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ABSTRACT

Drug-drug interactions (DDIs) occur when multiple drugs are used concurrently. Caused

by one drug inhibiting or inducing the metabolism of a second drug, DDIs often alter plasma

concentrations and could seriously impact efficacy and safety of co-administered medications.

Cytochrome P450 (CYP), a superfamily of enzymes, plays an important role in metabolizing

a majority of FDA approved drugs currently on the market. 70% of predicable DDIs are

associated with CYP enzymes inhibition. In-silico methods are increasingly adopted as a

cost-effective complement to guide and prioritize efforts in drug discovery. Recent emerging

applications of artificial intelligence algorithms have demonstrated promising results capa-

ble of prioritizing the selection of large chemical libraries, thereby outlining the future of

in-silico methods assisting in drug discovery. Nevertheless, current methods rely on molec-

ular descriptors that almost exclusively focus on chemical properties and atomic structures

that fail to capture critical conformation and biological interaction related properties. There

is also a lack of trainable molecular descriptors with feature specificity that reflect detailed

protein-ligand binding energy and enable biological activity prediction. The overall objective

of this dissertation is to understand molecular biological binding activity through electronic

structure-based local descriptors derived from quantum based conceptual density functional

theory (CDFT). This method will be used to assess the correlation of intermolecular interac-

tion energy with ligand-protein binding with 2D feature maps reduced from the 4D molecular

surfaces of the binding site and ligand (3D molecular surface with 1D electronic property).

Additionally, it will be used to explore the possibility of predicting CYP related DDIs using

descriptors generated using first principles including protein-ligand binding with specificity

and strength and deep learning algorithms. Using quantum chemistry to interpret topological

molecular information residing on 3D molecular surface permits the extraction of interacting

features directly from the ligand structure. To achieve that, a set of curatable data containing

consistent measurements was accessed through publicly accessible libraries. A series of novel

Manifold Embedding of Molecular Surface (MEMS) descriptors were generated containing

local electronic properties residing on the 3D molecule structure surface of each ligand using

manifold learning. Major information were captured featuring electronic characteristics on

15



the molecular 3D surface. Shape context was employed to derive transnational invariance

feature vectors from MEMS with high granularity, thus preserving molecular information

with specificity. DeepSet was utilized to perform permutation equivariance model training

and validation. Powerful model learning is observed with an F-measure for all targets above

75% with the highest of 87% from external testing. Despite their promising prediction per-

formance, molecular conformation changes and analytical featurization methods need to be

implemented to expand model applicability and improve model reliability.

KEYWORDS: Cytochrome P450, Deep learning, Quantum chemistry, Drug-drug interac-

tions, Ligand-based virtual screening
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1. INTRODUCTION

1.1 Drug-drug interaction and adverse drug reactions

Drug-drug interactions (DDI) describe a modification of the pharmacological effect of

one drug by the prior or concomitant administration of another. When two or more drugs

are used concurrently, one drug can inhibit or induce the metabolism of a second drug, thus

either increasing or decreasing the effectiveness and side effects of a drug, or introducing a

new side effect that was not previously observed (especially for drugs with narrow therapeutic

windows). The elongated life expectancy and continuous advancement in chronic conditions

management have also contributed to the increase of polypharmacy among other factors.

Nowadays, with the rapidly growing usage of prescription drugs, the need to use multiple

medications concurrently is common, as patients often develop comorbid multiple chronic

diseases, especially in the elderly population [  1 ], [ 2 ]. Statistics show that patients aged 70–79

years have a 34% risk of DDIs when they are prescribed with two or more drugs concomitantly

[ 3 ]. Furthermore, it was estimated that 36% of elder Americans regularly used at least five

medications or supplements simultaneously in 2010-2011 [ 4 ]. An increased potential adverse

drug reactions due to DDIs have been emerging and becoming an unignorable risk for public

health. It could pose serious impact on the safety and efficacy of affected medications [ 5 ],

[ 6 ].

As the risk of DDIs increases, the incidence of severe adverse drug events including fatal

cases also increases. Currently, study shows there are about two million severe adverse

drug reactions reported in the United States alone. Among them, approximately 26% are

shown to be attributed to avoidable DDIs [ 7 ]. Thus, early detection of potential DDIs is

highly desirable for both pharmaceutical industry and pharmacovigillence systems to avoid

possible failures in drug development and improve patient health. Pharmaceutical companies

have been conducting many screening tests for new drug candidates to avoid unexpected

DDIs in pre-clinical, clinical and post marketing phases during the research pipeline [  8 ], [  9 ].

Thanks to continuously developed data bases and increasing knowledge of DDI mechanisms,

several literature reviews have described the possibility of using and applying data based in-

silico modeling and applications of in-silico methods developed to predict drug absorption,
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distribution, metabolism, excretion and toxicity (ADMET) [  10 ]–[ 13 ]. Our understanding of

DDI at the molecular level has been yielding a large amount of experimental data and great

understanding of mechanism pathways.

A variety of drug metabolizing enzymes and transporters have been identified and mod-

eled as the key factors for DDIs over the past couple of decades. Cytochrome P450 (CYP),

a superfamily of enzymes, have been identified as important enzymes for the metabolism of

xenobiotics and most drugs that are currently on the market. Adverse CYP enzyme DDIs

caused by drug co-administration have led to several withdrawals of commercial drugs from

the market during the past several decades, such as Seldane, Posicor, Duract, Hismanal,

Propulsid, Lotronex, Baycol, and Seraone [ 14 ]. US Food and Drug Administration (FDA)

and the Pharmaceutical Research and Manufacturers of America (PhRMA) published several

guidelines for industry, providing guidance for the application of both in-vitro and in-vivo

studies, as well as in silico analysis that should be conducted during early stage of drug dis-

covery to evaluate the cytochrome P450 enzyme and transporter-mediated drug interactions,

particularly for members of the CYP superfamily [ 15 ], [ 16 ].

In an effort to reduce time and cost, various in-silico methods are continuously being

considered and widely used in the pharmaceutical industry to provide more possibilities in

assisting with decision-making in the drug discovery pipeline [  17 ], [  18 ]. Many screening

tests for new drug entities to avoid unexpected DDIs in the pre-clinical, clinical and post

marketing phase during the research pipeline have been designed and conducted [  8 ], [  9 ]. As

such, our understanding of DDIs at the molecular level has been yielding a large amount of

experimental data and a greater understanding of interaction mechanisms. Various in-silico

methods are continuously considered and widely applied by scientists to provide possibilities

assisting with decision-making and compound prioritization in the drug discovery pipeline

[ 17 ], [ 18 ].
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1.2 Role of CYP450 enzyme

1.2.1 Definition of CYP450 enzymes

The name “cytochrome P450 enzymes” (CYP450) is originated from the characteristics

of the proteins. Containing heme pigment, chrome and P, they are bound to the membranes

of cell. Further, when exposed to carbon monoxide, they absorbs light at a wavelength of

approximately 450 nm. Be able to detoxificate foreign chemicals, these CYP450 enzymes

have been identified as an essential enzyme family responsible for the metabolism of xeno-

biotics and most other drugs that are currently on the market. Among 57 CYP isoforms

that have been identified in humans, six isoforms (CYP1A2, CYP2B6, CYP2C9, CYP2C19,

CYP2D6, and CYP3A4) have proven to be accountable for the metabolism of 90% of FDA

approved medications [ 17 ]. Most DDIs associated with CYPs are caused by CYP inhibition

(73%) or induction (27%) [ 17 ].

1.2.2 Characteristics of CYP enzymes induction

Many of the human liver CYP enzymes, including CYP1A, CYP2B, CYP2C, and CYP3A

families, are responsible for the metabolism of a large portion of pharmaceutical drugs.

They are found to be inducible by a diverse array of compounds including medications,

natural products, synthesized chemicals, and ethanol [  19 ]. Induced enzyme activities can

enhance metabolism of pharmaceutical drugs and alter drug plasma concentrations. Major

advancements in understanding the mechanisms for induction of CYP enzymes have been

made. Based on current understanding, CYP induction is proven to be a relatively slow phe-

nomenon involving gene regulation activities and protein synthesis processes, such as nuclear

receptor activation and the synthesis of mRNA and enzymes [ 20 ]. Similar mechanisms have

been found for many CYP induction process. Alternative mechanisms of CYP induction is

found to be related with chemicals that are able to stabilize the translation of an enzyme

and inhibit protein degradation pathway [ 21 ].
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1.2.3 Characteristics of CYP enzymes inhibition

Mechanisms of CYP inhibition is usually classified as two categories: reversible or irre-

versible (which is also known as quasi-irreversible). Reversible inhibitions are those caused

by rapid association and dissociation between the enzyme and drugs or ligand substrates

that can be categorized as competitive, non-competitive, or un-competitive inhibitors [ 21 ],

[ 22 ]. Reversible competitive inhibition is associated with multiple substrates that can be me-

tabolized by the same binding pockets of the CYP isoform. It happens when more than one

substrates were used together and compete for thee same active binding regions on CYPs.

When two substrates with competitive behaviors are co-administered, the competition can

be understood as the function of their concentrations and respective binding affinities of

the present ligands for the same active site of enzymes [ 23 ]. For competitive inhibition,

a stronger substrate will have the ability to replace the substrate with a relatively weaker

binding affinity. The metabolism of the weaker drug will have a decreased affinity and thus

slower metabolism rate as well as clearance [ 24 ], [  25 ]. Non-competitive inhibition happens

when one of administered substrate binds to the allosteric site of an enzyme and cause a

conformation change of the enzyme’s structure and alter the active binding site for the other

compound [  26 ]. Although there is no direct competition between the two ligands, this type

of inhibition is often concentration independent and will usually last longer. Un-competitive

inhibitors bind only to the enzyme–substrate complex and lead to a stable form. While

this is a less common phenomenon Un-competitive inhibitor is still observed in many cases

and demonstrated great effects [ 27 ]–[ 29 ]. Another set of inhibitors is known as mixed in-

hibitors, which refer to ligands that can bind to both the active pockets and the allosteric

sites. With those circumstances, both competitive and non-competitive inhibition can hap-

pen at the same time. Greater DDI effects are usually seen than those from competitive or

non-competitive inhibition activities [ 23 ], [ 27 ].

Mechanism-based inhibition is an irreversible process commonly observed with pharma-

cokinetic interaction studies. Integrated by NADPH, mechanism-based inhibition is proven

to be both time and concentration dependent enzyme inactivation and substrate metabo-

lization [ 23 ], [  30 ]. Mechanism-based inhibitions happen when the CYP enzyme activates
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the ligands to a reactive metabolite which can bind with the enzyme active site and form

a stable complex. Those activities can be quasi-irreversible or irreversible. Some substrates

can be metabolized by CYP isoforms and produce intermediate metabolites that are in-

hibitory to enzyme activities. In irreversible cases, the intermediate metabolites can form

covalent bonds with the heme prosthetic site which result in irreversible inhibitions [  31 ]. For

quasi-irreversible inhibitions, the metabolites will usually develop a stable complex with the

heme prosthetic site of the enzyme and form a metabolite-intermediate complex that force

the enzyme to be inactive [ 32 ], [ 33 ]. Those type of formation can be disrupted, however, the

exact mechanism involved in this process is not yet discovered.

Mechanism-based inhibition is usually time-dependent, where a plateau in the metab-

olization pathway of entities and inhibition rate plateau can often be reached over time

depending on the concentration of ligands and available enzyme [  34 ], [  35 ]. Suicide inhibi-

tion is another scenario which describes the process by which highly reactive intermediates

are formed during metabolic activation [  36 ], [ 37 ]. The interactive intermediate complex is

formed through strong irreversible covalent bonds with the targeted enzyme in an unusual

pathway. The conformation of the enzyme will then alter significantly during the process

and become inactivated and lead to acute inhibition activities [ 38 ], [ 39 ].

1.3 Computer-Aided Design in DDIs Prediction

The discovery of new drug entity begins with the identification of targets for a disease of

interest with the receptors that the drug should act upon. Then, high-throughput screening

(HTS) experiments are necessary to be applied to compound libraries to select the hit com-

pounds that are active against the targets [ 40 ]. It is followed by an optimization process to

obtain lead compounds with drug-like properties and increased potency. Drug absorption,

distribution, metabolism, excretion and toxicicity (ADMET) are carefully evaluated during

this process. The drugs that reach safety and efficacy goals will be brought to clinical trials

after completing pre-clinical studies.

While HTS experiments are powerful techniques, they are often time- and resource-heavy

require several thousands of compounds and advanced facilities, which is one of the major
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challenges in drug development process. More than 2 billion US dollars is needed on aver-

age for a new drug to be developed, and it takes at least 10 years to complete the journey

[ 41 ]. Still, compounds could fail during any stages of development. As our understanding

of the mechanisms of DDIs and the ability of predicting those interactions have advanced

over the past years, the FDA has included various computational decision methods to as-

sist the decision-making process. Computer aided design is an effective alternative that has

been widely explored and incorporated in the process to guide and prioritize the process

and minimize the effort in the past decades. In silico prediction methods are continuously

being considered to evaluate DDIs by both pharmaceutical companies and worldwide phar-

macovigillence systems [ 17 ], [ 18 ].

Virtual Screening (VS) is a computational technique used to identify structures that are

likely to bind to a drug target by searching small molecules libraries based on biological

structures [  42 ]. It has become an important tool that many scientists choose to implement

during the drug development process to facilitate with both in-vitro and in-vivo experiments.

Whether used in conjunction with HTS or applied alone, the in-silico process provides a

quick and economical alternative by searching over millions of potential compounds against

interested compound libraries. VS is designed to effectively scan large compound libraries in

a timely manner with managebal cost and prioritize the most potent compounds for further

investigation.

VS methods are often summarized as structure-based methods, and ligand-based meth-

ods. Structure-based methods calculate the free energy of binding estimates based on protein

structure whereas ligand-based methods perform molecular similarity searching based on lig-

and structures.

1.3.1 Structure-based method

Structure-based virtual screening (SBVS) methods attempt to predict the interaction and

binding affinities between ligands against a molecular target [ 43 ]. To perform the calculation,

3D structure of the targeted protein is required to estimate interactions between the target

and each chemical compound. To understand the binding activities and generate reliable
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predictions, information about the receptor structure will be needed. Compounds will be

ranked and selected from the library based on their binding affinity calculation for certain

receptor sites.

In 1982, Kuntz et al first developed the algorithms to explore the feasibility of geometri-

cally assess the alignments between ligands and receptors for existing target structures [ 44 ].

It later became an increasingly important tool with constant advancement in technology

and computing powers known as molecular docking (MD). MD is capable with predicting

the interactions between ligands and target proteins at the atomic level. It can be used

to characterize the interaction behavior of interested compounds with the context of target

proteins. The main objective is reproducing experimental binding scenarios and evaluate the

strength of ligand-receptor complex structures using in-silico prediction techniques.

Starting with sampling of the ligand conformations and orientations within the targeted

sites of protein, molecular docking assesses their interaction strength with scoring function

algorithms [ 45 ]. Various sampling methodologies have been developed to explore different po-

sitions of ligands at the binding site with six transnational and rotational degrees of freedom

as well as different possible conformations. A large amount of possible binding complexes

can be generated between ligands and targets, thus usually requireing large computational

powers[ 46 ], [ 47 ]. Searching algorithms are usually widely incorporated into molecular dock-

ing software to improve searching efficiency. The incremental construction method is a

systematic searching algorithm that exploits the degrees of freedom of the molecules in a

fragment-based manner and docks these incrementally [  43 ]. During the process, the inter-

ested molecules will first be divided into fragments with respect to their rotatable bonds.

Then, docking will be performed with one of the randomly selected fragments against the

known target active site. Other fragments will be incrementally added to the previously

chosen fragments with different transformations in an attempt to fit the active site. Several

software programs like DOCK 4.0 [ 48 ], FlexX [  49 ], Glide [  50 ], eHiTS [  51 ], and so on have

this type of algorithm available. Another commonly used algorithm is the stochastic search

algorithm that changes one degree of freedom at a time randomly in the spatial conforma-

tion of ligand. Functions based on molecular physics are used to measure the free energy

of the conformation to evaluate how favorable the conformation is regarding to the bind-
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ing target site. The Monte-Carlo method, genetic algorithms are examples of this type of

search. Software programs like Glide [ 50 ], MOE [  52 ], GOLD [  53 ] and AutoDock4 [  54 ] all

have those methods implemented. Deterministic search is another type of search algorithm

that focuses on small conformational changes at the atomic level to analyze how the whole

molecule behaves and to find different molecular dynamics simulations.

As a widely used deterministic simulation method, MD simulation takes into account

of both the ligand flexibility and protein flexibility more effectively comparing with other

algorithms [ 55 ]. MD simulations also bears with some disadvantages as calculation can take

a long time and require great computational power. Also, MD simulations can be trapped in

a local minima due to the smaller steps it takes. Besides that, they have been recognized as

an efficient tool to perform local optimization which can be used as a good strategy following

the random search techniques to capture subtle conformational changes.

Scoring functions are developed to estimate the interaction forces between ligands and

molecular targets to capture the correct docking poses. It ranks the interested ligands with

their single or multiple binding possibilities in the receptor structure based on their es-

timated binding affinity. Traditionally, scoring functions are divided to force-field-based,

empirical-based, and knowledge-based scoring functions. Force-field-based scoring functions

calculates the binding energy of intermolecular interactions between the ligands and tar-

gets. Typical forces including electrostatics, Van der Waals, hydrogen bonds, solvations,

and entropy obtained from experimental data and molecular mechanics principles. Evalu-

ation tools including software like DOCK [ 48 ], GOLD [ 53 ] and AutoDock4 [ 54 ]. Empirical

scoring functions estimates binding energy by decomposing complexes into several compo-

nents based on their force type. A final score is determined based on a coefficient assigned to

each group. LUDI [  56 ], PLP [  57 ], ChemScore [  58 ] and DOCK6 [ 59 ] have different empirical

scoring functions ready to use. Knowledge-based scoring method can be used to screen large

compound databases with statistical analyses that calculates the binding interactions of the

protein atoms and molecular target [  60 ]. These methods are developed based on the assump-

tion that intermolecular interactions occurs more frequently near certain types of atom and

some types of functional groups are likely to contribute more to the binding activities than

other types. ParaDock5 [ 61 ], PMF [  62 ], and DrugScore [ 63 ] are examples for those types
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of calculations. As advantages and disadvantages exist for different scoring functions, an

emerging technique has been used known as consensus docking to apply different approaches

to increase the accuracy of predictions. However, inaccurate prediction of binding energies

still exists. Sampling algorithms and scoring functions calculate binding activities between

the ligands and targets, and yield compounds that have higher likelihood to interact with

designated targets.

1.3.2 Ligand-based method

The ligand-based virtual screening (LBVS) is another computational approach that uses

only ligand information to perform predictions. These methods including pharmacophore

maps and quantitative-structure-activity-relationship (QSAR) which can be applied to iden-

tify a lead only using chemical structure information based on molecular similarity [  10 ], [  64 ].

Usually, information can be extracted with known ligand categories and applied to both

lead identification and optimization process. With an assumption that undiscovered active

ligands would share similar functional groups and chemical features with the known active

ligands. These types of methods begin with developing molecular representation of each of

the known input molecules followed by evaluating similarities between known active ligands

and unknown candidates to rank and identify potential compounds.

First developed in 1964 by Hansch and Fujita, QSAR has become an critical method in

the pharmaceutical industry [  65 ]. It is an efficient mathematical calculation to characterize

both classification and regression prediction based on ligand structural similarity. Biolog-

ical activities and physio-chemical properties are usually correlated with ligand structural

properties. QSAR methods prioritize potential compounds based on their desirable activi-

ties predicted with in-silico models. These methods have been greatly advanced in the last

decades with the development of machine learning techniques that utilize both supervised

and un-supervised methods to identify ligands with higher similarities. Different dimen-

sionality of the molecular representations have been utilized to identify relevant aspects of

molecular properties and evaluate chemical similarities [ 66 ], [  67 ]. Advanced statistical meth-
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ods have been explored to enable rapid predictions with improved accuracy. More detailed

introduction can be found in later sections.

1.3.3 Databases for virtual screening

Data availability and quality is critical for computer aided designs. Over the past decades,

the development of high-throughput screening (HTS) and ultra-high-throughput screening

(UHTS) have enabled aggregation of a large volume of data regarding binding activities of

drug ligands to different targets [  68 ]. Several databases, both from public resources and in-

ternal experimental assays were selected and applied to build machine learning based models

to explore both ADME and several toxicities (hepatotoxicity, cardiotoxicity, renal toxicity,

genotoxicity) properties. Public libraries and national laboratories along with research insti-

tutes, as shown in Table  1.1 , have been developing and managing ultra-large virtual molecular

libraries through open chemical space which provides indispensable experimental basis for

computational modeling.

1.3.4 Molecular fingerprints

With the numerous datasets and entries available, the next question is how to extract

and convert the most relevant information to something computer interpretable. In the early

1990s, the similarity property principle (SPP) was proposed with molecular similarity anal-

ysis. SPP states that structurally similar compounds should have similar properties, with

the most frequently studied property being biological activity [  88 ]. Molecular descriptors,

which are mathematical representations of molecules’ properties for computer based studies,

are typically developed to represent features based on SPP. Various descriptors have been

calculated covering 0D - 4D feature for compound screening. Evaluated from the chemical

structure, molecular descriptors provide an abundance of crucial chemical and physical infor-

mation about the compounds with mathematical vectors and matrices. Molecules of interests

are characterized and described by symbols or vectors to effectively execute the prediction

tasks. Several commonly proven reliable approaches to calculate molecular fingerprints are

as shown in Table  1.2 .
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Substructure keyed-based fingerprints transformation is calculated based on molecule

substructures or features that is presence in the compounds [ 97 ]. Given a list of key properties

for the sub-structural information, a set of bits and bit strings could be calculated by splitting

a molecule into several fragments characterized as different descriptors. These types of

molecular descriptors are useful when the molecules of interest are most likely covered by

previously existing structural keys. However, those compound features are less informative

if the compounds do not contain the designated structural keys. Some of the commonly used

substructure keys-based fingerprints are listed in Table  1.2 and elaborated below.

Molecular ACCess System (MACCS) keys is another type of the most commonly used

structural key based calcualtion. Also referred to as the MDL keys, their name is derived from

the developer team (the MDL Information Systems (now BIOVIA)) [ 89 ]. Those descriptors

come with two sets, one with a set of 960 keys and the other with 166 structural keys. The

subset with 166 keys version is more accessible to the public and therefore more commonly

used. It is relatively smaller in size, yet still is able to cover most of the interesting chemical

properties for drug compound discovery. The calculations are implemented using open source

software packages, like RDkit [ 98 ], OpenBabel [ 99 ], and so on.

PubChem fingerprint is used to find identical PubChem records to identify different

levels of “sameness” through consideration of structural connectivity and the occurrence of

isotopic and stereo-chemical information [  90 ]. It contains 881 structural keys that cover a

set of extensive chemical substructures and molecule features. Besides PubChem database

implementation, it can also be accessed with ChemFP [ 100 ] and CDK [ 101 ].

ISIDA SMF descriptors are substructural molecular fragments (SMF) based descriptors

that were developed with an in-silico design and data analysis (ISIDA) software for in-silico

calculation based on fragment and pharmacophoric descriptors [  91 ]. This approach would

divide molecule of interest into fragments and characterize them as a set of descriptors.

The mathematical representation for the descriptors could then be generated based on the

sum of existences over these fragments within each of the molecules. Two fragment types

are considered and generated as ”sequences” and ”augmented atoms”. Three sub-fragment

types, A (atom only), B (bond only), and AB (atom and bond) can be defined depending

on the interest and existing understanding.
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BCI fingerprints are dictionary-based fingerprints with 1052 standard bits structure.

Modification about bits size can be made by the user and the calculation is available with

BCI toolkits from Digital Chemistry [ 92 ].

Topological fingerprints are able to analyze the whole molecular structure with fragments

based manner following specific pathways of a certain parameters and hash the paths too

generate a unique fingerprints with predetermined parameters. There are two paths the

analyzation can follow, either a linear path or a circular path, which is also know as circular

fingerprints [  102 ]. Unlike the substructure keys based method, topological fingerprints are

applicable for all type of molecules and are able to calculate meaningful fingerprints. These

types of calculations can also be applied for sub-structural property searching and keys

filtering. The fingerprints are hashed, meaning that with a single bit from the molecule

fingerprints one cannot trace back to the given feature it represents. More than one features

can be hashed to one bit, which is referred to as ”bit collision”.

The most prominently used topological fingerprints that look at the molecule with linear

path is the Daylight fingerprints, which consists of up to 2048 bits encoding connectivity

pathways through a molecule up to a given length [  93 ]. The algorithm is molecule based and

implemented in most commonly used software packages like RDkit [ 98 ].

Instead of following the atom in a linearly manner, circular fingerprints interpret the

molecules with a pre-determined radius per the user’s preference. The surrounding of each

atom up to the radius will be memorized and calculated. These types of molecular descriptors

are widely used for full structural similarity searching.

Extended-connectivity fingerprints (ECFPs) is one of the circular topological fingerprints

for molecular characterization developed in 2010 by Rogers et al [ 66 ]. Unlike other substruc-

ture similarity calculated topological fingerprints developed based on linear paths, ECFPs

were calculated based on Morgan algorithm that can can be developed in the following three

steps: 1. Assign an integer identifier to each atom. 2. Update each atom identifier to

characterize neighbors of each atom. 3. Remove the duplicated identifiers calculated when

the same atom feature occurred more than once. ECFPs are fingerprints designed specif-

ically for the structure–activity based modeling calculating with circular manner and can

be used to extract an infinite number of different molecular features. Those fingerprints
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represent atomic neighborhoods within the circular radius and is able to consist of different

lengths. With above mentioned flexibility, this method is easy to customize and calculate

a varietytypes mathematical representations describing particular sub-structures; those fea-

tures represent the existence of particular sub-structures which allow easy interpretation of

the analysis results. Calculation of ECFPs can be done using RDkit [  98 ], CDK [  101 ], and

Chemaxon’s JChem [ 103 ].

Functional-Class Fingerprints(FCFP) are a similar class to ECFPs [ 66 ]. As the name

states, the FCFP rule is generated based on the functional atom groups with a molecule.

Instead of assigning integer identifiers to the atoms, FCFP indexes the atom’s rule within the

molecules. Generated with pharmacophoric sets of initial atom identifiers that are identified

to be similar with the catalyst pharmacophore identifier, FCFPs can be better representatives

of where abstraction can be useful when two atoms play equivalent roles within the functional

group. When calculating FCFPs, each atom is recognized with a 6-bit code associated

with different roles including hydrogen-bond acceptor and donor, negatively and positively

ionizable, aromatic, and halogen. If associated roles are identified, the given bits will be

labeled. FCFP calculation is supported with open-source software packages as well [ 98 ],

[ 103 ].

Hybrid fingerprints are also developed that combine different aspects and bits strings

using different approaches. Those fingerprints are usually more flexible and can be modified

based on user’s need. Some of the commonly used fingerprints are summarized in Table  1.2 

and discussed below.

Dragon descriptors are a reference as a variety of molecular descriptors (NO. of 1664 to

date known as Dragon descriptors), covering 0D - 4D descriptors arranged into 20 blocks.

Derived from different molecular representations, Dragon software produce a user-friendly

interface for researchers [  94 ]. The 0D descriptors contain any molecule properties that are

independent of information regarding molecular structure. Examples of 0D descriptors are

total atom count, number of specific atom types, number of specific bond types, and so on.

1D descriptors are derived from one - dimensional characteristics of a molecule including

a series of fragments or functional groups existed. 2D descriptors are calculated based on

two - dimensional topological information extracted from the molecule. The 3D descriptors
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are characterized based on three-dimensional representations of the molecule. WHIM de-

scriptors are typical 3D descriptors calculated from three - dimensional molecular structures

describing molecular properties from different perspective. They contain information for

the whole 3D structure including their size, shape, symmetry, and atom coordinates [ 104 ].

Four - dimensional descriptors, also know as grid based descriptors, include an extra fourth

dimension upon molecular 3D geometry. The additional dimension provides more informa-

tion better characterizing the biological activities between liands and targets. With the

extra information, 4D descriptors are able to differentiate activities for structurally different

molecules but are also more difficult to compute.

Another type of descriptor is known as E-state descriptors that use a combination of

electronic and topological properties to describe molecular properties. It calculates ”E-

state indices” for boht atom type and molecular bond to generate relevant information for

molecular descriptions as stated in the articles published by the original inventors Hall and

Kier. An E-state variable is a representation for each atom in the molecule and encloses

the molecular electronic properties of each atom as their response to perturbation of other

atoms in the molecule. Topological characteristics of the molecule were also considered [ 95 ].

The descriptor take the sum of calculations for all the atoms and bonds in the molecule to

describe a whole structure and can be calculated with Molconn-Z software.

Other hybrid fingerprints like Unity 2D that is a 988-bit long developed based on struc-

tural keys and connectivity path fragments properties [ 96 ].

Despite the abundance of the descriptors that have been developed, these descriptors are

untrainable and do not have specificity. Choosing the correct combination of descriptors is

an unsolved problem with no clear process. Obvious limitations have been observed with

the current descriptors [  105 ]. Mounting evidence suggests that compounds that might not

be considered similar by a chemist can have similar biological activity and vice versa [ 106 ]–

[ 108 ]. Minimal chemical structurally differences can have large activity differences, like the

”magic methyl effect” where replacing a hydrogen atom by a methyl group can cause a 10-

fold activity boost, even 100-fold in some cases [ 109 ]. Trainable descriptors is needed to

capture major information describing interactions with biological targets.
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1.4 Machine Learning in Virtual Screening

Machine learning, a branch of artificial intelligence, performs data analysis that auto-

mates model developing. The goal for machine learning is to have the systems learn from

given data and be able to extract certain patterns for problem solving with minimal human

interventions.

In the field of virtual screening, machine learning assembles a predetermined compounds

as training set with known activities [  110 ]. It is known to be a cost-effective and fast achiev-

ing approach for predicting substrates that have the potential to pose biological activities

for drug candidates during the early stage of drug discovery process. Usually, molecules

with historically categorical or continuous information are often used as data objects to per-

form classification or regression problems. Classification models can be used to discriminate

substrates from non-substrates and inhibitors from non-inhibitors with model performance

evaluation. Regression approaches use a series of quantitative experimental values such as

IC50, Km, Ki to performance binding affinity prediction of substrates and inhibitors of in-

terest. These methods are also known as supervised machine learning, and they differs from

un-supervised learning in that they emphasizes expertise to complete a task without an

expected label.

Supervised machine learning is trained with data containing both input and output tar-

gets. With input information available for each of the molecules, the model is able to generate

some function by comparing the predicted output with an actual label. The function can

then be applied to data without known output. Some earlier methods that have been ap-

plied include various linear regression approaches, such as multiple linear regression (MLR),

partial least squares (PLS), classification regression tree (CART) and etc have being applied.

As the continuous development and advancement of machine learning algorithms along with

the accumulated experimental datasets continues, recent methods have been explored to

predict DDIs, such as support vector machines (SVM), neural networkS (NN), and so on.

[ 111 ]–[ 121 ]. Some of the representative methods that have not been proven effective will be

introduced.
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1.4.1 Linear Models

Linear regression is one of the most commonly used supervised machine learning algo-

rithms developed during the early days. The objective of the model is to identify the best

linearly fitted relationship between the dependent and independent variables and minimize

the error between predicted and actual values. A simple linear regression contains only one

independent variable, whereas, a multiple linear regression (MLR) contains two or more in-

dependent variables. MLR has been widely used in molecular virtual screening to analyze

the effect of one or more explanatory variables on a single response variable such as potency

[ 111 ], [  122 ]–[ 125 ]. Given multiple independent variables x1, x2, x3, ..., xn, dependent variable

y is predicted with the weighted equation  1.1 :

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ... + βnxn + ε (1.1)

where each of the βn represents a slope coefficient of independent variable xn with ε repre-

senting residuals. In MLR, the least squares method is typically used to minimize the sum of

the squares of the residuals. MLR can be a good method to implement when the factors are

non-redundant with well established relationships with the responses. However, in the field of

virtual screening, the variable relationships are not always well understood. Some commonly

used 3D QSAR techniques, like Comparative Molecular Field Analysis (CoMFA), generate

descriptive values calculated at each point of their 3D grid of the molecular structures and

often have a large number of variables. Those variables can be highly correlated and makes

MLR inefficient and lead to over-fitting. Partial least squares (PLS) is an advanced linear

method to implement when col-linearity is observed. First developed in the 1960’s as an

econometric technique by Herman Wold, it was well adopted in many different areas. When

a large number of independent variables are applied, PLS methods reduce the explanatory

information to smaller size and linear combinations. Dependent variables are evaluated to

identify only a few underlying factors that account for most of the variation in the response.

Chohan and Roy etc showed examples of using PLS methods to perform predictions on small

datasets with oral drugs and Flavonoids, respectively [ 111 ], [ 112 ]. Besides those, Gedeck and
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colleagues mentioned the issues for data accessibility and published models developed with

a large data collections from company internal resources using the PLS method [  113 ]. Nine

different 2D and 3D descriptors were applied and yielded the highest r2
pred yielded was 0.91.

1.4.2 Naive Bayesian

Naive Bayesian (NB) is one of the machine learning classifiers derived based on Baye’s

theorem [  114 ]. It describes the outcome probabilities of dependent variables using conditional

probability as equation  1.2 describes:

Pr(A | B) = Pr(B | A) Pr(A)
Pr(B) (1.2)

The NB classifier is generated given a set of training instances from a certain class,

e.g., inhibitor or non-inhibitor. Given class A, a bag of features is employed to understand

the instances. The probability of occurrence for a given feature B is calculated based on

information in the training dataset. The model counts the number of appearances of a

given instances for each classes. Assuming the descriptors in the training sets are equally

important and independent of each other, each descriptor is considered to be proportional to

the ratio of different classes and overall probability for each class is evaluated by the product

of each descriptor probability as shown in equation  1.3 :

Pr(A | B1,2,3,...,n) = Pr(B1 | A) ∗ Pr(B2 | A) ∗ ... ∗ Pr(Bn | A) Pr(A) Pr(A)
Pr(B1,2,3,...,n) (1.3)

Categorical outcome is required for this type of classifier. Compared with clustering

methods, this method can effectively avoids ”the curse of dimensionality” observed in high

dimensional spaces which becomes a good alternative for LBVS [  126 ]. Molecular descriptors

like LogP values, molecular weight and those calculated with software like Discovery Studio

[ 127 ], MOE [  128 ], RDkit [  98 ] can be used as attributes to perform classification. NB classifiers

can also identify highly correlated features to each class which allows better guidance for

compounds design.
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A number of VS modeling techniques have been developed using NB classifiers. The first

model using Bayesian inference techniques was introduced in 1999 by Labute using Binary

QSAR to classify 1,947 small molecules to either active or inactive [ 115 ]. Sean and co-workers

describe their attempts of using NB classifiers to illustrate the prediction of hERG channel

blocking and inhibition activities for cytochrome P450 2D6 [ 13 ]. The model correctly pre-

dicted more than 80% of compounds. Other approaches, including support vector machines

and neural networks were comobined with NB classifiers to enhace model performance. Some

structure-based VS studies were carried out by Jacobsson and colleagues [ 121 ]. Three types

statistical methods, PLS discriminant analysis, rule-based methods, and Bayesian classifica-

tion, were applied in their study to developed to construct classifiers to distinguish active and

inactive compounds for the estrogen receptor α (ER�), matrix metalloprotease 3 (MMP3),

factor Xa (fXa), and acetylcholine esterase (AChE), respectively.

1.4.3 Nearest Neighbors

Nearest neighbors are one of the simplest classification methods to generate activity

prediction of a molecule [ 129 ]. The algorithm assumes that similar compounds exist in close

proximity. When data are projected into a multidimensional feature space, the class of

interested molecules are likely to be the same as its nearest neighbors. ’k-nearest neighbor’

(KNN) is an extension to the scheme using k neighbors.

When searching a database for molecules, a set of feature vectors describing molecular

properties is obtained. The training set molecules are mapped to a high dimensional space as

well as the test set. kNN performs classification for the test sets by assigning a test point to

the class that is most similar to itself out of the k closest points. The critical part is to choose

the right features and k value. K is a predetermined number by experimenting with different

values in the algorithm and cross validating to reduce the error encountered. A typical range

is between 1 and 10 [ 130 ]. Odd numbers can be used to prevent ties. Low values for K can

be subject to outliers where a large K value would smooth over things; however, if too large,

it will be out voted by other categories [  130 ]. Euclidean distance is the most commonly used

to measure distance between points, although sometime Manhattan distance can be used
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as well. Several attempts have been made to apply kNN in ligands classification. Different

weighing functions have been applied to evaluating the distance between the molecule and

its neighbors. Jensen et al. used Gaussian kernel weighted KNN models to classify CYP2D6

and CYP3A4 inhibitors [  131 ]. Their model calculated Tanimoto distance based on extended

connectivity fingerprints (ECFP) and FCFP. 865 and 1037 compounds were analyzed with

CYP2D6 and CYP3A4, respectively. The model was able to correctly predict 83% for the

training set, 82% of the test set compounds for CYP2D6 and 87% and 88% for CYP3A4.

Additionally, 14 CYP2D6 external compounds were tested with 6 out of 14 from medium

inhibitors failed to classify.

1.4.4 Support Vector Machine

First introduced in 1992 by Vapnik and colleagues [  132 ], [  133 ], support vector machine

(SVM) became one of the most robust prediction algorithms that can be used for both

classification and regression predictions. The idea is developed based on statistical learning

frameworks also known as Vapnik–Chervonenkis theory proposed by Vapnik and Chervo-

nenkis [ 134 ]. In general, input data can be represented as features vectors. A set of hyper-

planes with n-dimensional is then constructed by an SVM to separates data into different

spaces, which can be used for classification and regression [  135 ]. Ideally, a good hyperplane

separation in the feature space would be able to have all the points belong in to one class

on the same side with linear dataset and distances between the nearest training data points

of any class maximized. The subset of training points, also known as support vectors, are

usually used to define the boundary.

Non-linear SVM problems can be efficiently performed using the ”kernel trick” that is

developed from Mercer’s theorem [  132 ]. Commonly used kernel functions are polynomial,

radial basis functions (RBF), and sigmoid functions. With the kernel functions, SVM al-

gorithms can be applied to fit the maximum-margin hyperplane for nonlinear transformed

high dimensional feature space.

In 2001, Burbidge and co-workers first explored it with drug molecule design predict-

ing the inhibition of dihydrofolate reductase by pyrimidines [  136 ]. Since then, there have
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been significant developments and applications in the pharmaceutical industry. In machine

learning for VS experiments, many models have been successfully developed for compound

identification. SVM models is shown to be able to minimize empirical classification errors

and maximizes geometric margin. Further, SVMs can achieve reliable model prediction even

if the descriptors are redundant [ 137 ].

1.4.5 Decision Tree

Decision Trees (DTs) are a type of non-parametric supervised learning method developed

to design rapid interpretable filters for classification and regression problems [  138 ]. With a

known set of criteria or decision rules, DTs are composed using branch nodes that split paths

[ 139 ]. Starting from the very top node of the tree (root node), two more more nodes are

linked based on classification rules. The other linked nodes are internal nodes containing

feature points. The un-linked nodes are leaf nodes that determine the classification. A tree

can be treated as a piece-wise constant approximation. The path of the decision follows

with series of ”if...then” decisions. It is crucial to organize more discrimination features to

be applied first to split the dataset with lower impurity. Gini Impurity is a one of the most

popular feature selection methods that measure the likelihood of incorrect classification with

random variables. With C total classes, p(i) is the probability of picking a datapoint within

class i, the Gini Impurity (G) score can be calculated as seen in Equation  1.4 :

G =
C∑

i=1
p(i) ∗ (1 − p(i)) (1.4)

A perfect split would yield 0 impurities meaning that there are no chances that any

random sample will be mis-classified with the split decision, whereas a gini impurity of 1

implies an absolute mis-classification [  140 ], [ 141 ]. Gini impurity for each node is calculated

and the lowest score is selected as the leaf nodes. Other feature evaluation methods were also

developed including information gain, bootstrap aggregation, and so on. Calculations for

feature determination is repeated to achieve purer subsets until predetermined termination

conditions are met. DT models are usually sensitive to the descriptors chosen and the

composition of datasets. The advantage of using such model is their great interpretability
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coming from decision features and thresholds, therefore they have attracted great attentions

in molecular VS models, especially in some of the earlier works.

Ekins et al. presented some of the typical rapid and simple filters developed with DT

methods. In 2003, they reported models developed based on a commercially accessible data

set containing more than 1750 molecules in the training set. In-silico models to predict

inhibitors and non-inhibitors for for CYP2D6 and CYP3A4 were developed [ 142 ]. Atom

augmented descriptors were applied with models with 20 random trees. With simple rank-

ings, they were able to reach the result of Spearman’s rho of 0.61 and 0.48 for CYP2D6 and

CYP3A4, respectively for their test sets with R2 0.88 and 0.82. Using a similar algorithm,

they developed another model based on 875 structurally diverse molecules with in-vitro

clearance data for general human liver microsomal metabolic stability prediction [  143 ]. The

model generated r2 = 0.71 for the training set and r2 =0.34 for testing with Spearman’s rho

-0.64. Both of those models demonstrated the ability of performing efficient calculation with

DTs for compounds especially with high potency.

Burton et al. developed a study exploring the effects of the data quality used com-

bining with a statistical training method to predict inhibition activities for the CYP1A2

and CYP2D6 inhibition [  125 ]. The data were curated from literature by Aureus−Pharma

containing well constructed databases with high quality of experimental measurements con-

cerning inhibition information for the targets. With DTs and MOE descriptors, the authors

were able to generate models with accuracy greater than 80% for the training set. Their

CYP2D6 datasets were applied to develop 11 models with accuracies of over 80%. The

CYP1A2 datasets generated total of 5 models with high-accuracy. Among those, the best

result for validation set yielded 88% and 81% accuracy for CYP2D6 and CYP1A2, respec-

tively. Their results demonstrated the importance of data quality. Comparing with data

collected in traditional ways, simple DTs can achieve promising results.

1.4.6 Neural Network

Neural networks (NNs) attempt to identify underlying relationships embedded in a

dataset by activates or deactivates a series of neurons mimicking the knowledge acquisi-
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tion process of the human brain. Inspired by the mechanism of how a biological neuron

interpret sensory information and pick up a task, neural network architectures contain lay-

ers of interconnected nodes to perform mathematical calculations and signal passing. Each

node is also known as perceptrons and collect input signals and transform them into output

signals. A basic NN is composed of an input layer, an output layer, and one or more hidden

layers in between. Those layers of perceptrons are linked with each other in different ways

to construct unknown complex relationships from input to output. The output information

generated from one layer of perceptrons is then passed on as an input information for the

next layer. Each perceptron connects to each another with an associated trainable weight.

and bias is activated with enhanced signals if feedback is prompted. NNs rely on feeding

in training signals to learn and improve prediction accuracy by adjusting weights through

trials and to generate predictions for unseen inputs once properly tuned. The weights are

trained through backpropagation, the essential mechanism of NN, whose aim is to minimize

a loss function toward global minimization of the output error from the predictions and true

values calculated based on training dataset. Gradient descent is the key to minimizing the

prediction error and predict closely to the true value by evaluating the derivative of the loss

function. Gradients will be positive as the loss increases with an increase in weight and

negative if the loss decreases with a decrease in weight. With that mechanism, the model is

always tuned toward negative gradients to minimize the loss. A large number of neurons are

connected and tuned automatically, models can take an input and generate reliable output

response in an efficient way with limited human intervention. In 1988, Hornik demonstrated

the ”Universal Approximation Theorem” proving the universality of NNs which states that

there is always a network that can approximately approach the result no matter what the

function is [ 144 ]. It provides great advantages for NNs in solving complicated non-linear

relationships with a minimum knowledge of the mechanism. There have been many success-

ful applications of NN in drug discovery including classification and regression prediction

of biological activities [  145 ]–[ 147 ], pharmacokinetics activities [  148 ], [  149 ], and compound

discovery with multi-dimensional data analyses [ 150 ]–[ 152 ].

Obviously, no perfect approach has been developed. Unexpected DDIs still can occur

with respect to several aspects that we cannot measure or have not yet discovered. Several
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concerns have been raised together with the development. of these predictive models. One

of the possible pitfalls lies with the data content and data design, especially with reference

to meta analysis. Molecular/target interpretation and feature extraction has continue to be

a challenging aspect. Despite the various published molecular fingerprints and descriptors,

descriptor performance has been much more difficult to evaluate. The question, then, is

how do we prioritize the molecular/target properties? Which aspects weights more than

others? What does biological similarity mean? The definition of pharmacophore features

and similarity comparison needs to be carefully evaluated. Evidence has shown that atoms

in the same structural group do not have to own the same function in different structures.

For example, oxygen atoms does not behave as an HBA when it is presents in an ester, or

embedded with a furan ring, etc [  153 ]. Not all molecular fingerprints can properly capture

those properties and the importance of the information. Chemical properties may not repre-

sents biological similarity and activity. Although complicated and comprehensive molecular

descriptors have been developed, the importance of each property has not been carefully

looked at. It is unclear what parameters are deemed critical which may result in noise and

sometime false signals for the prediction.

Another common critique for the current advancing machine learning and deep learning

methods is the black box nature that limits the clear interpretation and identification of

what features/fragments are critical. Novel and comprehensive learning frameworks have

been introduced to predict drug target interactions operating on graph-structured data with

convolution and attention mechanism based deep neural network architectures. The devel-

opment of advancing algorithms, which have already provided promising results in various

areas (like character recognizing and voice recognizing), demonstrate great potential in DDI

prediction and drug discovery. Methods using various descriptors and fingerprints that result

in the features used in modeling are not yet interpretive. Obviously, many improvements

can be made with the current methods to better characterize the phenomenon and iden-

tify potential drug candidates or interactions with acceptable ADMET properties for drug

discovery. One can definitely design a program against any target set and library with the

right tool, which means opportunity and risk at the same time. The challenging objective
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is to develop an applicable model with trainable features to describe biological activity with

specificity and strength.

Besides the current abundant report of dosing accident and clinical adverse reactions,

there are also cases where DDIs can be put to good uses to enhance the drugs’ pharmacoki-

netics that are extensively metabolized by CYP P450 enzymes. There are also occurrences

where certain inhibitors are co-administered to prevent undesired peripheral metabolism [ 14 ],

[ 154 ], [  155 ]. Without a doubt, all of those activities require a comprehensive understand-

ing of enzyme metabolism and compound DDIs. The application of in-silico prediction of

DDIs should certainly be expanded. Despite the fact that computational methods that have

been developed already are greatly contributed to our knowledge base and current under-

standing. They have been applied to discover many new inhibitors and ligands for series of

biological targets activities that can be applied to further extended current understanding of

drug-target and drug-drug interactions as well as even guiding new compounds design [ 156 ].
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Table 1.1. Examples of public databases integrating ultra-large molecular
data for computational modeling.

Database Description Reference

BindingDB
BindingDB is a freely accessible database containing protein-ligand complexes
binding affinities measurement extracted from literature focusing on interac-
tions of drug-targets proteins with small molecule ligands.

[ 69 ]

BioGRID

BioGRID is a publicly accessible biomedical interaction repository containing
protein and genetic interactions curated from literature for multiple species.
Bio-Grid content includes both low-throughput and high-throughput studies,
gene interactions and post-translational modifications.

[ 70 ]

ChEMBLE

ChEMBL is a collection of manually curated drug-like molecules with their
chemical properties of small molecules and their biological activity extracted
from literature. Biological data are also exchangeable with other databases
like BindingDB.

[ 71 ]

Chembridge Chembridge libraries is a private product for the public that offers a 50,000
diverse small molecule dataset for drug discovery chemical compounds. [ 72 ]

DrugBank

DrugBank is a freely accessible web-based database with comprehensive in-
formation about drug compounds and targets. The library includes broad
information ranging like chemical properties, drug metabolites, drug gene
expression and protein expression.

[ 73 ]

Electron Microscopy
Data Bank (EMDB)

EMDB is a public database contains electron microscopy density maps of ma-
cromolecular complexes and sub-cellular structures of biological specimens. [ 74 ]

Enamine REAL
database

Enamine Real database currently the largest catalog containing synthetical-
ly drug-like molecules complying the ”rule of 5”. [ 75 ]

Kyoto Encyclopedia
of Genes and

Genomes (KEGG)
pathway database

A knowledge base resource storing genome sequencing and HTP dataset for
biological system. [ 76 ]

Online Mendelian
Inheritance in Man

(OMIM)

OMIM is a comprehensive collection of human genes and genetic disorders
focusing on the relationship between gene and phenotype. [ 77 ]

PDBbind
PDBbind is a public database collects binding affinity measured from pro-
tein-ligand experiment lined with Protein Data Bank (PDB) and provide in-
formation between protein-ligand complexes structure and interaction energy.

[ 78 ]

PharMapper
PharMapper is a publicly accessible tool that can be used to identify poten-
tial binding sites on target surface for the query molecule and perform rank-
ing for druggability.

[ 79 ]

Protein Database
(PDB)

PDB summarizes 3D shapes information of proteins, nucleic acids, and
complex designed to facility with various scientific aspects with protein syn-
thesis and structural information.

[ 80 ]

PubChem
Pubchem is a public collection of small molecules containing chemical pro-
perties and biological information from experiments by organization and in-
dividual contributors.

[ 81 ]

STRING
STRING is a database containing protein-protein interactions from both pub-
lished literature source and model predictions to facilitate with a syste-
matic understanding of cellular processes.

[ 82 ]

TCM-Database@
Taiwan

The TCM database is the world largest freely accessible small molecular reposi-
tory constructed based on publications about traditional Chinese medicine. [ 83 ]

Therapeutic Targets
Database (TTD)

TTD is a comprehensive free accessible library provide curated data
including discovered therapeutic protein and nucleic acid targets. [ 84 ], [ 85 ]

UniPort UniPort is a collection of information on proteins with protein sequence and
functional knowledge mainly derived form gene sequencing and literature. [ 86 ]

ZINC

ZINC database curates over commercially available molecules including their
3D structures and is designed toward to use of virtual screening. ZINC is hea-
vily investigated by both pharmaceutical industry and
research universities.

[ 87 ]
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Table 1.2. Summary of typical molecular fingerprints for similarity search in
virtual screening published in literature.

Class of Fingerprints Type of Fingerprints Accessibility Reference

Substructure keys-based
fingerprints

MACCS RDkit, OpenBeble [ 89 ]
PubChem Fingerprints ChemFP, CDK [ 90 ]
ISIDA SMF ISIDA [ 91 ]

Topological
fingerprints

BCI Digital Chemistry [ 92 ]
Daylight Fingerprints RDkit [ 93 ]
ECFP RDkit, CDK, Chemaxon’s Jchem [ 66 ]
FCFP RDkit, CDK, Chemaxon’s Jchem [ 66 ]

Hybrid fingerprints
Dragon descriptor Dragon [ 94 ]
E-state Descriptor Molconn-Z [ 95 ]
Unity 2D Certara [ 96 ]
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2. AIM OF THIS STUDY

DDIs are often caused by concurrent use of multiple drugs, in which one drug inhibits

the metabolism of another administered drug and causes an altered plasma concentration.

CYP450 plays an important role for the metabolism of most drugs that are currently on

the market. The risk of DDIs could pose serious impact on the efficacy and safety of co-

administered medications needs to be carefully evaluated. Commonly applied target in-

eraction identifying methods include: LBVS, which uses pharmacophore maps and QSAR

to identify a lead with 2D chemical structure information; and SBVS, which relies on the

x-ray 3D structural information interpreted for the protein targets. Considering the flexi-

ble nature of the structure of CYP enzymes, the protein structure is not always exclusive.

Therefore, we attempt a LBVS based approach to perform the prediction. Many machine

learning algorithms have been constructed, outlining the future of artificial intelligence in

assisting drug development. However, prediction limits have been associated with current

practices, mainly due to critical structure- and conformation-related properties that con-

ventional molecular descriptors fail to capture. Different 1D to 4D molecular descriptors

and fingerprints have been utilized to identify different aspects of molecular properties and

evaluate chemical similarities [  66 ], [  67 ]. Novel molecular fingerprints are needed especially in-

tended for data mining and deep learning that could capture detailed protein-ligand binding

information with specificity and enable accurate property prediction with strength.

A common goal for descriptor calculations is to extract critical characteristics of the

molecule with mathematical calculations from the chemical properties and structures. How-

ever, it is an unknown myth as to what extent and how accurately information can be

generated and utilized. Currently, there are more than 5000 molecular descriptors have been

developed to featurize molecules [ 157 ], and rely on different dimension following various

theorems of molecular structural information, including bond lengths, number of rotatable

bonds, H-donors, H-acceptors, molecular volume and so on. Despite the abundance of the

descriptors that have been developed, they are untrainable and lack of specificity. Fur-

thermore, the descriptors are often correlated, making choosing the correct combination of

descriptors an unsolved problem with no clear guidance. Usually, different descriptors were
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tested in parallel with several statistical methods for the best performance. Our laboratory

has previously studied the intermolecular interactions of organic compounds through elec-

tronic structure-based local descriptors derived from conceptual density functional theory

(CDFT) [  158 ]. Local hardness and softness, facilitated by Hirshfeld analysis, have proven

to quantitatively characterize the strength and locality of intermolecular interactions [ 158 ].

Significant correlations between the local electronic properties and intermolecular interac-

tions can be explained by information of electronic properties residing on interacting contact

motifs. Relatively large area have been proven to play significant roles. Local softness and

hardness descriptors, derived from hard and soft (Lewis) acids and (Lewis) bases (HSAB)

principle, can characterize both the locality and strength of intermolecular interactions [ 159 ].

Based on precious investigations, the innovative descriptors can address the gap by de-

veloping a novel 3D molecular fingerprints based on first principles of molecular interaction

that includes molecular information with specificity and strength. Using quantum chemistry

to interpret topological molecular information that resides on 3D molecular surfaces permits

extraction of features directly from molecular 3D structures. This research can help improve

deep learning algorithms to mine large amounts of protein-ligand binding experimental data

and achieve better prediction performance.

In this thesis, I will present the plan to test our hypothesis on the predictability of using

above-mentioned principles and from quantum chemistry perspectives with the following

steps to address the above-mentioned challenge:

• Data mining and curation. Drug-like molecules with experimental measurements

of CYP-binding activities will be filtered and curated from the literature and public

databases.

• Electronic calculation and manifold embedding. Computer programs developed

in house will be applied to generate low-dimension manifold of molecular surface that

is mapped by electronic properties.

• Development of Deep Learning (DL). Computer programs developed will be ap-

plied to generate low-dimension manifold of molecular surface that is mapped by elec-

tronic properties.
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We first mine a set of model ready data and generate molecular descriptors by extracting

local properties directly from 3D molecule structure surface of ligands. Then, the features

are projected into a low-dimension manifold to enable low dimensional calculation. From a

library of small molecules or functional groups, we can first calculate the electronic structures

and derive the local properties of molecules. 3D molecular surfaces can be generated with

their 2D maps calculated by manifold learning and dimensionality reduction. Then, based on

the projected 2D maps of the ligands, we can incorporate a deep neural network architecture

that operates on set-structured data with attention mechanisms to recognize the surface

features that the maps of the fragments can match. Thus, local interactions and fragments

interactions can be characterized. Our pioneering method to assess the molecular interaction

between a molecule and protein binding sites is based on first principles that define the origin

of molecular interactions. Deep learning can evaluate the binding fitness between a ligand

and target by machine learning by interpreting and extracting the low-dimension manifolds

directly from the molecular surface.

With that, we expect our models to predict the ligand-target binding affinities and test

our hypothesis that electronic surface properties can be applied to predict intermolecular

activity. Understanding this interaction mechanism and predicting enzyme binding affinity

can further advance the investigation and evaluation of DDI for drug development process.

45



3. DATA MINING AND CURATION

3.1 Introduction

Data collection is essential to evaluate the adequacy of modeling criteria for possible

predictions. The outcome determination varies across different laboratories, assays and

measuring techniques. Several limitations have been implicated with the lack of consistent

protocol. It is critical to have experimental binding affinities and molecular properties of

a set of both active and inactive compounds as reference to achieve a reliable prediction.

High-throughput screening (HTS) assays can be used to test a large amount of chemical

substances and are extensively applied in various areas including the pharmaceutical industry

[ 160 ], [  161 ]. PubChem is a public database developed and maintained by the U.S. National

Institutes of Health (NIH) containing a large number of chemical properties. Large amount

of data generated by HTS assays are submitted to and maintained by PubChem to facilitate

the development of more-robust models [ 162 ].

PubChem database (AID: 1851), containing 17143 diverse compounds, was measured un-

der a consistent experimental conditions with standardized protocol conducted by Dr. Auld

and collegues [ 163 ]. A standard in vitro bioluminescent assay measuring the dealkylation of

various pro-luciferin substrates to luciferin was applied against five major recombinant CYP

isozymes (1A2, 2C9, 2C19, 2D6 and 3A4) at different concentrations [  164 ]. The quantitative

high-throughput screening (qHTS) assay was performed with bioluminescent-based detec-

tion method in 1536-well plates following an automated protocol. CYP inhibitory activities

were determined measuring luciferin–luciferase bioluminescence reactions. When combined

together, the luciferase acts as an enzyme, allowing the luciferin to release energy as it is

oxidized to emit light. Luminescence signal intensity can be used to determine luciferin

concentration. When inhibition activities are seen, production of luceferin will be limited

and a reduced luminescence of luciferin would be observed. Inhibitory activities for CYP450

isozymes can be evaluated with respect to the intensity of luminescence. For this study,

concentrations between 0.24 nM and 40 µM for each compound weere measured to calculate

the concentration–response curves [  165 ]. IC50s were calculated with concentration-response
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points fitted to Hill equation. Compounds were classified as Active, inconclusive, and inactive

classes based on data quality and fitted experimental measurements.

3.2 Method

To extract a set of consistent data for model prediction, several filters were applied to

the dataset. Figure  3.1 shows the data preparation pipeline. For our purposes, the key

is to identify organic drug-like molecules with neutral charge and molecular size between

200 to 500Da. Metals and inorganic compounds were removed from the datasets since our

prediction is dependent on surface electronic properties. Structural duplicated compounds

were also removed during data pre-processing.

Figure 3.1. Data collection and preparation pipeline for DDI prediction

Both binary and continuous measurements were collected for each compound. ”Activity

Outcome” and ”Activity Score” were collected for prediction and assessment based on the

cutoff criterion provided by PubChem BioAssay library [  162 ], [  163 ]. AC50 is the compound

concentration as 50% of the activity for an inhibition is reached. Compound activity out-

come was determined as CYP inhibitor, non-inhibitor, or inconclusive with respect to there

AC50 measurement. When AC50 is ≤ 10µM , the compound is treated as CYP inhibitor.

Compounds with AC50 >57 µM , are assigned as non-inhibitors. Compound with AC50

value between 10 to 57 µM are classified as inconclusive compounds. The value for AC50

below 10 µM was not reported. A normalized activity score with value between 0 and 100

were assigned to each compound with the most active inhibitors have a higher score and

inactive compounds have a lower value. In addition to the training set, which contains 80%

of available data entries, a diverse testing set and validation set, 10% each, were also gath-

ered from the PubChem BioAssay database to verify the robustness of prediction models.
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The same pre-processing procedure like described for training set was applied to testing and

validation sets.

3.3 Results and Discussion

3.3.1 Data assessment

PubChem Dataset consisted 16697 unique compounds. 314 inorganic or charged com-

pounds were removed to avoid confusions in model training with electronic properties. 1816

compounds that has molecular weight outside predefined range (200-500Da) were also re-

moved to yield entire data set with good drug-likeness. Table  3.1 demonstrate an example

of 10 compounds information extracted from PubChem library. pIC50 was converted from

potency. Tanimoto index was calculated as 0.216, 0.209, 0.215, 0.212, and 0.218 for each of

the target demonstrating good diversity in prepared data set. Final data sets to construct

models for each enzymes are developed with specificity. Figure  3.2 ,  3.3 ,  3.4 ,  3.5 ,  3.6 are

examples of respective 3D ligand structures for CYP1A2, CYP2C19, CYP2C9, CYP2D6,

and CYP3A4, respectively, containing active, inconclusive, and inactive compounds.

3.3.2 Ligand information and 3D structures

Final data sets to construct models for each enzymes were developed with specificity.

The entire set were divided into 5667 inhibitors, 3274 inconclusive compounds, and 5626

non-inhibitor compounds for CYP1A2; 5502 inhibitors, 3208 inconclusive coompounds, and

5857 noninhibitors for CYP2C19; 3689 inhibitors, 3849 inconclusive compounds and 7029

noninhibitors for CYP2C9; 2420 inhibitors, 2817 inconclusive compounds and 9330 non-

inhibitors for CYP2D6; and 4668 inhibitors, 3676 inconclusive and 6223 noninhibitors for

CYP3A4 in the pre-processed data set for each CYP450 end point as listed in Table  3.2 .
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(a) Chlorprothixene (b) Altretamine (c) Flutamide

(d) Clotrimazole (e) Papaverine (f) Aminophylline

(g) Pentoxifylline (h) Loxapine succinate (i) Cyclobenzaprine

(j) Pamoic acid (k) Oxaprozin (l) Esatenolol

Figure 3.2. 12 of the representative ligands 3D structures extracted from
PubChem Dataset against CYP1A2 with active ligands: (a) - (d); inconclusive
ligands: (e) - (h); inactive ligands: (i-l) [  166 ]
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(a) Clonidine (b) Cimetidine (c) Citalopram

(d) Ketoconazole (e) Ropinirole (f) Sulfaphenazole

(g) Aptosyn (h) Pyridine (i) (S)-Thalidomide

(j) (R)-(-)-Mephenytoin (k) Phentolamine mesylate (l) Meclomen

Figure 3.3. 12 of the representative ligands 3D structures extracted from
PubChem Dataset against CYP2C19 with active ligands: (a) - (d); inconclu-
sive ligands: (e) - (h); inactive ligands: (i-l) [  166 ]
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(a) mefenamic acid (b) dicumarol (c) dyclonine

(d) ethaverine (e) sulfinpyrazone (f) dapsone

(g) dichlorphenamide (h) phenazopyridine (i) risperidone

(j) corynanthine (k) tolazamide (l) triflupromazine

Figure 3.4. 12 of the representative ligands 3D structures extracted from
PubChem Dataset against CYP2C9 with active ligands: (a) - (d); inconclusive
ligands: (e) - (h); inactive ligands: (i-l) [  166 ]
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(a) phentolamine (b) chlorprothixene (c) trifluoperazine

(d) cyclobenzaprine (e) pyrimethamine (f) dibucaine

(g) benzthiazide (h) oxybenzone (i) azathioprine

(j) acetazolamide
(k) chlorambucil (l) carmustine

Figure 3.5. 12 of the representative ligands 3D structures extracted from
PubChem Dataset against CYP2D6 with active ligands: (a) - (d); inconclusive
ligands: (e) - (h); inactive ligands: (i-l) [  166 ]

52



(a) clotrimazole (b) clemastine (c) desipramine

(d) dicyclomine (e) ticlopidine (f) Repaglinide

(g) loratadine (h) clomipramine (i) amifostine

(j) amitriptyline (k) chlorpropamide (l) chlorothiazide

Figure 3.6. 12 of the representative ligands 3D structures extracted from
PubChem Dataset against CYP3A4 with active ligands: (a) - (d); inconclusive
ligands: (e) - (h); inactive ligands: (i-l) [  166 ]
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Table 3.2. PubChem Data Set: AID 1851 (conducted by the National Center
for Biotechnology Information). Inactive: AC50 below 10 µM ; Active: AC50
greater than 57 µM ; Inconclusive: AC50 value smaller than 10 and greater
than 57 µM .

Inactive Active Inconclusive
CYP1A2 5626 5667 3274
CYP2C19 5857 5502 3208
CYP2C9 7029 3689 3849
CYP2D6 9330 2420 2817
CYP3A4 6223 4668 3676

3.4 Conclusion

A total of 14567 unique compounds were filtered from PubChem library. The dataset was

curated to model ready set with Active, inconclusive, and inactive groups for each target.

A comprehensive understanding of available data sources was established with Tanimoto

distance calculation demonstrating data diversity thus will be used for further calculations

and train deep learning models.
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4. ELECTRONIC CALCULATION AND MANIFOLD

EMBEDDING

4.1 Introduction

4.1.1 Electronic structure of chemical compounds

Density functional theory (DFT) played significant role in the evolution of quantum chem-

istry during the past two decades. Developed based on Hohenberg–Kohn theorem, which

states that ’the ground state of any interacting many particle system with a given fixed inter-

particle interaction is a unique functional of the electron density n(r)’ [  167 ]. DFT provides

fundamental basis for computational study of molecules. Gradually, DFT has developed to

two branches: 1. to obtain critical information about structure, energetics, and properties

of molecule [  168 ]–[ 170 ]; 2. Conceptual Density Functional Theory (CDFT) guiding for the

computation of a variety of molecular properties and understanding the relationship with

electron density [  171 ]–[ 173 ]. Nowadays, both branches are now abundantly applied and well

documented.

The cornerstone of our study is based on Pearson’s HSAB (hard and soft acids and

bases) Principle. First published in 1968, Pearson’s HSAB (hard and soft acids and bases)

principle is reported with the study of generalized Lewis acid−base reactions. It states that

hard acids prefer binding to the hard bases, whereas the soft acids prefer interacting to soft

bases [ 174 ], where Lewis acid is any molecule or ions that accept a pair of electron and

Lewis base is any piece that is electron pair donor. Being the essence of our study, HSBA

utilizes the inherent electronic characteristic of polarizability to define reacting electrophiles

and nucleophiles as either hard or soft, with a thermochemically based operational scale.

It can be further extended to characterize intermolecular interactions, especially in organic

systems. When two molecules interact, local softness and hardness determine their spatial

orientation and packing motif [  158 ]. Soft regions or functional groups like to interact with

other soft regions and hard regions prefer to interact with hard regions.

Conceptual Density Functional Theory (CDFT) provides a hierarchy of well-defined

chemical concepts that provide fundamental interpretations and quantification measurements
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for the HSAB principle [  173 ]. It enabled quantitative definition for molecular “hardness” and

“softness” through the framework of electronic properties. Using electron density as under-

lying properties to describe atomic and molecular ground states along with its response to

perturbation to analyze molecular chemical properties. Energy derived from the electronic

structure and nucler-nuclear Coulomb repulsion energy can be used to determine total energy

of a system.

Supporting the HSAB principle, Parr and Yang described the bodywork of calculating

electronic softness and hardness. With two interaction molecular systems, A and B, their

interactions energy ∆E is described as equation  4.1 [ 172 ]:

∆E =
{∫

ρA(r)∆vA(r)dr +
∫

ρB(r)∆vB(r)dr
}

+
{

− [µ0
B − µ0

A +
∫

fB(r)∆vB(r)dr −
∫

fA(r)∆vA(r)dr]2

4(ηA + ηB)

}

+
{∫ ∫

[ δρA(r)
δvA(r′) ]NA

∆vA(r)∆vA(r′)drdr
′ +

∫ ∫
[ δρB(r)
δvB(r′) ]NB

∆vB(r)∆vB(r′)drdr
′
}
(4.1)

where ρA(r) and ρB(r) represent the electron densities of system A and B at point r, VA and

VB are external potentials, fA and fB represent Fukui functions for each system which will be

described later. The mathematical theory is composed of three terms. The first component

enclosed in equation  4.1 represents the energy contribution from electrostatic interactions

that is derived from electron densities. The second component represents electron flow con-

tributed covalence-type interactions. The last component calculates the polarization energy

contribution. Electrostatic interaction component becomes dominant component when A

and B are hard systems, whereas the later two, covalence and polarization contributions,

become significant with soft-soft interactions. Chemical hardness were derived from finite

difference methods. Assuming quadratic relationship between number of electrons and elec-

tronic energy, chemical ”harness” (η(r)) at point r can be defined with the first vertical

electron affinity (IE) and the first vertical ionization energy (EA) as equation:  4.2 

η(r) = IE − EA (4.2)
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Local hardness and softness are interrelated with the following series of equations  4.3 [ 175 ]:

∫
η(r)s(r)dr = 1 (4.3a)∫
s(r)dr =

∫
Sf(r)dr = S

∫
f(r)dr = S (4.3b)∫

η(r)f(r)dr = η (4.3c)

Equation  4.3 (a) demonstrate the inverse relationship between local hardness and softness.

Integrating local softness leads to global softness S, indicated in equation  4.3 (b), while the

local hardness is applied to calculate η as shown in equation  4.3 (c) [ 176 ].

Flow of electrons and Van der Waals interactions can be attributed to electron clouds

polarization effect, which generate hydrogen bonding and close contacts between molecules.

For organic systems, those types of soft-soft intermolecular interactions are believed to be

the dominate force and are directly associated with local polarizability, also attributed as

”softness” of a molecular system.

The Fukui function describes the electron density after adding or removing certain

amount of electrons, which can be used to quantify local softness as equation  4.4 shows

[ 177 ]:

f(r) =
[

δ2E

δv(r)∂N

]
=
[

δµ

δv(r)

]
N

=
(

∂ρ(r)
∂N

)
v

(4.4)

where the term E is the total electronic energy, N describes the count of electrons, v(r)

represents external electrostatic potential at position r, and µ is the external potential.

f+(r) is nucleophilic Fukui functions, corresponding to the electron distribution on the lowest

unoccupied molecular orbital (LUMO) since the frontier molecular orbital is involved during

electron addition. f−(r) represents electrophilic Fukui functions, which is also the electron
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distribution on the highest occupied molecular orbital (HOMO) that participates in the

electron depletion.

f+(r) = ρ(N) − ρ(N − 1) = ρ(LUMO) (4.5a)

f−(r) = ρ(N + 1) − ρ(N) = ρ(HOMO) (4.5b)

The superscript ”+” denotes to an electron addition to the system and ”-” is the depletion

of an electron from the system. ρ(r)+, ρ(r), and ρ(r)− represents electron densities of anion,

neutral, and cation, respectively [ 159 ].

As a way to combinie the two Fukui functions, the difference between f+(r) and f−(r) is

described as the dual descriptor f 2(r):

f 2(r) = f+(r) − f−(r) (4.6)

having a positive value where electrophilic happens and a negative contribution where it is

nucleophilic.

While Fukui function can be used to quantify molecular local softness describing every

point in chemical space, it is difficult to utilize to characterize intermolecular interactions or

to probe a specific functional group describing interacting energies. The condensed Fukui

function depicts similar local chemical reactivity with calculation done per atom with the

following equations  4.7 [ 178 ]:

f−
k = qk(N) − qk(N − 1) (4.7a)

f+
k = qk(N + 1) − qk(N) (4.7b)

Normalization of the condensed Fukui function can be applied to generate summation of

atomic Fukui values as shown in equation  4.8 :

Natoms∑
k=1

fk(r) = 1 (4.8)

Local softness, proportional to Fukui function, can then be calculated with equation  4.9 :
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s−
k = Sf−

k (4.9a)

s+
k = Sf+

k (4.9b)

for both electron addition and depletion.

The local hardness is ambiguous and many ways have been developed to define it as

equation  4.10 shows:

η(r) = 1
N

∫
η(r, r

′)ω(r′)dr
′ (4.10)

where η(r, r
′) is the hardness kernel denoted as the derivative of the chemical potential with

respect to number of electrons. ω(r′) represents continuous charge density with respect to

total charge +1. The ambiguity of hardness residing in the randomness with the choice

of ω(r′). Definition would vary with different choices determined. Several approximations

have been developed to describe local hardness. Politzer et al. developed a model in 1983

demonstrated electrostatic potential (ESP) can be used effectively to determine the hardness

of an electronic system [ 176 ], [  179 ]. ESP is a local function describing the position of the

system and its positive and negative ions, which can be expressed as equation  4.11 :

Φ =
∑
k=1

ZA

‖RA − r‖
−
∫ ρ(r′)dr

′

‖r′ − r‖
(4.11)

where Φ is the sum of two parts due to nuclei and electrons, respectively. The first term on

the right side of equation  4.11 represents a positive nuclei contribution, where ZA describes

the charge on the nucleus A at location RA. The second term is a negative term representing

electronic contribution to the molecular electrostatic potential with electron density ρ(r′).

The Fukui potential is believed to characterize the active site for electron transfer. An

electrophile is willing to accept charge whereas nucleophile is willing to donate charge. It

can be used to approximate the “distribution” of hardness in a molecule. With equation

 4.12 :

v
+/−
f (r) =

∫ f+/−(r′)
‖r′ − r‖

dr
′ (4.12)
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It provides an alternative perspective characterizing the electrostatic potential associated

with the distribution of charge contributing to the relationship of local hardness. Fukui

potential can be applied to explore intermolecular interactions where electron sharing is

pivotal [ 180 ].

4.1.2 Intermolecular interactions in organic crystals - Benzonic Acid

Over the past few decades, various CDFT concepts have been developed and applied

for understanding inter-molecular interactions for organic systems. A recent case study

was performed in our lab to investigate quantitative relationships between CDFT concepts

and intermolecular interactions in benzoic acid model crystal system [  158 ]. DFT-based

concepts, including Fukui functions and ESP, have been applied to quantitatively evaluated

the intermolecular interactions, especially for organic molecules. To utilize this concept and

quantify local hardness and softness of the molecular system, Hirshfeld surfaces defining

the boundary between two molecules in crystal-based calcualtion, were implemented for

system visualization and electronic properties quantification. In that study, eight pairs

of intermolecular contacts were generated for the benzoic acid system and intermolecular

interaction of each pair was calculated.

Figure  4.1 and Figure  4.2 [ 158 ] demonstrate ESP and Fukui functions mapped on Hir-

shfeld surfaces of eight identified packing motifs with intermolecular interaction energies

calculated based on both the crystal and single-molecule based structure with Gaussian 09.

Arranged in the descending order of intermolecular interactions, the first contacting pair

has the strongest interaction largely contributed by hydrogen bonding. 76.19 and 93.72 kJ

mol−1 were yielded at MP2 (second-order Møller–Plesset) and DFT-D (B2PLYP-D) levels,

respectively. Contact 3 reflects a weaker hydrogen bond between =O and -CH groups. Con-

tacts 2, 4, and 5 are �–� stackings involving interactions between –COOH and phenyl (2),

phenyl and phenyl (4), and –COOH and –COOH (5), respectively. Contact 6 calculates the

interaction between the para-hydrogen and phenyl group. Contacts 7 and 8 are the weakest

interactions from Van der Waals forces.
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Figure 4.1. Figure is adopted directly from reference [ 158 ]. ESP mapped on
hirshfeld surfaces of eight packing motifs mapped with the crystal- (top of each
motif) and molecule-based calculation (bottom). Intermolecular interaction
energies labeled with respect to each pair are calculated by Gaussian 09 at
MP2 and DFT-D (in the parentheses) levels.

The Fukui functions and ESP mapped on Hirshfeld surfaces were integrated over the con-

tacted area of each of the contact motif and plotted against the intermolecular interactions,

as shown in Figure  4.3 . Significant correlations were observed for molecular based calcula-

tion. Contact 1 show biased results with the interaction energies generated from hydrogen

bonding which is several times larger than the rest of contacting motifs. Excluding contact

1, the integrated ESP demonstrated poor correlation with crystal based calculation have an

R2 of 0.25. Molecular based calculation yielded good correlation with an R2 of 0.80.

As a local, spatial function, Fukui function indicate that the intermolecular packing motifs

closely couple with local regions. Strong correlations with interactions is observed especially

with f− calculation. Quantitative trends is also observed with crystal-based calculation [  158 ],

[ 181 ]. However, the correlation is less significant when contact 1 interaction is excluded. Still,

62



Figure 4.2. Figure is adopted directly from reference [  158 ]. Fukui function
mapped on hirshfeld surfaces of eight packing motifs mapped with the crystal-
(top of each motif) and molecule-based calculation (bottom). Intermolecular
interaction energies labeled with respect to each pair are calculated by Gaus-
sian 09 at MP2 and DFT-D (in the parentheses) levels.

molecular based calculation demonstrated excellent linear relationship for both nucleophilic

and electrophilic Fukui functions with R2 = 0.94 and 0.74, respectively.

The study demonstrated that the intermolecular interactions in organic system are gov-

erned by electronic properties calculated on single molecule manner. The results indicate

that intermolecular interaction energies is closely couple with local regions of relative strong

Fukui functions. Hard-hard interaction, described by ESP, also demonstrate significant corre-

lation when integrated over the contacting area of molecular surfaces. Matching of electronic

properties decides the strength and energy of intermolecular interactions.

Besides the case study investigating ESP and Fukui functions with benzonic acid, fukui

potential have also been found to containing information about intermolecular interactions
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Figure 4.3. Figure adopted from reference [ 158 ]. Intermolecular interaction
energy plotted as a function of integrated ESP (A) and the Fukui function (B)
of contacting surface, with energy calculations for contact 2 - 8 shown in the
inset of A (ESP) and C (Fukui Function) . Linear regressions of corresponding
measurements are plotted with R2 denoted in figure.

and the electronic contribution to molecular electrostatic potential (MESP). Fukui potential

is believed to be deterministic evaluating the regioselectivity of electron-transfer-controlled

reactions [  180 ]. A recent study explores the locality of intermolecular interactions with Fukui

potential in a model systems, ROY, which bear intermolecular interactions encountered as

π − π stacking, close contact, and weak hydrogen-bonding interactions [ 159 ]. Evaluated at

the single-molecule level, the results indicate that the Fukui potential plays an indispensable

role evaluating interactions at contacting motifs where π − π stacking is predominant. The

sensitivity toward π − π stacking carried by Fukui potential makes it worth exploring.

4.1.3 Molecular Surface

Molecular surfaces are used to represent three-dimensional geometric shapes of molecules.

Various types of molecular surfaces including van der Valls (VWS), solvent-accessible surface

(SAS) and molecular surface (MS) have been implemented with molecular studies [ 182 ],

[ 183 ]. As demonstrated in Figure  4.4 , VWS is an abstract representation for the molecule

capturing the molecular surface residing on topological boundaries of Van der Waals radii

of each individual atom. VWS, well delineating the interior of large molecules, describe the

overall shape and can be used as a good tool for the abstract representations of molecules

[ 184 ]. SAS, as shown in Figure  4.4 B, is the surface area that is accessible to solvent. Defined
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by Lee Richards, SAS is the area traced out by a molecule the locii of the sphere center

rolls over the VWS [  185 ]. MS, also know as solvent excluded surface (SES), is a continuous

surface tracing out by a probe sphere and rolls over VWS [ 186 ].

Figure 4.4. 2D examples of three molecular surface models. (A) van der
Waals surface(blue); (B) solvent-accessible surface (yellow); (C) molecular sur-
face (red).

4.1.4 Dimensionality Reduction

High dimensionality dataset contain comprehensive features well, however, become a

challenge for data mining and machine learning due to the fewer direct relations the samples

contain. The amount of training data needed for model training grow exponentially as the

dimensionality of data increase which is known as the ”curse of dimensionality” [  187 ]. Mod-

eling chemical data in three dimension introduce excess degree of freedom tend to cause over-

fitting [  187 ]. To foil the ”curse of dimensionality” and perform computationally tractable

analyses, techniques to reduce the number of input dimensionality is needed. Dimensionality

reduction method is considered as a critical data pre-processing step to eliminate irrelevant

patterns from input dataset. It optimize computational power and algorithms needed for

data mining and model learning.

To improve data quality and reduce data complexity, several dimensionality reduction

techniques have been developed for variety data structures and successfully applied in drug

discovery [ 188 ]. The goal is to transform data set represented in high dimension to low
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dimensional representations while maintaining the original features of the data as much

as possible. During the process, data set X = x1, x2, x3, ..., xn from a high-dimensional

space is reduced into a low-dimensional space Y = y1, y2, y3, ..., yn. While the pattern from

high dimensional space is eliminated, the low-dimensional representation needs to retain

significant structures and crucial features of the original data for further calculations. Both

linear and non-linear methods have been developed.

Principle Component Analysis

Principle Component Analysis (PCA) is the bedrock of dimensionality reduction tech-

niques. Invented in 1901 by Karl Pearso [  189 ], he described the goal of PCA as: ”In many

physical, statistical, and biological investigations it is desirable to represent a system of points

in plane, three, or higher dimensioned space by the ”best-fits straight line or plane”. PCA is

an unsupervised, linear dimension reduction algorithm that reduce data dimensionality with

linear calculation [  190 ]. It provides a data-driven hierarchical coordinate system representing

the statistical variations exist in the original dataset. The main idea of PCA is to analyze

the high-dimensional dataset with observations described by inter-correlated quantitative

dependent variables and considered maximum data variance as their new features [  191 ]. The

most representative variables are linear combinations of the original information, known as

Principal Components (PCs), which are sorted to retain the maximum data variance of the

original data. The first PC is supposed to have the largest variation presenting in all of

the original variables, followed by subsequent PCs with decreasing variances. Each PC is

uncorrelated to other PCs with the values of projected new variables, factor scores, repre-

senting the projections of PC observations. Mathematically, PCA attempts to find a set of

orthogonal vectors that explain the variance of the eigenvalue of positive definite matrices.

Nowadays, PCA has been widely applied in various areas including physics, biology,

chemistry, engineering and is commonly used in many machine learning applications. Sim-

ilarly, it has been successfully applied in molecular modeling to facilitate analyzing and

visualizing compounds dataset [  192 ], [  193 ]. A web-based public tool, ChemGPS-NPWeb, is

introduced in 2008 for comprehensive chemical space navigation and exploration with lin-
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ear projection of chemical data using PCA based global chemical positioning system [ 194 ].

Eight-dimensional (8D) maps were generated based on structure-derived physico-chemical

characteristics through global mapping with the first four PCs of the map accounting for

77% of data variance. This PCA prediction system can be applied to interpret any com-

pound with know chemical structure and has been successfully applied to various datasets

including distinguishing anticancer modes; assisting with compound screening; and drug like

property description of large datasets [  195 ]. The advantage of applying PCA includes the

non-iterative calculation it performs which greatly reduce time needed to perform the cal-

culation. It can also prevent over-fitting and used as data compression tools [ 192 ]. Despite

the promising applications, PCA comes with certain limitations. The algorithm is limited

to linear operations when calculating eigen-matrices thus cannot produce optimal subspace

for non-linear data. In addition, information losses are often seen when the PCs are not

determined correctly [ 188 ]. In drug screening process, similar compounds do not always

have similar biological interaction with target molecules. With highly complex and flexi-

ble protein structures, compounds with similar structural properties by chemistry definition

sometimes bind with protein active site with different orientations, different conformation, or

even a different protein. Furthermore, it is the neighborhood behavior that contain mainly

interested features in the structure of known reference compounds [  196 ]. PCA alone does

not maintain local information from the input data and thus observe a weak correlation.

Often, non-linearity is observed with virtual screening modeling. In order to capture

the indispensable nonlinear properties and assess there relations to extractble features, local

based molecular descriptors that preserve essential manifolds for the molecules to restore

global relationship can be invented [ 105 ]. Nonlinear projection techniques that operate

without assuming global linearity can be good measures to transform nonlinear compound

data facing the ”curse of dimensionality” [  188 ]. Various nonlinear dimensionality reduction

methods have been developed. Among those, self-organizing map (SOM), stochastic proxim-

ity embedding (SPE), and Stochastic Neighbor Embedding(SNE) are commonly used local

manifold-based methods for understanding chemical compound structures that preserves

neighborhood information [ 197 ].
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Self-Organizing Map

Proposed by Kohonen in early 1980s, self-organizing map (SOM) is inspired by the cor-

tical maps observed in human brain [  198 ]. Like self-organizing process happen in human

brain, SOM algorithm is composed of interconnected neurons in a grid structure. Neurons

are represented with vectors arranged with topological structure and contain the same di-

mensional information as the input data. High-dimensional data can be mapped to a low

dimensional manifold grid preserving their topological information. Commonly used grid

structures includes hexagons, hyperbolic grids, and rectangular grids [  188 ]. Local regions of

the input space from the receptive targets are represented with a series of weights associated

with each neuron. During the process, unsupervised calculation is performed to generate

data clusters based on similarity between the neurons. The neighborhood in the grid is

considered when each weight of the neuron is trained. Gasteiger and co-workers first applied

a continuous SOM model based on topology theory to assist with compound design in 1997

[ 199 ]. The SOM algorithm has then been broadly applied to explore different questions in

drug discovery [ 200 ]–[ 202 ].

When applied in molecular clustering, descriptor values are generated for testing molecules

with SOM nodes assigned with randomly generated values. Molecules from testing sets is

then mapped to the closest node having smallest distance to the corresponding vector. Node

vectors, as well as their neighborhood connection nodes are updated to increase similarity

to the test molecule. With the process, test molecules with similar descriptor vectors are

grouped together with similar nodes. A larger number of groups of similar nodes are then

generated with reduced group size. Eventually, molecules with similar descriptor vectors

are assigned to similar node areas and a large dataset is clustered based on descriptor and

local features. Molecular similarity search and compound prioritizing can be performed with

common pharmacophore structures. This method effectively avoids comparison with can-

didate reference. Several studies have demonstrated the possible applications of SOM in

LBVS [  203 ]. Gasteiger and co-workers described a method using SOM as a novelty detec-

tion device [  204 ]. Their model was successfully applied to identify and eliminate chemical

structures perceived as novel compounds that lie outside the already discovered space which
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are unlikely to have desired biological activity from further investigations [  204 ]. Bonachera

and colleagues demonstrated the possibility of applying SOM to accelerate VS process of a

large dataset by extracting a relatively small but diverse training set to increase efficiency

in model learning [ 205 ].

Despite the promising performance of SOMs, one of the major limitations of the al-

gorithm is the number of neurons and output dimension space needed to be determined

before the training process [  206 ]. Miss determination of those two parameters can weaken

the predictability and be detrimental to the model performance. Training runs are some-

time non-replicable and different training bears slightly different results due to the natural

of stochastic optimization process. Usually HTS compound libraries contain hundreds of

millions of data which can be too big for SOM to compute in a timely manner [ 188 ].

Stochastic Proximity Embedding

Stochastic Proximity Embedding (SPE) is a manifold based self-organizing dimension-

ality reduction algorithm. Since 1996, SPE method have been introduced and expanded to

various application in computational chemistry and biology [  207 ]. Aiming to preserve the

metric structure and pairwise proximities, SPE generates low-dimensional Euclidean em-

bedding for a set of input observations [  208 ]. The calculation process randomly starts at

an initial configuration and use a pairwise refinement process that repeatedly select pairs

of objects to adjust their initial configuration. The goal is to match their proximiteis and

minimize their distance on the map.

Various applications have been found to visualize large chemical libraries for biological

activity explanation, diversity analysis, and analog design [  209 ], [  210 ]. The advantage of SPE

algorithm is that it scales linearly with respect to the size of the dataset and circumvent

that complete proximity matrix which allows efficient calculation especially for large data

set [  211 ]. Instead of revealing local information over global, SPE preserves global topology

and local geometry by estimating the proximities between points as lower bounds of geodesic

distances. At the same time, the method impose a global structure with the mean of geodesic
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distances. Besides that, SPE is intrinsically programmatically simple and robust that can

be applied to explore a variety of scientific questions including exploratory datasets.

SPEs bear with some limitations. First of all, the calculation is related to a large num-

ber of adjustable parameters therefore the results heavily rely on neighborhood radius [ 188 ].

Local neighborhood can capture false negative information if the neighborhood radius is set

too small and lead to discontinued and fragmented manifold clusters. When the neighbor-

hood radius is set too large, it can include false positive data entries that belong to another

manifold causing predicting errors.

Stochastic Neighborhood Embedding

Stochastic Neighbor Embedding (SNE) is another nonlinear, unsupervised, and manifold-

based dimensionality reduction method [  212 ]. With SNE, high dimensional data is mapped

to low dimension space based on probabilities of points being neighbors to preserve signif-

icant structure of the original dataset. Data structure is preserved by their neighborhood

probabilities introduced by pairwise distances. Gaussian model is applied to calculate the

distance probability distribution. Probability distribution of point i be the neighbor of point

j is calculated for both input and output space. SNE introduce a cost function with Kull-

back–Leibler divergence aims to estimate the probability distribution of neighbor as close as

possible in the low-dimensional embedding and preserve the neighbor structure as the input

embedding [ 213 ].

Since it’s first development in 2002, different variations of SNE algorithm have been

developed. T-distributed stochastic neighbor embedding (t-SNE) is introduced by Maaten

et al. in 2008, which uses a symmetric cost function that is easier to optimize [ 214 ]. Instead

of using Gaussian model, a student-t distribution is applied to effectively reduce the tendency

to crowd points in the center of the map.

SNE has been applied with understanding various compound libraries to reduce dimen-

sionality for data with high-dimensional pattern. For example, Drug Discovery Maps (DDM)

is a machine learning model developed to map the a activity profile of compounds across an
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entire protein family based on t-SNE algorithm [ 215 ]. Visualization of molecular biological

similarity was generated by t-SNE algorithm.

The representation of all dimensionality reduction method is not necessarily perfect which

makes assessing and measuring the goodness of representation critical. Despite the fact that

significant research have been conducted with methods for generating low dimensional man-

ifolds, there has been lack of discussion with respect to definition of a good measurement

of the representation. Preserving the pairwise distances is the current widely accepted prin-

ciple that can be used as goals to assess distances between data points. Neighbor retrieval

visualizer (NeRV) is another variation designed based of SNE algorithm. Applying pairwise

distances, the context of each pair is considered to yield a natural way to evaluate dimen-

sionality reduction performance [ 216 ]. Further, NeRV is a method specifically designed to

project high dimensional data to two-dimensional space. It demonstrated the ability of gen-

erating continuous and differentiable functions of the output manifold. With the natural way

developed to evaluate output performance, NeRV demonstrated more sophisticated perfor-

mance with definitive evaluation thus was chosen in this method to perform dimensionality

reduction and facilate with data visualization from 3 dimension to 2 dimension manifold.

As a variation of SNE method, the algorithm uses a Gaussian distribution curve to preserve

both local and global features of the original dataset’s local and global features in the lower

dimension and provide much easier optimization and better visualizations [ 212 ], [  214 ]. It can

capture the local structure of the high-dimensional data while preserving global structure.

Distribution of distances between points in high and low dimension space is interpreted

with different matrices of properties via conditional probability pj|i and qj|i, respectively. As-

suming distances are Gaussian distributed in both high and low dimensional space, given

the data point location yi in our output lower-dimension space, qj|i is denoted as the condi-

tional probability of point of user’s choice yj. A probabilistic model of neighborhood retrieval

can be constructed using the distance as our similarity metric in projection from the high-

dimensional geodesic distances with 3D input space to 2D output space as in equation  4.13 

[ 216 ]:

qj|i =
exp(−‖yi−yj‖2

σ2
i

)∑
k 6=i exp(−‖yi−yk‖2

σ2
i

)
(4.13)
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σ2 is the variance of Gaussian distribution for yi. The positive multiplier 1/σ2
i allows the

function for each cluster to be evaluated with respect to individual density. Nearby data

points have relatively higher probability, whereas further data points end up with almost

infinitesimal probability values. The similarity of data point in high dimensional space xi to

data point xj is calculated as equation  4.14 [ 216 ]:

pj|i =
exp(−d(xi−xj)2

σ2
i

)∑
k 6=i exp(−d(xi−xk)2

σ2
i

)
(4.14)

where pj|i is denoted as the conditional probability of point for the original data embedded

in three dimension xj with respected to xi. d is the difference measured in the original data.

k is a user-determined upper limit for number of relevant neighbors. Here, xi is projected to

yi in output dimension.

To preserve the similarity between the high-dimensional data points and low-dimensional

data points, the two probabilities pj|i and qj|i at every data point should be equivalent.

The fundamental trade-off for dimensionality reduction lies between precision and recall of

information retrieval as estimating true similarities calculation and avoiding false positive

similarities at the same time. The novel NeVR method was developed by Venna and co-

workers where the trade-off is set only maximize recall with Kullback-Leibler divergence as

equation  4.15 shows [ 216 ]:

D(pi, qi) =
∑

i

∑
j

pj|ilog(pj|i

qj|i
) (4.15)

For any point i, the Kullback-Leibler divergence D(pi, qi) represents a generalization of

points recall, and D(qi, pi) is used for generalization of points precision. The aim is to

minimize the sum of Kullback-Leibler divergence over all data points using gradient descent.

A total cost function Ei defining both missing similar points and retrieving dissimilar points

as shown in equation  4.18 can be applied to quantify the trade off [ 216 ]:

Ei = NF P,iCF P + NMISS,iCMISS (4.16)
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with false positives NF P,i as the number of samples that are in both Qi but not in Pi. NMISS,i

are samples that are in Pi but not in Qi. CF P defines the cost for each false positive and

CMISS

4.2 Method

4.2.1 3D molecular map generation

Based on the HSAB theoretical framework for examining inter-molecular interactions

with local softness and hardness, several steps are taken to generate reliable 3D and 2D

molecular maps to decipher the spatial arrangement of molecular surface electronic proper-

ties. Figure  4.5 demonstrate the workflow we applied.

Figure 4.5. 3D molecule map generation pipeline.

To predict interactions between the molecules and target enzyme based on above men-

tioned first principles, 3D structures of each ligand obtained were optimized with Gaussian

16 (Gaussian Inc. Wallingford CT) applied at B3LYP/6-21G** level to calculate energies

and electron densities of neutral, cationic, and anionic states. EDTSurf, which is a open

source program to construct triangulated surfaces for molecules, were applied to construct

triangulated solvent accessible surfaces [ 217 ]. EDTSurf was also applied to identify cavities

which are inside of the collected molecules. The 3D structures were then processed with

MeshLab (ISTI - CNR) to re-generate the mesh and parse out the vertices. An explicit re-

meshing of a triangular mesh to improve aspect ratio and topological regularity were applied

with 8 iteration and target length 1.25. Fukui functions, Fukui potentials, and ESPs were

calculated at the single-molecule level and mapped to SESs of all molecules obtained from

the data library for visual analyses and feature extraction.
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4.2.2 Manifold Embedding of Molecular Surface

Manifold Embedding of Molecular Surface (MEMS) calculation is applied with NeRV

algorithm to reduce 3D molecular surfaces of ligands to 2D space as described previously.

The distance between any two atoms on a molecular surface is used as the neighborhood

similarity metric for computing the probabilities of retrieval and relevance in 2D manifold.

The value of the electronic property at each data point on the surface were carried directly

to the corresponding data point on the 2D map. Same 2D feature maps were generated from

molecular surfaces and used to map different local electronic properties (Fukui functions,

Fukui potential and ESP). Pairwise probability was applied to normalize the weights:

∂C

∂yi
= 2

∑
j

(kij + kji)(yi − yj) (4.17)

In the output space, geodesic distances was applied to calculate tarchitecturehe distance

between point yi and point yj.

Recall and precision are applied to evaluate the quality of reduction. Expectation and the

means of recall D(pi, qi) and precision D(qi, pi) were calculated as i(pi, qi) and i(qi, pi) in anal-

ogous to mean precision and recall cannot in general reach their minimum simultaneously.

With cost function mathematically described as equation  4.18 

E = λEi[D(pi, qi)] + (1 − λ)Ei[D(qi, pi)]

∝ λ
∑

i

∑
j6=i

pj|ilog
pj|i

qj|i
+ (1 − λ)

∑
i

∑
j6=i

qj|ilog
qj|i

pj|i

(4.18)

λ was used to justify the desired trade off.

Both method minimizing precision and recall were applied. Closed map calculation is

obtained to minimize the amount of misses by squashing the molecule flat to low dimensional

space. This method resulted in a great amount of false positives caused by misplacing

electronic properties residing on opposite sides of the molecular surface close to each other.

An alternative embedding is referred to open cut calculation which simply cut open the 3D

molecular structure and fold it out. The open cut calculation would eliminate false positives
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but introducing misses on different sides to the tear as they ended up to be far way from

each other. For open-cut calculations, we randomly generated 4 cuts for each ligand in an

attempt to weaken the effect of miss calculated regions.

4.3 Results and Discussion

4.3.1 3D molecule surface electronic calculation

Figure 4.6. 3D molecule surface mesh generated for thiabendazole.
Subfigure (a) is the ligand 3D structure obtained from PubChem (C
ID: 5430); (b) is the 3D structure generated from Gaussian optimiza-
tion; (c) is the Surface accessible area calculated with EDTsurf.

To demonstrate

the results of 3D

molecular map struc-

ture calculation for

the data extracted

as described in Chap-

ter 3, calculation

and analysis for one

of the CYP1A2 in-

hibitor, thiabenda-

zole, is demonstrated

in Figure  4.6 as an

example. Figure  4.6 

(a) is the ligand 3D structure extracted from PubChem. Figure  4.6 (b) demonstrate the

result of 3D structure optimization. Surface accessible area calculation was then performed

and re-meshed as Figure  4.6 (c).

A series of 3D molecular maps featuring molecular surface electronic characteristics de-

scribing the ”softness” and ”hardness” of the ligands were generated. The results for thiaben-

dazole is demonstrated in Figure  4.7 . Local electronic properties, including Fukui potentials

(Figure  4.7 a), electrostatic potential (ESP) (Figure  4.7 b), nucleo- and electrophilic Fukui

functions (f+r (Figure  4.7 c) and f−r (Figure  4.7 d), derived from the single ligand were

mapped with respect to 3D surface structure. Those properties characterize both locality

and strength of intermolecular interactions. Red Region shown in ESP indicates negatively
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Table 4.1. Surface electronic feature values calculated residing on 3D surface.
Electronic value Range [high-low]

ESP [0.055 - 0.001]
Fukui Function [0.001 - (-0.001)]
Fukui Potential [0.037 - (-0.04)]

charged region which brings down the potential energy to interact with a proton. Therefore

the electronic contribution of ESP is always negative. Fukui potential is the positive con-

tribution by electron to ESP which is always positive due to the interaction with proton.

The subtraction order is opposite for Fukui function (Figure  4.7 e) as shown in equation

 4.6 . Therefore the red region means a positive value indicating to more contribution to the

negativity of the region with reducing potential. Table  4.1 contains surface electronic values

for ESP, Fukui Function, and Fukui potential with thiabendazole calculation. As expected,

comparing with soft interactions (Fukui function), hard properties (ESP) has dominate effect

when present.

Figure 4.7. 3D surface electronic maps calculated for thiabendazole: (a) 3D
Fukui potential (ESP + - ESP −), red: negative; blue: positive; (b) 3D ESP,
red: negative; blue: positive; (c) Nucleopholoc Fukui Function, f+ (marking
electrophilic region); (d) Electrophilic Fukui Function, f− (marking nucle-
ophilic region; (e) Fukui Function f 2, blue: negative; red: positive.
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4.3.2 MEMS calculation

Ligand MEMS calculations were performed with NeVR non-linear dimensionality reduc-

tion method as mentioned previously. Both closed maps and open cuts were generated. Fig-

ure  4.8 demonstrates close map embeddings of electronic properties residing on 3D molecule

surface of thiabendazole. The embeddings were applied to minimize the number of misses

by squashing the molecule flat from 3D space to 2D area. It yielded few misses with the

introduction of false positives. Figure  4.9 demonstrates false positives observed in thiaben-

dazole ESP calculation. The area labeled with red rectangle contains noise neutral data

points displaying as white dots. This observation is due to the misplacing of information

from the opposite side of the molecule 3D structure. Still, major electronic values were well

captured locally. The noise can be smoothed with further calculations.

Figure  4.11 shows 4 random open cut calculations generated to minimize the number of

false positives by cutting 3D molecules open. The cutting performed on 3D molecule surface

is demonstrated in Figure  4.10 . When applied to model training, four cuts generated would

be used together to minimize the effect at the tears.

Figure 4.8. Closed map calculation for 2D electronic maps embedded from
3D surface of thiabendazole: (a) shows calculated 2D contour of the molecule
maps including surface points closest to atom coordinates; (b)-(d) are 2D
molecule maps for ESP, Fukui function, and Fukui potential, respectively.
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Figure 4.9. ESP results from MEMS close map calculation OF thiabendazole
introduce significant false positives.

4.4 Conclusion

With the current MEMS workflow, we are able to generate molecular surfaces with re-

spective to the isolated ligands and calculate 2D maps that is not affected by the orientation

of molecules. Fukui functions, Fukui potentials, and ESPs are calculated as local functions

bearing electronic characteristic distributions. 3D molecular maps with those properties cre-

ates a wide degrees of freedom that can hurdle further calculations. To generate molecular

surfaces that map the electronic properties and the molecular surface conformational flexi-

bility in feature learning, electronic properties calculated with respect to 3D surface needs to

be mapped in 2D dimension to enable further mathematical evaluation and avoid the ”curse

of dimensionality”. Manifold learning method, NeRV, optimizing the cost function to better

balance the information precision and recall from high dimensional space to 2D manifold

is applied. Ideally, we would like to avoid misses and, at the same time, eliminate false

positives as much as possible. To better evaluate the ability of retaining significant features,

two manifolds were calculated to minimize either false positives or misses with closed map

calculation and open cuts method, respectively. The current approaches are able to pre-

serve the majority of local features and provide possibilities to characterize intermolecular
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Figure 4.10. Four cuts generated randomly to perform dimensionality re-
duction with open cut calculation on 3D surface of thiabendazole: (a) - (c)
show cut 1 on 3D molecule surfaces for ESP, Fukui function, and Fukui po-
tential, respectively; (d) - (f) show cut 2 on 3D molecule surfaces for ESP,
Fukui function, and Fukui potential, respectively; (h) - (g) show cut 3 on 3D
molecule surfaces for ESP, Fukui function, and Fukui potential, respectively;
(k) - (m) show cut 4 on 3D molecule surfaces for ESP, Fukui function, and
Fukui potential, respectively.

interactions. Quantitative definition for molecular “hardness” and “softness” through the

framework of electronic softness and hardness are captured in 2D maps. The assumption is

atomic and molecular property can be described with electron density and perturbation re-

sponses. With the geodesic distance between two data points on a molecular surface applied

as neighborhood similarity computing the retrieval probabilities, electronic property values

for each data point embedded on the surface are carried directly to corresponding positions

on the 2D maps. The generated 2D feature maps can be used to capture different local

electronic properties which are further characterized with machine learning and computer
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Figure 4.11. Open map calculation for 2D electronic maps embedded from
3D surface of thiabendazole: (a) - (c) show 2D molecule maps for ESP, Fukui
function, and Fukui potential, respectively, calculated from open cut 1; (d)
- (f) show 2D molecule maps for ESP, Fukui function, and Fukui potential,
respectively, calculated from open cut 2; (h) - (g) show 2D molecule maps for
ESP, Fukui function, and Fukui potential, respectively, calculated from open
cut 3; (k) - (m) show 2D molecule maps for ESP, Fukui function, and Fukui
potential, respectively, calculated from open cut 4.

vision algorithms. The strength and locality of intermolecular interactions can be learnt and

predicted with such calculation.
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5. DEEP LEARNING PREDICTION

5.1 Introduction

Our previous studies with respect to using CDFT concepts to understand intermolecular

interactions have demonstrated the indication of the local electronic properties with molec-

ular interactions. The interaction locality and strength can be assessed with local electronic

properties casting on molecular surface, providing possibilities to predict inherent propensi-

ties of a molecule to interact with another without putting them together. Here we would

like to apply the same underlying mechanism to characterize the interactions between a set

of ligands and the binding sites of a protein target. The work presenting in this chapter

aim to perform image interpretation and model training for lignads activity prediction with

previously calculated 2D electronic property maps.

The projected 2D maps from the molecule surfaces for each ligand need to be properly

interpreted with mathematical algorithms. In the age of machine learning, many algorithms

can be used to evaluate similarities between shapes and to perform object recognition as

well as feature extraction. Common molecular descriptors like mentioned in Chapter 1

are untrainable. There is also no protocol or standard process to choose the most reliable

combination of descriptors. To develop a orientation insensitive method that can perform

ligand evaluation requiring no docking between the ligand and binding site, we adopted

shape context approach to generate translational invariant molecular descriptors for each

ligand with mathematical representations. Like human can recognize many objects based on

their shapes, this method provides a good practice with translation and rotation invariance

to detect image similarity with the 2D feature maps generated from MEMS calculations.

It captures the distribution over relative positions with a set of points corresponding with

other shape points. The points count summarize to describe global shape information with

a rich, local descriptor [ 218 ].
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5.1.1 Shape Context

Shape context method was first developed by Belongie and coworkers in 2000 [  219 ]. The

main goal of shape context is to solve the correspondence between two shape items. The

method is designed to describing shapes in a way allowing measurement of shape similarity

and recover to point correspondences [ 218 ].

Briefly, the first step of the calculation starts with capturing the shape of an object by

a discrete subset of n points P ={p1, p2, p3, ..., pn}, pi ∈ R2 sampled from the internal and

external contour of the shape. For each point, pi, the relative coordinates can be obtained

from all other n - 1 points. A histogram hi for each points can be generated with respect to

the Euclidean distance and angular bins against neighbor points defined as the shape context

of responsive point pi [ 219 ]:

hi(k) = {q 6= pi : (q − pi ∈ bin(k))} (5.1)

The descriptor is generated with polar coordinates to be more sensitive with respect

to differences in relatively nearby pixels. The graph is normalized with log space map to

count the number of points in each region. Two shapes can then be compared based on the

information retained in histograms. More specifically, as shown in Figure  5.1 , a set of points

P ={p1, p2, p3, ..., pn}, pi ∈ R2 can be obtained from edge elements of Figure  5.1 (a) and

another set of points Q = {q1, q2, q3, ..., qn}, qi ∈ R2 can be obtained from edge elements of

Figure  5.1 (b). The Euclidean distance (r) and angular bins (θ) from each point in the set that

can be compared against with the other n - 1 points. For each point, the number of points

lie in each bin can then be represented as shown in Figure  5.1 (d) - (e), where corresponding

points tends to have similar descriptors. The algorithm enables global understanding of the

shape which make sure the descriptor is insensitive to translation and rotation. Robustness

to affine transformations and rotation is proven in [ 220 ].

The algorithm capture robust features for assessing shape similarity and can be used to

determine the common information encountered between a set of images. For each molecular

surface map, each ligand can be represented with a set of discrete points sampled from the
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Figure 5.1. This figure is adopted from reference [ 219 ]. Shape context compu-
tation is demonstrated. (a) and (b) show two sampled edge points of different
shapes. (c) is the set up of log-polar histogram bins applied in computing the
descriptor. (d) - (f) are examples of corresponding points ◦,♦,C, mapped in
(a) and (b). Gray-scale plot is used with darker color representing larger value.
(g) is correspondences found using bipartite matching, with costs defined by
chi-squared distance between histogram.

captured external contours. Descriptor bins is calculated for each atom, enable information

retrieval and machine learning.

5.1.2 Neural Network

With translational invariance molecular descriptor calculated, a deep learning algorithm

is applied to figure out the correlation between molecular surface features and inhibition

activities. The fundamental output feature should not alter if the coordinates are translated

or permutated when molecule conformation remain unchanged. A deep neural network

architecture, DeepSets, developed by Zaheer and co-workers that can tolerate permutation

is adopted to operate on the collection of atom set based data to perform feature extraction
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and and machine learning [  221 ]. DeepSets is a permutation equivariance method developed

to deal with sets inputs X ={x1, x2, x3, ..., xM}. For any permutation π [ 221 ],

f([xπ(1), ..., xπ(M)]) = [fπ(1)(x), ..., fπ(M)(x)] (5.2)

function f(x) acting on the sets are permutation equvariant to the order of objects in the set.

For a set of X, the function is computed as equation  5.3 :

fΘ(X) = σ(ΘX) (5.3)

When assessing each atom as set input, not all information have equal function and effect with

respect to other atoms in a molecule. The context information can be important. Attention

mechanism is applied to evoke the concept of context information. Inspired by the similar

idea with how human brains and visual system dealing with massive inter-correlated sensory

inputs, attention mechanism implemented in neural network stimulates direct attention to

objects of interests while ignoring other signals. Focusing on task-relavant contexts of a

neural network, it allows the model to capture the most relevant information from the inputs

and yield a better estimation [  222 ], [  223 ]. Attributing the highest weight values to the most

relevant vectors, attention mechanism allows the decoder to treat input sequences using the

most relevant information.

A general attention mechanism contains three major components: the queries, the keys,

and the values as shown in Figure  5.2 . Trainable matrices are applied to each of the factors

enabling attention learning. When assessing one query, a set of attention weights will be

applied to assess how much attention should be paying to each key. A set of values is applied

to perform bias selection and generate final output. The attention process can be calculated

with three steps: alignment score, attention weights, and context vector [ 224 ]. The alignment

score calculation takes the encoder hidden states and previous decoder states to compute the

score that maps how well the inputs align with current output around positions. With ”s”
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be the scores generated for the state ”h”, the alignment model is represented with equation

 5.4 implemented by a feedforward neural network:

ei,j = a(si−1, hj) (5.4)

with i and j representing sequence input and output, respectively. ei,j represents node j in i

neighborhood. si1 is derived from the query vector and encoder input hj from the key vector.

The attention weights αij are then normalized by a softmax function given by the following

equation  5.5 :

αij = exp(eij)∑Tx
k=1 exp(eik)

(5.5)

The context vector z for the output is then generated using the weighted sum of the anno-

tations:

z =
Tx∑
j=1

αijhj (5.6)

with keys and values assigned as the same vector.

Given the input layer generated with shape context method and experimental binding

affinities extracted as mentioned in Chapter3, deterministic features of ligand enzyme binding

are identified with respect to each atom in the ligand. The relationships of other atoms are

incorporated in the calculation. Ligand similarities are assessed based on quantum properties

and drug enzyme interactions are constructed based on the information about molecule

”hardness” and ”softness”. Higher-dimensional information is determined and embedding

interpretations can be generated for each ligand.

5.2 Method

Within the context of our project, relative positional information of atoms coordinates

are captured with 2D molecular maps calculated for Fukui functions, Fukui potentials, and

ESP. Descriptors with respect to each atom within the ligand is calculated with molecular

contours. Molecular atoms were calculated with a coarse grain generator developed with

KDTree to remove redundant information. First described in Maneewongvatana and Mount
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Figure 5.2. Attention mechanisms with queries, keys, and values
.

1999, KDTree algorithm was applied to look up the nearest neighbors of each atoms with

an index provided with the set of 2-dimensional points containing atom coordinates [ 225 ].

Each node specifies an atom and splits the set of atoms based on whether their coordinate

along that axis is greater than the threshold set as 0.25. Coarse grained molecule maps were

generated with necessary atom information.

Different combinations of angular and bin numbers were calculated as 1 bins for log r

with 32 bins for θ and 4 bins for log r with 16 bins for θ, respectively. Shape context feature

calculation is performed per atom basis. More specifically, these resulting “matrices” are

used to calculate the electronic properties of a key point in the molecule, in particular how

the electronic properties and binding of these atoms are affected by the surrounding atoms.

This is done by initially centering the matrix over an atom within the molecule. At each

of the 32 or 16 bins, the surface electronic properties are calculated that describe what the

electronic density of the key atom is with respect to binding. Interactions with the other
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features of the molecule is housed in that particular bin. The value of a particular bin is

calculated as the summation of all values that each bin covers. Normalization was applied by

bin area. This process is done for each of the 32 or 16 bins. Once this process is completed for

a single atom, it is repeated by re-centering the matrix around the next atom in the molecule.

This process is repeated until calculations for each of the 32 or 16 bins are completed for

each atom in the molecule. Figure  5.3 shows an example of the calculation design.

Figure 5.3. Molecular descriptors calculated with Shape Context method
with a CYP1A2 inhibitor, thiabendazole. (a) Molecule 2D maps derived from
3D structure containing all atoms. (b) - (c) Diagrams of log-polar histogram
bins applied in computing the shape contexts with 1 bins for log r with 32 bins
for θ, and 4 bins for log r with 16 bins for θ.

Our permutation equivariance deep neural network model were constructed using DeepSets.

Figure  5.4 demonstrate the architecture of our models. We implemented self-attention mech-

anism with the element-wise non-linearity tanh as activation function to include both nega-

tive and positive values for proper gradient flow in DeepSets layers as equation  5.7 :

Attention(X) = softmax(tanh f1(X) · f2(X)T

√
dsmall

) · X (5.7)

where f1 and f2 are two single layer MLPs with width dsmall = max[dx

32 , 4]. The attention

layer is applied to automatically extract important high-level deterministic properties and

capture relationships among ligands. It also leverage both the features of drugs and the

interaction behavior with enzymes. Softmax function is applied to perform normalization

across different nodes and Lekey Relu nonlinearity is used to allow slope for the negative

part:

ai,j = LeakeyReLU(softmaxi(ei,j))) = LeakeyReLU( exp(eij)∑
k∈Ni exp(eik)) (5.8)
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The points (atoms) are summed over to remove permutation variance. Activity score is used

as quantitative predicting label.

5.3 Results and Discussion

5.3.1 Feature representation

Figure  5.5 shows an example of 2D molecular mapping with atom coordinates and coarse

grain calculation for thiabendazole.

Figure 5.5. 2D molecular maps calculated with atom coordinates for all
atoms (a) and coarse grained atom map (b) for thiabendazole.

Different log-polar histograms of the electronic area measured using each atom as the

origin is generated as Figure  5.6 and Figure  5.7 for 1 bin for log r with 32 bins for θ and 4

bins for log r and 16 bins for θ.

The results for shape context computed with 4 bins for log r with 16 bins for θ appear

to carrying more global information than the result from 1 bins for log r with 32 bins

for θ, emphasizing local features and context. The strength of matching and training the

image features for ligand suggest matching the hotspots and formation of intermolecular

interactions as demonstrated in our earlier benzoic acid study. Because the 2D maps are

generated by the dimensionality reduction method from 3D molecular surface, the same 2D

images can be used to map different electronic properties calculated for the same molecule.

This allow us to study distinct matching among the local polarizability with electrophilic

and nucleophilic Fukui functions, study local hardness with the positive and negative ESP,

and evaluate the distribution of ”hardness” with Fukui potential.
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Figure 5.6. Log-polar histograms of the electronic area generated using each
atom as the origin. (a) Diagram for shape context computation with 1 bin
for log r with 32 bins for θ. (b) - (d) Log-polar histograms for ESP, Fukui
functions, and Fukui potential, respectively.

5.3.2 Model Development

A neural network model is developed for each enzyme target. All developed models need

to be validated. Here, we apply confusion matrix with each of the prediction. Figure  5.8 

demonstrate results for data testing matrix with model trained for CYP1A2 closed map

calculation with the highest F-score as 0.63 for testing dataset. Prediction performed poorly

comparing with results in open map calculation shown in Figure  5.9 which achieved highest

F-score 0.87. Prediction accuracy also improved to 0.79 with open map calculation comparing

with results from close map calculation as 0.71 for testing dataset. Calculation with open

cut maps for all other targets were able to yield significant better predictions than close
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map calculations illustrating the effect of false positives captured from the current close map

calculation is unignorable. Table  5.1 summarized best trained NN models with respect

to each CYP target with their F-score and accuracy. Besides for CYP2D6, strong model

learning activity is observed early on during the iteration process. More complicated models

were needed for CYP1A2 and CYP3A4. Further, CYP3A4 required the largest iteration

with 81 epochs to pick up the features possibly due the flexibility of its intrinsic structure

flexibility as described in literature [  226 ], [  227 ]. Nevertheless, open cut predictions seem to

outperform closed map calculations. Significant information loss is observed with the noisy

signals created. With open cut method, rational cuts could be achieved considering principal

geodesic components that can normalize data points to better transform the information.

Figure 5.8. Results for data testing matrix with model trained for CYP1A2
closed map calculation. Dark red: F-score for training; Red: F-score for
testing; Dark green: loss for training; green: loss for testing.

Table 5.1. NN models trained for each CYP target with best F-score and
accuracy obtained with testing dataset. Models are listed with their layer
features.

F-score Accuracy Epoch Model features
CYP1A2 0.87 0.79 40 [1024, 512, 256, 128, 64, 32, 16, 8, 1]
CYP2C19 0.80 0.73 32 [512, 256, 128, 64, 32, 16, 8, 1]
CYP2C9 0.72 0.72 54 [512, 256, 128, 64, 32, 16, 8, 1]
CYP2D6 0.48 0.57 196 [1960, 1024, 512, 256, 128, 64, 32, 16, 8, 1]
CYP3A4 0.78 0.74 81 [1024, 512, 256, 128, 64, 32, 16, 8, 1]
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Figure 5.9. Results for data testing matrix with model trained for CYP1A2
closed map calculation.Dark red: F-score for training; Red: F-score for testing;
Dark green: loss for training; green: loss for testing.

Figure  5.10 is the training results with all ligand included for CYP2D6. Poor learning is

observed with current features extracted. A training with smaller dataset restricting ligand

only considering the ones with atoms counts between 25 to 35 improved model learning

behavior with reduced feature required as [1024, 512, 256, 128, 64, 32, 16, 8, 1]. Best F-score

and accuracy were observed as 0.83 and 0.75 for testing dataset. Interestingly we found

that restricing the input data with 10 atom counts differentiation is able to yield about 5%

higher accuracy for all targets suggesting the need of a reasonable featurization method,

such as Gaussian-based or radial based kernels, that may be applied to achieve analytical

representations to better scale the matrix representation.

Comparing with current models predicting binary labels for CYP450 related DDIs with

no interaction strength information, our model prediction is based on quantitative labels

with Activity Score which is generated based on assay measurement with IC50. With the

prediction error for Activity Score ranging from 0 to 100, our best prediction error is 11.5 with

CYP1A2, followed with 12.4, 17.5, 21.4, 16.8 respectively for CYP2C19, CYP2C9, CYP2D6

and CYP3A4. The model developed provide better guidance and prioritize compounds based

on biological activity strength. With quantitative predictions, the model have flexibility

to perform classification with 3 groups corresponding to the classification indicators with
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Figure 5.10. Results for data testing matrix with model trained for CYP1A2
closed map calculation. Dark red: F-score for training; Red: F-score for
testing; Dark green: loss for training; green: loss for testing.

Figure 5.11. Results for data testing matrix with model trained for CYP1A2
closed map calculation.Dark red: F-score for training; Red: F-score for testing;
Dark green: loss for training; green: loss for testing.

PubChem database. Further, regression predictions for active compounds were performed

and yielded minimum prediction error 7.8 for CYP1A2 and below 15 for all other targets.

5.4 Conclusion

Model training was aimed to predict CYP450 related DDIs and distinguish active ligands

from inactive ones with a diversified compound libraries. Strong model learning ability was

demonstrated with specificity and strength for all five targets. Not only performing ligand
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classification and predicting potential DDIs caused by CYP450 enzymes, current learning

scheme with MEMS features properly interpreted can be applied to rank the liangds based

on quantitative biological activity strength. Open cuts manifold learning yield significant

better predictions for all targets. The model is observed to be sensitive with atom counts

within the molecules. To expand model applicability, kernel learning methods need to be

implemented to improve size scaling.
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6. SUMMARY AND OUTLOOK

Countless descriptors and computational methods have been developed in order to cap-

ture ”similarity”, where obvious limitations have been observed with the current approaches.

The center of the problem is the definitive guideline for extracting accountable and trainable

similarity features. It is becoming increasingly more apparent that structurally similarity

alone does not equate to imparting biological activity similarity. Challenges still remain, and

prediction performance can be further improved. Herein, a novel MEMS descriptor method

was developed based on CDFT and manifold learning. This method features molecules based

on electron density with its response to perturbation for analyzing chemical properties. To-

gether with neural network, our method have demonstrated promising potentials for CYP450

related DDIs prediction, particularly for CYP450 inhibitions.

Instead of focusing on aspects of chemical properties and atomic structure like the cur-

rent descriptors characterize, MEMS explore intermolecular interactions, both strength and

locality, which are based on local electronic properties derived from CDFT on molecular

surface supported by HSAB. The molecular interactions between a molecule and the binding

site of a protein is assessed based on the first principles that define the origin of molecular

interactions, both thermodynamically and kinetically, using quantum mechanics. The deep

learning model with MEMS demonstrated a strong learning power over different targets

with specificity with the best F-measure being 0.87% for CYP1A2 with the testing dataset.

Regression predictions showed promising results with a prediction error within 20 for all

targets, and the best 7.5 for the CYP2C19 prediction.

Another issue arising with current methods is the lack of neighborhood invariance of

chemical space in the current descriptors, which can generate misleading results when dealing

with activity cliffs. Neighborhood relationships can cause significant alterations in biological

activities. Compounds residing in one chemical space may vary in another. Throughout the

advancements in molecular descriptor development, MEMS bears machine trainable features

able to capture neighborhood relationships. With the shape context method, neighborhood

electronic features with respect to each atom is calculated with respect to ligand shape,

carrying invariance chemical features that can be used to represent molecular information
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during model interpretation. DeepSet algorithms with attention mechanism preserve signif-

icant neighborhood invariant information to evaluate intermolecular relationships and can

capture ”activity cliffs” with minor structural alterations.

In this study, over 14,000 compounds from an HTS assay measuring the dealkylation of

pre-luciferin substrates to luciferin were applied for model training and testing. Additional

studies on various assays should be explored to evaluate the learnability of the current scheme

and specificity of the descriptor. It is worth noting that different molecular conformations

which refer to the spatial arrangement alterations of the atoms remains unexplored in this

study. With the current representation, it is possible to design a learning layer with rational

assumptions to incorporate conformational changes with respect to atom features extracted.

With the majority of information projected from 3D molecular surfaces to lower manifold,

rational reduction could be achieved using principal geodesic components. It is crucial to

apply the scheme using with molecules with a wide size range, and featurization methods

with analytical representation kernels needs to be investigated to mitigate size effects and

expand model applicability.
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