_pd,AST_x] = partialDependence(mod_5.ClassificationSVM,'AST',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_AST_pd(:,i) = AST_pd'; 

    GSVM1_AST_x(:,i) = AST_x'; 

    [ASP_pd,ASP_x] = partialDependence(mod_5.ClassificationSVM,'ASP',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_ASP_pd(:,i) = ASP_pd'; 

    GSVM1_ASP_x(:,i) = ASP_x'; 

    [Glucose_pd,Glucose_x] = 

partialDependence(mod_5.ClassificationSVM,'Plasma_glucose_1',... 

        mod_5.ClassificationSVM.ClassNames(2));  

    GSVM1_Glucose_pd(:,i) = Glucose_pd'; 

    GSVM1_Glucose_x(:,i) = Glucose_x'; 

end 

 

% Average the pd and x values and plot using nexttile 

GSVM1_Age_pd_avg = mean(GSVM1_Age_pd, 2); 

GSVM1_BMI_pd_avg = mean(GSVM1_BMI_pd, 2); 

GSVM1_HDL_pd_avg = mean(GSVM1_HDL_pd, 2); 

GSVM1_ALT_pd_avg = mean(GSVM1_ALT_pd, 2); 

GSVM1_AST_pd_avg = mean(GSVM1_AST_pd, 2); 

GSVM1_ASP_pd_avg = mean(GSVM1_ASP_pd, 2); 

GSVM1_Glucose_pd_avg = mean(GSVM1_Glucose_pd, 2); 

 

 

GSVM1_Age_x_avg = mean(GSVM1_Age_x, 2); 

GSVM1_BMI_x_avg = mean(GSVM1_BMI_x, 2); 

GSVM1_HDL_x_avg = mean(GSVM1_HDL_x, 2); 

GSVM1_ALT_x_avg = mean(GSVM1_ALT_x, 2); 

GSVM1_AST_x_avg = mean(GSVM1_AST_x, 2); 

GSVM1_ASP_x_avg = mean(GSVM1_ASP_x, 2); 

GSVM1_Glucose_x_avg = mean(GSVM1_Glucose_x, 2); 

 

%% Writing the excel file to save and use the data for plotting later 

 

GSVM1_Male_data = table(Age_x, GSVM1_Age_pd_avg, BMI_x, GSVM1_BMI_pd_avg , ... 
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    HDL_x, GSVM1_HDL_pd_avg , ALT_x, GSVM1_ALT_pd_avg , AST_x, 

GSVM1_AST_pd_avg ,... 

    ASP_x, GSVM1_ASP_pd_avg , Glucose_x, GSVM1_Glucose_pd_avg); 

writetable(GSVM1_Male_data,'GSVM1_Male_code2_plotting_data.xlsx'); 

 

%% Plotting 

figure 

t = tiledlayout(3,3,'TileSpacing','compact'); 

title(t,'Gaussian 1 SVM-Disease - Averaged Partial Dependency Plot') 

nexttile; plot(Age_x,GSVM1_Age_pd_avg); title(''); 

xlabel("Age"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(20:20:80) 

 

 

nexttile; plot(BMI_x,GSVM1_BMI_pd_avg); title(''); 

xlabel("BMI"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(20:10:50) 

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18 

hold on; plot(BMI_x(idx_BMI_1),GSVM1_BMI_pd_avg(idx_BMI_1),'*r'); hold off; 

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25 

hold on; plot(BMI_x(idx_BMI_2),GSVM1_BMI_pd_avg(idx_BMI_2),'*r'); hold off; 

 

nexttile; plot(HDL_x,GSVM1_HDL_pd_avg); title(''); 

xlabel("HDL"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:1:4) 

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest'); 

hold on; plot(HDL_x(idx_HDL),GSVM1_HDL_pd_avg(idx_HDL),'*r'); hold off; 

 

 

nexttile; plot(ALT_x,GSVM1_ALT_pd_avg); title(''); 

xlabel("ALT"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:50:300) 

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10 

hold on; plot(ALT_x(idx_ALT_1),GSVM1_ALT_pd_avg(idx_ALT_1),'*r'); hold off; 

idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55 

hold on; plot(ALT_x(idx_ALT_2),GSVM1_ALT_pd_avg(idx_ALT_2),'*r'); hold off; 

 

nexttile; plot(AST_x,GSVM1_AST_pd_avg); title(''); 

xlabel("AST"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:50:300) 

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest'); 

hold on; plot(AST_x(idx_AST_1),GSVM1_AST_pd_avg(idx_AST_1),'*r'); hold off; 

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest'); 

hold on; plot(AST_x(idx_AST_2),GSVM1_AST_pd_avg(idx_AST_2),'*r'); hold off; 

 

 

nexttile; plot(ASP_x,GSVM1_ASP_pd_avg); title(''); 

xlabel("ASP"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:100:400) 

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest'); 

hold on; plot(ASP_x(idx_ASP_1),GSVM1_ASP_pd_avg(idx_ASP_1),'*r'); hold off; 

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest'); 
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hold on; plot(ASP_x(idx_ASP_2),GSVM1_ASP_pd_avg(idx_ASP_2),'*r'); hold off; 

 

nexttile; plot(Glucose_x,GSVM1_Glucose_pd_avg); title(''); 

xlabel("Glucose"), ylabel("Scores"), axis([-inf inf -0.3 1]), xticks(0:200:600) 

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest'); 

hold on; plot(Glucose_x(idx_Glucose),GSVM1_Glucose_pd_avg(idx_Glucose),'*r'); hold off; 

 

 

%% Model 6: Gaussian Scale 2 svm 

GSVM2_Age_pd = zeros(100,10); 

GSVM2_Age_x = zeros(100,10); 

GSVM2_BMI_pd = zeros(100,10); 

GSVM2_BMI_x = zeros(100,10); 

GSVM2_HDL_pd = zeros(100,10); 

GSVM2_HDL_x = zeros(100,10); 

GSVM2_ALT_pd = zeros(100,10); 

GSVM2_ALT_x = zeros(100,10); 

GSVM2_AST_pd = zeros(100,10); 

GSVM2_AST_x = zeros(100,10); 

GSVM2_ASP_pd = zeros(100,10); 

GSVM2_ASP_x = zeros(100,10); 

GSVM2_Glucose_pd = zeros(100,10); 

GSVM2_Glucose_x = zeros(100,10); 

for i = 1:10 

    [mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using training 

set 

    [Age_pd,Age_x] = partialDependence(mod_6.ClassificationSVM,'Age',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_Age_pd(:,i) = Age_pd'; 

    GSVM2_Age_x(:,i) = Age_x'; 

    [BMI_pd,BMI_x] = partialDependence(mod_6.ClassificationSVM,'BMI',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_BMI_pd(:,i) = BMI_pd'; 

    GSVM2_BMI_x(:,i) = BMI_x'; 

    [HDL_pd,HDL_x] = partialDependence(mod_6.ClassificationSVM,'HDL',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_HDL_pd(:,i) = HDL_pd'; 

    GSVM2_HDL_x(:,i) = HDL_x'; 

    [ALT_pd,ALT_x] = partialDependence(mod_6.ClassificationSVM,'ALT',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_ALT_pd(:,i) = ALT_pd'; 

    GSVM2_ALT_x(:,i) = ALT_x'; 

    [AST_pd,AST_x] = partialDependence(mod_6.ClassificationSVM,'AST',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_AST_pd(:,i) = AST_pd'; 

    GSVM2_AST_x(:,i) = AST_x'; 
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    [ASP_pd,ASP_x] = partialDependence(mod_6.ClassificationSVM,'ASP',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_ASP_pd(:,i) = ASP_pd'; 

    GSVM2_ASP_x(:,i) = ASP_x'; 

    [Glucose_pd,Glucose_x] = 

partialDependence(mod_6.ClassificationSVM,'Plasma_glucose_1',... 

        mod_6.ClassificationSVM.ClassNames(2));  

    GSVM2_Glucose_pd(:,i) = Glucose_pd'; 

    GSVM2_Glucose_x(:,i) = Glucose_x'; 

end 

 

% Average the pd and x values and plot using nexttile 

GSVM2_Age_pd_avg = mean(GSVM2_Age_pd, 2); 

GSVM2_BMI_pd_avg = mean(GSVM2_BMI_pd, 2); 

GSVM2_HDL_pd_avg = mean(GSVM2_HDL_pd, 2); 

GSVM2_ALT_pd_avg = mean(GSVM2_ALT_pd, 2); 

GSVM2_AST_pd_avg = mean(GSVM2_AST_pd, 2); 

GSVM2_ASP_pd_avg = mean(GSVM2_ASP_pd, 2); 

GSVM2_Glucose_pd_avg = mean(GSVM2_Glucose_pd, 2); 

 

 

GSVM2_Age_x_avg = mean(GSVM2_Age_x, 2); 

GSVM2_BMI_x_avg = mean(GSVM2_BMI_x, 2); 

GSVM2_HDL_x_avg = mean(GSVM2_HDL_x, 2); 

GSVM2_ALT_x_avg = mean(GSVM2_ALT_x, 2); 

GSVM2_AST_x_avg = mean(GSVM2_AST_x, 2); 

GSVM2_ASP_x_avg = mean(GSVM2_ASP_x, 2); 

GSVM2_Glucose_x_avg = mean(GSVM2_Glucose_x, 2); 

 

%% Writing the excel file to save and use the data for plotting later 

 

GSVM2_Male_data = table(Age_x, GSVM2_Age_pd_avg, BMI_x, GSVM2_BMI_pd_avg , ... 

    HDL_x, GSVM2_HDL_pd_avg , ALT_x, GSVM2_ALT_pd_avg , AST_x, 

GSVM2_AST_pd_avg ,... 

    ASP_x, GSVM2_ASP_pd_avg , Glucose_x, GSVM2_Glucose_pd_avg); 

writetable(GSVM2_Male_data,'GSVM2_Male_code2_plotting_data.xlsx'); 

 

%% Plotting 

figure 

t = tiledlayout(3,3,'TileSpacing','compact'); 

title(t,'Gaussian 2 SVM-Disease - Averaged Partial Dependency Plot') 

nexttile; plot(Age_x,GSVM2_Age_pd_avg); title(''); 

xlabel("Age"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(20:20:80) 

 

 

nexttile; plot(BMI_x,GSVM2_BMI_pd_avg); title(''); 
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xlabel("BMI"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(20:10:50) 

idx_BMI_1 = interp1(BMI_x,1:length(BMI_x),18,'nearest'); % Approx BMI = 18 

hold on; plot(BMI_x(idx_BMI_1),GSVM2_BMI_pd_avg(idx_BMI_1),'*r'); hold off; 

idx_BMI_2 = interp1(BMI_x,1:length(BMI_x),25,'nearest'); % Approx BMI = 25 

hold on; plot(BMI_x(idx_BMI_2),GSVM2_BMI_pd_avg(idx_BMI_2),'*r'); hold off; 

 

nexttile; plot(HDL_x,GSVM2_HDL_pd_avg); title(''); 

xlabel("HDL"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:1:4) 

idx_HDL = interp1(HDL_x,1:length(HDL_x),1,'nearest'); 

hold on; plot(HDL_x(idx_HDL),GSVM2_HDL_pd_avg(idx_HDL),'*r'); hold off; 

 

 

nexttile; plot(ALT_x,GSVM2_ALT_pd_avg); title(''); 

xlabel("ALT"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400) 

idx_ALT_1 = interp1(ALT_x,1:length(ALT_x),10,'nearest'); % Approx ALT = 10 

hold on; plot(ALT_x(idx_ALT_1),GSVM2_ALT_pd_avg(idx_ALT_1),'*r'); hold off; 

idx_ALT_2 = interp1(ALT_x,1:length(ALT_x),55,'nearest'); % Approx ALT = 55 

hold on; plot(ALT_x(idx_ALT_2),GSVM2_ALT_pd_avg(idx_ALT_2),'*r'); hold off; 

 

nexttile; plot(AST_x,GSVM2_AST_pd_avg); title(''); 

xlabel("AST"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400) 

idx_AST_1 = interp1(AST_x,1:length(AST_x),10,'nearest'); 

hold on; plot(AST_x(idx_AST_1),GSVM2_AST_pd_avg(idx_AST_1),'*r'); hold off; 

idx_AST_2 = interp1(AST_x,1:length(AST_x),40,'nearest'); 

hold on; plot(AST_x(idx_AST_2),GSVM2_AST_pd_avg(idx_AST_2),'*r'); hold off; 

 

 

nexttile; plot(ASP_x,GSVM2_ASP_pd_avg); title(''); 

xlabel("ASP"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:400) 

idx_ASP_1 = interp1(ASP_x,1:length(ASP_x),45,'nearest'); 

hold on; plot(ASP_x(idx_ASP_1),GSVM2_ASP_pd_avg(idx_ASP_1),'*r'); hold off; 

idx_ASP_2 = interp1(ASP_x,1:length(ASP_x),115,'nearest'); 

hold on; plot(ASP_x(idx_ASP_2),GSVM2_ASP_pd_avg(idx_ASP_2),'*r'); hold off; 

 

 

nexttile; plot(Glucose_x,GSVM2_Glucose_pd_avg); title(''); 

xlabel("Glucose"), ylabel("Scores"), axis([-inf inf -0.7 1.5]), xticks(0:100:500) 

idx_Glucose = interp1(Glucose_x,1:length(Glucose_x),120,'nearest'); 

hold on; plot(Glucose_x(idx_Glucose),GSVM2_Glucose_pd_avg(idx_Glucose),'*r'); hold off; 

 

 

2. MATLAB CODE TO EXTRACT STATISTICS FROM PARTIAL DEPENDENCY 

DATA 

%%%%%%%% 

% Created on: 08/09/2021 

% Input: Partial dependency data 
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% Output: Computed statistics 

% Author: Ridhi Deo 

% File name: obj2_matlab_4 (R2020b [17]) ) 

% Description: This code extracts the means and standard deviations from partial dependency 

data 

%%%%%%%% 

 

%% Quadratic 

QSVM_Age_pd = QSVM_Female_data.QSVM_Age_pd_avg; 

QSVM_BMI_pd = QSVM_Female_data.QSVM_BMI_pd_avg; 

QSVM_HDL_pd = QSVM_Female_data.QSVM_HDL_pd_avg; 

QSVM_ALT_pd = QSVM_Female_data.QSVM_ALT_pd_avg; 

QSVM_AST_pd = QSVM_Female_data.QSVM_AST_pd_avg; 

QSVM_ASP_pd = QSVM_Female_data.QSVM_ASP_pd_avg; 

QSVM_Glucose_pd = QSVM_Female_data.QSVM_Glucose_pd_avg; 

 

 

QSVM_Age_pd_avg = mean(QSVM_Age_pd, 2); 

QSVM_BMI_pd_avg = mean(QSVM_BMI_pd, 2); 

QSVM_HDL_pd_avg = mean(QSVM_HDL_pd, 2); 

QSVM_ALT_pd_avg = mean(QSVM_ALT_pd, 2); 

QSVM_AST_pd_avg = mean(QSVM_AST_pd, 2); 

QSVM_ASP_pd_avg = mean(QSVM_ASP_pd, 2); 

QSVM_Glucose_pd_avg = mean(QSVM_Glucose_pd, 2); 

 

QSVM_pds_only = QSVM_Female_data(:,[2,4,6,8,10,12,14]); 

 

[QSVM_age_amb, ~] = find(QSVM_pds_only.QSVM_Age_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_Age_pd_avg < 0.15); 

QSVM_Age_amb_percentage =  

(size(QSVM_age_amb,1)/size(QSVM_pds_only.QSVM_Age_pd_avg,1))*100; 

[QSVM_bmi_amb, ~] = find(QSVM_pds_only.QSVM_BMI_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_BMI_pd_avg < 0.15); 

QSVM_BMI_amb_percentage =  

(size(QSVM_bmi_amb,1)/size(QSVM_pds_only.QSVM_BMI_pd_avg,1))*100; 

 

[QSVM_HDL_amb, ~] = find(QSVM_pds_only.QSVM_HDL_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_HDL_pd_avg < 0.15); 

QSVM_HDL_amb_percentage =  

(size(QSVM_HDL_amb,1)/size(QSVM_pds_only.QSVM_HDL_pd_avg,1))*100; 

 

[QSVM_ALT_amb, ~] = find(QSVM_pds_only.QSVM_ALT_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_ALT_pd_avg < 0.15); 

QSVM_ALT_amb_percentage =  

(size(QSVM_ALT_amb,1)/size(QSVM_pds_only.QSVM_ALT_pd_avg,1))*100; 
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[QSVM_AST_amb, ~] = find(QSVM_pds_only.QSVM_AST_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_AST_pd_avg < 0.15); 

QSVM_AST_amb_percentage =  

(size(QSVM_AST_amb,1)/size(QSVM_pds_only.QSVM_AST_pd_avg,1))*100; 

 

[QSVM_ASP_amb, ~] = find(QSVM_pds_only.QSVM_ASP_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_ASP_pd_avg < 0.15); 

QSVM_ASP_amb_percentage =  

(size(QSVM_ASP_amb,1)/size(QSVM_pds_only.QSVM_ASP_pd_avg,1))*100; 

 

[QSVM_Glucose_amb, ~] = find(QSVM_pds_only.QSVM_Glucose_pd_avg > -0.15 & ... 

    QSVM_pds_only.QSVM_Glucose_pd_avg < 0.15); 

QSVM_Glucose_amb_percentage =  

(size(QSVM_Glucose_amb,1)/size(QSVM_pds_only.QSVM_Glucose_pd_avg,1))*100; 

 

Ambiguity_QSVM = [QSVM_Age_amb_percentage, QSVM_BMI_amb_percentage, 

QSVM_HDL_amb_percentage,... 

    QSVM_ALT_amb_percentage, QSVM_AST_amb_percentage, 

QSVM_ASP_amb_percentage,... 

    QSVM_Glucose_amb_percentage]; 

 

%% Quadratic SVM Score extraction for pd 

figure;histfit(QSVM_Age_pd_avg),title('QSVM-Age'); 

[QSVM_Age_pd_mean,QSVM_Age_pd_SD,QSVM_Age_pd_var,QSVM_Age_pd_min,QSVM

_Age_pd_max,QSVM_Age_pd_range] ... 

    = grpstats(QSVM_Age_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_Age_pd_Quantiles = quantile(QSVM_Age_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(QSVM_BMI_pd_avg),title('QSVM-BMI'); 

[QSVM_BMI_pd_mean,QSVM_BMI_pd_SD,QSVM_BMI_pd_var,QSVM_BMI_pd_min,QSV

M_BMI_pd_max,QSVM_BMI_pd_range] ... 

    = grpstats(QSVM_BMI_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_BMI_pd_Quantiles = quantile(QSVM_BMI_pd_avg,[0.25,0.5,0.75,1]); 

 

figure;histfit(QSVM_HDL_pd_avg),title('QSVM-HDL'); 

[QSVM_HDL_pd_mean,QSVM_HDL_pd_SD,QSVM_HDL_pd_var,QSVM_HDL_pd_min,QS

VM_HDL_pd_max,QSVM_HDL_pd_range] ... 

    = grpstats(QSVM_HDL_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_HDL_pd_Quantiles = quantile(QSVM_HDL_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(QSVM_ALT_pd_avg),title('QSVM-ALT'); 

[QSVM_ALT_pd_mean,QSVM_ALT_pd_SD,QSVM_ALT_pd_var,QSVM_ALT_pd_min,QSV

M_ALT_pd_max,QSVM_ALT_pd_range] ... 

    = grpstats(QSVM_ALT_pd_avg,[],{'mean','std','var','min','max','range'}); 
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QSVM_ALT_pd_Quantiles = quantile(QSVM_ALT_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(QSVM_AST_pd_avg),title('QSVM-AST'); 

[QSVM_AST_pd_mean,QSVM_AST_pd_SD,QSVM_AST_pd_var,QSVM_AST_pd_min,QSV

M_AST_pd_max,QSVM_AST_pd_range] ... 

    = grpstats(QSVM_AST_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_AST_pd_Quantiles = quantile(QSVM_AST_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(QSVM_ASP_pd_avg),title('QSVM-ASP'); 

[QSVM_ASP_pd_mean,QSVM_ASP_pd_SD,QSVM_ASP_pd_var,QSVM_ASP_pd_min,QSV

M_ASP_pd_max,QSVM_ASP_pd_range] ... 

    = grpstats(QSVM_ASP_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_ASP_pd_Quantiles = quantile(QSVM_ASP_pd_avg,[0.25,0.5,0.75,1]); 

 

figure;histfit(QSVM_Glucose_pd_avg),title('QSVM-Glucose'); 

[QSVM_Glucose_pd_mean,QSVM_Glucose_pd_SD,QSVM_Glucose_pd_var,QSVM_Glucose_

pd_min,QSVM_Glucose_pd_max,QSVM_Glucose_pd_range] ... 

    = grpstats(QSVM_Glucose_pd_avg,[],{'mean','std','var','min','max','range'}); 

QSVM_Glucose_pd_Quantiles = quantile(QSVM_Glucose_pd_avg,[0.25,0.5,0.75,1]); 

 

 

%% Display results in a table for QSVM 

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'}; 

QSVM_Mean = 

{QSVM_Age_pd_mean;QSVM_BMI_pd_mean;QSVM_HDL_pd_mean;QSVM_ALT_pd_mea

n;... 

    QSVM_AST_pd_mean;QSVM_ASP_pd_mean;QSVM_Glucose_pd_mean}; 

SD ={QSVM_Age_pd_SD;QSVM_BMI_pd_SD;QSVM_HDL_pd_SD;QSVM_ALT_pd_SD;... 

    QSVM_AST_pd_SD;QSVM_ASP_pd_SD;QSVM_Glucose_pd_SD}; 

Min = 

{QSVM_Age_pd_min;QSVM_BMI_pd_min;QSVM_HDL_pd_min;QSVM_ALT_pd_min;... 

    QSVM_AST_pd_min;QSVM_ASP_pd_min;QSVM_Glucose_pd_min}; 

Max = 

{QSVM_Age_pd_max;QSVM_BMI_pd_max;QSVM_HDL_pd_max;QSVM_ALT_pd_max;... 

    QSVM_AST_pd_max;QSVM_ASP_pd_max;QSVM_Glucose_pd_max}; 

Range = 

{QSVM_Age_pd_range;QSVM_BMI_pd_range;QSVM_HDL_pd_range;QSVM_ALT_pd_rang

e;... 

    QSVM_AST_pd_range;QSVM_ASP_pd_range;QSVM_Glucose_pd_range}; 

Q25 = 

{QSVM_Age_pd_Quantiles(1,1);QSVM_BMI_pd_Quantiles(1,1);QSVM_HDL_pd_Quantiles(1

,1);QSVM_ALT_pd_Quantiles(1,1);... 



 

195 

    

QSVM_AST_pd_Quantiles(1,1);QSVM_ASP_pd_Quantiles(1,1);QSVM_Glucose_pd_Quantile

s(1,1)}; 

Q50 = 

{QSVM_Age_pd_Quantiles(1,2);QSVM_BMI_pd_Quantiles(1,2);QSVM_HDL_pd_Quantiles(1

,2);QSVM_ALT_pd_Quantiles(1,2);... 

    

QSVM_AST_pd_Quantiles(1,2);QSVM_ASP_pd_Quantiles(1,2);QSVM_Glucose_pd_Quantile

s(1,2)}; 

Q75 = 

{QSVM_Age_pd_Quantiles(1,3);QSVM_BMI_pd_Quantiles(1,3);QSVM_HDL_pd_Quantiles(1

,3);QSVM_ALT_pd_Quantiles(1,3);... 

    

QSVM_AST_pd_Quantiles(1,3);QSVM_ASP_pd_Quantiles(1,3);QSVM_Glucose_pd_Quantile

s(1,3)}; 

Q100 = 

{QSVM_Age_pd_Quantiles(1,4);QSVM_BMI_pd_Quantiles(1,4);QSVM_HDL_pd_Quantiles(1

,4);QSVM_ALT_pd_Quantiles(1,4);... 

    

QSVM_AST_pd_Quantiles(1,4);QSVM_ASP_pd_Quantiles(1,4);QSVM_Glucose_pd_Quantile

s(1,4)}; 

 

QSVM_pd_Stats = table(Param, QSVM_Mean, SD, Min, Max, Range, Q25, Q50, Q75, Q100); 

%writetable(QSVM_pd_Stats,'Female_QSVM_pd_code2_stats_pd_03_30.xlsx'); 

 

%% Gaussian 1 

GSVM1_Age_pd = GSVM1_Female_data.GSVM1_Age_pd_avg; 

GSVM1_BMI_pd = GSVM1_Female_data.GSVM1_BMI_pd_avg; 

GSVM1_HDL_pd = GSVM1_Female_data.GSVM1_HDL_pd_avg; 

GSVM1_ALT_pd = GSVM1_Female_data.GSVM1_ALT_pd_avg; 

GSVM1_AST_pd = GSVM1_Female_data.GSVM1_AST_pd_avg; 

GSVM1_ASP_pd = GSVM1_Female_data.GSVM1_ASP_pd_avg; 

GSVM1_Glucose_pd = GSVM1_Female_data.GSVM1_Glucose_pd_avg; 

 

 

GSVM1_Age_pd_avg = mean(GSVM1_Age_pd, 2); 

GSVM1_BMI_pd_avg = mean(GSVM1_BMI_pd, 2); 

GSVM1_HDL_pd_avg = mean(GSVM1_HDL_pd, 2); 

GSVM1_ALT_pd_avg = mean(GSVM1_ALT_pd, 2); 

GSVM1_AST_pd_avg = mean(GSVM1_AST_pd, 2); 

GSVM1_ASP_pd_avg = mean(GSVM1_ASP_pd, 2); 

GSVM1_Glucose_pd_avg = mean(GSVM1_Glucose_pd, 2); 

 

GSVM1_pds_only = GSVM1_Female_data(:,[2,4,6,8,10,12,14]); 

 

[GSVM1_age_amb, ~] = find(GSVM1_pds_only.GSVM1_Age_pd_avg > -0.15 & ... 
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    GSVM1_pds_only.GSVM1_Age_pd_avg < 0.15); 

GSVM1_Age_amb_percentage =  

(size(GSVM1_age_amb,1)/size(GSVM1_pds_only.GSVM1_Age_pd_avg,1))*100; 

[GSVM1_bmi_amb, ~] = find(GSVM1_pds_only.GSVM1_BMI_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_BMI_pd_avg < 0.15); 

GSVM1_BMI_amb_percentage =  

(size(GSVM1_bmi_amb,1)/size(GSVM1_pds_only.GSVM1_BMI_pd_avg,1))*100; 

 

[GSVM1_HDL_amb, ~] = find(GSVM1_pds_only.GSVM1_HDL_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_HDL_pd_avg < 0.15); 

GSVM1_HDL_amb_percentage =  

(size(GSVM1_HDL_amb,1)/size(GSVM1_pds_only.GSVM1_HDL_pd_avg,1))*100; 

 

[GSVM1_ALT_amb, ~] = find(GSVM1_pds_only.GSVM1_ALT_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_ALT_pd_avg < 0.15); 

GSVM1_ALT_amb_percentage =  

(size(GSVM1_ALT_amb,1)/size(GSVM1_pds_only.GSVM1_ALT_pd_avg,1))*100; 

 

[GSVM1_AST_amb, ~] = find(GSVM1_pds_only.GSVM1_AST_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_AST_pd_avg < 0.15); 

GSVM1_AST_amb_percentage =  

(size(GSVM1_AST_amb,1)/size(GSVM1_pds_only.GSVM1_AST_pd_avg,1))*100; 

 

[GSVM1_ASP_amb, ~] = find(GSVM1_pds_only.GSVM1_ASP_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_ASP_pd_avg < 0.15); 

GSVM1_ASP_amb_percentage =  

(size(GSVM1_ASP_amb,1)/size(GSVM1_pds_only.GSVM1_ASP_pd_avg,1))*100; 

 

[GSVM1_Glucose_amb, ~] = find(GSVM1_pds_only.GSVM1_Glucose_pd_avg > -0.15 & ... 

    GSVM1_pds_only.GSVM1_Glucose_pd_avg < 0.15); 

GSVM1_Glucose_amb_percentage =  

(size(GSVM1_Glucose_amb,1)/size(GSVM1_pds_only.GSVM1_Glucose_pd_avg,1))*100; 

 

Ambiguity_GSVM1 = [GSVM1_Age_amb_percentage, GSVM1_BMI_amb_percentage, 

GSVM1_HDL_amb_percentage,... 

    GSVM1_ALT_amb_percentage, GSVM1_AST_amb_percentage, 

GSVM1_ASP_amb_percentage,... 

    GSVM1_Glucose_amb_percentage]; 

 

 

%% Gaussian Scale 1 Score extraction 

figure;histfit(GSVM1_Age_pd_avg),title('GSVM1-Age'); 

[GSVM1_Age_pd_mean,GSVM1_Age_pd_SD,GSVM1_Age_pd_var,GSVM1_Age_pd_min,G

SVM1_Age_pd_max,GSVM1_Age_pd_range] ... 

    = grpstats(GSVM1_Age_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_Age_pd_Quantiles = quantile(GSVM1_Age_pd_avg,[0.25,0.5,0.75,1]); 
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figure;histfit(GSVM1_BMI_pd_avg),title('GSVM1-BMI'); 

[GSVM1_BMI_pd_mean,GSVM1_BMI_pd_SD,GSVM1_BMI_pd_var,GSVM1_BMI_pd_min,

GSVM1_BMI_pd_max,GSVM1_BMI_pd_range] ... 

    = grpstats(GSVM1_BMI_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_BMI_pd_Quantiles = quantile(GSVM1_BMI_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM1_HDL_pd_avg),title('GSVM1-HDL'); 

[GSVM1_HDL_pd_mean,GSVM1_HDL_pd_SD,GSVM1_HDL_pd_var,GSVM1_HDL_pd_mi

n,GSVM1_HDL_pd_max,GSVM1_HDL_pd_range] ... 

    = grpstats(GSVM1_HDL_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_HDL_pd_Quantiles = quantile(GSVM1_HDL_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM1_ALT_pd_avg),title('GSVM1-ALT'); 

[GSVM1_ALT_pd_mean,GSVM1_ALT_pd_SD,GSVM1_ALT_pd_var,GSVM1_ALT_pd_min,

GSVM1_ALT_pd_max,GSVM1_ALT_pd_range] ... 

    = grpstats(GSVM1_ALT_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_ALT_pd_Quantiles = quantile(GSVM1_ALT_pd_avg,[0.25,0.5,0.75,1]); 

 

 

 

figure;histfit(GSVM1_AST_pd_avg),title('GSVM1-AST'); 

[GSVM1_AST_pd_mean,GSVM1_AST_pd_SD,GSVM1_AST_pd_var,GSVM1_AST_pd_min,

GSVM1_AST_pd_max,GSVM1_AST_pd_range] ... 

    = grpstats(GSVM1_AST_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_AST_pd_Quantiles = quantile(GSVM1_AST_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM1_ASP_pd_avg),title('GSVM1-ASP'); 

[GSVM1_ASP_pd_mean,GSVM1_ASP_pd_SD,GSVM1_ASP_pd_var,GSVM1_ASP_pd_min,

GSVM1_ASP_pd_max,GSVM1_ASP_pd_range] ... 

    = grpstats(GSVM1_ASP_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_ASP_pd_Quantiles = quantile(GSVM1_ASP_pd_avg,[0.25,0.5,0.75,1]); 

 

figure;histfit(GSVM1_Glucose_pd_avg),title('GSVM1-Glucose'); 

[GSVM1_Glucose_pd_mean,GSVM1_Glucose_pd_SD,GSVM1_Glucose_pd_var,GSVM1_Glu

cose_pd_min,GSVM1_Glucose_pd_max,GSVM1_Glucose_pd_range] ... 

    = grpstats(GSVM1_Glucose_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM1_Glucose_pd_Quantiles = quantile(GSVM1_Glucose_pd_avg,[0.25,0.5,0.75,1]); 

 

 

%% Display results in a table for GSVM1 

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'}; 
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GSVM1_Mean = 

{GSVM1_Age_pd_mean;GSVM1_BMI_pd_mean;GSVM1_HDL_pd_mean;GSVM1_ALT_pd_

mean;... 

    GSVM1_AST_pd_mean;GSVM1_ASP_pd_mean;GSVM1_Glucose_pd_mean}; 

SD 

={GSVM1_Age_pd_SD;GSVM1_BMI_pd_SD;GSVM1_HDL_pd_SD;GSVM1_ALT_pd_SD;..

. 

    GSVM1_AST_pd_SD;GSVM1_ASP_pd_SD;GSVM1_Glucose_pd_SD}; 

Min = 

{GSVM1_Age_pd_min;GSVM1_BMI_pd_min;GSVM1_HDL_pd_min;GSVM1_ALT_pd_min;

... 

    GSVM1_AST_pd_min;GSVM1_ASP_pd_min;GSVM1_Glucose_pd_min}; 

Max = 

{GSVM1_Age_pd_max;GSVM1_BMI_pd_max;GSVM1_HDL_pd_max;GSVM1_ALT_pd_ma

x;... 

    GSVM1_AST_pd_max;GSVM1_ASP_pd_max;GSVM1_Glucose_pd_max}; 

Range = 

{GSVM1_Age_pd_range;GSVM1_BMI_pd_range;GSVM1_HDL_pd_range;GSVM1_ALT_pd

_range;... 

    GSVM1_AST_pd_range;GSVM1_ASP_pd_range;GSVM1_Glucose_pd_range}; 

Q25 = 

{GSVM1_Age_pd_Quantiles(1,1);GSVM1_BMI_pd_Quantiles(1,1);GSVM1_HDL_pd_Quantil

es(1,1);GSVM1_ALT_pd_Quantiles(1,1);... 

    

GSVM1_AST_pd_Quantiles(1,1);GSVM1_ASP_pd_Quantiles(1,1);GSVM1_Glucose_pd_Quan

tiles(1,1)}; 

Q50 = 

{GSVM1_Age_pd_Quantiles(1,2);GSVM1_BMI_pd_Quantiles(1,2);GSVM1_HDL_pd_Quantil

es(1,2);GSVM1_ALT_pd_Quantiles(1,2);... 

    

GSVM1_AST_pd_Quantiles(1,2);GSVM1_ASP_pd_Quantiles(1,2);GSVM1_Glucose_pd_Quan

tiles(1,2)}; 

Q75 = 

{GSVM1_Age_pd_Quantiles(1,3);GSVM1_BMI_pd_Quantiles(1,3);GSVM1_HDL_pd_Quantil

es(1,3);GSVM1_ALT_pd_Quantiles(1,3);... 

    

GSVM1_AST_pd_Quantiles(1,3);GSVM1_ASP_pd_Quantiles(1,3);GSVM1_Glucose_pd_Quan

tiles(1,3)}; 

Q100 = 

{GSVM1_Age_pd_Quantiles(1,4);GSVM1_BMI_pd_Quantiles(1,4);GSVM1_HDL_pd_Quantil

es(1,4);GSVM1_ALT_pd_Quantiles(1,4);... 

    

GSVM1_AST_pd_Quantiles(1,4);GSVM1_ASP_pd_Quantiles(1,4);GSVM1_Glucose_pd_Quan

tiles(1,4)}; 
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GSVM1_pd_Stats = table(Param, GSVM1_Mean, SD, Min, Max, Range, Q25, Q50, Q75, 

Q100); 

%writetable(GSVM1_pd_Stats,'Female_GSVM1_pd_code2_stats_pd_03_30.xlsx'); 

 

%% Gaussian 2 

GSVM2_Age_pd = GSVM2_Female_data.GSVM2_Age_pd_avg; 

GSVM2_BMI_pd = GSVM2_Female_data.GSVM2_BMI_pd_avg; 

GSVM2_HDL_pd = GSVM2_Female_data.GSVM2_HDL_pd_avg; 

GSVM2_ALT_pd = GSVM2_Female_data.GSVM2_ALT_pd_avg; 

GSVM2_AST_pd = GSVM2_Female_data.GSVM2_AST_pd_avg; 

GSVM2_ASP_pd = GSVM2_Female_data.GSVM2_ASP_pd_avg; 

GSVM2_Glucose_pd = GSVM2_Female_data.GSVM2_Glucose_pd_avg; 

 

 

GSVM2_Age_pd_avg = mean(GSVM2_Age_pd, 2); 

GSVM2_BMI_pd_avg = mean(GSVM2_BMI_pd, 2); 

GSVM2_HDL_pd_avg = mean(GSVM2_HDL_pd, 2); 

GSVM2_ALT_pd_avg = mean(GSVM2_ALT_pd, 2); 

GSVM2_AST_pd_avg = mean(GSVM2_AST_pd, 2); 

GSVM2_ASP_pd_avg = mean(GSVM2_ASP_pd, 2); 

GSVM2_Glucose_pd_avg = mean(GSVM2_Glucose_pd, 2); 

 

GSVM2_pds_only = GSVM2_Female_data(:,[2,4,6,8,10,12,14]); 

 

[GSVM2_age_amb, ~] = find(GSVM2_pds_only.GSVM2_Age_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_Age_pd_avg < 0.15); 

GSVM2_Age_amb_percentage =  

(size(GSVM2_age_amb,1)/size(GSVM2_pds_only.GSVM2_Age_pd_avg,1))*100; 

[GSVM2_bmi_amb, ~] = find(GSVM2_pds_only.GSVM2_BMI_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_BMI_pd_avg < 0.15); 

GSVM2_BMI_amb_percentage =  

(size(GSVM2_bmi_amb,1)/size(GSVM2_pds_only.GSVM2_BMI_pd_avg,1))*100; 

 

[GSVM2_HDL_amb, ~] = find(GSVM2_pds_only.GSVM2_HDL_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_HDL_pd_avg < 0.15); 

GSVM2_HDL_amb_percentage =  

(size(GSVM2_HDL_amb,1)/size(GSVM2_pds_only.GSVM2_HDL_pd_avg,1))*100; 

 

[GSVM2_ALT_amb, ~] = find(GSVM2_pds_only.GSVM2_ALT_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_ALT_pd_avg < 0.15); 

GSVM2_ALT_amb_percentage =  

(size(GSVM2_ALT_amb,1)/size(GSVM2_pds_only.GSVM2_ALT_pd_avg,1))*100; 

 

[GSVM2_AST_amb, ~] = find(GSVM2_pds_only.GSVM2_AST_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_AST_pd_avg < 0.15); 
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GSVM2_AST_amb_percentage =  

(size(GSVM2_AST_amb,1)/size(GSVM2_pds_only.GSVM2_AST_pd_avg,1))*100; 

 

[GSVM2_ASP_amb, ~] = find(GSVM2_pds_only.GSVM2_ASP_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_ASP_pd_avg < 0.15); 

GSVM2_ASP_amb_percentage =  

(size(GSVM2_ASP_amb,1)/size(GSVM2_pds_only.GSVM2_ASP_pd_avg,1))*100; 

 

[GSVM2_Glucose_amb, ~] = find(GSVM2_pds_only.GSVM2_Glucose_pd_avg > -0.15 & ... 

    GSVM2_pds_only.GSVM2_Glucose_pd_avg < 0.15); 

GSVM2_Glucose_amb_percentage =  

(size(GSVM2_Glucose_amb,1)/size(GSVM2_pds_only.GSVM2_Glucose_pd_avg,1))*100; 

 

Ambiguity_GSVM2 = [GSVM2_Age_amb_percentage, GSVM2_BMI_amb_percentage, 

GSVM2_HDL_amb_percentage,... 

    GSVM2_ALT_amb_percentage, GSVM2_AST_amb_percentage, 

GSVM2_ASP_amb_percentage,... 

    GSVM2_Glucose_amb_percentage]; 

 

%% Gaussian_Scale_2 SVM Score extraction 

 

 

figure;histfit(GSVM2_Age_pd_avg),title('GSVM2-Age'); 

[GSVM2_Age_pd_mean,GSVM2_Age_pd_SD,GSVM2_Age_pd_var,GSVM2_Age_pd_min,G

SVM2_Age_pd_max,GSVM2_Age_pd_range] ... 

    = grpstats(GSVM2_Age_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_Age_pd_Quantiles = quantile(GSVM2_Age_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM2_BMI_pd_avg),title('GSVM2-BMI'); 

[GSVM2_BMI_pd_mean,GSVM2_BMI_pd_SD,GSVM2_BMI_pd_var,GSVM2_BMI_pd_min,

GSVM2_BMI_pd_max,GSVM2_BMI_pd_range] ... 

    = grpstats(GSVM2_BMI_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_BMI_pd_Quantiles = quantile(GSVM2_BMI_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM2_HDL_pd_avg),title('GSVM2-HDL'); 

[GSVM2_HDL_pd_mean,GSVM2_HDL_pd_SD,GSVM2_HDL_pd_var,GSVM2_HDL_pd_mi

n,GSVM2_HDL_pd_max,GSVM2_HDL_pd_range] ... 

    = grpstats(GSVM2_HDL_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_HDL_pd_Quantiles = quantile(GSVM2_HDL_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM2_ALT_pd_avg),title('GSVM2-ALT'); 

[GSVM2_ALT_pd_mean,GSVM2_ALT_pd_SD,GSVM2_ALT_pd_var,GSVM2_ALT_pd_min,

GSVM2_ALT_pd_max,GSVM2_ALT_pd_range] ... 
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    = grpstats(GSVM2_ALT_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_ALT_pd_Quantiles = quantile(GSVM2_ALT_pd_avg,[0.25,0.5,0.75,1]); 

 

 

 

figure;histfit(GSVM2_AST_pd_avg),title('GSVM2-AST'); 

[GSVM2_AST_pd_mean,GSVM2_AST_pd_SD,GSVM2_AST_pd_var,GSVM2_AST_pd_min,

GSVM2_AST_pd_max,GSVM2_AST_pd_range] ... 

    = grpstats(GSVM2_AST_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_AST_pd_Quantiles = quantile(GSVM2_AST_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM2_ASP_pd_avg),title('GSVM2-ASP'); 

[GSVM2_ASP_pd_mean,GSVM2_ASP_pd_SD,GSVM2_ASP_pd_var,GSVM2_ASP_pd_min,

GSVM2_ASP_pd_max,GSVM2_ASP_pd_range] ... 

    = grpstats(GSVM2_ASP_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_ASP_pd_Quantiles = quantile(GSVM2_ASP_pd_avg,[0.25,0.5,0.75,1]); 

 

 

figure;histfit(GSVM2_Glucose_pd_avg),title('GSVM2-Glucose'); 

[GSVM2_Glucose_pd_mean,GSVM2_Glucose_pd_SD,GSVM2_Glucose_pd_var,GSVM2_Glu

cose_pd_min,GSVM2_Glucose_pd_max,GSVM2_Glucose_pd_range] ... 

    = grpstats(GSVM2_Glucose_pd_avg,[],{'mean','std','var','min','max','range'}); 

GSVM2_Glucose_pd_Quantiles = quantile(GSVM2_Glucose_pd_avg,[0.25,0.5,0.75,1]); 

 

 

%% Display results in a table for GSVM2 

Param = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'}; 

GSVM2_Mean = 

{GSVM2_Age_pd_mean;GSVM2_BMI_pd_mean;GSVM2_HDL_pd_mean;GSVM2_ALT_pd_

mean;... 

    GSVM2_AST_pd_mean;GSVM2_ASP_pd_mean;GSVM2_Glucose_pd_mean}; 

SD 

={GSVM2_Age_pd_SD;GSVM2_BMI_pd_SD;GSVM2_HDL_pd_SD;GSVM2_ALT_pd_SD;..

. 

    GSVM2_AST_pd_SD;GSVM2_ASP_pd_SD;GSVM2_Glucose_pd_SD}; 

Min = 

{GSVM2_Age_pd_min;GSVM2_BMI_pd_min;GSVM2_HDL_pd_min;GSVM2_ALT_pd_min;

... 

    GSVM2_AST_pd_min;GSVM2_ASP_pd_min;GSVM2_Glucose_pd_min}; 

Max = 

{GSVM2_Age_pd_max;GSVM2_BMI_pd_max;GSVM2_HDL_pd_max;GSVM2_ALT_pd_ma

x;... 

    GSVM2_AST_pd_max;GSVM2_ASP_pd_max;GSVM2_Glucose_pd_max}; 
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Range = 

{GSVM2_Age_pd_range;GSVM2_BMI_pd_range;GSVM2_HDL_pd_range;GSVM2_ALT_pd

_range;... 

    GSVM2_AST_pd_range;GSVM2_ASP_pd_range;GSVM2_Glucose_pd_range}; 

Q25 = 

{GSVM2_Age_pd_Quantiles(1,1);GSVM2_BMI_pd_Quantiles(1,1);GSVM2_HDL_pd_Quantil

es(1,1);GSVM2_ALT_pd_Quantiles(1,1);... 

    

GSVM2_AST_pd_Quantiles(1,1);GSVM2_ASP_pd_Quantiles(1,1);GSVM2_Glucose_pd_Quan

tiles(1,1)}; 

Q50 = 

{GSVM2_Age_pd_Quantiles(1,2);GSVM2_BMI_pd_Quantiles(1,2);GSVM2_HDL_pd_Quantil

es(1,2);GSVM2_ALT_pd_Quantiles(1,2);... 

    

GSVM2_AST_pd_Quantiles(1,2);GSVM2_ASP_pd_Quantiles(1,2);GSVM2_Glucose_pd_Quan

tiles(1,2)}; 

Q75 = 

{GSVM2_Age_pd_Quantiles(1,3);GSVM2_BMI_pd_Quantiles(1,3);GSVM2_HDL_pd_Quantil

es(1,3);GSVM2_ALT_pd_Quantiles(1,3);... 

    

GSVM2_AST_pd_Quantiles(1,3);GSVM2_ASP_pd_Quantiles(1,3);GSVM2_Glucose_pd_Quan

tiles(1,3)}; 

Q100 = 

{GSVM2_Age_pd_Quantiles(1,4);GSVM2_BMI_pd_Quantiles(1,4);GSVM2_HDL_pd_Quantil

es(1,4);GSVM2_ALT_pd_Quantiles(1,4);... 

    

GSVM2_AST_pd_Quantiles(1,4);GSVM2_ASP_pd_Quantiles(1,4);GSVM2_Glucose_pd_Quan

tiles(1,4)}; 

 

GSVM2_pd_Stats = table(Param, GSVM2_Mean, SD, Min, Max, Range, Q25, Q50, Q75, 

Q100); 

%writetable(GSVM2_pd_Stats,'Female_GSVM2_pd_code2_stats_pd_03_30.xlsx'); 

 

%% Combined Female Results 

 

Combined_pd_Stats = table(Param, QSVM_Mean, GSVM1_Mean, GSVM2_Mean); 

writetable(Combined_pd_Stats, 'Female_pd_combined_means_03_30.xlsx'); 

 

Combined_ambiguity = table(Ambiguity_QSVM', Ambiguity_GSVM1', Ambiguity_GSVM2'); 

Combined_ambiguity.Properties.RowNames = {'Age';'BMI';'HDL';'ALT';'AST';'ASP';'Glucose'}; 

Combined_ambiguity.Properties.VariableNames = {'Ambiguity%_QSVM',... 

    'Ambiguity%_GSVM1','Ambiguity%_GSVM2'}; 

writetable(Combined_ambiguity, 'Female_ambiguity_03_30.xlsx'); 
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Figure P2.1: Figure outlining the flow of code used in this research objective
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 ASSESSMENT OF HS PREDICTION MODELS USING 

HEAVY METAL EXPOSURE DATA (PAPER 3) 

4.1 Introduction 

Liver is the major detoxification organ in the human system and is therefore susceptible to 

toxicity [1]. All endogenous as well as exogenous toxicants pass through the liver and the liver is 

responsible for their metabolism [1]. The toxic mechanisms of most toxicants involve passing 

through the liver [1]–[3]. This process can cause harm to the liver, especially if the human body is 

chronically exposed to toxicants. Exposure to Cadmium [4], [5], Arsenic [2], Lead [5], [6], and 

Mercury [7]–[10] are all found to be linked with liver dysfunction. Interestingly, high levels of 

Iron are also related to liver disease [11], [12].  

Researchers have found a significant impact of toxicants on the liver, and the terms 

“Toxicant” Associated Fatty Liver Disease (TAFLD) and “Toxicant” Associated Steatohepatitis 

(TASH) were coined to label liver injury caused specifically due to toxicants [13], [14]. It is 

important to note that TAFLD and TASH are similar in pathology to NAFLD and NASH, 

respectively [13], [14].  

4.2 Literature review 

A detailed literature review of heavy metals and their relationship with NAFLD was 

covered in the general literature review section of this work (section 2.3). Several studies have 

found associations between liver dysfunction and heavy metal exposure.  

One study used NHANES data to identify the relationship between NAFLD and Arsenic 

(urinary Arsenic levels) [15]. A “positive association” between Arsenic exposure and risk of 

NAFLD was reported [15]. However, it is important to note that they used elevated levels of the 

ALT enzyme as a proxy marker for NAFLD. Specifically, the used ALT levels greater than 25 

U/L and 22 U/L for boys and girls (under 17 years), respectively, as a marker for liver dysfunction 

[15].  Levels over 30 U/L and 19 U/L were used to define liver dysfunction for men and women, 

respectively, in their work [15]. It is important to note here that while elevated ALT indicates liver 

dysfunction, it is not a biomarker for NAFLD [16].  
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Another research group used NHANES data to measure the associations between Lead, 

Mercury and liver disease [6]. They also reported a dose-dependent association between heavy 

metal exposure and ALT elevation [6]. Increasing levels of Lead and Mercury in the blood were 

individually found to be associated with ALT elevation [6].  

In this work, a preliminary study and was intended to understand the relationship, if any, 

between HS and heavy metal exposure, within the specific NHANES III dataset. However, all the 

data of interest were not available within the NHANES III dataset. For example, Arsenic is a 

known hepatotoxin, but Arsenic exposure data were not available within NHANES III. While a 

different NHANES dataset – ‘Continuous NHANES’, includes urinary Arsenic information, it 

does not include the Hepatic Steatosis data (using Ultrasound tests).  

The relationship of heavy metal exposure and the biological mechanism leading to HS is 

complex. Although other researchers have used continuous NHANES data with Arsenic exposure 

to understand its association with NAFLD, they did not use the ultrasound-based HS parameter to 

assess NAFLD presence [15]. Instead, they used a proxy parameter, ALT, with an assumption that 

it could represent the presence or absence of NAFLD [15]. In this work, the abnormal ALT levels 

are not considered as a determinant of NAFLD or HS to build ML models. In this research, the 

presence or absence of HS is determined using ultrasound-based HS detection. The use of heavy 

metal exposure and HS (ultrasound-based) was not found in any other research, based on the 

literature review conducted in this work.  

Therefore, the hypothesis used in this work is as follows: 

Heavy metal exposure is related to NAFLD and could be useful in predicting HS (using a 

ML-based model). 

Based on the above hypothesis, the research objective of this work is to: 

Assess the effect of using specific heavy metal exposure information (along with other 

physiological and liver biochemistry data) in human system on the predictability of HS model.  

4.3 Methods 

The effect of heavy metal exposure on the liver is explained in the general literature review 

portion of this dissertation. Toxicant associated fatty liver disease (TAFLD) and Toxicant 

associated steatohepatitis (TASH) were also discussed. The association between NAFLD and 

chronic heavy metal exposure was also briefly reviewed.  
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In this research objective, the link between heavy metal exposure and HS was evaluated 

by including exposure-related parameters to predict HS. The effect of heavy metal exposure data 

was tested by subsequent inclusion and exclusion of the relevant parameters and comparing their 

results.  

a. Data processing 

Data from NHANES III were used in this research objective [17], [18]. Compared with 

previous objectives, additional parameters related to heavy metal exposure were incorporated in 

this objective. The following parameters were chosen as input features in this objective: Age, BMI, 

HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. The parameter Insulin 

resistance was derived using two other parameters: Fasting insulin and fasting glucose. Insulin 

resistance was found to be one of the largest risk factors associated with HS [19]–[22]. The output 

parameter was HS. The same dataset as that in objective 1B was imported from SAS into 

MATLAB.  

All observations with any missing information were deleted. Any observations with fasting 

time of under eight hours were excluded from this research [23]. The derived parameter of insulin 

resistance was computed using the formula in equation (21). The equation for computing insulin 

resistance was referred to from previous literature [24].  

                   𝐼𝑛𝑠𝑢𝑙𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑥 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

22.5
                                      (21)  

Data were then split into male and female sub-datasets. Alcohol related exclusions were 

applied. Again, class imbalance was an inherent challenge and SMOTE was applied to augment 

the original data with generate synthetic HS data. After the processing, the dataset sizes were as 

shown in  

Table 4.1 & 

 

Table 4.2. 
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b. Model selection 

To identify the best ML model, the data were used to train 17 different models. These 

models belonged to the five model families: tree-based, ensemble-based (random forest, boosted 

trees), K-nearest neighbors, support vector machines (SVM), and logistic regression. Each of these 

model families is explained in detail in chapter 2 & 3. The next step of selecting relevant features 

is explained in the section below. 

c. Feature selection 

A comparison of model performance was designed in this objective.  First, a cluster of 

parameters called heavy metal exposure data was included in training the ML models. The heavy 

metal exposure data used in this research contains three parameters: Lead (Pb), Iron (Fe) and 

Cadmium (Cd). Although the initial research plan included the use of Arsenic data as well, it was 

not available in NHANES III. While Arsenic data is available in the larger continuous NHANES 

datasets, the ultrasound-based HS data was only available in NHANES III.  Therefore, the research 

methods in this objective do not include Arsenic, although it is a critical hepatotoxin [2].  

The models trained using the heavy metal exposure data had a total 10 input features: Age, 

BMI, HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. These trained models 

were then tested, and the best performing models were identified.  

In the second approach, the features in the heavy metal exposure data were removed from 

the dataset and the ML models were trained again. The models trained using this approach had 

only seven input parameters: Age, BMI, HDL, ALT, AST, ASP, and Insulin resistance. The 

models were tested again, and the best performing models were identified.  

The data were divided into training and test in a 70:30 ratio, respectively. Training data 

was fed to the models first and then they were tested on the separate test dataset. 10-fold cross 

validation was used to ensure the models do not overfit the data. Each training and test session was 

repeated 10-times for every model and the performance results were averaged. The average results 

of the best perfuming models are shown in  

A comparison of the performances of models trained and tested with and without the heavy 

metal exposure data is presented in the results and discussion section.  
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4.4  Results and discussion 

A comparison of the models with and without heavy metal exposure data is presented in 

this section. The main research interest is to identify the impact of using Lead, Cadmium, and Iron 

data on model performance. For a quick reference, the models without the heavy metal exposure 

data have the following input parameters: Age, BMI, HDL, ALT, AST, ASP, and Insulin 

resistance. The models including the heavy metal exposure data have the following input 

parameters: Age, BMI, HDL, ALT, AST, ASP, Lead, Iron, Cadmium, and Insulin resistance. In 

both the approaches (with and without heavy metal exposure data), 17 models from five model 

families were trained separately for male and female populations.  

The detailed dataset sizes are shown in  

Table 4.1 & 

 

Table 4.2. The performance results for male- specific models with heavy metal exposure 

data are in Table 4.3, without heavy metal exposure data are in . For female specific models with 

heavy metal exposure data are in  

 

Table 4.5 and without the heavy metal exposure data are in Table 4.6.  

Male – specific models 

The results of the models with heavy metal exposure data had the following performance 

ranges: test accuracy: 66 – 74%, sensitivity: 66 – 81% and specificity: 51 – 83%. The model with 

highest test accuracy was Coarse KNN. The model with highest sensitivity was Gaussian SVM I 

at 83%. However, it has a very poor specificity of only 51%. These results imply that although the 

Gaussian SVM I model is 83% accurate at predicting those with HS, it does not perform well when 

predicting those without HS.   

The results of the models without heavy metal exposure data had the following 

performance ranges: test accuracy: 70 - 72%, sensitivity: 66 - 78% and specificity: 62 - 79%. The 

model with highest test accuracy was Gaussian SVM II at 72%. The model with highest sensitivity 

was Gaussian SVM I at 78%. Similar to the models with heavy metal exposure data included, the 
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Gaussian SVM I has the best sensitivity performance. However, it continues to result in poor 

specificity (62% for the models without heavy metal exposure data).   

Interestingly, the use of heavy metal exposure data only improved the performance of the 

models by 2% (test accuracy), 3% (sensitivity), and 4% (specificity). In both the cases, the model 

with highest sensitivity was Gaussian SVM I. But due to the significantly low specificity 

performance of the Gaussian SVM I, this model would require more training, and validation before 

use. Additional analysis to these models is out of scope for this dissertation but can be explored in 

the future.  

It is postulated that including time-series heavy metal exposure data might be more 

beneficial in predicting HS than stationary data (which is used in this research). Further, additional 

research regarding the impacts of toxins on liver health might lead to intermediate 

parameters/biomarkers. In the future, if such research becomes available, those parameters can be 

included in the model to improve the HS prediction. 

Female – specific models 

The results of the models with the heavy metal exposure data had the following 

performance ranges: test accuracy: 66 – 72 %, sensitivity: 67 – 78 % and specificity: 54 – 76 %. 

The models with highest test accuracies were Logistic Regression and Ensemble Subspace 

Discriminant, both with a test accuracy of 72 %. The model with highest sensitivity was Gaussian 

SVM 1 at 78%. However, the specificity of the Gaussian SVM I model was very poor at 54%. 

The results of the models without heavy metal exposure data had the following 

performance ranges: test accuracy: 70 – 73%, sensitivity: 69 – 74% and specificity: 66 – 77%. The 

model with highest test accuracies were Logistic Regression and Linear SVM with a test accuracy 

of 73%. The model with highest sensitivity was Gaussian Scale I SVM at 74%. Although the 

specificity of the Gaussian SVM I was still low at 66%, it was higher than the model with heavy 

metal exposure data.  

Overall, the difference in performances was still minimal at 1% test accuracy, 4% 

sensitivity and 1% specificity. The models without heavy metal exposure data resulted in better 

test accuracy and better specificity than those with heavy metal exposure data. However, the 

sensitivity of the model with heavy metal exposure data included as higher than that of the model 

without.  
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While the impact of using toxicological data (Lead, Cadmium, and Iron) levels did not 

show a significant improvement with ML model performance, these parameters need additional 

investigation. Increasing research related to heavy metal exposure and the liver might benefit the 

prediction of HS using ML in the future.  

4.5 Summary and conclusions 

Models were developed to test the impact of including vs excluding a cluster of heavy 

metal exposure data (Lead, Iron, and Cadmium). The best performing models (with heavy metal 

exposure) had 74% and 72% test accuracies for male and female, respectively. The best performing 

models without heavy metal exposure had test accuracies of 72% and 73% for male and female, 

respectively. Interestingly, while the use of heavy metal exposure data improved the Male -specific 

model performance by 2%, it decreased the performance of the female-specific model by 1%. 

Overall, the use of heavy metal exposure parameters did not impact the model performance (less 

than 3%) in this work.  

The conclusion of this research was: 

Inclusion of heavy metal exposure (Lead, Iron, and Cadmium) did not have a numerically 

significant impact on the model performance in predicting HS.  

4.6 Recommendations for future work 

Future research regarding heavy metal exposure and its impact on the liver might lead to 

discovery of biomarkers for liver related heavy metal exposure. Any such potential biomarkers 

would be a good feature to include in screening of NAFLD. To understand the impact of heavy 

metal exposure on HS prediction, use of longitudinal/time-series data is recommended. Additional 

data related to heavy metal exposure like: Arsenic, mercury and other heavy metals is also 

recommended to be used along with Lead, Cadmium, and Iron data. Utilizing the sample weights 

provided by NHANES and developing models using weighted observations are also 

recommended. 
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4.7 Tables  

 

Table 4.1: Dataset sizes after applying SMOTE – with heavy metal exposure 

parameters 

Sex 
HS (before 

SMOTE) 

HS (after 

SMOTE) 
No-HS Total 

Male 581 2,324 1,962 4,286 

Female 684 2,736 2,803 5,539 

 

 

Table 4.2: Dataset sizes after applying SMOTE – without heavy metal exposure 

parameters 

Sex 
HS (before 

SMOTE) 

HS (after 

SMOTE) 
No-HS Total 

Male 588 2,352 1,978 4,330 

Female 690 2,760 2,830 5,590 

 

 

Table 4.3: Best performing models using heavy metal exposure data - male populations 

Models Training (%) Testing (%) Sensitivity (%) Specificity (%) 

Gaussian SVM I 64.5 66.1 81.0 51.1 

Coarse KNN 67.2 74.4 65.5 83.3 

Ensemble Boosted 67.6 71.8 71.8 71.8 

Ensemble RUS Boosted 

Trees 
68.2 73.5 74.7 72.4 
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Table 4.4: Best performing models excluding heavy metal exposure data - male populations 

Models Training (%) Testing (%) 
Sensitivity 

(%) 

Specificity 

(%) 

Logistic Regression 71.3 71.9 69.4 74.6 

Linear SVM 70.8 71.9 66.6 77.3 

Gaussian SVM I 67.2 69.6 77.5 61.7 

Gaussian SVM II 70.5 72.4 70.1 74.7 

Gaussian SVM III 70.2 71.5 64.2 78.7 

 

 

Table 4.5: Best performing models using heavy metal exposure data - female populations 

Models Training Testing Sensitivity Specificity 

Logistic Regression 71.9 71.9 68.5 75.4 

Gaussian SVM I 66.5 65.9 77.7 54.1 

Gaussian SVM II 71.5 71.4 67.2 75.6 

Gaussian SVM III 71.5 71.4 67.1 75.8 

Ensemble Subspace 

Discriminant 
72.1 71.9 68.0 75.9 

 

 

Table 4.6: Best performing models excluding heavy metal exposure data - female populations 

Models 
Training 

(%) 

Testing 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Logistic Regression 72.2 73.0 68.9 77.1 

Linear SVM 72.2 73.0 68.8 77.2 

Gaussian SVM I 69.6 70.2 74.3 66.1 

Ensemble Subspace 

Discriminant 
72.7 72.8 69.6 76.1 
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APPENDIX D. P3 - CODE FOR OBJECTIVE 3 

1. SAS CODE TO KEEP VARIABLES OF INTEREST AND DISCARD THE REST

%%%%%%%% 

% Created on: 02/17/2022 

% Input: Raw data from NHANES 

% Output: Data with only variables of interest, specific to objective 3 

% Author: Ridhi Deo 

% File name: obj1c_sas_1.sas 

% Description: Used eliminate the variables that are not required and to only keep the variables 

of interest from the raw datasets. This program was developed using SAS 2019 [64]. 

%%%%%%%% 

 

% set the data path and choose the variables to keep. Variable codes are as provided by  

% NHANESIII 

 

LIBNAME NH "Raw data path"; 

 

data adult; 

set NH.adult; 

keep SEQN HSAGEIR HSSEX DMARETHN HAD1 HAD6 HAD10; 

proc sort; by seqn; run;   

 

data lab; 

set NH.lab; 

keep SEQN AHP HBP SSP SAP HCP DHP NAPSI SKPSI CLPSI C3PSI SCPSI PSPSI 

UAPSI G1P G2P BUPSI TBPSI CEPSI SFPSI CHPSI TRPSI ASPSI ATPSI GGPSI 

LDPSI APPSI TPPSI AMPSI GBPSI OSPSI GHP GHPMETH G1PSI G1PCODE G2PSI 

C1PSI C2PSI I1PSI I2PSI UDP UDPSI URPSI UBP UIP PLPSI PVPSI PBP PBPSI FEP 

FEPSI VBPSI VCPSI ICPSI CAPSI SEPSI VAPSI VEPSI ACPSI BCPSI TCPSI TGPSI 

LCPSI HDPSI AAPSI ABPSI LPPSI PHPFAST; 

proc sort; by seqn; run;  

 

data exam; 

set NH.exam; 

keep SEQN PEP6DR BMPBMI BMPWAIST MAPA1 MAPA2A MAPA2B MAPA3 

MAPE1 MAPE2 MAPE4; 

proc sort; by seqn; run;  

  

data HGUHS; 

set NH.HGUHS; 

keep SEQN GUPHSQC GUPHSLKC GUPHSPB GUPHSDBA GUPHSVW 

GUPHSDGB GUPHSPF GUPHSPFR GUPHSC GUPHSREV; 

proc sort; by seqn; run; 
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proc contents data = NH.adult; 

run; 

 

proc contents data = NH.lab; 

run; 

 

proc contents data = NH.exam; 

run; 

 

proc contents data = NH.HGUHS; 

run; 

 

2. SAS CODE TO MERGE DATASETS  

%%%%%%%% 

% Created on: 02/17/2022 

% Input: Processed data with only variables of interest, specific to objective 3 

% Output: Multiple datasets of interest merged into one dataset 

% Author: Ridhi Deo 

% File name: obj1c_sas_2.sas 

% Description: Used to combine different datasets of interest into one. This program was 

developed using SAS 2019 [64]. 

%%%%%%%% 

 

% Sorting data using sequential numbers 

proc sort data=work.adult; 

 by SEQN; 

proc sort data=work.lab; 

 by SEQN; 

proc sort data=work.exam; 

 by SEQN; 

proc sort data=work.hguhs; 

 by SEQN; 

%Merging data using the sequential number 

 data NH.merged; 

 merge work.adult 

    work.lab 

    work.exam 

    work.hguhs; 

 by SEQN; 

 

proc contents data = NH.merged varnum; 

proc means data=NH.merged N Nmiss min max maxdec=2; 

run;  
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3. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE 

DATASETS (WITH HEAVY METAL EXPOSURE DATA) 

%%%%%%%% 

% Created on: 02/17/22 

% Input: Merged dataset from SAS 

% Output: Processed data, split into male and female sub-datasets 

% Author: Ridhi Deo 

% File name: Obj1c_matlab_1a.m 

% Description: This code was written to process data (with heavy metal exposure data) and split 

it into male and female sub-datasets. This program was developed using SAS 2019 [64]. 

%%%%%%%% 

clc 

close all; 

%% Data import 

data = readtable(data directory); 

%% Extracting the following features  

% SEQN, Age, Sex, Lead, Iron, Cadmium 

% Will also need to extract alcohol data so that exclusions can be applied 

data = data(:,[1,3,4,8,12,14,27,50,51,54,62,65,68,69,71,76,82:84,92]); 

 

data.Properties.VariableNames{'HSAGEIR'} = 'Age'; 

data.Properties.VariableNames{'HSSEX'} = 'Sex'; 

data.Properties.VariableNames{'BMPBMI'} = 'BMI'; 

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life'; 

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year'; 

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day'; 

data.Properties.VariableNames{'GUPHSPFR'} = 'HS'; 

data.Properties.VariableNames{'ATPSI'} = 'ALT'; 

data.Properties.VariableNames{'ASPSI'} = 'AST'; 

data.Properties.VariableNames{'APPSI'} = 'ASP'; 

data.Properties.VariableNames{'G1PSI'} = 'Plasma_glucose_1'; 

data.Properties.VariableNames{'G2PSI'} = 'Plasma_glucose_2'; 

data.Properties.VariableNames{'I1PSI'} = 'Insulin_1'; 

data.Properties.VariableNames{'I2PSI'} = 'Insulin_2'; 

data.Properties.VariableNames{'HDPSI'} = 'HDL'; 

data.Properties.VariableNames{'PBPSI'} = 'Lead'; 

data.Properties.VariableNames{'FEPSI'} = 'Iron'; 

data.Properties.VariableNames{'UDPSI'} = 'Cadmium'; 

data.Properties.VariableNames{'PHPFAST'} = 'Fasting_time_hours'; 

 

%% Alcohol data columns processing 

% Filling in missing data for the 12 drinks per year column with information from 12 

drinks in life column 

% If a person has not had 12 drinks in their lifetime, the response on the 

% variable 12 drinks in past year are missing 

% To fix that, individuals who have not had 12 drinks in their life will 
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% have 0s on the column 12 drinks in past year 

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the 

column drinks per day 

for i = 1: size(data,1) 

    if (data.Alcohol_12_life(i) == 2)  

        data.Alcohol_12_last_year(i) = 0; 

        data.Drinks_per_day(i) = 0; 

    end 

end 

 

for i = 1: size(data,1) 

    if (data.Alcohol_12_last_year(i) == 2)  

        data.Drinks_per_day(i) = 0; 

    end 

end 

 

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing 

variables of interest 

% The information was referred from NHANES 3 documentation 

% Since we have not used any youth data, all NaNs in the Age column could 

% correspond to that 

idx_age = find(isnan(data.Age)); % Eliminated 13,149 samples 

data(idx_age,:) = [];  

clear idx_age; % Sample size: 20,050 x 17 

 

% Sex 

% No missing or junk data 

 

% Fasting time 

data.Fasting_time_hours(data.Fasting_time_hours == 88888) = NaN; 

 

% Lead,Cadmium, Iron 

data.Lead(data.Lead == 88888) = NaN;  

data.Cadmium(data.Cadmium == 888888) = NaN; 

data.Iron(data.Iron == 88888) = NaN; 

 

% HS 

% 7 Image is present, but ungradable 

% 8 No image 

data.HS(data.HS == 7) = NaN; 

data.HS(data.HS == 8) = NaN; 

 

% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic 

beverage? Do not count small tastes. 

% 8 - Blank but applicable, 9 - dont know.  

data.Alcohol_12_life(data.Alcohol_12_life == 8) = NaN; 
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data.Alcohol_12_life(data.Alcohol_12_life == 9) = NaN; 

 

% MAPE2 In the past 12 months did you 

%have at least 12 drinks of any kind of alcoholic beverage? 

% 8 - Blank but applicable, 9 - dont know.  

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 8) = NaN; 

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 9) = NaN; 

 

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you 

have a day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.) 

% 888 - Blank but applicable, 999 - dont know.  

data.Drinks_per_day(data.Drinks_per_day == 888) = NaN; 

data.Drinks_per_day(data.Drinks_per_day == 999) = NaN; 

 

% Glucose and insulin related junk data 

data.Plasma_glucose_1(data.Plasma_glucose_1 == 888888) = NaN; 

data.Plasma_glucose_2(data.Plasma_glucose_2 == 888888) = NaN; 

data.Insulin_1(data.Insulin_1 == 8888888) = NaN; 

data.Insulin_2(data.Insulin_2 == 8888888) = NaN; 

%% Eliminating missing data from HS - we need to eliminate this data because this is our 

output variable and groud truth 

HS_missing_idx = find(isnan(data.HS)); %6,194 samples with missing HS 

data(HS_missing_idx,:) = [];  

clear HS_missing_idx; 

 

% Lead, Cadmium, Iron 

Lead_missing_idx = find(isnan(data.Lead)); %457 with missing lead data 

data(Lead_missing_idx, :) = []; 

 

Cd_missing_idx = find(isnan(data.Cadmium)); %149 with missing Cd data 

data(Cd_missing_idx, :) = []; 

 

Iron_missing_idx = find(isnan(data.Iron)); %0 missing Iron data 

data(Iron_missing_idx, :) = []; 

 

Fasting_missing_idx = find(isnan(data.Fasting_time_hours)); 

data(Fasting_missing_idx,:) = []; % 12 missing Fasting information 

 

clear Iron_missing_idx Cd_missing_idx Lead_missing_idx Fasting_missing_idx; 

 

 

%% Junk and missing data - ALT, AST, ASP, HDL, BMI 

% AST 

% 888 Blank but applicable 

data.AST(data.AST == 888) = NaN; 

% ALT 
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% 888 Blank but applicable 

data.ALT(data.ALT == 888) = NaN; 

% ASP 

% 8888 Blank but applicable 

data.ASP(data.ASP == 8888) = NaN; 

% BMI 

% 8888 was found as junk data via visual examination of data. Although I didnt see this 

on the website for 

% NHANES, it is removed because 8888 is not appropriate BMI 

data.BMI(data.BMI == 8888) = NaN; 

% HDL 

data.HDL(data.HDL == 8888) = NaN; 

 

ALT_missing_idx = find(isnan(data.ALT));  

data(ALT_missing_idx,:) = []; 

 

AST_missing_idx = find(isnan(data.AST));  

data(AST_missing_idx,:) = []; 

 

ASP_missing_idx = find(isnan(data.ASP));  

data(ASP_missing_idx,:) = []; 

 

BMI_idx = find(isnan(data.BMI));  

data(BMI_idx,:) = []; 

 

HDL_idx = find(isnan(data.HDL));  

data(HDL_idx,:) = []; 

  

clear ALT_missing_idx AST_missing_idx ASP_missing_idx BMI_idx HDL_idx; 

 

%% IF there are NaNs in G1PSI, fill them with G2PSI. If both G1PSI and G2PSI are 

% NaNs, then delete the sample 

 for i = 1:size(data,1) 

     if(isnan(data.Plasma_glucose_1(i))) 

         if(isnan(data.Plasma_glucose_2(i))) 

             idx_pg(i) = i;  

         else 

             data.Plasma_glucose_1(i) = data.Plasma_glucose_2(i); 

         end 

     end 

 end 

  

data.Plasma_glucose_2 = []; 

Plasma_glucose_idx = find(isnan(data.Plasma_glucose_1)); %25 cases of missing plasma 

glucose samples after combining G1PSI and G2PSI 

data(Plasma_glucose_idx,:) = []; 
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%% IF there are NaNs in I1PSI, fill them with I2PSI. If both I1PSI and I2PSI are 

% NaNs, then delete the sample 

 for i = 1:size(data,1) 

     if(isnan(data.Insulin_1(i))) 

         if(isnan(data.Insulin_2(i))) 

             idx_in(i) = i;  

         else 

             data.Insulin_1(i) = data.Insulin_2(i); 

         end 

     end 

 end 

  

data.Insulin_2 = []; 

Insulin_idx = find(isnan(data.Insulin_1)); %62 cases of missing insulin samples after 

combining I1PSI and I2PSI 

data(Insulin_idx,:) = []; 

 

clear idx_pg idx_in Plasma_glucose_idx Insulin_idx 

 

%% Convert Insulin_1 from pmol/L to mU/L by multiplying with 0.144 

data.Insulin_1 = data.Insulin_1*0.144; 

% Glucose unit is correct for G1PSI so no need to convert 

 

%% Exclude data related to less than permissible fasting time (X hours) 

idx_fasting = find(data.Fasting_time_hours<8); %Identify data that has fasting hours < 8 

hours 

data(idx_fasting,:)=[]; %Eliminate data  

%% Delete fasting hours variable  

data.Fasting_time_hours = []; 

%% Calculating Insulin resistance 

data(:,end+1) = array2table(zeros(size(data,1),1)); 

data.Properties.VariableNames{'Var18'} = 'Insulin_resistance'; 

% Fasting insulin [mU/L] x fasting glucose [mmol/L] / 22.5 

data.Insulin_resistance = data.Insulin_1.*data.Plasma_glucose_1/22.5; 

 

%% Delete plasma glucose and insulin resistance 

data.Plasma_glucose_1 = []; 

data.Insulin_1 = []; 

 

%% Split datasets into HS and non-HS 

data.HS(data.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to 

indicate no risk 

data.HS(data.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to 1 

to indidcate risk 

 

idx_disease = data.HS == 1; 
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dataset_HS = data(idx_disease,:);  

 

idx_non_disease = data.HS == 0; 

dataset_non_HS = data(idx_non_disease,:);  

clear idx_disease  idx_non_disease; 

 

%% Split further into Male HS, Non-HS and Female HS, non-HS 

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :);  

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:);  

 

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:);  

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:);  

 

%% Apply exclusion criteria for alcohol 

% HS and No-HS male exclusion criteria - > 21 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_male,1) 

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3) 

        idx_HS_men(k) = i; 

        k = k + 1; 

    end 

end 

dataset_HS_male(idx_HS_men,:) = [];  

clear k  idx_HS_men; 

 

j = 1; 

for i = 1: size(dataset_non_HS_male,1) 

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3) 

        idx_non_HS_men(j) = i; 

        j = j + 1; 

    end 

end 

 

dataset_non_HS_male(idx_non_HS_men,:) = [];  

clear j  idx_non_HS_men; 

 

% HS and No-HS female exclusion criteria - > 14 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_female,1) 

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2) 

        idx_HS_women(k) = i; 

        k = k + 1; 

    end 

end 
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dataset_HS_female(idx_HS_women,:) = []; 

clear k  idx_HS_women; 

 

j = 1; 

for i = 1: size(dataset_non_HS_female,1) 

if(dataset_non_HS_female.Sex(i) == 2  && dataset_non_HS_female.Drinks_per_day(i) 

> 2) 

        idx_non_HS_women(j) = i; 

        j = j + 1; 

    end 

end 

dataset_non_HS_female(idx_non_HS_women,:) = []; 

clear j idx_non_HS_women; 

 

%% Delete missing data related to drinks per day 

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day)); 

dataset_HS_male(idx_male_HS_drinks,:) = [];  

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day)); 

dataset_non_HS_male(idx_male_non_HS_drinks,:) = [];  

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day)); 

dataset_HS_female(idx_female_HS_drinks,:) = []; 

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day)); 

dataset_non_HS_female(idx_female_non_HS_drinks,:) = []; 

 

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks 

idx_male_non_HS_drinks; 

 

%% Delete alcohol columns from 4 datasets 

dataset_HS_male.Alcohol_12_last_year = []; 

dataset_HS_male.Alcohol_12_life = []; 

dataset_HS_male.Drinks_per_day = []; 

 

dataset_HS_female.Alcohol_12_last_year = []; 

dataset_HS_female.Alcohol_12_life = []; 

dataset_HS_female.Drinks_per_day = []; 

 

dataset_non_HS_male.Alcohol_12_last_year = []; 

dataset_non_HS_male.Alcohol_12_life = []; 

dataset_non_HS_male.Drinks_per_day = []; 

 

dataset_non_HS_female.Alcohol_12_last_year = []; 

dataset_non_HS_female.Alcohol_12_life = []; 

dataset_non_HS_female.Drinks_per_day = []; 

 

%% Delete sex column from all 4 datasets 

dataset_HS_male.Sex = []; 
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dataset_HS_female.Sex = []; 

dataset_non_HS_male.Sex = []; 

dataset_non_HS_female.Sex = []; 

clear i; 

 

 

4. MATLAB CODE TO PROCESS AND CREATE DISEASE AND NO-DISEASE 

DATASETS (WITHOUT HEAVY METAL EXPOSURE DATA) 

%%%%%%%% 

% Created on: 02/17/22 

% Input: Merged dataset from SAS 

% Output: Processed data, split into male and female sub-datasets 

% Author: Ridhi Deo 

% File name: Obj1c_matlab_1b.m 

% Description: This code was written to process data (without heavy metal exposure data) and 

split it into male and female sub-datasets 

%%%%%%%% 

 

clc 

close all; 

%% Data import 

data = readtable(Raw data path); 

%% Extracting the following features based on discussion with Dr. P 

% SEQN, Age, Sex, Lead, Iron, Cadmium 

% Will also need to extract alcohol data so that exclusions can be applied 

data = data(:,[1,3,4,8,12,14,27,50,51,54,62,65,68,69,71,76,82:84,92]); 

 

data.Properties.VariableNames{'HSAGEIR'} = 'Age'; 

data.Properties.VariableNames{'HSSEX'} = 'Sex'; 

data.Properties.VariableNames{'BMPBMI'} = 'BMI'; 

data.Properties.VariableNames{'MAPE1'} = 'Alcohol_12_life'; 

data.Properties.VariableNames{'MAPE2'} = 'Alcohol_12_last_year'; 

data.Properties.VariableNames{'MAPE4'} = 'Drinks_per_day'; 

data.Properties.VariableNames{'GUPHSPFR'} = 'HS'; 

data.Properties.VariableNames{'ATPSI'} = 'ALT'; 

data.Properties.VariableNames{'ASPSI'} = 'AST'; 

data.Properties.VariableNames{'APPSI'} = 'ASP'; 

data.Properties.VariableNames{'G1PSI'} = 'Plasma_glucose_1'; 

data.Properties.VariableNames{'G2PSI'} = 'Plasma_glucose_2'; 

data.Properties.VariableNames{'I1PSI'} = 'Insulin_1'; 

data.Properties.VariableNames{'I2PSI'} = 'Insulin_2'; 

data.Properties.VariableNames{'HDPSI'} = 'HDL'; 

data.Properties.VariableNames{'PBPSI'} = 'Lead'; 

data.Properties.VariableNames{'FEPSI'} = 'Iron'; 

data.Properties.VariableNames{'UDPSI'} = 'Cadmium'; 
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data.Properties.VariableNames{'PHPFAST'} = 'Fasting_time_hours'; 

 

%% Alcohol data columns processing 

% Filling in missing data for the 12 drinks per year column with information from 12 

drinks in life column 

% If a person has not had 12 drinks in their lifetime, the response on the 

% variable 12 drinks in past year are missing 

% To fix that, individuals who have not had 12 drinks in their life will 

% have 0s on the column 12 drinks in past year 

% Same logic applies - making all those who have not had 12 drinks in their life 0 in the 

column drinks per day 

for i = 1: size(data,1) 

    if (data.Alcohol_12_life(i) == 2)  

        data.Alcohol_12_last_year(i) = 0; 

        data.Drinks_per_day(i) = 0; 

    end 

end 

 

for i = 1: size(data,1) 

    if (data.Alcohol_12_last_year(i) == 2)  

        data.Drinks_per_day(i) = 0; 

    end 

end 

 

%% Cleaning up all the junk data (represented as 888 or 8888 or 999 etc.) withing 

variables of interest 

% The information was referred from NHANES 3 documentation 

% Since we have not used any youth data, all NaNs in the Age column could 

% correspond to that 

idx_age = find(isnan(data.Age)); % Eliminated 13,149 samples 

data(idx_age,:) = [];  

clear idx_age; % Sample size: 20,050 x 17 

 

% Sex 

% No missing or junk data 

 

% Fasting time 

data.Fasting_time_hours(data.Fasting_time_hours == 88888) = NaN; 

 

 

% HS 

% 7 Image is present, but ungradable 

% 8 No image 

data.HS(data.HS == 7) = NaN; 

data.HS(data.HS == 8) = NaN; 
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% MAPE1 In your entire life, have you had at least 12 drinks of any kind of alcoholic 

beverage? Do not count small tastes. 

% 8 - Blank but applicable, 9 - dont know.  

data.Alcohol_12_life(data.Alcohol_12_life == 8) = NaN; 

data.Alcohol_12_life(data.Alcohol_12_life == 9) = NaN; 

 

% MAPE2 In the past 12 months did you 

%have at least 12 drinks of any kind of alcoholic beverage? 

% 8 - Blank but applicable, 9 - dont know.  

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 8) = NaN; 

data.Alcohol_12_last_year(data.Alcohol_12_last_year == 9) = NaN; 

 

% MAPE4 On the average, on the days that you drank alcohol, how many drinks did you 

have a day? (By a drink, I mean a 12-oz beer, a 4-oz glass of wine, or an ounce of liquor.) 

% 888 - Blank but applicable, 999 - dont know.  

data.Drinks_per_day(data.Drinks_per_day == 888) = NaN; 

data.Drinks_per_day(data.Drinks_per_day == 999) = NaN; 

 

% Glucose and insulin related junk data 

data.Plasma_glucose_1(data.Plasma_glucose_1 == 888888) = NaN; 

data.Plasma_glucose_2(data.Plasma_glucose_2 == 888888) = NaN; 

data.Insulin_1(data.Insulin_1 == 8888888) = NaN; 

data.Insulin_2(data.Insulin_2 == 8888888) = NaN; 

%% Eliminating missing data from HS - we need to eliminate this data because this is our 

output variable and groud truth 

HS_missing_idx = find(isnan(data.HS)); %6,194 samples with missing HS 

data(HS_missing_idx,:) = [];  

clear HS_missing_idx; 

 

Fasting_missing_idx = find(isnan(data.Fasting_time_hours)); 

data(Fasting_missing_idx,:) = []; % 12 missing Fasting information 

 

clear Fasting_missing_idx; 

 

 

%% Junk and missing data - ALT, AST, ASP, HDL, BMI 

% AST 

% 888 Blank but applicable 

data.AST(data.AST == 888) = NaN; 

% ALT 

% 888 Blank but applicable 

data.ALT(data.ALT == 888) = NaN; 

% ASP 

% 8888 Blank but applicable 

data.ASP(data.ASP == 8888) = NaN; 

% BMI 
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% 8888 was found as junk data via visual examination of data. Although I didnt see this 

on the website for 

% NHANES, it is removed because 8888 is not appropriate BMI 

data.BMI(data.BMI == 8888) = NaN; 

% HDL 

data.HDL(data.HDL == 8888) = NaN; 

 

ALT_missing_idx = find(isnan(data.ALT));  

data(ALT_missing_idx,:) = []; 

 

AST_missing_idx = find(isnan(data.AST));  

data(AST_missing_idx,:) = []; 

 

ASP_missing_idx = find(isnan(data.ASP));  

data(ASP_missing_idx,:) = []; 

 

BMI_idx = find(isnan(data.BMI));  

data(BMI_idx,:) = []; 

 

HDL_idx = find(isnan(data.HDL));  

data(HDL_idx,:) = []; 

  

clear ALT_missing_idx AST_missing_idx ASP_missing_idx BMI_idx HDL_idx; 

 

%% IF there are NaNs in G1PSI, fill them with G2PSI. If both G1PSI and G2PSI are 

% NaNs, then delete the sample 

 for i = 1:size(data,1) 

     if(isnan(data.Plasma_glucose_1(i))) 

         if(isnan(data.Plasma_glucose_2(i))) 

             idx_pg(i) = i;  

         else 

             data.Plasma_glucose_1(i) = data.Plasma_glucose_2(i); 

         end 

     end 

 end 

  

data.Plasma_glucose_2 = []; 

Plasma_glucose_idx = find(isnan(data.Plasma_glucose_1)); %25 cases of missing plasma 

glucose samples after combining G1PSI and G2PSI 

data(Plasma_glucose_idx,:) = []; 

 

%% IF there are NaNs in I1PSI, fill them with I2PSI. If both I1PSI and I2PSI are 

% NaNs, then delete the sample 

 for i = 1:size(data,1) 

     if(isnan(data.Insulin_1(i))) 

         if(isnan(data.Insulin_2(i))) 
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             idx_in(i) = i;  

         else 

             data.Insulin_1(i) = data.Insulin_2(i); 

         end 

     end 

 end 

  

data.Insulin_2 = []; 

Insulin_idx = find(isnan(data.Insulin_1)); %62 cases of missing insulin samples after 

combining I1PSI and I2PSI 

data(Insulin_idx,:) = []; 

 

clear idx_pg idx_in Plasma_glucose_idx Insulin_idx 

 

%% Convert Insulin_1 from pmol/L to mU/L by multiplying with 0.144 

data.Insulin_1 = data.Insulin_1*0.144; 

% Glucose unit is correct for G1PSI so no need to convert 

 

%% Exclude data related to less than permissible fasting time (X hours) 

idx_fasting = find(data.Fasting_time_hours<8); %Identify data that has fasting hours < 8 

hours 

data(idx_fasting,:)=[]; %Eliminate data  

%% Delete fasting hours variable  

data.Fasting_time_hours = []; 

 

 

%% Calculating Insulin resistance 

data(:,end+1) = array2table(zeros(size(data,1),1)); 

data.Properties.VariableNames{'Var18'} = 'Insulin_resistance'; 

% Fasting insulin [mU/L] x fasting glucose [mmol/L] / 22.5 

data.Insulin_resistance = data.Insulin_1.*data.Plasma_glucose_1/22.5; 

 

%% Delete plasma glucose and insulin resistance 

data.Plasma_glucose_1 = []; 

data.Insulin_1 = []; 

 

%% Split datasets into HS and non-HS 

data.HS(data.HS == 1) = 0; % 1 is Normal - Mild as per NHANES. Changing it to 0 to 

indicate no risk 

data.HS(data.HS == 2) = 1; % 2 is Moderate - Severe as per NHANES. Changing it to 1 

to indidcate risk 

 

idx_disease = data.HS == 1; 

dataset_HS = data(idx_disease,:);  

 

idx_non_disease = data.HS == 0; 
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dataset_non_HS = data(idx_non_disease,:);  

clear idx_disease  idx_non_disease; 

 

%% Split further into Male HS, Non-HS and Female HS, non-HS 

dataset_HS_male = dataset_HS(dataset_HS.Sex == 1, :);  

dataset_HS_female = dataset_HS(dataset_HS.Sex == 2,:);  

 

dataset_non_HS_male = dataset_non_HS(dataset_non_HS.Sex == 1,:);  

dataset_non_HS_female = dataset_non_HS(dataset_non_HS.Sex == 2,:);  

 

%% Apply exclusion criteria for alcohol 

% HS and No-HS male exclusion criteria - > 21 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_male,1) 

 if(dataset_HS_male.Sex(i) == 1 && dataset_HS_male.Drinks_per_day(i) > 3) 

        idx_HS_men(k) = i; 

        k = k + 1; 

    end 

end 

dataset_HS_male(idx_HS_men,:) = [];  

clear k  idx_HS_men; 

 

j = 1; 

for i = 1: size(dataset_non_HS_male,1) 

if(dataset_non_HS_male.Sex(i) == 1 && dataset_non_HS_male.Drinks_per_day(i) > 3) 

        idx_non_HS_men(j) = i; 

        j = j + 1; 

    end 

end 

 

dataset_non_HS_male(idx_non_HS_men,:) = [];  

clear j  idx_non_HS_men; 

 

% HS and No-HS female exclusion criteria - > 14 drinks/week should be 

% excluded 

k = 1; 

for i = 1: size(dataset_HS_female,1) 

if(dataset_HS_female.Sex(i) == 2 && dataset_HS_female.Drinks_per_day(i) > 2) 

        idx_HS_women(k) = i; 

        k = k + 1; 

    end 

end 

dataset_HS_female(idx_HS_women,:) = []; 

clear k  idx_HS_women; 
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j = 1; 

for i = 1: size(dataset_non_HS_female,1) 

if(dataset_non_HS_female.Sex(i) == 2  && dataset_non_HS_female.Drinks_per_day(i) 

> 2) 

        idx_non_HS_women(j) = i; 

        j = j + 1; 

    end 

end 

dataset_non_HS_female(idx_non_HS_women,:) = []; 

clear j idx_non_HS_women; 

 

%% Delete missing data related to drinks per day 

idx_male_HS_drinks = find(isnan(dataset_HS_male.Drinks_per_day)); 

dataset_HS_male(idx_male_HS_drinks,:) = [];  

idx_male_non_HS_drinks = find(isnan(dataset_non_HS_male.Drinks_per_day)); 

dataset_non_HS_male(idx_male_non_HS_drinks,:) = [];  

idx_female_HS_drinks = find(isnan(dataset_HS_female.Drinks_per_day)); 

dataset_HS_female(idx_female_HS_drinks,:) = []; 

idx_female_non_HS_drinks = find(isnan(dataset_non_HS_female.Drinks_per_day)); 

dataset_non_HS_female(idx_female_non_HS_drinks,:) = []; 

 

clear idx_female_HS_drinks idx_female_non_HS_drinks idx_male_HS_drinks 

idx_male_non_HS_drinks; 

 

%% Delete alcohol columns from 4 datasets 

dataset_HS_male.Alcohol_12_last_year = []; 

dataset_HS_male.Alcohol_12_life = []; 

dataset_HS_male.Drinks_per_day = []; 

 

dataset_HS_female.Alcohol_12_last_year = []; 

dataset_HS_female.Alcohol_12_life = []; 

dataset_HS_female.Drinks_per_day = []; 

 

dataset_non_HS_male.Alcohol_12_last_year = []; 

dataset_non_HS_male.Alcohol_12_life = []; 

dataset_non_HS_male.Drinks_per_day = []; 

 

dataset_non_HS_female.Alcohol_12_last_year = []; 

dataset_non_HS_female.Alcohol_12_life = []; 

dataset_non_HS_female.Drinks_per_day = []; 

 

%% Delete sex column from all 4 datasets 

dataset_HS_male.Sex = []; 

dataset_HS_female.Sex = []; 

dataset_non_HS_male.Sex = []; 

dataset_non_HS_female.Sex = []; 
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clear i; 

 

%% Delete heavy metal exposure parameters from all datasets 

dataset_HS_male.Lead = []; 

dataset_HS_female.Lead = []; 

dataset_non_HS_male.Lead = []; 

dataset_non_HS_female.Lead = []; 

 

dataset_HS_male.Iron = []; 

dataset_HS_female.Iron = []; 

dataset_non_HS_male.Iron = []; 

dataset_non_HS_female.Iron = []; 

 

dataset_HS_male.Cadmium = []; 

dataset_HS_female.Cadmium = []; 

dataset_non_HS_male.Cadmium = []; 

dataset_non_HS_female.Cadmium = []; 

 

MATLAB Code specific to process MALE datasets 

%%%%%%%% 

% Created on: 02/17/22 

% Input: Datasets from obj_1c_matlab_1a.m (for heavy metal exposure data) or 

obj_1c_matlab_1b.m (without  heavy metal exposure data) 

% Output: Processed data, split into training and test sub datasets 

% Author: Ridhi Deo 

% File name: Obj1c_matlab_2a.m 

% Description: This code was written to process male population data, apply SMOTE, additional 

processing and create training and test datasets in a 70:30 ratio, respectively. 

%%%%%%%% 

 

%% SMOTE 

temp_dataset = dataset_HS_male; 

temp_dataset(:,[1,8]) = []; % Removing the SEQN and HS colummns 

size_disease = size(temp_dataset,1); %Measure of number of disease samples 

N = 3; % Equivalent of N*100% synthetic sample generation 

k = 2; % Setting number of nearest neighbours 

num_attrs = size(temp_dataset,2); %Number of variables 

new_index = 0; % Variable to keep a count of newly generated synthetic samples 

synthetic_sample_male.N{N} = zeros(size_disease,num_attrs); %Since we are 

generating N*100% synthetic, this value is N{2} 

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each 

sample 

nn_values = zeros(size_disease,k+1);  

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R 

temp_range = table2array(temp_dataset); %Temporary conversions to array - for 

computational ease. This is essential dataset_HS_male 
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temp_dist = table2array(temp_dataset); 

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the 

distances 

for i = 1:num_attrs %Calculating ranges 

    R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i))); 

end 

% Finding the k-nn 

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be 

itself so we will need to remove that 

            

 

nn_array(:,1) = []; %Remove the first one because it is the same sample  

nn_values(:,1) =[]; %First nn is itself so distance is 0 

while (N~=0) %To perform N*100% synthetic sampling 

  for i = 1:size_disease  

    for attr=1:num_attrs 

        nn = randi([1 k],1); % Randomly choose the nearest neighbor 

        dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr); 

        gap = 0 + rand(1,1); 

        synthetic_sample_male.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic 

continous attributes 

    end 

  end 

  N = N-1; %To avoid infinite loops 

end 

 

total_synthetic_sample_males = 

[synthetic_sample_male.N{1};synthetic_sample_male.N{2};synthetic_sample_male.N{3

}];  

total_synthetic_sample_males = array2table(total_synthetic_sample_males); 

total_synthetic_sample_males.Properties.VariableNames = 

temp_dataset.Properties.VariableNames; 

hybrid_disease_male = [total_synthetic_sample_males; temp_dataset];  %Hybrid = 

synthetic + disease 

hybrid_disease_male.HS = ones(size(hybrid_disease_male,1),1); 

 

%% removing seqn 

dataset_non_HS_male.SEQN = []; 

dataset_HS_male.SEQN = []; 

 

%% Based on American Liver Foundation video - Vicki Shah 

% Normal value for ALT: 10 - 55, but actually 20.  

% AST: 9 - 32, but prefer 20 

% ASP: 30 - 100, also based on age 

% NAFLD: AST and ALT are up to less than 4 times the ULN 

%% Data normalization 
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%% AASLD: male: ALT: 19 - 25 IU/L 

% Using 25IU/L as the ULN for male based on the AASLD guidelines 

% Pre-sets 

% Pre-sets 

ULN_ALT = 33; 

ULN_AST = 30; 

ULN_BMI = 25; 

ULN_HDL = 1; 

%% Creating a new % variables  

ALT_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(ALT_percent); 

dataset_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

AST_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(AST_percent); 

dataset_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(AST_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

 

BMI_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(BMI_percent); 

dataset_HS_male.Properties.VariableNames{'Var11'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var11'} = 'BMI_percent'; 

 

HDL_percent = zeros(size(dataset_HS_male, 1),1); 

dataset_HS_male(:,end+1) = array2table(HDL_percent); 

dataset_HS_male.Properties.VariableNames{'Var12'} = 'HDL_percent'; 

 

HDL_percent = zeros(size(dataset_non_HS_male, 1),1); 

dataset_non_HS_male(:,end+1) = array2table(HDL_percent); 

dataset_non_HS_male.Properties.VariableNames{'Var12'} = 'HDL_percent'; 

%% Normalization equations 

for i = 1: size(dataset_HS_male,1) 

dataset_HS_male.ALT_percent(i) = ((dataset_HS_male.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 
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dataset_HS_male.AST_percent(i) = ((dataset_HS_male.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_HS_male.BMI_percent(i) = ((dataset_HS_male.BMI(i) - 

ULN_BMI)/ULN_BMI)*100; 

dataset_HS_male.HDL_percent(i) = ((dataset_HS_male.HDL(i) - 

ULN_HDL)/ULN_HDL)*100; 

 

end 

clear i; 

for i = 1: size(dataset_non_HS_male,1) 

dataset_non_HS_male.ALT_percent(i) = ((dataset_non_HS_male.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_non_HS_male.AST_percent(i) = ((dataset_non_HS_male.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_non_HS_male.BMI_percent(i) = ((dataset_non_HS_male.BMI(i) - 

ULN_BMI)/ULN_BMI)*100; 

dataset_non_HS_male.HDL_percent(i) = ((dataset_non_HS_male.HDL(i) - 

ULN_HDL)/ULN_HDL)*100; 

 

end 

 

% Converting negative to 0 

 

for i = 1: size(dataset_HS_male,1) 

   if(dataset_HS_male.ALT_percent(i) <= 0) 

       dataset_HS_male.ALT_percent(i) = 0; 

   end 

   if(dataset_HS_male.AST_percent(i) <= 0) 

       dataset_HS_male.AST_percent(i) = 0; 

   end   

   if(dataset_HS_male.BMI_percent(i) <= 0) 

      dataset_HS_male.BMI_percent(i) = 0; 

   end 

   if(dataset_HS_male.HDL_percent(i) >= 0) 

      dataset_HS_male.HDL_percent(i) = 0; 

   end  

end 

 

 

for i = 1: size(dataset_non_HS_male,1) 

   if(dataset_non_HS_male.ALT_percent(i) <= 0) 

       dataset_non_HS_male.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_male.AST_percent(i) <= 0) 

       dataset_non_HS_male.AST_percent(i) = 0; 

   end 
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    if(dataset_non_HS_male.BMI_percent(i) <= 0) 

      dataset_non_HS_male.BMI_percent(i) = 0; 

    end 

   if(dataset_non_HS_male.HDL_percent(i) >= 0) 

      dataset_non_HS_male.HDL_percent(i) = 0; 

   end     

end 

% %% Remove SEQN  

 

%% Randomly select samples without replacement 

% Note that MATLAB's datasample function has replace = true as default 

 

dataset_non_HS_male_reduced = datasample(dataset_non_HS_male, 

size(dataset_HS_male,1), 'Replace', false); 

 

%% Split into training and test 

Q = size(dataset_HS_male,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_male = dataset_HS_male(trainInd,:); 

test_disease_male = dataset_HS_male(testInd,:); 

 

Q = size(dataset_non_HS_male_reduced,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_male = dataset_non_HS_male_reduced(trainInd,:); 

test_no_disease_male = dataset_non_HS_male_reduced(testInd,:); 

 

training_male = [train_disease_male; train_no_disease_male]; 

test_male = [test_disease_male; test_no_disease_male]; 

test_male = test_male(randperm(size(test_male,1)),:); 

training_male = training_male(randperm(size(training_male,1)),:); 

 

%% Reoder training and test datasets to have HS as the end variable 

training_male = [training_male(:,1:6) training_male(:,8:12) training_male(:, 7)]; 

test_male = [test_male(:,1:6) test_male(:,8:12) test_male(:,7)]; 

MATLAB Code specific to process feMALE datasets 

%%%%%%%% 

% Created on: 02/17/22 

% Input: Datasets from obj_1c_matlab_1a.m (for heavy metal exposure data) or 

obj_1c_matlab_1b.m (without  heavy metal exposure data) 

% Output: Processed data, split into training and test sub datasets 
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% Author: Ridhi Deo 

% File name: Obj1c_matlab_2b.m 

% Description: This code was written to process female population data, apply SMOTE, 

additional processing and create training and test datasets in a 70:30 ratio, respectively. 

%%%%%%%% 

 

 

%% SMOTE 

temp_dataset = dataset_HS_female; 

temp_dataset(:,[1,8]) = []; % Removing the SEQN and HS colummns 

size_disease = size(temp_dataset,1); %Measure of number of disease samples 

N = 3; % Equivalent of N*100% synthetic sample generation 

k = 2; % Setting number of nearest neighbours 

num_attrs = size(temp_dataset,2); %Number of variables 

new_index = 0; % Variable to keep a count of newly generated synthetic samples 

synthetic_sample_female.N{N} = zeros(size_disease,num_attrs); %Since we are 

generating N*100% synthetic, this value is N{2} 

nn_array = zeros(size_disease,k+1); %Tp keep a list of nearest neighbours for each 

sample 

nn_values = zeros(size_disease,k+1);  

R = zeros(num_attrs,1); %Range of continous variables is represented by the array R 

temp_range = table2array(temp_dataset); %Temporary conversions to array - for 

computational ease. This is essential dataset_HS_female 

temp_dist = table2array(temp_dataset); 

distance = zeros(size_disease,size_disease); %Preallocating a matrix to store all the 

distances 

for i = 1:num_attrs %Calculating ranges 

    R(i,1) = (max(temp_range(:,i)) - min(temp_range(:,i))); 

end 

% Finding the k-nn 

[nn_array,nn_values] = knnsearch(temp_dist, temp_dist,'K',k+1); % the first nn will be 

itself so we will need to remove that 

            

 

nn_array(:,1) = []; %Remove the first one because it is the same sample  

nn_values(:,1) =[]; %First nn is itself so distance is 0 

while (N~=0) %To perform N*100% synthetic sampling 

  for i = 1:size_disease  

    for attr=1:num_attrs 

        nn = randi([1 k],1); % Randomly choose the nearest neighbor 

        dif = temp_dist(nn_array(i,nn),attr) - temp_dist(i,attr); 

        gap = 0 + rand(1,1); 

        synthetic_sample_female.N{N}(i,attr) = temp_dist(i,attr) + (gap*dif); %Synthetic 

continuous attributes 

    end 

  end 
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  N = N-1; %To avoid infinite loops 

end 

 

 

total_synthetic_sample_females = 

[synthetic_sample_female.N{1};synthetic_sample_female.N{2};synthetic_sample_femal

e.N{3}];  

total_synthetic_sample_females = array2table(total_synthetic_sample_females); 

total_synthetic_sample_females.Properties.VariableNames = 

temp_dataset.Properties.VariableNames; 

hybrid_disease_female = [total_synthetic_sample_females; temp_dataset];  %Hybrid = 

synthetic + disease 

hybrid_disease_female.HS = ones(size(hybrid_disease_female,1),1); 

 

%% removing seqn 

dataset_non_HS_female.SEQN = []; 

dataset_HS_female.SEQN = []; 

 

%% Based on American Liver Foundation video - Vicki Shah 

% Normal value for ALT: 10 - 55, but actually 20.  

% AST: 9 - 32, but prefer 20 

% ASP: 30 - 100, also based on age 

% NAFLD: AST and ALT are up to less than 4 times the ULN 

%% Data normalization 

%% AASLD: Female: ALT: 19 - 25 IU/L 

% Using 25IU/L as the ULN for female based on the AASLD guidelines 

% Pre-sets 

ULN_ALT = 25; 

ULN_AST = 20; 

 

ULN_BMI = 25; 

 

%ULN_Cadmium = ; 

ULN_HDL = 1.3; %https://www.mayoclinic.org/diseases-conditions/high-blood-

cholesterol/in-depth/hdl-cholesterol/art-20046388 

 

%% Creating a new % variables  

ALT_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(ALT_percent); 

dataset_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

ALT_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(ALT_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var9'} = 'ALT_percent'; 

 

AST_percent = zeros(size(dataset_HS_female, 1),1); 
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dataset_HS_female(:,end+1) = array2table(AST_percent); 

dataset_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

AST_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(AST_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var10'} = 'AST_percent'; 

 

 

BMI_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(BMI_percent); 

dataset_HS_female.Properties.VariableNames{'Var11'} = 'BMI_percent'; 

 

BMI_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(BMI_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var11'} = 'BMI_percent'; 

 

 

HDL_percent = zeros(size(dataset_HS_female, 1),1); 

dataset_HS_female(:,end+1) = array2table(HDL_percent); 

dataset_HS_female.Properties.VariableNames{'Var12'} = 'HDL_percent'; 

 

HDL_percent = zeros(size(dataset_non_HS_female, 1),1); 

dataset_non_HS_female(:,end+1) = array2table(HDL_percent); 

dataset_non_HS_female.Properties.VariableNames{'Var12'} = 'HDL_percent'; 

%% Normalization equations 

for i = 1: size(dataset_HS_female,1) 

dataset_HS_female.ALT_percent(i) = ((dataset_HS_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_HS_female.AST_percent(i) = ((dataset_HS_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_HS_female.BMI_percent(i) = ((dataset_HS_female.BMI(i) - 

ULN_BMI)/ULN_BMI)*100; 

dataset_HS_female.HDL_percent(i) = ((dataset_HS_female.HDL(i) - 

ULN_HDL)/ULN_HDL)*100; 

 

end 

clear i; 

for i = 1: size(dataset_non_HS_female,1) 

dataset_non_HS_female.ALT_percent(i) = ((dataset_non_HS_female.ALT(i) - 

ULN_ALT)/ULN_ALT)*100; 

dataset_non_HS_female.AST_percent(i) = ((dataset_non_HS_female.AST(i) - 

ULN_AST)/ULN_AST)*100; 

dataset_non_HS_female.BMI_percent(i) = ((dataset_non_HS_female.BMI(i) - 

ULN_BMI)/ULN_BMI)*100; 

dataset_non_HS_female.HDL_percent(i) = ((dataset_non_HS_female.HDL(i) - 

ULN_HDL)/ULN_HDL)*100; 
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end 

 

% Converting negative to 0 

 

for i = 1: size(dataset_HS_female,1) 

   if(dataset_HS_female.ALT_percent(i) <= 0) 

       dataset_HS_female.ALT_percent(i) = 0; 

   end 

   if(dataset_HS_female.AST_percent(i) <= 0) 

       dataset_HS_female.AST_percent(i) = 0; 

   end   

   if(dataset_HS_female.BMI_percent(i) <= 0) 

      dataset_HS_female.BMI_percent(i) = 0; 

   end 

   if(dataset_HS_female.HDL_percent(i) >= 0) 

      dataset_HS_female.HDL_percent(i) = 0; 

   end  

end 

 

 

for i = 1: size(dataset_non_HS_female,1) 

   if(dataset_non_HS_female.ALT_percent(i) <= 0) 

       dataset_non_HS_female.ALT_percent(i) = 0; 

   end 

   if(dataset_non_HS_female.AST_percent(i) <= 0) 

       dataset_non_HS_female.AST_percent(i) = 0; 

   end 

    if(dataset_non_HS_female.BMI_percent(i) <= 0) 

      dataset_non_HS_female.BMI_percent(i) = 0; 

    end 

   if(dataset_non_HS_female.HDL_percent(i) >= 0) 

      dataset_non_HS_female.HDL_percent(i) = 0; 

   end     

end 

% %% Remove SEQN  

 

%% Randomly select samples without replacement 

% Note that MATLAB's datasample function has replace = true as default 

 

dataset_non_HS_female_reduced = datasample(dataset_non_HS_female, 

size(dataset_HS_female,1), 'Replace', false); 

 

%% Split into training and test 

Q = size(dataset_HS_female,1); 

valRatio = 0; 

trainRatio = 0.70; 
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testRatio = 0.30; 

[trainInd,~,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_disease_female = dataset_HS_female(trainInd,:); 

test_disease_female = dataset_HS_female(testInd,:); 

 

Q = size(dataset_non_HS_female_reduced,1); 

valRatio = 0; 

trainRatio = 0.70; 

testRatio = 0.30; 

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio); 

train_no_disease_female = dataset_non_HS_female_reduced(trainInd,:); 

test_no_disease_female = dataset_non_HS_female_reduced(testInd,:); 

 

training_female = [train_disease_female; train_no_disease_female]; 

test_female = [test_disease_female; test_no_disease_female]; 

test_female = test_female(randperm(size(test_female,1)),:); 

training_female = training_female(randperm(size(training_female,1)),:); 

 

%% Reoder training and test datasets to have HS as the end variable 

training_female = [training_female(:,1:6) training_female(:,8:12) training_female(:, 7)]; 

test_female = [test_female(:,1:6) test_female(:,8:12) test_female(:,7)]; 

 

 

5. MATLAB CODE TO TRAIN THE MODELS 

%%%%%%%% 

% Created on: 02/17/22 

% Input: Datasets from obj_1c_matlab_2a.m or obj_1c_matlab_2b.m 

% Output: Trained models 

% Author: Ridhi Deo 

% File name: Obj1c_matlab_3.m 

% Description: This code was written to train ML models. This code internally calls several 

other functions to train specific models.  

%%%%%%%% 

 

 

close all; 

test = test_male; % Need to change this depending on male/female 

training = training_male; % Need to change this depending on male/female 

 

%% Model 1: fine tree 

[mod_1, train_acc_1] = finetree2(training); % Training the model using training set 

yfit_1 = mod_1.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_1(:,2) = table2array(test(:,end));% Ground truth 

g1 = yfit_1(:,2)'; % Transposed values of Known values - Ground Truth 
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g2 = yfit_1(:,1)'; % Transposed values of predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('Fine Tree') 

[tpr_1, fpr_1,~] = roc(g1, g2);  % Extracting the true-positive and false-positive rates 

sens_1 = tpr_1(1,2); % Calculating sensitiviy 

spec_1 = 1- fpr_1(1,2);% Calculating specificity 

[X,Y,~,AUC_1] = perfcurve(g1,g2,'1'); % Extracting values to plot the AUC curve with 

the AUC value 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Fine Tree')  

txt = ['AUC for Fine Tree is ',num2str(AUC_1)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_1 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_1_accuracy = cp_1.CorrectRate; 

 

%% Model 2: logistic regression 

[mod_2, train_acc_2] = logisticregression2(training); % Training the model using 

training set 

yfit_2 = mod_2.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_2(:,2) = table2array(test(:,end)); 

g1 = yfit_2(:,2)'; %Known values - Ground Truth 

g2 = yfit_2(:,1)'; % predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('logistic regression') 

[tpr_2, fpr_2,~] = roc(g1, g2); 

sens_2 = tpr_2(1,2); 

spec_2 = 1- fpr_2(1,2); 

[X,Y,~,AUC_2] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('logistic regression') 

txt = ['AUC for logistic regression is ',num2str(AUC_2)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_2 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_2_accuracy = cp_2.CorrectRate; 

 

%% Model 3: linear svm 

[mod_3, train_acc_3] = linearsvm2(training); % Training the model using training set 

yfit_3 = mod_3.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_3(:,2) = table2array(test(:,end)); 

g1 = yfit_3(:,2)'; %Known values - Ground Truth 

g2 = yfit_3(:,1)'; % predicted values 

figure %Plotting confusion matrix 
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plotconfusion(g1,g2), title('linear svm') 

[tpr_3, fpr_3,~] = roc(g1, g2); 

sens_3 = tpr_3(1,2); 

spec_3 = 1- fpr_3(1,2); 

[X,Y,~,AUC_3] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('linear svm') 

txt = ['AUC for linear svm is ',num2str(AUC_3)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_3 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_3_accuracy = cp_3.CorrectRate; 

 

 

%% Model 4: quadratic svm 

[mod_4, train_acc_4] = quadraticsvm2(training); % Training the model using training set 

yfit_4 = mod_4.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_4(:,2) = table2array(test(:,end)); 

g1 = yfit_4(:,2)'; %Known values - Ground Truth 

g2 = yfit_4(:,1)'; % predicted values 

figure %Plotting confusion matrix 

plotconfusion(g1,g2), title('quadratic svm') 

[tpr_4, fpr_4,~] = roc(g1, g2); 

sens_4 = tpr_4(1,2); 

spec_4 = 1- fpr_4(1,2); 

[X,Y,~,AUC_4] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('quadratic svm') 

txt = ['AUC for quadratic svm is ',num2str(AUC_4)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_4 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_4_accuracy = cp_4.CorrectRate; 

 

%% Model 5: fine gaussian svm 

[mod_5, train_acc_5] = finegaussiansvm2(training); % Training the model using training 

set 

yfit_5 = mod_5.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_5(:,2) = table2array(test(:,end)); 

g1 = yfit_5(:,2)'; %Known values - Ground Truth 

g2 = yfit_5(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('fine gaussian svm') 

[tpr_5, fpr_5,~] = roc(g1, g2); 
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sens_5 = tpr_5(1,2); 

spec_5 = 1- fpr_5(1,2); 

[X,Y,~,AUC_5] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('fine gaussian svm') 

txt = ['AUC for fine gaussian svm is ',num2str(AUC_5)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_5 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_5_accuracy = cp_5.CorrectRate; 

 

%% Model 6: medium gaussian svm 

[mod_6, train_acc_6] = mediumgaussiansvm2(training); % Training the model using 

training set 

yfit_6 = mod_6.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_6(:,2) = table2array(test(:,end)); 

g1 = yfit_6(:,2)'; %Known values - Ground Truth 

g2 = yfit_6(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('medium gaussian svm') 

[tpr_6, fpr_6,~] = roc(g1, g2); 

sens_6 = tpr_6(1,2); 

spec_6 = 1- fpr_6(1,2); 

[X,Y,~,AUC_6] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('medium gaussian svm') 

txt = ['AUC for medium gaussian svm is ',num2str(AUC_6)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_6 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_6_accuracy = cp_6.CorrectRate; 

 

%% Model 7: coarse gaussian svm 

[mod_7, train_acc_7] = coarsegaussiansvm2(training); % Training the model using 

training set 

yfit_7 = mod_7.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_7(:,2) = table2array(test(:,end)); 

g1 = yfit_7(:,2)'; %Known values - Ground Truth 

g2 = yfit_7(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('coarse gaussian svm') 

[tpr_7, fpr_7,~] = roc(g1, g2); 

sens_7 = tpr_7(1,2); 

spec_7 = 1- fpr_7(1,2); 
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[X,Y,~,AUC_7] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('coarse gaussian svm') 

txt = ['AUC for coarse gaussian svm is ',num2str(AUC_7)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_7 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_7_accuracy = cp_7.CorrectRate; 

 

 

%% Model 8: fine knn 

[mod_8, train_acc_8] = fineknn2(training); % Training the model using training set 

yfit_8 = mod_8.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_8(:,2) = table2array(test(:,end)); 

g1 = yfit_8(:,2)'; %Known values - Ground Truth 

g2 = yfit_8(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('fine knn') 

[tpr_8, fpr_8,~] = roc(g1, g2); 

sens_8 = tpr_8(1,2); 

spec_8 = 1- fpr_8(1,2); 

[X,Y,~,AUC_8] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('fine knn') 

txt = ['AUC for fine knn is ',num2str(AUC_8)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_8 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_8_accuracy = cp_8.CorrectRate; 

 

 

%% Model 9: Medium knn 

[mod_9, train_acc_9] = mediumknn2(training); % Training the model using training set 

yfit_9 = mod_9.predictFcn(test(:,1:end-1)); % Predicting values from the trained model 

using the test dataset  

yfit_9(:,2) = table2array(test(:,end)); 

g1 = yfit_9(:,2)'; %Known values - Ground Truth 

g2 = yfit_9(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Medium knn') 

[tpr_9, fpr_9,~] = roc(g1, g2); 

sens_9 = tpr_9(1,2); 

spec_9 = 1- fpr_9(1,2); 

[X,Y,~,AUC_9] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 
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plot(X,Y), title('Medium knn') 

txt = ['AUC for Medium knn is ',num2str(AUC_9)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_9 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_9_accuracy = cp_9.CorrectRate; 

 

%% Model 10: Coarse knn 

[mod_10, train_acc_10] = coarseknn2(training); % Training the model using training set 

yfit_10 = mod_10.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_10(:,2) = table2array(test(:,end)); 

g1 = yfit_10(:,2)'; %Known values - Ground Truth 

g2 = yfit_10(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Coarse knn') 

[tpr_10, fpr_10,~] = roc(g1, g2); 

sens_10 = tpr_10(1,2); 

spec_10 = 1- fpr_10(1,2); 

[X,Y,~,AUC_10] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Coarse knn') 

txt = ['AUC for Coarse knn is ',num2str(AUC_10)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_10 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_10_accuracy = cp_10.CorrectRate; 

 

%% Model 11: Cosine knn 

[mod_11, train_acc_11] = cosineknn2(training); % Training the model using training set 

yfit_11 = mod_11.predictFcn(test(:,1:end-1));% Predicting values from the trained model 

using the test dataset  

yfit_11(:,2) = table2array(test(:,end)); 

g1 = yfit_11(:,2)'; %Known values - Ground Truth 

g2 = yfit_11(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Cosine knn') 

[tpr_11, fpr_11,~] = roc(g1, g2); 

sens_11 = tpr_11(1,2); 

spec_11 = 1- fpr_11(1,2); 

[X,Y,~,AUC_11] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Cosine knn') 

txt = ['AUC for Cosine knn is ',num2str(AUC_11)]; 

text(0.5,0.9,txt) 

clear X Y;  
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cp_11 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_11_accuracy = cp_11.CorrectRate; 

 

 

%% Model 12: Cubic knn 

[mod_12, train_acc_12] = cubicknn2(training); % Training the model using training set 

yfit_12 = mod_12.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_12(:,2) = table2array(test(:,end)); 

g1 = yfit_12(:,2)'; %Known values - Ground Truth 

g2 = yfit_12(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Cubic knn') 

[tpr_12, fpr_12,~] = roc(g1, g2); 

sens_12 = tpr_12(1,2); 

spec_12 = 1- fpr_12(1,2); 

[X,Y,~,AUC_12] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Cubic knn') 

txt = ['AUC for Cubic knn is ',num2str(AUC_12)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_12 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_12_accuracy = cp_12.CorrectRate; 

 

%% Model 13: Weighted knn 

[mod_13, train_acc_13] = weightedknn2(training); % Training the model using training 

set 

yfit_13 = mod_13.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_13(:,2) = table2array(test(:,end)); 

g1 = yfit_13(:,2)'; %Known values - Ground Truth 

g2 = yfit_13(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Weighted knn') 

[tpr_13, fpr_13,~] = roc(g1, g2); 

sens_13 = tpr_13(1,2); 

spec_13 = 1- fpr_13(1,2); 

[X,Y,~,AUC_13] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Weighted knn') 

txt = ['AUC for Weighted knn is ',num2str(AUC_13)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_13 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_13_accuracy = cp_13.CorrectRate; 
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%% Model 14:  Boosted Trees 

[mod_14, train_acc_14] = boostedtrees2(training); % Training the model using training 

set 

yfit_14 = mod_14.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_14(:,2) = table2array(test(:,end)); 

g1 = yfit_14(:,2)'; %Known values - Ground Truth 

g2 = yfit_14(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Boosted Trees') 

[tpr_14, fpr_14,~] = roc(g1, g2); 

sens_14 = tpr_14(1,2); 

spec_14 = 1- fpr_14(1,2); 

[X,Y,~,AUC_14] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Boosted Trees') 

txt = ['AUC for Boosted Trees is ',num2str(AUC_14)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_14 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_14_accuracy = cp_14.CorrectRate; 

 

%% Model 15: Bagged Trees 

[mod_15, train_acc_15] = baggedtrees2(training); % Training the model using training 

set 

yfit_15 = mod_15.predictFcn(test(:,1:end-1)); % Predicting values from the trained 

model using the test dataset  

yfit_15(:,2) = table2array(test(:,end)); 

g1 = yfit_15(:,2)'; %Known values - Ground Truth 

g2 = yfit_15(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Bagged Trees') 

[tpr_15, fpr_15,~] = roc(g1, g2); 

sens_15 = tpr_15(1,2); 

spec_15 = 1- fpr_15(1,2); 

[X,Y,~,AUC_15] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Bagged Trees') 

txt = ['AUC for Bagged Trees is ',num2str(AUC_15)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_15 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_15_accuracy = cp_15.CorrectRate; 

 

%% Model 16: Subspace Discriminant 
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[mod_16, train_acc_16] = subspacedisc2(training); % Training the model using training 

set 

yfit_16 = mod_16.predictFcn(test(:,1:end-1));  

yfit_16(:,2) = table2array(test(:,end)); 

g1 = yfit_16(:,2)'; %Known values - Ground Truth 

g2 = yfit_16(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('Subspace Disc') 

[tpr_16, fpr_16,~] = roc(g1, g2); 

sens_16 = tpr_16(1,2); 

spec_16 = 1- fpr_16(1,2); 

[X,Y,~,AUC_16] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('Subspace Disc') 

txt = ['AUC for Subspace Disc is ',num2str(AUC_16)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_16 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_16_accuracy = cp_16.CorrectRate; 

 

%% Model 17: RUS Boosted trees 

[mod_17, train_acc_17] = rusboostedtrees2(training); % Training the model using 

training set 

yfit_17 = mod_17.predictFcn(test(:,1:end-1)); 

yfit_17(:,2) = table2array(test(:,end)); 

g1 = yfit_17(:,2)'; %Known values - Ground Truth 

g2 = yfit_17(:,1)'; % predicted values 

figure %PLotting confusion matrix 

plotconfusion(g1,g2), title('RUS Boosted trees') 

[tpr_17, fpr_17,~] = roc(g1, g2); 

sens_17 = tpr_17(1,2); 

spec_17 = 1- fpr_17(1,2); 

[X,Y,~,AUC_17] = perfcurve(g1,g2,'1'); 

figure %Plotting ROC with AUC value printed on the graph 

plot(X,Y), title('RUS Boosted trees') 

txt = ['AUC for RUS Boosted trees is ',num2str(AUC_17)]; 

text(0.5,0.9,txt) 

clear X Y;  

cp_17 = classperf(g1,g2); % Extracting the accuracy of the testing dataset 

cp_17_accuracy = cp_17.CorrectRate; 

 

 

%% Display results in a table 

Model = 

{'Fine_Tree';'Logistic_Regression';'Linear_SVM';'Quadratic_SVM';'Fine_Gaussian_SV

M';... 
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'Medium_Gaussian_SVM';'Coarse_Gaussian_SVM';'Fine_KNN';'Medium_KNN';'Coarse

_KNN';... 

'Cosine_KNN';'Cubic_KNN';'Weighted_KNN';'Ensemble_Boosted';'Ensemble_Bagged';.. 

'Ensemble_Subspace_Disc';'Ensemble_RUS_Boosted_Trees'}; 

 

Training_Acc = [train_acc_1; train_acc_2; train_acc_3; train_acc_4; train_acc_5;... 

    train_acc_6; train_acc_7; train_acc_8; train_acc_9; train_acc_10; train_acc_11;... 

    train_acc_12; train_acc_13; train_acc_14; train_acc_15; train_acc_16; train_acc_17]; 

Test_Acc = [cp_1_accuracy; cp_2_accuracy; cp_3_accuracy; cp_4_accuracy; 

cp_5_accuracy;... 

cp_6_accuracy; cp_7_accuracy; cp_8_accuracy; cp_9_accuracy; cp_10_accuracy; 

cp_11_accuracy;... 

cp_12_accuracy; cp_13_accuracy; cp_14_accuracy; cp_15_accuracy; cp_16_accuracy; 

cp_17_accuracy]; 

AUC = [AUC_1; AUC_2; AUC_3; AUC_4; AUC_5;... 

    AUC_6; AUC_7; AUC_8; AUC_9; AUC_10; AUC_11;... 

    AUC_12; AUC_13; AUC_14; AUC_15; AUC_16; AUC_17]; 

Sensitivity = [sens_1; sens_2; sens_3; sens_4; sens_5;... 

    sens_6; sens_7; sens_8; sens_9; sens_10; sens_11;... 

    sens_12; sens_13; sens_14; sens_15; sens_16; sens_17]; 

Specificity = [spec_1; spec_2; spec_3; spec_4; spec_5;... 

    spec_6; spec_7; spec_8; spec_9; spec_10; spec_11;... 

    spec_12; spec_13; spec_14; spec_15; spec_16; spec_17]; 

Results = table(Model, Training_Acc, Test_Acc, AUC, Sensitivity, Specificity); 

 

 

A. CODE TO TRAIN LOGISTIC REGRESSION 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Logistic Regression Model 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3a.m 

% Description: This code was written to train the logistic regression model. 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = logisticregression2(trainingData) 

 

% Auto-generated by MATLAB on 17-Feb-2022 13:02:57 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 
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predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

% For logistic regression, the response values must be converted to zeros 

% and ones because the responses are assumed to follow a binomial 

% distribution. 

% 1 or true = 'successful' class 

% 0 or false = 'failure' class 

% NaN - missing response. 

successClass = double(1); 

failureClass = double(0); 

% Compute the majority response class. If there is a NaN-prediction from 

% fitglm, convert NaN to this majority class label. 

numSuccess = sum(response == successClass); 

numFailure = sum(response == failureClass); 

if numSuccess > numFailure 

    missingClass = successClass; 

else 

    missingClass = failureClass; 

end 

successFailureAndMissingClasses = [successClass; failureClass; missingClass]; 

isMissing = isnan(response); 

zeroOneResponse = double(ismember(response, successClass)); 

zeroOneResponse(isMissing) = NaN; 

% Prepare input arguments to fitglm. 

concatenatedPredictorsAndResponse = [predictors, table(zeroOneResponse)]; 

% Train using fitglm. 

GeneralizedLinearModel = fitglm(... 

    concatenatedPredictorsAndResponse, ... 

    'Distribution', 'binomial', ... 

    'link', 'logit'); 

 

% Convert predicted probabilities to predicted class labels and scores. 

convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses( 

~isnan(p).*( (p<0.5) + 1 ) + isnan(p)*3 ); 

returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)}; 

scoresFcn = @(p) [1-p, p]; 

predictionsAndScoresFcn = @(p) returnMultipleValuesFcn( con

 vertSuccessProbsToPredictions(p), scoresFcn(p) ); 

 



 

252 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

logisticRegressionPredictFcn = @(x) predictionsAndScoresFcn( pred

 ict(GeneralizedLinearModel, x) ); 

trainedClassifier.predictFcn = @(x) log

 isticRegressionPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', ' AST_percent', 

'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.GeneralizedLinearModel = GeneralizedLinearModel; 

trainedClassifier.SuccessClass = successClass; 

trainedClassifier.FailureClass = failureClass; 

trainedClassifier.MissingClass = missingClass; 

trainedClassifier.ClassNames = {successClass; failureClass}; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

KFolds = 10; 

cvp = cvpartition(response, 'KFold', KFolds); 

% Initialize the predictions to the proper sizes 

validationPredictions = response; 

numObservations = size(predictors, 1); 

numClasses = 2; 

validationScores = NaN(numObservations, numClasses); 

for fold = 1:KFolds 
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    trainingPredictors = predictors(cvp.training(fold), :); 

    trainingResponse = response(cvp.training(fold), :); 

    foldIsCategoricalPredictor = isCategoricalPredictor; 

     

    % Train a classifier 

    % This code specifies all the classifier options and trains the classifier. 

    % For logistic regression, the response values must be converted to zeros 

    % and ones because the responses are assumed to follow a binomial 

    % distribution. 

    % 1 or true = 'successful' class 

    % 0 or false = 'failure' class 

    % NaN - missing response. 

    successClass = double(1); 

    failureClass = double(0); 

    % Compute the majority response class. If there is a NaN-prediction from 

    % fitglm, convert NaN to this majority class label. 

    numSuccess = sum(trainingResponse == successClass); 

    numFailure = sum(trainingResponse == failureClass); 

    if numSuccess > numFailure 

        missingClass = successClass; 

    else 

        missingClass = failureClass; 

    end 

    successFailureAndMissingClasses = [successClass; failureClass; missingClass]; 

    isMissing = isnan(trainingResponse); 

    zeroOneResponse = double(ismember(trainingResponse, successClass)); 

    zeroOneResponse(isMissing) = NaN; 

    % Prepare input arguments to fitglm. 

    concatenatedPredictorsAndResponse = [trainingPredictors, table(zeroOneResponse)]; 

    % Train using fitglm. 

    GeneralizedLinearModel = fitglm(... 

        concatenatedPredictorsAndResponse, ... 

        'Distribution', 'binomial', ... 

        'link', 'logit'); 

     

    % Convert predicted probabilities to predicted class labels and scores. 

    convertSuccessProbsToPredictions = @(p) successFailureAndMissingClasses( ~isnan(p).*( 

(p<0.5) + 1 ) + isnan(p)*3 ); 

    returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)}; 

    scoresFcn = @(p) [1-p, p]; 

    predictionsAndScoresFcn = @(p) returnMultipleValuesFcn( 

convertSuccessProbsToPredictions(p), scoresFcn(p) ); 

     

    % Create the result struct with predict function 

    logisticRegressionPredictFcn = @(x) predictionsAndScoresFcn( 

predict(GeneralizedLinearModel, x) ); 
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    validationPredictFcn = @(x) logisticRegressionPredictFcn(x); 

     

    % Add additional fields to the result struct 

     

    % Compute validation predictions 

    validationPredictors = predictors(cvp.test(fold), :); 

    [foldPredictions, foldScores] = validationPredictFcn(validationPredictors); 

     

    % Store predictions in the original order 

    validationPredictions(cvp.test(fold), :) = foldPredictions; 

    validationScores(cvp.test(fold), :) = foldScores; 

end 

 

% Compute validation accuracy 

correctPredictions = (validationPredictions == response); 

isMissing = isnan(response); 

correctPredictions = correctPredictions(~isMissing); 

validationAccuracy = sum(correctPredictions)/length(correctPredictions); 

 

 

B. CODE TO TRAIN LOGISTIC REGRESSION 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Linear SVM model 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3b.m 

% Description: This code was written to train Linear SVM model. 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = linearsvm2(trainingData) 

 

% Auto-generated by MATLAB on 17-Feb-2022 13:03:18 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 
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% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 
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% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

C. CODE TO TRAIN GAUSSIAN SVM I 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Gaussian Scale I 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3c.m 

% Description: This code was written to train Gaussian Scale I. 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = finegaussiansvm2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:04:26 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 0.83, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 
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svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

D. CODE TO TRAIN GAUSSIAN SVM II 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Gaussian Scale II 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3d.m 
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% Description: This code was written to train Gaussian Scale II. 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = mediumgaussiansvm2(trainingData) 

 

% Auto-generated by MATLAB on 17-Feb-2022 13:04:48 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, 

false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 3.3, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 
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original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

E. CODE TO TRAIN GAUSSIAN SVM III 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Gaussian Scale III 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3e.m 

% Description: This code was written to train Gaussian Scale III. 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = coarsegaussiansvm2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:05:07 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 
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predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 13, ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 
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isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

F. CODE TO TRAIN COARSE KNN 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Coarse KNN 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3f.m 

% Description: This code was written to train coarse KNN. 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = coarseknn2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:06:19 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 



 

262 

    'NumNeighbors', 100, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

knnPredictFcn = @(x) predict(classificationKNN, x); 

trainedClassifier.predictFcn = @(x) knnPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationKNN = classificationKNN; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', ' ALT_percent', 

'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationKNN, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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G. CODE TO TRAIN BOOSTED TREES 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Boosted Trees  

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3g.m 

% Description: This code was written to train Boosted Trees. 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = boostedtrees2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:08:09 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

template = templateTree(... 

    'MaxNumSplits', 20); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'AdaBoostM1', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'LearnRate', 0.1, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 
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trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

H. CODE TO TRAIN SUBSPACE DISCRIMINANT 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained Subspace Discriminant Model 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3h.m 

% Description: This code was written to train Subspace Discriminant. 

%%%%%%%% 

 

function [trainedClassifier, validationAccuracy] = subspacedisc2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:08:51 
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% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

subspaceDimension = max(1, min(6, width(predictors) - 1)); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'Subspace', ... 

    'NumLearningCycles', 30, ... 

    'Learners', 'discriminant', ... 

    'NPredToSample', subspaceDimension, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 
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inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

 

 

I. CODE TO TRAIN RUS BOOSTED MODEL 

%%%%%%% 

% Created on: 02/17/22 

% Input: Internally called from obj1c_matlab_3.m 

% Output: Trained RUS Boosted Model 

% Author: Auto-generated by MATLAB, initiated by Ridhi Deo 

% File name: Obj1c_matlab_3i.m 

% Description: This code was written to train RUS Boosted Model. 

%%%%%%%% 

 

 

function [trainedClassifier, validationAccuracy] = rusboostedtrees2(trainingData) 

% Auto-generated by MATLAB on 17-Feb-2022 13:09:13 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 'ALT_percent', 

'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

template = templateTree(... 
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    'MaxNumSplits', 20); 

classificationEnsemble = fitcensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'RUSBoost', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'LearnRate', 0.1, ... 

    'ClassNames', [0; 1]); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 

trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ALT', 'ALT_percent', 'ASP', 'AST', 

'AST_percent', 'Age', 'BMI', 'BMI_percent', 'HDL', 'HDL_percent', 'Insulin_resistance'}; 

trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g., 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g., matrix/vector, datatype) must match the 

original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Age', 'HDL', 'AST', 'ALT', 'ASP', 'BMI', 'Insulin_resistance', 

'ALT_percent', 'AST_percent', 'BMI_percent', 'HDL_percent'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.HS; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 
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% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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Figure P3.1: Figure outlining the flow of code used in this research objective
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 ASSESSMENT OF A COMMERCIALLY AVAILABLE 

SENSOR FOR ARSENIC DETECTION IN WATER (PAPER 4) 

5.1 Introduction 

Chronic heavy metal exposure (As, Pb, Hg and Cd) is found to correlate with abnormal 

liver biochemistry, with NAFLD and, with liver damage in general [1]–[3]. The inability of the 

liver to metabolize heavy metals warrants the screening, diagnosis, and early intervention for 

individuals living with chronic heavy metal exposure. The impact chronic of heavy metal exposure 

and its relationship with NAFLD is reviewed in detail in an under-review paper, attached in 

Appendix H.  

While any amount of heavy metal exposure is not ideal for the human system, there are 

certain permissible levels of heavy metal (in drinking water), determined by agencies like US – 

Environmental Protection Agency (EPA) and the World Health Organization (WHO) [4], [5]. In 

the USA, the safe water drinking act requires the US – EPA to ‘establish and enforce’ standards 

for public water systems [6]. While these standards are enforced by local agencies for public water 

sources, there are no specific regulations for private sources of water like wells. Further, any leaks 

or damages in the plumbing could lead to an unexpected heavy metal exposure at a household 

level.  

Monitoring of drinking water quality at a home/field-level can be used in a preventative 

way to avoid the risk of liver disease. Use of a sensor that does not involve elaborate or 

sophisticated equipment can be useful for an at home test. Recently, a few commercially available 

sensor kits were found in the marketplace. One such kit used a color-based Arsenic detection 

concept. Although color-based output is easy to use, human beings are subjective in color 

assessment and there many other associated challenges associated with this approach. A need for 

a proof the concept assessment for such a kit in laboratory condition was therefore justified. 

Thus, the objective of this study was to assess a commercially available Arsenic sensor kit 

under lab conditions. The associated tasks are:  

1. To evaluate the performance of the selected kit in laboratory conditions.  

2. To develop and test a computer imaging algorithm for quantitative assessment of the color 

information on the sensor testing strip. 
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5.2 Methods  

Background 

A commercial test kit – “Industrial Test Systems Quick 481396 Arsenic for Water Quality 

Testing, 100 Tests, 12 Minutes Test Time” was purchased from Amazon’s website and was tested 

under lab conditions. The detailed instructions can be found on the manufacturer’s site [7]. The kit 

detects Arsenic based on color change and the manufacturer provides a scale for visual color 

comparison and result determination. Figure 5.2 has the color scale provided by the manufacturer 

[7]. 

Experiment design 

In this study, a total of five concentrations of Arsenic and four replicates per concentration 

were used.  The concentrations were: blank (0 ppb (micrograms/liter)), 10 ppb, 50 ppb, 100 ppb 

and 200 ppb Arsenic in water. The concentrations are henceforward labelled as C0 (blank), C1, 

C2, C3 and C4, for 10, 50, 100, and 200 ppb, respectively. The four replicates are labelled as R1, 

R2, R3, and R4.  

All samples were prepared using Nalgene grade plastic labware. All labware was cleaned 

five to six times with distilled water. Distilled water was also used to prepare the five different 

Arsenic concentrations. The Arsenic concentrations were prepared in the Mass Spectrometry lab 

(Chemistry building), Purdue University. Arsenic stock solution from Exaxol, Florida, USA (1000 

ppm Arsenic in 2% nitric acid) was purchased and used to prepare the samples.  Refrigerated stock 

solution was allowed to thaw and reach room temperature two hours before the sample preparation. 

Serial dilution was conducted to obtain the five Arsenic concentrations. The samples used 

in the commercial kit were diluted using DI water and the appropriate Arsenic stock solution. The 

commercial kit requires that the samples do not have nitric acid in them. Each concentration was 

prepared four times to obtain four replicates. All samples and replicates were prepared on the same 

day. All the experiments with the test kit using the prepared samples were also conducted on the 

same day.  

Samples were analyzed on an ELEMENT2 High Resolution Inductively Coupled Plasma 

Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany). Samples were introduced into 

the ICP via an Aridus II Desolvating Sample Introduction system with a 100ul/min PFA low flow 
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concentric nebulizer (Teledyne Cetac Technologies, 14306 Industrial Rd, Omaha, NE 68144). A 

Teledyne Cetac Autosampler ASX-112FR was used.  After tuning and calibration using the 1ppb 

Thermo Fisher Tune-Up solution, the samples were analyzed for Arsenic. 

Note that one replicate from each concentration was sent to the chemistry lab for analysis 

as a part of the ICP-MS calibration. All the twenty samples were not analyzed by ICP-MS. Results 

from the ICP-MS are shown in Figure 5.3. A R2 value of 0.9998 was obtained and thus it validated 

the appropriateness of the sample preparation method. The ICP-MS analysis was conducted by Dr. 

Anusha Hettiyadura, who is affiliated with the Department of Chemistry at Purdue University. 

The experiments to test for Arsenic in water using the selected kit were conducted in the 

laboratory at Purdue University. The reagents and test strips were part of the Arsenic kit and were 

used for evaluating the kit [7]. The instructions provided with the kit were followed. Briefly, 

Arsenic samples or blank were added to a reaction bottle (provided with the kit) and the reagents 

were added as per the kit instructions [7]. The provided test strip was added in the last step to the 

cap of the reaction bottle and 10 minutes were allowed to pass for the color change to occur on the 

test strip [7]. The timing and measurements were followed as instructed in the kit manual [7]. After 

10 minutes, the test strip was extracted and transferred into a photography box for digital image 

capture. 

The photography box was purchased and used to capture images consistently with fixed 

lighting and camera position (Figure 5.1). Note that the photography box is not a part of the Arsenic 

kit and was separately purchased to allow consistent image capture conditions. Images of five 

concentrations, each with four replicates were captured (total 20 images), one at a time, using an 

iPhone XR. Each image was then exported into a Windows PC for further processing. Every image 

was individually examined and if needed, the image was straightened using the window photo 

viewer tool. In this step, any background from the images was also removed manually.  

Next, all the images were re-sized using the “imresize()" function which part of the image 

processing toolbox in MATLAB R2020b  [8]. The resize function is used to convert all the images 

into standard pixel dimensions. In this case, the pixel dimensions of the smallest image were 

identified (“final_dim”). The final_dim was used as a reference to convert all images to the same 

size as final_dim. The output of this step was 20 images of the same pixel dimensions. The resized 

images were then used as part of the visual snapshot analysis. The summary of the steps used, are 
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shown in a flowchart (Figure 5.4). The code written to resize the images is in Appendix E.1. All 

the digital images were then processed using two methods: 

1. Visual snapshot analysis. 

2. Customized image analysis and pattern recognition algorithm. 

Step 1: Visual snapshot analysis 

The concept of visual snapshot analysis, a new analysis method [9] was applied in this 

analysis. The method uses more than one replication to identify Arsenic concentration instead of 

just one reference image provided by the test kit [9]. As the kit uses a paper-based sensor, the color 

development on the strip might not be uniform across it.  

In the visual snapshot analysis, there are ‘Nsc’ replicates. In this case, Nsc= 4. In the future, 

it is recommended to increase Nsc as at least 10 for better analysis. Note that this is a preliminary 

study and will not take into consideration the reference images provided by the test kit [9].  

Process used for visual snapshot analysis [9]: 

The digital images of all concentrations were collected, and their replicates were placed in 

a tabular manner, on a single screen (Figure 5.6) [9]. It was ensured that the computer screen on 

which these images are displayed was color calibrated and the background was a uniform color 

(black in this case). The surrounding environment of the display screen was also well lit with 

daylight spectrum. The visual snapshot analysis was conducted in two stages:  

1. Within concentration analysis 

2. Pairwise concentration analysis 

Parameters for within concentration analysis [9] 

1. Minimum concentration for discrimination:   

The concentrations Ci (i = 1, 2, 3, or 4) were compared with the blank (C0) to 

identify which concentration had all its replicates different from C0. This process was 

still based on visual color perception. Based on this visual analysis, a concentration 

Cmin was identified as the minimum concentration that the kit could differentiate from 
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the blank. This is an important finding alternate to the process provided by the 

manufacturer of the commercial kit.  

2. Similarity within a concentration and repeatability [9]:  

A parameter Vsc is defined here. Vsc describes the similarity among the replicates 

within a given concentration. It was defined as the number of images that are visually 

perceived to be similar, divided by the total replicates. It was expressed in percentages 

(%). For example, if the Nsc = 4, the minimum resolution is ¼ = 25%. That is, testing 

with Nsc = 4 leads to a 25%, 50%, 75% or 100% similarity. Ideally, a Vsc of 100% would 

be desired but in this case, a Vsc of 90% would be acceptable [9]. Again, for this study, 

as Nsc = 4, the resolution does not allow to capture a 90% Vsc. Therefore, a Vsc of 100% 

is required in this study [9].  

The Vsc reflects how different variables (variations among the test kits, the 

experimental variations due to any human error or any unforeseen situation) affect the 

color output on the test kit for a given concentration [9]. In this study, one of the goals 

was to identify how many concentrations met the defined Vsc. Let this parameter be 

Vcm. Say maximum number of concentrations being tested is Ct. Then, a repeatability 

factor can be defined as [9]: 

𝑅𝐹 =
𝑉𝑐𝑚

𝐶𝑡
𝑥 100                                   (4.1) 

This was calculated and RF [9] was determined. The maximum RF is 100%.  

Parameters for pairwise concentration analysis & identification of seed images [9] 

Two concentrations Ci and Cj were chosen from Ct. The concentration pair was labelled 

Cij. For each pair, the sample images (Figure 5.6) were observed and identified how many images 

were visually different from each other. Then the percentage differentiability was defined as [9]: 

𝑃𝐷𝐼𝐹 % =
𝑉𝑑𝑐

𝑁𝑠𝑐
 𝑥 100      (4.2) 

Aside from calculating the PDIF value, another benefit of this analysis was the 

identification of sample images that can be used as seed images for subsequent development of 

image analysis and pattern recognition [9]. 
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Step 2: Customized image analysis and pattern recognition algorithm 

The resized images from the above step (Figure 5.4) were further processed using 

MATLAB R2020b image processing toolbox [8] as part of the image analysis. The aim of this 

analysis was to quantify the image concentrations using a preliminary algorithm such that the 

subjectivity in visually examining the images is minimized.  

The resized images were used and smoothed to reduce any image noises and improve the 

overall image appearance. The function imgaussfilt() was used to smooth the images [10]. The 

code used to smooth the resized images is in Appendix E.2. The original image scale was Red, 

Green, Blue (RGB), by default. However, a different color model was used in this work to interpret 

the color of the test strips. 

Hue, saturation, value or HSV color scale is a transformation of the RGB color scale. The 

HSV scale was developed in 1978 [11]. HSV scale is used commonly when human perception of 

color is required for various applications. Some examples are in agriculture (fruit or crop color 

identification), in the medical domain (bio image color identification) or in other industries like 

manufacturing etc. [12]–[16]. While the RGB scale defines color in terms of the dominant red, 

green or blue colors, the HSV scale represents the image as a mixture of hue, saturation and 

intensity/brightness [11]. Hue is the part of the image that represents different colors in a wheel 

like model. The hue wheel can for example range as: blue, magenta, red, yellow, green, cyan, and 

back to blue again. Hue of an image is measured in angles, and it ranges from 0 – 360 degrees 

[11], [16]. Saturation on the other hand, refers to the intensity of a particular Hue [16].  Saturation 

is measured in pixel intensities and ranges from 0 – 255 with 0 being the lowest intensity (black) 

and 255 being the highest intensity (white). Value refers to image brightness and is also measured 

from 0 – 255. However, in this work, the focus is on identifying the hue and saturation of the 

images of interest.  

Since the visual color perception is required in this case, the RGB images were converted 

to HSV scale using the rgb2hsv() function in MATLAB. The code used to convert the RGB images 

into HSV is in Appendix E.3. The hue and saturation data of each image were then processed to 

determine the mean hue and mean saturation values for each of the 20 images (5 concentrations, 4 

replicates/concentration). The MATLAB code used to extract these descriptive statistics is in 

Appendix E.4. The hue and saturation data for each replicate are in Table 5.3 -  
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Table 5.5, respectively.  

To determine the hue and saturation data for every concentration, the data from four 

replicates were further processed to identify mean and standard deviations (SD). These data for 

hue and saturation are in Table 5.4 &Table 5.6, respectively. Boxplots were plotted using the mean 

and SD data. These plots are in Figure 5.16 & Figure 5.17. The results pertaining to this section 

are discussed below.  

The hue and saturation data were transformed to a 2-dimensional plane by plotting a scatter 

plot of Hue vs Saturation using the mean hue and saturation data points for each concentration 

(e.g.: Hi and Si where i, j = 0, 10, 50, 100, or 200 ppb) (Figure 5.18) [9]. Next, the distance between 

each geometric coordinate (Hi, Si), and (Hj, Sj) were computed for all combinations of i and j. In 

this work, the Euclidean distance metric was used [9]. The distances between each coordinate are 

shown as a confusion matrix in Table 5.7. 

5.3 Results & discussion  

Visual snapshot analysis  

Each of the processed images was observed visually and their observations were recorded. 

Upon visually observing the Figure 5.6, the Cmin concentration was found to be 100 ppb of Arsenic 

in water. That is each replicate of the 100-ppb concentration (Arsenic in water) was found to be 

visually different from all replicates of the blank.  It is important to note here that the WHO and 

EPA limits for permissible amounts of Arsenic in drinking water are 1 ppb and 10 ppb, respectively 

[4], [5]. Based on the limited testing conducted in this work, the test kit was not able to detect 

Arsenic in water below 100 ppb reliably. Additional details from the visual inspection are outlined 

in the sections below.  

Within concentration observations from visual snapshot analysis:  

In this section, the focus was to identify how much similarity can be visually identified 

within four replicates (R1, R2, R3, and R4) for each concentration. Brief comments regarding the 

comparison of sample strips with manufacturer provided results are also mentioned for every 

concentration. Note that images of both the sample strips and the manufacturer provided results 

were captured under the same conditions in our lab.  
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1. 0 ppb/Blank: Of the four replicates, three appear whitish (R2, R3, R4), but one appears a 

very light shade of yellow (R1) (ref Figure 5.7A). Three of the four replicates appear 

consistent (R2, R3, R4) but one does not (R1). When compared to the manufacture-

provided result, the sample images (R2, R3 and R4) appear to be brighter shades of white 

in our testing, than in the manufacturer’s provided reference chart [7] (Figure 5.7B).  

2. 10 ppb Arsenic in water: Among the four replicates, R1 and R3 appear whitish but R2 & 

R4 are pale yellow in appearance (in Figure 5.8A). R2, R4 appear inconsistently yellow 

and white in patches over the strip area. Overall, there is no consistency between the 

replicates in the 10 ppb (in Figure 5.8A) test results. Visually, none of the replicates from 

the testing in this work were found to match the manufacturer’s provided reference chart 

[7]. 

3. 50 ppb Arsenic in water: The replicates R1, R2, and R4 appear alike with similar shades 

of yellow (Figure 5.9). However, R3 looks completely whitish. Although R1, R2 and R4 

are yellowish in color, they vary in the intensity with R2 being the darkest and R1, R4 

being lighter in comparison to R4. None of the replicates from our testing look like the 

manufacturer’s provided image, although three of the four replicates appear consistent. The 

results from our testing of the commercial kit for 50 ppb look a lighter intensity of yellow 

than the provided result. In this case, the provided image and the obtained results can be 

very misleading and there could be a high chance on misinterpreting the 50 ppb result as a 

lower concentration – which can have significant impact of the health and safety of the 

user.  

4. 100 ppb Arsenic in water: The R2, R3 and R4 images appear similar in this case. However, 

R3 and R4 have a darker outer border around them, compared to R2 (Figure 5.10). R1 

appears to be different from the rest of the replicates and has an unexpected whitish spot 

on it. The test images (all replicates in Figure 5.10A) and the manufacturer’s result (Figure 

5.10B) are all captured under the same light conditions using a photo box. R2, R3, and R4 

obtained using the test kit look similar in shade to the manufacturer’s provided reference 

chart [7]. But R1 appears much darker in intensity compared to the other three replicates.  

5. 200 ppb Arsenic in water: The R2 and R3 images appear similar to each other but have a 

darker outer border and a lighter shade in the center. R4 has no outer border but a consistent 

yellow shade all through the image. Overall, there is no uniformity in color across the test 



 

278 

strip surface in any of the replicates. The intensity of the yellow shade varies within a 

replicate and across replicates. The test images (all replicates in Figure 5.11A) and the 

manufacturer’s provided reference chart [7] (in Figure 5.11B) are all captured under the 

same light conditions using a photo box. When compared with the manufacturer provided 

result, the replicates R1, R2, and R3 have an outer border effect. Overall, the consistent 

shade of yellow seen in the central part of the manufacturer’s provided reference chart [7] 

was not observed in the replicates obtained in our testing.  

Between concentration observations from visual snapshot analysis:  

In this section, observations are made by comparing neighboring concentrations in a 

pairwise manner. Concentrations are compared in the following pairs: 0 vs 10 ppb, 10 ppb vs 50 

ppb, 50 ppb vs 100 ppb, and 100 ppb vs 200 ppb. The differentiability between these 

concentrations is quantified based on visual observations. In each comparison below, eight images, 

four each from a concentration in the pair are visually compared with each other and a 

differentiability percentage (PDIF %) is noted.  

1. Blank vs 10 ppb Arsenic in water: The eight images (in Figure 5.12) look mostly whitish 

to the eye when compared side by side. The 10 ppb R1, R3 and 0 ppb R2, R3 look whitish 

in color but overall, they look very similar to each other. The other images, i.e., 0 ppb R1, 

R4 and 10 ppb R2, R4 also look similar to each other. Visually, it would be very difficult 

to distinguish between 0 ppb and 10 ppb based on our testing. The PDIF % in this case 

was found to be 0%. 

2. 10 vs 50 ppb Arsenic in water: The comparison of 10 vs 50 ppb is a bit more distinguishable 

(see Figure 5.13) than that of 0 vs 10 ppb. However, 50 ppb R3 looks very similar to most 

of the 10 ppb replicates and could be misleading to a user. Based on our testing, we see 

that three of the four 50 ppb replicates are yellow in shade and are visually different from 

the 10 ppb replicates. The 10 ppb can be differentiated using two of the four replicates. In 

total five test strips (10 ppb R1, R3 and 50 ppb R1, R2, R4) are clearly distinguishable. 

Therefore, the PDIF % was found to be 62.5.  

3. 50 vs 100 ppb Arsenic in water: Refer to Figure 5.14 for comparing 50 vs 100 ppb detection 

using four replicates each. There is a clear difference in color between the 50 and 100 ppb 

sensors except for one of the 50 ppb (R3) which looks entirely whitish. The R1 100 ppb 
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also has a whitish spot on the sensor surface and is not consistent with the other replicates. 

However, the difference in yellow intensity between 50 to 100 ppb is a good indicator of 

the increasing Arsenic concentration and the PDIF % was 75%. 

4. 100 vs 200 ppb Arsenic in water: Figure 5.15 shows the comparison of 100 vs 200 ppb 

replicates. Overall, all the eight replicates look similar visually and are very hard to 

distinguish from each other. Particularly, replicates R2, R3, R4 100 ppb and R1 200 ppb 

represent a similar shade of yellow. R1 100 ppb is darker (and has an unexpected white 

patch) and looks like R3, R4 200 ppb in terms of the intensity of yellow. Further most of 

the images seem to have a border effect and uneven intensity of yellow across the sensor 

surface. The differentiability percentage is therefore 0 in this case.  

In summary, based on the pairwise comparison of neighboring concentrations, it was found 

that visual difference in color is not differentiable in 0 vs 10 ppb and 100 vs 200 ppb (Arsenic in 

water). The differentiability of 10 vs 50 ppb is better at 62.5% but it still does not meet the high 

differentiability criteria (of 100%). The 50 vs 100 ppb (Arsenic in water) had the best performance 

among all other concentrations at a PDIF % of 75 but it still does not meet the required PDIF of 

100%. 

Based on the limited testing conducted under lab conditions, the commercial kit was found 

to be able to detect the presence or absence of Arsenic in water, but it was unable to differentiate 

between Arsenic concentrations with high PDIF. While the test strips showed difference in results 

between 50 ppb and 100 ppb Arsenic, these concentrations might be too high in terms of 

permissible Arsenic concentrations in drinking water. The WHO and EPA standards are 1ppb and 

10 ppb, respectively [4], [5].  

Image analysis & pattern recognition algorithm 

The test strip images were analyzed using a preliminary image processing algorithm and 

the obtained results are elaborated in this section. For reference, the flowchart of the methods used 

is in Figure 5.5.  

The hue and saturation data were captured, and their means and standard deviations were 

computed as described in the methods section. A boxplot for Hue and another for Saturation data 

were plotted (Figure 5.16 & Figure 5.17).   
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The results from hue box plot indicate that the mean hue for 0 ppb and 10 ppb (Arsenic in 

water) varied significantly within the replicates (as shown by the large ranges on the boxplot). The 

Hue range for 0 ppb replicates (Arsenic in water) was 16 to 49 and the hue range for 10 ppb 

replicates (Arsenic in water) was 36 to 53. The hues of 0 and 10 ppb (Arsenic in water) have an 

overlap region between 36 to 49, which indicates that the 0 and 10 ppb cannot be differentiated 

based on the hue data. It is important to note that the hue parameter is generally used to measure 

how humans view color. Therefore, the overlap of hue between 0 and 10 ppb indicates that the test 

strips for 0 and 10 ppb (Arsenic in water) cannot be differentiated both visually and using the hue 

data. Similar result was found based on the visual snapshot analysis of 0 and 10 ppb test strips. 10 

ppb and 50 ppb (Arsenic in water) showed an overlap from 42-29 and therefore were not 

differentiable.  

The 50 ppb (Arsenic in water) mean Hue range was very low (42-43) and therefore 

indicated consistent Hue within the replicates. The mean hue for 100 ppb (Arsenic in water) was 

between 33-38 and that of 200 ppb was between 27 – 35.  The clear difference in Hue between 50 

and 100 ppb indicated that the test strips for these concentrations were clearly differentiable. While 

the 50 ppb also had low variability within the hues for its replicates, the 100 ppb had a slightly 

higher hue range. However, the hue values for 100 and 200 ppb (Arsenic in water) had an overlap 

between 33-35 and this overlap again indicated that these two concentrations could not be 

differentiated using the hue data. The visual snapshot analysis also provided the same conclusions 

as seen with the hue data. 

The results from the Saturation box plot can be used to understand the intensity of the color 

on each test strip. The saturations of 0 ppb test replicates ranged from 1 – 17 and that of 10 ppb 

test replicates range from 4 – 23. There was a large overlap of 4 – 17 between the 0 and 10 ppb 

(Arsenic in water) test replicates. This also indicated that the color saturation of the 0 and 10 ppb 

images are similar and could not be differentiated from each other.  

The 50-ppb (Arsenic in water) saturation ranged from 6 to 95, whereas the 100-ppb 

(Arsenic in water) saturation ranged from 200 – 235. There was no overlap in the 50 and 100 ppb 

test strip saturations, and these could be separated from one another. Interestingly, the 200-ppb 

(Arsenic in water) saturation ranged from 174 – 222. This not only had a significant overlap with 

100 ppb saturation (overlap from 200 to 222) but also the 200 ppb had lower saturation than that 

in 100 ppb. With increasing Arsenic concentrations, an increasing color saturation was expected 
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(See Figure 5.2). However, based on these results, the saturation was found to be decreasing 

slightly from 100 to 200 ppb, with a large overlap between these two concentrations. Therefore, 

based on saturation data, it was concluded that the 100 and 200 ppb (Arsenic in water) were not 

differentiable using the kit while testing in lab conditions.  

The results from the visual snapshot and the image analysis were similar. Both methods 

indicated that the test kit was not 100% accurate is differentiating any of the concentrations. 

However, the differentiability was highest with the 50 ppb and 100 ppb (Arsenic in water). 0 ppb 

and 10 ppb (Arsenic in water) were not differentiable at all. Similarly, 100 ppb and 200 ppb 

(Arsenic in water) were also not differentiable using the test kit under lab conditions.  

The results from the Euclidean distance confusion matrix (Table 5.7) indicated that the 

increase in distances between concentrations were not linear. For example, distance between 0 and 

10 ppb, say Δ0,10 is 13.2, which was similar to the increase in 10 to 50 ppb at Δ10,50 = 51.5. But 

after that, the distance between 50 to 100 ppb was very high (Δ50, 100 = 151.2). And finally, the 

distance between 100 and 200 ppb was very low at Δ100,200 = 36.2. These results indicated that the 

color saturation as the concentration increased was not linear.  

It is important to note that only four replicates per concentration were tested in this work 

due to a constraint of time and resources. Additional testing is recommended in the future, to 

further assess the test kit performance in detecting Arsenic in water.  

5.4 Summary & conclusions 

A commercially available Arsenic detection kit was tested for determining Arsenic in 

water, and the results were examined. From the visual inspection, differentiating some 

concentrations were not clear (example 0 and 10, 10 and 50, 100 and 200 ppb Arsenic in water). 

The instructions provided in the commercial kit were found not to be sufficient for the user to 

quantify the color of the test strips. Visual inspection of the images was recommended by matching 

it with the reference color to determine the Arsenic concentration.  

Thus, an alternate method [9] without relying on the use of the test kit reference images 

was adapted and evaluated in this study. The associated testing parameters were systematically 

analyzed. The following conclusions are outlined below: 
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1. The following concentrations were not differentiable based on our testing: 0 vs 10 ppb 

(Arsenic in water), 10 vs 50 ppb (Arsenic in water) and 100 vs 200 ppb (Arsenic in 

water). 

2. The 50-ppb vs 100-ppb (Arsenic in water) were the most differentiable at 75% PDIF. 

3. The increase in Euclidean distance measure (computed using hue and saturation data - 

8 bit with 0 to 255 scale) was not linear with increase in concentration of Arsenic in 

water. 

A limitation of the study: All the samples for the Arsenic experiment were prepared using 

the same protocol and on the same day. Only one sub-sample of the four samples for each 

concentration was sent for ICP-MS analysis. It was assumed that all the samples have the same 

concentration as that of the sub-sample. Therefore, it might be possible that a specific replicate 

might not have the exact expected concentration.  

5.5 Recommendations for future work  

In the future, additional experiments using the same test kit or similar other kits for 

detecting Arsenic in water using multiple concentrations and/or multiple replicates are 

recommended.  

 

Disclaimer: 

Mention of a company’s name, product(s) or trademark(s) does not constitute any 

endorsement or recommendation or any lack of endorsement or any lack of recommendation by 

the author, and/or the faculty members associated with the study, and their affiliated employers, 

their affiliated organizations and/or entities. 

  



 

283 

5.6 Figures 

 

 

 

Figure 5.1: Image of the photography box (purchased from a commercial source) used to capture 

images with consistent lighting 

 

 

 

 

Figure 5.2: Calibration scale provided by the manufacturer* 

*Note: Images of the scale provided by the manufacturer were captured in our lab using the same photography box 

used to capture sample images in this work
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Figure 5.3: Results of the Arsenic calibration curve using ICP-Mass spec 

Note: Only 1 replicate per concentration was analyzed using ICP-MS 

 

 

 

 

Figure 5.4: Flowchart indicating the process used for visual analysis  
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1. Open raw images (N = 20) 
and check if the strip images 

need straightening. 

2A. Extract ROI in the image 
related to padded region 

using the cropping function 
in the windows photo viewer 

tool manually by visual 
verification

2B. The extracted images 
have different pixel 

dimensions (width & height). 
Extracted images do not have 

any background.

3. Read all  images (N = 20) 
in MATLAB, find minimum 
image dim (final_dim). Use 
final_dim to resize all the 
images using imresize(). 

Output = 20 images of equal 
dim. (Appendix E.1)

4. Extract the resized images 
of same concetrations side by 

side and visually compare. 

5. Extract the resized images 
of neighboring 

concentrations side by side 
and visally compare. 
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Figure 5.5: Flowchart indicating the process used for image analysis and pattern recognition  

1. Use resized images (N = 
20) and convert it to 

smoothed images using 
imgaussfilt(). Appendix E.2

2. Use the smoothed images 
and convert the image scale to 

HSV. Appendix E.3

3. Use the HSV images and 
extract Hue and Saturation 

data

4. Find the mean of Hue 
(hue_mean) and the mean of 

saturation (sat_mean) for each 
replicate of every 

concentration (20 total) 
Appendix E.4

4. Use hue_mean of each 
replicate and find the mean 

and SD over 4 replicates (e.g. 
hue_mean_0 ppb and 

hue_SD_0 ppb). Repeat for 
all 5 concentraions. Appendix 

E.4

5. Use sat_mean of each 
replicate and find the mean 

and SD over 4 replicates (e.g.: 
sat_mean_0 ppb, sat_SD_0 

ppb). Repeat for all 5 
concentrations. Appendix E.4

6. Plot boxplots for Hue and 
Saturation using their 

respective mean and standard 
deviation data Appendix E.4
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Figure 5.6: Graphical lay out for the digital images of test kit samples arranged in row for each 

concertation (rows) and each replicate (columns) [9] 
Note: Only one replicate was confirmed by ICP-MS analysis  
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Figure 5.7: A: 0 ppb (Arsenic in water) test results for four replicates (R1,R2,R3,R4) 

 B: Manufacturer’s result 

  

    

Figure 5.8: A: 10 ppb (Arsenic in water) test results for 4 replicates (R1,R2,R3, R4)     B: 

Manufacturer’s result 

 

    

Figure 5.9: A: 50 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4)     B: 

Manufacturer’s result 
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Figure 5.10: A. 100 ppb (Arsenic in water) test results for four replicates (R1, R2, R3, R4)     B: 

Manufacturer’s result 

 

    

Figure 5.11: A. 200 ppb (Arsenic in water) test results for four replicates (R1,R2,R3, R4)    B: 

Manufacturer’s result 

 

 

Figure 5.12: 0 ppb vs 10 ppb (Arsenic in water) side by side comparison 
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Figure 5.13: 10 ppb vs 50 ppb (Arsenic in water) side by side comparison 

 

 

Figure 5.14: 50 ppb vs 100 ppb (Arsenic in water) side by side comparison 

 

 

Figure 5.15: 100 ppb vs 200 ppb (Arsenic in water) side by side comparison 
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Figure 5.16: Boxplot of mean hue data, commercial kit testing (four replicates per concentration) 

Error bars are plotted using standard deviation data 

 

 

 

Figure 5.17: Box plot of mean saturation data, commercial kit testing (four replicates per 

concentration) 

Error bars are plotted using standard deviation data 
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Figure 5.18: Mean hue vs mean saturation scatter plot 
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5.7 Tables 

Table 5.1: Visual snapshot - within concentration analysis (4 replicates/concentration) 

Concentration 

(ppb) 
Comment on the similarity within a concentration 

% 

Similarity 

(Vsc) 

0 3 of the 4 replicates are similar, one replicate is yellowish Vsc =  75% 

10 2 of the 4 replicates are whitish and 2 others are yellowish Vsc =  50% 

50 3 of the 4 replicates are similar but one is totally different Vsc =  75% 

100 
3 of the 4 replicates are similar but one is different and has an 

unexpected white patch 
Vsc =  75% 

200 3 replicates have a darker border, one replicate does not Vsc =  75% 

Table 5.2: Visual snapshot - pairwise concentration analysis 

Concentrations 
% Pairwise 

Differentiability (PDIF) 
Comments 

0 vs 10 C0,10 = 0 % 
Six of the eight test strips look whitish. The two other 

strips look pale yellow but are not differentiable. 

10 vs 50 C10,50 = 62.5 % 
The 10 ppb is differentiable 2 of 4 times. The 50 ppb is 

differentiable 3 out of 4 times. 

50 vs 100 C50,100 = 75 % 

50 ppb and 100 ppb are very different in color intensity. 

Except for 50 ppb R3, all other test strips appear clearly 

different  

100 vs 200 C100,200 = 0% 

Three of the 100 ppb replicates (R2, R3, R4) look like 

one of the 200 ppb (R1). Overall, it is hard to distinguish 

100 and 200 ppb apart. 
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Table 5.3: Mean values of the hue data – all replicates 

Parameters 0 10 ppb 50 ppb 100 ppb 200 ppb 

R1_hue 
48.85 51.94 41.98 35.18 34.30 

R2_hue 
9.82 44.57 42.97 32.37 30.99 

R3_hue 
30.67 32.86 42.52 36.76 30.98 

R4_hue 
39.18 47.20 42.56 36.21 27.64 

 

 

Table 5.4: Mean and SD of replicates – hue data 

Parameters  0 ppb 10 ppb 50 ppb 100 ppb 200 ppb 

Mean of all 

replicates 
32.13 44.14 42.51 35.13 3.89 

SD of all 

replicate means 
16.62 8.12 0.41 1.95 2.72 

SD = Standard Deviation 

 

 

Table 5.5: Mean values of the saturation data – all replicates 

Parameters 0 10 ppb 50 ppb 100 ppb 200 ppb 

R1_Sat 
17.34 6.33 6.39 199.64 221.53 

R2_Sat 
0.98 22.65 80.37 234.57 196.21 

R3_Sat 
3.24 4.25 71.78 219.26 192.14 

R4_Sat 
4.03 14.02 94.78 203.94 174.36 
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Table 5.6: Mean and SD of replicates – saturation data 

Parameters  0 ppb 10 ppb 50 ppb 100 ppb 200 ppb 

Mean of all 

replicates 
6.40 11.81 63.33 214.35 196.06 

SD of all 

replicate means 
7.41 8.36 39.13 15.89 19.45 

 

 

Table 5.7: Confusion matrix of Euclidean distances 

  0 ppb 10 ppb 50 ppb 100 ppb 200 ppb 

0 ppb 0.0 13.2 57.9 208.0 191.8 

10 ppb 13.2 0.0 51.5 202.7 188.6 

50 ppb 57.9 51.5 0.0 151.2 138.2 

100 ppb 208.0 202.7 151.2 0.0 36.2 

200 ppb 191.8 188.6 138.2 36.2 0.0 
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APPENDIX E. P4 - CODE 

1. CODE TO RESIZE ALL IMAGES TO A STANDARD SIZE 

%%%%%%%% 

% Created on 010/25/2021 

% Input: raw images 

% Output: resized images 

% Author: Ridhi Deo 

% File name: obj3b_matlab_1.m (R2020b [8]) 

% Description: This code was written to resize all the images to a standard reference size 

%%%%%%%% 

 

clc; 

clear all; 

close all; 

%% Load data 

input_img = imread(‘input image’); 

%% Set up a standard size 

 

% Load the standard image (image with minimum size) 

std_img = imread(‘standard image’); 

[rowsstd, colstd, numberOfColorChannelsstd] = size(std_img); 

 

%% Resize the image %each of the 20 images need to be read, one at a time 

 

out_img = imresize(input_img, [rowsstd, colstd]); %Lowest image size, found manually 

for the  cropped squares (50 ppb, R2) 

 

%% Display 

figure, imshow(input_img), figure, imshow(out_img) 

 

%% Save image 

imwrite(out_img,'Output path’) 

 

 
2. CODE TO SMOOTH IMAGES 

%%%%%%%% 

% Created on 010/26/2021 

% Input: resized images 

% Output: smoothed images 

% Author: Ridhi Deo 

% File name: obj3b_matlab_2.m (R2020b [8]) ) 

% Description: This code was written to smooth all the resized images using a gaussian filter 
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%%%%%%%% 

%% Apply a smoothing effect to the image 

clc; 

clear all; 

close all; 

%% Load data 

% The inpu to this step is the resized image 

input_img = imread(input image’); 

 

%% Apply smoothing filter 

out_img = imgaussfilt(input_img,2); 

 

%% Display 

figure, imshow(input_img), figure, imshow(out_img) 

 

%% Save the smoothed image 

imwrite(out_img,output path) 

 

3. CODE TO CONVERT RGB IMAGES TO HSV 

%%%%%%%% 

% Created on: 10/26/2021 

% Input: Smoothed RGB images 

% Output: smoothed HSV images 

% Author: Ridhi Deo 

% File name: obj3b_matlab_3.m (R2020b [8]) ) 

% Description: This code was written to convert the default RGB images into HSV scale 

%%%%%%%% 

 

clc; 

clear all; 

close all; 

 

%% Load data 

% Input to this function will be the smoothed images 

input_img = imread(input image); %each of the 20 images need to be read, one at a time 

 

%% Convert to HSV 

out_img = rgb2hsv(input_img); 

 

%% Display 

figure, imshow(input_img), figure, imshow(out_img) 

 

%% Save image 

imwrite(out_img,output path) 
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4. CODE TO COMPUTE MEANS AND SD 

%%%%%%%% 

% Created on: 11/08/2021 

% Input: Smoothed HSV images 

% Output: statistics related to each image and box plots 

% Author: Ridhi Deo 

% File name: obj3b_matlab_4 

% Description: This code was written extract statistics and make box plots 

%%%%%%%% 

 

clear all; 

 

%% Extracting Hue data 

clear all; 

 

R1_0_hue = xlsread(excel sheet path);(excel sheet path); 

R1_0_mean_hue = mean(R1_0_hue,'all'); 

R1_0_SD_hue = std(R1_0_hue,0,'all'); 

 

R2_0_hue = xlsread(excel sheet path);(excel sheet path); 

R2_0_mean_hue = mean(R2_0_hue,'all'); 

R2_0_SD_hue = std(R2_0_hue,0,'all'); 

 

 

R3_0_hue = xlsread(excel sheet path); 

R3_0_mean_hue = mean(R3_0_hue,'all'); 

R3_0_SD_hue = std(R3_0_hue,0,'all'); 

 

 

R4_0_hue = xlsread(excel sheet path); 

R4_0_mean_hue = mean(R4_0_hue,'all'); 

R4_0_SD_hue = std(R4_0_hue,0,'all'); 

 

R1_10_hue = xlsread(excel sheet path); 

R1_10_mean_hue = mean(R1_10_hue,'all'); 

R1_10_SD_hue = std(R1_10_hue,0,'all'); 

 

R2_10_hue = xlsread(excel sheet path); 

R2_10_mean_hue = mean(R2_10_hue,'all'); 

R2_10_SD_hue = std(R2_10_hue,0,'all'); 

 

 

R3_10_hue = xlsread(excel sheet path); 

R3_10_mean_hue = mean(R3_10_hue,'all'); 

R3_10_SD_hue = std(R3_10_hue,0,'all'); 
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R4_10_hue = xlsread(excel sheet path); 

R4_10_mean_hue = mean(R4_10_hue,'all'); 

R4_10_SD_hue = std(R4_10_hue,0,'all'); 

 

 

R1_50_hue = xlsread(excel sheet path); 

R1_50_mean_hue = mean(R1_50_hue,'all'); 

R1_50_SD_hue = std(R1_50_hue,0,'all'); 

 

 

R2_50_hue = xlsread(excel sheet path); 

R2_50_mean_hue = mean(R2_50_hue,'all'); 

R2_50_SD_hue = std(R2_50_hue,0,'all'); 

 

 

R3_50_hue = xlsread(excel sheet path); 

R3_50_mean_hue = mean(R3_50_hue,'all'); 

R3_50_SD_hue = std(R3_50_hue,0,'all'); 

 

 

R4_50_hue = xlsread(excel sheet path); 

R4_50_mean_hue = mean(R4_50_hue,'all'); 

R4_50_SD_hue = std(R4_50_hue,0,'all'); 

 

R1_100_hue = xlsread(excel sheet path); 

R1_100_mean_hue = mean(R1_100_hue,'all'); 

R1_100_SD_hue = std(R1_100_hue,0,'all'); 

 

 

R2_100_hue = xlsread(excel sheet path); 

R2_100_mean_hue = mean(R2_100_hue,'all'); 

R2_100_SD_hue = std(R2_100_hue,0,'all'); 

 

R3_100_hue = xlsread(excel sheet path); 

R3_100_mean_hue = mean(R3_100_hue,'all'); 

R3_100_SD_hue = std(R3_100_hue,0,'all'); 

 

 

R4_100_hue = xlsread(excel sheet path); 

R4_100_mean_hue = mean(R4_100_hue,'all'); 

R4_100_SD_hue = std(R4_100_hue,0,'all'); 

 

 

R1_200_hue = xlsread(excel sheet path); 

R1_200_mean_hue = mean(R1_200_hue,'all'); 

R1_200_SD_hue = std(R1_200_hue,0,'all'); 
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R2_200_hue = xlsread(excel sheet path); 

R2_200_mean_hue = mean(R2_200_hue,'all'); 

R2_200_SD_hue = std(R2_200_hue,0,'all'); 

 

 

R3_200_hue = xlsread(excel sheet path); 

R3_200_mean_hue = mean(R3_200_hue,'all'); 

R3_200_SD_hue = std(R3_200_hue,0,'all'); 

 

 

R4_200_hue = xlsread(excel sheet path); 

R4_200_mean_hue = mean(R4_200_hue,'all'); 

R4_200_SD_hue = std(R4_200_hue,0,'all'); 

 

Param_hue = {'0-mean';'0-Std';'10-mean';'10-Std';'50-mean';'50-Std';'100-mean';'100-

Std';'200-mean';'200-Std'}; 

 

 

R1_hue = 

{R1_0_mean_hue;R1_0_SD_hue;R1_10_mean_hue;R1_10_SD_hue;R1_50_mean_hue;

R1_50_SD_hue;R1_100_mean_hue;R1_100_SD_hue;R1_200_mean_hue;R1_200_SD_h

ue}; 

R2_hue = 

{R2_0_mean_hue;R2_0_SD_hue;R2_10_mean_hue;R2_10_SD_hue;R2_50_mean_hue;

R2_50_SD_hue;R2_100_mean_hue;R2_100_SD_hue;R2_200_mean_hue;R2_200_SD_h

ue}; 

R3_hue = 

{R3_0_mean_hue;R3_0_SD_hue;R3_10_mean_hue;R3_10_SD_hue;R3_50_mean_hue;

R3_50_SD_hue;R3_100_mean_hue;R3_100_SD_hue;R3_200_mean_hue;R3_200_SD_h

ue}; 

R4_hue = 

{R4_0_mean_hue;R4_0_SD_hue;R4_10_mean_hue;R4_10_SD_hue;R4_50_mean_hue;

R4_50_SD_hue;R4_100_mean_hue;R4_100_SD_hue;R4_200_mean_hue;R4_200_SD_h

ue}; 

 

 

Stats_hue = table(Param_hue, R1_hue,R2_hue,R3_hue, R4_hue); 

Stats_hue = rows2vars(Stats_hue); 

Stats_hue(1,:) = []; 

Stats_hue.Properties.VariableNames = {'Param', '0-mean', '0-Std', ... 

    '10-mean', '10-Std', '50-mean', '50-Std', '100-mean', ... 

    '100-Std', '200-mean', '200-Std'}; 

 

%% Creating box plots of Hue means of replicates 
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Avg_0_hue = mean([R1_0_mean_hue, R2_0_mean_hue, R3_0_mean_hue, 

R4_0_mean_hue]); 

Avg_10_hue = mean([R1_10_mean_hue, R2_10_mean_hue, R3_10_mean_hue, 

R4_10_mean_hue]); 

Avg_50_hue = mean([R1_50_mean_hue, R2_50_mean_hue, R3_50_mean_hue, 

R4_50_mean_hue]); 

Avg_100_hue = mean([R1_100_mean_hue, R2_100_mean_hue, R3_100_mean_hue, 

R4_100_mean_hue]); 

Avg_200_hue = mean([R1_200_mean_hue, R2_200_mean_hue, R3_200_mean_hue, 

R4_200_mean_hue]); 

 

SD_0_hue = std([R1_0_mean_hue, R2_0_mean_hue, R3_0_mean_hue, 

R4_0_mean_hue]); 

SD_10_hue = std([R1_10_mean_hue, R2_10_mean_hue, R3_10_mean_hue, 

R4_10_mean_hue]); 

SD_50_hue = std([R1_50_mean_hue, R2_50_mean_hue, R3_50_mean_hue, 

R4_50_mean_hue]); 

SD_100_hue = std([R1_100_mean_hue, R2_100_mean_hue, R3_100_mean_hue, 

R4_100_mean_hue]); 

SD_200_hue = std([R1_200_mean_hue, R2_200_mean_hue, R3_200_mean_hue, 

R4_200_mean_hue]); 

 

 

x_hue = [0, 10, 50, 100, 200]; 

y_hue = [Avg_0_hue, Avg_10_hue, Avg_50_hue, Avg_100_hue, Avg_200_hue]; 

err_hue = [SD_0_hue, SD_10_hue, SD_50_hue, SD_100_hue, SD_200_hue]; 

figure;errorbar(x_hue,y_hue,err_hue), xlim([-5,210]) 

xlabel('Concentrations'), ylabel('Mean Hue values'), title('Hue Plot'); 

 

 

%% Extracting Sat data 

 

 

R1_0_Sat = xlsread(excel sheet path); 

R1_0_mean_Sat = mean(R1_0_Sat,'all'); 

R1_0_SD_Sat = std(R1_0_Sat,0,'all'); 

 

R2_0_Sat = xlsread(excel sheet path); 

R2_0_mean_Sat = mean(R2_0_Sat,'all'); 

R2_0_SD_Sat = std(R2_0_Sat,0,'all'); 

 

 

R3_0_Sat = xlsread(excel sheet path); 

R3_0_mean_Sat = mean(R3_0_Sat,'all'); 

R3_0_SD_Sat = std(R3_0_Sat,0,'all'); 
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R4_0_Sat = xlsread(excel sheet path); 

R4_0_mean_Sat = mean(R4_0_Sat,'all'); 

R4_0_SD_Sat = std(R4_0_Sat,0,'all'); 

 

R1_10_Sat = xlsread(excel sheet path); 

R1_10_mean_Sat = mean(R1_10_Sat,'all'); 

R1_10_SD_Sat = std(R1_10_Sat,0,'all'); 

 

R2_10_Sat = xlsread(excel sheet path); 

R2_10_mean_Sat = mean(R2_10_Sat,'all'); 

R2_10_SD_Sat = std(R2_10_Sat,0,'all'); 

 

 

R3_10_Sat = xlsread(excel sheet path); 

R3_10_mean_Sat = mean(R3_10_Sat,'all'); 

R3_10_SD_Sat = std(R3_10_Sat,0,'all'); 

 

R4_10_Sat = xlsread(excel sheet path); 

R4_10_mean_Sat = mean(R4_10_Sat,'all'); 

R4_10_SD_Sat = std(R4_10_Sat,0,'all'); 

 

 

R1_50_Sat = xlsread(excel sheet path); 

R1_50_mean_Sat = mean(R1_50_Sat,'all'); 

R1_50_SD_Sat = std(R1_50_Sat,0,'all'); 

 

 

R2_50_Sat = xlsread(excel sheet path); 

R2_50_mean_Sat = mean(R2_50_Sat,'all'); 

R2_50_SD_Sat = std(R2_50_Sat,0,'all'); 

 

 

R3_50_Sat = xlsread(excel sheet path); 

R3_50_mean_Sat = mean(R3_50_Sat,'all'); 

R3_50_SD_Sat = std(R3_50_Sat,0,'all'); 

 

 

R4_50_Sat = xlsread(excel sheet path);  

R4_50_mean_Sat = mean(R4_50_Sat,'all'); 

R4_50_SD_Sat = std(R4_50_Sat,0,'all'); 

 

R1_100_Sat = xlsread(excel sheet path); 

R1_100_mean_Sat = mean(R1_100_Sat,'all'); 

R1_100_SD_Sat = std(R1_100_Sat,0,'all'); 
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R2_100_Sat = xlsread(excel sheet path); 

R2_100_mean_Sat = mean(R2_100_Sat,'all'); 

R2_100_SD_Sat = std(R2_100_Sat,0,'all'); 

 

R3_100_Sat = xlsread(excel sheet path); 

R3_100_mean_Sat = mean(R3_100_Sat,'all'); 

R3_100_SD_Sat = std(R3_100_Sat,0,'all'); 

 

 

R4_100_Sat = xlsread(excel sheet path); 

R4_100_mean_Sat = mean(R4_100_Sat,'all'); 

R4_100_SD_Sat = std(R4_100_Sat,0,'all'); 

 

 

R1_200_Sat = xlsread(excel sheet path); 

R1_200_mean_Sat = mean(R1_200_Sat,'all'); 

R1_200_SD_Sat = std(R1_200_Sat,0,'all'); 

 

 

R2_200_Sat = xlsread(excel sheet path); 

R2_200_mean_Sat = mean(R2_200_Sat,'all'); 

R2_200_SD_Sat = std(R2_200_Sat,0,'all'); 

 

 

R3_200_Sat = xlsread(excel sheet path); 

R3_200_mean_Sat = mean(R3_200_Sat,'all'); 

R3_200_SD_Sat = std(R3_200_Sat,0,'all'); 

 

 

R4_200_Sat = xlsread(excel sheet path); 

R4_200_mean_Sat = mean(R4_200_Sat,'all'); 

R4_200_SD_Sat = std(R4_200_Sat,0,'all'); 

 

Param_Sat = {'0-mean';'0-Std';'10-mean';'10-Std';'50-mean';'50-Std';'100-mean';'100-Std';'200-

mean';'200-Std'}; 

 

 

R1_Sat = 

{R1_0_mean_Sat;R1_0_SD_Sat;R1_10_mean_Sat;R1_10_SD_Sat;R1_50_mean_Sat;R1_50_S

D_Sat;R1_100_mean_Sat;R1_100_SD_Sat;R1_200_mean_Sat;R1_200_SD_Sat}; 

R2_Sat = 

{R2_0_mean_Sat;R2_0_SD_Sat;R2_10_mean_Sat;R2_10_SD_Sat;R2_50_mean_Sat;R2_50_S

D_Sat;R2_100_mean_Sat;R2_100_SD_Sat;R2_200_mean_Sat;R2_200_SD_Sat}; 

R3_Sat = 

{R3_0_mean_Sat;R3_0_SD_Sat;R3_10_mean_Sat;R3_10_SD_Sat;R3_50_mean_Sat;R3_50_S

D_Sat;R3_100_mean_Sat;R3_100_SD_Sat;R3_200_mean_Sat;R3_200_SD_Sat}; 
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R4_Sat = 

{R4_0_mean_Sat;R4_0_SD_Sat;R4_10_mean_Sat;R4_10_SD_Sat;R4_50_mean_Sat;R4_50_S

D_Sat;R4_100_mean_Sat;R4_100_SD_Sat;R4_200_mean_Sat;R4_200_SD_Sat}; 

 

 

Stats_Sat = table(Param_Sat, R1_Sat,R2_Sat,R3_Sat, R4_Sat); 

Stats_Sat = rows2vars(Stats_Sat); 

Stats_Sat(1,:) = []; 

Stats_Sat.Properties.VariableNames = {'Param', '0-mean', '0-Std', ... 

    '10-mean', '10-Std', '50-mean', '50-Std', '100-mean', ... 

    '100-Std', '200-mean', '200-Std'}; 

%% Creating box plots of Sat means of replicates 

 

Avg_0_Sat = mean([R1_0_mean_Sat, R2_0_mean_Sat, R3_0_mean_Sat, 

R4_0_mean_Sat]); 

Avg_10_Sat = mean([R1_10_mean_Sat, R2_10_mean_Sat, R3_10_mean_Sat, 

R4_10_mean_Sat]); 

Avg_50_Sat = mean([R1_50_mean_Sat, R2_50_mean_Sat, R3_50_mean_Sat, 

R4_50_mean_Sat]); 

Avg_100_Sat = mean([R1_100_mean_Sat, R2_100_mean_Sat, R3_100_mean_Sat, 

R4_100_mean_Sat]); 

Avg_200_Sat = mean([R1_200_mean_Sat, R2_200_mean_Sat, R3_200_mean_Sat, 

R4_200_mean_Sat]); 

 

SD_0_Sat = std([R1_0_mean_Sat, R2_0_mean_Sat, R3_0_mean_Sat, R4_0_mean_Sat]); 

SD_10_Sat = std([R1_10_mean_Sat, R2_10_mean_Sat, R3_10_mean_Sat, 

R4_10_mean_Sat]); 

SD_50_Sat = std([R1_50_mean_Sat, R2_50_mean_Sat, R3_50_mean_Sat, 

R4_50_mean_Sat]); 

SD_100_Sat = std([R1_100_mean_Sat, R2_100_mean_Sat, R3_100_mean_Sat, 

R4_100_mean_Sat]); 

SD_200_Sat = std([R1_200_mean_Sat, R2_200_mean_Sat, R3_200_mean_Sat, 

R4_200_mean_Sat]); 

 

x_Sat = [0, 10, 50, 100, 200]; 

y_Sat = [Avg_0_Sat, Avg_10_Sat, Avg_50_Sat, Avg_100_Sat, Avg_200_Sat]; 

err_Sat = [SD_0_Sat, SD_10_Sat, SD_50_Sat, SD_100_Sat, SD_200_Sat]; 

figure;errorbar(x_Sat,y_Sat,err_Sat), xlim([-5,210]) 

xlabel('Concentrations'), ylabel('Mean Sat values'), title('Saturation Plot'); 

 

%% Exporting results into an excel table 

writetable(Stats_hue, 'Stats_Hue_Comkit.xlsx'); 

writetable(Stats_Sat, 'Stats_Sat_Comkit.xlsx');
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Figure P4.1: Figure outlining the flow of code used in this research objective

Raw data Code P4.1 Code P4.2 Code P4.3 Code P4.4
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GENERAL CONCLUSIONS 

In this research, models were developed in paper 1 to predict Hepatic Steatosis (HS) using 

ML-techniques. In developing decision support systems based on ML for HS prediction, a 

hierarchical approach was used in exploring different input parameters. Models developed as part 

of objective 1A used only six physiological parameters. The models in objective 1B used seven 

physiological and liver biochemistry parameters. In paper 2, three selected models (each for male 

and female specific populations) from objective 1B were evaluated from an interpretability 

perspective to include model transparency. 

In paper 3, ML-based models were developed to test the impact of including vs excluding 

a cluster of heavy metal exposure data (Lead, Iron, and Cadmium). In paper 4, a commercially 

available Arsenic detection kit was tested, and the results were examined visually and using a 

customized image analysis algorithm. 

Based on the work described above, the following are concluded: 

1. Physiological parameters alone can predict HS using 79% accuracy, 76% sensitivity and 

82% sensitivity. 

2. Models with only seven parameters (vital and liver biochemical) led screening models with 

sensitivities of 82.6% for male-specific models and 86% for female specific models. It is 

logical to use both physiological and liver biochemical parameters to maximize the 

sensitivity and therefore, screening capability of these models. 

3. The best performing models from an explainability perspective were identified as 

Quadratic SVM in male population and Gaussian SVM scale 1 in female population.  

4. The top three independent predictors for male and female data were identified using the 

mean of the partial dependencies. In both sexes, ALT, AST, and Glucose were found to be 

the most individually contributing features. These three parameters were found to be 

individually contributing highly to HS prediction. 

5. Results for male and female populations were found to vary slightly with male models 

outperforming the female models in terms of alignment with clinical normal values.  

6. A theoretical framework for developing hybrid models is provided in sections 3.5.1 d and 

3.5.2 d. 
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7. Inclusion of heavy metal exposure (Lead, Iron, and Cadmium) did not have a numerically 

significant impact on the model performance in predicting HS. 

8. The minimum concentration identifiable using the commercial kit was 100 ppb (under lab 

conditions). 

9. The commercial kit was not able to differentiate the following concentrations based on our 

testing: 0 vs 10 ppb, 10 vs 50 ppb and 100 vs 200 ppb. The 50-ppb vs 100-ppb 

concentrations (Arsenic in water) were the most differentiable at 75% PDIF. 

10. The increase in Euclidean distance metric (computed using Hue and saturation) was not 

linear with increase in concentration of Arsenic in water. 
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Abstract: In the past three decades, the prevalence of NAFLD has been rising consistently across the globe, including in 

the USA. The progression of NAFLD into cirrhosis, fibrosis, and other complications is predicted to cause a high clinical 

burden in the upcoming years. Although NAFLD prevalence is increasing along with the increasing co-morbidities of obesity 

and diabetes, the exact cause of NAFLD is unknown. Non-invasive and low-cost screening options for NAFLD are limited to 

ultrasound-based imaging, while liver biopsy is the required benchmark for diagnosis. Lack of specific biomarkers makes it 

challenging to identify and screen the disease early-on. Moreover, chronic heavy metal exposure (Arsenic, Lead, Mercury, 

and Cadmium) was found to be associated with NAFLD occurrence. Considering the complex pathway and multiple factors 

associated with NAFLD, it is appropriate to conduct a benchmark literature review related to this disease (NAFLD) and its 

associated factors. Thus, this mini review identifies: 1) Recent research related to the enzymes indicative of NAFLD 2) 

Overlap between NAFLD and heavy metal exposure and, 3) Contemporary tools and techniques being researched for NAFLD 

detection. This review also reflects on NAFLD as an associated risk factor for other diseases like PCOS, cardiovascular 

diseases, and hepatocellular carcinoma. 

I. INTRODUCTION 

The liver plays a key role in xenobiotic metabolism while 

maintaining the body’s metabolic homeostasis and 

synthesizing carbohydrates and lipids. It is the most 

important detoxifying organ in the body and is therefore 

highly susceptible to toxicity [1],[2].  

There are multiple sources of liver problems, caused by 

external or internal agents. 

The liver’s functionality can be impaired by external 

agents like viruses or toxins. Additionally, liver functionality 

could also be impaired due to cancer or other genetic 

conditions (e.g.: Wilson’s disease). 

Viruses cause liver diseases like hepatitis A, B, and C in 

humans. Toxins, on the other hand, can cause liver diseases 

by accumulation. The toxins that accumulate in the liver can 

stem from various sources like medicinal drugs, alcohol 

consumption, or heavy metal exposure. In this review, the 

focus is on heavy metal-induced toxicity and its impact on 

liver functionality. Heavy metals: Arsenic (As), Lead (Pb), 

Mercury (Hg), and Cadmium (Cd) have been previously 

researched in the context of toxicity and their impact on the 

human body [1]–[13], [13]–[31].  

The major source of heavy metal exposure in humans 

occurs via drinking water [11], food [26] and, environmental 

exposure - particularly due to occupational hazards [32], 

[33].  These heavy metals usually accumulate over time in 

the liver, causing it to inflame and eventually leading to liver 

dysfunction [1], [15].  

Liver diseases initiated by exposure to toxins or other 

pollutants like heavy metals, tend to progress with time. 

Chronic liver diseases either caused by or due to excessive 

alcohol consumption, exposure to heavy metals or other 

toxic chemicals, etc. lead to fibrosis, cirrhosis, and 

eventually cancer, when left undiagnosed and/or untreated. 

Non-alcoholic fatty liver disease (NAFLD) is a chronic 

disease, similar in progression to alcoholic fatty liver disease 

(ALD) [34].  

The scope of this review paper is limited to the 

consequences of exposure to heavy metals on the liver, 

leading up to or progressing the NAFLD condition.  

It is important to point out that the exact cause for 

NALFD is unknown [35], however, heavy metal exposure is 

a known risk factor for NAFLD [1], [11], [36]. Recent 

studies have indicated the occurrence of NAFLD in 

individuals with the exposure of heavy metals Hg [21], As 

[1], and Pb [14]. Moreover, one of the causes of liver enzyme 

modification was found to be linked with the presence of 

heavy metals (in adult mice) [26]. Thus, this paper focuses 

on the impact of specific heavy metals (Hg, As, Cd, and Pb) 

on the liver, with a special emphasis on NAFLD.  

The prevalence of NAFLD has been increasing in the 

recent years [37]. Increased urbanization led by 

industrialization has encouraged a sedentary lifestyle in 

many parts of the world [14], [38], [39]. This shift has 

resulted in increasing cases of obesity worldwide. One of the 

outcomes of this shift, combined with rising obesity, has 

been an increase in the prevalence of NAFLD [40]. Younossi 

et al. identified a 10% increase in the global prevalence of 

NAFLD between 2005 to 2010 [37]. The prevalence of 

NAFLD by country is shown in figure 1 [37]. The 

prevalence estimate (as of 2016) included studies from 1989 

– 2015, with a sample size of 8,515,431 adults, in a meta-

analysis by Younossi et al. [37].   
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Fig 1. Prevalence estimate of NAFLD around the world [37] 

Considering that an exact cause for NAFLD is not known 

[35], [41], and its increasing prevalence, a systems 

perspective is needed, accounting the different factors linked 

to the liver and its functionality. For instance, it is important 

to know the pathway of heavy metals from the environment 

into the human system and further impacting the liver. Thus, 

we justify conducting a state-of-art literature review related 

to the topics described below: 

1) The enzymes indicative of non-alcoholic fatty 

liver disease (NAFLD) and related liver 

diseases 

2) Effect of heavy metal exposure on 

biomarkers/enzymes indicative of liver 

functionality 

3) Emerging biomarkers and techniques for 

NAFLD detection  

Typical biomarkers related to NAFLD and more specific 

biomarkers in the context of heavy metal toxicity are 

reviewed in this paper. Biomarkers at different levels of 

abstraction – protein biomarkers, gene mutations, and 

enzyme biomarkers are included in this paper. Detection 

strategies based on these biomarkers are also discussed. 

Further, detection devices based on specific biomarkers are 

part of the review as well.  

In this review, three databases (PubMed, Engineering 

Village, and Web of Science) were used to find relevant 

literature. Combinations of keywords: heavy metal toxicity, 

liver functionality, liver enzymes, liver dysfunction, 

NAFLD biomarkers and, mathematical models were used. 

Papers published in the last six years (2014- 20) were 

included. A total of 676 abstracts were initially obtained. 

After abstract review and de-duplication, 97 papers were 

selected for further review. Of these 97 papers, selected 

studies that are related to this review’s research objectives 

are cited in our paper, along with other cross-references that 

stemmed from the literature. The organization of the review 

is shown in fig 2. 

  
Fig 2. Organization of this review  

II. LIVER FUNCTIONALITY 

Liver’s role in detoxification: The specificity of the 

liver’s role in detoxifying can be highlighted using the 

results of research, specifically with liver tissues in animal 

models [9], [42].  

Geng et al. researched five specific tissues of fish species 

in Shanghai [42]. They investigated the nutritional and toxic 

contents in the dorsal, abdominal and tail muscles and also 

liver, and abdominal fat tissues [42]. Hg levels in all tissues 

were found to be under the limit of 500 g/kg, except in the 

liver tissue; Hg levels were very high (range: < 500 – 1567 

g/kg) in the liver compared to other muscle tissues in their 

study [42]. The disproportionate amount of toxicity in the 

liver tissue compared to other muscles highlights the burden 

of toxic exposure specifically on the liver.   

Another research group explored the contamination levels 

in fish from a reservoir, in an area with rigorous copper 

mining [9]. The heavy metal concentrations in the livers of 

fish in the reservoir (N = 45, 15 per season) vs water heavy 

metal concentrations in the reservoir itself (three seasons) 

were measured. They found the metal concentrations in the 

fish livers to be higher than in the reservoir (p<0.05) [9]. The 

aspartate aminotransferase (AST) activity was also found to 

be significantly different (p<0.05) [9]. Furthermore, hepatic 

histological alterations were found in the fish livers, 

including degenerations, necrosis and, blood vessel changes, 

indicating liver dysfunctionality at the tissue and cellular 

level when exposed to metal-contaminated water [9].  

The association between liver health and heavy metal 

exposure was also explored in human models by some 

researchers. These are elaborated on in section III of this 

paper.  

As mentioned in section I of this paper, a liver’s 

functionality can be impaired by various external agents like 

viruses (cause hepatitis A, B, C), toxins (cause fatty liver 

disease (FLD), cirrhosis), or genetic conditions (that cause 

Wilson’s disease) [43].  This paper focuses on Non- 

Alcoholic Fatty Liver Disease (NAFLD). NAFLD is 
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described by the storage of additional liver fat, leading to 

either a simple fatty liver or Non-Alcoholic Steatohepatitis 

(NASH) [41]. NASH is defined as the presence of liver 

inflammation and liver damage in addition to fat 

accumulation [41]. NASH can lead to further complications 

over time. Liver cirrhosis and liver cancer are complications 

associated with NASH [41]. For patients with severe liver 

cirrhosis leading to organ failure, a liver transplant is usually 

required for survival [41].  The incidence of NAFLD is 

increasing in both developed and developing countries [37].  

In a multiethnic study of 106,458 individuals living in the 

USA, NAFLD was found to be the major cause (52%) of 

chronic liver diseases (CLD) [44].  

Current clinical practices define the normal ranges of 

clinical parameters (enzymes, proteins) from the liver 

function test as follows: 

i) ALT (alanine aminotransferase): 29-33 U/L for men, 

19-25 U/L for women [45] 

ii) AST (aspartate aminotransferase): 0-35 U/L [46] 

iii) ALP (alkaline phosphatase): 30-120 U/L [46] 

iv) Albumin: 4.0-6.0 g/dL [46] 

v) GGT (gamma-glutamyl transferase): 0-30 U/L [46] 

vi) Bilirubin: 2-17 µM/L [46] 

In this review, the guidelines and references related to 

liver diseases in the USA are included. Other guidelines 

from Europe, Asia pacific etc. are not a part of this review. 

They can be found in the references [8], [47], [48].   

Although clinical practitioners conduct imaging tests or 

biopsies for confirmed NAFLD and NASH diagnoses, if 

liver enzymes are elevated, the hepatocellular pattern for 

NAFLD and NASH screening is AST/ALT ratio < 1 [49]. 

Note that the liver enzymes are not always elevated in the 

case of NAFLD and NASH [49]. Additional details about 

albumin, bilirubin, total protein etc. are not covered in this 

paper. Details related to these proteins/enzymes can be 

found in the references [50], [51].  

A. Epidemiology 

A 10% increase in the global prevalence of NAFLD 

between 2005 – 10 was identified in an epidemiological 

study [37]. This finding is consistent with other studies that 

have also found increasing prevalence rates both globally 

and specifically in the USA [52], [53]. Although the primary 

target region of this mini-review is the USA, it is pertinent 

to highlight the magnitude of the NAFLD prevalence in 

other regions around the globe.  

Fig 1 shows the prevalence of NAFLD around the world 

(from 1989 – 2015) [37]. The Middle East and South 

America were identified as highly prevalent regions at 

31.8% and 30.4% respectively [37]. A similar statistic was 

observed in the USA based on National Health and Nutrition 

Examination Survey (NHANES) data [52]. The prevalence 

of NAFLD in the USA rose from 5.5% to 11%  from 1988 

to 2008.  [52], [54].  

In Asia, the epidemiology of NAFLD has continued to 

rise since the year 1990 [55]. Japan, for instance, 

experienced an increase in NAFLD prevalence by 17% from 

1990 to 1998 – with varying sex prevalence, as of 2008 

(~32% male vs 17% female) [55]. Similarly, the NAFLD 

prevalence ranged from 15 – 45% in  southeast Asia 

(includes India, Sri Lanka, Malaysia, Singapore, and 

Indonesia), Korea, Japan, and Taiwan [55]. China (20%) and 

Hong Kong (27%) were also found to show an increasing 

prevalence of NAFLD during 2003-13 [55].  

Translating these prevalence rates into absolute numbers 

(individuals), in highly populated countries like China and 

India highlights the significance of addressing this disease 

(prevention, early diagnosis, and management).   

A global meta-analysis of 49,419 individuals (from 80 

studies in 20 countries) revealed that 55.5% and 37.3% of 

type 2 diabetes (T2DM) patients had NAFLD and NASH 

(non-alcoholic steatohepatitis) respectively, between 

January 1989 to September 2018 [56]. A combined NAFLD 

prevalence (within group of type 2 diabetes patients) of 

59.20% was reported in Iran, Saudi Arabia, and Turkey (via 

meta-analysis based on four separate reports) [56]. The same 

meta-analysis further reported a prevalence of 57.46% in 

India and Pakistan (within group of type 2 diabetes patients, 

based on six separate reports). Interestingly, the NAFLD 

prevalence rose to 68.82% in type 2 diabetic patients in 

Europe (based on 26 reports) [56].  

Another recent review paper outlined the increasing 

prevalence of NAFLD risk factors like insulin resistance, 

hypertension, and dyslipidemia alongside increasing 

NAFLD prevalence [54]. Aside from high prevalence with 

obese, overweight, and diabetic populations, approximately 

5-15% of the lean population (based on BMI) were found to 

have NAFLD [55], [57]. Further, it was found that older 

adults, specifically in the range of 40-50 have been affected 

by NAFLD, NASH risk, and fibrosis [54]. Greater 

prevalence in patients with Hispanic ethnicity when 

compared to non-Hispanic Caucasians and African 

Americans was also found [58].   

According to the United States Organ Procurement and 

Transplantation Network’s (OPTN) annual report, the 

number of liver transplants for NASH continued to rise in 

2018 [59]. The number of candidates on the waitlist for liver 

transplant in 2018 were increasingly found to have NAFLD 

[59]. Obesity (defined as BMI >= 30 kg/m2) and diabetes 

were found to be consistent with adult liver recipients at 

34.6% and 29.2% respectively in 2018 [59]. Further, the 

United Network for Organ Sharing (UNOS) recorded that 

obesity and diabetes increased by approximately 1.7% and 

4.3% respectively over the past decade [59].  

1) NAFLD and sex disparities:   

Sex disparities have been observed in NAFLD prevalence 

around the globe. In a recent paper, Lonardo et al. 

summarized population-based studies (10 studies on 

NAFLD in adult populations) that report higher prevalence 

in men, than in women [60]. It is important to note that 

multiple diverse investigations led to a consistent finding of 

men being more prone to NAFLD than women are [60]–
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[62]. The possible linkage of estrogen as a protective factor 

for NAFLD has been reported [61]. The report further 

alluded that men and women (post-menopause) have a larger 

risk of NAFLD compared to risk in pre-menopausal women 

[61].  

NAFLD prevalence was found to increase with the 

increase in BMI for both men and women [63]. However, in 

445 normal BMI (18.5 to 23.9) individuals, NAFLD 

prevalence was higher among men than that for women 

(14.4%; for men vs 11.9%; for women; p = 0.0156, 95% CI). 

Although NAFLD prevalence, in general, is lower among 

women than among men, the progression of NAFLD to 

advanced fibrosis is faster among women as compared to 

that for men [62].  

Therefore, we argue that a comparatively lower NAFLD 

prevalence percentage among women needs to be carefully 

interpreted. In a populated country(ies), this percentage can 

translate to a high, concerning, absolute number of women 

affected by NAFLD.  

Overall, the literature does not indicate any specific 

reason for the difference in NAFLD prevalence among men 

and women. Additional investigation is needed to address 

this disparity.  

Aside from the traditional risk factors for NAFLD, 

toxicant-associated risk factors for NAFLD have been 

identified to induce NAFLD and NASH like pathology. 

These conditions are named Toxicant-induced fatty liver 

disease (TAFLD) and Toxicant-associated steatohepatitis 

(TASH) [36], [64].  

2) TAFLD and TASH:  

These conditions are induced via occupational hazards in 

jobs that involve chronic exposure to heavy metals. TAFLD 

is similar in pathology to NAFLD and ALD, while NASH 

and TASH are similar, pathologically [36].    

Upon evaluation of liver biopsies of 25 highly exposed 

vinyl chloride workers, Cave et al. found an 80% prevalence 

of steatohepatitis [64]. It is important to note that the 25 

workers were not obese and had no other identifiable risk 

factor for steatohepatitis, other than occupational exposure 

[64].  

In an attempt to estimate the prevalence of unexplained 

NAFLD in the US adult population, a population study based 

on 4,582 individuals was conducted (using NHANES data) 

and compared with their Pb, Hg, and Cd exposure [21]. 

Upon extrapolation using sample weights, an estimated 

10.6% of the US adult population was found to have an 

unexplained elevation of the liver enzyme – ALT [21]. 

Elevated ALT was defined as - Men: 18-20 years: ≥ 37 IU/L, 

≥ 21 years: ≥ 48 IU/L; Women: 18–20 years: ≥ 30 IU/L, ≥ 

21 years: ≥ 31 IU/L and was used as a proxy for unexplained 

NAFLD [21]. Blood Pb concentration and total Hg 

concentration were associated with elevated ALTs at p-

values of 0.006 and 0.010 respectively (95% CI) [21]. 

However, Cd was not found to correlate with the elevated 

ALTs [21]. Researchers find this unexplained NAFLD to be 

possibly associated with exposure to toxicants [21]. Other 

such studies that evaluate the prevalence of NAFLD or 

NASH in workers with occupational exposure to toxicants 

(volatile petrochemicals, vinyl chloride) have shown similar 

results [65], [66].    

Overall, the American Liver Foundation estimates that 

25% of the US population has NAFLD [67]. NAFLD was 

also found to be the most common chronic liver condition in 

the USA by the American Liver Foundation [67]. However, 

research shows that a majority of the NAFLD diagnoses are 

incidental [68]–[70]. In a study with 100 adults with NAFLD 

(from west Australia between 2009 – 15), it was found that 

66% of NAFLD-related cirrhosis was diagnosed 

incidentally, of which 74% was further diagnosed with 

NAFLD incidentally [68]. This finding is indicative of a lack 

of systematic screening and diagnostic patterns for an 

increasingly prevalent disease like NAFLD. The various 

intricate factors impacting NAFLD, and their interactions 

are outlined in the etiology section below.  

B. Etiology 

Multiple complex parameters like inflammation, insulin 

resistance, diabetes, obesity, diet, and lifestyle play a role in 

the etiology of NAFLD [25], [71], [72]. The interaction of 

these parameters promotes disease progression. These 

parameters are analyzed in detail in the sections below. 

3) NAFLD and diabetes: 

A global meta-analysis study of 49,419 type-2 diabetes 

patients was conducted. 55.5% of them had NAFLD and 

37.3% had NASH [56]. This observation indicates the co-

existence of diabetes with NAFLD/NASH.  

Similar to NAFLD, the prevalence of diabetes is also 

different for men and women. According to the International 

Diabetes Foundation, an additional 17.2 million men were 

diagnosed with diabetes in 2019, as compared to that among 

women [73]. Although obesity is observed in both diabetic 

[74] and NAFLD patients [71], the contribution of NAFLD 

to diabetes hazard factor (3.59) is higher than that (1.99) 

contributed by ‘over-weight’ (BMI >= 23) condition [75].   

4) NAFLD and Metabolic Syndrome (MS):  

Researchers have found a strong association between 

NAFLD and MS [71], [72], [76]. Multiple agencies around 

the globe like the World Health Organization (WHO), 

European Group for the Study of Insulin Resistance (EGIR), 

National Cholesterol Education Program (NCEP) Adult 

Treatment Panel III (ATP III), and others have defined MS 

[27]–[29]. The more recent definition by NCEP-ATP III in 

2005 identifies MS when three of the five criteria in table 1 

apply [77], [78]: 
TABLE I 

DEFINITION OF MS BY NCEP-ATP III [77], [78] 

Parameter Men Women 

Abdominal obesity > 40 inches > 35 inches 

Triglycerides > 150 mg/dL > 150 mg/dL 

HDL < 40 mg/dL < 50 mg/dL 

Blood Pressure > 130/> 85 mm 
of Hg 

> 130/> 85 mm 
of Hg 

Fasting Glucose > 110 mg/dl > 110 mg/dl 
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Although there isn’t a unanimous opinion about NAFLD 

manifesting itself as MS or NAFLD as a precursor for MS, 

some researchers have found data that supports the latter 

[58], [71], [79]. While MS is a common risk factor for 

NAFLD patients, differences in prevalence were found 

based on race and ethnicity [71]. Further, exposure to heavy 

metals was found to contribute to MS in individuals – 

although the available data is conflicting [43].  MS is defined 

as the co-occurrence of several known factors; the central 

pathophysiology being insulin resistance (IR) [78].  

5) NAFLD and IR:  

IR was reported as a stand-alone parameter associated 

with risk of NAFLD, with or without MS [80]. Cases of IR 

and hyperinsulinemia are both persistent in NAFLD patients 

but in the case of NAFLD patients who develop IR, high 

circulating free fatty acids (FFAs) are created [71]. Hepatic 

uptake of FFAs results in reduced glycogen storage and 

increased gluconeogenesis [71]. The combined effect of IR 

and hyperinsulinemia have been linked with steatosis and 

excessive release of triglycerides [71]. These triglycerides 

are in the form of very-low-density particles that assist 

oxidative stress in the liver and prompt atherosclerosis  [71], 

[72].  

6) NAFLD and hormone dysfunction:  

Various hormones are related to the promotion of obesity, 

inflammation, and lifestyle habits. Two such hormones 

derived in the gut and related to NAFLD are 1.) glucagon-

like peptide – 1 (GLP-1) and 2.) Ghrelin [72]. GLP-1 is the 

hormone responsible for the activation of reward centers of 

the brain upon the consumption of macronutrients like 

fructose. Ghrelin concentrations promote hunger. Weakened 

GLP – 1 secretion and reduced receptors for GLP-1 have 

been found in the livers of NAFLD patients, damaging the 

hepatic glucose and lipid metabolism [72]. In NAFLD 

patients, the concentration of acylated/deacylated Ghrelin 

was found to be elevated [72]. The association of 

dysregulated hormones and NAFLD needs to be further 

explored.  

Largely, NAFLD was found to be one of the emerging 

etiologies of chronic liver disease. For example,  NAFLD 

contributed to 22% of all chronic liver diseases in young 

adults in the USA [82] and 39.7% among adults in India 

[25]. NASH, is a fast-growing etiology of end-stage liver 

disease [83]. In a nutshell, NAFLD and NASH are rapidly 

growing both globally and regionally (in the USA). Early 

detection and intervention are not only critical but also 

urgent.  

III. HEAVY METAL EXPOSURE AND NAFLD 

A. Impact of heavy metal exposure on the liver’s 

functionality: 

Various studies have shown the impacts of heavy metal 

exposure to general human health [1], [8], [11], [32], [33], 

[84]–[87].  Heavy metal exposure leads to various types of 

skin diseases, kidney malfunctions, and liver problems [88], 

[89]. Almost all heavy metals are categorized as carcinogens 

[84]. Occupational exposure was found to occur via 

environmental pollutants like industrial waste, mining 

activities, and ore smelting [32], [33]. Drinking water 

standards for As, Cd, Pb, and Hg as defined by the US – 

Environmental Protection Agency (US EPA) and the World 

Health Organization (WHO) are shown in table 2. The routes 

and sources of exposure of As, Pb, Hg, and Cd are outlined 

below.  
TABLE II 

HEAVY METAL LIMITS IN DRINKING WATER 

 
 
 
 
 
 
 
 
 
 
 
 

* “Lead and copper are regulated by a treatment technique 

that requires systems to control the corrosiveness of their 
water. If more than 10% of tap water samples exceed the 
action level, water systems must take additional steps. For 
copper, the action level is 1.3 mg/L, and for lead is 
0.015 mg/L” [90]. 
** The guideline value is provisional based on treatment 
performance and analytical achievability. 

 

Arsenic exists in three forms: Organic, Inorganic, and Arsine 

gas [92]. Inorganic As is the most toxic form of As and is a 

confirmed carcinogen [93]. Arsenic exposure to human 

beings can occur from multiple routes: ingestion 

(consumption), inhalation, and dermal exposure. However, 

the primary route of As exposure is mostly through 

consumption of contaminated food and water  [88], [92].  

Geological characteristics in certain regions of the world 

lead to higher Arsenic levels in drinking water. Population 

living in that area is vulnerable to exposure [88]. 

Contaminated groundwater flows through rivers and is used 

directly for consumption or irrigation purposes. Food that is 

grown in arsenic polluted regions also leads to exposure via 

diet [32]. Moreover, multiple food products are 

contaminated with Arsenic. Some examples of food 

contaminated with Arsenic are rice, seafood, food and 

vegetables, meats, cereals, and dairy products  [92], [94]. 

Rice is a primary staple for a large population in the world. 

In a study involving rice and other grains, white rice grown 

in Thailand, India, and Italy had higher median heavy metal 

concentrations compared to white rice from the USA 

Element US EPA limit [90] WHO limit [91] 

Arsenic 0.01 mg/L 0.01 mg/l  

Cadmium 0.005 mg/L 0.003 mg/l  

Lead 
Action level* = 
0.015 mg/L 

Action level** = 
0.01 mg/l  

Mercury 0.002 mg/L 0.006 mg/l 
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(Arsenic 155 vs 131 µg/kg, Pb 3.6 vs 2.8 µg/kg and Cd 17.4 

vs 6.5 µg/kg) [95]. Populations consuming white rice as a 

staple could be chronically exposed to heavy metals like As, 

Pb, and Cd.  

Lead, another heavy metal, exists in three forms: 

elemental lead, inorganic and organic lead. The organic form 

of lead is highly toxic  [96]. Pb occurs in the environment 

(soil, water, dust) and industrial waste as well as in 

household products [89]. It also has multiple exposure routes 

into aquatic life, seafood, food produce, and ultimately into 

the human body [26]. Seafood (canned and fresh samples of 

fish, mussels, and other seafood) from different geographical 

regions were found to have varying degrees of inorganic lead 

in them [97]. Chronic consumption of seafood or vegetables 

farmed in contaminated soil or water can lead to lead 

exposure.  

Mercury exists in three main forms – elemental Hg, 

organic Hg (methyl Hg), and inorganic mercury (in the 

mercurous and mercuric types) [2]. In humans, the most 

common exposure route of Hg (methyl Hg) is via seafood 

consumption [98]. A study comparing the Asian and non-

Asian population in the USA found that Asian adults (> 50 

years old) had higher methyl Hg compared to their non-

Asian equivalents (mean concentrations: 1.69 μg/L vs 0.58 

μg/L, respectively) [99]. The impact of chronic consumption 

of seafood can lead to methyl Hg exposure.  

Cadmium exists in the environment but not in its refined 

form. Cadmium in the environment occurs as an ore in two 

forms: Cadmium sulfide, Cadmium with zinc [100]. It is 

refined during zinc production [100]. Cadmium has various 

industrial applications like batteries (Nickel-Cadmium 

batteries), fertilizers, pigments, plastics, and coatings [100]. 

The human use of Cadmium enables widespread Cadmium 

dispersion into the air. Transfer of Cd from the air into the 

rain and soil introduces Cd into drinking water, food, and 

finally into the human system [100]. Certain animal meats, 

shellfish, mushrooms, and plant produce such as rice, grain, 

potatoes were found to contain Cadmium [100]. The rates of 

Cd in food are especially high when farmed in contaminated 

areas close to mines and smelters [100]. Populations living 

closer to Cd contaminated areas are at a higher risk of 

chronic Cd exposure via inhalation of contaminated air and 

ingestion of food and water contaminated with Cd.  

Further, exposure to a mixture of heavy metals was found 

to have a larger impact on the liver cell function, 

susceptibility to liver injury and, histopathological changes 

in the liver, compared to individual heavy metal exposure 

[28], [33], [43]. The individual impact of the above four 

heavy metals (As, Pb, Hg, and Cd) on NAFLD are outlined 

below.  

1) NAFLD and Arsenic:  

NAFLD occurrence and heavy metal exposure were 

found to be overlapping based on recent studies. Arteel et al. 

found striking similarities in ‘demographic and mechanistic 

overlap’ between As exposure and NAFLD occurrence in 

individuals [1].  States in the USA with higher levels of 

Arsenic in their drinking water found higher incidences of 

obesity and NAFLD in their residents [1], [101], [102].  

Effects of chronic Arsenic exposure were researched in 

prior studies involving animal models [1]. It was found that 

Arsenic exposure for longer than nine months induced 

hepatic steatosis, potentially leading to diabetes and insulin 

resistance when exposure is combined with an MCD 

(methionine choline-deficient diet) diet [1], [103], [104]. 

Increased hepatic injury through low-grade inflammation, 

was found to increase lipid accumulation in the liver [1].   

In humans, low dose exposure to Arsenic can result in 

Arsenosis while chronic exposure can cause liver injury. The 

toxicokinetic mechanism of As upon exposure results in 

absorption of 70-90% of As by the gastrointestinal tract (GI 

tract). From the GI tract, As mainly spreads to the liver, 

kidneys, lungs, and bladder via the bloodstream, and the 

highest accumulation of As occurs in the liver [88]. The 

majority of As metabolism also occurs in the liver [88]. A 

portion of absorbed As is eventually eliminated via urine but 

the remainder bioaccumulates inside the body [94], [105]. 

The major detoxification pathway of inorganic As from the 

human body is via methylation [106]. However, 

intermediate metabolites released during methylation were 

found to have toxic effects and cause DNA damage [106]. 

Most of the biochemical processes in the human system 

involve proteins and enzymes [107]. DNA damage caused 

by heavy metal exposure (via induction of reactive oxygen 

species) can impact the DNA repair pathways and the 

maintenance of cell health in the human body [107].  

Increased oxidative stress in the liver cells of zebrafish was 

observed when exposed to chronic Arsenic concentrations 

(six months, 50 ppb to 300 ppb As) [108]. Therefore, chronic 

exposure to heavy metals might also affect the human liver 

enzymes which are the basis of liver functionality. 

2) NAFLD and Mercury:  

A research group hypothesized that the body burden of 

Hg exposure is apparent in the functionality of the liver 

based on urine and blood Hg values (N = 3,769) [30]. Blood 

Hg was indirectly measured as MeHg in their work [30]. 

They found serum and urinary Hg levels to be correlated (r 

= 0.54, p < 0.001) [30]. To determine the liver functionality, 

enzymes AST, ALT, and GGT were used from the dataset 

[30]. They defined liver enzyme values as follows: ALT: 

greater than 47 U/L and 30 U/L for men and women, 

respectively; AST: greater than 33 U/L both for men and 

women; GGT: greater than 65 U/L and 36 U/L for men and 

women, respectively [30]. In cases of elevated AST, ALT, 

and GGT together, lower urine Hg levels at a given Hg 

exposure were found [30]. This relationship, however, was 

only marginally significant (p = 0.06 – 0.08) when ALT, 

AST and GGT were used together in the multivariate 

regression analyses [30]. They found that urinary Hg 

analysis may not be optimal because of the possible 

dependence of urinary Hg on liver functionality [30]. On the 

other hand, they found MeHg concentrations to be higher in 

individuals with all three liver enzymes elevated (p=0.01), 

which was found to be consistent with other studies [30]. 

Based on their study results, they suggest that increased 

MeHg levels may be due to decreased demethylation, as 

indicated by elevated liver enzymes [30].    
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In an elderly population study in Seoul, Korea (> 60 

years, N = 560), Lee et al. also found the presence of Hg in 

the blood (mean: 2.81 μg/L (2.73, 2.89), 95% CI) to be 

associated with abnormal liver enzyme levels (AST, ALT, 

and GGT) at p < 0.05, 95% CI, leading to reduced liver 

functionality [22]. Their definition of abnormal liver 

enzymes was: ALT > 35 U/L for men and women; AST > 

34 U/L men and >40 U/L women; GGT > 48 U/L for men 

and > 29 U/L for women [22]. Despite adjusting for age, sex, 

smoking, drinking, and other lifestyle and clinical habits, the 

liver enzyme concentrations were abnormal in the high 

blood Hg group [22]. However, when blood Hg levels were 

combined with alcohol consumption data, the liver 

functionality deteriorated further in the patients who 

consumed alcohol regularly [22]. The specific role of Hg 

exposure on the development of metabolic syndrome was 

also explored in a review paper [3]. However, the scope of 

this paper is limited to NAFLD and heavy metal exposure.  

3) NAFLD and Lead 

Luo et al. found that chronic exposure of Pb in mice led 

not only to hepatotoxicity but also influenced multiple 

signaling pathways, fatty acid metabolism, and drug 

metabolism [26].  The levels of three liver enzymes (AST, 

ALT, and ALP) were found to rise with an increase in Pb 

exposure in adult mice [26]. The obtained result is aligned 

with that from Georgieva et al.’s work with common carp 

undergoing chronic exposure in the Topolnitsa reservoir [9]. 

In both these animal models, it was found that the 

interference caused by heavy metal exposure in liver enzyme 

concentrations lead to hepatic injury at the tissue and cellular 

level, interrupting several signaling pathways [9], [26] 

High levels of Pb in the blood (Median value: 4.49 μg/dL 

(2.97–6.59) for women; 5.29 μg/dL (3. 60–7.28) for men) 

were also found to be related to NAFLD occurrence in China 

[14]. Although ALT blood levels were measured in this 

study, abdominal ultrasound (US) was used to diagnose liver 

health [14]. Blood Pb levels were found to positively 

correlate with NAFLD, independent of ALT levels. The 

correlation was more pronounced in women (p for trend < 

0.001, 95% CI, N= 610, vs control N = 876) than in men (P 

for trend = 0.033, 95% CI, N = 214 vs control N = 311).  

Exposure to Pb was found to increase liver injury, via an 

intermediate agent – Glutathione [109]. Glutathione is a 

detoxifying agent synthesized from amino acids, which is 

crucial for detoxification and cell physiology [110]. 

Exposure to Pb impacts the Glutathione levels in the body 

up to 40% [85]. Further, the regeneration time for 

glutathione slowed down to 40 mins, from the standard 20 

minutes [85].  

4) NAFLD + Cadmium and NAFLD + mixture 

of heavy metals 

 Prystupa et al. conducted a study in Lublin (Southeastern 

Poland), a region majoring in agriculture [4]. Study subjects 

were farmers and unemployed people who had advanced 

alcoholic liver cirrhosis (N = 62 with 46 Male, 16 Female). 

Essential trace elements required for the proper functioning 

of the body - (copper (Cu), Zinc (Zn), Nickle (Ni), and 

Cobalt (Co)) were found to be lower in study subjects 

compared to controls (N = 18). Contrastingly, they found 

serum Cd concentrations to be higher in advanced cirrhosis 

patients (Control: 0.0054 ± 0.0007 mg/L vs advanced 

cirrhosis: 0.0078 ± 0.0044 mg/L) [4]. Cd is a toxic heavy 

metal, capable of causing hepatocyte damage [4].  

A study conducted in Taiwan found up to 26.5% 

prevalence of fatty liver disease in men (n = 1,137) who are 

exposed to higher levels of soil heavy metals [111]. The 

study investigated the presence of As, Hg, Cd, Cr, Cu, Ni, 

Pb, and Zn in soil and their association with fatty liver 

disease [111]. They used abdominal sonography to identify 

fatty liver instead of liver biopsy [111]. The association was 

highest for men with BMI < 24 kg/m2 [111]. However, in 

comparison with the Framingham Steatosis Index (FSI), 

they found that heavy metal exposure in FSI was also 

positively correlated with men (with BMI < 24).  

However, this result needs to be validated in the context 

of pre-and post-menopausal women to understand the 

impact of heavy metals on the liver for a diverse population. 

The liver enzymes and heavy metal exposure relationship 

need to be researched further to assist with the early 

detection of heavy metal related liver toxicity. 

Studies have also found an association between 

significant quantities of other heavy metals like Iron and zinc 

with liver dysfunction in various populations [112]–[114]. 

The scope of the present study only focuses on As, Pb, Hg, 

and Cd. Therefore, the impact of other heavy metals is out 

of the scope of this review. Researchers have also explored 

the association between NAFLD and metabolic syndrome, 

as detailed in section 2(b) in this paper [71], [72], [76], [80], 

[115].  

Although these studies need to be extensively validated in 

human models with diverse populations and demographics, 

the initial impact on the liver in human and animal models 

for liver damage is crucial. The inability of the liver to 

metabolize heavy metals, especially in advance diseased 

stages indicates the importance of early diagnosis and 

treatment of liver disease for individuals living with chronic 

exposure.  

As mentioned earlier in section 2a, NAFLD progresses 

with time, making it crucial to identify the disease early 

enabling intervention and care. Current evidence-based 

practice in NAFLD screening is the use of circulating 

enzyme concentration in blood plasma [49], [117], [118]. 

However, it is important to note that the detection of NAFLD 

based on liver enzymes alone can be misleading [49]. All 

cases of NAFLD do not exhibit elevated liver enzymes, the 

prevalence of NAFLD was under-estimated consistently 

when liver enzymes were used for diagnoses instead of 

imaging [68]–[70], [119]–[121]. Ultrasound (US) imaging 

of the liver is conducted when clinicians suspect 

NAFLD/NASH in a patient. However, due to lack of 

sensitivity with US (in case of obese patients or liver cells 

with fat droplets), computer tomography (CT) or magnetic 

resonance imaging (MRI) are also used [118]. The current 

standard for confirmatory diagnosis of steatosis, 

steatohepatitis, and fibrosis is liver biopsy [118].  
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Although these methods can detect NAFLD, US tests lack 

the sensitivity to diagnose the disease, and liver biopsies are 

expensive, invasive, and risky [69]. In the search for 

alternate, specific biomarkers for NAFLD, researchers have 

found potential genetic, proteomic, blood-based, enzyme-

based, and urine-based biomarkers.  

 
 

TABLE 3 
IMPACT OF HEAVY METAL EXPOSURE ON THE HUMAN SYSTEM 

 

IV. EMERGING BIOMARKERS AND TOOLS FOR NAFLD 

DETECTION 

This section focuses on emerging and contemporary 

methods or tools for NAFLD (and HS, NASH) detection. It 

is important to note that these findings are currently in the 

research investigation/exploratory phase. Although most of 

these methods are not currently used in the clinical setting, 

they show potential for use in the future and have therefore 

been reviewed below. 

1) Physiological biomarkers 

Previously, adipose tissue was considered to be a passive 

storage unit for excess energy, but current research shows 

the ability of the adipose tissue to synthesize and release 

multiple hormones and cytokines that circulate 

throughout the body [122]. Adipose tissue dysfunction 

has since been researched in the context of NAFLD 

association [122]. Adipokines like “leptin, adiponectin, 

ghrelin, interleukin-6, and, tumor necrosis factor-a” have 

shown an association with NASH [123], [124]. 

Imbalanced adipokines initiate a proinflammatory and 

insulin-resistant response which exasperate the 

progression of NAFLD, eventually leading to NASH in 

severe NAFLD patients (N = 82) [124]. A formula that 

includes the use of serum levels of adipokines to 

determine NASH was developed. The value of: 

adiponectin (ng/ml) / (2 x leptin (ng/ml) x ghrelin 

(pg/ml)) < 0.31 resulted in an AUROC of 0.789 with 

81.8% sensitivity and 76.1% specificity with a negative 

predictive value of 96.4% and positive predictive value of 

34.6% for diagnosing NASH [124]. However, it is 

important to note that their patient demographic was 

limited to “morbidly obese individuals, with biopsy-

proven NAFLD” [124].   

The relationship of BMI with various adipokines was 

also researched. It was found that leptin had positive 

correlation (r=0.45, P<0.001) whereas ghrelin had 

negative correlation (r=−0.28, P=0.012) with BMI [124]. 

Adiponectin on the other had negative correlation with 

waist to hip ratio (r=−0.34, P=0.007) and showed no 

correlation with BMI [124]. However, BMI does not 

consider the fat percentage in the body, so conclusions 

from the above study should be drawn with caution. In 

short, ghrelin was found to be associated with diabetes 

occurrence whereas adiponectin was associated with 

“insulin resistance, hypertension, dyslipidemia, and 

metabolic syndrome” [124]. A review paper also found 

that circulating adipokines are related to NAFLD 

pathogenesis and NASH progression [122].  

The correlation of NAFLD and leptin was used for 

NAFLD detection by researchers [125]. Cai et al. 

developed an immunosensor using “porous graphene 

functionalized black phosphorus (PG-BP)” [125]. Anti-

leptin was fixed firmly on the surface of the electrode 

which led to high sensitivity (LOD: 0.036 pg/ml) and 

reduced interferences with other enzymes [125]. In their 

approach, a label-free and environment-friendly leptin 

sensor were developed for very low levels of leptin detection 

(up to 0.036pg/ml, with a linear range of detection in 0.150–

2500 pg/mL) [125]. The results of the immunosensor based 

detection were found to surpass those of ELISA (enzyme-

linked immunosorbent assay) or other previous 

electrochemical methods [125]. Upon further validation, 

Heavy 
metal 

The affected biological entity in the 
human body (Organ, enzyme, cell, 
etc.) 

Reference 

Arsenic 

Liver toxicity [1] 
Skin cancer, bladder cancer, and 
other cancers 

[102] 

Chronic Arsenical dermatosis and 
hepatomegaly 

[11] 

Skin lesions, respiratory and 
nervous system problems, cancer 

[32] 

Elevated ALT correlated with (p = 
0.07) higher urinary Arsenic values   

[15] 

Cadmiu
m 
exposure 

Reduced levels of essential trace 
elements (Cu, Zi, Ni, and Co).  

[4] 

High serum Cd levels correlated 
with advanced cirrhosis patients.  

[4] 

Liver cell damage, liver carcinoma  [19] 

Lead 
exposure 

Elevated B-Pb correlated with 
NAFLD, especially in women 
(probability < 0.001, 95% CI). For 
men:  probability = 0.033 

[14] 

Hematopoietic and renal 
toxicology 

[12] 

Slowed glutathione regeneration 
and reduced glutathione levels 

[85] 

Mercury 
exposure 

Elevated ALT, AST & GGT (p = 0.06 - 
0.08) 

[30] 

Abnormal AST, ALT & GGT (p < 0.05, 
95% CI) 

[22][112][112][
111][110][109][
105][104][103][
102][101][100][
99][98][97][96]
[95][94][92][91
][90][89][88][8
7][86] [84] 

Mixture 
effects 

Pb and Hg exposure correlated with 
ALT elevation (p for trend = 0.006 
and 0.010 respectively) 

[21] 
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such sensors can be effectively used for early detection of 

NAFLD, thereby allowing early intervention and care.  

Further, fatty acid-binding proteins like adipokine 

binding protein (A-FABP), retinol-binding protein (RBP4), 

and lipocalin-2 “are associated with obesity, insulin 

resistance, and metabolic syndrome” [126]. A study based in 

a South Korean hospital found A-FABP levels were found 

to be high in the NAFLD group (N = 73) when compared to 

the normal group (N = 67): “18.42 ± 7.24 ng/mL vs. 15.74 ± 

7.02 ng/mL vs., p = 0.022” [126]. Upon conducting a logistic 

regression analysis, patients in the highest quartile of  A-

FABP levels corresponded to three times the risk of NAFLD 

than that of those in the lowest quartile (p-trend: 0.039, 95% 

CI) [126]. The explanation of this association could be the 

modulation of inflammatory responses based on A-FABP 

levels in the body [126], [127]. However, their study 

presented contradictory results regarding the serum RBP4 

and lipocalin-2 levels compared to other studies [126]. 

Although their results need to be validated with a diverse 

population, they were obtained independent of age and sex, 

indicative of the potential A-FABP could have in NAFLD 

diagnosis.  

A hormone secreted by the liver called fibroblast growth 

factor 21 (FGF21) has been implicated to indicate “lowering 

blood glucose, lipids, and insulin levels, reversing hepatic 

steatosis, and increasing insulin sensitivity” and therefore, as 

an early biomarker for NAFLD [128]. Gong et al. developed 

a field-effect transistor (FET) which is also label-free and 

very sensitive to FGF21 levels in human serum samples (1 

fg/ml) [128]. They used a “molybdenum disulfide (MoS2)” 

surface for non-aqueous environment detection of FGF21 

and achieved a limit of detection of 10 fg/mL [128].  

2) Biomarkers related to NASH:  

Long term NAFLD prognosis has implicated the 

prevalence of non-alcoholic steatohepatitis (NASH) in 

patients [118]. NASH prediction via blood biomarkers was 

reviewed by Gomez et al. In their research, the gap in 

specifically and sensitively identifying NASH from NAFLD 

is highlighted. They suggest combining blood-based 

biomarkers with existing diagnostics [123].  

Methionine choline-deficient diet (MCD diet) was used 

by researchers performing studies in animal models in this 

domain to induce NASH like symptoms. After the NASH 

symptoms were induced in mice, Clarke et al. analyzed the 

serum levels of microRNA – 122: RNA specific to the liver 

[129]. They found a 40-fold average increase in the levels of 

miRNA-122 in mice induced with an MCD diet for three 

days [129]. ALT and AST levels were only 4.8 fold and 3.3 

fold elevated compared to miRNA-122 (at 40- fold) [129].  

3) Omics:  

Research towards specific biomarkers for NAFLD or 

other liver diseases (FLD, NASH, etc.) has led to the 

identification of multi-omics compounds associated with the 

disease. Urinary steroid metabolome, multi-omics, serum-

based omics, and a combination of clinical features with 

omics are being studied concerning liver diseases [130]–

[132]. 

Researchers used volatile organic compounds from the 

NAFLD breath sample to develop indirect, sensitive 

detection methods for NAFLD [133]. A micro gas 

chromatography column was used by researchers to separate 

the VOCs in the breath condensate [133]. The breath 

condensate was separated from the gas pentane, considered 

to be a potential biomarker for NAFLD based on its ability 

to predict fibrosis [133].  Their findings indicate that the 

micro GC column was able to separate gases C5 – C12 

within 5 minutes [133]. However, their micro-GC column 

needs to be installed inside a conventional GC instrument, 

requiring high temperatures and expensive equipment. The 

reliability of pentane as a potential biomarker for NAFLD 

remains to be researched.  

4) Use of computational tools:  

With the increasing availability of data and computational 

power, research in the field of health care analytics and 

model-based disease prediction has accelerated. Machine 

learning (ML) and Artificial Neural Network (ANN) based 

models have been created in various disease domains to 

assist with diagnosis and screening [131], [132], [134]–

[148].  

A computational approach to NAFLD screening or 

diagnosis, liver fat quantification, fibrosis pattern detection, 

assessment of the severity of the liver disease can be 

classified into four different modalities, per our literature 

search. 

i. Physiological parameters (serum triglyceride 

levels, BMI, age, etc.) 

ii. Imaging modalities (US, MRI) 

iii. Omics to find associations with liver disease 

(genetics, transcriptomics, metabolomics, etc.) 

iv. Images of liver biopsies 

The scope of this review is limited to the initial 

benchmarking of minimally invasive or non-invasive 

techniques for quantifying liver diseases. Hence, we did not 

include liver biopsy related work in this review.  

5) Physiological parameters & Machine 

Learning:  

Use of physiological parameters as ‘risk factors’ to 

predict a disease has been applied to several disease 

domains. In this approach, researchers use electronic 

medical health records, or physiological data like age, BMI, 

blood glucose, etc. in combination with machine learning or 

deep learning algorithms [134], [135], [141], [142].   

In this regard, our previous research was to predict the 

occurrence of fatty liver (HS) based on previously 

established risk factors [134]. We used data from NHANES 

III (N = 12,719), and the model was able to classify HS and 

no-HS with an accuracy of 79.03% using a gentle boosted 

tree algorithm. Another research group developed ML 

models to predict FLD using data from a hospital (N = 577) 

in Taiwan [135]. They used nine predictor variables (similar 

to risk factors) as model inputs. Their best performing model 
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(Random forest, 10-fold validated) had an accuracy of 

86.48% [135]. Similarly, other models to support NAFLD 

diagnosis and to assess NAFLD severity were also 

developed by other researchers [141], [142]. These models 

show potential as screening tools for fatty liver disease, 

especially in populations with low or no alcohol 

consumption. However, the results from such models need 

validation from large, diverse datasets.  

6) Imaging modality: 

 Imaging modalities have significant scope in NAFLD 

detection and quantification. In general, three imaging 

modalities are of importance in the context of NAFLD and 

they are: 1) Ultrasound (US), 2) MRI and 3) Computerized 

tomography (CT) [149]. Ultrasound scans are of two types: 

qualitative or conventional ultrasound (CUS) and, 

quantitative US (QUS) [150]. Although MRI is emerging as 

a quantitative imaging biomarker, US-based studies were 

more commonly used by researchers, per our literature 

search. Computer tomography can also be used to detect 

liver fat but is more commonly used for tumor diagnosis. 

Further, the radiation exposure associated with CT makes it 

an uncommon tool for NAFLD detection [151]. 

A meta-analysis of 49 studies using conventional 

ultrasound (CUS) from October 1967 to March 2010 was 

conducted to assess the diagnostic performance of CUS 

[152]. They reported the performance metrics for use of CUS 

to detect “moderate to severe fatty liver” in the absence of 

steatosis. The values for sensitivity (84.8%) as well as 

specificity (93.6%) were reported [152]. However, the use 

of CUS as a differentiator of fatty liver, hepatitis, fibrosis, or 

normal liver had slightly different metrics for sensitivity 

(87.2%) and specificity (79.2%) [152]. CUS is safe, and 

generally widely accessible, as compared to MRI. CUS is 

relatively less expensive than other imaging modalities. 

However, CUS scans lack sensitivity and specificity to 

quantify liver fat [153]. As the CUS is qualitative, it suffers 

from the subjectivity of the interpreter, the operator, and the 

sensitivity/capability of the machine, thus contributing to 

lower accuracy [154]. Therefore, the use of quantitative 

ultrasound (QUS) with backscatter coefficients has been 

explored in the context of hepatic fat quantification and 

NAFLD detection, as an alternative to CUS [150], [151], 

[154].  

A preliminary comparison study consisting of ultrasonic 

scans from 60 different subjects found quantitative 

ultrasound (QUS) to be more accurate (68.3%) when 

compared to CUS (51.7%) [151]. They used histologic 

steatosis grading as a reference standard for NAFLD 

detection [151]. The use of QUS instead of CUS to quantify 

steatosis has also been supported by other studies [148], 

[150], [154]. In recent years, researchers are exploring the 

capabilities of machine learning (ML) or advanced pattern 

recognition techniques (i.e., deep learning (DL) and artificial 

neural networks (ANN)) techniques for NAFLD diagnosis 

[136], [139], [140], [143]–[148]. Selected example 

applications of ML, DL, and ANN techniques to US images 

are discussed below. 

A study used 63 conventional ultrasound (CUS) images 

from a hospital in Portugal for fatty liver detection and risk 

stratification [136]. They used features extracted from a 

region of interest (ROI) (128 x 128 pixels) in the CUS 

images [136]. No other clinical features (aside from those 

obtained via analysis ROI) were used [136]. Their best 

performing model used a deep learning technique with an 

accuracy of 100% [136]. They reported better results using 

deep learning paradigm compared to machine learning 

models (Support Vector Machine (SVM) and Extreme 

learning machine (ELM) at 82% and 92% accuracies, 

respectively) [136]. Although the above study shows 

encouraging results, it does not specify the type of fatty liver 

disease. Therefore, we assess that the use of ML on CUS 

requires validation with larger datasets, for potential 

NAFLD, hepatic steatosis (HS), and NASH screening.  

Another study used radiofrequency (RF) signals from 

quantitative ultrasound of 140 NAFLD patients and 64 

controls [147]. They used one dimensional artificial neural 

network (ANN) classifier with equally split training and test 

datasets. The classifier showed 96% accuracy with 97% 

sensitivity and 94% specificity (95% CI) in diagnosing 

NAFLD [147]. Additionally, they also developed a fat 

fraction estimator using RF signals as input to a one-

dimensional ANN [147]. Their estimates correlated with 

MRI- proton density fat fraction (PDFF) at r = 0.85 

(Pearson’s correlation) [147].  However, this study did not 

use histological steatosis as reference grade. Thus, we assess 

that this method needs to be further evaluated for adaption 

in clinical settings.  

More recently, a combination of imaging and non-

imaging (physiological) parameters has been implemented 

with machine learning (ML) and artificial neural network 

(ANN) tools [139]. The study used clinical data (HDL, LDL, 

triglycerides, fasting blood sugar, BMI, Forns score [155]) 

and ultrasound images from 726 patient to extract rules for 

FLD detection using ANN model [139]. Their derived rules 

were able to detect FLD with an accuracy ranging from 

80.58% - 100%, based on different model parameters. They 

used reference standards from FibroScan (transient 

elastography) instead of using liver biopsy. It is to be noted 

here that the use of FibroScan is limited by the demographic 

it can be performed on. For instance, FibroScan is not 

recommended for subjects with a history of ascites, those 

with morbid obesity, and/or with significant quantities of fat 

in the chest wall [156]. Thus, the results from the study [139] 

reported above that used FibroScan as a reference, needs 

additional careful evaluation for the adaption in clinical 

practice. Moreover, as the study [139] also used a small 

dataset, further validation is recommended. 

Alternatively, magnetic resonance imaging– (MRI)- 

proton density fat fraction (PDFF) measures the liver fat by 

computing the ratio of liver fat signals to total signals [153]. 

A study comparing conventional ultrasound (CUS), 

quantitative ultrasound (QUS) and MRI found MRI-PDFF 

to be more accurate (76.7%) in NAFLD detection when 

compared to US techniques (QUS: 68.3%, CUS: 51.7%), 

against a histological grading reference [151]. 

Previous studies have also demonstrated the accuracy, 
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repeatability and precision of MRI – PDFF compared to 

histological reference for NAFLD detection [149], [151], 

[153], [157]–[159]. The sensitivity and specificity of some 

of these studies over all grades of steatosis ranged between 

0.64-1.0 and 0.76 – 0.96, respectively [149], [151], [157]–

[159]. Further, MRI-PDFF enables volumetric steatosis 

assessment of the liver which is not possible with ultrasound 

scans [153]. Although MRI-PDFF has many advantages for 

non-invasive detection of NAFLD, some of the pressing 

limitations are its cost and limited access to instrument and 

expertise, in low-resource settings, where NAFLD is 

prevalent. Additionally, for certain patients with metal 

implants, MRI-PDFF needs additional preparation and 

precautions. Current research efforts in developing and 

validating portable, cost-effective MRI systems [160] might 

contribute to improve the limitations described above in near 

future. 

In the context of non-invasive and rapid detection of 

NAFLD, MRI-PDFF is the preferred imaging modality for 

resource-intensive locations. The use of advanced pattern 

recognition techniques with MRI-PDFF interpretation can 

increase the adoption of this technology for NAFLD 

detection. In low-resource settings, where NAFLD is 

prevalent, the lack of access to instruments and expertise is 

a problem. In such cases, QUS with advanced pattern 

recognition techniques using physiological parameters 

(detection with comparable or acceptable accuracy for initial 

screening) are promising compared to those provided by 

MRI-PDFF and CUS.  

In summary, each imaging modality (ultrasound, MRI, 

CT) has its own merits and limitations, in varying degrees, 

for NAFLD detection. Additional analysis is required to 

assess the breadth and depth of each imaging modality. In 

this review, we intend to highlight the importance of the 

three imaging modalities in the context of NAFLD detection. 

However, the details of each modality or their combination 

is out of scope of the defined objective of this paper.  

7) Machine learning integrated omics:  

Recently developed omics-based studies that use ML or 

DL paradigms are included in this review [130]–[132].  

A study with LASSO (least absolute shrinkage and 

selection operator) select and a random forest model 

obtained an ROAUC of 0.84 (95% CI, p < 0.001) [131].  

Multi-omics (genetic, transcriptomic, proteomic, 

metabolomic) and clinical (liver enzymes, serum 

biomarkers, lifestyle etc.) data comprised the key input 

variables for fatty liver disease [131]. Although their model 

has the potential to avoid liver biopsies, they require data 

through RNA sequencing, protein-coding and metabolomic 

assays which makes diagnosis complicated from a 

patient/clinical perspective. Further, their study was limited 

in their demographics to northern European population. 

We anticipate that sensor-based systems integrated with 

computational models to explain predictor contribution of 

heavy metals (ingested in the body) on liver disease will be 

useful to further understand the dynamics of the disease.  

8)  NAFLD as a risk factor for other diseases 

Aside from leading the liver to failure in its’ advanced 

stages (like liver scarring and liver failure), the occurrence 

of NAFLD also leads to increased risk for other diseases like 

PCOS (polycystic ovary syndrome), diabetes, 

cardiovascular diseases and is linked highly to diabetes type 

II and obesity [115], [161], [162].  

In a study on PCOS patients, it was found that 48 out of a 

total 88 patients (55%) had NAFLD along with a high insulin 

resistance score; highly associating PCOS with NAFLD, 

high BMI, and high insulin resistance [40], [162]. In a 

review paper linking PCOS and NAFLD, Kelly et al. 

propose screening of high-risk PCOS women to identify 

NAFLD  [115].  

The link between NAFLD and cardiovascular diseases 

like heart valve calcification (in the mitral and aortic valves) 

was researched in a cross-sectional study of diabetic patients 

(N = 247 ) [161]. Approximately 71% of these patients were 

found to have NAFLD (via US tests) [161]. They found 

NAFLD to be linked with aortic valve sclerosis and/or mitral 

annulus calcification with unadjusted-odds ratio: 3.51 (95% 

CI, p < 0.001) [161].   

The progression of NAFLD with time can lead to liver 

cancer or hepatocellular carcinoma (HCC) [163]. 14.1% of 

the HCC cases were related to NAFLD in a study consisting 

of 4,929 HCC cases (with 14,937 controls) [163].  The 

development of NAFLD to HCC further reduces patient’s 

survival rate along with a decreased chance for liver 

transplant [163].  

NAFLD is linked with many metabolic parameters in the 

body and therefore it is further associated with conditions 

like diabetes, insulin resistance, PCOS and increased 

cardiovascular risk. However, specific interactions between 

NAFLD and other conditions is out of scope for this paper. 

 

V. SUMMARY AND FUTURE OUTLOOK 

A contemporary scientific review is conducted on non-

alcoholic fatty liver disease (NAFLD) between 2014 – 2020 

in this paper. In the recent years, more emphasis has been 

placed on NAFLD, therefore relevant literature from the past 

six years was reviewed. The focus of this review is on heavy 

metal toxicity and NAFLD. Three main objectives are 

elaborated in this paper: major enzymes and biomarkers 

indicative of chronic liver conditions (particularly NAFLD), 

the effect of heavy metal exposure on liver health and, 

emerging biomarkers and techniques for NAFLD detection.  

The increasing prevalence of NAFLD globally, as 

elaborated in section II a, indicates the urgent need to 

address NAFLD diagnosis and management. Further, it is 

important to note that NAFLD progresses with time to cause 

fibrosis, cirrhosis and potentially leading to hepatocellular 

carcinoma. NAFLD etiology is complex and associated with 

multiple other conditions (i.e., metabolic syndrome, diabetes 

type-II and insulin resistance etc.) – as outlined in section II 

b. Current evidence-based practice uses liver enzyme ratios 
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for NAFLD and NASH screening. However, enzyme ratios 

do not identify all NAFLD cases. While imaging tools (like 

ultrasound and MRI) and liver biopsies (required for 

confirmatory for NAFLD diagnosis) are used, a majority of 

NAFLD cases are diagnosed incidentally. A gap in NAFLD 

screening and potential diagnosis is therefore noted.  

The relationship of NAFLD with heavy metal exposure is 

explored in section III. Chronic heavy metal exposure (As, 

Pb, Hg and Cd) is found to correlate with abnormal liver 

enzyme values, with NAFLD and, with liver damage in 

general. The inability of the liver to metabolize heavy metals 

warrants the screening, diagnosis, and early intervention for 

individuals living with chronic heavy metal exposure.  

Toxicant-induced fatty liver disease (TAFLD) and Toxicant-

associated steatohepatitis (TASH) are similar in pathology 

to NAFLD and NASH, respectively. TAFLD and TASH are 

induced due to chronic heavy metal exposure and need 

further investigation as part of future research. 

Potential biomarkers for NAFLD detection: adipokines 

(leptin, adiponectin etc.), fatty acid-binding proteins (A-

FABP) and hormones (fibroblast growth factor 21 (FGF21)) 

are being researched. More details regarding these 

biomarkers are introduced in section IV (a, b, c) of this 

paper. Recent implementations of potential biomarkers via 

computational tools for liver disease diagnosis are reviewed 

in section IV d. Artificial intelligence (AI) tools like machine 

learning, deep learning, and artificial neural networks are 

being implemented to detect NAFLD using physiological 

parameters, imaging data, and omics data (section IV e). The 

merits and limitations of conventional ultrasound (CUS), 

quantitative ultrasound (QUS), and MRI-PDFF were 

discussed in detail in IV f. This review highlighted the 

implementation of quantitative ultrasound (QUS) instead of 

conventional ultrasound (CUS) to be promising, especially 

when QUS data is combined with AI tools for increased 

detection accuracy.  

As mentioned earlier, NAFLD is a widely prevalent 

disease of significance in the global domain. Therefore, it is 

important to reiterate the significance of NAFLD by citing a 

few recent statistics. For example, as of 2020, the global 

estimated prevalence of NAFLD was at 25% and that in the 

USA was at 30% [164]. The prevalence of NASH in the 

USA was estimated to be at 5% [164]. Similar estimates for 

NAFLD are found in Asia, where the estimated pooled 

prevalence is at 27.4% [164].  

From a broader perspective, NAFLD is a silent disease 

and can progress over time to cirrhosis and other 

complications or liver failure. NASH progressing into 

cirrhosis is estimated to have caused 3.3 million cases of 

advanced fibrosis in the USA in 2015 [164]. In regions, 

where regular health checkups are not conducted or 

available, the health outcomes of NAFLD incidence can be 

fatal. Further, the etiology and the pathobiology for the 

disease is connected with heterogeneous factors (including 

contaminated food and water). This paper has reflected on 

multiple such relevant factors.  

In recent times, the emphasis on the prevention and 

management of NAFLD has increased. As per our 

knowledge, the cure for the disease, at the time of writing 

this paper, is not available. The current treatment methods 

emphasize on management of the disease or delaying 

progression of the disease. Additional understanding (via 

research and development) of different factors contributing 

to NAFLD and other chronic liver diseases is needed 

towards effective treatment and management of the disease.   
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