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ABSTRACT

Deep learning has achieved state-of-the-art performance on many machine learning tasks.

But the deep neural network(DNN) model still suffers a few issues. Over-parametrized neural

network generally has better optimization landscape, but it is computationally expensive,

hard to interpret and the model usually can not correctly quantify the prediction uncertainty.

On the other hand, small DNN model could suffer from local trap and will be hard to

optimize. In this dissertation, we tackle these issues from two directions, sparse deep learning

and stochastic neural network.

For sparse deep learning, we proposed Bayesian neural network(BNN) model with mix-

ture of normal prior. Theoretically, We established the posterior consistency and structure

selection consistency, which ensures the sparse DNN model can be consistently identified. We

also demonstrate the asymptotic normality of the prediction, which ensures the prediction

uncertainty to be correctly quantified. Computationally, we proposed a prior annealing ap-

proach to optimize the posterior of BNN. The proposed methods share similar computation

complexity to the standard stochastic gradient descent method for training DNN. Experi-

ment results show that our model performs well on high dimensional variable selection as

well as neural network pruning.

For stochastic neural network, we proposed a Kernel-Expanded Stochastic Neural Net-

work model or K-StoNet model in short. We reformulate the DNN as a latent variable model

and incorporate support vector regression (SVR) as the first hidden layer. The latent vari-

able formulation breaks the training into a series of convex optimization problems and the

model can be easily trained using the imputation-regularized optimization (IRO) algorithm.

We provide theoretical guarantee for convergence of the algorithm and the prediction uncer-

tainty quantification. Experiment results show that the proposed model can achieve good

prediction performance and provide correct confidence region for prediction.
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1. INTRODUCTION

During the past decade, the deep neural network (DNN) has achieved great successes in

solving many complex machine learning tasks such as pattern recognition and natural lan-

guage processing. However, the DNN model still suffers a few issues. The DNNs used in

practice may consist of hundreds of layers and millions of parameters, see e.g. [ 1 ] on image

classification. Most of those DNNs are severely over-parametrized. For example, [ 2 ] showed

that in some networks, only 5% of the parameters are enough to achieve acceptable models.

Training and operation of DNNs of this scale entail formidable computational challenges.

Over-parameterization also makes the DNN model less interpretable and miscalibrated [ 3 ],

which can cause serious issues in human-machine trust and thus hinder applications of arti-

ficial intelligence (AI) in human life.

On the other hand, training a small DNN model from scratch often performs worse

than the over-parametrized DNN model [ 4 ]. A line of researches have been done towards

understanding the optimization landscape and training process of DNN model. For example,

[ 5 ] and [  6 ] studied the training loss surface of over-parameterized DNNs. They showed that

for a fully connected DNN, almost all local minima are globally optimal, if the width of

one layer of the DNN is no smaller than the training sample size and the network structure

from this layer on is pyramidal. Recently, [  7 ]–[ 9 ] and [ 10 ] explored the convergence theory of

the gradient-based algorithms in training over-parameterized DNNs. They showed that the

gradient-based algorithms with random initialization can converge to global minima provided

that the width of the DNN is polynomial in training sample size. A small DNN model does

not enjoy those good property of optimization landscape or training process. It can suffer

from local trap and be hard to optimize.

In this dissertation, we tackle these issues from two directions. First, we consider sparse

deep learning. Sparse deep learning start with over-parametrized DNN model, then identify

a sparse model with most parameters being zero and can perform as good as a dense one.

Starting with over-parametrization allows the model to enjoy good optimization property,

while the sparse model can be easier to interpret and well calibrated. Using the sparse model

for future prediction can also save computation cost. From another direction, we propose a

11



so-called kernel-expanded stochastic neural network (K-StoNet) model, which incorporates

support vector regression (SVR) as the first hidden layer and reformulates the neural network

as a latent variable model. The former maps the input vector into an infinite dimensional

feature space via a radial basis function (RBF) kernel, ensuring absence of local minima

on its training loss surface. The latter breaks the high-dimensional nonconvex neural net-

work training problem into a series of low-dimensional convex optimization problems, and

enables its prediction uncertainty easily assessed. For both directions, we provide theoret-

ical guarantee for the proposed model and demonstrate the performance on synthetic and

real data sets. The remaining part of this dissertation is organized as follows. In Section

 1.1 , we introduce the background of sparse deep learning and our proposed approach. In

Section  1.2 , we review stochastic neural network model and introduce our K-StoNet model.

The subsequent two chapters, Chapter 2 and 3 contains detailed formulation of the model,

theoretical properties and experiment results. Discussion and technical proofs are given at

the end of each chapter.

1.1 Sparse Deep Learning

The desire to identify sparse model naturally lead to two questions: (i) Is a sparsely

connected DNN able to approximate the target mapping with a desired accuracy? and (ii)

how to train and determine the structure of a sparse DNN? There have been some work in

the literature trying to address these questions.

The approximation power of sparse DNNs has been studied in the literature from both

frequentist and Bayesian perspectives. From the frequentist perspective, [ 11 ] quantifies the

minimum network connectivity that guarantees uniform approximation rates for a class of

affine functions; and [ 12 ] and [  13 ] characterize the approximation error of a sparsely con-

nected neural network for Hölder smooth functions. From the Bayesian perspective, [ 14 ] es-

tablished posterior consistency for Bayesian shallow neural networks under mild conditions;

and [  15 ] established posterior consistency for Bayesian DNNs but under some restrictive con-

ditions such as a spike-and-slab prior is used for connection weights, the activation function

12



is ReLU, and the number of input variables keeps at an order of O(1) while the sample size

grows to infinity.

The existing methods for learning sparse DNNs are usually developed separately from

the approximation theory. For example, [ 16 ], [ 17 ] and [ 18 ] developed some regularization

methods for learning sparse DNNs; [ 19 ] showed that dropout training is approximately equiv-

alent to an L2-regularization; [ 20 ] introduced a deep compression pipeline, where pruning,

trained quantization and Huffman coding work together to reduce the storage requirement

of DNNs; [ 21 ] proposed a sparse decomposition method to sparsify convolutional neural net-

works (CNNs); [ 22 ] considered a lottery ticket hypothesis for selecting a sparse subnetwork;

and [  23 ] proposed to learn Bayesian sparse neural networks via node selection with a horse-

shoe prior under the framework of variational inference. For these methods, it is generally

unclear if the resulting sparse DNN is able to provide a desired approximation accuracy to

the true mapping and how close in structure the sparse DNN is to the underlying true DNN.

In this dissertation, we proposed a Bayesian Neural Network(BNN) with mixture of nor-

mal prior. Theoretically, we first establish posterior consistency for the BNN and consistency

of structure selection based on the marginal posterior inclusion probabilities, which ensures

the posterior will concentrate around the true model. Then we establish consistency of the

sparsified DNN via Laplace approximation to the marginal posterior inclusion probabilities,

which ensures the sparse structure can be consistently identified by finding maximum of

the posterior distribution. To quantify the prediction uncertainty of the model, we estab-

lished the Bernstein-von Mises (BvM) theorem for network prediction. Computationally,

we provide prior annealing algorithm to learn the sparse neural network model. Our pro-

posed learning algorithm shares similar computation cost as standard stochastic gradient

descent(SGD) method. Our numerical results indicate that the proposed models can work

very well for large-scale DNN compression and high-dimensional nonlinear variable selection.

In addition to the mixture of normal prior, we will also discuss other possible choice of priors

and their properties from both theoretical and computational perspective.

13



1.2 Kernel-Expanded Stochastic Neural Network

Introducing noise in neural network training or stochastic neural network model has also

been an promising approach to improve performance of neural network. Famous examples

include deep belief networks [ 24 ] and deep Boltzmann machines [ 25 ], which have ever ad-

vanced the development of machine learning. Recently, some researchers have proposed to

add noise to the DNN to improve its performance. For example, [ 26 ] proposed the dropout

method to prevent the DNN from over-fitting by randomly dropping some hidden and visible

units during training; [  27 ] proposed to add gradient noise to improve training; and [ 28 ]–[ 30 ]

proposed to use stochastic activations through adding noise to improve generalization and

adversarial robustness. However, these methods are usually not systematic and theoretical

guarantees are hard to be provided.

In this dissertation, we propose a new neural network model, the so-called kernel-expanded

stochastic neural network (K-StoNet). The new model incorporates support vector regres-

sion (SVR) [ 31 ], [ 32 ] as the first hidden layer and reformulates the neural network as a

latent variable model. The former maps the input vector from its original space into an

infinite dimensional feature space, ensuring all local minima on the loss surface are globally

optimal. The latter resolves the parameter optimization and statistical inference issues as-

sociated with the neural network: it breaks the high-dimensional nonconvex neural network

training problem into a series of low-dimensional convex optimization problems, and enables

the prediction uncertainty easily assessed. The new model can be easily trained using the

imputation-regularized optimization (IRO) algorithm [ 33 ], which converges very fast, usu-

ally within a small number of epochs. Moreover, the introduction of the SVR layer with a

universal kernel [ 34 ], [ 35 ] enables K-StoNet to work with a smaller network, while ensuring

the universal approximation capability.

Compared to existing stochastic neural network model, K-StoNet is developed under a

rigorous statistical framework, whose convergence to the global optimum is asymptotically

guaranteed and whose prediction uncertainty can be easily assessed.

14



2. SPARSE DEEP LEARNING

2.1 Bayesian Sparse DNNs with mixture Gaussian Prior

Let Dn = (x(i), y(i))i=1,...,n denote a training dataset of n i.i.d observations, where x(i) ∈

Rpn , y(i) ∈ R, and pn denotes the dimension of input variables and is assumed to grow with

the training sample size n. We first study the posterior approximation theory of Bayesian

sparse DNNs under the framework of generalized linear models, for which the distribution

of y given x is given by

f(y|µ∗(x)) = exp{A(µ∗(x))y +B(µ∗(x)) + C(y)},

where µ∗(x) denotes a nonlinear function of x, and A(·), B(·) and C(·) are appropriately

defined functions. The theoretical results presented in this work mainly focus on logistic

regression models and normal linear regression models. For logistic regression, we have

A(µ∗) = µ∗, B(µ∗) = − log(1 + eµ∗), and C(y) = 1. For normal regression, by introducing

an extra dispersion parameter σ2, we have A(µ∗) = µ∗/σ2, B(µ∗) = −µ∗2/2σ2 and C(y) =

−y2/2σ2 − log(2πσ2)/2. For simplicity, σ2 = 1 is assumed to be known. How to extend our

results to the case that σ2 is unknown will be discussed in Remark  2.2.3 .

We approximate µ∗(x) using a DNN. Consider a DNN with Hn − 1 hidden layers and

Lh hidden units at layer h, where LHn = 1 for the output layer and L0 = pn for the input

layer. Let wh ∈ RLh×Lh−1 and bh ∈ RLh×1, h ∈ {1, 2, ..., Hn} denote the weights and bias of

layer h, and let ψh : RLh×1 → RLh×1 denote a coordinate-wise and piecewise differentiable

activation function of layer h. The DNN forms a nonlinear mapping

µ(β,x) = wHnψHn−1
[
· · ·ψ1

[
w1x + b1

]
· · ·

]
+ bHn , (2.1)

where β = (w, b) =
{
whij, b

h
k : h ∈ {1, 2, ..., Hn}, i, k ∈ {1, ..., Lh}, j ∈ {1, ..., Lh−1}

}
denotes

the collection of all weights and biases, consisting of Kn = ∑Hn
h=1 (Lh−1 × Lh + Lh) ele-

ments in total. To facilitate representation of the sparse DNN, we introduce an indicator

variable for each weight and bias of the DNN, which indicates the existence of the con-

15



nection in the network. Let γwh and γbh denote the matrix and vector of the indicator

variables associated with wh and bh, respectively. Further, we let γ = {γwh

ij ,γ
bh

k : h ∈

{1, 2, ..., Hn}, i, k ∈ {1, ..., Lh} , j ∈ {1, ..., Lh−1}} and βγ = {whij, bhk : γwh

ij = 1,γbh

k = 1

,h ∈ {1, 2, ..., Hn}, i, k ∈ {1, ..., Lh}, j ∈ {1, ..., Lh−1}}, which specify, respectively, the struc-

ture and associated parameters for a sparse DNN.

To conduct Bayesian analysis for the sparse DNN, we consider a mixture Gaussian prior

specified as follows:

γwh

ij ∼ Bernoulli(λn), γbh

k ∼ Bernoulli(λn),

wh
ij|γwh

ij ∼ γwh

ij N(0, σ2
1,n) + (1 − γwh

ij )N(0, σ2
0,n),

bhk|γbh

k ∼ γbh

k N(0, σ2
1,n) + (1 − γbh

k )N(0, σ2
0,n),

(2.2)

where h ∈ {1, 2, ..., HN}, i ∈ {1, ..., Lh−1} , j, k ∈ {1, ..., Lh}, and σ2
0,n < σ2

1,n are prespecified

constants. Marginally, we have

wh
ij ∼ λnN(0, σ2

1,n) + (1 − λn)N(0, σ2
0,n), bhk ∼ λnN(0, σ2

1,n) + (1 − λn)N(0, σ2
0,n). (2.3)

Typically, we set σ2
0,n to be a very small value while σ2

1,n to be relatively large. When

σ2
0,n → 0, the prior is reduced to the spike-and-slab prior [ 36 ]. Therefore, this prior can be

viewed as a continuous relaxation of the spike-and-slab prior. Such a prior has been used by

many authors in Bayesian variable selection, see e.g., [ 37 ] and [ 38 ].

2.2 Posterior Consistency

Posterior consistency plays a major role in validating Bayesian methods especially for

high-dimensional models, see e.g. [ 39 ] and [ 40 ]. For DNNs, since the total number of

parameters Kn is often much larger than the sample size n, posterior consistency provides

a general guideline in prior setting or choosing prior hyperparameters for a class of prior

distributions. Otherwise, the prior information may dominate data information, rendering

a biased inference for the underlying true model. In what follows, we prove the posterior

consistency of the DNN model with the mixture Gaussian prior ( 2.3 ).
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With slight abuse of notation, we rewrite µ(β,x) in ( 2.1 ) as µ(β,γ,x) for a sparse

network by including its network structure information. We assume µ∗(x) can be well

approximated by a sparse DNN with relevant variables, and call this sparse DNN as the true

DNN. More precisely, we define the true DNN as

(β∗,γ∗) = arg min
(β,γ)∈Gn, ∥µ(β,γ,x)−µ∗(x)∥L2(Ω)≤ϖn

|γ|, (2.4)

where Gn := G(C0, C1, ε, pn, Hn, L1, L2, . . . , LHn) denotes the space of valid sparse networks

satisfying condition A.2 (given below) for the given values of Hn, pn, and Lh’s, and ϖn is some

sequence converging to 0 as n → ∞. For any given DNN (β,γ), the error µ(β,γ,x) −µ∗(x)

can be generally decomposed as the network approximation error µ(β∗,γ∗,x) − µ∗(x) and

the network estimation error µ(β,γ,x) − µ(β∗,γ∗,x). The L2 norm of the former one is

bounded by ϖn, and the order of the latter will be given in Theorem  2.2.1 . In what follows,

we will treat ϖn as the network approximation error. In addition, we make the following

assumptions:

A.1 The input x is bounded by 1 entry-wisely, i.e. x ∈ Ω = [ − 1, 1]pn , and the density of

x is bounded in its support Ω uniformly with respect to n.

A.2 The true sparse DNN model satisfies the following conditions:

A.2.1 The network structure satisfies: rnHn log n +rn logL+ sn log pn ≤ C0n
1−ε, where

0 < ε < 1 is a small constant, rn = |γ∗| denotes the connectivity of γ∗, L =

max1≤j≤Hn−1 Lj denotes the maximum hidden layer width, sn denotes the input

dimension of γ∗.

A.2.2 The network weights are polynomially bounded: ∥β∗∥∞ ≤ En, where En = nC1

for some constant C1 > 0.

A.3 The activation function ψ is Lipschitz continuous with a Lipschitz constant of 1.

Assumption A.1 is a typical assumption for posterior consistency, see e.g., [ 15 ] and [ 39 ].

In practice, all bounded data can be normalized to satisfy this assumption, e.g. image data
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are bounded and usually normalized before training. Assumption A.3 is satisfied by many

conventional activation functions such as sigmoid, tanh and ReLU.

Assumption A.2 specifies the class of DNN models that we are considering. They are

sparse, while still being able to approximate many types of functions arbitrarily well as the

training sample size becomes large, i.e., limn→∞ ϖn = 0. The approximation power of sparse

DNNs has been studied in several existing work. For example, for the functions that can

be represented by an affine system, [ 11 ] proved that if the network parameters are bounded

in absolute value by some polynomial g(rn), i.e. ||β∗||∞ ≤ g(rn), then the approximation

error ϖn = O(r−α∗
n ) for some constant α∗. To fit this this result into our framework, we

can let rn ≍ n(1−ϵ)/2 for some 0 < ϵ < 1, pn = d for some constant d, Hn < rn + d

and L̄ < rn (i.e. the setting given in Proposition 3.6 of [  11 ]). Suppose that the degree

of g(·) is c2, i.e. g(rn) ≺ rc2
n , then ∥β∗∥∞ ≺ nc2(1−ϵ)/2 ≺ nC1 = En for some constant

C1 > c2(1 − ϵ)/2. Therefore, Assumption A.2 is satisfied with the approximation error ϖn =

O(r−α∗
n ) = O(n−α∗(1−ϵ)/2) ∆= O(n−ς) (by defining ς = α∗(1−ϵ)/2), which goes to 0 as n → ∞.

In summary, the minimax rate in supµ∗(x)∈C inf(β,γ)∈G ∥µ(β,γ,x)−µ∗(x)∥L2(Ω) ∈ O(n−ς) can

be achieved by sparse DNNs under our assumptions, where C denotes the class of functions

represented by an affine system.

Other than affine functions, our setup for the sparse DNN also matches the approximation

theory for many other types of functions. For example, Corollary 3.7 of [ 41 ] showed that

for a wide class of piecewise smooth functions with a fixed input dimension, a fixed depth

ReLU network can achieve an ϖn-approximation with log(rn) = O(− logϖn) and logEn =

O(− logϖn). This result satisfies condition A.2 by setting ϖn = O(n−ς) for some constant

ς > 0. As another example, Theorem 3 of [ 12 ] (see also lemma 5.1 of [ 15 ]) proved that any

bounded α-Hölder smooth function µ∗(x) can be approximated by a sparse ReLU DNN with

the network approximation error ϖn = O(log(n)α/pnn−α/(2α+pn)) for some Hn ≍ log n log pn,

Lj ≍ pnn
pn/(2α+pn)/ log n, rn = O(p2

nα
2pnnpn/(2α+pn) log pn), and En = C for some fixed

constant C > 0. This result also satisfies condition A.2.2 as long as p2
n ≪ log n.

It is important to note that there is a fundamental difference between the existing neural

network approximation theory and ours. In the existing neural network approximation

theory, no data is involved and a small network can potentially achieve an arbitrarily small
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approximation error by allowing the connection weights to take values in an unbounded

space. In contrast, in our theory, the network approximation error, the network size, and

the bound of connection weights are all linked to the training sample size. A small network

approximation error is required only when the training sample size is large; otherwise, over-

fitting might be a concern from the point of view of statistical modeling. In the practice of

modern neural networks, the depth and width have been increased without much scruple.

These increases reduce the training error, improve the generalization performance under

certain regimes [ 42 ], but negatively affect model calibration [ 3 ]. We expect that our theory

can tame the powerful neural networks into the framework of statistical modeling; that is,

by selecting an appropriate network size according to the training sample size, the proposed

method can generally improve the generalization and calibration of the DNN model while

controlling the training error to a reasonable level.

Let P ∗ and E∗ denote the respective probability measure and expectation for data Dn.

Let d(p1, p2) =
(∫ [

p
1
2
1 (x, y) − p

1
2
2 (x, y)

]2
dydx

) 1
2

denote the Hellinger distance between two

density functions p1(x, y) and p2(x, y). Let π(A | Dn) be the posterior probability of an

event A. The following theorem establishes posterior consistency for sparse DNNs under the

mixture Gaussian prior ( 2.3 ).

Theorem 2.2.1. Suppose Assumptions A.1-A.3 hold. If the mixture Gaussian prior ( 2.3 )

satisfies the conditions: λn = O(1/{Kn[nHn(Lpn)]τ}) for some constant τ > 0, En/{Hn log n+

logL}1/2 ≲ σ1,n ≲ nα for some constant α > 0, and σ0,n ≲ min
{
1/{

√
nKn(n3/2σ1,0/Hn)Hn},

1/{
√
nKn(nEn/Hn)Hn}

}
, then there exists an error sequence ϵ2

n = O(ϖ2
n) +O(ζ2

n) such that

limn→∞ ϵn = 0 and limn→∞ nϵ2
n = ∞, and the posterior distribution satisfies

P ∗
{

π[d(pβ, pµ∗) > 4ϵn|Dn] ≥ 2e−cnϵ2n
}

≤ 2e−cnϵ2n ,

E∗
Dn

π[d(pβ, pµ∗) > 4ϵn|Dn] ≤ 4e−2cnϵ2n ,
(2.5)

for sufficiently large n, where c denotes a constant, ζ2
n = [rnHn log n+ rn logL+ sn log pn]/n,

pµ∗ denotes the underlying true data distribution, and pβ denotes the data distribution re-

constructed by the Bayesian DNN based on its posterior samples.
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The proof of Theorem  2.2.1 can be found in Section  2.9 . Regarding this theorem, we

have a few remarks:

Remark 2.2.1. Theorem  2.2.1 provides a posterior contraction rate ϵn for the sparse BNN.

The contraction rate contains two components, ϖn and ζn, where ϖn, as defined previously,

represents the network approximation error, and ζn represents the network estimation error

measured in Hellinger distance. Since the estimation error ζn grows with the network con-

nectivity rn, there is a trade-off between the network approximation error and the network

estimation error. A larger network has a lower approximation error and a higher estimation

error, and vice versa.

Remark 2.2.2. Theorem  2.2.1 implies that given a training sample size n, the proposed

method can learn a sparse neural network with at most O(n/ log(n)) connections. Com-

pared to the fully connected DNN, the sparsity of the proposed BNN enables some theoretical

guarantees for its performance. The sparse BNN has nice theoretical properties, such as pos-

terior consistency, variable selection consistency, and asymptotically optimal generalization

bounds, which are beyond the ability of general neural networks. The latter two properties

will be established in Section  2.3 and Section  2.5 , respectively.

Remark 2.2.3. Although Theorem  2.2.1 is proved by assuming σ2 is known, it can be easily

extended to the case that σ2 is unknown by assuming an inverse gamma prior σ2 ∼ IG(a0, b0)

for some constants a0, b0 > 0. If a relatively uninformative prior is desired, one can choose

a0 ∈ (0, 1) such that the inverse gamma prior is very diffuse with a non-existing mean value.

However, if a0 = b0 = 0, i.e., the Jeffreys prior π(σ2) ∝ 1/σ2, the posterior consistency

theory established Theorem  2.2.1 might not hold any more. In general, to achieve posterior

consistency, the prior is required, at least in our framework, to satisfy two conditions [ 39 ],

[ 43 ]: (i) a not too little prior probability is placed over the neighborhood of the true density,

and (ii) a very little prior probability is placed outside of a region that is not too complex.

Obviously, the Jeffreys prior and thus the joint prior of σ2 and the regression coefficients

do not satisfy neither of the two conditions. We note that the inverse gamma prior σ2 ∼

IG(a0, b0) has long been used in Bayesian inference for many different statistical models,
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such as linear regression [ 44 ], nonparametric regression [ 45 ], and Gaussian graphical models

[ 46 ].

2.3 Consistency of DNN Structure Selection

This section establishes consistency of DNN structure selection under posterior consis-

tency. It is known that the DNN model is generally nonidentifiable due to the symmetry of

the network structure. For example, the approximation µ(β,γ,x) can be invariant if one

permutes the orders of certain hidden nodes, simultaneously changes the signs of certain

weights and biases if tanh is used as the activation function, or re-scales certain weights and

bias if ReLU is used as the activation function. However, by introducing appropriate con-

straints, see e.g., [ 47 ] and [ 14 ], we can define a set of neural networks such that any possible

neural networks can be represented by one and only one neural network in the set via nodes

permutation, sign changes, weight rescaling, etc. Let Θ denote such set of DNNs, where each

element in Θ can be viewed as an equivalent class of DNN models. Let ν(γ,β) ∈ Θ be an

operator that maps any neural network to Θ via appropriate transformations such as nodes

permutation, sign changes, weight rescaling, etc. To serve the purpose of structure selection

in the space Θ, we consider the marginal posterior inclusion probability approach proposed

in [  40 ] for high-dimensional variable selection.

For a better description of this approach, we reparameterize β and γ as

β = (β1,β2, . . . ,βKn
), γ = (γ1,γ2, . . . ,γKn

),

respectively, according to their elements. Without possible confusions, we will often use the

indicator vector γ and the active set {i : γ i = 1, i = 1, 2, . . . , Kn} exchangeably; that is,

i ∈ γ and γ i = 1 are equivalent. In addition, we will treat the connection weights w and

the hidden unit biases b equally; that is, they will not be distinguished in β and γ. For

convenience, we will call each element of β and γ a ‘connection’ in what follows.
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2.3.1 Marginal Posterior Inclusion Probability Approach

For each connection ci, we define its marginal posterior inclusion probability by

qi =
∫ ∑

γ

ei|ν(γ,β)π(γ|β, Dn)π(β|Dn)dβ, i = 1, 2, . . . , Kn, (2.6)

where ei|ν(γ,β) is the indicator for the existence of connection ci in the network ν(γ,β). Sim-

ilarly, we define ei|ν(γ∗,β∗) as the indicator for the existence of connection ci in the true model

ν(γ∗,β∗). The proposed approach is to choose the connections whose marginal posterior

inclusion probabilities are greater than a threshold value q̂; that is, setting γ̂ q̂ = {i : qi >

q̂, i = 1, 2, . . . , Kn} as an estimator of γ∗ = {i : ei|ν(γ∗,β∗) = 1, i = 1, . . . , Kn}, where γ∗ can be

viewed as the uniquenized true model. To establish the consistency of γ̂ q̂, an identifiability

condition for the true model is needed. Let A(ϵn) = {β : d(pβ, pµ∗) ≥ ϵn}. Define

ρ(ϵn) = max
1≤i≤Kn

∫
A(ϵn)c

∑
γ

|ei|ν(γ,β) − ei|ν(γ∗,β∗)|π(γ|β, Dn)π(β|Dn)dβ,

which measures the structure difference between the true model and the sampled models on

the set A(ϵn)c. Then the identifiability condition can be stated as follows:

B.1 ρ(ϵn) → 0, as n → ∞ and ϵn → 0.

That is, when n is sufficiently large, if a DNN has approximately the same probability distri-

bution as the true DNN, then the structure of the DNN, after mapping into the parameter

space Θ, must coincide with that of the true DNN. Note that this identifiability is different

from the one mentioned at the beginning of the section. The earlier one is only with respect

to structure and parameter rearrangement of the DNN. Theorem  2.3.1 concerns consistency

of γ̂ q̂ and its sure screening property, whose proof is given in Section  2.9 .

Theorem 2.3.1. Assume that the conditions of Theorem  2.2.1 and the identifiability condi-

tion B.1 hold. Then

(i) max1≤i≤Kn{|qi − ei|ν(γ∗,β∗)|}
p→ 0, where p→ denotes convergence in probability;

(ii) (sure screening) P (γ∗ ⊂ γ̂ q̂)
p→ 1 for any pre-specified q̂ ∈ (0, 1).
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(iii) (Consistency) P (γ∗ = γ̂0.5)
p→ 1.

For a network γ, it is easy to identify the relevant variables. Recall that γwh ∈ RLh×Lh−1

denotes the connection indicator matrix of layer h. Let

γx = γwHn
γwHn−1 · · · γw1 ∈ R1×pn , (2.7)

and let γx
i denote the i-th element of γx. It is easy to see that if γx

i > 0 then the variable

xi is effective in the network γ, and γx
i = 0 otherwise. Let exi|ν(γ∗,β∗) be the indicator for

the effectiveness of variable xi in the network ν(γ∗,β∗), and let γx
∗ = {i : exi|ν(γ∗,β∗) =

1, i = 1, . . . , pn} denote the set of true variables. Similar to ( 2.6 ), we can define the marginal

inclusion probability for each variable:

qx
i =

∫ ∑
γ

exi|ν(γ,β)π(γ|β, Dn)π(β|Dn)dβ, i = 1, 2, . . . , pn, (2.8)

Then we can select the variables whose marginal posterior inclusion probabilities greater

than a threshold q̂x, e.g., setting q̂x = 0.5. As implied by ( 2.7 ), the consistency of structure

selection implies consistency of variable selection.

It is worth noting that the above variable selection consistency result is with respect

to the relevant variables defined by the true network γ∗. To achieve the variable selection

consistency with respect to the relevant variables of µ∗(x), some extra assumptions are

needed in defining (β∗,γ∗). How to specify these assumptions is an open problem and we

would leave it to readers. However, as shown by our simulation example, the sparse model

(β∗,γ∗) defined in ( 2.4 ) works well, which correctly identifies all the relevant variables of the

underlying nonlinear system.

2.3.2 Laplace Approximation of Marginal Posterior Inclusion Probabilities

Theorem  2.3.1 establishes the consistency of DNN structure selection based on the

marginal posterior inclusion probabilities. To obtain Bayesian estimates of the marginal

posterior inclusion probabilities, intensive Markov Chain Monte Carlo (MCMC) simulations

are usually required. Instead of performing MCMC simulations, we propose to approximate
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the marginal posterior inclusion probabilities using the Laplace method based on the DNN

model trained by an optimization method such as SGD. Traditionally, such approximation is

required to be performed at the maximum a posteriori (MAP) estimate of the DNN. However,

finding the MAP for a large DNN is not computationally guaranteed, as there can be many

local minima on its energy landscape. To tackle this issue, we proposed a Bayesian evidence

method for eliciting sparse DNN models learned by an optimization method in multiple runs

with different initializations. Alternatively, we provide an prior annealing approach, which

incorporate the property of the energy landscape of over-parameterized DNN into model

training, to find the optimal of posterior. See Section  2.6 for the detail. Since conventional

optimization methods such as SGD can be used to train the DNN here, the proposed method

is generally more computationally efficient than the standard Bayesian method. More impor-

tantly, as explained in Section  2.6 , consistent estimates of the marginal posterior inclusion

probabilities might be obtained at a local maximizer of the log-posterior instead of the MAP

estimate. In what follows, we justify the validity of Laplace approximation for marginal

posterior inclusion probabilities.

Based on the marginal posterior distribution π(β|Dn), the marginal posterior inclusion

probability qi of connection ci can be re-expressed as

qi =
∫

π(γ i = 1|β)π(β|Dn)dβ, i = 1, 2, . . . , Kn.

Under the mixture Gaussian prior, it is easy to derive that

π(γ i = 1|β) = b̃i/(ãi + b̃i), (2.9)

where

ãi = 1 − λn
σ0,n

exp{− β2
i

2σ2
0,n

}, b̃i = λn
σ1,n

exp{− β2
i

2σ2
1,n

}.

Let’s define

hn(β) = 1
n

n∑
i=1

log(p(yi,xi|β)) + 1
n

log(π(β)), (2.10)
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where p(yi,xi|β) denotes the likelihood function of the observation (yi,xi) and π(β) denotes

the prior as specified in ( 2.3 ). Then π(β|Dn) = enhn(β)∫
enhn(β)dβ

and, for a function b(β), the

posterior expectation is given by
∫
b(β)enhn(β)dβ∫

enhn(β)dβ
. Let β̂ denote a strict local maximum of

π(β|Dn). Then β̂ is also a local maximum of hn(β). Let Bδ(β) denote an Euclidean ball of

radius δ centered at β. Let hi1,i2,...,id(β) denote the d-th order partial derivative ∂dh(β)
∂βi1∂βi2 ···∂βid

,

let Hn(β) denote the Hessian matrix of hn(β), let hij denote the (i, j)-th component of the

Hessian matrix, and let hij denote the (i, j)-component of the inverse of the Hessian matrix.

Recall that γ∗ denotes the set of indicators for the connections of the true sparse DNN, rn
denotes the size of the true sparse DNN, and Kn denotes the size of the fully connected

DNN. The following theorem justifies the Laplace approximation of the posterior mean for

a bounded function b(β).

Theorem 2.3.2. Assume that there exist positive numbers ϵ, M , η, and n0 such that for

any n > n0, the function hn(β) in ( 2.10 ) satisfies the following conditions:

C.1 |hi1,...,id(β̂)| < M hold for any β ∈ Bϵ(β̂) and any 1 ≤ i1, . . . , id ≤ Kn, where 3 ≤ d ≤ 4.

C.2 |hij(β̂)| < M if γ∗
i = γ∗

j = 1 and |hij(β̂)| = O( 1
K2

n
) otherwise.

C.3 det(− n
2π
Hn(β̂)) 1

2
∫
RKn \Bδ(β̂) en(hn(β)−hn(β̂))dβ = O( r4

n

n
) = o(1) for any 0 < δ < ϵ.

For any bounded function b(β), if |bi1,...,id(β)| = | ∂db(β)
∂βi1∂βi2 ···∂βid

| < M holds for any 1 ≤ d ≤ 2

and any 1 ≤ i1, . . . , id ≤ Kn, then for the posterior mean of b(β), we have

∫
b(β)enhn(β)dβ∫

enhn(β)dβ
= b(β̂) +O

(
r4
n

n

)
.

Conditions C.1 and C.3 are typical conditions for Laplace approximation, see e.g., [ 48 ].

Condition C.2 requires the inverse Hessian to have very small values for the elements corre-

sponding to the false connections. To justify condition C.2, we note that for a multivariate

normal distribution, the inverse Hessian is its covariance matrix. Thus, we expect that for

the weights with small variance, their corresponding elements in the inverse Hessian matrix

would be small as well. The following lemma quantifies the variance of the weights for the

false connections.

25



Lemma 2.3.1. Assume that supn
∫

|βi|
2+δ

π(βi|Dn)dβi ≤ C < ∞ a.s. for some constants

δ > 0 and C > 0 and ρ(ϵn) ≍ π(d(pβ, pµ∗) ≥ ϵn|Dn), where ρ(ϵn) is defined in Condition

B.1. Then with an appropriate choice of prior hyperparameters and ϵn, P ∗{E(β2
i |Dn) ≺

1
K2Hn−1

n
} ≥ 1 − 2e−nϵ2n/4 holds for any false connection ci in γ∗ (i.e., γ∗

i = 0).

In addition, with an appropriate choice of prior hyperparameters, we can also show that

π(γ i = 1|β) satisfies all the requirements of b(β) in Theorem  2.3.2 with a probability tending

to 1 as n → ∞. Then, by Theorem  2.3.2 , qk and π(γ i = 1|β̂) are approximately the same as

n → ∞, where π(γ i = 1|β̂) is as defined in ( 2.9 ) but with β replaced by β̂. Combining with

Theorem  2.3.1 , we have that π(γ i = 1|β̂) is a consistent estimator of ei|ν(γ∗,β∗).

2.4 Asymptotic Normality of Connection Weights

In this section, we establish the asymptotic normality of the network parameters and

predictions. Let nln(β) = ∑n
i=1 log(pβ(xi, yi)) denote the log-likelihood function, and let

π(β) denote the density of the mixture Gaussian prior ( 2.3 ). Let hi1,i2,...,id(β) denote the

d-th order partial derivatives ∂dln(β)
∂βi1∂βi2 ···∂βid

. Let Hn(β) denote the Hessian matrix of ln(β).

Let hij(β) and hij(β) denote the (i, j)-th component of Hn(β) and H−1
n (β), respectively.

Let λ̄n(β) and λn(β) denotes the maximum and minimum eigenvalue of the Hessian matrix

Hn(β), respectively. Let Bλ,n = λ̄1/2
n (β∗)/λn(β∗) and bλ,n =

√
rn/nBλ,n, where rn is the

connectivity of γ∗. For a DNN parameterized by β, we define the weight truncation at the

true model γ∗: (βγ∗)i = βi for i ∈ γ∗ and (βγ∗)i = 0 otherwise. For the mixture Gaussian

prior ( 2.3 ), let Bδn(β∗) = {β : |βi − β∗
i | < δn,∀i ∈ γ∗, |βi − β∗

i | < 2σ0,n log( σ1,n

λnσ0,n
),∀i /∈ γ∗}.

We follow the definition of asymptotic normality in [ 49 ] and [ 50 ]:

Definition 2.4.1. Denote by dβ the bounded Lipschitz metric for weak convergence and

by ϕn the mapping ϕn : β →
√
n(g(β) − g∗). We say that the posterior distribution of

the functional g(β) is asymptotically normal with the center g∗ and variance G if dβ(π[· |

Dn] ◦ ϕ−1
n , N(0, G)) → 0 in P ∗-probability as n → ∞. We will write this more compactly as

π[· | Dn] ◦ ϕ−1
n ⇝ N(0, G).

Theorem  2.4.1 establishes the asymptotic normality of ν̃(β), where ν̃(β) denotes a trans-

formation of β which is invariant with respect to µ(β,γ,x) while minimizing ∥ν̃(β)−β∗∥∞.
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Theorem 2.4.1. Assume the conditions of Lemma  2.3.1 hold with ρ(ϵn) = o( 1
Kn

) and C1 >
2
3

in Condition A.2.2. For some δn s.t. rn√
n
≲ δn ≲ 1

3√nrn
, let A(ϵn, δn) = {β : maxi∈γ∗ |βi −

β∗
i | > δn, d(pβ, pµ∗) ≤ ϵn}, where ϵn is the posterior contraction rate as defined in Lemma

 2.2.1 . Assume there exists some constants C > 2 and M > 0 such that

D.1 β∗ = (β∗
1,β

∗
2, . . . ,β

∗
Kn

) is generic [ 51 ], [ 52 ], mini∈γ∗ |β∗
i | > Cδn and π(A(ϵn, δn) |

Dn) → 0 as n → ∞.

D.2 |hi(β∗)| < M , |hj,k(β∗)| < M , |hj,k(β∗)| < M , |hi,j,k(β)| < M , |hl(β)| < M hold for

any i, j, k ∈ γ∗, l /∈ γ∗ and β ∈ B2δn(β∗).

D.3 sup
{
|Eβ(aTU)3| : ∥βγ∗ − β∗∥ ≤ 1.2bλ,n, ∥a∥ = 1

}
≤ 0.1

√
n/rnλ

2
n(β∗)/λ̄1/2

n (β∗) and

Bλ,n = O(1), where U = Z − Eβγ∗ (Z), Z denotes a random variable drawn from a

neural network model parameterized by βγ∗, and Eβγ∗ (Z) denotes the mean of Z.

Then π[
√
n(ν̃(β) − β∗) | Dn]⇝ N(0,V ) in P ∗-probability as n → ∞, where V = (vij), and

vi,j = E(hi,j(β∗)) if i, j ∈ γ∗ and 0 otherwise.

Condition D.1 is essentially an identifiability condition, i.e., when n is sufficiently large,

the DNN weights cannot be too far away from the true weights if the DNN produces approx-

imately the same distribution as the true data. Condition D.2 gives typical conditions on

derivatives of the DNN. Condition D.3 ensures consistency of the MLE of β∗ for the given

structure γ∗ [ 53 ].

2.4.1 Asymptotic Normality of Prediction

Theorem  2.4.2 establishes asymptotic normality of the prediction µ(β,x0) for a test

data point x0, which implies that a faithful prediction interval can be constructed for the

learnt sparse neural network. Refer to Section  2.6.4 for how to construct the prediction

interval based on the theorem. Let µi1,i2,...,id(β,x0) denote the d-th order partial derivative
∂dµ(β,x0)

∂βi1∂βi2 ···∂βid
.

Theorem 2.4.2. Assume the conditions of Theorem  2.4.1 and the following condition hold:

|µi(β∗,x0)| < M , |µi,j(β,x0)| < M , |µk(β,x0)| < M hold for any i, j ∈ γ∗, k /∈ γ∗ and
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β ∈ B2δn(β∗), where M is as defined in Theorem  2.4.1 . Then π[
√
n(µ(β,x0) − µ(β∗,x0)) |

Dn]⇝ N(0,Σ), where Σ = ∇γ∗µ(β∗,x0)TH−1∇γ∗µ(β∗,x0) and H = E(−∇2
γ∗ln(β∗)) is the

Fisher information matrix.

The asymptotic normality for general smooth functional has been established in [ 49 ].

For linear and quadratic functional of deep ReLU network with a spike-and-slab prior, the

asymptotic normality has been established in [ 50 ]. The DNN prediction µ(β,x0) can be

viewed as a point evaluation functional over the neural network function space. However, in

general, this functional is not smooth with respect to the locally asymptotic normal (LAN)

norm. The results of [ 49 ] and [  50 ] are not directly applicable for the asymptotic normality

of µ(β,x0).

2.5 Asymptotically Optimal Generalization Bound

This section shows the sparse BNN has asymptotically an optimal generalization bound.

First, we introduce a PAC Bayesian bound due to [ 54 ], [ 55 ], where the acronym PAC stands

for Probably Approximately Correct. It states that with an arbitrarily high probability, the

performance (as provided by a loss function) of a learning algorithm is upper-bounded by a

term decaying to an optimal value as more data is collected (hence “approximately correct”).

PAC-Bayes has proven over the past two decades to be a powerful tool to derive theoretical

guarantees for many machine learning algorithms.

Lemma 2.5.1 (PAC Bayesian bound). Let P be any data independent distribution on the

machine parameters β, and Q be any distribution that is potentially data-dependent and

absolutely continuous with respective to P . If the loss function l(β,x, y) ∈ [0, 1], then the

following inequality holds with probability 1 − δ,

∫
Ex,yl(β,x, y)dQ ≤

∫ 1
n

n∑
i=1

l(β,x(i), y(i))dQ+

√√√√d0(Q,P ) + log 2
√
n
δ

2n ,

where d0(Q,P ) denotes the Kullback-Leibler divergence between Q and P , and (x(i), y(i))

denotes the i-th observation of the dataset.
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For the binary classification problem, the DNN model fits a predictive distribution

as p̂1(x; β) := P̂ r(y = 1|x) = logit−1(µ(β,x)) and p̂0(x; β) := P̂ r(y = 0|x) = 1 −

logit−1(µ(β,x)). Given an observation (x, y), we define the loss with margin ν > 0 as

lν(β,x, y) = 1(p̂y(x; β) − p̂1−y(x; β) < ν).

Therefore, the empirical loss for the whole data set {x(i), y(i)}ni=1 is defined as Lemp,ν(β) =∑
lν(β,x(i), y(i))/n, and the population loss is defined as Lν(β) = Ex,ylν(β,x, y).

Theorem 2.5.1 (Bayesian Generalization error for classification). Suppose the conditions

of Theorem  2.2.1 hold. For any ν > 0, when n is sufficiently large, the following inequality

holds with probability greater than 1 − exp{c0nϵ
2
n},

∫
L0(β)dπ(β|Dn)

≤ 1
1 − 2 exp{−c1nϵ2

n}

∫
Lemp,ν(β)dπ(β|Dn) +O(ϵn +

√
log n/n+ exp{−c1nϵ

2
n}),

for some c0, c1 > 0, where ϵn is as defined in Theorem  2.2.1 .

Theorem  2.5.1 characterizes the relationship between Bayesian population risk∫
L0(β)dπ(β|Dn) and Bayesian empirical risk

∫
Lemp,ν(β)dπ(β|Dn), and implies that the

difference between them is O(ϵn). Furthermore, this generalization performance extends to

any point estimator β̂, as long as β̂ belongs to the dominating posterior mode.

Theorem 2.5.2. Suppose that the conditions of Theorem  2.2.1 hold and estimation β̂ belongs

to the dominating posterior mode under Theorem  2.2.1 , then for any ν > 0, the following

inequality holds with probability greater than 1 − exp{c0nϵ
2
n},

L0(β̂) ≤ Lemp,ν(β̂) +O(ϵn),

for some c0 > 0.

It is worth to clarify that the statement “β̂ belongs to the dominating posterior mode”

means β̂ ∈ Bn where Bn is defined in the proof of Theorem  2.2.1 and its posterior is greater
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than 1−exp{−cnϵ2
n} for some c > 0. Therefore, if β̂ ∼ π(β|Dn), i.e., β̂ is one valid posterior

sample, then with high probability, it belongs to the dominating posterior mode. The proof

of the above two theorems can be found in Section  2.9 

Now we consider the generalization error for regression models. Assume the following

additional assumptions:

E.1 The activation function ψ ∈ [ − 1, 1].

E.2 The last layer weights and bias in β∗ are restricted to the interval [ − Fn, Fn] for some

Fn ≤ En, while Fn → ∞ is still allowed as n → ∞.

E.3 maxx∈Ω |µ∗(x)| ≤ F for some constant F .

Correspondingly, the priors of the last layer weights and bias are truncated on [ − Fn, Fn],

i.e., the two normal mixture prior (  2.3 ) truncated on [ − Fn, Fn]. By the same argument of

Theorem  2.9.1 (in Section  2.9 ), Theorem  2.2.1 still holds.

Note that the Hellinger distance for regression problem is defined as

d2(pβ, pµ∗) = Ex

(
1 − exp

{
− [µ(β,x) − µ∗(x)]2

8σ2

})
.

By our assumption, for any β on the prior support, |µ(β,x) − µ∗(x)|2 ≤ (F +LFn)2 := F
2,

thus,

d2(pβ, pµ∗) ≥ CFEx|µ(β,x) − µ∗(x)|2, (2.11)

where CF = [1 − exp(−4F 2
/8σ2)]/4F 2. Furthermore, ( 2.5 ) implies that with probability at

least 1 − 2 exp{−cnϵ2
n},

∫
d2(pβ, pµ∗)dπ(β|Dn) ≤ 16ϵ2

n + 2e−cnϵ2n . (2.12)

By Combining ( 2.11 ) and (  2.12 ), we obtain the following Bayesian generalization error

result:

30



Theorem 2.5.3. (Bayesian generalization error for regression) Suppose the conditions of

Theorem  2.2.1 hold. When n is sufficiently large, the following inequality holds with proba-

bility at least 1 − 2 exp{−cnϵ2
n},

∫
Ex|µ(β,x) − µ∗(x)|2dπ(β|Dn) ≤ [16ϵ2

n + 2e−cnϵ2n ]/CF ≍ [ϵ2
n + e−cnϵ2n ]L2

F 2
n . (2.13)

Similarly, if an estimator β̂ belongs to the dominating posterior mode (refer to the dis-

cussion of Theorem  2.5.2 for more details), then β̂ ∈ {β : d(pβ, pµ∗) ≤ 4ϵn} and the following

result hold:

Theorem 2.5.4. Suppose the conditions of Theorem  2.2.1 hold, then

Ex|µ(β̂,x) − µ∗(x)|2 ≤ [16ϵ2
n]/CF ≍ ϵ2

nL
2
F 2
n . (2.14)

2.6 Computation

2.6.1 Bayesian Evidence Approach

The theoretical results established in previous sections show that the Bayesian sparse

DNN can be learned with a mixture Gaussian prior and, more importantly, the posterior

inference is not necessarily directly drawn based on posterior samples, which avoids the

convergence issue of the MCMC implementation for large complex models. As shown in

Theorems  2.3.2 ,  2.5.2 and  2.5.4 , for the sparse BNN, a good local maximizer of the log-

posterior distribution also guarantees consistency of the network structure selection and

asymptotic optimality of the network generalization performance. This local maximizer, in

the spirit of condition C.3 and the conditions of Theorems  2.5.2 and  2.5.4 , is not necessarily

a MAP estimate, as the factor det(− n
2π
Hn(β̂)) 1

2 can play an important role. In other words,

an estimate of β lies in a wide valley of the energy landscape is generally preferred. This

is consistent with the view of many other authors, see e.g., [ 56 ] and [ 57 ], where different

techniques have been developed to enhance convergence of SGD to a wide valley of the

energy landscape.
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Algorithm 1 Sparse DNN Elicitation with Bayesian Evidence
Input: T—the number of independent tries in training the DNN, and the prior hyperpa-
rameters σ0,n, σ1,n, and λn.
for t = 1, 2, ..., T do

(i) Initialization: Randomly initialize the weights and biases, set γ i=1 for i =
1, 2, . . . , Kn.
(ii) Optimization: Run SGD to maximize hn(β) as defined in ( 2.10 ). Denote the estimate
of β by β̂.
(iii) Connection sparsification: For each i ∈ {1, 2, . . . , Kn}, set γ i = 1 if |β̂i| >
√

2σ0,nσ1,n√
σ2

1,n−σ2
0,n

√
log

(
1−λn

λn

σ1,n

σ0,n

)
and 0 otherwise. Denote the yielded sparse DNN structure

by γt, and set β̂γt = β̂ ◦ γt, where ◦ denotes element-wise production.
(iv) Nonzero-weights refining: Refine the nonzero weights of the sparsified DNN by
maximizing

hn(βγt) = 1
n

n∑
i=1

log(p(yi,xi|βγt)) + 1
n

log(π(βγt)), (2.15)

which can be accomplished by running SGD for a few epochs with the initial value β̂γt .
Denote the resulting DNN model by β̃γt .
(v) Model evaluation: Calculate the Bayesian Evidence: Evidencet =
det(− n

2π
Hn(β̃γt))− 1

2 enhn(β̃γt ), where Hn(βγ) = ∂2hn(βγ)
∂βγ∂

T βγ
is the Hessian matrix.

end for
Output β̃γt with the largest Bayesian evidence.

Condition C.3 can be re-expressed as
∫
RKn \Bδ(β̂) enhn(β))dβ = o(det(− n

2π
Hn(β̂))− 1

2 enhn(β̂)),

which requires that β̂ is a dominating mode of the posterior. Based on this observation,

we suggest to use the Bayesian evidence [  58 ], [ 59 ] as the criterion for eliciting estimates of

β produced by an optimization method in multiple runs with different initializations. The

Bayesian evidence is calculated as det(− n
2π
Hn(β̂))− 1

2 enhn(β̂). Since Theorem  2.3.1 ensures

only consistency of structure selection but not consistency of parameter estimation, we sug-

gest to refine its nonzero weights by a short optimization process after structure selection.

The complete algorithm is summarized in Algorithm  1 .

For a large-scale neural network, even if it is sparse, the number of nonzero elements

can easily exceed a few thousands or millions, see e.g. the networks considered in Sec-

tion  2.7.2 . In this case, evaluation of the determinant of the Hessian matrix can be very

time consuming. For this reason, we suggest to approximate the log(Bayesian evidence) by
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nhn(β̂γ)− 1
2 |γ| log(n) with the detailed arguments given in Section  2.9 As explained there, if

the prior information imposed on the sparse DNNs is further ignored, then the sparse DNNs

can be elicited by BIC.

The main parameters for Algorithm  1 are the prior hyperparameters σ0,n, σ1,n, and λn.

Theorem  2.2.1 provides theoretical suggestions for the choice of the prior-hyperparameters,

see also the proof of Lemma  2.3.1 for a specific setting for them. Our theory allows σ1,n to

grow with n from the perspective of data fitting, but in our experience, the magnitude of

weights tend to adversely affect the generalization ability of the network. For this reason, we

usually set σ1,n to a relatively small number such as 0.01 or 0.02, and then tune the values

of σ0,n and λn for the network sparsity as well as the network approximation error. As a

trade-off, the resulting network might be a little denser than the ideal one. If it is too dense

to satisfy the sparse constraint given in Assumption A.2.2, one might increase the value of

σ0,n and/or decrease the value of λn, and rerun the algorithm to get a sparser structure.

This process can be repeated until the constraint is satisfied.

Algorithm  1 employs SGD to optimize the log-posterior of the BNN. Since SGD generally

converges to a local optimal solution, the multiple initialization method is used in order to

find a local optimum close to the global one. It is interesting to note that SGD has some nice

properties in non-convex optimization: It works on the convolved (thus smoothed) version

of the loss function [ 60 ] and tends to converge to flat local minimizers which are with very

high probability also global minimizers [ 61 ]. In all of our experiments, we set the number

of initializations to T = 10 as default unless otherwise stated. We note that Algorithm  1 is

not very sensitive to the value of T , although a large value of T can generally improve its

performance.

For network weight initialization, we adopted the standard method, see [ 62 ] for tanh

activation and [ 63 ] for ReLU activation, which ensures that the variance of the gradient of

each layer is of the same order at the beginning of the training process.
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2.6.2 Prior Annealing: Frequentist Computation

In order to avoid the multiple run for the algorithm, we suggest to use a prior annealing

approach which incorporate the study of optimization landscape of the over-parametrized

DNN. It has been shown in [ 5 ], [ 6 ] that the loss of an over-parameterized DNN exhibits good

properties:

(S∗) For a fully connected DNN with an analytic activation function and a convex loss

function at the output layer, if the number of hidden units of one layer is larger than

the number of training points and the network structure from this layer on is pyramidal,

then almost all local minima are globally optimal.

Motivated by this result, we propose the following approach

Algorithm 2 Prior annealing: Frequentist

(i) (Initial training) Train a DNN satisfying condition (S*) such that a global optimal
solution β0 = arg maxβ ln(β) is reached, which can be accomplished using SGD or
Adam [ 64 ].

(ii) (Prior annealing) Initialize β at β0 and simulate from a sequence of distributions
π(β|Dn, τ, η

(k), σ
(k)
0,n) ∝ enln(β)/τπ

η(k)/τ
k (β) for k = 1, 2, . . . ,m, where 0 < η(1) ≤ η(2) ≤

· · · ≤ η(m) = 1, πk = λnN(0, σ2
1,n)+(1−λn)N(0, (σ(k)

0,n)2), and σinit
0,n = σ

(1)
0,n ≥ σ

(2)
0,n ≥ · · · ≥

σ
(m)
0,n = σend

0,n . The simulation can be done in an annealing manner using a stochastic
gradient MCMC algorithm [ 65 ]–[ 68 ]. After the stage m has been reached, continue to
run the simulated annealing algorithm by gradually decreasing the temperature τ to a
very small value. Denote the resulting DNN by β̂ = (β̂1, β̂2, . . . , β̂Kn

).

(iii) (Structure sparsification) For each connection i ∈ {1, 2, . . . , Kn}, set γ̃ i = 1 if |β̂i| >√
2σ0,nσ1,n√
σ2

1,n−σ2
0,n

√
log

(
1−λn

λn

σ1,n

σ0,n

)
and 0 otherwise, where the threshold value of |β̂i| is obtained

by solving π(γ i = 1|βi) > 0.5 based on the mixture Gaussian prior as in [ 69 ]. Denote
the yielded sparse DNN structure by γ̃.

(iv) (Nonzero-weights refining) Refine the nonzero weights of the sparsified DNN by max-
imizing ln(β). Denote the resulting estimate by β̃γ̃ , which represents the MLE of
β∗.
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Figure 2.1. Negative logarithm of the mixture Gaussian prior.

For Algorithm  2 , the consistency of (γ̃, β̃γ̃) as an estimator of (γ∗,β∗) can be proved

based on Theorem 3.4 of [ 6 ] for global convergence of β0, the property of simulated annealing

(by choosing an appropriate sequence of ηk and a cooling schedule of τ), Theorem  2.3.2 for

consistency of structure selection, and Theorem 2.1 of [ 53 ] for consistency of MLE under the

scenario of dimension diverging.

Intuitively, the initial training phase can reach the global optimum of the likelihood

function. In the prior annealing phase, as we slowly add the effect of the prior, the landscape

of the target distribution is gradually changed and the MCMC algorithm is likely to hit the

region around the optimum of the target distribution. In practice, let t denote the step index,

a simple implementation of the initial training and prior annealing phases of Algorithm  2 can

be given as follows: (i) for 0 < t < T1, run initial training; (ii) for T1 ≤ t ≤ T2, fix σ(t)
0,n = σinit

0,n

and linearly increase ηt by setting η(t) = t−T1
T2−T1

; (iii) for T2 ≤ t ≤ T3, fix η(t) = 1 and linearly

decrease
(
σ

(t)
0,n

)2
by setting

(
σ

(t)
0,n

)2
= T3−t

T3−T2

(
σinit

0,n

)2
+ t−T2

T3−T2

(
σend

0,n

)2
; (iv) for t > T3, fix η(t) = 1

and σ
(t)
0,n = σend

0,n and gradually decrease the temperature τ , e.g., setting τt = c
t−T3

for some

constant c.

To better understand the prior annealing procedure, we provide some graphical illustra-

tions. In practice, the negative log-prior puts penalty on parameter weights. The mixture

Gaussian prior behaves like a piecewise L2 penalty with different weights on different re-
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gions. Figure  2.1 shows the shape of a negative log-mixture Gaussian prior. In step (iii)

of Algorithm  2 , the condition π(γ i = 1|βi) > 0.5 splits the parameters into two parts. For

the βi’s with large magnitudes, the slab component N(0, σ2
1,n) plays the major role in the

prior, imposing a small penalty on the parameter. For the βi’s with smaller magnitudes, the

spike component N(0, σ2
0,n) plays the major role in the prior, imposing a large penalty on

the parameters to push them toward zero in training.

Figure  2.2 shows the shape of negative log-prior and π(γ i = 1|βi) for different choices of

σ2
0,n and λn. As we can see from the plot, σ2

0,n plays the major role in determining the effect

of the prior. Let α be the threshold in step (iii) of Algorithm  2 , i.e. the positive solution

to π(γ i = 1|βi) = 0.5. In general, a smaller σ2
0,n will result in a smaller α. If a very small

σ2
0,n is used in the prior from the beginning, then most of βi’s at initialization will have a

magnitude larger than α and the slab component N(0, σ2
1,n) of the prior will dominate most

parameters. As a result, it will be difficult to find the desired sparse structure. Following the

proposed prior annealing procedure, we can start with a larger σ2
0,n, i.e. a larger threshold

α and a relatively smaller penalty for those |βi| < α. As we gradually decrease the value of

σ2
0,n, α decreases, and the penalty imposed on the small weights increases and drives them

toward zero. The prior annealing allows us to gradually sparsify the DNN and impose more

and more penalties on the parameters close to 0.

2.6.3 Prior Annealing: Bayesian Computation

For certain problems the size (or #nonzero elements) of γ∗ is large, calculation of the

Fisher information matrix is difficult. In this case, the prediction uncertainty can be quanti-

fied via posterior simulations. The simulation can be started with a DNN satisfying condition

(S*) and performed using a SGMCMC algorithm [ 67 ], [ 68 ] with an annealed prior as defined

in step (ii) of Algorithm  2 (For Bayesian approach, we may fix the temperature τ = 1).

The over-parameterized structure and annealed prior make the simulations immune to local

traps.

To justify the Bayesian estimator for the prediction mean and variance, for some test

function ϕ(β), we study the deviation of the path averaging estimator 1
T

∑T
t=1 ϕ(β(t)) and
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Figure 2.2. Negative log-prior and π(γ = 1|β) for different choices of σ2
0,n and λn.
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the posterior mean
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ. For simplicity, we will focus on SGLD with

prior annealing. Our analysis can be easily generalized to other SGMCMC algorithms [ 70 ].

For a test function ϕ(·), the difference between ϕ(β) and
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ can

be characterized by the Poisson equation:

Lψ(β) = ϕ(β) −
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ,

where ψ(·) is the solution of the Poisson equation and L is the infinitesimal generator of the

Langevin diffusion. i.e. for the following Langevin diffusion

dβ(t) = ∇ log(π(β|Dn, η
∗, σ∗

0,n))dt+
√

2IdWt,

where I is identity matrix and Wt is Brownian motion, we have

Lψ(β) := ⟨∇ψ(β),∇ log(π(β|Dn, η
∗, σ∗

0,n)) + tr(∇2ψ(β)).

Let Dkψ denote the kth-order derivatives of ψ. To control the perturbation of ϕ(β), we need

the following assumption about the function ψ(β):

Assumption 2.6.1. For k ∈ {0, 1, 2, 3}, Dkψ exists and there exists a function V, s.t.

||Dkψ|| ≲ Vpk for some constant pk > 0. In addition, V is smooth and the expectation of Vp

on β(t) is bounded for some p ≤ 2 maxk{pk}, i.e. supt E(Vp(β(t))) < ∞, ∑s∈(0,1) Vp(sβ1 +

(1 − s)β2) ≲ Vp(β1) + Vp(β2).

In step t of the SGLD algorithm, the drift term is replaced by ∇β log π(β(t)|D(t)
m,n, η

(t), σ
(t)
0,n),

where D(t)
m,n is used to represent the mini-batch data used in step t. Let Lt be the corre-

sponding infinitesimal generator. Let δt = Lt − L. To quantify the effect of δt, we introduce

the following assumption:

Assumption 2.6.2. β(t) has bounded expectation and the expectation of log-prior is Lipschitz

continuous with respect to σ0,n, i.e. there exists some constant M s.t. supt E(|β(t)|) ≤ M <

∞. For all t, |E log(π(β(t)|λn, σ(t1)
0,n , σ1,n)) − E log(π(β(t)|λn, σ(t2)

0,n , σ1,n))| ≤ M |σ(t1)
0,n − σ

(t2)
0,n |.

Then we have the following theorem:
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Theorem 2.6.1. Suppose the model satisfy assumption  2.6.2 , and a constant learning rate

of ϵ is used. For a test function ϕ(·), if the solution of the Poisson equation ψ(·) satisfy

assumption  2.6.1 , then

E
(

1
T

T−1∑
t=1

ϕ(β(t)) −
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ

)

=O

 1
Tϵ

+
∑T−1
t=0 (|η(t) − η∗| + |σ(t)

0,n − σ∗
0,n|)

T
+ ϵ

 , (2.16)

where σ∗
0,n is treated as a fixed constant.

Theorem  2.6.1 shows that with prior annealing, the path averaging estimator can still be

used for estimating the mean and variance of the prediction and constructing the confidence

interval. The detailed procedure is given in next section. For the case that a decaying

learning rate is used, a similar theorem can be developed as in [ 70 ].

2.6.4 Construct Confidence Interval

Theorem  2.4.2 implies that a faithful prediction interval can be constructed for the sparse

neural network learned by the proposed algorithms. In practice, for a normal regression

problem with noise N(0, σ2), to construct the prediction interval for a test point x0, the

terms σ2 and Σ = ∇γ∗µ(β∗,x0)TH−1∇γ∗µ(β∗,x0) in Theorem  2.4.2 need to be estimated

from data. Let Dn = (x(i), y(i))i=1,...,n be the training set and µ(β, ·) be the predictor of the

network model with parameter β. We can follow the following procedure to construct the

prediction interval for the test point x0:

• Run algorithm  1 or  2 , let β̂ be an estimation of the network parameter at the end of

the algorithm and γ̂ be the correspoding network structure.

• Estimate σ2 by

σ̂2 = 1
n

n∑
i=1

(µ(β̂,x(i)) − y(i))2.

• Estimate Σ by

Σ̂ = ∇γ̂µ(β̂,x0)T (−∇2
γ̂ln(β̂))−1∇γ̂µ(β̂,x0).
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• Construct the prediction interval as

µ(β̂,x0) − 1.96
√

1
n

Σ̂ + σ̂2, µ(β̂,x0) + 1.96
√

1
n

Σ̂ + σ̂2

 .

Here, by the structure selection consistency  2.3.2 and consistency of the MLE for the learnt

structure [ 53 ], we replace β∗ and γ∗ in Theorem  2.4.2 by β̂ and γ̂.

If the dimension of the sparse network is still too high and the computation of Σ̂ becomes

prohibitive, the following Bayesian approach can be used to construct confidence intervals.

• Running SGMCMC algorithm to get a sequence of posterior samples: β(1), . . . ,β(m).

• Estimating σ2 by σ̂2 = 1
n

∑n
i=1(y(i) − µ(i))2, where

µ(i) = 1
m

m∑
j=1

µ(β(j),x(i)), i = 1, . . . , n,

• Estimate the prediction mean by

µ̂ = 1
m

m∑
i=1

µ(β(i),x0).

• Estimate the prediction variance by

V̂ = 1
m

m∑
i=1

(µ(β(i),x0) − µ̂)2 + σ̂2.

• Construct the prediction interval as

(µ− 1.96
√
V , µ+ 1.96

√
V ).
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2.7 Numerical Experiments

This section illustrates the performance of the proposed method on synthetic and real

data examples. 

1
 For the synthetic example, the frequentist algorithm is employed to con-

struct prediction intervals. The real data example involves a large network, so both the

frequentist and Bayesian algorithms are employed along with comparisons with some exist-

ing network pruning methods.

2.7.1 Synthetic Example

We consider a high-dimensional nonlinear regression problem, which shows that our

method can identify the sparse network structure and relevant features as well as produce

prediction intervals with correct coverage rates. The explanatory variables x1, . . . , xpn were

simulated by independently generating e, z1, . . . , zpn from N(0, 1) and setting xi = e+zi√
2 . The

response variable was generated from a nonlinear regression model:

y = 5x2

1 + x2
1

+ 5 sin(x3x4) + 2x5 + 0x6 + · · · + 0x2000 + ϵ,

where ϵ ∼ N(0, 1). Ten datasets were generated, each consisting of 10000 samples for training

and 1000 samples for testing.

We apply both Bayesian Evidence approach  1 and prior annealing approach  2 on this data

set. To demonstrate the difference of the algorithm, for Bayesian evidence approach, we use a

small DNN of structure 2000-6-4-3-1. For prior annealing approach, to satisfy condition (S*),

we used a DNN of structure 2000-10000-100-10-1. We use tanh as activation function. The

variable selection performance were measured using the false selection rate FSR =
∑10

i=1 |Ŝi\S|∑10
i=1 |Ŝi|

and negative selection rate NSR =
∑10

i=1 |S\Ŝi|∑10
i=1 |S|

, where S is the set of true variables, Ŝi

is the set of selected variables from dataset i and |Ŝi| is the size of Ŝi. The predictive

performance is measured by mean square prediction error (MSPE) and mean square fitting

error (MSFE). We compare our method with the other existing variable selection methods
1

 ↑ The code for running these experiments can be found in  https://github.com/sylydya/
Sparse-Deep-Learning-A-New-Framework-Immuneto-Local-Traps-and-Miscalibration  and  https:
//github.com/sylydya/Consistent-Sparse-Deep-Learning-Theory-and-Computation  
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Table 2.1. Simulation Result: MSFE and MSPE were calculated by averaging
over 10 datasets, and their standard deviations were given in the parentheses.

Method |Ŝ| FSR NSR MSFE MSPE
BNN anneal 5(0) 0 0 2.353(0.296) 2.428(0.297)

BNN Evidence 5(0) 0 0 2.372(0.093) 2.439(0.132)
Spinn 10.7(3.874) 0.462 0 4.157(0.219) 4.488(0.350)
DNN - - - 1.1701e-5(1.1542e-6) 16.9226(0.3230)

Dropout - - - 1.104(0.068) 13.183(0.716)
BART50 16.5(1.222) 0.727 0.1 11.182(0.334) 12.097(0.366)
LASSO 566.8(4.844) 0.993 0.26 8.542(0.022) 9.496(0.148)

SIS 467.2(11.776) 0.991 0.2 7.083(0.023) 10.114(0.161)

including Sparse input neural network(Spinn) [ 51 ], Bayesian adaptive regression tree (BART)

[ 71 ], linear model with lasso penalty (LASSO) [ 72 ], and sure independence screening with

SCAD penalty (SIS)[ 73 ]. To demonstrate the importance of selecting correct variables, we

also compare our method with two dense model with the same network structure: DNN

trained with dropout(Dropout) and DNN trained with no regularization(DNN). Detailed

experiment setups are given in the Section  2.7.3 . The results were summarized in Table  2.1 .

With a single run, prior annealing approach achieves similar result with the multiple-run

method. The latter trained the model for 10 times and selected the best one using Bayesian

evidence. While for Spinn (with LASSO penalty), even with over-parametrized structure, it

performs worse than the sparse BNN model.

To quantify the uncertainty of the prediction, we conducted 100 experiments over dif-

ferent training sets as generated previously. We constructed 95% prediction intervals over

1000 test points. Over the 1000 test points, the average coverage rate of the prediction

intervals is 94.72%(0.61%), where (0.61%) denote the standard deviation. Figure  2.3 shows

the prediction intervals constructed for 20 of the testing points.

2.7.2 Real Data Example

As a different type of applications of the proposed method, we conducted unstructured

network pruning experiments on CIFAR10 dataset[ 74 ]. Following the setup in [ 75 ], we train
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Figure 2.3. Prediction intervals of 20 testing points, where the y-axis is the
response value, the x-axis is the index, and the blue point represents the true
observation.
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the residual network[ 76 ] with different networks size and pruned the network to different

sparsity levels. The detailed experimental setup can be found in Section  2.7.3 

We compared the proposed methods, BNN anneal (Algorithm  2 ), BNN average (averaged

over last 75 networks simulated by the Bayesian version of the prior annealing algorithm)

and BNN BIC (multiple-run and select best model by BIC) with several state-of-the-art

unstructured pruning methods, including Dynamic pruning with feedback (DPF) [ 75 ], Dy-

namic Sparse Reparameterization (DSR) [ 77 ] and Sparse Momentum (SM) [ 78 ]. The results

of the baseline methods were taken from [  75 ] The results of prediction accuracy for different

models and target sparsity levels were summarized in Table  2.2 . Due to the threshold used

in step (iii) of Algorithm  2 , it is hard for our method to make the pruning ratio exactly the

same as the targeted one. We intentionally make the pruning ratio smaller than the tar-

get ratio, while our method still achieve better test accuracy. To further demonstrate that

the proposed method result in better model calibration, we followed the setup of [ 79 ] and

compared the proposed method with DPF on several metrics designed for model calibration,

including negtive log likelihood (NLL), symmetrized, discretized KL distance between in and

out of sample entropy distributions (JS-Distance), and expected calibration error (ECE). For

JS-Distance, we used the test data of SVHN data set 

2
 as out-of-distribution samples. The

results were summarized in Table  2.3 . As discussed in [ 3 ], [ 79 ], a well calibrated model

tends to have smaller NLL, larger JS-Distance and smaller ECE. The comparison shows

that the proposed method outperforms DPF in most cases. In addition to the network prun-

ing method, we also train a dense model with the standard training set up. Compared to the

dense model, the sparse network has worse accuracy, but it tends to outperform the dense

network in terms of ECE and JS-Distance, which indicates that sparsification is also a useful

way for improving calibration of the DNN.
2

 ↑ The Street View House Numbers (SVHN) Dataset:  http://ufldl.stanford.edu/housenumbers/  
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Table 2.2. ResNet network pruning results for CIFAR-10 data, which were
calculated by averaging over 3 independent runs with the standard deviation
reported in the parentheses.

ResNet-20 ResNet-32
Method Pruning Ratio Test Accuracy Pruning Ratio Test Accuracy

DNN dense 100% 92.93(0.04) 100% 93.76(0.02)
BNN average 19.85%(0.18%) 92.53(0.08) 9.99%(0.08%) 93.12(0.09)
BNN anneal 19.80%(0.01%) 92.30(0.16) 9.97%(0.03%) 92.63(0.09)
BNN BIC 19.67%(0.05%) 92.27(0.03) 9.53%(0.04%) 92.74(0.07)

SM 20% 91.54(0.16) 10% 91.54(0.18)
DSR 20% 91.78(0.28) 10% 91.41(0.23)
DPF 20% 92.17(0.21) 10% 92.42(0.18)

BNN average 9.88%(0.02%) 91.65(0.08) 4.77%(0.08%) 91.30(0.16)
BNN anneal 9.95%(0.03%) 91.28(0.11) 4.88%(0.02%) 91.17(0.08)
BNN BIC 9.55%(0.03%) 91.27(0.05) 4.78%(0.01%) 91.21(0.01)

SM 10% 89.76(0.40) 5% 88.68(0.22)
DSR 10% 87.88(0.04) 5% 84.12(0.32)
DPF 10% 90.88(0.07) 5% 90.94(0.35)
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Table 2.3. ResNet network pruning results for CIFAR-10 data, which were
calculated by averaging over 3 independent runs with the standard deviation
reported in the parentheses.

Method Model Pruning Ratio NLL JS-Distance ECE
DNN dense ResNet20 100% 0.2276(0.0021) 7.9118(0.9316) 0.02627(0.0005)

BNN average ResNet20 9.88%(0.02%) 0.2528(0.0029) 9.9641(0.3069) 0.0113(0.0010)
BNN anneal ResNet20 9.95%(0.03%) 0.2618(0.0037) 10.1251(0.1797) 0.0175(0.0011)

DPF ResNet20 10% 0.2833(0.0004) 7.5712(0.4466) 0.0294(0.0009)
BNN average ResNet20 19.85%(0.18%) 0.2323(0.0033) 7.7007(0.5374) 0.0173(0.0014)
BNN anneal ResNet20 19.80%(0.01%) 0.2441(0.0042) 6.4435(0.2029) 0.0233(0.0020)

DPF ResNet20 20% 0.2874(0.0029) 7.7329(0.1400) 0.0391(0.0001)

DNN dense ResNet32 100% 0.2042(0.0017) 6.7699(0.5253) 0.02613(0.00029)
BNN average ResNet32 9.99%(0.08%) 0.2116(0.0012) 9.4549(0.5456) 0.0132(0.0001)
BNN anneal ResNet32 9.97%(0.03%) 0.2218(0.0013) 8.5447(0.1393) 0.0192(0.0009)

DPF ResNet32 10% 0.2677(0.0041) 7.8693(0.1840) 0.0364(0.0015)
BNN average ResNet32 4.77%(0.08%) 0.2587(0.0022) 7.0117(0.2222) 0.0100(0.0002)
BNN anneal ResNet32 4.88%(0.02%) 0.2676(0.0014) 6.8440(0.4850) 0.0149(0.0006)

DPF ResNet32 5% 0.2921(0.0067) 6.3990(0.8384) 0.0276(0.0019)

2.7.3 Experimental Setups

Synthetic Example

For prior annealing, we follow simple implementation of Algorithm given in Section  2.6.2 .

We run SGHMC for T = 80000 iterations with constant learning rate ϵt = 0.001, momentum

1 −α = 0.9 and subsample size m = 500. We set λn = 1e − 7, σ2
1,n = 1e − 2, (σinit

0,n )2 = 5e − 5,

(σend
0,n )2 = 1e − 6 and T1 = 5000, T2 = 20000, T3 = 60000. We set temperature τ = 0.1 for

t < T3 and for t > T3, we gradually decrease temperature τ by τ = 0.1
t−T3

. After structure

selection, the model is fine tuned for 40000 iterations.

For Bayesian Evidence approach  1 . we ran SGD for 80,000 iterations to train the neural

network with a learning rate of ϵt = 0.005. The subsample size was set to 500. For the

mixture Gaussian prior, we set σ1,n = 0.01, σ0,n = 0.0001, and λn = 0.00001. The number

of independent tries was set to T = 10. After structure selection, the DNN was retrained

using SGD for 40,000 iterations.
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Spinn, Dropout and DNN are trained with the same network structure as the prior

annealing method using SGD with momentum. Same as our method, we use constant

learning rate 0.001, momentum 0.9, subsample size 500 and traing the model for 80000

iterations. For Spinn, we use LASSO penalty and the regularization parameter is selected

from {0.05, 0.06, . . . , 0.15} according to the performance on validation data set. For Dropout,

the dropout rate is set to be 0.2 for the first layer and 0.5 for the other layers. Other baseline

methods BART50, LASSO, SIS are implemented using R-package randomForest, glmnet,

BART and SIS respectively with default parameters.

Real Data Examples

We follow the standard training procedure as in [  75 ], i.e. we train the model with SGHMC

for T = 300 epochs, with initial learning rate ϵ0 = 0.1, momentum 1 −α = 0.9, temperature

τ = 0.001, mini-batch size m = 128. The learning rate is divided by 10 at 150th and 225th

epoch.

For prior annealing, we follow the implementation given in section  2.6.2 and use T1 =

150, T2 = 200, T3 = 225, where Tis are number of epochs. We set temperature τ = 0.01

for t < T3 and gradually decrease τ by τ = 0.01
t−T3

for t > T3. We set σ2
1,n = 0.04 and

(σinit
0,n )2 = 10 × (σend

0,n )2 and use different σend
0,n , λn for different network size and target sparsity

level. The detailed settings are given below:

• ResNet20 with target sparsity level 20%: (σend
0,n )2 = 1.5e − 5, λn = 1e − 8

• ResNet20 with target sparsity level 10%: (σend
0,n )2 = 6e − 5, λn = 1e − 9

• ResNet32 with target sparsity level 10%: (σend
0,n )2 = 3e − 5, λn = 2e − 9

• ResNet32 with target sparsity level 5%: (σend
0,n )2 = 1e − 4, λn = 2e − 8

For BIC approach, the only different setting with the prior annealing approach is the prior.

We set σ2
1,n = 0.02 and tried different values for σ0,n and λn to achieve different sparsity

levels. For ResNet-20, to achieve 10% target sparsity, we set σ2
0,n = 4e − 5 and λn = 1e − 6;

to achieve 20% target sparsity, we set σ2
0,n = 6e − 6 and λn = 1e − 7. For ResNet-32, to
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achieve 5% target sparsity, we set σ2
0,n = 6e − 5 and λn = 1e − 7; to achieve 10% target

sparsity, we set σ2
0,n = 2e − 5 and λn = 1e − 5.

2.8 Discussion

In this dissertation, we provide a complete treatment for sparse DNNs in both theory

and computation. The sparse DNN can be simply viewed as a nonlinear statistical model

which, like a traditional statistical model, possesses many nice properties such as posterior

consistency, variable selection consistency, asymptotic normality, and asymptotically optimal

generalization bound.

In computation, we proposed to use Bayesian evidence or BIC for eliciting sparse DNN

models learned by an optimization method in multiple runs with different initializations and

an prior annealing approach for over-parametrized DNN model. The computation complexity

of the proposed method is of same order as standard SGD method for DNN training. Our

numerical results show that the proposed method can perform very well in large-scale network

compression and high-dimensional nonlinear variable selection. The networks learned by

the proposed method tend to predict better than the existing methods and have better

calibration.

In this chapter, we choose the two-mixture Gaussian prior for the weights and biases of

the DNN, mainly for the sake of computational convenience. Other choices, such as two-

mixture Laplace prior [ 80 ], which will lead to the same posterior contraction with an appro-

priate choice for the prior hyperparameters. To be more specific, Theorem  2.9.1 establishes

sufficient conditions that guarantee the posterior consistency, and any prior distribution

satisfying the sufficient conditions can yield consistent posterior inferences for the DNN.

Beyond the absolutely continuous prior, the hierarchical prior used in [ 14 ] and [ 15 ] can

be adopted for DNNs. To be more precise, one can assume that

βγ | γ ∼ N(0, σ2
1,nI∥γ∥×∥γ∥), βγc = 0; (2.17)

π(γ) ∝ λ∥γ∥
n (1 − λn)Kn−∥γ∥ 1 {1 ≤ ∥γ∥ ≤ r̄n,γ ∈ G} , (2.18)
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where βγc is the complement of βγ , ∥γ∥ is the number of nonzero elements of γ, I∥γ∥×∥γ∥ is

a ∥γ∥×∥γ∥ identity matrix, r̄n is the maximally allowed size of candidate networks, G is the

set of valid DNNs, and the hyperparameter λn, as in ( 2.3 ), can be read as an approximate

prior probability for each connection or bias to be included in the DNN. Under this prior,

the product of the weight or bias and its indicator follows a discrete spike-and-slab prior

distribution, i.e.

wh
ijγ

wh

ij |γwh

ij ∼ γwh

ij N(0, σ2
1,n) + (1 − γwh

ij )δ0, bhkγ
bh

k |γbh

k ∼ γbh

k N(0, σ2
1,n) + (1 − γbh

k )δ0,

where δ0 denotes the Dirac delta function. Under this hierarchical prior, it is not difficult

to show that the posterior consistency and structure selection consistency theory developed

in this chapter still hold. However, from the computational perspective, the hierarchical

prior might be inferior to the mixture Gaussian prior adopted in the chapter, as the pos-

terior π(βγ ,γ|Dn) is hard to be optimized or simulated from. It is known that directly

simulating from π(βγ ,γ|Dn) using an acceptance-rejection based MCMC algorithm can be

time consuming. A feasible way is to formulate the prior of βγ as βγ = θ ⊗ γ, where

θ ∼ N(0, σ2
1,nIHn×Hn) can be viewed as a latent variable and ⊗ denotes entry-wise product.

Then one can first simulate from the marginal posterior π(θ|Dn) using a stochastic gradient

MCMC algorithm and then make inference of the network structure based on the conditional

posterior π(γ|θ, Dn). We note that the gradient ∇θ log π(θ|Dn) can be approximated based

on the following identity developed in [ 81 ],

∇θ log π(θ|Dn) =
∑

γ

π(γ|θ, Dn)∇θ log π(θ|γ, Dn),

where Dn can be replaced by a dataset duplicated with mini-batch samples if the subsampling

strategy is used to accelerate the simulation. This identity greatly facilitates the simulations

for the dimension jumping problems, which requires only some samples to be drawn from

the conditional posterior π(γ|θ, Dn) for approximating the gradient ∇θ log π(θ|Dn) at each

iteration. A further exploration of this discrete prior for its use in deep learning is of great

interest, although there are some difficulties needing to be addressed in computation.
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2.9 Technical Proofs

This section is organized as follows. Section  2.9.1 gives the proofs on posterior consistency,

Section  2.9.2 gives the proofs on structure selection consistency, Section  2.9.3 gives the proofs

on BvM theorem for weights and predictions. Section  2.9.4 gives the proofs on generalization

bounds, and Section  2.9.5 gives some mathematical facts of the sparse DNN.

2.9.1 Proofs on Posterior Consistency

Basic Formulas of Bayesian Neural Networks

Normal Regression.

Let pµ denote the density of N(µ, σ2) where σ2 is a known constant, and let pβ denote

the density of N(µ(β,x), σ2). Extension to the case σ2 is unknown is simple by following

the arguments given in [  39 ]. In this case, an inverse gamma prior can be assumed for σ2 as

suggested by [ 39 ]. Define the Kullback-Leibler divergence as d0(p, p∗) =
∫
p∗ log(p∗/p) for

two densities p and p∗. Define a distance dt(p, p∗) = t−1(
∫
p∗(p∗/p)t − 1) for any t > 0, which

decreases to d0 as t decreases toward 0. A straightforward calculation shows

d1(pµ1 , pµ2) =
∫
pµ1(pµ1/pµ1) − 1 = exp

( 1
σ2 (µ2 − µ1)2

)
− 1 = 1

σ2 (µ2 − µ1)2 + o((µ2 − µ1)3),

(2.19)

d0(p1, p2) = 1
2σ2 (µ1 − µ2)2. (2.20)

Logistic Regression.

Let pµ denote the probability mass function with the success probability given by 1/(1 +

e−µ). Similarly, we define pβ as the logistic regression density for a binary classification DNN

with parameter β. For logistic regression, we have

d1(pµ1 , pµ2) =
∫
pµ2(pµ2/pµ1) − 1 = e2µ2−µ1 + eµ1 − 2eµ2

(1 + eµ2)2 ,
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which, by the mean value theorem, can be written as

d1(pµ1 , pµ2) = eµ′ − e2µ2−µ′

(1 + eµ2)2 (µµ1 − µ2) = eµ′(1 − e2µ2−2µ′)
(1 + eµ2)2 (µ1 − µ2),

where µ′ denotes an intermediate point between µ1 and µ2, and thus |µ′ − µ2| ≤ |µ1 − µ2|.

Further, by Taylor expansion, we have

eµ′ = eµ2 [1 + (µ′ − µ2) +O((µ′ − µ2)2)], e2µ2−2µ′ = 1 + 2(µ2 − µ′) +O((µ2 − µ′)2).

Therefore,

d1(pµ1 , pµ2) ≤ eµ2

(1 + eµ2)2

[
2|µ2 − µ′| +O((µ2 − µ′)2)

]
|µ1 −µ2| ≤ 1

2(µ1 −µ2)2 +O((µ1 −µ2)3),

(2.21)

and

d0(pu, pv) =
∫
pv(log pv − log pu)vy(dy) = log(1 + eµu) − log(1 + eµv) + eµv

1 + eµv
(µv − µu).

By the mean value theorem, we have

d0(pu, pv) = eµ′

1 + eµ′ (µu − µv) + eµv

1 + eµv
(µv − µu) = [ eµv

1 + eµv
− eµ′

1 + eµ′ ](µv − µu), (2.22)

where µ′ denotes an intermediate point between µu and µv.

Posterior Consistency of General Statistical Models

We first introduce a lemma concerning posterior consistency of general statistical models.

This lemma has been proved in [ 39 ]. Let Pn denote a sequence of sets of probability densities,

let Pcn denote the complement of Pn, and let ϵn denote a sequence of positive numbers. Let

N(ϵn,Pn) be the minimum number of Hellinger balls of radius ϵn that are needed to cover

Pn, i.e., N(ϵn,Pn) is the minimum of all k’s such that there exist sets Sj = {p : d(p, pj) ≤ ϵn},

j = 1, . . . , k, with Pn ⊂ ∪k
j=1Sj holding, where d(p, q) =

√∫
(√p− √

q)2 denotes the Hellinger

distance between the two densities p and q.
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Let Dn = (z(1), . . . , z(n)) denote the dataset, where the observations z(1), . . . , z(n) are iid

with the true density p∗. The dimension of z(1) and p∗ can depend on n. Define π(·) as the

prior density, and π(·|Dn) as the posterior. Define π̂(ϵ) = π[d(p, p∗) > ϵ|Dn] for each ϵ > 0.

Define the KL divergence as d0(p, p∗) =
∫
p∗ log(p∗/p). Define dt(p, p∗) = t−1(

∫
p∗(p∗/p)t−1)

for any t > 0, which decreases to d0 as t decreases toward 0. Let P ∗ and E∗ denote the

probability measure and expectation for the data Dn, respectively. Define the conditions:

(a) logN(ϵn,Pn) ≤ nϵ2
n for all sufficiently large n;

(b) π(Pcn) ≤ e−bnϵ2n for all sufficiently large n;

(c) π[p : dt(p, p∗) ≤ b′ϵ2
n] ≥ e−b′nϵ2n for all sufficiently large n and some t > 0,

where 2 > b > 2b′ > 0 are positive constants. The following lemma is due to the same

argument of [  39 , Proposition 1].

Lemma 2.9.1. Under the conditions (a), (b) and (c) (for some t > 0), given sufficiently

large n, we have

(i) P ∗
[
π̂(4ϵn) ≥ 2e−0.5nϵ2n min{1,2−x,b−x,t(x−2b′)}

]
≤ 2e−0.5nϵ2n min{1,2−x,b−x,t(x−2b′)},

(ii) E∗π̂(4ϵn) ≤ 4e−nϵ2n min{1,2−x,b−x,t(x−2b′)}.

for any 2b′ < x < b.

General Shrinkage Prior Settings for Deep Neural Networks

Let β denote the vector of parameters, including the weights of connections and the biases

of the hidden and output units, of a deep neural network. Consider a general prior setting

that all entries of β are subject to independent continuous prior πb, i.e., π(β) = ∏Kn
j=1 πb(βj).

Theorem  2.9.1 provides a sufficient condition for posterior consistency.
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Theorem 2.9.1 (Posterior consistency). Assume the conditions A.1, A.2 and A.3 hold, if

the prior π(β) satisfies that

log(1/πb) = O(Hn log n+ logL), (2.23)

πb{[ − ηn, ηn]} ≥ 1 − 1
Kn

exp{−τ [Hn log n+ logL+ log pn]} and πb{[ − η′
n, η

′
n]} ≥ 1 − 1

Kn

,

(2.24)

− log [Knπb(|βj| > Mn)] ≻ nϵ2
n, (2.25)

for some τ > 0, where ηn < 1/{
√
nKn(n/Hn)Hn(c0Mn)Hn}, η′

n < 1/{
√
nKn(rn/Hn)Hn(c0En)Hn}

with some c0 > 1, πb is the minimal density value of πb within interval [ − En − 1, En + 1],

and Mn is some sequence satisfying log(Mn) = O(log(n)). Then, there exists a sequence ϵn,

satisfying nϵ2
n ≍ rnHn log n+ rn logL+ sn log pn + nϖ2

n and ϵn ≺ 1, such that

P ∗
{

π[d(pβ, pµ∗) > 4ϵn|Dn] ≥ 2e−ncϵ2n
}

≤ 2e−cnϵ2n ,

E∗
Dn

π[d(pβ, pµ∗) > 4ϵn|Dn] ≤ 4e−2cnϵ2n .
(2.26)

for some c > 0.

To prove Theorem  2.9.1 , we first introduce a useful Lemma:

Lemma 2.9.2 (Theorem 1 of [  82 ]). Let X ∼ B(n, v) be a Binomial random variable. For

any 1 < k < n− 1,

Pr(X ≥ k + 1) ≤ 1 − Φ(sign(k − nv){2nH(v, k/n)}1/2),

where Φ is the cumulative distribution function (CDF) of the standard Gaussian distribution

and H(v, k/n) = (k/n) log(k/nv) + (1 − k/n) log [(1 − k/n)/(1 − v)].

Proof of Theorem  2.9.1 

Theorem  2.9.1 can be proved using Lemma  2.9.1 , so it suffices to verify conditions (a)-(c)

given in Section  2.9.1 .

Checking condition (c) for t = 1:
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Consider the set A = {β : maxj∈γ∗ ∥βj − β∗
j ∥∞ ≤ ωn,maxj/∈γ∗ ∥βj − β∗

j ∥∞ ≤ ω′
n}, where

ωn = c1ϵn/[Hn(rn/Hn)Hn(c0En)Hn ] and ω′
n = c1ϵn/[Kn(rn/Hn)Hn(c0En)Hn ] for some constant

c1 > 0 and c0 > 1. If β ∈ A, then by Lemma  2.9.5 , we have |µ(β,x) −µ(β∗,x)| ≤ 3c1ϵn. By

condition A.2.1, |µ(β,x) − µ∗(x)| ≤ 3c1ϵn + ϖn. Combining it with ( 2.19 )–( 2.22 ), for both

normal and logistic models, we have

d1(pβ, pµ∗) ≤ C(1 + o(1))Ex(µ(β,x) − µ∗(x))2 ≤ C(1 + o(1))(3c1ϵn +ϖn)2, if β ∈ A,

for some constant C. Thus for any small b′ > 0, condition (c) holds as long as that c1 is

sufficiently small, nϵ2
n ≥ M0nϖ

2
n for large M0, and the prior satisfies − log π(A) ≤ b′nϵ2

n.

Since π(A) ≥ (2πbωn)rn × π({maxj/∈γ∗ ∥βj∥ ≤ ω′
n}), πb([ − ω′

n, ω
′
n]) ≥ 1 − 1/Kn (due to

the fact ω′
n ≫ η′

n), and log(1/ωn) ≍ log(1/ϵn) + Hn logEn + Hn log(rn/Hn) + constant =

O(Hn log n) (note that log(1/ϵn) = O(log n)), the above requirement holds when nϵ2
n ≥

M0rnHn log n for some sufficiently large constant M0.

Checking condition (a):

Let Pn denote the set of all DNN models whose weight parameter β satisfies that

β ∈ Bn = {|βj| ≤ Mn,γβ = {i : |βi| ≥ δ′
n} satisfies |γβ| ≤ knrn and |γβ|in ≤ k′

nsn}, (2.27)

where |γ|in denotes the input dimension of sparse network γ, kn(≤ n/rn) and k′
n(≤ n/sn)

will be specified later, and δn = c1ϵn/[Hn(knrn/Hn)Hn(c0Mn)Hn ] and

δ′
n = c1ϵn/[Kn(knrn/Hn)Hn(c0Mn)Hn ] for some constant c1 > 0 and c0 > 1. Consider two

parameter vectors βu and βv in set Bn, such that there exists a model γ with |γ| ≤ knrn

and |γ|in ≤ k′
nsn, and |βuj − βvj | ≤ δn for all j ∈ γ, max(|βuj |, |βvj |) ≤ δ′

n for all j /∈ γ.

Hence, by Lemma  2.9.5 , we have that |µ(βu,x) − µ(βv,x)|2 ≤ 9c2
1ϵ

2
n, and furthermore, due

to (  2.19 )-( 2.22 ), we can easily derive that

d(pβu , pβv) ≤
√
d0(pβu , pβv) ≤

√
(9 + o(1))c2

1Cϵ
2
n ≤ ϵn,

for some C, given a sufficiently small c1. On the other hand, if some βu ∈ Bn and its

connections whose magnitudes are larger than δ′
n don’t form a valid network, then by Lemma
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 2.9.5 and (  2.19 )-( 2.22 ), we also have that d(pβu , pβo) ≤ ϵn, where βo = 0 denotes a empty

output network.

Given the above results, one can bound the packing numberN(Pn, ϵn) by∑knrn
j=1 X j

Hn

(
2Mn

δn

)j
,

where X j
Hn

denotes the number of all valid networks who has exact j connection and has no

more than k′
nsn inputs. Since log X j

Hn
≤ k′

nsn log pn + j log(k′
nsnL1 +HnL

2),

logN(Pn, ϵn) ≤ log knrn + knrn logHn + 2knrn log(L+ k′
nsn) + k′

nsn log pn

+ knrn log 2MnHn(knrn/Hn)HnMHn
n

c1ϵn

= knrn ∗O{Hn log n+ logL+ constant} + k′
nsn log pn

where the second inequality is due to logMn = O(log n), knrn ≤ n and k′
nsn ≤ n. We can

choose kn and k′
n such that knrn{Hn log n+ logL} ≍ k′

nsn ≍ nϵ2
n and logN(Pn, ϵn) ≤ nϵ2

n.

Checking condition (b):

π(Pcn) ≤ Pr(Binomial(Kn, vn) > knrn)+Knπb(|βj| > Mn)+Pr(|γβ|in ≥ k′
nsn), where vn =

1 − πb([ − δ′
n, δ

′
n]). By the condition of πb and the fact that δ′

n ≫ ηn, vn ≤ exp{−τ [Hn log n+

logL+ log pn)] − logKn} for some positive constant τ .

Hence, by Lemma  2.9.2 , − logPr(Binomial(Kn, vn) > knrn) ≈ τknrn[Hn log n + logL +

log pn] ≳ nϵ2
n due to the choice of kn, and − logPr(|γβ|in ≥ k′

nsn) ≈ k′
nsn[τ(Hn log n +

logL+ log pn) + log(Kn/L1pn)] ≳ nϵ2
n due to the choice of k′

n. Thus, condition (b) holds as

well.

Proof of Theorem  2.2.1 

Proof. It suffices to verify the conditions listed in Theorem  2.9.1 . LetMn = max(
√

2nσ1,n, En).

Condition ( 2.23 ) is due to E2
n/2σ2

1,n + log σ2
1,n = O[Hn log n+ logL]; Condition ( 2.24 ) can be

verified by λn = 1/{Kn[nHn(Lpn)]τ ′} and σ0,n ≺ 1/{
√
nKn(n/Hn)Hn(c0Mn)Hn}; Condition

( 2.25 ) can be verified by Mn ≥ 2nσ2
0,n and τ [Hn log n+ logL+ log pn] +M2

n/2σ2
1,n ≥ n.
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2.9.2 Proofs on Structure Selection Consistency

Proof of Theorem  2.3.1 

Proof.

max |qi − ei|ν(γ∗,β∗)| ≤ max
∫ ∑

γ

|ei|ν(γ,β) − ei|ν(γ∗,β∗)|π(γ|β, Dn)π(β|Dn)dβ

= max
∫
A(4ϵn)

∑
γ

|ei|ν(γ,β) − ei|ν(γ∗,β∗)|π(γ|β, Dn)π(β|Dn)dβ + ρ(4ϵn)

≤π̂(4ϵn) + ρ(4ϵn) p→ 0,

(2.28)

where p→ denotes convergence in probability, and π̂(c) denotes the posterior probability of the

set A(c) = {β : d(pβ, pµ∗) ≥ c}. The last convergence is due to the identifiability condition

B.1 and the posterior consistency result. This completes the proof of part (i).

Part (ii) & (iii): They are directly implied by part (i).

Proof of Theorem  2.3.2 

Proof. Let u =
√
n(β−β̂) = (u1, . . . , uKn)T , and let g(β) = nh(β)−nh(β̂)− n

2
∑
hi,j(β̂)(βi−

β̂i)(βj − β̂j). It is easy to see that for all 1 ≤ i1, . . . , id ≤ Kn, gi1,...,id(β̂) = 0 if 1 ≤ d ≤ 2, and

gi1,...,id(β) = nhi1,...,id(β) if d ≥ 3.

Consider Taylor’s expansions of b(β) and exp(g(β)) at β̂, we have

b(β) = b(β̂) +
∑

bi(β̂)(βi − β̂i) + 1
2
∑

bi,j(β̃)(βi − β̂i)(βj − β̂j)

=b(β̂) + 1√
n

∑
bi(β̂)ui + 1

2n
∑

bi,j(β̃)uiuj,

eg(β) = 1 + n

3!
∑
i,j,k

hi,j,k(β̂)(βi − β̂i)(βj − β̂j)(βk − β̂k)

+ n

4!e
g(β̌) ∑

i,j,k,l
hi,j,k,l(β̌)(βi − β̂i)(βj − β̂j)(βk − β̂k)(βl − β̂l)

= 1 + 1
6
√
n

∑
hi,j,k(β̂)uiujuk + 1

24neg(β̌)∑hi,j,k,l(β̌)uiujukul,
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where β̃ and β̌ are two points between β and β̂. In what follows, we also treat β̃ and β̌ as

functions of u, while treating β̂ as a constant. Let ϕ(u) = det(− 1
2π
Hn(β̂))e 1

2
∑

hi,j(β̂)uiuj be

the centered normal density with covariance matrix −H−1
n . Then

∫
Bδ(β)

b(β)enh(β)dβ = enh(β̂)
∫
Bδ(β)

en
2
∑

hi,j(β̂)(βi−β̂i)(βj−β̂j)b(β)eg(β)dβ

= enh(β̂) det(− n

2π
Hn(β̂))− 1

2

∫
B√

nδ(0)
ϕ(u)

(
b(β̂) +

∑ 1√
n
bi(β̂)ui + 1

2
1
n

∑
bi,j(β̃(u))uiuj

)

×
(

1 + 1
6

1√
n

∑
hi,j,k(β̂)uiujuk + 1

24
1
n

eg(β̃(u))∑hi,j,k,l(β̌(u))uiujukul

)
du

= enh(β̂) det(− n

2π
Hn(β̂))− 1

2

∫
B√

nδ(0)
ϕ(u)(I1 + I2)du,

where

I1 = b(β̂) + 1
n

1
2

∑ bi(β̂)ui + b(β̂)
6

∑
hi,j,k(β̂)uiujuk

 ,
I2 = 1

n

(
bi(β̂)ui

1
6
∑

hi,j,k(β̂)uiujuk

)
+ 1

2
1
n

∑
bi,j(β̃(u))uiuj

(
1 + 1

6
1√
n

∑
hi,j,k(β̂)uiujuk + 1

24
1
n

eg(β̃(u))∑hi,j,k,l(β̌(u))uiujukul

)

+ 1
24

1
n

eg(β̃(u))∑hi,j,k,l(β̌(u))uiujukul

(
b(β̂) +

∑ 1√
n
bi(β̂)ui

)
,

and we will study the two terms
∫
B√

nδ(0) ϕ(u)I1du and
∫
B√

nδ(0) ϕ(u)I2du separately.

To quantify the term
∫
B√

nδ(0) ϕ(u)I1du, we first bound
∫
RKn \B√

nδ(0) ϕ(u)I1du. By as-

sumption C.2 and the Markov inequality,

∫
RKn \B√

nδ(0)
ϕ(u)du = P (

Kn∑
i=1

U2
i > nδ2) ≤

∑Kn
i=1 E(U2

i )
nδ2 ≤

rnM + C(Kn−rn)
K2

n

nδ2 = O(rn
n

), (2.29)
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where (U1, . . . , UKn)T denotes a multivariate normal random vector following density ϕ(u).

Now we consider the term
∫
RKn \B√

nδ(0)
1√
n
b(β̂)

6 hi,j,k(β̂)uiujukϕ(u)du, by Cauchy-Schwarz in-

equality and assumption C.1, we have

|
∫
RKn \B√

nδ(0)

1√
n

b(β̂)
6 hi,j,k(β̂)uiujukϕ(u)du|

=|E

 1√
n

b(β̂)
6 hi,j,k(β̂)UiUjUk1

(
Kn∑
t=1

U2
t > nδ2

) |

≤

√√√√M1

n
E(U2

i U
2
j U

2
k )P (

Kn∑
t=1

U2
t > nδ2)

=O(
√
rn
n

)
√
E(U2

i U
2
j U

2
k )

where M1 is some constant. To bound E(U2
i U

2
j U

2
k ),we refer to Theorem 1 of [ 83 ], which

proved that for 1 ≤ i1, . . . , i6 ≤ Kn,

E(|Ui1 . . . Ui6 |) ≤

√√√√∑
π

6∏
j=1

hij,iπ(j) ,

where the sum is taken over all permutations π = (π(1), . . . , π(6)) of set {1, . . . , 6} and hi,j is

the (i, j)-th element of the covariance matrix H−1. Let m := m(i1, . . . , id) = |{j : ij ∈ γ∗, j ∈

{1, 2, . . . , d}}| count the number of indexes belonging to the true connection set. Then, by

condition C.2, we have

E(|Ui1 . . . Ui6|) ≤
√
C0Mm( 1

K2
n

)6−m = O( 1
K6−m
n

).

The above inequality implies that E(U2
i U

2
j U

2
k ) = O( 1

K
6−2m0
n

), where m0 = |{i, j, k} ∩ γ∗|.

Thus, we have

|
∫
RKn \B√

nδ(0)

1
n

1
2

∑ b(β̂)
6 hi,j,k(β̂)uiujukϕ(u)du|

≤
3∑

m0=0

 3

m0

 rm0
n (Kn − rn)3−m0O( 1

K3−m0
n

√
rn
n

) = O(r
3.5
n

n
).

(2.30)
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By similar arguments, we can get the upper bound of the term

|
∫
RKn \B√

nδ(0)

∑
i

(bi(β̂)ui)/
√
nϕ(u)du|.

Thus, we obtain that |
∫
RKn \B√

nδ(0) ϕ(u)I1du| ≤ O( r3.5
n

n
). Due to the fact that

∫
RKn ϕ(u)I1du =

b(β̂), we have
∫
B√

nδ(0) ϕ(u)I1du = b(β̂) +O( r3.5
n

n
).

Due to assumption C.1 and the fact that bi,j ≤ M , within B√
nδ(0), each term in I2 is

trivially bounded by a polynomial of |u|, such as,

|12
1
n

∑
bi,j(β̃(u))uiuj

1
24

1
n

eg(β̌(u))∑hi,j,k,l(β̌(u))uiujukul|

≤ 1
48M

2eM 1
n2

∑
|uiuj|

∑
|uiujukul|.

Therefore, there exists a constant M0 such that within B√
nδ(0),

|I2| ≤ M0

( 1
n

∑
|uiuj| + 1

n

∑
|uiujukul| + 1

n
3
2

∑
|uiujukulus| + 1

n2

∑
|uiujukulusut|

)
:= I3,

Then we have

|
∫
B√

nδ(0)
ϕ(u)I2du| ≤

∫
B√

nδ(0)
ϕ(u)I3du ≤

∫
RKn

ϕ(u)I3du,

By the same arguments as used to bound E(U2
i U

2
j U

2
k ), we can show that

∫
RKn

ϕ(u) 1
n2

∑
|uiujukulusut|du = O( r

6
n

n2 )

holds. The rest terms in
∫
RKn ϕ(u)I3du can be bounded by the same manner, and in the

end we have |
∫
B√

nδ(0) ϕ(u)I2du| ≤
∫
RKn ϕ(u)I3du = O( r4

n

n
).

Then
∫
Bδ(β)

b(β)enh(β)dβ = enh(β̂) det(− n
2π
Hn(β̂))− 1

2 (b(β̂) + O( r4
n

n
)) holds. Combining it

with condition C.3 and the boundedness of b, we get

∫
b(β)enhn(β)dβ = enh(β̂) det(− n

2π
Hn(β̂))− 1

2 (b(β̂) +O(r
4
n

n
)).
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With similar calculations, we can get
∫

enhn(β)dβ = enh(β̂) det(− n
2π
Hn(β̂))− 1

2 (1 + O( r4
n

n
)).

Therefore,

∫
b(β)enhn(β)dβ∫

enhn(β)dβ
=

enh(β̂) det(− n
2π
Hn(β̂))− 1

2 (b(β̂) +O( r4
n

n
))

enh(β̂) det(− n
2π
Hn(β̂))− 1

2 (1 +O( r4
n

n
))

= b(β̂) +O(r
4
n

n
).

Proof of Lemma  2.3.1 

Proof. Consider the following prior setting: (i) λn = K−(1+τ ′)Hn
n , (ii) log 1

σ0,n
= Hn log(Kn),

(iii) σ1,n = 1, and (iv) ϵn ≥
√

( 16
δ

+16)rnHn logKn

n
. Note that this setting satisfies all conditions

of previous theorems. Recall that the marginal posterior inclusion probability is given by

qi =
∫ ∑

γ

ei|ν(γ,β)π(γ|β, Dn)π(β|Dn)dβ :=
∫

π(ν(γi) = 1|βi)π(β|Dn)dβ.

For any false connection ci /∈ γ∗, we have ei|ν(γ∗,β∗) = 0 and

|qi| =
∫ ∑

γ

|ei|ν(γ,β) − ei|ν(γ∗,β∗)|π(γ|β, Dn)π(β|Dn)dβ ≤ π̂(4ϵn) + ρ(4ϵn).

A straightforward calculation shows

π(ν(γi) = 1|βi) = 1

1 + 1−λn

λn

σ1,n

σ0,n
exp

{
−1

2( 1
σ2

0,n
− 1

σ2
1,n

)β2
i

}
= 1

1 + exp
{
−1

2(K2Hn
n − 1)(β2

i − (4+2γ′ )Hn log(Kn)+2 log(1−λn)
K2Hn

n −1 )
} .

Let Mn = (4+2τ ′)Hn log(Kn)+2 log(1−λn)
K2Hn

n −1 . Then, by Markov inequality,

P (β2
i > Mn|Dn) = P (π(ν(γi) = 1|βi) > 1/2|Dn) ≤ 2|qi| ≤ 2(π̂(4ϵn) + ρ(4ϵn)).

60



Therefore,

E(β2
i |Dn) ≤ Mn +

∫
β2

i >Mn

β2
i π(β|Dn)dβ

≤ Mn +
∫
Mn<β2

i <M
− 2

δ
n

β2
i π(β|Dn)dβ +

∫
β2

i >M
− 2

δ
n

Mn|βi|2+δ
π(β|Dn)dβ

≤ Mn +M
− 2

δ
n P (β2

i > Mn) + CMn.

Since 1
K2Hn

n
≺ Mn ≺ 1

K2Hn−1
n

, ϵn ≥
√

( 16
δ

+16)rnHn logKn

n
, we have M− 2

δ
n e−nϵ2n/4 ≺ 1

K2Hn−1
n

. Thus

P ∗
{
E(β2

i |Dn) ≺ 1
K2Hn−1
n

}
≥ P ∗

(
π̂(4ϵn) < 2e−nϵ2n/4

)
≥ 1 − 2e−nϵ2n/4.

Verification of the Bounded Gradient Condition in Theorem  2.3.2 

This section shows that with an appropriate choice of prior hyperparameters, the first

and second order derivatives of π(ν(γi) = 1|βi) (i.e. the function b(β) in Theorem  2.3.2 ) and

the third and fourth order derivatives of log π(β) are all bounded with a high probability.

Therefore, the assumption C.1 in Theorem  2.3.2 is reasonable.

Under the same setting of the prior as that used in the proof of Lemma  2.3.1 , we can

show that the derivative of π(ν(γi) = 1|βi) is bounded with a high probability. For notational

simplicity, we suppress the subscript i in what follows and let

f(β) = π(ν(γ) = 1|β) = 1

1 + 1−λn

λn

σ1,n

σ0,n
exp

{
−1

2( 1
σ2

0,n
− 1

σ2
1,n

)β2
} := 1

1 + C2 exp{−C1β2}
,

where C1 = 1
2( 1

σ2
0,n

− 1
σ2

1,n
) = 1

2(K2Hn
n − 1) and C2 = 1−λn

λn

σ1,n

σ0,n
= (1 − λn)K(2+τ ′)Hn

n . Then we

have C1β
2 = log(C2) + log(f(β)) − log(1 − f(β)). With some algebra, we can show that

|df(β)
dβ

| = 2
√
C1f(β)(1 − f(β))

√
log(C2) + log(f(β)) − log(1 − f(β)),

d2f(β)
dβ2 = f(β)(1 − f(β))(2C1 + 4C1(log(C2) + log(f(β)) − log(1 − f(β)))(1 − 2f(β))).
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By Markov inequality and Theorem  2.3.1 , for the false connections,

P

{
f(β)(1 − f(β)) > 1

C2
1

|Dn

}
≤ P (f(β) > 1

C2
1

|Dn) ≤ C2
1E(f(β)|Dn) ≤ C2

1(π̂(4ϵn)+ρ(4ϵn))

holds, and for the true connections,

P

{
f(β)(1 − f(β)) > 1

C2
1

|Dn

}
≤ P (1 − f(β) > 1

C2
1

|Dn)

≤ C2
1E(1 − f(β)|Dn) ≤ C2

1(π̂(4ϵn) + ρ(4ϵn))

holds. Under the setting of Lemma  2.3.1 , by Theorem  2.2.1 , it is easy to see that

C2
1(π̂(4ϵn) + ρ(4ϵn)) → 0 as n → ∞, and thus (f(β)(1 − f(β)) < 1

C2
1

with high probability.

Note that log(C2)
C1

→ 0 and |f(β) log(f(β))| < 1
e . Thus, when (f(β)(1 − f(β)) < 1

C2
1

holds,

|df(β)
dβ

| ≤
√

log(C2)
C1

+ (f(β)(1 − f(β)) log(f(β)) − (f(β)(1 − f(β)) log(1 − f(β)),

is bounded. Similarly we can show that d2f(β)
dβ2 is also bounded. In conclusion, df(β)

dβ
and d2f(β)

dβ2

is bounded with probability P
{
f(β)(1 − f(β)) ≤ 1

C2
1
|Dn

}
which tends to 1 as n → ∞.

Recall that π(β) = 1−λn√
2πσ0,n

exp{− β2

2σ2
0,n

}+ λn√
2πσ1,n

exp{− β2

2σ2
1,n

}. With some algebra, we can

show

d3 log(π(β))
dβ3 = 2( 1

σ2
0,n

− 1
σ2

1,n
)df(β)
dβ

+ ( β

σ2
0,n

− β

σ2
1,n

)d
2f(β)
dβ2

= 4C1
df(β)
dβ

+ 2
√
C1
d2f(β)
dβ2

√
log(C2) + log(f(β)) − log(1 − f(β)).

With similar arguments to that used for d2f(β)
dβ2 and d2f(β)

dβ2 , we can make the term f(β)(1 −

f(β)) very small with a probability tending to 1. Therefore, d3 log(π(β))
dβ3 is bounded with a

probability tending to 1. Similarly we can bound d4 log(π(β))
dβ4 with a high probability.
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Approximation of Bayesian Evidence

In Algorithm 1, each sparse model is evaluated by its Bayesian evidence:

Evidence = det(− n

2π
Hn(βγ))− 1

2 enhn(βγ),

where Hn(βγ) = ∂2hn(βγ)
∂βγ∂

T βγ
is the Hessian matrix, βγ denotes the vector of connection weights

selected by the model γ, i.e. Hn(βγ) is a |γ| × |γ| matrix, and the prior π(βγ) in hn(β) is

only for the connection weights selected by the model γ. Therefore,

log(Evidence) = nhn(βγ) − 1
2 |γ| log(n) + 1

2 |γ| log(2π) − 1
2 log(det(−Hn(βγ))), (2.31)

and −Hn(βγ) = − 1
n

∑n
i=1

∂2 log(p(yi,xi|βγ))
∂βγ∂

T βγ
− 1

n

∑n
i=1

∂2 log(π(βγ))
∂βγ∂

T βγ
. For the selected connection

weights, the prior π(βγ) behaves like N(0, σ2
1,n), and then −∂2 log(π(βγ))

∂βγ∂
T βγ

is a diagonal matrix

with the diagonal elements approximately equal to 1
σ2

1,n
and 1

nσ2
1,n

→ 0.

If (yi,xi)’s are viewed as i.i.d samples drawn from p(y,x|βγ)), then − 1
n

∑n
i=1

∂2 log(p(yi,xi|βγ))
∂βγ∂

T βγ

will converge to the Fisher information matrix I(βγ) = E(−∂2 log(p(y,x|βγ))
∂βγ∂

T βγ
). If we further

assume that I(βγ) has bounded eigenvalues, i.e. Cmin ≤ λmin(I(βγ)) ≤ λmax(I(βγ)) ≤ Cmax

for some constants Cmin and Cmax, then log(det(−Hn(βγ))) ≍ |γ|. This further implies

1
2 |γ| log(2π) − 1

2 log(det(−Hn(βγ))) ≺ |γ| log(n).

By keeping only the dominating terms in ( 2.31 ), we have

log(Evidence) ≈ nhn(βγ) − 1
2 |γ| log(n) = −1

2BIC + log(π(βγ)).

Since we are comparing a few low-dimensional models (with the model size |γ| ≺ n), it is

intuitive to further ignore the prior term log(π(βγ)). As a result, we can elicit the low-

dimensional sparse neural networks by BIC.

63



2.9.3 Proofs of Asymptotic Normality

Proof of Theorem  2.4.1 

Proof. We first define the equivalent class of neural network parameters. Given a parameter

vector β and the corresponding structure parameter vector γ, its equivalent class is given

by

QE(β,γ) = {(β̃, γ̃) : νg(β̃, γ̃) = (β,γ), µ(β̃, γ̃,x) = µ(β,γ,x),∀x},

where νg(·) denotes a generic mapping that contains only the transformations of node per-

mutation and weight sign flipping. Specifically, we define

Q∗
E = QE(β∗,γ∗),

which represents the equivalent class of true DNN model.

Let Bδn(β∗) = {β : |βi − β∗
i | < δn,∀i ∈ γ∗, |βi − β∗

i | < 2σ0,n log( σ1,n

λnσ0,n
), ∀i /∈ γ∗}. By

assumption D.1, β∗ is generic (i.e. QE(β∗) contains only reparameterizations of weight sign-

flipping or node permutations as defined in [ 51 ] and [ 52 ]) and mini∈γ∗ |β∗
i |−δn > (C−1)δn >

δn, then for any β∗(1),β∗(2) ∈ Q∗
E, Bδn(β∗(1)) ∩ Bδn(β∗(2)) = ∅, and thus {β : ν̃(β) ∈

Bδn(β∗)} = ∪β∈Q∗
E
Bδn(β). In what follows, we will first show π(∪β∈Q∗

E
Bδn(β) | Dn) → 1 as

n → ∞, which means the most posterior mass falls in the neighbourhood of true parameter.

Remark on the notation: ν̃(·) is similar to ν(·) defined in Section  2.3 They both map the

set QE(β,γ) to a unique network. The difference between them is that ∥ν(β) − β∗∥∞ may

be arbitrary, but ∥ν̃(β) − β∗∥∞ is minimized. In other words, ν(β,γ) is to find an arbitrary

network in QE(β,γ) as the representative of the equivalent class, while ν̃(β,γ) is to find

a representative in QE(β,γ) such that the distance between β∗ and the representative is

minimized. In what follows, we will use ν̃(β) and ν̃(γ) to denote the connection weight and

network structure of ν̃(β,γ), respectively. With a slight abuse of notation, we will use ν̃(β)i

to denote the ith component of ν̃(β), and use ν̃(γ)i to denote the ith component of ν̃(γ).
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Recall that the marginal posterior inclusion probability is given by

qi =
∫ ∑

γ

ei|ν̃(β,γ)π(γ|β, Dn)π(β|Dn)dβ =
∫

π(ν̃(γ)i = 1|β)π(β|Dn)dβ.

For the mixture Gaussian prior,

π(γ i = 1|β) = 1

1 + σ1,n(1−λn)
σ0,nλn

e
−( 1

2σ2
0,n

− 1
2σ2

1,n

)β2
i
,

which increases with respect to |βi|. In particular, if |βi| > 2σ0,n log( σ1,n

λnσ0,n
), then

π(γ i = 1|β) > 1
2 .

For the mixture Gaussian prior,

π(β /∈ ∪β∈Q∗
E
Bδn(β) | Dn)

≤π(∃i /∈ γ∗, |ν̃(β)i| > 2σ0,n log( σ1,n

λnσ0,n
) | Dn) + π(∃i ∈ γ∗, |ν̃(β)i − β∗

i | > δn | Dn).

For the first term, note that for a given i /∈ γ∗,

π(|ν̃(β)i| > 2σ0,n log( σ1,n

λnσ0,n
) | Dn) ≤π(π(ν̃(γ)i = 1|β) > 1

2 | Dn)

≤2
∫

π(ν̃(γ)i = 1|β)π(β|Dn)dβ

≤2ρ(ϵn) + 2π(d(pβ, pµ∗) ≥ ϵn | Dn) → 0.

Then we have

π(∃i /∈ γ∗, |ν̃(β)i| > 2σ0,n log( σ1,n

λnσ0,n
) | Dn)

=π(max
i/∈γ∗

|ν̃(β)i| > 2σ0,n log( σ1,n

λnσ0,n
) | Dn)

≤π(max
i/∈γ∗

π(ν̃(γ)i = 1|β) > 1
2 | Dn)

≤
∑
i/∈γ∗

π(π(ν̃(γ)i = 1|β) > 1
2 | Dn)

≤2Knρ(ϵn) + 2Knπ(d(pβ, pµ∗) ≥ ϵn | Dn) → 0.
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For the second term, by condition D.1 and Theorem  2.3.1 ,

π(∃i ∈ γ∗, |ν̃(β)i − β∗
i | > δn | Dn) = π(max

i∈γ∗
|ν̃(β)i − β∗

i | > δn | Dn)

=π(max
i∈γ∗

|ν̃(β)i − β∗
i | > δn, d(pβ, pµ∗) ≤ ϵn | Dn)

+ π(max
i∈γ∗

|ν̃(β)i − β∗
i | > δn, d(pβ, pµ∗) ≥ ϵn | Dn)

≤π(A(ϵn, δn) | Dn) + π(d(pβ, pµ∗) ≥ ϵn | Dn) → 0.

Summarizing the above two terms, we have π(∪β∈Q∗
E
Bδn(β) | Dn) → 1.

Let Qn = |Q∗
E| be the number of equivalent true DNN model. By the generic assumption

of β∗, for any β∗(1),β∗(2) ∈ Q∗
E, Bδn(β∗(1)) ∩ Bδn(β∗(2)) = ∅. Then in Bδn(β∗), the posterior

density of ν̃(β) is Qn times the posterior density of β. Then for a function f(·) of ν̃(β), by

changing variable,

∫
ν̃(β)∈Bδn (β∗)

f(ν̃(β))π(ν̃(β)|Dn)dν̃(β) = Qn

∫
Bδn (β∗)

f(β)π(β|Dn)dβ.

Thus, we only need to consider the integration on Bδn(β∗). Define

β̂i =


β∗

i −∑
j∈γ∗ hi,j(β∗)hj(β∗), ∀i ∈ γ∗,

0, ∀i ̸∈ γ∗.

We will first prove that for any real vector t,

E(e
√
ntT (ν̃(β)−β̂) | Dn, Bδn(β∗)) :=

∫
Bδn (β∗) e

√
ntT (ν̃(β)−β̂)π(ν̃(β)|Dn)dν̃(β)∫

Bδn (β∗) π(ν̃(β)|Dn)dν̃(β)

=
∫
Bδn (β∗) e

√
ntT (β−β̂)enln(β)π(β)dβ∫

Bδn (β∗) enln(β)π(β)dβ

=e 1
2 tT V t+oP ∗ (1).

(2.32)

For any β ∈ Bδn(β∗), we have

|
√
n(tT (β − βγ∗))| ≤

√
nKn||t||∞2σ0,n log( σ1,n

λnσ0,n
) = o(1),
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|n(ln(β) − ln(βγ∗))| = |n
∑
i/∈γ∗

βi(hi(β̃))| ≤ nKnM2σ0,n log( σ1,n

λnσ0,n
) = o(1).

Then, we have

√
ntT (β − β̂) =

√
ntT (β − βγ∗ + βγ∗ − β∗) +

√
n
∑

i,j∈γ∗
hi,j(β∗)tjhi(β∗))

=o(1) +
√
n
∑
i∈γ∗

(βi − β∗
i )ti +

√
n
∑

i,j∈γ∗
hi,j(β∗)tjhi(β∗),

(2.33)

nln(β) − nln(β∗) =n(ln(β) − ln(βγ∗) + ln(βγ∗) − nln(β∗))

=o(1) + n
∑
i∈γ∗

(βi − β∗
i )hi(β∗) + n

2
∑

i,j∈γ∗
hi,j(β∗)(βi − β∗

i )(βj − β∗
j )

+ n

6
∑

i,j,k∈γ∗
hi,j,k(β̌)(βi − β∗

i )(βj − β∗
j )(βk − β∗

k),

(2.34)

where β̌ is a point between βγ∗ and β∗. Note that for β ∈ Bδn(β∗), |βi − β∗
i | ≤ δn ≲ 1

3√nrn
,

we have n
6
∑

i,j,k∈γ∗ hi,j,k(β̌)(βi − β∗
i )(βj − β∗

j )(βk − β∗
k) = o(1).

Let β(t) be network parameters satisfying β
(t)
i = βi + 1√

n

∑
j∈γ∗ hi,j(β∗)tj,∀i ∈ γ∗ and

β
(t)
i = βi, ∀i /∈ γ∗. Note that 1√

n

∑
j∈γ∗ hi,j(β∗)tj ≤ rn||t||∞M√

n
≲ δn, for large enough n,

|β(t)
i | < 2δn ∀i ∈ γ∗. Thus, we have

nln(β(t)) − nln(β∗) =n(ln(β(t)) − ln(β(t)
γ∗) + ln(β(t)

γ∗) − nln(β∗))

=o(1) + n
∑
i∈γ∗

(β(t)
i − β∗

i )hi(β∗) + n

2
∑

i,j∈γ∗
hi,j(β∗)(β(t)

i − β∗
i )(β

(t)
j − β∗

j )

=o(1) + n
∑
i∈γ∗

(βi − β∗
i )hi(β∗) + n

2
∑

i,j∈γ∗
hi,j(β∗)(βi − β∗

i )(βj − β∗
j )

+
√
n
∑

i,j∈γ∗
hi,j(β∗)tjhi(β∗) +

√
n
∑
i∈γ∗

(βi − β∗
i )ti + 1

2
∑

i,j∈γ∗
hi,j(β∗)titj

=o(1) +
√
ntT (β − β̂) + nln(β) − nln(β∗) + 1

2
∑

i,j∈γ∗
hi,j(β∗)titj,

(2.35)
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where the last equality is derived by replacing appropriate terms by
√
ntT (β − β̂) and

nln(β) − nln(β∗) based on ( 2.33 ) and ( 2.34 ), respectively; and the third equality is derived

based on the following calculation:

n

2
∑

i,j∈γ∗
hi,j(β∗)(β(t)

i − β∗
i )(β

(t)
j − β∗

j )

=n2
∑

i,j∈γ∗
hi,j(β∗)(βi − β∗

i + 1√
n

∑
k∈γ∗

hi,k(β∗)tk)(βj − β∗
j + 1√

n

∑
k∈γ∗

hj,k(β∗)tk)

=n2
∑

i,j∈γ∗
hi,j(β∗)(βi − β∗

i )(βj − β∗
j ) + 2 × n

2
∑

i,j∈γ∗
hi,j(β∗) 1√

n

∑
k∈γ∗

hi,k(β∗)tk(βj − β∗
j )

+ n

2
∑

i,j∈γ∗
hi,j(β∗)( 1√

n

∑
k∈γ∗

hi,k(β∗)tk)(
1√
n

∑
k∈γ∗

hj,k(β∗)tk)

=n2
∑

i,j∈γ∗
hi,j(β∗)(βi − β∗

i )(βj − β∗
j ) +

√
n
∑
i∈γ∗

(βi − β∗
i )ti + 1

2
∑

i,j∈γ∗
hi,j(β∗)titj,

(2.36)

where the second and third terms in the last equality are derived based on the relation∑
i∈γ∗ hi,j(β∗)hi,k(β∗) = δj,k, where δj,k = 1 if j = k, δj,k = 0 if j ̸= k.

By rearranging the terms in ( 2.35 ), we have

∫
Bδn (β∗)

exp{
√
ntT (β − β̂) + nln(β)}π(β)dβ

= exp
−1

2
∑

i,j∈γ∗
hi,j(β∗)titj + o(1)


∫
Bδn (β∗)

enln(β(t))
π(β)dβ.

For β ∈ Bδn(β∗), i ∈ γ∗, by Assumption D.1, there exists a constant C > 2 such that

|β(t)
i | ≥ |βi| − rn||t||∞M√

n
≥ |β∗

i | − 2δn ≥ (C − 2)δn ≳
rn√
n

≳

√√√√( 1
2σ2

0,n
− 1

2σ2
1,n

)−1

log
(
rn(1 − λn)σ1,n

σ0,nλn

)
.

Then we have
σ1,n(1 − λn)
σ0,nλn

e
−( 1

2σ2
0,n

− 1
2σ2

1,n

)(β(t)
i )2

≲
1
rn
.

68



It is easy to see that the above formula also holds if we replace β
(t)
i by βi. Note that the

mixture Gaussian prior of βi can be written as

π(βi) = λn√
2πσ1,n

e
−

β2
i

2σ2
1,n

(
1 + σ1,n(1 − λn)

σ0,nλn
e

−( 1
2σ2

0,n

− 1
2σ2

1,n

)β2
i
)
.

Since |βi − β
(t)
i | ≲ δn ≲ 1

3√nrn
, |βi + β

(t)
i | < 2En + 3δn ≲ En, and 1

σ2
1,n
≲ Hn log(n)+log(L̄)

E2
n

, we

have
rn
σ2

1,n
(βi − β

(t)
i )(βi + β

(t)
i ) = Hn log(n) + log(L̄)

nC1+1/3 = o(1),

by the condition C1 > 2/3 and Hn log(n) + log(L̄) ≺ n1−ϵ. Thus, π(β)
π(β(t)) = ∏

i∈γ∗
π(βi)

π(β(t)
i )

=

1 + o(1), and

∫
Bδn (β∗)

enln(β(t))
π(β)dβ =(1 + o(1))

∫
β(t)∈Bδn (β∗)

enln(β(t))
π(β(t))dβ(t)

=(1 + o(1))CNπ(β(t) ∈ Bδn(β∗) | Dn),
(2.37)

where CN is the normalizing constant of the posterior. Note that ||β(t) − β||∞ ≲ δn, we have

π(β(t) ∈ Bδn(β∗) | Dn) → π(β ∈ Bδn(β∗) | Dn). Moreover, since −1
2
∑

i,j∈γ∗ hi,j(β∗)titj →
1
2tTV t, we have

E(e
√
ntT (ν̃(β)−β̂) | Dn, Bδn(β∗)) =

∫
Bδn (β∗) e

√
ntT (β−β̂)enhn(β)π(β)dβ∫

Bδn (β∗) enhn(β)π(β)dβ = e tT V t
2 +oP ∗ (1).

Combining the above result with the fact that π(ν̃(β) ∈ Bδn(β∗) | Dn) → 1, by section 1 of

[ 84 ], we have

π[
√
n(ν̃(β) − β̂) | Dn]⇝ N(0,V ).

We will then show that β̂ will converge to β∗, then essentially we can replace β̂ by β∗ in the

above result. Let Θγ∗ = {β : βi = 0,∀i /∈ γ∗} be the parameter space given the model γ∗,

and let β̂γ∗ be the maximum likelihood estimator given the model γ∗, i.e.

β̂γ∗ = arg max
β∈Θγ∗

ln(β).
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Given condition D.3 and by Theorem 2.1 of [ 53 ], we have ||β̂γ∗ − β∗|| = O(
√

rn

n
) = o(1).

Note that hi(β̂γ∗) = 0 as β̂γ∗ is maximum likelihood estimator. Then for any i ∈ γ∗,

|hi(β∗)| = |hi(β̂γ∗) − hi(β∗)| = |∑j∈γ∗ hij(β̃)((β̂γ∗)j − β∗
j )| ≤ M ||β̂γ∗ − β∗||1 = O(

√
rn

n
).

Then for any i, j ∈ γ∗, we have ∑j∈γ∗ hi,j(β∗)hj(β∗) = O(
√

r3
n

n
) = o(1). By the definition of

β̂, we have β̂ − β∗ = o(1). Therefore, we have

π[
√
n(ν̃(β) − β∗) | Dn]⇝ N(0,V ).

Proof of Theorem  2.4.2 

Proof. The proof of Theorem  2.4.2 can be done using the same strategy as that used in

proving Theorem  2.4.1 . Here we provide a simpler proof using the result of Theorem  2.4.1 .

The notations we used in this proof are the same as in the proof of Theorem  2.4.1 . In

the proof of Theorem  2.4.1 , we have shown that π(ν̃(β) ∈ Bδn(β∗) | Dn) → 1. Note that

µ(β,x0) = µ(ν̃(β),x0). We only need to consider β ∈ Bδn(β∗). For β ∈ Bδn(β∗), we have

√
n(µ(β,x0) − µ(β∗,x0))

=
√
n(µ(β,x0) − µ(βγ∗ ,x0) + µ(ν̃(βγ∗),x0) − µ(β∗,x0)).

Since β ∈ Bδn(β∗), for i /∈ γ∗, |βi| < 2σ0,n log( σ1,n

λnσ0,n
); and for i ∈ γ∗, |ν̃(β)i−β∗

i | < δ ≲ 1
3√nrn

.

Therefore,

|
√
nµ(β,x0) − µ(βγ∗ ,x0))| = |

√
n
∑
i/∈γ∗

βi(µi(β̃,x0))| ≤
√
nKnM2σ0,n log( σ1,n

λnσ0,n
) = o(1),

where µi(β,x0) denotes the first derivative of µ(β,x0) with respect to the ith component of

β, and β̃ denotes a point between β and βγ∗ . Further,

µ(ν̃(βγ∗),x0) − µ(β∗,x0)

=
√
n
∑
i∈γ∗

(ν̃(β)i − β∗
i )µi(β∗,x0) +

√
n
∑
i∈γ∗

∑
j∈γ∗

(ν̃(β)i − β∗
i )µi,j(β̌,x0)(ν̃(β)j − β∗

j )

=
√
n
∑
i∈γ∗

((ν̃(β)i − β∗
i )µi(β∗,x0) + o(1),
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where µi,j(β,x0) denotes the second derivative of µ(β,x0) with respect to the ith and jth

components of β and β̌ is a point between ν̃(β) and β∗. Summarizing the above two

equations, we have

√
nµ(β,x0) − µ(β∗,x0)) =

√
n
∑
i∈γ∗

((ν̃(βi) − β∗
i )µi(β∗,x0) + o(1).

By Theorem  2.4.1 , π[
√
n(ν̃(β)−β∗) | Dn]⇝ N(0,V ), where V = (vij), and vi,j = E(hi,j(β∗))

if i, j ∈ γ∗ and 0 otherwise. Then we have π[
√
n(µ(β,x0) − µ(β∗,x0)) | Dn] ⇝ N(0,Σ),

where Σ = ∇γ∗µ(β∗,x0)TH−1∇γ∗µ(β∗,x0) and H = E(−∇2
γ∗ln(β∗)).

2.9.4 Proofs on Generalization Bounds

Proof of Theorem  2.5.1 

Proof. Consider the set Bn defined in ( 2.27 ). By the argument used in the proof of Theorem

 2.9.1 , there exists a class of B̃n = {β(l) : 1 ≤ l < L} for some L < exp{cnϵ2
n} with a constant

c such that for any β ∈ Bn, there exists some β(l) satisfying |µ(β,x) − µ(β(l),x)| ≤ c′ϵn.

Let π̃ be the truncated distribution of π(β|Dn) on Bn, and let π̌ be a discrete distribu-

tion on B̃n defined as π̌(β(l)) = π̃(Bl), where Bl = {β ∈ Bn : ∥µ(β,x) − µ(β(l),x)∥∞ <

minj̸=l ∥µ(β,x) − µ(β(j),x)∥∞} by defining the norm ∥f∥∞ = max{x∈Ω} f(x). Note that for

any β ∈ Bl, ∥µ(β,x) − µ(β(l),x)∥ ≤ c′ϵn, thus,

l0(β,x, y) ≤ lc′ϵn/2(β(l),x, y) ≤ lc′ϵn(β,x, y). (2.38)

The above inequality implies that

∫
Ex,yl0(β,x, y)dπ̃ ≤

∫
Ex,ylc′ϵn/2(β(l),x, y)dπ̌,∫ 1

n

n∑
i=1

lc′ϵn/2(β(l),x(i), y(i))dπ̌ ≤
∫ 1
n

n∑
i=1

lc′ϵn(β,x(i), y(i))dπ̃.
(2.39)
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Let P be a uniform prior on B̃n, by Theorem  2.3.1 , with probability 1 − δ,

∫
Ex,ylν(β(l),x, y)dπ̌ ≤

∫ 1
n

n∑
i=1

lν(β(l),x(i), y(i))dπ̌ +

√√√√d0(π̌, P ) + log 2
√
n
δ

2n

≤
∫ 1
n

n∑
i=1

lν(β(l),x(i), y(i))dπ̌ +

√√√√cnϵ2
n + log 2

√
n
δ

2n ,

(2.40)

for any ν ≥ 0 and δ > 0, where the second inequality is due to the fact that d0(L, P ) ≤ logL

for any discrete distribution L over {β(l)}Ll=1.

Combining inequalities (  2.39 ) and ( 2.40 ), we have that, with probability 1 − δ,

∫
Ex,yl0(β,x, y)dπ̃ ≤

√√√√cnϵ2
n + log 2

√
n
δ

2n +
∫ 1
n

n∑
i=1

lc′ϵn(β,x(i), y(i))dπ̃. (2.41)

Due to the boundedness of lν , we have

∫
Ex,yl0(β,x, y)dπ(β|Dn) ≤

∫
Ex,yl0(β,x, y)dπ̃ + π(Bc

n|Dn),∫ 1
n

n∑
i=1

lc′ϵn(β,x(i), y(i))dπ̃ ≤ 1
1 − π(Bc

n|Dn)

∫ 1
n

n∑
i=1

lc′ϵn(β,x(i), y(i))dπ(β|Dn).
(2.42)

Note that the result of Theorem A.1 implies that, with probability at least 1−exp{−c′′nϵ2
n},

π(Bc
n|Dn) ≤ 2 exp{−c′′nϵ2

n}. Therefore, with probability greater than 1 − δ − exp{−c′′nϵ2
n},

∫
Ex,yl0(β,x, y)dπ(β|Dn) ≤ 1

1 − 2 exp{−c′′nϵ2
n}

∫ 1
n

n∑
i=1

lc′ϵn(β,x(i), y(i))dπ(β|Dn)

+

√√√√cnϵ2
n + log 2

√
n
δ

2n + 2 exp{−c′′nϵ2
n}.

Thus, the result holds if we choose δ = exp{−c′′′nϵ2
n} for some c′′′.

Proof of Theorem  2.5.2 

Proof. To prove the theorem, we first introduce a lemma on generalization error of finite

classifiers, which can be easily derived based on Hoeffding’s inequality:

72



Lemma 2.9.3 (Generalization error for finite classifier). Given a set B which contains H

elements, if the estimator β̂ belongs to B and the loss function l ∈ [0, 1], then with probability

1 − δ,

Ex,yl(β̂,x, y) ≤ 1
n

n∑
i=1

l(β̂,x(i), y(i)) +
√

logH + log(1/δ)
2n .

Next, let’s consider the same sets Bn and B̃n as defined in the proof of Theorem  2.5.1 . Due

to the posterior contraction result, with probability at least 1 − exp{−c′′nϵ2
n}, the estimator

β̂ ∈ Bn. Therefore, there must exist some β(l) ∈ B̃n such that ( 2.38 ) holds, which implies

that with probability at least 1 − exp{−c′′nϵ2
n} − δ,

L0(β̂) ≤ Lc′ϵn/2(β(l)) ≤ Lemp,c′ϵn/2(β(l)) +
√

logH + log(1/δ)
2n

≤ Lemp,c′ϵn(β̂) +
√

logH + log(1/δ)
2n ,

where the second inequality is due to Lemma  2.9.3 , and H ≤ exp{cnϵ2
n}. The result then

holds if we set δ = exp{−cnϵ2
n}.

Proof of Theorems  2.5.3 and  2.5.4 

The proofs are straightforward and thus omitted.

2.9.5 Mathematical facts of sparse DNN

Consider a sparse DNN model with Hn − 1 hidden layer. Let L1, . . . , LHn−1 denote the

number of node in each hidden layer and ri be the number of active connections that connect

to the ith hidden layer (including the bias for the ith hidden layer and weight connections

between i − 1th and ith layer). Besides, we let Oi,j(β,x) denote the output value of the jth

node in the ith hidden layer
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Lemma 2.9.4. Under assumption A.1, if a sparse DNN has at most rn connectivity (i.e.,∑
ri = rn), and all the weight and bias parameters are bounded by En (i.e., ∥β∥∞ ≤ En),

then the summation of the outputs of the ith hidden layer for 1 ≤ i ≤ Hn is bounded by

Li∑
j=1

Oi,j(β,x) ≤ Ei
n

i∏
k=1

rk,

where the Hn-th hidden layer means the output layer.

Proof. For the simplicity of representation, we rewrite Oi,j(β,x) as Oi,j when causing no

confusion. The lemma is the result from the facts that

L1∑
i=1

|Oi,j| ≤ rnEn, and
Li∑

j=1
|Oi,j| ≤

Li−1∑
j=1

|Oi−1,j|Enri.

Consider two neural networks, µ(β,x) and µ(β̃,x), where the formal one is a sparse

network satisfying ∥β∥0 = rn and ∥β∥∞ = En, and its model vector is γ. If |βi − β̃i| < δ1

for all i ∈ γ and |βi − β̃i| < δ2 for all i /∈ γ, then

Lemma 2.9.5.

max
∥x∥∞≤1

|µ(β,x)−µ(β̃,x)| ≤ δ1Hn(En+δ1)Hn−1
Hn∏
i=1
ri +δ2(pnL1 +

Hn∑
i=1

Li)
Hn∏
i=1

[(En+δ1)ri +δ2Li].

Proof. Define β̌ such that β̌i = β̃i for all i ∈ γ and β̌i = 0 for all i /∈ γ. Let Ǒi,j denote

Oi,j(β̌,x). Then,

|Ǒi,j −Oi,j| ≤ δ1

Li−1∑
j=1

|Oi−1,j| + En

Li−1∑
j=1

|Ǒi−1,j −Oi−1,j| + δ1

Li−1∑
j=1

|Ǒi−1,j −Oi−1,j|

≤ δ1

Li−1∑
j=1

|Oi−1,j| + (En + δ1)
Li−1∑
j=1

|Ǒi−1,j −Oi−1,j|.
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This implies a recursive result

Li∑
j=1

|Ǒi,j −Oi,j| ≤ ri(En + δ1)
Li−1∑
j=1

|Ǒi−1,j −Oi−1,j| + riδ1

Li−1∑
j=1

|Oi−1,j|.

Due to Lemma  2.9.4 , ∑Li−1
j=1 |Oi−1,j| ≤ Ei−1

n r1 · · · ri−1. Combined with the fact that∑L1
j=1 |Ǒ1,j−

O1,j| ≤ δ1r1, one have that

|µ(β,x) − µ(β̌,x)| =
∑

j
|ǑHn,j −OHn,j| ≤ δ1Hn(En + δ1)Hn−1

Hn∏
i=1
ri.

Now we compare Õi,j := µ(β̃,x) and Ǒi,j. We have that

Li∑
j=1

|Õi,j − Ǒi,j| ≤ δ2Li

Li−1∑
j=1

|Õi−1,j − Ǒi−1,j| + δ2Li

Li−1∑
j=1

|Ǒi−1,j| + ri(En + δ1)
Li−1∑
j=1

|Õi−1,j − Ǒi−1,j|,

and
L1∑
j=1

|Õ1,j − Ǒ1,j| ≤ δ2pnL1.

Due to Lemma  2.9.4 , we also have that ∑Li−1
j=1 |Ǒi−1,j| ≤ (En + δ1)i−1r1 · · · ri−1. Together, we

have that

|µ(β̃,x) − µ(β̌,x)| =
∑

j
|ÕHn,j − ǑHn,j|

≤δ2(pnL1 +
Hn∑
i=1

Li)
Hn∏
i=1

[(En + δ1)ri + δ2Li].

The proof is concluded by summation of the bound for |µ(β,x) − µ(β̌,x)| and |µ(β̃,x) −

µ(β̌,x)|.
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2.9.6 Proof of Theorem  2.6.1 

Our proof follows the proof of Theorem 2 in [  70 ]. SGLD use the first order integrator

(see Lemma 12 of [  70 ] for the detail). Then we have

E(ψ(β(t+1))) =ψ(β(t)) + ϵtLtψ(β(t)) +O(ϵ2
t )

=ψ(β(t)) + ϵt(Lt − L)ψ(β(t)) + ϵtLψ(β(t)) +O(ϵ2
t ).

Note that by Poisson equation, Lψ(β) = ϕ(β) −
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ. Taking expec-

tation on both sides of the equation, summing over t = 0, 1, . . . , T − 1, and dividing ϵT on

both sides of the equation, we have

E
(

1
T

T−1∑
t=1

ϕ(β(t)) −
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)

)

= 1
Tϵ

(E(ψ(β(T ))) − ψ(β(0))) − 1
T

T−1∑
t=0

E(δtψ(β(t))) +O(ϵ).

To characterize the order of δt = Lt − L, we first study the difference of the drift term

∇ log(π(β(t)|D(t)
m,n, η

(t), σ
(t)
0,n)) − ∇ log(π(β(t)|Dn, η

∗, σ∗
0,n))

=
n∑

i=1
∇ log(pβ(t)(xi, yi)) − n

m

m∑
j=1

∇ log(pβ(t)(xij , yij))

+ η(t)∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n)) − η∗∇ log(π(β(t)|λn, σ∗

0,n, σ1,n)).

Use of the mini-batch data gives an unbiased estimator of the full gradient, i.e.

E(
n∑

i=1
∇ log(pβ(t)(xi, yi)) − n

m

m∑
j=1

∇ log(pβ(t)(xij , yij))) = 0.

For the prior part, let p(σ) denote the density function of N(0, σ). Then we have

∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n))

= −
(1 − λn)p(σ(t)

0,n)
(1 − λn)p(σ(t)

0,n) + λnp(σ1,n)
β(t)

σ
(t)
0,n

2 − λnp(σ1,n)
(1 − λn)p(σ(t)

0,n) + λnp(σ1,n)
β(t)

σ2
1,n
,
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and thus E|∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n))| ≤ 2E|β(t)|

σ∗
0,n

2 . By Assumption 5.2, we have

E(|η(t)∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n)) − η∗∇ log(π(β(t)|λn, σ∗

0,n, σ1,n))|)

=E(|η(t)∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n)) − η∗∇ log(π(β(t)|λn, σ(t)

0,n, σ1,n))|)

+ E(|η∗∇ log(π(β(t)|λn, σ(t)
0,n, σ1,n)) − η∗∇ log(π(β(t)|λn, σ∗

0,n, σ1,n))|)

≤ 2M
σ∗

0,n
2 |η(t) − η∗| + η∗M |σ(t)

0,n − σ∗
0,n|.

By Assumption 5.1, E(ψ(β(t))) ≤ ∞. Then

1
T

T−1∑
t=0

E(δtψ(β(t))) = O

(
1
T

T−1∑
t=0

(|η(t) − η∗| + |σ(t)
0,n − σ∗

0,n|)
)
.

Note that by assumption 5.1, |(ψ(β(T ))) − ψ(β(0))| is bounded. Then

E
(

1
T

T−1∑
t=1

ϕ(Xt) −
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)

)

=O
 1
Tϵ

+
∑T−1
t=0 (|η(t) − η∗| + |σ(t)

0,n − σ∗
0,n|)

T
+ ϵ

 .
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3. A KERNEL-EXPANDED STOCHASTIC NEURAL

NETWORK

3.1 A Kernel-Expanded Stochastic Neural Network

3.1.1 A Kernel-Expanded Neural Network

Let’s start with a brief review for the theory developed in [ 5 ] and [ 6 ]. Consider a neural

network model with h hidden layers. Let Z0 = X ∈ Rm0 denote an input vector, let

Z i ∈ Rmi denote the output vector at layer i for i = 1, 2, . . . , h, h + 1, and let Y ∈ Rmh+1

denote the target output. At each layer i, the neural network calculates its output:

Z i = Ψ(wiZ i−1 + bi), i = 1, 2, . . . , h, h+ 1, (3.1)

where wi ∈ Rmi ×Rmi−1 and bi ∈ Rmi denote the weights and bias of the layer i respectively,

Ψ(s) = (ψ(s1), . . . , ψ(smi))T , and ψ(·) is the activation function used in the network. For

convenience, let p = m0 denote the dimension of the input vector, let w̃i = [wi, bi] denote the

matrix of all parameters of layer i for i = 1, 2, . . . , h+1, and let θ = (w̃1, w̃2, . . . , w̃h+1) ∈ Θ.

Further, we assume that the network structure is pyramidal with m0 ≥ m1 ≥ · · · ≥ mh ≥

mh+1 and, for simplicity, the same activation function ψ(·) is used for all hidden units. Let

U : Θ → R be the loss function of the neural network, which is given by

U(θ) = − 1
n

n∑
i=1

log π(Y (i)|θ,X(i)) ∆= 1
n

n∑
i=1

l(Z(i)
h+1), (3.2)

where π(·) denotes the density/mass function of each observation under the neural net-

work model, n denotes the training sample size, i indexes the training sample, and Z
(i)
h+1

is the output vector of layer h + 1, and l : Rmh+1 → R is assumed to be a continuously

differentiable loss function, i.e., l ∈ C2(Rmh+1). In order to study the property of the loss

function, [ 6 ] made the following assumption:

Assumption 3.1.1. (i) All training samples are distinct, i.e., X(i) ̸= X(j) for all i ̸= j;
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(ii) ψ(·) is real analytic, strictly monotonically increasing and (a) ψ(·) is bounded or (b)

there are positive ρ1, ρ2, ρ3 and ρ4 such that |ψ(t)| ≤ ρ1eρ2t for t < 0 and |ψ(t)| ≤

ρ3t+ ρ4 for t ≥ 0;

(iii) l ∈ C2(Rmh+1) and if l′(a) = 0 then a is a global optimum.

Here a function ψ : R → R is called real analytic if the corresponding Taylor series

converges to ψ(s) on an open subset of R. It is easy to see that many of the activation

functions, such as tanh, sigmoid and softplus, satisfy  3.1.1 -(ii). It is known that the softplus

function can be viewed as a differentiable approximation to ReLU.  3.1.1 -(iii) can be satisfied

by any twice continuously differentiable convex loss function, e.g., negative log-Gaussian and

log-binomial density/mass functions. The following lemma is a restatement of Theorem 3.4

of [  6 ]. A similar result has also been established in [ 5 ].

Lemma 3.1.1. (Theorem 3.4 of [ 6 ]) Suppose Assumption  3.1.1 holds. If (i) the training

samples are linearly independent, i.e., rank([X, 1n]) = n; and (ii) the weight matrices (w̃l)h+1
l=2

have full row rank, i.e., rank(w̃l) = ml for l = 2, 3, . . . , h+ 1, then every critical point of the

loss function U(θ) is a global minimum.

Among the conditions of Lemma  3.1.1 , Assumption  3.1.1 is regular as discussed above,

and condition (ii) can be almost surely satisfied by restricting the network structure to be

pyramidal. However, condition (i) is not satisfied by many machine learning problems for

which the training sample size is much larger than the dimension of the input. To have this

condition satisfied, we propose a kernel-expanded neural network (or KNN in short), where

each input vector x is mapped into an infinite dimensional feature space by a radial basis

function (RBF) kernel ϕ(x). More precisely, the KNN can be expressed as

Ỹ 1 = b1 + βϕ(X),

Ỹ i = bi + wiΨ(Ỹ i−1), i = 2, 3, . . . , h,

Y = bh+1 + wh+1Ψ(Ỹ h) + eh+1,

(3.3)

where eh+1 ∼ N(0, σ2
h+1Imh+1) is Gaussian random error; Ỹ i, bi ∈ Rmi for i = 1, 2, . . . , h;

Y h+1, bh+1 ∈ Rmh+1 ; Ψ(Ỹ i−1) = (ψ(Ỹi−1,1), ψ(Ỹi−1,2), . . . , ψ(Ỹi−1,mi−1))T for i = 2, 3, . . . , h+1,
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and Ỹi−1,j is the jth element of Ỹ i−1; wi ∈ Rmi×mi−1 for i = 2, 3, . . . , h+1; β ∈ Rm1×dϕ and dϕ
denotes the dimension of the feature space of the kernel ϕ(·). For the RBF kernel, dϕ = ∞.

Note that different kernels can be used for different hidden units of the first hidden layer.

For notational simplicity, we consider only the case that the same kernel is used for all

the hidden units and Y follows a normal regression model. Replacing the third equation

of ( 3.3 ) by a logit model will lead to the classification case. In general, we consider only

the distribution π(Y |θ,X) such that Assumption  3.1.1 -(iii) is satisfied, where, with a slight

abuse of notation, we use θ = (b1,β; b2,w2; . . . , bh+1,wh+1) to denote the collection of all

weights of the KNN.

Compared to formula ( 3.1 ), formula ( 3.3 ) gives a new presentation form for neural net-

works, where the feeding operator (used for calculating wiZ i−1 + bi) and the activation

operator ψ(·) are separated into two equations. As shown later, such a representation facil-

itates parameter estimation for the neural network when auxiliary noise are introduced into

the model.

For KNN, since the input vector has been mapped into an infinite dimensional feature

space, the Gram matrix K = (kij), where kij = ϕT (xi)ϕ(xj), can be of full rank, i.e.,

rank(K) = n. This means the transformed samples ϕ(X(1)), ϕ(X(2)), . . . , ϕ(X(n)) are lin-

early independent. In addition, we can restrict the structure of the KNN to be pyramidal,

and choose the activation and loss function such that Assumption  3.1.1 is satisfied. There-

fore, by Lemma  3.1.1 , every critical point of the KNN model is a global minimum. In

summary, we have the following theorem with the proof as argued above.

Theorem 3.1.1. For a KNN model given in (  3.3 ), if Assumption  3.1.1 holds, an RBF kernel

is used in the input layer, and the weight matrices (w̃l)h+1
l=2 are of full row rank, then every

critical point of its loss function is a global minimum.

Other than the RBF kernel, the polynomial kernel might also satisfy Theorem  3.1.1 for

certain problems. For an input vector x ∈ Rp, the dimension of its feature space is
(
p+q
q

)
,

where q denotes the degree freedom of the polynomial kernel. Therefore, if the resulting

Gram matrix is of full rank, then the transformed samples ϕ(X(1)), . . . , ϕ(X(n)) are also
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linearly independent. However, as stated in Assumption  3.1.4 , the K-StoNet requires the

kernel to be universal, so the polynomial kernel is not used.

3.1.2 A Kernel-Expanded StoNet as an Approximator to KNN

As shown in Theorem  3.1.1 , the KNN has a nice loss surface, where every critical point is a

global minimum. However, training the KNN using a gradient-based algorithm is infeasible,

as the transformed features are not explicitly available. Based on the kernel representer

theorem [ 85 ], [  86 ], one might consider to replace the first equation of ( 3.3 ) by

Ỹ 1 = b1 +
n∑

i=1
w

(i)
1 K(X(i),X), (3.4)

where w
(i)
1 ∈ Rm1 and K(X(i),X) = ϕT (X(i))ϕ(X) is explicitly available, and then train

such an over-parameterized neural network model using a regularization method. However,

the global optimality property established in Theorem  3.1.1 might not hold for the regularized

KNN any more, because the proof of Theorem  3.1.1 relies on the back propagation formula

of the neural network (see the proof of Theorem 3.4 in [ 6 ] for the detail), while that formula

cannot be easily generalized to regularized loss functions. Moreover, for a nonlinear kernel

regression Y = g(Ỹ 1) + e = g(b1 + βϕ(X)) + e, where g(·) represents a nonlinear mapping

from Ỹ 1 to the output layer, the kernel representer theorem does not hold for g(·) in general

and, therefore, ( 3.4 ) and the first equation of ( 3.3 ) might not be equivalent for the KNN.

Recall that SVR is a special case of the kernel regression with the identity mapping g(Ỹ 1) =

Ỹ 1.

To tackle this issue, we introduce a K-StoNet model (depicted by Figure  3.1 ) by adding

auxiliary noise to Ỹ i’s, i = 1, 2, . . . , h, in ( 3.3 ). The resulting model is given by

Y 1 = b1 + βϕ(X) + e1,

Y i = bi + wiΨ(Y i−1) + ei, i = 2, 3, . . . , h,

Y = bh+1 + wh+1Ψ(Y h) + eh+1,

(3.5)
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Figure 3.1. An illustrative plot of K-StoNet
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where Y1, Y2, . . . , Yh are latent variables. To complete the model specification, we assume

that ei ∼ N(0, σ2
i Imi) for i = 2, 3, . . . , h, h+ 1, and each component of e1 is independent and

identically distributed with the density function given by

f(x) = C

2(1 + Cϵ)e−C|x|ε , (3.6)

where |x|ϵ = max(0, |x| − ε) is an ε-intensive loss function, and C is a scale parameter. It

is known that this distribution has mean 0 and variance 2
C2 + ε2(εC+3)

3(εC+1) . For classification

networks, the last equation of (  3.5 ) is replaced by a generalized linear model (GLM), for

which the parameter σ2
h+1 plays the role of temperature for the binomial or multinomial

distribution formed at the output layer. In summary, {C, ε, σ2
2, . . . , σ

2
h, σ

2
h+1} work together

to control the variation of the latent variables {Y 1, . . . ,Y h} as discussed in Section  3.1.4 .

As shown later, such specifications for the auxiliary noise enable the K-StoNet parameters

to be estimated by solving a series of convex optimization problems and the prediction

uncertainty to be easily assessed via a recursive formula.

To establish that K-StoNet is a valid approximator to KNN, i.e., asymptotically they have

the same loss function, some assumptions need to be imposed on the model. To indicate

their dependence on the training sample size n, we redenote C by Cn, ε by εn, and σi by σn,i
for i = 2, 3, . . . , h + 1. For ( 3.6 ), we assume εn ≤ 1/Cn holds as n → ∞. As in KNN, we

let θ denote the parameter vector of K-StoNet, and let dθ denote the dimension of θ. Since,

for the KNN, any local minimum is also a global minimum, we can restrict Θ to a compact

set which is large enough such that one local minimum is contained. This is essentially a

technical condition. In practice, if a local convergence algorithm is used for training the

KNN, it is then equivalent to set Θ = Rdθ , as the regions beyond a neighborhood of the

starting point will never be visited by the algorithm.

Assumption 3.1.2. (i) Θ is compact, which can be contained in a dθ-ball centered at

the origin and of radius r; (ii) E(log π(Y |X,θ))2 < ∞ for any θ ∈ Θ; (iii) the ac-

tivation function ψ(·) is c′-Lipschitz continuous for some constant c′; (iv) the network’s

depth h and widths mi’s are all allowed to increase with n; and (v) σn,h+1 = O(1), and

mh+1(
∏h

i=k+1 m
2
i )mkσ

2
n,k ≺ 1

h
for k ∈ {1, 2, . . . , h}, where σn,1 = 1/Cn.
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Assumption  3.1.2 -(ii) is the regularity condition for the distribution of Y . Assumption

 3.1.2 -(iii) can be satisfied by many activation functions such as tanh, sigmoid and softplus.

Assumption  3.1.2 -(v) constrains the size of the noise added to each hidden layer such that the

K-StoNet has asymptotically the same loss function as the KNN when the training sample

size becomes large, where the factor mh+1(
∏h

i=k+1 m
2
i )mk is derived in the proof of Theorem

 3.1.2 and its square root can be interpreted as the amplification factor of the noise ek at the

output layer.

As stated in Assumption  3.1.4 , the SVR in K-StoNet is required to work with a universal

kernel such as RBF. By [ 34 ], [ 35 ], [ 87 ], such a SVR possesses the universal approximation

capability, so does K-StoNet. Therefore, K-StoNet is not necessarily very deep or wide,

while having any continuous function approximated arbitrarily well as the training sample

size n → ∞. For this reason, we may restrict the depth h = O(1), and restrict m1 = o(
√
n)

and thus mi = o(
√
n) for all i = 2, 3, . . . , h due to the pyramidal structure of K-StoNet. The

universal approximation property of SVR is quite different from that of the neural networks.

The former depends on the training sample size, while the latter depends on the network

size. The K-StoNet lies in the between of them.

Theorem  3.1.2 shows that the K-StoNet and KNN have asymptotically the same training

loss function, whose proof is given in the Section  3.7.1 .

Theorem 3.1.2. Suppose Assumption  3.1.2 holds. Then the K-StoNet ( 3.5 ) and the KNN

( 3.3 ) have asymptotically the same loss function, i.e., as n → ∞,

sup
θ∈Θ

∣∣ 1
n

n∑
i=1

log π(Y (i),Y
(i)
mis|X

(i),θ) − 1
n

n∑
i=1

log π(Y (i)|X(i),θ)
∣∣ p→ 0, (3.7)

where Y
(i)
mis = (Y 1,Y 2, . . . ,Y h) denotes the collection of latent variables in ( 3.5 ), and p→

denotes convergence in probability.

Let Q∗(θ) = E(log π(Y |X,θ)), where the expectation is taken with respect to the joint

distribution π(X,Y ). By Assumption  3.1.2 -(i) & (ii), and the law of large numbers,

1
n

n∑
i=1

log π(Y (i)|X(i),θ) −Q∗(θ) p→ 0, (3.8)

holds uniformly over Θ. Further, we make the following assumptions for Q∗(θ):
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Assumption 3.1.3. (i) Q∗(θ) is continuous in θ and uniquely maximized at θ∗; (ii) for

any ϵ > 0, supθ∈Θ\B(ϵ) Q
∗(θ) exists, where B(ϵ) = {θ : ∥θ − θ∗∥ < ϵ}, and δ = Q∗(θ∗) −

supθ∈Θ\B(ϵ) Q
∗(θ) > 0.

Assumption  3.1.3 restricts the shape of Q∗(θ) around the global maximizer, which cannot

be discontinuous or too flat. Given nonidentifiability of the neural network model (see e.g.

[ 69 ]), we here have implicitly assumed that each θ in the KNN and K-StoNet is unique up

to loss-invariant transformations, such as reordering some hidden units and simultaneously

changing the signs of some weights and biases.

Lemma 3.1.2. Suppose Assumptions  3.1.2 - 3.1.3 hold, and π(Y ,Y mis|X,θ) is continuous in

θ. Let θ̂n = arg maxθ∈Θ
{

1
n

∑n
i=1 log π(Y (i),Y

(i)
mis

∣∣∣X(i),θ)
}
. Then ∥θ̂n − θ∗∥ p→ 0 as n → ∞.

The proof of Lemma  3.1.2 is given in the Section  3.7.1 . It implies that the KNN can be

trained by training K-StoNet as the sample size n becomes large.

3.1.3 The Imputation-Regularized Optimization Algorithm

To train the K-StoNet, we propose to use the imputation-regularized optimization (IRO)

algorithm [ 33 ]. Consider a missing data problem, where Zobs denotes observed data, Zmis

denotes missing data, and ϑ denotes the parameter. The IRO algorithm aims to find a con-

sistent estimate of ϑ by maximizing E log π(Zobs,Zmis|ϑ), where the expectation is taken

with respect to the joint distribution of (Zobs,Zmis). Conceptually, this is a little differ-

ent from the expectation-maximization (EM) algorithm [ 88 ] and stochastic EM algorithm

[ 89 ], which aim to estimate ϑ by maximizing the marginal likelihood function π(Zobs|ϑ).

Practically, the IRO algorithm works in similar way to stochastic EM by iterating between

an imputation step and an optimization step, but for which a regularization term can be

included in the loss function at each optimization step for ensuring the convergence of the

estimate under the high-dimensional scenario.

For K-StoNet, the IRO algorithm is to estimate θ by maximizing E log π(Y ,Y mis|X,θ),

which is equivalent to maximizing Q∗(θ) = E log π(Y |X,θ) as implied by (  3.7 ) and ( 3.8 ).

This coincides with the goal of KNN training if the stochastic gradient descent (SGD) algo-
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rithm is used. Let θ̂
(t)
n denote the estimate of θ obtained by the IRO algorithm at iteration t.

The IRO algorithm starts with an initial guess θ̂
(0)
n and then iterates between the following

two steps:

• I-step: For each sample (X(i),Y (i)), draw Y
(i)
mis from the predictive distribution

g(Y mis|Y (i),X(i), θ̂
(t)).

• RO-step: Based on the pseudo-complete data, find an updated estimate θ̂
(t+1)
n by min-

imizing the penalized loss function, i.e.,

θ̂
(t+1)
n = arg min

{
− 1
n

n∑
i=1

log π(Y (i),Y
(i)
mis

∣∣∣X(i),θ) + Pλn(θ)
}
, (3.9)

where the penalty function Pλn(θ) is chosen such that θ̂
(t+1)
n forms a consistent estimate

of

θ
(t)
∗ = arg max

θ
E

θ
(t)
n

log π(Y ,Y mis|X,θ)

=
∫

log π(Y mis,Y |X,θ))g(Y mis|Y ,X,θ(t)
n )π(Y |θ∗,X)π(X)dY misdY dX

θ∗ denotes the true parameter of the model, and π(X) denotes the density function of

X.

For the K-StoNet, the joint distribution π(Y ,Y mis|X,θ) can be factored as

π(Y ,Y mis|X,θ) = π(Y 1|X, w̃1)[
h∏

i=2
π(Y i|Y i−1, w̃i)]π(Y |Y h, w̃h+1). (3.10)

Therefore, the optimization in (  3.9 ) can be executed separately for each of the hidden and

output layers with an appropriately specified penalty function. That is, K-StoNet can be

trained by solving a series of lower dimensional optimization problems.
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For the first hidden layer, the RO-step is reduced to solving a SVR for each hidden unit.

As described in [ 90 ], the parameter β in (  3.5 ) can be estimated by solving a regularized

optimization problem:

arg min
β,b1

1
2 ||β||22 + C̃n

n

n∑
i=1

|Y (i)
1 − βϕ(X(i)) − b1|ε, (3.11)

where the first term represents a penalty function, and C̃n represents the regularization

parameter. We can set C̃n = Cn given in ( 3.6 ), but not necessarily. In general, their values

should make Assumptions  3.1.2 -(v) and  3.1.4 -(i) hold. The consistency of the SVR estimator

β̂
T
ϕ(x) + b̂1, which is the basic requirement by the IRO algorithm, has been established in

[ 91 ] by assuming that a universal kernel [ 34 ], [ 92 ] such as RBF is used in (  3.11 ). Equivalently,

this is to reparameterize the SVR layer by kernel-based regression. By the kernel representer

theorem [ 85 ], [ 86 ], the solution to the regularized optimization problem (  3.11 ) leads to the

representer of the first equation of ( 3.5 ) as

Y 1 = b̂1 +
n∑

i=1
ŵ

(i)
1 K(X(i),X) + e1. (3.12)

In what follows, we will use w̌1 = (ŵ(1)
1 , . . . , ŵ

(n)
1 , b̂1) to denote the estimator for the

parameters of the SVR layer.

For other hidden layers, the RO-step is reduced to solving a linear regression for each

hidden unit using a regularization method. To ensure convexity of the resulting objective

function, a Lasso penalty [  72 ] can be used. Alternatively, some nonconvex amenable penalties

with vanishing derivatives away from the origin, such as the SCAD [ 93 ] and MCP [ 94 ], can

also be used. As shown in [ 95 ], for such nonconvex amenable penalties, any stationary

point in a compact region around the true regression coefficients can be used to consistently

estimate the parameters and recover the support of the underlying true regression.

For the output layer, the RO-step is reduced to solving a multinomial logistic or multi-

variate linear regression, depending on the problem under consideration. The Lasso, SCAD

and MCP penalties can again be used for them by the theory of [ 95 ]. In practice, this step
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can also be simplified to solving a linear or logistic regression for each output unit by ignoring

the correlation between different components of Y .

In summary, we have the pseudo-code given in Algorithm  3 for training K-StoNet, where

w̌
(t)
i denotes the estimate of the parameters for the layer i at iteration t, (Y (s)

0 ,Y
(s)
h+1) =

(X(s),Y (s)) denotes a training sample, (Y (s,t)
1 , . . . ,Y

(s,t)
h ) denotes the latent variables im-

puted for training sample s at iteration t. For convenience, we occasionally use the notation

Y
(s,t)
0 = Y

(s)
0 and Y

(s,t)
h+1 = Y

(s)
h+1.

For Algorithm  3 , we have a few remarks:

• The Hamiltonian Monte Carlo (HMC) algorithm [ 96 ]–[ 98 ] is employed in the backward

imputation step. Other MCMC algorithms such as Langevin Monte Carlo [ 99 ] and the

Gibbs sampler [ 100 ] can also be employed there.

• In the parameter update step, a Lasso penalty [ 72 ] is used in ( 3.15 ) to induce the

sparsity of StoNet, while ensuring convexity of the minimization problems. Therefore,

K-StoNet is trained by solving a series of convex optimization problems. Note that the

minimization in ( 3.14 ) is known as a convex quadratic programming problem [ 101 ],

[ 102 ]. Although solving the convex optimization problems is more expensive than a

single gradient update, the IRO algorithm converges very fast, usually within tens of

iterations.

• The major computational cost of K-StoNet comes from the SVR step when the sample

size is large. The computational complexity for solving an SVR is O(n2p+n3), and that

for solving a linear/logistic regression is bounded by O(nm2
1 + m3

1), while m1 ≺ n1/2

is usually recommended. A scalable SVR solver will accelerate the computation of

K-StoNet substantially. This issue will be further discussed at the end of the chapter.

• If m1 ≺
√
n holds, then the penalty in ( 3.15 ) can be simply removed for computational

simplicity, while ensuring asymptotic normality of the resulting regression coefficient

estimates by [  53 ].
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Algorithm 3 The IRO Algorithm for K-StoNet Training
Input: the total iteration number T , the Monte Carlo step number tHMC , and the learning
rate sequences {ϵt,i : t = 1, 2, . . . , T ; i = 1, 2, . . . , h+ 1}.
Initialization: Randomly initialize the network parameters θ̂

(0)
n = (w̌(0)

1 , . . . , w̌
(0)
h+1).

for t=1,2,. . . ,T do
STEP 1. Backward Imputation: For each observation s, impute the latent variables
in the order from layer h to layer 1. More explicitly, impute Y

(s,t)
i from the distribu-

tion π(Y (s,t)
i |Y (s,t)

i+1 ,Y
(s,t)
i−1 , w̌

(t−1)
i , w̌

(t−1)
i+1 ) ∝ π(Y (s,t)

i |Y (s,t)
i−1 , w̌

(t−1)
i )π(Y (s,t)

i+1 |Y (s,t)
i , w̌

(t−1)
i+1 )

by running HMC in tHMC steps, where π(Y (s,t)
1 |X(s), w̌

(t−1)
1 ) can be expressed based on

( 3.12 ).
(1.1) Initialization: Initialize v

(s,0)
i = 0, and initialize Y

(s,t,0)
i by KNN, i.e., calculating

Y
(s,t,0)
i for i = 1, 2, . . . , h in (  3.5 ) by setting the random errors to zero.

(1.2) Imputation:
for k = 1, 2, . . . , tHMC do

for i = h,h-1,. . . , 1 do

v
(s,k)
i = (1 − α)v(s,k−1)

i + ϵt,i∇Y
(s,t,k−1)
i

log π(Y (s,t,k−1)
i |Y (s,t,k−1)

i−1 , w̌
(t−1)
i )

+ ϵt,i∇Y
(s,t,k−1)
i

log π(Y (s,t,k)
i+1 |Y (s,t,k−1)

i , w̌
(t−1)
i+1 ) +

√
2αϵt,iz(s,t,k),

Y
(s,t,k)
i = Y

(s,t,k−1)
i + v

(s,k)
i ,

(3.13)

where z(s,t,k) ∼ N(0, Imi), ϵt,i is the learning rate, and 1 − α is the momentum
decay factor (α = 1 corresponds to Langevin Monte Carlo).

end for
end for
(1.3) Output: Set Y

(s,t)
i = Y

(s,t,tHMC)
i for i = 1, 2, . . . , h.

STEP 2. Parameter Updating: Update the estimates (w̌(t−1)
1 , w̌

(t−1)
2 , . . . , w̌

(t−1)
h+1 )

by solving h+ 1 penalized multivariate regressions separately.
(2.1) SVR layer:

w̌
(t)
1 = arg min

β,b1

C̃
(t)
n,1

n

n∑
s=1

∥|Y (s,t)
1 − βTϕ(Y (s,t)

0 ) − b1|ε∥1 + 1
2∥β∥2

2

 , (3.14)

where C̃(t)
n,1 is the regularization parameter used at iteration t.

(2.2) Regression layers:
for i=2,3,. . . ,h+1 do

w̌
(t)
i = arg min

wi,bi

{
1
n

n∑
s=1

∥Y
(s,t)
i − wiψi(Y (s,t)

i−1 ) − bi∥2
2 + P

λ
(t)
n,i

(w̃i)
}
, (3.15)

where λ(t)
n,i is the regularization parameter used for layer i at iteration t.

end for
(2.3) Output: Denote the updated estimate by θ̂

(t) = (w̌(t)
1 , . . . , w̌

(t)
h+1).

end for
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Like the stochastic EM algorithm, the IRO algorithm generates two interleaved Markov

chains:

θ̂
(0)
n → (Y (1)

1 , . . . ,Y
(1)
h ) → θ̂

(1)
n → (Y (2)

1 , . . . ,Y
(2)
h ) → θ̂

(2)
n → · · · ,

whose convergence theory has been studied in [ 33 ]. To ensure the convergence of the Markov

chains in K-StoNet training, we make following assumptions for the regularization parameters

used in ( 3.14 ) and ( 3.15 ):

Assumption 3.1.4. (i) A universal kernel such as RBF is used in the SVR layer, and for

each t ∈ {1, 2, . . . , T}, 1 ≺ C̃
(t)
n,1 ≺

√
n holds; and (ii) for each t ∈ {1, 2, . . . , T} and each

i ∈ {2, 3, . . . , h + 1}, supw̃i∈Θi P
(t)
λn,i(w̃i) → 0 holds as n → ∞, where Θi denotes the sample

space of w̃i.

Assumption  3.1.4 -(i) ensures consistency of the regression function estimator in the SVR

step by Theorem 12 of [ 91 ]. Assumptions  3.1.4 -(ii) ensures consistency of the weight esti-

mators in the output and other hidden layers. For the Lasso penalty, we can set P
λ

(t)
n,i

(w̃i) =

λ
(t)
n,i∥w̃i∥1 and λ

(t)
n,i = O(

√
log(mi−1)/n) for any t ∈ {1, 2, . . . , T} and i ∈ {2, 3, . . . , h + 1}.

Since Θ is bounded as assumed in  3.1.2 -(i),  3.1.4 -(ii) is satisfied. In summary, we have the

following theorem which is essentially a restatement of Theorem 4 and Corollary 3 of [ 33 ]

and therefore whose proof is omitted.

Theorem 3.1.3. (Consistency) Suppose that Assumptions  3.1.1 - 3.1.4 hold and, further, the

general regularity conditions on missing data (given in [ 33 ]) hold. Then for sufficiently large

n, sufficiently large T , and almost every (X,Y )-sequence, ∥θ̂
(T )
n −θ∗∥ p→ 0 and ∥ 1

T

∑T
t=1 θ̂

(t)
n −

θ∗∥ p→ 0. In addition, for any Lipschitz continuous function ζ(·) on Θ, ∥ 1
T

∑T
t=1 ζ(θ̂

(t)
n ) −

ζ(θ∗)∥ p→ 0.

As implied by Theorems  3.1.1 - 3.1.3 and Lemma  3.1.2 , θ̂
(t)
n asymptotically converges to

a global optimum of the KNN. For each θ̂
(t)
n , when making predictions, one can simply

calculate the output in ( 3.5 ) by ignoring the auxiliary noise, i.e., treating θ̂
(t)
n as the weights

of a KNN. In this way, K-StoNet can be viewed as a tool for training the KNN, although it

means more than that.
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3.1.4 Hyperparameter Setting

As mentioned previously, DNN is often over parameterized to avoid getting trapped into

a poor local minimum. In contrast, as implied by Theorems  3.1.1 - 3.1.3 , the local minimum

trap is not an issue to K-StoNet any more. This, together with the universal approximation

property of K-StoNet and the parsimony principle of statistical modeling, suggests that a

small K-StoNet might work well for complex problems. As shown in Section  3.3 , the K-

StoNet with a single hidden layer and a small number of hidden units works well for many

complex datasets.

Other than the network structure, the performance of K-StoNet also depends on the

network hyperparameters as well as the hyperparameters introduced by the IRO algorithm.

The former include Cn, εn and σn,k’s for k = 2, . . . , h+1. The latter include the learning rates

and iteration number used in HMC backward imputation and the regularization parameters

used in solving the optimizations ( 3.14 ) and ( 3.15 ). The hyperparameters Cn, εn and σn,k’s

control the variation of the latent variables and thus the variation of θ(T )
n by the theory

developed in [ 33 ] and [ 103 ]. In general, setting the latent variables to have slightly large

variations can facilitate the convergence of the training process. On the other hand, as

required by Assumption  3.1.2 -(v), we need to control the variations of the latent variables

sufficiently small for ensuring the convergence of K-StoNet to a global minimum of the

corresponding KNN by noting the stochastic optimization nature of the IRO algorithm.

Assumption  3.1.2 -(v) provides a clue for setting the network hyperparameters. Here we

would like to note that when 1/Cn and σ2
n,i’s are set to be very small, to ensure the stability

of the algorithm, we typically need to adjust the learning rate ϵt,i’s to be very small as

well such that their effects on the drift term of (  3.13 ) can be canceled or partially canceled.

Meanwhile, to compensate the negative effect of the reduced learning rate on the mobility

of the Markov chain, we need to lengthen the MCMC iterations, i.e., increasing the value of

tHMC , appropriately. Finally, we note that setting σn,i’s in the monotonic pattern σn,h+1 ≥

σn,h ≥ · · · ≥ σn,2 ≥ 1/Cn is generally unnecessary, as long as their values have been in a

reasonable range.
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In our experience, the performance of K-StoNet is not very sensitive to these hyperpa-

rameters as long as they are set in an appropriate range. As shown in Section  3.5 , which

collects all parameter settings of K-StoNet used in this chapter, many examples share the

same parameter setting.

3.2 Illustrative Examples

This section contains two examples. The first example demonstrates that K-StoNet in-

deed avoids local traps in training, and the second example demonstrates the performance

of K-StoNet in the large-n-small-p scenario that DNN typically works in. K-StoNet is com-

pared with DNN and KNN. For the KNN, the kernel representer given by equation (  3.4 ) is

used as the first hidden layer, and the kernel is set to be the same as that used by K-StoNet.

3.2.1 A full row rank example

The dataset was generated from a two-hidden layer neural network with structure 1000-

5-5-1. The input variables x1, . . . , x1000 were generated by independently simulating the

variables e, z1, . . . , z1000 from the standard Gaussian distribution and then setting xi = e+zi√
2 .

In this way, all the input variables are mutually correlated with a correlation coefficient of

0.5. The response variable was generated by setting

y = w3 tanh(w2 tanh(w1x)) + ϵ, (3.16)

where w1 ∈ R5×1000, w2 ∈ R5×5 and w3 ∈ R1×5 represent the weights at different layers

of the neural network, tanh(·) is the hyperbolic tangent function, and the random error

ϵ ∼ N(0, 1). Each elements of wi’s was randomly sampled from the set {−2,−1, 1, 2}. The

full dataset consisted of 1000 training samples and 1000 test samples.

We first refit the model ( 3.16 ) using SGD. Since the training samples form a full row rank

matrix of size n = 1000 by p = 1001 (including the bias term), SGD will not get trapped

into a local minimum by Lemma  3.1.1 . SGD was run for 2000 epochs with a mini-batch size
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of 100 and a constant learning rate of 0.005. Figure  3.2 (upper panel) indicates that SGD

indeed converges to a global optimum.

For K-StoNet, we tried a model with one hidden layer and 5 hidden units. The model

was trained by IRO for 40 epochs. Since all training samples were used at each iteration,

an iteration is equivalent to an epoch for K-StoNet. We also tried a KNN model for this

example, which has the same structure as K-StoNet. The KNN was trained using SGD with

a constant learning rate of 0.005 for 2000 epochs. Figure  3.2 (upper panel) compares the

training and testing MSE paths of the three models. It shows that K-StoNet converges to

the global optimum in a few epochs; while DNN needs over 100 epochs, and KNN needs

even more. More importantly, K-StoNet is less bothered by over-fitting, whose prediction

performance is stable after convergence has been reached. However, the DNN tends to be

over fitted, whose prediction becomes worse and worse as training goes on. The KNN is more

stable than DNN in prediction, but worse than K-StoNet. As discussed in Section  3.1.2 , the

KNN with the kernel representer for the first hidden layer is not equivalent to K-StoNet in

general. This experiment further demonstrates the importance of the stochastic structure

introduced in K-StoNet.

To explore the loss surface of the regularized DNN, we re-trained the true DNN model

( 3.16 ) using SGD with a Lasso penalty (λ = 0.1) imposed on all the weights. SGD was

run for 500 epochs with a mini-batch size of 100 and a constant learning rate of 0.005. The

run was repeated for 10 times. For comparison, K-StoNet was also retained for 10 times.

Their convergence paths were shown in the lower panel of Figure  3.2 . The comparison shows

that the regularized DNN might suffer from local traps (different runs converged to different

MSE values), while K-StoNet does not although its RO step also involves penalty terms.

According to the theory developed in [ 33 ], the convergence of the IRO algorithm requires a

consistent estimate of θ(t)
∗ to be obtained at each RO step and an appropriate penalty term is

allowed for obtaining the consistent estimate. For K-StoNet, to ensure a consistent estimate

to be obtained at each parameter updating step, we impose a L2-penalty on the SVR layer

and a Lasso penalty on the regression layers. For both of them, the resulting loss functions

are convex, and the corresponding consistent (optimal) estimates are uniquely determined.
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Figure 3.2. Upper Panel: paths of the mean squared error (MSE) produced
by K-StoNet and an unregularized DNN for one simulated dataset; and Lower
Panel: best MSE (by the current epoch) produced by SGD for a regularized
DNN and K-StoNet over 10 runs.
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Then, by Theorems  3.1.1 – 3.1.3 and Lemma  3.1.2 , the convergence of K-StoNet to the global

optimum is asymptotically guaranteed.

In the previous example, the data was generated from a DNN model. Even working

with the true structure, DNN is still inferior to K-StoNet in training and prediction. To

further demonstrate the advantage of K-StoNet, we generated a dataset from a KNN model.

The dataset consisted of 5000 training samples, where the input variables x ∈ R5 with each

component being a standard Gaussian random variable and a mutual correlation coefficient

of 0.5. Let k = (K(x(1),x), . . . , K(x(5000),x))T ∈ R5000, where K(·, ·) is the RBF kernel and

x(i) denotes the ith training sample. The response variable was generated by

y = w2 tanh(w1k + b1) + b2 + ϵ,

where w2 ∈ R1×5, w1 ∈ R5×5000, b1 ∈ R5, b2 ∈ R, and ϵ ∼ N(0, 1). The components of

w2 and b2 were randomly generated from N(0, 1), and w1 and b1 were the dual parameters

of five SVR models with the above training samples as input and some vectors randomly

generated from N(0, I5) as response. We set C = 5 and ϵ = 0.01 for the SVR model. We

also generated another 5000 samples from the same model as test data. Then we modeled

the data by K-StoNet with one hidden layer, for which we tried the cases with 5 hidden

units and 10 hidden units and set C = 5 and ϵ = 0.01 for each SVR. For comparison, we

tried a KNN with 5 hidden units, a DNN with one hidden layer and 50 hidden units, and a

DNN with 3 hidden layers and 50 hidden units on each layer. Figure  3.3 shows the training

and testing paths of the five models. For this example, K-StoNet achieved a training MSE

about 1.0 and significantly outperformed the DNN and KNN models in prediction.

3.2.2 A measurement error example

This example mimics the typical scenario under which DNN works. We generated 500

training samples and 500 test samples from a nonlinear regression: for each sample (Y,X),

where Y ∈ R and X = (X1, . . . , X5) ∈ R5. The explanatory variables X1, . . . , X5 were

generated such that each follows the standard Gaussian distribution, while they are mutually
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Figure 3.3. MSE paths produced by two K-StoNets, one KNN, and two
DNNs for the data generated from a KNN model: the left plot is for training
and the right plot is for testing.
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correlated with a correlation coefficient of 0.5. The response variable was generated from

the nonlinear regression

Y = 5X2

1 +X2
1

+ 5 sin(X3X4) + 2X5 + ϵ,

where ϵ ∼ N(0, 1). Then each explanatory variable was perturbed by adding a random

measurement error independently drawn from N(0, 0.5).

We modeled the data using two different K-StoNets, one with 1-hidden layer and 5 hidden

units, and the other with 3-hidden layers and 20 hidden units on each hidden layer. Both

models were trained by IRO for 1000 epochs. For comparison, we also modeled the data by

KNNs and DNNs with the same structures as the K-StoNets. The KNNs and DNNs were

trained by SGD with momentum for 1000 epochs with a minibatch size of 100, a constant

learning rate of 0.005, and a momentum decay factor of 0.9. As shown in Figure  3.4 , the 1-

hidden layer DNN and KNN perform stably in both training and testing, while the 3-hidden

layer DNN and KNN are obviously over-fitted. Compared to the DNN and KNN, K-StoNet

is resistant to over-fitting, even when an overly large model is employed.

Finally, we explored the sparsity of the SVR layer by varying the value of ε defined in

( 3.6 ). Table  3.1 shows the number of support vectors selected by the two K-StoNets, together

with their training and test errors, at different values of ε. It implies that the sparsity of

K-StoNet can be controlled by ε, a larger ε leading to less support vectors. However, the two

K-StoNet models show different sensitivities to ε. The 3-hidden layer K-StoNet has a higher

representation power and is more flexible; it can achieve relatively low training error with a

large number of connections, and is more sensitive to ϵ. When ϵ increases from 0.01 to 0.09,

it changes from an overfitted model to an underfitted model. Correspondingly, the training

MSE increases, while the test MSE decreases in the beginning and then starts to increase. In

contrast, for the 1-hidden layer K-StoNet, its representation power is limited, and it is less

flexible and thus less sensitive to ϵ. It led to about the same models with different choices

of ϵ (with similar training and test errors). The training and test errors varied slightly with

ϵ, as different sets of support vectors were used for different choices of ϵ. In general, the set
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Figure 3.4. MSE paths produced by K-StoNets and DNNs: (upper) one-
hidden-layer networks; (lower) three-hidden-layer networks.
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of support vectors used for a large ϵ is not nested to that for a small ϵ. Therefore, a smaller

ϵ does not necessarily lead to a smaller training error.

Table 3.1. Performance of the K-StoNet model with different values of ε,
where the model was evaluated at the last iteration, #SV represents the aver-
age number of support vectors selected by the SVRs at the first hidden layer,
and the number in the parentheses represents the standard deviation of the
average.

1-Hidden Layer 3-Hidden Layer
ε #SV Train MSE Test MSE #SV Train MSE Test MSE

0.01 473.6(9.22) 6.6786 9.0852 409.0(6.419) 4.6552 10.1387
0.02 428.6(18.73) 6.7382 9.0387 320.2(13.85) 4.7257 9.9422
0.03 416.2(16.59) 6.6917 9.0531 235.8(7.94) 4.9850 9.8192
0.04 381.0(29.75) 6.7301 9.0742 165.4(8.96) 5.2578 9.3949
0.05 361.4(45.85) 6.5158 9.3358 113.2(7.83) 5.6594 9.0195
0.06 342.6(28.35) 6.5041 9.1498 69.6(4.50) 6.1869 8.7551
0.07 347.2(13.39) 6.4878 9.1893 37.8(3.60) 6.8884 9.0565
0.08 313.6(38.52) 6.5083 9.0639 17.6(3.61) 7.8616 9.5882
0.09 317.0(14.59) 6.4130 9.0330 16.2(16.45) 9.1655 9.9940
0.1 290.2(40.45) 6.4676 9.0308 8.2(13.47) 10.5946 10.7611

3.3 Real Data Examples

This section shows that a small K-StoNet can work well for a variety of problems. The

example in Section  3.3.1 has a high dimension, which represents typical problems that sup-

port vector machine/regression works on. The examples in Sections  3.3.2 and  3.3.3 have

large training sample sizes, which represent typical problems that the DNN works on. The

examples in Section  3.3.4 represent more real world problems, with which we explore the

prediction performance of K-StoNet.

3.3.1 QSAR Androgen Receptor

The QSAR androgen receptor dataset is available at the UCI machine learning repository,

which consists of 1024 binary attributes (molecular fingerprints) used to classify 1687 chem-

icals into 2 classes (binder to androgen receptor/positive, non-binder to androgen receptor

/negative), i.e. n = 1607, p = 1024. The experiment was done in a 5-fold cross-validation.
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In each fold of the experiment, we modeled the data by a K-StoNet with one hidden

layer and 5 hidden units, and trained the model by IRO for 40 epochs. The prediction was

computed by averaging over the models generated in the last 10 epochs. For comparison,

support vector machine (SVM), KNN and DNN were applied to this example. For SVM,

we employed the RBF kernel with C = 1. For KNN, we used the same structure as K-

StoNet. For DNN, we tried two network structures, 1024-5-1 and 1024-10-5-1, which are

called DNN one layer and DNN two layer, respectively. Each of the KNN and DNN models

were trained by SGD for 1000 epochs with a mini-batch size of 32 and a constant learning

rate of 0.001. The weights of the DNNs were subject to the LASSO penalty with the

regularization parameter λ = 1e − 4.
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Figure 3.5. Training and prediction accuracy paths (along with epochs) pro-
duced by K-StoNet, KNN and DNN in one fold of the cross-validation experi-
ment for the QSAR androgen receptor data.

Figure  3.5 compares the training and prediction accuracy paths produced by K-StoNet,

KNN and DNN in one fold of the experiment. Table  3.2 summarizes the training and

prediction accuracy produced by K-StoNet, SVM, KNN and DNN over the five folds. In

summary, K-StoNet converges very fast to the global optimum with the training accuracy

close to 1, and is less bothered by the over-fitting issue. In contrast, the KNN and DNN
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Figure 3.6. Training and prediction accuracy paths (along with computa-
tional time) produced by K-StoNets, KNN and DNNs in one fold of the cross-
validation experiment for the QSAR androgen receptor data.

models took more epochs to converge and predicted less accurately than K-StoNet. SVM is

inferior to K-StoNet in both training and prediction.

Since each iteration of the IRO algorithm involves imputing latent variables and solving

a series of SVR/linear regressions, it is more expensive than a single gradient update step

used in DNN training. To compare their computational efficiency, we include an accuracy

versus time plot in Figure  3.6 , which indicates that K-StoNet took less computational time

than KNN and DNN to achieve the same training/prediction accuracy.

3.3.2 MNIST Data

The MNIST [ 104 ] is a benchmark dataset in machine learning. It consists of 60,000

images for training and 10,000 images for testing. We modeled the data by a K-StoNet with

one hidden layer, 20 hidden units, and the softplus activation function, We trained the model

by IRO for 6 epochs. For comparison, we trained a standard LeNet-300-100 model [ 104 ] by

Adam [ 105 ] with default parameters for 300 epochs, a constant learning rate of 0.001, and

a mini-batch size of 128. Figure  3.7 shows the training paths of two models. Both models
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Table 3.2. Training and prediction accuracy(%) for QSAR androgen receptor
data, where “T” and “P” denote the training and prediction accuracy, respec-
tively.Method Split 1 Split 2 Split 3 Split 4 Split 5 Average

T 99.93 99.85 99.85 100 100 99.926
K-StoNet P 88.43 93.47 90.50 90.50 91.99 90.978

T 97.11 96.89 97.11 97.11 97.19 97.082
SVM P 89.32 90.80 87.83 89.02 92.28 89.850

T 99.93 100 98.44 99.93 99.93 99.646
KNN P 88.72 93.17 89.32 90.50 91.10 90.562

T 99.70 99.63 99.85 99.78 99.85 99.762
DNN one layer P 85.16 88.72 89.32 86.35 88.13 87.536

T 99.93 99.93 99.93 100 100 99.958
DNN two layer P 86.94 88.13 88.13 86.05 88.72 87.596
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can achieve 100% training accuracy. LeNet-300-100 achieved 98.38% test accuracy, while

K-StoNet achieved 98.87% test accuracy (at the 3rd iteration) without data augmentation

being used in training!
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Figure 3.7. Training and test accuracy versus epochs produced by K-StoNet
and DNN (LeNet-300-100) for the MNIST data, where K-StoNet achieved a
prediction accuracy of 98.87%, and LeNet-300-100 achieved a prediction accu-
racy of 98.38%.

3.3.3 CoverType Data

The CoverType data is available at the UCI machine learning repository. It consisted of

n = 581, 012 samples with p = 54 attributes, which were collected for classification of forest

cover types from cartographic variables. This dataset has an extremely large sample size,

which represents a typical problem that the DNN works on. We used half of the samples for

training and the other half for testing. The experiments were repeated for thee times.

We modeled the data by a K-StoNet with one hidden layer and 50 hidden units, and

trained the model by the IRO algorithm for 2 epochs. For comparison, we also modeled

the data by a 2-hidden-layer DNN with 1000 nodes on the first hidden layer and 50 nodes

on the second hidden layer. We trained the DNN model by SGD with momentum, where

a mini-batch size of 500, a constant learning rate of 0.01 and a momentum decay factor of
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0.9 were used. The numerical results were summarized in Table  3.3 , which indicates that

K-StoNet outperforms DNN in both training and prediction for this example.

Table 3.3. Training and prediction accuracy(%) for CoverType, where “T”
and “P” denote the training and prediction.

Method Run 1 Run 2 Run 3 Average
T 99.22 99.32 99.33 99.29

K-StoNet P 94.21 94.23 94.26 94.23
T 98.20 98.11 98.07 98.13

DNN P 94.11 94.06 94.04 94.07

3.3.4 More UCI Datasets

As shown by the above examples, K-StoNet can converge in only a few epochs and is

less bothered by overfitting, and its prediction accuracy is typically similar or better than

the best one that DNN achieved. In order to achieve the best prediction accuracy, DNN

often needs to be trained with tricks such as early stopping or Dropout [ 26 ], which lack

the theoretical guarantee for the down-stream statistical inference. In contrast, K-StoNet

possesses the theoretical guarantee to asymptotically converge to the global optimum and

enables the prediction uncertainty easily assessed (see Section  3.4 ). This subsection compares

K-StoNet with Dropout in prediction on more real world examples, 10 datasets taken at the

UCI machine learning repository.

Following the setting of [ 106 ], we randomly split each dataset into training and test sets

with 90% and 10% of its samples, respectively. The random split was repeated for 20 times.

The average prediction accuracy and its standard deviation were reported. As in [ 106 ], for

the largest two datasets Protein Structure and Year Prediction MSD, the random splitting

was done five times and one time, respectively. The baseline results were taken from [ 106 ]

and [  107 ]. The neural network model used there had one hidden layer and 50 hidden units

for all datasets except for the largest two. For the largest two datasets, the neural network

model had one hidden layer and 100 hidden units. The K-StoNet model we used had one

hidden layer with 5 hidden units and the softplus activation function for all datasets except
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for the largest one. For the largest dataset, K-StoNet had one hidden layer with 50 hidden

units. Other parameter settings were given in Section  3.5 . The results were summarized in

Table  3.4 , which indicates that K-StoNet generally outperforms Dropout in prediction.

For a thorough comparison, the KNN has also been implemented for the UCI datasets

except for two large ones, “Protein Structure” and “Year Prediction MSD”. For these two

datasets, the training sample size n is too large, making the gram matrix hard to handle.

For the same reason, it is not included in the comparisons for the MNIST and CoverType

data examples, either. For the KNN, the use of minibatch data is not very helpful when

n is large, as there are still n kernels (K(x(1),x∗), K(x(2),x∗), . . . , K(x(n),x∗)) we need to

evaluate for each sample x∗ in the minibatch. For the other datasets, the KNN was run with

the same network structure as for the K-StoNet. The detailed parameter settings were given

in Section  3.5 . The results are summarized in Table  3.4 , which indicates that the KNN is

generally inferior to K-StoNet in prediction.

Table 3.4. Average test RMSE (and its standard error) by variational
inference (VI, [ 108 ]), probabilistic back-propagation (PBP, [  107 ]), dropout
(Dropout, [ 106 ]), SGD via back-propagation (BP), and KNN, where N de-
notes the dataset size and p denotes the input dimension. For each dataset,
the boldfaced values are the best result or the second best result if it is insignif-
icantly different from the best one according to a t-test with a significance level
of 0.05.

Dataset N p VI PBP Dropout BP KNN K-StoNet
Boston Housing 506 13 4.32 ±0.29 3.014 ±0.1800 2.97 ±0.19 3.228 ±0.1951 4.196 ±0.069 2.987 ±0.0227
Concrete Strength 1,030 8 7.19 ±0.12 5.667 ±0.0933 5.23 ±0.12 5.977 ±0.2207 6.962 ±0.062 5.261 ±0.0265
Energy Efficiency 768 8 2.65 ±0.08 1.804 ±0.0481 1.66 ±0.04 1.098 ±0.0738 1.942 ±0.030 1.301 ±0.015
Kin8nm 8,192 8 0.10 ±0.00 0.098 ±0.0007 0.10 ±0.00 0.091 ±0.0015 0.0917 ±0.0002 0.0747 ±0.0003
Naval Propulsion 11,934 16 0.01 ±0.00 0.006 ±0.0000 0.01 ±0.00 0.001 ±0.0001 0.0151 ±0.0001 0.00098 ±0.0001
Power Plant 9,568 4 4.33 ±0.04 4.124 ±0.0345 4.02 ±0.04 4.182 ±0.0402 4.033 ±0.010 3.952 ±0.003
Protein Structure 45,730 9 4.84 ±0.03 4.732 ±0.0130 4.36 ±0.01 4.539 ±0.0288 na 3.856 ±0.005
Wine Quality Red 1,599 11 0.65 ±0.01 0.635 ±0.0079 0.62 ±0.01 0.645 ±0.0098 0.675 ±0.004 0.6214 ±0.0008
Yacht Hydrodynamics 308 6 6.89 ±0.67 1.015 ±0.0542 1.11 ±0.09 1.182 ±0.1645 7.5334 ±0.0893 0.8560±0.0795
Year Prediction MSD 515,345 90 9.034 ±na 8.879 ±na 8.849 ±na 8.932 ±na na 8.881 ±na
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3.4 Prediction Uncertainty Quantification with K-StoNet

3.4.1 A Recursive Formula for Uncertainty Quantification

The prediction uncertainty of the K-StoNet can be easily assessed with the variance

decomposition formula (as known as Eve’s law) based on the asymptotic normality theory.

More precisely, we can first calculate the variance for the output of the first hidden layer

based on the existing theory of SVR [ 109 ], then calculate the variance for the output of the

second hidden layer based on Eve’s law and the theory of linear models, and continue this

process till the output layer is reached. For the case that normal regression was done at

layer h + 1 and no penalties was used in solving the optimization (  3.15 ), the calculation is

detailed as follows.

Let Y(t)
i ∈ Rn×mi , i = 1, 2, . . . , h, denote the matrices of latent variables imputed at

iteration t, which leads to the updated parameter estimate θ(t)
n . Let z denote a test sample.

For each layer i ∈ {1, 2, . . . , h + 1}, let Z
(t)
i ∈ Rmi denote the output of the KNN (with the

parameter θ(t)
n ) at layer i; and let µ

(t)
i and Σ(t)

i denote the mean and covariance matrix of

Z
(t)
i , respectively. Assume that Z

(t)
i ’s are all multivariate Gaussian, which will be justified

below. Then, for any layer i ∈ {2, . . . , h+ 1}, by Eve’s law, we have

Σ(t)
i = E(Var(Z(t)

i |Z(t)
i−1)) + Var(E(Z(t)

i |Z(t)
i−1))

= E
{
(ψ(Z(t)

i−1))T [(ψ(Y(t)
i−1))Tψ(Y(t)

i−1)]−1ψ(Z(t)
i−1)

}
diag{σ2(t)

i,1 , . . . , σ
2(t)
i,mi} + Var(w̃∗

i−1ψ(Z(t)
i−1))

=
{
tr([(ψ(Y(t))

i−1)Tψ(Y(t)
i−1)]−1Var(ψ(Z(t)

i−1))) + (E(ψ(Z(t)
i−1)))T [(ψ(Y(t)

i−1))Tψ(Y(t)
i−1)]−1(E(ψ(Z(t)

i−1)))
}

× diag{σ2(t)
i,1 , . . . , σ

2(t)
i,mi} + w̃∗

i−1Var(ψ(Z(t)
i−1))(w̃∗

i−1)T ,

where w̃∗
i−1 = E(w̃(t)

i−1) and σ
2(t)
i,j ’s are unknown. Let µ

(t)
i−1 = (µ(t)

i−1,1, . . . , µ
(t)
i−1,mi−1)T and

Dψ′(µ(t)
i−1) = diag{ψ′(µ(t)

i−1,1), . . . , ψ′(µ(t)
i−1,mi−1)}. By the first order Taylor expansion, it is

easy to derive that

E(ψ(Z(t)
i−1)) ≈ ψ(µ(t)

i−1),

Var(ψ(Z(t)
i−1)) ≈ Dψ′(µ(t)

i−1)Σ(t)
i−1Dψ′(µ(t)

i−1).
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We suggest to estimate w̃∗
i−1 by w̃

(t)
i−1, estimate µ

(t)
i−1 by Z

(t)
i−1, and estimate σ2(t)

i,j by its OLS

estimator from the corresponding multiple regression. This leads to the following recursive

formula for covariance estimation:

Σ̂(t)
i ≈

{
tr
(
[(ψ(Y(t)

i−1))Tψ(Y(t)
i−1)]−1Dψ′(Z(t)

i−1)Σ̂(t)
i−1Dψ′(Z(t)

i−1)
)

+ (ψ(Z(t)
i−1))T [(ψ(Y(t)

i−1))Tψ(Y(t)
i−1)]−1ψ(Z(t)

i−1)
}
diag{σ̂2(t)

i,1 , . . . , σ̂
2(t)
i,mi}

+ w̃
(t)
i−1Dψ′(Z(t)

i−1)Σ̂(t)
i−1Dψ′(Z(t)

i−1)(w̃(t)
i−1)T ,

(3.17)

for i = 2, 3, . . . , h + 1. For the SVR layer, the asymptotic normality of Z
(t)
1 can be jus-

tified based on [ 109 ], which gives a Bayesian interpretation to the classical SVR with

an ε-intensive loss function. Let f(x) = βTϕ(x) + b denote a SVR function, and let

{(x(1), y(1)), . . . , (x(n), y(n))} denote training samples.

In [ 109 ], the authors treated (f(x(1)), f(x(2)), . . . , f(x(n))) as a random vector subject to a

functional Gaussian process prior, and showed that the posterior of f(z) can be approximated

by a Gaussian distribution with mean f ∗(z) and variance

σ2
f (z) = Kz,z −KT

XM ,zK
−1
XM ,XM

KXM ,z, (3.18)

where f ∗(·) denotes the optimal regression function fitted by SVR, XM = {x(s) : |y(s) −

f (t)(x(s))| = ε} denotes the set of marginal vectors, and KA,B denotes a kernel matrix with

elements formed by variables in A versus variables in B. By this result, conditioned on

the training samples, Z
(t)
1 is approximately Gaussian with the covariance matrix given by

diag{σ2(t)
f1 (z), . . . , σ2(t)

fm1
(z)}.

For the output and other hidden layers, we can restrict mi ≺
√
n for each layer i ∈

{1, 2, . . . , h}. Then, by the theory of [ 53 ] which allows the dimension of the parameters

diverging with the training sample size, Z
(t)
i+1 is asymptotically Gaussian.

Let Yz denote the unknown true observation at the test point z, and let ξ̂(t)(z) = Z
(t)
h+1

denote its K-StoNet prediction with the parameters θ(t)
n . Then the variance of Yz − ξ̂(z) can

be approximated by

V̂ar(Yz − ξ̂(z)) = 1
n

n∑
i=1

(y(i) − ξ̂(t)(x(i)))(y(i) − ξ̂(t)(x(i)))T + Σ̂(t)
h+1, (3.19)
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based on which the prediction interval for Yz can be constructed at a desired confidence

level. Further, by Theorem  3.1.3 , a more accurate confidence interval can be obtained by

averaging over those obtained at different iterations.

The above procedure can be easily extended to the probit/logistic regression (via Wald/end-

point transformation) and the case that an amenable penalty is used in solving (  3.15 ). Refer

to [  110 ] for asymptotic normality of the regularized estimators.

3.4.2 A Numerical Example

To illustrate the above procedure, we generated 100 training datasets and one test dataset

as in Section  3.2.2 . Each dataset consisted of 500 samples. Again, we modeled the data using

a K-StoNet with one hidden layer and 5 hidden units. For each training dataset, we trained

the model by IRO for 50 epochs. For each test point z, a 95% prediction interval was

constructed based on each training dataset according to the prediction variance calculated

in (  3.19 ) at the last epoch of the run, and the coverage rate was calculated by averaging

over the coverage status (0 or 1) of the 100 prediction intervals. Further, we averaged the

coverage rates over 500 test points, which produced a mean coverage rate of 93.812% with

standard deviation 0.781%. It is very close to the nominal level 95%! Figure  3.8 shows the

prediction intervals at 20 test points, which were obtained at the last epoch of an IRO run

for a training dataset.

For each test point, we have also constructed a prediction interval based on each training

dataset by averaging those obtained at the last 25 epochs. As a result, the mean coverage

rate over the 500 test points was improved to 94.026% with standard deviation 0.771%.

3.5 Parameter Settings for K-StoNet

In all computations of this chapter except for the CoverType experiments, the RBF

kernel k(x,x′) = exp(−γ∥x − x′∥2
2) is used, where γ is set to the default value 1

pVar(x) , p is

the dimension of x, and Var(x) is the variance of x. We have the following default values

for the parameters: one hidden layer, 5 hidden units, Cn = C̃
(t)
n,1 = 10 for all t, ε = 0.01,

tHMC = 25, α = 0.1, σ2
n,2 = 0.01, and the learning rate ϵt,i = 5e − 4 for all t and i. The
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Figure 3.8. 95% prediction intervals produced by K-StoNet for 20 test points,
where the x-axis indexes the test points, the y-axis represents the response
value, and the blue star represents the true observation.
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parameter settings may vary around the default values to achieve better performance for the

K-StoNet model.

Section  3.2.1 : Simulated DNN Data. Network: Cn = 1 for the SVR layer, σ2
n,2 = 0.001

for the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 7 for all t and i;

parameter updating: for all t and i, (i) SVR with C̃(t)
n,1 = 1 and ε = 0.1, (ii) linear regression

with a Lasso penalty and the regularization parameter λ(t)
n,i = 1e − 4.

Section  3.2.1 : Simulated KNN Data. Network: Cn = 5 for the SVR layer, σ2
n,2 = 0.001

for the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 4 for all t and i;

parameter updating: for all t and i, (i) SVR with C̃(t)
n,1 = 5 and ε = 0.01, (ii) linear regression

with a Lasso penalty and the regularization parameter λ(t)
n,i = 1e − 4.

Section  3.2.2 : Measurement error data. For both the one-hidden layer and three-hidden

layer K-StoNets, the parameters were set as follows: Network: Cn = 1 for the SVR layer,

σ2
n,i = 0.001 for layers i = 2, . . . , h, and σ2

n,h+1 = 0.01; HMC imputation: tHMC = 25, α = 1,

and ϵt,i = 5e−5 for all t and i; parameter updating: for all t and i, (i) SVR with C̃(t)
n,1 = 1 and

ε ∈ {0.01, 0.02, . . . , 0.1}, (ii) linear regression with a Lasso penalty and the regularization

parameter λ(t)
n,i = 1e − 4.

Section  3.3.1 : QSAR Androgen Receptor. Network: Cn = 1 for the SVR layer, σ2
n,2 =

0.001 for the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 5 for all

t and i; parameter updating: for all t and i, (i) SVR with C̃
(t)
n,1 = 1 and ε = 0.1, (ii) logistic

regression with a Lasso penalty and the regularization parameter λ(t)
n,i = 1e − 4.

Section  3.3.2 : MNIST Data. Network: Cn = 10 for the SVR layer, σ2
n,2 = 1e − 9 for

the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 13 for all t and i;

parameter updating: for all t and i, (i) SVR with C̃(t)
n,1 = 10 and ε = 0.0001, (ii) multinomial

logistic regression with a Lasso penalty and the regularization parameter λ(t)
n,i = 1e − 4.

Section  3.3.3 : CoverType Data. Network: Cn = 10 for the SVR layer, σ2
n,2 = 0.005 for

the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 5 for all t and i;

parameter updating: for all t and i, (i) SVR with C̃
(t)
n,1 = 10 and ε = 0.01. (ii) multinomial

logistic regression with a Lasso penalty and the regularization parameter λ(t)
n,i = 1e − 4.

This dataset consists of 44 binary features. When applying the RBF kernel k(x,x′) =

exp(−γ∥x − x′∥2
2), the default choice γ = 1

pVar(x) does not work well. Different values of
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γ were used for different SVRs in the K-StoNet model. Let γi denote the γ-value used for

the SVR corresponding to the i-th hidden unit. We set γi = 0.5 for 1 ≤ i < 30, γi = 1 for

30 ≤ i < 40, γi = 2 for 40 ≤ i < 45, and γi = 5 for 45 ≤ i ≤ 50.

Section  3.3.4 : For all 10 datasets except for Yacht Hydrodynamic and Year Prediction

MSD, we set σ2
n,2 = 0.01, tHMC = 25, α = 0.1, and ϵt,i = 5e − 4 for all t and i. For the

SVRs in the first layer, we set ϵ = 0.01. We used 1
9 of the training data as the validation set

and chose C̃(t)
n,1 ∈ 1, 2, 5, 10, 20 with the smallest MSE on the validation set. For the dataset

Yacht Hydrodynamic, we set σ2
n,2 = 0.0001, α = 0.1, ϵt,i = 5e − 6 and C̃

(t)
n,1 = 200. For the

dataset Year Prediction MSD, we set σ2
n,2 = 0.02, α = 0.1, ϵt,i = 1e−3 and C̃(t)

n,1 = 1. Similar

to the CoverType dataset, when some categorical features exist in the dataset, the default

choice γ = 1
pVar(x) in the RBF kernel does not work very well. Among the 10 datasets, we

set γ = 3 for Yacht Hydrodynamic, γ = 1 for Protein Structure, and employed the default

setting for the others.

The KNN model was trained in a similar setting as used for the probabilistic back-

propagation method in [ 107 ]: we used a one-hidden layer model with 50 hidden units, and

trained the model using SGD with a constant learning rate of 0.0001 and a momentum decay

factor of 0.9. As in [ 107 ], we ran SGD for 40 epochs with a mini-batch size of 1.

Section  3.4.2 : Prediction Interval. Network: Cn = 10 for the SVR layer, σ2
n,2 = 0.001

for the output layer; HMC imputation: tHMC = 25, α = 0.1, and ϵt,i = 5e − 6 for all t

and i; parameter updating: for all t and i, (i) SVR with C̃
(t)
n,1 = 10 and ε = 0.05, (ii) linear

regression, OLS estimation.

3.6 Discussion

We have proposed K-StoNet as a new neural network model for machine learning. The

K-StoNet incorporates SVR as the first hidden layer and reformulates the neural network

as a latent variable model. The former maps the input variable into an infinite dimensional

feature space via the RBF kernel, ensuring absence of local minima on the loss surface

of the resulting neural network. The latter breaks the high-dimensional nonconvex neural

network training problem into a series of lower-dimensional convex optimization problems. In
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addition, the use of kernel partially addresses the over-parameterization issue suffered by the

DNN; it enables a smaller network to be used, while ensuring the universal approximation

capability. The K-StoNet can be easily trained using the IRO algorithm. Compared to

DNN, K-StoNet avoids local traps, and enables the prediction uncertainty easily assessed.

Compared to SVR, K-StoNet has better approximation capability due to the added hidden

units. Our numerical results indicate its superiority over SVR and DNN in both training

and prediction.

As an important ingredient of K-StoNet, StoNet is itself of interest. Under the framework

of StoNet, the existing statistical theory for SVR and high-dimensional generalized linear

models can be easily incorporated into the development of deep learning.

As another important ingredient of K-StoNet, kernel has long been studied in machine

learning as a function approximation tool. It is known that, with “kernel trick”, kernel

methods enable a classifier/regression to learn a complex decision boundary with only a

small number of parameters. To enhance their flexibility, some researchers proposed the so-

called deep kernel learning methods, where one kernel function is repeatedly concatenated

with another kernel or nonlinear function, see e.g. [  111 ]–[ 117 ]. Under some conditions,

[ 113 ] showed that the upper bound of generalization error for deep multiple kernels can be

significantly lower than that for the DNNs. However, unlike shallow kernel methods such

as SVM and SVR [ 31 ], [ 32 ], [ 118 ], coefficient estimation for deep kernels is not convex any

more. Estimating coefficients of the inner layer kernel can be highly nonlinear and becomes

more complicated for a larger number of layers [  117 ]. By introducing latent variables, this

work provides an effective way to resolve the computational challenge suffered by deep kernel

learning. K-StoNet is essentially a deep kernel learning method.

The K-StoNet can be further extended in many different ways. Instead of relying on a

SVR solver, K-StoNet can be implemented as a StoNet with the gram matrix being treated

as input data. In this case, although a large-scale gram matrix needs to be handled when

the training sample size is large, different kernels can be adopted for different tasks. For

example, one might employ the convolutional kernel developed in [  114 ] for computer vision

problems. As discussed in Section  3.1.3 , the regression in the output and other hidden
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layers can also be regularized by different amenable penalties [  95 ], some of which might lead

to better selection properties than Lasso.

The K-StoNet has an embarrassingly parallel structure; that is, solving K-StoNet can be

broken into to many parallel tasks that can be solved with little or no need for communi-

cations. More precisely, the imputation step can be done in parallel for each observation;

and the parameter updating step can be done in parallel for each of the regression tasks,

including both SVR and Lasso regression. If both steps are implemented in parallel, the

computation can be greatly accelerated. Currently, parallelization has not yet been com-

pleted: the imputation step was implemented in PyTorch, where the imputation for each

observation was done in a serial manner; the parameter updating step was implemented

using the package sklearn[ 119 ] for the normal or logistic regression and ThunderSVM [ 120 ]

for SVR, where the regression was solved one by one. On a machine with Intel(R) Xeon(R)

Silver 4110 CPU @ 2.10GHz and Nvidia Tesla P100 GPU, for a dataset with n = 10000

and p = 54 and a 1-hidden layer K-StoNet with 5 hidden units, one iteration/epoch cost

less than half a minute in the current serial implementation. Therefore, all the examples

presented in this chapter can be done reasonably fast on the machine. We expect that the

computation can be much accelerated with a parallel implementation of K-StoNet.

As mentioned in Section  3.1.3 , a scalable SVR solver will accelerate the computation of

K-StoNet substantially. The scalable SVR can be developed in different ways. For example,

[ 121 ] developed ParitoSVR — a parallel iterated optimizer for SVR, where each machine

iteratively solves a small (sub-)problem based only on a subset data and these solutions are

then combined to form the solution to the global problem. ParitoSVR is provably convergent

to the results obtained from the centralized algorithm, where the optimization has access to

the entire data set. Alternatively, one can implement SVR in an incremental manner [ 122 ]–

[ 125 ], where a SVR is first learned with a subset data and then sequentially updated based

on the remaining set of samples. By the property that the decision function of SVR depends

on support vectors only, [ 124 ] proposed to use only the boundary vectors in the remaining

set of samples. By the same property, [ 125 ] proposed a sample selection method for SVR

to maximize its validation set accuracy at the minimum number of training examples. As

shown in [ 124 ], [  125 ], both methods can accelerate the computation of SVR substantially.
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3.7 Technical Proofs

3.7.1 Proof of Theorem  3.1.2 

Proof. Since Θ is compact, it suffices to prove that the consistency holds for any θ ∈ Θ. For

notational simplicity, we rewrite σn,i by σi in the remaining part of the proof.

Let Y mis = (Y 1,Y 2, . . . ,Y h), where Y i’s are latent variables as defined in ( 3.5 ). Let

Ỹ = (Ỹ 1, . . . , Ỹ h), where Ỹ i’s are calculated by KNN in ( 3.3 ). By Taylor expansion, we

have

logπ(Y ,Y mis|X,θ) = log π(Y , Ỹ |X,θ) + ϵT∇Y mis log π(Y , Ỹ |X,θ) +O(∥ϵ∥2), (3.20)

where ϵ = Y mis − Ỹ = (ϵ1, ϵ2, . . . , ϵh), ∇Y mis log π(Y , Ỹ |X,θ) is evaluated according to

the joint distribution ( 3.10 ), and log π(Y , Ỹ |X,θ) = log π(Y |X,θ) is the log-likelihood

function of the KNN.

Consider the partial derivative ∇Y i log π(Y ,Y mis|X,θ), for whose single component, say

Y
(k)

i , the output of neuron k at hidden layer i ∈ {2, 3, . . . , h}, we have

∇
Y

(k)
i

log π(Y ,Y mis|X,θ) = 1
σ2

i+1

mi+1∑
j=1

(
Y

(j)
i+1 − b

(j)
i+1 − w

(j)
i+1ψ(Y i)

)
w

(j,k)
i+1 ψ

′(Y (k)
i )

− 1
σ2

i
(Y (k)

i − b
(k)
i − w

(k)
i ψ(Y i−1)),

(3.21)

where w
(j)
i+1 denotes the vector of the weights from neuron j at layer i + 1 to the neurons at

layer i, and w(j,k)
i+1 denotes the weight from neuron j at layer i + 1 to neuron k at layer i. For

layer i = 1, the second term of ( 3.21 ) will disappear, since the ϵ-intensive loss is a constant

around zero.

Since Y (j)
i+1 = b

(j)
i+1 + w

(j)
i+1ψ(Y i) + e(j)

i+1 and Ỹ (k)
i = b

(k)
i + w

(k)
i ψ(Ỹ i−1), we have, for any k ∈

{1, 2, . . . ,mi}, ∇
Y

(k)
i

log π(Y , Ỹ |X,θ) = 1
σ2

i+1

∑mi+1
j=1

(
e(j)

i+1+w
(j)
i+1(ψ(Y i)−ψ(Ỹ i))

)
w

(j,k)
i+1 ψ

′(Ỹi,k)

if i = h, and 0 otherwise. Then, by Assumption  3.1.2 -(i)&(iii), for any k ∈ {1, 2, . . . ,mi},

|∇
Y

(k)
i

log π(Y , Ỹ |X,θ)| ≤


1

σ2
i+1

{∑mi+1
j=1 e(j)

i+1w
(j,k)
i+1 ψ

′(Ỹ (k)
i ) + (c′r)2mi+1∥ϵi∥

}
, i = h

0 i < h,

(3.22)
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where ϵi = Y i − Ỹ i, e(j)
i+1 is the jth component of ei+1, r is the upper bound of the weights,

and c′ is the Lipschitz constant of ψ(·) as well as the upper bound of ψ′(·).

Next, let’s figure out the order of ∥ϵi∥. The kth component of ϵi is given by

Y
(k)

i − Ỹ
(k)

i =


e(k)

i + w
(k)
i (ψ(Y i−1) − ψ(Ỹ i−1)), i > 1,

e(k)
i , i = 1.

Therefore, ∥ϵ1∥ = ∥e1∥; and for i = 2, 3, . . . , h, the following inequalities hold:

∥ϵi∥ ≤ ∥ei∥ + c′rmi∥ϵi−1∥, ∥ϵi∥2 ≤ 2∥ei∥2 + 2(c′r)2m2
i ∥ϵi−1∥2. (3.23)

Since ei and ei−1 are independent, by summarizing ( 3.22 ) and ( 3.23 ), we have∫
ϵT∇Y mis log π(Y , Ỹ |X,θ)π(Y mis|X,θ,Y )dY mis ≤ O

( h+1∑
k=2

σ2
k−1
σ2
h+1

mh+1(
h∏

i=k
m2

i )mk−1
)

= o(1),

(3.24)

where the last equality follows from  3.1.2 -(v). Then, by ( 3.20 ), we have the mean value

E [log π(Y ,Y mis|X,θ) − log π(Y |X,θ)] → 0, ∀θ ∈ Θ.

Further, it is easy to verify

∫
|ϵT∇Y mis log π(Y , Ỹ |X,θ)|2π(Y mis|X,θ,Y )dY mis < ∞,

which, together with ( 3.20 ) and ( 3.23 ), implies

E| log π(Y ,Y mis|X,θ) − log π(Y |X,θ)|2 < ∞. (3.25)

Therefore, the weak law of large numbers (WLLN) applies, and the proof can be concluded.

3.7.2 Proof of Lemma  3.1.2 

Lemma  3.1.2 is a direct application of Lemma  3.7.1 given below.

Lemma 3.7.1. Consider a function Q(θ,Xn). Suppose that the following conditions are

satisfied: (B1) Q(θ,Xn) is continuous in θ and there exists a function Q∗(θ), which is
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continuous in θ and uniquely maximized at θ∗. (B2) For any ϵ > 0, supθ∈Θ\B(ϵ) Q
∗(θ)

exists, where B(ϵ) = {θ : ∥θ − θ∗∥ < ϵ}; Let δ = Q∗(θ∗) − supθ∈Θ\B(ϵ) Q
∗(θ), then δ > 0.

(B3) supθ∈Θ |Q(θ,Xn) − Q∗(θ)| p→ 0 as n → ∞. Let θ̂n = arg maxθ∈Θ Q(θ,Xn). Then

∥θ̂n − θ∗∥ p→ 0.

Proof. Consider two events (i) supθ∈Θ\B(ϵ) |Q(θ,Xn) −Q∗(θ)| < δ/2, and

(ii) supθ∈B(ϵ) |Q(θ,Xn) − Q∗(θ)| < δ/2. From event (i), we can deduce that for any θ ∈

Θ \B(ϵ), Q(θ,Xn) < Q∗(θ) + δ/2 ≤ Q∗(θ∗) − δ + δ/2 ≤ Q∗(θ∗) − δ/2.

From event (ii), we can deduce that for any θ ∈ B(ϵ), Q(θ,Xn) > Q∗(θ) − δ/2 and thus

Q(θ∗,Xn) > Q∗(θ∗) − δ/2.

If both events hold simultaneously, then we must have θ̂n ∈ B(ϵ) as n → ∞. By condition

(B3), the probability that both events hold tends to 1. Therefore, P (θ̂n ∈ B(ϵ)) → 1, which

concludes the lemma.
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