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ABSTRACT 

The concept of computational thinking (CT) has become more prevalent across the 

engineering education research and teaching landscape. Yet much of the research to date has been 

more definitional and has not offered many ways to convert CT theory to practice. One prominent 

set of tools used across engineering disciplines is modeling and simulation, which allows students 

to create a representation of the outside world as they understand it.  

This three-paper dissertation connects modeling and simulation skills with eliciting CT by 

leveraging model-based reasoning as a theoretical framework. A learning design was created and 

delivered here via design-based research that includes educational frameworks such as productive 

failure and model-eliciting activities (MEAs) to structure the modeling activity within a classroom 

setting. The designed learning intervention used a four-part sequence to scaffold the modeling 

activity in the classroom: (1) planning the model, (2) building the model, (3) evaluating the model, 

and (4) reflecting on the model. A case study of a final-year capstone course in biological 

engineering implemented the four-week designed learning intervention as part of the course.  

The guiding research question for the study was how do modeling and simulation activities 

elicit computational thinking practices in the context of undergraduate engineering education? To 

approach this question, data were collected in audio transcripts and student-generated artifacts to 

identify areas where the modeling activity elicited different forms of CT in the student work. The 

first study examined how CT was elicited within the model-building phase and developed an initial 

codebook for CT practices and outcomes using thematic analysis. The second and third studies 

built upon that codebook and further the outcomes by analyzing the modeling activity's planning 

and evaluating/reflecting phases. The results indicate that CT is used throughout the entire 

modeling and simulation process as students engage in model-based reasoning. The identified CT 

practices of abstraction, algorithmic thinking, evaluation, generalization, and decomposition 

emerged from a thematic analysis, and each practice was further characterized and refined into a 

set of outcomes. Furthermore, each phase of the modeling activity emphasized unique CT 

outcomes suggesting that students would benefit from enacting the entire modeling and simulation 

process to acquire and practice a diverse range of CT outcomes.   
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 INTRODUCTION 

1.1 Background 

Computation and computational thinking are of critical interest to the research and policy-

making communities as all industry sectors continually move towards computational practices 

(National Research Council, 2011; President’s Information Technology Advisory Committee, 

2005). And while these skills are essential in many areas, they are of particular concern within 

engineering, especially to skills such as modeling and simulation (Magana & Silva Coutinho, 

2017). Furthermore, modeling and simulation skills are critical to professional practice within the 

engineering discipline (Gainsburg, 2006). Because of this, educational researchers must find new 

ways to implement computation and computational thinking practices within undergraduate 

coursework, and modeling and simulation seem to be prime areas in which to do so. The integration 

of modeling and simulation activities with the elicitation and learning of computational thinking 

will allow for computational thinking to be built as a core skill within an already crowded 

engineering curriculum (Magana & Silva Coutinho, 2017).  

Computational thinking, as a construct, is newer to the broader research literature and the 

world of educational research. Seymour Papert was a pioneer in what would eventually become 

computational thinking by discussing the symbiotic relationship between children programming 

and learning about how they think in the process (Papert, 1980). However, Jeanette Wing has 

largely been credited with popularizing the term in 2006 (Wing, 2006). Additionally, there has 

been growing research since the term’s origination on what computational thinking is, why it is 

necessary, what its encompassing definition entails, and how to best use it (Ilic et al., 2018). When 

introducing the concept, Wing (2006) described computational thinking as “a fundamental skill 

for everyone, not just for computer scientists. To reading, writing, and arithmetic, we should add 

computational thinking to every child’s analytical ability (p. 33).”  Papert, in his seminal work on 

computers and thinking, Mindstorms: Children, Computers, and Powerful Ideas, wrote that “in 

teaching the computer how to think, children embark on an exploration about how they themselves 

think” (Papert, 1980, p. 19). This dissertation addresses the learning need for looking at how this 

form of thinking, computational thinking, can be integrated into the engineering classroom within 

the context of higher education. By doing so, this dissertation aims to advance the understanding 
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of how instructors can elicit computational thinking behaviors within students and the diverse ways 

that students use computational thinking throughout the modeling process. Yet, to better 

understand the need for computational thinking, we should first understand the environment and 

discipline from which it emerged, computing.  

1.2 Computing: The third pillar of science 

 Traditionally, science is said to have two pillars, theory and experiment, underpinning the 

scientific method and how we come to learn about the world around us. However, in recent years, 

the idea of computing and computation as the third leg of science has become a common and 

popular idea (Skuse, 2019). Even national calls for computation within educational settings have 

acknowledged this third pillar as a unique skill that fundamentally contributes to the scientific 

method (President’s Information Technology Advisory Committee, 2005). This third pillar has 

primarily emerged from the advancement of technology and its ability to work with large datasets 

and perform complex calculations. In an editorial regarding computation as the third pillar of 

science, Skuse (2019) wrote that “computation is not just an extra tool. It is a new way of doing 

science, irrevocably changing how scientists learn, experiment and theorize” (p. 40).  

Thus, computing is changing how we learn, experiment with the world around us, and 

theorize about how the world around us works. And because of this importance, we must 

understand the thinking patterns that emerge when engaged with this third pillar of science. 

Science and the scientific method have fundamentally changed:  

The volume and rate at which scientists and engineers are now collecting and 

producing data--through instruments, experiments and simulations--are demanding 

advances in data analytics, data storage and retrieval, as well as data visualization. 

The complexity of the multi-dimensional systems that scientists and engineers want 

to model and analyze requires new computational abstractions (Wing, 2011, p. 3).  

Thus, producing scientists and engineers ready to engage in this practice, where computing and 

computational science are paramount, needs research that investigates how to elicit and build these 

skills in our students from the time they walk into a classroom until they leave.  
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1.3 Why is computational thinking important? 

 Although computational thinking encompasses more than just computation and computer 

science-related concepts, it finds its most natural fit in these same spaces. This form of thinking, 

while not called computational thinking at the time yet, was the idea that children could interact 

with computers and begin to learn about their thinking processes in terms of their interaction with 

the computer (Papert, 1980). When popularized by Jeannette Wing, she further defined 

computational thinking as a set of skills derived primarily from computer science (Wing, 2006).  

Thus, the importance of computational thinking centers on computation and the types of thinking 

that go along with computer programming. Therefore, as the need for computation in the 

workforce increases, so does the need for computational thinking-enabled professionals. While 

computational thinking need not be tied directly to computer programming, the structure of 

computational thinking is born out of computer programming.  

 Computation and programming are becoming a skill that is increasingly desired within the 

engineering workforce.  Specifically, the United States government considers education in 

computation a matter of global economic competitiveness and national security (President’s 

Information Technology Advisory Committee, 2005). As computers and the need for computation 

become ubiquitous across all industries, failure to properly teach these skills within educational 

systems may further the gap between the demand for computationally enabled professionals and 

the currently produced supply. Additionally, government agencies such as the National Research 

Council have held workshops intending to look at how best to teach computation and 

computational thinking (National Research Council, 2011). Yet, much of the research delivered 

by academia continues to be definitional or theoretical as opposed to concrete ways to teach 

computational thinking within all levels of education, but especially within higher education (Ilic 

et al., 2018; Kalelioğlu et al., 2016).  

1.4 What are the current issues that need addressing relating to computational thinking? 

 There are many issues facing the research literature regarding computational thinking and 

its use within educational settings. The biggest problem is that computational thinking continues 

to be heavily definitional due to the high amount of confusion associated with the term (D. Barr et 

al., 2011; Grover & Pea, 2013). The definitional nature of the literature has left educators 
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implementing computational thinking into their classrooms based on highly varied points of 

perspective (Kalelioğlu et al., 2016). This variety in implementation leaves practitioners with little 

ability to understand if students are using and building computational thinking skills within 

classroom interventions.  

 Ultimately, there is a need in the literature for design-based research studies that aim to 

create and implement computational thinking interventions across all levels of education (Ilic et 

al., 2018). These studies should address the content of the course and issues of pedagogy and 

assessment as well (Ilic et al., 2018). As mentioned earlier, another issue that needs addressing is 

the implementation of computational thinking into higher education environments. Studies looking 

at implementation within higher education populations are less common than studies focusing on 

K12 students (Kalelioğlu et al., 2016). Thus, there is a need for research within computational 

thinking that implements content, assessment, and pedagogy into higher education settings.  

1.5 Purpose of the research 

 The purpose of this dissertation study is threefold. First and foremost, the purpose of this 

dissertation is to create and implement educational units that effectively answer national calls for 

key computation and computational thinking skills (National Research Council, 2011; President’s 

Information Technology Advisory Committee, 2005). Additionally, this dissertation addresses 

gaps from the literature for the more practical implementation of computational thinking, more 

research regarding undergraduate populations, and operationalizing computational thinking 

definitions for practical use (Ilic et al., 2018; Kalelioğlu et al., 2016; Weintrop et al., 2016). And 

finally, this dissertation aims to understand how often and in what ways students use computational 

thinking within a modeling and simulation intervention.  

 The selected field of study is engineering education, addressing a need for the disciplinary 

implementation of computational thinking (Ilic et al., 2018). A critical aspect of the engineer’s job 

is modeling and simulation practices. Such practices often incorporate computation skills 

(Gainsburg, 2006; President’s Information Technology Advisory Committee, 2005). This 

incorporation means that modeling and simulation, when implemented into engineering effectively, 

can also help address the growing disparity between the need and supply of computational skills 

within the modern workforce.  
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1.6 Guiding research question and scope of the study 

This research aims to understand how computational modeling activities are effectively 

designed to incorporate computational thinking into engineering classrooms. Based on this 

purpose, one research question guides the study: 

(1) How do modeling and simulation activities elicit computational thinking practices in the 

context of undergraduate engineering education?  

This research question defines the scope of the study in multiple ways. First, the study only 

focuses on undergraduate populations instead of other educational levels. Because of this, this 

dissertation makes no claims about generalizability beyond the engineering context within which 

it was used but instead develops guiding concepts to be used as a starting point to eliciting 

computational thinking and abstraction behaviors within a variety of disciplines.  

Additionally, this research only focuses on eliciting and using computational thinking 

within modeling and simulation practices. While there are skills useful in other engineering 

discipline areas, modeling and simulation are the boundaries that scope this dissertation. This 

scoping does not say that modeling and simulation activities are the only way to elicit these needed 

computational thinking outcomes. This dissertation aims to prove that modeling and simulation 

effectively elicit these outcomes.  

Finally, this dissertation does not measure how much computational thinking is improved 

upon within modeling and simulation activities. Instead, it focuses on the different ways in which 

computational thinking is used and performed during these classroom interventions. Therefore, 

this study involves qualitatively understanding these behaviors and demonstrating how students 

use them within the context of the study.  

1.7 Summary 

 In summary, computation and computational thinking are practices in science and 

engineering that are of paramount interest to research, industry, and governmental entities. 

Computing has even been suggested as the third pillar of the scientific enterprise. As all industry 

sectors move towards more computational methods, teaching these skills to engineering students 

is vital to ensure their competitiveness and success in solving the complex problems of tomorrow. 

Modeling and simulation activities are ideal for teaching these skills, and this dissertation will 
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characterize the different ways that modeling activities elicit computational thinking practices 

throughout their completion.  
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 LITERATURE REVIEW 

2.1 Introduction 

 This chapter overviews the relevant literature to provide a proper background to the 

concepts and ideas discussed in this study. Figure 1 shows the organization of the topics in this 

literature review, starting from the broadest (modeling and simulation) and funneling into the most 

specific topic of computational thinking.  

 

Figure 1. Structure of the topics within the literature review.  

 

First, the chapter discusses modeling and simulation in the classroom in a general sense 

and then discusses mathematical and computational modeling within engineering education. The 

review links these topics into computational thinking and abstraction, looking at how 

computational thinking has been defined in the literature and used in the classroom.  

2.2 Modeling and simulation in the classroom 

 Modeling and simulation have long been used across various degrees and disciplines in the 

classroom. However, how they are used can differ significantly based upon the goals of the 

educational intervention in which they are embedded. Two concepts that are greatly useful in 

demonstrating this difference would be the idea of black-box versus glass-box approaches to 

modeling and programming in general. Glass-box approaches allow students to see and interact 

with the underlying model and programming (Jonassen, 2009). Glass-box approaches differ from 
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black-box approaches that only allow the students to interact with the model's interface and not 

change or view the underlying programming. A black-box approach would prove fruitful if the 

educational goal is merely to run simulation or experiments. If the educational goal is to learn 

programming or aspects of designing a model itself, a glass-box approach is needed, although both 

can be useful within learning contexts (Vieira et al., 2017).  

 However, more broadly, modeling has found use across STEM disciplines, such as the 

physical sciences (Campbell et al., 2013; Weintrop et al., 2016), mathematics (R. Lesh et al., 2000; 

R. A. Lesh & Zawojewski, 2007; R. Lesh & Harel, 2003), and engineering (Diefes-Dux et al., 

2004, 2006; Hjalmarson et al., 2006; Moore et al., 2013). Previous literature reviews have found 

multiple themes that address how students approach modeling within educational contexts: (1) 

student strategies are either mathematical, contextual, or both, (2) student strategies to 

mathematical modeling are diverse and nonlinear, and (3) student strategies to modeling involve 

simplifications (Lyon & Magana, 2020a) 

 Because students take nonlinear approaches to construct models, one of the most 

challenging areas for implementing modeling and simulation into any classroom is assessing the 

work. While teaching and learning are often covered in the literature, assessment is often more 

difficult to find research into effective methodologies (Lyon & Magana, 2020a). One reason for 

this is the open-ended nature of the responses, especially when the class sizes are large (Diefes-

Dux et al., 2004). It often becomes a battle for more resources due to the limited amount of grading 

time and the difficulty in assessing qualitative grading rubrics. However, the work is well worth 

it. These open-ended modeling activities can help shift instructors from focusing on summative 

assessment to formative assessment and change attitudes about how to assess students on other 

tasks (Moore et al., 2015). 

2.3 Mathematical and computational modeling in engineering 

Computational modeling is such a skill that combines programming skills and 

mathematical applications while filling the CS&E gap that plagues engineering departments. 

When the modeled activities are presented in a discipline-specific context, computational 

modeling activities have been shown to increase the perceived significance of computational 

modeling by engineering students (Magana et al., 2013). In addition, when implemented in 

conjunction with typical lecture-type classes, computational modeling and simulation have been 
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shown to dramatically increase conceptual understanding by allowing students to visualize and 

predict the behavior of the modeled system (Brophy et al., 2013). Research into why engineering 

departments have not widely adopted these CS&E activities, specifically computational modeling, 

has delivered four main hurdles: limited time, limited curriculum space, faculty knowledge, and 

student skillset (Magana & Silva Coutinho, 2017). Thus, computational modeling in a discipline-

specific context may provide a solution that both fills the CS&E gap and an opportunity to 

incorporate computational thinking into the upper-division engineering classroom. In addition, 

computational modeling pedagogy offers an environment to observe both mathematical and 

computational thinking develop in an engineering education context.  

The literature has much to say about how engineering students learn, are taught, and should 

be assessed regarding mathematical modeling. Lyon and Magana (2020a) found multiple themes 

throughout the literature regarding how mathematical modeling should be taught in the 

engineering classroom: (1) mathematical modeling activities should be situated in a real-world 

context, (2) implementation can be both extension and creation, (3) student background knowledge 

must be adequate, (4) modeling activities should be implemented in modules, (5) modeling 

activities should include adequately difficult concepts, and (6) modeling activities should be 

implemented as team exercises. Together these six themes can help guide educators in making 

sure to design effective learning environments in engineering through the use of mathematical 

modeling.  

2.4 What is computational thinking? 

The idea of computational thinking is based on skills commonly associated with computer 

science (Wing, 2006). The most widely found skills associated with computational thinking in the 

literature are abstraction, algorithmic thinking, problem-solving, pattern recognition, among others 

(Kalelioğlu et al., 2016). However, others have looked at computational thinking as something 

more tangible. For instance, the Royal Society argued that computational thinking is “the process 

of recognizing aspects of computation in the world that surrounds us, and applying tools and 

techniques from Computer Science to understand and reason about both the natural and artificial 

systems and processes” (Royal Society, 2012, p. 29). Thus, computational thinking might not 

require a computer but rather a set of skills to understand computational processes and how 

computers operate. This includes leveraging tools, many of which are from the field of Computer 
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Science, to interact with this computation. This recognition of implicit computation in our 

environment and work requires abstracting information from the physical realm.  

Abstraction is a commonly associated skill with computational thinking (Kalelioğlu et al., 

2016). For example, Wing (2008) noted that abstraction was “the essence of computational 

thinking” (p. 3717). Another example in the literature is the one provided by Grover and Pea 

(Grover & Pea, 2013), who wrote that abstraction is the keystone of computational thinking. In 

terms of the scope and the various elements within computational thinking, abstraction is the most 

reported term associated with computational thinking in the literature (Kalelioğlu et al., 2016). 

Thus, there is a large consensus on the importance of this construct within the framework of 

computational thinking.  

2.5 What are the current definitions of computational thinking? 

 One of the biggest challenges when engaging with computational thinking literature is the 

vast array of definitions for computational thinking (Kalelioğlu et al., 2016). Not only have 

research communities produced definitions (Curzon et al., 2014; Grover & Pea, 2013; Wing, 2008), 

so have public entities such as Google (Google, 2015), as well as government agencies such as the 

College Board (CollegeBoard, 2013).  

 Many of the definitions have significant overlap within them. For example, the concept of 

abstraction is contained in every definition listed above. Other concepts such as decomposition 

and algorithm/algorithmic thinking appear in most definitions. Some definitions have more 

computer science-related processes, such as parallelization, conditional logic, and debugging. 

These arrays of definition vary from precise definitions such as Grover and Pea (2013), while 

others are broad, such as Curzon et al. (2014). This diversity in definition leaves the concept 

difficult to operationalize as there is little consensus on its exact nature and practices.  

2.6 How has computational thinking been used in the classroom? 

 Because of this difficulty in operationalizing computational thinking, the literature 

surrounding computational thinking is relatively small. Many papers that have been written around 

computational thinking are mainly position papers and literature reviews (Kalelioğlu et al., 2016). 

Not only that, but K-12 populations are often the main focus of computational thinking research, 
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while higher education is less studied (Kalelioğlu et al., 2016). Even so, studies have looked to 

operationalize and use these computational thinking definitions within higher education spaces.  

 Some researchers and educators have used computational thinking as a structuring tool for 

their various course designs or the design of activities and assignments (Evia et al., 2015; Jeon & 

Kim, 2017; Romero et al., 2017). In contrast, some other researchers have looked at how students 

develop computational thinking skills either qualitatively or by using quantitative computational 

thinking assessment tools (Korkmaz et al., 2017; Peteranetz et al., 2017; Yuen & Robbins, 2014). 

These differences mean that computational thinking has been treated as an overarching framework 

by which to structure other content or the content itself. Wing (2006), in her original proposal, 

treated computational thinking not as a framework but as a fundamental skill that students should 

be learning, much like other skills throughout their academic curriculum.  

2.7 Summary 

To summarize, modeling and simulation have been studied extensively, broadly amongst 

disciplines and specifically within engineering education. Frameworks such as the MEA and 

literature reviews have indicated strategies for incorporating modeling activities into the 

engineering classroom. Studying modeling activities allows researchers to uniquely be able to see 

aspects of the way a student is thinking about the phenomena of interest.  

It is here, within the ways students are thinking about phenomena, that computational 

thinking becomes a helpful construct. Yet, computational thinking continues to be vaguely defined 

within the literature. Few methods of actually measuring these constructs have been developed 

within the literature. More research is still needed to understand developing and assessing 

computational thinking. To better learn how computational thinking emerges from modeling 

activities, we must visit how learners think about and understand the phenomena of interest. For 

this study, we will use the lens of model-based reasoning.  
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 THEORETICAL FRAMEWORK: MODEL-BASED REASONING 

3.1 Introduction 

Model-based reasoning is a construct resulting from “investigations in different domains 

that have led many cognitive scientists to conclude that much of human reasoning is by means of 

mental modeling” (Nersessian, 1999, p. 10). This term has been used in many contexts throughout 

the literature. Model-based reasoning has been primarily studied in physical modeling activities or 

around programming reasoning into artificially intelligent systems for diagnostic purposes. While 

both are relevant, the focus of this literature review is broader into the body of research that speaks 

explicitly to model-based reasoning as a cognitive framework by which individuals use models 

(both internal mental models and external representations of those mental models) to interpret the 

world around them.  

 

 

Figure 2. Overview of topics within the theoretical framework. 

 

Figure 2 above shows the structure of this theoretical framework from broadest to the most 

specific literature. I will first start by looking briefly into the roots of model-based reasoning. From 

there, I will dive into the larger body of literature around mental models that inform model-based 

reasoning as a theory. I will then draw connections between this body of literature and reasoning 

Roots of model-based reasoning

Mental models

Model-based reasoning

Characterizing model-
based reasoning

Model-based 
reasoning in the 

current study



 

 

28 

processes that commonly occur within modeling activities (mental, physical, or otherwise). 

Following this, I will look at how studies have characterized or measured reasoning processes 

tailing this discussion with the consensus and disagreement that exists within the literature around 

model-based reasoning. Finally, all of the discussion will be brought full circle to discuss the 

methodological and theoretical implications that model-based reasoning has in informing the 

current study.  

3.2 Roots of model-based reasoning 

Model-based reasoning has its roots within the broader theory of constructivist learning. 

Model-based reasoning assumes that learners construct conceptual or mental models that they 

believe are in alignment with reality (Jonassen et al., 2005). These mental models are built in 

meaningful contexts and experiences of the learner (Nersessian, 2002). Because of this connection 

to both constructivism and the role of prior experiences in learning, it is essential to situate model-

based reasoning within both bodies of theory.  

Constructivism posits that everything we know of the world around us and reality “stems 

from our own interpretations of our experiences” (Ertmer & Newby, 1993, p. 62). This means that 

the structures of knowledge that any particular learner has are highly dependent on the experiences 

of that learner. Essentially the mind operates as a filter, built from life experiences and unique to 

each learner, by which new experiences and information are passed through (Jonassen, 1991). 

Thus, within constructivism, the role of personal experiences cannot be overemphasized.  

The importance of experience within education is not a new idea, being heavily promoted 

by educational theorists such as John Dewey (1938). Dewey (1938) wrote that “all genuine 

education comes about through experience” [p. 25]. This emphasis on experience aligns with the 

constructivist notion that experiences accumulate into our understanding of the world to create 

mental filters for new information and experiences. These mental filters are a good introduction to 

the larger body of literature around mental models and their role in model-based reasoning.  

3.3 Mental model theory as a framework for model-based reasoning 

Foundational to the theory of model-based reasoning is mental model theory and how 

internal mental models operate as a way in which humans reason in everyday life. The idea that 
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humans reason through mental models is usually credited as first being proposed by Kenneth Craik 

(1943) in his book titled The Nature of Explanation. He wrote about humans’ reasoning through 

thought experiments using internal cognitive models. This theory stands in contrast to other 

popular ideas around the same time, such as propositional logic (Inhelder & Piaget, 1958). 

Propositional logic is a theory that posits that reasoning is carried out by using mental logic to 

question a proposed way of how the world works. Another theory would be case-based reasoning, 

which refers to the use of prior experiences to make ‘scripts’ that are much more situation-specific 

than the proposed mental model structures, which people use to inform future events (Kolodner, 

1992). While similar to model-based reasoning, the mental model framework offers that humans 

reason by using mental models they test against the world around them.  

 Mental models are built from collective premises and understandings, allowing people to 

make leaps within their mental knowledge to understand how new contexts may work and operate 

(Johnson-Laird, 1983). This process is advantageous for humans to be able to do because this 

ability allows us to predict the environment around us and simulate how to operate within physical 

reality (Nersessian, 2002). The mental model theory would posit that everyone uses mental models 

to navigate the world around them. Evidence suggests that children use mental models to 

understand the world around them from a relatively young age (Lehrer et al., 1994).  

Additionally, with the dawn of the scientific age, mental models have been more and more 

adapted to being used in scientific and creative ways, rather than just environmental navigation 

(Nersessian, 1999). Thus, mental models may be inherent to how we learn and reason with the 

world around us and would be advantageous to us in navigating the world. Pirnay-Dummer et al. 

(2012) may have said it best when writing of mental models that “in short, they provide the mind 

with a suitable basis (world-representation) for reasoning and decision-making” [p. 68]. These 

decision-making and reasoning processes are based on mental models constructed from prior 

experiences. Exploring this connection between the mental model framework and our reasoning 

and decision-making becomes the basis for model-based reasoning. 

3.4 Overview of model-based reasoning (MBR) 

Model-based reasoning is the use of mental models to better understand the world around 

us. The use of mental models to reason about the world around us was put rather well by Lehrer et 

al. (1994), who argued that “models are not mental games conducted without reference to the 
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world; conversely, there is no purely perceived world to which models can be applied, because no 

one has direct access to reality” [p. 219]. This lack of direct access to reality means that to make 

inferences about reality and reason through new situations, we must use mental models that are 

intricately tied to reality through experience but will always differ from reality.  

What differentiates many other learning theories from model-based reasoning is “the 

philosophical focus on choice between competing systems rather than construction of the 

alternatives” (Nersessian, 2002, p. 137). Often, learning is posited as a movement from a wrong 

way of thinking by choosing a more correct way of thinking (such as propositional logic). In 

contrast, model-based reasoning as theory would suggest that alternatives to the current way of 

thinking are constructed and used to make inferences. The results of the mental model simulation 

are then used as feedback into the mental model and future model creation (Buckley, 2012; 

Nersessian, 2002). This feedback further develops the mental model, and learning subsequently 

occurs. 

However, rarely are these mental models used in isolation. Instead, they are often co-

constructed from multiple more concrete schema or existing mental models referred to as the base 

and target domains (Ifenthaler & Seel, 2011, 2013). One example that we could use would be the 

study of mental models of electricity by Gentner and Gentner (1983). The study looked at how 

individuals reasoned about the nature of electricity using different source domains. For example, 

if the individual were drawing upon an understanding of electricity as flowing water, they would 

create a mental model of “flowing electricity” based upon the experience they had of both the 

source domain (flowing water) and the target domain (electricity). Thus, the mental model created 

of the situation inherits characteristics of both the water and the electricity. The learner's mental 

model or the developed external model may exhibit properties of smooth flowing water through 

pipes. Alternatively, if subjects understood the particulate nature of electricity much like a  moving 

crowd of people, the nature of the source domain changes, and thus the created mental model does 

likewise (Gentner & Gentner, 1983). This relationship between the source domain and the target 

domain can be seen in Figure 3.  
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Figure 3. The combination of source and target domains using model-based reasoning. 

 

 Although a simple example, it presents the idea that model-based reasoning supposes that 

mental models that demonstrate the world around us are subject to the constraints of the 

information in which they are operating, both the source and target domains (Nersessian, 2002). 

These source and target domains are often constrained based upon the context by which a person 

has experienced them, and mental models are bound inseparably within the learner's personal 

experiences (Ifenthaler & Seel, 2013; Johnson-Laird, 1983; Nersessian, 2002). Thus, personal 

experiences feed directly into the mental models that are created.  

 

 

Figure 4. Constructivist model-based reasoning. 

  

 Because mental models are based on personal experiences, as demonstrated in Figure 4, 

they are, in essence, probabilistic models (Ifenthaler & Seel, 2013). The idea that humans would 

think in terms of probabilistic models, meaning based on the likelihood of the outcome, makes 

sense. It allows us to anticipate our environment as we experience life (Nersessian, 2002). Thus, 
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mental models create the ability to deductively and inductively reason about new domains and 

experiences we encounter. When these inferences based on our mental models conflict with the 

world around us (the experiences we have in life), that creates a feedback loop in which we must 

adjust our understanding of the world by adjusting our mental models or rejecting reality (Pirnay-

Dummer et al., 2012). However, model-based reasoning consists of multiple facets that must be 

explored as numerous types of reasoning are inherent to reasoning with mental models.  

3.5 Model-based reasoning processes within modeling activities 

Much of the literature and research on model-based reasoning supports the idea that 

multiple distinct reasoning processes occur during the model-based reasoning process. Nersessian 

(2007) writes that three criteria must be met for something to be considered model-based reasoning: 

(1) it must involve either the construction or retrieval of a model, (2) manipulation of a model to 

make inferences and predictions about the phenomenon of interest and (3) the inferences must be 

applied to either a single model or an entire class of models. Based on these characteristics, three 

main reasoning processes occur within model-based reasoning and are found throughout the 

literature: analogical modeling, visual modeling, and simulative modeling (Nersessian, 1999).  

 Analogical modeling is commonly associated with reasoning processes within mental 

models and model-based reasoning (Hesse, 2000; Ifenthaler & Seel, 2011; Lehrer & Schauble, 

2003; Nersessian, 1999, 2002, 2007; Seel, 2003). In the literature, analogical modeling is 

ultimately a general form of abstraction where an analogy is drawn from a target domain and a 

source domain to understand one or both (Hesse, 2000; Nersessian, 1999, 2002). An analogy is a 

critical piece of model-based reasoning. It allows us to better understand a target domain by 

constructing a model based on a source domain with which we are much more experienced (Seel, 

2003). A relatively simple example of this type of model-based reasoning might be using the solar 

system as an analogy of how an atom is structured (Lehrer & Schauble, 2003). We may very well 

be familiar with the solar system while unfamiliar with the atom (or we may have premises about 

each individually). We then create a mental model of how an atom operates through analogy, with 

our mental model taking on aspects of the solar system (as well as any notions we have of the 

atom). Another example would be Newton deriving his fundamental ideas about gravity when 

drawing analogous relationships between “what a projectile and a planet have in common in the 

context of determining motion” (Nersessian, 2002, p. 144). Thus, analogy is a critical piece of 
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model-based reasoning because it allows us to make inferences about new domains and new 

problems based on previous understandings of a source domain.  

 Another form of reasoning used within model-based reasoning found in the literature is 

visual modeling, such as using pictures, diagrams, or other visual/structural representations of the 

information either internally or externally (Johnson-Laird, 1983; Lehrer et al., 1994; Leutner et al., 

2009; Nersessian, 1999, 2002; Quillin & Thomas, 2015). The most apparent aspect of visual 

modeling would be imagery to reason through a target domain (Nersessian, 2002). However, visual 

modeling is intended to represent further reasoning than just utilizing mental imagery. Visual 

modeling means that model-based reasoning uses mental models or external models that catch the 

very structure of the target domain (Johnson-Laird, 1983). Thus, visual modeling means that 

mental models keep specific modalities of the real-world phenomenon, one of which can be visual 

aspects of the target domain. One example of visual modeling for model-based reasoning would 

be the famous physicist Michael Faraday using force lines to draw out how forces were locally 

and directionally working around a magnet (Faraday, 2004). This external representation of a 

mental model was used to understand and communicate how these forces were working. In essence, 

notational systems (such as force lines) are being used to support model-based reasoning. They 

allow for information to be organized and more easily incorporated into the phenomena of interest 

by capturing modalities of the mental model. The importance of visual modeling in model-based 

reasoning was shown by Lehrer et al. (1994). When studying model-based reasoning in children, 

students struggled to understand why certain sums of two random numbers between one and four 

were more likely than others. Had the students used an external representation of the information 

recorded with mathematical notation, they may have noticed that certain sums have more 

combinations of numbers than others. The literature gives many examples of visual modeling as a 

form of model-based reasoning, such as vector diagrams in physics, circuit diagrams in electrical 

engineering, or bonding diagrams in chemistry (Quillin & Thomas, 2015).  

 Finally, the literature supports a third type of reasoning that is used in model-based 

reasoning referred to in the literature as simulative modeling, although some of the literature 

around model-based reasoning uses the term thought experiments when explicitly referring to the 

manipulation of mental models (Buckley, 2012; Ifenthaler & Seel, 2013; Nersessian, 1999, 2002; 

Seel, 2003). Simulative modeling takes mental or physical models together with the understanding 
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of the constraints to which the model is subject (Nersessian, 2002). Seel (2003) described this type 

of model-based reasoning when writing: 

This occurs when an individual interacts with the objects involved in a situation in 

order to manipulate them mentally in such a way that the cognitive operations 

simulate specific transformations of these objects that may occur in real-life 

situations. Such simulation models operate as thought experiments, producing 

qualitative inferences with respect to the situation to be mastered (p. 61).  

Thus, simulative modeling manipulates mental models to understand better and make 

inferences about how the real world operates. This type of model-based reasoning, simulating a 

mental model based on real-world constraints, must not be done entirely in mind. Dennett (2000) 

wrote that “just as you cannot do very much carpentry with your bare hands, there’s not much 

thinking you can do with your bare mind” (p. 17). This means that for simulative modeling, it may 

often be helpful to have external representations of the information to encode aspects of the mental 

model. Externally representing the mental model is done to understand better the mapping between 

the mental model and the external reality (Nersessian, 2007). External representations can 

commonly be mathematical or computational in models. We encode information from our mental 

models into these tools to simulate an environment (that is still distinctly separate from the actual 

real-world around us). Results from these simulations are then on a feedback loop in which they 

help us change or concretize our internal mental models of the phenomenon of interest (Quillin & 

Thomas, 2015).  

It is worth emphasizing that the cornerstone of modeling activities in education classrooms 

is often the building of the actual model (R. Lesh et al., 2000). Notational systems are often used 

in building the model, whether these be a mathematical, programming language, or just drawing 

out a picture (such as in Faraday’s case). Nersessian (1999) wrote that “the mental models 

perspective hypothesizes that the external visual representations support the construction of an 

internal model” (p. 17). Therefore, visual and simulative modeling represents the most explicit 

connection between theories of model-based reasoning (dealing with mental models) and the 

external representations of information we call mathematical or computational models. These 

external models allow us to organize our thoughts and structure cognitive information in ways that 

enable us to further develop our understanding of the target domain under investigation. Much like 

writing out combinations of numbers may help children develop better mental models of 

probability, creating mathematical and computational representations of information and 
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simulating them may further concretize mental models and essentially allow students to reason 

between their mental model and reality. 

 These reasoning processes can be used together and often make inferences about the world 

around us. For example, let us use a relatively common (although somewhat outdated) metaphor 

of the engineering education pipeline (Tillman, 2013). This pipeline uses analogous modeling that 

allows us to use our mental models of a leaky pipeline and give its attributes to STEM education, 

understanding it may leak and that students (water) flow through it. Often, we draw out this 

diagram of a pipeline showing where engineers enter or exit the education system, thus using visual 

modeling. From there, we can use simulative modeling to bring constraints to how we understand 

the world to conjecture and make inferences why students may enter or leave the engineering 

pipeline (this information in the mental model embedded within both our understanding of pipes 

as well as our understanding of the STEM education process in the United States). Thus, these 

processes are not mutually exclusive but are used hand in hand to reason through problems.  

As far as explicit modeling activities in the classroom, everyday actions within modeling 

activities lend themselves to the model-based reasoning processes above. Modeling activities are 

complex initiatives and ultimately one of the most challenging aspects of STEM professions, 

specifically within engineering (Gainsburg, 2006).  Modeling activities allow students to 

externalize their internal mental models. Jonassen (2009) proposed that “constructing 

computational models of the world using computer-based modeling tools can serve to externalize 

learners’ mental models of the phenomena that they are studying” (p. 56). This relationship means 

that mathematical and computational models directly reflect an internal mental model within the 

student. Nersessian (2007) suggested that analogical modeling, visual modeling, and simulative 

modeling can be broken down within modeling activities to allow individuals to abstract a 

phenomenon across cases, simulate outcomes, evaluate how good a model is as a predictor of the 

real-world, and adapt the model to necessary constraints. Another example of model-based 

reasoning within modeling activities tasks in the classroom would be a study by Ifenthaler and 

Seel (2013). They argued that tasks common to modeling practices such as simulation, diagnosis, 

planning, training, controlling, and debugging use model-based reasoning. Thus, model-based 

reasoning is helpful in both building an understanding of reality in its current state with activities 

such as evaluation, debugging, or diagnosis; as well as making inferences as to the manipulation 

of reality into some future form with activities such as simulating outcomes, abstracting across 
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cases, or planning a solution. These activities are embedded within modeling activities at an 

educational level (Louca & Zacharia, 2012). We will investigate this close relationship later.  

3.6 Characterizing and measuring model-based reasoning processes 

There are many ways of characterizing model-based reasoning within the literature; 

however, this characterization does not come without limitations. The ultimate struggle with 

describing or measuring any cognitive process is that we are limited to the artifacts and products 

of the participants under study, usually relying on secondary indicators of the cognitive process as 

opposed to a direct measure of the participants’ physical reality during a reasoning process. In any 

case, there are multiple examples within the literature on how to characterize or measure model-

based reasoning processes within participants and learners. While both qualitative and quantitative 

methods are used to characterize model-based reasoning in the literature, many studies focus on 

more qualitative data such as interviews, think-aloud interviews, and classroom observations. A 

minority of the studies used more quantitative data such as time on task, explicitly scoring 

reasoning tasks, or looking at performances based on different education interventions.  

 Some of the studies intended to measure model-based reasoning tasks by giving students 

reasoning tasks and measuring time to complete or process to complete (Ifenthaler & Seel, 2011, 

2013; Pirnay-Dummer et al., 2012). A variation of this was attempted to measure model-based 

reasoning skills by giving students reasoning tasks looking at the correctness of the students' 

response, as well as mean response time in solving reasoning problems (Vandierendonck, 2002).  

Reasoning problems were also given to students to look at percentages of predicted behavior 

versus actual behavior to characterize how reasoning behaviors matched learners' expectations 

using mental models (Johnson-Laird et al., 1999). However, these were rarely looking at the actual 

reasoning process, often looking typically at the performance given different forms of “treatment” 

based on model-based reasoning instead of traditional logical reasoning. Thus, these were not 

direct measures nor characterizations of model-based reasoning, but rather indirect measures of 

the potential effects of teaching with curriculum or using a specific type of format to reasoning 

questions.  

 Alternatively, interviews can be used to characterize how students use model-based 

reasoning. One example would be the one from Gentner and Gentner (1983). They used interviews 

to understand how students’ understanding of electricity changed based on the source domain in 
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which they constructed their mental model (flowing water vs. moving crowds). Interview or think-

aloud interviews are typical for capturing how students reason through a problem (Gentner & 

Gentner, 1983; Lehrer et al., 1994; Pirnay-Dummer et al., 2012; Raghavan & Glaser, 1995; Taylor 

et al., 2003). In previous studies, interviews and think-aloud interviews allowed the researchers to 

understand exactly how the students worked through the given problem or the reasoning task. 

However, there was caution expressed against interviews by Jonassen et al. (2005), who wrote that 

“the analysis of interview and conversation protocols is very difficult and time-consuming and is 

plagued with reliability problems” (p. 16). Thus, one must proceed cautiously. It may be 

challenging to understand cognitive processes simply from what a participant says in an interview 

or that the interviewee is even accurately describing how they are thinking through a problem. 

 One interesting study used interviews and student surveys to understand how students 

characterized internal mental models and how these mental models developed within an astronomy 

intervention (Taylor et al., 2003). Once characterized, researchers were able to look at how mental 

models developed throughout the intervention by asking questions related to the mental model at 

three different points during the research and mapping these responses as learning gains as students’ 

mental models developed. A similar course of action could characterize and measure model-based 

reasoning by understanding how mental models develop through reasoning practices between 

external and internal models, looking at similarities and differences. Hesse (2000) proposed that 

mental models can be updated based on reasoning between the external and internal models and 

updating the mental model accordingly.  

 In addition to interviews and quantitative data, observation of modeling tasks may help 

understand how students leverage model-based reasoning during activities. There are multiple 

studies and papers that reference using observations or the benefits of observations in 

characterizing model-based reasoning (Harrison & Treagust, 2000; Jonassen et al., 2005; 

Nersessian, 2002; Raghavan & Glaser, 1995; Taylor et al., 2003). One study of particular interest 

by Raghavan and Glaser (1995) used in-class video-taped observations to evaluate the 

effectiveness of a model-based reasoning curriculum implementation. Then using these 

observations, investigators rated students on different levels of model-understanding to look at 

trajectories of reasoning with models through the duration of the curriculum. Observations may 

avoid some bias in writing interview questions and capturing behavior unknown to the participant; 

however, they may lack the detail of an interview (Driscoll, 2011).  
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 This idea of change over time was used in varying contexts throughout the literature to 

look at model-based reasoning and the change of mental models. For example, Lehrer (1994) 

looked at the difference between how students reasoned in making predictions of probability 

functions (such as spinners spinning or dice rolling) and compared predictions to the actual 

probability distributions. Different scenarios were given to the students sequentially, with the 

researchers investigating how the students’ predictions changed over time and the reasoning for 

doing so. The researchers then built a cognitive mental model development sequence to provide 

evidence that the students were using mental models to understand how probability exercises 

worked and how previous activities were feeding into the mental model to update predictions. This 

same idea of investigating model-based reasoning through the changes in mental models was 

echoed by Ifenthaler and Seel (2013). They explored how students used model-based reasoning to 

solve various reasoning tasks by looking at the quality of the strategy used to solve any given 

problem. Participants were given varying tasks over many weeks. They were asked to solve the 

reasoning task and write out why the strategy was used. The quality of the solutions, the quality of 

the strategy taken, and a logical reasoning rating were given to each solution from the student. The 

study's goal was to understand how often students developed new mental models versus how often 

students used reasoning processes to update previous mental models.  

3.7 Consensus and disagreement about model-based reasoning 

There are multiple areas of consensus and a few areas of disagreement in the literature 

around model-based reasoning. Many of the disputes have to do with the cognitive aspects of 

model-based reasoning, how mental models are stored and operationalized within memory, and 

the temporal nature of mental models. Although there is consensus about a relationship between 

mental models and schema, the nature of the relationship is vague and ambiguous throughout the 

literature, with some seemingly disconnects between how the two constructs relate to one another. 

Additionally, while many studies agree that visual modeling is essential to model-based reasoning, 

there are some disagreements about how useful this reasoning process is in helping students learn 

content about the world around them. Finally, the literature is ambiguous around the term model-

based reasoning. It is commonly used to describe artificially intelligent systems with an increased 

research focus on artificial intelligence.  
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There is consensus within the literature that memory and prior experiences play a 

significant role within model-based reasoning (Gentner & Gentner, 1983; Leutner et al., 2009; 

Nersessian, 1999, 2002, 2007; Quillin & Thomas, 2015; Vandierendonck, 2002). However, where 

mental models are stored and how they are cognitively operationalized is up for debate. The body 

of literature indicates disagreements on how mental models and model-based reasoning are a 

product of long-term memory versus operationalized working memory (Nersessian, 1999). For 

example, Mayer (2009) proposed that mental models are constructed within the working memory 

at a given moment with prior knowledge being used that is pulled from the long-term memory to 

use model-based reasoning about the world. However, other studies such as Ifenthaler and Seel 

(2013) had students iterate based on mental models over weeks and months. This indicates that 

mental models do not exist solely within the individual's working memory. One interesting 

example of mental models and memory is the idea from Gentner and Gentner (1983) of using a 

model of flowing water to understand electricity. Are these two domains of flowing water and 

electricity called upon each time one wants to reason about the behavior of electricity? Or is this 

mental model that has been created stored in longer-term memory so that every time one reasons 

about electricity, the association with flowing water is already built-in? This seems to be a 

fundamental question and source of uncertainty throughout the literature.  

Relatedly, the relationship between schemas and mental models is somewhat ambiguous 

within the literature in terms of how each is used to perform model-based reasoning. Schemas are 

longer-term understandings that are structural blocks of knowledge that people understand certain 

phenomena (Ginsburg & Opper, 1988).  

Others in the literature indicate that schema are pulled together to build mental models in 

the working memory, insinuating that mental models may be short-term constructs and not held 

within the long-term memory (Nersessian, 2002). Thus, this disagreement in the literature is tied 

to the dispute regarding mental models and memory. The literature also describes schema-based 

reasoning as an alternative to model-based and case-based reasoning (Krampe & Lusti, 1997; 

Stroulia et al., 1992). Whereas model-based reasoning is used to describe ill-defined domains to 

the learner/user, schema-based reasoning uses “highly situation-specific knowledge” (Stroulia et 

al., 1992, p. 3). While not necessarily in disagreement, the connection between schema and mental 

models and, consequently, schema-based and model-based reasoning could be more clearly 

defined for a complete understanding of mental model theory to be operationalized.  
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Another area of disagreement in the literature is to what extent external modeling is critical 

to the model-based reasoning theory. There is a general consensus that external models play a large 

part in the model-based reasoning process (Johnson-Laird, 1983; Lehrer et al., 1994; Leutner et 

al., 2009; Nersessian, 1999, 2002; Quillin & Thomas, 2015). However, there is debate about 

whether external representations of information help reasoning processes with internal mental 

models. For example, some studies have found that using drawings and external models helps 

offload some cognitive processing and allows students to develop further their understanding of a 

phenomenon (Harrison & Treagust, 2000). Other studies have found that creating external models 

may create additional cognitive load (Jonassen et al., 2005; Leutner et al., 2009). This is important 

within model-based reasoning because specific reasoning processes such as visual and simulative 

modeling may often use external representations of information to help organize and offload some 

cognitive processing from the mind. Many studies indicated that these external models often allow 

for refinement of the internal mental model by offloading processing from the mind and allowing 

for a more organizational structure to information (Jonassen, 2009; Jonassen et al., 2005; 

Nersessian, 1999, 2002; Quillin & Thomas, 2015). While most of the literature seemed to indicate 

that these external representations were helpful, there seem to be cases in the literature where they 

are not beneficial to learning.  

Within the body of literature, model-based reasoning is also used to describe the use of 

machines or artificially intelligent systems for diagnostic purposes (Davis & Hamscher, 1988; De 

Koning et al., 2000; Koton, 1985; Rich & Venkatasubramanian, 1987). While this is not the 

explicit nature of the discussion here, the method by which artificial intelligence (AI) systems 

diagnose problems is similar to how humans construct mental models. This often occurs when the 

machines use existing models to predict future events, much like how humans use mental models 

to navigate their environment. This, along with other types of reasoning (such as case-based 

reasoning), has enjoyed a surge of research work given the current research interest in artificially 

intelligent systems.  

3.8 Methodological implications of model-based reasoning 

From the literature, there are multiple ways in which researchers have attempted to measure 

and characterize reasoning processes. Explicit quantitative measures in the literature were 

challenging to find, as most looked at the time on task or looked at performance on various 
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reasoning tasks (Ifenthaler & Seel, 2011; Vandierendonck, 2002). Additionally, the questions these 

studies were asking are fundamentally different than the questions this study aims to answer.  

While previous work has looked for ways in which model-based reasoning can be measured, this 

study will look at how model-based reasoning will elicit, through modeling, computational 

thinking.  

 Specifically, the current study aims to use model-based reasoning as a theoretical 

framework for locating computational thinking structures. Thus, it becomes more of a qualitative 

characterization process instead of a measurement process. Multiple studies in the literature looked 

to characterize model-based reasoning often using interviews, think-aloud interviews, and 

classroom observations (Gentner & Gentner, 1983; Lehrer et al., 1994; Pirnay-Dummer et al., 2012; 

Raghavan & Glaser, 1995). One of particular interest would be the study by Gentner and Genter 

(1983), who looked at how mental models and reasoning around a process changed based upon 

the source domain. Similarly, I use classroom observation data for our study to characterize how 

students are reasoning through the model and simulation process. Because computational thinking 

is often a latent, not explicitly stated process, observations may be more suitable for 

characterization when possible. Observations allow for characteristics unknown to the participant 

(latent behaviors) to be captured more readily (Driscoll, 2011).  

3.9 Theoretical implications of model-based reasoning 

Of interesting note and aligned with the intent of the present study is the following quote 

about the use of external computational models through technology to enhance and develop 

internal mental models: 

Further, we argued that the most effective way to use technologies to foster mental 

model development is through the use and construction of computational models 

using model-based software (Jonassen, 2009, p. 72).  

The idea that model-based reasoning promotes the development of an internal mental model 

through the use of an external computational model is the core of the theoretical framework for 

the current study. Model-based reasoning is the way and purpose for which external mathematical 

and computational models are created and operated within. Students build these external models 

as they reflect internal mental models held by the student. Even when students work in groups, 

model-based reasoning can occur based on the collective mental models.  
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Group or collaborative mental models are those that are socially co-constructed by 

groups of individuals who are collaboratively focused on the same meaningful task 

(Jonassen, 2009, p. 54).  

Thus, even when operating within a group and making external models, groups are co-constructing 

external representations based on their internal mental models.  

 Through a complete computational modeling and simulation process, students must create 

multiple iterations of an external model (each a representation of the information), going between 

the physical referent (problem statement) to the mathematical model to the computational model 

and then back again to the physical referent (Magana et al., 2012). Figure 5 below gives an 

overview of this process.  

 

Figure 5. Overview of the computational modeling and simulation process. 

 

The theoretical framework of model-based reasoning connects to this modeling and 

simulation process because students are using model-based reasoning to navigate at each transition 

within the modeling and simulation process. The model-based reasoning they exhibit during the 

transition is limited by and will exhibit characteristics of their mental models of the source domain 

(where they are transitioning the information from) and the target domain (where they are 

transitioning the information). Figure 6 below demonstrates an example of this relationship at one 

step in the modeling and simulation cycle, put into the context of the current study (building 

computational models of food sterilization).  
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Figure 6. Model-based reasoning situated within one branch of the modeling and 

simulation cycle. 

 

 The theoretical framework of model-based reasoning allows us to understand that complex 

thinking patterns such as those described by computational thinking can be found in the student's 

reasoning based on the reflections of their internal mental models. Furthermore, the construct of 

computational thinking described in the literature (Selby & Woollard, 2013; Wing, 2006) has 

alignment within model-based reasoning. The central hypothesis of this study is that through 

model-based reasoning, as students engage with external mathematical and computational models, 

we can investigate how computational thinking is used. To demonstrate this alignment, I ground 

my approach on the list of reasoning processes that Nersessian (2007) listed as pieces of model-

based reasoning: 

“abstraction: limiting case, generic, idealization, generalization; simulation: 

inferring outcomes or new states via model manipulation (mental or physical); 

evaluation: goodness of fit, explanatory power, implications (empirical, 

mathematical); and adaptation: constraint satisfaction, coherence, other relevant 

considerations.” (p. 706-707).  

Conversely, the list of computational thinking-related practices is guided by Curzon et al. (2014) 

as algorithmic thinking, evaluation, decomposition, abstraction, and generalization. There is no 

doubt that there is an overlap between the model-based reasoning process and computational 

thinking practices. One can see that current definitions of both have overlapping terms. The two 

missing elements (algorithmic thinking and decomposition) are primarily physical manifestations 

that occur within the actual building of the external model during a classroom modeling activity.  
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3.10 Summary 

This study will look into the reasoning that students use throughout the modeling and 

simulation cycle to understand the different ways in which students use computational thinking 

practices and how modeling and simulation practices can be used to elicit these crucial 

computational thinking behaviors. Model-based reasoning gives the research study a lens to 

understand how students are externalizing their internal mental models and the types of outcomes 

that can be expected to be found throughout this externalization process. Yet the modeling process 

is long, consisting of multiple tasks such as planning, programming, and evaluating. This study 

will look at how students are using computational thinking as they reason about their own and 

other students’ models.  
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 METHODOLOGICAL FRAMEWORK 

4.1 Introduction 

 This chapter overviews the methodological framework used to frame the methods to 

approach the research question to better structure this study. For the current research, design-based 

research is used as the methodological framework. Design-based research (DBR) allows the study 

to contribute to broader theory while also allowing the delivery of practical results. Additionally, 

the naturalistic approach of design-based research allows the study to collect rich and authentic 

data to answer the research question.  

4.2 Design as a form of education research  

 Design research has gone by many names in the literature on education, such as design-

based research, design experiments, design research, development research, developmental 

research, and formative research (Wang & Hannafin, 2005). Even though there are many names, 

this form of research is a method that allows for designed educational interventions to be directly 

implemented and researched within a naturalistic setting, often in a classroom. This natural setting 

provides DBR the ability to contribute both to the practical application and local context and the 

larger theoretical body of literature.  

 The central tenet of DBR is that educational data and findings are embedded inseparably 

from their context and that results from educational studies are always dependent on the factors in 

which the data was collected (DBRC, 2003).  There are multiple advantages to using design-based 

research instead of other methods available to those engaging in qualitative inquiry. First, it allows 

for various data analysis methods rather than a strictly confined data analysis procedure (Wang & 

Hannafin, 2005). This flexibility allows for the use of multiple different forms of data rather than 

being strictly relegated to any specific form. Additionally, design-based research contributes 

directly to the classroom by delivering pragmatic research results (DBRC, 2003; Wang & 

Hannafin, 2005). 

While the opportunity to collect data directly in context is an approach that can 

immediately result in practical applications, there are several limitations to the method. Some 

common critiques of design-based research are that it cannot adequately contribute to theory and 
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that the results of the studies cannot be generalized to more contexts than the one studied (A. E. 

Kelly, 2004). Additionally, the method has often been criticized for lacking a clear methodology 

(A. E. Kelly, 2004). 

However, design-based research (DBR) is best defined by the characteristics it exhibits: (1) 

Being situated in a real educational context, (2) Focusing on the Design and Testing of a 

Significant Intervention, (3) Using Mixed Methods, (4) Involving Multiple Iterations, (5) Involving 

a Collaborative Partnership Between Researchers and Practitioners, and (6) Evaluation of Design 

Principles (Anderson & Shattuck, 2009). While this is not as structured as other qualitative or 

quantitative methods, it allows the researcher a framework and principle to conduct their research 

study. While these critiques hold some merit and a high level of importance, there are many reasons 

to believe that the strength of these critiques is limited if design-based research studies are done 

with enough rigor. Having trajectories of multiple studies is one way to address the limited 

generalizability of these methods by setting up similar interventions across multiple contexts and 

temporal distance (DBRC, 2003). If results during the research trajectory point towards similar or 

different results, the trajectory will begin to paint a picture to the larger research community of 

how generalizable the results are.  

Finally, having predefined structures such as design and theoretical conjectures allows the 

researcher to clearly define how and in what ways their research contributes to the local context 

and the larger body of literature (Sandoval, 2014). Conjecture maps overview how to structure 

design-based research studies by (1) aligning the overall conjecture being made by the study, (2) 

defining the ways that a design will elicit certain behaviors and generate artifacts from the students, 

and (3) identifying the theoretical conjectures of what outcomes the behaviors and artifacts will 

elicit in the students.  

4.3 Implications of design-based research for the study design 

The methodological framework for the current study is design-based research, which aims 

to collect data that is embedded within its naturalistic context (DBRC, 2003). This approach is 

appropriate when paired with a case study in that it allows a design to be bounded to the 

phenomenon under study. In our case, this is computational thinking within a designed modeling 

intervention. When conducting design-based research, there are multiple parameters of the 
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research that must be defined. Wang and Hannafin (Wang & Hannafin, 2005) defined design-

based research by the following characteristics:  

(1) Pragmatic: This study aims to add to both theory and practice, a staple of design-based 

research (Wang & Hannafin, 2005). This study will add to the theory of computational 

thinking and elicit it in educational environments. The study will add to practice by 

delivering design principles into a capstone engineering course.  

(2) Grounded: The study's design is grounded in multiple bodies of theory and frameworks 

such as model-based reasoning, modeling-based learning, model eliciting activities, 

and productive failure.  

(3) Interactive/Iterative/Flexible: The researchers worked intimately with the instructor to 

implement the designed intervention when conducting this study. Multiple rounds of 

data were collected, although only one iteration of the design is presented in this study.  

(4) Integrative: This study uses qualitative analysis (thematic analysis) to understand how 

the themes were elicited and changed throughout the modeling intervention, integrating 

multiple forms of data such as classroom artifacts and audio of student group sessions.  

(5) Contextual: The research is embedded within a naturalistic context of a capstone 

engineering course. The design then gives general principles for modeling 

interventions in other contexts.  

 Given these descriptions, it is clear that this study fits the criteria outlined by Wang and Hannafin 

regarding the characteristics of design-based research. Yet, design-based research does have both 

advantages and disadvantages.  

4.4 Overview of design conjectures 

 One way to ensure rigor within design-based research is to build a conjecture map. 

Conjecture maps are tools for demonstrating how different intervention elements align with 

various conjectures posed by the research (Sandoval, 2014). There are multiple advantages to using 

a conjecture map. One is that conjecture maps make explicit and attempt to answer one of the 

central tensions within DBR, that DBR has a “dual commitment to improving educational practices 

and furthering our understanding of learning processes” (Sandoval, 2014, p. 20). Conjecture maps 
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provide design conjectures that outline how to improve educational practices and theoretical 

conjectures that aim to further our understanding of learning at a basic level (Sandoval, 2014).  

 There are multiple elements to a conjecture map. The first box provides a high-level 

conjecture about the overarching study and the aims of the learning/outcomes of the study. The 

second box overviews the embodiment of the learning environment, showing the tools, tasks, 

participant structures, and any discursive practices. The third box looks at mediating processes, 

which are interactions and artifacts resulting from the embodiment. Between these two are the 

design conjectures, which posits that “if learners engage in this activity (task + participant) 

structure with these tools, through this discursive practice, this mediating process will emerge” 

(Sandoval, 2014, p. 24). In many ways, design conjectures align with the tension in which DBR 

constantly finds itself, addressing the practical implications and design principles for pragmatic 

results.  

 The second part of a conjecture map looks at the design's theoretical conjectures. The last 

box in a conjecture map is the outcome space that includes any learning, interest, motivation, or 

outcome one wants to investigate, given the current design. Between the mediating processes and 

the outcome are the theoretical conjectures which put forth the statement, “if this mediating process 

occurs, it will lead to this outcome” (Sandoval, 2014, p. 24). These conjectures deal with another 

tension in which DBR finds itself, contributing to a more extensive theory within the naturalistic 

context. Theoretical conjectures allow DBR researchers to understand fundamental learning 

questions by understanding the relationship between the mediating processes and the outcomes.  

4.5 Summary 

 Design within educational research may go by many names. However, design-based 

research (DBR) as used in this study is a clear methodological framework that allows the current 

research to contribute to theory and practice. And while DBR has many advantages, there are some 

limitations to the method in terms of generalizability. These can be overcome by using conjecture 

maps that clearly define the structure of the design and the theoretical/design conjectures the 

intervention hopes to evaluate.  
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 LEARNING DESIGN 

5.1 Introduction  

 Under a methodological framework of design-based research, a learning design is required 

to test the design and theoretical conjectures and fulfill the intended outcomes. In this chapter, 

pedagogical frameworks used to create the design are overviewed, including models and modeling, 

the model-eliciting activity (MEA), and productive failure. These frameworks are then integrated 

into a single learning design, aligned via a conjecture map to structure the learning environment, 

theoretical and design conjectures, and outcomes expected from the learning environment. The 

chapter overviews the timeline of the intervention and various activities that the students are 

expected to perform as part of the learning design. Finally, the chapter looks at the context and 

learners into which this study specifically will implement the design, focusing on student needs 

during the learning process.  

5.2 Process design: Models and modeling  

There are multiple timelines and breakdowns of how modeling activities should be 

implemented within the engineering classroom. For example, Magana (2017) developed a learning 

progression derived from a four-part modeling and simulation process: construct models, use 

models, evaluate models, and revise models. Additionally, Shiflet and Shiflet (2006) divided the 

modeling cycle into a six-part process: analyze the problem, formulate a model, solve the model, 

verify and interpret the model’s solution, report on the model, and maintain the model. Louca and 

Zacharia (2012) defined the modeling process as modeling-based learning (MbL), consisting of 

four distinctive phases: collection of observations and experiences, construction of the model, 

evaluation of the model, and revision of the model. While these are only a few examples, all point 

to a general framework by which modeling and simulation can be learned in engineering that we 

will continue to refer to as modeling-based learning (MbL).  

MbL is a process by which students convert mental models into concrete models by 

transforming physical phenomena into abstractions, often mathematical (Louca & Zacharia, 2012). 

MbL is not new to engineering, with developments such as the model-eliciting activity (MEA) 

being heavily researched in engineering contexts (Diefes-Dux et al., 2004; Hamilton et al., 2008). 
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However, modeling through the lens of computation adds a layer, where the student must move 

the model from mathematical to computational abstractions. MbL has two unique phases: first the 

model is built, and then the model is evaluated and revised (Louca & Zacharia, 2012). Both stages 

of MbL by nature incorporate aspects of computational thinking presented by Weintrop et al. 

(2016); analyzing data, visualizing data, constructing computational models, among many others. 

Thus, MbL pedagogical strategies are uniquely positioned to promote and assess computational 

thinking at the undergraduate level in engineering education.  In addition, computational modeling 

involves movement between mathematical and computational abstractions, thus allowing one to 

observe the fluency of this transition.  

This research will utilize a model-based learning framework to understand how 

computational modeling activities in discipline-specific contexts can promote and support 

computational thinking in undergraduate engineering students. In addition, the research will 

support an in-depth understanding of the nature of computational thinking and how students 

effectively move between both mathematical and computational abstractions.  

5.3 Structure design: The model-eliciting activity (MEA) 

MEAs have been heavily studied within educational contexts, specifically beginning in the 

mathematics education literature with Lesh and colleagues (R. Lesh et al., 2000; R. A. Lesh & 

Zawojewski, 2007; R. Lesh & Harel, 2003), and has since been translated and studied within the 

engineering education literature by Diefes-Dux and colleagues (Diefes-Dux et al., 2004, 2006, 

2013; Hjalmarson et al., 2006). MEAs are generally tied to six principles, although some of the 

names can differ based on application. Lesh et al. (2000) assert that MEA development is linked 

to six principles:  

(1) model construction principle: the activity results in a model of a physical phenomena 

(2) reality principle: the activity is embedded in a realistic context  

(3) self-assessment principle: the activity encourages students to look at the usefulness of their 

own and other solutions.   

(4) construct documentation principle: the activity asks students to explicitly state why and 

how they are thinking about the situation as they are.    

(5) construct shareability principle: the activity asks the student to develop a model which is 

useful to others.   
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(6) effective prototype principle: the activity asks the student to provide a prototype that is 

useful in multiple situations.  

These six principles work together to create learning environments and activities where students 

can build realistic models while documenting the entire process.  

 MEAs are a valuable tool in identifying student misconceptions within disciplinary content 

(Self et al., 2008). Additionally, MEAs can correct student misconceptions of the underlying 

physical phenomenon (Moore et al., 2013). They, and more broadly modeling activities, allow 

students to move through multiple different representations of the information, creating an 

environment to learn the physical concepts more deeply. However, MEAs can create challenges 

on the assessment end, with the open-ended nature making grading assignments much more of a 

gray area (Diefes-Dux et al., 2012). For example, with these complex solutions, instructors tend to 

give redundant feedback and lack praise, which can negatively affect the students' future 

performance (Jung et al., 2015). However, the use of MEAs in the classroom has a positive effect 

on students learning and on instructors who, through the use of MEAs, often move towards more 

student-centered teaching methods (Moore et al., 2015).  

5.4 Pedagogy design: Productive failure 

Learning from failure is not a new concept; however, research has primarily focused on 

learning through student success  (Kapur, 2008). Kapur and colleagues have shown how giving 

minimal structure to problems leads to increased performance in future activities, terming this 

pedagogy productive failure (Kapur, 2008, 2010, 2011; Kapur & Bielaczyc, 2012). Productive 

failure as a teaching pedagogy has two distinct phases: (1) creation and exploration of 

representations and solution methods (RSM’s), and (2) comparison and contrasting of one’s 

solution to those of other peers (Kapur & Bielaczyc, 2012). Students are asked to look at different 

solution pathways with minimal help from the instructor during the first phase. In this phase, 

instructors are told not to answer questions but encourage students to do their best to solve the 

problem at hand. Students are asked to compare their own solutions with expert solutions to the 

problem in the second phase. In this phase, instructors are told to encourage students that there are 

no right or wrong answers to a problem. 

However, productive failure is not an entirely new concept on its own. It is derived from a 

broader class of learning pedagogies based on inquiry-based learning through lived experience, 
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promoted by famous theorists previously such as Dewey and Piaget (Dewey, 1938; Ginsburg & 

Opper, 1988). These lines of constructivist theory encourage educators to consider education as a 

combination of lived experiences where students are asking questions that lead to new insights and 

pathways as they move through the solution at hand. In addition, productive failure’s use of 

contrasting solutions is a proven concept (Schwartz & Bransford, 1998). However, productive 

failure’s emphasis on complete lack of structured support and students reaching a failure point 

adds to the broader discussion.  

Productive failure essentially can be encapsulated into a three-stage process, where 

educators put together the (1) activity, (2) participant structures, and (3) social surroundings 

(Kapur & Bielaczyc, 2012). This three-part structure gives guidelines for how to build and scaffold 

the activity, have the participant interact with the activity, and set up the environment around the 

student to best promote learning through the productive failure structure (Kapur & Bielaczyc, 

2012). This study describes a specific educational intervention that combines productive failure 

pedagogy within a model-based learning framework to promote computational thinking through 

engineering computational modeling activities.  

5.5 Conjecture map and explanation for the current study 

A conjecture map for the current study was developed to align the various pedagogical 

methods and theories in terms of design and theoretical conjectures. The conjecture map is 

presented from left to right, starting with the overall conjectures and ending with the theoretical 

conjectures and outcomes. Figure 7 depicts the conjecture map aligning the various theories and 

practices used within the current study.  
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Figure 7. Conjecture map for the overall line of research. 

 

The overall conjecture for the study is that modeling and simulation activities embedded in 

authentic, real-world context promote computational thinking and disciplinary and programming 

learning through students engaging in model-based reasoning. This means that first, I must discuss 

how modeling and simulation activities embedded in real-world context can be developed and 

implemented. Thus, I must discuss the embodiment of the activity.  

 The embodiment of the activity is four-fold, three of which have previously been covered 

in this chapter: (1) modeling-based learning, (2) model-eliciting activities, and (3) productive 

failure. The tool being used by the students is the programming environment, MATLAB. The 

choice of this tool for the current study is due to its prevalence and use among the engineering and 

scientific communities, especially in engineering education settings (Froyd et al., 2012). However, 

MATLAB does little to structure the actual nature of the activity and the participant structures, 

being relied on mainly as a medium to produce the computational models. The embodiment is 

connected to the mediating processes through the design conjectures.  

 The first mediating process would be the creation of the actual mathematical/computational 

model that is delivered in the form of commented MATLAB programming files. Multiple pieces 

of the embodiment lead to this mediating process. The embodiment tool of the MATLAB 

programming environment directly connects to this mediating process. It is the direct tool used to 

build the actual model physically. The MEA structure leads to this computational model through 
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the Model Construction Principle, which dictates that an actual model be built (Diefes-Dux et al., 

2004). Additionally, the MbL framework also leads to this mediating process through the second 

phase of Constructing the Model (Louca & Zacharia, 2012). Thus, the emergence of programming 

algorithms and computer programs is the most straightforward mediating process to predict the 

emergence of within a design conjecture.  

 The second mediating process is authentic student reflections based on the modeling 

process and the built model. In terms of design conjectures, multiple pieces of the embodiment 

allow us to predict the emergence of these authentic reflections. First, the MEA framework delivers 

this mediating process through the Reality Principle, the Self-Assessment Principle, and the 

Construct Documentation Principle (Diefes-Dux et al., 2004). The Reality Principle assures that 

the problem is situated within an authentic, real-world engineering context. The Self-Assessment 

Principle ensures that the problem has explicit criteria to evaluate their model for reflection. 

Finally, the Construct Documentation Principle dictates that students produce documentation that 

records their ideas throughout the learning process, allowing for continuous reflection. 

Additionally, MbL allows for authentic reflections through the Evaluate the Model and Revise the 

Model steps as students test their model and look at ways to revise their model based on the 

limitations found through the evaluation process (Louca & Zacharia, 2012). Finally, the second 

phase of productive failure allows students to reflect on the problem-solving process by working 

with peers to understand why some solutions are better than others and foster engagement through 

group activity (Kapur & Bielaczyc, 2012).  

 The third mediating process is the student’s explanation of their model and the reasoning 

behind their modeling process. Multiple embodiment elements lead to the design conjecture that 

this will emerge as a mediating process. The first would be the MEA framework via the Construct 

Documentation Principle, which dictates that students document their learning process through 

each phase of the modeling activity (Diefes-Dux et al., 2004). The MbL framework leads to this 

through the nature of the Revision of the Model step back to the Construction of the Model step as 

students reason through why the model has limitations and how to make the prediction of the 

model closer to the actualization of reality (Louca & Zacharia, 2012). Finally, the productive 

failure framework leads to this mediating process through both phases. Students explore why 

different models are different and why some models are better than others in given situations with 

the reasoning for the differences (Kapur & Bielaczyc, 2012).  
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 Finally, the last mediating process is peer-to-peer interactions and comparing solutions. 

This mediating process is directly related and expected due to the productive failure framework. 

The first and second phases encourage group interaction and comparison amongst student solution 

methods (Kapur & Bielaczyc, 2012). However, the MEA framework also contributes to this 

mediating process through the Self-Assessment Principle, with prescribes the activity having 

measurable attributes and criteria to which the models can be assessed, in this case, specifically 

against peer solutions (Diefes-Dux et al., 2004).  

5.6 Theoretical conjectures of the designed learning intervention 

Beyond design conjectures, there are also theoretical conjectures in DBR that allow the 

results of this methodology to contribute to the larger body of theory. In the case of this study, 

there are four expected outcomes based on the embodiment and the mediating processes: 

disciplinary learning, programming learning, computational thinking, and increases in 

computational self-efficacy.  

The main theoretical conjecture of this study leads to an expectation of computational 

thinking skills to emerge from the mediating processes. The mediating processes such as 

explaining the model, the reflection of the model, peer-to-peer interactions, and algorithm 

development will lead to model-based reasoning intertwined with computational thinking. For 

example, abstraction, generalization, and evaluation are three critical pieces of computational 

thinking (Curzon et al., 2014; Grover & Pea, 2013; Selby & Woollard, 2013). All three of these 

(abstraction, evaluation, and generalization) are associated with model-based reasoning 

(Nersessian, 2007). Additionally, algorithmic thinking and decomposition of a problem are two 

other commonly cited skills related to computational thinking (V. Barr & Stephenson, 2011; 

Weintrop et al., 2016; Wing, 2008). The mediating process of producing an algorithm should lead 

to algorithmic thinking and decomposing a problem as a skill. Altogether, the theoretical 

conjecture here is that developing computational models in an authentic engineering context will 

produce computational thinking skills because the main form of reasoning throughout the 

modeling process (model-based reasoning) overlaps significantly with computational thinking 

skills. We expect this outcome to be demonstrated through student explanations, reflections, 

algorithms, and peer interactions.  
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 The following two outcomes of the study go hand in hand, the programming and 

disciplinary learning from the intervention. For programming learning, the mediating processes of 

building the actual computer algorithm and peer-to-peer interactions are expected to contribute to 

this type of learning. Programming the model will contribute to learning programming knowledge 

through an authentic experience situated in a realistic context. The constructivist viewpoint 

informing this study emphasizes the role of experience in education, highlighting that knowledge 

is constructed from previous experiences through which we view the world (Dewey, 1938; Ertmer 

& Newby, 1993). Another theoretical conjecture is that the peer-to-peer interactions in multiple 

phases of the designed intervention will contribute to disciplinary and programming learning by 

interacting with peers who can serve as knowledgeable others helping students navigate through 

their understandings (Vygotsky, 1978). When working with peers in planning and evaluating their 

models through the productive failure framework, students get exposure to other students of 

varying skill levels in an environment where it is safe to ask questions and understand differences 

between models.  

 Additionally, one would expect authentic reflections based on the modeling process and 

student explanations of the solution and reasoning behind the modeling process to lead to 

disciplinary learning. Generating authentic explanations and reflections about a model must have 

reasoning processes proceeding them (Buckley, 2012). Using our theoretical framework of model-

based reasoning, when we explain and reflect on a model and modeling process (which are external 

visual representations of information), we are explaining and reflecting an internal model-based 

reasoning process based on internal mental models of the phenomena (Craik, 1943; Johnson-Laird, 

1983). Suppose these external models conflict with the internal mental model. In that case, the 

understandings that form the basis of the mental model must be adjusted to compensate, eventually 

solidifying to schema or other long-term understandings (Ifenthaler & Seel, 2013). Both 

disciplinary and computational learning will not be explicitly investigated in this study but will be 

addressed in future research.  

 The final outcome we expect to see would be neutral or positive impacts on student 

computational self-efficacy. The theoretical conjectures in the conjecture map have three 

mediating processes that lead to this outcome: student reflections, peer-to-peer interactions, and 

building the actual computational model. Hutchison et al. (2006) found that students' perceived 

abilities with mastery experiences in computing and computer applications, such as building and 
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programming complex computational models, correlated with positive self-efficacy beliefs. They 

found that vicarious experiences, such as working closely with team members and having 

supportive team members, positively impacted self-efficacy beliefs (Hutchison et al., 2006). 

Magana et al. (2016) found similar results in that computational education presented within 

authentic engineering contexts can significantly increase student self-beliefs. Additionally, self-

reflection allows for students to be able to “expand their self-knowledge of what they can and 

cannot do” (Bandura, 1998, p. 11). Thus, we would expect all of these factors to positively impact 

student self-efficacy as students gain mastery and vicarious experiences and reflect on these 

experiences. Self-efficacy gains are external to this study, and findings from this intervention 

regarding self-efficacy can be found in other studies from the researcher (Lyon, Jaiswal, et al., 

2020).  

5.7 Overview of the designed learning environment 

 The different aspects of the embodiment and theories lead to a four-phase design of the 

learning environment, including (1) planning the model, (2) building the model, (3) evaluating 

the model, and (4) reflecting on the model.  

In the Planning the Model phase, students combine their own experiences and knowledge 

to generate and explore different ways the problem could be solved. Students construct at least 

one of the various identified solution pathways in the Building the Model phase. In the 

Evaluating the Model phase, students meet with multiple other students from the class to 

compare the different modeling decisions made and the impact of those decisions. Finally, in the 

Reflecting on the Model phase, students reflect on how they might revise the model in future 

iterations and the modeling process overall. The physical manifestation of the modeling problem 

follows MEA principles.  

 During each phase of the activity, students were asked to fill out templates to organize and 

somewhat standardize the information collected from each student. Additionally, a programming 

file template was given to the students to demonstrate what proper commenting within a 

programming file should include. These templates are included in Appendices 1-5.  
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5.8 Summary  

 To conclude, the learning design directly impacts the research goals, most specifically the 

research’s ability to deliver pragmatic results and meet the needs of students and instructors in a 

specific context. Three frameworks are used to construct the learning design: (1) the model-

eliciting activity to frame the structure of the assignment, (2) productive failure to design the 

learning environment and pedagogy used, and (3) models and modeling to frame the learning 

process throughout the activity. A conjecture map is then used to map these frameworks to both 

the design and theoretical conjectures that the study is making, focusing on the elicitation of 

computational thinking. However, to study the elicitation of computational thinking, the study 

must have a proper research design to draw out the rich data needed to understand emergent 

outcomes.  
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 RESEARCH DESIGN 

6.1 Introduction  

 This study investigates the use of modeling and simulation learning environments and their 

ability to elicit computational thinking within the undergraduate classroom. This study uses a 

descriptive approach through the larger paradigm of qualitative inquiry to understand the various 

computational thinking outcomes that result. In doing so, a pedagogical approach is designed and 

implemented in the form of a single case study within an upper-division engineering class. Design-

based research is the specific approach taken to data collection through classroom artifacts and 

audio/video of classroom discussions. Deductive thematic analysis is used to analyze the various 

computational thinking practices used during each phase of the modeling and simulation cycle. 

These methods are used to answer the one research question primarily:   

(1) How do modeling and simulation activities elicit computational thinking practices in the 

context of undergraduate engineering education? 

6.2 The research paradigm of qualitative inquiry 

Qualitative inquiry is based on interpretivism and constructivism, emphasizing process and 

meaning, often with smaller sample sizes (Sale & Brazil, 2002). This is in opposition to 

quantitative research, which is derived from positivism and understanding truth, often focused on 

finding an external truth to human reality. This difference in approach leaves qualitative methods 

the unique ability to dive deep into a specific context, although it costs them the broader 

generalizability that quantitative methods often enjoy.  

However, there are many distinct advantages to a qualitative inquiry over quantitative 

research methods. Guba and Lincoln (Guba & Lincoln, 1994) identified that some of the 

significant benefits of qualitative inquiry are its ability to account for context, its ability to include 

the meaning and purpose of the data, the understanding of broader theory with a local context, and 

the applicability of qualitative research to individual cases. Whereas this research expects that 

computational thinking is often not explicit, qualitative research is expected to overcome this by 

looking into the underlying text of student artifacts and discussion to uncover the meaning, 

purposes, and context within which the computational thinking practices are sitting.   
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6.3 Case study 

 The data collection method for the current study uses a case study framework. A case study 

is a method that can be used within either qualitative or quantitative paradigms. A case study can 

be used in a wide variety of contexts such as public policy, political research, management studies, 

and more academic uses within the social sciences (R. K. Yin, 1994). Whereas other qualitative 

methods have a strict type of data to be analyzed, a case study as a method does not require any 

specific type of data to be collected (R. K. Yin, 1981). Additionally, case studies can be used to 

answer multiple different kinds of questions. The type of research question will determine what 

type of case study is being conducted: exploratory, descriptive, or explanatory (R. K. Yin, 1994). 

Exploratory case studies are often performed as an initial study as a basis for future research. In 

contrast, explanatory case studies look for causal investigations, and descriptive cases build on 

previous descriptive theory (Tellis, 1997). Other types of case studies would include multiple-case, 

intrinsic, instrumental, and collective; and explanations and examples of these can be found in the 

literature (Baxter & Jack, 2008) 

 There are multiple defining features of a case study that can aid researchers in knowing if 

a case study is an appropriate route for a given research inquiry. Yin (2009) listed two defining 

features of a case study: (1) it investigates a phenomenon within a real-world context, and (2) the 

boundaries of the phenomenon are not clear. For case studies, one must also select the unit of 

analysis, which is often a particular system under a given time frame for which the research is 

interested in studying (Tellis, 1997). Thus, a case study is primarily a bounded phenomenon under 

which a specific system is under investigation within its real-world context. 

 During the data collection phase of a case study, triangulation is often used amongst varied 

data sources (Tellis, 1997; R. K. Yin, 1994). By using multiple data sources, triangulation within 

a case study allows for increased reliability by allowing each of the data courses to corroborate the 

evidence of the others (Tellis, 1997). A further variant of this idea of triangulation is the idea of 

crystallization, in which multiple approaches to data are used amongst various lived truths and 

allow them to converge to a cohesive story of the phenomenon under investigation (Ellingson, 

2009). While this research does not use multiple perspectives to investigate the data, multiple 

different data sources converge a specific localized truth regarding computational thinking in our 

designed intervention.  
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6.4 Advantages and limitations of a case study 

 Yin (2009) described five different applications of case study: (1) to explain the causal 

links in an intervention, (2) to describe an intervention and its real-world context, (3) to illustrate 

specific topics, (4) explore interventions with no clear outcomes, and (5) a study of an evaluative 

study. Thus, the case study represents a valuable and advantageous ally in pursuing research in 

any of these situations. Another advantage of a case study is that the researcher and the participant 

can often work together (Baxter & Jack, 2008). This is in line with the idea that case studies are 

embedded within a real-world context. Because of this intimate relationship between the research 

and the context in which the research occurs, it allows for a case study to collect extremely rich 

data.  

 One common limitation of the case study is the lack of generalization provided by a single 

case study or by limited groups of case studies (Tellis, 1997; R. K. Yin, 1994). In the case of this 

study, this is something that the author fully acknowledges, understanding that a trade-off is made 

between generalizability and the ability to impact the classroom environment through the design 

of the research. Another limitation often cited is the limited rigor shown by many who are doing 

case study research (R. K. Yin, 1994). However, this is more of an indictment of the researchers 

conducting the research than the method itself.  

6.5 The present study 

 Given the definitions provided above, it becomes imperative to define certain qualities and 

phenomena of the current study to place it within the case study methodology properly. Namely, 

define what the phenomenon under study is, the boundaries of the present study, the unit of analysis 

regarding the data, and the data sources used to triangulate the study results.  

 The phenomenon under study is computational thinking and how it is characterized within 

a modeling intervention in a capstone engineering course. A capstone engineering course was 

chosen for the case study for multiple reasons. First, the capstone engineering course is situated 

within bioengineering, which traditionally has more gender representation than other engineering 

disciplines. Additionally, much of the literature around modeling and simulation focuses on first-

year students or students early in their degree program, making this context one that the research 

can address gaps in the literature. Finally, a capstone course was chosen because students would 
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already have classes in both the disciplinary content and programming content needed to 

understand how computational thinking is used within an ill-structured modeling and simulation 

environment.  

This descriptive case study aims to describe the elicitation of computational thinking and 

the real-life context in which it is occurring, which is a computational modeling intervention within 

a capstone engineering course. The boundaries of the case study are only to investigate the effects 

of the computational modeling exercises. While enrolled in the course, students produced a variety 

of artifacts, including homework, tests, and other project deliverables. However, this study only 

looks at the artifacts produced and the conversations that are had while completing the modeling 

activities.  

 The unit of analysis for the study is a single DBR iteration of a computational modeling 

activity within a capstone engineering course. While multiple activities occur over the semester, 

the case study only looks at one specifically. However, within this unit of analysis, there are many 

different sources of data available to analyze the elicitation of computational thinking. These 

include reports produced by the student, notes taken by the student, audio and video recordings of 

conversations while they complete the modeling activity, and programming files with in-code 

comments produced by the student. These multiple forms of data allow for triangulation of the 

results among the data streams and corroboration of results.  

6.6 Participants and the current study 

The data for this study is obtained from a class covering food and pharmaceutical 

processing. Students worked within groups of three to four to plan out how they were going to 

computationally model a food canning line that was sterilizing different food products, looking at 

both the microbial concerns of the product and the nutritional degradation concerns of the food 

product. The students were upper-level undergraduate students in an agricultural and biological 

engineering program, most of whom were in their final year of undergraduate studies. This means 

that most of them had taken the majority of their disciplinary classwork to this point, including 

heat and mass transfer, fluid mechanics, reaction kinetics, mathematical modeling/numerical 

methods, as well as at least one programming course.  

Race and gender data were not collected as part of the learning intervention. The 

engineering department from which the data was collected had slightly more students that 
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identified as females than males at the time of data collection. Given that the department was 

relatively small and there is only one main section of this required class per semester, the students 

in the class were roughly representative of the department. All names given in the results are 

pseudo names to protect student identity. The research aimed to illuminate different ways in which 

engineering students used computational thinking within a modeling and simulation activity. The 

total size of the population who consented to the research study was 45 students, which was most 

of the students in the class.  

The class in which this was implemented followed a two-part structure, with both lab time 

and lecture time. The lab portion of the course met two times a week for two hours. The lecture 

portion of the class met three times a week for one hour. The class consisted of regular homework 

assignments, a senior design project, and regular quizzes in addition to the mathematical modeling 

activities outlined as the basis of this dissertation. Lecture periods were generally taught in a 

traditional format, which included the instructor using the blackboard and projector slides to 

convey information to the students while the students took notes. The mathematical modeling 

activities outlined in this study occurred during the lab portions of the class. The overall learning 

objectives of the course as taken from the syllabus include: (1) An understanding of the principles 

and design/scale-up aspects of various unit operations and processes utilized by the biological and 

food process industries, (2) Develop self-learning techniques to acquire new knowledge for 

lifelong learning, (3) A capacity to apply scale-up principles for the development of typical 

industrial processes, and (4) Develop unit operation designs that account for the effect of process 

variables when producing high quality, cost-effective and safe product using the minimum of 

resources. 

The intervention outlined in this study required students to use multiple concepts from 

across the curriculum such as heat and mass transfer, reaction kinetics, numerical methods, and 

computer programming. For example, they needed heat transfer to model the sterilization process, 

kinetics to understand how the bacteria were destroyed, and numerical methods to model the 

process in the MATLAB programming environment. Yet, the problem they were working on was 

one that they had not completed a similar problem previously. Hence, the students had to pull 

together multiple strands of knowledge and transfer it into a new context. Because of the 

productive failure framework in the design, students were not given an elaborate introduction to 

the problem and solution process, but rather were expected to pull together many of these topics 
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on their own and try to chart a solution path on their own. In turn, this prepared them for their 

capstone projects in the spring where they would be expected to do much the same thing with little 

introduction or initial guidance from the instructional team.  

6.7 Data collection method 

 Different data sources were collected within each step of the modeling intervention to get 

a better holistic view of how computational thinking was used when students were completing the 

activities. This falls in line with the case study approach of using multiple sources of data and the 

design-based research approach, which allows for the collection of many different forms of data 

(A. E. Kelly, 2004; R. K. Yin, 1994). The following table, Table 1, overviews the data sources 

collected at each stage in the intervention.  

Table 1. Overview of data sources at each stage of the research design.  

Week Phase Data Sources 

1 Planning the model  Template: Planning the model 

Audio/video: Groups meeting and planning their modeling 

strategies.  

 

1-3 Building the model Template: Building the model 

Template: MATLAB programming files 

  

3 Evaluating the model Template: Evaluating the model 

Audio/video: Groups meeting to evaluate and groups meeting 

with other groups.  

 

4 Reflecting on the 

model 

Template: Reflecting on the model 

 

 These data sources were chosen to collect rich and expansive data across the dataset. When 

available, audio and video recordings were taken of classroom interactions to collect information 

on how students used computational thinking while solving the actual problem. Audio and video 

were not available during the building or the reflecting phases of the modeling activity. This was 

supplemented during the building the model phase by having the students write highly detailed 

programming comments to try and capture the students thinking process during the building phase. 

Thus, two data sources were used for each of the first three phases of the modeling activity.  
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Each phase had a report or note template for the students to write and answer questions 

regarding their model. Additionally, each phase used either detailed programming comments 

(similar to a journaling technique) or audio/video data to collect more detailed process data. The 

audio and video files were then transcribed to investigate the classroom interactions. The templates 

and programming comments were already in textual form and ready for analysis. Thus, all of the 

data obtained was in a rich text format that was ready to be analyzed for themes regarding the 

computational thinking outcomes demonstrated as a result of the intervention. The reflecting on 

the model phase was limited in that students only have a report. Because of the similarities between 

the reflection and evaluating process, these two phases were analyzed as a whole.  

 These sources were chosen to answer the research question because, when available, the 

artifacts captured the final state and thinking of the student (through the artifacts) and the process 

students take (through the audio/video and, to an extent, the programming comments). By using 

data that is in rich text format, the goal was to capture a broad range of computational thinking 

outcomes by understanding how students explain themselves, their solutions, and reason through 

their problem-solving process.  

6.8 Data analysis method 

Thematic analysis was used as the analytical procedure.  This was chosen for the current 

data set because thematic analysis can capture both manifest (explicit) and latent (underlying) 

aspects. Thematic analysis is also not based on the frequency of categories but the importance of 

categories. Because of the complexities of the artifacts (repetitive nature, open-endedness), the 

frequency seemed of minor importance, ruling out other qualitative analysis measures such as 

content analysis and making thematic analysis the natural choice for the data set. Finally, thematic 

analysis fit the data set in that there were already a set of deductive categories for which the 

researcher coded (computational thinking practices).  

Thematic analysis has its roots in a constructivist view of the world, one in which there is 

no absolute truth but locally and personally constructed truths built through experiences 

(Neuendorf, 2019). This means that thematic analysis is often tied to the underlying meaning of 

texts, combining the analysis of both the latent and manifest content of the data (Vaismoradi et al., 

2013). There are multiple definitions of thematic analysis within the literature. Braun and Clarke 

(2006) defined thematic analysis as a “method for identifying, analyzing, and reporting patterns 
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(themes) within data” (p. 6). Joffe and Yardley (2004) added that thematic analysis improves 

understanding of the meaning of the text within its broader context compared to other text analysis 

methods such as content analysis. This makes thematic analysis more qualitative than traditional 

textual analysis methods.  

 Thematic analysis often gauges the importance of a theme based on how important the 

theme is to answer the research questions (Vaismoradi et al., 2013). This is because themes are 

derived not only from the context in which they are found but also from the meaning they stand 

for (H Joffe & Yardley, 2004). Joffe and Yardley (2004) used an example of a code of “stigma” 

in a coding process. In thematic analysis, if a person refers to the idea of stigma or avoiding 

something but doesn’t use the word explicitly, it can be coded into a theme, thus bringing 

underlying meaning into the analysis. Thematic analysis, therefore, often looks at both the manifest 

and the latent aspects of the data as opposed to looking at one or the other as the two are often 

intertwined (Vaismoradi et al., 2013).  

 Thematic analysis has been used as a term used for generalized qualitative coding and has 

been a method often neglected of a clear definition in the literature. However, the seminal work of 

Braun and Clarke (2006) outlined the method of thematic analysis. They described the method as 

consisting of a six-step process of (1) familiarizing oneself with the data, (2) generating initial 

codes and coding structures, (3) searching for themes within the data set, (4) reviewing the themes, 

(5) giving definition to and naming the themes, and (6) producing a report around the found themes.  

 Familiarizing oneself with the data step is very similar to the preparation phase of other 

textual analysis methods such as content analysis (Vaismoradi et al., 2013). Data can come from 

various backgrounds, whether collected by yourself or somebody else. So, the first phase is to get 

familiar with the data. This process involves reading through the data multiple times while 

searching for initial ideas about patterns and meanings (Braun & Clarke, 2006). Often, if data is 

verbal, this familiarization process begins and is conducted in part during the transcription of the 

data into a written format (Braun & Clarke, 2006).  

 The second phase of the process is generating initial codes. This process has already begun 

during the first phase as early patterns and meanings were looked into during the familiarization 

process (Braun & Clarke, 2006). The codes are not the bigger themes but will be combined to 

make themes. In an inductive approach, the themes are data-driven and thus will emerge from the 
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data itself; in a deductive approach, the themes are theory-driven, and results will focus on a 

particular theory investigated within the data (Braun & Clarke, 2006).  

 In the third and fourth phases, the coded items are searched for how they could be grouped 

into themes and then reviewed (Braun & Clarke, 2006). At the initiation of the third phase, the 

first set of themes will certainly not be the same set of themes at the end of the fourth phase as 

themes split into multiple themes and multiple themes are condensed into singular themes. At the 

end of the fourth phase, determined themes are arranged into a sort of relationship, understanding 

how each of the themes relate to each other. This can be done with a thematic map that organizes 

all themes (Braun & Clarke, 2006).  

 In the fifth phase, themes are given a definition and a name (Braun & Clarke, 2006). As 

thematic analysis aims to get at the underlying meaning, Braun and Clarke (2006) cautioned 

against just paraphrasing the contents of each theme, but instead talk about “what is interesting 

about them and why!” (p. 22). Additionally, while it is important to discuss what themes are, it is 

also important to discuss what they are not so that the reader can understand clear definitional lines 

between themes.  

 The sixth phase is the reporting phase, where results are put together into a cohesive 

narrative giving the themes and putting them into a coherent and convincing story (Braun & Clarke, 

2006). Quotes should be given regarding the different identified themes (Braun & Clarke, 2006). 

Whether or not interrater reliability should be used in the thematic analysis method is a contended 

point in the literature. Some researchers pointed out that interrater reliability often devolves to one 

researcher convincing another as to how to look at and interpret the data (H Joffe & Yardley, 2004). 

However, there is still a movement within the qualitative research community to keep this measure 

as a source of validity within this methodology (Neuendorf, 2019).  

6.9 Deductive vs. inductive thematic analysis 

Thematic analysis can be deductive or inductive (Neuendorf, 2019; Vaismoradi et al., 

2013). Deductive analysis is when theory, literature, or prior work is used to predefine categories 

or themes to solidify or test the previous theory (Elo & Kyngäs, 2008; H Joffe & Yardley, 2004; 

Vaismoradi et al., 2013). This is useful when the research aims to prove how predefined categories 

are used within a new context or to validate the findings of previous studies. Thematic analysis 

can also be inductive, where themes and types emerge from the data itself (Braun & Clarke, 2006; 
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Elo & Kyngäs, 2008; H Joffe & Yardley, 2004; Vaismoradi et al., 2013). Inductive analysis is 

useful when no prior framework informs the analysis, allowing the themes to be intimately tied to 

the data itself. Inductive analysis is often a far richer analysis because of how the categories and 

themes are directly emergent from the data instead of trying to fit previous theories and categories 

to existing text (Vaismoradi et al., 2013). In an inductive thematic analysis, the researcher is 

looking to arrive at a point of saturation of the themes (Case & Light, 2011).  

When the thematic analysis method is used deductively, one may start with a set of codes. 

Still, the technique encourages the codebook to stay flexible if the data shows additional codes, as 

saturation is important in the thematic analysis method (Neuendorf, 2019). Saturation is when 

further data analysis does not seem to be substantially adding any new themes or changing the 

findings (Case & Light, 2011). As to where other textual analysis methods are more concerned 

with frequencies of themes and characteristics of the text, thematic analysis is more fundamentally 

concerned with a saturation of the different themes. This means that the thematic analysis results 

are the themes themselves (Neuendorf, 2019). 

6.10 Advantages and limitations of thematic analysis 

 There are many advantages to using thematic analysis over other qualitative data analysis 

methods. The biggest is that thematic analysis allows the researcher to look at the underlying 

meaning of the data by focusing on the context in which text is said or used (Vaismoradi et al., 

2013). Unlike other forms of qualitative data analysis, such as content analysis, thematic analysis 

allows the researcher to look at both the manifest and latent content with the sample. Whereas in 

other methods, the frequency might be used to determine the importance of a theme, thematic 

analysis is much more qualitative by judging the importance of a theme based on how it relates to 

and addresses the underlying research questions (Vaismoradi et al., 2013).  

 While thematic analysis certainly has advantages, there are other clear disadvantages to the 

method. The biggest drawback to thematic analysis is the often clear lack of methodology (Braun 

& Clarke, 2006). However, Braun and Clarke (2006) outlined a multi-step method that was 

followed for this study and, by doing so, addresses the limitations provided by thematic analysis. 

Additionally, as with all qualitative analyses, validity and reliability issues can plague study results. 

In this study, metrics such as inter-rater reliability and transparency of the research are used to 

address this limitation and will be described in more detail later.   
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6.11 Reliability and trustworthiness 

 The study uses three approaches to ensure the reliability and trustworthiness of the results. 

The first is inter-rater reliability, which often appears in percent agreement. Percent agreement 

does have drawbacks, the biggest of which is its inability to integrate the probability that two 

observers give the same rating due to chance (Hunt, 1986). However, this metric is often used in 

these studies for its ability to quickly assess the degree of overlap between two raters and its ability 

to incorporate non-mutually exclusive categories easily.  

 Additionally, the study uses transparency or rich and thick descriptions of the data to 

provide credibility to the findings (Onwuegbuzie & Leech, 2007). These thick descriptions offer 

both data and production transparency. Readers can better understand what the raw data looked 

like and how the researchers arrived at their conclusions based on that data (Moravcsik, 2014). 

Throughout the analysis, the reader will see example quotes given often, in an attempt by the 

researcher to maximize the amount of transparency between the researcher and the reader. By 

doing so, the reader will have a richer understanding of the data and better understand the 

transferability of the findings and how the results relate to other contexts and environments 

(Onwuegbuzie & Leech, 2007).  

 Finally, the study uses triangulation to add trustworthiness to the results by ensuring that 

the results were found through multiple different data sources. Triangulation is a typical 

application of trustworthiness within a case study methodology (Tellis, 1997). Triangulation 

generally helps protect the results from researcher bias and works towards the validity of the results.  

6.12 Ethical conduct of the research 

 The Institutional Review Board approved all procedures under IRB protocol number 

1806020715. All research participants signed consent forms and were free to withdraw from the 

research at any point in the study. Additionally, all efforts have been made to protect the identity 

of all participants in the study. 

6.13 Researcher bias and perceptivity 

 The researcher acknowledges that all research contains some bias of the individual 

conducting the research. The literature recognizes that this can be especially problematic within 
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qualitative spaces of inquiry (Chenail, 2011). Researcher bias can be either active or passive and 

involve anything from the clothes that a researcher wears, all the way to the way they talk to 

participants that may influence participants given prior researcher beliefs (Onwuegbuzie & Leech, 

2007). Additionally, bias within the analysis is possible as I acknowledge that many researchers, 

including myself, are biased towards finding positive results from an intervention or a course of 

inquiry.  

 To combat this bias, multiple approaches are taken to ensure rigor and validity within the 

study results. First, interrater reliability is used in some places to ensure that another researcher 

aside from the primary researcher can see similar results and interpret the data in similar ways. 

Additionally, transparency is attempted by providing portions of the raw data to the reader to allow 

the reader to understand how the researcher is obtaining results from the data itself. Finally, 

triangulation of multiple data sources is used to limit researcher bias by situating the results within 

multiple different data sources.  

6.14 Structure of the three studies 

 The three studies in this dissertation look at each of the steps of the modeling and 

simulation cycle separately. In the first study, an initial codebook of computational thinking 

outcomes is developed from the building the model step, where students design and program their 

solutions to the modeling challenge given to them. In study two, this initial codebook is expanded 

using the data collected from the planning the model phase, where students worked as teams to put 

together their initial plans for how to solve the modeling challenge. Finally, in the third study the 

codebook is again expanded using data from the evaluation and reflection phases of the modeling 

and simulation cycle.  

Thus, each study uses the same thematic analysis method of identifying outcomes in the 

data, but each study uses different data sources to do so. For example, the first study uses the 

building the model template along with the programming files to develop the initial codebook. The 

second study uses the planning the model templates along with the recordings of the classroom 

planning sessions. And finally the third study uses the evaluating and reflecting templates along 

with the class discussion where students compared their developed models. The data from all three 

studies is from the same intervention, but separate and unique data sources are used for each study.  
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6.15 Summary  

 To conclude, this study uses a case study methodology to collect classroom data from an 

upper-division senior design course on food and pharmaceutical processing. While there are 

limitations to a case study methodology, its advantages are that it allows researchers to collect data 

in a naturalistic environment. Thematic analysis is used to analyze artifacts and observations from 

the case study to identify computational thinking behaviors and skills that emerged during the 

modeling intervention. Reliability is ensured using inter-rater reliability, transparency, and 

triangulation in parts of the analysis. And finally, steps have been taken to limit research bias 

through the analysis and ensure the research's ethical conduct.  
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 THE USE OF ENGINEERING MODEL-BUILDING ACTIVITIES TO 

ELICIT COMPUTATIONAL THINKING: A DESIGN-BASED 

RESEARCH STUDY 

Lyon, JA, Magana, AJ. The use of engineering model-building activities to elicit computational  

thinking: A design-based research study. J Eng Educ. 2021; 110: 184-206.   

https://doi.org/10.1002/jee.20372 

© 2021 American Society for Engineering Education 

7.1 Abstract 

Background Computation and computational thinking are of great interest to both engineering 

research and teaching communities. Effective learning environments are needed to incorporate 

computational thinking within the engineering disciplines. Design-based research is uniquely 

positioned to address this need for designing effective learning environments.  

Purpose This design-based research study characterizes the different ways in which students used 

computational thinking when building computational models. The design of the model-building 

activities was grounded in productive failure and model-eliciting activities.  

Design The design-based research study implemented the computational modeling activities 

within an engineering capstone course. The research question was: What types of computational 

thinking outcomes emerge when engineering students build computational models? Thematic 

analysis was used on individual student artifacts to identify key computational thinking outcomes 

that were elicited as a result of the intervention.  

Results Throughout the building of the model students demonstrated the use of computational 

thinking outcomes, mainly: abstraction, algorithmic thinking, evaluation, generalization, and 

decomposition. However, the diversity and density of use for each outcome were different and 

unique.  

Conclusions This study shows how building computational models, when guided by current 

educational theories, can allow for students to practice the use of computational thinking, and for 

educators to incorporate these key practices into their engineering classrooms.  

 

Keywords: computational thinking, modeling and simulation, design-based research, STEM 
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7.2 Introduction 

Computational thinking (CT) has been of particular interest to both the engineering research 

and educational communities since the term emerged from the field of computer science (Wing, 

2006). Consequently, there have been many different proposed definitions of CT as well as 

discourse as to what behaviors CT is comprised (Kalelioğlu et al., 2016). This has led to much 

recent work that focuses primarily on the definitional aspects of CT (Grover & Pea, 2013). Much 

of the CT literature also describes the context in which CT is useful, such as technology, 

programming, 3D modeling, and education (Ilic et al., 2018). In part, the rise of interest in CT and 

more broadly, computational sciences, can be attributed to national calls to increase computation 

and computer science at all levels of education (National Research Council (NRC), 2011; 

President's Information Technology Advisory Committee (PITAC), 2005). The calls are, in part, 

based on concerns of national organizations as it relates to national security and economic 

competitiveness (President’s Information Technology Advisory Committee, 2005). In response, 

programs such as the Computer Science for All initiative have emerged to support computer 

science and CT curriculum throughout the primary and secondary school years (United States 

Office of the Press Secretary, 2016).  

The field of engineering is not immune to these national calls and must respond by increasing 

computation education for engineering students. One pathway for achieving this integration is 

through the practices of modeling and simulation, which are commonly used in engineering 

professional practice (Gainsburg, 2006; Magana & Silva Coutinho, 2017). Modeling and 

simulation have been heavily studied in the context of engineering education (Diefes-Dux et al., 

2004, e.g., 2006; Lyon, Fennell, et al., 2020; Lyon & Magana, 2020a; Magana, 2017; Magana et 

al., 2019, 2020). The majority of these studies have primarily focused on the design and evaluation 

of learning interventions that engage students in mathematical modeling (e.g., Diefes-Dux et al., 

2006; Lyon & Magana, 2020a) or use of computational simulations to improve conceptual learning 

(e.g., Alabi et al., 2015; Brophy et al., 2013; Mansbach et al., 2016). Other studies have 

investigated modeling and simulation practices in engineering education at the intersection of 

computation or computational science (e.g., Magana et al., 2013, 2016, 2019; Vieira et al., 2016). 

These studies have identified the challenges students encounter as they program their 

computational models or modify existing computational models (e.g., Magana et al., 2017; Vieira 

et al., 2018), and pedagogical strategies that can support students’ in engaging in the programming 
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of computational models more effectively (e.g., Vieira et al., 2017, 2019).  Thus, modeling and 

designing model-based learning environments may be a good entry point to understanding CT 

within the context of engineering education.  

The goal of this study is to operationalize CT within an engineering classroom by using 

computational modeling and simulation practices as a mechanism to elicit CT outcomes. In order 

to effectively incorporate computational modeling into the classroom, design-based research 

(DBR) was used as the research method to understand how a designed modeling-based learning 

environment could be incorporated into a naturalistic setting. As such, the research question is, 

What types of CT outcomes emerge when engineering students build computational models? By 

approaching this question our goal is to build knowledge that can allow educators to better 

incorporate CT into the undergraduate classroom in practical ways, as well as to identify key ways 

in which students use CT within these practical applications.  In addition, by applying-DBR as the 

methodological approach, this study demonstrates how it is possible to increase the use of 

evidence-based teaching in STEM education. The study presents the first iteration of a DBR 

classroom intervention. An early version of this first DBR intervention has been published 

previously (Lyon et al., 2019). The goal is to continue to iterate upon the intervention design, and 

in the process improve the learning materials and classroom orchestration, and to gather insights 

on how CT outcomes emerge in the context of modeling and simulation. In doing so this study 

addresses the persisting gap and need for discipline-based education research that connects theory 

and practice, especially in the fields of science and engineering (NRC, 2012; Borrego & Henderson, 

2014). Practice-oriented research methods such as DBR, participatory action research, and case 

studies are needed to better understand how educational theory can best be implemented into the 

classroom environment (Design-based Research Collective, 2003; Miskovic & Hoop, 2006; Yin, 

1994). By applying DBR methods our goal is to not only meet local educational needs but to also 

generate and add to existing theory (Wang & Hannafin, 2005).  

7.3 Computational Thinking (CT)  

In recent years, CT has been researched to not only understand what it is but to also describe 

ways in which it can be used throughout the entire educational process (Ilic et al., 2018). CT can 

be used as both a guiding framework by which to structure an entire course (Evia et al., 2015; Jeon 

& Kim, 2017; Lyon & Magana, 2020b), as well as a construct to be measured within student 
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performance (Flanigan et al., 2017; Korkmaz et al., 2017). As such, the construct is able to lend 

itself as both a framework in which to guide the creation of educational interventions, as well as a 

construct to be learned from an educational intervention.  

Because the nature of CT is complex, there are multiple emergent and competing definitions 

to operationally define CT. For this study we define CT in terms of practices. Practices refer to 

actions and representations of what practitioners do as they engage in their work (Lee et al., 2013). 

Thus, practices are a necessary part of what students must do to learn a subject and understand the 

nature of the field (Reynante et al., 2020).  A few of the commonly cited works operationalizing 

CT in the context of research, policy, and industry are listed in Table 2. 

 

Table 2. Common CT practices from the literature and from related industry sources. 

Barr & Stephenson 
(2011)  

Grover & Pea (2013) Selby & Woollard 
(2013) 

College Board 
(2013) 

Google (2015) 

• Data collection, 
analysis, and 
representation 

• Problem 
decomposition 

• Abstraction 

• Algorithm 
procedures 

• Automation 

• Parallelization 

• Simulation  

• Abstraction and 
pattern 
generalization 

• Systematic 
processing of 
information 

• Symbol systems 
and 
representations 

• Structured 
problem 
decomposition.  

• Iterative, 
recursive, and 
parallel thinking 

• Conditional logic 

• Efficiency and 
performance 
constraints 

• Debugging and 
systematic error 
detection 

• Algorithmic 
thinking 

• Evaluation 

• Decomposition 

• Abstraction 

• Generalization 

• A thought 
process 

• Connecting 
computing 

• Developing 
computational 
artifacts 

• Abstracting 

• Analyzing 
problems and 
artifacts 

• Communicating 

• Collaborating 

• Abstraction 

• Algorithm 
design 

• Automation 

• Data collection 

• Data analysis 

• Data 
representation 

• Decomposition 

• Parallelization 

• Pattern 
generalization 

• Pattern 
recognition 

• Simulation  

 

As it can be observed, there are multiple practices that are repeated throughout these CT 

categorizations. One that is reiterated throughout every source is abstraction, suggesting it as a key 

component to CT. This is supported by the literature as the most common element defining CT 

(Kalelioğlu et al., 2016). When initially popularizing the term, Jeanette Wing (2008) wrote that 

“the essence of computational thinking is abstraction” (p. 3717). Grover and Pea (2013) also called 
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abstraction the keystone of CT. Thus, abstraction is a core component to the operational definition 

of CT.  Other practices such as decomposition, generalization, and algorithmic thinking were 

common to the definitions. Because of this pattern, the CT practices proposed through the body of 

work by Curzon et al., (2014) and Selby and Woollard (2013) were deemed appropriate as those 

overlapped among many of the sources. The practice definitions proposed by Selby and Woollard 

(2013) and adapted by Curzon et al. (2014) are: 

1. Abstraction: making problems easier to solve/think about by selectively removing/hiding 

unnecessary complexity.  

2. Algorithmic thinking: setting up problems so that they can be solved or solving problems 

in a stepwise manner.  

3. Evaluation: comparison of one’s own solution against other ideals and metrics to ensure 

the solution fulfills its purpose.  

4. Generalization: the use of previous solutions/ideas for current or future problems.  

5. Decomposition: thinking about complex problems in terms of a series of smaller 

problems.  

Additionally, these practice definitions provide practical operationalizations that could be used 

as a starting point for the goals of this research (Curzon et al., 2014). Other definitions of CT have 

been converted into taxonomies by listing specific practice and outcomes in order to better define 

the CT-enabled professional (Magana, 2017; Malyn-Smith & Lee, 2012; Weintrop et al., 2016). 

Yet, even in light of these practical taxonomies and desired outcomes associated with CT, there 

continues to be limited research that has practically implemented these practices and outcomes 

into the classroom, with much of the research continuing to be definitional in nature (Grover & 

Pea, 2013; Kalelioğlu et al., 2016). As such, research studies both promoting theory and practice 

are needed within the CT literature to add to an undertheorized and under operationalized construct.  

7.4 Methodological Approach 

Researchers in engineering education have articulated the need for theoretical and empirical 

work on engineering learning that can be supported by the learning sciences  (e.g., Johri & Olds, 

2011). The present study aims to (a) elicit CT outcomes by situating learning experiences in an 

engineering context by including the physical and social aspects of the discipline and (b) 

understand how students built their computational models and how within this process students 
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enacted CT outcomes. This study used design-based research (DBR) as a methodological approach 

to design, implement, and evaluate a modeling learning intervention that promoted CT. DBR has 

been defined as “an interdisciplinary mixed-method research approach conducted in the field that 

serves applied and theory building processes”  (Markauskaite et al., 2011, p. 8). DBR is an 

approach that builds upon a body of methods that go by other names in the literature such as design 

experiments, design research, development research, developmental research, and formative 

research (Wang & Hannafin, 2005). DBR brings educational research into the naturalistic 

classroom to produce results that are embedded and inseparable from their educational contexts 

(Barab & Squire, 2004). A design study is an iterative investigation of educational interactions and 

outcomes elicited by a set of designed, learning designs (Confrey, 2006). The learning designs 

often take the form of a whole learning environment including activities, materials, tools, and 

notational systems, including means for sequencing and scaffolding (Reimann, 2011, p. 37).  Thus, 

DBR provides us with a series of approaches that will allow us to “engineer” and study particular 

forms of learning that will be subject to test, revision, and iteration among the products of this 

research (Cobb et al., 2003).  DBR has five main characteristics that define it; it is pragmatic, 

grounded, iterative and flexible, integrative, and contextual (Wang & Hannafin, 2005). Pragmatic 

means that DBR contributes to both educational theory and practice. The output of a DBR study 

should, in part, lead to design principles that can be used in the educational classroom (Barab & 

Squire, 2004). Grounded means that DBR should pull from current educational theory or evidence-

based pedagogies in order to generate designed interventions. Interventions should be iterative, 

meaning that the design is continuously refined (Wang & Hannafin, 2005). The integrative nature 

of DBR means that it can use multiple methods to ultimately answer the research question, often 

using a mix of methods in order to do so (Wang & Hannafin, 2005). Finally, DBR is contextual, 

meaning that it is imbedded within a classroom context.   

The aforementioned characteristics suggest that DBR considers education as an applied field 

where researchers have transformative agendas (Barab & Squire, 2004). As such, they develop 

contexts, frameworks, tools, and pedagogical models with the intent to produce new theories, 

artifacts, and practices that can impact teaching, learning, and engagement in naturalistic settings 

(Barab & Squire, 2004). Although in part, the contextual nature of DBR limits the generalizability 

of this approach, it also creates localized theories that are useful in a pragmatic way. As stated by 

the  Design-based Research Collective (DBRC) this contextual nature is “precisely what 



 

 

78 

educational research most needs to account for in order to have application to education practice” 

(DBRC, 2003, p. 6). Thus, for what DBR lacks in generalizability it gains in its ability to take 

broad research theory and put it into practice. This study presents the first iteration of a DBR cycle. 

7.5 Theoretical Framework and Implications for the Study 

A DBR study starts by first identifying a learning theory that will guide the design of the 

educational intervention.  The cycle then continues with the development and deployment of the 

educational intervention, and concludes with a thorough evaluation of the learning outcomes. To 

do so, education research is then performed to evaluate the impact of the intervention. As this cycle 

is enacted iteratively in classroom settings, the ultimate goal is to contribute to theory by 

identifying design principles for creating discipline-based learning experiences.  The guiding 

theory for the design of our intervention is model-based reasoning (Ifenthaler & Seel, 2013). 

Model-based reasoning has its roots on research from the cognitive sciences that explains how 

new concepts are formed and how they are related to existing concepts (Nersessian, 1999). 

Associated with a logical positivist view, model-based reasoning treats conceptual structures as 

languages for “explaining the nature of the logical and interpretive relations between the old and 

new conceptual structures and between concepts and the world” (Nersessian, 1999, p. 5). That is, 

model-based reasoning is one form of scientific thinking concerned with describing how novel 

scientific representations are created from existing representations (Nersessian, 2002). As 

individuals engage in modeling processes, they use or create models by connecting phenomena in 

the natural world to language, from existing knowledge to new knowledge, and from conception 

to experiment (Nersessian, 1999).  

Model-based reasoning supposes that every individual has a unique set of mental models in 

which they understand and interact with the world (Ifenthaler & Seel, 2013). Sometimes, these 

mental models are externalized as mathematical or computational models as a way of offloading 

or externalizing some of the required processing (Jonassen, 2009; Quillin & Thomas, 2015). 

Because the computational model is an extension of an internal mental model that guides a 

student’s understanding of the world, when investigating a student’s modeling process, the 

reasoning behind it should reflect the student’s interpretation of the physical phenomena. 

Assumptions, design decisions, and reflections upon the results should all indicate how the student 

understands the underlying phenomenon being modeled.  It is within this reasoning process, that 
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our study aims to identify the different ways that students represented their physical model, and to 

describe how the commonly identified components of CT were embedded throughout this 

modeling process. Furthermore, model-based reasoning guided the design of the data collection 

instruments, by asking students to breakdown their model and explain in detail why they were 

making the design decisions that they made.  

7.6 Theoretical and design conjectures 

An important step in the DBR cycle is to articulate a way of conceptualizing and carrying out 

research on learning environments (Sandoval, 2014). To align our learning design with our 

research design we employed a conjecture map. Conjecture mapping is a useful tool for aligning 

the design conjectures of a DBR study with the embodiment (based on research grounded in 

theory), along with mediating process and the observed outcomes of the study (Sandoval, 2014).  

A conjecture map distinguishes conjectures about how a learning design (e.g., an educational 

environment) should function based on theoretical conjectures, and explains how the functioning 

produces intended learning outcomes.  Figure 8 depicts a conjecture map for the design of the 

learning environment and the intended learning outcomes for this study.  The conjecture map 

presents a high-level conjecture that is a principle of how to promote some desired learning or 

student attribute.  The embodiment refers to the features of the learning environment in terms of 

tools, pedagogical practices, discursive practices, and task structures. For our intervention, these 

included the MATLAB programming environment, model-eliciting activity (MEA) design 

principles (R. Lesh et al., 2000), and productive failure (Kapur & Bielaczyc, 2012). The mediating 

processes refer to those salient performances or products expected to result from the embodied 

elements.  The outcomes are the result of the mediating processes and these are the elements that 

are ultimately measured  (Sandoval, 2014).  
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Figure 8.  Conjecture map overviewing the design of the Building the Model phase. 

© 2021 American Society for Engineering Education 

 

 

Our high-level conjecture is grounded in a situative perspective, such as model-based 

reasoning.  A situative perspective considers learning as an activity grounded in a social context 

where multiple people generate and use a variety of artifacts to transform those into productive 

practice (Sawyer & Greeno, 2009). Thus, our higher conjecture is that modeling and simulation 

promotes CT when the activities are situated in real-world engineering contexts, and when engaged 

in the process of creation and use of artifacts (i.e., computational models).  As displayed in Figure 

8, the three pieces to the embodiment that constitute the elements of situatedness are (1) the 

incorporation of the MATLAB programming environment, (2) the use of model-eliciting activity 

(MEA) design principles to design the activity (Diefes-Dux et al., 2004), and (3) the use of 

productive failure to design both the task and participant structures (Kapur & Bielaczyc, 2012). 

The MATLAB programming environment enabled the students to create computational algorithms 

and programs. Likewise, the MEA design principles required students to create models, also 

leading to the formation of computational algorithms and programs. The MEA design principles, 

via the construct documentation principle required students to evaluate and explain their models, 

leading to the mediating process of student explanations of solution and reasoning processes 

(Diefes-Dux et al., 2004). Finally, the use of productive failure in the design guided students in 

working together to produce pieces of the work, leading to the necessary student explanations as 

they worked within a diverse team.  
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It was hypothesized that these two mediating processes (i.e., computer algorithms and student 

explanations), lead to CT outcomes. First, abstraction was accomplished by the student during the 

building of the algorithm as a mediating process. Abstraction consisted of essentially stripping 

away details, something the students constantly did to the physical system as they moved into the 

computational domain, and then made explicit when delivering explanations of their models. 

Algorithmic thinking was elicited during the programming phase as students put computational 

commands and programming logic into a certain progression, in order to accomplish the goals of 

the assignment. Evaluation was elicited within the student explanations, as students validated and 

verified the output of their models and compared them against their own expectations, as well as 

compared to external expectations (such as the instructor or the requirements of the assignment). 

Generalization was prompted within the programming of the model itself as students reused code, 

as well as how students explained their solution would be useful in other contexts. And finally, 

decomposition was used both within the breaking up of the algorithm, as well as the student 

explanations of why they did certain tasks separate of others.  

7.7 Pedagogical Design 

Models and modeling and productive failure were the two pedagogical approaches used for 

designing the modeling intervention (Kapur, 2008; Louca & Zacharia, 2012).  Specifically, the 

models and modeling perspective informed the activity design to elicit model-based reasoning, 

while productive failure largely informed the design of the participant structures and learning 

environment (Kapur & Bielaczyc, 2012; Louca & Zacharia, 2012). The activity itself was also 

structured through MEA design principles (Diefes-Dux et al., 2004). Assessments were rubric-

based and designed in order to assess the students’ ability to develop their modeling solution. The 

pedagogical design was implemented in a capstone design course within a biological engineering 

department focused on food and pharmaceutical process design. The learning objectives for the 

course were (1) the ability to develop unit operation designs (in our case through modeling), (2) 

improving computer skills, and (3) developing an ability to work in teams.  While the rubrics were 

used for classroom grading purposes, for research purposes we qualitatively analyzed the raw data 

in the form of student-generated artifacts, instead of quantitative data condensed in the rubric 

scores.  
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7.8 Models and modeling  

Modeling is a common engineering practice and has been studied in multiple contexts within 

engineering education. One mechanism that has been commonly used to incorporate modeling into 

engineering contexts has been via model-eliciting activities (MEAs). MEAs have been heavily 

studied by the engineering education research community (Diefes-Dux et al., 2004, e.g., 2006; R. 

Lesh et al., 2000). Modeling-eliciting activities were designed guided by six principles (Diefes-

Dux et al., 2004; Zawojewski et al., 2008). The six principles along with how those were applied 

to the design of the MEA are described in Table 3.  

 

Table 3. MEA design principles and their application in our intervention.  

Principle Definition Application 

Model-

construction 

principle 

“The Model-Construction Principles 

ensures that the activity requires the 

construction of 

an explicit description, 

explanation, or procedure for a 

mathematically significant situation” 

(Diefes-Dux et al., 2004, p. 5).  

  

In our intervention, the students built an 

algorithm consisting of mathematical 

and computational structures in order to 

describe a canning sterilization process.  

Reality principle “The Reality Principle requires that the 

activity be posed in a realistic context and 

designed so that students can interpret the 

activity meaningfully from their different 

levels of mathematical ability and general 

knowledge” (Diefes-Dux et al., 2004, p. 

5).  

  

In our intervention, the students were 

given an email from a systems’ 

engineer, very similar to what could be 

expected as industry professionals. In 

addition to requirements, the email 

included blueprints and data.  

Self-assessment 

principle 

“The Self-Assessment Principle ensures 

that the activity 

contains criteria the students can identify 

and use to test and revise their current 

ways of thinking” (Diefes-Dux et al., 

2004, p. 5).  

In our intervention, the students were 

able to visually output their models 

using MATLAB and to compare them 

to given operating conditions (desired 

output temperatures of the food product 

and amount of destruction of harmful 

bacteria). 

  
Model-

documentation 

principle 

“The Model-Documentation Principle 

requires students create some form of 

documentation that will reveal explicitly 

how they are thinking about the problem 

situation” (Diefes-Dux et al., 2004, p. 5).   

The students were asked to complete 

and turn in documentation for each 

phase of the activity, asking them to 

explain their decision-making 

processes thoroughly. 

Table 3 continued 
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Construct 

share-ability 

principle 

“Often termed the Generalizability 

Principle, this principle 

requires students produce 

solutions that are shareable with 

others and modifiable for other 

situations” (Diefes-Dux et al., 

2004, p. 5).   

In our intervention, students developed models of 

sterilization processes that could be used in a host 

of various sterilization contexts. The students also 

discussed and decided on different assumptions 

made and the effects of those assumptions.   

  

Effective 

prototype 

principle 

“The Effective Prototype Principle 

ensures 

that the model produced will be as 

simple as possible yet still 

mathematically significant” 

(Diefes-Dux et al., 2004, p. 6).   

In our intervention, students developed and 

applied their understanding of how sterilization, 

heat transfer, and degradation happen within 

biological processing systems.  

 

Another important aspect to MEAs is the need for different correct ways to solve the learning 

activity. In our design, there were different assumptions or mathematical ways in which the 

problem could have been solved. For example, the students were given enough information to 

solve microbial degradation in multiple ways.  Students could have also assumed various 

geometric qualities of the container, in this case a can, within the sterilization process (e.g., as a 

slab or as an infinite cylinder). Additionally, different qualities of the heating process could have 

been assumed, such as whether or not convection was important at the boundary, causing the 

resulting solution method to differ. As such, there were multiple different relevant solution 

pathways to the given MEA.  

7.9 Productive failure 

Productive failure is a method of teaching that allows students to explore different solution 

pathways to complex and ill-structured problems without instructors providing structural support, 

often leading to students failing initially before arriving at an acceptable solution (Kapur, 2008). 

Students who learn this way often perform better on subsequent assessments (Kapur, 2008; Kapur 

& Bielaczyc, 2012). Productive failure naturally fits well within the domain of biological 

processing systems  as designing these systems involves engagement in complex and ill-structured 

problem solving practices, a beneficial context for productive failure (Kapur, 2008). Such practices 

are often encountered by professional engineers (Gainsburg, 2006). Whereas MEA design 

principles were used to design the activity itself, productive failure was used to deliver the activity 

and orchestrate the implementation.  
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Productive failure has both design requirements for the activity and for the environment around 

the activity. Productive failure operates within two phases: generation and exploration of RSMs 

and consolidation and knowledge assembly (Kapur & Bielaczyc, 2012). In the first phase, students 

should be given a problem in a narrative form, and be embedded in an environment that allows for 

collaboration among students (Kapur & Bielaczyc, 2012). For our intervention, students were 

given a complex modeling problem on food sterilization. During the early phases of the problem, 

researchers and the instructor did not give direct help to the students but rather encouraged them 

to explore the different ways to solve the problem. For instance, rather than directing the student 

to a best process for solving a particular aspect of the problem, the instructor probed the students 

to think about different assumptions that could be made and the repercussions of those assumptions.  

In the second phase of productive failure, students should have access to other student and 

expert created solutions to the problem (Kapur & Bielaczyc, 2012). In our intervention, after the 

models were built, students had the opportunity to look at other student solutions and discussed 

how the models operated differently than theirs. This process was documented by the students so 

that they could think through what decisions the others made and compared them their own.  

The food sterilization problem was adopted from previous iterations of a biological 

engineering course. This problem was then adapted to integrate MEA design principles and 

orchestrated to follow a productive failure approach. The adaptation of the original problem to 

follow the MEA design principles and orchestration via productive failure was performed as part 

of a semester-long learning design project for a cyberlearning research and development doctoral 

course. Feedback on the redesign the problem was then gathered from subject matter experts in 

engineering education, learning sciences, and the domain expert who was also the instructor of the 

course. The results of this study report findings from the first classroom implementation of the 

problem; however, the problem has been deployed a second time with minimal changes.  

7.10 Research Design 

Once the learning intervention was designed guided by pedagogical principles, the next step 

in the DBR cycle was to implement and test it in a working classroom.   Our guiding research 

question was: What types of CT outcomes emerge when engineering students build computational 

models situated in real-world contexts?  
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7.10.1 Context and participants 

The intervention was deployed in a required upper-division senior engineering capstone course 

on food and pharmaceutical processing within a biological engineering department. This context 

was selected for multiple reasons.  First, the discipline of biological engineering, although highly 

interdisciplinary, does not get substantial exposure to computation at the undergraduate level 

compared to other fields such as electrical and computer engineering.  Second, we wanted the 

findings to be derived from male and female populations, and biological engineering was an ideal 

candidate due to the traditionally higher rates of female enrollment in biological and agricultural 

sciences (National Science Board, 2018). Third, the research team has extensive disciplinary 

expertise in this domain, and therefore qualified to identify the interplay of domain knowledge and 

CT. The intervention was given over approximately four weeks in the middle of the semester. The 

class focused on a senior design project in addition to multiple smaller design/modeling problems 

throughout the semester on various food manufacturing processes. The designed educational 

intervention focused on food sterilization, specifically within a canning operation. As such, the 

current designed intervention primarily focused on students working alongside team members on 

a computational modeling assignment to design a sterilization line (Appendix A).   

The students already had exposure to programming coursework and basic principles of transfer 

physics in earlier engineering courses. However, computer programming abilities within this 

engineering discipline are far often less than other engineering disciplines such as electrical or 

computer engineering. Much of the classwork up until the final year was focused on transfer 

physics and fundamental sciences (i.e., chemistry and biology). Most students had taken a 

modeling class prior to the course in this study, which was a requirement for their major plan of 

study. Additionally, all students had previous exposure to MATLAB as part of their first-year 

introductory engineering coursework.  For this intervention students used MATLAB software to 

build their computational models. The students worked within teams of three to four members to 

both plan and evaluate their models, however each student was expected to do the modeling 

assignment individually.  

The total number of participants in the study was 45 students distributed among 15 teams. 

Students were not asked to report their gender or race information at any point during the study. 

However, according to publicly available statistics from the biological engineering department at 

the institution, there are approximately 52% female students in the entire program.  In the same 
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institution, the percentage of all female students throughout the entire college is approximately 

26%. Since the class where the intervention took place was a required course for all students in the 

major, the class’ demographics was considered to be representative of the biological engineering 

department. Fifteen individual student solutions (n=15), consisting of reports and MATLAB code 

representative of all available groups were chosen from the 45 samples for analysis in this study. 

The fifteen individual students were chosen purposefully based on being exemplar work from each 

of the teams.  That is, from each of the 15 teams, the most representative solution was selected for 

further analysis.   

7.10.2 Classroom Implementation 

Given that in DBR implementations can vary based upon both actors and the context (Kelly, 

2004), in order to ensure transparency of the research, the implementation as  it played out in the 

classroom needs to be described. The MEA and productive failure principles were combined to 

create a four-phased learning intervention that allowed students to go through an entire modeling 

and simulation cycle. The classroom implementation is outlined in Table 4 showing what the 

activities were, what the students did each day, and the role the instructor took.  Note that for the 

purposes of this study, only the second phase, building the model, was used for data analysis 

purposes. 
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Table 4. Four-phased learning design of the modeling process, highlighting the phase used for 

this study. 

Phase In-Class Activity Student Deliverable Instructor Role 

Planning the 

model 

(Week 0) 

Students work in teams to 

produce an outline of a plan of 

assumptions, equations, and 

layout of computational model.  

  

Students individually turned 

in a template with a 

description overviewing their 

plan for the model.  

Instructor encourages 

students to explore problem 

space.  

Building the 

model  

(Weeks 1-3) 

Students individually build their 

computational models in 

MATLAB programming 

environment.  

Students individually turned 

in a report template with their 

detailed solution and 

commented computer code.   

Instructor refrains from 

answering questions in 

specific detail, but 

encourages problem space 

exploration.    
Evaluating 

the model  

(Week 3) 

Students meet in multiple groups 

to evaluate their own model 

against their peers.  

Students individually turned 

in their generated notes from 

their multiple group 

discussions.  

  

Instructor emphasizes that 

there is no one way to 

correctly answer the 

problem.  

Reflecting on 

the model  

(Week 4) 

Students individually answer 

targeted reflection questions 

about their entire modeling 

process.   

Students individually turned 

in a completed reflection 

template.  

Instructor encourages 

authentic reflection of the 

process.  

 

In the first class, students were given an overview of the problem and were asked to work 

within an already assigned group on planning how they would solve the problem and build the 

computational model. During this time the instructor and researchers mainly answered questions 

about the problem design, without telling the students how to solve the problem but rather to 

expand their thinking. Students were then assigned to build the computational model and given 

both a report template and programming file template to be filled out (Appendix B and C), which 

is the primary data set for the current study. Both of these artifacts, the report template and 

programming file template were produced by the students individually and not as part of a team 

exercise.  

Between the first class where the students were given the MEA and the second class three 

weeks later where the students brought in their solutions, there were a host of different tasks that 

students accomplished. First, during this time, the instructor lectured over various subtopics 

regarding food sterilization such as microbial death kinetics, finite difference analysis, and heat 

transfer. Additionally, students had other assignments and activities as part of the class relating to 

their capstone projects.  These included homework assignments on more basic problems from the 

textbook. Students were also expected to be working on their MEA solution during this timeframe 

and be incorporating aspects from the subtopics being covered in class.  
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 In the second class, approximately three weeks after the first class, students brought in their 

modeling solutions consisting of both the report template and completed programming template 

(Appendices B and C). The students then got into their groups and discussed how they had ended 

up solving the problem. Students also met with randomly assigned other groups to look at how 

their models differed from a diverse group of student solutions. Instructors acted as facilitators, 

having students move between groups but not providing them with specific answers to solve the 

problem. Finally, all students individually completed a short reflection report that asked them to 

think about how they solved the problem and what changes they would make to their solution if 

given more time. This allowed students to think about ways they would improve their models and 

performance on the modeling assignment beyond the multiple iterations they had already gone 

through.  

7.10.3 Data Collection 

All of the data was collected in the naturalistic context of a classroom environment. Various 

templates were used to elicit detailed student responses of their reasoning and decision-making 

processes through the problem. This study focuses on the model-building process, looking at how 

students used CT during this phase of the intervention. Multiple artifacts were collected including 

a model-building template which asked the students to write up their modeling process and 

thinking process (Appendix B). A second programming file template was given to them with 

instructions on how to comment the code and what to include in the commented programming files 

(Appendix C). While students were allowed and encouraged to work together if they needed 

support, all students individually had to turn in each of these artifacts.  

7.10.4 Data Analysis 

Data analysis was performed on each artifact students individually created during the building 

the model phase and were used as evidence of CT outcomes within modeling and simulation 

solutions.  To approach our analysis, we used deductive thematic analysis. Thematic analysis at its 

core is “a method for identifying, analyzing and reporting patterns (themes) within data” (Braun 

& Clarke, 2006, p. 79). Thematic analysis can be either inductive, where the themes are completely 

emergent from the data themselves, or deductive (theoretical) where the themes are emergent 
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based on prior theory and literature (Braun & Clarke, 2006). Thematic analysis can account for 

both manifest and latent content within the dataset (Helene Joffe, 2012). For our data analysis 

procedure, the data was coded by identifying utterances and student developed structures that 

showed the presence of CT as defined categorically by Curzon, Selby, and colleagues (Curzon et 

al., 2014; Selby & Woollard, 2013). Once the initial CT practices were identified, we applied an 

inductive approach to further characterize CT outcomes.  The data analysis procedure followed a 

six step process (Elo & Kyngäs, 2008): (1) familiarizing oneself with the data, (2) defining initial 

codes from the literature, (3) search for themes amongst the coded data, (4) reviewing the 

identified themes, (5) naming and defining the themes, and finally (6) reporting out on the themes.  

7.10.5 Initial coding categories 

Our research operationalized CT into five separate practices as initially proposed by Selby and 

Woollard (2013).These are categorically abstraction, algorithmic thinking, evaluation, 

generalization, and decomposition. Initial definitions were adapted from Curzon, Selby, and 

colleagues (Curzon et al., 2014; Selby & Woollard, 2013), but were further refined as we 

iteratively moved throughout the thematic analysis, and clarity emerged for the coding rubric. 

Table 5 lists the refined definitions for each CT practices.  
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Table 5. Final refined definitions of CT practices as adapted from the literature.  

CT Practice Definition 

 

Abstraction 

 

Making problems easier to solve/think about by selectively removing/hiding unnecessary 

complexity by making assumptions about how the problem should operate or by neglecting or 

adding components to the problem. 

 

Algorithmic 

Thinking 

 

Setting up problems so that they can be solved in a stepwise manner by looking at the 

procedural aspects of the problem; or by acknowledging the uses and effects of solution 

structures temporally and procedurally throughout the solution. 

 

 

Evaluation 

 

Comparing one’s own solution against various criteria either given by the problem itself or 

against criteria brought to the problem by the student themselves. This can also be a statement 

describing desirable qualities of the final solution in terms of function, display, or other final 

form characteristics. 

 

Generalization 

 

Reusing previous solutions, methods, or constructs for the current problem; or the use of 

current solutions, methods, or constructs from the current problem to hypothesize about their 

use in future contexts.   

 

Decomposition 

 

Thinking about how the pieces of the problem can be used separately, strategically breaking 

down the problem for easier solution or use, or breaking the problem down into subcomponent 

structures, pieces, or areas. 

7.10.6 Emergent themes 

For our deductive thematic analysis process, student Building the Model templates (see 

Appendix B) and coding file templates (see Appendix C) were coded for utterances and developed 

structures that fell into one of the initial coding CT practices listed in Section 6.5. Each utterance 

and structure were then broken into different outcomes or themes that mapped to the corresponding 

CT practices. CT outcomes were defined as the fine-grained subcategories that were observed from 

the student artifacts that fell within each of the CT practices. The unit of analysis was at the idea 

or sentence level.  After the initial coding process, definitions for each of the outcomes were further 

developed and the transcripts were again reanalyzed a second time by the primary researcher for 

(a) refining the coding structure and looking for additional uncoded observations and (b) 

evaluating already coded utterances and structures. Thus, themes of outcomes emerged from 

within each of the CT practices.  

7.10.7 Trustworthiness considerations 

Multiple steps were performed in order to ensure trustworthiness and reliability throughout the 

data analysis process. First, there were multiple data streams analyzed through both the student 
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reports and the student coding files allowing for some triangulation of results (Nowell et al., 2017). 

Participant quotes were used often to show that the results are an accurate reflection of the data 

itself (Elo et al., 2014). The initial CT practices and CT outcomes of the codebook were developed 

by the lead researcher and validated and refined with three other subject matter experts, one in the 

field of computer science, a second one in the field of computational biology, and a third one in 

the field of computational science education.  

Additionally, interrater reliability was used as a metric for determining the trustworthiness of 

the thematic analysis (Vaismoradi et al., 2013). For this study, a second independent researcher 

was provided with a sample of data, representative across analyzed transcripts, at the unit of 

analysis level (sentence/idea level). The lead researcher overviewed some training data and 

introduced the codebook to the second rater. Then, the independent researcher individually coded 

each sentence into a CT practices and outcome. The first round of interrater reliability was 

performed with a small sample of the data.  After the first round of interrater reliability, the two 

raters came together to make final improvements to the definitions in the codebook. The final 

round of interrater reliability with the second independent researcher achieved a percent agreement 

of 82% on the CT practices and 81% on the CT outcomes, focusing on over 20% of the coded 

items. This was determined to be satisfactory given the deep disciplinary knowledge embedded 

within many of the student quotes and that the lead researcher had met with three interdisciplinary 

experts about the robustness of the codebook.  

7.11 Results 

There were multiple coded themes found in each of the CT practices with evaluation having 

the highest number of outcomes (7) and generalization having the lowest number of outcomes (1). 

Each of the practices had at least one outcome that emerged from the 15 transcripts. Table 6 

overviews each of the CT practices along with the outcomes that were found for each of them.  
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Table 6. Outcomes for each of the CT practices.   

Abstraction Algorithmic Thinking  Evaluation Generalization Decomposition 

Dynamic to static  

  

Indication of later use/effect   Time efficiency  Reuse of code  For ease of use  

Infinite to finite  Conditional logic Code flexibility   

 
For organization  

Multiple to single  

  

 
Design Criteria  

  

Ranges to values    

 
Code accuracy  

  

  
Code complexity  

  

  

  
Solution usability 

  

  

  
Debugging   

  

 

Abstraction and evaluation were seen in all 15 students’ reports throughout the thematic 

analysis, with algorithmic thinking being seen in 13 student reports. Decomposition was seen in 

14 student solutions, with generalization being the least seen practice, only being seen in seven 

student solutions. For example, for abstraction, the theme of infinite to finite was seen in ten 

student solutions while the ranges to values code was seen in eleven student solutions. In the 

subsequent sections, we will go over each of the themes and give definitions as well as quotes 

from the students work in order to provide evidence for each of the outcomes within each of the 

CT practices.  

7.11.1 Abstraction 

The keystone of CT is abstraction (Grover & Pea, 2013). For our framework, the definition 

considered for abstraction entailed making problems easier to solve/think about by selectively 

removing/hiding unnecessary complexity (Curzon et al., 2014). There were multiple outcomes that 

manifested themselves throughout the student solutions that were coded as abstraction due to their 

simplifying nature within the dataset (see Table 7).  
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Table 7. Observed outcomes within the practice of abstraction.  

Abstraction Definition Quote(s)  

Dynamic to 

static 

Making factors or variables that vary in respect to other 

variables or aspects of the problem and making them constant 

or unchanging.   

“Thermal properties stay 

constant throughout temperature 

change.”  

Infinite to 

finite 

Making aspects of the problem or system that are infinite or 

continuous and making them finite or discrete in nature. 

“This was assumed to be true 

because there was no way to truly 

calculate the average temperature 

of the can unless infinite nodes 

were used.”  
Multiple to 

single 

Simplifying aspects of the problem that have multiple 

dimensions or factors and simplifying the dimensions or 

factors considered in the solution through choice of one or 

neglection of factors; or creating limits or boundaries to what 

is considered to be affecting or influencing the considered 

system.  

“The times for each bacteria are 

outputted and the largest is used 

as the sterilization time.”  

Ranges to 

values 

Making factors or variables that have multiple possible values 

(within a range or list) and simplifying the condition into a 

single value, such as worst-case scenario or average across a 

range.   

“The value for Ea was on the low 

end, and the value of Z and 

D250 were on the high end of 

the ranges given for C. 

Botulinum.”  

 

Many of these abstraction outcomes mapped to various simplification outcomes that are 

indicative of problem solving by reducing the complexity of the problem. Each of the outcomes 

was seen primarily in different areas of the problem. For example, taking the infinite to the finite 

was primarily demonstrated when converting mathematical operations into their computational 

counterparts. This was observed as student moved between the infinite world of calculus to the 

finite world of loops. 

Many of the other themes were a result of problem structure. For example, the problem gave 

the students many different microorganisms to focus on throughout the sterilization process. One 

example of taking the multiple to the single was students choosing to focus on one specific 

microorganism rather than focusing on all of them. Additionally, taking ranges to values was often 

the result of problem structure as students had to take ranges (such as operating temperature ranges) 

and make decisions about how to handle these in their computational models.  

7.11.2 Algorithmic thinking 

Algorithmic thinking is often hard to distinguish from mathematical thinking and CT 

(Weintrop et al., 2016). For this analysis, we considered algorithmic thinking as setting up 

problems so that they can be solved in a stepwise manner (Curzon et al., 2014). This outcome 
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manifested itself in multiple ways throughout the transcripts analyzed for each of the 15 students. 

Table 8 further elaborates on examples and definitions. 

 

Table 8. Observed outcomes within the practice of algorithmic thinking.  

Algorithmic 

Thinking 

Definition Quote(s) 

Indication of 

later use/effect 

Indicating that information will be useful for a 

later process or a later point in the code. 

Indication of what certain variables or structures 

will cause later in the solution or code or 

explanations of location of code for effect.  

  

“%It is important that this code is after the 

center so the initialization of the array at 6 is 

not ran through the loop, this for loop was 

made so it creates the temperature profile for 

the cylinder points 3-6 boundary.” 

Conditional 

logic 

Indication of an either/or condition based on 

previous conditions.   

“If the conditional statement is not met, 

then the solution is unstable and it is not 

worth continuing the program.” 

 

The themes within algorithmic thinking demonstrate a progression and temporal understanding 

that the students exhibited during their model-building process. Algorithmic thinking was shown 

in multiple ways throughout the student model-building solutions. Students, when discussing their 

code, discussed the effects and use of certain variables later in the code. For example, students 

discussed how a variable defined at the beginning of the code was used later in the code or how 

looping outputs were used later in the code. Additionally, some students discussed how certain 

aspects or variables within their code would affect the code later on.  

7.11.3 Evaluation 

Evaluation as a practice had the most themes identified through the thematic analysis. 

Evaluation was considered as the act of comparing the solution to either an ideal, another person’s 

solution, or to the requirements of the problem (Curzon et al., 2014). Evaluation was constantly 

used throughout all of the modeling and simulation process, specifically for validating  a solution 

(Czocher, 2018). Throughout the themes, it can be seen that this practice manifested in multiple 

ways such as comparing the solution to a time ideal, to a stakeholder desire, or to an accuracy 

requirement. Definitions and corresponding samples of quotes are provided in Table 9. 

 

Table 9 Observed outcomes within the practice of evaluation. 

Evaluation Definition Quote(s) 
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Time 

efficiency 

Evaluates code or solution based on the amount 

of time taken to arrive at solution or time 

wasted.   

“This saves computational time if a bad 

system has been created.” 

Code 

Flexibility 

Evaluates code or solution based on an ability to 

easily change later.  

“The for loop was useful because it allowed 

easy changing of the amount of time the can 

was to be sterilized while still calculating the 

temperature profiles.”  
Design 

Criteria 

Evaluating the code or solution against the 

wishes and requirements of stakeholders.  

“The temperature matrices were then converted 

to F because that was the unit the customer 

requested the report be in.”  
Code 

Accuracy 

Evaluating the code or solution in regards to the 

actual or perceived accuracy of solution method 

decisions.  

“It is unlikely that the value is off by any 

significant amount as models using more 

nodes showed similar values.”  
Code 

Complexity  

Evaluating the code or solution in regards to the 

amount of work, time, or effort needed to create 

the solution.   

“These functions were chosen to…utilize the 

power of built in Matlab functions.” 

Solution 

Usability 

Evaluating the code or solution in regards to ease 

of use for themselves or others.  

“This allows us to see how temperature 

changes over time and position, and formats 

the graphs in a clear way.”  
Debugging  Evaluating the code or solution periodically 

throughout the creation or solution process to 

ensure ability to run, reasonableness, or to collect 

feedback about the solution.  

   

“%is just a plot of the heating temperature 

profile, I had this to just check that the heating 

profile looked correct.” 

 

Evaluation was prevalent throughout the student solutions and thus had the most themes of any 

of the CT practices. Students used evaluative outcomes to compare their solution against other 

ideals for efficiency, flexibility, the desires of the stakeholders, accuracy, complexity, and usability. 

Some of these outcomes were likely the result of the problem structure, such as stakeholder 

requirements.  

Additionally, evidence of debugging was exhibited, which is evaluating the algorithm as one 

is creating it. While many of the other evaluating outcomes were observed in the context of 

assessing the final solution (accuracy, efficiency, and usability), some of the outcomes were 

evaluations during the modeling process itself (debugging, complexity, and flexibility). These in-

process evaluations informed the students about how their code should have been structured.  

7.11.4 Generalization 

Generalization had the least number of themes emerging from the analysis with only one 

outcome. Some definitions of CT combine abstraction and generalization into one CT practice 

(Grover & Pea, 2013). However, for this study, we broke them into two specific coding practice. 

Generalization was considered as instances where the student used previous solutions or ideas for 
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the current problem, or used current solutions or ideas to project onto future problems (Curzon et 

al., 2014). In contrast to abstraction, which was coded as structures that aimed to simplify the 

problem in order to make it easier to solve, generalization was primarily connected to how students 

transferred information within and across contexts. Table 10 provides definitions for this theme 

and corresponding samples of quotes. 

 

Table 10. Outcome observed within the practice of generalization. 

Generalization Definition Quote(s) 

Reuse of 

code/equations 

Reusing or repeating portions of code 

or equations throughout the solution 

method. 

“Additionally, the thermal properties are redefined 

for each temperature using the same method 

described above.” 

 

Generalization was rare within the building the model phase, and thus is only represented with 

one theme. The ways in which students used generalization, consisted of reusing codes and 

equations for different purposes within their modeling process. For example, students may have 

reused a section of code containing a while loop to both calculate the heating profile of the can as 

well as to calculate the number of microorganisms later in the code. Merely copy and pasting code 

in multiple places was not considered reuse, but rather, where students mentioned in their report 

writing or code comments the reuse of the code or equations.  

7.11.5 Decomposition 

Finally, decomposition had two themes emerging from the dataset. Decomposition was 

considered as any outcome where the student intentionally broke the problem into smaller pieces 

for the purposes of solving, using, or thinking about their solution (Curzon et al., 2014). While 

there were not many themes that were coded as decomposition, the majority of participants at least 

exhibited some form of decomposition during the solution process. Table 11 outlines the various 

emergent themes.  

 

Table 11. Outcomes observed within the practice of decomposition.  

Decomposition Definition Quote(s) 

Organization of larger 

solution method  

Decomposing the code or solution 

method as an organizational tool.  

%INITIALIZE OUR DATA MATRIX 

… 

%FINITE DIFFERENCE METHOD AND 

CALCULATION 
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(Student broke up code into large sections.)  
Ease of use of program Decomposing the code or solution 

method so that the program or solution is 

easier to use.  

“The run time for this section is large, so it 

should only be run once to determine the 

temp.” 

 

While there are two themes that emerged from the decomposition practice, decomposition 

outcomes were often implicit in students’ artifacts and explanations. For example, organization of 

larger solution methods was often students breaking their code into multiple subsections, with 

commented titles or commented section headers. This allowed for a student to identifying sections 

or pieces of the code within their programming script. The ease of use of program, was often 

students breaking apart their code into separate functions, allowing them to be called upon at any 

time in the larger programming script. Although students rarely discussed in detail their 

decomposition outcomes, it was apparent through their solutions and created artifacts that students 

were in fact breaking the problem down. Within decomposition, repetitive outcomes were only 

coded once even if there were multiple occurrences of the same outcome. For example, if a student 

broke their code into five functions, it was only coded as decomposition once, not five times.  

7.12 Discussion 

It was evident that all of the CT practices were used within the process of building a 

computational model to varying degrees. In this context, each theme was coded as a practice and 

each had at least one CT outcome identified. This characterization lends itself to supporting the 

claim that activities that build computational models are prime for eliciting and practicing CT 

outcomes within an undergraduate engineering setting. Therefore, a first contribution of this study 

characterizes CT in the context of modeling and simulation as described on Table 12. 

 

Table 12. Characterization of CT in the context of building a computational model 

CT Practice Definition in the context of building a computational model 

 

Abstraction 

 

Simplifying problems through assumptions that simplify dynamic variables to static variables, 

simplify infinite factors to discrete factors, remove dimensionality through variables or 

boundaries, or simplify ranges to single values.   
Algorithmic 

Thinking 

Setting up problems so that they can be solved in a stepwise manner by indicating the uses and 

effects computational structures will have temporally through the code or indicating the effects 

of previous conditions on computational structures.   

 

Evaluation 
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Comparing one’s own solution against various criteria such as design criteria, the flexibility 

of the code, the efficiency of the code, the accuracy of the code, the complexity of the code, 

the usability of the solution, or the runnability of the code through debugging. 

 

Generalization 

 

Intentionally reusing of mathematical methods, computational structures, or equations 

throughout the solution.  

 

Decomposition 

 

Strategically breaking down the problems into pieces either for the functional use of each piece 

of the solution or for the organization of the larger solution method.   

 

However, the degree to which each practice of CT was used varied within the model-building 

activity. The student solutions provided substantial evidence of algorithmic thinking, abstraction, 

and evaluation outcomes, along with corresponding outcomes. This was expected as students 

wrote a computer program (algorithm) that was a model (abstraction) of a real-life process. 

Modeling is a skill closely tied to abstraction (Gainsburg, 2006; Magana & Silva Coutinho, 2017). 

Gainsburg (2006) argued that “school modeling problems are essentially generalization or 

abstraction exercises” (p. 30). Thus, this close tie to abstraction outcomes within the modeling and 

simulation process was expected, as it has been considered as cornerstone to CT (Grover & Pea, 

2013; Wing, 2008). The prevalence of algorithmic thinking within the modeling and simulation 

process was also expected.  Algorithms are essentially a “step-by-step set of instructions that can 

be carried out by a device” (Selby, 2015, p. 81). A computer program, like the ones that the 

students created in the modeling activities, is of this same nature. So, it was expected that 

algorithmic thinking would be demonstrated in full display. Algorithmic thinking was often 

displayed by students when they were explaining why they had developed the model the way they 

did, looking at temporal effects and uses of information, and programming structures throughout 

the coding files. The programming process pushed students to think about where information 

should be put within the programming file, how it would be called upon, as well as the effects it 

would have later on in the program.  

The high prevalence of evaluation outcomes within the data set was encouraging, in that 

students were demonstrating that they were continuously evaluating their model within a host of 

different contexts such as accuracy, efficiency, purpose, usability, and solution flexibility. 

Previous studies have found that evaluation activities, specifically validation of the model, are 

continuously used and engaged in during the modeling process (Czocher, 2018). The results of 

this study certainly align with this trend. Additionally, our results show the presence of both 

validation and verification outcomes within large parts of the model evaluation process (Magana, 
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2017). For instance, validation outcomes such as evaluating for solution accuracy and evaluating 

for stakeholder desires were observed. Verification outcomes such as debugging and solution 

usability were also observed. Understanding that the model does what it was designed to do 

(verification), as well as demonstrating that it actually represents the physical phenomenon desired 

(validation), are both needed for an accurate computational model.  

Decomposition was prevalent but was rarely explicitly discussed, rather implicitly showed up 

as breaking the code into separate functions or subsections. Generalization was scarce, indicating 

that either the problem was not particularly well scaffolded to allow for this outcome to emerge, 

or that this outcome was less prevalent in the process of building a model. We speculate that 

generalization and explicit decomposition would be more prevalent within other phases of the 

modeling process.  

A second contribution of this study relates to the exemplification on the use of DBR where 

outcomes of CT were operationalized in an engineering education context. The proposed learning 

design resulted in findings that are a discipline-specific given the situated characterization of CT 

within our DBR implementation. Continued iterations of the DBR cycles should reveal different 

and more comprehensive ways CT is used, as well as the ways that learning designs can be adjusted 

to better elicit CT outcomes. This continued work will be used to build an understanding of how 

CT is elicited within our discipline-specific setting. While not generalizable to all settings, our 

goal is to continue to refine an outcome space to describe how CT is used within modeling and 

simulation practices.  

7.12.1 Implications for teaching and learning 

The results of this study have multiple implications for teaching and learning in an 

undergraduate setting. Specifically, the use of activities that promote building computational 

models can elicit and allow students to practice critical CT practices. Currently, much of the work 

on CT has been aimed at the K12 level (Kalelioğlu et al., 2016). However, when initially proposing 

the idea, Jeanette Wing (2006) suggested that “to reading, writing, and arithmetic, we should add 

computational thinking to every child’s analytical ability” (p. 33). Modeling and simulation 

activities allow for this seemingly fundamental skill to be incorporated into any classroom within 

an undergraduate engineering curriculum.  
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Additionally, our results indicate that some CT outcomes are used in more diverse ways than 

others within a model building process when guided with educational theories and practices such 

as modeling-based learning and MEAs. For example, while evaluation encompassed multiple 

outcomes, generalization only had one. Supplementary scaffolding within the activity structure 

may allow for more generalization and explicit decomposition to be made evident. However, 

structuring activities guided by MEA principles as well as productive failure principles allowed 

for all of the CT outcomes to emerge.  

The results suggest that CT, within our DBR intervention, can be elicited by applying specific 

principles that were found to be useful as students generated artifacts associated with the building 

of a computational model. These principles include the following:  

1. Create modeling and simulation experiences that combine engineering disciplinary 

knowledge with programming knowledge in the context of real-world experiences. 

2. Elicit from students to create and connect multiple forms of representations such as 

diagrams, equations, flow charts, algorithms and computational models. 

3. Provide opportunities to explore multiple approaches and solutions and provide guidance 

to consider other perspectives.  

4. Orchestrate participant structures by allowing students to share knowledge and also 

compare and contrasts their models. 

5. Prompt students to explain their thinking, assumptions, limitations and reasoning 

processes throughout the model building process and documentation.  

However, the DBR method requires the learning design to be continuously improved by 

adjusting and improving the intervention based on previous iterations. In future iterations of the 

design, the researchers plan to incorporate: (1) more reflective opportunities throughout the entire 

process to encourage students to engage in more metacognitive behaviors during the entire 

modeling process and (2) implement more scaffolding into the report writing (in the form of 

technology-enhanced learning environments such as MATLAB Live) in order to streamline the 

coding and report writing process. Through these modifications the goal is to elicit the mediating 

processes of student explanations and meaning making reflective practices that may allow them to 

connect disciplinary knowledge with CT outcomes. An updated conjecture map is provided in 

Figure 9 reflecting these changes.  
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Figure 9. Updated conjecture map overviewing the design of the Building the model phase. 

© 2021 American Society for Engineering Education 

7.12.2 Implications for engineering education research 

This study has provided ways in which CT outcomes were elicited with modeling and 

simulation activities and has also provided a mechanism to close the gap from theory to practice 

by following a DBR approach. While modeling an   d CT have been connected in the literature 

(Magana & Silva Coutinho, 2017; Sanford & Naidu, 2017; Weintrop et al., 2016) the nature of the 

relationship has been fuzzy at best. The results of this study demonstrate that modeling and 

simulation exercises within the engineering classroom can be used to elicit CT outcomes. However, 

future quantitative analysis is needed to further understand (a) how much CT-specific knowledge 

and programming skills students acquired during the modeling activities and (b) how the design 

of these activities impacted the learning of disciplinary knowledge along with CT-specific 

knowledge.  

By implementing a DBR cycle throughout this study, we have demonstrated how we started 

from the educational problem of developing a computationally-skilled engineering workforce, and 

addressed it by designing scaffolded learning interventions grounded in theory.  Results from our 

study therefore contribute to engineering education research not only by characterizing the CT 

outcomes elicited through the modeling activities, but also by demonstrating how we connected 
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research to practice and then back to research via DBR.  Specifically, in this study we described 

(a) how modeling activities can be designed and scaffolded with evidence-based pedagogical 

approaches such as the MEA and productive failure (Diefes-Dux et al., 2004; Kapur, 2008) and 

(b) how to conduct a qualitative investigation by leveraging student-generated artifacts, such as 

models and evidence of their reasoning with models, as data collection instruments. Engineering 

faculty have argued that including computation and programming within their classrooms is 

challenging due to an already crowded curriculum (Magana & Silva Coutinho, 2017). The results 

of this study show that modeling and simulation can be taught when combined with disciplinary 

material within the engineering classroom.  

Furthermore, this study provides an example to other engineering education researchers on 

how to implement a DBR study by aligning theoretical conjectures with design conjectures and in 

the process contribute to student learning and the development of engineering-specific pedagogical 

frameworks. DBR is still an emerging method and one that continues to need clarification and 

demonstration (DBRC, 2003; Kelly, 2004). This paper demonstrated an approach to align DBR 

goals via conjecture mapping (Sandoval, 2014) within the discipline of engineering education. 

More DBR studies, especially in engineering education, are needed to connect educational theory 

to practice, and further contribute with theory development about how students learn with and 

about CT within the classroom (Wang & Hannafin, 2005).  

7.13 Conclusions, Limitations, and Future Work 

To conclude, this study used DBR to design an educational intervention that incorporated 

modeling and simulation activities into the engineering classroom. The intervention was based on 

design principles of multiple frameworks including: productive failure and MEAs. Together, these 

frameworks allowed for designing of a modeling and simulation approach that can be used across 

the engineering education curriculum. This approach resulted in a four-phased process which 

included: planning the model, building the model, evaluating the model, and reflecting on the 

model.  

As with many DBR studies, our limitations relate to the contextualized generalization of our 

results.  That is, the results presented in this study may only be generalizable to similar or related 

contexts. Additionally, only written work of the students after the intervention was analyzed and 

not behavioral data during the building phase of the intervention, thus there are likely some CT 
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outcomes that could have happened, but were not elicited through the learning activities, or were 

not captured by the artifacts students created.  Also, there were certain common components to CT 

that were not identified in the data set, such as pattern recognition, parallelization, and trial and 

error. One reason for this may be that these CT outcomes will be more emergent in other phases 

of the modeling process. Other phases of the modeling process would elicit different outcomes. 

As we continue our research to characterize CT outcomes within the entire modeling and 

simulation process our expectation is that additional aspects of CT that were not captured in this 

study, would be captured in other phases.  Finally, gender, race, and ethnicity information were 

not collected from students, thus creating limitations as to the generalizability of the results to 

people from varying and diverse backgrounds, or when looking at populations primarily consisting 

of underrepresented groups in engineering.   

For future work, because of the smaller sample size, the results presented here could be 

expanded using different student populations. This could include investigating the effect of prior 

modeling and programming coursework on student CT outcomes. It could also include expanding 

the intervention to include student reflections pertaining potential revisions to their models, and 

comparing their ideas of how their models should be changed versus the changes they actually 

made. However, concerning the current study, we believe that (a) our learning design properly 

elicited CT outcomes in the context of modeling practices, and (b) our detailed qualitative 

approach provided a lens to the characterization and understanding of how CT takes place in the 

context of engineering education.  These two contributions provide an exemplar to connecting 

research to practice, and are also necessary for the development of discipline-based specific 

learning theories (Borrego & Henderson, 2014; National Research Council, 2012).  

Our results suggest that abstraction, algorithmic thinking, decomposition, and evaluation were 

commonly and diversely used by students while engaging in the model building process, whereas 

generalization was used less frequently. However, the results indicate that building computational 

models do elicit all kinds of CT practices and are an effective way for integrating foundational CT 

practices into the undergraduate engineering curriculum. 
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 CHARACTERIZING COMPUTATIONAL THINKING IN THE 

CONTEXT OF MODEL-PLANNING ACTIVITIES 

8.1 Abstract 

Computational thinking (CT) is a critical skill needed for STEM professionals. While based 

in computer science, skills associated with computational thinking are necessary across industries 

and disciplines. Because of this, educational interventions that emphasize CT are needed. In 

engineering, one potential pedagogical tool to build CT is modeling. Modeling is an essential skill 

for engineering students. They apply their scientific knowledge to real-world problems involving 

planning, building, evaluating, and reflecting on created systems to simulate the real world. We 

evaluated a model-planning activity in a final-year undergraduate engineering classroom. Our 

study involved a case study methodology that implemented a modeling intervention to elicit CT 

practices in students as they planned their modeling approach. Thematic analysis was then used 

on student artifacts to triangulate and identify diverse ways that students used CT practices. We 

find that model-planning activities are useful for students to practice many aspects of CT, such as 

abstraction, algorithmic thinking, and generalization. We report implications for instructors 

wanting to implement model-planning activities into their classrooms. 

 

Keywords: computational thinking, model-eliciting activity, models and modeling, engineering 

education 

8.2 Introduction 

Computational and data science are quickly emerging as needed skills across various 

industries and academic disciplines, yet educational institutions often fail to implement these skills 

into curricula (Finzer, 2013; Irizarry, 2020). This is partly because it has been challenging to assign 

departments within universities to teach computational and data science skills to undergraduates 

(Finzer, 2013). This issue is amplified by instructors who may not feel comfortable teaching these 

topics and expect students to learn these skills in other courses (Magana & Silva Coutinho, 2017). 

The net result is university graduates who cannot think through complex computational and data 

science problems.  
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These issues are especially apparent within engineering curricula, which are already 

perceived to be packed with courses by many engineering faculty (Magana & Silva Coutinho, 

2017). One alternative to incorporating more courses into the curriculum is integrating 

computational thinking skills into existing courses. Research has shown that incorporating 

modeling activities into engineering classrooms allows students to simultaneously learn 

disciplinary and computational skills (Fennell et al., 2019; Lyon & Magana, 2021; Magana et al., 

2013; Vieira et al., 2018). The additional benefit of this is that programming and disciplinary 

learning emerge through modeling, but computational thinking emerges through the applied 

model-building process as well (Lyon & Magana, 2021).  

Models allow students to apply mathematical and computational concepts to solve real-

world problems, and they have been heavily studied in engineering (Diefes-Dux et al., 2006; Jung 

et al., 2015; Lyon, Fennell, et al., 2020; Lyon & Magana, 2020a). Often the modeling process is 

divided into multiple phases, including planning, building, evaluating, and revising (Louca & 

Zacharia, 2012; Lyon & Magana, 2021; Magana, 2017; Shiflet & Shiflet, 2014). Each phase is 

crucial to developing practical, real-world modeling skills in engineering practice.  

Here we investigated how computational thinking emerged during the planning stages of 

the modeling process. This is part of a larger study looking at computational thinking through the 

modeling cycle and builds on a previous study that looked at computational thinking that emerges 

as part of the model-building process (Lyon & Magana, 2021). For this work, our research question 

is: What computational thinking practices emerged when students participated in model-planning 

activities?  

8.3 Background 

Multiple bodies of the literature informed this study, including (1) computational thinking, 

(2) project planning, and (3) model-eliciting activities. Collectively these bodies of literature 

helped inform the design of our data collection and methods used to analyze the data. We give 

background information on each of the three bodies of literature below. 
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8.3.1 Computational Thinking (CT) 

In recent years, computational thinking (CT) has been of particular interest to researchers 

and educators alike (Kalelioğlu et al., 2016; Lyon & Magana, 2020b). CT is essentially an umbrella 

term for different common thinking practices derived from computational sciences (Wing, 2006). 

While the exact definition of CT has been debated for some time, many definitions include 

common elements such as abstraction, generalization, algorithmic thinking, evaluation, and 

problem decomposition (Curzon et al., 2014; Kalelioğlu et al., 2016; Selby & Woollard, 2013; 

Weintrop et al., 2016).  

Additionally, studies incorporating CT in the classroom have been surpassed mainly by 

researchers discussing CT in more general and definitional ways (Grover & Pea, 2013; Ilic et al., 

2018; Lyon & Magana, 2020b). When operationalized, it is often in K12 settings rather than the 

undergraduate level (Ehsan et al., 2021; Rehmat et al., 2020). This has left a significant gap in the 

literature for concrete implementation strategies of CT or best practices for developing CT in 

undergraduate educational settings. When implemented, studies often use computational thinking 

to structure course content instead of finding concrete evidence or emergent practices of CT in 

students’ work (Lyon & Magana, 2020b). This study addresses many of these gaps by focusing on 

evidence-based emergent CT practices using a defined CT framework (Curzon et al., 2014; Selby 

& Woollard, 2013). 

8.3.2 Solution Planning 

In terms of solving complex problems, planning often involves setting goals or deliverables 

of a problem and deciding on tasks and actions that are needed to solve the problem (Lawanto, 

2010). Students' additional considerations while planning should be time constraints and meeting 

other criteria of the given problem (Dvir et al., 2003). Planning a solution pathway is a cognitive 

skill that plays a vital role in students’ final solution (Lucangeli et al., 1998). This effect is seen 

even more when the problem that the student is planning to solve involves more transfer from 

material they are comfortable with or is ill-structured (Shin et al., 2003). Thus, planning the model 

before solving is essential for student success for ill-structured modeling activities, such as the one 

in this study.  
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While the literature has shown that planning is a valuable mechanism for problem-solving, 

many modeling interventions tend not to include it as a cognitive or metacognitive step before 

constructing models. Some modeling-based learning frameworks have students collect their 

experiences and observations before building their models, so having some level of planning is not 

without precedent (Louca & Zacharia, 2012). Within modeling interventions, students who plan 

their solution before often starting exhibit behaviors more aligned with subject-matter experts, 

focusing on their conceptual understanding of the material and avoiding trial-and-error solutions 

(Magana et al., 2019).  

8.3.3 Model-Eliciting Activity (MEA) 

Model-eliciting activities (MEAs) were originally used in mathematics contexts and have 

subsequently been used in engineering contexts for using real-world modeling problems in the 

engineering classroom (Diefes-Dux et al., 2004; R. Lesh et al., 2000; Z. Liu & Xia, 2021; Moore 

et al., 2013). MEAs help students learn complex problem-solving, mathematical modeling, and 

teaming skills. The activities are built on six core principles (Diefes-Dux et al., 2004): (1) model-

construction principle, (2) reality principle, (3) self-assessment principle, (4) model-

documentation principle, (5) generalizability principle, and (6) effective prototype principle. 

Collectively these inform the creation of the activity used for this study.  

MEAs are embedded in real-world contexts and involve creating a model of the context in 

which the activity is embedded. MEAs require that teams of students document each step of the 

modeling process and develop models that can be assessed by the students themselves through 

criteria given in the problem. The end solutions should be generalizable to other situations and 

contexts. In addition to learning from the mathematical model, this structure allows instructors to 

create modeling activities for their classrooms. Such activities enable students to transfer 

information from other areas of their education, engage students through team-based activities, 

and push the curriculum to be more student-centered and active (Diefes-Dux et al., 2006; 

Hjalmarson et al., 2006; Moore et al., 2013, 2015). For these reasons, the MEA framework was 

used to structure the modeling activities for this study.  
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8.4 Methods 

We used a specific case and the MEA framework to design the learning intervention 

(Diefes-Dux et al., 2004). Classroom artifacts were then analyzed using thematic analysis to 

identify computational thinking themes throughout the assignments.  

8.4.1 Participants and Context 

Participants (N=26) of this study were mainly in the final year of their undergraduate 

education within an Agricultural and Biological Engineering program. All students in the course 

were majoring in bioengineering or food process engineering. At the time of the research, the 

program reported having slightly more students that identified as female than males. This was the 

only section of the course and was required of all students, so the class was approximately 

representative of the department.  

The course was the first of a two-part capstone class covering unit operations within the 

food and pharmaceutical industries, focusing on designing such systems using thermodynamics, 

heat and mass transfer, and reaction kinetics, which had all been covered previously in the program. 

The class met twice a week for a one-hour lecture and twice a week for a two-hour lab. The students 

had previous computer programming training in earlier engineering coursework, although the 

coursework and prior experience varied. Much of the prior experiences in computer programming 

came from introductory engineering coursework, an intro to computer science course, and previous 

projects from other classes within their major.  

8.4.2 Learning Intervention 

This study investigated the initial modeling and planning phases, where students were 

instructed to plan out a computational solution to a real-world engineering problem. It was 

implemented into the only section of the course. The learning intervention was a four-part 

modeling sequence that followed the structure of an MEA. It consisted of: (1) planning the model, 

(2) building the model, (3) evaluating the model, and (4) reflecting on the model. The results 

presented here are focused primarily on the first phase of the learning intervention, planning the 

model. The entire four-part modeling sequence, along with intervention documents, can be found 

in previous publications by the authors (Lyon et al., 2019; Lyon & Magana, 2021).   
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During the planning the model phase, students were tasked with modeling the temperature 

distribution inside a can during a sterilization process. Students were given the problem in the form 

of an email from a systems engineer that gave them specific properties of foods that were being 

processed and blueprints for the processing line they were modeling. This was done to simulate a 

realistic scenario, a vital tenet of the MEA framework (Diefes-Dux et al., 2006). Students were 

divided into teams of three or four to plan out how they would model the process. The questions 

posed to the students included:  

1. What equations would they use? 

2. What food properties were needed for their model?  

3. What assumptions would they need to make?  

4. What computational technique would they use?  

5. How would they use all of these things together to construct a computational model?  

Students were given a brief introduction to the problem and related concepts before the planning 

phase. Thus, they were prompted to recall details from previous coursework to try and create a 

potential modeling solution. The teams of three to four students were given the entire two-hour lab 

period to develop a potential plan for their computational model.  

 The problem was sufficiently complex that it required students to recall information from 

multiple previous courses, including heat transfer, thermodynamics, unit operations, mathematical 

modeling, and programming courses. The problem given to them was ill-defined, meaning it had 

multiple possible solutions. Features such as nonrelevant details and some relevant variables were 

provided in ranges. These types of details require students to understand what they are doing and 

require them to make difficult decisions and assumptions about how to use the given details. This 

type of ill-structured problem is useful for promoting multiple solutions and increasing the ability 

for future problem-solving (Kapur, 2008). 

8.4.3 Data Collection 

Two types of data were collected as part of this study: audio/video recordings (of four of 

the teams during the two-hour lab period) and planning templates (from each of the teams was 

collected at the end of the lab period). Appendix A shows the model-planning template that each 

team filled out. One researcher transcribed audio/video data of the group planning process to 
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transform it into a format suitable for thematic analysis. Table 13 shows the data collection and 

the total participants from the study.  

 

Table 13. Data overview for the current study 

Data Source N Description 

Audio/Video 

Files of In-Lab 

Discussions 

4 groups  

(15 students total) 

Four of the groups were randomly selected to 

be audio/video recorded during their entire 

planning process during lab time.  

Planning Model 

Templates 

15 (one for each group) All groups turned in a planning model 

template, one of which is used in this analysis 

for each group in the study.  
*four participants overlap the two data sources for a total of N=26 participants 

8.4.4 Data Analysis 

We used thematic analysis and followed the methodology as defined by Braun and Clarke 

(2006, p. 87). Their six-step process includes: (1) familiarizing yourself with your data, (2) 

generating initial codes, (3) searching for themes, (4) reviewing themes, (5) defining and naming 

themes, and (6) producing the report. We coded transcripts and course assignments (one 

assignment from each group for a total of 15) to develop a codebook of computational thinking 

themes that emerged from the model-planning process. First, each data point (transcripts and 

course assignments) was coded for significant computational thinking practices listed in Table 14 

(Curzon et al., 2014; Lyon & Magana, 2021).  
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Table 14. Practices within computational thinking (CT) and definitions (Lyon & Magana, 2021).  

CT Practice Definition 

Abstraction Making problems easier to solve/think about by selectively 

removing/hiding unnecessary complexity by making assumptions about 

how the problem should operate or by neglecting or adding components to 

the problem. 

 

Algorithmic Thinking Setting up or talking about problems so that they can be solved in a stepwise 

manner by looking at the procedural steps/aspects of the solution; or by 

acknowledging the uses and effects of solution structures temporally and 

procedurally throughout the solution. 

 

Evaluation Comparing one’s own solution against various criteria either given by the 

problem itself or against criteria brought to the problem by the student 

themselves. This can also be a statement describing desirable qualities of 

the final solution in terms of function, display, or other final form 

characteristics. 

 

Generalization Reusing previous solutions, methods, or constructs for the current problem; 

or the use of current solutions, methods, or constructs from the current 

problem to hypothesize about their use in future contexts. 

 

Decomposition Thinking about how the pieces of the problem can be used separately, 

strategically breaking down the problem for easier solution or use, or 

breaking the problem down into subcomponent structures, pieces, or areas. 

 

 

After coding for these broad categories, we did the second coding round to create 

subthemes within each CT category. As a starting point, subthemes for each category as defined 

by Lyon and Magana (2021) were used, with the entire codebook used as a starting point shown 

in Appendix B. The frequency of each category and subtheme was tracked throughout the analysis 

to understand what CT categories were emerging and how often they showed up in student work. 

Depending on what emerged from the model-planning data, one researcher removed or added 

subthemes throughout the analysis process. This process resulted in a new codebook with some of 

the same subthemes (some removed because they did not emerge) and some new codes from the 

data.  

8.4.5 Trustworthiness 

Multiple approaches were taken to ensure trustworthiness. First, multiple types of data are 

used as a form of triangulation of the results, with classroom observations via audio/video 

recordings being used to understand the content of the student artifacts more deeply. Additionally, 

after the first researcher completed the coding, a second coder (a qualitative educational researcher 
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with a background in the physical sciences) coded at least 20% of the statements previously coded 

by the first researcher for subthemes. This was done to make sure subtheme definitions were sound, 

and there was little overlap between the different identified subthemes in the data developed by 

the first researcher. After the coding round, the two researchers discussed differences and adjusted 

the codebook accordingly. This was done until the two researchers reached a greater than 80% 

agreement on the dually-coded statements. 

8.5 Results 

8.5.1 Overview of the Results 

Many of the CT outcomes identified were similar or the same as the previous study (Lyon 

& Magana, 2021). However, some key differences to the codebook appear in bold text in Table 

15. 

 

Table 15. Finalized codebook of CT practices for model-planning 

Abstraction Algorithmic 

Thinking 

Evaluation Generalization Decomposition 

 Ranges to 

values 

 Multiple to 

single 

 Dynamic to 

static 

 Geometric  

relationships 

 Similar systems 

 Infinite to finite 

 

 Indication of later 

use/effect 

 Stepwise 

approach 

 Parallel methods 

 Conditional logic 

 Solution 

accuracy 

 Solution 

complexity 

 Time efficiency 

 Design criteria 

 Solution 

usability 

 Solution 

flexibility 

 

 Previous 

coursework or 

experience 

 External 

applications 

 Organization of larger 

solution method 

 Allocation of resources 

 

*bold denotes a newly identified CT outcome 

 

As one can see from Table 15, all CT practices other than evaluation had at least one new 

identified CT outcome that was observed from the model-planning process. Additionally, some of 

the practices that were identified in the model-building process (Lyon & Magana, 2021) were not 

identified in the model planning data.   
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8.5.2 Abstraction 

From previous work, abstraction was one of the most commonly identified CT practices 

in the model-building process (Lyon & Magana, 2021). Our results indicate that the model-

planning process is no different, with abstraction being the most frequently identified CT practice 

within the model-planning data. Table 16 below shows the finalized definitions and representative 

quotes of each CT outcome identified from the model-planning data.  

 

Table 16. Definitions and quotes of CT outcomes identified for abstraction (letters denote 

individual deidentified students). 

Outcome Definition Quote 

Ranges to values Simplifying a range or list of values into a 

single value (e.g., worst-case scenario, average 

across a range, and picking the highest value) or 

a single function (assume that x follows 

function y). 

 

“So z-value is the number of degrees 

that requires that variation. So I feel 

like we should choose the highest 

one again.”  

 

 

Multiple to single Simplifying aspects of the problem that have 

multiple dimensions or factors and simplifying 

the dimensions or factors considered in the 

solution through choice of one of neglect of 

factors; or creating limits or boundaries to what 

is considered to be affecting or influencing the 

considered system.  

 

“A: The tin has, can we assume like 

no heat loss with the…I don’t know 

what I’m trying to think. Can we 

assume the can is negligible, like the 

metal part? 

D: Oh yeah, conduction through can 

wall is negligible because it’s so 

thick.”  

 

Dynamic to static Making factors or variables constant, uniform, 

or unchanging that would normally vary in 

respect to other variables or aspects of the 

problem. 

 

“D: Density, like constant pressure 

means you have a density that’s not 

relying on pressure. It’s more relying 

on the temperature.”  

 

Geometric 

relationships 

Simplifying problems by assuming a geometric 

characteristic or relationships between 

variables, constants, or factors within the 

problem space.  

 

“D: Yeah so we will have to assume.. 

uh 

C: Cylindrical. 

D: Cylindrical yeah. So we’ll get..” 

 

Similar systems Aligning properties of a current unknown 

system or property of a system with knowns of 

a system that is well known or familiar.  

 

“B: What assumptions will you make 

to solve the problem? 

C: Assume, pumpkin pie filling is 

about like applesauce.“ 

 

Infinite to finite Making aspects of the problem or system that 

are infinite or continuous and making them 

finite or discrete in nature.  

 

“But uh depending on our can 

dimensions, we could do the whole 

like infinity, can split by infinity 

slabs, or just infinite cylinder.”  
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There were two new codes for abstraction found during the thematic analysis process. One 

is about aligning properties with similar systems. This makes sense that it would appear during the 

model-planning process as students are just seeing the problem for the first time and are thinking 

through ways to simplify the problem from systems that they have seen in problems previously. 

The second new CT outcome is geometric relationships. This is likely showing up in the model-

planning data because students have to decide fairly early on what geometry they plan to assume 

to solve the problem. This decision is likely already made during the model-building process and 

not at the forefront of their minds. One item to note is the scarcity of the infinite to finite code 

during the model-planning process compared to the model-building process. This could be due to 

students not thinking about numerical methods or programming as much during the model-

planning process, which is deeply important to the model-building process.  

8.5.3 Algorithmic Thinking 

Algorithmic thinking was seen throughout the dataset as a common CT practice, with 

multiple observed outcomes. Table 17 shows the different CT outcomes observed in the data from 

the practice of algorithmic thinking, with both definitions and representative quotes.  
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Table 17. Definitions and quotes of CT outcomes identified for algorithmic thinking (letters 

denote individual deidentified students). 

Outcome Definition Quote 

Indication of later 

use/effect 

Indicating that information will be useful 

for a later process or a later point in the 

code. Indication of what certain 

variables or structures will cause later in 

the solution or code or explanation of 

location of code for effect.  

“All I know is that we are going to need to 

determine like the alpha, so we need like the 

k’s and all of those things so that might be 

important then, like how much moisture 

there is, to determine the k value and like 

the cp” 

 

Using a stepwise 

approach 

Giving things a logical order or listing 

steps to follow in order to solve the 

problem. This can include listing steps 

explicitly (e.g., 1, 2, 3…), diagramming, 

giving things logical order (i.e., we 

should do x first, y second, and then z 

third), or thought experiments (i.e., if we 

do x, then y will happen, and then z will 

likely follow).  

“It’s saying, yeah. It is trying to say, okay, I 

don’t know my next value, but I know my 

temperatures right now throughout my area. 

Okay. Estimate, if I step one point in time, 

like one second, what will the temperature 

at that point I want to look at become. And 

then you take that value, you just guessed 

that your model and then plug it back into 

the equation for the next time around.” 

 

 

Considering parallel 

methods 

Indication that there are parallel or 

redundant solution methods or 

information given.  

D: So in this equation they use Ea, since uh 

temperature changes [inaudible] effect. 

And that’s what z value does.  

A: Oh okay, so z already takes that into 

account? 

D: Yeah so z and D are intertwined like Ea 

and D are intertwined. […] Since we have 

both D and z we don’t need Ea.” 

 

Conditional logic Student making an if/else statement or 

conditional statement based on previous 

or future conditions (i.e., if I do x, y will 

happen) 

“I don’t, I don’t remember them. But like 

for a tuna can you probably shouldn’t 

assume it, because it’s really flat and not 

much curvature. But for like a soup can you 

might get away with it. [laughs] Why’d you 

choose it? Engineers instinct.”  

 

 

As shown in Table 17, there are two new subthemes identified. The first, named stepwise 

approach, is where students outline a solution process step by step, diagramming, or through 

thought experiments. Compared to the model-building phase, this likely showed up because 

students needed to plan out their solutions, which often included putting together a step-by-step 

plan of how they intended to solve the problem. Figure 10 below shows a diagram submitted as 

part of a student report that shows this stepwise approach code.  
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Figure 10. Diagram coded as stepwise approach as a type of algorithmic thinking.  

 

Additionally, considering parallel methods was a new code, where students often pointed 

out overlapping or duplicative information that showed multiple or parallel ways of solving the 

same problem. The majority of the CT outcomes observed in the practice of algorithmic thinking 

were an indication of later use/effect. This is likely because students needed to project forward 

what they needed to solve the problem and why they needed it by indicating how they planned to 

use the information or how it affected their algorithm.  

8.5.4 Evaluation 

Evaluation was the one category where no new outcomes emerged from the coding process; 

however, nearly all outcomes from the previous codebook were observed. Table 18 outlines the 

definitions and quotes associated with each observed outcome.  
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Table 18. Definitions and quotes of CT outcomes identified for evaluation (letters denote 

individual deidentified students). 

Outcome Definition Quote 

Solution accuracy Evaluates the solution or the code in regards 

to the actual or perceived accuracy of the 

solution method decisions.  

 

“The exact properties of Nacho 

Cheese may not be available. I think it 

will limit accuracy.” 

 

Solution complexity Evaluates the solution or code in regards to 

the amount of work, time, or effort needed to 

create the solution.  

 

“What are the benefits of this 

technique? Uh, it’s simplistic, it’s not 

insane.” 

 

Time efficiency Evaluates the solution method based on the 

amount of time the code or computer takes or 

wastes to arrive at the final solution.  

 

“I chose this method because it is 

computationally fast.” 

 

Design Criteria Evaluates the code or solution against the 

actual or perceived wishes and requirement of 

the stakeholders or problem statement.  

 

“This way if the moisture is content is 

lower, we will still be within the 

desired amount of sterilization.” 

 

Solution usability Evaluates the solution or code in regards to 

ease of use for themselves or for others. 

 

  

“…allow us to create a usable 

solution.”  

 

Solution flexibility Evaluates the solution or code based on the 

ability to easily change or pursue future 

changes.  

 

“This method gives us a lot of control 

over the parameters and the 

‘machinery’ of the program.”  

 

 

One of the most significant results from the analysis is that debugging is absent as an 

outcome in the model-planning process. This is likely due to debugging being closely tied to 

programming the solution, which is more central during the model-building process. Additionally, 

many of the coded statements focused on the mathematical method for the solution rather than the 

computational structuring of the solution. This demonstrates that students were much more in the 

mindset of solving the problem mathematically during the model-planning process. They were 

often evaluating their solution in a more mathematical sense.  

8.5.5 Generalization 

The CT practice of generalization was much more prevalent during the model-planning 

data than during the model-building data. Two new outcomes were identified for generalization 

and one missing from the original codebook. Table 19 outlines the definitions of the identified 

outcomes and representative quotes.   
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Table 19. Definitions and quotes of CT outcomes identified for generalization (letters denote 

individual deidentified students). 

Outcome Definition Quotes 

Drawing from previous 

experiences 

Use of previous coursework or personal 

experiences to inform the current solution 

method. This can include previous 

coursework, professional experiences, or 

explicitly related concepts from previous 

courses. 

 

“C: Oh I remember this equation 

from [another course], the d equals 

d0, times… 

B: Oh yeah 

C: or [another course] I don’t know, 

d equals d0 times ten to the t0 minus t 

over z.”  

 

Projecting to other or future 

applications 

Reference to other problem spaces, 

external to the current problem, where the 

current solution would be useful or not 

useful based on that nature of the current 

problem or solution. 

 

“So the model will not account for 

really hot or really cold days.”  

 

 

This was the only CT practice that had completely new themes from the original codebook. 

Whereas the original codebook had reuse of code as an identified outcome, during the model-

planning activity, two new outcomes emerged. The first, drawing from previous experiences, 

naturally connects to any planning activity. Students were often making explicit references to 

previous coursework, assignments, or work experiences and how they were helpful in the current 

problem. The other new outcome, projecting to other or future applications, had students looking 

at how different decisions they made during the planning phase would impact the future 

applications that their model could have.  

8.5.6 Decomposition 

The CT practice of decomposition was found in the dataset at a relatively low frequency. 

However, two different outcomes were identified through the model-planning process. Table 20 

shows the different outcomes, definitions, and quotes identified.  
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Table 20. Definitions and quotes of CT outcomes identified for decomposition (letters denote 

individual deidentified students). 

Outcome Definition Quote 

Organization of larger solution 

method 

 

Decomposing the code or solution 

method as an organizational tool.  

*See Figure 2  

Allocating resources Breaking up a problem amongst 

group members in order to reduce 

complexity of the work required or to 

increase quality of the solution 

method 

 

“Do we wanna split up this in any 

way? Is that allowed? What we’re 

doing. Um. So like we’ll have to 

individually look up a bunch of 

equations and the limitations and 

benefits of the computer systems we 

decide to use. Or like the solving 

method we decide to use.”  

 

 

One newly identified outcome was Allocating resources, where students look at 

decomposing the problem solution by breaking up work or doing different parts of the planning 

process synchronously. Another practice was where students created diagrams as an organizational 

tool during the planning process. Figure 11 shows an example of this coded behavior.  
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Figure 11. Example diagram demonstrating organization of larger solution method.  

 

Diagrams such as Figures 10 and 11 demonstrate two processes that were individually 

coded. First, the problem space is broken into multiple pieces, a decomposition practice coded as 

the organization of a larger solution method. Second, an algorithmic practice of putting these 

pieces into order was coded as a stepwise approach.  
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8.6 Discussion 

Results of this study continue to provide evidence that modeling activities are effective 

methods for integrating CT into the undergraduate engineering classroom. While the connection 

between CT and modeling has been made previously in the literature (Weintrop et al., 2016), the 

results of this study further this connection by showing how CT is specifically practiced by 

students going through the planning process of a modeling cycle. Our results show that all five 

types of CT practices (i.e., abstraction, algorithmic thinking, evaluation, generalization, and 

decomposition) were found in students’ model-planning solutions. This is understandable because 

modeling and CT are two processes that have often been tied together in the literature (Magana & 

Silva Coutinho, 2017; Sengupta et al., 2013; Weintrop et al., 2016). Our results further develop 

the nature of this relationship by showing that CT is used within the planning stage of the modeling 

process and that unique and different outcomes seem to emerge as students plan their 

computational solutions.  

One consistent theme through much of the results was the lack of emphasis on the 

programming aspects of the assignment. During the building phase of the modeling process, 

students often focus on the code or the computational elements of the modeling problem (Lyon & 

Magana, 2021). Many of the more computationally focused themes from the original codebook, 

such as debugging and code reuse, were not observed during the planning phase. However, even 

with the change in emphasis, many of the same outcomes appeared in the planning phase, as 

observed in the modeling process's building phase. This lack of focus on the computational aspects 

of the problem may be attributed to many different factors, such as students’ lack of familiarity 

with programming compared to mathematics (Magana & Silva Coutinho, 2017) or their lack of 

self-efficacy with making programming or computing decisions (Busch, 1995; Hutchison et al., 

2006). In either case, students’ planning processes lacked emphasis on the computational elements 

of their modeling solutions.  

Students’ plans seemed to focus on many of the realistic or mathematical elements of the 

problem, likely as they attempted to abstract the information from the problem statement into a 

mathematical form. This aligns with the modeling literature, which describes the first step of the 

modeling process as one where students are collecting as much relevant information from the real 

world as it relates to their solution (Louca & Zacharia, 2012; Lyon & Magana, 2020a; Magana et 

al., 2020). The planning phase is where students are “breaking down the phenomenon under study 
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into small pieces that can be incorporated into an external model” (Louca & Zacharia, 2019, p. 

241). Our results align with this in that students break the problem statement down from a real-

world context into smaller pieces that they can make sense of and understand how they could put 

together into a mathematical context.  

Another significant finding of this work is the prevalence of generalization in the planning 

phase of the modeling process. We found two new outcomes for generalization, one backward-

looking and one forward-looking. The first new generalization theme, drawing from previous 

experiences, is an outcome where students look at ideas, concepts, or methods that they have 

learned in the past that can be used for the presented problem. The second new generalization 

theme, projecting to other or future applications, is a primarily forward-looking outcome. Students 

think about how decisions about their model may make their model useful or limited in those 

contexts. It is an expected outcome because our previous experiences are foundational to education 

and learning (Dewey, 1938). Yet, the outcome seems to go one step further: students are 

transferring information not into the same context but to new contexts.  

This is an encouraging finding that students are not only thinking externally about their 

presented problem but also thinking of ways to transfer the information to new contexts. These 

backward- and forward-looking generalization practices are likely emerging as students try to fit 

the current problem into their mental model of the phenomenon. The process of modeling is where 

students externalize their mental model or their detailed understanding of a phenomenon and how 

it works into a physical, real-world mathematical, or computational model (Jonassen, 2009; 

Nersessian, 2007). It appears that during this planning phase of the modeling process, students are 

engaging with their understandings of the phenomenon and generalizing what information will be 

useful to the current problem and how that may make the model useful or limit its use in the future.  

These practices are desirable as students develop their adaptive expertise in computation (Magana 

et al., 2019).  

Both new generalization themes seem to be about transferring information from previous 

situations and future situations indicative of expert-like practice (Bohle Carbonell et al., 2014; 

Hmelo-Silver & Pfeffer, 2004). The literature around adaptive expertise has shown that 

transferring information into new and novel situations is one way experts are differentiated from 

novices (Delany, 2008; Hatano & Inagaki, 1984; McKenna, 2007). Our learning design of giving 
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students very little instruction before planning their models may have encouraged them to try to 

adapt and innovate on their prior experiences to make sense of the problem.  

8.6.1 Implications for Teaching and Learning 

This study provides two main implications for instructors looking to implement modeling 

activities in their classrooms. The first is unique CT outcomes that students can practice by 

planning their modeling solutions. While the benefits of metacognitive practices in modeling are 

already well documented (Jaiswal et al., 2021; Magana et al., 2019; Vieira et al., 2019), our study 

furthers these implications by showing that building CT practices is an additional benefit to having 

planning as part of the modeling process. One issue with computational modeling problems is that 

some students seem to start coding without necessarily planning out their solutions, which 

indicates novice problem-solvers (Magana et al., 2019). Suppose instructors give specific time for 

students to plan out their solutions. In that case, it may help students move toward expert-like 

practice and away from the novice-like practice of immediately solving the problem.  

Furthermore, instructors should tailor modeling activities they are developing to amplify 

outcomes that were observed in our results. That means activity designers should incorporate 

opportunities for students to explore their previous experiences, consider future model applications, 

or integrate flow diagrams to incorporate algorithmic thinking or decomposition. By tailoring 

activities in this way, instructors can amplify naturally occurring outcomes during the modeling 

process. One opportunity to do so would be to engage in design-based research, similar to this 

study, which allows educators to understand the connection between the pedagogical design 

decisions and student outcomes (Barab & Squire, 2004; DBRC, 2003)  

8.7 Conclusions 

There are some limitations to our study. First, the activity was situated within the specific 

context of food process engineering. Second, demographic information on the participants was not 

collected as part of this study. These two factors may limit the study’s generalizability to other 

contexts and should be considered in future research applications. Additionally, the work is limited 

by what the students talked about or were aware of as they solved the modeling problem. There 
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are likely other computational thinking outcomes that students are doing that they didn’t verbalize 

or were not aware they were doing.  

Our future work will consider additional modeling cycle steps and how CT is elicited in those 

settings. This study is part of a larger effort to understand CT within the modeling and simulation 

process. Future efforts will continue to look at other steps of the modeling cycle. Additionally, 

understanding how different learning designs for modeling and different disciplinary context will 

be crucial in understanding the entire scope of CT within modeling activities.  

Computational thinking is becoming a critical skill for learners across disciplines. Modeling 

is an engineering activity that naturally lends itself to students practicing all aspects of CT. We 

studied students planning their modeling solutions, and we identified various themes of CT 

outcomes that emerged while going through the planning process. Our results indicate that the 

planning process has distinctly different CT outcomes from the model-building process and 

amplifies various aspects of CT. Practices such as generalization were more prominent in the 

planning phase as students demonstrated specific outcomes indicative of expert-like practice. 

Because of this, instructors should prioritize incorporating time for students to plan their solutions 

when incorporating modeling activities into their classroom if their goal is to give students ample 

practice in all aspects of CT. 
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 CHARACTERIZING COMPUTATIONAL THINKING THROUGH 

MODEL EVALUATION AND REFLECTION 

9.1 Abstract 

Evaluation and reflection are critical skills to the modeling and simulation process. It 

involves (a) looking at models students have built, (b) understanding how useful they are, (c) 

identifying how they could be improved, and (d) reflecting upon what things the student did during 

the model-building process. As such, these skills allow students to improve their current work and 

future working endeavors. At the same time, computational thinking is an essential skill of 

increasing interest and significance across STEM disciplines. There is a need for studies that show 

how to incorporate and build computational thinking into various disciplinary curricula. This study 

meets this need by identifying how computational thinking is used during the evaluation and 

reflection process of the modeling and simulation cycle.  

The study participants were final-year engineering students enrolled in a capstone course. 

The research used the model-eliciting activity framework to build a modeling activity that included 

an evaluation and reflection phase. Thematic analysis was then used to identify different 

computational thinking practices and outcomes that were elicited during the evaluation and 

reflection phase of the assignment. Our results indicate that model evaluation and reflection are 

appropriate curricular activities to elicit complex and unique computational thinking outcomes.  

9.2 Introduction 

Modeling and simulation are critical skills to an engineer’s education (Gainsburg, 2006; 

Lyon & Magana, 2020a; Magana, 2017). They allow engineers to make predictions about the 

world around them and are useful across engineering disciplines. This is apparent in the research 

on identifying how to best teach modeling and simulation activities in the engineering classroom, 

especially at the undergraduate level (Diefes-Dux et al., 2004; Magana et al., 2013; McKenna & 

Carberry, 2012). This has led to many different teaching modeling and simulation frameworks 

across STEM disciplines (Diefes-Dux et al., 2004; Louca & Zacharia, 2012; Shiflet & Shiflet, 

2014). However, one thing remains certain: modeling and simulation are valuable and necessary 
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skills for engineering students as tools for academic purposes and industry applications (Magana 

& Silva Coutinho, 2017).  

Yet, modeling and simulation are skills built on many other underlying pieces of 

knowledge, such as disciplinary knowledge and programming knowledge (Vieira et al., 2017). 

Because of this, educators must make sure that students have the appropriate practice of both these 

sets of skills before embarking on a modeling and simulation problem. While the disciplinary 

content is usually well covered in the engineering curriculum, this is often not the case for 

programming content. One issue for educators is that programming education is often not as 

integrated into the engineering curriculum due to space issues and lack of comfort from 

engineering professors in teaching computer programming (Magana & Silva Coutinho, 2017). 

Because of this, it is often through modeling and simulation activities that students can practice 

programming skills they otherwise might not (Carey & Gougis, 2017; Lyon & Magana, 2020b; 

Magana et al., 2017; Yan et al., 2015).  

This programming knowledge is closely related to a set of skills commonly known in the 

literature as computational thinking. Computational thinking is a set of skills that are standard 

practices within computer science but that are applicable and useful to a wide range of disciplines 

(Wing, 2006). This skillset includes practices such as abstraction, algorithmic thinking, evaluation, 

generalization, and problem decomposition (Curzon et al., 2014; Grover & Pea, 2013; Lyon & 

Magana, 2021; Selby & Woollard, 2013). Together these practices allow students to solve complex 

problems from various disciplines. Yet, the research on these practices is often more definitional 

and less practical (Grover & Pea, 2013; Kalelioğlu et al., 2016). Our study addresses this by 

showing how computational thinking practices are explicitly used in the modeling and simulation, 

specifically within the model-evaluation and reflection process.  

This study aims to answer one primary research question: 

How are computational thinking practices elicited through the evaluation and reflection 

process of computational modeling?  

This question will be answered primarily through thematic analysis performed on student 

artifacts generated while solving a modeling and simulation challenge in a capstone engineering 

course. It builds on previous studies that have looked at the model-planning and model-building 

processes (Lyon et al., n.d., 2019; Lyon & Magana, 2021).  
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9.3 Background 

Multiple bodies of literature are used to build the framework for this study, including 

computational thinking, evaluative practices in modeling, and reflective practices in modeling.  

9.3.1 Computational thinking 

Computational thinking has been of increasing interest in the research literature to 

educators who seek to build these practices within their students (Kalelioğlu et al., 2016; Lyon & 

Magana, 2020b). What is included in the definition of computational thinking has mainly been a 

topic of debate and has differed from study to study; however, some prominent practices are 

identified as part of computational thinking, two of the most notable being abstraction and 

algorithmic thinking (Kalelioğlu et al., 2016). Other practices identified as part of computational 

thinking range from parallelization (V. Barr & Stephenson, 2011) to collaboration (CollegeBoard, 

2013). However, a few practices seem to encapsulate many of the literature's ideas as part of 

computational thinking. One straightforward definition that appears to incorporate many of these 

ideas is the one put forth by  Selby & Woollard (2013) and Curzon et al. (2014), which includes 

primarily five elements: abstraction, algorithmic thinking, generalization, evaluation, and 

decomposition. This study and authors use and adapt this definition for computational thinking 

when investigating modeling activities (Lyon et al., n.d., 2019; Lyon & Magana, 2021).  

9.3.2 Evaluation in Modeling  

The need to evaluate what we have produced is a natural response. In the case of modeling, 

many in the literature have included evaluation or assessment of the created model as a critical 

part of the process (Diefes-Dux et al., 2004; Louca & Zacharia, 2012; Magana, 2017). Two terms 

often included in this evaluation process of models are validation and verification (Shiflet & Shiflet, 

2014). Shiflet and Shiflet (2014) define these processes when they write, “verification determines 

if the solution works correctly, while the process of validation establishes if the system satisfies 

the problem’s requirements” (p. 9). Thus broadly, evaluation looks to ensure multiple things, such 

as how effective the model is at answering its original purpose and whether or not the mechanics 

of the model are working as designed by the modeler.  
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While evaluating a model is a broad term, it is undoubtedly a necessary component to any 

problem-solving activity to understand how the solution fulfills different criteria brought to the 

problem standards by which to measure our solution. Often solution evaluation is in the hands of 

the instructional team through traditional grading processes. Yet, the literature has indicated that 

allowing students to evaluate their work and progress may improve their overall learning, future 

self-efficacy on similar tasks, and motivation to learn (Schunk, 2003). And even when these self-

evaluations are negative, they may promote positive behaviors such as seeking help, reselection of 

solution strategies, or modification to self-regulation learning strategies (Schunk & Ertmer, 2000). 

Thus, regardless of the perceived result of the student’s evaluation of their work, there are 

potentially positive student outcomes.  

9.3.3 Reflective Practices in Modeling  

In addition to evaluating a modeling solution, another beneficial practice is to reflect on 

the modeling process that has been undergone. Reflective practices and general metacognitive 

practices are beneficial to student learning and growth towards more expert-like behaviors (Ertmer 

& Newby, 2015; Lew & Schmidt, 2011). Specifically, in modeling activities, reflection can help 

students move towards more beneficial learning practices and may also impact assignment 

performance (Jaiswal et al., 2021). Because of this, reflection is an essential step to any modeling 

process, but more broadly, any learning process.  

There are multiple different types of reflection, with Ertmer and Newby (2015) breaking it 

up into cognitive, motivational, and environmental strategy reflection. These categories look at 

how students are doing or thinking about the task, how the topic relates to personal motivation, 

and the optimal conditions that a student can put themselves in to complete the task. By thinking 

about all three of these categories, students can move towards more expert-like practices that allow 

them to succeed in future learning endeavors.  

9.4 Methods 

This section outlines the methods used in this study including the context, learning design, 

and data analysis for the study.  
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9.4.1 Context and participants 

The modeling intervention was deployed in a senior-level engineering capstone course. 

The discipline of the course was biological engineering. The primary focuses and interests of the 

students were in the pharmaceutical and food industries. The specific learning unit the modeling 

intervention overviewed was over sterilization and microbial death kinetics, where the students 

were learning about canning and retort operations in the food industry. The course covered other 

topics as well, such as fermentation, drying, and separation processes.  

The students in the course were mainly in the final year of their undergraduate studies. 

They had previously taken multiple general and disciplinary courses covering related topics such 

as computational or numerical modeling, heat and mass transfer, and a general programming 

course. They had the tools to do much of the modeling activity in this study before the course but 

just needed to put multiple bodies of knowledge together. The class was reflective of the major 

given that it is a smaller department at the university, with the department having slightly more 

females than males at the time of the data collection.  

9.4.2 Design of the intervention 

The intervention was based on the design principles of the model-eliciting activity 

framework (Diefes-Dux et al., 2004). This included giving students realistic context, opportunities 

to build and assess a mathematical modeling solution, and having them document the process at 

each step.  The students were broken up into teams and given a realistic scenario in the form of an 

email to a consulting firm they were working for, which read (Lyon & Magana, 2021): 

Hey FOODSCorp team,  

We know we have done work with you before and are confident we will get great results 

again. Last night one of our heaters before the filler went out for our canning sterilization 

line. The manufacturer of the filler is unfortunately in Germany and this is a specialty part, 

so we don’t expect to get the new heating element for a couple of months. In addition, we 

reached out to general machining, however, they too cannot generate the new heating 

element. The line is work about 10k an hour and runs four different products, so anything 

we can do to get it running again the company is willing to try.   

 



 

 

131 

Our hope is within the next two weeks to get the line back up and running by adjusting 

processing parameters, however, we do not have the capabilities in house to model the 

process using MATLAB software. The heating element was originally able to heat the food 

material prior to canning to 200 oF however, the replacement part we found can only 

achieve a filling temperature of 180 oF currently. After the food is canned, it is heated to 

commercial sterilization and then it is cooled with water. Our micro team has asked per 

company policy that we achieve a 12-15 log reduction in microbial load prior to 

production. Our quality team has asked that we maximize our Vitamin B1 and Vitamin C 

intact in all products. […]  Please deliver us an appropriate computational model via 

MATLAB software that is capable of outputting visuals of the sterilization process for all 

four food products showing temperature at various points along the radius as a function 

of time in addition to plots describing micro load and nutrition degradation. 

Thanks! 

Jenn 

 

They were asked to plan their model as a group and create it individually. We have reported 

the computational thinking benefits to these portions of the previous activity in the literature (Lyon 

et al., n.d.; Lyon & Magana, 2021). However, the third portion of the activity asked students to 

evaluate as a group and reflect individually on the model they had created.  

For the evaluation activity, students were paired with students from other planning groups to 

expose them to ideas they would not have had access to initially in the activity. They were then 

given approximately twenty minutes to answer and take notes on the following questions:  

 

1. What are different assumptions that you made about the physical properties of the 

system? 

2. Did you use different data? 

3. How would these differences impact the model? 

4. How did your programming strategies differ? 

5. What advantages do you see in how they did their model?  

6. What advantages do you see in your own?  
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When the students had gone twenty minutes with their first pairing, they then did the same thing 

with another pair of students from other planning groups, giving them even more exposure to 

different ways of solving the modeling problem.  

 

After the students had done the planning activity, students were asked to individually complete 

a short reflection report that asked them the following questions:  

 

1. What approaches did other students take with respect to the data that they used 

(justifications, assumptions, and limitations) and the way they programmed their model? 

Be as detailed as possible in listing various differences between models. For each 

difference talk about WHY you think the other group chose to do it the way they did. Be 

detailed. 

2. How did these differ from your own approach? When would your own approach make 

the most sense? When would different assumptions that other groups made make the 

most sense? 

3. If you were to do this assignment again what are different assumptions you would make 

and what do you believe to be the optimal solution to the problem? 

4. What was the most challenging piece of this assignment? Why do you feel that was the 

most challenging? How did you overcome this challenge? 

 

These activities forced students to look external to their solution, causing them to reckon that 

there are multiple ways to solve a problem, which can be a valuable learning experience for 

students (Kapur, 2008). Students did more than create a modeling solution to the given situation; 

they had to justify their solution pathway and understand the benefits and drawbacks of different 

ways of thinking about the given problem.  

9.4.3 Data Collection and Analysis 

The data used and collected for this study were the student artifacts created while going 

through the evaluating and reflecting process after the model-building process. It involved data in 

both audio and written forms and is overviewed in Table 21 below. Students were originally in 

sixteen teams for the model-planning process, and thus data were used from one individual from 
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each of the teams. Additionally, only four of the sixteen teams were audio/video recorded during 

the model-evaluation meetings due to research limitations.  

 

Table 21. Overview of data used for this study. 

Data Type Description  Group/Individual Sample Size 

Audio/Video 

recording of in-class 

evaluating process  

Recordings of students meeting in groups to 

discuss the different ways that they solved the 

modeling problem.   

Group 4 (4 teams of 4 

students each) 

Evaluating the model 

report 

Written document of student notes written down 

individually while meeting with other peers to 

compare and evaluate modeling solutions. 

   

Individual 16 (one from 

each group of 

students) 

Reflecting on the 

model report 

Written document of student reflections about the 

modeling process and their own solution, 

discussing difficulties, future improvement, and 

benefits to their modeling process.   

Individual 16 (one from 

each group of 

students) 

 

Each artifact (written reports and transcribed audio recordings) underwent thematic 

analysis. Our thematic analysis process follows the six-step process as outlined by Braun and 

Clarke (2006) as (1) familiarizing yourself with the data, (2) generating initial codes, (3) searching 

for themes, (4) reviewing themes, (5) defining and naming themes, (6) producing the report. Our 

deductive categories for coding the data were the computational thinking practices adapted from 

Curzon et al. (2014) and previously used in our work (Lyon et al., n.d., 2019; Lyon & Magana, 

2021). These categories are overviewed in Table 22.  
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Table 22.  Definitions of computational thinking (CT) practices (Curzon et al., 2014; Lyon & 

Magana, 2021).  

CT Practices Definition 

Abstraction Making problems easier to solve/think about by selectively removing/hiding unnecessary 

complexity by making assumptions about how the problem should operate or by neglecting or 

adding components to the problem.  

  
Algorithmic 

Thinking 

Setting up or talking about problems so that they can be solved in a stepwise manner by looking 

at the procedural steps/aspects of the solution; or by acknowledging the uses and effects of 

solution structures temporally and procedurally throughout the solution. 

  
Evaluation Comparing one's own solution against various criteria either given by the problem itself or 

against criteria brought to the problem by the student themselves. This can also be a statement 

describing desirable qualities of the final solution in terms of function, display, or other final 

form characteristics. 

  
Generalization Reusing previous solutions, methods, or constructs for the current problem; or the use of 

current solutions, methods, or constructs from the current problem to hypothesize about their 

use in future contexts. 

  
Decomposition Thinking about how the pieces of the problem can be used separately, strategically breaking 

down the problem for easier solution or use, or breaking the problem down into subcomponent 

structures, pieces, or areas.  

 

After coding the data for the computational thinking practices, the results were searched 

for subthemes within each practice, which we have called outcomes. Our previous research found 

many CT outcomes associated with the model-building and planning processes (Lyon et al., n.d.; 

Lyon & Magana, 2021). In this study, those outcomes were used as a starting point for 

understanding the similarities and differences between the evaluating/reflecting stages of the 

modeling process and the building and planning phases. Thus, initial coding categories and 

definitions of the initial coding categories have previously been used in the literature (Lyon et al., 

n.d.; Lyon & Magana, 2021) 

9.4.4 Trustworthiness Considerations 

To ensure the trustworthiness of the results, this study uses data transparency by providing 

detailed descriptions of the results (Onwuegbuzie & Leech, 2007). In addition to this, the initial 

codebook has been tested through inter-rater reliability in previous studies by the same author and 

primary coder (Lyon et al., n.d.; Lyon & Magana, 2021). Finally, triangulation of the results was 

achieved through the prior study of the codebook and multiple data sources in this study.  
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9.5 Results 

The thematic analysis results revealed that many of the same outcomes were found in model 

evaluation and reflection as were found in both the model planning and building phases. Table 23 

below shows the complete codebook after coding for both the deductive categories and the 

outcomes. This is an updated version of the table from previous studies to include the new results 

(Lyon & Magana, 2021).  

 

Table 23. Finalized codebook of CT practices for model evaluation and reflection 

Abstraction Algorithmic 

Thinking 

Evaluation Generalization Decomposition 

 Ranges to 

values 

 Multiple to 

single 

 Dynamic to 

static 

 Geometric  

relationships 

 Similar systems 

 Infinite to finite 

 

 Indication of later 

use/effect 

 Stepwise approach 

 Parallel methods 

 Conditional logic 

 Solution 

accuracy 

 Solution 

complexity 

 Time efficiency 

 Design criteria 

 Solution 

usability 

 Solution 

flexibility 

 Ideal Solution 

 Peer 

Comparison 

 Debugging 

 

 Previous 

coursework or 

experience 

 External 

applications 

 Similar 

problems 

 Reuse of 

code/equations 

  

 Organization of larger 

solution method 

 Allocation of resources 

 Ease of use of program 

 

*bold denotes a newly identified CT outcome 

 

The analysis resulted in three new outcomes that emerged through the model evaluation 

and reflection process. Two were in the category of evaluation and were students evaluating in 

comparison directly to their peers and a perceived ideal-world solution. Additionally, an outcome 

emerged in the generalization category where students talked about how they generalized parts of 

their solution from similar problems concurrent to the modeling problem.  

9.5.1 Abstraction  

The category of abstraction, while still a major coded category throughout the model 

evaluation and reflection phase, the practice of abstraction was a bit less prominent than in previous 

stages of the modeling activity, such as planning and building the model. As such, no new 
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outcomes emerged from the coding process. However, the evaluation and reflection data observed 

all the previously seen outcomes. Table 24 below overviews each of the outcomes, the definitions 

of the outcomes, and an example of each outcome in the evaluation and planning of models.  

 

Table 24. Observed abstraction outcomes during model evaluation and reflection.  

Outcome Definition Quote 

Ranges to values Simplifying a range or list of values into a 

single value (e.g., worst-case scenario, average 

across a range, and picking the highest value) or 

a single function (assume that x follows 

function y). 

 

“I averaged the retort temperature 

and the filling temperature and used 

that value of temperature for 

[equation].” 

 

 

Multiple to single Simplifying aspects of the problem that have 

multiple dimensions or factors and simplifying 

the dimensions or factors considered in the 

solution through choice of one of neglect of 

factors; or creating limits or boundaries to what 

is considered to be affecting or influencing the 

considered system.  

 

“C: So I think one of the assumptions 

that I made was I didn’t really even 

consider the metal can as a layer or 

boundary layer really.  

B: Yeah.  

C: Um. Just because heat would just 

transfer so fast so I just thought it 

was like negligible.” 

 

Dynamic to static Making factors or variables constant, uniform, 

or unchanging that would normally vary in 

respect to other variables or aspects of the 

problem. 

 

“I said thermal properties stayed 

constant even though temperatures 

changed.” 

 

Geometric 

relationships 

Simplifying problems by assuming a geometric 

characteristic or relationships between 

variables, constants, or factors within the 

problem space.  

 

“I assumed additional energy cost 

was proportional, directly 

proportional to the percent increase 

in production time.”  

 

Similar systems Aligning properties of a current unknown 

system or property of a system with knowns of 

a system that is well known or familiar.  

 

“I did nacho cheese, and there was a 

paper published on thermal 

properties of cheese and there was a 

liquid cheese in there. So I was like, 

golden.”  

 

Infinite to finite Making aspects of the problem or system that 

are infinite or continuous and making them 

finite or discrete in nature.  

 

“Yeah I just assumed there was like 

in the retort there’s a dump it into a 

bath of water. It just like opened up 

and then… 

C: Cans just… 

A: Yeah the cans just fall out into a 

bath of water.”  

Students did not appear to have any new abstraction behaviors during the evaluation and 

reflection process but used all of the previously identified outcomes. Much of the abstraction came 

through students comparing how they simplified their problems to each other or explaining the 

simplifications they made while planning and building their models. Often, abstraction would 
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eventually lead to evaluative behaviors as students mentioned how they simplified their problem 

and what it ultimately led to in their model’s performance.  

9.5.2 Algorithmic Thinking 

Algorithmic thinking was another CT practice with no new identified outcomes throughout 

the model evaluation and reflection stages. However, the thematic analysis found all of the 

previously identified outcomes in the data set. Table 25 overviews all of the outcomes associated 

with algorithmic thinking and gives example quotes for each from the students.  

 

Table 25. Observed algorithmic thinking outcomes during model evaluation and reflection.  

Outcome Definition Quote 

Indication of later 

use/effect 

Indicating that information will be useful 

or was used for a later process or point in 

the code. Indication of what certain 

variables or structures will cause or did 

cause later in the solution or code or 

explanation of location of code for 

effect.  

“I used it to find my delta r and my number 

of nodes.” 

 

Using a stepwise 

approach 

Giving things a logical order or listing 

steps to follow in order to solve the 

problem. This can include listing steps 

explicitly (e.g., 1, 2, 3…), diagramming, 

giving things logical order (i.e., we 

should do x first, y second, and then z 

third), or thought experiments (i.e., if we 

do x, then y will happen, and then z will 

likely follow).  

“I had like Ti, like initial time being the, the 

initial time for all of the material being the 

filling temperature. And then after that, so 

like at the surface my initial temperature is 

the filling temperature and then after that 

it’s the same temperature as the steam. Um. 

That’s how I did it.” 

 

Considering parallel 

methods 

Indication that there are parallel, 

multiple, or redundant solution methods 

or information given.  

“The way we solved our models was very 

different also, with some people using 

either for or while loops (or a mixture of 

both), while others preferred to use 

predominantly functions.” 

 

Conditional logic Student making an if/else statement or 

conditional statement based on previous 

or future conditions (i.e., if I do x, y will 

happen) 

“While loops should be used when the loop 

is conditional and For loops when the 

duration of the loop is known.” 

 

One algorithmic thinking outcome that was particularly prominent in this dataset was 

considering parallel methods. This is because as students evaluated their solutions against the 

solutions of others, there were many times were they encountered redundant or parallel ways of 

solving the same problem. This led to more of this outcome during the reflection as students 
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discussed what they might do differently next time by considering other ways the problem could 

be ultimately solved. Another minor difference is that the outcome of indication of later use/effect 

was often more of an explanation of how the code worked. In contrast, this outcome was more 

propositional in the planning of the model phases. Earlier in the process, students spent more time 

conjecturing what they would use information for later in the code. The students merely explained 

how the code worked operationally in the evaluation and reflection stages.  

9.5.3 Evaluation 

As one would expect, evaluation was the most prominent outcome and the one that was 

coded the highest number of times throughout the analysis. Additionally, it generated two new 

codes from the previous two rounds of research, including comparing to an ideal solution and peer 

comparison.  

  



 

 

139 

 

Table 26. Observed evaluation outcomes during model evaluation and reflection.  

Outcome Definition Quote 

Solution accuracy Evaluates the solution or the code in regards 

to the actual or perceived accuracy of the 

solution method decisions.  

 

“This was done because it is the most 

accurate way known to calculate these 

properties.” 

 

Solution complexity Evaluates the solution or code in regards to 

the amount of work, time, or effort needed to 

create the solution.  

 

“It would have been faster in the long 

run to use functions, but initially their 

code was more difficult to set up.”  

 

Time efficiency Evaluates the solution method based on the 

amount of time the code or computer takes or 

wastes to arrive at the final solution.  

 

“So, I’m gonna guess that the process 

would run a lot quicker if I had 

actually done it that way with like 

1000 nodes or something and with a 

small time step.”  

 

Design Criteria Evaluates the code or solution against the 

actual or perceived wishes and requirement of 

the stakeholders or problem statement.  

 

“Yeah. We want to make ourselves 

look good to this company. You think 

we want them to think that we can’t 

conserve their vitamins?”  

 

Solution usability Evaluates the solution or code in regards to 

ease of use (i.e. units, output graphs, etc) for 

themselves or for others. 

 

  

“I think that this was a good way of 

portraying the data because it allowed 

you show both the heating and 

cooling in the same graph.” 

 

Solution flexibility Evaluates the solution or code based on the 

ability to easily change or pursue future 

changes.  

 

“That is a great advantage to their 

code because this makes revision to 

code easier” 

 

 

Ideal Solution 

 

Evaluates the feasibility of the solution or 

code based on an ideal or “perfect-world” 

solution.  

“So you wanna go here ideally but it’s 

such a short time period that that 

would be, to get the process that you 

want, that like it might not be feasible 

so you might have to go like at a little 

bit lower temperature.” 

 

 

Peer Comparison 

 

Evaluates the quality of the solution or code 

by comparing their own solution with other 

peers or group members.  

 

 

“What did you guys find to be your 

best temperature? Not that it’d be the 

same one as 

mine cause I did a different product 

but like about what?”   

 

Debugging  Evaluating the code or solution periodically 

throughout the creation or solution process to 

ensure ability to run, reasonableness, or to 

collect feedback about the solution.  

   

“So I was gonna do 4, and then 4 

wasn’t working for me, so I ended up 

just making it 8 because I figured 

mine was just too slow if there was 

pumpking pie filling, so it was like 

really dense and everything.” 
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The two new outcomes are unsurprising in that they were found in the evaluation and 

reflection phases. Regarding comparing the ideal solution, students were comparing their model 

to a perfect-world situation where they didn’t need to make tradeoffs or concessions in their design 

solution. This makes sense in that when comparing to other students who made different tradeoffs, 

one begins to see the limitations of various design decisions. Additionally, the outcome of peer 

comparison was prominent because this was the first stage of the modeling activity where students 

had the opportunity to compare and contrast among other groups and their peers more broadly. 

Students had completed their models, so they could compare model performance if their answers 

were similar or what each other’s output graphs looked like. As such, this outcome became very 

visible through the analysis.  

9.5.4 Generalization 

Generalization as a practice was seen at a moderate level throughout the analysis, with all 

previous generalization outcomes showing up in the analysis. One new outcome emerged from the 

evaluation and reflection phase of the analysis, which was students talking about similar problems 

that were used for the solution. Table 27 below overviews the analysis's outcomes and example 

quotes for each.  
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Table 27. Observed generalization outcomes during model evaluation and reflection.  

Outcome Definition Quotes 

Drawing from previous 

experiences 

Use of previous coursework or personal 

experiences to inform the current solution 

method. This can include previous 

coursework, professional experiences, or 

explicitly related concepts from previous 

courses. 

 

“I did that for my [other course] 

project. I did 2D model.” 

 

Projecting to other or future 

applications 

Reference to other problem spaces, 

external to the current problem, where the 

current solution would be useful or not 

useful based on that nature of the current 

problem or solution. 

 

“D: It’s weird to think, I wonder if 

you actually pay someone to do these 

kind of equations and work like, is 

there someone like [company] 

literally sits around and does this 

project over and over again for years.  

A: I don’t know, I feel like there 

would be software packages out 

there… 

C: I was going to say, now that’s 

where you have a software package.”  

 

Reuse of code/equations Reusing or repeating portions of code or 

equations throughout the solution 

method. 

“Yep. All I did was change one 

value, the ambient temperature 

outside, and I pasted the code for the 

heating.” 

 

 

Similar Problems 

 

Using, comparing, or referencing 

information from a similar problem that is 

useful for the solution of the current 

problem.  

 

 

“Similar practice example from 

textbook played role of guide that 

tell me what 

temperature profile is supposed to 

be.” 

 

 

Generalization was challenging to find in the data set and was much less frequently coded 

for than the previous three practices of abstraction, algorithmic thinking, and evaluation. The new 

outcome of similar problems mainly resulted from the reflection activity where students reflected 

on how challenges were overcome during their solution process. Because of this, students talked 

about similar issues that were used from sources such as the textbook or online videos and 

resources.  

9.5.5 Decomposition 

As in the previous two studies, decomposition continued to be one of the least frequent CT 

practices that were coded through the dataset. All previous outcomes from the first two studies 
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were observed in the data.  Table 28 below overviews the different outcomes associated with 

decomposition and example quotes for each from the dataset.  

 

Table 28. Observed decomposition outcomes during model evaluation and reflection.  

Outcome Definition Quote 

Organization of larger solution 

method 

 

Decomposing the code or solution 

method as an organizational tool.  

“I used functions because it helped 

organize my code.” 

 

Allocating resources Breaking up a problem amongst 

group members in order to reduce 

complexity of the work required or to 

increase quality of the solution 

method 

 

“I guess, would it be easier to just split 

up 2 and 2. I guess we could just talk 

it through.” 

 

 

Ease of use of program Decomposing the code or solution 

method so that the program or 

solution is easier to use.  

“Functions could make the code much 

shorter.”  

 

 

Most of the decomposition observed throughout the evaluation and reflection phases of the 

modeling sequence was centered around breaking up the code in terms of functions. Sometimes to 

make the code more organized and sometimes to make the code easier to use, but almost always 

focused on decomposing the code into functions. This continues the trend throughout the entire 

modeling sequence, where decomposition outcomes have been scarce and difficult to observe in 

the dataset.  

9.6 Discussion 

The results of this study both confirm and build upon previous research, which has shown 

that modeling activities can be used to elicit computational thinking practices (Lyon & Magana, 

2021). Specifically, this design used a model-eliciting activity, which has also been used in the 

literature to study how students use computational thinking (Z. Liu & Xia, 2021; Lyon & Magana, 

2021). However, the results presented here focus on and highlight the importance and ability of 

the later stages of modeling and simulation process, evaluation and reflection, as capable and 

valuable in eliciting and giving practice to computational thinking within the engineering 

classroom. This is a useful finding in that not only is modeling a central skill to engineers across 

disciplines (Gainsburg, 2006; Lyon et al., 2019; Ortega-Alvarez et al., 2018; Ortiz-Rodriguez et 

al., 2010), but evaluative practices such as validation and verification are essential practices for 
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engineering professionals as well (Komisar et al., 2018; Lo, 2016; Magana, 2017; Magana & de 

Jong, 2018).  

 The results indicate that computational thinking was used through the evaluation and 

reflection process, and specific new outcomes emerged or were emphasized to a greater degree. 

As expected, evaluation was a much more prominent computational thinking practice throughout 

the evaluation and reflection stages of the modeling intervention. The evaluation process allowed 

students to compare their solutions with their peers, which had not been identified as an outcome 

in previous studies (Lyon et al., n.d.; Lyon & Magana, 2021). This ability for students to compare 

their solution processes is a direct result and expected outcome of the learning design using 

principles of productive failure (Kapur & Bielaczyc, 2012). Additionally, in this study, students 

worked in teams to evaluate their models. This type of team-based MEA allows students to see 

diverse and unique perspectives different from their own (Moore et al., 2013). This type of 

comparison between solutions serves as a source of validation or feedback between students on 

their solutions.  

Many studies in engineering education have previously reported the learning gains and 

benefits of getting feedback on solutions when comparing to worked examples (Moreno et al., 

2009; Yan et al., 2015) as well as when getting feedback from peers (Carberry et al., 2016; Conde 

et al., 2017; Ekoniak et al., 2013). This feedback is even more beneficial when verbal feedback is 

similar to how the students were comparing solutions in this study’s modeling intervention 

(Carberry et al., 2016). Students giving feedback on other solutions also increases student 

motivation within the course (Conde et al., 2017). Thus, the results here are both expected and 

encouraging. Our learning design elicited additional evaluative forms of computational thinking 

and may likely promote student learning and motivation with the course materials.  

Another prominent outcome was students discussing the generalization process from 

similar problems found from different resources while solving the problem, such as online 

resources and the course text. This likely emerged from the previous studies on model planning 

and building because students finally had a fully realized solution that they had built and had the 

opportunity to understand how similar problems were both similar and valuable in constructing 

the current solution. This result is encouraging in that it shows a certain level of knowledge transfer 

from resources the students located in the textbook, online, and elsewhere.  
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Previous research has shown that project-based learning interventions, like the one in this 

study, promote knowledge transfer of conceptual, procedural, and factual knowledge (Lou et al., 

2010). Additionally, when working in teams, studies have shown giving real-world case study 

learning design, similar to the prompt given in this study, students can obtain unique and diverse 

perspectives from their team members (Doukanari et al., 2020). Thus, our learning design supports 

these findings from the literature. Students who were engaged in group environment working on a 

real-world problem-based learning intervention showed evidence of knowledge transfer both as 

generalized from similar problems and the feedback from their peers.  

This knowledge transfer may result from the model-based reasoning occurring as students 

work on their modeling solutions. Model-based reasoning is how people use and update mental 

models that represent how they understand the world around them. The produced computational 

model is a result (Lehrer & Schauble, 2003; Nersessian, 2007). As students use and evaluate their 

model results, they may conflict between the evaluation process results and how the student 

believes the model should act. Our results indicate that students are using model-based reasoning 

as they are constantly evaluating their model in terms of accuracy, efficiency, debugging, peer 

solutions, among many other factors, by comparing their perceptions of how the model should act 

to what they see in their actual models. This aligns with what has been seen in our previous studies 

looking at modeling interventions and computational thinking (Lyon et al., n.d.; Lyon & Magana, 

2021).  

9.6.1 Implications for Teaching and Learning 

This work contributes to the broader literature in engineering education research and has 

implications for teaching and learning, allowing practitioners to bring theory into practice. This 

study suggests that new learning outcomes emerge when students can collect and give feedback 

from their peers on their design decisions through an evaluation process. This is a valuable piece 

of information previously seen in the literature (Carberry et al., 2016; Ekoniak et al., 2013). Yet, 

this work has shown similar benefits to mutual feedback between students happening concurrently 

and together. Instructors should look for ways to allow students to compare their solutions with 

each other and highlight the differences between them. This will enable students to get real-time 

feedback on their solutions and begin to understand the benefits and drawbacks of different 

solution strategies.  
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 This study continues to build on previous evidence that implementing the entire modeling 

and simulation cycle into the classroom, including planning, evaluating (verifying and validating), 

and reflecting on the model, gives students opportunities to use unique skills that they might not 

otherwise use in just building models. The engineering curriculum is often crowded, and 

instructors find it challenging to add new material into the classroom (Magana & Silva Coutinho, 

2017). The impulse may be to have students build or use models to save time, yet, this work and 

others continue to exemplify the unique and valuable insights to be gained by students through the 

whole modeling and simulation cycle (Czocher, 2018; Magana, 2017; Magana et al., 2019; Shiflet 

& Shiflet, 2014). Thus, this study implies that merely building or using a model is often only a 

limited use of the learning activity. Engaging students in the entire cycle may allow them to learn 

additional skills.  

 Regarding the implications for the classroom, a relevant finding was the emergence of the 

generalization outcome of transferring from relevant and similar examples. The use of worked 

examples has been commonly studied and shown to be useful in helping students understand 

complex concepts (Moreno et al., 2009; Vieira et al., 2019). The results of this study seem to 

indicate further that students seem to learn how to solve current problems by looking to similar 

worked problems and examples, whether that be from a class text or online resources. Instructors 

should provide access to problems and examples that help students make sense of the current 

project they are working on.   

9.7 Conclusions and limitations 

To conclude, evaluation and reflection are critical components to the learning process and 

have been used across many learning interventions. Evaluation and reflection are often vital 

components to the modeling and simulation cycle. In our study, students met to compare their 

modeling solutions and then reflected on the modeling process. By doing so, students could see 

multiple ways of solving a complex, ill-defined engineering problem. This study indicates that one 

such benefit of evaluation and reflection during modeling and simulation is that students produce 

new and unique computational thinking outcomes when utilized within our proposed learning 

design and build on previous computational thinking outcomes identified.  

 This study has some limitations given the nature of the methods. The first and primary one 

is that the results likely lack generalizability across contexts. This study uses design-based research, 
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and the results are tied inseparably to the learning design, the disciplinary context, and the 

instructional team (Barab & Squire, 2004; DBRC, 2003). Because of this, similar studies will 

likely find similar results, but these contextual differences could lead to differences in the results. 

Additionally, demographic information was not collected on the individual participants, limiting 

generalizability across student backgrounds (Pawley, 2017). Finally, the results are limited by the 

sample size. Larger sample sizes may provide additional outcomes elicited throughout the 

evaluation and reflection process. Future work should look to understand how these outcomes 

change across contexts, disciplines, and learning designs. By doing so, researchers and educators 

can build on this work, and have an even more holistic and generalizable understanding of the 

nature of computational thinking within modeling learning environments.  
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 DISCUSSION AND IMPLICATIONS OF THE RESEARCH 

10.1 Introduction 

To tie together the results of all three studies, this chapter aims to discuss the results in light 

of three main areas. First, a summary overview of the results from the three studies is given to look 

at the results in full. Next, the research implications for engineering education are discussed in 

how model-based reasoning leads to many computational thinking practices and outcomes. Then, 

the implications on teaching and learning are discussed, considering these results.  

10.2 Progression of Computational Thinking through Model-based Reasoning 

 The results of the three studies provide a lens to uncover how computational thinking is 

used throughout the modeling and simulation cycle. Furthermore, the findings of the studies 

examine the role of computation in promoting model-based reasoning within engineering students. 

A revised figure, initially presented in Chapter III, is given based on the findings.  This revised 

Figure 12 represents the interplay between the modeling and simulation cycle with the model-

based reasoning process and different types of models students generated throughout the modeling 

and simulation cycle.  

 

Figure 12. Overview of the computational modeling and simulation process and its alignment 

with model-based reasoning. 

 

 Each of the double-sided arrows in Figure 12 represents the model-based reasoning process 

as students move between the various representations of the model. At each point of reasoning, 
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one of the learning phases is to guide that reasoning process. Planning the model is primarily when 

students move from the physical referent to the mathematical equations and variables needed to 

model the system mathematically. Students build their computational model based on their planned 

mathematical model during the building phase. And during the evaluating and reflecting phase, 

students compare their results to their expectations of the physical referent and world around them. 

The primary hypothesis of this framework is that computational thinking would emerge during 

each of these model-based reasoning processes.  

 The results indicate that there is indeed some sort of relationship between students using 

model-based reasoning and the subsequent elicited computational thinking outcomes. Figure 13 

describes the ideas suggested by the results of the studies.  

 

Figure 13. The relationship between computational thinking and model-based reasoning.  

 

 While this research doesn’t claim that these two entities are one and the same, the results 

suggest that there is certainly some overlap between the concepts used in model-based reasoning 

and computational thinking. This is perhaps most highlighted by Nersessian (2007), who gives the 

following of definition of model-based reasoning in terms of the processes it consists of:  

“abstraction: limiting case, generic, idealization, generalization; simulation: 

inferring outcomes or new states via model manipulation (mental or physical); 

evaluation: goodness of fit, explanatory power, implications (empirical, 

mathematical); and adaptation: constraint satisfaction, coherence, other relevant 

considerations.” (p. 706-707).  
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As one can see, there is significant overlap between the definitions and codebook provided 

throughout these studies in terms of CT practices and these definitional processes proposed for 

model-based reasoning. Nersessian (2007) additionally describes simulation as a key model-based 

reasoning process, which in our computational thinking coding scheme is highly related to 

algorithmic thinking. The difference being that mental simulation uses the mind as the simulating 

agent, whereas the students in these students were using the MATLAB programming environment 

as the simulating agent.  

 Certainly, the literature has many aspects to computational thinking that are not necessarily 

a part of model-based reasoning and vice versa. Thus, the relationship between the two can be 

thought of as overlapping concepts, but not entirely the same, as shown in Figure 13. Future work 

may continue to understand the relationship between these two concepts and the exact nature of 

the interaction. However, the results of these studies indicate that there certainly is a relationship 

and that when students are engaged in model-based reasoning, they are also engaged in 

computational thinking.  

10.2.1 An Overview throughout the Modeling and Simulation Cycle 

 The results of the three studies suggest that computational thinking was an emergent pattern 

throughout the modeling and simulation cycle through the model-based reasoning processes. 

Figure 14 below shows each of the phases of the modeling and simulation process (planning, 

building, and evaluating/reflecting) and what percentage of the total coded practices at the 

categorical level adapted from the literature (Curzon et al., 2014; Selby & Woollard, 2013).  
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Figure 14. Frequency of categorical codes for each of the three studies.  

 

 The results of Figure 14 do not provide an exact representation of how often students used 

what practices, but they do note a few interesting trends. For example, abstraction was most 

enacted during the planning and building phases. Alternatively, evaluation was the most enacted 

practice during evaluation and reflection, an expected development. However, we also see that 

evaluation remained a prominently enacted practice throughout the entire process, indicating that 

students continuously evaluate their work in terms of many different factors, a practice common 

to many expert-learners (Ertmer & Newby, 1996). Generalization also increased during the 

planning phase, mainly because students had to transfer information from various sources while 

they thought about how to use that information to create their models.  
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Table 29. Complete list of computational thinking outcomes across the three studies. 

CT Practice CT Outcomes 

Abstraction  Ranges to values 

 Multiple to single 

 Dynamic to static 

 Geometric relationships 

 Similar systems 

 Infinite to finite 

 

Algorithmic Thinking  Indication of later use/effect 

 Stepwise approach 

 Parallel methods 

 Conditional logic 

 

Evaluation  Solution accuracy 

 Solution complexity 

 Time efficiency 

 Design criteria 

 Solution usability 

 Solution flexibility 

 Ideal Solution 

 Peer Comparison 

 Debugging 

 

Generalization  Previous coursework or experience 

 External applications 

 Similar problems 

 Reuse of code/equations 

 

Decomposition  Organization of larger solution method 

 Allocation of resources 

 Ease of use of program 

 

 

The results of the three studies also provide a list of outcomes, listed in Table 29, associated 

with computational thinking that emerged when engineering students engaged in model-based 

reasoning through a model-eliciting activity. While this list is likely not exhaustive of all modeling 

problems and situations, it does give a broad overview of how modeling-based reasoning elicited 

computational thinking practices. Some categories resulted in more distinct outcomes than others, 

and this should not be taken to indicate anything about frequency or prominence within the dataset. 

But instead, it is an indication of how often there were clear differences between the outcomes in 
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the category. For example, evaluation had the most different outcomes, and this was because there 

were many clear criteria against which students compared their solutions. Yet this says nothing 

about the frequency of the practice within the dataset.  

 Previous research has found that computation and computational modeling are good 

educational tools to study model-based reasoning in student solutions (Crnkovic & Cicchetti, 2017; 

Magana et al., 2020). This directly aligns with the studies presented here that have seen that 

computation was a valuable tool in studying model-based reasoning processes. Using computation 

in the engineering classroom, especially when creating computational models and simulations, 

promotes the use of multiple types of knowledge while engaging in model-based reasoning 

processes. These differ throughout the modeling cycle (Magana et al., 2020). Our results show a 

corresponding idea that the thinking processes elicited through model-based reasoning seem to 

vary and change across the modeling and simulation cycle.  

 The connection between computational thinking being emergent from model-eliciting 

activities has also been studied outside of the results presented here (Carmona et al., 2022; Z. Liu 

& Xia, 2021). The research continues to find connections between the MEA as a pedagogical tool 

and computational thinking as an emergent outcome. For example, Liu and Xia (2021) found that 

the MEA learning design promoted certain computational thinking practices but took a more 

quantitative approach to measure the computational thinking practices with rubrics. Our approach 

in these studies is additive to this. It qualitatively shows what these practices look like and 

identifies how these practices emerge as outcomes within student solutions. Thus, this study goes 

deeper than measuring computational thinking by characterizing it when enacted in the modeling 

and simulation cycle context and how it is used throughout the different forms of enacting model-

based reasoning processes.  

 This work also furthers the work done by Curzon et al. (2014) and Selby and Woollard 

(2013), whose definition of computational thinking these studies operationalized. The studies 

presented here give greater detail to the definition and take it a step further to provide practical 

outcomes associated with the proposed definition.  

10.3 Implications for Engineering Education Research  

 The implications of the results for engineering education research from the three studies 

relate to three primary areas. First, I will look at how the study contributes to the body of research 
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around computational thinking and the implications the results have in furthering that body of 

research. Next, I will look at the studies' contribution to modeling education literature and how 

best to utilize these tools in the classroom. Finally, I will discuss the idea of computational model-

based reasoning that emerges as students engage in modeling and simulation activities.  

10.3.1 Computational Thinking: A Flag in the Ground 

 The results of this study have multiple implications for literature surrounding 

computational thinking. The literature around computational thinking has been, for the most part, 

definitional for many years (Grover & Pea, 2013; Kalelioğlu et al., 2016; Lyon & Magana, 2020b). 

While the definition continues not to be consensus, there is a significant overlap between many of 

them (Lyon & Magana, 2020b). The considerable gaps in the literature around computational 

thinking continue to be how to design pedagogy and activities that allow students to practice and 

learn computational thinking (Angeli & Giannakos, 2020).  

The results of the studies from this dissertation work address this gap in two ways. First, a 

designed learning intervention is shown to clearly elicit multiple computational thinking practices 

within the undergraduate engineering curriculum. The designed learning intervention is based on 

model-eliciting activities, productive failure, and modeling-based learning principles (Diefes-Dux 

et al., 2004; Kapur & Bielaczyc, 2012; Louca & Zacharia, 2012). Yet, engineering education 

research should continue to connect the dots on how learning frameworks such as these allow 

students to practice computational thinking skills through different engineering contexts and 

learning interventions. Studies continue to emerge with computational thinking used in different 

pedagogies and learning frameworks such as makerspaces (Y. Yin et al., 2020), design education 

(Hynes et al., 2016), and project-based learning (Cruz Castro et al., 2021). This study adds and 

furthers this literature by showing how modeling-based learning, model-eliciting activities, and 

productive failure can critically influence computational thinking practices.  

Second, it gives practical and contextual ways to convert the practices into outcomes. This 

brings the theory to practice, showing how computational thinking is actualized within student 

performance on an engineering task. One issue within the computational thinking literature is that 

it often results in vague descriptions of what was learned, or the concept of computational thinking 

is diluted to make it easier to measure (Lyon & Magana, 2020b). These studies give a full list of 

tangible computational thinking outcomes that emerge as a result of engaging in the modeling and 



 

 

154 

simulation process. The connection between modeling and simulation with computational thinking 

has previously been noted and discussed in the literature (Z. Liu & Xia, 2021; Magana et al., 2013; 

Sanford & Naidu, 2017; Sengupta et al., 2013; Weintrop et al., 2016). However, the exact nature 

of this relationship in terms of model-based reasoning and the tangible outcomes that emerge as a 

result are critical contributions of these studies. Engineering education research should continue 

to look into the exact nature of this relationship and how these computational thinking outcomes 

are impacted within varied contexts.  

10.3.2 Modeling Education: A Keystone of Engineering Education 

 Models and modeling are central elements to the educational development of engineering 

students. They are used across disciplines such as civil (Gainsburg, 2006), mechanical (Leang et 

al., 2010; Sclarsky et al., 2016), chemical (García-Herreros & Gõmez, 2013; Sclarsky et al., 2016), 

and electrical (Ortega-Alvarez et al., 2018) to give a few examples. Aside from their primary use 

of allowing students to connect the physical world around them from the mathematical language 

to interpret it, models allow engineering students to use deep reasoning processes to make 

decisions (Lehrer et al., 1994). They also allow instructors to add key elements to the curriculum 

such as programming education (Magana et al., 2017; Magana & Silva Coutinho, 2017).  

 The studies presented here contribute to the growing literature that the entire modeling and 

simulation cycle is key to student learning through modeling, not just building the model (Louca 

& Zacharia, 2012; Magana, 2017; Shiflet & Shiflet, 2014). Fundamental processes such as model 

planning, evaluating, and reflecting are needed for students to build additional skills they otherwise 

would not practice just in building the model, which was corroborated through our results. Many 

computational thinking practices were used in different and varied ways throughout the entire 

modeling intervention. This means that critical elements of learning may have been lost in the 

absence of any given phase of the modeling process.   

Yet, one of the hurdles to implementation is that the engineering curriculum has very little 

space or time for modeling activities (Magana & Silva Coutinho, 2017). The results of these studies 

indicate that modeling education can promote computational thinking and aligns with the literature 

around the types of additional learning it promotes for students, such as programming knowledge 

(Caballero et al., 2012; Magana et al., 2016) and reflective practice (Jaiswal et al., 2021; Magana 

et al., 2019). Engineering education research should continue to look for learning benefits from 
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integrating the entire modeling and simulation cycle into the classroom to be thoroughly and more 

frequently integrated.  

One way to continue exploring how to integrate modeling and simulation into the 

curriculum is to use design-based research methods to further theory and contribute to practice 

simultaneously (Barab & Squire, 2004; DBRC, 2003). This study has contributed both to the 

theory around model-based reasoning and computational thinking and delivered a disciplinary 

modeling unit to integrate into a final-year capstone engineering course. Engineering education 

research should continue to look for ways to use design-based research to test and contribute 

learning designs in the classroom to understand how students learn, and instructors should teach 

in realistic contextualized environments.  

10.3.3 The Emergence of Computational Model-based Reasoning 

 Finally, as it relates to the implications for engineering education research, the union of 

computational thinking and model-based reasoning emerged from engaging in modeling and 

simulation activities in the engineering classroom. The studies showed that as students engaged in 

the model-based reasoning process of converting their mental models to various forms of 

mathematical and computational models, diverse computational thinking practices emerged. The 

literature has previously noted this relationship between computation, modeling, and model-based 

reasoning (Crnkovic & Cicchetti, 2017; Develaki, 2017; H. P. Liu et al., 2017). The nature of the 

relationship is that computational modeling and simulation activities allow students to engage in 

model-based reasoning by testing their understanding of reality, which consists of their mental 

models, and to get feedback on the results. Computational modeling allows students to test their 

knowledge of complex phenomena quickly and in diverse ways.  

 Because of this, computational model-based reasoning extends from the literature around 

model-based reasoning in that both the created computational model and mental model of the 

student work together to update their understanding of the world around them. Develaki (2017) 

wrote that computer simulations build model-based reasoning “by facilitating the construction of 

numerous alternative models and immediate checking their underlying hypotheses” (p. 1023). In 

essence, the computational model can build and test complex situations that the students could 

never do on their own. The results of our study support the idea that model-based reasoning occurs 

through modeling and simulation activities and elicits computational thinking practices. 
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Engineering education researchers should continue to understand the deeply rooted benefits of 

modeling and simulation and how they can lead to this type of computational model-based 

reasoning process.  

10.4 Implications for Teaching and Learning 

 However, the implications are not only for the research laboratory but also for the 

practitioner. The results from the studies have implications for teaching and learning, looking 

specifically at what the results imply about the engineering classroom. First, the implications for 

teaching are reviewed, looking foremost at the role of the teacher in the process of model-based 

reasoning, modeling, and computational thinking. Next, the implications for learning and how 

students learn computational thinking skills are reviewed.  

10.4.1 Implications for Teaching  

 There are multiple implications for teaching and how modeling pedagogy can be set up to 

promote and elicit computational thinking from engineering students. First, the results indicate that 

allowing students to explore the problem space before the instruction is beneficial to modeling and 

simulation. This is especially true in upper-division courses such as the one presented here, where 

students need to build on previous information already given to them in the curriculum. The 

students needed to generalize from previous courses and experiences instead of having recent 

instruction on the modeling problem to rely on, forcing them to connect the current context with 

multiple previous contexts and knowledge. This is precisely what has been seen in the literature 

when productive failure is used in pedagogical design (Kapur & Bielaczyc, 2012).  

 Another implication for teaching for computational thinking in the context of modeling 

and simulation is to allow students to explore a problem space that is big enough for multiple 

solutions. Many of the abstraction outcomes that emerged from the students resulted from students 

needing to make decisions based on the complexity and real-world aspects of the problem. If the 

problem had been straightforward, students would not have needed to decide how to abstract the 

problem from the complex real-world context. The benefits of necessary complexity through ill-

structured problems for learning are well-documented (Jonassen & Cho, 2011; Kapur, 2014; Shin 

et al., 2003) and setting modeling problems within a real-world context (Diefes-Dux et al., 2004; 
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Magana et al., 2016). Our findings align with these claims and show that they force students to 

abstract aspects of the problem from the real world to simplify the solution's complexities.  

 This leads to the final implication for teaching: students need to be given the ability to 

compare their solutions to other solutions. Multiple studies have shown that allowing students to 

compare solution methods in mathematics is beneficial in developing procedural and conceptual 

knowledge and will enable them to maintain more flexibility within their solution approach (Elisha, 

2013; Rittle-Johnson & Star, 2007). The results of these studies indicate that there were 

computational thinking benefits during a mathematical modeling activity as well. It allowed 

students to compare how they set up the problem and the simplifications they made to abstract the 

problem from its real-world context in terms of accuracy and complexity, among others. This is 

similar to the findings of Elisha (2013), who wrote that “comparing contrasting solution methods 

[…] helps students to differentiate essential features of a problem,” (p. 22). In the same way, when 

students are comparing their modeling solutions, they can compare what essential simplifications 

were and what were not.  

10.4.2 Implications for Learning 

 In addition to the implications for teaching, there are also implications from the studies for 

how students learn during the modeling process. The first is that students are constantly evaluating 

their solution approach, methods, and performance. This constant self-evaluation that students do 

on their work and performance is a crucial tenet of self-regulation (Urban & Urban, 2019) and 

calibration of work (Osterhage et al., 2019). While it is not surprising that by the time students are 

at their capstone experience, they are generally good at regulating their solution strategies, it is 

undoubtedly an encouraging finding that this work shows that students are constantly engaging in 

this process. This work finds that students focus on many more items than just accuracy when 

evaluating their solutions. Important metrics such as time efficiency, complexity, usability, and 

flexibility also seem significant to students.  

 The work also suggests that having teammates are a core part of learning in ill-structured 

modeling activities. This is not a new finding as much of the modeling literature discusses and 

demonstrates the benefits of working in teams within a modeling context (Diefes-Dux et al., 2004, 

2006; Moore et al., 2013). Literature has shown that when working in teams together, groups can 

internally fix misconceptions among the group members (Moore et al., 2013). This work furthers 
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that by giving some insight into the mechanism in how this occurs. Students were able to see 

different modeling assumptions, different coding strategies, and talk about the benefits and 

drawbacks of each as they worked through both the planning and evaluating stages of the modeling 

activity. This allowed students to give continuous feedback to each other as they planned their 

models and then as they evaluated what they had done. Through this process, students were able 

to help each other move towards correct ways of thinking about the problem.  

 Instructors should strive to scaffold the learning activity to lead students towards desired 

learning outcomes when giving ill-structured activities. The literature has shown time and time 

again that building in proper scaffolding into the learning activity allows students to learn more 

effectively as well as guide an activity toward the desired outcomes of the instructional team 

(Hislop, 2006; Hislop & Ellis, 2009; Lanier et al., 2016; Melero et al., 2012). Specifically, the 

learning design presented in these studies gave multiple forms of scaffolding to support student 

practices, such as defined report templates to structure student writing and thinking and using 

intermediate deliverables throughout the entire process rather than turning in the whole assignment 

at one time. The studies suggest that these scaffolding techniques help structure student learning 

in complex, ill-structured capstone projects, which aligns with previous research (Hislop, 2006).  

10.5 Summary 

 This chapter has overviewed a discussion of the overall results of the three studies and 

given implications of the results in full. An overview of how computational thinking was used 

across the modeling and simulation sequence was given. The connection between model-based 

reasoning processes and computational thinking was made explicit to the theoretical framing of 

the entire set of studies. Next, the implications for engineering education were overviewed. The 

results generated tangible outcomes of what computational thinking looks like and a further 

demonstration that modeling is a crucial need for all disciplines of engineering students. The 

implications for teaching and learning were then overviewed. First, there was a discussion of the 

pedagogical implications of the studies and the ways instructors can promote computational 

thinking through concepts such as delayed instruction, creating ill-structured problems, and 

allowing students to compare their solutions. The implications to learning were then discussed, 

looking at students' self-evaluation and the benefits it can bring, as well as the learning that occurs 

when students can correct each other in their ways of thinking.    
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 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

11.1 Future Research Directions 

 There are multiple essential and exciting research directions to build off the results 

presented in these three studies. As such, numerous research questions naturally result from these 

lines of inquiry such as: 

• How can computational thinking practices, such as abstraction and generalization, be 

measured in the context of the engineering classroom? 

• How much do students' computational thinking skills increase from engaging in modeling 

and simulation activities in the engineering classroom? 

• How do computational thinking outcomes change when students engage in other 

engineering activities such as engineering design? 

• In what ways do pedagogical design decisions impact the resulting computational 

thinking outcomes?  

• What different learning types occur when students use computational thinking during 

modeling and simulation activities? 

• In what ways do students benefit and struggle when engaging in model-based reasoning 

during a modeling and simulation task? 

• How are computational thinking practices elicited through other types of modeling 

outside of computational modeling, including black-box approaches? 

• How are computational thinking practices elicited through modeling at the K12 level, and 

in what ways is it different than undergraduates? 

• How can instructors build computational thinking assessments for modeling and 

simulation activities once they have implemented them? 

• How does the modeling and simulation context contribute to the elicited computational 

thinking? 

• How can computational thinking activities be designed to broaden participation and close 

representation gaps in engineering and computing fields? 

While there are many different directions one could go, here are two lines of inquiry I would 

like to discuss specifically. The first is looking at other essential engineering tools and processes 
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and how they may elicit and utilize computational thinking in practice. Modeling is far from the 

only critical engineering skill; others include the design process (Crismond & Adams, 2012) and 

complex problem-solving (Schefer-Wenzl & Miladinovic, 2019). Understanding how these 

engineering tools elicit computational thinking outcomes would help to build a holistic picture of 

how computational thinking is used and utilized by engineering students and professionals as they 

go about all aspects of their work. Building out this list of practices would allow educators to fully 

understand how computational thinking is used by engineers and will enable them to target these 

practices throughout the engineering curriculum.  

 Similarly, future research should continue to look for how pedagogical design decisions 

impact the emerging computational thinking outcomes. While the studies did not have a control 

condition to compare, it is very likely that design decisions from a pedagogical standpoint strongly 

influenced the computational thinking outcomes that were elicited as a result. Because of this, 

varied pedagogical practice for learning with models would likely result in additional 

computational thinking outcomes. While this study used the MEA to structure the learning design, 

other modeling-based interventions exist within the literature (Lyon & Magana, 2020a). Research 

should continue to form the link between modeling, pedagogical design, and computational 

thinking.  

11.2 Limitations 

 The study has multiple limitations that should be addressed. First is the limited 

generalizability of the study to new contexts and populations. This study sits contextually within 

the specifically designed learning intervention, the specific population of undergraduate 

engineering students in biological engineering, and the capstone course it was all situated within. 

While other studies may see similar results in their contexts, there will likely be differences due to 

the contextual differences. The hope for these differences would be that they would continue to 

build upon this list of computational thinking outcomes that emerge both during modeling 

activities and other critical engineering skills.  

 Similarly, the lack of demographic information on the participants limits the studies' ability 

to make claims across or about specific populations. Engineering has a long history of significant 

gaps in diversity in terms of race and sex. Engineering education research should work to make 
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these gaps visible to readers and practitioners (Pawley, 2017). Because of the lack of demographic 

information on the students, this limits the generalizability of the results of the study.  

 Finally, the study results are limited by one crucial factor: to what degree students discuss 

their thinking practices. This has long been seen as a limitation to think-aloud interviews and 

methods like them that rely on the students to discuss or write down their thinking process or 

respond to a learning environment, which might be pretty difficult for the student to do (Leighton, 

2021). This study is limited by what the students can realize they are doing and put into words or 

writing. Further studies could likely identify additional elicited outcomes that the students are 

unaware of if different research methods were utilized.  

11.3 Conclusions 

 To conclude, computational thinking is a concept that is rapidly spreading throughout the 

STEM education literature and is seen as increasingly essential to develop in students across 

disciplines and industries (Acevedo-Borrega et al., 2022; Dolgopolovas & Dagienė, 2021; Li et al., 

2020; Lyon & Magana, 2020b; Magana & Silva Coutinho, 2017). Additionally, modeling and 

simulation are critical engineering skills that engineers of all disciplines use (Gainsburg, 2006; 

Igual et al., 2018; Leang et al., 2010; Lyon & Magana, 2020a). These studies show that 

computational thinking is practiced frequently and in various ways throughout the modeling and 

simulation cycle.  

 Additionally, the studies presented here also move the discussion around computational 

thinking from theory to practice, showing that pedagogy used to elicit computational thinking has 

practical outcomes that educators can observe in their students' work. The studies also indicate that 

educators can make design decisions to elicit various computational thinking outcomes within their 

pedagogical practice. One such learning design connected to learning theory with computational 

modeling is given in these studies that can and should be used and modified to implement modeling 

and elicit computational thinking.  

Finally, these studies utilized a design-based research approach to contribute to theory and 

deliver a learning activity to further real-world instructional practice. The results imply that 

engineering educators can implement computational modeling activities into their classrooms to 

allow students to engage in model-based reasoning, which will enable them to practice and build 

their computational thinking skills. And because the study uses design-based research, these results 
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were obtained in an actual classroom in partnership with an engineering instructor. Because of this, 

the results are tested and derived from a natural learning environment, and the results of the 

learning design contribute to and form the basis for current and future instructional practice in the 

undergraduate engineering curriculum.  
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APPENDIX A. PLANNING THE MODEL TEMPLATE 

Name: 

In-class activity 1 (Individual working w/ group): Prepping the Model (due end of class 

9/6) 

What properties are needed/not needed for the model? For each property of the food, give 

reasoning as to why.  

 

Food Property: Why Is/Is Not Used: 

 

For each property where a range or raw data is given, how do you intend to address this 

in the final model? For each property listed please give reasoning as to why you are 

choosing your current strategy.  

Food Property: How will you use or address? Why? 

Are there any properties of the food that are needed that are not given in the problem 

statement? If any, please justify why it is needed and what source you will obtain it from.  

Food property Needed: Why is it needed?  Why did you use the source you 

did? 

What assumptions will you make to solve the problem? For each assumption explain why 

you made the assumption and what it may limit about your model.  

Assumption(s): Why did you choose?  What will this limit? 

The mathematical equations necessary to solve the problem. For each equation please 

explain why it was chosen and any assumptions your model will make about the equations. 

Please list all equations necessary. Feel free to use the course textbook or online materials.  

Equation Needed: 

 

Why is this needed? What assumptions does this 

equation make? 

What computational technique will you use to solve the system? Explain why this 

technique was chosen, what the benefits are, and what the limitations are. (For example, 

implicit finite difference, explicit finite difference, finite element method, Crank-Nicolson 

method, Monte Carlo method, etc).  

Computational technique chosen: 

What are the benefits of this technique? 
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What are the limitations of this technique? 

Why did you choose this technique over alternatives? 

Please show how you intend to combine the properties, equations, assumptions, and 

numerical techniques in your final solution (provide a “roadmap” of how you believe you 

will solve the problem). Feel free to include diagrams, drawings, or maps. 
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APPENDIX B. BUILDING THE MODEL TEMPLATE 

Name: 

Take home assignment (Individual): Building the model (Due beginning of class 9/27) 

Please outline and describe how your model works in terms of computational structures. 

For each structure, please explain why the programming technique or process used was 

chosen. Include as much detail as possible, doing this for each computational structure 

within your model (groups of variables, loops, conditional statements, sets of equations 

etc).  

 

Computational Structure: 

Ex. Nested for loop in lines 

15-25 of function_x.  

 

 

 

 

Ex. Define thermal 

variables in line 26-33.  

 

How does it work? Why was it programmed this way? 

Ex. The nested for loop indexes through both rows and columns to 

move through both time and space. It was used because there was 

a set end point, thus more efficient than a while loop that exits upon 

an unknown number of iterations. This is useful given it is 

unknown how long heat will take to transfer.  

 

Ex. These statements define how heat is moving through the 

material. These variables are necessary to be defined previous to 

the equations in line 45 as they are used there. Variable X 

does….and interacts with Variable Y in this way… 

 

 

Please describe any assumptions made during the modeling process and why those may 

have been good or appropriate assumptions? 

Assumption(s): 

 

 

Why did you make this 

assumption?  

How does this impact how your 

model works? 

What process parameters are you using for each of the food materials?  

 

i. What microorganism is your program targeting? All of them? Only one? 

Why? 
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APPENDIX C. EVALUATING THE MODEL TEMPLATE 

Name: 

In class activity (Individual with group): Evaluate your model (due end of class 9/20) 

Questions to discuss during group rotation meetings. For these meetings focus on HOW 

and WHY you solved and programmed the problem the way you did.  

1. What are different assumptions that you made about the physical properties of 

the system? Did you use different data? How would these differences impact the 

model?  

 

Notes:  

 

2. Do a line-by-line comparison with the other individuals programming files. How 

did your programming strategies differ? What advantages do you see in how they 

did their model? What advantages do you see in your own? 

 

Notes: 
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APPENDIX D. REFLECTING ON THE MODEL TEMPLATE 

Name: 

Take-home assignment (Individual): Reflect on your model (due beginning of class 9/25) 

What approaches did other students take with respect to the data that they used 

(justifications, assumptions, and limitations) and the way they programmed their model? 

Be as detailed as possible in listing various differences between models. For each difference 

talk about WHY you think the other group chose to do it the way they did. Be detailed.  

 

 

 

How did these differ from your own approach? When would your own approach make the 

most sense? When would different assumptions that other groups made make the most 

sense? 

Differences I saw: 

 

 

 

What approach makes the 

most sense: 

 

Why the approach makes the 

most sense: 

If you were to do this assignment again what are different assumptions you would make 

and what do you believe to be the optimal solution to the problem? 

 

Things I would do differently: 

 

Why I would do them differently: 

 

What was the most challenging piece of this assignment? 

 

 

Why do you feel that was the most challenging? 

 

How did you overcome this challenge? 
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APPENDIX E. PROGRAMMING FILE TEMPLATE 

%Name ___________________ 

 

%------------------------------------------------------------------------- 

%USE THIS TEMPLATE FOR EACH SCRIPT/FUNCTION THAT YOU WRITE 

%For each block of code (5-10 lines) in the model provide the following: 

%       HOW: How does this block of code work? 

%       WHAT: What does the block of code represent? 

%       WHY: Why is this block of code included in the model? 

%For more details, an example of good commenting and bad commenting has 

%been uploaded to Blackboard. 

% ------------------------------------------------------------------------ 

 

%---------------Thermal/Physical Properties of the System ----------------- 

%Here place any/all thermal, physical, or kinetic properties of the system. 

%For each block make sure to answer the HOW/WHAT/WHY questions above.  

 

%-------------------Numerical/Analytical Calculations --------------------- 

%Here place any calculations, mathematical structures, looping structures, 

%etc that are necessary for the modeling activity. For block of code or  

%structure make sure to answer the HOW/WHAT/WHY questions above.  

 

%-------------------------- Graphical/Numerical Output -------------------- 

%Any output parameters should go here such as display of graphs, matrices, 

%values, variables, or tables. For each block of code make sure to answer the 

%HOW/WHAT/WHY questions above.  
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APPENDIX F. FREQUENCY OF COMPUTATIONAL THINKING 

OUTCOMES ACROSS ANALYZED ARTIFACTS 

  Frequency of artifacts 
CT Practice CT Outcome Building 

(n=15) 
Planning 
(n=19) 

Evaluating/Reflecting 
(n=34) 

Abstraction  Ranges to values 11 19 21 

 Multiple to single 13 17 27 

 Dynamic to static 11 14 20 

 Geometric relationships NA 5 9 

 Similar systems NA 4 11 

 Infinite to finite 
 

10 2 13 

Algorithmic 
Thinking 

 Indication of later use/effect 13 19 29 

 Stepwise approach NA 17 6 

 Parallel methods NA 4 28 

 Conditional logic 
 

3 3 5 

Evaluation  Solution accuracy 12 17 30 

 Solution complexity 10 12 26 

 Time efficiency 7 11 8 

 Design criteria 3 10 10 

 Solution usability 6 2 16 

 Solution flexibility 3 1 13 

 Ideal Solution NA NA 2 

 Peer Comparison NA NA 16 

 Debugging 
 

5 0 15 

Generalization  Previous coursework or experience NA 8 5 

 External applications NA 6 4 

 Similar problems NA NA 5 

 Reuse of code/equations 
 

7 0 5 

Decomposition  Organization of larger solution method 3 9 3 

 Allocation of resources NA 1 1 

 Ease of use of program 8 0 17 

 

 


