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ABSTRACT

Over the past decade, distributed representation learning has emerged as a popular al-

ternative to conventional centralized machine learning training. The increasing interest

in distributed representation learning, specifically federated learning, can be attributed to

its fundamental property that promotes data privacy and communication savings. While

conventional ML encourages aggregating data at a central location (e.g., data centers), dis-

tributed representation learning advocates keeping data at the source and instead transmit-

ting model parameters across the network. However, since the advent of deep learning, model

sizes have become increasingly large often comprising million-billions of parameters, which

leads to the problem of communication latency in the learning process. In this thesis, we

propose to tackle the problem of communication latency in two different ways: (i) learning

private representation of data to enable its sharing, and (ii) reducing the communication

latency by minimizing the corresponding long-range communication requirements.

To tackle the former goal, we first start by studying the problem of learning represen-

tations that are private yet informative, i.e., providing information about intended “ally”

targets while hiding sensitive “adversary” attributes. We propose Exclusion-Inclusion Gen-

erative Adversarial Network (EIGAN), a generalized private representation learning (PRL)

architecture that accounts for multiple ally and adversary attributes, unlike existing PRL

solutions. We then address the practical constraints of the distributed datasets by developing

Distributed EIGAN (D-EIGAN), the first distributed PRL method that learns a private rep-

resentation at each node without transmitting the source data. We theoretically analyze the

behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact

of dependencies among ally and adversary tasks on the optimization objective. Our experi-

ments on various datasets demonstrate the advantages of EIGAN in terms of performance,

robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-

art by a significant accuracy margin (47% improvement), and D-EIGAN’s performance is

consistently on par with EIGAN under different network settings.

We next tackle the latter objective – reducing the communication latency – and propose

two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture
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that combines the conventional device-to-server communication paradigm for federated learn-

ing with device-to-device (D2D) communications for model training. In TT-HF, during each

global aggregation interval, devices (i) perform multiple stochastic gradient descent itera-

tions on their individual datasets, and (ii) aperiodically engage in consensus procedure of

their model parameters through cooperative, distributed D2D communications within local

clusters. With a new general definition of gradient diversity, we formally study the con-

vergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We

leverage our convergence bounds to develop an adaptive control algorithm that tunes the

step size, D2D communication rounds, and global aggregation period of TT-HF over time to

target a sublinear convergence rate of O(1/t) while minimizing network resource utilization.

Our subsequent experiments demonstrate that TT-HF significantly outperforms the current

art in federated learning in terms of model accuracy and/or network energy consumption in

different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our

numerical evaluations demonstrate robustness against outages caused by fading channels, as

well favorable performance with non-convex loss functions.
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1. INTRODUCTION

Machine learning (ML) techniques have exhibited widespread success in applications rang-

ing from computer vision [ 1 ], [ 2 ] to natural language processing [  3 ]–[ 6 ]. Traditionally, ML

model training has been conducted in a centralized manner, e.g., at data centers, where the

computational infrastructure and dataset required for training coexist. In many applications

(e.g., healthcare, Internet-of-Things (IoT)), however, the data required for model training is

generated at devices which are distributed across the edge of communications networks. As

the amount of data on each device increases, uplink transmission of local datasets to a main

server becomes bandwidth-intensive and time consuming, which is prohibitive in latency-

sensitive applications [ 7 ]. Latency problems could also arise because of the increasing size of

neural networks used for these applications [ 8 ]–[ 11 ]. Common examples include object detec-

tion for autonomous vehicles [ 12 ] and keyboard next-word prediction on smartphones [ 13 ],

each requiring rapid analysis of data generated from embedded sensors often using very large

neural networks. Also, in many applications, end users may not be willing to share their

datasets with a server due to privacy concerns [ 14 ], [  15 ] (discussed further in Chapter  1.2 ).

1.1 Federated Learning

Federated learning (FL) [ 16 ] has emerged as a popular distributed ML technique for

addressing these bandwidth [ 17 ] and privacy challenges [ 16 ], [  18 ], [  19 ]. A schematic of its

conventional architecture is given in Fig.  1.1 : in each iteration, each device trains a local

model based on its own dataset, often using (stochastic) gradient descent. The devices then

upload their local models to the server, which aggregates them into a global model, often

using a weighted average, and synchronizes the devices with this new model to initiate the

next round of local training.

Although widespread deployment of federated learning is desired [ 20 ], [ 21 ], its conven-

tional architecture in Fig.  1.1 poses challenges for the wireless edge: the devices comprising

the Internet of Things (IoT) may exhibit significant heterogeneity in their computational

resources (e.g., a high-powered drone compared to a low-powered smartphone) [ 22 ]; addi-

tionally, the devices may exhibit varying proximity to the server (e.g., varying distances from
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Figure 1.1. Conventional federated learning. In each training round, devices
perform local model updates based on local datasets, followed by an aggrega-
tion at the main server to compute the global model, which is broadcast to the
devices for the next round of local updates.

smartphones to the base station in a cell), which may cause significant energy consumption

for upstream data transmission [ 23 ].

To mitigate the cost of uplink and downlink transmissions, local model training coupled

with periodic but infrequent global aggregations has been proposed [ 22 ], [ 24 ], [ 25 ]. Yet,

the local datasets may exhibit significant heterogeneity in their statistical distributions [ 26 ],

resulting in learned models that may be biased towards local datasets, hence degrading the

global model accuracy [ 24 ].

In this setting, motivated by the need to mitigate divergence across the local models, we

study the problem of resource-efficient federated learning across heterogeneous local datasets

at the wireless edge. A key technology that we incorporate into our approach is device-to-

device (D2D) communications among edge devices, which is a localized version of peer-to-

peer (P2P) among direct physical connections. D2D communications is being envisioned in

fog computing and IoT systems through 5G wireless [ 7 ], [  26 ], [  27 ]; indeed, it is expected that

50% of all network connections will be machine-to-machine by 2023 [ 26 ]. Through D2D, we

design a consensus mechanism to mitigate model divergence via low-power communications

among nearby devices. We call our approach two timescale hybrid federated learning (TT-HF),

since it (i) involves a hybrid between device-to-device and device-to-server communications,

and (ii) incorporates two timescales for model training: iterations of stochastic gradient de-

scent at individual devices, and rounds of cooperative D2D communications within clusters.

By inducing consensus in the local models within a cluster of devices, TT-HF promises re-

source efficiency, as we will show both theoretically and by simulation, since only one device

from the cluster needs to upload the cluster model to the server during global aggregation,
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Figure 1.2. Network architecture of semi-decentralized federated learning.
Edge devices form local cluster topologies based on their D2D communication
capability. Cooperative local model aggregations among these clusters occur
using D2D communications in between global aggregations conducted by the
server.

as opposed to the conventional federated learning architecture, where most of the devices

are required to upload their local models [ 18 ]. Specifically, during the local update interval

in federated learning, devices can systematically share their model parameters with others

in their neighborhood to form a distributed consensus among each cluster of edge devices.

Then, at the end of each local training interval, assuming that each device’s model now re-

flects the consensus of its cluster, the main server can randomly sample just one device from

each cluster for the global aggregation. We call our approach two timescale hybrid federated

learning (TT-HF), since it (i) involves a hybrid between device-to-device and device-to-server

communications, and (ii) incorporates two timescales for model training: iterations of gra-

dient descent at individual devices, and rounds of cooperative D2D communications within

clusters.

TT-HF migrates from the “star” topology of conventional federated learning in Fig.  1.1 to

a semi-decentralized learning architecture, shown in Fig.  1.2 , that includes local topologies

between edge devices, as advocated in the new “fog learning” paradigm [ 26 ]. In doing so, we

must carefully consider the relationships between device-level stochastic gradient updates,

cluster-level consensus procedure, and network-level global aggregations. We quantify these

relationships in this work, and use them to tune the lengths of each local update and con-

sensus period. As we will see, the result is a version of federated learning which optimizes
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the global model convergence characteristics while minimizing the uplink communication

requirement in the system.

1.2 Privacy in Machine Learning

Training machine learning (ML) models often requires sharing data among multiple par-

ties, e.g., cloud services aggregating data from multiple users to learn a global model. Such

data sharing naturally raises concerns [ 28 ], [ 29 ] about exposing sensitive user attributes in

datasets. It is thus imperative that both data aggregators and users engage in/propose

procedures that minimize leakage of sensitive information.

A widely used technique for obfuscating sensitive attributes in data is context-agnostic

noise injection (e.g. Laplace mechanism) [ 30 ], that introduces additive noise into a dataset

to provide membership security [ 31 ]. However, noise injection can impact ML training

and inference significantly [  32 ]. This makes such context-agnostic techniques unsuitable in

scenarios where only a few attributes need to be concealed. For example, upon sharing

patient data for preventive healthcare [ 33 ], [  34 ], both privacy (e.g., gender anonymization)

and predictivity (e.g., accurate diagnosis) are desirable.

These drawbacks of context-agnostic privacy measures motivate private representation

learning (PRL) [ 35 ], which exploits the knowledge of sensitive attributes in a dataset. PRL

considers privacy and predictivity as joint (and possibly competing) objectives, and learns a

transformation on the data that balances the goals of (i) obfuscating sensitive attributes of

interest to an “adversary” while (ii) preserving predictivity on intended targets for an “ally”

[ 36 ].

Conventionally, the literature on PRL assumes the existence of a single sensitive attribute

and a central dataset [ 35 ], [ 37 ]–[ 39 ]. However, most real-world datasets have multiple sen-

sitive attributes and are collected across multiple distributed nodes. Healthcare records,

for example, are (i) spread across hospitals in different regions, (ii) consist of potentially

multiple sensitive attributes, such as mental health, gender, ethnicity, etc., and (iii) may

have varying notions of privacy that vary from one region to another, e.g., while in Europe

racial/ethnic origin are considered as sensitive information (as per GDPR), in USA they are
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Figure 1.3. (a) Architecture of a single EIGAN node, consisting of an encoder,
n ally, and m adversary networks. (b) D-EIGAN system for distributed EIGAN
training, consisting of K different EIGAN nodes, each with their own subset of the
full dataset. The nodes must coordinate their local encodings via a parameter server.

not (as per HIPAA). These challenges call for a generalized and distributed PRL methodol-

ogy that takes into account multiple sensitive attributes, trains on data distributed across

nodes, and learns representations that incorporate the privacy/predictivity goals of each

node. Communication-efficiency is also a key objective in distributed learning, particularly

when it is being deployed in network settings where nodes are restricted to communicate

over limited-bandwidth links [ 40 ], [  41 ], e.g., remote health analytics across user devices [ 42 ].

In this paper, we propose a novel PRL architecture called Exclusion-Inclusion Gen-

erative Adversarial Network (EIGAN), which addresses the aforementioned chal-

lenges. EIGAN is a generalized PRL technique designed to generate encodings “inclusive”

of signals that are of utility to a set of allies, while “exclusive” of signals that can be used by

adversaries to recover sensitive attributes. Further, to address the privacy vulnerabilities of

pooling raw data, we develop D-EIGAN (for Distributed-EIGAN), where multiple EIGAN

nodes train encoders on their local datasets and synchronize their model parameters period-

ically, as depicted in Fig.  1.3 . D-EIGAN implements distributed training without noticeable

model degradation compared to the centralized EIGAN, while accounting for realistic factors

of communication constraints and non-i.i.d data distributions across nodes.
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1.3 Related work.

1.3.1 Federated Learning

A multitude of works on federated learning have emerged in the past few years, addressing

various aspects, such as communication and computation constraints of wireless devices [ 23 ],

[ 43 ]–[ 45 ], multi-task learning [ 46 ]–[ 48 ], and personalized model training [ 49 ], [ 50 ]. We refer

the reader to e.g., [ 51 ], [  52 ] for comprehensive surveys of the federated learning literature; in

Chapter  1.3.2 &  1.3.3 , we further discuss the works addressing resource efficiency, statistical

data heterogeneity, and cooperative learning.

1.3.2 Communication Efficiency

In terms of wireless communication efficiency, several works have investigated the impact

of performing multiple rounds of local gradient updates in-between consecutive global aggre-

gations [ 24 ], [ 53 ], including optimizing the aggregation period according to a total resource

budget [ 24 ]. To further reduce the demand for global aggregations, [ 54 ] proposed a hierar-

chical system model for federated learning where edge servers are utilized for partial global

aggregations.

Model quantization [ 55 ] and sparsification [  56 ] techniques have also been proposed. As

compared to above works, we propose a semi-decentralized architecture, where D2D commu-

nications are used to exchange model parameters among the nodes in conjunction with global

aggregations. We show that our framework can reduce the frequency of global aggregations

and result in network resource savings.

1.3.3 FL under Heterogeneous Data Distribution

Other works have considered improving model training in the presence of heterogeneous

data among the devices via raw data sharing [ 22 ], [ 57 ]–[ 59 ]. In [ 57 ], the authors propose

uploading portions of the local datasets to the server, which is then used to augment global

model training. The works [ 22 ], [ 58 ], [ 59 ] mitigate local data heterogeneity by enabling the

server to share a portion of its aggregated data among the devices [ 59 ], or by optimizing
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D2D data offloading [  22 ], [ 58 ]. However, raw data sharing may suffer from privacy concerns

or bandwidth limitations. In our TT-HL framework, we exploit D2D communications to

exchange model parameters among the devices, which alleviates such concerns.

Different from the above works discussed in Chapter  1.3.1 ,  1.3.2 , &  1.3.3 , we propose

TT-HF that addresses the communication efficiency and data heterogeneity challenges simul-

taneously. To do this, we introduce distributed cooperative learning among devices into the

local update process – as advocated recently [ 26 ] – resulting in a novel system architecture

with D2D-augmented learning. In this regard, the most relevant work is [  40 ], which also

studies cluster-based consensus procedure between global aggregations in federated learning.

Different from [ 40 ], we consider the case where (i) devices may conduct multiple (stochastic)

gradient iterations between global aggregations, (ii) the global aggregations are aperiodic,

and (iii) consensus procedure among the devices may occur aperiodically during each global

aggregation. We further introduce a new metric of gradient diversity that extends the pre-

vious existing definition in literature. Doing so leads to a more complex system model,

which we analyze to provide improvements to resource efficiency and model convergence.

Consequently, the techniques used in the convergence analysis and the bound obtained differ

significantly from [ 40 ]. There is also an emerging set of works on fully decentralized (server-

less) federated learning [ 60 ]–[ 63 ]. However, these architectures require a well-connected

communication graph among all the devices in the network, which may not be scalable to

large-scale systems where devices from various regions/countries are involved in ML model

training. Our work can be seen as intermediate between the star topology assumed in con-

ventional federated learning and fully decentralized architectures, and constitutes a novel

semi-decentralized learning architecture that mitigates the cost of resource intensive up-

link communications of conventional server-based methods over star topologies, achieved via

local low-power D2D communications, while improving scalability over fully decentralized

server-less architectures.

Finally, note that there is a well-developed literature on consensus-based optimization,

e.g., [ 64 ]–[ 67 ]. Our work employs the distributed average consensus technique and exploits

that in a new semi-decentralized machine learning architecture and contributes new results

on distributed ML to this literature.
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1.3.4 Private Representation Learning

Most of the recent works in PRL [ 35 ], [ 37 ], [ 38 ], [ 68 ], [ 69 ] have only proposed a cen-

tralized architectures that jointly maximize the loss in predicting sensitive attributes while

minimizing the loss of target task prediction. Specifically, [  35 ] proposed a three-network

encoder-ally-adversary architecture and showed that the achievable tradeoff between the

two objectives is better than that provided by DP. In [ 37 ], the problem was formulated as a

non-zero-sum game between the three networks to minimize information leakage in encoded

image representations. [  38 ] experimentally outperform [ 37 ], [ 70 ]–[ 72 ] using a minimax opti-

mization among three networks, and derive its closed-form solution when the networks are

linear maps. We demonstrate that EIGAN converges to the optimal performance obtained

by these closed form solutions. However, unlike the closed form solution in [ 38 ], EIGAN can

be extended to account for multiple ally and adversary attributes. Furthermore, EIGAN has

computational advantage over [ 38 ] as it does not depend on matrix inversions, and thus can

work with higher dimensional data.

Other PRL works take an information-theoretic approach. [ 39 ] view PRL as minimiza-

tion of the utility lost in the learned representation, subject to an upper bound on mutual

information between the output representation and the sensitive attribute. Similarly, [ 73 ]

formulate the minimax problem in terms of KL-divergence. EIGAN, on the other hand,

considers a cross-entropy PRL formulation, which promotes interpretability and training

stability over multiple objectives (discussed in Chapter  2.2 ). Furthermore, our experiments

show that EIGAN significantly outperforms the state-of-the-art [  39 ] in the single ally/ad-

versary case. Distinct from all prior work in PRL, we consider multiple sensitive attributes

and distributed learning.

1.3.5 Fair Representation Learning & Synthetic Data Generation

There are two other related directions in adversarial learning. One addresses privacy-

preservation through synthetic data generation [  74 ], [ 75 ], which differs from EIGAN’s goal of

learning a transformation. The other is fair representation learning [ 76 ]–[ 78 ], which seeks to
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learn intrinsically fair representations that promote demographic parity on a single attribute

[ 79 ].

1.4 Outline and Summary of Contributions

In this thesis, we present two different set of contributions in the domain of distributed

representation learning. Firstly, in developing EIGAN and D-EIGAN for private represen-

tation learning, our main contributions are:

1. We introduce EIGAN (Chapter  2.2 ), generalizing PRL to account for multiple target

and sensitive attributes. We prove that EIGAN’s encoder utility is maximized if the

adversary outputs follow a uniform distribution, and consider the effect of correlations

between ally and adversary objectives (Proposition  1 ).

2. To the best of our knowledge, D-EIGAN (Chapter  2.3 ) is the first technique for dis-

tributed training of PRL models. We show that when the nodes engaged in the train-

ing possess independent and identically distributed (i.i.d) datasets, the objective of

D-EIGAN exhibits similar properties to EIGAN (Proposition  3 ).

3. Our experiments (Chapter  2.4 ) reveal that EIGAN significantly outperforms the state-

of-the-art in PRL (Table  2.1 , Fig.  2.9 ) and is robust to the choice of adversary ar-

chitectures (Table  2.3 ). We also demonstrate that D-EIGAN matches the perfor-

mance of EIGAN even as the number of nodes increases (Fig.  2.13 ), and is robust

even when nodes have different objectives (Fig.  2.15 ). We further show the resilience

of D-EIGAN to non-i.i.d data distributions across nodes, and under communication

restrictions that require partial parameter sharing and delayed model aggregations in

the system (Fig.  2.17 ).

Next, in developing TT-HF, we summarize our main contributions as:

1. We propose two timescale hybrid federated learning (TT-HF), which augments the con-

ventional federated learning architecture with aperiodic consensus procedure of models

within local device clusters and aperiodic global aggregations by the server (Chapter

 3.1 ).
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2. We propose a new model of gradient diversity, and theoretically investigate the con-

vergence behavior of TT-HF through techniques including coupled dynamic systems

(Chapter  3.2 ). Our bounds quantify how properties of the ML model, device datasets,

consensus process, and global aggregations impact the convergence speed of TT-HF.

In doing so, we obtain a set of conditions under which TT-HF converges at a rate of

O(1/t), similar to centralized stochastic gradient descent.

3. We develop an adaptive control algorithm for TT-HF that tunes the global aggregation

intervals, the rounds of D2D performed by each cluster, and the learning rate over

time to minimize a trade-off between energy consumption, delay, and model accuracy

(Chapter  3.3 ). This control algorithm obtains the O(1/t) convergence rate by including

our derived conditions as constraints in the optimization.

4. Our subsequent experiments on popular learning tasks (Chapter  3.4 ) verify that TT-HF

outperforms federated learning with infrequent global aggregations, which is commonly

used in literature, substantially in terms of resource consumption and/or training time

over D2D-enabled wireless devices. They also confirm that the control algorithm is

able to address resource limitations and data heterogeneity across devices by adapting

the local and global aggregation periods.
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2. EXCLUSION-INCLUSION GENERATIVE ADVERSARIAL

NETWORK

©2021 NeurIPS. Reprinted with permission from S. S. Azam, T. Kim, S. Hosseinalipour,
C. Joe-Wong, S. Bagchi, and C. G. Brinton, A Generalized and Distributable Generative
Model for Private Representation Learning., In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications [ 80 ].

2.1 Overview

Our PRL methodology consists of two phases: training and testing. In the training

phase, EIGAN – knowing the sensitive/target labels of interest to adversary/ally on the train

dataset – aims to learn the encoder by simulating allies and adversaries. Each of the allies,

adversaries, and encoder independently maximize their own utilities by updating their local

model parameters. The selfish maximization by each player naturally leads to the minimax

optimization in ( 2.2 ). In the testing phase, the test data undergoes a transformation through

the trained encoder. The transformed data is used for conventional training and inference

by the actual allies and adversaries on their respective tasks of interest.

In Chapter  2.2 , we present the EIGAN formulation for centralized model training, and

derive properties of the solution. Then, we extend it to the distributed learning case, D-

EIGAN, in Chapter  2.3 .

2.2 EIGAN: Centralized Model Architecture

We first consider a system consisting of n allies, indexed A1, ..., An; and m adversaries,

indexed V1, ..., Vm. Ally Ai is characterized by model parameters θAi and a set of target

attributes/labels YAi drawn from distribution Y
Ai

. Ai aims to associate each input sample

with its corresponding target attribute in YAi . Similarly, adversary Vj parameterized by

θVj wishes to associate input samples with a set of (known) sensitive attributes/labels YVj

following distribution YVj .
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The goal of EIGAN is to learn an encoder E parameterized by θE that maximizes the

performance of A1, ..., An while minimizing the performance of V1, ..., Vm. The encoder uses

a centrally-located dataset X consisting of N samples, where each sample is represented as

a d-dimensional feature vector xj ∈ Rd, j = 1, ..., N . We let E(x; θE) denote the output of

the encoder for a data sample x realized via the parameters θE. E(x; θE) : Rd → Rl is in

general a non-linear differentiable function (e.g., a neural network), where l is the dimension

of the representation output by the encoder, and typically l ≤ d.

For x∈X , the encoded representation E(x; θE) is what the allies A1, .., An and adversaries

V1, .., Vm are provided with for their tasks, as depicted in Fig.  1.3 (a). We quantify the utilities

of the allies and adversaries as:

u
Ai

= EY∼Y
Ai

[
log

(
p
Ai

(Y |E(X ; θE))
)]
, 1 ≤ i ≤ n,

u
Vj

= EY∼Y
Vj

[
log

(
p
Vj

(Y |E(X ; θE))
)]
, 1 ≤ j ≤ m,

(2.1)

where p
Ai

(Y |E(X ; θE)) and p
Vj

(Y |E(X ; θE)) denote the probabilities of successful inference

of target labels Y ∼ YAi and sensitive labels Y ∼ YVj for ally Ai and adversary Vj, respec-

tively, over the outputs that the encoder E provides for the dataset X . This leads to our

minimax game among three types of players, in which two (the encoder and allies) are collud-

ing against the third (the adversary). Specifically, we formulate the optimization problem:

min
θV ={θVj}

m
j=1

max
θE ,θA={θAi}

n
i=1

U(θE, θA, θV ), (2.2)

where

U(θE, θA, θV ) =
n∑

i=1
α
Ai
u
Ai
−

m∑
j=1

α
Vj
u
Vj
. (2.3)

Here, α
Ai
, α

Vj
> 0 denote normalized importance parameters placed on each objective such

that ∑n
i=1 αAi +∑m

j=1 αVj = 1. Similar to the encoder, we assume that the ally and adversary

are non-linear, differentiable functions. The encoder in (  2.2 ) seeks to maximize the achievable

utility of the allies while minimizing those of the adversaries, operating in conjunction with

the allies in the inner max layer of ( 2.2 ). The adversaries then operate on the encoder result
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in the outer min layer, where each adversary Vj aims to maximize its utility u
Vj

by updating

θ
Vj

, as it cannot access other ally/adversary’s parameters directly.

It is worth noting that, similar to the formulation based on mutual information in [ 39 ],

our analysis on the expected posterior distribution of the predictions in EIGAN map directly

to interpretable metrics such as accuracy [ 81 ] and generalization error [ 82 ], instead of the

worst case guarantees provided by context-agnostic privacy frameworks such as DP.

Intuitively, the encoder will attempt to diminish the adversary predictions to a random

guess, i.e., to a uniform distribution over its target labels [ 83 ]. However, this may be difficult

to achieve when the interests of the allies and adversaries are related, which makes the

weights α
Ai
, α

Vj
important to the minimax solution in (  2.2 ) formalized in the proposition

below:

Proposition 1. Let O denote the set of all (i, j) pairs of allies Ai and adversaries Vj for which

YAi ∩ YVj 6= ∅, i.e., overlapping interests. Given a fixed encoder E in EIGAN architecture,

if O = ∅, the overall score in ( 2.2 ) is maximized when the adversaries’ output predictions

follow a uniform distribution. On the other hand, if O 6= ∅, then for each overlapping label,

the architecture proposed by ( 2.2 ) considers the utility of the attributes that have the higher

importance weight, i.e., Ai if αAi > αVj and Vj if αAi < αVj.

Proof. Suppose ŶAi = p
Ai

(Y |E(X )) and ŶVj = p
Vj

(Y |E(X )), where p
Ai

(Y |E(X )) and

p
Vj

(Y |E(X )) denote the posterior probabilities of successful inference of target labels Y ∼ YAi

and sensitive labels Y ∼ YVj for ally Ai and adversary Vj, respectively, given the outputs

encoder E provides for the dataset X . Then, the utilities in ( 2.1 ) can be expressed as

u
Ai

= EY∼Y
Ai

[
log ŶAi

]
,

u
Vj

= EY∼Y
Vj

[
log ŶVj

]
,

(2.4)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let HQ = H(P,Q) denote the cross-entropy of Q with

respect to P defined as HQ = H(P,Q) = Ex∼P [− logQ], then (  2.4 ) can be re-stated as:

u
Ai

= −HAi = −H(Y ∼ YAi , ŶAi), 1 ≤ i ≤ n,

u
Vj

= −HVj = −H(Y ∼ YVj , ŶVj), 1 ≤ j ≤ m.
(2.5)
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The maximization of ally utilities uAi and minimization of adversary utilities uVj ∀i, j in the

optimization objective (  2.3 ) can be re-written as minimization of its negative given by,

U ′ = −
n∑

i=1
αAiuAi +

m∑
j=1

αVjuVj =
n∑

i=1
αAiHAi −

m∑
j=1

αVjHVj . (2.6)

Through ( 2.6 ), it can be observed that the minimization occurs when entropy of allies∑n
i=1 αAiHAi is minimized while that of adversaries ∑m

j=1 αVjHVj is maximized. Using the

definition of entropy, each of the allies and adversaries has a global optimum and can be

optimized separately if their labels are non-overlapping. Note that ally and adversary en-

tropies are non-negative, and given a fixed encoder E, the sum of ally entropies is minimized

when individual entropies are minimized. For each ally, individual entropy HAi is minimized

when ŶAi takes the value of 1 ∀i as every ally label is then predicted correctly. Similarly

for adversaries, each individual entropy HVj is maximized when ŶVj = 1/|YVj | is the uniform

distribution. Thus, it can be seen that, at the optimal solution, the adversaries’ output

follows a uniform distribution, as it minimizes the overall entropy in ( 2.6 ), or equivalently

maximizes the utility in ( 2.3 ).

Given that (Ai, Vj) ∈ O is the set of all (i, j) pairs of allies Ai and adversaries Vj for which

YAi ∩YVj 6= ∅, the ally and adversary objectives in ( 2.6 ) are overlapping if O 6= ∅. Given that

the encoder is fixed, for allies/adversaries not included in O, the associated utilities can be

independently optimized. We are thus left with the maximization of the following:

UO =
∑

(Ai,Vj)∈O
αAi · uAi − αVj · uVj . (2.7)

For the kth element in O, (Ai(k), Vj(k)), we have YAi(k)(c) = YVj(k)(c) ∀c ∈ Ck ∀k;, where Ck is

the set of indices of elements in YAi(k) ∩ YVj(k) 6= ∅. Separating the indices c for which the

ally/adversary try to predict the same label (i.e. uAi(c) = uVj(c)), we can express ( 2.7 ) as

follows:

UO =
∑
k

 ∑
c∈Ck

(αAi − αVj)uAi(c)︸ ︷︷ ︸
utility w.r.t. overlapping labels, UO+

+
∑
c/∈Ck

αAiuAi(c)− αVjuVj(c)︸ ︷︷ ︸
utility w.r.t. non-overlapping labels,UO−

.
(2.8)
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The utilities in (  2.8 ) reward only one of the two discriminators (Ai, Vj) ∈ O predicting on

overlapping label c ∈ C if αAi 6= αVj . If αAi = αVj for (Ai, Vj) ∈ O, then UO+ = 0, and no

optimization occurs w.r.t. the overlapping labels in Y ∼ YAi .

Proposition  1 shows that given an encoded representation, if the allies and adversaries

possess non-overlapping interests, then a uniform prediction distribution among the sensitive

parameters of interest to the adversaries is adopted by the optimal solution. In Section  2.4.1 ,

we consider an experiment with such overlapping interests and equal importance weights,

and find that EIGAN is unable to balance the objectives.

In practice, coincidental overlaps between ally and adversary interests would be relatively

rare, but could nonetheless occur. In such cases, EIGAN must balance predictivity and

privacy, which leads to different ally and adversary outputs described in Proposition  1 . We

further analyze EIGAN’s characteristics when there is a linear relationship between the

target distribution of an ally and an adversary:

Proposition 2. Assume that the number of labels of interest is the same among all the

allies and adversaries. For any adversary Vj, the distribution of its prediction over its set

of labels of interest does not follow a uniform distribution if sufficient weight is given to the

ally utilities (i.e., αAi, ∀Ai, is sufficiently large) and the distribution of prediction of one ally

Ai, can be defined as a linear combination of the distribution of predictions of Vj and that of

other allies/adversaries.

Proof. Without loss of generality, consider a system with one ally network with a scalar

output ŶA and m adversary networks with scalar outputs ŶVj for 1 ≤ j ≤ m. The true

distribution of each predicted output is YA for the ally and YVj for the adversaries, and YA

and YVj are the actual labels drawn from those distributions respectively. The true values and

predictions between that of the ally and the adversaries have the relation, YA = ∑m
j=1wjYVj ,

and ŶA = ∑m
j=1wjŶVj where wj is scaling weight. The cross entropy of the entire system is

given by U = αAYA log(ŶA) −∑m
j=1 αVjYVj log(ŶVj). Optimizing for the output of a specific

adversary Vn, we obtain:

ŶVn =
∑

j 6=nwjŶVj

αAYAwn

(
1

αVnYVn
− 1
αAYA

)−1

. (2.9)
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Notably, ŶVn only returns a non-uniform distribution when αVnYVn < αAYA. If the weight

αA is not large enough to maintain the inequality, the value of ŶVn cannot be obtained via

( 2.9 ) and will have a uniform distribution. If αVnYVn = αAYA, then the cross entropy U = 0

and no optimization occurs.

Model training. We train the encoder and the allies/adversaries in EIGAN by alter-

nately updating their parameters using stochastic gradient descent (SGD) to minimize their

cross-entropy (CE) loss. For the encoder, we define the CE-loss LE for a single training

instance as a weighted combination of the predictive capability of the allies and adversaries

as

LE =
n∑

i=1
−〈yAi , log ŷAi〉︸ ︷︷ ︸
loss of ally Ai, LAi

−α ·
m∑

j=1
−〈yVj , log ŷVj〉︸ ︷︷ ︸

loss of adversary Vj, LVj

, (2.10)

where 〈., .〉 denotes inner product, and log is applied element-wise. yAi and yVj are the binary

vector representations of the true class labels for ally Ai and adversary Vj, respectively, while

ŷAi and ŷVi are the vectors of soft predictions (i.e., probabilities) for each class. Here, we

have made the simplifications α
Ai

= α/n ∀i and α
Vj

= (1 − α)/m ∀j, where α ∈ (0, 1) is

tuned to emphasize either predictivity (higher α) or privacy (lower α). It can be seen that

the minimization of loss LE is equivalent to the maximization of utility defined by ( 2.3 ). In

each epoch, we average LE over a minibatch of size J to obtain an estimate of ( 2.1 ), and

update θE based on the gradient. Then, we update the θAi and θVi according to ( 2.10 ). See

Algorithm  1 for further details.

Loss consideration. Alternative objectives to ( 2.10 ) exist in PRL literature. In par-

ticular, recent works [ 39 ], [ 73 ], [ 84 ] formulate the adversarial loss using KL divergence. We

choose CE-loss over KL-divergence based on the fact that KL divergence fails to give mean-

ingful value under disjoint distributions [  85 ]. Also, our CE-loss formulation is unconstrained

as opposed to KL-divergence formulation which is a Lagrangian dual of the constrained

formulation [ 39 ]. As analyzed in Proposition  1 , our formulation naturally pushes adversary

prediction towards uniform distribution, however, the same does not hold for the constrained

formulation. Our results in Table  2.1 and Fig.  2.9 (discussed later) validate our formula-
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Algorithm 1 EIGAN training
1: Notations:
2: (·)j denotes the value for the jth minibatch
3: LAi denotes the loss of ally Ai
4: LVi denotes the loss of the adversary Vi
5: η

E
, η

A
, η

V
: learning rates of the encoders, allies and adversaries

6: Training:
7: initialize α used in loss function ( 2.10 )
8: initialize θAi ’s and θVj ’s and θE to start the training
9: for number of training epochs do

10: Sample a minibatch set J of data points
11: Compute encoder loss using ( 2.10 ): LE = 1

|J |
∑

j∈J (LE)j
12: Update encoder parameters: θE ← θE − ηE · ∇θELE
13: Compute allies/adversaries losses using ( 2.10 ):

LAi = − 1
|J |
∑

j∈J (LAi)j, LVi = − 1
|J |
∑

j∈J (LVi)j

14: Update local allies/adversaries parameters:

θAi ← θAi − ηA · ∇θAi
LAi , θVi ← θVi − ηV · ∇θVi

LVi

15: end for

tion choice. We show consistent improvements over the state-of-the-art [ 39 ] that uses KL

divergence.

2.2.1 Proof of Concept Visualizations

In this section, we demonstrate proof of concept visualizations using toy examples.

The first experiment uses a synthetic dataset comprising 4 sets of Gaussian distributed

points in 2-D around the means (-0.5, -0.5), (-0.5, 1.5), (1.5, -1.5) and (1.5, 1.5) as shown in

Fig.  2.1 (a). We implement EIGAN with the ally objective to distinguish between reds and

blues and adversary objective to segregate x’s and o’s. This is the simplest case we consider,

as there is a single ally and single adversary, each with binary labels. Decision boundaries

are linear. We thus use a logistic regression classifier as it has a convex loss function. The

encoder is a neural network with a single hidden layer and output dimension l = 2. The
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learnt representation in Fig.  2.1 (b) is intuitive: it maintains linear separability among ally

classes, i.e., reds vs blues, but ensures a collapse of adversary classes.

Figure 2.1. (a) Quadrant dataset with four groups of points, one ally, and
one adversary. The points are linearly separable with regard to the ally’s
(classifying reds/blues) and an adversary’s (classifying x’s/o’s) objectives. (b)
EIGAN learns a representation that collapses the axes along the adversary’s
objective while enhancing separation along the ally’s.

Figure 2.2. (a) Circle dataset with the same objectives as Figure  2.1 but ally
classes (reds vs blues) are not linearly separable. (b) EIGAN learns a similar
transformation, making the ally’s classification task linearly separable.

Next we consider a dataset with non-linear decision boundary as shown in Fig.  2.2 (a).

The ally is interested in a decision boundary between the red and the blue circle, while the

adversary is interested in the upper vs. lower semicircle, i.e., x’s vs o’s. The same encoder is

used as in the previous experiment. We use a neural network with a single hidden layer as the

ally and adversary because the ally’s decision boundary is not linearly separable. Fig.  2.2 (b)

shows the learnt representation, which achieves a separability in the encoded space that is

qualitatively similar to the representation learnt in Fig.  2.1 (b).
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Figure 2.3. (a) Synthetic dataset with eight groups of points, two allies,
and one adversary. The allies are interested in separating the color pairs (the
two horizontal axes), and the adversary is interested in classifying shapes (the
vertical axis). (b) EIGAN’s encoding has collapsed the adversary dimension
while preserving the allies.

Figure 2.4. (a) Octant dataset with eight groups of points, one ally, and two
adversaries. The ally is interested in classifying reds/blues while the adversaries
are interested in separation along other axes. (b) EIGAN collapses the two
adversary dimensions while maintaining separability for the ally.

We next extend EIGAN from single ally and single adversary to multiple allies and ad-

versaries. We consider two different cases: EIGAN with (i) 2 ally and 1 adversary objective,

and (ii) 1 ally and 2 adversaries. In the case (i), we have 8 set of Gaussian distributed

points, one in each octant as shown in Fig.  2.3 (a). There are two allies A1 and A2 which are

37



each interested in separating data points along one of the horizontal axes, and an adversary

V that is interested in separation along the vertical axis. We see in (b) that the EIGAN

encoding collapses the data along the vertical axis while retaining separability in the other

two dimensions. Similarly, in the case (ii), consider the same 8 set of Gaussian distributed

points as in Fig.  2.3 (a). However, in this case the ally wants to separate reds vs blues, and

the adversaries want to separate along the other axes, i.e., top vs bottom (adversary 1) and

squares and stars vs x’s and o’s (adversary 2). The learnt representation only preserves ally’s

dimension of variation, i.e. reds vs blues. All the other dimensions are collapsed.

2.3 D-EIGAN: Distributed Model Architecture

The distributed setting for EIGAN (D-EIGAN) is depicted in Fig.  1.3 (b). There are

K nodes in the system, denoted E (1), ..., E (K), and a parameter server for model synchro-

nization. Each node E (k) has a set of allies, denoted A
(k)
1 , ..., A

(k)
n(k) with target label sets

YA(k) = {Y
A

(k)
1
, ..., Y

A
(k)
n(k)
}, a set of adversaries, denoted V (k)

1 , ..., V
(k)
m(k) with target sets YV (k) =

{Y
V

(k)
1
, ..., Y

V
(k)
m(k)
}, and a subset Xk ⊂ X of Nk datapoints from the overall dataset X of N

samples. These local datasets are in general non-overlapping, and may differ in size. While

the specific allies and adversaries may differ at each node, the goal is to train encoder models

that maximize all allies’ and minimizes all adversaries’ performances, so that the encodings

are meaningful throughout the system. Since sharing the raw datasets could potentially leak

sensitive information, each node E (k) will train its own local encoder E(k)(x; θE(k)), and the

server in Fig.  1.3 (b) will periodically aggregate the locally-trained models.

The utility function for node E (k) is defined as

U (k)(θE(k) , θA(k) , θV (k)) =
n∑

i=1
α
A

(k)
i
u
A

(k)
i
−

m∑
j=1

α
V

(k)
j
u
V

(k)
j
, (2.11)

where θA(k) =
{
θ
A

(k)
i

}n(k)

i=1
and θV (k) =

{
θ
V

(k)
j

}m(k)

j=1
denote the sets of ally and adversary

parameters at node E (k), and u
A

(k)
i
, u

V
(k)

j
denote the utility functions of A(k)

i , V
(k)

j defined

analogously to ( 2.1 ). α
A

(k)
i
, α

V
(k)

j
> 0 denote the normalized importance parameters for node
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E (k), where ∑n
i=1 αA(k)

i
+ ∑m

j=1 αV (k)
j

= 1. This leads to the following minimax game for the

distributed case:
min
SV

max
SE ,SA

1
K

K∑
k=1

U (k)(θE(k) , θA(k) , θV (k))

s.t. θE(k) = θE(k′) , k 6= k′, 1 ≤ k, k′ ≤ K,

(2.12)

where SV = {θV (k)}Kk=1 ,SE = {θE(k)}Kk=1, and SA = {θA(k)}Kk=1. The constraint in ( 2.12 )

ensures that the optimal encoder is the same across all nodes, even though each node may

have different allies and adversaries. In this way, an encoded datapoint E(k)(x; θE) at node

k could be transferred to another node k′ and applied to a task A
(k′)
i privately, e.g., for

anonymized user data sharing during single sign-ons.

Distributed model training. While solving ( 2.12 ) in a distributed manner, D-EIGAN

learns both a global model and personalized local models (allies and adversaries) [ 46 ], unlike

standard Federated Learning (FL).

Our algorithm consists of two iterative steps. The first is local update: each E (k) conducts a

series of δ SGD iterations. For each minibatch in SGD, training proceeds as in the centralized

case, with the encoder, allies’, and adversaries’ parameters updated via SGD to minimize

the CE-losses L(k)
E , L(k)

Ai , and L(k)
Vj defined as in ( 2.10 ) but in this case for each node. The

second step is global aggregation, in which each E (k) uploads its locally-trained encoder to the

parameter server to construct a global version, after every δ SGD iterations. We introduce

a sparsification technique here in which each node selects a fraction φ of its parameters at

random to upload for each aggregation. Letting Qk be the indices chosen by E (k), then the

vector recovered at the server is θ̃E(k) , where θ̃E(k)(q) = θE(k)(q) if q ∈ Qk and 0 otherwise.

With this, the global aggregation becomes the weighted average θE = ∑
k
Nk
N
θ̃E(k) . Then, the

server also selects a fraction φ of indices at random to synchronize each node k with on the

downlink. Letting Q be these indices, each node k sets θE(k)(q) = θE(q) if q ∈ Q, and makes

no change to the qth parameter otherwise. The pseudo-code of the training procedure is

given in Algorithm  2 .

The synchronization frequency δ and sparsification factor φ are directly related to the

amount of data transferred through the system: as δ increases, uplink transfers to the

server occur less frequently; as φ decreases, each uplink/downlink transmission requires fewer
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Algorithm 2 D-EIGAN training
Notation:

1: θE: global parameter vector
2: Qk: uniformly random choice of indices at node E (k)

3: θ̃E(k) : parameter vector recovered at the server for encoder E(k), with its qth element
denoted θ̃E(k)(q)

4: φ: fraction of parameters shared
5: δ: number of epochs between aggregations
6: (·)j: value for the jth minibatch
7: L

A
(k)
i

and L
V

(k)
i

: loss of ally A(k)
i and adversary V (k)

i

8: η
E
, η

A
, and η

V
: learning rates

Aggregation at Parameter Server:
9: Initialize parameter θE

10: for each update round do
11: Update parameter vector: θE ←

∑K
k=1

Nk
N
θ̃E(k)

12: end for
Local Training at Node E (k):

13: Initialize
{
θ
A

(k)
i

}n(k)

i=1
and

{
θ
V

(k)
j

}m(k)

j=1
14: Download initial θE from parameter server
15: for number of training epochs do
16: After δ epochs, update φ · |θE(k) | chosen parameters

from parameter server: θE(k)(q) = θE(q) if q ∈ Q
17: Sample a minibatch J from local dataset Xk
18: Update encoder: θE(k) ← θE(k) − ηE · ∇θ

E(k)LE(k)

19: Update ally/adversary parameters:
θ
A

(k)
i
← θ

A
(k)
i
− η

A
· ∇θ

A
(k)
i

L
A

(k)
i

,
θ
V

(k)
i
← θ

V
(k)

i
− η

V
· ∇θ

V
(k)
i

L
V

(k)
i

20: After δ epochs, upload φ|θE(k) | encoder parameters:
θ̃E(k)(q) = θE(k)(q) if q ∈ Qk, else θ̃E(k)(q) = 0

21: end for

communication resources. This is an important consideration in networking applications

where the nodes communicate over a resource-constrained channel [ 24 ], [  86 ]. Fractional

parameter sharing, similar to pruning (both choose a subset of parameters), mimics the

additive-noise DP mechanism [ 87 ] on model weights, reducing associated leakage [ 88 ], [ 89 ]

to any untrusted entity with access to the system. We study the effect of δ and φ on

D-EIGAN performance in Chapter  2.4.2 .
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In D-EIGAN, the allies and adversaries may differ at each node, and each node trains an

individual local encoder. Since the encoder parameters are globally synchronized, however,

the local encoder implicitly trains using global union of allies/adversaries across nodes. In

the case that the nodes have same objectives and i.i.d. datasets, we show that D-EIGAN

yields the same properties as Proposition  1 :

Proposition 3. Given a set of fixed encoders in the D-EIGAN architecture, if all the nodes

have the same number of allies and adversaries with the same sets of target labels YA(k) =

YA(k′) and YV (k) = YV (k′), 1 ≤ k, k′ ≤ K, then Proposition  1 holds for all the allies and

adversaries belonging to different nodes if the local datasets at each node are i.i.d.

Proof. Given that the global encoder is the average of the local encoders in the federated

learning procedure for a single synchronization across K local nodes, the maximization of the

expectation in ( 2.12 ) can be described as the maximization of ally utilities and minimization

of adversary utilities given by:

U = 1
K

K∑
k=1

n(k)∑
i=1

α
A

(k)
i
u
A

(k)
i
−

m(k)∑
j=1

α
V

(k)
j
u
V

(k)
j

 . (2.13)

In (  2.13 ), A(k)
i and V

(k)
i refer to the ith ally or adversary of the kth local node. Since

data at each node is i.i.d, the distributions Y are the same at each node, and thus each

node has the same objective function. Using the result of Proposition  1 and assuming that

A
(k1)
i , V

(k1)
j = A

(k2)
i , V

(k2)
j ∀i, j, k1, k2 (i.e., the ally and adversary labels are same across all

nodes), the output of the adversaries at each node follow a uniform distribution.

The ally and adversary objectives in ( 2.13 ) are overlapping if O 6= ∅ given that (Ai, Vj) ∈

O is the set of all Ai, Vj pairs for which YAi = YVj . Since each of the local nodes have the

same overlapping ally/adversary labels with potentially different weights α
A

(k)
i

and α
V

(k)
j

,

their utilities can be expressed using entropy as in ( 2.5 ). The final optimization of the

distributed system can be expressed as the minimization of following:

UO =
∑

(Ai,Vj)∈O

(
K∑
k=1

(α
A

(k)
i
− α

V
(k)

j
) · uAki

)
. (2.14)
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The entropy values given in ( 2.14 ) reward only one of the two discriminators predicting

label YAi if ∑K
k=1 αA(k)

i
6= ∑k

k=1 αV (k)
i

. If ∑K
k=1 αA(k)

i
= ∑K

k=1 αV (k)
i

, these two networks have no

contribution to UO, and no optimization occurs.

When the nodes have different objectives, we further show that the importance of each

objective is proportional to the number of nodes implementing it:

Proposition 4. If the allies and adversaries located at the K nodes of D-EIGAN have

non-overlapping target sets, i.e., YA(k) 6= YA(k′) and YV (k) 6= YV (k′), 1 ≤ k, k′ ≤ K, then

individual encoders under D-EIGAN consider the union of these local allies, ⋃Kk=1 YA(k), and

adversaries ,⋃Kk=1 YV (k) for optimization as a result of the global aggregation step. The weights

α
A

(k)
i

and α
V

(k)
i

associated with the allies/adversaries are scaled by the ratio of the number

of nodes that implement them locally to the total number of nodes.

Proof. Without loss of generality, consider a two network D-EIGAN. Let node 1 have 2 allies

and 1 adversary with objectives: YAc , YA1 , and YV1 , and node 2 have 2 allies and 1 adversary

with objectives: YAc , YA2 and YV2 . Here, objective YAc is common among them, while the

rest are different. Utilities of individual nodes can be calculated using ( 2.3 ):

U (1) = αAc · uAc + αA1 · uA1 − αV1 · uV1 , (2.15)

U (2) = αAc · uAc + αA2 · uA2 − αV2 · uV2 . (2.16)

Under federated training, the equivalent loss function that is optimized by the D-EIGAN

can be calculated using ( 2.12 ):

U = αAc · uAc + αA1

2 · uA1 −
αV1

2 · uV1 + αA2

2 · uA2 −
αV2

2 · uV2 , (2.17)

which shows that the overall objective under D-EIGAN considers all the objectives, but

the associated weights are lower for non-common allies/adversaries. In contrast to a D-

EIGAN where all allies and adversaries are common across nodes, the difference is the

weights associated with objectives.
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2.4 Experimental Evaluation and Discussion

We now turn to an experimental evaluation of our methodology. We analyze EIGAN’s

convergence characteristics and compare its performance with relevant baselines in Chap-

ter  2.4.1 , and evaluate D-EIGAN compared to the centralized case and as the system char-

acteristics change in Chapter  2.4.2 .

Datasets. We consider datasets: MNIST [ 90 ], MIMIC-III [ 91 ], Adult [ 92 ], and Face-

Scrub [ 93 ]. MNIST consists of 60,000 handwritten digits with labels 0-9. MIMIC has med-

ical information from hospitals with attributes, such as vitals and medication; we obtain a

dataset consisting of 58,976 patients by joining multiple tables on patient IDs. Adult consists

of 45,223 records extracted from the 1994 census data. Facescrub is a dataset comprising

over 22,000 images of celebrities with identity and gender labels.

Objectives. In MIMIC, we consider survival (2-class) as the ally objective, and gender

(2-class) and race (3-class) as adversary objectives. In the FaceScrub dataset, as in [ 39 ], the

ally objective is user identity (200-class), and the adversary objective is gender (2-class). In

MNIST, we consider whether a digit is even or odd (2-class) as the ally objective, and the

label of the digit (10-class) as the adversary objective. In Adult, as in [ 38 ], the ally objective

is an annual income classification (more or less than 50K) and the adversary objective is

gender. We also generate synthetic Gaussian datasets to analyze the effect of ally/adversary

class overlap in some experiments.

Implementation. We use fully connected networks (FCNs) for the encoder, allies, and

adversaries in the experiments on MIMIC and the synthetic datasets. The FCN encoder uses

ReLU [ 94 ] activation for the hidden layers and tanh activation for the final fully-connected

layer, whereas the ally and adversaries use sigmoid activation in the final layer. We use

dropout [ 95 ] and L2-regularization to prevent network overfitting. For FaceScrub, we employ

U-Net [ 96 ] for the encoder and Xception-Net [ 97 ] for the ally/adversary as in [  39 ]. For

Adult, we employ linear FCN as in [ 38 ]. Unless otherwise stated, we set α = 0.5 (i.e., equal

privacy/predictivity importance). We train to minimize CE loss over 70/30 training/test

splits on a system with 8 GB GPU and 64 GB RAM.
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Table 2.1. Performance comparison between EIGAN, [ 38 ] (Linear-ARL,
Kernel-ARL), and [ 39 ] (Bertran-PRL) on the Adult & FaceScrub datasets con-
sidered in those works. For the same adversary performance, EIGAN obtains
a notable improvement over [  39 ] (ally improvement of 47.01%). It also reaches
the optimal closed form solution of [ 38 ].

Adult Dataset Facescrub Dataset

Objective Ally Adversary Ally Adversary
(identity) (gender) (income) (gender)

Unencoded 0.85 0.85 0.98 0.99
Linear-ARL 0.84 0.67 - -
Kernel-ARL 0.84 0.67 - -
Bertran-PRL 0.82 0.67 0.56 0.68

EIGAN 0.84 0.67 0.82 0.68

% Improv. Matches closed Controlled 47.01% Controlled
form solution to be equal to be equal

Baselines. We consider six baselines: principal component analysis (PCA) [ 98 ], autoen-

coders [ 99 ], differential privacy (DP) in the form of Laplace Mechanism as in [  35 ], and the

methods in [ 38 ], [ 39 ]. Autoencoders and PCA preserve information content and do not have

explicit privacy objectives; they are expected to give encoded data that has good predictiv-

ity. PCA chooses the number of components retaining 99% of the variance, and we train

the autoencoder to transform data to the same dimensional space as PCA. As discussed in

Chapter  1.2 , DP is widely used for context-agnostic privacy. For DP, we employ the Laplace

mechanism [ 35 ]. [ 39 ] is the most recent state-of-the-art in adversarial PRL; in this case, we

use their open-source implementation and compare on the setting described in their paper.

We also compare against the closed form optimal solution of [ 38 ] for linear maps on their

Adult dataset use case, where [  38 ] outperforms [ 37 ], [  70 ]–[ 72 ].

All of our code using PyTorch [  100 ] and trained models are available at  https://github.

com/shams-sam/PrivacyGANs . For each experiments, we report cross-entropy loss and/or

accuracy from the testing step of PRL.
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2.4.1 Centralized EIGAN

Performance comparison with prior works

We first compare EIGAN with [  38 ] and [  39 ] on the Adult and Facescrub dataset settings

considered in these works, respectively. Note that the linearity requirement in [  38 ] impedes

its usage on non-linear models like the U-Net and Xception-Net employed for Facescrub by

[ 39 ]. For comparison, we adjust α in ( 2.10 ) to equalize the resulting adversary performances

between the models. Table  2.1 gives the results: EIGAN matches the performance of [ 38 ]’s

optimal closed-form solution on Adult. On the Facescrub dataset, it displays a 47% im-

provement in the ally’s task of identity recognition when compared to [ 39 ]. This validates

our choice of optimization using cross-entropy loss in ( 2.10 ) for PRL over the technique of

optimization using KL divergence that is common in recent PRL literature [ 39 ], [  73 ], [  84 ].

Figure 2.5. Predictivity and privacy comparison between EIGAN and the
baselines across one ally and two adversaries on the MIMIC-III dataset. (a)
On the adversary objectives (gender prediction, solid lines and race prediction,
dashed lines) EIGAN matches DP’s performance (by design of the experiment,
as determined by the selection of the DP ε parameter). Hence, the red and
the khaki colored curves overlap. (b) On the ally objective (survival predic-
tion), EIGAN achieves noticeable improvement over the baselines. (c) EIGAN
training converges after initial oscillations corresponding to the minimax game.

Comparison on MIMIC dataset.

We next compare the ally and adversary losses over training epochs between EIGAN,

autoencoder, PCA, and DP on the MIMIC dataset in Fig.  2.5 . Note that the recent base-
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lines [  38 ], [ 39 ] cannot handle multiple adversary objectives. It is observed in (a) that EIGAN

is able to match the adversary losses of DP, while in (b) the EIGAN ally loss matches that of

PCA and autoencoder while outperforming DP by a significant margin. Thus, EIGAN is ca-

pable of achieving private representations while simultaneously maintaining the predictivity

of the encoded representations. Also, (c) shows the loss progression of encoder and adversary

as the EIGAN training proceeds. It can be observed that increase/decrease in encoder loss is

corresponding to the decrease/increase in adversary loss during the same epoch, consistent

with the definition of the encoder loss in (  2.10 ). The magnitude of the oscillations decreases

as we progress through the training and eventually the networks (i.e., the players in the

game) reach a steady state.

Figure 2.6. Predictivity and privacy comparison between EIGAN and the
baselines across one ally and two adversaries on the Titanic dataset. (a) On
one of the adversary objectives (gender prediction, solid lines) EIGAN matches
DP’s performance (by design of the experiment, as determined by the selection
of the DP ε parameter), but in this case it does not match the other adversary
prediction (passenger class prediction, dashed lines), which could be matched
for another value of ε. (b) On the ally objective (survival prediction), EIGAN
achieves marginal improvement over the the baseline Autoencoder. (c) EIGAN
training converges after initial oscillations corresponding to the minimax game.

Comparison on Titanic dataset

For completeness, we also evaluate EIGAN algorithm on another dataset, Titanic, which

consists of data listing the details of roughly 800 of the passengers that were onboard the

Titanic ship. This experiment aims at understanding the convergence behaviour of EIGAN

under limited training data.
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Table 2.2. Comparison of log-loss achieved on the test set between the al-
gorithms for the Titanic dataset. EIGAN matches autoencoder on the ally
and performs slightly better than DP on adversary 2, while slightly worse on
adversary 1.

Algorithm Ally Adversary 1 Adversary 2
(Survival) (Gender) (P-Class)

Autoencoder 0.6333 0.4918 0.7351
PCA 0.6439 0.5236 0.7289
DP 0.6869 0.5733 0.7904
EIGAN 0.6396 0.5444 0.8011

Similar to result on MIMIC-III from Fig.  2.5 , Fig.  2.6 (a) shows that while EIGAN is

able to perform as well or nearly as well as any of the baselines on adversary obfuscation,

(b) it obtains the best predictivity on ally objective. (c) shows that the training reaches a

steady-state.

Table  2.2 summarizes the loss-values of the trained allies/adversaries on encoded data

using different techniques. It can be seen that while EIGAN is able to match DP’s perfor-

mance on adversary 2, it performs marginally worse than it on adversary 1, while having a

considerable gain on the corresponding ally.

Figure 2.7. Comparison across one ally and two adversaries on the MNIST
dataset. The (a) adversary objective (odd-even prediction, a binary classifi-
cation with virtually identical trends) converge to roughly the same loss for
each algorithm, and (b) ally objective (digit prediction, 10-class classification).
With dependencies (in particular, partial overlaps) between the ally and adver-
sary objectives, EIGAN training in (c) is unable to fully converge, consistent
with Proposition  2 .
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Figure 2.8. Feature importance derived from EIGAN encoder on Adult
dataset results summarized in Table  2.1 .

Comparison on MNIST

We conduct an additional experiment on the MNIST dataset of handwritten digits to

validate the findings in Proposition  1 & 2 when dependencies exist between the ally and

adversary objectives. In this case, we use digit recognition (0-9) as the ally objective and

even vs odd as adversary objective, which exhibits a clear dependence because if someone

could recover the digit (ally objective), then inferring odd-vs-even (adversary objective)

becomes trivial. Formally, referring to the propositions, we have Yodd = Y1 + Y3 + · · ·+ Y9

and Yeven = 1 − Yodd where Y(·) is the true probability distribution on the labels and thus

can be added. Similarly, Ŷodd = Ŷ1 + Ŷ3 + · · · + Ŷ9 and Ŷeven = 1 − Ŷodd, where Ŷ(·) are

probabilities of correct predictions. Proposition  2 follows when we substitute these in ( 2.9 ),

i.e. the adversary is not forced to a follow uniform distribution if sufficient weight is given

to the ally.

Fig.  2.7 shows the result of this experiment, where the weights of the allies and adversaries

are set equal. (a) shows that the adversary is not able to achieve any separation from the

Autoencoder or PCA. Observing (c), we realize that the training process does not reach a

steady state-convergence point, consistent with the propositions.

Robustness of learned representation

In Fig.  2.8 we consider the importance placed by EIGAN encoder on input features of

Adult dataset for learning the private representations. It can be observed that the importance

of gender and it’s correlated features is very low. This implies that the learnt representations
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Table 2.3. Accuracy of various architectures used to infer ally (even/ odd) and
adversary (digits 0-9) objectives on MNIST encoded using ResNet152-trained
EIGAN. We see that the ally accuracies are consistent across network architec-
tures, and the adversary accuracies remain significantly below the performance
on the unencoded data.

Model Ally (accuracy) Adversary (accuracy)
Resnet152 Unencoded 0.99 0.99

Resnet152 0.85 0.45
ResNext101 0.86 0.42
Resnet101 0.88 0.64
Resnet50 0.87 0.56

WideResnet101 0.85 0.42
VGG19 0.77 0.42

minimize the signals w.r.t adversary’s interest, i.e., gender. We next consider the robustness

of EIGAN’s learned representation to ally and adversary architectures that deviate from the

one used for training. Table  2.3 shows the performance of varying architectures (ResNet [ 9 ],

ResNext [  101 ], etc.) for allies and adversaries applied to the data encoded using EIGAN

trained with ResNet152 adversary on MNIST. We see that the representations learned by

EIGAN are able to obfuscate adversary targets from the other networks. Adversary accuracy

remains significantly below the performance on the unencoded data, validating the robustness

to differences between simulated and actual adversaries.

Figure 2.9. Effect of change in ally (a-b) and adversary (c-d) overlap (by
changing the variances of synthetic Gaussian data) on the performance of
EIGAN, [ 39 ], and the unencoded data. EIGAN is able to consistently out-
perform both baselines on the adversary objective, and obtains performance
close to the unencoded data for the ally.
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Figure 2.10. EIGAN’s effect of the number of (a) adversaries, and (b) allies
on the testing loss for MIMIC-III. The ally/adversary objectives are chosen as
different attributes from the source. The achievable loss is reasonably constant
and is not affected by addition of more allies/adversaries.

Varying ally/adversary overlap

Next, we consider the effect of class overlap for the ally and adversary objectives on model

performance. To do this, we generate a 2D dataset consisting of four Gaussians with means

at (x, y) = (1, 1), (1, 2), (2, 1), (2, 2), each corresponding to one class. The variance of these

Gaussian-distributed classes is adjusted to achieve varying degrees of overlap. Fig.  2.13 (c)

shows an instance of this dataset: the ally is interested in differentiating color, while the

adversary wants to differentiate shape. Fig.  2.9 shows the effect of the ally and adversary

label variance on the resulting accuracies for EIGAN, the method in [ 39 ], and the unencoded

data. As the ally variance increases, we observe that (a) the accuracy of the adversary

for EIGAN remains consistently lower than that of the others, while (b) the accuracy on

the ally objective for EIGAN remains higher than that of [ 39 ] and is comparable to the

unencoded case. Similarly, EIGAN outperforms [  39 ] consistently as the adversary exhibits

more variance: (c) the accuracy of adversary for EIGAN is lower than others while (d) the

corresponding accuracy of ally for EIGAN is higher and close to unencoded case. The p-

values of the improvements EIGAN makes over the method in [ 39 ] are below 0.002 in all 16

cases of comparisons between boxplot distributions.
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Effect of varying number of ally/adversary in EIGAN

We also consider the impact of the number of allies/adversaries on EIGAN’s performance

using MIMIC. We observe (in Fig.  2.10 ) that the final test loss obtained by an adversary (ally)

under varying number of allies (adversaries) stays reasonably constant. Thus, encodings are

robust to the number of objectives that are included in EIGAN.

Figure 2.11. Effect of EIGAN’s encoding dimension space on the number
of training epochs required to reach within 1% of training loss convergence
(left axis) and the achieved final testing loss (right axis) for MIMIC-III. The
achieved loss decreases sharply as the dimension increases, emphasizing a trade-
off between model quality and the memory needed for the encoded data. In
fact, beyond the right end of the X-axis value, the model runs out of mem-
ory on our high performance machine. (Dashed curves are fit using weighted
moving averages.)

Varying Encoder Dimensionality

Fig.  2.11 depicts the results for the MIMIC-III dataset while Fig.  2.12 depicts the result

of a similar experiment on Titanic dataset. In the two experiments, as the encoder output

dimension l is increased, we observe that the training mostly requires fewer epochs to con-

verge and is able to achieve a lower encoder testing loss. This could be explained by the

fact that larger networks (i.e. more number of trainable parameters) have more degrees of

freedom in training. Interestingly, while there is some variation, the test loss continues to

decrease beyond d, the original dimension of the data samples, i.e., when l ≥ d. The rele-

vant consideration with EIGAN, then, appears to be the tradeoff between encoding quality,
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Figure 2.12. Effect of EIGAN’s encoding dimension space on the number of
training epochs required to reach within 1% of training loss convergence (left
axis) and the achieved final testing loss (right axis) for the Titanic dataset.
The achieved loss decreases sharply as the dimension increases, emphasizing a
tradeoff between model quality and required memory. (The dashed curve is fit
using a weighted moving average.)

Figure 2.13. Comparison of (a) adversary and (b) ally performance as the
number of nodes in the system is increased from K = 2 to 10, for D-EIGAN
(φ, δ = 1), EIGAN, and unencoded. Node k’s data, k = 1, ..., K is generated
from four Gaussians centered on a unit square, each with σ2 = 0.1k, i.e. in-
creasing variance. (c) visualizes the ally (reds vs. blues) and adversary (x’s
vs. o’s) objectives for node k = 3. As expected, the ally performs worse with
higher K, but D-EIGAN is able to match EIGAN’s performance.

as measured by the encoding space dimension, and the memory required for training the

encoder, which increases with the dimension of the encoder.
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Figure 2.14. Comparison of (a) adversary and (b) ally performance using
synthetic Gaussian data while increasing the number of nodes and sharing all
the model weights (φ = 1) after every minibatch (δ = 1) during federated
training. The distribution of data is i.i.d. across the nodes, which is obtained
by generating Gaussian data with constant mean and variance across nodes. It
can be observed that EIGAN and D-EIGAN converge to similar performances
regardless of the number of nodes.

2.4.2 Distributed EIGAN (D-EIGAN)

Varying number of nodes

For the distributed case, we first study the effect of increasing the number of training

nodes K. We use synthetic Gaussian data and generate non-i.i.d. data distributions across

the nodes by increasing the variance of the Gaussians at each subsequent node k (Fig.  2.13 (c)

shows the distribution for k = 3). Fig.  2.13 (a)&(b) show the resulting ally and adversary

accuracies obtained when trained on D-EIGAN, on EIGAN, and on the unencoded data.

As K increases, the ally performance degrades in each case, due to the higher variance for

each class exhibited in the overall dataset X . Overall, we see that D-EIGAN matches the

performance of the centrally-trained EIGAN in both metrics, which shows that distributed

learning can yield a comparable solution when all parameters (φ = 1) are synchronized

frequently (δ = 1). Fig.  2.14 shows the result of the experiment when the nodes instead have

i.i.d data. We observe that the performance of the ally and adversary remains reasonably

constant (and similar to EIGAN) as we increase the number of nodes under D-EIGAN. From

the two experiments, we can conclude that D-EIGAN can readily extend to scenarios where
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Figure 2.15. Performance of ally and adversary objectives trained on D-
EIGAN (K = 10, φ = 0.8, δ = 2, non-i.i.d) for MIMIC in the cases of (a) all
nodes having all three objectives and (b) each node having the ally but only
one of the adversaries. The distribution of objectives across the nodes does
not affect the resulting accuracies.

data is distributed over larger number of nodes without sacrificing the performance on ally

and adversary objectives.

Figure 2.16. Comparison of distributed (K = 2 nodes) EIGAN with central-
ized EIGAN. Survival is the ally objective, and gender and race are the chosen
adversary objectives for the experiment. (a) Training of distributed EIGAN
involves same adversary objectives, i.e., obfuscating gender and race across the
both the nodes. (b) Each node has a different adversary objective, while they
share the same ally objective.

Varying objectives across nodes

Next, we study the effect of varying ally and adversary objectives across nodes. For this,

we consider the MIMIC dataset and allocate the dataset across K = 10 nodes randomly so
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that each has a different distribution of patient data. In Fig.  2.15 , we show the accuracies

achieved by D-EIGAN on the one ally and two adversary objectives for two cases: (a) when

each node has all three objectives, and (b) when each node has the ally objective, but half

have one adversary objective and half have the other. The EIGAN performance on the full

dataset is included for comparison. The dataset is distributed in a non-i.i.d manner across

nodes by non-uniform random sampling. We see that D-EIGAN in (a) only has a slight

improvement over (b) in the case of the gender adversary, which indicates that D-EIGAN is

robust to varying node objectives, even though the aggregation period has increased (δ = 2)

and the fraction of parameters shared has decreased (φ = 0.8) from Fig.  2.13 . The implication

of this is that once a data sample is encoded at a node via D-EIGAN, it can be transferred to

another node with different objectives and securely applied to ally tasks there, e.g., referring

to the healthcare use case in Chapter  1.2 , if a patient moves to a different hospital with

different health regulations. Similar conclusions are drawn when the data is i.i.d across 2

nodes as shown in Fig.  2.16 . This observed behavior, i.e., that a privacy and/or predictivity

objective at one node is adopted across all the encoders, is consistent with Proposition  4 .

Varying synchronization parameters

Finally, we consider the impact of the aggregation period δ and the sparsification factor

φ on D-EIGAN. This has implications for the communication resources between the nodes

and the server required for training, as discussed in Chapter  2.3 . For this experiment, we

use the setting from the experiment in Fig.  2.15 (a), i.e., with non-i.i.d data and all nodes

having all three objectives. In Fig.  2.17 , we show the performance of D-EIGAN as (a) δ

increases and (b) φ increases (EIGAN shown for comparison). In (a), we see that D-EIGAN

is robust to the number of training epochs between aggregations, implying that it can be

increased to limit the frequency of transmissions to/from the server. In (b), we similarly

observe generally robust performance as the fraction of sharing changes, though surprisingly,

the performance noticeably decreases once φ reaches 1 and all are shared. A similar effect

was observed by [ 56 ], that in the case of distributed model training over non-i.i.d datasets,

sparsification actually can enhance performance because it minimizes the effect of data bias
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at each node on the global model. Indeed, in the i.i.d case as shown in Fig.  2.18 , we do

not observe this effect: We see that there is no visible benefit of sharing only a fraction of

parameters, as seen in Fig.  2.18 (b). Similarly, in (a) it can be observed that performance over

the adversary degrades as the frequency of sync is decreased, i.e., number of epochs between

aggregation is increased. This is because the reduction in model bias is not desirable in the

case of i.i.d.

Figure 2.17. Effect of (a) aggregation frequency δ (φ = 0.8) and (b) sparsifi-
cation factor φ (δ = 2) on ally and adversary performance on D-EIGAN for the
non-i.i.d case in Fig.  2.15 (a). The robust performance shows that D-EIGAN
can be applied in communication-constrained environments.

Figure 2.18. Effect of varying (a) frequency of sync (δ, measured in terms of
number of epochs between parameter sharing) and (b) fraction of parameters
uploaded/downloaded (φ) on a distributed implementation consisting of K = 2
nodes. The results shows that as the frequency of sync/fraction of parameters
shared increases, the performance of the system on hiding the sensitive variable
is increased considerably, while there is little effect on the ally convergence.
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3. TWO-TIMESCALE HYBRID FEDERATED LEARNING

©2021 NeurIPS. Reprinted with permission from F. P. C. Lin, S. Hosseinalipour, S. S. Azam,
C. G. Brinton and N. Michelusi, Semi-Decentralized Federated Learning With Cooperative
D2D Local Model Aggregations, In IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3851-3869, Dec. 2021 [ 102 ].

3.1 System Model and Learning Methodology

In this section, we first describe our edge network system model of D2D-enabled clusters

(Chapter  3.1.1 ) and formalize the ML task for the system (Chapter  3.1.2 ). Then, we develop

our two timescale hybrid federated learning algorithm, TT-HF (Chapter  3.1.3 ).

3.1.1 Edge Network System Model

We consider model learning over the network architecture depicted in Fig.  1.2 . The

network consists of an edge server (e.g., at a base station) and I edge devices gathered by

the set I = {1, · · · , I}. We consider a cluster-based representation of the edge, where the

devices are partitioned into N sets S1, · · · ,SN . Cluster Sc contains sc = |Sc| edge devices,

where ∑N
c=1 sc = I. We assume that the clusters are formed based on the ability of devices

to conduct low-energy D2D communications, e.g., geographic proximity. Thus, one cluster

may be a fleet of drones while another is a collection of local IoT sensors. In general, we

do not place any restrictions on the composition of devices within a cluster, as long as they

possess a common D2D protocol [ 26 ] and communicate with a common server.

For edge device i ∈ Sc, we let Ni ⊆ Sc denote the set of its D2D neighbors, determined

based on the transmit power of the nodes, the channel conditions between them, and their

physical distances (cluster topology is evaluated numerically in Chapter  3.4 based on a

wireless communications model). We assume that D2D communications are bidirectional,

i.e., i ∈ Ni′ if and only if i′ ∈ Ni, ∀i, i′ ∈ Sc. Based on this, we associate a network graph

Gc = (Sc, Ec) to each cluster, where Ec denotes the set of edges: (i, i′) ∈ Ec if and only if

i, i′ ∈ Sc and i ∈ Ni′ .
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The model training is carried out through a sequence of global aggregations indexed

by k = 1, 2, · · · , as will be explained in Chapter  3.1.3 . Between global aggregations, the

edge devices i ∈ Sc will participate in cooperative consensus procedure with their neighbors

i′ ∈ Ni. Due to the mobility of the devices, the topology of each cluster (i.e., the number of

nodes and their positions inside the cluster) can change over time, although we will assume

this evolution is slow compared to a the time in between two global aggregations.

The model learning topology in this paper (Fig.  1.2 ) is a distinguishing feature compared

to the conventional federated learning star topology (Fig.  1.1 ). Most existing literature is

based on Fig.  1.1 , e.g., [  23 ], [ 43 ]–[ 49 ], where devices only communicate with the edge server,

while the rest consider fully decentralized (server-less) architectures [  60 ]–[ 63 ].

3.1.2 Machine Learning Task Model

Each edge device i owns a dataset Di with Di = |Di| data points. Each data point

(x, y) ∈ Di consists of an m-dimensional feature vector x ∈ Rm and a label y ∈ R. We

let f̂(x, y; w) denote the loss associated with the data point (x, y) based on learning model

parameter vector w ∈ RM , where M denotes the dimension of the model. For example, in

linear regression, f̂(x, y; w) = 1
2(y −w>x)2. The local loss function at device i is defined as

Fi(w) = 1
Di

∑
(x,y)∈Di

f̂(x, y; w). (3.1)

We define the cluster loss function for Sc as the average local loss across the cluster,

F̂c(w) =
∑
i∈Sc

ρi,cFi(w), (3.2)

where ρi,c= 1/sc is the weight associated with edge device i ∈ Sc within its cluster. The

global loss function is then defined as the average loss across the clusters,

F (w) =
N∑
c=1

%cF̂c(w), (3.3)
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weighted by the relative cluster size %c = sc
(∑N

c′=1 sc′
)−1

. The weight of each edge node

i ∈ Sc relative to the network can thus be obtained as ρi = %c ·ρi,c = 1/I, meaning each node

contributes equally to the global loss function. The goal of the ML model training is to find

the optimal model parameters w∗ ∈ RM for F :

w∗ = arg min
w∈RM

F (w). (3.4)

Remark 1. An alternative way of defining ( 3.3 ) is as an average performance over the

datapoints, i.e., F (w) = ∑I
i=1DiFi(w)/∑jDj [ 22 ], [  24 ]. Both approaches can be justified:

our formulation promotes equal performance across the devices, at the expense of giving

devices with lower numbers of datapoints the same priority in the global model. Our analysis

can be readily extended to this other formulation too, in which case the distributed consensus

algorithms introduced in Chapter  3.1.3 would take a weighted form instead.

In the following, we make some standard assumptions [  23 ], [ 24 ], [ 43 ], [ 44 ], [ 53 ], [ 103 ]–[ 107 ]

on the ML loss function that also imply the existence and uniqueness of w∗. Then, we define

a new generic metric to measure the statistical heterogeneity/degree of non-i.i.d. across the

local datasets:

Assumption 1. The following assumptions are made throughout the paper:

• Strong convexity: F is µ-strongly convex, i.e., 

1
 ∀w1,w2,

F (w1) ≥ F (w2) +∇F (w2)>(w1 −w2) + µ

2

∥∥∥∥w1 −w2

∥∥∥∥2
. (3.5)

• Smoothness: Fi is β-smooth ∀i, i.e.,

∥∥∥∥∇Fi(w1)−∇Fi(w2)
∥∥∥∥ ≤β∥∥∥∥w1 −w2

∥∥∥∥, ∀i,w1,w2, (3.6)

where β > µ. This implies β-smoothness of F and F̂c as well. 

2
 

1
 ↑ Convex ML loss functions, e.g., squared SVM and linear regression, are implemented with a regularization

term in practice to improve convergence and avoid model overfitting, which makes them strongly convex [  103 ].
2

 ↑ Throughout, ‖ · ‖ is always used to denote `2 norm, unless otherwise stated.
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While we leverage these assumptions in our theoretical development, our experiments in

Appendix  D of [ 108 ] demonstrate that our resulting methodology is still effective in the case

of non-convex loss functions (in particular, for neural networks). We also remark that strong-

convexity of the global loss function entailed by Assumption  1 is a much looser requirement

than strong-convexity enforced on each device’s local function, which we do not assume in

this paper.

Definition 3.1.1 (Gradient Diversity). There exist δ ≥ 0 and ζ ∈ [0, 2β] such that the

cluster and global gradients satisfy

∥∥∥∇F̂c(w)−∇F (w)
∥∥∥ ≤ δ + ζ‖w−w∗‖, ∀c,w. (3.7)

The conventional definition of gradient diversity used in literature, e.g., as in [ 24 ], is a

special case of ( 3.7 ) with ζ = 0. However, we observe that solely using δ on the right hand

side of ( 3.7 ) may be troublesome since it can be shown to be not applicable to quadratic

functions (such as linear regression problems), and since δ may be prohibitively large, 

3
 leading

to overly pessimistic convergence bounds. Indeed, for all functions satisfying Assumption

 1 , Definition  3.1.1 holds. To see this, note that we can upper bound the gradient diversity

using the triangle inequality as

‖∇F̂c(w)−∇F (w)‖ = ‖∇F̂c(w)−∇F̂c(w∗) +∇F̂c(w∗)−∇F (w∗)︸ ︷︷ ︸
=0

−∇F (w)‖

≤ ‖∇F̂c(w)−∇F̂c(w∗)‖+ ‖∇F̂c(w∗)‖

+ ‖∇F (w)−∇F (w∗)‖ ≤ δ + 2β‖w−w∗‖, (3.8)

where in the last step above we used the smoothness condition and upper bounded the cluster

gradients at the optimal model as ‖∇F̂c(w∗)‖ ≤ δ. We then introduce a ratio ω = ζ
2β , where

ω ≤ 1 according to (  3.8 ). Considering ζ in ( 3.7 ) changes the dynamics of the convergence

analysis and requires new techniques to obtain the convergence bounds, which are part of

our contributions in this work.
3

 ↑ This is especially true at initialization, where the initial model may be far off the optimal model w∗.
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Figure 3.1. Depiction of two timescales in TT-HF. Time index t captures
the local descent iterations and global aggregations. In each local training
interval, the nodes will aperiodically engage in consensus procedure. Time
index t′ captures the rounds of these local aggregations.

3.1.3 TT-HF: Two Timescale Hybrid Federated Learning

Overview and rationale

TT-HF is comprised of a sequence of local model training intervals in-between aperiodic

global aggregations. During each interval, the devices conduct local stochastic gradient

descent (SGD) iterations and aperiodically synchronize their model parameters through local

consensus procedure within their clusters.

There are three main practical reasons for incorporating the local consensus procedure

into the learning paradigm. First, local consensus can help further suppress any bias of device

models to their local datasets, which is one of the main challenges faced in federated learning

in environments where data may be non-i.i.d. across the network [ 24 ]. Second, local D2D

communications during the consensus procedure, typically performed over short ranges [ 109 ],

[ 110 ], are expected to incur much lower device power consumption compared with the global

aggregations, which require uplink transmissions to potentially far-away aggregation points

(e.g., from smartphone to base station). Third, D2D is becoming a prevalent feature of

5G-and-beyond wireless networks [  111 ], [  112 ].

TT-HF procedure

We index time as a set of discrete time indices T = {1, 2, ...}. Global aggregation k

occurs at time tk ∈ T (with t0 = 0), so that Tk = {tk−1 + 1, ..., tk} denotes the kth local
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model training interval between aggregations k − 1 and k, of duration τk = tk − tk−1. Since

global aggregations are aperiodic, in general τk 6= τk′ for k 6= k′.

The model computed by the server at the kth global aggregation is denoted as ŵ(tk) ∈

RM , which will be defined in (  3.17 ). The model training procedure starts with the server

broadcasting ŵ(0) to initialize the devices’ local models.

Local SGD iterations: Each device i ∈ I has its own local model, denoted w(t−1)
i ∈ RM

at time t − 1. Device i performs successive local SGD iterations on its model over time.

Specifically, at time t ∈ Tk, device i randomly samples a mini-batch ξ
(t−1)
i of fixed size from

its own local dataset Di, and calculates the local gradient estimate

ĝ(t−1)
i = 1

|ξ(t−1)
i |

∑
(x,y)∈ξ(t−1)

i

f̂(x, y; w(t−1)
i ). (3.9)

It then computes its intermediate updated local model as

w̃(t)
i = w(t−1)

i − ηt−1ĝ(t−1)
i , t ∈ Tk, (3.10)

where ηt−1 > 0 denotes the step size. The local model w(t)
i is then updated according to the

following consensus-based procedure.

Local model update: At each time t ∈ Tk, each cluster may engage in local consensus

procedure for model updating. The decision of whether to engage in this consensus process

at time t – and if so, how many iterations of this process to run – will be developed in

Chapter  3.3 based on a performance-efficiency trade-off optimization. If the devices do not

execute consensus procedure, we have the conventional model update rule w(t)
i = w̃(t)

i from

( 3.10 ). Otherwise, multiple rounds of D2D communication take place, where in each round

parameter transfers occur between neighboring devices. In particular, assuming Γ(t)
c > 0

rounds for cluster c at time t, and letting t′ = 0, . . . ,Γ(t)
c − 1 index the rounds, each node

i ∈ Sc carries out the following for t′ = 0, . . . ,Γ(t)
c − 1:

z(t′+1)
i = vi,iz(t′)

i +
∑
j∈Ni

vi,jz(t′)
j , (3.11)

62



where z(0)
i = w̃(t)

i is the node’s intermediate local model from ( 3.10 ), and vi,j ≥ 0, ∀i, j is

the consensus weight that node i applies to the vector received from j. At the end of this

process, node i takes w(t)
i = z(Γ(t)

c )
i as its updated local model.

The index t′ corresponds to the second timescale in TT-HF, referring to the consensus

process, as opposed to the index t which captures the time elapsed by the local gradient

iterations. Fig.  3.1 illustrates these two timescales, where at certain local iterations t the

consensus process t′ is run.

To analyze this update process, we will find it convenient to express the consensus pro-

cedure in matrix form. Let W̃(t)
c ∈ Rsc×M denote the matrix of intermediate updated local

models of the sc nodes in cluster Sc, where the i-th row of W̃(t)
c corresponds to device i’s

intermediate local model w̃(t)
i . Then, the matrix of updated device parameters after the

consensus stage, W(t)
c , can be written as

W(t)
c = (Vc)Γ(t)

c W̃(t)
c , t ∈ Tk, (3.12)

where Γ(t)
c denotes the rounds of D2D consensus in the cluster, and Vc = [vi,j]1≤i,j≤sc ∈ Rsc×sc

denotes the consensus matrix, which we characterize further below. The i-th row of W(t)
c

corresponds to device i’s local update w(t)
i , which is then used in ( 3.9 ) to calculate the

gradient estimate for the next local update. For the times t ∈ Tk where consensus is not

used, we set Γ(t)
c = 0, implying W(t)

c = W̃(t)
c so that devices use their individual gradient

updates.

Remark 2. Note that the graph Gc may change over time t. In this paper, we only require

that the set of devices in each cluster remain fixed during each global aggregation period k.

We drop the dependency on t for simplicity of presentation, although the analysis implicitly

accommodates it. We similarly do so in notations for node and cluster weights ρi,c, %c in-

troduced in Chapter  3.1.2 and consensus parameters vi,j, Vc, λc in Chapter  3.1.3 . Assuming

a fixed vertex set during each global aggregation period is a practical assumption, especially

when the devices move slowly and do not leave the cluster during each local training interval.

Moreover, although in the analysis we assume that transmissions are outage- and error-free,

in Chapter  3.4 we will perform a numerical evaluation to evaluate the impact of fast fad-
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ing and limited channel state information (CSI), resulting in outages and time-varying link

configurations.

Consensus characteristics: The consensus matrix Vc can be constructed in several

ways based on the cluster topology Gc. In this paper, we make the following standard

assumption [  67 ]:

Assumption 2. The consensus matrix Vc satisfies the following conditions: (i) (Vc)m,n =

0 if (m,n) /∈ Ec, i.e., nodes only receive from their neighbors; (ii) Vc1 = 1, i.e., row

stochasticity; (iii) Vc = Vc
>, i.e., symmetry; and (iv) ρ

(
Vc − 11>

sc

)
< 1, i.e., the largest

eigenvalue of Vc − 11>
sc

has magnitude < 1.

For example, from the distributed consensus literature [ 67 ], one common choice that

satisfies this property is vi,j = dc, ∀j ∈ Ni and vi,i = 1− dc|Ni|, where 0 < dc < 1/Dc and Dc

denotes the maximum degree among the nodes in Gc.

The consensus procedure process can be viewed as an imperfect aggregation of the models

in each cluster. Specifically, we can write the local parameter at device i ∈ Sc as

w(t)
i = w̄(t)

c + e(t)
i , (3.13)

where w̄(t)
c = ∑

i∈Sc ρi,cw̃(t)
i is the average of the local models in the cluster and e(t)

i ∈ RM

denotes the consensus error caused by limited D2D rounds (i.e., Γ(t)
c < ∞) among the

devices, which can be bounded as in the following lemma.

Lemma 1. After performing Γ(t)
c rounds of consensus in cluster Sc with the consensus matrix

Vc, the consensus error e(t)
i satisfies

‖e(t)
i ‖≤ (λc)Γ(t)

c
√
sc max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖︸ ︷︷ ︸

,Υ(t)
c

, ∀i ∈ Sc. (3.14)

where λc = ρ
(
Vc − 11>

sc

)
.
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Algorithm 3 Two timescale hybrid federated learning TT-HF with set control parameters.
Input: Length of training T , number of global aggregationsK, D2D rounds {Γ(t)

c }Tt=1, ∀c,
length of local model training intervals τk, k = 1, ..., K
Output: Final global model ŵ(T )

1: // Initialization by the server
2: Initialize ŵ(0) and broadcast it among the devices along with the indices nc of the sampled

devices for the first global aggregation.
3: for k = 1 : K do
4: for t = tk−1 + 1 : tk do
5: for c = 1 : N do
6: // Procedure at the clusters
7: Each device i ∈ Sc performs local SGD update based on (  3.9 ) and ( 3.10 )

using w(t−1)
i to obtain w̃(t)

i .
8: Devices inside the cluster conduct Γ(t)

c rounds of consensus procedure based
on ( 3.11 ), initializing z(0)

i = w̃(t)
i and setting w(t)

i = z(Γ(t)
c )

i .
9: end for

10: if t = tk then
11: // Procedure at the clusters
12: Each sampled device nc sends w(tk)

nc to the server.
13: // Procedure at the server
14: Compute ŵ(t) using ( 3.17 ), and broadcast it among the devices along with

the indices nc chosen for the next global aggregation.
15: end if
16: end for
17: end for

Sketch of Proof: Let W(t)
c = 1

sc
11>W̃(t)

c be the matrix with rows given by the average model

parameters across the cluster, and let

E(t)
c = W(t)

c −W(t)
c = [ (Vc)Γ(t)

c − 1>1/sc][W̃(t)
c −W(t)

c ], (3.15)

so that [E(t)
c ]i,: (ith column of E(t)

c ) = e(t)
i , where in the second step we used ( 3.12 ) and

the fact that 1>E(t)
c = 0 (hence E(t)

c = [I− 1>1/sc]E(t)
c ). Therefore, using Assumption  2 , we

can bound the consensus error as
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‖e(t)
i ‖2 ≤ trace((E(t)

c )>E(t)
c ) (3.16)

= trace
(

[W̃(t)
c −W(t)

c ]>[ (Vc)Γ(t)
c −1>1/sc]2[W̃(t)

c −W(t)
c ]
)

≤ (λc)2Γ(t)
c

sc∑
j=1
‖w̃(t)

j − w̄(t)
c ‖2

≤ (λc)2Γ(t)
c

1
sc

sc∑
j,j′=1
‖w̃(t)

j − w̃(t)
j′ ‖2

≤ (λc)2Γ(t)
c sc max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖2,

so that the result directly follows. For the complete proof, refer to Appendix  C.4 in our

technical report [  108 ]. �

Note that Υ(t)
c defined in ( 3.14 ) captures the divergence of intermediate updated local

model parameters in cluster Sc at time t ∈ Tk (before consensus is performed). Intuitively,

according to ( 3.14 ), to make the consensus error smaller, more rounds of consensus need to

be performed. However, this may be impractical due to energy and delay considerations,

hence a trade-off arises between the consensus error and the energy/delay cost. This trade-

off will be optimized by tuning Γ(t)
c , via our adaptive control algorithm developed in Chapter

 3.3 .

Global aggregation: At the end of each local model training interval Tk, the global

model w will be updated based on the trained local model updates. Referring to Fig.  1.2 ,

the main server will sample one device from each cluster c uniformly at random, and request

these devices to upload their local models, so that the new global model is updated as

ŵ(t) =
N∑
c=1

%cw(t)
nc , t = tk, k = 1, 2, ... (3.17)

where nc is the node sampled from cluster c at time t. This sampling technique is introduced

to reduce the uplink communication cost by a factor of the cluster sizes, and is enabled by

the consensus procedure, which mimics a local aggregation procedure within a cluster (albeit

imperfectly due to consensus errors, see ( 3.13 )) [ 26 ]. The global model is then broadcast
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by the main server to all of the edge devices, which override their local models at time tk:

w(tk)
i = ŵ(tk), ∀i. The process then repeats for Tk+1.

A summary of the TT-HF algorithm developed in this section (for set control parameters)

is given in Algorithm  3 .

Remark 3. Note that we consider digital transmission (in both D2D and uplink/down-

link communications) where using state-of-the-art techniques in encoding/decoding, e.g., low

density parity check (LDPC) codes, the bit error rate (BER) is reasonably small and negligi-

ble [ 113 ]. Moreover, the effect of quantized model transmissions can be readily incorporated

using techniques developed in [ 66 ], and precoding techniques may be used to mitigate the effect

of signal outage due to fading [ 114 ]. Therefore, in this analysis, we assume that the model

parameters transmitted by the devices to their neighbors (during consensus) and then to the

server (during global aggregation) are received with no errors at the respective receivers. The

impact of outages due to fast fading and lack of CSI will be studied numerically in Chapter

 3.4 .

3.2 Convergence Analysis of TT-HF

In this section, we theoretically analyze the convergence behavior of TT-HF. Our main results

are presented in Chapter  3.2.2 and Chapter  3.2.3 . Before then, in Chapter  3.2.1 , we introduce

some additional definitions and a key proposition for the analysis.

3.2.1 Definitions and Bounding Model Dispersion

We first introduce a standard assumption on the noise of gradient estimation, and then

define an upper bound on the average of consensus error for the clusters:

Assumption 3. Let n(t)
i =ĝ(t)

i −∇Fi(w(t)
i ) ∀i, t denote the noise of the estimated gradient

through the SGD process for device i. We assume that it is unbiased with bounded variance,

i.e. E[n(t)
i |w

(t)
i ]=0 and ∃σ>0: E[‖n(t)

i ‖2|w(t)
i ]≤σ2, ∀i, t.

Moreover, the following condition bounds the consensus error within each cluster.

67



Condition 1. Let ε(t)c be an upper bound on the average of the consensus error inside cluster

c at time t, i.e.,

1
sc

∑
i∈Sc
‖e(t)

i ‖2 ≤ (ε(t)c )2. (3.18)

We further define (ε(t))2 =
N∑
c=1

ρc(ε(t)c )2 as the average of these upper bounds over the network

at time t.

In fact, using Lemma  1 , this condition can be satisfied by tuning the number of consensus

steps. In our analysis, we will derive conditions on ε(t)c that are sufficient to guarantee

convergence of TT-HF (see Proposition  3.2.1 ).

We next define the expected variance in models across clusters at a given time, which we

refer to as model dispersion:

Definition 3.2.1. We define the expected model dispersion across the clusters at time t as

A(t) = E
[
N∑
c=1

%c
∥∥∥w̄(t)

c − w̄(t)
∥∥∥2
]
, (3.19)

where w̄(t)
c is defined in ( 3.13 ) and w̄(t) =

N∑
c=1

%cw̄(t)
c is the global average of the local models

at time t.

A(t) measures the degree to which the cluster models deviate from their average through-

out the training process. Obtaining an upper bound on this quantity is non-trivial due to the

coupling between the gradient diversity and the model parameters imposed by (  3.7 ). For an

appropriate choice of step size in ( 3.10 ), we upper bound this quantity at time t through a

set of new techniques that include the mathematics of coupled dynamic systems. Specifically,

we have the following result:

Proposition 3.2.1. If ηt = γ
t+α for some γ > 0, ε(t) is non-increasing for t ∈ Tk, i.e.,

ε(t+1) ≤ ε(t), and α ≥ γβmax{λ+ − 2 + µ
2β ,

β
µ
}, then

A(t) ≤16ω2

µ
(Σ+,t)2[F (w̄(tk−1))− F (w∗)] + 25(Σ+,t)2

(
σ2 + δ2

β2 + (ε(0))2
)
, t ∈ Tk, (3.20)
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where

Σ+,t =
t−1∑

`=tk−1

 `−1∏
j=tk−1

(1 + ηjβλ+)
 βη`

 t−1∏
j=`+1

(1 + ηjβ)
 ,

and λ+ = 1− µ
4β +

√
(1 + µ

4β )2 + 2ω.

Sketch of Proof: See Appendix  A.1 . �

The bound in ( 3.20 ) demonstrates how the expected model dispersion across the clusters

increases with respect to the consensus error (ε(0)), the noise in the gradient estimation (σ2),

and the heterogeneity of local datasets (δ, ω). Intuitively, the upper bound in ( 3.20 ) dictates

that, the larger ε(0), σ2, δ or ω, the larger the dispersion, due to error propagation in the

network. Proposition  3.2.1 will be an instrumental result in the convergence proof developed

in the next section.

3.2.2 General Convergence Behavior of ŵ(t)

Next, we focus on the convergence of the global loss. In the following theorem, we bound

the expected distance that the global loss is from the optimal over time, as a function of the

model dispersion.

Theorem 3.2.1. When using TT-HF for ML model training with ηt ≤ 1/β ∀t, the one-step

behavior of the global model ŵ(t) (see ( 3.17 )) satisfies, for t ∈ Tk,

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µηt)E[F (ŵ(t))− F (w∗)]︸ ︷︷ ︸

(a)

+ ηtβ
2

2 A(t) + 1
2[ηtβ2(ε(t))2 + η2

t βσ
2 + β(ε(t+1))2]︸ ︷︷ ︸

(b)

, (3.21)

where A(t) is the model dispersion from Definition  3.2.1 .

Sketch of Proof: See Appendix  A.2 . �

Theorem  C.2.1 quantifies the dynamics of the global model relative to the optimal model

during a given update period Tk of TT-HF. Since the theorem holds for all t ∈ Tk, it also

quantifies the suboptimality gap when global aggregation is performed at time t + 1 =
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tk. Note that the term (a) corresponds to the one-step progress of a centralized gradient

descent under strongly-convex global loss (Assumption  1 ), so that the term (b) quantifies

the additional loss incurred as a result of the model dispersion across the clusters (A(t), which

in turn is bounded by Proposition  3.2.1 ), consensus errors (ε(t)), and SGD noise (σ2). In

fact, without careful choice of our control parameters, the sequence E[F (ŵ(t))−F (w∗)] may

diverge. Thus, we are motivated to find conditions under which convergence is guaranteed,

and furthermore, under which the upper bound in ( 3.21 ) will approach zero.

Specifically, we aim for TT-HF to match the asymptotic convergence behavior of central-

ized stochastic gradient descent (SGD) under a diminishing step size, which is O(1/t) [ 115 ].

From ( 3.21 ), we see that to match SGD, the terms in (b) should be of order O(η2
t ), i.e., the

same as the degradation due to the SGD noise, η2
t βσ

2/2. This implies that control param-

eters need to be tuned in such a way that A(t)=O(ηt) and ε(t)=O(ηt). Proving that these

conditions hold under proper choice of parameters will be part of Theorem  C.3.1 .

3.2.3 Sublinear Convergence Rate of ŵ(t)

Among the quantities involved in Theorem  C.2.1 , ηt, τk and ε(t) are the three tunable

parameters that directly impact the learning performance of TT-HF. We now prove that with

proper choice of these parameters, TT-HF enjoys sub-linear convergence with rate of O(1/t).

Theorem 3.2.2. Under Assumptions  1 ,  2 , and  3 , suppose ηt = γ
t+α and ε(t) = ηtφ, where

γ > 1/µ, φ > 0, α ≥ αmin and ω < ωmax(α). Then, by using TT-HF for ML model training,

E
[
F (ŵ(t))− F (w∗)

]
≤ ν

t+ α
, ∀t, (3.22)
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where τ = max1≤`≤k{τ`},

αmin , γβmax
{
µ

4β − 1 +
√

(1 + µ

4β )2 + 2ω, β
µ

}
, (3.23)

ωmax(α) , 1
βγ

√
α

Z1

√
µγ − 1 + 1

1 + α
, (3.24)

ν,max
{
β2γ2Z2

µγ − 1 ,
αZ2/Z1

ω2
max−ω2 , α

[
F (ŵ(0))−F (w∗)

]}
, (3.25)

Z1 = 32β2γ

µ
(τ − 1)

(
1 + τ

α− 1

)2 (
1 + τ − 1

α− 1

)6βγ
(3.26)

Z2 = σ2 + 2φ2

2β + 50γ(τ − 1)
(

1 + τ − 2
α + 1

)

×
(

1 + τ − 1
α− 1

)6βγ (
σ2 + φ2 + δ2

)
. (3.27)

Sketch of Proof: See Appendix  A.3 . �

Theorem  3.2.2 is one of the central contributions of this paper, revealing how several

parameters (some controllable and others characteristic of the environment) affect the con-

vergence of TT-HF, and conditions under which O(1/t) convergence can be achieved. We

make several key observations. First, to achieve O(1/t) convergence, the gradient diversity

parameter ω = ζ
2β should not be too large (ω < ωmax(α)); in fact, ω induces error propaga-

tion of order ∼ ‖wc−w∗‖, so that too large values of ω may cause the error to diverge. Since

ωmax(α) is an increasing function of α (see (  3.24 )), larger values of ω may be tolerated by

increasing α, i.e., by using a smaller step-size ηt, confirming the intuition that larger gradient

diversity requires a smaller step-size for convergence. However, the penalty incurred may be

slower convergence of the suboptimality gap (since ν increases with α, see ( 3.25 )).

We now discuss the choice of the consensus error ε(t). To guarantee O(1/t) convergence,

Theorem  3.2.2 dictates that it should be chosen as ε(t) = ηtφ for a constant φ > 0, i.e.

it should decrease over time according to the step-size. To see that this is a feasible and

practical condition, note from Lemma  1 that the upper bound of ‖e(t)
i ‖ increases proportion-

ally to the divergence Υ(t)
c (see ( 3.14 )), and decreases at geometric rate with the number of
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consensus steps. In turn, Υ(t)
c can be shown to be of the order of the step-size ηt (assuming

ηt ≈ ηt−1):

Υ(t)
c = max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖ ≈ ηt max

j,j′∈Sc

∥∥∥ĝ(t−1)
j − ĝ(t−1)

j′
∥∥∥,

where we used ( 3.10 ), and the approximation holds if we assume the difference w(t−1)
j −w(t−1)

j′

in initial model parameters at t − 1 is negligible compared to the gradients. This is a legit

assumption, since w(t−1)
j is the model parameter at node j, after the consensus rounds at

time t−1. Using Lemma  1 , it then follows that, to make ε(t) = ηtφ, the number of consensus

rounds should be chosen such that (λc)Γ(t)
c ≈ 1√

sc
φ/maxj,j′∈Sc

∥∥∥ĝ(t−1)
j − ĝ(t−1)

j′
∥∥∥, and are thus

dominated by the divergence of local gradients within the cluster and SGD noise, irrespective

of the step-size. We will use this property in the development of our control algorithm for

Γ(t)
c in Chapter  3.3 .

The bound also shows the impact of the duration of local model training intervals τ on

the convergence, through the term ν in ( 3.22 ). In particular, from ( 3.25 ), it can be seen

that increasing τ results in a sharp increase of ν (through the factors Z1 and Z2 defined

in ( 3.26 ) and ( 3.27 )). Moreover, we also observe a quadratic impact on ν with respect to

the consensus error ε(t) (through φ). It then follows that, all else constant, increasing the

value of τ requires a smaller value of φ (i.e., more accurate consensus) to achieve a desired

value of ν in ( 3.25 ). This is consistent with how TT-HF is designed, since the motivation for

including consensus rounds (to decrease ε(t)) is to reduce the global aggregation frequency,

which results in uplink bandwidth utilization and power consumption savings.

These observations reveal a trade-off between accuracy, delay, and energy consumption.

In the next section, we leverage these relationships in developing an adaptive algorithm for

TT-HF that tunes the control parameters to achieve the convergence bound in Theorem  3.2.2 

while minimizing network costs.

3.3 Adaptive Control Algorithm for TT-HF

There are three parameters in TT-HF that can be tuned over time: (i) local model training

intervals τk, (ii) gradient descent step size ηt, and (iii) rounds of D2D communications Γ(t)
c .

In this section, we develop a control algorithm (Chapter  3.3.4 ) based on Theorem  3.2.2 
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for tuning (i), (ii) at the main server at the beginning of each global aggregation, and

(iii) at each device cluster in a decentralized manner. To do so, we propose an approach for

determining the learning-related parameters (Chapter  3.3.1 ), a resource-performance tradeoff

optimization for τk and Γ(t)
c (Chapter  3.3.2 ), and estimation procedures for dataset-related

parameters (Chapter  3.3.3 ).

3.3.1 Learning-Related Parameters (α, γ, φ, ηt)

We aim to tune the step size-related parameters (α, γ) and the consensus error coefficient

(φ) to satisfy the conditions in Theorem  3.2.2 . In this section, we present a method for

doing so given properties of the ML model, local datasets, and SGD noise (β, µ, ζ, δ, σ, and

thus ω = ζ/(2β)). Later in Chapter  3.3.3 , we will develop methods for estimating ζ, δ, σ at

the server. 

4
 We assume that the latency-sensitivity of the learning application specifies a

tolerable amount of time that TT-HF can wait between consecutive global aggregations, i.e.,

the value of τ .

To tune the step size parameters, first, a value of γ is determined such that γ > 1/µ.

Then, since smaller values of α are associated with faster convergence, the minimum value

of α that simultaneously satisfies the conditions in the statement of Theorem  3.2.2 is chosen,

i.e., α ≥ αmin and ωmax > ω (note that ωmax is a function of α, see ( 3.24 ).

Let T be a (maximum) desirable duration of the entire TT-HF algorithm, and ξ be a

(maximum) desirable loss at the end of the model training, which may be chosen based on

the learning application. To satisfy the loss requirement, from Theorem  3.2.2 the following

condition needs to be satisfied,
ν

T + α
≤ ξ, (3.28)

yielding a maximum value tolerated for ν, i.e., νmax = ξ(T + α). Since ν is a function of the

local model training period τ and consensus coefficient φ (see ( 3.25 )), this bound places a

condition on the parameters τ and φ. Furthermore, with the values of α and γ chosen above,

along with the value of τ , the algorithm may not always be able to provide any arbitrary
4

 ↑ We assume that β and µ can be computed at the server prior to training given the knowledge of the
deployed ML model.
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desired loss ξ at time T . Therefore, considering the expression for ν from Theorem  3.2.2 ,

the following feasibility check is conducted:

max
{
β2γ2Zmin

2
µγ − 1 ,

αZmin
2 /Z1

ω2
max − ω2 ,

α‖∇F (ŵ(0))‖2

2µ

}
≤ νmax, (3.29)

where

Zmin
2 = σ2

2β + 50γ(τ − 1)
(

1 + τ − 2
α + 1

)(
1 + τ − 1

α− 1

)6βγ(
σ2 + δ2

)

is the value of Z2 obtained by setting the consensus coefficient φ = 0 in ( 3.27 ). The third term

inside the max of ( 3.29 ) is obtained via the Polyak-Lojasiewicz inequality
∥∥∥∇F (ŵ(t))

∥∥∥2
≥

2µ[F (ŵ(t)) − F (w∗)], since the value of F (w∗) is not known, whereas ∇F (ŵ(t)) can be

estimated using the local gradient of the sampled devices at the server. If ( 3.29 ) is not

satisfied, the chosen values of τ , ξ and/or T must be loosened, and this procedure must be

repeated until (  3.29 ) becomes feasible.

Once α, γ and τ are chosen, we move to selecting φ. All else constant, larger consensus

errors would be more favorable in TT-HF due to requiring less rounds of D2D communica-

tions (Lemma  1 ). The largest possible value of φ, denoted φmax, can be obtained directly

from ( 3.29 ) via replacing Zmin
2 with Z2 and considering the definition of Z2 in ( 3.27 ): 

5
 

φmax =
√
β

√√√√√√ νmax min
{
µγ−1
β2γ2 ,

Z1(ω2
max−ω2)
α

}
− Zmin

2

1 + 50βγ(τ − 1)
(
1 + τ−2

α+1

) (
1 + τ−1

α−1

)6βγ . (3.30)

Note that ( 3.30 ) exists if the feasibility check in ( 3.29 ) is satisfied.

The values of νmax and α are re-computed at the server at each global aggregation. The

devices use this to set their step sizes ηt during the next local update period accordingly.
5

 ↑ In the max function in ( 3.30 ), only the first two arguments from the function in (  3.29 ) are present as the
third is independent of Z2 and φ.
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3.3.2 Local Training Periods (τk) and Consensus Rounds (Γ(t)
c )

One of the main motivations behind TT-HF is minimizing the resource consumption among

edge devices during model training. We thus propose tuning the τk and Γ(t)
c parameters ac-

cording to the joint impact of three metrics: energy consumption, training delay imposed by

consensus, and trained model performance. To capture this trade-off, we formulate an opti-

mization problem (P) solved by the main server at the beginning of each global aggregation

period Tk, i.e., when t = tk−1:

(P) : min
τk

c1

(
EGlob +

tk−1+τk∑
t=tk−1

N∑
c=1

Γ(t)
c scED2D

)
τk︸ ︷︷ ︸
(a)

+

c2

(
∆Glob +

tk−1+τk∑
t=tk−1

N∑
c=1

Γ(t)
c ∆D2D

)
τk︸ ︷︷ ︸
(b)

+c3

(
1− tk−1 + α

tk−1 + τk + α︸ ︷︷ ︸
(c)

)

s.t.

Γ(t)
c = max

{⌈
log

(
ηtφ
√
scΥ(t)

c

)
/ log

(
λc

)⌉
, 0
}
,∀c, (3.31)

1 ≤ τk ≤ min {τ, T − tk−1}, τk ∈ Z+, (3.32)

Υ(tk−1)
c = 0, ∀c, (3.33)

Υ(t)
c = 1{Γ(t−1)

c =0}(A
(k)
c Υ(t−1)

c +B(k)
c︸ ︷︷ ︸

(d)

) +

(
1− 1{Γ(t−1)

c =0}

)
(a(k)
c Υ(t−1)

c + b(k)
c︸ ︷︷ ︸

(e)

), ∀c, (3.34)

where ED2D is the energy consumption of each D2D communication round for each device,

EGlob is the energy consumption for device-to-server communications, ∆D2D is the commu-

nication delay per D2D round conducted in parallel among the devices, and ∆Glob is the

device-to-server communication delay. The objective function captures the trade-off be-

tween average energy consumption (term (a)), average D2D delay (term (b)), and expected
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ML model performance (term (c)). In particular, term (c) is a penalty on the ratio of the

upper bound given in ( 3.22 ) between the updated model and the previous model at the

main server. A larger ratio implies the difference in performance between the aggregations

is smaller, and thus that synchronization is occurring frequently, consistent with τk appear-

ing in the denominator. This term also contains a diminishing marginal return from global

aggregations as the learning proceeds: smaller values of τk are more favorable in the initial

stages of ML model training, i.e., for smaller tk−1. This matches well with the intuition that

ML model performance has a sharper increase at the beginning of model training, so fre-

quent aggregations at smaller tk−1 will have larger benefit to the model performance stored

at the main server. The coefficients c1, c2, c3 ≥ 0 are introduced to weigh each of the design

considerations.

The equality constraint on Γ(t)
c in ( 3.31 ) forces the condition ε(t) = ηtφ imposed by

Theorem  3.2.2 , obtained using the result in Lemma  1 . This equality reveals the condition

under which the local aggregations, i.e., D2D communication, are triggered. Note that since

the spectral radius is less than one, we have log(λc) < 0, thus the requirement to conduct

D2D communications, i.e., triggering in cluster model synchronization, is √scΥ(t)
c > ηφ. In

other words, when the divergence of local models exceeds a predefined threshold Υ(t)
c > ηφ√

sc
,

local synchronization is triggered via D2D communication, and the number of D2D rounds

is given by Γ(t)
c . Also, ( 3.32 ) ensures the feasible ranges for τk.

As can be seen from (  3.31 ), to obtain the desired consensus rounds for future times

t ∈ Tk, the values of Υ(t)
c – the divergence of model parameters in each cluster – are needed.

Obtaining these exact values at t = tk−1 is not possible since it requires the knowledge

of the model parameters w̃(t)
i of the devices for the future timesteps, which is non-causal.

To address this challenge, problem (P) incorporates the additional constraints ( 3.33 ) and

( 3.34 ), which aim to estimate the future values of Υ(t)
c , ∀c through a time-series predictor,

initialized as Υ(tk−1)
c = 0 in ( 3.33 ) (since, at the beginning of the period, the nodes start

with the same model provided by the server). In the expression (  3.34 ), 1{Γ(t−1)
c =0} takes the

value of 1 when no D2D communication rounds are performed at t − 1, and 0 otherwise.

Two linear terms ((d) and (e)) are included, one for each of these cases, characterized by

coefficients A(k)
c , B(k)

c , a(k)
c , b(k)

c ∈ R which vary across clusters and global aggregations. These
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coefficients are estimated through fitting the linear functions to the values of Υ(t)
c obtained

from the previous global aggregation Tk−1. These values of Υ(t)
c from Tk−1 are in turn

estimated in a distributed manner through a method presented in Chapter  3.3.3 .

Note that (P) is a non-convex and integer optimization problem. Given the parameters

in Chapter  3.3.1 , the solution for τk can be obtained via a line search over the integer

values in the range of τk given in ( 3.32 ). Solving our optimization problem involves two

steps: (i) linear regression of the constants used in (53), i.e., A(k)
c , B(k)

c , a(k)
c , b(k)

c using the

history of observations, and (ii) line search over the feasible integer values for τk. The

complexity of part (i) is O(τk−1), since the dimension of each observant, i.e., Υ(t)
c , is one

and the observations are obtained via looking back into the previous global aggregation

interval. Also, the complexity of (ii) is O(τmax) since it is just an exhaustive search over the

range of τ ≤ τmax, where τmax is the maximum tolerable interval that satisfies the feasibility

conditions in Chapter  3.3.1 . While the optimization produces predictions of Γ(t)
c for t ∈ Tk

through ( 3.31 ), the devices will later compute ( 3.31 ) at time t when the real-time estimates

of Υ(t)
c can be made through ( 3.36 ), as will be discussed next.

3.3.3 Data and Model-Related Parameters (δ, ζ, σ2,Υ(t)
c )

We also need techniques for estimating the gradient diversity (δ, ζ), SGD noise (σ2), and

cluster parameter divergence (Υ(t)
c ).

Estimation of δ, ζ, σ2

These parameters can be estimated by the main server during model training. The server

can estimate δ and ζ at each global aggregation by receiving the latest gradients from SGD

at the sampled devices. σ2 can first be estimated locally at the sampled devices, and then

decided at the main server.

Specifically, to estimate δ, ζ, since the value of w∗ is not known, we upper bound the

gradient diversity in Definition  3.1.1 by introducing a new parameter δ′:

‖∇F̂c(w)−∇F (w)‖ ≤ δ + ζ‖w−w∗‖ ≤ δ′ + ζ‖w‖, (3.35)
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which satisfies δ′ ≥ δ + ζ‖w∗‖. Thus, a value of ζ < 2β is set, and then the value of δ′

is estimated using ( 3.35 ), where the server uses the SGD gradients ĝ(tk)
nc from the sampled

devices nc at the instance of each global aggregation k, and chooses the smallest δ′ such that

‖∇F̂c(ŵ(tk))−∇F (ŵ(tk))‖ ≈ ‖ĝ(tk)
nc −

∑N
c′=1 %c′ĝ(tk)

nc′
‖ ≤ δ′ + ζ‖ŵ(tk)‖ ∀c.

From Assumption  3 , a simple way of obtaining the value of σ2 would be comparing

the gradients from sampled devices with their full-batch counterparts. But this might be

impractical if the local datasets Di are large. Thus, we propose an approach where σ2 is

computed at each device through two independent mini-batches of data. Recall |ξi| denotes

the mini-batch size used at node i during the model training. At each instance of global

aggregation, the sampled devices each select two mini-batches of size |ξi| and compute two

SGD realizations g1, g2 from which ĝ(tk)
i = (g1 + g2)/2. Since g1 = ∇Fi(w(tk)) + n1,

g2 = ∇Fi(w(tk)) +n2, we use the fact that n1 and n2 are independent random variables with

the same upper bound on variance σ2, and thus ‖g1− g2‖2 = ‖n1−n2‖2 ≤ 2σ2, from which

σ2 can be approximated locally. These scalars are then transferred to the main server, which

in turn chooses the maximum reported σ2 from the sampled devices.

Estimation of Υ(t)
c

Based on (  3.14 ), we propose the following approximation to estimate the value of Υ(t)
c :

Υ(t)
c = max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖ ≈ max

j∈Sc
‖w̃(t)

j ‖︸ ︷︷ ︸
(a)

−min
j∈Sc
‖w̃(t)

j ‖︸ ︷︷ ︸
(b)

, (3.36)

where we have used the lower bound ‖a − b‖ ≥ ‖a‖ − ‖b‖ for vectors a and b, which we

experimentally observe gives a better approximation of Υ(t)
c . In ( 3.36 ), (a) and (b) can be

both obtained in a distributed manner through scalar message passing, where each device

i ∈ Sc computes ‖w̃(t)
i ‖ and shares it with its neighbors j ∈ Ni. The devices update their

max and min accordingly, share these updated values, and the process continues. After the

rounds of message passing has exceeded the diameter of the graph, each node has the value

of (a) and (b), and thus the estimate of Υ(t)
c . The server can obtain these values for t ∈ Tk

from the node nc it samples for cluster c at t = tk.
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3.3.4 TT-HF with Adaptive Parameter Control

The full TT-HF procedure with adaptive parameter control is summarized in Algorithm  4 .

The values of τ , desired ξ and T , and model characteristics µ, β are provided as inputs.

First, estimates of different parameters are initialized, the value of φ is determined, and

the first period of model training is set (lines 2-6). Then, during the local model training

intervals, in each timestep, the devices (i) compute the SGD updates, (ii) estimate the cluster

model divergence, (iii) determine the number of D2D consensus rounds, and (iv) conduct

the consensus process with their neighboring nodes (lines 12-16).

At global aggregation instances, the sampled devices compute their estimated local SGD

noise, and transmit it along with their model parameter vector, gradient vector, and estimates

of cluster parameter divergence over the previous global aggregation round to the server (lines

20-21). Then, the main server (i) updates the global model, (ii) estimates ζ, δ′, σ for the step

size, (iii) estimates the linear model coefficients used in ( 3.34 ), (iv) obtains the optimal length

τk+1 of the next local model training interval, and (v) broadcasts the updated global model,

step size coefficients, local model training interval, and consensus coefficient, along with the

indices of the sampled devices for the next global aggregation (line 23-29).

3.4 Numerical Evaluations

In this section, we conduct numerical experiments to verify the performance of TT-HF. After

describing the setup in Chapter  3.4.1 , we study model performance/convergence in Chap-

ter  3.4.2 and the impact of our adaptive control algorithm in Chapter  3.4.3 . Overall, we

will see that TT-HF provides substantial improvements in training time, accuracy, and/or

resource utilization compared to conventional federated learning [ 24 ], [  116 ].

3.4.1 Experimental Setup

Network architecture. We consider a network consisting of I = 125 edge devices placed

into N = 25 clusters, each with sc = 5 devices placed uniformly at random in a 50 m× 50 m

square field (in each cluster). The channel model and D2D network configuration are explain

below.
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Algorithm 4 TT-HF with adaptive control parameters.
Input: Desirable loss criterion ξ, length of model training T , maximum tolerable τ ,

and model-related parameters β, µ
Output: Global model ŵ(T )

1: // Start of initialization by the server
2: Initialize ŵ(0) and broadcast it among the devices along with the indices nc of the sampled

devices for the first global aggregation.
3: Initialize estimates of ζ � 2β, δ′, σ.
4: Initialize α and γ > 1/µ for the step size ηt = γ

t+α , where α is the smallest solution that satisfies
the condition mentioned in Chapter  3.3.1 , and α, γ, ξ, τ, T satisfy (  3.29 ).

5: Obtain φmax from ( 3.30 ).
6: Initialize τ1 randomly, where τ1 ≤ τ .
7: // End of initialization by the server
8: Initialize t = 1, k = 1, t0 = 0, t1 = τ1.
9: while t ≤ T do

10: while t ≤ tk do
11: for c = 1 : N do
12: // Operation at the clusters
13: Each device i ∈ Sc performs a local SGD update based on ( 3.9 ) and ( 3.10 )

using ŵ(t−1)
i to obtain w̃(t)

i .
14: Devices estimate the value of Υ(t)

c using ( 3.36 ) with distributed message passing.
15: Devices compute the number of D2D communication consensus rounds

Γ(t)
c according to ( 3.31 ).

16: Devices inside the cluster conduct Γ(t)
c rounds of consensus procedure based on ( 3.11 ),

initializing z(0)
i = w̃(t)

i , and setting w(t)
i = z(Γ(t)

c )
i .

17: end for
18: if t = tk then
19: // Operation at the clusters
20: Each sampled device nc estimates the local SGD noise

as described in Chapter  3.3.3 .
21: Each sampled devices nc sends w(tk)

nc , ĝ(tk)
nc , the estimated local SGD noise,

and the estimated values of Υc(t), t ∈ Tk to the server.
22: // Operation at the server
23: Compute ŵ(tk) using ( 3.17 ).
24: Set ζ � 2β, and compute δ′ =

[
maxc{‖ĝ(tk)

nc −
∑N
c′=1 %c′ ĝ

(tk)
nc′ ‖ − ζ‖ŵ

(tk)‖}
]+

.
25: Choose the maximum among the reported local SGD noise values as σ2.
26: Characterize α and γ > 1/µ for the step size ηt = γ

t+α according to the condition
on α in Chapter  3.3.1 and (  3.29 ), and compute φmax according to ( 3.30 ).

27: Estimate A(k+1)
c , B(k+1)

c , a(k+1)
c , and b

(k+1)
c , ∀c in ( 3.34 ) via linear data fitting.

28: Solve the optimization (P) to obtain τk+1.
29: Broadcast ŵ(tk) among the devices along with (i) the nc for k + 1, (ii) α,

(iii) γ, (iv) τk+1, and (v) φ.
30: end if
31: end while
32: end while
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Channel model: We assume that the D2D communications are conducted using orthogo-

nal frequency division techniques, e.g., OFDMA, to reduce the interference across the devices.

We consider the instantaneous channel capacity for transmitting data from node i to i′, both

belonging to the same cluster c following this formula:

C
(t)
i,i′ = W log2

1 +
p

(t)
i |h

(t)
i,i′ |2

σ2

 , (3.37)

where σ2 = N0W is the noise power, with N0 = −173 dBm/Hz denoting the white noise

power spectral density; W = 1 MHz is the bandwidth; p(t)
i = 24 dBm, ∀i, t is the transmit

power; h(t)
i,i′ is the channel coefficient. We incorporate the effect of both large-scale and small

scaling fading in h
(t)
i,i′ , given by [ 117 ], [  118 ]:

h
(t)
i,i′ =

√
β

(t)
i,i′u

(t)
i,i′ , (3.38)

where β(t)
i,i′ is the large-scale pathloss coefficient and u(t)

i,i′ ∼ CN (0, 1) captures Rayleigh fading,

varying i.i.d. over time. We assume channel reciprocity, i.e., h(t)
i,i′ = h

(t)
i′,i, for simplicity. We

model β(t)
i,i′ as [  117 ], [  118 ]

β
(t)
i,i′ = β0 − 10α log10(d(t)

i,i′/d0). (3.39)

where β0 = −30 dB denotes the large-scale pathloss coefficient at a reference distance of

d0 = 1 m, α is the path loss exponent chosen as 3.75 suitable for urban areas, and d
(t)
i,i′

denotes the instantaneous Euclidean distance between the respective nodes.

D2D network configuration: We incorporate the wireless channel model explained above

into our scenario to define the set of D2D neighbors and configure the cluster topologies. We

assume that the nodes moves slowly so that their locations remain static during each global

aggregation period, although it may change between consecutive global aggregations. We

build the cluster topology based on channel reliability across the nodes quantified via the out-

age probability. Specifically, considering (  3.37 ), the probability of outage upon transmitting

with data rate of R(t)
i,i′ between two nodes i, i′ is given by
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Figure 3.2. Performance comparison between TT-HF and baseline methods
when varying the local model training interval (τ) and the number of D2D
consensus rounds (Γ). With a larger τ , TT-HF can still outperform the baseline
federated learning [ 24 ], [ 116 ] if Γ is increased, i.e., local D2D communications
can be used to offset the frequency of global aggregations. full implies that
baseline schemes do not leverage D2D and instead require all the device to
engage in uplink transmissions. SVM is used for classification.

pout,(t)
i,i′ = 1− exp

(−(2R
(t)
i,i′ − 1)

SNR(t)
i,i′

)
, (3.40)

where SNR(t)
i,i′ =

p
(t)
i |h

(t)
i,i′ |

2

σ2 . To construct the graph topology of each cluster c, we create an

edge between two nodes i and i′ if and only if their respective outage probability satisfies

pout,(t)
i,i′ ≤ 5% given a defined common data rate R(t)

i,i′ = R(t)
c , chosen as R(t)

c = 14 Mbps. This

value is used since it is large enough to neglect the effect of quantization error in digital

communication of the signals, and at the same time results in connected graphs inside the

clusters (numerically, we found an average degree of 2 nodes in each cluster). After creating

the topology based on the large-scale pathloss and outage probability requirements, we model
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outages during the consensus phase as follows: if the instantaneous channel capacity (given

by ( 3.37 ), which captures the effect of fast fading) on an edge drops below R(t)
c , outage

occurs, so that the packet is lost and the model update is not received at the respective

receiver. Therefore, although nodes are assumed to be static during each global aggregation

period, the instantaneous cluster topology, i.e., the communication configuration among the

nodes, changes with respect to every local SGD iteration in a model training interval due to

outages.

Given a communication graph we choose dc = 1/8 to form the consensus iteration at

each node i as z(t′+1)
i = z(t′)

i + dc
∑

j∈Ni(z
(t′)
j − z(t′)

i ) (refer to the discussion provided after

Assumption  2 ). Note that given dc, broadcast by the server at the beginning of each global

aggregation, each node can conduct D2D communications and local averaging without any

global coordination.

Datasets. We consider MNIST [  119 ] and Fashion-MNIST (F-MNIST) [ 120 ], two datasets

commonly used in image classification tasks. Each dataset contains 70K images (60K for

training, 10K for testing), where each image is one of 10 labels of hand-written digits and

fashion products, respectively. For brevity, we present the results for MNIST here, and refer

the reader to Appendix  D in our technical report [ 108 ] for FMNIST; the results are qualita-

tively similar.

Data distributions. To simulate varying degrees of statistical data heterogeneity among

the devices, we divide the datasets into the devices’ local Di in three ways: (a) extreme

non-i.i.d., where each local dataset has only data points from a single label; (b) moderate

non-i.i.d., where each local dataset contains datapoints from three of the 10 labels; and

(c) i.i.d., where each local dataset has datapoints covering all 10 labels. In each case, Di

is selected randomly (without replacement) from the full dataset of labels assigned to device i.

ML models. We consider loss functions from two different ML classifiers: regularized

(squared) support vector machines (SVM) and a fully connected neural network (NN). In

both cases, we use the standard implementations in PyTorch which results in a model di-

mension of M = 7840 on MNIST. Note that the SVM satisfies Assumption  1 , while the NN

does not. The numerical results obtained for both classifiers are qualitatively similar. Thus,
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Figure 3.3. Performance comparison between TT-HF and baseline methods
when varying the number of D2D consensus rounds (Γ). Under the same period
of local model training (τ), increasing Γ results in a considerable improvement
in the model accuracy/loss over time as compared to the current art [ 24 ], [  116 ]
when data is non-i.i.d. full implies that baseline schemes do not leverage D2D
and instead require all the device to engage in uplink transmissions. NN is
used for classification.

for brevity, we show a selection of results for each classifier here, and refer the reader to

Appendix  D in our technical report [ 108 ] for the extensive simulation results on both classi-

fiers, where we also explain the implementation of our control algorithm for non-convex loss

functions. The SVM uses a linear kernel, and the weights initialization follows a uniform dis-

tribution, with mean and variance calculated according to [  121 ]. All of our implementations

can be accessed at  https://github.com/shams-sam/TwoTimeScaleHybridLearning  .

3.4.2 TT-HF Model Training Performance and Convergence

One of the main premises of TT-HF is that cooperative consensus procedure within clusters

during the local model training interval can (i) preserve model performance while reducing

the required frequency of global aggregations and/or (ii) increase the model training accuracy,
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especially when statistical data heterogeneity is present across the devices. Our first set of

experiments seek to validate these facts:

Local consensus reducing global aggregation frequency

In Fig.  3.2 , we compare the performance of TT-HF for increased local model training

intervals τ against the current federated learning algorithms that do not exploit local D2D

model consensus procedure. The baselines both assume full device participation (i.e., all

devices upload their local model to the server at each global aggregation), and thus are 5x

more uplink resource-intensive at each aggregation. One baseline conducts global aggrega-

tions after each round of training (τ = 1), and the other, based on [  24 ], has local update

intervals of 20 (τ = 20). Recall that longer local training periods are desirable to reduce the

frequency of communication between devices and the main server. We conduct consensus

after every t = 5 time instances, and increase Γ as τ increases. The τ = 1 baseline is an

upper bound on the achievable performance since it replicates centralized model training.

Fig.  3.2 confirms that TT-HF can still outperform the baseline FL with τ = 20 when the

frequency of global aggregations is decreased: in other words, increasing τ can be counter-

acted with a higher degree of local consensus procedure Γ(t)
c = Γ, ∀c, t. Considering the

moderate non-i.i.d. plots ((b) and (e)), we also see that the jumps in global model perfor-

mance, while less frequent, are substantially larger for TT-HF than the baseline. This result

shows that D2D communications can reduce reliance on the main server for a more dis-

tributed model training process. It can also be noted that TT-HF achieves this performance

gain despite the communication impairments, i.e., packet lost due to fast fading, that we

assumed in D2D communications. This implies the robustness of TT-HF to imperfect D2D

communications among the devices.

D2D enhancing ML model performance

In Fig.  3.3 , we compare the performance of TT-HF with the baseline methods, where

we set τk = τ = 20 and conduct a fixed number of D2D rounds in clusters after every

5 time instances, i.e., Γ(t)
c = Γ for different values of Γ. Fig.  3.3 verifies that local D2D
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Figure 3.4. Performance of TT-HF in the extreme non-i.i.d. case for the
setting in Fig.  3.2 when Γ is small and the local model training interval length
is increased substantially. TT-HF exhibits poor convergence behavior when τ
exceeds a certain value, due to model dispersion. SVM is used for classification.

communications can significantly boost the performance of ML model training. Specifically,

when the data distributions are moderate non-i.i.d ((b) and (e)) or extreme non-i.i.d. ((c)

and (f)), we see that increasing Γ improves the trained model accuracy/loss substantially

from FL with τ = 20. It also reveals that there is a diminishing reward of increasing Γ as the

performance of TT-HF approaches that of FL with τ = 1. Finally, we observe that the gains

obtained through D2D communications are only present when the data distributions across

the nodes are non-i.i.d., as compared to the i.i.d. scenario ((a) and (d)), which emphasizes

the purpose of TT-HF for handling statistical heterogeneity. This result further shows the

applicability of TT-HF to non-convex classifiers such as NN.

Convergence behavior

Recall that the upper bound on convergence in Theorem  C.2.1 is dependent on the

expected model dispersion A(t) and the consensus error ε(t) across clusters. For the settings

in Figs.  3.3 & 3.2 , increasing the local model training period τ and decreasing the consensus

rounds Γ will result in increased A(t) and ε(t), respectively, for a given t. In Fig.  3.4 , we

show that TT-HF suffers from poor convergence behavior in the extreme non-i.i.d. case

when the period of local descents τ are excessively prolonged, similar to the baseline FL
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when τ = 50 [  24 ]. This further emphasizes the importance of Algorithm  4 tuning these

parameters around Theorem  3.2.2 ’s result.

3.4.3 TT-HF with Adaptive Parameter Control

We turn now to evaluating the efficacy and analyzing the behavior of TT-HF under pa-

rameter tuning from Algorithm  4 .

Improved resource efficiency compared with baselines

Fig.  3.5 compares the performance of TT-HF under our control algorithm with the two

baselines: (i) FL with full device participation and τ = 1 (from Chapter  3.4.2 ), and (ii)

FL with τ = 20 but only one device sampled from each cluster for global aggregations.  

6
 

The result is shown under different ratios of delays ∆D2D
∆Glob

and different ratios of energy

consumption ED2D
EGlob

between D2D communications and global aggregations. 

7
 Three metrics

are shown: (a) total cost based on the objective of (P), (b) total energy consumed, and (c)

total delay experienced up to the point where 75% of peak accuracy is reached.

Overall, in (a), we see that TT-HF (depicted through the bars) outperforms the baselines

(depicted through the horizontal lines) substantially in terms of total cost, by at least 75% in

each case. In (b), we observe that for smaller values of ED2D/EGlob, TT-HF lowers the overall

power consumption, but after the D2D energy consumption reaches a certain threshold, it

does not result in energy savings anymore. The same impact can be observed regarding the

delay from (c), i.e., once ∆D2D
∆Glob

≈ 0.1 there is no longer an advantage in terms of delay. Ratios

of 0.1 for either of these metrics, however, is significantly larger than what is being observed

in 5G networks [ 109 ], [  110 ], indicating that TT-HF would be effective in practical systems.
6

 ↑ The baseline of FL, τ = 20 with full participation is omitted because it results in very poor costs.
7

 ↑ These plots are generated for some typical ratios observed in the literature. For example, a similar data
rate in D2D and uplink transmission can be achieved via typical values of transmit powers of 10dbm in
D2D mode and 24dbm in uplink mode [  109 ], [ 110 ], which coincides with a ratio of ED2D/EGlob = 0.04. In
practice, the actual values are dependent on many environmental factors.
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Figure 3.5. Comparing total (a) cost, (b) power, and (c) delay metrics from
the optimization objective in (P) achieved by TT-HF versus baselines upon
reaching 75% of peak accuracy, for different configurations of delay and energy
consumption. TT-HF obtains a significantly lower total cost in (a). (b) and (c)
demonstrate the region under which TT-HF attains energy savings and delay
gains. SVM is used for classification.

Impact of design choices on local model training interval

We are also interested in how the design weights c1, c2, c3 in (P) affect the behavior of

the control algorithm. In Fig.  3.6 , we plot the value of τ2, i.e., the length of the second local

model training interval, for different configurations of c1, c2 and c3. 

8
 The maximum tolerable

value of τ is assumed to be 40. As we can see, increasing c1 and c2 – which elevates the

priority on minimizing energy consumption and delay, respectively – results in a longer local

model training interval, since D2D communication is more efficient. On the other hand,

increasing c3 – which prioritizes the global model convergence rate – results in a quicker

global aggregation.

3.4.4 Main Takeaways

Data heterogeneity in local dataset across local devices can result in considerable per-

formance degradation of federated learning algorithms. In this case, longer local update
8

 ↑ The specific ranges of values chosen gives comparable objective terms (a), (b), and (c) in (P).
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Figure 3.6. Value of the second local model training interval obtained through
(P) for different configurations of weighing coefficients c1, c2, c3 (default c1 =
10−3, c2 = 102, c3 = 104). Higher weight on energy and delay (larger c1 and c2)
prolongs the local training period, while higher weight on the global model loss
(larger c3) decreases the length, resulting in more rapid global aggregations.

periods will result in models that are significantly biased towards local datasets and degrade

the convergence speed of the global model and the resulting model accuracy. By blending

federated aggregations with cooperative D2D consensus procedure among local device clus-

ters in TT-HF, we effectively decrease the bias of the local models to the local datasets and

speed up the convergence at a lower cost (i.e., utilizing low power D2D communications to

reduce the frequency of performing global aggregation via uplink transmissions). Due to

the low network cost in performing D2D transmission, TT-HF provides a practical solution

for federated learning to achieve faster convergence or to prolong the local model training

interval, leading to delay and energy consumption savings.

Although we develop our algorithm based on federated learning with vanilla SGD local

optimizer, our method can benefit other counterparts in the literature. This is due to the fact

that, intuitively, conducting D2D communications via the method proposed on this paper

reduces the local bias of the nodes’ models to their local datasets, which is one of the main

challenges faced in federated learning. In Appendix  D of [ 108 ] we conduct some preliminary

experiment to show the impact of our method on FedProx [  122 ].
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4. CONCLUSION AND FUTURE WORK

We started by introducing two possible solutions to solve problem of communication latency

in federated learning: (i) learning private representations of data to enable its sharing,

and (ii) reducing the communication latency by minimizing the long-range communication

requirements.

To address the first, we developed the first methodology for generalized and distributable

PRL. EIGAN accounts for the presence of multiple allies and adversaries with potentially

overlapping objectives, and D-EIGAN addresses privacy concerns and resource constraints in

scenarios with decentralized data. We proved that for an optimal encoding, the adversary’s

output from EIGAN follows a uniform distribution, and that dependencies between ally and

adversary interests requires careful balancing of objectives in encoder optimization. Our

experiments showed that EIGAN outperforms six baselines in jointly optimizing predictivity

and privacy on different datasets and system settings. They also showed that D-EIGAN

achieves comparable performance to EIGAN with different numbers of training nodes and

as the training parameters vary to account for communication constraints.

We next proposed TT-HF to tackle the latter. TT-HF improves the efficiency of federated

learning in D2D-enabled wireless networks by augmenting global aggregations with coopera-

tive consensus procedure among device clusters. We conducted a formal convergence analysis

of TT-HF, resulting in a bound which quantifies the impact of gradient diversity, consensus

error, and global aggregation periods on the convergence behavior. Using this bound, we

characterized a set of conditions under which TT-HF is guaranteed to converge sublinearly

with rate of O(1/t). Based on these conditions, we developed an adaptive control algorithm

that actively tunes the device learning rate, cluster consensus rounds, and global aggrega-

tion periods throughout the training process. Our experimental results demonstrated the

robustness of TT-HF against data heterogeneity among edge devices, and its improvement

in trained model accuracy, training time, and/or network resource utilization in different

scenarios compared to the current art.

There are several avenues for future work. To further enhance the flexibility of TT-HF, one

may consider (i) heterogeneity in computation capabilities across edge devices, (ii) different
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communication delays from the clusters to the server, and (iii) wireless interference caused by

D2D communications. Furthermore, using the set of new techniques we provided to conduct

convergence analysis in this paper, we aim to extend our convergence analysis to non-convex

settings in future work. This includes obtaining the conditions under which approaching

a stationary point of the global loss function is guaranteed, and the rate under which the

convergence is achieved.
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A. SKETCH OF THE PROOFS

A.1 Sketch of the Proof of Proposition  3.2.1 

The complete proof is contained in Appendix  C.1 of our online technical report [ 108 ]. We

break down the proof into three parts. In Part I, we find the relationship between ‖w̄(t)−w∗‖

and
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖, which forms a coupled dynamic system that we then solve in Part II.

Finally, Part III draws the connection between A(t) and the solution of the coupled dynamic

system, which yields the bound on A(t). A summary of the steps is given below:

Part I. Finding the relationship between ‖w̄(t) −w∗‖ and
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖: Using the

definition of w̄(t+1) from Definition  3.2.1 , we have, ∀t ∈ Tk,

w̄(t+1)
c = w̄(t)

c − ηt
1
sc

∑
j∈Sc
∇Fj(w(t)

j )− ηt
1
sc

∑
j∈Sc

n(t)
j , (A.1)

w̄(t+1) = w̄(t) − ηt
N∑
d=1

%d
1
sd

∑
j∈Sd
∇Fj(w(t)

j )− ηt
N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j . (A.2)

Using the definitions of w̄(t)
c and w̄(t), Assumption  1 , Condition  1 , Definition  3.1.1 , Assump-

tion  3 and Fact  1 (see Appendix  C.6 ), and noting that ηt ≤ µ
β2 , we get the following for

t ∈ Tk, after performing some algebraic manipulations:

x(t+1) ≤
(
I + ηtβB

)
x(t) + ηtβz, (A.3)

where

x(t) =


√
βE[(

N∑
c=1

%c‖w̄(t)
c − w̄(t)‖)2]√

βE[‖w̄(t) −w∗‖2]

 ,
initialized as x(tk−1) = e2

√
β‖w̄(tk−1) −w∗‖ at the start of training interval Tk, and we have

defined e1 =
[
1 0

]>
, e2 =

[
0 1

]>
,

z =
[
2 1

]> ( σ√
β

+
√
β

N∑
d=1

%dε
(0)
d

)
+ e1

δ√
β
,
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B =

2 2ω

1 − µ
2β

 .
The bound (  A.3 ) reveals that the error terms in x(t) are coupled with each other, whose

dynamics are analyzed next.

Part II. Solving the coupled dynamic system: We define x̄(t) to be the upper bound on

x(t) from ( A.3 ), i.e.,

x̄(t+1) =
(
I + ηtβB

)
x̄(t) + ηtβz. (A.4)

To solve the coupled dynamic system, we consider the eigen-decomposition of B: B =

UDU−1, where

D =

λ+ 0

0 λ−

 , U =

 ω ω

λ+
2 − 1 λ−

2 − 1

 ,

U−1 = 1
ω
√

(1 + µ
4β )2 + 2ω

1− λ−
2 ω

λ+
2 − 1 −ω

 ,
and the eigenvalues are λ+ = 1− µ

4β +
√

(1 + µ
4β )2 + 2ω > 0 and λ− = −µ/β+2ω

λ+
< 0.

Using this eigen-decomposition, we can obtain the following expression for x̄(t) through

recursive expansion of ( A.4 ):

x̄(t) = U
t−1∏

`=tk−1

(I + η`βD)U−1e2‖w̄(tk−1) −w∗‖

+ U

 t−1∏
`=tk−1

(I + η`βD)− I

U−1B−1z. (A.5)

Part III. Connecting A(t) with x(t), and obtaining the bound: To bound A(t), we perform

some algebraic manipulations on ( A.1 ), ( A.2 ) to get:

√
βE[‖w̄(t+1)

c − w̄(t+1)‖2] ≤ (1 + ηtβ)
√
βE[‖w̄(t)

c − w̄(t)‖2]

+ ηtβ
(√

βε(t)c +
√
β

N∑
d=1

%dε
(t)
d + δ√

β
+ 2σ√

β

)
+ ηtβy

(t),
(A.6)
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where y(t) =
[
1 2ω

]
x(t). Recursive expansion of (  A.6 ) yields:

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤
t−1∑

`=tk−1

η`β
t−1∏

j=`+1
(1 + ηjβ)y(`)

+
t−1∑

`=tk−1

η`β
t−1∏

j=`+1
(1 + ηjβ)

(√
βε(0)

c +
√
β

N∑
d=1

%dε
(0)
d + δ√

β
+ 2σ√

β

)
.

(A.7)

We then bound y(`) in terms of λ+ and λ−. Applying properties of these eigenvalues

allows us to further bound ( A.6 ) as:

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤ 2ωΣ+,t

√
β‖w̄(tk−1) −w∗‖

+ Σ+,t

(3 +
√

3
2

σ√
β

+ δ√
β

+
√
β(1 +

√
3)

2 ε(0) +
√
βε(0)

c

)
.

(A.8)

Taking the square and the weighted sum ∑N
c=1 %c of both sides, and using the strong convexity

of F (·), we obtain the proposition result.

A.2 Sketch of the Proof of Theorem  C.2.1 

For the detailed proof, see Appendix  C.2 of our online technical report [ 108 ]. Here, we

provide a summary of the steps taken to carry out the proof.

Consider the global average w̄ of the local models defined in Definition  3.2.1 . For t ∈ Tk,

using ( 3.10 ), (  3.13 ), and the fact that ∑
i∈Sc

e(t)
i = 0 ∀t, we have

w̄(t+1) = w̄(t) − ηt
N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )− ηt
N∑
c=1

%c
1
sc

∑
j∈Sc

n(t)
j (A.9)
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given Assumption  2 . Combining the result of ( A.9 ) with β-smoothness and applying As-

sumption  3 , we have:

Et
[
F (w̄(t+1))− F (w∗)

]
≤ F (w̄(t))− F (w∗)

− ηt∇F (w̄(t))>
N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )

+ η2
t β

2

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η2
t βσ

2

2 , (A.10)

where Et denotes the conditional expectation, conditioned on w̄(t). Applying the law of total

expectation, Assumption  2 , and Lemma  3 (see Appendix  C.5 ), since ηt ≤ 1/β we have

E
[
F (w̄(t+1))− F (w∗)

]
≤ (1− µηt)E[F (w̄(t))− F (w∗)]

+ ηtβ
2

2 A(t) + 1
2(ηtβ2(ε(t))2 + η2

t βσ
2). (A.11)

Finally, noting again the β-smoothness and strong convexity of F (·), we establish inequality

relationships between E[F (w̄(t))−F (w∗)] and E[F (ŵ(t))−F (w∗)], which concludes the proof.

A.3 Sketch of the Proof of Theorem  3.2.2 

The complete proof is provided in Appendix  C.3 of our technical report [ 108 ]. Here, we

summarize the key steps.

The proof is carried out by induction. We aim to prove

E
[
F (ŵ(t))− F (w∗)

]
≤ ν

t+ α
, ∀t, (A.12)

holds, considering the effects of all global aggregations and the local model training inter-

val between consecutive global aggregations. To do so, we need to do two inductions: (i)

outer induction: induction across all the global aggregation indices, i.e., k, to demonstrate

that ( A.12 ) holds across all global aggregations, and (ii) inner induction: induction across

the local model training interval t ∈ Tk, ∀k. We start with the outer induction and con-

sider t0 as the basis of induction. We see that the condition in ( A.12 ) trivially holds when
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t = t0 = 0, since ν ≥ α[F (ŵ(0)) − F (w∗)] by its definition. We then focus on the outer

induction hypothesis, and presume that

E
[
F (ŵ(tk−1))− F (w∗)

]
≤ ν

tk−1 + α
(A.13)

holds for t = tk−1 for some k ≥ 1. Finally, to complete the proof for the outer induction,

we aim to prove that the induction holds for t = tk, i.e., E
[
F (ŵ(tk))− F (w∗)

]
≤ ν

tk+α . We

prove this step by proving the condition

E
[
F (ŵ(t))− F (w∗)

]
≤ ν

t+ α
, ∀t ∈ Tk, (A.14)

which implies the outer induction step (when t = tk), and is proved via the inner induction

over t ∈ Tk. To complete the proof using the inner induction, consider t = tk−1 as the basis of

induction. We note that the condition in ( A.12 ) holds as a result of the induction hypothesis

from the outer induction. Now, suppose that

E
[
F (ŵ(t))− F (w∗)

]
≤ ν

t+ α
, (A.15)

holds for t ∈ {tk−1, . . . , tk−1}. We aim to demonstrate that it holds at t+1 as follows. From

the result of Theorem  C.2.1 , using the induction hypothesis, the bound on A(t), ε(t) = ηtφ,

and the facts that ηt+1 ≤ ηt, ηt ≤ η0 ≤ µ
β2 ≤ 1/β and ε(0) = η0φ ≤ φ/β, we get

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µηt)

ν

t+ α
+ η2

t β

2
(
σ2 + 2φ2

)
+ 8ηtω2β2

µ
(Σ+,t)2︸ ︷︷ ︸

(a)

ν

tk−1 + α
+ 25

2 ηt (Σ+,t)2︸ ︷︷ ︸
(b)

(
σ2 + φ2 + δ2

)
,

(A.16)
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where Σ+,t is given in Proposition  3.2.1 . To get a tight upper bound for (  A.16 ), we bound

the two instances of (Σ+,t)2 appearing in (a) and (b) differently. For (a), we first use the fact

that λ+ = 1− µ
4β +

√
(1 + µ

4β )2 + 2ω ∈ [2, 1 +
√

3], which implies

Σ+,t ≤ γβ

 t−1∏
j=tk−1

(
1 + γβλ+

j + α

)
︸ ︷︷ ︸

(i)

t−1∑
`=tk−1

1
`+ α + γβλ+︸ ︷︷ ︸

(ii)

. (A.17)

To bound (ii), since 1
`+α+γβλ+

is decreasing in `, we have

t−1∑
`=tk−1

1
`+ α + γβλ+

≤
∫ t−1

tk−1−1

1
`+ α + γβλ+

d`

= ln
(

1 + t− tk−1

tk−1 − 1 + α + γβλ+

)
.

(A.18)

To bound (i), we first rewrite it as ∏t−1
j=tk−1

(
1 + γβλ+

j+α

)
= e

∑t−1
j=tk−1

ln
(

1+ γβλ+
j+α

)
, and use the fact

that ln(1 + γβλ+
j+α ) is a decreasing function with respect to j, and that α > 1, to get

t−1∑
j=tk−1

ln(1 + γβλ+
j + α

) ≤
∫ t−1

tk−1−1
ln(1 + γβλ+

j + α
)dj

≤ γβλ+

∫ t−1

tk−1−1

1
j + α

dj = γβλ+ ln
(

1 + t− tk−1
tk−1 − 1 + α

)
,

which yields ∏t−1
j=tk−1

(
1 + γβλ+

j+α

)
≤
(
1 + t−tk−1

tk−1−1+α

)γβλ+ .

Using the results obtained for bounding (i) and (ii) back into (  A.17 ), using the fact that

ln(1 + x) ≤ 2
√
x for x ≥ 0, and performing some algebraic manipulations, we get

(Σ+,t)2 ≤ 4(τ − 1)
(

1 + τ

α− 1

)2 (
1 + τ − 1

α− 1

)6γβ
η2
t β

2[tk−1 + α]. (A.19)
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On the other hand, we bound (b) in ( A.16 ) as follows:

(t+ α)(Σ+,t)2 ≤ 4γ2β2 (t− tk−1)(t+ α)
tk−1 + α + 1

(
1 + t− tk−1

tk−1 + α− 1

)6γβ

≤ 4γ2β2(τ − 1)
(

1 + τ − 2
α + 1

)(
1 + τ − 1

α− 1

)6γβ
,

which implies

(Σ+,t)2 ≤ 4γβ(τ − 1)
(

1 + τ − 2
α + 1

)(
1 + τ − 1

α− 1

)6γβ
ηtβ. (A.20)

Substituting ( A.19 ) and ( A.20 ) into ( A.16 ), we get

E[F (ŵ(t+1))− F (w∗)] ≤(
1− µηt + Z1ω

2η2
t β

2
) ν

t+ α
+ η2

t β
2Z2,

(A.21)

where Z1 and Z2 are given in the statement of the theorem.

To complete the induction, we need to show that the right hand side of ( A.21 ) is less than

or equal to ν
t+1+α . This condition can be represented equivalently as the following inequality:

γ2β2
(
− µ

γβ2 (t+ α) + Z1ω
2
)
ν + Z2γ

2β2(t+ α)

+ ν(t+ α− 1) + ν

t+ 1 + α
≤ 0. (A.22)

( A.22 ) needs to be satisfied ∀t ≥ 0. Since the expression on the left hand side is convex in

t, it is sufficient to satisfy this condition for t→∞ and t = 0. Obtaining these limits gives

us the following set of conditions: µγ− 1 > 0, ω < ωmax and ν as in (  3.25 ), which completes

the induction, hence the proof.
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B. PRELIMINARIES AND NOTATIONS USED IN THE

PROOFS

In the following Appendices, in order to increase the tractability of the the expressions inside

the proofs, we introduce the the following scaled parameters: (i) strong convexity denoted

by µ̃, normalized gradient diversity by δ̃, step size by η̃t, SGD variance σ̃, and consensus

error inside the clusters ε̃(t)c and across the network ε̃(t) inside the cluster as follows:

• Strong convexity: F is µ-strongly convex, i.e.,

F (w1) ≥ F (w2) +∇F (w2)>(w1 −w2) + µ̃β

2

∥∥∥∥w1 −w2

∥∥∥∥2
, ∀w1,w2, (B.1)

where as compared to Assumption  1 , we considered µ̃ = µ/β ∈ (0, 1).

• Gradient diversity: The gradient diversity across the device clusters c is measured via

two non-negative constants δ, ζ that satisfy

‖∇F̂c(w)−∇F (w)‖ ≤
√
βδ̃ + 2ωβ‖w−w∗‖, ∀c,w, (B.2)

where as compared to Assumption  3.1.1 , we presumed δ̃ = δ/
√
β and ω = ζ/(2β) ∈ [0, 1].

• Step size: The local updates to compute intermediate updated local model at the devices

is expressed as follows:

w̃(t)
i = w(t−1)

i − η̃t−1

β
ĝ(t−1)

i , t ∈ Tk, (B.3)

where we used the scaled in the step size, i.e., η̃t−1 = ηt−1β. Also, when we consider

decreasing step size, we consider scaled parameter γ̃ in the step size as follows: γ
t+α = γ̃/β

t+α

indicating that γ̃ = γβ.
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• Variance of the noise of the estimated gradient through SGD: The variance on

the SGD noise is bounded as:

E[‖n(t)
j ‖2] ≤ βσ̃2,∀j, t, (B.4)

where we consider scaled SGD noise as: σ̃2 = σ2/β.

• Average of the consensus error inside cluster c and across the network: ε(t)c is

an upper bound on the average of the consensus error inside cluster c for time t, i.e.,

1
sc

∑
i∈Sc
‖e(t)

i ‖2 ≤ (ε̃(t)c )2/β, (B.5)

where we use the scaled consensus error (ε̃(t)c )2 = β(ε(t)c )2. Also, in the proofs we use the

notation ε to denote the average consensus error across the network defined as (ε(t))2 =∑N
c=1 %c(ε(t)c )2. When the consensus is assumed to be decreasing over time we use the

scaled coefficient φ̃2 = φ2/β, resulting in (ε(t))2 = η2
t φ̃

2β.

Finally, to track the global model variations, we introduce the instantaneous global model

ŵ(t) =
N∑
c=1

%cw(t)
nc , where nc is a node uniformly sampled from cluster c. We note that ŵ(t) is

only realized at the server at the instance of the global aggregations.
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C. PROOFS

C.1 Proof of Proposition  C.1.1 

Proposition C.1.1. Under Assumptions  1 and  3 , if ηt = γ
t+α , ε(t) is non-increasing with

respect to t ∈ Tk, i.e., ε(t+1)/ε(t) ≤ 1 and α ≥ max{βγ[ µ4β − 1 +
√

(1 + µ
4β )2 + 2ω], β2γ

µ
}, using

TT-HF for ML model training, the following upper bound on the expected model dispersion

across the clusters holds:

A(t) ≤ 16ω2

µ
[Σ+,t]2[F (w̄(tk−1))− F (w∗)] + 25[Σ+,t]2

[
σ2

β2 + δ2

β2 + (ε(0))2
]
, t ∈ Tk, (C.1)

where

[Σ+,t]2 =
 t−1∑
`=tk−1

 `−1∏
j=tk−1

(1 + ηjβλ+)
 βη`

 t−1∏
j=`+1

(1 + ηjβ)
2

, (C.2)

and

λ+ = 1− µ

4β +
√

(1 + µ

4β )2 + 2ω. (C.3)

Proof. We break down the proof into 3 parts: in Part I we find the relationship between

‖w̄(t)−w∗‖ and
N∑
c=1

%c‖w̄(t)
c −w̄(t)‖, which turns out to form a coupled dynamic system, which

is solved in Part II. Finally, Part III draws the connection between A(t) and the solution of

the coupled dynamic system and obtains the upper bound on A(t).

(Part I) Finding the relationship between ‖w̄(t) − w∗‖ and
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖:

Using the definition of w̄(t+1) given in Definition  3.2.1 , and the notations introduced in

Appendix  B , we have:

w̄(t+1) = w̄(t) − η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc

ĝj,t, t ∈ Tk. (C.4)
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Adding and subtracting terms in the above equality gives us:

w̄(t+1) −w∗ = w̄(t) −w∗ − η̃t
β
∇F (w̄(t))

− η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc

[ĝj,t −∇Fj(w(t)
j )]

− η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc

[∇Fj(w(t)
j )−∇Fj(w̄(t)

c )]

− η̃t
β

N∑
c=1

%c[∇Fc(w̄(t)
c )−∇Fc(w̄(t))]. (C.5)

Taking the norm-2 from the both hand sides of the above equality and applying the triangle

inequality yields:

‖w̄(t+1) −w∗‖ ≤‖w̄(t) −w∗ − η̃t
β
∇F (w̄(t))‖+ η̃t

β

N∑
c=1

%c
1
sc

∑
j∈Sc
‖n(t)

j ‖

+ η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc
‖∇Fj(w(t)

j )−∇Fj(w̄(t)
c )‖

+ η̃t
β

N∑
c=1

%c‖∇Fc(w̄(t)
c )−∇Fc(w̄(t))‖. (C.6)

To bound the terms on the right hand side above, we first use the µ-strong convexity and

β-smoothness of F (·), when ηt ≤ µ
β2 , to get

‖w̄(t) −w∗ − η̃t
β
∇F (w̄(t))‖

=
√
‖w̄(t) −w∗‖2 + ( η̃t

β
)2‖∇F (w̄(t))‖2 − 2η̃t

β
(w̄(t) −w∗)>∇F (w̄(t))

(a)
≤
√

(1− 2η̃tµ̃)‖w̄(t) −w∗‖2 + ( η̃t
β

)2‖∇F (w̄(t))‖2

(b)
≤
√

1− 2η̃tµ̃+ η̃2
t ‖w̄(t) −w∗‖

(c)
≤ (1− η̃tµ̃

2 )‖w̄(t) −w∗‖, (C.7)

where (a) results from the property of a strongly convex function, i.e., (w̄(t)−w∗)>∇F (w̄(t)) ≥

µ̃β‖w̄(t) − w∗‖2, (b) comes from the property of smooth functions, i.e., ‖∇F (w̄(t))‖2 ≤

β2‖w̄(t)−w∗‖2 and the last step (c) follows from the fact that η̃t ≤ η̃0 and assuming η̃0 ≤ µ̃,
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implying α ≥ γ̃/µ̃. Also, considering the other terms on the right hand side of ( C.6 ), using

β-smoothness, we have

‖∇Fj(w(t)
j )−∇Fj(w̄(t)

c )‖ ≤ β
1
sc

∑
j∈Sc
‖w(t)

j − w̄(t)
c ‖. (C.8)

Moreover, using Condition  1 , we get

1
sc

∑
j∈Sc
‖w(t)

j − w̄(t)
c ‖ = 1

sc

∑
j∈Sc
‖e(t)

j ‖

≤
√√√√ 1
sc

∑
j∈Sc
‖e(t)

j ‖2 ≤ ε̃(t)c /
√
β. (C.9)

Combining ( C.8 ) and ( C.9 ) gives us:

1
sc

∑
j∈Sc
‖∇Fj(w(t)

j )−∇Fj(w̄(t)
c )‖ ≤

√
βε̃(t)c . (C.10)

Replacing the result of ( C.7 ) and ( C.10 ) in (  C.6 ) yields:

‖w̄(t+1) −w∗‖ ≤(1− η̃tµ̃

2 )‖w̄(t) −w∗‖+ η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc
‖n(t)

j ‖

+ η̃t√
β

N∑
c=1

%cε̃
(t)
c + η̃t

N∑
c=1

%c‖w̄(t)
c − w̄(t)‖. (C.11)

Multiplying the both hand sides of the above inequality by
√
β followed by taking square

and expectation, we get

E
[√

β‖w̄(t+1) −w∗‖
]2
≤E

[√
β(1− η̃tµ̃

2 )‖w̄(t) −w∗‖+ η̃t√
β

N∑
c=1

%c
1
sc

∑
j∈Sc
‖n(t)

j ‖

+ η̃t
N∑
c=1

%cε̃
(t)
c + η̃t

√
β

N∑
c=1

%c‖w̄(t)
c − w̄(t)‖

]2

. (C.12)
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Taking the square roots from the both hand sides and using Fact  1 (See Appendix  C.6 )

yields:

√
βE[‖w̄(t+1) −w∗‖2] ≤(1− η̃tµ̃

2 )
√
βE[‖w̄(t) −w∗‖2] + η̃tσ̃

+ η̃t
N∑
c=1

%cε̃
(t)
c + η̃t

√√√√β( N∑
c=1

%cE‖w̄(t)
c − w̄(t)‖

)2
. (C.13)

We compact ( C.13 ) and represent it via the following relationship:

x
(t+1)
2 ≤

[
η̃t, (1−

η̃tµ̃

2 )
]
x(t) + η̃t

(
σ̃ +

N∑
c=1

%cε̃
(t)
c

)
, (C.14)

where x(t) =
[
x

(t)
1 , x

(t)
2

]>
, x(t)

1 =
√
βE[(

N∑
c=1

%c‖w̄(t)
c − w̄(t)‖)2], and x

(t)
2 =

√
βE[‖w̄(t) −w∗‖2].

The relationship in ( C.14 ) reveals the dependency of x(t+1)
2 on x

(t)
2 and x

(t)
1 . To bound

x
(t)
1 , we first use the fact that w̄(t+1)

c can be written as follows:

w̄(t+1)
c = w̄(t)

c −
η̃t
β

1
sc

∑
j∈Sc
∇Fj(w(t)

j )− η̃t
β

1
sc

∑
j∈Sc

n(t)
j . (C.15)

Similarly, w̄(t+1) can be written as:

w̄(t+1) = w̄(t) − η̃t
β

N∑
d=1

%d
1
sd

∑
j∈Sd
∇Fj(w(t)

j )− η̃t
β

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j . (C.16)

Combining ( C.15 ) and ( C.16 ) and performing some algebraic manipulations yields:

w̄(t+1)
c − w̄(t+1) = w̄(t)

c − w̄(t) − η̃t
β

1
sc

∑
j∈Sc

n(t)
j + η̃t

β

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j

− η̃t
β

1
sc

∑
j∈Sc

[
∇Fj(w̄(t)

j )−∇Fj(w̄(t)
c )
]

+ η̃t
β

N∑
d=1

%d
1
sd

∑
j∈Sd

[
∇Fj(w̄(t)

j )−∇Fj(w̄(t)
d )
]

− η̃t
β

[
∇F̂c(w̄(t)

c )−∇F̂c(w̄(t))
]

+ η̃t
β

N∑
d=1

%d

[
∇F̂d(w̄(t)

d )−∇F̂d(w̄(t))
]

− η̃t
β

[
∇F̂c(w̄(t))−∇F (w̄(t))

]
. (C.17)
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Taking the norm-2 of the both hand sides of the above equality and applying the triangle

inequality gives us

‖w̄(t+1)
c − w̄(t+1)‖ ≤ ‖w̄(t)

c − w̄(t)‖+ η̃t
β
‖ 1
sc

∑
j∈Sc

n(t)
j ‖+ η̃t

β
‖

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j ‖

+ η̃t
β

1
sc

∑
j∈Sc
‖∇Fj(w̄(t)

j )−∇Fj(w̄(t)
c )‖+ η̃t

β

N∑
d=1

%d
1
sd

∑
j∈Sd
‖∇Fj(w̄(t)

j )−∇Fj(w̄(t)
d )‖

+ η̃t
β
‖∇F̂c(w̄(t)

c )−∇F̂c(w̄(t))‖+ η̃t
β

N∑
d=1

%d‖∇F̂d(w̄(t)
d )−∇F̂d(w̄(t))‖

+ η̃t
β
‖∇F̂c(w̄(t))−∇F (w̄(t))‖. (C.18)

Using β-smoothness of Fj(·), ∀j, and F̂c(·), ∀c, Definition  3.1.1 and Condition  1 , we further

bound the right hand side of ( C.18 ) to get

‖w̄(t+1)
c − w̄(t+1)‖ ≤ (1 + η̃t)‖w̄(t)

c − w̄(t)‖+ 2ωη̃t‖w̄(t) −w∗‖+ η̃t
N∑
d=1

%d‖w̄(t)
d − w̄(t)‖

+ η̃t
β
‖ 1
sc

∑
j∈Sc

n(t)
j ‖+ η̃t

β
‖

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j ‖

+ η̃t
1
sc

∑
j∈Sc
‖w̄(t)

j − w̄(t)
c ‖+ η̃t

N∑
d=1

%d
1
sd

∑
j∈Sd
‖w̄(t)

j − w̄(t)
d ‖+ η̃t√

β
δ̃. (C.19)

Using ( C.9 ) we have 1
sd

∑
j∈Sd
‖w̄(t)

j − w̄(t)
d ‖ ≤

ε̃
(t)
d√
β
, and thus ( C.19 ) can be written as

‖w̄(t+1)
c − w̄(t+1)‖ ≤ (1 + η̃t)‖w̄(t)

c − w̄(t)‖+ 2ωη̃t‖w̄(t) −w∗‖+ η̃t
N∑
d=1

%d‖w̄(t)
d − w̄(t)‖

+ η̃t
β
‖ 1
sc

∑
j∈Sc

n(t)
j ‖+ η̃t

β
‖

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j ‖+ η̃t√

β

(
ε̃(t)c +

N∑
d=1

%dε̃
(t)
d + δ̃

)
. (C.20)
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Taking the weighted sum
N∑
c=1

%c from the both hand sides of the above inequality gives us

N∑
c=1

%c‖w̄(t+1)
c − w̄(t+1)‖ ≤ (1 + 2η̃t)

N∑
c=1

%c‖w̄(t)
c − w̄(t)‖+ 2ωη̃t‖w̄(t) −w∗‖

+ η̃t
β

N∑
c=1

%c‖
1
sc

∑
j∈Sc

n(t)
j ‖+ η̃t

β
‖

N∑
d=1

%d
1
sd

∑
j∈Sd

n(t)
j ‖+ η̃t√

β

(
2

N∑
d=1

%dε̃
(t)
d + δ̃

)
. (C.21)

Multiplying the both hand side of the above inequality by
√
β, followed by taking square

and expectation, using a similar procedure used to obtain ( C.13 ), we get the bound on x(t+1)
1

as follows:

x
(t+1)
1 ≤ [(1 + 2η̃t), 2ωη̃t]x(t) + η̃t

(
2

N∑
d=1

%dε̃
(t)
d + δ̃ + 2σ̃

)
. (C.22)

(Part II) Solving the coupled dynamic system: To bound x(t), we need to bound

x
(t)
1 and x

(t)
2 , where x(t)

2 is given by ( C.14 ), which is dependent on x(t−1). Also, x(t)
1 is given

in ( C.22 ) which is dependent on x(t−1). This leads to a coupled dynamic system where x(t)

can be expressed in a compact form as follows:

x(t+1) ≤ [I + η̃tB]x(t) + η̃tz, (C.23)

where x(tk−1) = e2
√
β‖w̄(tk−1) − w∗‖, z = [2, 1]>[σ̃ +

N∑
d=1

%dε̃
(0)
d ] + e1δ̃ , B =

2 2ω

1 −µ̃/2

,

e1 =

1

0

 and e2 =

0

1

. We aim to characterize an upper bound on x(t) denoted by x̄(t),

where

x̄(t+1) = [I + η̃tB]x̄(t) + η̃tz. (C.24)

To solve the coupled dynamic, we use the eigen-decomposition on B: B = UDU−1, where

D =

λ+ 0

0 λ−

 , U =

 ω ω

λ+
2 − 1 λ−

2 − 1

 , U−1 = 1
ω
√

(1 + µ̃/4)2 + 2ω

1− λ−
2 ω

λ+
2 − 1 −ω


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and the eigenvalues in D are given by

λ+ = 1− µ̃/4 +
√

(1 + µ̃/4)2 + 2ω > 0 (C.25)

and

λ− = 1− µ̃/4−
√

(1 + µ̃/4)2 + 2ω = − µ̃+ 2ω
λ+

< 0 (C.26)

To further compact the relationship in (  C.24 ), we introduce a variable f (t), where f (t) =

U−1x̄(t) + U−1B−1z, satisfying the following recursive expression:

f (t+1) = [I + η̃tD]f (t). (C.27)

Recursive expansion of the right hand side of the above equality yields:

f (t) =
t−1∏

`=tk−1

[I + η̃`D]f (tk−1). (C.28)

Using the fact that x̄(t) = Uf (t) −B−1z, we obtain the following expression for x̄(t):

x̄(t) = U
t−1∏

`=tk−1

(I + η̃`D)U−1e2‖w̄(tk−1) −w∗‖+ U

 t−1∏
`=tk−1

(I + η̃`D)− I

U−1B−1z. (C.29)

(Part III) Finding the connection between A(t) and x(t) and the expression for

A(t): To bound the model dispersion across the clusters, we revisit ( C.20 ), where we multiply

its both hand side by
√
β, followed by taking square and expectation and follow a similar

procedure used to obtain ( C.13 ) to get:

√
βE[‖w̄(t+1)

c − w̄(t+1)‖2] ≤(1 + η̃t)
√
βE[‖w̄(t)

c − w̄(t)‖2] + η̃ty
(t)

+ η̃t[ε̃(t)c +
N∑
d=1

%dε̃
(t)
d + δ̃ + 2σ̃], (C.30)
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where y(t) = [1, 2ω] x(t). Recursive expansion of (  C.30 ) yields:

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤
t−1∑

`=tk−1

η̃`
t−1∏

j=`+1
(1 + η̃j)y(`)

+
t−1∑

`=tk−1

η̃`
t−1∏

j=`+1
(1 + η̃j)[ε̃(0)

c +
N∑
d=1

%dε̃
(0)
d + δ̃ + 2σ̃]. (C.31)

The expression in ( C.31 ) reveals the dependency of the difference between the model in one

cluster c and the global average of models, i.e., the left hand side, on y(t) which by itself de-

pends on x(t). Considering the fact that A(t) , E
[
N∑
c=1

%c
∥∥∥w̄(t)

c − w̄(t)
∥∥∥2
]
, the aforementioned

dependency implies the dependency of A(t) on x(t).

So, the key to obtain A(t) is to bound y(t), which can be expressed as follows:

y(t) = [1, 2ω]x(t) ≤ [1, 2ω]x̄(t)

= [g1Π+,t + g2Π−,t]
√
β‖w̄(tk−1)−w∗‖

+ [g3(Π+,t − Π0,t) + g4(Π−,t − Π0,t)][σ̃ +
N∑
d=1

%dε̃
(0)
d ]

+ [g5(Π+,t − Π0,t) + g6(Π−,t − Π0,t)]δ̃, (C.32)

where we define Π{+,−,0},t = ∏t−1
`=tk−1

[1 + η̃`λ{+,−,0}], with λ+ given by ( C.25 ) and λ− given

by ( C.26 ) and λ0 = 0. Also, the constants g1, g2, g3, g4, g5, and g6 are given by:

g1 , [1, 2ω]Ue1e>1 U−1e2 = ω

1− µ̃/4√
(1 + µ̃/4)2 + 2ω

 > 0,

g2 , [1, 2ω]Ue2e>2 U−1e2 = ω

1 + µ̃/4√
(1 + µ̃/4)2 + 2ω

 = g2 = 2ω − g1 > 0,

g3 , [1, 2ω]Ue1e>1 U−1B−1[2, 1]> = 1
2 + 1 + µ̃/4 + 2ω

2
√

(1 + µ̃/4)2 + 2ω
= g3 > 1,

g4 , [1, 2ω]Ue2e>2 U−1B−1[2, 1]> = 1
2 −

1 + µ̃/4 + 2ω
2
√

(1 + µ̃/4)2 + 2ω
,
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= −ω 1 + 2ω + µ̃/2√
(1 + µ̃/4)2 + 2ω

1√
(1 + µ̃/4)2 + 2ω + [1 + µ̃/4 + 2ω]

= 1− g3 < 0,

g5 , [1, 2ω]Ue1e>1 U−1B−1e1 = 1
[µ̃+ 2ω]

√
(1 + µ̃/4)2 + 2ω

·
µ̃
2 (1 + µ̃/4)2 + ω[1 + 5µ̃

4 + µ̃2/8] + 2ω2 +
√

(1 + µ̃/4)2 + 2ω[ µ̃2 (1 + µ̃/4) + ω[1 + µ̃/2]]

1 + µ̃/4 +
√

(1 + µ̃/4)2 + 2ω
> 0,

g6 , [1, 2ω]Ue2e>2 U−1B−1e1

= ω

[µ̃+ 2ω]
√

(1 + µ̃/4)2 + 2ω

1 + 3µ̃
4 + 2ω +

√
(1 + µ̃/4)2 + 2ω

1 + µ̃/4 +
√

(1 + µ̃/4)2 + 2ω
= µ̃/2 + 2ω

µ̃+ 2ω − g5 > 0.

Revisiting (  C.30 ) with the result of ( C.32 ) gives us:

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤ 2ωg1Σ+,t + g2Σ−,t
g1 + g2

√
β‖w̄(tk−1)−w∗‖

+ [Σ+,t + (g3 − 1)(Σ+,t − Σ−,t)][σ̃ +
N∑
d=1

%dε̃
(0)
d ]

+ µ̃/2
µ̃+ 2ω [ g5

g5 + g6
Σ+,t + g6

g5 + g6
Σ−,t + Σ0,t]δ̃ + Σ0,t[ε̃(0)

c + σ̃], (C.33)

where we used the facts that g3 + g4 = 1, g5 + g6 = µ̃/2+2ω
µ̃+2ω , g1 + g2 = 2ω, and g3 > 1, and

defined Σ+,t, Σ−,t, and Σ0,t as follows:

Σ{+,−,0},t =
t−1∑

`=tk−1

η̃`
t−1∏

j=`+1
(1 + η̃j)Π{+,−,0},` =

t−1∑
`=tk−1

 `−1∏
j=tk−1

(1 + η̃jλ{+,−,0})
 η̃`

 t−1∏
j=`+1

(1 + η̃j)
 .

We now demonstrate that: (i) Σ−,t ≤ Σ+,t, (ii) Σ0,t ≤ Σ+,t, and (iii) Σ−,t ≥ 0.

To prove Σ−,t ≤ Σ+,t, we upper bound Σ−,t as follows:

Σ−,t ≤
t−1∑

`=tk−1

 `−1∏
j=tk−1

|1 + η̃jλ−|

 η̃`
 t−1∏

j=`+1
(1 + η̃j)


≤

t−1∑
`=tk−1

 `−1∏
j=tk−1

(1 + η̃jλ+)
 η̃`

 t−1∏
j=`+1

(1 + η̃j)
 = Σ+,t. (C.34)

120



Similarly it can be shown that Σ0,t ≤ Σ+,t since λ+ > 1.

To prove Σ−,t ≥ 0, it is sufficient to impose the condition (1 + η̃jλ−) ≥ 0,∀j, i.e. (1 +

η̃0λ−) ≥ 0, which implies α ≥ γ̃[µ̃/4− 1 +
√

(1 + µ̃/4)2 + 2ω].

Considering (  C.33 ) with the above mentioned properties for Σ−,t, Σ+,t, and Σ0,t, we get:

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤2ωΣ+,t

√
β‖w̄(tk−1) −w∗‖

+ g3Σ+,t[σ̃ +
N∑
d=1

%dε̃
(0)
d ]

+ µ̃

µ̃+ 2ωΣ+,tδ̃ + Σ+,t[σ̃ + ε̃(0)
c ]. (C.35)

Moreover, since µ̃
µ̃+2ω ≤ 1,

N∑
d=1

%dε̃
(0)
d = ε̃(0) and g3 ≤ 1+

√
3

2 (since g3 is increasing with respect

to ω and decreasing with respect to µ̃), from (  C.35 ) we obtain

√
βE[‖w̄(t)

c − w̄(t)‖2] ≤2ωΣ+,t

√
β‖w̄(tk−1) −w∗‖+ Σ+,t

[
3 +
√

3
2 σ̃ + 1 +

√
3

2 ε̃(0) + ε̃(0)
c + δ̃

]
.

(C.36)

Taking the square of the both hand sides followed by taking the weighted sum ∑N
c=1 %c, we

get:

βA(t) = βE
[
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖2

]
≤ 8ω2[Σ+,t]2β‖w̄(tk−1) −w∗‖2

+ 2[Σ+,t]2
N∑
c=1

%c

[
3 +
√

3
2 σ̃ + 1 +

√
3

2 ε̃(0) + ε̃(0)
c + δ̃

]2

≤ 8ω2[Σ+,t]2β‖w̄(tk−1) −w∗‖2 + 2[Σ+,t]2
[

3 +
√

3
2 σ̃ + 3 +

√
3

2 ε̃(0) + δ̃

]2

≤ 8ω2[Σ+,t]2β‖w̄(tk−1) −w∗‖2 + 25[Σ+,t]2
[
σ̃2 + δ̃2 + (ε̃(0))2

]
. (C.37)
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Using the strong convexity of F (.), we have ‖w̄(tk−1) − w∗‖2 ≤ 2
µ̃β

[F (w̄(tk−1)) − F (w∗)],

using which in ( C.37 ) yields:

βA(t) ≤ 16ω2

µ̃
[Σ+,t]2[F (w̄(tk−1))− F (w∗)] + 25[Σ+,t]2

[
σ̃2 + (ε̃(0))2 + δ̃2

]
= 16ω2β

µ
[Σ+,t]2[F (w̄(tk−1))− F (w∗)] + 25[Σ+,t]2

[
σ2

β
+ δ2

β
+ β(ε(0))2

]
. (C.38)

This concludes the proofs.

C.2 Proof of Theorem  C.2.1 

Theorem C.2.1. Under Assumptions  1 ,  2 , and  3 , upon using TT-HF for ML model training,

if ηt ≤ 1/β, ∀t, the one-step behavior of ŵ(t) can be described as follows:

E
[
F (ŵ(t+1))− F (w∗)

]
≤(1− µηt)E[F (ŵ(t))− F (w∗)]

+ ηtβ
2

2 A(t) + 1
2[ηtβ2(ε(t))2 + η2

t βσ
2 + β(ε(t+1))2], t ∈ Tk,

where

A(t) , E
[
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖2

2

]
. (C.39)

Proof. Considering t ∈ Tk, using ( 3.10 ), (  3.13 ), the definition of w̄ given in Definition  3.2.1 ,

and the fact that ∑
i∈Sc

e(t)
i = 0, ∀t, under Assumption  2 , the global average of the local models

follows the following dynamics:

w̄(t+1) = w̄(t) − η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )− η̃t
β

N∑
c=1

%c
1
sc

∑
j∈Sc

n(t)
j , (C.40)
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where n(t)
j = ĝ(t)

j −∇Fj(w(t)
j ). On the other hand, the β-smoothness of the global function

F implies

F (w̄(t+1)) ≤ F (w̄(t)) +∇F (w̄(t))>(w̄(t+1) − w̄(t)) + β

2

∥∥∥∥w̄(t+1) − w̄(t)
∥∥∥∥2
. (C.41)

Replacing the result of (  C.40 ) in the above inequality, taking the conditional expectation

(conditioned on the knowledge of w̄(t)) of the both hand sides, and using the fact that

Et[n(t)
j ] = 0 yields:

Et
[
F (w̄(t+1))− F (w∗)

]
≤ F (w̄(t))− F (w∗)− η̃t

β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )

+ η̃2
t

2β

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η̃2
t

2βEt

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc

n(t)
j

∥∥∥∥2
 . (C.42)

Since Et[‖n(t)
i ‖2

2] ≤ βσ̃2, ∀i, we get

Et
[
F (w̄(t+1))− F (w∗)

]
≤F (w̄(t))− F (w∗)

− η̃t
β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )

+ η̃2
t

2β

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η̃2
t σ̃

2

2 . (C.43)

Using Lemma  3 (see Appendix  C.5 ), we further bound ( C.43 ) as follows:

Et
[
F (w̄(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)(F (w̄(t))− F (w∗))

− η̃t
2β (1− η̃t)

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η̃2
t σ̃

2

2 + η̃tβ

2

N∑
c=1

%c
1
sc

∑
j∈Sc

∥∥∥∥w̄(t) −w(t)
j

∥∥∥∥2

≤ (1− µ̃η̃t)(F (w̄(t))− F (w∗)) + η̃tβ

2

N∑
c=1

%c
1
sc

∑
j∈Sc

∥∥∥∥w̄(t) −w(t)
j

∥∥∥∥2
+ η̃2

t σ̃
2

2 , (C.44)
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where the last step follows from η̃t ≤ 1. To further bound the terms on the right hand side

of ( C.44 ), we use the fact that

‖w(t)
i − w̄(t)‖2 = ‖w̄(t)

c − w̄(t)‖2 + ‖e(t)
i ‖2 + 2[w̄(t)

c − w̄(t)]>e(t)
i , (C.45)

which results in

1
sc

∑
i∈Sc
‖w(t)

i − w̄(t)‖2
2 ≤ ‖w̄(t)

c − w̄(t)‖2
2 + (ε̃(t)c )2

β
. (C.46)

Replacing (  C.46 ) in ( C.44 ) and taking the unconditional expectation from the both hand

sides of the resulting expression gives us

E
[
F (w̄(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)E[F (w̄(t))− F (w∗)]

+ η̃tβ

2

N∑
c=1

%c

(
‖w̄(t)

c − w̄(t)‖2
2 + (ε̃(t)c )2

β

)
+ η̃2

t σ̃
2

2

= (1− µ̃η̃t)E[F (w̄(t))− F (w∗)] + η̃tβ

2 A(t) + 1
2[η̃t(ε̃(t))2 + η̃2

t σ̃
2], (C.47)

where

A(t) , E
[
N∑
c=1

%c‖w̄(t)
c − w̄(t)‖2

]
. (C.48)

By β-smoothness of F (·), we have

F (ŵ(t))− F (w∗) ≤ F (w̄(t))− F (w∗) +∇F (w̄(t))>
(
ŵ(t) − w̄(t)

)
+ β

2 ‖ŵ
(t) − w̄(t)‖2

≤ F (w̄(t))− F (w∗) +∇F (w̄(t))>
N∑
c=1

%ce(t)
sc + β

2

N∑
c=1

%c‖e(t)
sc ‖

2. (C.49)
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Taking the expectation with respect to the device sampling from both hand sides of ( C.49 ),

since the sampling is conducted uniformly at random, we obtain

Et
[
F (ŵ(t))− F (w∗)

]
≤F (w̄(t))− F (w∗) +∇F (w̄(t))>

N∑
c=1

%c Et
[
e(t)
sc

]
︸ ︷︷ ︸

=0

+ β

2

N∑
c=1

%cEt
[
‖e(t)

sc ‖
2
]
. (C.50)

Taking the total expectation from both hand sides of the above inequality yields:

E
[
F (ŵ(t))− F (w∗)

]
≤ E

[
F (w̄(t))− F (w∗)

]
+ (ε̃(t))2

2 . (C.51)

Replace ( C.47 ) into (  C.51 ), we have

E
[
F (ŵ(t+1))− F (w∗)

]
≤(1− µ̃η̃t)E[F (w̄(t))− F (w∗)] + η̃tβ

2 A(t)

+ 1
2[η̃t(ε̃(t))2 + η̃2

t σ̃
2 + (ε̃(t+1))2]. (C.52)

On the other hands, using the strong convexity of F (·), we have

F (ŵ(t))− F (w∗) ≥ F (w̄(t))− F (w∗) +∇F (w̄(t))>
(
ŵ(t) − w̄(t)

)
+ µ

2‖ŵ
(t) − w̄(t)‖2

≥ F (w̄(t))− F (w∗) +∇F (w̄(t))>
N∑
c=1

%ce(t)
sc . (C.53)

Taking the expectation with respect to the device sampling from the both hand sides of

( C.53 ), since the sampling is conducted uniformly at random, we obtain

Et
[
F (ŵ(t))− F (w∗)

]
≥ F (w̄(t))− F (w∗) +∇F (w̄(t))>

N∑
c=1

%c Et
[
e(t)
sc

]
︸ ︷︷ ︸

=0

. (C.54)

Taking the total expectation from both hand sides of the above inequality yields:

E
[
F (ŵ(t))− F (w∗)

]
≥ E

[
F (w̄(t))− F (w∗)

]
. (C.55)
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Finally, replacing ( C.55 ) into ( C.52 ), we obtain

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)E[F (ŵ(t))− F (w∗)]

+ η̃tβ

2 A(t) + 1
2[η̃t(ε̃(t))2 + η̃2

t σ̃
2 + (ε̃(t+1))2]

= (1− µηt)E[F (ŵ(t))− F (w∗)] + ηtβ
2

2 A(t) + 1
2[ηtβ2(ε(t))2 + η2

t βσ
2 + β(ε(t+1))2]. (C.56)

This concludes the proof.

C.3 Proof of Theorem  C.3.1 

Theorem C.3.1. Define Z1 ,
32β2γ
µ

(τ − 1)
(
1 + τ

α−1

)2 (
1 + τ−1

α−1

)6βγ
, Z2 , 1

2 [σ2

β
+ 2φ2

β
] +

50βγ(τ −1)
(
1 + τ−2

α+1

) (
1 + τ−1

α−1

)6βγ [
σ2

β
+ φ2

β
+ δ2

β

]
. Also, assume γ > 1/µ, α ≥ max{βγ[ϑ4 −

1 +
√

(1 + ϑ
4 )2 + 2ω], β2γ

µ
} and ω < 1

βγ

√
α
µγ−1+ 1

1+α
Z1

, ωmax. Upon using TT-HF for ML model

training under Assumptions  1 ,  2 , and  3 , if ηt = γ
t+α and ε(t) = ηtφ, ∀t, we have:

E
[
(F (ŵ(t))− F (w∗))

]
≤ ν

t+ α
, ∀t, (C.57)

where ν , Z2 max
{
β2γ2

µγ−1 ,
α

Z1(ω2
max−ω2) ,

α
Z2

[
F (ŵ(0))− F (w∗)

]}
.

Proof. We carry out the proof by induction. We start by considering the first global aggre-

gation, i.e., k = 1. Note that the condition in ( C.57 ) trivially holds at the beginning of this

global aggregation t = t0 = 0 since ν ≥ α
[
F (ŵ(0))− F (w∗)

]
. Now, assume that

E
[
F (ŵ(tk−1))− F (w∗)

]
≤ ν

tk−1 + α
(C.58)

for some k ≥ 1. We prove that this implies

E
[
F (ŵ(t))− F (w∗)

]
≤ ν

t+ α
, ∀t ∈ Tk, (C.59)

and as a result E
[
F (ŵ(tk))− F (w∗)

]
≤ ν

tk+α . To prove ( C.59 ), we use induction over t ∈

{tk−1 + 1, . . . , tk}. Clearly, the condition holds for t = tk−1 from the induction hypothesis.
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Now, we assume that it also holds for some t ∈ {tk−1, . . . , tk − 1}, and aim to show that it

holds at t+ 1.

From the result of Theorem  C.2.1 , considering ε̃(t) = η̃tφ̃, we get

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)

ν

t+ α
+ η̃tβ

2 A(t) + 1
2[η̃3

t φ̃
2 + η̃2

t σ̃
2 + η̃2

t+1φ̃
2]. (C.60)

Using the induction hypothesis and the bound on A(t), we can further upper bound ( C.60 )

as

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)

ν

t+ α
+ 8η̃tω2

µ̃
[Σ+,t]2

ν

tk−1 + α

+ 25
2 η̃t[Σ+,t]2

[
σ̃2 + (ε̃(0))2 + δ̃2

]
+ 1

2[η̃3
t φ̃

2 + η̃2
t σ̃

2 + η̃2
t+1φ̃

2]. (C.61)

Since η̃t+1 ≤ η̃t, η̃t ≤ η̃0 ≤ µ̃ ≤ 1 and ε̃(0) = η̃0φ̃ ≤ φ̃, we further upper bound ( C.61 ) as

E
[
F (ŵ(t+1))− F (w∗)

]
≤ (1− µ̃η̃t)

ν

t+ α
+ 8η̃tω2

µ̃
[Σ+,t]2︸ ︷︷ ︸

(a)

ν

tk−1 + α

+ 25
2 η̃t [Σ+,t]2︸ ︷︷ ︸

(b)

[
σ̃2 + φ̃2 + δ̃2

]
+ η̃2

t

2 [σ̃2 + 2φ̃2]. (C.62)

To get a tight upper bound for ( C.62 ), we bound the two instances of [Σ+,t]2 appearing in

(a) and (b) differently. In particular, for (a), we first use the fact that

λ+ = 1− µ̃/4 +
√

(1 + µ̃/4)2 + 2ω ∈ [2, 1 +
√

3],

which implies that

Σ+,t =
t−1∑

`=tk−1

 `−1∏
j=tk−1

(1 + η̃jλ+)
 η`

 t−1∏
j=`+1

(1 + η̃j)


≤
t−1∑

`=tk−1

 `−1∏
j=tk−1

(1 + η̃jλ+)
 η`

 t−1∏
j=`+1

(1 + η̃jλ+)


≤

 t−1∏
j=tk−1

(1 + η̃jλ+)
 t−1∑
`=tk−1

η̃`
1 + η̃`λ+

. (C.63)
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Also, with the choice of step size η̃` = γ̃
`+α , we get

Σ+,t ≤ γ̃

 t−1∏
j=tk−1

(
1 + γ̃λ+

j + α

)
︸ ︷︷ ︸

(i)

t−1∑
`=tk−1

1
`+ α + γ̃λ+︸ ︷︷ ︸

(ii)

. (C.64)

To bound (ii), since 1
`+α+γ̃λ+

is a decreasing function with respect to `, we have

t−1∑
`=tk−1

1
`+ α + γ̃λ+

≤
∫ t−1

tk−1−1

1
`+ α + γ̃λ+

d` = ln
(

1 + t− tk−1

tk−1 − 1 + α + γ̃λ+

)
, (C.65)

where we used the fact that α > 1− γ̃λ+ (implied by α > 1).

To bound (i), we first rewrite it as follows:

t−1∏
j=tk−1

(
1 + γ̃λ+

j + α

)
= e

∑t−1
j=tk−1

ln
(

1+ γ̃λ+
j+α

)
(C.66)

To bound ( C.66 ), we use the fact that ln(1 + γ̃λ+
j+α ) is a decreasing function with respect to j,

and α > 1, to get

t−1∑
j=tk−1

ln(1 + γ̃λ+

j + α
) ≤

∫ t−1

tk−1−1
ln(1 + γ̃λ+

j + α
)dj

≤ γ̃λ+

∫ t−1

tk−1−1

1
j + α

dj = γ̃λ+ ln
(

1 + t− tk−1

tk−1 − 1 + α

)
. (C.67)

Considering ( C.66 ) and ( C.67 ) together, we bound (i) as follows:

t−1∏
j=tk−1

(
1 + γ̃λ+

j + α

)
≤
(

1 + t− tk−1

tk−1 − 1 + α

)γ̃λ+

. (C.68)

Using the results obtained for bounding (i) and (ii) back in (  C.64 ), we get:

Σ+,t ≤ γ̃ ln
(

1 + t− tk−1

tk−1 − 1 + α + γ̃λ+

)(
1 + t− tk−1

tk−1 − 1 + α

)γ̃λ+

. (C.69)
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Since ln(1 + x) ≤ ln(1 + x+ 2
√
x) = ln((1 +

√
x)2) = 2 ln(1 +

√
x) ≤ 2

√
x for x ≥ 0, we can

further bound ( C.69 ) as follows:

Σ+,t ≤ 2γ̃
√

t− tk−1

tk−1 − 1 + α + γ̃λ+

(
1 + t− tk−1

tk−1 + α− 1

)γ̃λ+

≤ 2γ̃
√

t− tk−1

tk−1 + α + 1

(
1 + t− tk−1

tk−1 + α− 1

)3γ̃

, (C.70)

where in the last inequality we used 2 ≤ λ+ < 3 and γ̃ ≥ µ̃
β
γ̃ > 1. Taking the square from

the both hand sides of ( C.70 ) followed by multiplying the both hand sides with [t+α]2
µ̃γ̃[tk−1+α]

gives us:

[Σ+,t]2
[t+ α]2

µ̃γ̃[tk−1 + α] ≤
4γ̃
µ̃

[t− tk−1][t+ α]2
[tk−1 + α + 1][tk−1 + α]

(
1 + t− tk−1

tk−1 + α− 1

)6γ̃

≤ 4γ̃
µ̃

[t− tk−1][t+ α]2
[tk−1 + α− 1]2

[tk−1 + α− 1]2
[tk−1 + α + 1][tk−1 + α]

(
1 + τ − 1

tk−1 + α− 1

)−2(
1 + τ − 1

tk−1 + α− 1

)6γ̃+2

(a)
≤ 4γ̃

µ̃

[τ − 1][tk−1 + τ − 1 + α]2
[tk−1 + α− 1]2

(
tk−1 + α + τ − 2
tk−1 + α− 1

)−2

[tk−1 + α− 1]2
[tk−1 + α + 1][tk−1 + α]

(
1 + τ − 1

tk−1 + α− 1

)6γ̃+2

≤ 4γ̃
µ̃

(τ − 1)
(

1 + 1
τ + tk−1 + α− 2

)2 [tk−1 + α− 1]2
[tk−1 + α + 1][tk−1 + α]

(
1 + τ − 1

tk−1 + α− 1

)6γ̃+2

,

(C.71)

where (a) comes from the fact that t ≤ tk−1 + τk − 1 ≤ tk−1 + τ − 1. To bound ( C.71 ), we

use the facts that

1 + 1
τ + tk−1 + α− 2 ≤ 1 + 1

τ + α− 2 , 1 + τ − 1
tk−1 + α− 1 ≤ 1 + τ − 1

α− 1 , (C.72)

and

[tk−1 + α− 1]2
[tk−1 + α + 1][tk−1 + α] ≤ 1, (C.73)
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which yield

[Σ+,t]2
[t+ α]2

µ̃γ̃[tk−1 + α] ≤
4γ̃
µ̃

(τ − 1)
(

1 + τ

α− 1

)2 (
1 + τ − 1

α− 1

)6γ̃
. (C.74)

Consequently, we have

[Σ+,t]2 ≤ 4(τ − 1)
(

1 + τ

α− 1

)2 (
1 + τ − 1

α− 1

)6γ̃
η̃2
t [tk−1 + α]. (C.75)

On the other hand, we bound the second instance of [Σ+,t]2, i.e., (b) in (  C.62 ), as follows:

[t+ α][Σ+,t]2 ≤ 4γ̃2 [t− tk−1][t+ α]
tk−1 + α + 1

(
1 + t− tk−1

tk−1 + α− 1

)6γ̃

≤ 4γ̃2(τ − 1)
(

1 + τ − 2
tk−1 + α + 1

)(
1 + τ − 1

tk−1 + α− 1

)6γ̃

≤ 4γ̃2(τ − 1)
(

1 + τ − 2
α + 1

)(
1 + τ − 1

α− 1

)6γ̃
, (C.76)

which implies

[Σ+,t]2 ≤ 4γ̃(τ − 1)
(

1 + τ − 2
α + 1

)(
1 + τ − 1

α− 1

)6γ̃
η̃t. (C.77)

Replacing (  C.75 ) and ( C.77 ) into (  C.62 ), we get

E[F (ŵ(t+1))− F (w∗)] ≤
(
1− µ̃η̃t + Z1ω

2η̃2
t

) ν

t+ α
+ η̃2

tZ2, (C.78)

where we have defined

Z1 ,
32γ̃
µ̃

(τ − 1)
(

1 + τ

α− 1

)2 (
1 + τ − 1

α− 1

)6γ̃
, (C.79)

and

Z2 ,
1
2[σ̃2 + 2φ̃2] + 50γ̃(τ − 1)

(
1 + τ − 2

α + 1

)(
1 + τ − 1

α− 1

)6γ̃ [
σ̃2 + φ̃2 + δ̃2

]
. (C.80)
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Now, from ( C.78 ), to complete the induction, we aim to show that

E[F (ŵ(t+1))− F (w∗)] ≤
(
1− µ̃η̃t + Z1ω

2η̃2
t

) ν

t+ α
+ η̃2

tZ2 ≤
ν

t+ 1 + α
. (C.81)

We transform the condition in ( C.81 ) through the set of following algebraic steps to an

inequality condition on a convex function:

(
− µ̃
η̃2
t

+ Z1ω
2

η̃t

)
ν

t+ α
+ Z2

η̃t
+ ν

t+ α

1
η̃t

3 ≤
ν

t+ 1 + α

1
η̃t

3

⇒
(
− µ̃
η̃t

+ Z1ω
2
)

ν

t+ α

1
η̃t

+ Z2

η̃t
+
(

ν

t+ α
− ν

t+ 1 + α

) 1
η̃t

3 ≤ 0

⇒
(
− µ̃
η̃t

+ Z1ω
2
)
ν

γ̃
+ Z2

η̃t
+
(

ν

t+ α
− ν

t+ 1 + α

) (t+ α)3

γ̃3 ≤ 0

⇒
(
− µ̃
η̃t

+ Z1ω
2
)
ν

γ̃
+ Z2

η̃t
+ ν

(t+ α)(t+ α + 1)
(t+ α)3

γ̃3 ≤ 0

⇒
(
− µ̃
η̃t

+ Z1ω
2
)
ν

γ̃
+ Z2

η̃t
+ ν

t+ α + 1
(t+ α)2

γ̃3 ≤ 0

⇒ γ̃2
(
− µ̃
η̃t

+ Z1ω
2
)
ν + Z2

η̃t
γ̃3 + (t+ α)2

t+ α + 1ν ≤ 0

⇒ γ̃2
(
− µ̃
η̃t

+ Z1ω
2
)
ν + Z2

η̃t
γ̃3 +

(
(t+ α + 1)(t+ α− 1)

t+ α + 1 ν + ν

t+ α + 1

)
≤ 0, (C.82)

where the last condition in (  C.82 ) can be written as:

γ̃2
(
− µ̃
η̃t

+ Z1ω
2
)
ν + Z2

η̃t
γ̃3 + ν[t+ α− 1] + ν

t+ 1 + α
≤ 0. (C.83)

Since the above condition needs to be satisfied ∀t ≥ 0 and the expression on the left hand

side of the inequality is a convex function with respect to t (1/ηt is linear in t and 1
t+1+α is

convex), it is sufficient to satisfy this condition for t→∞ and t = 0. To obtain these limits,

we first express ( C.83 ) as follows:

γ̃2
(
− µ̃
γ̃

(t+ α) + Z1ω
2
)
ν + Z2γ̃

2(t+ α) + ν[t+ α− 1] + ν

t+ 1 + α
≤ 0. (C.84)
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Upon t→∞ considering the dominant terms yields

− γ̃µ̃νt+ Z2γ̃
2t+ νt ≤ 0

⇒ [1− γ̃µ̃] νt+ Z2γ̃
2t ≤ 0. (C.85)

To satisfy ( C.85 ), the necessary condition is given by:

µ̃γ̃ − 1 > 0, (C.86)

ν ≥ γ̃2Z2

µ̃γ̃ − 1 . (C.87)

Also, upon t→ 0, from (  C.84 ) we have

(
−µ̃γ̃α + Z1ω

2γ̃2
)
ν + Z2γ̃

2α + ν[α− 1] + ν

1 + α
≤ 0

⇒ ν
(
α(µ̃γ̃ − 1) + α

1 + α
− Z1ω

2γ̃2
)
≥ γ̃2Z2α, (C.88)

which implies the following conditions

ω <
1
γ̃

√√√√αµ̃γ̃ − 1 + 1
1+α

Z1
, (C.89)

and

ν ≥ Z2α

Z1 (ω2
max − ω2) . (C.90)

Combining ( C.87 ) and ( C.90 ), when ω satisfies (  C.89 ) and

ν ≥ Z2 max{ β2γ2

µγ − 1 ,
α

Z1 (ω2
max − ω2)}, (C.91)

completes the induction and thus the proof.
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C.4 Proof of Lemma  2 

Lemma 2. After performing Γ(t)
c rounds of consensus in cluster Sc with the consensus matrix

Vc, the consensus error e(t)
i satisfies

‖e(t)
i ‖≤ (λc)Γ(t)

c
√
sc max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖︸ ︷︷ ︸

,Υ(t)
c

, ∀i ∈ Sc, (C.92)

where λc = ρ
(
Vc − 11>

sc

)
and ‖a‖∞ = maxz |az| denotes the `∞ norm.

Proof. The evolution of the devices’ parameters can be described by ( 3.12 ) as:

W(t)
c = (Vc)Γ(t)

c W̃(t)
c , t ∈ Tk, (C.93)

where

W(t)
c =

[
w(t)
c1 ,w

(t)
c2 , . . . ,w

(t)
sc

]>
(C.94)

and

W̃(t)
c =

[
w̃(t)
c1 , w̃

(t)
c2 , . . . , w̃

(t)
sc

]>
. (C.95)

Let matrix W(t)
c denote be the matrix with rows given by the average model parameters

across the cluster, it can be represented as:

W(t)
c = 1sc1>scW̃

(t)
c

sc
. (C.96)

We then define E(t)
c as

E(t)
c = W(t)

c −W(t)
c = [ (Vc)Γ(t)

c − 1>1/sc][W̃(t)
c −W(t)

c ], (C.97)

so that [E(t)
c ]i,: = e(t)

i , where [E(t)
c ]i,: is the ith column of E(t)

c .
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Therefore, using Assumption  2 , we can bound the consensus error as

‖e(t)
i ‖2 ≤ trace((E(t)

c )>E(t)
c ) (C.98)

= trace
(

[W̃(t)
c −W(t)

c ]>[ (Vc)Γ(t)
c −1>1/sc]2[W̃(t)

c −W(t)
c ]
)

≤ (λc)2Γ(t)
c

sc∑
j=1
‖w̃(t)

j − w̄(t)
c ‖2

≤ (λc)2Γ(t)
c

1
sc

sc∑
j,j′=1
‖w̃(t)

j − w̃(t)
j′ ‖2

≤ (λc)2Γ(t)
c sc max

j,j′∈Sc
‖w̃(t)

j − w̃(t)
j′ ‖2.

The result of the Lemma directly follows.

C.5 Proof of Lemma  3 

Lemma 3. Under Assumption  1 , we have

− η̃t
β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j ) ≤ −µ̃η̃t(F (w̄(t))− F (w∗))

− η̃t
2β

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η̃tβ

2

N∑
c=1

%c
1
sc

∑
j∈Sc

∥∥∥∥w̄(t) −w(t)
j

∥∥∥∥2
.

Proof. Since −2a>b = −‖a‖2−‖b‖2 + ‖a−b‖2 holds for any two vectors a and b with real

elements, we have

− η̃t
β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )

= η̃t
2β

[
−
∥∥∥∥∇F (w̄(t))

∥∥∥∥2
−
∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+
∥∥∥∥∇F (w̄(t))−

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2
]
. (C.99)
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Since ‖·‖2 is a convex function, using Jenson’s inequality, we get: ‖∑j
i=1 cjaj‖2 ≤ ∑j

i=1 cj‖aj‖2,

where ∑j
i=1 cj = 1. Using this fact in ( C.99 ) yields

− η̃t
β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )

≤ η̃t
2β

[
−
∥∥∥∥∇F (w̄(t))

∥∥∥∥2
−
∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+
N∑
c=1

%c
1
sc

∑
j∈Sc

∥∥∥∥∇Fj(w̄(t))−∇Fj(w(t)
j )
∥∥∥∥2
]
. (C.100)

Using µ-strong convexity of F (.), we get:
∥∥∥∥∇F (w̄(t))

∥∥∥∥2
≥ 2µ̃β(F (w̄(t)) − F (w∗)). Also,

using β-smoothness of Fj(·) we get
∥∥∥∥∇Fj(w̄(t)) −∇Fj(w(t)

j )
∥∥∥∥2
≤ β2‖w̄(t) −w(t)

j

∥∥∥∥2
, ∀j. Using

these facts in ( C.100 ) yields:

− η̃t
β
∇F (w̄(t))>

N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j ) ≤ −µ̃η̃t(F (w̄(t))− F (w∗))

− η̃t
2β

∥∥∥∥ N∑
c=1

%c
1
sc

∑
j∈Sc
∇Fj(w(t)

j )
∥∥∥∥2

+ η̃tβ

2

N∑
c=1

%c
1
sc

∑
j∈Sc

∥∥∥∥w̄(t) −w(t)
j

∥∥∥∥2
, (C.101)

which concludes the proof.

C.6 Proof of Fact  1 

Fact 1. For an arbitrary set of n random variables x1, · · · , xn, we have:

√√√√√E

( n∑
i=1

xi

)2
 ≤ n∑

i=1

√
E[x2

i ]. (C.102)

Proof. The proof can be carried out through the following set of algebraic manipulations:

√√√√√E

( n∑
i=1

xi

)2
 =

√√√√ n∑
i=1

E[x2
i ] +

n∑
i=1

n∑
j=1,j6=i

E[xixj]

(a)
≤
√√√√ n∑

i=1
E[x2

i ] +
n∑

i=1

n∑
j=1,j 6=i

√
E[x2

i ]E[x2
j ]] =

√√√√( n∑
i=1

√
E[x2

i ]
)2

=
n∑

i=1

√
E[x2

i ], (C.103)
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where (a) is due to the fact that E[XY ] ≤
√
E[X2]E[Y 2] resulted from Cauchy-Schwarz

inequality.
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D. ADDITIONAL EXPERIMENTAL RESULTS

D.1 Complimentary Experiments of the Main Text

This section presents the plots from complimentary experiments mentioned in Chap-

ter  3.4 . We use an additional dataset, Fashion-MNIST (FMNIST), and fully connected

neural networks (FCN) for these additional experiments. FMNIST ( https://github.com/

zalandoresearch/fashion-mnist ) is a dataset of clothing articles consisting of a training set

of 60,000 samples and a test set of 10,000 samples. Each sample is a 28x28 grayscale image,

associated with a label from 10 classes.

In the following, we explain the relationship between the figures presented in this ap-

pendix and the results presented in the main text. Overall, we find that the results are

qualitatively similar to what was observed for the SVM and MNIST cases:

• Fig.  3.3 from main text is repeated in Fig.  D.1 for FMNIST dataset using SVM, Fig.  D.6 

for MNIST dataset using FCN, and Fig.  D.10 for FMNIST dataset using FCN.

• Fig.  3.2 from main text is repeated in Fig.  D.2 for FMNIST dataset using SVM, Fig.  D.7 

for MNIST dataset using FCN, and Fig.  D.11 for FMNIST dataset using FCN.

• Fig.  3.4 from main text is repeated in Fig.  D.3 for FMNIST dataset using SVM, Fig.  D.8 

for MNIST dataset using FCN, and Fig.  D.12 for FMNIST dataset using FCN.

• Fig.  3.5 from main text is repeated in Fig.  D.4 for FMNIST dataset using SVM, Fig.  D.9 

for MNIST dataset using FCN, and Fig.  D.13 for FMNIST dataset using FCN.

• Fig.  3.6 from main text is repeated in Fig.  D.5 for FMNIST dataset using SVM.

Since FCN has a non-convex loss function, Algorithm  4 is not directly applicable for the

experiments in Fig.  D.9 & D.13 . As a result, in these cases, we skip the control steps in line

24-25. We instead use a fixed step size, using a constant φ value to calculate the Γ’s using

( 3.31 ). We are still able to obtain comparable reductions in total cost compared with the

federated learning baselines.
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Figure D.1. Performance comparison between TT-HF and baseline methods
when varying the number of D2D consensus rounds (Γ). Under the same period
of local model training (τ), increasing Γ results in a considerable improvement
in the model accuracy/loss over time as compared to the current art [ 24 ], [  116 ]
when data is non-i.i.d. (FMNIST, SVM)

D.2 Extension to Other Federated Learning Methods

Although we develop our algorithm based on federated learning with vanilla SGD local

optimizer, our method can benefit other counterparts in literature. In particular, we perform

some numerical experiments on FedProx [ 122 ] to demonstrate the superiority of our semi-

decentralized architecture. The performance improvement is due to the fact that, intuitively,

conducting D2D communications via the method proposed by us reduces the local bias of

the nodes’ models to their local datasets. This benefits the convergence of federated learning

methods via counteracting the effect of data heterogeneity across the nodes. The simualtion

results are provided in Fig.  D.14 and  D.15 
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Figure D.2. Performance comparison between TT-HF and baseline methods
when varying the local model training interval (τ) and the number of D2D
consensus rounds (Γ). With a larger τ , TT-HF can still outperform the baseline
federated learning [ 24 ], [ 116 ] if Γ is increased, i.e., local D2D communications
can be used to offset the frequency of global aggregations. (FMNIST, SVM)
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Figure D.3. Performance of TT-HF in the extreme non-i.i.d. case for the
setting in Fig.  3.2 when Γ is small and the local model training interval length
is increased substantially. TT-HF exhibits poor convergence behavior when τ
exceeds a certain value, due to model dispersion. (FMNIST, SVM)
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Figure D.4. Comparing total (a) cost, (b) power, and (c) delay metrics from
the optimization objective in (P) achieved by TT-HF versus baselines upon
reaching 75% of peak accuracy, for different configurations of delay and energy
consumption. TT-HF obtains a significantly lower total cost in (a). (b) and (c)
demonstrate the region under which TT-HF attains energy savings and delay
gains. (FMNIST, SVM)
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Figure D.5. Value of the second local model training interval obtained
through (P) for different configurations of weighing coefficients c1, c2, c3 (de-
fault c1 = 10−3, c2 = 102, c3 = 104). Higher weight on energy and delay (larger
c1 and c2) prolongs the local training period, while higher weight on the global
model loss (larger c3) decreases the length, resulting in more rapid global ag-
gregations. (FMNIST, SVM)
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Figure D.6. Performance comparison between TT-HF and baseline methods
when varying the number of D2D consensus rounds (Γ). Under the same period
of local model training (τ), increasing Γ results in a considerable improvement
in the model accuracy/loss over time as compared to the current art [ 24 ], [  116 ]
when data is non-i.i.d. (MNIST, Neural Network)
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Figure D.7. Performance comparison between TT-HF and baseline methods
when varying the local model training interval (τ) and the number of D2D
consensus rounds (Γ). With a larger τ , TT-HF can still outperform the baseline
federated learning [ 24 ], [ 116 ] if Γ is increased, i.e., local D2D communications
can be used to offset the frequency of global aggregations. (MNIST, Neural
Network)
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Figure D.8. Performance of TT-HF in the extreme non-i.i.d. case for the
setting in Fig.  3.2 when Γ is small and the local model training interval length
is increased substantially. TT-HF exhibits poor convergence behavior when τ
exceeds a certain value, due to model dispersion. (MNIST, Neural Network)
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Figure D.9. Comparing total (a) cost, (b) power, and (c) delay metrics from
the optimization objective in (P) achieved by TT-HF versus baselines upon
reaching 75% of peak accuracy, for different configurations of delay and energy
consumption. TT-HF obtains a significantly lower total cost in (a). (b) and (c)
demonstrate the region under which TT-HF attains energy savings and delay
gains. (FMNIST, SVM)

144



0 50 100
t

0.2

0.4

0.6

ac
cu

ra
cy

(a) 10 labels/node

0 50 100
t

0.2

0.4

0.6

ac
cu

ra
cy

(b) 3 labels/node

0 50 100
t

0.2

0.4

0.6

ac
cu

ra
cy

(c) 1 label/node

FL,τ=1 (full)
FL,τ=20 (full)

Γ=1,τ=20
Γ=5,τ=20

Γ=10,τ=20
Γ=25,τ=20

0 50 100
t

100

150

200

lo
ss

 (x
10

−2
)

(d) 10 labels/node

0 50 100
t

100

150

200

lo
ss

 (x
10

−2
)

(e) 3 labels/node

0 50 100
t

100

150

200
lo

ss
 (x

10
−2

)

(f) 1 label/node

Figure D.10. Performance comparison between TT-HF and baseline methods
when varying the number of D2D consensus rounds (Γ). Under the same period
of local model training (τ), increasing Γ results in a considerable improvement
in the model accuracy/loss over time as compared to the current art [ 24 ], [  116 ]
when data is non-i.i.d. (FMNIST, Neural Network)
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Figure D.11. Performance comparison between TT-HF and baseline methods
when varying the local model training interval (τ) and the number of D2D
consensus rounds (Γ). With a larger τ , TT-HF can still outperform the baseline
federated learning [ 24 ], [ 116 ] if Γ is increased, i.e., local D2D communications
can be used to offset the frequency of global aggregations. (FMNIST, Neural
Network)
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Figure D.12. Performance of TT-HF in the extreme non-i.i.d. case for the
setting in Fig.  3.2 when Γ is small and the local model training interval length
is increased substantially. TT-HF exhibits poor convergence behavior when τ
exceeds a certain value, due to model dispersion. (FMNIST, Neural Network)
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Figure D.13. Comparing total (a) cost, (b) power, and (c) delay metrics
from the optimization objective in (P) achieved by TT-HF versus baselines
upon reaching 75% of peak accuracy, for different configurations of delay and
energy consumption. TT-HF obtains a significantly lower total cost in (a). (b)
and (c) demonstrate the region under which TT-HF attains energy savings and
delay gains. (FMNIST, Neural Network)
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Figure D.14. Performance comparison between TT-HF and FedProx [ 122 ]
when varying the number of D2D consensus rounds (Γ). Under the same period
of local model training (τ), increasing Γ results in a considerable improvement
in the model accuracy/loss over time as compared to the baseline when data
is non-i.i.d. (MNIST, Neural Network)
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Figure D.15. Performance comparison between TT-HF and FedProx [ 122 ]
when varying the local model training interval (τ) and the number of D2D
consensus rounds (Γ). With a larger τ , TT-HF can still outperform the baseline
method if Γ is increased, i.e., local D2D communications can be used to offset
the frequency of global aggregations. (MNIST, Neural Network)
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