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ABSTRACT

Unlike matrix rank, hypermatrix rank is not lower semi-continuous. As a result, optimal

low rank approximations of hypermatrices may not exist. Characterizing hypermatrices

without optimal low rank approximations is an important step in implementing algorithms

with hypermatrices. The main result of this thesis is an original coordinate-free proof that

real 2 × 2 × 2 tensors that are rank three do not have optimal rank two approximations with

respect to the Frobenius norm. This result was previously only proved in coordinates. Our

coordinate-free proof expands on prior results by developing a proof method that can be

generalized more readily to higher dimensional tensor spaces. Our proof has the corollary

that the nearest point of a rank three tensor to the second secant set of the Segre variety

is a rank three tensor in the tangent space of the Segre variety. The relationship between

the contraction maps of a tensor generalizes, in a coordinate-free way, the fundamental

relationship between the rows and columns of a matrix to hypermatrices. Our proof method

demonstrates geometrically the fundamental relationship between the contraction maps of a

tensor. For example, we show that a regular real or complex tensor is tangent to the 2×2×2

Segre variety if and only if the image of any of its contraction maps is tangent to the 2 × 2

Segre variety.
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1. INTRODUCTION

The maximum number of non-redundant rows of a two-way array of real numbers is always

equal to the maximum number of non-redundant columns. A column is redundant if it can

be written in terms of the other columns. For example, the fourth and fifth columns of the

4 × 5 matrix



1 3
2 0 0 0

1 0 1
2 0 1

0 1 0 1 1

0 0 1 3 5


(1.1)

can be written in terms of the first three columns.



0

0

1

3


= −3

2



1

1

0

0


+ 1



3
2

0

1

0


+ 3



0
1
2

0

1





0

1

1

5


= 2



0
1
2

0

1


+ 1



0

0

1

3


Each of the first three columns, however, cannot be written in terms of the other two, which

can be observed by considering the entries carefully. For example, both columns two and

three have a 1 in a position where the other two columns have 0’s, and thus cannot be written

in terms of the other two. By similar reasoning, the maximum number of non-redundant

rows of matrix (  1.1 ) is also three. For example, the first three rows cannot be written in

terms of each other, but the fourth row can be written in terms of the first three.

[
0 0 1 3 5

]
= −2

[
1 3

2 0 0 0
]

+ 2
[
1 0 1

2 0 1
]

+ 3
[
0 1 0 1 1

]

Thus, the maximum number of non-redundant rows and the maximum number of non-

redundant columns of matrix (  1.1 ) is three. It is a remarkable observation that this is in

fact always the case for matrices of real numbers. All real matrices have the same maximum
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number of non-redundant rows and non-redundant columns. We prove this for matrices over

semirings in Theorem  5 .

The equality of row rank and column rank makes it clear that a matrix is more than a

collection of numbers. There is a fundamental relationship between the rows and columns of

a matrix. Information encoded in this relationship is lost when data organized as a matrix

is reorganized as a vector. Similarly, if data can more naturally be viewed in three separate

but interconnected ways - as rows, columns, and pillars - then information is lost when the

data is organized as a matrix or as a collection of matrices. In this situation, the data would

be better organized as a 3-fold hypermatrix.

1 0
0 1

0 −1
1 0

In Chapter  2 , we show how matrix rank extends naturally to hypermatrices. The notion

of hypermatrix rank has a long history that goes back at least to the work of Terracini in 1911

[ 1 ]. In its modern formulation, hypermatrix rank first appeared in the work of Hitchcock in

1927 [ 2 ] [ 3 ], and was popularized in the 1960s by Tucker [  4 ] [ 5 ] [ 6 ]. Since then, hypermatrix

rank has found many applications in machine learning [  7 ] [  8 ] [  9 ] and phylogenetics [ 10 ] [  11 ]

[ 12 ].

Questions about the rank of a d-fold hypermatrix are much more difficult than their

matrix analogues. For example, in [ 13 ] it is shown that computing the rank of a real 3-

fold hypermatrix is NP-hard. This illustrates how remarkable it is that the same Gaussian

elimination algorithm can compute the rank of a real or complex matrix of any dimensions

m × n in polynomial time. However, it should be expected that there is no polynomial

time algorithm that determines the rank of any n1 × n2 × n3 hypermatrix, as the properties

of the space of 3 × 3 × 3 hypermatrices, for example, are fundamentally different than the

properties of the space of hypermatrices of any other dimensions. Indeed, even the Gaussian
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elimination algorithm needs to be modified with respect to the dimensions m×n to determine

the non-negative rank of a non-negative matrix.

Most practitioners working with hypermatrices choose to work with hypermatrices of

dimensions n1 × n2 × · · · × nd because of some special property of those dimensions, rather

than because their data can naturally be represented as an n1×n2×· · ·×nd array. We believe

this is a mistake. Just as the rank, eigenvalues, and singular values of an n×n matrix are lost

when the same information is reorganized as a n2 ×1 vector, essential information encoded in

a hypermatrix of dimensions n1 × n2 × · · · × nd is lost when the same information is encoded

as a hypermatrix of any other dimensions. The dimensions of the space of hypermatrices

chosen to store information should be determined by the information itself, rather than

chosen to exploit some feature of those specific dimensions. In this thesis, we will study the

special properties associated with spaces of hypermatrices of dimensions 2 × 2 × 2.

Tensors are the coordinate-free counterparts of hypermatrices. Let V 1, V 2, and V 3 be

finite n1, n2, and n3-dimensional vector spaces over a common field, and let V 1∗, V 2∗, and

V 3∗ denote their dual spaces. The tensor ρ = ∑r
i=1 v

1
i ⊗ v2

i ⊗ v3
i in V 1 ⊗ V 2 ⊗ V 3 induces the

three linear maps

V 1∗ Π1(ρ)−−−→ V 2 ⊗ V 3 V 2∗ Π2(ρ)−−−→ V 1 ⊗ V 3 V 3∗ Π3(ρ)−−−→ V 1 ⊗ V 2

v1∗ 7→
r∑

i=1
v1∗(v1

i ) v2
i ⊗ v3

i , v2∗ 7→
r∑

i=1
v2∗(v2

i ) v1
i ⊗ v3

i , and v3∗ 7→
r∑

i=1
v3∗(v3

i ) v1
i ⊗ v2

i .

These maps are called the mode-1, mode-2, and mode-3 contraction maps of ρ, respectively.

In Theorem  6 of Chapter  2 , we prove that the contraction maps are indeed well-defined. The

relationship between the contraction maps of a tensor generalizes, in a coordinate-free way,

the fundamental relationship between the rows and columns of a matrix to hypermatrices.

The rank of a two-fold tensor ρ in V 1 ⊗ V 2 is equal to the dimension of the image of Π1(ρ),

which is also equal to the dimension of the image of Π2(ρ).

For a 3-fold tensor ρ in V 1 ⊗ V 2 ⊗ V 3, the rank of ρ is equal to the minimum number

n such that the image of any of its mode-i contraction maps is contained in the span of n

rank one tensors [ 14 , p.68]. Although not often recognized as such, this theorem is actually

a generalization of the equality of row rank and column rank to hypermatrices. This gen-
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eralization as well as one other generalization of row rank equals column rank are discussed

in Section  2.5 . When restricted to regular tensors, this generalization of row rank equals

column rank to 2 × 2 × 2 tensors takes on a more geometric form. A tensor is regular if

all of its contraction maps are full rank. In Section  3.4 , we prove that the rank of a real or

complex 2×2×2 regular tensor is equal to the cardinally of the intersection of the projective

image of any of its contraction maps with the projective Segre variety. The Segre variety is

the variety of rank at most one tensors.

The rank of a tensor can best be understood geometrically in terms of the tangential

and secant varieties of the Segre variety. Despite being well-studied, the ideals of the secant

and tangential varieties of the Segre variety are only known in a few cases [  15 ] [  16 ]. In fact,

the maximal possible rank of the n1 × n2 × · · · × nd tensor space and the dimensions of the

secant and tangential varieties of the n1 ×n2 ×· · ·×nd Segre variety are unknown in general.

To illustrate how the special properties of the space of n1 × n2 × · · · × nd hypermatrices is

best understood geometrically in terms of the curvature of the Segre variety, we give an

example of the unique identifiability of rank one decompositions of 2 × 2 × 2 regular tensors

in Theorem  26 .

In 1989, Kruskal brought attention to the remarkable fact that regular 2 × 2 × 2 real

hypermatrices could be written uniquely as the sum of rank one hypermatrices [ 17 ]. This

result is known as Kruskal’s Theorem, and was extended to regular 2 × m × m real hyper-

matrices by Ten Berge [ 18 ]. It was later realized that the 2 × m × m case was actually

implied by the work of Weierstrass and Kronecker [ 19 ]. In a modern formulation, Kruskal’s

Theorem states that real 2×m×m hypermatrices of rank m have uniquely identifiable rank

one decompositions. However, n × n matrices of rank m do not have this property for any

m > 1. Geometrically, this is because the n × n Segre variety is curved in such a way that

every tensor on a secant line of the Segre variety is also on a tangent line. This is not true for

the Segre variety of real m×m×m hypermatrices for any m ≥ 2. In Chapter  3 , we illustrate

this geometric perspective. In Theorem  17 , we give a geometric proof of the existence of an

open and dense set of rank two complex 2 × 2 × 2 tensors.

In Theorem  19 of Chapter  3 we prove the original corollary that a regular tensor is

tangent to the 2 × 2 × 2 Segre variety if and only if the image of any of its contraction
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maps is tangent to the 2 × 2 Segre variety. This is a geometric example of the fundamental

relationship between the contraction maps of a tensor. We also give a geometric proof that

a regular 2 × 2 × 2 real or complex tensor is rank two if and only if its contraction maps

intersect the 2 × 2 Segre variety at two distinct points. This characterization of rank two

regular tensors suggests that optimal rank two approximations cannot be regular. Indeed,

we will prove this in Theorem  31 in Chapter  5 .

The problem of characterizing when low rank approximations of 2 × 2 × 2 real tensors

exist will be the primary topic of this thesis. Small perturbations of the entries of a matrix

will almost always result in a full rank matrix. Similarly, hypermatrices of real-world data

will be of erroneously large rank due to noise in the data. Thus, there is a need to find

optimal low rank approximations of hypermatrices.

Low rank approximations of hypermatrices are much less well-behaved than low rank

approximations of matrices. For example, subtracting an optimal rank one approximation

of a 3-fold hypermatrix may actually increase the rank of the hypermatrix [ 20 ]. In fact,

the problem of finding optimal low rank approximations of hypermatrices is often ill-posed,

for the set of real hypermatrices with no optimal low rank approximation often has positive

Lebesgue measure [  21 ]. One reason for the nonexistence of low rank approximations is the

phenomenon of rank-jumping. A hypermatrix (aijk) is said to be rank-jumping if there

is a sequence of rank s hypermatrices that converges to (aijk), but the rank of (aijk) is

greater than s. It is a classical observation dating back to at least Terracini [  14 , p.9] that

hypermatrices in the form

β = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (1.2)

are limit points of the sequence of rank at most two hypermatrices

ρn = n (x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − nx1
1 ⊗ x2

1 ⊗ x3
1, n ∈ N (1.3)

in the norm topology. Thus, when β is rank three, it is an example of a rank-jumping

hypermatrix without an optimal rank two approximation. In Chapter  4 , we will show that
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the sequence (  1.3 ) is best understood as a sequence of difference quotients that converges

to the derivative of a smooth curve on the Segre variety. In [  22 ], it is proved that all

rank-jumping tensors over C that are limits of a sequence of rank three tensors are also

derived from derivatives of smooth curves on the Segre variety. This suggests a fundamental

relationship between rank-jumping tensors and derivatives. In Chapter  4 , we show that

a 2 × 2 × 2 real hypermatrix is rank-jumping if and only if it is a regular element of the

tangential variety of the Segre variety. We use this perspective to explain why rank-jumping

never occurs for non-negative real hypermatrices.

The main result of this thesis is a coordinate-free proof in Theorem  36 that in fact every

rank three 2 × 2 × 2 tensor has no optimal rank two approximation with respect to the

Frobenius norm, not just the rank-jumping tensors in the form of (  1.2 ). General rank three

2 × 2 × 2 real tensors are not rank-jumping. Rather, we will show that their failure to have

optimal rank two approximations is due to the curvature of the Segre variety. Our proof has

the corollary that the nearest point of a rank three tensor to the second secant set of the

Segre variety is a rank three tensor in the tangent space of the Segre variety. Overall, this

thesis develops a coordinate-free, geometric proof method that uses the contraction maps of

a tensor to study the relations encoded in multiway arrays.
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2. ROW RANK EQUALS COLUMN RANK FOR

HYPERMATRICES

We define the rank of a hypermatrix and show that it is both a natural extension of matrix

rank and a natural measurement of a hypermatrix’s complexity. We introduce tensors and

contraction maps, and show that the relationship between the contraction maps of a tensor

generalizes, in a coordinate-free way, the fundamental relationship between the rows and

columns of a matrix to hypermatrices. We then give two generalizations of the equality of

row rank and column rank for hypermatrices.

2.1 The Rank of a Hypermatrix

Let F be a fixed field.

Definition 1. A d-fold hypermatrix over F is a function from (1, 2, . . . , n1)× (1, 2, . . . , n2)×

· · · × (1, 2, . . . , nd) to F , where n1, n2, …, nd are natural numbers. The set of all hyperma-

trices of dimensions n1 × n2 × · · · × nd forms a vector space with entry-wise addition and

scalar multiplication. The space of all such hypermatrices is denoted F n1×n2×···×nd, and

hypermatrices are written as (ai1i2...id
), where each ai1i2...id

∈ F .

We work with 3-fold hypermatrices of dimensions 2 × 2 × 2, but all of our definitions

easily extend to d-fold hypermatrices of arbitrary dimensions. The rank of a hypermatrix is

an example of information that is lost when a hypermatrix is reorganized as a matrix. To

define the rank of a hypermatrix, we first define the class of hypermatrices whose rank is less

than or equal to one. We call such hypermatrices simple. As motivation, we first consider

the case of 2 × 2 real matrices. If nonzero, the rank one matrix

x1y1 x1y2

x2y1 x2y2
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has a row space spanned by the vector [y1, y2] and column space spanned by the vector

[x1, x2]. Hence, when studying the row and column spaces of matrices, it is natural to

consider the map

x1

x2

×

y1

y2

 7→

x1y1 x1y2

x2y1 x2y2

 , (2.1)

which either sends two vectors to the zero matrix or to the rank one matrix with row and

column spaces spanned by those two vectors. In fact, every rank less than or equal to one

real 2 × 2 matrix is in the image of map ( 2.1 ). We use this characterization of rank less than

or equal to one matrices to define rank less than or equal to one hypermatrices.

Definition 2. The rank less than or equal to one hypermatrices in F 2×2×2 are the hyperma-

trices in the image of the coordinate tensor map ⊗, defined as

F 2 × F 2 × F 2 ⊗−→ F 2×2×2 :

x1

x2

×

y1

y2

×

z1

z2

 7→
x1y1z1 x1y1z2

x1y2z1 x1y2z2

x2y1z1 x2y1z2

x2y2z1 x2y2z2

.

An element in the image of the coordinate tensor map is called a simple hypermatrix,

and is denoted as
x1

x2

⊗

y1

y2

⊗

z1

z2

 := ⊗


x1

x2

×

y1

y2

×

z1

z2


. (2.2)

A simple hypermatrix is rank zero if and only if all of its entries are zero. This hyper-

matrix is called the zero hypermatrix. All nonzero simple hypermatrices are rank one. The

vector [x1, x2] spans the pillar space of rank one hypermatrix (  2.2 ). The pillar space of a

hypermatrix is the space spanned by its pillars. The pillars of hypermatrix ( 2.2 ) are circled

in Figure  2.1 . Similarly, the vector [y1, y2] spans the column space of hypermatrix ( 2.2 ), and

[z1, z2] spans its row space. Hence, the rank one hypermatrices are precisely the hyperma-
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x1y1z1 x1y1z2

x1y2z1 x1y2z2

x2y1z1 x2y1z2

x2y2z1 x2y2z2

Figure 2.1. A visualiza-
tion of rank one hyperma-
trix ( 2.2 ) with its four pil-
lars circled.

1
2 − i

2

i
2

1
2

− i
2 −1

2

1
2 − i

2

Figure 2.2. A visualiza-
tion of a rank one complex
2 × 2 × 2 hypermatrix with
its two co-dimension one
horizontal slices circled.

trices whose row, column, and pillar spaces are one dimensional. It is in this sense that the

rank one hypermatrices are a natural class of simplest nontrivial hypermatrices, and, thus,

the rank of a hypermatrix is a natural measurement of its complexity. Every hypermatrix is

the sum of rank one hypermatrices, and the rank of a hypermatrix B, denoted rk(B), is the

minimum natural number n such that B is equal to the sum of n simple hypermatrices.

Definition 3. For B ∈ F 2×2×2, the rank of B is defined as

rk(B) = min{s ∈ N | B =
s∑

i=1
v1

i ⊗ v2
i ⊗ v3

i for some vk
i ∈ F 2}.

The row space, column space, and pillar space of a hypermatrix are all one dimensional

if and only if the spaces of co-dimension one vertical, horizontal, and frontal slices are one

dimensional. Co-dimension one slices are illustrated in Figure  2.2 . This observation is

our first example of the primary theme of this thesis. There are fundamental relationships

between the slices of a hypermatrix, and the rank of a hypermatrix encodes information

about these relationships.
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2.2 How Rank Depends on Scalars

Real-valued hypermatrices have both a real rank and a complex rank. The real rank

of real hypermatrix C is the minimum number n such that C is equal to the sum of n

real-valued simple hypermatrices. The complex rank of real hypermatrix C, on the other

hand, is the minimum number n such that C is equal to the sum of n complex-valued simple

hypermatrices. The complex rank may be strictly smaller than the real rank. For example,

the hypermatrix

C =
1 0
0 1

0 −1
1 0

has real rank three but complex rank two. Since the row space of C is not one dimensional

over R or C, C is not rank one over R or C. It is, however, rank two over C, as the following

decomposition shows.

1 0
0 1

0 −1
1 0

=
1
2 − i

2
i
2

1
2

− i
2 −1

2
1
2 − i

2

+
1
2

i
2

− i
2

1
2

i
2 −1

2
1
2

i
2

=



1

2

−
i

2


⊗

1

i

⊗

 1

−i

 +



1

2

i

2


⊗

 1

−i

⊗

1

i



Each of the rank one summands in the above decomposition contains complex numbers. It

can be shown by contradiction that there is no rank two decomposition of C with summands
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of entirely real entries. Hence, the real rank of C is greater than two. The real rank of C is

in fact three, as demonstrated by the following decomposition.

1 0
0 1

0 −1
1 0

=
0 0
0 1

0 0
0 1

+
1 0
0 0

−1 0
0 0

+
0 0
0 0

1 −1
1 −1

=

1

1

⊗

0

1

⊗

0

1

 +

 1

−1

⊗

1

0

⊗

1

0

 +

0

1

⊗

1

1

⊗

 1

−1


Expanding the set of scalars that a hypermatrix’s entries can vary over allows for more

possible rank one summands. This may decrease the rank of the hypermatrix, as it did for

hypermatrix C above. This phenomena of a hypermatrix’s rank decreasing by considering

rank one summands from a larger set of entries may seem surprising since it never occurs

when considering the complex and real rank of real matrices. It is well-known that a real

matrix is real rank r if and only if it is complex rank r. This is equivalent to the fact that row

operations with complex numbers are never needed to reduce a real matrix to row echelon

form. Considering general hypermatrices thus reveals that this well-known fact is specific to

the real and complex rank of 2-fold real hypermatrices.

Indeed, the equality of the real rank of a real matrix and the complex rank of a real

matrix does not extend to non-negative matrices. The non-negative rank of non-negative

real hypermatrix D is the minimum number n such that D is equal to the sum of n non-

negative-valued simple hypermatrices. The non-negative rank of a non-negative real matrix
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is not in general equal to its real rank. For example, it can be shown by contradiction [  23 ,

p.153] that the non-negative matrix D below is rank four over R≥0, but rank three over R.

D =



1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1



2.3 Hypermatrices as Coordinatizations of Tensors

It is often convenient to view a matrix as a coordinatization of a linear map. Hyper-

matrices also have coordinate-free counterparts - tensors. If {ej
i }

nj

i=1 is a basis of F nj for

j = 1, 2, 3, then {e1
i ⊗ e2

j ⊗ e3
k}n1,n2,n3

i,j,k=1 is a basis of F n1×n2×n3 . Since a multilinear map on

F n1 ×F n2 ×F n3 is determined by its values on {e1
i × e2

j × e3
k}n1,n2,n3

i,j,k=1 , it follows that the coor-

dinate tensor map ⊗ is a multilinear map with the following property: For every multilinear

map φ : F n1 × F n2 × F n3 → Fm for some natural number m, there exists a unique linear

map Φ : F n1×n2×n3 → Fm such that the following diagram commutes.

F n1 × F n2 × F n3 F n1×n2×n3

Fm

⊗

φ
Φ	

We use this characterization of the coordinate tensor map to define a coordinate-free

version of hypermatrices.

Definition 4. Let V i be finite ni-dimensional vector spaces over a common field. A tensor

product of V 1 × V 2 × V 3 is a multilinear mapping ⊗ : V 1 × V 2 × V 3 → W to a vector space

W such that for any multilinear mapping φ : V 1 × V 2 × V 3 −→ H to some vector space H,

there exists a unique linear mapping Φ : W → H such that φ = Φ ◦ ⊗. That is, the following

diagram commutes.
V 1 × V 2 × V 3 W

H

⊗

φ multilinear
Φ linear
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The above property is referred to the universal property of the tensor product [ 24 , Ch.1].

The coordinate tensor map satisfies the universal property of the tensor product, which

proves that a map with such a property indeed exists. It also follows from the universal

property that any two tensor products of V 1 × V 2 × V 3 are unique up to a rank-preserving

isomorphism. The vector space W is denoted V 1 ⊗ V 2 ⊗ V 3 and its elements are called

tensors. We define the rank of a tensor just as we did for hypermatrices. The tensors in

the image of ⊗ are called simple tensors. The simple tensor ⊗(v1 × v2 × v3) is denoted

v1 ⊗ v2 ⊗ v3. Not every tensor is a simple tensor, but every tensor can be written as the sum

of finitely many simple tensors. The rank of a tensor ρ is the minimum number n such that

ρ is the sum of n simple tensors. That is,

rk(ρ) = min{s ∈ N | ρ =
s∑

i=1
v1

i ⊗ v2
i ⊗ v3

i for some vk
i ∈ V k}.

Once bases {ej
i }

nj

i=1 of V j are chosen, a tensor in V 1 ⊗ V 2 ⊗ V 3 can be coordinatized as a

hypermatrix in F n1×n2×n3 by the following linear map, defined on simple tensors as

V 1 ⊗ V 2 ⊗ V 3 −→ F n1×n2×n3

v1 ⊗ v2 ⊗ v3 7−→ (ai1i2i3 = a1
i1a

2
i2a

3
i3) where vk =

nk∑
i=1

ak
i ek

i for k = 1, 2, 3.

For 2 × 2 × 2 real tensors, the isomorphism from V 1 ⊗ V 2 ⊗ V 3 to R2×2×2 acts on simple

tensors as

(a1
1e1

1 + a1
2e1

2) ⊗ (a2
1e2

1 + a2
2e2

2) ⊗ (a3
1e3

1 + a3
2e3

2) 7−→
a1

1a
2
1a

3
1 a1

1a
2
1a

3
2

a1
1a

2
2a

3
1 a1

1a
2
2a

3
2

a1
2a

2
1a

3
1 a1

2a
2
1a

3
2

a1
2a

2
2a

3
1 a1

2a
2
2a

3
2

for some real constants as
t .
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2.4 Proof of Row Rank Equals Column Rank Using Contraction Maps

Our definition of a hypermatrix and hypermatrix rank are well-defined in the general

setting of hypermatrices over semirings, and this general setting allows us to discuss hyper-

matrices of complex, real, and non-negative real numbers simultaneously. A semiring is a

generalization of a ring in which the requirement of the existence of an additive identity ele-

ment and the requirement that each element must have an additive inverse are both dropped.

This is also the appropriate setting for discussing hypermatrices because the relations en-

coded in multiway arrays exist in this generality. In this section, we present a proof of row

rank equals column rank for matrices over semirings. The key idea of this generalized proof

is based on the elegant proof in [  25 ]. The proof in [ 25 ] does not work with semirings, but also

does not require additive inverses. We then adapt this proof to the coordinate-free setting

of contraction maps of tensors to demonstrate that contraction maps are an appropriate

method of studying the relations that are encoded in the slices of a hypermatrix.

Theorem 5. Let A = (aij) be an m × n matrix over a semiring K. The size of a minimal

spanning set of rows of A is equal to the size of a minimal spanning set of columns of A.

Proof. If A = BC for some m× r matrix B = (bij) and some r × n matrix C = (cij),



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

... ... ... ...

am1 am2 am3 . . . amn


=



b11 b12 b13 . . . b1r

b21 b22 b23 . . . b2r

... ... ... ...

bm1 bm2 bm3 . . . bmr





c11 c12 c13 . . . c1n

c21 c22 c23 . . . c2n

... ... ... ...

cr1 cr2 cr3 . . . crn


m× n m× r r × n

then the columns of A are linear combinations of the columns of B.

The jth column of A =



a1j

a2j

...

amj


= c1j



b11

b21
...

bm1


+ c2j



b12

b22
...

bm2


+ . . . + crj



b1r

b2r

...

bmr
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Thus, the size of a minimal spanning set of columns of A is the minimal number r such that

A = BC for some m × r matrix B and some r × n matrix C. Additionally, the rows of A

are linear combinations of the rows of C.

The jth row of A =
(
aj1 aj2 . . . ajn

)
= bj1

(
c11 c12 . . . c1n

)
+ bj2

(
c21 c22 . . . c2n

)
+ . . . + bjr

(
cr1 cr2 . . . crn

)

Thus, the size of a minimal spanning set of rows of A is also the minimal number r such that

A = BC for some m × r matrix B and some r × n matrix C. Hence, the size of a minimal

spanning set of rows of A is equal to the size of a minimal spanning set of columns of A.

The proof of Theorem  5 does not require the existence of an additive identity or additive

inverses, and thus indeed holds for matrices over semirings. Over fields, a set is a minimal

spanning set if and only if it is a maximal independent set. Hence, for matrices over fields,

we have shown that the size of a maximal independent set of columns is equal to the size of

a maximal independent set of rows.

The connection between the theory of matrices and the theory of linear maps is sometimes

emphasized to the point where matrices are defined as coordinatizations of linear maps.

However, matrices can just as logically be thought of as coordinatizations of bilinear forms,

and the over-identification of matrices with linear maps obscures the fact that matrices

and linear maps are actually distinct structures. Matrices over semirings can no longer be

identified with linear maps, but, as we have shown, there is still a fundamental relationship

that exists between the rows and columns of a matrix over a semiring. Similarly, the theory

of hypermatrices over semirings is more general than the theory of tensors over vector spaces.

We return to working over fields now, but we will continue our study of hypermatrices over

semirings when we discuss the absence of rank jumping in non-negative hypermatrices.

Though elegant, the proof of Theorem  5 is difficult to generalize to hypermatrices. We

therefore now translate it into the coordinate-free setting of tensors, which lend themselves

more readily to generalization. Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional

22



vector spaces over a common field, and let V 1∗, V 2∗, and V 3∗ denote their dual spaces. The

tensor ρ = ∑r
i=1 v

1
i ⊗ v2

i ⊗ v3
i in V 1 ⊗ V 2 ⊗ V 3 induces the three linear maps

V 1∗ Π1(ρ)−−−→ V 2 ⊗ V 3 V 2∗ Π2(ρ)−−−→ V 1 ⊗ V 3 V 3∗ Π3(ρ)−−−→ V 1 ⊗ V 2

v1∗ 7→
r∑

i=1
v1∗(v1

i ) v2
i ⊗ v3

i , v2∗ 7→
r∑

i=1
v2∗(v2

i ) v1
i ⊗ v3

i , and v3∗ 7→
r∑

i=1
v3∗(v3

i ) v1
i ⊗ v2

i .

These maps are called the mode-1, mode-2, and mode-3 contraction maps of ρ, respectively.

Theorem 6. The mode-i contraction map Πi is well-defined.

Proof. Suppose that ∑r
t=1 v

1
t ⊗ v2

t ⊗ v3
t = ∑s

t=1 w
1
t ⊗ w2

t ⊗ w3
t for vectors vi

t, wi
t ∈ V i. We

need to show that

Πi

(
r∑

t=1
v1

t ⊗ v2
t ⊗ v3

t

)
(vi∗) = Πi

(
s∑

t=1
w1

t ⊗ w2
t ⊗ w3

t

)
(vi∗)

for every vi∗ ∈ V i∗ for i = 1, 2 and 3. Choose bases {ei
t}

ni
t=1 of V i with corresponding dual

bases {ei∗
t }ni

t=1 for each i. It is sufficient to show that

Π1

(
r∑

t=1
v1

t ⊗ v2
t ⊗ v3

t

)
(e1∗

u ) = Π1

(
s∑

t=1
w1

t ⊗ w2
t ⊗ w3

t

)
(e1∗

u )

for each e1∗
u in our dual basis. Let ai

t,u and bi
t,u be scalars such that vi

t = ∑ni
u=1 a

i
t,uei

u and

wi
t = ∑ni

u=1 b
i
t,uei

u for all i and t. It follows that ∑r
t=1 v

1
t ⊗ v2

t ⊗ v3
t = ∑r,n1,n2,n3

t,i,j,k=1 a1
tia

2
tja

3
tk e1

i ⊗

e2
j ⊗ e3

k, which must equal ∑s
t=1 w

1
t ⊗w2

t ⊗w3
t = ∑s,n1,n2,n3

t,i,j,k=1 b1
tib

2
tjb

3
tk e1

i ⊗ e2
j ⊗ e3

k. Since a tensor

is uniquely determined with respect to a basis, it follows that

r∑
t=1

a1
tia

2
tja

3
tk =

s∑
t=1

b1
tib

2
tjb

3
tk for all i, j, k. (2.3)

Hence, by the definition of the mode-1 contraction map

Π1

(
r∑

t=1
v1

t ⊗ v2
t ⊗ v3

t

)
(e1∗

u ) =
r,n2,n3∑
t,j,k=1

a1
tua

2
tja

3
tk e2

j ⊗ e3
k

=
n2,n3∑
j,k=1

(
r∑

t=1
a1

tua
2
tja

3
tk

)
e2

j ⊗ e3
k.
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Equation ( 2.3 ) now implies that

Π1

(
r∑

t=1
v1

t ⊗ v2
t ⊗ v3

t

)
(e1∗

u ) =
n2,n3∑
j,k=1

(
s∑

t=1
b1

tub
2
tjb

3
tk

)
e2

j ⊗ e3
k

=
s,n2,n3∑
t,j,k=1

b1
tub

2
tjb

3
tk e2

j ⊗ e3
k

= Π1

(
s∑

t=1
w1

t ⊗ w2
t ⊗ w3

t

)
(e1∗

u ).

The rank of a two-fold tensor ρ ∈ V 1 ⊗ V 2 is equal to the dimension of the image of

Π1(ρ), which is also equal to the dimension of the image of Π2(ρ). Hence, Theorem  5 can be

adapted to tensor spaces and contraction maps in the following way.

Theorem 7. Let V 1 and V 2 be vectors spaces over a common field, and let ρ ∈ V 1 ⊗ V 2.

The dimension of the image of Π1(ρ) is equal to the dimension of the image of Π2(ρ).

Proof. The dimension of the image of Π1(ρ) is equal to the minimum number r such that

there exists an r-dimensional vector space U and linear maps g and h that make the following

diagram commute.
V 1∗ V 2

U

Π1(ρ)

g
h

	 dim(U) = r

Similarly, the dimension of the image of Π2(ρ) is equal to the minimum number s such

that there exists an s-dimensional vector space W and linear maps a and b that make the

following diagram commute.

V 2∗ V 1

W

Π2(ρ)

a
b

	 dim(W ) = s

However, the existence of an r-dimensional vector space U and linear maps g and h that

make the first diagram commute implies the existence of an r-dimensional vector space U∗,
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the dual space of U , and linear maps θ−1 ◦g∗ and h∗ that make the second diagram commute,

where

U∗ g∗
−→ V 1∗∗ V 2∗ h∗

−→ U∗ V 1 θ−→ V 1∗∗

u∗ 7→
(
v1∗ 7→ u∗ ◦ g ◦ v1∗

)
, v2∗ 7→

(
u 7→ v2∗ ◦ h ◦ u

)
, and v1 7→

(
v1∗ 7→ v1∗(v1)

)
.

It follows that
V 1∗ V 2

U

Π1(ρ)

g
h

	 =⇒
V 2∗ V 1

U∗.

Π2(ρ)

h∗ θ−1 ◦ g∗	

Since the dimension of U∗ equals the dimension of U , the dimension of the image of Π2(ρ)

must be less than or equal to the dimension of the image of Π1(ρ). Similarly,

V 2∗ V 1

W

Π2(ρ)

a
b

	 =⇒
V 1∗ V 2

W ∗

Π1(ρ)

b∗ Θ−1 ◦ a∗	

where

W 2∗ a∗
−→ V 2∗∗ V 1∗ b∗

−→ W ∗ V 2 Θ−→ V 2∗∗

w∗ 7→
(
v2∗ 7→ w∗ ◦ a ◦ v2∗

)
, v1∗ 7→

(
w 7→ v1∗ ◦ b ◦ w

)
, and v2 7→

(
v2∗ 7→ v2∗(v2)

)
,

which implies the theorem.

Unlike most proofs of row rank equals column rank [ 26 , p.72] [  27 , p.37], our proof of

Theorem  7 never invokes the rank nullity theorem. Our proof use the contraction maps of a

tensor to derive relations between the slices of a hypermatrix. Thus, the relationship between

the contraction maps of a tensor generalizes, in a coordinate-free way, the fundamental

relationship between the rows and columns of a matrix to hypermatrices.
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2.5 Two Generalizations of Row Rank Equals Column Rank to Hypermatrices

Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional vector spaces, respectively,

defined over a common field. In addition to the mode-1, 2, and 3 contraction maps, the

tensor ρ = ∑r
i=1 v

1
i ⊗ v2

i ⊗ v3
i in V 1 ⊗ V 2 ⊗ V 3 induces the linear map Π1(ρ), which is defined

on simple tensors as

V 2∗ ⊗ V 3∗ Π1(ρ)−−−→ V 1

v2∗ ⊗ v3∗ 7→
r∑

i=1
v2∗(v2

i )v3∗(v3
i ) v1

i .

The maps Π2(ρ) and Π3(ρ) are defined similarly. Note that these maps are denoted with a

superscript rather than a subscript. In the case of 2-fold tensors, Πi(ρ) is the transpose of

Πi(ρ)T for i = 1, 2. In the 3-fold case and higher, equality does not hold. However, Πi(ρ)

can still be identified isomorphically to the transpose of Πi(ρ). Hence, in the 3-fold case, the

dimension of the image of Πi(ρ) is equal to the dimension of the image of Πi(ρ) for i = 1, 2, 3.

In coordinates, this implies the following theorem.

Theorem 8. Let (aijk) be a n1 × n2 × n3 hypermatrix over some field.

dim〈 (ai::) 〉n1
i=1 = dim〈 (a:jk) 〉n2,n3

j,k=1

dim〈 (a:j:) 〉n2
j=1 = dim〈 (ai:k) 〉n1,n3

i,k=1

dim〈 (a::k) 〉n3
k=1 = dim〈 (aij:) 〉n1,n2

i,j=1,

where (a::t) is n1n2 × 1 vector of entries of (aijk) with the third coordinate fixed at t. That

is, (a::t) =
(
a11t a12t a13t · · · a21t a22t a23t · · · an1n2t

)
. The n1 × 1 vector (a:jk) is

defined similarly.
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Proof. Let {(ei
j)}ni

j=1 be a basis of vector spaces V i for i = 1, 2, 3, and let {(ei∗
j )}ni

j=1 denote the

corresponding dual basis. Let B denote the collection of these bases. For ρ in V 1 ⊗V 2 ⊗V 3,

there exists scalars aijk such that

ρ =
∑
i,j,k

aijk e1
i ⊗ e2

j ⊗ e3
k.

Let [ρ]B = (aijk) be the hypermatrix defined by these scalars. The mode-3 contraction map

of ρ can also be coordinatized with respect to the same bases as

[Π3(ρ)]B =



a111 a121 a131 · · · an1n21

a112 a122 a122 · · · an1n22

a113 a123 a133 · · · an1n23
... ... ... ...

a11n3 a12n3 a13n3 · · · an1n2n3



=



a::1

a::2
...

a::n3


=



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
a11: a12: · · · an1n2:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

 .

This demonstrates the desired relationship between the dimension-1 and co-dimension-1

slices of a hypermatrix.

For 2-fold tensors, the equality of row rank and column rank of n1 ×n2 matrix (aijk) can

be expressed as

dim〈 (ai:) 〉n1
i=1 = dim〈 (a:j) 〉n2

j=1.

Thus, Theorem  8 is indeed a generalization of row rank equals column rank to 3-fold hyper-

matrices. For our second generalization, we introduce the notion of simple dimension. For

a subset W of tensor space V 1 ⊗ V 2 ⊗ V 3, the simple dimension of W , denoted sdim(W), is

the minimum number of rank one tensors needed to span a space that contains W .
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Definition 9. Let V 1, V 2, and V 3 be finite dimensional vector spaces over a common field.

For a subset W of tensor space V 1 ⊗ V 2 ⊗ V 3, the simple dimension of W is defined as

sdim(W ) = min{n ∈ N | W ⊆ 〈v1
1 ⊗ v2

1 ⊗ v3
1, v

1
2 ⊗ v2

2 ⊗ v3
2, . . . , v

1
n ⊗ v2

n ⊗ v3
n 〉

for some vk
i ∈ V k}.

The simple dimension of a subspace may be strictly greater than its dimension as a vector

space. For example, let {x1
1, x

1
2} and {y1

1, y
1
2} be linearly independent subsets of some vector

space V 1, and let {x2
1, x

2
2} and {y2

1, y
2
2} be linearly independent subsets of some vector space

V 2. The subspace 〈x1
1 ⊗ x2

1 + x1
2 ⊗ x2

2〉 is a one-dimensional vector subspace of V 1 ⊗ V 2, but

has simple dimension two, since it is not generated by any rank one tensor. The rank of a

tensor can be characterized in terms of the simple dimension of its contraction maps, which

is a theorem from [ 14 , p.68].

Theorem 10. Let V 1, V 2, and V 3 be finite dimensional vector spaces over a common field,

and let ρ be a tensor in V 1 ⊗ V 2 ⊗ V 3. It follows that rk(ρ) = sdim(im(Πi(ρ))) for any i = 1,

2, or 3.

Proof. Without loss of generality, we prove the theorem for the mode-1 contraction. First,

we show the inequality sdim(im(Πi(ρ))) ≤ rk(ρ). Suppose rk(ρ) = r. There must then exist

vectors vk
i such that ρ = ∑r

i=1 v
1
i ⊗ v2

i ⊗ v3
i . It follows that Π1(ρ)(v1∗) = ∑r

i=1 v
1∗(v1

i ) v2
i ⊗ v3

i

for every v1∗ ∈ V 1∗, so im(Π1(ρ)) is contained in 〈 v2
1 ⊗ v3

1, v
2
2 ⊗ v3

2, . . . , v
2
r ⊗ v3

r 〉. Hence,

sdim(im(Π1(ρ)) ≤ r.

It remains to prove that rk(ρ) ≤ sdim(im(Π1(ρ))). Suppose that the simple dimension

of im(Π1(ρ)) is s. It follows that there exists wk
i such that the image of Π1(ρ) is a subset of

the span 〈w2
1 ⊗ w3

1, w
2
2 ⊗ w3

2, . . . , w
2
s ⊗ w3

s〉. Choose a basis (e1
t )n1

t=1 of V 1 with corresponding

dual basis (e1∗
t )n1

t=1 of V 1∗. For each t ∈ {1, 2, . . . , n1}, there must exist scalars {ci,t}s
i=1 such

that Π1(ρ)(e1∗
t ) = ∑s

i=1 ci,t w
2
i ⊗ w3

i . Note that

Π1(
s,n1∑
i,j=1

e1
j ⊗ ci,j w

2
i ⊗ w3

i )(e1∗
t ) =

s∑
i=1

ci,t w
2
i ⊗ w3

i = Π1(ρ)(e1∗
t )
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for every e1∗
t , where t = 1, 2, . . . , n1. Since Π1 is a vector space isomorphism, it follows that

ρ =
s,n1∑
i,j=1

e1
j ⊗ ci,j w

2
i ⊗ w3

i

=
s∑

i=1
(e1

1 ⊗ ci,1 w
2
i ⊗ w3

i ) + (e1
2 ⊗ ci,2 w

2
i ⊗ w3

i ) + . . . + (e1
n1 ⊗ ci,n1 w

2
i ⊗ w3

i )

=
s∑

i=1
(ci,1 e1

1 ⊗ w2
i ⊗ w3

i ) + (ci,2 e1
2 ⊗ w2

i ⊗ w3
i ) + . . . + (ci,n1 e1

n1 ⊗ w2
i ⊗ w3

i )

=
s∑

i=1
(

n1∑
j=1

ci,je1
j) ⊗ w2

i ⊗ w3
i , so rk(ρ) ≤ s.

It follows that the simple dimensions of the row space, the column space, and the pillar

space of a 3-fold hypermatrix are all equal. Furthermore, the simple dimension of all these

spaces is equal to the rank of the hypermatrix. Since simple dimension and dimension are

equivalent concepts for vector spaces, Theorem  10 is indeed a generalization of row rank

equals column rank to hypermatrices.
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3. COMPLEX GENERIC RANK

We give a proof of the existence of an open, dense set of constant rank complex n1 × n2 ×

· · · × nd tensors using Chevalley’s theorem. We then contrast this with a more geometric

proof of the same fact for complex 2×2×2 tensors. Our geometric proof shows that a regular

2 × 2 × 2 real or complex tensor is rank two if and only if its contraction maps intersect the

2×2 Segre variety at two distinct points. We further show that a regular tensor is tangent to

the 2×2×2 Segre variety if and only if the image of any of its contraction maps is tangent to

the 2×2 Segre variety. This is a geometric example of the fundamental relationship between

the contraction maps of a tensor.

3.1 Definition of Generic Rank

The observation that the number of solutions of a system of polynomial equations is

often invariant with respect to perturbations of the coefficients of the polynomials is at the

heart of algebraic geometry. We give an example of this phenomenon that can be visualized

geometrically. Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional complex vector

spaces, respectively, and let V 1 ⊗ V 2 ⊗ V 3 denote the tensor product of these spaces. The

tensors in the form v1 ⊗ v2 ⊗ v3 for some vectors v1, v2, and v3 are called simple tensors.

The rank of a tensor ρ is the minimum number n such that ρ is the sum of n simple tensors.

It is a remarkable observation that there exists an open, dense set of constant rank

tensors. That is, there exists a unique natural number r such that there exists a set of rank

r tensors that is open and dense with respect to the norm topology. This r is called the

generic rank of the space V 1 ⊗ V 2 ⊗ V 3.

Characterizing a set as ‘open’ and ‘dense’ is a topological formalization that the set

contains ‘almost all’ of the elements of the space. Intuitively, open sets reach in all directions

from their interior points, and dense sets approach all of the points in the space. The rank

of a tensor is a natural measurement of its complexity. Hence, the existence of an open

and dense set of rank r tensors implies that almost all tensors are of the same complexity.

The existence of a generic rank is true for complex tensor spaces of arbitrary dimensions
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n1 × n2 × · · · × nd. However, it is particular to complex tensor spaces. There does not exist

such an open, dense set of constant rank tensors in real tensor spaces in general.

Once bases of the vector spaces V 1, V 2, and V 3 are chosen, a tensor in V 1 ⊗ V 2 ⊗ V 3

can be coordinatized as a hypermatrix in Cn1×n2×n3 . The generic rank of C2×n×n is n. For

the 2 × 2 × 2 case, the existence of a generic rank of two implies that there is an open, dense

set of 2 × 2 × 2 complex hypermatrices in the form

a1
1a

2
1a

3
1 + b1

1b
2
1b

3
1 a1

1a
2
1a

3
2 + b1

1b
2
1b

3
2

a1
1a

2
2a

3
1 + b1

1b
2
2b

3
1 a1

1a
2
2a

3
2 + b1

1b
2
2b

3
2

a1
2a

2
1a

3
1 + b1

2b
2
1b

3
1 a1

2a
2
1a

3
2 + b1

2b
2
1b

3
2

a1
2a

2
2a

3
1 + b1

2b
2
2b

3
1 a1

2a
2
2a

3
2 + b1

2b
2
2b

3
2

(3.1)

for some complex numbers aj
i and bj

i . Choosing the entries of a matrix independently and

‘randomly’ will almost always result in a matrix of maximal possible rank. This seems

intuitive, since choosing the entries of a matrix randomly and independently should almost

never result in a relation among the rows or columns. It is less intuitive, however, why

choosing the entries of a 2 × n × n hypermatrix randomly will almost always result in a

hypermatrix of rank n, which is in general not the maximal rank of 2 ×n×n hypermatrices.

The fact that almost all complex tensors have the same rank is often stated without proof

in textbooks on tensors. We thus give a proof of this fact using Chevalley’s theorem. We

then give an alternative geometric proof that almost all 2 × 2 × 2 complex hypermatrices are

rank two. We show that a regular 2 × 2 × 2 complex tensor is rank two if and only if the

projective image of any of its mode-1 contraction maps intersect the 2 × 2 projective Segre

variety at two distinct points. Since the 2×2 projective Segre variety is degree two, Bézout’s

theorem implies this occurs generically, thus explaining the existence of a complex generic

rank. Our proof also illustrates an additional geometric relationship between the mode-1, 2,

and 3 contraction maps of regular tensors.
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3.2 The Sets of Constant Rank Complex Tensors are Constructible

We prove the existence of a unique complex generic rank by first showing that the sets

of constant rank tensors are constructible and then invoking Chevalley’s theorem on con-

structible sets. We present this proof to contrast it with our more geometric proof in later

sections.

The Zariski closed sets are the sets of solutions of polynomial equations over the com-

plex numbers. Zariski open sets are complements of Zariski closed sets. Constructible sets

are the Boolean algebra generated by Zariski open sets and Zariski closed sets. That is,

constructible sets are the closure of Zariski open and Zariski closed sets under finite union

and complementation. A set is constructible if and only if it is open in its closure. It is a

remarkable observation that constructible sets always contain an open, dense subset of their

closure. We will prove a version of this statement specifically for tensor spaces below.

Let ⊗ : C2 × C2 × C2 → C2×2×2 denote the 2 × 2 × 2 coordinate tensor map defined as

x1

x2

×

y1

y2

×

z1

z2

 7→
x1y1z1 x1y1z2

x1y2z1 x1y2z2

x2y1z1 x2y1z2

x2y2z1 x2y2z2

.

The elements in the image of the coordinate tensor map are called simple hypermatrices and

are denoted as
x1

x2

⊗

y1

y2

⊗

z1

z2

 := ⊗


x1

x2

×

y1

y2

×

z1

z2


. (3.2)

The n1 × n2 × · · · × nd coordinate tensor map is defined in the same way. The hypermatrix

( 3.1 ) can thus be written as

a1
1

a1
2

⊗

a2
1

a2
2

⊗

a2
1

a2
2

 +

b1
1

b1
2

⊗

b2
1

b2
2

⊗

b2
1

b2
2

 .

32



Theorem 11. Let V 1, V 2, …, V d be finite dimensional complex vector spaces. For each

natural number s, the set MC
s = {ρ ∈ V 1 ⊗V 2 ⊗ · · · ⊗V d | rk(ρ) = s} is constructible with

respect to the Zariski topology.

Proof. We prove this theorem in coordinates using hypermatrices instead of tensors. Cheval-

ley’s theorem on constructible sets implies that the image of a polynomial map defined on

a constructible set is also a constructible set [ 28 , p.94]. It is thus sufficient to show that the

sets of constant rank complex hypermatrices can be defined in terms of polynomial maps

defined on constructible sets. We demonstrate this in the 2 × 2 × 2 case for readability. Let

ψC
s be the map from (C2 × C2 × C2)s ∼= C6s to C2×2×2 that sends the Cartesian product of

vectors

a1

111

a1
211

×

a1
121

a1
221

×

a1
112

a1
212


 × . . . ×


as

111

as
211

×

as
121

as
222

×

as
112

as
212




to the hypermatrix

a1
111

a1
211

⊗

a1
121

a1
221

⊗

a1
112

a1
212

 + . . . +

as
111

as
211

⊗

as
121

as
221

⊗

as
112

as
212

 ,
which is equal to

∑s
i=1 a

i
111a

i
121a

i
112

∑s
i=1 a

i
111a

i
121a

i
212∑s

i=1 a
i
111a

i
221a

i
211

∑s
i=1 a

i
111a

i
221a

i
212

∑s
i=1 a

i
211a

i
121a

i
112

∑s
i=1 a

i
211a

i
121a

i
212∑s

i=1 a
i
211a

i
221a

i
211

∑s
i=1 a

i
211a

i
221a

i
212

. (3.3)

Hypermatrix ( 3.3 ) has polynomial entries, so ψC
s is indeed a polynomial mapping. Hence,

by Chevalley’s theorem, the set MC
≤s = {ρ ∈ V 1 ⊗ V 2 ⊗ V 3 | rk(ρ) ≤ s} is constructible

as it is the image of the polynomial map ψC
s defined on the constructible set C6s. Moreover,

MC
s = MC

≤s \MC
≤s−1 is constructible since constructible sets are closed under set comple-

ments.
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We now show that Zariski constructible sets contain an open, dense subset of their Zariski

closure. This in fact implies the existence of an open, dense set of constant rank tenors in

the norm topology. Our proof modifies the proof in [ 29 , Lem.2.1] to tensors spaces. We

will also use the following two facts. Firstly, Zariski open sets are open and dense in the

norm topology. Secondly, the tensor space V 1 ⊗ V 2 ⊗ · · · ⊗ V d is irreducible with respect to

the Zariski topology. A set is irreducible if it cannot be written as the union of two proper

closed sets. The tensor space V 1 ⊗ V 2 ⊗ · · · ⊗ V d is irreducible as it can be identified with

the affine variety Cn1n2...nd when V i is ni-dimensional.

Theorem 12. Let V 1 ⊗ V 2 ⊗ · · · ⊗ V d be a complex tensor space endowed with the norm

topology. There exists a unique natural number r such that there exists an open, dense set

of rank r tensors.

Proof. Let V = V 1 ⊗ V 2 ⊗ · · · ⊗ V d, and let m be the maximal possible rank of tensors in V .

Let MC
s denote the set of rank s tensors. Since V = MC

0 ∪ MC
2 ∪ . . . ∪MC

m, it follows

that

V = M̃C
0 ∪ M̃C

2 ∪ . . . ∪ M̃C
m,

where M̃C
i denotes the Zariski closure of MC

i . Since V is irreducible with respect to the

Zariski topology, there must thus exist a unique r such that M̃C
r = V . Furthermore, MC

r is

constructible by Theorem  11 . There must thus exists sets Y1, Y2, ..., Yj that are each open

in their closure such that MC
r is equal to the union of all the Yi’s. It follows that the set

V \
j⋃

i=1

(
Ỹi \ Yi

)
(3.4)
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is Zariski open, and thus open and dense in the norm topology. The set (  3.4 ) is our open,

dense set of rank r tensors. It remains to show that ( 3.4 ) is in fact contained in MC
r , which

follows from the following equalities and inclusion.

V \
j⋃

i=1

(
Ỹi \ Yi

)
= M̃C

r \
j⋃

i=1

(
Ỹi \ Yi

)
=
( j̃⋃

i=1
Yi

)
\

j⋃
i=1

(
Ỹi \ Yi

)

=
( j⋃

i=1
Ỹi

)
\

j⋃
i=1

(
Ỹi \ Yi

)

=
j⋃

i=1

(
Yi ∪ Ỹi \ Yi

)
\

j⋃
i=1

(
Ỹi \ Yi

)

=
( j⋃

i=1
Yi ∪

j⋃
i=1

(
Ỹi \ Yi

))
\

j⋃
i=1

(
Ỹi \ Yi

)

⊆
j⋃

i=1
Yi = MC

r

The proof of Theorem  11 is almost identical to the proof in [  30 , Thm.6.1] that the sets

MR
s are semialgebraic. The only difference is that Chevalley’s theorem is replaced by the

Tarski-Seidenberg theorem. An important difference, however, between constructible sets

and semialgebraic sets is that semialgebraic sets do not generally contain an open, dense

subset of their Zariski closure. This is what prevents us from extending the proof of Theorem

 12 to real-valued hypermatrices. Indeed, there does not exist an open, dense set of constant

rank real-valued hypermatrices in general. In the following sections, we give a geometric

explanation for why no such set exists for real valued 2 × 2 × 2 hypermatrices.

3.3 Computing the Generic Rank and the Maximal Rank of Tensor Spaces

Determining the generic rank of the complex n1 × n2 × · · · × nd tensor space is an open

problem in general. The following intuitive argument is often used to calculate the expected
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generic rank (for example, [ 14 , p.70]). Choose a basis {ei
j}

ni
j=1 of V i for i = 1, 2, 3. A rank

one tensor v1 ⊗ v2 ⊗ v3 in V 1 ⊗ V 2 ⊗ V 3 can be written as

(a1
1e1

1 + · · · + a1
n1e1

n1) ⊗ (a2
1e2

1 + · · · + a2
n2e2

n2) ⊗ (a3
1e3

1 + · · · + a3
n3e3

n3) (3.5)

for some parameters aj
i . As a rank one tensor, each vector v1, v2, and v3 must contain

at least one nonzero coordinate. By multilinearity, one of the nonzero coordinates of each

vector v1, v2, and v3 can be normalized to 1. For example, if a1
1, a2

1, and a3
1 are all nonzero,

then ( 3.5 ) becomes

b (e1
1 + a1

2
a1

1
e1

2 + · · · +
a1

n1

a1
1

e1
n1) ⊗ (e2

1 + a2
2
a2

1
e2

2 + · · · +
a2

n2

a2
1

e2
n2) ⊗ (e3

1 + a3
2
a3

1
e3

2 + · · · +
a3

n3

a3
1

e3
n3),

where b = a1
1a

2
1a

3
1. One thus expects the set of rank one tensors to be parameterized by

(n1 − 1) + (n2 − 1) + (n3 − 1) + 1 = n1 + n2 + n3 − 2

parameters. Similarly, one expects to need s (n1 + n2 + n3 − 2) parameters for the set of

rank less than or equal to s tensors MC
≤s. Since the ascending chain

MC
≤1 ⊆ MC

≤2 ⊆ MC
≤3 ⊆ MC

≤4 ⊆ . . .

eventually stabilizes, the generic rank must be the minimum s such that the dimension of

MC
≤s is equal to the dimension of V 1 ⊗ V 2 ⊗ V 3. Hence, one expects the generic rank to

be equal to the minimum natural number s such that s(n1 + n2 + n3 − 2) = n1n2n3. The

expected complex generic rank of the space of n1 × n2 × n3 complex tensors is thus

d n1n2n3

n1 + n2 + n3 − 2e.

The generic rank for complex n × n × n tensors is indeed the expected rank for all n,

except for n = 3. The expected rank for 3×3×3 tensors is four, but the actual generic rank

is five [ 14 , p.70]. The maximal rank is, in general, much larger than the generic rank. We
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will compute the maximal rank of 2×2×2 tensors now. We again let V i be two-dimensional

vector spaces over a common field for i = 1, 2, 3, and choose bases {ei
j}2

j=1 for i = 1, 2, 3. For

a tensor ρ in V 1 ⊗ V 2 ⊗ V 3, there are constants aijk such that ρ = ∑
ijk aijk e1

i ⊗ e2
j ⊗ e3

k. The

multilinearity of the tensor product implies the rank of a 2 × 2 × 2 tensor is at most four,

since

ρ = e1
1 ⊗ e2

1 ⊗ (a111e3
1 + a112e3

2) + e1
1 ⊗ e2

2 ⊗ (a121e3
1 + a122e3

2)

+ e1
2 ⊗ e2

1 ⊗ (a211e3
1 + a212e3

2) + e1
2 ⊗ e2

2 ⊗ (a221e3
1 + a222e3

2).

If the vectors (a111e3
1+a112e3

2) and (a121e3
1+a122e3

2) are dependent, then there exists a constant

k such that

(a121e3
1 + a122e3

2) = k(a111e3
1 + a112e3

2).

It follows that

ρ = e1
1 ⊗ e2

1 ⊗ (a111e3
1 + a112e3

2) + e1
1 ⊗ e2

2 ⊗ k(a111e3
1 + a112e3

2)

+ e1
2 ⊗ e2

1 ⊗ (a211e3
1 + a212e3

2) + e1
2 ⊗ e2

2 ⊗ (a221e3
1 + a222e3

2)

= e1
1 ⊗ (e2

1 + ke2
2) ⊗ (a111e3

1 + a112e3
2) + e1

2 ⊗ e2
1 ⊗ (a211e3

1 + a212e3
2)

+ e1
2 ⊗ e2

2 ⊗ (a221e3
1 + a222e3

2).

Hence, ρ is at most rank three in this case. If the vectors (a111e3
1+a112e3

2) and (a121e3
1+a122e3

2)

are independent, on the other hand, then they span V 3, so there exists constants α, β, γ, δ

such that

(a211e3
1 + a212e3

2) = α(a111e3
1 + a112e3

2) + β(a121e3
1 + a122e3

2), and

(a221e3
1 + a222e3

2) = γ(a111e3
1 + a112e3

2) + δ(a121e3
1 + a122e3

2).
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It follows that ρ is rank at most three by the not so obvious observation that

ρ = (e1
1 + (α− β)e1

2) ⊗ e2
1 ⊗ (a111e3

1 + a112e3
2) (3.6)

+ (e1
1 + (δ − γ)e1

2) ⊗ e2
2 ⊗ (a121e3

1 + a122e3
2)

+ e1
2 ⊗ (βe2

1 + γe2
2) ⊗

(
(a111e3

1 + a112e3
2) + (a121e3

1 + a122e3
2)
)
.

We emphasize that relation (  3.6 ) was not obvious, and the difficulty of finding such relations

is a good illustration of why determining the maximal rank of tensor spaces is a difficult and

open problem in general.

3.4 Characterizing Regular 2 × 2 × 2 Tensors over C in terms of Contraction
Maps

We will now give an alternative geometric proof that there is an open, dense set of rank

two tensors in the 2 × 2 × 2 complex tensor space. Let V 1, V 2, and V 3 be two-dimensional

complex vector spaces, and let V 1∗, V 2∗, and V 3∗ denote their dual spaces. Recall that the

tensor ρ = ∑r
i=1 v

1
i ⊗ v2

i ⊗ v3
i in V 1 ⊗ V 2 ⊗ V 3 induces the three linear maps

V 1∗ Π1(ρ)−−−→ V 2 ⊗ V 3 V 2∗ Π2(ρ)−−−→ V 1 ⊗ V 3 V 3∗ Π3(ρ)−−−→ V 1 ⊗ V 2

v1∗ 7→
r∑

i=1
v1∗(v1

i ) v2
i ⊗ v3

i , v2∗ 7→
r∑

i=1
v2∗(v2

i ) v1
i ⊗ v3

i , and v3∗ 7→
r∑

i=1
v3∗(v3

i ) v1
i ⊗ v2

i .

These maps are called the mode-1, mode-2, and mode-3 contraction maps of ρ, respectively.

A tensor is said to be regular if all of its contraction maps are full-rank. If the entries of

a hypermatrix are selected by independent random variables that are absolutely continuous

with respect to Lebesgue measure, then the set of hypermatrices with a nontrivial relation

among its codimension-1 slices is zero, as expected. Regular tensors are precisely those

tensors for which no such relations exist. Over C, the set of regular tensors indeed is open

and dense in the norm topology. Hence, in order to prove that there is an open, dense set of

rank two tensors in V 1 ⊗ V 2 ⊗ V 3, it is sufficient to prove that the set of regular rank two

tensors is open and dense in V 1 ⊗ V 2 ⊗ V 3.
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The relationship between the contraction maps of a tensor generalizes, in a coordinate-free

way, the fundamental relationship between the rows and columns of a matrix to hyperma-

trices. The rank of a two-fold tensor ρ ∈ V 1 ⊗ V 2 is equal to the dimension of the image

of Π1(ρ), which is also equal to the dimension of the image of Π2(ρ). This is generalizes to

three-fold tensors in the following way [ 14 , p.68].

Theorem 13. Let V 1, V 2, and V 3 be finite dimensional vector spaces over a common field.

For ρ ∈ V 1 ⊗ V 2 ⊗ V 3,

rk(ρ) = min{n ∈ N | image(Πi(ρ)) ⊆ 〈v1
1 ⊗ v2

1 ⊗ v3
1, v

1
2 ⊗ v2

2 ⊗ v3
2, . . . , v

1
n ⊗ v2

n ⊗ v3
n 〉

for some vk
i ∈ V k}

for any i = 1, 2, or 3.

For regular 2×2×2 tensors, Theorem  13 becomes the geometric statement that the rank

of regular tensor ρ is equal to the cardinally of the intersection of the projective image of

any of its contraction maps with the projective Segre variety. The Segre variety is the image

of the map

V 1 × V 2 × V 3 → V 1 ⊗ V 2 ⊗ V 3

v1 × v2 × v3 7→ v1 ⊗ v2 ⊗ v3.

The Segre variety of the 2 × 2 × 2 complex tensor space is denoted X2×2×2
C and the Segre

variety of the 2 × 2 complex tensor space is denoted X2×2
C . The 2 × 2 × 2 Segre variety over

an arbitrary field is denoted X2×2×2, or simply as X if the dimensions are clear from context.

The tangent space of the Segre variety at a point υ is denoted as Tυ(X), and is characterized

in [ 31 ] as in the following theorem.

Theorem 14. Let x1
1 ⊗ x2

1 ⊗ x3
1 be a rank one tensor in the Segre variety X. The tangent

space of X at x1
1 ⊗ x2

1 ⊗ x3
1 is the space of all tensors in the form

x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (3.7)
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for some x1
2 ∈ V 1, x2

2 ∈ V 2, and x3
2 ∈ V 3.

The projective Segre variety is the the projective image of the rank one tensors. That is,

it is the image of the injective Segre map defined as

P(V 1) × P(V 2) × P(V 3) → P(V 1 ⊗ V 2 ⊗ V 3)

[v1] × [v2] × [v3] 7→ [v1 ⊗ v2 ⊗ v3],

where [v] indicates the projectivization of vector v, and P(V 1) denotes the projectivization

of vector space V 1. The 2 × 2 × 2 complex projective Segre variety is denoted as P(X2×2×2
C ).

Regular 2 × 2 × 2 complex tensors can be either rank two or three. We will show that

a regular tensor ρ is rank two if and only if P(imΠj(ρ)) intersects P(X2×2
C ) at two distinct

points each with multiplicity one for any j = 1, 2, 3. Additionally, P(imΠj(ρ)) intersects

P(X2×2
C ) at one point with multiplicity two for any j = 1, 2, 3 if and only if the rank of ρ is

three. This result is summarized in Figure  3.1 and proven in the following theorems.

Lemma 15. Let V 1, V 2, and V 3 be two-dimensional vector spaces over a common field, and

let ρ ∈ V 1 ⊗ V 2 ⊗ V 3 be a regular tensor. If P(imΠj(ρ)) intersects P(X2×2) for any j, then

ρ is rank less than or equal to three.

Proof. Suppose P(imΠ1(ρ)) intersects P(X2×2) at some point [x2
1 ⊗ x3

1] for some vectors

x2
1 ∈ V 2 and x3

1 ∈ V 3. Extend these vectors to a basis {x2
1, x

2
2} of V 2 and a basis {x3

1, x
3
2} of

V 3. There must also be a basis {x1
1, x

1
2} of V 1 with corresponding dual basis {x1∗

1 , x
1∗
2 } such

that

x1∗
1 7→ x2

1 ⊗ x3
1 (3.8)

x1∗
2 7→ a x2

1 ⊗ x3
1 + b x2

1 ⊗ x3
2 + c x2

2 ⊗ x3
1 + d x2

2 ⊗ x3
2 (3.9)

= x2
1 ⊗ (ax3

1 + bx3
2) + x2

2 ⊗ (cx3
1 + dx3

2)
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P(imΠj(ρ)) intersects P(X2×2
C ) at two distinct

points each with multiplicity one for any j = 1, 2, 3.
⇐⇒ rk(ρ) = 2

P(imΠj(ρ)) intersects P(X2×2
C ) at one point

with multiplicity two for any j = 1, 2, 3.
⇐⇒ rk(ρ) = 3

Figure 3.1. If ρ is a regular complex 2 × 2 × 2 tensor, then one of the above
two conditions holds.

for some scalars a, b, c, d. Equation (  3.8 ) follows from the fact that x2
1 ⊗x3

1 is in the image of

Π1(ρ) by assumption, and equation (  3.9 ) follows from the fact that {x2
i ⊗ x3

j}
2,2
i,j=1 is a basis

of V 2 ⊗ V 3. Hence,

ρ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
1 ⊗ (ax3

1 + bx3
2) + x1

2 ⊗ x2
2 ⊗ (cx3

1 + dx3
2),

as tensors are completely determined by the values of one of their contraction maps on a

basis. Thus, the rank of ρ is less than or equal to three.

Lemma 16. Let V 1, V 2, and V 3 be two-dimensional vector spaces over a common field,

and let ρ be a tensor in V 1 ⊗ V 2 ⊗ V 3. If ρ is rank two and regular, then for any rank two

decomposition of ρ

ρ = v1
1 ⊗ v2

1 ⊗ v3
1 + v1

2 ⊗ v2
2 ⊗ v3

2,

the sets {vi
1, v

i
2} are linearly independent for i = 1, 2, 3.

Proof. We will suppose for contradiction that the set {v1
1, v

1
2} is not independent. Suppose

that there existed some scalar k such that v1
2 = kv1

1. Extend the set {v1
1} to a basis {v1

1, w
1
2}

of V 1 for some vector w1
2, and let {v1∗

1 , w
1∗
2 } denote the corresponding dual basis. The action

of the mode-1 contraction of ρ, Π1(ρ), on this basis is then

v1∗
1 7→ v2

1 ⊗ v3
1 + kv2

2 ⊗ v3
2

w1∗
2 7→ 0.

Thus, Π1(ρ) is not rank two, contradicting our assumption that ρ is regular.
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Theorem 17. Let V 1, V 2, and V 3 be two-dimensional complex vector spaces. For a regular

tensor ρ in V 1 ⊗ V 2 ⊗ V 3, the following are equivalent:

(1) For some j = 1,2, or 3, | P(imΠj(ρ)) ∩ P(X2×2
C ) | = 2

(2) rk(ρ) = 2

(3) For all j = 1,2, or 3, | P(imΠj(ρ)) ∩ P(X2×2
C ) | = 2

Proof. (1) ⇒ (2) : Suppose without loss of generality that ρ is a regular tensor such that

P(imΠ1(ρ)) intersects P(X2×2
C ) at the two distinct projective points [v2

1 ⊗ v3
1] and [v2

2 ⊗ v3
2]

for some vectors vi
j. The projective line P(imΠ1(ρ)) is then generated by these two points.

It follows that there exists an independent subset {v1
1, v

1
2} of V 1 with dual basis {v1∗

1 , v
1∗
2 }

such that Π1(v1∗
1 ) = v2

1 ⊗ v3
1 and Π1(v1∗

2 ) = v2
2 ⊗ v3

2. This implies that

ρ = v1
1 ⊗ v2

1 ⊗ v3
1 + v1

2 ⊗ v2
2 ⊗ v3

2.

Hence, ρ is rank two.

(2) ⇒ (3) : Suppose regular tensor ρ is rank two. This implies that there exists vectors

vi
j such that ρ = v1

1 ⊗ v2
1 ⊗ v3

1 + v1
2 ⊗ v2

2 ⊗ v3
2. By Lemma  16 , the sets {vi

1, v
i
2} are a basis of

V i for i = 1, 2, 3. Let {vi∗
1 , v

i∗
2 } denote the corresponding dual bases. It follows that

{[v2
1 ⊗ v3

1], [v2
2 ⊗ v3

2]} = {[Π1(ρ)(v1∗
1 )], [Π1(ρ)(v1∗

1 )]} ⊆ P(imΠ1(ρ)) ∩ P(X2×2
C ),

{[v1
1 ⊗ v3

1], [v1
2 ⊗ v3

2]} = {[Π2(ρ)(v2∗
1 )], [Π2(ρ)(v2∗

1 )]} ⊆ P(imΠ2(ρ)) ∩ P(X2×2
C ), and

{[v1
1 ⊗ v2

1], [v1
2 ⊗ v2

2]} = {[Π3(ρ)(v3∗
1 )], [Π3(ρ)(v3∗

1 )]} ⊆ P(imΠ3(ρ)) ∩ P(X2×2
C ).

Thus, P(imΠi(ρ)) ∩ P(X2×2
C ) contains at least two distinct points for each i. It remains to

show that the intersection of P(imΠi(ρ)) and P(X2×2
C ) in fact contains only these two points.

Suppose for contradiction that a projective point [v2
3 ⊗ v3

3] distinct from points [v2
1 ⊗ v3

1] and

[v2
2 ⊗ v3

2] was contained in P(imΠ1(ρ)) ∩ P(X2×2
C ). Since the line P(imΠ1(ρ)) is generated by

any two distinct points that lie on it, it follows that there exists scalars α and β such that

v2
3 ⊗ v3

3 = α v2
1 ⊗ v3

1 + β v2
2 ⊗ v3

2. (3.10)
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If either α or β were zero, then [v2
3 ⊗v3

3] is not distinct from [v2
1 ⊗v3

1] and [v2
2 ⊗v3

2] as projective

points. Furthermore, if both α and β were nonzero, then equation ( 3.10 ) is a contradiction,

since a rank one tensor cannot be equal to a rank two tensor.

Since the implication (3) ⇒ (1) is clear, the theorem is proved.

Bézout’s theorem states that the number of intersection points with multiplicity of n

homogeneous polynomials in n + 1 variables with no common components is the product

of the degrees of the polynomials in complex projective space. For a regular 2 × 2 × 2

complex tensor ρ, P(imΠj(ρ)) is a projective line generated by two degree one homogeneous

polynomials in four variables. Additionally, the projective 2 × 2 Segre variety P(X2×2
C ) is

generated by the 2×2 matrix determinant, which is a degree two homogeneous polynomial in

four variables. Hence, if P(imΠj(ρ)) is not contained in P(X2×2
C ), Bézout’s theorem implies

that the intersection of P(imΠj(ρ)) and P(X2×2
C ) is generically two. This in turn implies that

a regular tensor ρ is generically rank two by Theorem  17 . Thus, to show that there is an

open and dense set of rank two complex 2 × 2 × 2 tensors in the norm topology, it remains

to prove the following theorem.

Theorem 18. Let V 1, V 2, and V 3 be two-dimensional complex vector spaces. If ρ ∈ V 1 ⊗ V 2 ⊗ V 3

is a regular tensor, then imΠj(ρ) 6⊆ X2×2
C for j = 1, 2, 3.

Proof. Segre varieties contain numerous vector spaces in general. For example, the plane

generated by the following two matrices as

〈 1 0

0 0

 ,

0 0

1 0

 〉

is contained in the X2×2
C . We now show that this does not happen for the plane Πj(ρ) when

ρ is regular for any j = 1, 2, 3. Suppose for contradiction that the plane Π1(ρ) was contained

in the variety X2×2
C . There would then exist a basis {e1

1, e1
2} of V 1 with corresponding dual

basis {e1∗
1 , e1∗

2 } and some vectors vi
j’s such that

Π1(ρ)(e1∗
1 ) = v1

1 ⊗ v2
1 and Π1(ρ)(e1∗

2 ) = v1
2 ⊗ v2

2.
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It also follows that v1
1 ⊗v2

1 +v1
2 ⊗v2

2 = x2
1 ⊗x3

1 for some vectors x2
1, x3

1 since v1
1 ⊗v2

1 +v1
2 ⊗v2

2 ∈

X2×2
C . This implies that Π1(v1

1 ⊗v2
1 +v1

2 ⊗v2
2) is equal to Π1(x2

1 ⊗x3
1), and thus the set {v2

1, v
2
2}

is linearly dependent. This, however, cannot occur when ρ is regular by Lemma  16 .

We could apply Bézout’s theorem in the 2 × 2 × 2 case as the ideal of Segre variety was

just the 2 × 2 determinant. Finding the ideal of the n1 × n2 × n3 Segre variety is a much

more difficult problem in general.

3.5 Regular 2 × 2 × 2 Tensors Tangent to the Segre Variety

If ρ is a regular 2 × 2 × 2 real or complex tensor, then each of the three contraction

maps generate a projective line - the line that is the projectivization of the image of each

contraction map. If any of these lines are tangent to the Segre variety, then all of the

these lines are tangent to the Segre variety. Furthermore, these lines are tangent to the

Segre variety if and only if ρ itself is tangent to the Segre variety. This demonstrates the

fundamental relationship between a tensor and its contraction maps geometrically, and is

summarized in Figure  3.2 .

Theorem 19. Let V 1, V 2, and V 3 be two-dimensional complex or real vector spaces. For a

regular tensor ρ in V 1 ⊗ V 2 ⊗ V 3, the following are equivalent:

(1) For some j = 1,2, or 3, P(imΠj(ρ)) ⊆ Tx(P(X2×2)) for some x ∈

P(X2×2).

(2) [ρ] ∈ Tx(P(X2×2×2)) for some x ∈ P(X2×2×2).

(3) For all j = 1,2, or 3, P(imΠj(ρ)) ⊆ Tx(P(X2×2)) for some x ∈

P(X2×2).

Each of these conditions also implies that the rank of ρ is three, and | P(imΠj(ρ))∩P(X2×2) |

= 1 for any j = 1, 2, 3. Furthermore, the intersection of the projective image of any mode-j

contraction of ρ with the 2 × 2 projective Segre variety is one with multiplicity two.
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Proof. (1) ⇒ (2) : Suppose P(imΠ1(ρ)) ⊂ T[x2
1⊗x3

1](P(X2×2)) for some x2
1 ⊗ x3

1 ∈ X2×2. Since

ρ is regular, there must be a basis {x1
1, x

1
2} of V 1 with dual basis {x1∗

1 , x
1∗
2 } such that

Π1(ρ) : x1∗
1 7→ x2

1 ⊗ x3
1 (3.11)

x1∗
2 7→ x2

2 ⊗ x3
1 + x2

1 ⊗ x3
2 for some vectors x2

2, x
3
2. (3.12)

Equation ( 3.11 ) follows from the fact that x2
1 ⊗x3

1 must be in Tx2
1⊗x3

1
(X2×2). Equation ( 3.12 )

follows from the fact that every element in Tx2
1⊗x3

1
(X2×2) is in the form x2

2 ⊗ x3
1 + x2

1 ⊗ x3
2 by

Theorem  14 . Hence,

[ρ] = [x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

1 + x1
2 ⊗ x2

1 ⊗ x3
2] ∈ T[x1

2⊗x2
1⊗x3

1](P(X2×2×2)).

(2) ⇒ (3) : Suppose ρ is a regular tensor contained in T[x1
1⊗x2

1⊗x3
1](P(X2×2×2)) for some

simple tensor x1
1 ⊗ x2

1 ⊗ x3
1. The tensor ρ must be in the form

ρ = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (3.13)

for some vectors x1
2, x2

2, and x3
2 by Theorem  14 . By Lemma  15 , ρ is rank three. Hence, the

sets {xi
1, x

i
2} must be linearly independent for each i, or else the rank of ρ would be less than

three. Let {xi∗
1 , x

i∗
2 } be the corresponding dual spaces. It follows that

Π1(ρ)(x1∗
1 ) = x2

2 ⊗ x3
1 + x2

1 ⊗ x3
2, Π1(ρ)(x1∗

2 ) = x2
1 ⊗ x3

1,

Π2(ρ)(x2∗
1 ) = x1

2 ⊗ x3
1 + x1

1 ⊗ x3
2, Π2(ρ)(x2∗

2 ) = x1
1 ⊗ x3

1,

Π3(ρ)(x3∗
1 ) = x1

2 ⊗ x2
1 + x1

1 ⊗ x2
2, and Π3(ρ)(x3∗

2 ) = x1
1 ⊗ x2

1.

Since the image of each of these maps is two-dimensional, we conclude that

P(imΠ1(ρ)) = 〈[x2
2 ⊗ x3

1 + x2
1 ⊗ x3

2], [x2
1 ⊗ x3

1]〉 ⊆ T[x2
1⊗x3

1](P(X2×2)), (3.14)

P(imΠ2(ρ)) = 〈[x1
2 ⊗ x3

1 + x1
1 ⊗ x3

2], [x1
1 ⊗ x3

1]〉 ⊆ T[x1
1⊗x3

1](P(X2×2)), and (3.15)

P(imΠ3(ρ)) = 〈[x1
2 ⊗ x2

1 + x1
1 ⊗ x2

2], [x1
1 ⊗ x2

1]〉 ⊆ T[x1
1⊗x2

1](P(X2×2)). (3.16)
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P(imΠj(ρ)) ⊆ Tx(P(X2×2
C ))

for some x ∈ (P(X2×2
C ))

for any j = 1, 2, 3.
⇐⇒

[ρ] ∈ Tx(P(X2×2×2
C ))

for some x ∈ P(X2×2×2
C )

Figure 3.2. If ρ is a regular complex 2 × 2 × 2 tensor, then the contraction
maps of ρ are tangent to the Segre variety if and only if ρ is tangent to the
Segre variety.

The set containments in Equations ( 3.14 ), ( 3.15 ), and ( 3.16 ) follow from the characterization

of the tangent space of the Segre variety in Theorem  14 . This implies that each projective

line P(imΠi(ρ)) is tangent to the projective Segre variety.

(3) ⇒ (1) is obvious. Furthermore, by Bézout’s theorem, there cannot be any addi-

tional intersections, since a line and a degree two variety can have at most two intersec-

tion in three-dimensional complex projective space. Hence, | P(imΠj(ρ)) ∩ P(X2×2) | =

1 for any j = 1, 2, 3.by the same reasoning, the intersection of the projective image of any

mode-j contraction of ρ with the 2 × 2 projective Segre variety is one with multiplicity two.

It can be shown by contradiction that any regular tensor in the form (  3.13 ) is indeed rank

three. Hence, the theorem is proven.

Let ρ be a regular real 2 × 2 × 2 tensor. The projective line generated by the image of

the mode-1 contraction map of ρ intersects P(X2×2
C ) at one point with multiplicity two or

two points with multiplicity one. However, the projective line generate by imΠ1(ρ) could

possibly not intersect the real 2 × 2 Segre variety P(X2×2
R ) at all. It is not possible for the

the projective line to intersect the projective Segre variety one point of multiplicity one,

since complex solutions to real polynomials come in complex pairs. Hence, over R, there

are three possible cases, which are summarized in Figure  3.3 . This explains why there is no

generic rank for 2 × 2 × 2 real tensors, for non-intersection with the Segre variety is an open

condition.
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P(imΠj(ρ)) intersects P(X2×2
R ) at two distinct

points each with multiplicity one for any j = 1, 2, 3
⇐⇒ rk(ρ) = 2

P(imΠj(ρ)) intersects P(X2×2
R ) at one point

with multiplicity two for any j = 1, 2, 3
⇐⇒

rk(ρ) = 3
[ρ] ∈ Tx(P(X2×2×2

R ))
for some x ∈ P(X2×2×2

R )

P(imΠj(ρ)) does not intersect P(X2×2
R )

for any j = 1, 2, 3
⇐⇒

rk(ρ) = 3
[ρ] /∈ Tx(P(X2×2×2

R ))
for some x ∈ P(X2×2×2

R )

Figure 3.3. If ρ is a regular real 2 × 2 × 2 tensor, then one of the above three
conditions holds.
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3.6 Quantifier Elimination and the Importance of a Geometric Perspective

It follows from the quadratic formula that the existential statement

(∃x)(∃y)(x2 + bx+ c = 0) ∧ (y2 + by + c = 0) ∧ (x 6= y)

is true over C if and only if the quantifier-free statement

b2 − 4c 6= 0

is true. In fact, every statement in the language of algebraically closed fields is equivalent

to a statement without quantifiers. The statement ‘ρ ∈ C2×2×2 is a rank two tensor’ can be

formalized in the language of algebraically closed fields with the formula φ(aijk)

∃u1
1 ∃u2

1 ∃v1
1 ∃v2

1 ∃w1
1 ∃w2

1 ∃u1
2 ∃u2

2 ∃v1
2 ∃v2

2 ∃w1
2 ∃w2

2 (a111 = u1
1v

1
1w

1
1 + u2

1v
2
1w

2
1)∧

(a112 = u1
1v

1
1w

1
2 + u2

1v
2
1w

2
2) ∧ (a121 = u1

1v
1
2w

1
1 + u2

1v
2
2w

2
1) ∧ (a122 = u1

1v
1
2w

1
2 + u2

1v
2
2w

2
2)∧

(a211 = u1
2v

1
1w

1
1 + u2

2v
2
1w

2
1) ∧ (a212 = u1

2v
1
1w

1
2 + u2

2v
2
1w

2
2) ∧ (a221 = u1

2v
1
2w

1
1 + u2

2v
2
2w

2
1)∧

(a222 = u1
2v

1
2w

1
2 + u2

2v
2
2w

2
2) ∧

¬∃u1
1 ¬∃u2

1 ¬∃v1
1 ¬∃v2

1 ¬∃w1
1 ¬∃w2

1(a111 = u1
1v

1
1w

1
1) ∧ (a112 = u1

1v
1
1w

1
2) ∧ (a121 = u1

1v
1
2w

1
1)

∧ (a122 = u1
1v

1
2w

1
2) ∧ (a211 = u1

2v
1
1w

1
1) ∧ (a212 = u1

2v
1
1w

1
22)

∧ (a221 = u1
2v

1
2w

1
1) ∧ (a222 = u1

2v
1
2w

1
2).

This is the entry-wise equivalent of the informal statement in the ‘language of tensors’ of

∃

u1
1

u1
2

 ∃

u2
1

u2
2

 ∃

v1
1

v1
2

 ∃

v2
1

v2
2

 ∃

w1
1

w1
2

 ∃

w2
1

w2
2

 (ρ =

u1
1

u1
2

⊗

v1
1

v1
2

⊗

w1
1

w1
2

+

u2
1

u2
2

⊗

v2
1

v2
2

⊗

w2
2

w2
2

 )

∧ ¬∃

u1
1

u1
2

 ¬∃

u2
1

u2
2

 ¬∃

v1
1

v1
2

 (
ρ =

u1
1

u1
2

⊗

v1
1

v1
2

⊗

w1
1

w1
2

 ).
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We now construct a quantifier-free formula that is equivalent to φ(aijk). Let m1(aijk),

m2(aijk), and m3(aijk) be the following quantifier-free formulas.

m1(aijk) = (a111a212 − a211a112 6= 0) m2(aijk) = (a111a122 − a121a112 6= 0)

∨ (a111a221 − a211a121 6= 0) ∨ (a111a221 − a121a211 6= 0)

∨ (a111a221 − a211a122 6= 0) ∨ (a111a222 − a121a212 6= 0)

∨ (a112a221 − a212a121 6= 0) ∨ (a112a221 − a122a211 6= 0)

∨ (a112a222 − a212a122 6= 0) ∨ (a112a222 − a122a212 6= 0)

∨ (a121a222 − a221a122 6= 0), ∨ (a211a222 − a221a212 6= 0),

and m3(aijk) = (a111a122 − a112a121 6= 0)

∨ (a111a212 − a112a211 6= 0)

∨ (a111a222 − a112a221 6= 0)

∨ (a121a212 − a122a211 6= 0)

∨ (a121a222 − a122a221 6= 0)

∨ (a211a222 − a212a221 6= 0).

Furthermore, let θ(aijk) be the formula

θ(aijk) = (m1 ∨m2 ∨ ¬m3) ∨ (m1 ∨m3 ∨ ¬m2) ∨ (m2 ∨m3 ∨ ¬m1),

and let ∆(aijk) be the polynomial

∆(aijk) = (a2
111a

2
222 + a2

112a
2
221 + a2

121a
2
212 + a2

122a
2
211)

− 2(a111a112a221a222 + a111a121a212a222 + a111a122a211a222)

− 2(a112a121a212a221 + a112a122a221a211 + a121a122a212a211)

+ 4(a111a122a212a221 + a112a121a211a222).

The quantified formula φ(aijk) is equivalent to the quantifier-free formula (∆(aijk) 6= 0) ∨

θ(aijk).
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The rank of a hypermatrix can theoretically be determined algorithmically by computing

and then evaluating the equivalent quantifier-free formulas. However, such formulas are in-

comprehensible and often infeasible for high dimensional tensor spaces, as the above example

demonstrates. Hence, there is a need for a more geometric understanding of tensors. In this

chapter, we have given a geometric explanation for the existence of an open, dense set of

rank two tensors in the complex 2 × 2 × 2 tensor space.
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4. RANK-JUMPING

If a sequence of rank r real matrices converges to a matrix A in the norm topology, then the

rank of A is less than or equal to r. A sequence of real hypermatrices, however, can converge

to a hypermatrix of greater rank. The limit points of such sequences are called rank-jumping

hypermatrices. We show that a 2 × 2 × 2 real hypermatrix is rank-jumping if and only if

it is a regular element of the tangential variety of the Segre variety. We also explain why

rank-jumping never occurs for non-negative real hypermatrices.

4.1 Rank-Jumping Hypermatrices

Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional real vector spaces, respectively,

and let V 1 ⊗ V 2 ⊗ V 3 denote the tensor product of these spaces. The tensors in the form

v1 ⊗ v2 ⊗ v3 for some vectors v1, v2, and v3 are called simple tensors. The simple tensors

form a variety, which is denoted X and is called the Segre variety. The rank of a tensor ρ is

the minimum number n such that ρ is the sum of n simple tensors. A tensor ρ is said to be

rank-jumping if the rank of ρ is greater than s, and there exists a sequence of rank s tensors

that converge to ρ in the norm topology.

We denote by τ(X) the set of all tensors that lie on lines tangent to the Segre variety. It

is a classical observation that tensors of rank greater than two in τ(X) are rank-jumping. A

tensor β in τ(X) is in the form

β = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (4.1)

for some vectors xi
j. This is an immediate calculation, but can also be found in [  31 , Prop.2.6]

and [ 14 , p.108]. The tensor β is the limit of the sequence of rank at most two tensors

ρn = n (x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − nx1
1 ⊗ x2

1 ⊗ x3
1, n ∈ N (4.2)
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in the norm topology. It follows from the observation

‖ρn − β‖ ≤ 1
n

∥∥∥x1
2 ⊗ x2

2 ⊗ x3
1 + x1

2 ⊗ x2
1 ⊗ x3

2 + x1
1 ⊗ x2

2 ⊗ x3
2

∥∥∥ + 1
n2

∥∥∥x1
2 ⊗ x2

2 ⊗ x3
2

∥∥∥,
that the limit of ρn is indeed equal to β. The rank-jumping of tensors in the form (  4.1 )

is best understood in terms of secant lines of the Segre variety. A secant line of the Segre

variety is a line that intersects the Segre variety at two points. A real tensor is rank at most

two if and only if it is on a secant line of the Segre variety. We denote by σ2(X) the norm

closure of the set of all tensors that lie on secant lines of the Segre variety. We define σ2(X)

as the norm closure of the set of rank at most two tensors since the set of rank at most two

tensors is not closed, as sequence ( 4.2 ) demonstrates.

Tensors in τ(X) are on tangent lines of the Segre variety, which are limits of secant lines.

Hence, almost by definition, the rank-jumping tensors that are limits of rank two tensors

should be the rank greater than two elements in τ(X). In this chapter, we will prove this

characterization formally. We will prove that a 2 × 2 × 2 real tensor is rank-jumping if and

only if it is a regular element of τ(X).

Interestingly, rank jumping does not occur for non-negative real hypermatrices [ 32 ]. Re-

call that tensors can be coordinatized as hypermatrices. The 2 × 2 × 2 hypermatrices in the

form

x1

x2

⊗

y1

y2

⊗

z1

z2

 :=
x1y1z1 x1y1z2

x1y2z1 x1y2z2

x2y1z1 x2y1z2

x2y2z1 x2y2z2

for some constants xi, yi, and zi are the simple hypermatrices, which are the coordinate

counterparts of simple tensors.

A non-negative hypermatrix (aijk) has both a non-negative rank and a real rank. The

non-negative rank of (aijk) is the minimum number n such that (aijk) is equal to the sum

of n non-negative-valued simple hypermatrices. The real rank of (aijk), on the other hand,
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X

V 1 ⊗ V 2 ⊗ V 3

β = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

n(x1 + 1
n
y1) ⊗ (x2 + 1

n
y2) ⊗ (x3 + 1

n
y3) − nx1 ⊗ x2 ⊗ x3

↘ n → ∞

x1 ⊗ x2 ⊗ x3

n(x1 + 1
n
y1) ⊗ (x2 + 1

n
y2) ⊗ (x3 + 1

n
y3)

Figure 4.1. Tensor β is a rank three element on a tangent line of the Segre
variety that is the limit of rank two tensors on secant lines of the Segre variety.
Hence, β is a rank-jumping tensor. The sequence of rank two tensors that
converge to β contains a negative term. A negative term always appears in
such sequences of rank two tensors that converge to rank three tensors, since
rank-jumping never occurs for non-negative hypermatrices.
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is the minimum number n such that (aijk) is equal to the sum of n real-valued simple

hypermatrices. Tangent lines to the non-negative Segre variety still contain rank greater

than two non-negative hypermatrices. However, over the non-negative real numbers, rank

at most two tensors can no longer be identified with secant lines of the Segre variety. For

example, the non-negative real hypermatrix

A =
23
4

7

7 10

50
4

16

16 22

is on a secant line of the non-negative Segre variety. Indeed, A is on the secant line that

intersects the the non-negative Segre variety at the points

3

6

⊗

3
2

2

⊗

3
2

2

 and

1

1

⊗

1

1

⊗

1

1


since

A =

3

6

⊗

3
2

2

⊗

3
2

2

 − 2

1

1

⊗

1

1

⊗

1

1

 .
Non-negative hypermatrix A is thus real rank two. It can be shown by contradiction, how-

ever, that A cannot be written as the sum of two simple non-negative hypermatrices. Thus,

the non-negative rank of A is greater than two.
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4.2 Rank Three Tensors On Tangent Lines Are Rank-Jumping

Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional real vector spaces, and let V 1∗,

V 2∗, and V 3∗ denote their dual spaces. The tensor ρ = ∑r
i=1 v

1
i ⊗ v2

i ⊗ v3
i in V 1 ⊗ V 2 ⊗ V 3

induces the three linear maps

V 1∗ Π1(ρ)−−−→ V 2 ⊗ V 3 V 2∗ Π2(ρ)−−−→ V 1 ⊗ V 3 V 3∗ Π3(ρ)−−−→ V 1 ⊗ V 2

v1∗ 7→
r∑

i=1
v1∗(v1

i ) v2
i ⊗ v3

i , v2∗ 7→
r∑

i=1
v2∗(v2

i ) v1
i ⊗ v3

i , and v3∗ 7→
r∑

i=1
v3∗(v3

i ) v1
i ⊗ v2

i .

These maps are called the mode-1, mode-2, and mode-3 contraction maps of ρ, respectively.

The relationship between the contraction maps of a tensor generalizes, in a coordinate-free

way, the fundamental relationship between the rows and columns of a matrix to hyperma-

trices. The rank of a two-fold tensor ρ ∈ V 1 ⊗ V 2 is equal to the dimension of the image of

Π1(ρ), which is also equal to the dimension of the image of Π2(ρ). We now use contraction

maps to show when tensors in the form (  4.1 ) are rank three. First, we need the following

lemma.

Lemma 20. Let V 1 and V 2 be finite dimensional real vector spaces, let {x1
i }r

i=1 and {y1
i }s

i=1

be linearly independent subsets of V 1, and let {x2
i }r

i=1 and {y2
i }s

i=1 be linearly independent

subsets of V 2. If ∑r
i=1 x

1
i ⊗ x2

i = ∑s
i=1 y

1
i ⊗ y2

i , then r = s.

Proof. Since {x1
i }r

i=1 is independent, we can choose {x1∗
j }r

j=1 ⊆ V 1∗ such that x1∗
j (x1

i ) = δij.

By taking the mode-1 contraction of the tensor with respect to each of the two representa-

tions, it follows that

r∑
i=1

x1∗
j (x1

i ) x2
i =

s∑
i=1

x1∗
j (y1

i ) y2
i for j = 1, 2, . . . , r.

This implies x2
j = ∑s

i=1 x
1∗
j (y1

i ) y2
i for j = 1, 2, . . . , r, so each x2

j is in the span of y2
1, y2

2, …y2
s ,

which we denote by 〈y2
i 〉s

i=1. Thus, we conclude that the linear space 〈x2
j〉r

j=1 is a subset of

〈y2
i 〉s

i=1. Similarly, 〈y2
i 〉s

i=1 ⊆ 〈x2
j〉r

j=1, so, by the independence of each set, r = s.
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Theorem 21. Let V 1, V 2, and V 3 be finite dimensional real vector spaces. If the sets

{x1
1, x

1
2}, {x2

1, x
2
2}, and {x3

1, x
3
2} in V 1, V 2, and V 3, respectively, are linearly independent,

then the tensor

β = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2

is rank three.

Proof. Suppose for contradiction that β were rank less than three. That is, suppose that

β = y1
1 ⊗ y2

1 ⊗ y3
1 + y1

2 ⊗ y2
2 ⊗ y3

2

for some vectors yi
j. Since the image of Πi(β) is equal to 〈xi

1, x
i
2〉 and 〈yi

1, y
i
2〉 for each i,

it follows that the sets {yi
1, y

i
2} are independent for each i. Let x1∗

1 and x1∗
2 be the dual

vectors such that x1∗
i (x1

j) = δij for i, j = 1, 2. By considering the mode-1 contraction of both

representations of β, it follows that

Π1(β)(x1∗
2 ) = x1∗

2 (x1
2)x2

1 ⊗ x3
1 + x1∗

2 (x1
1)x2

2 ⊗ x3
1 + x1∗

2 (x1
1)x2

1 ⊗ x3
2, and

Π1(β)(x1∗
2 ) = x1∗

2 (y1
1)y2

1 ⊗ y3
1 + x1∗

2 (y1
2)y2

2 ⊗ y3
2.

This implies that

x2
1 ⊗ x3

1 = x1∗
2 (y1

1)y2
1 ⊗ y3

1 + x1∗
2 (y1

2)y2
2 ⊗ y3

2.

Since the sets {yi
1, y

i
2} are independent, Lemma  20 implies that either x1∗

2 (y1
1) = 0 or x1∗

2 (y1
2) =

0. We consider the case when x1∗
2 (y1

2) = 0, and leave the remaining similar case to the reader.

It follows that

im Π2( Π1(β)(x1∗
2 ) ) = im Π2(x2

1 ⊗ x3
1) = im Π2( x1∗

2 (y1
1)y2

1 ⊗ y3
1 ),
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which implies that 〈x2
1〉 = 〈y2

1〉. Let k be a scalar such that y2
1 = kx2

1. Similarly,

im Π1( Π1(β)(x1∗
2 ) ) = im Π1(x2

1 ⊗ x3
1) = im Π1( x1∗

2 (y1
1)y2

1 ⊗ y3
1 ),

so 〈x3
1〉 = 〈y3

1〉. Finally, we derive a contradiction by considering the mode-2 contraction of

both representations of β.

Π2(β)(x2∗
2 ) = x1

1 ⊗ x3
1 = x2∗

2 (y2
1)y1

1 ⊗ y3
1 + x2∗

2 (y2
2)y2

1 ⊗ y3
2

= x2∗
2 (kx2

1)y1
1 ⊗ y3

1 + x2∗
2 (y2

2)y2
1 ⊗ y3

2

= x2∗
2 (y2

2)y2
1 ⊗ y3

2.

However, this implies that y3
2 ∈ 〈x3

1〉. This is a contradiction, since we have already shown

that y3
1 ∈ 〈x3

1〉 and the set {y3
1, y

3
2} is independent. We leave it to the reader to check the

similar case of x1∗
2 (y1

1) = 0.

We have now shown that when V 1, V 2, and V 3 are finite dimensional real vector spaces

and the sets {xi
1, x

i
2} ⊆ V i are linearly independent, then the tensor

β = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2

is rank three. However, it is also the limit of the sequence of rank at most two tensors

ρn = n (x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − nx1
1 ⊗ x2

1 ⊗ x3
1, n ∈ N

in the norm topology. Hence, such tensors are indeed rank-jumping.

4.3 Continuous Curves of Rank Two Hypermatrices

In the coordinate-free setting of tensors, the rank one summands of a 2 × 2 × 2 regular

tensor can be determined by considering the contraction maps of the tensors. A tensor is
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said to be regular if all of its contraction maps are full-rank. If ρ is regular and rank two,

then

ρ = v1
1 ⊗ v2

1 ⊗ v3
1 + v1

2 ⊗ v2
2 ⊗ v3

2

for some vectors vi
j, and the sets {v1

1, v
1
2}, {v2

1, v
2
2}, and {v3

1, v
3
2} are linearly independent.

Let {v1∗
1 , v

1∗
2 } denote the dual basis of {v1

1, v
1
2}. By considering the values of Π1(ρ) on the

dual vectors v1∗
1 and v1∗

2 , we concluded that

im Π1(ρ) = 〈v2
1 ⊗ v3

1, v
2
2 ⊗ v3

2〉. (4.3)

By similar reasoning, we can conclude that the vector v3
1 is in the image of the map Π1(v2

1⊗v3
1)

and the vector v2
1 is in the image of the map Π2(v2

1 ⊗v3
1), where the contractions are now taken

with respect to two-fold tensors. We now translate these observations into the coordinate

setting of hypermatrices. Let B denote the collection of bases of {ei
1, ei

2} of V i for i = 1, 2, 3,

and let {ei∗
1 , ei∗

2 } denote their corresponding dual bases. The tensor ρ = ∑
ijk aijke1

i ⊗ e2
j ⊗ e3

k

is identified with the hypermatrix

(aijk) =
a111 a112
a121 a122

a211 a212
a221 a222

with respect to bases B. The mode-i contractions maps of ρ can also be coordinitized as

4 × 2 matrix unfoldings of (aijk).

Π1(aijk) =



a111 a211

a112 a212

a121 a221

a122 a222


Π2(aijk) =



a111 a121

a112 a122

a211 a221

a212 a222


Π3(aijk) =



a111 a112

a121 a122

a211 a212

a221 a222
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The matrices Π1(aijk), Π2(aijk), and Π3(aijk) are called the mode-1, mode-2, and mode-3

coordinate contractions of (aijk), respectively. Hypermatrix (aijk) is simple if and only if

all of the mode-i coordinate contraction maps are rank less than or equal to one. Hence,

hypermatrix (aijk) is simple if and only if all the 2 × 2 minors of its mode-i coordinate

contraction maps are zero. This shows that the set of simple hypermatrices is indeed a

variety. It is in fact sufficient to show that two of the three mode-i coordinate contraction

maps are simple, for this implies the third one is simple as well.

The columns of the contraction maps Πi(aijk) can also be unfolded into 2 × 2 matrices,

which are denoted as follows.

a1:: =

a111 a112

a121 a122

 a2:: =

a211 a212

a221 a222



a:1: =

a111 a112

a211 a212

 a:2: =

a121 a122

a221 a222



a::1 =

a111 a121

a211 a221

 a::2 =

a112 a122

a212 a222


These matrices are referred to as the co-dimension one slices of hypermatrix (aijk). Hyper-

matrix (aijk) is said to be regular if it is the coordinatization of a regular tensor. Thus, a

hypermatrix is regular if and only if all of its mode-i coordinate contraction maps are full

rank. Thus, a 2 × 2 × 2 hypermatrix is regular if and only if Π1(aijk), Π2(aijk), and Π3(aijk)

are all rank two. The 4×2 matrix Π1(aijk) is rank two if and only if the set of 2×2 matrices

{a1::, a2::} is linearly independent. Hence, a 2 × 2 × 2 hypermatrix is regular if and only if

there are no linear relations among its co-dimension one slices. Intuitively, generating the

entries of a 2 × 2 × 2 hypermatrix randomly and independently should result in a regular

hypermatrix. Indeed, the set of 2×2×2 hypermatrices form an open and dense set in R2×2×2

with respect to the norm topology.

We prove that if regular 2 × 2 × 2 real hypermatrices are parameterized continuously,

then the rank one summands can also be parameterized continuously and semi-algebraically.

We will need the following generalization of Cramer’s rule.
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Theorem 22. Let (0, 1] 7→ A(t) be a continuous curve of m×n matrices, and let (0, 1] 7→ b(t)

be a continuous curve of m × 1 vectors. If there exists a t0 in the interval (0, 1) such that

the linear system A(t0)x = b(t0) has a solution, then there exists a neighborhood (a, b) of t0
and a rational function p(t) from (a, b) to Rn such that A(t)p(t) = b(t) on (a, b).

Proof. First, recall that if A is a square matrix, and b be is a vector such that the linear

system Ax = b has a solution, then the solution x must be completely determined by the

coefficients of A and b. Cramer’s rule is the classical observation that the vector with ith

entry xi equal to

xi = det(Ai)
detA

is the solution to Ax = b, where Ai is the matrix obtained by replacing the ith column of A

with the column vector b. Cramer’s formula thus demonstrates that the solution of a square

system of equations Ax = b is in fact determined by a ratio of polynomial functions in the

coefficients of A and b. If a polynomial is zero at a point, then it is zero on a neighborhood

of the point. Hence, if A(t) is a continuous curve of n×n matrices defined on (0, 1] and b(t)

is a continuous curve of n× 1 vectors defined on (0, 1], then if A(t0)x = b(t0) has a solution

for some t0 ∈ (0, 1], there must exist a neighborhood of (a, b) of t0 on which A(t)x = b(t)

has a solution. Let (a, b) be the maximal neighborhood of t0 such that detA(t) is nonzero.

It then follows from Cramer’s rule that

t 7→
(

det(Ai(t))
detA(t)

)

is the desired rational function p(t). Furthermore, Cramer’s rule can be extended to rectangu-

lar matrices. The solutions of rectangular systems of linear equations can still be determined

by rational functions [ 33 ]. This implies the theorem.

Theorem 23. Let γ : (0, 1] → R2×2×2 be a continuous curve of regular rank two hyperma-

trices. There exists (0, 1]
vi

j−→ R2 continuous and semi-algebraic for all i, j such that

γ(t) = v1
1(t) ⊗ v2

1(t) ⊗ v3
1(t) + v1

2(t) ⊗ v2
2(t) ⊗ v3

2(t)
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for all t ∈ (0, 1].

Proof. Since (aijk(t)) is a regular rank two hypermatrix for every t, we know that

(aijk(t)) =

x1
11(t)

x1
12(t)

⊗

x2
11(t)

x2
12(t)

⊗

x3
11(t)

x3
12(t)

 +

x1
21(t)

x1
22(t)

⊗

x2
21(t)

x2
22(t)

⊗

x3
21(t)

x3
22(t)



for some constants xi
jk(t) for every t in (0, 1]. By translating Equation (  4.3 ) into the lan-

guage of hypermatrices, we conclude that there exists two ordered pairs (α1(t), β1(t)) and

(α2(t), β2(t)) for every t such that the following equalities hold.

x2
11(t)

x2
12(t)

⊗

x3
11(t)

x3
12(t)

 = α1(t)a1::(t) + β1(t)a2::(t) (4.4)

x2
21(t)

x2
22(t)

⊗

x3
21(t)

x3
22(t)

 = α2(t)a1::(t) + β2(t)a2::(t) (4.5)

These pairs (α1(t), β1(t)) and (α2(t), β2(t)) are precisely the solutions to the equation det(xa1::(t)+

ya2::(t)) = 0. By similarly considering the mode-3 contraction maps, we conclude that there

also exists ordered pairs (α3(t), β3(t)) and (α4(t), β4(t)) for every t such that the following

equalities hold.

x1
11(t)

x1
12(t)

⊗

x2
11(t)

x2
12(t)

 = α3(t)a::1(t) + β3(t)a::3(t) (4.6)

x1
21(t)

x1
22(t)

⊗

x2
21(t)

x2
22(t)

 = α4(t)a::1(t) + β4(t)a::2(t) (4.7)

Choose a t0 such that a1::(t0), a2::(t0), a::1(t0), and a::2(t0) are rank all rank two. Thus, on

a neighborhood (c, d) of t0, we can conclude that the solutions of ( 4.4 ), ( 4.5 ), ( 4.6 ), and

( 4.7 ) do not have zero coordinates. The multilinearity of the determinant function then
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implies that for each t in (c, d), there exists δ1(t), δ2(t), δ3(t), and δ4(t) on (c, d) such that

the following equations hold.

det (a1::(t) + δ1(t) a2::(t)) = 0 det (a::1(t) + δ3(t) a::2(t)) = 0

det (a1::(t) + δ2(t) a2::(t)) = 0 det (a::1(t) + δ4(t) a::2(t)) = 0

Note that det (a1::(t) + δ1(t) a2::(t)) = 0 implies δ1(t)2 A(t) + δ1(t) B(t) + C(t) = 0,

where A(t) = det (a2::(t))

B(t) = (tr(a1::(t))tr(a2::(t)) − tr (a1::(t)a2::(t)))

C(t) = det (a1::(t)) .

It follows that

δ1,2(t) =
−B(t) ±

√
B(t)2 − 4A(t)C(t)
2A(t) ,

so δ1(t) and δ2(t) are continuous and semialgebraic. Note that δ1(t) and δ2(t) are defined on

(c, d) since a2::(t) and a::2(t) are rank two on this interval. The functions δ3(t) and δ4(t) are

continuous and semialgebraic on (c, d) by the same reasoning. Define the continuous and

semialgebraic functions D1(t), D2(t), E1(t), and E2(t) as follows.

D1(t) = a1::(t) + δ1(t) a2::(t) E1(t) = a::1(t) + δ3(t) a::2(t)

D2(t) = a1::(t) + δ2(t) a2::(t) E2(t) = a:1(t) + δ4(t) a::2(t)
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We can thus compute the vector components of the rank one summands of (aijk) as the

continuous and semialgebraic functions vi
j(t) defined as follows.

v1
1(t) =

v1
11(t)

v1
12(t)

 = E2(t)

1

0

 v1
2(t) =

v1
21(t)

v1
22(t)

 = E1(t)

1

0



v2
1(t) =

v2
11(t)

v2
12(t)

 = D2(t)

1

0

 v2
2(t) =

v2
21(t)

v2
22(t)

 = D1(t)

1

0



v3
1(t) =

v3
11(t)

v3
12(t)

 =
((

1 0
)
D2(t)

)T

v3
2(t) =

v3
21(t)

v3
22(t)

 =
((

1 0
)
D1(t)

)T

There must thus be some constant p1(t) and p2(t) for every t on our interval (c, d) such that

(aijk) = p1(t) v1
1(t) ⊗ v2

1(t) ⊗ v3
1(t) + p2(t) v1

2(t) ⊗ v2
2(t) ⊗ v3

2(t).

By Theorem  22 , there exists such p1(t) and p2(t) continuous and semialgebraic on our interval

(c, d). We leave it to the reader to check the similar case when one of the slabs of the

hypermatrix (aijk) is rank one, and to confirm that it is sufficient to find a continuous and

semialgebraic parameterization on a subinterval.

4.4 The Sets of Constant Rank Real Hypermatrices are Semialgebraic

Let V 1, V 2, and V 3 be two-dimensional real vector spaces. We denote the set of rank r

tensors by MR
r , and the set of rank at most r tensors as MR

≤r.

MR
r = { ρ ∈ V 1 ⊗ V 2 ⊗ V 3 | (ρ) = r }

MR
≤r = { ρ ∈ V 1 ⊗ V 2 ⊗ V 3 | (ρ) ≤ r }

It thus follows that in our 2 × 2 × 2 case, the tensor space V 1 ⊗ V 2 ⊗ V 3 is thus equal to

the disjoint union MR
≤1 t MR

2 t MR
3 . The set MR

≤1 is closed in the norm topology, since a

tensor is simple if and only if all of its linear contraction maps are rank less than or equal

than one. It is well-known that set of linear maps that are rank less than or to one is closed
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in the norm topology. Hence, the only real 2 × 2 × 2 rank-jumping tensors are rank three

tensors that are limit points of a sequence of rank two tensors. That is, tensor β is a 2×2×2

real rank-jumping tensor if and only if β is rank three and there exists a sequence of tensors

(ρn)n∈N such that

lim
n→∞

ρn = β and (ρn)n∈N ⊆ MR
2 . (4.8)

This is in general weaker than the statement that there exists a continuous mapping γ such

that

γ : [0, 1] ⊆ R → V 1 ⊗ V 2 ⊗ V 3 and γ(0) = β, γ(0, 1] ⊆ MR
2 . (4.9)

However, ( 4.8 ) does imply ( 4.9 ) if MR
2 is semi-algebraic by the Curve Selection Lemma. In

the following theorem, which is modified from [ 30 , Thm.6.1], we show that the sets MR
r are

indeed semialgebraic by considering the map φR
r from (R2 ×R2 ×R2)r ∼= R6r to R2×2×2 that

sends

(

a1
1,1

a1
1,2

×

a1
2,1

a1
2,2

×

a1
nd,1

a1
nd,2

) × . . . × (

ar
1,1

ar
1,2

×

ar
2,1

a1
2,2

×

ar
nd,1

ar
nd,2

)

to the tensor
a1

1,1

a1
1,2

⊗

a1
2,1

a1
2,2

⊗

a1
nd,1

a1
nd,2

 + . . . +

ar
1,1

ar
1,2

⊗

ar
2,1

a1
2,2

⊗

ar
nd,1

ar
nd,2

 .

Theorem 24. For any natural number r, the set MR
r is semialgebraic.

Proof. In coordinates, by the isomorphism ( 5.1 ), φR
r sends

(

a1
1,1

a1
1,2

×

a1
2,1

a1
2,2

×

a1
nd,1

a1
nd,2

) × . . . × (

ar
1,1

ar
1,2

×

ar
2,1

a1
2,2

×

ar
nd,1

ar
nd,2

)
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to the hypermatrix

∑r
i=1 a

i
111a

i
121a

i
112

∑r
i=1 a

i
111a

i
121a

i
212∑r

i=1 a
i
111a

i
221a

i
211

∑r
i=1 a

i
111a

i
221a

i
212

∑r
i=1 a

i
211a

i
121a

i
112

∑r
i=1 a

i
211a

i
121a

i
212∑r

i=1 a
i
211a

i
221a

i
211

∑r
i=1 a

i
211a

i
221a

i
212

. (4.10)

Hypermatrix (  4.10 ) has polynomial entries, so ψR
2 is indeed a polynomial mapping. The

Tarski-Seidenberg theorem implies that polynomial maps over R preserve semi-algebraic sets

[ 34 ]. Hence, the set MR
≤r is semialgebraic as it is the image of ψR

2 , which has a semialgebraic

domain. Moreover, MR
2 = MR

≤2 \MR
≤1 is semialgebraic as semialgebraic sets are closed under

set complements.

4.5 A Coordinate-Free Characterization of Real 2×2×2 Rank-Jumping Tensors

We have shown that rank three tensors in τ(X) are rank-jumping. We now show that a

2 × 2 × 2 tensor is rank-jumping if and only if it is a rank three element in τ(X).

Theorem 25. Let V 1, V 2, and V 3 be two-dimensional real vector spaces. A tensor β in

V 1 ⊗ V 2 ⊗ V 3 is rank-jumping and the limit of rank two tensors if and only if it is an element

of τ(X) of rank greater than two.

Proof. Let β be a rank-jumping tensor that is the limit of rank two tensors. Since the set

of rank two tensors is semialgebraic by Theorem  24 , the Curve Selection Theorem [  35 , p.38]

implies there exists a continuous mapping γ such that

γ : [0, 1] ⊆ R → V 1 ⊗ V 2 ⊗ V 3 and γ(0) = β (4.11)

γ(0, 1] ⊆ MR
2 .
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By Theorem  23 , we can further conclude that there exists continuous and semialgebraic

functions γ1(t) and γ2(t) such that

γ(t) = γ1(t) + γ2(t) for all t ∈ (0, 1],

where γ1(t) and γ2(t) are rank one tensors for all t ∈ (0, 1]. We switch to working in the

projective space, since this space is compact. Denote the projectivization of a vector v as [v].

The functions t 7→ [γ1(t)] and t 7→ [γ2(t)] are thus continuous and semialgebraic functions

whose image is in a compact space. We can thus extend these functions continuously to

functions γ̃1 and γ̃2 that are defined on the entire closed interval [0, 1]. Similarly, let λ(t)

be the function from the half open interval (0, 1] to the space of lines in P(V 1 ⊗ V 2 ⊗ V 3)

defined as

λ(t) = 〈 [γ1(t)], [γ2(t)] 〉,

where 〈[γ1(t)], [γ2(t)]〉 denotes the projective line spanned by [γ1(t)] and [γ2(t)]. Theorem

 23 also implies that λ(t) is continuous and semialgebraic, so it can also be continuously

extended to a function λ̃(t) defined on the interval [0, 1]. By the continuity of this function,

[β], γ̃1(0), and γ̃2(0) are all on the projective line λ̃(0). Note that if γ̃1(0) 6= γ̃2(0), then these

two points would span the line λ̃(0), which contains [β]. This would imply that β is rank at

most two, contradicting our assumption that β is rank greater than two. Hence, λ̃(0) is the

limit of secant lines that is tangent to the Segre variety at the point γ̃1(0) = γ̃2(0). Thus,

[β] is contained in the tangent line λ̃(0).

4.6 Uniqueness of Low Rank Decompositions

Our characterization of rank two tensors in Theorem  17 in fact implies that rank two

2×2×2 tensors have unique decompositions as sums of rank one tensors. Such decompositions

are not unique in general for rank three 2 × 2 × 2 tensors. For example, let V 1, V 2, V 3 be

66



two-dimensional vector spaces over a common field, and let {xi
1, x

i
2} ⊂ V i for i = 1, 2, 3. It

can be shown that the tensor

ρ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

2 ⊗ x3
2 + x1

2 ⊗ x2
1 ⊗ x3

2

is rank three, and can be decomposed as a sum of rank one tensors in the two following

distinct ways:

ρ = (x1
1 + x1

2) ⊗ (x2
1 + x2

2) ⊗ x3
1 + (−x1

1) ⊗ (x2
1 + x2

2) ⊗ (x3
1 − x3

2)

+ (x1
1 − x1

2) ⊗ x2
1 ⊗ (x3

1 − x3
2), and

ρ = (x1
1 + x1

2) ⊗ (x2
1 + x2

2) ⊗ x3
1 + x1

2 ⊗ (x2
1 + x2

2) ⊗ (x3
2 − x3

1)

+ (x1
1 − x1

2) ⊗ x2
1 ⊗ (x3

2 − x3
1).

Hence, the decomposition of ρ as three rank one summands is not unique. This does not

happen for rank two tensors.

Theorem 26. Let V 1, V 2, and V 3 be two-dimensional real or complex vector spaces. If ρ is

a regular tensor in V 1 ⊗ V 2 ⊗ V 3 such that

ρ = v1
1 ⊗ v2

1 ⊗ v3
1 + v1

2 ⊗ v2
2 ⊗ v3

2, and

ρ = v̂1
1 ⊗ v̂2

1 ⊗ v̂3
1 + v̂1

2 ⊗ v̂2
2 ⊗ v̂3

2,

then there exists some permutation σ ∈ S2 such that

[vi
j] = [v̂i

σj] for all i, j.

That is, the set of rank one summands of ρ, {[v1
1 ⊗ v2

1 ⊗ v3
1], [v1

2 ⊗ v2
2 ⊗ v3

2]}, is unique as a

set of projective points.
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Proof. Since ρ is regular and rank two, by Theorem  17 

P(imΠ1(ρ)) ∩X2×2 = { [v2
1 ⊗ v3

1], [v2
2 ⊗ v3

2] } = { [v̂2
1 ⊗ v̂3

1], [v̂2
2 ⊗ v̂3

2] },

P(imΠ2(ρ)) ∩X2×2 = { [v1
1 ⊗ v3

1], [v1
2 ⊗ v3

2] } = { [v̂2
1 ⊗ v̂3

1], [v̂2
2 ⊗ v̂3

2] }, and

P(imΠ3(ρ)) ∩X2×2 = { [v1
1 ⊗ v2

1], [v1
2 ⊗ v2

2] } = { [v̂2
1 ⊗ v̂3

1], [v̂2
2 ⊗ v̂3

2] }.

Each of the two elements of P(imΠ3(ρ))∩X2×2 induces a linear map from V 2∗ to V 1 with

a well-defined and one dimensional kernel. Let f1 and f2 be these two linear maps such that

ker(f1) = 〈v1
1〉 and ker(f2) = 〈v1

2〉.

v̂1
1 must be in the kernel of one of these maps. Hence, [v̂1

1] = [v1
1] or [v̂1

1] = [v1
2]. The other

equalities follow similarly.

The uniqueness of low rank decompositions is an example of the usefulness of representing

data as a hypermatrix as opposed to a matrix. Consider the following set of data organized

as matrix A = (aij), where aij represents the ith person’s score on test j. This example is

taken from [  36 ]. What would it mean if the above matrix consistently had a good rank r

approximation for some r? If A were a rank one matrix, it would be reasonable to conjecture

that every person’s test performances are the same. Similarly, if A had a good rank r

approximation, that is if aij ≈ α1
iβ

1
j + α2

iβ
2
j + . . . + αr

iβ
r
j for all i,j for some αt

i’s and βt
j’s,

then it would be reasonable to conjecture that the sampled exams are testing r abilities, αt
i

represents the ith person’s t ability, and βt
j represents the degree to which exam j tests ability

t. It is a remarkable observation that many data sets do indeed consistently have good low

rank matrix approximations. However, one immediate obstacle to interpreting matrix rank

as above is that low rank matrix decompositions are not unique, so there is no way to recover
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the αt
i’s and βt

j’s. To see this, note that if m×m matrix A = ∑r
i=1 u

i(vi)t, where ui, vi ∈ Cm,

then

A =
r∑

i=1



∣∣∣∣∣
ui∣∣∣∣∣


(

(vi)t

)
=



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
u1 u2 · · · ur∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣





(v1)t

(v2)t

...

(vr)t



= UV t for m× r matrices U =



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
u1 u2 · · · ur∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

 , V =



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
v1 v2 · · · vr∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣



= UCC−1V t for any invertible r × r C =



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
c1 c2 · · · cr∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

 , C
−1 =



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
d1 d2 · · · dr∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣



=



∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
Uc1 Uc2 · · · Ucr∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣





(d1)tV t

(d2)tV t

...

(dr)tV t


=

r∑
i=1



∣∣∣∣∣
Uci∣∣∣∣∣


(

(di)tV t

)

So A can also be written as ∑r
i=1 Uc

i(V di)t.

We have shown that hypermatrices often do not have this problem. If B ∈ R2×n×2 is a

generic rank n hypermatrix such that B = ∑r
i=1 ui ⊗ vi ⊗ wi with {ui}r

i=1, {vi}r
i=1, {wi}r

i=1

linearly independent, then the ui’s, vi’s, and wi’s are uniquely determined up to scalar

multiple.
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4.7 Non-Negative Real Hypermatrices

The author’s of [  30 , p.21] cite a private correspondence with Landsberg that offers an

explanation of how the classical observation (  4.1 ) could have been predicted. Let ω(t) be

the continuous curve of rank one tensors

ω(t) = (x1
1 + tx1

2) ⊗ (x2
1 + tx2

2) ⊗ (x3
1 + tx3

2), t ∈ R.

It follows from the Leibniz rule on derivatives of products that

dω(t)
dt

= d(x1
1 + tx1

2)
dt

⊗ (x2
1 + tx2

2) ⊗ (x3
1 + tx3

2) (4.12)

+ (x1
1 + tx1

2) ⊗ d(x2
1 + tx2

2)
dt

⊗ (x3
1 + tx3

2)

+ (x1
1 + tx1

2) ⊗ (x2
1 + tx2

2) ⊗ d(x3
1 + tx3

2)
dt

= x1
2 ⊗ (x2

1 + tx2
2) ⊗ (x3

1 + tx3
2)

+ (x1
1 + tx1

2) ⊗ x2
2 ⊗ (x3

1 + tx3
2)

+ (x1
1 + tx1

2) ⊗ (x2
1 + tx2

2) ⊗ x3
2.

By evaluating ( 4.12 ) at 0, we conclude

dω(t)
dt

∣∣∣∣∣
t=0

= x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 = β. (4.13)

On the other hand, by the definition of the derivative

dω(t)
dt

∣∣∣∣∣
t=0

= lim
t→0

ω(t) − ω(0)
t− 0

= lim
t→0

(x1
1 + tx1

2) ⊗ (x2
1 + tx2

2) ⊗ (x3
1 + tx3

2) − x1
1 ⊗ x2

1 ⊗ x3
1

t
. (4.14)
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We can write the limit ( 4.14 ) in terms of the natural numbers n as

= lim
1
n

→0

(x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − x1
1 ⊗ x2

1 ⊗ x3
1

1
n

, n ∈ N

= lim
n→∞

n(x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − nx1
1 ⊗ x2

1 ⊗ x3
1. (4.15)

In fact, in [  22 ], it is proved that all rank-jumping tensors over C are limits of a sequence

of rank three tensors also come from derivatives. That is, it is shown that if tensor β in the

complex tensor space V 1 ⊗ V 2 ⊗ · · · ⊗ V d of arbitrary dimensions is the limit of rank three

tensors and rank greater than three, then β is in one of the following forms:

1. β = x′(0) + y, for some smooth curve x(t) contained in X and some y ∈ X.

2. β = x′(0) + y′(0), for some smooth curves x(t) and y(t) contained in X.

3. β = x′(0) + x′′(0), for some smooth curve x(t) in X.

This suggests a fundamental relationship between rank-jumping tensors and derivatives,

and perhaps explains why rank-jumping never occurs for non-negative real hypermatrices.

Like derivatives, rank-jumping tensors are limits of sequences of difference quotients, and it

is not possible to form difference quotients over the non-negative reals.

We summarize the formal proof in [ 32 ] that rank-jumping never occurs for non-negative

hypermatrices now. Choose a norm ‖ · ‖ on the tensor space V 1 ⊗V 2 ⊗V 3. The components

vectors of a tensor in V 1 ⊗ V 2 ⊗ V 3 are not bounded, in general. For example,

1

1

⊗

1

1

 =

n
n

⊗



1

n

1

n


for any real number n. Using the multilinearity of the tensor product, however, a rank r

tensor can always be written in the form

r∑
i=1

σi v
1
i ⊗ v2

i ⊗ v3
i
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for some constants σi, where ‖vj
i ‖ = 1 for all i, j. By imposing more conditions of the com-

ponent vectors, we can often make the values σi unique. The singular value decomposition

of matrices is a well-known example of this. Imposing the restriction on non-negativity is

sufficient to show that the non-negative rank one summands of non-negative hypermatrix

cannot be arbitrarily large. Hence, if the sequence of rank less than or equal to r non-negative

hypermatrices

ρn =
r∑

i=1
v1

n,i ⊗ v2
n,i ⊗ v3

n,i

converges to some non-negative hypermatrix ρ in the norm topology, then the sets {vk
n,i}n

must be bounded. Hence, each sequence (vk
n,i)n contains a subsequential limit vk

i . This

implies that
r∑

i=1
v1

n,i ⊗ v2
n,i ⊗ v3

n,i →
r∑

i=1
v1

i ⊗ v2
i ⊗ v3

i = ρ,

and thus ρ must be rank less than or equal to r. As a result, rank jumping never occurs for

non-negative hypermatrices.

Another difference between real and non-negative real rank is the possible maximal rank.

Real 2 × 2 × 2 hypermatrices have a maximal real rank of three. Non-negative 2 × 2 × 2

hypermatrices, however, have a maximal non-negative rank of four. Let {ei
1, ei

2} be the

standard basis of R2 for i = 1, 2, 3. Any tensor ρ can be written in terms of the induced

basis on V 1 ⊗ V 2 ⊗ V 3 as

ρ = a111 e1
1 ⊗ e2

1 ⊗ e3
1 + a112 e1

1 ⊗ e2
1 ⊗ e3

2 + a121 e1
1 ⊗ e2

2 ⊗ e3
1 + a122 e1

1 ⊗ e2
2 ⊗ e3

2

+ a211 e1
2 ⊗ e2

1 ⊗ e3
1 + a212 e1

2 ⊗ e2
1 ⊗ e3

2 + a221 e1
2 ⊗ e2

2 ⊗ e3
1 + a222 e1

2 ⊗ e2
2 ⊗ e3

2

for some scalars aijk. By the multilinearity of the tensor product,

ρ = e1
1 ⊗ e2

1 ⊗ (a111 e3
1 + a112 e3

2) + e1
1 ⊗ e2

2 ⊗ (a121 e3
1 + a122 e3

2)

+ e1
2 ⊗ e2

1 ⊗ (a211 e3
1 + a212 e3

2) + e1
2 ⊗ e2

2 ⊗ (a221 e3
1 + a222 e3

2).
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Hence, the rank of a 2 × 2 × 2 tensor is at most four. We now prove that four is indeed the

maximum possible rank in R2×2×2
≥0 , which shows that rank of a 2 × 2 × 2 tensor cannot be

further bounded in general.

Theorem 27. Let {ei
1, ei

2} denote the standard basis of R2 for i = 1, 2, 3. The non-negative

real 2 × 2 × 2 tensor which equals

ρ = e1
1 ⊗ e2

1 ⊗ e3
1 + e1

1 ⊗ e2
2 ⊗ e3

2 + e1
2 ⊗ e2

1 ⊗ e3
2 + e1

2 ⊗ e2
2 ⊗ e3

1

is non-negative real rank four.

Proof. Suppose for contradiction that ρ were rank less than or equal to three. There would

then exists vectors ui
j such that

ρ = u1
1 ⊗ u2

1 ⊗ u3
1 + u1

2 ⊗ u2
2 ⊗ u3

2 + u1
3 ⊗ u2

3 ⊗ u3
3.

Furthermore, there must be scalars {ai
j,t}

2,3,3
t,i,j=1 such that uj

i = aj
i,1e

j
1 + aj

i,2e
j
2 for all i, j since

the sets {ei
1, ei

2} are bases. It then follows from multilinearity that

ρ = u1
1 ⊗ u2

1 ⊗ u3
1 + u1

2 ⊗ u2
2 ⊗ u3

2 + u1
3 ⊗ u2

3 ⊗ u3
3

= (a1
11e1

1 + a1
12e1

2) ⊗ (a2
11e2

1 + a2
12e2

2) ⊗ (a3
11e3

1 + a3
12e3

2)

+ (a1
21e1

1 + a1
22e1

2) ⊗ (a2
21e2

1 + a2
22e2

2) ⊗ (a3
21e3

1 + a3
22e3

2)

+ (a1
31e1

1 + a1
32e1

2) ⊗ (a2
31e2

1 + a2
32e2

2) ⊗ (a3
31e3

1 + a3
32e3

2)

=
2∑

i,j,k=1

( 3∑
t=1

a1
ti a

2
tj a

3
tk

)
e1

i ⊗ e2
j ⊗ e3

k.
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Since T also equals e1
1 ⊗ e2

1 ⊗ e3
1 + e1

1 ⊗ e2
2 ⊗ e3

2 + e1
2 ⊗ e2

1 ⊗ e3
2 + e1

2 ⊗ e2
2 ⊗ e3

1, the following

eight equations must hold.

a1
11a

2
11a

3
11 + a1

21a
2
21a

3
21 + a1

31a
2
31a

3
31 = 1 (4.16)

a1
11a

2
11a

3
12 + a1

21a
2
21a

3
22 + a1

31a
2
31a

3
32 = 0 (4.17)

a1
11a

2
12a

3
11 + a1

21a
2
22a

3
21 + a1

31a
2
32a

3
31 = 0 (4.18)

a1
11a

2
12a

3
12 + a1

21a
2
22a

3
22 + a1

31a
2
32a

3
32 = 1 (4.19)

a1
12a

2
11a

3
11 + a1

22a
2
21a

3
21 + a1

32a
2
31a

3
31 = 0 (4.20)

a1
12a

2
11a

3
12 + a1

22a
2
21a

3
22 + a1

32a
2
31a

3
32 = 1 (4.21)

a1
12a

2
12a

3
11 + a1

22a
2
22a

3
21 + a1

32a
2
32a

3
31 = 1 (4.22)

a1
12a

2
12a

3
12 + a1

22a
2
22a

3
22 + a1

32a
2
32a

3
32 = 0 (4.23)

It remains to show that these eight equations cannot hold simultaneously. Equation (  4.16 )

implies that at least one element in the set {a1
11a

2
11a

3
11, a

1
21a

2
21a

3
21, a

1
31a

2
31a

3
31} does not equal

zero. Suppose a1
11a

2
11a

3
11 6= 0, which would imply that a1

11 6= 0, a2
11 6= 0 and a3

11 6= 0.

a1
11, a

2
11 6= 0 and (  4.17 ) implies a3

12 = 0. a2
11, a

3
11 6= 0 and (  4.18 ) implies a2

12 = 0. a3
11, a

2
11 6= 0

and ( 4.20 ) implies a1
12 = 0. Hence,

a1
12, a

2
12, a

3
12 = 0. (4.24)

Equations (  4.24 ) and ( 4.19 ) further implies that one element in the set {a1
21a

2
22a

3
22, a

1
31a

2
32a

3
32}

does not equal zero. Suppose a1
21a

2
22a

3
22 6= 0, which would imply that a1

21 6= 0, a2
22 6= 0 and

a3
22 6= 0. a1

21, a
3
22 6= 0 and (  4.17 ) implies a2

21 = 0. a1
21, a

2
22 6= 0 and (  4.18 ) implies a3

21 = 0.

a2
22, a

3
22 6= 0 and ( 4.23 ) implies a1

22 = 0. Hence,

a1
22, a

2
21, a

3
21 = 0. (4.25)
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Equations ( 4.24 ), (  4.25 ), and (  4.21 ) now implies that a1
32a

2
31a

3
32 does not equal zero, which

implies that a1
32 6= 0, a2

31 6= 0 and a3
32 6= 0. a2

21, a
3
21 6= 0 and (  4.17 ) implies a1

32 = 0. a1
32, a

2
31 6= 0

and ( 4.20 ) implies a3
31 = 0. a1

32, a
3
32 6= 0 and ( 4.23 ) implies a2

32 = 0. Hence,

a1
32, a

2
32, a

3
31 = 0. (4.26)

However, equations (  4.24 ), (  4.25 ), and (  4.26 ) contradict equation (  4.22 ). We leave it to the

reader to check that the remaining cases result in a similar contradiction.
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5. LOW RANK APPROXIMATIONS

We provide a coordinate-free proof that real 2×2×2 rank three tensors do not have optimal

rank two approximations with respect to the Frobenius norm. This result was first proved in

[ 30 , Thm. 8.1] by considering the GL(V 1) × GL(V 2) × GL(V 3) orbit classes of V 1 ⊗ V 2 ⊗ V 3

and the 2 × 2 × 2 hyperdeterminant. Our coordinate-free proof expands on the result in [ 30 ]

by developing a proof method that can be generalized more readily to higher dimensional

n1 × n2 × n3 tensor spaces.

5.1 Optimal Low Rank Approximations May Not Exist

Let V 1, V 2, and V 3 be two-dimensional real vector spaces, respectively, and let V 1 ⊗ V 2 ⊗ V 3

denote the tensor product of these spaces. The tensors in the form v1 ⊗ v2 ⊗ v3 for some

vectors v1, v2, and v3 are called simple tensors. Every tensor can be written as the sum of

finitely many simple tensors. The rank of a tensor ρ is the minimum number n such that ρ

is the sum of n simple tensors. Once a basis {es
t}2

t=1 of V s is chosen for s = 1, 2, 3, a tensor

in V 1 ⊗ V 2 ⊗ V 3 can be coordinatized as a hypermatrix in R2×2×2 by the isomorphism from

V 1 ⊗ V 2 ⊗ V 3 to R2×2×2 defined on simple tensors as

(a1
1e1

1 + a1
2e1

2) ⊗ (a2
1e2

1 + a2
2e2

2) ⊗ (a3
1e3

1 + a3
2e3

2) 7−→
a1

1a
2
1a

3
1 a1

1a
2
1a

3
2

a1
1a

2
2a

3
1 a1

1a
2
2a

3
2

a1
2a

2
1a

3
1 a1

2a
2
1a

3
2

a1
2a

2
2a

3
1 a1

2a
2
2a

3
2

(5.1)

for some real constants as
t . A lot of information about the rank of the 2 × 2 × 2 real

hypermatrix

(aijk) =
a111 a112
a121 a122

a211 a212
a221 a222
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can be inferred from the sign of the polynomial

∆(aijk) = (a2
111a

2
222 + a2

112a
2
221 + a2

121a
2
212 + a2

122a
2
211)

− 2(a111a112a221a222 + a111a121a212a222 + a111a122a211a222)

− 2(a112a121a212a221 + a112a122a221a211 + a121a122a212a211)

+ 4(a111a122a212a221 + a112a121a211a222).

The polynomial ∆ is called the 2×2×2 hyperdeterminant. ∆(aijk) > 0 implies hypermatrix

(aijk) is rank two, and ∆(aijk) < 0 implies (aijk) is rank three. The existence of such a

polynomial is not particular to the 2 × 2 × 2 case. The sets of constant rank real hyper-

matrices are semialgebraic for any dimensions n1 × n2 × · · · × nd by Theorem  24 . Hence,

the rank of a real hypermatrix can always be computed by evaluating a finite number of

polynomial equalities and inequalities, where the variables of the polynomials are the entries

of the hypermatrix. Because of this, real tensors are usually studied in coordinates by rep-

resenting tensors as hypermatrices and then exploiting properties of these polynomials. The

polynomials that define the sets of constant rank 2 × 2 × 2 tensors are different, however,

from the polynomials that define the sets of constant rank n1 ×n2 ×n3 tensors for any other

dimensions n1 × n2 × n3. As a result, coordinate proofs about 2 × 2 × 2 tensors that rely on

these polynomials cannot be readily generalized to the arbitrary n1 × n2 × n3 case. In this

chapter, we take an alternative coordinate-free approach in our study of 2 × 2 × 2 tensors

that lends itself more readily to generalization. We prove that real 2 × 2 × 2 rank three

tensors do not have optimal rank two approximations with respect to the Frobenius norm

without relying on hypermatrices or the hyperdeterminant.

Matrix rank is lower semi-continuous for matrices of real numbers. That is, if a sequence

of rank r real matrices converges to a matrix A in the norm topology, then the rank of A is

less than or equal to r. This guarantees the existence of optimal low rank approximations

of real matrices. A sequence of real hypermatrices, however, can converge to a hypermatrix

of greater rank. As a result, optimal low rank approximations may not exist for real hy-

permatrices. In fact, the set of real hypermatrices with no optimal low rank approximation
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often has positive Lebesgue measure [ 21 ], so characterizing such real hypermatrices is an

important step in implementing algorithms with real hypermatrices.

Let ρ ∈ V 1 ⊗ V 2 ⊗ V 3 be a tensor of rank r, and let s ≤ r. An optimal rank s

approximation of ρ with respect to norm ‖ · ‖ is a tensor υ such that

‖ρ− υ‖ = inf
υ′∈V 1⊗V 2⊗V 3

rk(υ′)≤s

‖ρ− υ′‖.

It is a classical observation that tensors in the form

β = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (5.2)

are limit points of the sequence of rank at most two tensors

ρn = n (x1
1 + 1

n
x1

2) ⊗ (x2
1 + 1

n
x2

2) ⊗ (x3
1 + 1

n
x3

2) − nx1
1 ⊗ x2

1 ⊗ x3
1, n ∈ N (5.3)

in the norm topology. It follows from the triangle inequality and the multilinearity of the

tensor product that

‖ρn − β‖ ≤ 1
n

∥∥∥x1
2 ⊗ x2

2 ⊗ x3
1 + x1

2 ⊗ x2
1 ⊗ x3

2 + x1
1 ⊗ x2

2 ⊗ x3
2

∥∥∥ + 1
n2

∥∥∥x1
2 ⊗ x2

2 ⊗ x3
2

∥∥∥.
Hence, lim

n→∞
‖ρn−β‖ = 0, so lim

n→∞
ρn indeed equals β. In Section  4.2 , we gave a coordinate-free

proof that tensors in the form of (  5.2 ) are in fact rank three when the sets {x1
1, x

1
2}, {x2

1, x
2
2},

and {x3
1, x

3
2} are independent. Thus, when {x1

1, x
1
2}, {x2

1, x
2
2}, and {x3

1, x
3
2} are independent,

β is an example of a rank three tensor without an optimal rank two approximation. The

main result of this chapter is a coordinate-free proof that in fact every rank three 2 × 2 × 2

tensor has no optimal rank two approximation with respect to the Frobenius norm, not just

the tensors in the form of (  5.2 ). General rank three 2×2×2 real tensors are not limit points

of sequences of rank two tensors. Rather, we will show that their failure to have optimal

rank two approximations is due to the curvature of the Segre variety.

This result was first proved in coordinates in [  30 , Thm. 8.1]. The argument in [ 30 ] can

be summarized as follows. Suppose for contradiction that the 2 × 2 × 2 real hypermatrix
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B is an optimal rank two approximation of rank three 2 × 2 × 2 real hypermatrix A with

respect to the Frobenius norm. By considering properties of the polynomial ∆, it follows that

∆(B) = 0. The polynomial ∆ is invariant on the GL(V 1) × GL(V 2) × GL(V 3) orbit classes

of V 1 ⊗ V 2 ⊗ V 3, and only three of the eight orbit classes are zero on ∆. Hypermatrices

in these three orbit classes are equivalent up to an orthogonal change of coordinates to

hypermatrices in the form

λ 0
0 µ

0 0
0 0

(5.4)

for some real λ and µ. Since B is rank two, we may thus assume B is in form ( 5.4 ) with

both λ and µ nonzero. Finally, it is shown that if H is a 2 × 2 × 2 hypermatrix such that

∆(B + εH) = 0 (5.5)

for all real ε, then A− B is orthogonal to H. By considering various hypermatrices H that

satisfy ( 5.5 ), the authors of [ 30 ] then conclude that

A−B =
0 0
0 0

aµ 0
0 −aλ

,

for some constant a. This implies that

A =
λ 0
0 µ

aµ 0
0 −aλ

.
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However, this hypermatrix is rank two, contradicting that A is rank three.

Our coordinate-free proof expands on the result in [  30 ] by developing a proof method that

can be generalized more readily to higher dimensional tensor spaces. Our proof is also a proof

by contradiction. We suppose for contradiction that rank two tensor υ in V 1 ⊗ V 2 ⊗ V 3 is

an optimal rank two approximation of rank three tensor ρ. By considering the relationship

between the mode-1 contraction maps of ρ and υ, we also derive the contradiction that ρ

is rank two. Our proof has the interesting geometric corollary that the nearest point of a

rank three tensor to the second secant set of the Segre variety is a rank three tensor in the

tangent space of the Segre variety.

5.2 A Characterization of Optimal Rank Two Approximations

The set of simple tensors is a variety, and it is called the Segre variety. It is the image of

the map

V 1 × V 2 × V 3 → V 1 ⊗ V 2 ⊗ V 3

v1 × v2 × v3 7→ v1 ⊗ v2 ⊗ v3.

The Segre variety of the n1 × n2 × n3 tensor space V 1 ⊗ V 2 ⊗ V 3 is denoted Xn1×n2×n3 or

simply X when the dimensions are clear from context. The tangent space of the Segre variety

at a point υ is denoted as Tυ(X), and is characterized in [ 31 ] as in the following theorem.

Theorem 28. Let V 1, V 2, and V 3 be finite n1, n2, n3-dimensional real vector spaces,

respectively, and let x1
1 ⊗ x2

1 ⊗ x3
1 be a rank one tensor in the Segre variety X. The tangent

space of X at x1
1 ⊗ x2

1 ⊗ x3
1 is the space of all tensors in the form

x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2 (5.6)

for some x1
2 ∈ V 1, x2

2 ∈ V 2, and x3
2 ∈ V 3.
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We have seen that the set of rank at most two tensors is not closed with respect to the

norm topology, which motivates the following definition of the 2nd secant set of the Segre

variety.

Definition 29. The 2nd secant set of the Segre variety, denoted σ2(X), is the norm closure

of the set of all tensors that lie on secant lines of the Segre variety X.

If υ is an optimal rank two approximation of ρ with respect to an inner product norm,

then υ− ρ must be orthogonal to the tangent space of σ2(X) at υ, which we characterize in

the following theorem using Theorem  28 and Terracini’s Lemma [ 37 ].

Theorem 30. Let V 1, V 2, and V 3 be finite n1, n2, n3-dimensional real vector spaces,

respectively, and let υ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

2 be a rank two tensor in V 1 ⊗ V 2 ⊗ V 3.

The tangent space of σ2(X) at υ is the space of all tensors in the form

x1
3 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
3 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
3 (5.7)

+ x1
4 ⊗ x2

2 ⊗ x3
2 + x1

2 ⊗ x2
4 ⊗ x3

2 + x1
2 ⊗ x2

2 ⊗ x3
4

for some x1
3, x

1
4 ∈ V 1, x2

3, x
2
4 ∈ V 2, and x3

3, x
3
4 ∈ V 3.

Until now, we have worked with n1 ×n2 ×n3 tensors. The next theorem, however, is our

first statement that must be restricted to 2 × 2 × 2 tensors.

Theorem 31. Let V 1, V 2, and V 3 be 2-dimensional real vector spaces, and let ρ ∈ V 1 ⊗ V 2 ⊗ V 3

be of rank greater than two. If υ ∈ V 1 ⊗ V 2 ⊗ V 3 is an optimal rank two approximation of ρ

with respect to an inner product norm, then im Πi(υ) is not dimension two for some i = 1, 2,

or 3.

Proof. Suppose for contradiction that im Πi(υ) were dimension two for i = 1, 2, and 3. Then,

there would exist three linearly independent sets {xi
1, x

i
2} in V i for i = 1, 2, and 3, such that

υ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

2.
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It follows that the set {x1
i ⊗ x2

j ⊗ x3
k}2,2,2

i,j,k=1 is a basis of V 1 ⊗ V 2 ⊗ V 3, so there must exist

constants cijk such that ρ = ∑2,2,2
i,j,k=1 cijk x

1
i ⊗ x2

j ⊗ x3
k. By multilinearity,

ρ = (c111x
1
1 + c211x

1
2) ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ c121x
2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ c112x
3
2

+ c122x
1
1 ⊗ x2

2 ⊗ x3
2 + x1

2 ⊗ c212x
2
1 ⊗ x3

2 + x1
2 ⊗ x2

2 ⊗ (c221x
3
1 + c222x

3
2).

Hence, ρ is in the form of ( 5.7 ), and, thus, it is in the tangent space of σ2(X) at υ. This implies

that υ−ρ is both in Tυσ2(X) and orthogonal to Tυσ2(X), which implies that ρ = υ. However,

this is a contradiction, since the rank of ρ is not equal to the rank of υ by hypothesis.

5.3 P-Norms

Once bases of vector spaces V 1, V 2, and V 3 are chosen, we can define explicit norms on

the tensor space V 1 ⊗ V 2 ⊗ V 3. Choose basis {ei
j}

ni
j=1 of V i for i = 1, 2, and 3, and denote

the corresponding dual basis as {ei∗
j }ni

j=1 also for i = 1, 2, and 3. Let B denote the collection

of these bases. For ρ ∈ V 1 ⊗V 2 ⊗V 3, we define the following class of norms for any positive

integer p.

‖ρ‖B,p =
 n1,n2,n3∑

i,j,k=1,1,1
‖aijk‖p

 1
p

,

where ρ = ∑
i,j,k aijk e1

i ⊗ e2
j ⊗ e3

k. Similarly, for κ ∈ V r ⊗ V s and vr ∈ V r for 1 ≤ r, s ≤ 3,

we define

‖κ‖B,p =
 nr,ns∑

i,j=1,1
‖aij‖p

 1
p

, and ‖vr‖B,p =
(

nr∑
i=1

‖ai‖p

) 1
p

,

where κ = ∑
i,j aij er

i ⊗ es
j and vr = ∑

i ai er
i . These norms are a convenient choice for working

in tensor spaces as they work well with contraction maps.

Theorem 32. Let V 1, V 2, and V 3 be finite n1, n2, and n3-dimensional real vector spaces,

and let B be the collection of bases of V 1, V 2, and V 3 defined above. For ρ ∈ V 1 ⊗ V 2 ⊗ V 3,

‖ρ‖p
B,p =

ni∑
t=1

‖Πi(ρ)(ei∗
t )‖p

B,p
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for any mode-i contraction Πi for i = 1, 2, 3.

Proof. Without loss of generality, we prove the theorem for the the mode-1 contraction. Sup-

pose ρ = ∑r
s=1 v

1
s ⊗ v2

s ⊗ v3
s for some vectors vi

s, and let ai
s,t be scalars such that vi

s = ∑ni
t=1 a

i
s,tei

t

for all i and s. It follows that

r∑
s=1

v1
s ⊗ v2

s ⊗ v3
s =

n1,n2,n3∑
i,j,k=1

(
r∑

s=1
a1

sia
2
sja

3
sk

)
e1

i ⊗ e2
j ⊗ e3

k.

Hence,

‖ρ‖p
B,p =

n1,n2,n3∑
i,j,k=1

∥∥∥∥∥
r∑

s=1
a1

sia
2
sja

3
sk

∥∥∥∥∥
p

=
n1∑
i=1

n2,n3∑
j,k=1

∥∥∥∥∥
r∑

s=1
a1

sia
2
sja

3
sk

∥∥∥∥∥
p

=
n1∑
i=1

‖Π1(ρ)(e1∗
i )‖p

B,p.

Furthermore, when p = 2, the norm ‖ · ‖B,2 is induced by the inner product

〈ρ, υ〉B,2 =
∑
i,j,k

aijkbijk,

where ρ = ∑
ijk aijk e1

i ⊗ e2
j ⊗ e3

k and υ = ∑
ijk bijk e1

i ⊗ e2
j ⊗ e3

k. The norm ‖ · ‖B,2 is called

the Frobenius norm with respect to bases B.

Theorem 33. The Frobenius inner product has the following property on rank one tensors.

〈v1
1 ⊗ v2

1 ⊗ v3
1 | v1

2 ⊗ v2
2 ⊗ v3

2〉B,2 = 〈v1
1 | v1

2〉B,2 〈v2
1 | v2

2〉B,2 〈v3
1 | v3

2〉B,2

for any rank one tensors v1
1 ⊗ v2

1 ⊗ v3
1, v

1
2 ⊗ v2

2 ⊗ v3
2 ∈ V 1 ⊗ V 2 ⊗ V 3.

Proof. Let ai
t,s be scalars such that vi

t = ∑ni
t=1 a

i
t,sei

s for i = 1, 2, 3 and t = 1, 2. It follows that

v1
1 ⊗ v2

1 ⊗ v3
1 =

n1,n2,n3∑
i,j,k=1

a1
1ia

2
1ja

3
1k e1

i ⊗ e2
j ⊗ e3

k, and

v1
2 ⊗ v2

2 ⊗ v3
2 =

n1,n2,n3∑
i,j,k=1

a1
2ia

2
2ja

3
2k e1

i ⊗ e2
j ⊗ e3

k.
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Hence,

〈v1
1 ⊗ v2

1 ⊗ v3
1 | v1

2 ⊗ v2
2 ⊗ v3

2〉B,2 =
n1,n2,n3∑
i,j,k=1

a1
1ia

2
1ja

3
1ka

1
2ia

2
2ja

3
2k

=
(

n1∑
i=1

a1
1ia

1
2i

) n2∑
j=1

a2
1ja

2
2j

( n3∑
k=1

a3
1ka

3
2k

)

= 〈v1
1 | v1

2〉B,2 〈v2
1 | v2

2〉B,2 〈v3
1 | v3

2〉B,2.

An optimal rank r approximation could be rank strictly less than r by our definition.

We now show that an optimal rank r approximations with respect to p-norms must be rank

r. This theorem is modified from [  30 , Lemma 8.2].

Theorem 34. Let V i be finite ni-dimensional real vector spaces, and let ρ ∈ V 1 ⊗ V 2 ⊗ V 3

have rank greater than r. If υ is an optimal rank r approximation of ρ with respect to ‖ ·‖B,p,

then υ must be rank r.

Proof. Suppose for contradiction that there existed an optimal rank r approximation υ with

rank strictly less than r. Let aijk and bijk be scalars such that ρ = ∑
ijk aijk e1

i ⊗ e2
j ⊗ e3

k and

υ = ∑
ijk bijk e1

i ⊗ e2
j ⊗ e3

k. Since ρ and υ have different ranks, there must exists some triple

(α, β, γ) such that aαβγ 6= bαβγ. The tensor υ′ = υ + (aαβγ − bαβγ)e1
α ⊗ e2

β ⊗ e3
γ is rank less

than or equal to r by construction. It follows that

‖ρ− υ′‖B,p = ‖ρ−
(
υ + (aαβγ − bαβγ)e1

α ⊗ e2
β ⊗ e3

γ

)
‖B,p

=
 ∑

ijk 6=αβγ

‖aijk − bijk‖p

 1
p

<

∑
ijk

‖aijk − bijk‖p

 1
p

= ‖ρ− υ‖B,p,

which contradicts that υ is an optimal rank r approximation of ρ.

If υ is an optimal rank two approximation of ρ with respect to the Frobenius norm, then

the contractions of υ must be related to the contractions of ρ in the following way.
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Theorem 35. Let V 1, V 2, and V 3 be n1, n2, and n3-dimensional real vector spaces, respec-

tively. Let B denote the collection of bases {ei
j}

ni
j=1 of V i for i = 1, 2, and 3. Furthermore,

denote the corresponding dual bases as {ei∗
j }ni

j=1 for i = 1, 2, and 3. Let ρ ∈ V 1 ⊗ V 2 ⊗ V 3

be of rank greater than two, and let υ ∈ V 1 ⊗ V 2 ⊗ V 3 be an optimal rank two approximation

of ρ with respect to the Frobenius norm ‖ · ‖B,2. Let Pim Πi(υ) denote the projection onto the

image of the mode-i contraction of υ. It follows that

Pim Πi(υ)(Πi(ρ)(ei∗
j )) = Πi(υ)(ei∗

j ) for any i, j.

Proof. As υ is rank two, there must exist vectors xi
j such that

υ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

2.

Without loss of generality, we prove the theorem for i and j both equal to 1. First, note

that the image of Π1(υ) contains vectors in the form ax2
1 ⊗ x3

1 + bx2
2 ⊗ x3

2 for some constants

a and b. If the set {x1
1, x

1
2} is independent, it can be extended to a basis {x1

j}
n1
j=1 with dual

basis {x1∗
j }n1

j=1. It then follows that the image of Π1(υ) is the span of Π1(υ)(x1∗
1 ) = x2

1 ⊗ x3
1

and Π1(υ)(x1∗
2 ) = x2

2 ⊗ x3
2, so every element in the image of Π1(υ) can indeed be written as

ax2
1 ⊗ x3

1 + bx2
2 ⊗ x3

2 for some constants a and b. On the other hand, if x1
2 = kx1

1 for some

constant k, then the set {x1
1} can similarly be extended to a basis {x1

1, y
1
j }n1

j=2 of V 1 with

the corresponding dual basis {x1∗
1 , y

1∗
j }n1

j=2. It follows that the image of Π1(υ) is the span of

Π1(υ)(x1∗
1 ) = x2

1 ⊗ x3
1 + kx2

2 ⊗ x3
2. Hence, in this case, it is also true that every element in

the image of Π1(υ) can be written as ax2
1 ⊗ x3

1 + bx2
2 ⊗ x3

2 for some constants a and b.

Suppose for contradiction that Pim Π1(υ)(Π1(ρ)(e1∗
1 )) 6= Π1(υ)(e1∗

1 ). Let α and β be scalars

such that

Pim Π1(υ)(Π1(ρ)(e1∗
1 )) = α x2

1 ⊗ x3
1 + β x2

2 ⊗ x3
2.
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Furthermore, let ai and bi be scalars such that

Π1(υ)(e1∗
i ) = ai x

2
1 ⊗ x3

1 + bi x
2
2 ⊗ x3

2

for i = 2, . . . , n1. Define υ′ ∈ V 1 ⊗ V 2 ⊗ V 3 as the unique tensor with the following mode-1

contraction:

Π1(υ′)(e1∗
1 ) = α x2

1 ⊗ x3
1 + β x2

2 ⊗ x3
2 = Pim Π1(υ)(Π1(ρ)(e1∗

1 )),

Π1(υ′)(e1∗
i ) = ai x

2
1 ⊗ x3

1 + bi x
2
2 ⊗ x3

2 = Π1(υ)(e1∗
i ) for i = 2, . . . , n1.

It follows that

υ′ = (αe1
1 +

n1∑
j=2

aje1
j) ⊗ x2

1 ⊗ x3
1 + (βe1

1 +
n1∑

j=2
bje1

j) ⊗ x2
2 ⊗ x3

2,

so υ′ is rank ≤ 2. Furthermore,

‖ρ− υ′‖2
B,2 =

n1∑
i=1

‖Π1(ρ)(e1∗
i ) − Π1(υ′)(e1∗

i )‖2
B,2 (5.8)

= ‖Π1(ρ)(e1∗
1 ) − Π1(υ′)(e1∗

1 )‖2
B,2 +

n1∑
i=2

‖Π1(ρ)(e1∗
i ) − Π1(υ)(e1∗

i )‖2
B,2 (5.9)

< ‖Π1(ρ)(e1∗
1 ) − Π1(υ)(e1∗

1 )‖2
B,2 +

n1∑
i=2

‖Π1(ρ)(e1∗
i ) − Π1(υ)(e1∗

i )‖2
B,2 (5.10)

= ‖ρ− υ‖2
B,2.

Equation (  5.8 ) follows from Theorem  32 , and equation ( 5.9 ) follows from the fact that

Π1(υ′)(e1∗
i ) = Π1(υ)(e1∗

i ) for i = 2, 3, . . . , n1. Equation (  5.10 ) follows from our hypothesis

that αx2
1 ⊗ x3

1 + βx2
2 ⊗ x3

2 is a better approximation of Π1(ρ)(e1∗
1 ) with respect to ‖ · ‖B,2

than Π1(υ)(e1∗
1 ). Hence, ‖ρ − υ′‖B,2 < ‖ρ − υ‖B,2, contradicting that υ is a best rank two

approximation of ρ.
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Π1(υ)(e1∗
1 )

Π1(ρ)(e1∗
1 )

Π1(υ)(e1∗
2 )

Π1(ρ)(e1∗
2 )

M = 〈x2
1 ⊗ x3

1, x
2
2 ⊗ x3

1〉

Figure 5.1. In this figure, we consider the 2 × 2 × 2 case. Let υ =
x1

1 ⊗ x2
1 ⊗ x3

1 + x1
2 ⊗ x2

2 ⊗ x3
1 be an optimal rank two approximation of rank

three tensor ρ ∈ V 1 ⊗ V 2 ⊗ V 3. In this case, im Π1(υ) is a plane in V 2 ⊗ V 3

that contains all the rank one tensors in the span of x2
1 ⊗ x3

1 and x2
2 ⊗ x3

1. This
plane is denoted as M in the figure. Theorem  35 shows that the projection of
Π1(ρ)(e1∗

i ) onto the plane M must be Π1(υ)(e1∗
i ) for i = 1, 2.
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5.4 Optimal Rank Two Approximations Do Not Exist With Respect to the
Frobenius Norm

In this section, we show that rank three 2 × 2 × 2 tensors over R do not have optimal

rank two approximations with respect to the Frobenius norm. Given any rank two tensor υ

and rank three tensor ρ, we construct a rank two tensor υ′ that is a better approximation of

ρ than υ with respect to the Frobenius norm. Let V i be two-dimensional real vector spaces

for i = 1, 2, 3. As in the previous section, let B denote a collection of bases {ei
j}2

j=1 of V i for

i = 1, 2, 3. Furthermore, denote the corresponding dual bases as {ei∗
j }2

j=1 for i = 1, 2, 3.

Theorem 36. If ρ ∈ V 1 ⊗ V 2 ⊗ V 3 is rank three, then there does not exist an optimal rank

two approximation of ρ with respect to ‖ · ‖B,2.

Proof. Suppose for contradiction that there existed a tensor υ that was an optimal rank two

approximation of ρ. By Theorem  31 , we may assume

υ = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

1

for some vectors xi
j. Since {e1

1, e1
2} is a basis of V 1, there exists scalars a, b, c, and d such

that

x1
1 = ae1

1 + ce1
2 and x1

2 = be1
1 + de1

2.

It follows that

υ = e1
1 ⊗ (ax2

1 + bx2
2) ⊗ x3

1 + e1
2 ⊗ (cx2

1 + dx2
2) ⊗ x3

1.

If the set {x1
1, x

1
2} were linearly dependent, then υ would be rank one by multilinearity, which

would contradict Theorem  34 . Hence, {x1
1, x

1
2} is independent, and is thus a basis of V 1.

Let {x1∗
1 , x

1∗
2 } denote its dual basis. The image of Π1(υ) is the span of Π1(υ)(x1∗

1 ) = x2
1 ⊗ x3

1

and Π1(υ)(x1∗
2 ) = x2

2 ⊗ x3
1. These two tensors are linearly independent in V 2 ⊗ V 3 since the

set {x2
1, x

2
2} is independent, which also follows from the fact that υ is rank two. Hence, the
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image of Π1(υ) is the plane spanned by the tensors x2
1 ⊗ x3

1 and x2
2 ⊗ x3

1. Let M denote this

plane and let PM denote the projection onto this plane. By Theorem  35 ,

PM(Π1(ρ)(e1∗
1 )) = Π1(υ)(e1∗

1 ) = (ax2
1 + bx2

2) ⊗ x3
1, and

PM(Π1(ρ)(e1∗
2 )) = Π1(υ)(e1∗

2 ) = (cx2
1 + dx2

2) ⊗ x3
1.

Let x3
2 ∈ V 3 be a vector such that the set {x3

1, x
3
2} is orthogonal with respect to 〈· | ·〉B,2.

The set {x2
1 ⊗ x3

2, x
2
2 ⊗ x3

2} spans the orthogonal complement of the plane M in V 2 ⊗ V 3

since

〈x2
i ⊗ x3

2 | x2
j ⊗ x3

1〉B,2 = 〈x2
i | x2

j〉B,2 〈x3
2 | x3

1〉B,2 = 0 for i, j ∈ {1, 2},

by property ( 33 ). Thus, there must exist some constants r, s, p, and q such that

Π1(ρ)(e1∗
1 ) = (ax2

1 + bx2
2) ⊗ x3

1 + (rx2
1 + sx2

2) ⊗ x3
2, and

Π1(ρ)(e1∗
2 ) = (cx2

1 + dx2
2) ⊗ x3

1 + (px2
1 + qx2

2) ⊗ x3
2.

It follows that ρ can be written in the form

ρ = e1
1 ⊗ (ax2

1 + bx2
2) ⊗ x3

1 + e1
1 ⊗ (rx2

1 + sx2
2) ⊗ x3

2

+ e1
2 ⊗ (cx2

1 + dx2
2) ⊗ x3

1 + e1
2 ⊗ (px2

1 + qx2
2) ⊗ x3

2.

If we can show that

〈 (cx2
1 + dx2

2) | (rx2
1 + sx2

2) 〉B,2 = 0, (5.11)

〈 (ax2
1 + bx2

2) | (px2
1 + qx2

2) 〉B,2 = 0, and (5.12)

〈 (ax2
1 + bx2

2) | (rx2
1 + sx2

2) 〉B,2 = 0, (5.13)

then this would imply that

(px2
1 + qx2

2) = k1(rx2
1 + sx2

2) and (cx2
1 + dx2

2) = k2(ax2
1 + bx2

2)
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for some constants k1, k2, since these vectors are in a two-dimensional space. It then follows

by the multilinearity of the tensor product that

ρ = e1
1 ⊗ (ax2

1 + bx2
2) ⊗ x3

1 + e1
1 ⊗ (rx2

1 + sx2
2) ⊗ x3

2

+ e1
2 ⊗ k2(ax2

1 + bx2
2) ⊗ x3

1 + e1
2 ⊗ k1(rx2

1 + sx2
2) ⊗ x3

2

= (e1
1 + k2e1

2) ⊗ (ax2
1 + bx2

2) ⊗ x3
1 + (e1

1 + k1e1
2) ⊗ (rx2

1 + sx2
2) ⊗ x3

2,

contradicting that ρ is rank three.

We first prove equality ( 5.11 ) by considering the tensor

υ1(ε) = e1
2 ⊗ (cx2

1 + dx2
2) ⊗ x3

1 + e1
1 ⊗ (ax2

1 + bx2
2) ⊗ x3

1 + e1
1 ⊗ (cx2

1 + dx2
2) ⊗ εx3

2.

Suppose for contradiction that ( 5.11 ) were not true. It would then follow that

〈 (rx2
1 + sx2

2) ⊗ x3
2 | (cx2

1 + dx2
2) ⊗ x3

2 〉B,2 = 〈(rx2
1 + sx2

2) | (cx2
1 + dx2

2)〉B,2 ‖x3
2‖2

B,2 6= 0.

We can always choose a real ε small enough in absolute value such that

B1(ε) = −2ε 〈 (rx2
1 + sx2

2) ⊗ x3
2 | (cx2

1 + dx2
2) ⊗ x3

2 〉B,2 + ε2 ‖(cx2
1 + dx2

2) ⊗ x3
2‖2

B,2

is negative. For example, if 〈 (rx2
1 + sx2

2) ⊗ x3
2 | (cx2

1 + dx2
2) ⊗ x3

2 〉B,2 < 0, an ε < 0 small

enough in absolute value would result in a B1(ε) negative. Suppose such an ε is chosen.

Observe that

Π1(υ1(ε))(e1∗
1 ) = (ax2

1 + bx2
2) ⊗ x3

1 + ε(cx2
1 + dx2

2) ⊗ x3
2, and

Π1(υ1(ε))(e1∗
2 ) = (cx2

1 + dx2
2) ⊗ x3

1 = Π1(υ)(e1∗
2 ).
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It thus follows that

‖ρ− υ1(ε)‖2
B,2 = ‖Π1(ρ)(e1∗

1 ) − Π1(υ1(ε))(e1∗
1 )‖2

B,2 + ‖Π1(ρ)(e1∗
2 ) − Π1(υ1(ε))(e1∗

2 )‖2
B,2

(5.14)

= ‖Π1(ρ)(e1∗
1 ) − Π1(υ1(ε))(e1∗

1 )‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2.

(5.15)

Equation (  5.14 ) follows from Theorem  32 , and equation (  5.15 ) follows from the fact that

Π1(υ)(e1∗
2 ) = Π1(υ1(ε))(e1∗

2 ). By the multilinearity of the tensor product and the multilin-

earity of the inner product, we conclude that

‖ρ− υ1(ε)‖2
B,2 = 〈 Π1(ρ)(e1∗

1 ) − Π1(υ1(ε))(e1∗
1 ) | Π1(ρ)(e1∗

1 ) − Π1(υ1(ε))(e1∗
1 ) 〉B,2

+ ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2

= 〈 (rx2
1 + sx2

2) ⊗ x3
2 − ε(cx2

1 + dx2
2) ⊗ x3

2 | (rx2
1 + sx2

2) ⊗ x3
2 − ε(cx2

1 + dx2
2) ⊗ x3

2 〉B,2

+ ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2

= ‖(rx2
1 + sx2

2) ⊗ x3
2‖2

B,2 − 2ε 〈 (rx2
1 + sx2

2) ⊗ x3
2 | (cx2

1 + dx2
2) ⊗ x3

2 〉B,2

+ ε2 ‖(cx2
1 + dx2

2) ⊗ x3
2‖2

B,2 + ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2

= ‖(rx2
1 + sx2

2) ⊗ x3
2‖2

B,2 + B1(ε) + ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2.

Since ε was chosen specifically to make B1(ε) negative, we can conclude that

‖ρ− υ1(ε)‖2
B,2 = ‖(rx2

1 + sx2
2) ⊗ x3

2‖2
B,2 + B1(ε) + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2

< ‖(rx2
1 + sx2

2) ⊗ x3
2‖2

B,2 + ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2

= ‖Π1(ρ)(e1∗
1 ) − Π1(υ)(e1∗

1 )‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2

= ‖ρ− υ‖2
B,2.

Hence, υ1(ε) is a better approximation of ρ than υ. The tensor υ1(ε) is also in the tangent

space of the Segre variety at e1
1 ⊗ (cx2

1 + dx2
2) ⊗ x3

1. Hence, there exists a sequence of rank

two tensors that converges to υ1(ε). Thus, there must be some rank two tensor in the
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sequence that is better approximation to ρ than υ, contradicting that υ is an optimal rank

two approximation.

Equality ( 5.12 ) can be proven in the same way by considering the tensor

υ2(ε) = e1
1 ⊗ (ax2

1 + bx2
2) ⊗ x3

1 + e1
2 ⊗ (cx2

1 + dx2
2) ⊗ x3

1 + e1
2 ⊗ (ax2

1 + bx2
2) ⊗ εx3

2,

which is in the tangent space of the Segre variety at e1
2 ⊗ (ax2

1 + bx2
2) ⊗ x3

1.

It thus remains to show equality ( 5.13 ), which we prove by considering the rank two

tensor

υ3(ε) = e1
1 ⊗ (ax2

1 + bx2
2) ⊗ (x3

1 + ε(x3
1 + x3

2)) + e1
2 ⊗ (cx2

1 + dx2
2) ⊗ x3

1.

It follows that the mode-1 contractions of υ3(ε) are as follows.

Π1(υ3(ε))(e1∗
1 ) = (ax2

1 + bx2
2) ⊗ x3

1 + ε(ax2
1 + bx2

2) ⊗ (x3
1 + x3

2), and

Π1(υ3(ε))(e1∗
2 ) = (cx2

1 + dx2
2) ⊗ x3

1 = Π1(υ)(e1∗
2 ).

Suppose for contradiction that ( 5.13 ) were nonzero. It would then follow that

〈 (rx2
1 + sx2

2) ⊗ x3
2 | (ax2

1 + bx2
2) ⊗ (x3

1 + x3
2) 〉B,2 = 〈 (rx2

1 + sx2
2) | (ax2

1 + bx2
2) 〉B,2 ‖x3

2‖2
B,2 6= 0.

We could then choose an ε small enough in absolute value such that D(ε) < 0, where

D(ε) = −2ε 〈(rx2
1 + sx2

2) ⊗ x3
2 | (ax2

1 + bx2
2) ⊗ (x3

1 + x3
2)〉B,2 + ε2 ‖(ax2

1 + bx2
2) ⊗ (x3

1 + x3
2)‖2

B,2.

For example, if 〈 (rx2
1 + sx2

2) ⊗ x3
2 | (ax2

1 + bx2
2) ⊗ (x3

1 + x3
2) 〉B,2 < 0, an ε < 0 small enough

in absolute value will yield a negative D(ε). Suppose such an ε is chosen. Then,

‖ρ− υ3(ε)‖2
B,2 = ‖Π1(ρ)(e1∗

1 ) − Π1(υ3(ε))(e1∗
1 )‖2

B,2 + ‖Π1(ρ)(e1∗
2 ) − Π1(υ3(ε))(e1∗

2 )‖2
B,2

= ‖Π1(ρ)(e1∗
1 ) − Π1(υ3(ε))(e1∗

1 )‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2.
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Observe that

‖Π1(ρ)(e1∗
1 ) − Π1(υ3(ε))(e1∗

1 )‖2
B,2 = ‖(rx2

1 + sx2
2) ⊗ x3

2 − ε(ax2
1 + bx2

2) ⊗ (x3
1 + x3

2)‖2
B,2.

Writing this as an inner product, we see that

‖ρ− υ3(ε)‖2
B,2 = ‖(rx2

1 + sx2
2) ⊗ x3

2‖2
B,2 − 2ε 〈(rx2

1 + sx2
2) ⊗ x3

2 | (ax2
1 + bx2

2) ⊗ (x3
1 + x3

2)〉B,2

+ ε2 ‖(ax2
1 + bx2

2) ⊗ (x3
1 + x3

2)‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2

= ‖(rx2
1 + sx2

2) ⊗ x3
2‖2

B,2 + D(ε) + ‖Π1(ρ)(e1∗
2 ) − Π1(υ)(e1∗

2 )‖2
B,2.

Finally, since ε was chosen so that D(ε) would be negative, it follows that

‖ρ− υ3(ε)‖2
B,2 < ‖(rx2

1 + sx2
2) ⊗ x3

2‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2

= ‖Π1(ρ)(e1∗
1 ) − Π1(υ)(e1∗

1 )‖2
B,2 + ‖Π1(ρ)(e1∗

2 ) − Π1(υ)(e1∗
2 )‖2

B,2

= ‖ρ− υ‖2
B,2.

Hence, the rank two tensor υ3(ε) is a better approximation of ρ than υ, contradicting that

υ is an optimal rank two approximation.

We have thus shown that rank three 2 × 2 × 2 real tensors have no optimal rank two

approximations with respect to the Frobenius norm. This implies that the nearest point of

a rank three 2 × 2 × 2 tensor ρ to the second secant set σ2(X) of the Segre variety X with

respect to the Frobenius norm must be rank three. In fact, our proof above demonstrates

that the nearest point of ρ to σ2(X) is in fact on the tangential set τ(X) of the Segre variety,

which is the set of all tensors contained in the tangent space of the Segre variety at some

point u ∈ X.

τ(X) = {ρ ∈ V 1 ⊗ V 2 ⊗ V 3 | ρ ∈ Tu(X) for some u ∈ X}
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From Theorem ( 28 ), we know that

τ(X) = {ρ ∈ V 1 ⊗ V 2 ⊗ V 3 | ρ = x1
2 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ x2
2 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ x3
2

for some xi
j ∈ V i}.

There is an open, dense subset of τ(X) of rank three tensors. However, there are rank two

elements in τ(X), and the fact that these rank two tensors can never be the the nearest

point on τ(X) of any rank three tensor implies there is an interesting curvature of τ(X) at

these points. We now consider an example of such a rank two tensor in τ(X). Let {xi
1, x

i
2}

be independent vectors in V i for i = 1, 2, 3. The tensor

ν = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

1

is a rank two tensor in τ(X). For every ε 6= 0, the tensor

ρ(ε) = x1
1 ⊗ x2

1 ⊗ x3
1 + x1

2 ⊗ x2
2 ⊗ x3

1 + ε(x1
1 + x1

2) ⊗ (x2
1 + x2

2) ⊗ x3
2

is rank three. Clearly, lim
ε→0

ρ(ε) = ν. However, the nearest point to ρ(ε) on τ(X) with respect

to the Frobenius norm is never ν, even when ε is infinitesimally small, since the nearest point

to ρ(ε) on τ(X) must be rank three. The tangential variety of the 2 × 2 × 2 Segre variety

must thus have significant curvature at its rank two points, which is already suggested by

the fact that ν is tangent to the Segre variety at any tensors in the form x1
2 ⊗ x2

1 ⊗ y3
1 and

x1
1 ⊗ x2

2 ⊗ y3
1 for some y3

1 ∈ V 3. In contrast, the rank three tensors in τ(X) are tangent to

distinct point on the Segre variety up to a multiplicative constant.

Theorem 37. Let V 1, V 2, and V 3 be two-dimensional real vector spaces. Let X denote the

Segre variety of simple tensors in V 1 ⊗V 2 ⊗V 3, and let τ(X) denote the tangential variety of

X. If ρ ∈ τ(X) is rank three, then it is tangent to a unique point of X up to a multiplicative

constant.
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Proof. Suppose ρ is tangent to both the tensors x1
1 ⊗ x2

1 ⊗ x3
1 and x1

2 ⊗ x2
2 ⊗ x3

2. It then

follows from Theorem  28 that

ρ = y1
1 ⊗ x2

1 ⊗ x3
1 + x1

1 ⊗ y2
1 ⊗ x3

1 + x1
1 ⊗ x2

1 ⊗ y3
1, and (5.16)

ρ = y1
2 ⊗ x2

2 ⊗ x3
2 + x1

2 ⊗ y2
2 ⊗ x3

2 + x1
2 ⊗ x2

2 ⊗ y3
2, (5.17)

for some vectors yi
j. Since ρ is rank three, the sets {yi

j, x
i
j} must be independent for all i, j.

Let {yi∗
j , x

i∗
j } be the corresponding dual bases. Considering the contraction maps of ρ with

respect to both of these representation ( 5.16 ) and ( 5.17 ), we conclude that

Π1(ρ)(y1∗
1 ) = x2

1 ⊗ x3
1 = x2

2 ⊗
(
y1∗

1 (y1
2)x3

2 + y1∗
1 (x1

2)y3
2

)
+ y1∗

1 (x1
2)y2

2 ⊗ x3
2.

By Lemma  20 , it follows that y1∗
1 (x1

2) = 0, so x2
1 ⊗ x3

1 = y1∗
1 (y1

2) x2
2 ⊗ x3

2. The fact that

y1∗
1 (x1

2) = 0 implies that x1
2 = k1x

1
1 for some constant k1. Furthermore, im Π2(x2

1 ⊗ x3
1) =

im Π2(y1∗
1 (y1

2)x2
2 ⊗ x3

2) implies that x2
1 = k2x

2
2 for some constant k2, and im Π1(x2

1 ⊗ x3
1) =

im Π1(y1∗
1 (y1

2)x2
2 ⊗ x3

2) implies that x3
2 = k3x

3
1 for some constant k3. Hence, x1

2 ⊗ x2
2 ⊗ x3

2

= k1k2k3 x
1
1 ⊗ x2

1 ⊗ x3
1.

Tangential sets with the property that a general point lies on a unique tangent line

is said to be strongly nondegenerate [  38 , p.2]. We have thus shown the τ(X) is strongly

nondegenerate.
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6. FUTURE WORK

We have shown that the nearest point of a rank three 2 × 2 × 2 real tensor ρ to the second

secant set σ2(X) of the Segre variety X with respect to the Frobenius norm is in fact on

the tangential variety τ(X). We conjecture that the nearest point of a rank greater than

three 3 × 3 × 3 real tensor to the third secant set σ3(X) of the Segre variety X is on the

second tangential set τ2(X). The third secant set σ3(X) is the norm closure of all rank three

tensors, and the second tangential set τ2(X) is the norm closure of all the tensors ρ such

that ρ = κ′(0) + κ′′(0) for some smooth curve κ contained in the Segre variety. Notice that

such a tensor ρ is indeed the limit of rank at most three tensors, since

ρ = dκ(t)
dt

∣∣∣∣∣
t=0

+ d2κ(t)
dt2

∣∣∣∣∣
t=0

= lim
t→0

κ(t) − κ(0)
t− 0 + lim

t→0

κ(t) − 2κ(0) + κ(−t)
(t− 0)2 (6.1)

= lim
n→∞

κ( 1
n
) − κ(0)

1
n

+ lim
n→∞

κ( 1
n
) − 2κ(0) + κ(− 1

n
)

1
n2

= lim
n→∞

(n+ n2)κ( 1
n

) − (2n2 − n)κ(0) + n2κ(− 1
n

).

Equation (  6.1 ) follows from the finite difference formula for the second derivative. Our proof

method is well-suited to be generalized to this 3 × 3 × 3 case since it does not rely on the

specific polynomials that define the tangential and secant sets of the 2 × 2 × 2 of the Segre

variety. If true, this conjecture would suggest interesting curvature of τ2(X) that would need

to be studied further.
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