
COMPUTER VISION AT LOW LIGHT
by

Abhiram Gnanasambandam

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2022



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Stanley H. Chan, Chair

School of Electrical and Computer Engineering

Dr. Charles A. Bouman

School of Electrical and Computer Engineering

Dr. Jan P. Allebach

School of Electrical and Computer Engineering

Dr. Michael D. Zoltowski

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2



To MSEE 189 (RIP!)

3



ACKNOWLEDGMENTS

A boy at the beginning of a story has no way of knowing that the story has begun.

-Erin Morgenstern

I came to Purdue University in 2017 to do a Masters in ECE. At that point in time,

the only thing I was sure of was that I wanted to work in imaging. I had not worked on

imaging before that. The last five years have been as much fun as intellectually gratifying.

2017 me could not have even imagined how nice of a ride these five years have been. Prof.

Stanley H. Chan, my advisor, takes most of the credits. Working with him convinced me to

switch from a Masters program to a Ph.D. Stanley is always available for a chat whenever

you want, whether you get stuck in a problem or you are clueless about how to write your

first paper. He gave me the freedom to work on things I wanted to. I have worked on quite a

few problems just for fun. Stanley never discouraged it. In fact, sometimes he gets involved

too. I am lucky to have had him as my Ph.D. advisor.

I express my appreciation to Prof. Charles A. Bouman, Prof. Jan P. Allebach, and Prof.

Michael D. Zoltowski for being a part of my advisory committee and valuable feedback on

my work during my preliminary exam and my thesis defense.

I would like to thank everyone in my lab: Nick, Xiangyu, Zhiyuan, Kent, Guanzhe, Yash,

Yiheng, Xingguang, and Kevin. I have collaborated with some of these people for a few of

my papers, and with others, I have not. Irrespective of that, just being around these talented

people and conversing with them has helped me imbibe great qualities and knowledge.

I would like to thank Jiaju Ma, Dakota Starkey, and Saleh Massodian from Gigajot

Technology, where I spent two summers. Working at Gigajot, especially under Dr. Jiaju

Ma, helped me understand image sensor technology and how a real camera company works.

I would also like to thank Dr. Vladlen Koltun for our collaboration.

I want to thank my parents for their support. They were supportive of my decisions and

goals, irrespective of how often and how much they kept changing. I also want to thank PK

for being there for those long talks whenever I felt down.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

1.1 A history of cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

1.1.1 Early ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

1.1.2 Film cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

1.1.3 Digital cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

1.1.4 DSLR and cellphone cameras . . . . . . . . . . . . . . . . . . . . . .  35 

1.1.5 Other imaging applications . . . . . . . . . . . . . . . . . . . . . . .  36 

1.2 This dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

1.3 Imaging at different light levels . . . . . . . . . . . . . . . . . . . . . . . . .  38 

1.3.1 Bright scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

1.3.2 Low-light scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

1.3.3 High dynamic range (HDR) imaging. . . . . . . . . . . . . . . . . . .  42 

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

1.4.1 Photon limited imaging . . . . . . . . . . . . . . . . . . . . . . . . .  45 

1.4.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

2 DIGITAL IMAGE SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

5



2.1 A brief history of modern cameras . . . . . . . . . . . . . . . . . . . . . . . .  51 

2.2 Semiconductor basics for digital image sensors . . . . . . . . . . . . . . . . .  54 

2.2.1 Reverse-biased p-n junction . . . . . . . . . . . . . . . . . . . . . . .  54 

2.2.2 Photoelectric effect and photodiodes . . . . . . . . . . . . . . . . . .  55 

2.3 Charge-coupled device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

2.3.1 MOS capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

2.3.2 Transferring charges . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

2.3.3 The need for a new image sensor technology . . . . . . . . . . . . . .  62 

2.4 CMOS image sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

2.4.1 Pinned photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

2.4.2 CMOS APS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

2.5 Single photon counting image sensors . . . . . . . . . . . . . . . . . . . . . .  67 

2.5.1 CIS-based quanta image sensor . . . . . . . . . . . . . . . . . . . . .  68 

Pump-gate jot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

Quanta image sensor . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

2.5.2 Single photon avalanche diode . . . . . . . . . . . . . . . . . . . . . .  69 

2.5.3 Electron-multiplying CCD . . . . . . . . . . . . . . . . . . . . . . . .  70 

2.5.4 Comparing the three technologies . . . . . . . . . . . . . . . . . . . .  71 

2.6 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

3 MATHEMATICAL MODELING OF A CAMERA . . . . . . . . . . . . . . . . . .  73 

6



3.1 Sources of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

3.1.1 Photon arrival process . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

3.1.2 Coherent and incoherent light . . . . . . . . . . . . . . . . . . . . . .  77 

3.1.3 Inter-arrival time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

3.1.4 Photons to electrons . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

3.1.5 Dark current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

3.1.6 Read noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

3.1.7 Fixed pattern noise . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

3.1.8 Analog-to-digital conversion . . . . . . . . . . . . . . . . . . . . . . .  96 

3.1.9 Other sources of noise . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

3.2 Simulating a camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

3.3 Modelling the performance of a camera . . . . . . . . . . . . . . . . . . . . .  105 

3.3.1 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . .  105 

3.3.2 Some mathematical tools . . . . . . . . . . . . . . . . . . . . . . . .  109 

3.3.3 SNR: A statistical definition . . . . . . . . . . . . . . . . . . . . . . .  112 

3.3.4 SNRexp(β) for finite full well capacity . . . . . . . . . . . . . . . . . .  120 

3.3.5 Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . .  127 

3.3.6 Alternatives to SNR? . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

3.4 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 

3.4.1 Where to, from here? . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

7



4 COLOR IMAGING WITH QUANTA IMAGE SENSORS . . . . . . . . . . . . . .  135 

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

4.2 Plug-and-play ADMM based color reconstruction . . . . . . . . . . . . . . .  138 

4.2.1 Modified imaging model . . . . . . . . . . . . . . . . . . . . . . . . .  138 

4.2.2 Joint denoising and demosaicing . . . . . . . . . . . . . . . . . . . .  139 

4.2.3 Reconstruction pipeline . . . . . . . . . . . . . . . . . . . . . . . . .  139 

4.2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

4.3 Learning based demosaicing . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

4.3.1 Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

4.3.2 Frequency selection demosaicing network . . . . . . . . . . . . . . . .  148 

4.3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

4.4 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 

4.4.1 Where to, from here? . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 

5 BURST RECONSTRUCTION WITH QUANTA IMAGE SENSORS . . . . . . .  164 

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 

5.1.1 Student teacher learning . . . . . . . . . . . . . . . . . . . . . . . . .  165 

5.1.2 Choice of teacher and student networks . . . . . . . . . . . . . . . . .  168 

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 

5.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 

5.2.2 Synthetic experiments . . . . . . . . . . . . . . . . . . . . . . . . . .  169 

8



5.2.3 Real experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 

5.2.4 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 

5.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176 

5.3.1 Where to, from here? . . . . . . . . . . . . . . . . . . . . . . . . . . .  176 

6 LOW LIGHT NON-BLIND DEBLURRING . . . . . . . . . . . . . . . . . . . . .  177 

6.0.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 

6.0.2 Contributions and scope . . . . . . . . . . . . . . . . . . . . . . . . .  181 

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181 

6.1.1 Poisson deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . .  181 

6.1.2 Plug-and-play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182 

6.1.3 Algorithm unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 

6.2.1 Algorithm unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 

6.2.2 Conventional PnP for Poisson inverse problems . . . . . . . . . . . .  185 

6.2.3 Three-operator splitting for Poisson PnP . . . . . . . . . . . . . . . .  186 

6.2.4 Unfolding the three-operator splitting . . . . . . . . . . . . . . . . .  189 

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 

6.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 

6.3.2 Choice of Deblurring Methods for Comparison . . . . . . . . . . . . .  192 

6.3.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . .  194 

9



6.3.4 Comparison between 2-operator and 3-operator splitting . . . . . . .  197 

6.3.5 Color reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 

6.4 Experiments using Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . .  199 

6.4.1 Photon-limited deblurring dataset . . . . . . . . . . . . . . . . . . . .  199 

6.4.2 Reconstruction from real data . . . . . . . . . . . . . . . . . . . . . .  200 

7 OBJECT DETECTION IN LOW LIGHT . . . . . . . . . . . . . . . . . . . . . .  204 

7.1 Student-teacher learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 

7.2 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

7.2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

7.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

7.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

7.2.4 Competing methods and our network . . . . . . . . . . . . . . . . . .  210 

7.2.5 Synthetic experiment . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 

7.2.6 Real experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 

7.2.7 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214 

7.3 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 

7.3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 

7.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219 

7.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 

7.3.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 

10



7.4 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 

7.4.1 Where to, from here? . . . . . . . . . . . . . . . . . . . . . . . . . . .  228 

8 DYNAMIC RANGE EXTENSION FOR QUANTA IMAGE SENSORS . . . . . .  230 

8.1 Computational imaging for extending the dynamic range . . . . . . . . . . .  232 

8.2 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 

8.3 Some HDR theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 

8.3.1 Dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 

8.3.2 Exposure bracketing with QIS . . . . . . . . . . . . . . . . . . . . . .  235 

8.4 Comparing CIS and QIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238 

8.4.1 SNR vs dynamic range trade-off . . . . . . . . . . . . . . . . . . . . .  239 

8.5 HDR reconstruction for QIS . . . . . . . . . . . . . . . . . . . . . . . . . . .  241 

8.5.1 Exposure bracketing . . . . . . . . . . . . . . . . . . . . . . . . . . .  241 

8.5.2 Optimal weights for QIS . . . . . . . . . . . . . . . . . . . . . . . . .  242 

8.5.3 Comparison with CIS . . . . . . . . . . . . . . . . . . . . . . . . . .  245 

8.5.4 Reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . .  247 

8.5.5 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . .  248 

8.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249 

8.6.1 Comparing CIS with QIS for HDR imaging . . . . . . . . . . . . . .  249 

8.6.2 Reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . .  252 

8.7 Final thoughts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 

11



8.7.1 Where to, from here? . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 

9 SINGLE NEURAL NETWORK FOR MULTIPLE NOISE LEVELS . . . . . . . .  256 

9.1 One size fits all denoisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257 

9.2 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258 

9.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259 

9.3.1 Training and testing distributions: π(σ) and p(σ) . . . . . . . . . . .  259 

9.3.2 Risk and conditional risk: R(f) and R(f | σ) . . . . . . . . . . . . .  260 

9.3.3 Three estimators: fπ, fp and fδ(σ) . . . . . . . . . . . . . . . . . . . .  261 

9.3.4 Main problem (P1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263 

9.4 Dual ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263 

9.4.1 Convexity of Equation ( P1 ) . . . . . . . . . . . . . . . . . . . . . . .  264 

9.4.2 Dual of Equation ( P1 ) . . . . . . . . . . . . . . . . . . . . . . . . . .  265 

9.4.3 Dual ascent algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .  266 

9.5 Uniform gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267 

9.5.1 The uniform gap problem (P2) . . . . . . . . . . . . . . . . . . . . .  267 

9.5.2 Algorithm for solving Equation ( P2 ) . . . . . . . . . . . . . . . . . .  269 

9.6 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270 

9.6.1 Finite epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 

9.6.2 Discrete noise levels . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 

9.6.3 Interpolate best individuals . . . . . . . . . . . . . . . . . . . . . . .  271 

12



9.6.4 log-Scale constraints . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 

9.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 

9.7.1 Linear estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 

9.7.2 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . .  274 

9.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 

9.8.1 Consistent gap = better? . . . . . . . . . . . . . . . . . . . . . . . .  276 

9.8.2 Rule-of-thumb distribution — the “80-20” rule . . . . . . . . . . . . .  278 

9.9 Some final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278 

10 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . .  280 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282 

A GAUSSIAN APPROXIMATION TO POISSON . . . . . . . . . . . . . . . . . . .  309 

B EXPOSURE REFERRED SNR FOR TRUNCATED POISSON . . . . . . . . . .  311 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314 

13



LIST OF TABLES

2.1 Comparing CCD and CMOS image sensors. Source: [  40 ] . . . . . . . . .  66 

2.2 Comparison of the available single photon image sensor technologies. .  72 

4.1 Comparisons of network complexity and size . . . . . . . . . . . . . . . .  163 

5.1 Ablation study results. This table summarizes the influence of different teach-
ers on the proposed method. The experiments are conducted using synthetic data,
at a photon level of 1 ppp and a motion of 28 pixels along the dominant direction.  175 

6.1 Lighting condition and illumination level . . . . . . . . . . . . . . . . . .  180 

6.2 Different features of methods used in this work for Poisson deblurring.
We classify the methods based on three criteria - iterative/non-iterative, end-to-
end trainability and whether the model explicitly incorporates the fact that the
images are corrupted by Poisson shot noise. . . . . . . . . . . . . . . . . . . . .  193 

6.3 Comparison of proposed method with other competing approaches on
BSD100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195 

6.4 PSNR (in dB) and SSIM evaluated on real dataset of 30 images. . . .  201 

7.1 A study of frame numbers and searched similar feature numbers. T
is the number of frames input to our model and K is the number of searched
features per frame for feature aggregation. We test our model under different
photon levels from 0.25 to 5.0. For each column, the best mAP is shown in bold.  220 

7.2 Comparison of different network designs. Relative mAP increase are re-
ported with respect to Faster R-CNN baseline. The unit is %. ST: student-
teacher learning; NL: non-local module; ST+NL:student-teacher learning + non-
local module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225 

7.3 Detection results of real data. Each class column shows the number of correct
detections versus ground truth. The last column is the overall mAP. . . . . . . .  225 

8.1 Comparing the three HDR reconstruction methods. . . . . . . . . . . .  253 

9.1 Results of Section  9.7.2 . This table shows the PSNR values returned by one-
size-fits-all DnCNN denoisers whose sample distributions are defined according
to (i) uniform distribution, (ii) solution of Equation (  P1 ), and (iii) solution of
Equation ( P2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275 

14



LIST OF FIGURES

1.1 History of visual communication using pictures. [Left to right] Depic-
tion of a bovine (40000 BCE) [ 1 ], The Creation of the Heavens (1512 CE) [ 2 ],
The first film photograph (1826 CE) [  3 ], The first digital photograph (1957
CE) [ 4 ], A modern digital color photograph (2020 CE). . . . . . . . . . . .  31 

1.2 Camera Obscura [ 5 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

1.3 Kodak Brownie [ 6 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

1.4 Polaroid [ 7 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

1.5 First color photo ever taken [ 8 ] . . . . . . . . . . . . . . . . . . . . . . .  34 

1.6 Casio QV-10 [ 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

1.7 Famous cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

1.8 iPhone 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

1.9 Other imaging applications. [Left to Right] Mammography [  10 ], Electron
microscopy [  11 ], Fluoroscopy [  12 ], Gamma imaging [  13 ], MRI [  14 ], Imaging
the space [ 15 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

1.10 Imaging bright scenes. The left most image is captured using a Thorlabs
CS165CU camera. The other images are all captued using an iPhone SE
(2020). We can see that the cameras work great at these light levels, where
enough photons are arriving at the image sensor. . . . . . . . . . . . . . . .  38 

1.11 Imaging low-light scenes. All the images here are captured using Thorlabs
CS165CU camera with integration time of 30ms. As the light level goes down,
we can notice that the camera struggles to capture a good enough image. . .  39 

1.12 Imaging at low light. The same scene is captured with and without external
illumination using an iPhone. The image on the right is brightened for better
visualization. We can clearly notice the poor signal to noise ratio in the right
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

1.13 An ideal sensor is not enough. The real images are captured at a light
level of 0.25 photons per pixel (ppp). The simulation is also done at the same
photon level to demonstrate the effect of shot noise on the image. The ideal
sensor simulation shows that the imaging in low-light has a fundamental limit
which cannot be fixed by using a better sensor. . . . . . . . . . . . . . . . .  40 

1.14 Color Filter Array. For color imaging cameras usually place a color filter
array (CFA) such as a Bayer pattern CFA seen here on the left. On the right,
we can see a simulated ‘RAW’ image captured by a camera. . . . . . . . . .  41 

15



1.15 Image Classification. Both the images are captrured using an iPhone and
classified using Resnet101 [  17 ]. The image on the right is brightened for better
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

1.16 Dynamic Scenes. Imaging dynamic scenes at low-light comes with a trade-
off. We either obtain a blurred image with higher SNR or sharper image with
lower SNR. This phenomenon gets even more significant when the light level
goes down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

1.17 High dynamic range. We can see that the camera is capable of capturing
all the light levels in this scene, however it is not able to capture them in a
single image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

1.18 HDR imaging with noise. . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

1.19 What is photon-limited? Most of the existing low light imaging solutions
perform simple image enhancement such as recolorization, but do not deal
with the photon shot noise. In this dissertation, solutions are proposed for
photon limited scenarios where simple image enhancement techniques do not
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

1.20 Low light image enhancement. We can notice that the low light image
enhancement using [ 19 ] works well when noise is absent, even though the
image appears dark. However, when the scene is corrupted by heavy shot
noise, which is what we are interested in this dissertation, the method does
not perform that well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

1.21 Overview of this dissertation. . . . . . . . . . . . . . . . . . . . . . . .  47 

2.1 A timeline of modern image sensors. . . . . . . . . . . . . . . . . . . .  53 

2.2 A p-n junction. A depletion region forms at the junction of a p-type and
n-type semiconductors. The depletion region can be further made larger by
reverse biasing the p-n junction. . . . . . . . . . . . . . . . . . . . . . . . . .  55 

2.3 Photoelectric effect.A photon should have at the least the energy equal to
the band-gap to excite an electron from the valence bond to the conduction
band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

2.4 Energy band diagram. The lower potential energy for electrons in the n-
type means that the electrons in the p-type, that get excited to the conduction
band because of the photons, move to the n-type. . . . . . . . . . . . . . . .  57 

2.5 A cross section of a photodiode. A very simplified cross section of a
photodiode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

2.6 MOS capacitor. When photoelectrons are generated, they move to the
surface between the p-type substrate and SiO2. . . . . . . . . . . . . . . . .  59 

16



2.7 Interaction of two MOS capacitors. When the gates are well separated,
the two potential wells stay separate. However, if we reduce the gap between
them, the potential wells combine to form one large well. . . . . . . . . . . .  60 

2.8 Transferring the charges. (a) When the bias voltage is applied on the left
gate, there will be a potential well, and the right gate has no voltage applied
on it and therefore no potential well. (b) When the right gate also gets the
bias voltage, the potential well is created, and the two potential wells merge,
and consequently, the photoelectrons get distributed across the large well. (c)
If the bias voltage on the left gate gets turned off, all the photoelectrons will
move to the right potential well. The charge transfer is now complete. . . .  60 

2.9 Bucket brigade. The charges are transferred from the whole column to the
next column, and then the last column is read one pixel at a time. This
routine is repeated till all pixels are readout. . . . . . . . . . . . . . . . . .  61 

2.10 Pinned photodiode. The doping and the potential well diagram of the
operation of the pinned photodiode. In default mode, TG is off, and the
photoelectrons get collected in the photodiode. When TG is turned on, the
charges flow into FD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

2.11 Four transistor active pixel with source follower read-out. . . . . . .  66 

2.12 Schematic of pump-gate jot doping. . . . . . . . . . . . . . . . . . . . .  67 

2.13 Pump action idealized charge transfer diagram. (a) The transfer gate
is initially OFF, and Photoelectrons are collected in the storage well. (b)When
the transfer gate is ON, photoelectrons are transferred to the potential well.
(c) When the transfer gate is OFF again, photoelectrons are transferred to
the floating diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

2.14 Photon counting histogram. CIS-QIS has such a low read-noise that we
can resolve each photon arriving at the sensor. First reported in [  41 ]. . . . .  69 

2.15 Doping profile of a SPAD. . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

2.16 EMCCD. In CCD, the charges move directly from the readout registers into
the floating diffusion. In contrast, EMCCD makes the charges go through
multiple registers with high electric fields to accelerate the charge, leading to
electron multiplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

3.1 Coherence of electromagnetic waves. When all the light waves have the
same phase, it is called the coherent light. If the phases are all random, it is
called incoherent light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

3.2 Photon statistics. PMF of Bose-Einstein and Poisson probability distribu-
tions. Both the distributions have a mean of β = 2.0. . . . . . . . . . . . . .  81 

3.3 Photoelectric effect. Phototelectric effect refers to the process by which
electrons get excited by light waves. . . . . . . . . . . . . . . . . . . . . . .  83 

17



3.4 Quantum efficiency. An example quantum efficiency plot from [ 55 ]. . . .  83 

3.5 Spectrum of a light source. Source: [  57 ] . . . . . . . . . . . . . . . . . .  86 

3.6 Quantum Efficiency with color filter arrays. Source : [  58 ] . . . . . . .  89 

3.7 Effect of shot noise. The average number of photoelectrons per pixel is
0.5. The color images assume that a Bayer pattern CFA is used. . . . . . . .  89 

3.8 Read noise. We plot the probability distribution function of Y when G = 1
and βtot = 2. On the left is the Poisson pmf. On the right is Poisson-Gaussian
pdf for different σread. We can see that when σread = 1.0, the photon counts
are not recognizable. At σread = 0.25, we can see the individual photons, but
there is an overlap between neighboring photon counts. At σread = 0.15, there
is almost no overlap between neighboring photon counts that we can get plot
on the right by just rounding off the values to the nearest integer. . . . . .  92 

3.9 Validation of the Model. First reported in [  41 ]. We compute the photon
counting histogram of a real QIS sensor and compare it with our theoretical
model. Note the similarity between the two. . . . . . . . . . . . . . . . . . .  93 

3.10 Effect of read noise in imaging. We simulate imaging at an average light
level of 0.5 photoelectrons per pixel. Notice that a read noise of σread = 0.25
does not affect the visual quality that much, however σread = 1.5 almost
completely destroys all the information in the image. . . . . . . . . . . . . .  94 

3.11 Example logarithmic histogram for PRNU and DSNU. snw is the
standard deviation of the Gaussian distribution used to model the behavior.
Source : [  60 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

3.12 PRNU. This figure shows an example of what the average of many captured
images will look like at two different levels of non-uniformity. At 0.5%, we
almost cannot see the difference, but the difference becomes apparent at 5%.  95 

3.13 Column FPN in CMOS image sensors. Source: [  63 ] . . . . . . . . . . .  96 

3.14 Full well capacity vs. pixel pitch. Source: [  66 ] . . . . . . . . . . . . . .  98 

3.15 Diffraction pattern. Diffraction pattern when a red laser passes through a
circular aperture. Source: [ 67 ] . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

3.16 Types of crosstalk.Optical crosstalk occurs when a photon supposed to fall
on a particular pixel ends up on a neighboring pixel. Electrical crosstalk oc-
curs when the charge generated in a particular pixel diffuses to a neighboring
pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 

3.17 Imaging Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

3.18 Expected value of the camera response. With a finite full-well capacity,
the mean E [Y ] will stop growing when the exposure β exceeds the full-well
capacity L = 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

18



3.19 Incomplete Gamma function ΨL(β) as a function of β. . . . . . . . .  110 

3.20 Exposure-referred and Output-referred SNR for a 1-bit quanta im-
age sensor. Y is defined in Equation (  3.60 ). As β goes beyond the threshold
q, SNRexp(β) starts to drop as it should be. However, SNRout(β) continues
to grow because of the inability of SNRout(β) to handle pixel saturation. . .  119 

3.21 Exposure-referred SNR for a digital image sensor with a full-well
capacity of L electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

3.22 Influence of read noise.Exposure-referred SNR for a digital image sensor
by considering different levels of read noise. . . . . . . . . . . . . . . . . . .  130 

3.23 Influence of dark current. Exposure-referred SNR for a digital image
sensor by considering different levels of read noise. The small fluctuation
towards the tail on the left-hand side is due to randomness in the Monte-
Carlo simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

4.1 Aliasing is not a problem for small pixels. [Left] Nyquist limit decreases
with pixel pitch. At f-number value of f/5.6, QIS is diffraction-limited since
Nyquist limit exceeds the optical cut-off frequency. [Top Right] An average of
10 QIS frames at photon level of 5.5e−. The CFA is a Bayer pattern. [Bottom
Right] Fourier spectrum of the color. Notice that interference between base-
band luminance and chrominance components at (π, 0), (0, π) and (π, π) is
minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

4.2 Color imaging model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

4.3 The image reconstruction pipeline consists of (i) a temporal binning step to
sum the input frames, (ii) a variance stabilizing transform T to transform
the measurement so that the variance is stabilized, (iii) a joint reconstruction
and demosaicing algorithm to recovery the color, (iv) an inverse transform
to compensate the forward transform, and (v) a tone mapping operation to
correct the contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

4.4 Variance Stabilization Transform. We look at the effect VST has on
Poisson data. We use the Anscombe transform [ 112 ] for stabilizing the trans-
form. We can see that the variance which is directly proportional to the mean
β stabilizes to a value of 1 after VST. . . . . . . . . . . . . . . . . . . . . . .  141 

4.5 Non-iterative solution. QIS can achieve higher spatial resolution, we can
use four color jots to reconstruct one pixel. In this case, we can bypass the
iterative ADMM algorithm and use a one-shot denoising method. . . . . . .  143 

19



4.6 Simulated QIS experiment. The goal of this experiment is to compare the
proposed iterative algorithm with existing methods. We assume the observed
Bayer RGB image is from a 3-bit QIS sensor. (a) Ground Truth; (b) One
3-bit QIS frame; (c) MATLAB demosaic preceded and followed by BM3D;
(d) LSLCD[ 117 ]; (e) Hirakawa’s PSDD method [ 119 ], with a built-in wavelet
shrinkage denoiser; (f) Proposed method with BM3D. . . . . . . . . . . . . .  144 

4.7 Synthetic experiment for quantitative evaluation. [Top row]: One
frame of the QIS measurements using different number of bits. [Bottom row]:
Reconstructed images using the proposed method with 20 frames of QIS data.
The average photon counts per pixel are 0.25, 0.75, 1.75 and 3.75 for 1-bit,
2-bit, 3-bit and 4-bit QIS, respectively. . . . . . . . . . . . . . . . . . . . . .  145 

4.8 (a) One 1-bit frame. (b) Reconstructed color image using 50 frames of 1-bit
input with threshold q = 4. (c) One 5-bit frame. (d) Reconstructed color
image using 10 frames of 5-bit input. The average number of photons per
frame is 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

4.9 Real QIS image reconstruction. The exposure time for each frame is 50
µs. The average number of photons per frame is 4.2, 3.0, 1.9, and 2.9 for
each image respectively. Both methods use 4 frames for reconstruction. The
raw data has a resolution of 1024× 1024 pixels. The ADMM method retains
the resolution, whereas the non-iterative method reduces the resolution to
512 × 512. Reconstruction using both the methods are shown at the same
size for easier visual comparison. Notice that the non-iterative algorithm is
able to achieve a visual quality almost similar to the ADMM method. . . .  146 

4.10 Objective of classical frequency selection. Given a color filter array
(CFA) image yCFA, the frequency selection method is a Fourier domain oper-
ation that extracts the corresponding frequency components of the luma yL

and chroma yα, yβ channels from the image. . . . . . . . . . . . . . . . . .  149 

4.11 Implementation of the classical frequency selection. Given the input
spectrum xCFA, our goal is to remove the unwanted side-bands. By adopt-
ing the classical demodulation scheme, i.e., carrier+lowpass+carrier, we can
recover the main lobe. The demodulated signals are yα, yβ and yL. After
post-processing (typically the luma-denoising) and coordinate transform T ,
we retrieve the RGB signal. . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

4.12 The proposed guided filtering. Guided filtering step consists of three
UNets: The luma UNet, and two chroma UNets. Each UNet has a resid-
ual connection. Across the networks, we transfer knowledge from the luma
channel to the chroma channels by concatenating features. . . . . . . . . . .  152 

4.13 Visualization of the proposed guided filtering. Given the input yα1 ,
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ABSTRACT

Imaging in low light is difficult because the number of photons arriving at the image

sensor is low. This is a major technological challenge for applications such as surveillance

and autonomous driving. Conventional CMOS image sensors (CIS) circumvent this issue by

using techniques such as burst photography. However, this process is slow and it does not

solve the underlying problem that the CIS cannot efficiently capture the signals arriving at

the sensors. This dissertation focuses on solving this problem using a combination of better

image sensors (Quanta Image Sensors) and computational imaging techniques.

The first part of the thesis involves understanding how the quanta image sensors work

and how they can be used to solve the low light imaging problem. The second part is about

the algorithms that can deal with images obtained in low light. The contributions in this

part include – 1. Understanding and proposing solutions for the Poisson noise model, 2.

Proposing a new machine learning scheme called student-teacher learning for helping neural

networks deal with noise, and 3. Developing solutions that work not only for low light but

also for a wide range of signal and noise levels. Using the ideas, we can solve a variety of

applications in low light, such as color imaging, dynamic scene reconstruction, deblurring,

and object detection.
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1. INTRODUCTION

1.1 A history of cameras

Pictures have been used as a form of communication by humans for thousands of years.

Going back to cave paintings as old as 64000 years by Neanderthals, different forms of paint-

ings throughout history, and more recently, film and digital cameras to capture photographs,

our modes of visual communication using pictures have been evolving continuously. Over the

last few decades, photographs have become an integral part of our lives. We have gone from

taking photographs to record significant events to having a camera in our pockets, enabling

us to take photographs whenever we want.

Figure 1.1. History of visual communication using pictures. [Left to
right] Depiction of a bovine (40000 BCE) [ 1 ], The Creation of the Heavens
(1512 CE) [ 2 ], The first film photograph (1826 CE) [  3 ], The first digital pho-
tograph (1957 CE) [ 4 ], A modern digital color photograph (2020 CE).

Cameras have fundamentally changed how we communicate. The ubiquitousness of the

cameras comes from the fact that cameras have extremely wide variety of people - Artists,

scientists, and journalists. The astounding rate of innovation in the camera technology in the

twentieth century has fundamentally shifted how we communicate. For the overwhelming

majority of our history, human beings have mainly depended on the verbal or written stories

to communicate. Every once in a while we may have a pictoral depiction drawn by some-

one. Whichever mode it was, the story depended on the teller’s perspective. The universal

availability of cheap cameras has made photographs the primary mode of communication,

which reduces the bias in the story to a great extent, with other modes complimenting the

photographs in telling the story.
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1.1.1 Early ideas

The first idea for a camera can be traced back to as early as the fifth century BC, in the

form of projecting a scene onto a screen. A Chinese philosopher named Mozi described an

idea for capturing an image in a dark room using a small hole in the wall. Mozi recorded that

by virtue of light traveling in straight line, the image projected in the dark room appears

updside down and inverted left to right. This idea was what came to be known as camera

obscura or a pinhole image. Over years, number of different versions of the pinhole cameras

were used and the the properties of this system was well studied. The earlier versions were

all large dark rooms with a small hole. By 18th century, the size of the pinhole cameras

had gone down to just the size of a box and convex lens were added to help with better

projection of the images onto the screen.

Figure 1.2. Camera Obscura [ 5 ]

1.1.2 Film cameras

The pinhole cameras were used to project images, which were then used by artists to draw

the scene. However, there was an obvious drawback that the images being projected are not

permanent. All this changed in the early nineteenth century, when Joseph Nicephore Niepce

placed a photosensitive plate at the back of the pinhole camera to capture the first known

permanent photograph (See Figure  1.1 - third image from left). The photographic plate he

used was a pewter plate coated with bitumen. Over years the technology kept maturing with
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better photosenstive materials being developed over years. The photograpahic films that are

still in use, use silver halide crystals. The silver halide films can be directly traced to the

first flexible photographic film invented by George Eastman in 1888.

While the film cameras in late nineteenth century were maturing, the cameras were still

bulky and costly, and were considered a luxury and were used only sporadically by companies

of means. The first breakout success for a camera came in 1900 in the form of the Kodak

Brownie camera, which was sold for 1$ per camera. It used photographic films that needed to

be replaced. The photographic films sold for 15¢, which made the Brownie cameras accessible

to a significant number of the population, with 150,000 cameras sold in the first year of its

announcement. The Brownie cameras continued to be made till as late as the 1980s.

Figure 1.3. Kodak Brownie [ 6 ]

The next major revolution in cameras came in the form of instant photos. While cameras

in early twentieth century were great, they had a significant drawback. The time taken get

the photo in hand was long, especially if one does not take as many photos. One needed to

wait till the entire roll of film is done, before sending it off for getting developed. In 1948,

Edwand H. Land invented an instant photo camera - Polaroid Land Camera 95, which used

a chemical process to develop film inside the camera itself in less than a minute. Although

the instant cameras were costly, the idea of getting a developed photo immediately was an

instant hit and Polaroid tapped into this and had multiple models by 1960s.

While color photography was developed in tandem with the monochrome film photogra-

phy, the first tricolor (red, green and blue) films were introduced by Kodak in 1935. Color

film was not the go to choice for a long time, as it was always costlier than the monochrome
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Figure 1.4. Polaroid [ 7 ]

films. This slowly changed over time and nowadays it is hard to even find a monochrome

camera.

Figure 1.5. First color photo ever taken [ 8 ]

1.1.3 Digital cameras

The film cameras were too inflexible in terms of the ability to process them and fix the

blemishes which may show up in the captured image. The digital cameras provided a way

for separating the mode of capture and the where the digital data is stored. This way the

data can be processed before getting stored.

The charge-coupled devices (CCD) that ultimately replaced photographic films were in-

vented in 1969. However, the digital cameras with CCD did not become popular till the

1990s. The first major successful digital camera was Casio QV-10, introduced in 1994. It

had a small resolution of just 240× 320. The quality of the images produced by these cam-

eras was nowhere close to the existing film cameras. However, Casio QV-10 had the built-in
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feature to display the captured image using an LCD screen, which was an attractive feature

for a significant fraction of the population that did not care about the ultimate quality of

the captured image as long as it was not too poor.

Figure 1.6. Casio QV-10 [ 9 ]

Casio QV-10 started the snowball effect, which led to the digital camera revolution. Tens

of billions of dollars worth of digital cameras are being sold every year. The digital cameras

got a further boost with the invention of NMOS active pixel sensors by Olympus and the

CMOS active pixel sensors by Eric Fossum. The CMOS active pixel sensors have grown

leaps and bounds since their invention in 1993. CMOS active pixel sensors are the current

go-to choice for digital image sensors.

(a)

Figure 1.7. Famous cameras.

1.1.4 DSLR and cellphone cameras

There is a wide variety of cameras available in consumer camera domain, where we can

choose a camera based on the sophistication and the quality we need. There are basic
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consumer products such as Canon powershot series and there are the highly sophisticated

digital single lens reflex (DSLR) cameras used by professionals. The difference between a

consumer grade camera and the professional DSLR camera is often attributed to the noise

level in the sensors and the optics.

Figure 1.8. iPhone 13

In the last decade, cellphone cameras have almost totally replaced the consumer camera

market. Since every smartphone comes with a camera of good enough quality, the consumers

do not generally see a need for a separate camera.

Figure 1.9. Other imaging applications. [Left to Right] Mammography
[ 10 ], Electron microscopy [  11 ], Fluoroscopy [  12 ], Gamma imaging [  13 ], MRI
[ 14 ], Imaging the space [ 15 ].

1.1.5 Other imaging applications

While the progress was happening in the consumer camera domain, other imaging ap-

plications were making giant strides too. In 1913, Albert Solomon invented mammography

which uses X-ray images to detect early-stage breast cancer [  16 ]. In 1931, Ernst Ruska
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invented the electron microscope that can be used to image view objects as small as the

diameter of an atom. Ernst Ruska received the Nobel prize for this invention in 1986. In

1949, Russell Morgan invented an image intensifier that bettered fluoroscopic vision, which

is used in medical fluoroscopy and military applications to this date. In 1958 Hal Anger

invented the gamma camera that enables physicians to detect tumors and diagnose by imag-

ing gamma rays emitted by radioactive isotopes. In the 1970s CAT and MRI scans were

invented, which revolutionized the medical imaging domain. In the 1960s and 1970s, space

imaging grew significantly. Numerous satellites were sent to image the earth from space. The

Hubble space telescope was sent to the Earth’s orbit in 1990. Hubble’s successor, the James

Webb space telescope, was launched in 2021 with improved infra-red imaging capabilities.

1.2 This dissertation

In this dissertation, we are concerned with visible imaging, and we will often deal with

photography as the application of choice. As we will notice later in this chapter, the current

generation of cameras has difficulty imaging in low light. This can be alleviated to a small

degree by using better sensors. With the sensors technology getting better every year, we

might soon be reaching as close as we can to a perfect sensor, which we define as an image

sensor that can detect each and every photon that arrives at the photon. The sensor is free

from other noise sources such as read-noise and dark current. Does this mean that we are

close to the end of innovations in imaging? The answer is no. Even a perfect sensor cannot

overcome the randomness of the photon arrival process, which is intrinsic to imaging in low

light. In section (  1.3 ), we look at some of the difficulties of imaging that we face in real

life. We will need computational solutions to deal with these problems. Another significant

issue is that the term low-light is vaguely defined in the literature. When we see a paper

trying to solve a “low-light” problem, it need not necessarily mean that the solution deals

with the heavy randomness of the photon arrival. Later in this chapter, we will define the

term photon-limited and show how it differs from the standard low light that the existing

literature deals with.
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While we deal only with visible imaging and photography applications, most of the

problems we tackle are more widespread in other imaging modalities too. Although the

solutions we develop can be transferred to other modalities in most cases, we do not study

generalizing the proposed solutions to other modalities.

1.3 Imaging at different light levels

Cameras can be used for still capture or capturing videos. This dissertation looks at some

of the major scenarios when the cameras fail while capturing still images. While sometimes

we may deal with moving scenes, we are still interested in the still reconstruction of the

moving rather than capturing the video itself. We will look at how cameras work in different

imaging scenarios and identify the weak points of the current cameras.

Figure 1.10. Imaging bright scenes. The left most image is captured
using a Thorlabs CS165CU camera. The other images are all captued using
an iPhone SE (2020). We can see that the cameras work great at these light
levels, where enough photons are arriving at the image sensor.

1.3.1 Bright scenes

The existing CMOS image sensors in a DSLR or a cellphone work exceedingly well when

enough light emanates from the scene we are interested in capturing. Figure  1.10 shows the

wide range of light levels where the existing image sensors work well. The image sensors

can do an almost perfect reconstruction of the scene being imaged at these light levels. This

is possible because enough photons arrive at the sensor at these light levels. The captured
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signal has a good enough signal-to-noise ratio, which leads to an excellent reconstruction.

These light levels are the expected operating regime for most image sensors.

Figure 1.11. Imaging low-light scenes. All the images here are captured
using Thorlabs CS165CU camera with integration time of 30ms. As the light
level goes down, we can notice that the camera struggles to capture a good
enough image.

1.3.2 Low-light scenes

As the scene’s brightness keeps decreasing, the image sensors start struggling at recon-

structing the scene. We can notice in Figure  1.11 as long as the light level is greater than 25

lux, the camera does not have a problem in imaging the scene. However, when we go even

darker to 2.5 lux, we need to use the highest gain (or ISO) setting available on the camera

to get any meaningful signal from the sensor. Even this image looks extremely noisy. As the

light level goes further down to 0.25 lux, the image we see is so poor even when used at the

highest gain.

This is not a special scenario that happens only in a lab setting. Figure  1.12 shows

another example where an iPhone SE fails in low light imaging. The image on the left is

captured with the lights on, and on the right, the lights are off. One can notice the heavy

noise in the image captured with the lights off. It is difficult to get rid of this noise by

simply using better hardware since the major noise source here is not the sensor but rather

the shot noise arising from the randomness of the arriving photons. This randomness is part

of nature, and we cannot get rid of this. Figure  1.13 demonstrates this phenomenon. We
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Figure 1.12. Imaging at low light. The same scene is captured with and
without external illumination using an iPhone. The image on the right is
brightened for better visualization. We can clearly notice the poor signal to
noise ratio in the right image.

CIS, real QIS, real Ideal Sensor, simulation

Figure 1.13. An ideal sensor is not enough. The real images are captured
at a light level of 0.25 photons per pixel (ppp). The simulation is also done at
the same photon level to demonstrate the effect of shot noise on the image. The
ideal sensor simulation shows that the imaging in low-light has a fundamental
limit which cannot be fixed by using a better sensor.

show images captured using a real CIS, a real QIS, and a simulation of shot noise if captured

using an ideal sensor with no other sources of hardware noise. The images are captured at

0.25 photons per pixel (ppp) on average. We can notice a significant improvement in signal-

to-noise ratio (SNR) by going from CIS to QIS because of the better sensor noise statistics.

Nevertheless, the ideal sensor simulation shows us a fundamental limit to imaging when only

a few photons arrive at the sensor. No amount of improvement in sensor technology can fix

this problem.

Color Imaging.

Imaging at low light also causes issues with color reconstruction. Cameras generally use
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Figure 1.14. Color Filter Array. For color imaging cameras usually place
a color filter array (CFA) such as a Bayer pattern CFA seen here on the left.
On the right, we can see a simulated ‘RAW’ image captured by a camera.

Color Filter Arrays (CFA) such as a Bayer pattern CFA for color imaging, where we capture

only one color channel per pixel. Figure  1.14 shows the Bayer pattern color filter array and

also an example image captured using the CFA placed in front of the sensor. Capturing a

single channel image with a CFA and converting it into a three channel RGB image is called

demosaicing. Demosaicing by itself is a complex problem since we need to interpolate the

missing two channels at each pixel location. When capturing low light images the problem

becomes significantly harder since we now need to deal with the noise too.

Figure 1.15. Image Classification. Both the images are captrured using
an iPhone and classified using Resnet101 [  17 ]. The image on the right is
brightened for better visualization.

Object detection.

Low light images cause trouble in downstream high-level computer vision tasks such as

image classification and object detection too. Most of the existing object detection and
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image classification methods work well with photographs taken in good enough illumination.

However, existing algorithms fail when the light level goes down, and the captured images

become noisy. They are not designed to deal with images with such heavy noise. Figure  1.15 

demonstrates this phenomenon using Resnet-101 [  17 ]. Both the images capture the book.

The image on the left is well-illuminated. The lights are turned off for the image on the

right, leading to a generation of an extremely noisy image. Although the classifier works

well on the well-illuminated scene, it fails when the lights are turned off.

25 lux 2.5 lux

Exp. time = 30ms Exp. time = 3ms Exp. time = 30ms Exp. time = 3ms

Figure 1.16. Dynamic Scenes. Imaging dynamic scenes at low-light comes
with a trade-off. We either obtain a blurred image with higher SNR or sharper
image with lower SNR. This phenomenon gets even more significant when the
light level goes down.

Dynamic Scenes

Imaging dynamic scenes is a difficult problem because motion in the scenes caused by camera

shakes or objects moving the scene introduces blur in the captured image. We can reduce

the amount of blur by using a faster shutter, but that would mean that the SNR of the

captured image goes down, leading to a noisy image getting captured. However, when the

light level is high enough, the short exposure images, albeit a little noisy, can still recover

most of the details with simple denoising. Figure  1.16 shows an example of this phenomenon

at 25 lux. This problem gets exacerbated at low light because the image at shorter exposure

will be extremely noisy to recover any useful information from the data.

1.3.3 High dynamic range (HDR) imaging.

High dynamic range imaging is the process using which we image a scene with pixel

intensities larger compared to a standard scenario. Figure  1.17 shows an example of such a

42



Figure 1.17. High dynamic range. We can see that the camera is capable
of capturing all the light levels in this scene, however it is not able to capture
them in a single image.

scene. A single short or long exposure CIS image cannot capture the scene completely. A

lot of pixels are saturated in the first image, but using a shorter exposure is able to capture

the details from the saturated image. However, the indoor details will be lost if we try to

reduce the integration time in the first image. We need to use techniques such as exposure

bracketing [ 18 ] to reconstruct the HDR scene.

Short exposure Long exposure

Figure 1.18. HDR imaging with noise.

43



Figure 1.19. What is photon-limited? Most of the existing low light
imaging solutions perform simple image enhancement such as recolorization,
but do not deal with the photon shot noise. In this dissertation, solutions
are proposed for photon limited scenarios where simple image enhancement
techniques do not work.

However, these standard techniques require capturing multiple images at different expo-

sure times and combining them computationally to get the HDR image. These issues point

toward a need for solutions that can capture fast high dynamic range images. The solution

should be able to capture the dark regions and also the bright regions simultaneously.

The issue with HDR imaging becomes even more pronounced when the darker parts of

the image are in extremely low light. In Figure  1.18 , we can notice that even in the long

exposure, the details in the darker parts of the image are extremely noisy. We need to capture

more frames with even longer exposure in situations like this and then computationally

combine them. Capturing more frames will mean more time taken to produce the final

image. Additionally, since we need to use a longer exposure time, the captured images are

susceptible to motion blur.
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1.4 Thesis overview

In the case of both low light and high dynamic range scenarios, we have seen that a

standard CMOS image sensor has many drawbacks. To address these issues, in this disser-

tation, we look at how to intelligently control the sensor to capture the data and further

computationally process this data to obtain a good-looking image. The process of jointly

controlling how the image is captured and the computational processing of the captured data

for obtaining a good final image is called computational imaging. Computational imaging is

used for various applications such as microscopy, tomography, and remote sensing. In this

dissertation, we will look at computational imaging to solve low-light imaging and high dy-

namic range imaging problems. Using better sensors to capture as much information about

the scene as possible in such scenarios becomes imperative. Therefore, a portion of the work

done as part of this dissertation involves using the Quanta Image Sensors (QIS). With its

better read noise, dark current, and smaller pitch, QIS provides the necessary features for

better low light imaging compared to a regular CMOS image sensor. Other solutions are

more generic and could be used for both CMOS image sensors and quanta image sensors.

Before we get into an overview of the thesis, let us first try to understand the need for this

dissertation and how the contributions compare to the existing methods.

1.4.1 Photon limited imaging

There are a variety of applications, such as surveillance, autonomous cars, and mi-

croscopy, where low-light imaging is necessary. In computer vision literature, there are

many different methods, such as [ 19 ], which deal with low light image enhancement. While

these methods deal with low light imaging, they do not work so well in the harder photon

limited scenarios.

Figure  1.19 demonstrates the difference between low light imaging as usually defined in

the literature and photon limited imaging. Most of the existing low light imaging solutions

involve simple color and detail enhancement and fail when there is heavy shot noise. Fig-

ure  1.20 demonstrates the regime where a standard low light image enhancement method

[ 19 ] works and how it fails in the presence of photon shot noise. At the light level we call
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photon limited, only a few photons (as few as only 1 photon per pixel) arrive at each pixel

on average. We are forced to use high sensor gain (or equivalently high ISO) to capture

any meaningful signal in such scenarios. In this dissertation, we are concerned with imag-

ing in photon-limited and composite scenarios containing photon-limited and bright regions

together (e.g., an HDR scene).

Low-light Photon-limited

Input Output Input Output

Figure 1.20. Low light image enhancement. We can notice that the
low light image enhancement using [  19 ] works well when noise is absent, even
though the image appears dark. However, when the scene is corrupted by
heavy shot noise, which is what we are interested in this dissertation, the
method does not perform that well.

1.4.2 Thesis outline

The rest of this dissertation can be broadly divided into 3 categories - 1. Basics, 2. Low

light imaging solutions, and 3. Generalizing to a wide range of light levels.

Basics

Chapters 2 and 3 go through the basics necessary for the rest of the dissertation.

• Chapter 2.

In this chapter, through the basics of the semiconductor physics of how image sensors work.

The chapter gives a brief history of modern cameras. We will then look at some basic un-

derstanding of how image sensors work, get into a bit of semiconductor physics, and finally

look at the quanta image sensors and other single-photon devices, which play an integral

part in the rest of this dissertation. This chapter will help us understand what makes the
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Figure 1.21. Overview of this dissertation.

different image sensor technologies fundamentally different. While the material covered in

this chapter directly may not be helpful for the rest of the dissertation, this chapter will

help us understand why specific properties such as read noise differ between different sensor

technologies.

• Chapter 3.

A realistic camera model that considers all the different noise sources is vital for multiple

purposes. 1. It helps in simulating artificial data when we cannot access real data firsthand.

2. Some of these noises are fixed-pattern and can easily be corrected if we understand their

sources. 3. We need to understand the noise statistics to develop algorithms for attenuating

them, which the imaging model helps with.

In addition to helping us generate data, the imaging model is also essential to study and

compare different imaging technologies. For example, quanta image sensors generally run in
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binary mode, and a general CMOS image sensor uses a 14-bit mode. How do we compare

these two image sensors? We need to play around with all the different possible settings

of the image sensors to understand where the strengths and weaknesses of different image

sensors lie.

The first part of the chapter develops the imaging model. The second part comes with

a method for calculating the signal-to-noise ratio (SNR) for different image sensors. The

second part of the chapter is based on the paper [ 20 ].

Low light imaging solutions

This dissertation looks at how we can solve 4 different imaging problems at low light - color

imaging, dynamic scene reconstruction, deblurring, and object detection. Some of these

problems have multiple solutions, and all the proposed solutions can be broadly categorized

into two.

1. Solutions based on understanding the forward imaging and noise model. In this, we

understand the noise model in the low light scenarios combined with the forward model of

the task at hand to develop a solution that can deal with both the imaging model and the

noise.

2. Solutions based on student-teacher learning. In this, we use a novel technique called

student-teacher learning, where a pre-trained teacher network is used to distill knowledge

into a student network for dealing with heavy noise.

• Chapter 4.

This chapter looks at the problem of color imaging at low light using quanta image sensors.

We propose two demosaicing solutions to reconstruct color images from photon-limited Bayer

pattern mosaic inputs.

The first solution is a traditional demosaicing solution combined with a variance sta-

bilizing transform (VST) for dealing with the Poisson noise. This is based on the paper

[ 21 ].

The second solution is a neural-network based solution that utilizes the fact that the

luma channel of the image has good SNR compared to the other two chroma channels. This

is based on the paper [ 22 ].
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• Chapter 5.

In this chapter, we propose to image a dynamic scene at low light using quanta image

sensors (QIS). We propose a neural network based solution that is trained using a student-

teacher training scheme so that the network can handle two difficult tasks of dealing with

noise and motion. This chapter is based on the work [  23 ].

• Chapter 6. In this chapter, we propose a deep learning based non-blind deblurring so-

lution which can handle extremely heavy noise. The proposed method unrolls a 3-way split

Plug-and-Play ADMM designed to handle Poisson noise. We also collect some real data

captured at extremely low light to make sure the proposed method can work in the real

world too. This chapter is based on the work [  24 ].

• Chapter 7. This chapter looks at how we can solve the computer vision problems of object

detection and image classification in low light. We use QIS to improve the performance in

low light. The image classification method uses student-teacher learning to deal with the

heavy noise in photon-limited scenarios. The object detection method uses student-teacher

learning in tandem with non-local feature matching to detect objects in photon-limited sce-

narios. The classification method is based on the paper [ 25 ], and the object detection is

based on the paper [ 26 ].

Generalizing to a wide range of light levels.

The solutions we have looked at till now deal only with low light images. However, they can-

not capture both the low light and bright scenes simultaneously, and the methods proposed

do not generalize well to multiple noise levels. We will be forced to train multiple models

for different levels. In this part of the thesis, we look at solutions to this problem.

• Chapter 8.

This chapter shows how QIS can help with high dynamic range imaging. We use the

SNR expressions developed in chapter 3 to quantitatively address the dynamic range advan-

tage that QIS brings to the table. We propose an optimal HDR reconstruction algorithm to
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combine multiple QIS images captured using exposure bracketing. This chapter is based on

[ 27 ].

• Chapter 9.

One of the major flaws of the current neural network solutions is that they need to be

trained for the specific noise levels they are being used for. However, when used at a different

noise level, they fail. This is not desirable, especially when we want the network to work in

low-light scenes where the noise is heavy and bright scenes where the noise is not as strong.

When training for multiple noise levels, the performance is good in low light but is usually

found lacking in bright scenes. This chapter proposes a training scheme that re-distributes

the noise samples over different noise levels so that the trained network performs uniformly

well at all noise levels. This chapter is based on [  28 ].
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2. DIGITAL IMAGE SENSORS

This chapter has to be the most difficult to write in this dissertation. As a signal processing

person, learning how devices work was like learning a new language from scratch. This chap-

ter is also weird because it does not have any direct material output from this dissertation.

However, having worked on the signal processing side of the image sensors for close to five

years now, the lack of even a basic grasp of the beautiful physics behind making an image

sensor work was always a nagging thought. Having this chapter here was a way of alleviating

this worry. So, this chapter is one signal processing engineer’s understanding of how image

sensors work. The rest of this dissertation can be understood without the knowledge of this

chapter, so the readers can feel free to skip this chapter. Readers with hardware background

- Sorry about the blunders, which there are undoubtedly many.

The chapter starts with a brief history of modern cameras. It will be a biased history,

given that this dissertation involves a lot of quanta image sensors. Therefore, the history

tries to follow a single thread from the present day’s quanta image sensors back to when film

photography was invented. Many branches have been missed. Readers can take a look at [ 29 ]

for a more detailed history of image sensors. We will then look at some basic understanding

of how image sensors work, get into a bit of semiconductor physics, and finally look at the

quanta image sensors and other single-photon devices, which play an integral part in the rest

of this dissertation.

2.1 A brief history of modern cameras

One could argue that the history of imaging started with the discovery that we can use

optics to project light rays from an object onto a screen. Wikipedia [ 30 ] suggests that it

started with the camera obscura (“dark chamber” in Latin) in ancient China, Greek, and

Byzantine. However, we will start with the technologies that could reproduce the captured

scene or store the captured image in some form. In that sense, the history of the modern

camera started with the invention of the photographic film by George Eastman in 1884 [ 31 ],

which led to the development of the silver halide film technology.
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The basic idea behind the silver halide films was that the silver halide reacts to light, and

the photons break the bond in the silver halide compound to produce silver. The amount of

light dictates the quantity of silver halide compound that gets broken to get silver. Then this

film goes through a dedicated development process to get the final image. In silver halide

cameras, the film acts as the medium for both the image capture and the storage.

With electronic cameras, the medium of capture and storage were separated. The image

sensors captured the scene, and the captured data was stored in a separate memory. The

idea for electronic cameras came as early as 1973, with Texas instrument filing the patent

for a semiconductor image sensor [ 32 ]. There were a few more ideas of these electronic still

cameras such as the one by Kodak in 1975 and the Sony Mavica camera in 1981. However,

these cameras could not become successful because of the image and video quality. These

images, which were stored in a floppy disk, did not have high enough quality to get a good

printout of the photos. The first breakout success for a digital camera was the Casio QV-10.

Since then, the digital camera market has been growing exponentially.

The early digital cameras were based on charge-coupled device (CCD) technology, in-

vented by George Smith and Willard Boyle at AT&T’s Bell Labs in 1969. CCD sensors

measure the charge, and the analog-to-digital conversion (ADC) happens for all the pixels

outside the sensor. CMOS technology was used for various other logic circuits even by the

1970s. An active pixel device, where photon measurement and amplification happen within

the same device, was invented in 1968 by Peter Noble. Image sensors using CMOS tech-

nology were developed at Jet propulsion Lab (JPL) and later commercialized by Photobit

by combining the active pixel sensor (APS) technology, the CMOS technology, and the pro-

cess of doing intra-pixel charge transfer. The CMOS image sensors (CIS) combined imaging

and the ADC inside the pixels themselves. Initially, CCD image sensors had a significant

advantage over the CIS because of better read noise, dark current, and quantum efficiency,

even though CIS was much faster and required lesser power consumption. However, over

the years, with newer innovations and a better CIS pixel fabrication process, CIS was able

to close the gap in terms of circuit noise levels. This led to CIS emerging as the leading

imaging technology, with close to 8 billion units of CMOS image sensors being sold in 2021

alone.
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Figure 2.1. A timeline of modern image sensors.

Over the years, image sensors have become a ubiquitous part of our daily life. There

is a camera with almost every one of us sitting inside our smartphones. Image sensors in

cellphones have many restrictions regarding the size of the sensor and power consumption.

Concurrently, we also want the quality not to drop and the resolution to be as large as

possible, which has led to an almost constant decline in the image pixel size over the years.

However, the smaller pixels come with a drawback in the lower signal-to-noise ratio (SNR)

arising from, the lower full-well capacity. With this in mind, when Dr. Eric Fossum was

asked about the future of digital cameras, he predicted the emergence of the quanta image

sensors (QIS). QIS was envisioned to be a new type of image sensor with sub-diffraction-

limit sized pixels, full well capacity as low as just 1 electron, the ability to count individual

photons and image at thousands of frames per second [ 33 ].

While QIS was envisioned as just an idea in 2005, significant work has been done to

make prototype QIS. A pump-gate device, which shares considerable similarities with the CIS

technology, was proposed in 2015 by Ma et al., [  34 ] having the photon-counting ability. Since

then, the technology has undergone rapid innovations leading to read noise as low as 0.19e− in

the latest iteration of the sensor [ 35 ]. The technology is also being commercialized by Gigajot

Technology. An alternative technology that has emerged for QIS is single-photon avalanche

diode (SPAD) [  36 ]. SPAD achieves single-photon counting using avalanche multiplication,
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while CIS-based QIS does not. We will look into the differences in more detail in later

sections of this chapter.

In the rest of this chapter, we will go into the working of the digital image sensors.

The treatment will be at a high level, giving a brief overview to understand the noteworthy

differences in the different digital sensor technologies.

2.2 Semiconductor basics for digital image sensors

Semiconductor innovations are the primary driving force that made cameras possible. In

this section, we will look at some semiconductor basics. We will not get into too much detail,

just a brief introduction to the essential topics and a rough understanding of the overall idea

behind what image sensors are made of.

2.2.1 Reverse-biased p-n junction

A p-n junction is formed by putting two types of materials, p-type and n-type together,

such that they share a junction or a boundary. A p-type semiconductor has excessive holes

(positive charge), and an n-type semiconductor has excessive electrons (negative charge).

p-type semiconductors are produced by doping an intrinsic semiconductor such as silicon

with an electron acceptor (e.g., boron). Similarly, n-type semiconductors are doped with an

electron donor (e.g., phosphorous).

When a p-type semiconductor and an n-type semiconductor are placed next to each other,

it leads to the formation of the depletion region as shown in Figure  2.2 , which contains the

positive and negative ions. The depletion region is formed because of the high concentration

of the electrons and holes in the n-type and p-type semiconductors, respectively. The excess

electrons in the n-type semiconductor are attracted by the p-type semiconductor holes and

move there and vice versa. The size of the depletion region can be increased by reverse biasing

the pn-junction. In reverse bias, we connect the positive terminal of the voltage to the n-

type semiconductor, and the negative terminal is connected to the p-type semiconductor.

This leads to more holes entering the p-type semiconductor and more electrons being drawn

from the n-type semiconductor, thus increasing the size of the depletion region. The larger
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(a) A p-n junction (b) Reverse bias

Figure 2.2. A p-n junction. A depletion region forms at the junction of a
p-type and n-type semiconductors. The depletion region can be further made
larger by reverse biasing the p-n junction.

depletion region gives rise to a potential difference, which creates an electric field at the

depletion region.

Remark 2.1. As one can expect, forward biasing a p-n junction reduces the size of the

depletion region.

2.2.2 Photoelectric effect and photodiodes

Before we get into how pixels work, let us look at the photoelectric effect. The pho-

toelectric is a process by which when light waves fall on a material, the photons transfer

their energy to electrons in the material, and the electron becomes free. A more detailed

discussion on the statistics involved in photons exciting electrons can be found in chapter

 3 . Here, let us look at the semiconductor physics on what happens during the photoelectric

effect.

The amount of energy a photon carries depends on the frequency (or equivalently the

wavelength) of the light wave. Each photon with a frequency of ν and wavelength λ = c
ν

(c

is speed of light in vacuum) carries energy

E = hν = hc

λ
. (2.1)
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A photon needs more energy than the band-gap. The band-gap is the amount of energy

required to excite an electron from the valence band (still held on to by the atom) to the

conduction band (free from the atom). The band-gap for silicon is 1.2 eV. Photons from all

the visible spectrum have more energy than the silicon band-gap. Red light (λ = 700nm),

close to the lowest frequency in the visible spectrum, has an energy of 1.77 eV per photon.

Each photon can excite at most one electron. However, an electron getting excited is not

Figure 2.3. Photoelectric effect.A photon should have at the least the
energy equal to the band-gap to excite an electron from the valence bond to
the conduction band.

guaranteed. The probability of electrons getting excited by a photon is called quantum

efficiency (QE).

The photoelectric effect, in essence, generates a new electron-hole pair. If this happens in

a reverse-biased p-n junction, the electric field at the depletion region pulls the holes towards

the p-side and the electrons towards the n-side. This could also be represented in terms of

the potential energy of the electrons like in Figure  2.4 . Since there are more free electrons

in n-type semiconductors, the potential energy of the electrons in n-type semiconductors

is lower. Note that electrons in the valence band cannot move because they are bonded

to their atoms. However, once an electron moves to the conduction band because of an

incident photon, they are free to move towards lower potential energy. Therefore, if an

electron becomes free in the p-type, it moves towards the n-type.

Notice what happens when the charges move towards their respective sides. The total

overall potential difference falls, meaning that only a finite amount of electron-hole pairs that
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Figure 2.4. Energy band diagram. The lower potential energy for electrons
in the n-type means that the electrons in the p-type, that get excited to the
conduction band because of the photons, move to the n-type.

are generated will move towards the depletion region. Theoretically, this should equal the

number of electrons (or holes) that have moved to the p-type (or n-type) semiconductor at

the start. Once the number of photoelectrons matches this, the electric field becomes zero,

and photoelectrons generated have no force to move them and may recombine the holes.

This phenomenon of having only a finite number of electrons available to be generated is

called the full well capacity of the pixels. Notice that the full well capacity depends on the

reverse bias voltage used: the larger the bias voltage, the larger the full well capacity.

Figure  2.5 shows a simplified version of a photodiode. A photodiode is mainly made up of

a reverse-biased p-n junction, among other things. Shorter wavelengths are absorbed faster,

and longer wavelengths can penetrate deeper. Therefore, a photodiode’s depth or thickness is
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Figure 2.5. A cross section of a photodiode. A very simplified cross
section of a photodiode.

an important design consideration. The number of photoelectrons generated can be measured

by either transferring the charge outside and measuring it (CCD) or measuring it in the pixel

itself (CIS).

Remark 2.2. The image sensors usually react linearly to the number of photons, i.e.,

the number of photoelectrons is directly proportional to the number of photons falling

on the pixel. However, this linearity does not hold near the full well capacity, as the

electric field at the depletion region becomes too weak.

We have seen the basic principles of how a photodiode works. Let us now jump into some

of the significant sensor technologies in the next section.

2.3 Charge-coupled device

Two primary functions of a CCD are to 1. accumulate photoelectrons, and 2. Transfer

the charges between pixels. Let us first look at how these two are achieved.

2.3.1 MOS capacitors

The basic building block of a charge-coupled device (CCD) image sensor is the metal-

oxide-semiconductor (MOS) capacitors. A MOS capacitor has a semiconductor body (or a

substrate), an insulator and a metal electrode called a gate. The insulator is the equivalent
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of the dielectric of a capacitor. The metal acts as an n-type semiconductor in the usual

p-n junction (because of the available valence electrons), and the semiconductor body is

usually p-type silicon. A positive voltage applied at the gate repels the holes away from the

gate, leading to the generation of the depletion region as shown in Figure  2.6 (a). When

an electron gets excited in the substrate, it moves towards the gate, but the insulator stops

it. The electrons get accumulated at the surface between the substrate and the insulator

as shown in Figure  2.6 (b). We usually use a liquid model to visualize the accumulation of

photoelectrons in the pixels as shown in Figure  2.6 (c). In some sense, the depletion region

acts as a potential well, restricting the total amount of charge that can be accumulated. The

accumulated charge is thought of as a liquid filling the well.

(a) MOS capacitor (b) With photoelectrons (c) Liquid model

Figure 2.6. MOS capacitor. When photoelectrons are generated, they move
to the surface between the p-type substrate and SiO2.

2.3.2 Transferring charges

To understand how the charges are transferred using MOS capacitors in CCDs, we start

with how two MOS capacitors interact when placed close to one another. Consider the the

example illustrated in Figure  2.7 . We have two gates, both of which are connected to a

positive voltage. A potential well gets created under these gates. Now, consider that one

of these gates has accumulated photoelectrons and the other has not. Now, if a significant

distance separates the two gates, as shown in Figure  2.7 (a), nothing special happens, and

there exist two different potential wells. However, if these two gates are close enough, as

shown in Figure  2.7 (b), the two potential wells merge to make one big potential well with

the photoelectrons getting distributed across the entire potential well.
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(a) The gates are well separated. (b) The gates are closely placed.

Figure 2.7. Interaction of two MOS capacitors. When the gates are well
separated, the two potential wells stay separate. However, if we reduce the
gap between them, the potential wells combine to form one large well.

The above fact, combined with the creation of the potential well only when the bias

voltage is on, can be used to transfer charges from one capacitor to a neighboring capacitor.

Figure  2.8 illustrates how the charges are transferred from one pixel to another.

(a) (b) (c)

Figure 2.8. Transferring the charges. (a) When the bias voltage is applied
on the left gate, there will be a potential well, and the right gate has no
voltage applied on it and therefore no potential well. (b) When the right gate
also gets the bias voltage, the potential well is created, and the two potential
wells merge, and consequently, the photoelectrons get distributed across the
large well. (c) If the bias voltage on the left gate gets turned off, all the
photoelectrons will move to the right potential well. The charge transfer is
now complete.

The next step is understanding how this is done for a large image sensor. It is achieved

by employing sequential row and column readout. Figure  2.9 illustrates the idea of how this

is done. We start by moving all the charges column-wise to the right. The last column moves

into what is called the readout register. For a second, assume there exists something called

the floating diffusion (FD) below the readout register that converts the charge into a digital

number. We transfer the charge from the readout register one row down at a time. As the
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(a) (b)

Figure 2.9. Bucket brigade. The charges are transferred from the whole
column to the next column, and then the last column is read one pixel at a
time. This routine is repeated till all pixels are readout.

charges get into the floating diffusion, the data gets readout. So, one by one, we read the

amount of charge from each row of the readout register. Once this is done, we move all the

remaining charges to the right by one column again and start reading the readout register

row by row again. We keep repeating this till all the pixels are read out.

The floating diffusion at the bottom of the right-most column can be considered a ca-

pacitor. Once the charges get transferred from a pixel to the floating diffusion, the voltage

is read out by first amplifying the signal using two to three voltage followers and sending

the amplified analog signal through an analog-to-digital converter (ADC) to get the digital

data.

Remark 2.3. The quality of the signal readout depends on the amplification used for

reading out the final signal: more amplification, lesser noise. However, we cannot use

arbitrarily large amplification because higher amplification needs high power. The ISO

in the digital cameras is nothing but choosing what amplification we want to use.

Remark 2.4. Conversion gain is the voltage signal generated per photoelectron. For

CCD image sensors, this is nothing but the amplification used before the ADC.
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2.3.3 The need for a new image sensor technology

We have seen till now the basic working of a CCD image sensor. It is called the surface

channel CCD design. Over the years, many innovations were done to make the CCD work

better: The buried channel design, where the charges are stored some distance below the

surface, instead of the Si - SiO2 interface - The interline transfer mechanism, which separates

the charge collector and the charge transfer device - A vertical overflow bin, which reduces the

amount of blooming and smearing in the captured images. Combined with these innovations,

CCDs had a few significant advantages that even the CMOS APS that came later did not

have. They are

1. CCD image sensors are optimized photodetectors. They do not serve any other pur-

pose, which means they had an extremely high quantum efficiency (QE) and low dark

current.

2. The amount of noise introduced is minor. The shifting process is almost perfect.

3. Given that there is only one floating diffusion and amplifier, no non-uniformity exists

between the pixels.

However, CCDs had a few disadvantages, which forced the development of the future

CMOS APS image sensors. They are

1. CCD image sensors require high power consumption. They also have a high voltage

requirement of 10-15V.

2. The read-out mechanism, which requires transferring all the charges one by one, poses

a big bottleneck for scaling in terms of speed (frame-rate), especially when the image

sensor array is big.

3. Since the pixels are highly optimized for being photodetectors and do not have any

other circuitry, it becomes difficult to add any other functionality inside the pixels.
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2.4 CMOS image sensors

CMOS refers to Complementary Metal Oxide Semiconductors. CMOS technology has

been in use in many analog and digital circuits since the 1970s. The emergence of the CMOS

APS image sensors, which are in use today in billions of devices, started with the invention of

image sensors that integrated pinned photodiode (PPD) [ 37 ] and intra-pixel charge transfer

in 1993. With the CMOS APS becoming better over the years, they have almost totally

replaced CCD image sensors as the default choice for image sensors [ 38 ].

The major advantage that CMOS image sensors offer over the CCD image sensors are

these:

1. CMOS APS have in-pixel read-out circuits, which means that the electric charges get

amplified and converted to digital numbers in-pixel. The in-pixel read-out circuits

combined with X-Y addressing provide the CMOS image sensors with great flexibility

in terms of binning pixels and skipping pixels, which could make the image sensors

faster in times of need.

2. Their power consumption is smaller than the CCD and can operate at the 3V range.

3. The in-pixel circuit are highly programmable, making the CMOS APS extremely flex-

ible to be modified for specific applications.

2.4.1 Pinned photodiodes

Pinned photodiodes are an essential part of the modern CMOS APS. Figure  2.10 shows a

simplified pinned photodiode and how the charge transfer works for it. n+ type and p+ type

semiconductors are just doped such that the electrons and holes are available in a higher

concentration than the n-type and p-type semiconductors. The pinned photodiodes are

doped with n-type, and the floating diffusions are doped with n+ type. The basic idea is that

the floating diffusion junction leads to a larger potential well. When the transfer gate (TG)

is off, the collected photoelectrons in PPD stay there. The collected charges flow towards

FD when TG is on because of the potential difference. The implanted p+ at the top of PPD
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Figure 2.10. Pinned photodiode. The doping and the potential well dia-
gram of the operation of the pinned photodiode. In default mode, TG is off,
and the photoelectrons get collected in the photodiode. When TG is turned
on, the charges flow into FD.

increases the charge transfer efficiency to the FD [  39 ]. One of the significant advantages of

the pinned photodiode design is the ability to do true correlated double sampling (CDS). In

CDS, we read the voltage at FD twice. Once when TG is off and again after the charge

transfer. Then the change in potential ∆VFD is read out as the signal from the pixel. This

way, the quality of the signal read is greatly improved.
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2.4.2 CMOS APS

Figure  2.11 shows the schematic diagram of four transistor active pixel sensor (APS). The

four transistors are - 1. Transfer gate (TG), 2. Reset (RST), 3. Source follower (SF), and 4.

Row select (SEL). Once the transfer gate is turned on, the photoelectron charges generated

at the photodiode are transferred to the floating diffusion (FD). The change in potential

∆VFD at FD determined by the capacitance CD of the FD node and the photogenerated

charge QPh transferred from PPD to FD.

∆VFD = QPh
CD

(2.2)

We can see that the number of electrons transferred is simply QPh/qe, where qe is the charge

carried by a single electron. Then, conversion gain (CG) is given by

Conversion Gain = ∆VFD

QPh/qe
= qe

CD
(2.3)

For a general CMOS APS, conversion gain is usually in the range 50µV/e− to 100µV/e−,

which translates to a read noise of a few electrons (> 2e−). Once the charge has been

transferred to FD, turning the SF on will read the amplified signal. The column bus and

SEL are used to select which pixel we want to read the signal from. Note that the signal

goes through another amplification (ISO) before getting sent to the ADC.

Remark 2.5. The conversion gain we have defined here is sometimes called the in-pixel

conversion gain. The overall conversion gain is the total amplification, including the

ISO amplification.

The technology is called active pixel sensor (APS) because the job of the photodiode

is just to generate photoelectrons. The pixel has a separate structure for dealing with the

amplification of signals.

While CMOS image sensors give the advantage of being faster, since each pixel has its

own circuit, it suffers from non-uniformities such as photon response non-uniformity (PRNU)
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Figure 2.11. Four transistor active pixel with source follower read-out.

and dark signal non-uniformity (DSNU). Because the circuit also occupies some pixel area,

which in turn affects the fill factor (ratio of photosensitive area to total area), the sensitivity

takes a hit. However, the sensitivity issue can be alleviated by techniques such as back-side

illumination (BSI) and the usage of the microlens. Table  2.1 shows how CCD and CMOS

image sensors compare in some of the essential factors.

Table 2.1. Comparing CCD and CMOS image sensors. Source: [  40 ]
Factor CCD CIS
Power High Low

Functionality Off chip On chip
Cost Higher Lower

Speed Lower Higher
Sensitivity Higher Lower

Dynamic range Higher Lower
Image Quality Higher Lower

Fill factor Better Poor
Quantum efficiency High Low

While it may look like CCD are better for higher image quality, CIS has been able to

close the gap over years of innovation by incorporating technologies such as buried channel
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photodiodes, correlated double sampling, and backside illumination. Combined with the fact

that CIS offers extensive flexibility for on-chip functionalities, CIS has become the obvious

choice for image sensors.

2.5 Single photon counting image sensors

While the CMOS image sensor technology has grown leaps and bounds, they still have

a significant issue when dealing with photon limited imaging, where the number of photons

arriving at the image sensor is limited. It is not desirable to have a read noise of a few

electrons at this light level. We want to be able to do photon counting, where the image

sensor is sensitive to every available photon to retain as much information as possible from

the arriving photons. Counting every photon is the final frontier in image sensing. In this

section, let us take a look at three different technologies that strive to achieve this goal :

1. CIS-based quanta image sensor (CIS-QIS),

2. Single-photon avalanche diode (SPAD), and

3. Electron multiplying CCD (EMCCD).

Often, for passive imaging, SPAD and CIS-QIS are grouped into a single family of QIS.

Figure 2.12. Schematic of pump-gate jot doping.
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2.5.1 CIS-based quanta image sensor

Pump-gate jot

Pump-gate jot is the basic building block of CIS-based QIS. As we mentioned earlier,

the conversion gain in a CIS depends on the floating diffusion capacitance CD. The in-pixel

conversion gain needs to be more than 1000µV/e−, to achieve less than 0.15e− read noise,

which can be considered as good as zero read noise [ 34 ]. The pump-gate jot proposed in

[ 34 ] achieves a conversion gain of 380µV/e− with full well capacity of 200e−. The actual

prototype based on this idea can achieve 0.19e− read noise [ 35 ].

To reduce the capacitance of the FD, [ 34 ] increases the distance between the TG and FD.

They call it the “distal” FD. Given the distance, it becomes difficult to transfer the charge

in one go. So, the paper proposes to use a “pump” action, where the photoelectrons are

first stored in a potential well when TG is on, and when TG is off, the charges move to FD.

Pump-gate also reduces the overlap capacitance between the reset gate and FD by using a

tapered reset. Figure  2.12 shows the doping profile of the proposed pump-gates. Figure  2.13 

shows the ideal charge transfer during the pump action.

(a) (b) (c)

Figure 2.13. Pump action idealized charge transfer diagram. (a) The
transfer gate is initially OFF, and Photoelectrons are collected in the storage
well. (b)When the transfer gate is ON, photoelectrons are transferred to the
potential well. (c) When the transfer gate is OFF again, photoelectrons are
transferred to the floating diffusion.

Quanta image sensor

The image sensor which uses pump-gate jot can achieve read noise as low as 0.19e−.

Figure  2.14 shows real data captured using a prototype CIS-based QIS, where we can clearly
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resolve the photon numbers. The current version of CIS-based QIS can operate in both

single-bit and multi-bit modes. They have a full well capacity of close to 200 electrons,

giving the QIS the ability to run in different modes based on the need. We can reduce the

number of bits used in the ADC and get an extremely fast QIS, or we can use multiple

bits. Both of them may be useful. The jury is still out on understanding the trade-offs and

limitations of using QIS at different bit-depths.

Figure 2.14. Photon counting histogram. CIS-QIS has such a low read-
noise that we can resolve each photon arriving at the sensor. First reported in
[ 41 ].

CIS-based QIS comes with almost all the remarkable properties of a CIS, since they

share many similarities: For example, the flexibility in programming. The proposed QIS

prototype was able to leverage the advancements in CIS image sensors such as the BSI,

CDS, and microlens to achieve exceptional read noise, fill factor, QE, and dark current

(Table  2.2 ).

2.5.2 Single photon avalanche diode

The mode of operation of single-photon avalanche diode is quite different from the image

sensors we have seen till now. A doping profile is shown in Figure  2.15 . SPAD is reverse

biased with voltage greater than the breakdown voltage (Geiger mode), leading to even a

single free electron starting an avalanche and consequently generating a huge amount of

current. When a photon generates a single photoelectron in this setting, it leads to an
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avalanche. Recall that CIS-based QIS can keep counting the photons as long as we want.

However, that is not the case with SPAD. Once an electron is detected, we need to reset the

sensor before using the sensor again. This phenomenon leads to a dead-time while operating

SPAD, where the sensor needs to be off to reset the pixels.

SPAD has been in use since the 1970s. SPAD using CMOS technology was invented in

2003 [ 36 ], leading to the development of a lot of different prototypes [ 42 ].

SPAD needs a large voltage (15-20V) for breakdown, and the power consumption is also

higher because of the avalanche. The pixel sizes of SPAD are usually larger than CIS-QIS.

However, SPAD can reach more than 100k frames per second [  43 ]. Because of this speed and

the ability to figure out precisely when the avalanche is happening, SPAD is better suited

for time-resolved imaging such as time-of-flight imaging, where we need to resolve when each

photon arrives at the sensor.

Figure 2.15. Doping profile of a SPAD.

2.5.3 Electron-multiplying CCD

Electron-multiplying charge-coupled device (EMCCD) is fundamentally a CCD but equipped

with multiple gain registers between the shift registers and the ADC. Figure  2.16 illustrates

this idea. Each gain register tries to do electron multiplication using impact ionization. Im-

pact ionization is very similar to the operation of the avalanche diodes, where a high electric

field accelerates the photon charge in hopes of starting an avalanche. However, the proba-

bility of a single electron starting an electron multiplication is very low (< 2%) in EMCCD.

EMCCD achieves a suitable electron detection probability by having multiple such registers,
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Figure 2.16. EMCCD. In CCD, the charges move directly from the readout
registers into the floating diffusion. In contrast, EMCCD makes the charges
go through multiple registers with high electric fields to accelerate the charge,
leading to electron multiplication.

which will give a significantly high gain when stacked together. Compared to SPAD and CIS-

QIS, EMCCD has a very high dark current and must be operated under low temperatures

(−80◦C) to achieve good imaging results.

2.5.4 Comparing the three technologies

While choosing which of the three single-photon counting technologies to use, we need

to consider the pros and cons of different technologies. In Table  2.2 we compare some of

the critical properties of the three technologies. While SPAD and CIS-QIS can operate at

room temperatures, EMCCD needs to be cooled down for achieving single-photon counting.

Among SPAD and CIS-QIS, CIS-QIS has a better dark current, smaller pixels, and a larger

resolution. Of course, SPAD has the advantage of having zero read noise, which may play

an issue when summing many frames. These technologies are evolving rapidly, and it would

be interesting to see the future applications these technologies will be used for.

2.6 Final thoughts

We have looked at the fundamental workings of some of the standard image sensor

technologies. As we have noted, the image sensors technologists have systematically identified

the existing drawbacks in their technologies and figured out ways to fix them time and again.

Given the author’s limited knowledge, it would not be appropriate to try and guess the future
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Table 2.2. Comparison of the available single photon image sensor
technologies.

Properties CIS-QIS [  35 ] SPAD [  44 ] EMCCD [ 45 ]
Resolution 16.7 Mpixels 3.2 Mpixels 1Mpixels

Operating temp. Room temp. Room temp. −100◦ C

Mean dark count 0.086e−/pix/s < 3e−/pix/s 0.00011e−/pix/s
@ −100◦ C

Max QE 76% 69.4% > 95%
Pixel pitch 1.1µm 6.39µm 13µm
Frames/sec 1000fps [ 46 ] 156 kfps [  47 ] 56 fps
Read noise 0.19e− 0e− < 1e−(@ −100◦ C)

direction that image sensors are going to take. However, as a signal processing engineer who

works a lot in computational imaging, it will be tremendous to see image sensors with a

lot more control from outside than they currently have. In some sense, a software-defined

camera is every computational imaging engineer’s dream.
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3. MATHEMATICAL MODELING OF A CAMERA

We live in the deep learning era, and data is the fuel that drives progress. When developing

new algorithms, we need real data to train the models and even test and ensure that the

model will work when employed in a real case scenario. However, real-world data is hard to

come by, especially when we are working on cutting-edge image sensors, where, by the time

we have a prototype in our hands, the technology has already progressed. The prototype is

not cutting edge anymore. In some cases, we cannot use the real data from the sensors for

proprietary reasons. How do we deal with such scenarios?

A solid workaround for this problem is to have a sound understanding of the working of

the image sensors and model its image formation process to simulate artificial data whenever

we want. Simulating the imaging model has the additional benefit of simulating scenarios

where it is impossible to collect data. For example, a prototype sensor may not have the

right design to be mounted on a microscope. However, we can simulate the imaging model

using existing microscopy images and understand how the camera may work.

A realistic camera model that considers all the different sources of noise is also important

because some of these noises are fixed-pattern and can easily be corrected if we understand

their sources. On top of that, we need to understand the noise statistics to develop algorithms

for attenuating them, which the imaging model helps with.

Understanding all the different noise sources in an image sensor is often unnecessary. In

fact, we need not consider any noise source for most of the applications that use images

captured in well-lit scenarios. At most, we may need to consider a weak i.i.d. Gaussian

noise. A cursory glance at the computer vision literature will make this evident. Works that

consider even signal-dependent noise sources are few and far between. Most of the works do

not consider anything more than weak Gaussian noise. However, when dealing with photon-

limited imaging, it becomes imperative to consider all the different sources of noise. At these

light levels, methods based on a simple Gaussian model do not perform well.

In addition to helping us generate data, the imaging model is also essential to study and

compare different imaging technologies. For example, quanta image sensors generally run in

binary mode. A general CMOS image sensor uses a 14-bit mode. How do we compare these
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two image sensors? We need to play around with all the different possible settings of the

image sensors to understand where the strengths and weaknesses of different image sensors

lie.

This chapter starts by looking at different noise sources in an image sensor. Then we

put all the noise sources together to give a single imaging model. The imaging model can be

modified to fit any image sensor we want. We then develop the theory for the signal-to-noise

ratio of the image sensors, which can be used to compare different image sensors in different

modes. The first part of this chapter, especially the subsection on photon shot noise, borrows

a lot of material from [ 48 ]. The latter part, where we discuss the signal-to-noise ratio, is

based on our work [ 20 ].

3.1 Sources of noise

This section will go into all the different possible sources of noise. Some of these noise

sources can be fixed using a simple look-up table. For example, once we figure out all the dead

pixels in the image sensor, we need to replace the dead pixel values with their neighboring

pixels, which can be done in real-time using a look-up table. Other noise sources such as

the circuit read noise are not as easy to fix, as we will need a more complicated algorithm

to fix it. We will also ignore all the lens aberrations and assume that the lenses we use are

all perfect. All the explanations of different noise sources are done from a signal processing

perspective. Unless necessary, we will not be going into too many details on the sensor

physics that causes all these noise sources. For more detailed discussion on this topic refer

[ 29 ], [ 49 ]

3.1.1 Photon arrival process

The photon arrival is a stochastic process, and this randomness is a direct consequence

of the particle nature of the electromagnetic waves. In imaging literature, this randomness

is called the shot noise. In this subsection, we show some properties of the photon arrival

process relevant to us. For a more rigorous treatment of this topic, check Chapter 9 of [ 48 ].
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Consider a light wave with intensity I(x, y; t), arriving at the image sensor present on

the xy plane. We make three assumptions about the photon arrival.

1. The probability of a single photon arriving at a area smaller than the coherence area  

1
 

and shorter than the coherence time 

2
 (but longer than period of the wave) is propor-

tional to the intensity I(x, y; t) of the light wave. Let K denote the number of photons

arriving at the image sensor in a time interval ∆t and area ∆A. The assumption says,

for some α

P(K = 1; ∆t, ∆A) = α ∆t ∆A I(x, y; t)). (3.1)

2. The probability of more than one photon arriving in the time interval ∆t and area ∆A

is negigible. i.e. P(K > 1; ∆t, ∆A) ≈ 0. Therefore, we can write

P(K = 0; ∆t, ∆A) = 1− α ∆t ∆A I(x, y; t)). (3.2)

3. The photon arrival process in any non-overlapping area or time interval is independent

of each other.

Let us look at the probability distribution of the number of photons K arriving at the

image sensor at an area of ∆A in some arbitrary time interval (T, T + τ + ∆τ), where ∆τ

and ∆A satisfy the coherence condition mentioned in assumption 1, and τ is the counting

interval we are interested in. Since we are considering a fixed area ∆A around (x, y), we will

ignore ∆A, x, and y in the equations for the time being.

P(K = k; (T, T + τ + ∆τ)) = P(K = k − 1; (T, T + τ)) · P(K = 1; (T + τ, T + τ + ∆τ))

+P(K = k; (T, T + τ)) · P(K = 0; (T + τ, T + τ + ∆τ)). (3.3)
1

 ↑ The largest area such that two pinholes placed anywhere within this area always produces interference.
2

 ↑ The maximum time before which the wave can always be considered coherent. Check Section  3.1.2 for
more details.
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Note that we have used the independence property from assumption 3 to write the above

equation. Now, using (  3.1 ) and ( 3.2 ), we can rewrite the above equation as

P(K = k; (T, T + τ + ∆τ)) = P(K = k − 1; (T, T + τ)) · α ∆t I(T + τ)

+P(K = k; (T, T + τ)) · [1− α ∆t I(t + τ)]. (3.4)

We can now rearrange the terms in the above equation to get

P(K = k; (T, T + τ + ∆τ))− P(K = k; (T, T + τ))
∆τ

= αI(t + τ)[P(K = k − 1; (T, T + τ)) −P(K = k; (T, T + τ))] (3.5)

Letting ∆τ → 0, we get

dP(K = k; (T, T + τ))
dτ

= αI(T + τ)[P(K = k − 1; (T, T + τ))− P(K = k; (T, T + τ))]

(3.6)

The following theorem provides the solution to this equation.

Theorem 3.1.1. Consider the differential equation

dP(K = k; (T, T + τ))
dt

= G(T + τ)[P(K = k − 1; (T, T + τ))− P(K = k; (T, T + τ))].

(3.7)

with the constraint ∑∞
k=0 P(K = k; (T, T + τ)) = 1. The solution to this differential

equation is given by

P(K = k; (T, T + τ)) =

(∫ T +τ
T G(t)dt

)k

k! exp

{
−
∫ T +τ

T
G(t)dt

}
, k ∈ {0, 1, 2, . . .} (3.8)

Proof. We will prove that (  3.8 ) is a solution to ( 3.7 ). The proof that it is the only solution

is a little more involved and we will skip it here.

76



Substitute ( 3.8 ) into ( 3.7 ). Let θ(τ) =
(∫ T +τ

T G(t)dt
)
. We get

dP(K = k; (T, T + τ))
dt

= d

dτ

[
θ(τ)k

k! exp {−θ(τ)}
]

=θ(τ)k

k!
d

dτ
[exp {−θ(τ)}] + exp {−θ(τ)} d

dτ

[
θ(τ)k

k!

]
(a)= θ(τ)k

k! [−G(T + τ) exp{−θ(τ)}] + exp {−θ(τ)}
[ 1
k!kθ(τ)k−1G(T + τ)

]
=G(T + τ)

[
− exp{−θ(τ)}θ(τ)k

k! + exp{−θ(τ)} θ(τ)k−1

(k − 1)!

]

which is same as the right hand side of (  3.7 ). Here, (a) uses the fact that d
dτ

θ(τ) =
d

dτ

∫ T +τ
T G(t)dt = G(T + τ).

By replacing G(t) = αI(t) in (  3.8 ), we get the solution to (  3.6 ). If we let θ =
∫ T +τ

T αI(t)dt

P (K = k; (T, T + τ)) = e−θθk

k! , (3.9)

which is the well known Poisson PMF distribution.

The discussion till now has assumed we have a fixed small area ∆A and a longer time

interval τ . Following similar steps, we can also show that the same result holds for a larger

area. In a more general version of (  3.9 ), we will have

θ =
∫ ∫

(x,y)∈A

∫ T +τ

T
αI(x, y; t)dtdxdy. (3.10)

3.1.2 Coherent and incoherent light

We have derived the photon arrival process assuming that we know the intensity I(x, y; t).

However, this is not always true. To understand when this is not true, we need to understand

the concept of coherence of electromagnetic waves.

Two light waves are considered coherent as long as they have a constant phase difference

at the same point in space or time. A light source that generates light waves all with the

same phase is considered a coherent light source. In contrast, an incoherent light source
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generates light waves with random phases.Figure  3.1 shows a visualization of coherent and

incoherent light waves. For example, lasers are coherent light sources, and the sun is an

incoherent light source. In general, thermal light sources such as the sun and light bulbs are

incoherent.

(a) Coherent (b) Incoherent

Figure 3.1. Coherence of electromagnetic waves. When all the light
waves have the same phase, it is called the coherent light. If the phases are all
random, it is called incoherent light.

For a coherent light source, our assumption about knowing the intensity I(x, y, ; t) is

true, and therefore it follows a Poisson arrival process. However, for incoherent lights we

know only the average intensity and the actual intensity itself is a random process, which

turn makes θ in ( 3.10 ) a random variable. Then (  3.9 ) is conditioned on θ. So we get

P(K = k | θ) = e−θθk

k! . (3.11)

Now we can write P(K = k) as

P(K = k) =
∫ ∞

θ=0
P(K = k | θ)PΘ(θ)dθ

=
∫ ∞

θ=0

e−θθk

k! PΘ(θ)dθ. (3.12)

This equation is usually referred to as Mandel’s formula [ 50 ].

Incoherent light

This part of the chapter involves a lot of brute force math, so some of the more involved

proofs will be skipped. Interested readers can refer to [  48 ] for detailed proofs.

78



When the light source is incoherent, for any arbitrary counting interval τ it can be shown

that the distribution PΘ(θ) follows a Gamma distribution (Chapter 6 of [ 48 ])

PΘ(θ) = 1
α

(
αM

β

)M

·

(
θ
α

)M−1
exp

{
−M θ

β

}
Γ(M) , (3.13)

whereM represents the degrees of freedom in the measurement interval and β = E[θ]. When

only temporal degrees of freedom are allowed

M =
[1
τ

∫ ∞

−∞
Λ
(

η

τ

)
| γ(η) |2 dη

]−1
, (3.14)

where γ(η) is the complex degree of coherence (Chapter 5 of [ 48 ]) and

Λ(τ) =


1− | τ |, | τ |≤ 1

0, otherwise
. (3.15)

Substituting ( 3.13 ) into ( 3.12 ) we will get

P(K = k) = Γ(k +M)
Γ(k + 1)Γ(M)

[
1 + M

β

]−k [
1 + β

M

]−M

. (3.16)

This distribution is referred to as the negative-binomial distribution. This distribution is for

any arbitrary counting interval τ . We will look at two special cases when τ is very small and

long compared to the coherence time.

Short counting interval

When the counting interval τ is smaller than the coherence time,M is essentially unity, and

by substituting M = 1 in ( 3.13 ) we can show that θ follows an exponential distribution

PΘ(θ) = 1
β

e− θ
β , θ ≥ 0, (3.17)
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and substituting it into ( 3.16 ), we get

P[K = k] = 1
1 + β

(
β

1 + β

)k

. (3.18)

This is called the Bose-Einstein distribution.

Long counting interval

For longer counting interval τ , M → ∞. To reflect this, let us assume M = β/δ for

arbitrarily small δ. Then (  3.16 ) becomes

P(K = k) = Γ(k + β/δ)
k!Γ(β/δ)

[
(1 + 1/δ)k (1 + δ)

β
δ

]−1
. (3.19)

Using Stirling’s approximations [ 51 ], we can show that

Γ
(

β

δ

)
≈
√

2π

(
β

δ

)β/δ−0.5

e− β
δ , and

Γ
(

k + β

δ

)
≈
√

2π

(
k + β

δ

)k+β/δ−0.5

e−k− β
δ .

For δ → 0, we can show

(
1 + 1

δ

)k

≈
(1

δ

)k

, and (1 + δ)
β
δ ≈ eβ

Substituting these into ( 3.19 ), we get

P(K = k) = e−ββk

k! ·

(1 + kδ

β

)k+ β
δ

−0.5

e−k

 . (3.20)

For δ → 0, (
1 + kδ

β

)k

≈ ek.

So, we get

P(K = k) = e−ββk

k! , (3.21)

which is the well known Poisson distribution.
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(a) Bose-Einstein Distribution (b) Poisson Distribution

Figure 3.2. Photon statistics. PMF of Bose-Einstein and Poisson probabil-
ity distributions. Both the distributions have a mean of β = 2.0.

Figure  3.2 shows the PMF of the Bose-Einstein and Poisson probability distributions for

mean of β = 2.0.

Remark 3.1. According to [  48 ], at a wavelength of 500nm, we need a counting interval

of 10−12s to satisfy the conditions for ( 3.18 ), which is too short of an interval. We

can safely assume that the photons arriving at the image sensor follow the Poisson

distribution for almost all imaging applications we consider in this dissertation.

3.1.3 Inter-arrival time

In most imaging applications, we are interested in photon counts. However, there are

specific applications such as time-of-flight imaging [ 52 ] where knowing the time stamp of

when the photon is arriving at the image sensor is essential. Recently Ingle et al., [ 53 ]

showed that inter-arrival timing could be used for passive imaging too. For such cases,

it is essential to know the probability distribution of the photon-inter arrival time. The

following theorem gives the probability distribution of inter-arrival time when the photon

arrival follows a Poisson process.
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Theorem 3.1.2. Let K(t) be a uniform Poisson random process with constant rate

γ(t) = γ. Let ∆τ denote the time interval between two consecutive Poisson events.

Then the random variable ∆τ has the probability density function

f∆τ (t) = γe−γt, t ≥ 0. (3.22)

Proof. For a time interval t, the pmf of the Poisson random variable K is given by,

P(K = k) = e−γt(γt)k

k! . (3.23)

Let ∆τ be the time interval between two arrivals, which means there are no arrival in the

time ∆τ . So, we can write

P(∆τ > t) = P(K = 0)

= e−γt (3.24)

We know that P(∆τ > t) = 1 − F∆τ (t), where F∆τ (t) is the CDF of the inter-arrival time.

Therefore,

F∆τ (t) = 1− e−γt (3.25)

Taking derivative of F∆τ (t) wrt t will give us the required pdf.

3.1.4 Photons to electrons

We showed in the last subsection that the photon arrival process is a Poisson process. Let

us look at a single pixel with some area A, in a counting interval τ . The number of photons

arriving at the sensor is a random variable with probability distribution according to ( 3.21 ).

The photons excite the electrons in the pixel by a process known as the photoelectric effect.

Figure  3.3 shows an illustration of the process.
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Figure 3.3. Photoelectric effect. Phototelectric effect refers to the process
by which electrons get excited by light waves.

The photoelectric effect says that one photon can excite only one electron. However,

not all photons excite electrons. Each incident photon only excites 0 ≤ η ≤ 1 electrons

on average. η is called the quantum efficiency of the image sensor. Image sensors usually

have different quantum efficiency at different wavelengths. Most of the image sensors we

generally use (e.g., the ones on our cellphones) have high sensitivity to the visible range of

the electromagnetic spectrum (400nm – 700nm). For mass-market cameras, the main goal

is to reproduce images that look like what a human eye sees. There are other types of image

sensors such as the IR image sensors [ 54 ] which work in a spectrum different from the visible

range. Figure  3.4 shows an example quantum efficiency curve for a camera changing over

different wavelengths.

Figure 3.4. Quantum efficiency. An example quantum efficiency plot from [ 55 ].
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Monochromatic light

We will start with a simple case - We assume that the light is monochromatic, where spectrum

of the light consists of just a single wavelength λ0. Let the intensity be I(x, y, t; λ0). We

will also assume the photons follow a Poisson process. Let the average number of photons

arriving at a particular pixel be β(λ0). The number of photons arriving at the sensor k has

the probability distribution according to ( 3.21 ). We model the photon detection by the pixel

as a Bernoulli random variable with probability of detection as η(λ0). Then each photon

gets detected according to the distribution

P(detection) = η(λ0), P(miss) = 1− η(λ0).

The number of photons detected (or number of electrons generated) is the sum of K = k

Bernoulli random variables. It is well known that the sum of Bernoulli random variables

follow a binomial distribution [  56 ]. So, the number of photons detected by the pixel Ke = ke

conditioned on the number of photons arriving at the pixel follows the distribution

P (Ke = ke | K = k) =
(

k

ke

)
· η(λ0)ke · (1− η(λ0))(k−ke), ke ∈ {0, 1, . . . k}, (3.26)

where (
k

ke

)
= k!

ke!(k − ke)!
. (3.27)

The following theorem gives the expression for the probability distribution P(Ke = ke).

Theorem 3.1.3. Consider a random variable Ke that has the probability distribution

P (Ke = ke | K = k) =
(

k

ke

)
· ηke · (1− η)(k−ke), ke ∈ {0, 1, . . . k}, (3.28)

where K is a Poisson random variable with the distribution

P(K = k) = e−ββk

k! . (3.29)
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Ke is then a Poisson random variable with distribution

P(Ke = ke) = e−ηβ(ηβ)ke

ke!
. (3.30)

Proof. We will use moment generating functions to prove this. For some t ∈ R, the moment

generating function of Ke is given by

MKe(t) = EKe

[
etKe

]
= EK

{
EKe|K

[
etKe

]}
. (3.31)

The moment generating function of a binomial random variable is given by

EKe|K
[
etKe

]
= (1− η + ηet)K . (3.32)

Therefore,

MKe(t) = EK

[
(1− η + ηet)K

]
= EK

[
elog(1−η+ηet)K

]
. (3.33)

Notice that EK

[
elog(1−η+ηet)K

]
is similar to the moment generating function of a K, EK

[
esK

]
where s = log(1− η + ηet). The moment generating function of Poisson random variable is

MKe(t) = EK

[
esK

]
= eβ(es−1)

= eβ(elog(1−η+ηet)−1)

= eβ(1−η+ηet−1)

= eηβ(et−1). (3.34)

By comparing MKe(t) with the moment generating function of a Poisson random variable

we can clearly see that Ke is Poisson random variable with mean ηβ.
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We can now write

P(Ke = ke) = e−η(λ0)β(λ0)(η(λ0)β(λ0))ke

ke!
(3.35)

We have shown that the number of electrons excited by a monochromatic light source

follows a Poisson process. However, we do not encounter monochromatic light in real life

often, with few exceptions, like when we use a laser as the light source. So, we need to

extend the result to non-monochromatic lights too.

Figure 3.5. Spectrum of a light source. Source: [  57 ]

Non-monochromatic light

Figure  3.5 shows an example spectrum of the sunlight. The irradiance J(λ) can easily be

converted into into photon rate by using

Φ(λ) = J(λ)λ
hc

, (3.36)

where h is the Planck’s constant, and c is the speed of light. Φ(λ) will have the unit

photons/second/unit area/nm. Assuming Φ(λ) remains the same spatially, it can be thought

of as the probability distribution of the wavelength to which each photon arriving at the

image sensor belongs to. Let

f(λ) = Φ(λ)∫∞
0 Φ(λ)dλ

. (3.37)
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Then for each of the K photons arriving at the pixel, the wavelength is a random variable

with pdf f(λ). Remember that for each wavelength the quantum efficiency of the pixel η(λ)

changes.

So, now we can write the probability distribution of the number of photons detected by

the pixel as

P(Ke = ke | K = k, λ = {λ1, λ2, . . . λk}) =
∑

Q∈Fke

∏
i∈Q

η(λi)

 ·
∏

i∈Qc

[1− η(λi)]

 , (3.38)

where Fke contains all the subsets of {1, 2, . . . k} that has ke elements. This distribution

is called the Poisson binomial distribution. We assume that all λi are independent of each

other.

The following theorem gives the probability distribution P(Ke = ke).

Theorem 3.1.4. Consider a random variable Ke has the probability distribution ac-

cording to

P(Ke = ke | K = k, λ = {λ1, λ2, . . . λk}) =
∑

Q∈Fke

∏
i∈Q

η(λi)

 ·
∏

i∈Qc

[1− η(λi)]

 ,

(3.39)

where λi are all independent random variable that has some probability distribution f(λ),

and K is a Poisson random variable with the distribution

P(K = k) = e−ββk

k! . (3.40)

Ke is then a Poisson random variable with distribution

P(Ke = ke) = e−η̄β(η̄β)ke

ke!
, (3.41)

where η̄ =
∫∞

0 η(λ)f(λ)dλ.
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Proof. We will again use the moment generating function to prove this.

MKe(t) = EK

{
Eλ|K

{
EKe|K,λ

[
etKe

]}}
(3.42)

Ke | K, λ is a Poisson binomial distribution. It is nothing but sum of K independent

Bernoulli random variables with different probability of success each time. Hence, the mo-

ment generating function is

EKe|K,λ

[
etKe

]
=

K∏
i=1

(
1− η(λi) + η(λi)et

)
(3.43)

Now,

Eλ

{
EKe|K,λ

[
etKe

]}
= Eλ

[
K∏

i=1

(
1− η(λi) + η(λi)et

)]
(a)=

K∏
i=1

Eλ

[
1− η(λ) + η(λ)et

]
=
[
1 + η̄(et − 1)

]K
, (3.44)

where (a) is possible because λi are all independent, and η̄ = Eλ(η(λ)). We can now write

the moment generating function of Ke as

MKe(etKe) = EK

{
Eλ

{
EKe|K,λ

[
etKe

]}}
= EK

{[
1 + η̄(et − 1)

]K}
= EK

{
e
[
log
(

1+η̄(et−1)
)

K
]}

. (3.45)

From here we can follow the steps similar to the proof for Theorem  3.1.3 to complete the

proof.

Thus we have proven that irrespective of whether the light is monochromatic or not, the

number of photons detected by the image sensor follows a Poisson distribution. The results

in Theorems  3.1.3 and  3.1.4 hold for coherent light, and incoherent light with longer counting

interval.
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Remark 3.2. A color filter array is placed in front of the image sensor in most modern

image sensors to detect different colors. Hence, the quantum efficiency curve η(λ) will

vary for each pixel. Figure  3.6 shows one such example. The QE curve will vary

depending on whether the pixel has a blue, green, or red filter.

Figure 3.6. Quantum Efficiency with color filter arrays. Source : [  58 ]

Monochrome Color

Mean electrons η̄β Realization Ke Mean electrons η̄β Realization Ke

Figure 3.7. Effect of shot noise. The average number of photoelectrons per
pixel is 0.5. The color images assume that a Bayer pattern CFA is used.

In Figure  3.7 , we show an example of shot noise simulated in an image. We take a clean

image and then normalize it such that the average intensity is 0.5. And then use MATLAB’s

poissrnd function to generate the image labelled K.
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3.1.5 Dark current

Dark current refers to the current generated in the pixels in the absence of light. It is

undesirable as it hinders the actual number of photons we want to measure. Dark current

reduces the dynamic range, i.e., the range of photons that can be detected (formally defined

in chapter  8 ), as the total number of electrons that can be stored in the pixel is limited. The

dark current creates many issues in low light imaging when the number of photons from the

scene becomes comparable to the spurious electrons generated by the dark current. There are

multiple different sources for dark current. We will not examine in detail all these different

sources. Interested readers can refer to janesick2001_ScientificCharge, [  29 ] for more

details. The dark current is a function of the integration and the operating temperature.

The electrons collected in the pixel due to the dark current, Kd, can be modeled as a Poisson

random variable.

P(Kd = k) = e−βd(βd)k

k! , (3.46)

where βd = γdτ is the mean number of electrons accumulated due to the dark current. Here,

τ is the integration time and γd is the mean number of electrons generated because of the

dark current per unit time.

The total number of electrons accumulated K in the pixel is the sum of the two random

variables K = Ke + Kd  

3
 . So, suppose βe is the mean number of electrons excited by

the arriving photons, and βd is the mean number of electrons accumulated due to the dark

current. The total number of electrons accumulated in a pixel follows the Poisson distribution

with mean βtot = βe + βd.

P(K = k) = e−(βe+βd)(βe + βd)k

k! . (3.47)

3
 ↑ For simplicity, we call the total number of electron K too, not to be confused the number of photons

arriving. Since we will concern only with the number of photoelectrons, we can safely use the notation
without causing any confusion.
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Remark 3.3. In most modern CMOS image sensors, the dark current can virtually be

ignored for normal photography applications. For example, [  35 ] reports a dark current

of 0.086 e−/pix/s. Considering the common imaging integration time of 30 ms, the

average number of electrons accumulated due to dark current will be βd = 0.003, which

we can comfortably ignore.

3.1.6 Read noise

Once the charges are accumulated in the pixels, these charges need to be readout. Read

noise refers to the noise generated by the readout electronics of the pixels, and this noise is

generally modeled as additive Gaussian noise,

ηread ∼ N(0, σ2
read), (3.48)

where σread is the standard deviation of the noise referred to as the read noise. The probability

distribution is given by

P(ηread = n) = 1√
2πσ2

read

exp
{
−1

2

(
n

σread

)2
}

. (3.49)

The analog signal that is read out of the sensor is then given by

y = G · (K + ηread), (3.50)

where G is the conversion gain of the sensor which maps the electron number to the voltage

read out of the sensor. Y is referred to as a Poisson-Gaussian random variable. The proba-

bility distribution of Y is a convolution of the Poisson and the Gaussian distributions given

by

P(Y = y) =
∞∑

`=0

β`
tot
`! e−βtot

1√
2πG2σ2

read

exp

−1
2

(
y −G`

Gσread

)2

 . (3.51)

91



(a) Without read noise (b) With read noise

Figure 3.8. Read noise. We plot the probability distribution function of Y
when G = 1 and βtot = 2. On the left is the Poisson pmf. On the right is
Poisson-Gaussian pdf for different σread. We can see that when σread = 1.0,
the photon counts are not recognizable. At σread = 0.25, we can see the
individual photons, but there is an overlap between neighboring photon counts.
At σread = 0.15, there is almost no overlap between neighboring photon counts
that we can get plot on the right by just rounding off the values to the nearest
integer.

Figure  3.8 shows how the the probability distribution function of Y looks like without and

with different read noise strengths. We use βtot = 2. We can notice that with σread = 1, we

cannot see the different peaks distinctly anymore. However at σread = 0.25, we can notice we

can notice the peaks for each individual photons, albeit with some overlap. At σread = 0.15,

there is almost no overlap between the photon counts. For any σread < 0.15, it is therefore

considered as good as σread = 0.

In Figure  3.9 , we validate the accuracy of the model in (  3.51 ) using data from a QIS

pixel. A total of 50,000 repeated measurements from a single pixel is used to construct a

photon-counting histogram (PCH). Each measurement has an integration time of 50µs. The

average photon count is 1.48 photons per pixel (ppp). The ADC uses a bit-depth of 14 bits.

The least significant bit is 0.05e−. Because the ADC uses 14 bits, the resulting histogram is

close to a continuum.

To plot the theoretical model, we assume that the read noise level is 0.25e−. The dark

current is assumed to be 0.0068e− per second [  46 ]. βtot is chosen such that the mean squared

error between the histogram and the theoretical curve is minimized. Since the integration
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Figure 3.9. Validation of the Model. First reported in [  41 ]. We compute
the photon counting histogram of a real QIS sensor and compare it with our
theoretical model. Note the similarity between the two.

time is only 50µs, we safely neglect the dark current. Putting these together, we obtain the

black curve as shown in Figure  3.9 . As we can see, the theoretical model fits the real data

well.

In Figure  3.10 , we visualize the effect of different strengths of read noise on photon-

limited images using simulated data. We simulate three images with an average signal level

of 0.5e− per pixel. We assume that the dark current is zero and G = 1. The first image has

a read noise of σread = 0. The only source of noise is the shot noise. In the second image,

we use σread = 0.25. This image does not look too different from the first image with zero

read noise. However, in the third image, when we use σread = 1.5, the details of the image

are almost completely destroyed.

Remark 3.4. The gain factor G depends on the amplifier gain used in the image

sensor. The read noise σread depends on the amplification used. Usually larger the gain

G, the smaller the read noise in terms of electrons, but the higher the absolute noise

witnessed in Y . When operating cameras at higher ISO, will the image will look noisier.

Nevertheless, the signal-to-noise ratio with respect to the input signal is higher at high

ISO than lower ISO.
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σread = 0 σread = 0.25 σread = 1.5

Figure 3.10. Effect of read noise in imaging. We simulate imaging at an
average light level of 0.5 photoelectrons per pixel. Notice that a read noise of
σread = 0.25 does not affect the visual quality that much, however σread = 1.5
almost completely destroys all the information in the image.

Remark 3.5. An iPhone XS has read noise as low as 1.7e− [ 59 ]. CIS-based quanta

image sensors have read noise of 0.19e− [ 35 ]. Single-Photon Avalanche Diodes have

zero read noise.

3.1.7 Fixed pattern noise

Until now, we have looked at temporal noise sources, i.e., they change over time, and the

noise realization is different each time. There are other sources of noise that do not change

over time. They are called fixed pattern noise (FPN). Two of the most common sources of

FPN are 1. Photon Response Non-Uniformity (PRNU), and 2. Dark Signal Non-Uniformity

(DSNU).

PRNU is the randomness in the photon detection efficiency η̄ and the conversion gain

G of different pixels. PRNU arises from the randomness in the fabrication process, which

leads to small variations among the pixels of the same sensor. Therefore, each pixel will

have a different mean voltage readout when illuminated by a uniform light source. PRNU

is generally a function of the illumination and therefore is calculated at different light levels.

PRNU becomes prominent at low light levels. For example, the range of PRNU can range

from 0.1% at 15000e− signal to 6% at 10e− [ 61 ]. DSNU is a similar variation in dark current

βd. DSNU is independent of illumination, though they depend on integration time and the

operating temperature. Figure  3.11 shows example histograms of the distribution of PRNU
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Figure 3.11. Example logarithmic histogram for PRNU and DSNU.
snw is the standard deviation of the Gaussian distribution used to model the
behavior. Source : [  60 ]

and DSNU on an image sensor. The distribution of PRNU and DSNU are usually modeled as

Gaussian distribution. Figure  3.12 shows an example of what the average of many captured

images will look like at different levels of PRNU distribution.

Ideal 0.5% Non-uniformity 5% Non-uniformity

Figure 3.12. PRNU. This figure shows an example of what the average of
many captured images will look like at two different levels of non-uniformity.
At 0.5%, we almost cannot see the difference, but the difference becomes ap-
parent at 5%.

CMOS image sensors historically have had more FPN than the preceding CCD image

technology, with column FPN patterns looking like Figure  3.13 . CMOS image sensors suffer

because of pixel transistors and column or row amplifiers. Mathematically this could be
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modeled as varying gain G for every pixel. Over the years, the technology has become better,

and innovations like correlated double sampling (CDS) [ 62 ] has helped in the reduction of

FPN.

Figure 3.13. Column FPN in CMOS image sensors. Source: [  63 ]

Remark 3.6. PRNU is unique for each sensor. This fact can be leveraged to identify

the source camera of every photo. This process of identifying the cameras based on their

PRNU is called camera fingerprinting [ 64 ].

Dead pixels

In image sensors, sometimes pixels stop responding, and we call these the dead pixels. They

give zero or very large outputs, irrespective of the illumination. These pixels are in some

sense special cases of PRNU, where the multiplying factor for these images is just zero or a

huge constant.

3.1.8 Analog-to-digital conversion

We have looked at the analog signal/voltage that the image sensor generates. For storing

and further processing image data, we want the signals to be converted to digital data. The
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analog signal thus is sent to an analog-to-digital converter (ADC), which gives rise to what

is called the ‘quantization noise.’ This process is modeled as

Z = ADC(Y + O) =



0, dY + Oc ≤ 0

dY + Oc , 0 < dY + Oc < LADC

LADC, dY + Oc ≥ LADC

, (3.52)

where d·c is the function that rounds off the real-valued numbers to the nearest integer, O

is an offset added to the signal often so that we can access the negative signal values, and

LADC is the largest integer that the ADC can count. L depends on the bit-depth used by

the ADC. For example, if we use a 10-bit ADC, L = 210 − 1 = 1023.

The bit-depth of the image sensor affects the speed at which the camera can operate

because the bit rate at which the data gets readout of the sensor acts as a bottleneck for the

camera speed. Therefore, different cameras and imaging technologies use different bit-depths

for their ADC. For example, a ‘Canon T6i Rebel’ has a 14 bit ADC. A mobile phone camera

usually uses only 10 bits [  49 ]. Quanta image sensors use a single bit, or very few bits (up to

3 bits) [ 65 ].

Full well capacity

Full well capacity is a pixel property and should have been discussed after learning about

photoelectrons. However, the ADC bit-depth also plays a significant role in the full-well

capacity of the image sensors in this dissertation. So, its discussion has been delayed till

now.

Usually, a finite amount of electrons are available in a pixel to be excited, limiting the

total amount of charge accumulated in the pixel. So, the accumulated charge will follow

a thresholded Poisson instead of the traditional Poisson as mentioned in ( 3.47 ). The total
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charge accumulated cannot exceed the full well capacity. For a pixel with a full well capacity

of Lfw, the total charge accumulated in the pixel will follow the distribution

P(K = k) =


e−(βe+βd)(βe+βd)k

k! , k < Lfw∑∞
i=Lfw

e−(βe+βd)(βe+βd)i

i! , k ≥ Lfw

. (3.53)

The full well capacity Lfw depends on the size of the pixel. Larger pixels tend to have higher

full well capacity and smaller pixels lower. Figure  3.14 shows the dependence using data

from different cameras.

At higher ISO in cameras, usually, the full well capacity of the pixel itself does not affect

the maximum number of photoelectrons that can be read. Rather the maximum digital

number that the ADC can read out decides the full well capacity. Since the gain factor G

is a large number at higher ISO, the maximum number of photoelectrons that can be read

out in the digital data becomes limited. In such cases, the full well capacity ends up being

LADC/G. Single-bit QIS often has a full-well capacity of just one electron.

Figure 3.14. Full well capacity vs. pixel pitch. Source: [  66 ]

Remark 3.7. In some digital cameras, the cameras stop doing analog amplification

after a certain ISO level and start doing digital amplification. Digital amplification does
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not provide any helpful gain that is not present before the amplification. So, ‘beware’ of

these fake ISO gains.

Figure 3.15. Diffraction pattern. Diffraction pattern when a red laser
passes through a circular aperture. Source: [  67 ]

3.1.9 Other sources of noise

Other noise sources may be necessary for some specific applications, but we will not be

used in this dissertation. We will, however, take a look at some of them here.

Diffraction limit

Diffraction is the physical phenomenon where the light bends when it passes through an

aperture. Figure  3.15 shows an example diffraction pattern seen on a plate when red light

from a laser passes through a small hole in another plate. When passing through a circular

aperture, the diffraction pattern is also circular and therefore is called Airy disks (named

after George Biddell Airy). The size of the Airy disk depends on the wavelength of the light

and the size of the aperture. Smaller the aperture, the larger the size of the Airy disk. The

diameter of the Airy disks is given by

x ≈ 2.44λ
f

d
, (3.54)
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where f
d

is the f-number of the lens, and λ is the wavelength of the light. Take, for example,

a lens with an f/8 setting, imaging a green light at 550nm. At this light level, the diameter

of the Airy disk is ∼ 10µm. So, if the pixel pitch is smaller than 10µm, there will be blurring

due to diffraction in the captured image, which we may need to deal with in post-processing.

However, suppose the pixel pitch is smaller than 25% of the Airy disk diameter. In that case,

the two points become unresolvable, i.e., making the pixel pitch smaller than 2.5µm does

not add any resolution gain. Note that we can make the Airy disk smaller by using a larger

aperture. However, doing so will introduce an out-of-focus blur—the larger the aperture,

the smaller the depth of field, and the larger the out-of-focus blur radius.

(a) Optical Crosstalk (b) Electrical Crosstalk

Figure 3.16. Types of crosstalk.Optical crosstalk occurs when a photon
supposed to fall on a particular pixel ends up on a neighboring pixel. Electrical
crosstalk occurs when the charge generated in a particular pixel diffuses to a
neighboring pixel.

Crosstalk

Crosstalk refers to the process where a photon that is supposed to be incident on a particular

pixel ends up generating a photoelectron in a neighboring pixel. There are two different

processes by which crosstalk may occur [ 68 ]. 1. The photon incident on a particular pixel

may end up on a neighboring pixel. This is called optical crosstalk. Recent innovations such

as backside illumination sensors (BSI) [ 69 ], and microlens [  70 ] have mitigated this type of

crosstalk to a large extent. However, as the pixels become smaller than the diffraction limit,

optical crosstalk becomes inevitable. 2. The charge generated in a pixel may diffuse to a

neighboring pixel. This type of crosstalk is called electrical crosstalk that can be fixed only
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by careful hardware design of the image sensors. Figure  3.16 shows a visualization of the

two types of crosstalk in an image sensor.

Crosstalk results in images captured losing the resolution because of the blur introduced,

and it also reduces the color signals of each pixel and more considerable overlap between color

channels. Crosstalk complicates the color reconstruction and makes the recovered image fade

out in terms of color, which in turn needs to be dealt with during the image signal processing

pipeline. Recent works such as [  71 ], [  72 ] are tackling this problem by designing color filter

arrays that mitigate the effect of crosstalk in color imaging.

3.2 Simulating a camera

We have looked at the different noise sources in an image sensor and how to model them.

Let us now put it all together and simulate a camera imaging model. Figure  3.17 shows a

compact version of all the different sources of noise we have seen till now.

Figure 3.17. Imaging Model.

For a highly realistic simulation, we should start with the light source’s spectrum and the

reflectance of the object being imaged to predict the wavefront reaching the image sensor.

However, this will require data that is extremely difficult to collect. So, we will start with

any color image. We will assume that we use Bayer pattern CFA. We will also assume that

each pixel value is proportional to the mean number of photoelectrons that is generated at

the image sensor pixel. Note that we can play around with the proportionality constant to

simulate the sensor’s exposure time. Then we can follow the noise models we have developed

to simulate the captured digital image.
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The following MATLAB code snippets explain how the camera model is simulated.

f u n c t i o n y = imaging_model ( x , ppp , prnu , m_dark , dsnu , fwc , . . .

gain , sigma_r , adc_of f s e t , n_bits )

% Function s imu l a t i ng a camera

The function takes 10 inputs.

1. x - x is the input image. It could be a color image or Monochrome image. It is a 2D

or 3D array.

2. ppp - ppp expands to photons per pixel. It is the average photons per pixel that we

need to simulate the image for. It is a scalar.

3. prnu - PRNU map for the image. It is a 2D array. This can calibrated for a given

camera or could be generated as a random variable using as shown in section  3.1.7 .

4. m_dark - Average number of electrons generated due to dark current. It is a scalar.

Note that this will change usually linearly with the choice of the integration time.

5. dsnu - DSNU map for the image. It is a 2D array. Again, this can be either calibrated

or realized as a random variable.

6. fwc - Full well capacity of the image sensor. Scalar.

7. gain - The gain G of the image sensor. Scalar.

8. sigma_r - The read noise standard deviation. Scalar.

9. adc_offset - The offset O in Equation ( 3.52 )

10. n_bits - Number of bits in the ADC.

We start by first converting the color images to Bayer pattern images, if the input is a color

image. Here we assume a Bayer pattern CFA with ’RGGB’ format. For other CFAs, this

code has to change correspondingly.
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% I f c o l o r image get the Bayer pa t t e rn image

i f s i z e ( x , 3 ) == 3

x_Bayer = z e r o s ( s i z e ( x , 1 ) , s i z e ( x , 2 ) ) ;

x_Bayer ( 1 : 2 : end , 1 : 2 : end ) = x ( 1 : 2 : end , 1 : 2 : end , 1 ) ;

x_Bayer ( 1 : 2 : end , 2 : 2 : end ) = x ( 1 : 2 : end , 2 : 2 : end , 2 ) ;

x_Bayer ( 2 : 2 : end , 1 : 2 : end ) = x ( 2 : 2 : end , 1 : 2 : end , 2 ) ;

x_Bayer ( 2 : 2 : end , 2 : 2 : end ) = x ( 2 : 2 : end , 2 : 2 : end , 3 ) ;

x = x_Bayer ;

end

We then convert the given image to average number of photoelectrons per pixel, for this

we first make the mean of the image is ppp. We then multiply the given image with prnu

pointwise to simulate the effect of PRNU.

% Convert g iven image to avg . no . o f p h o t o e l e c t r o n s

mean_photoe lectrons = x / mean( x ( : ) ) ∗ ppp . ∗ prnu ;

Now, we will add the average electrons added due to dark current. We obtain this by

multiplying the mean number of electrons from dark current with the DSNU.

% Add the Dark cu r r en t to get avg . e l e c t r o n s genera ted f o r each

p i x e l

mean_electrons = mean_photoe lectrons + m_dark ∗ dsnu ;

The next step is to get a random realization of the total number of electrons generated. This

is obtained by simulating a Poisson random variable.

% Simulate s i n g l e r e a l i z a t i o n o f e l e c t r o n s genera ted .

e l e c t r o n s = po i s s rnd ( mean_electrons ) ;
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However, sometimes simulating Poisson random variable is too costly and takes a lot of time,

especially when ppp is too large. In such cases, we can use the Gaussian approximation to

the Poisson random variable. We call this the affine approximation for Poisson distribution.

If β is the mean number of electrons getting generated then the the number of electrons is

given by

k = dβ + ηc+

η ∼ N (0, β), (3.55)

where d·c+ rounds off the real valued number to the nearest non-negative integer.

% Simulate s i n g l e r e a l i z a t i o n o f e l e c t r o n s genera ted .

e l e c t r o n s = round ( e l e c t r o n s + s q r t ( e l e c t r o n s ) . ∗ . . .

randn ( s i z e ( e l e c t r o n s ) ) ) ;

e l e c t r o n s ( e l e c t r o n s <0) = 0 ;

We now have to enforce the number of electrons generated to the full well capacity. This is

done by simply clamping the number of electrons generated to [0, fwc].

% Constra in the number o f e l e c t r o n s to f u l l w e l l c apac i t y

e l e c t r o n s ( e l e c t r o n s > fwc ) = fwc ;

We now have to convert the charges collected to voltage by adding the read noise and

multiplying the conversion gain.

% Add read n o i s e and mul t ip ly ga in f a c t o r

ana l og_s i gna l = ga in ∗ ( e l e c t r o n s + sigma_r ∗ randn ( . . .

s i z e ( x , 1 ) , s i z e ( x , 2 ) ) ) ;

Now, all that is left to do is send in the analog signal we have generated through the ADC

to get the digital image.

% Quant i zat ion us ing ADC

y = round ( ana log_s i gna l + adc_o f f s e t ) ;
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y (y<0) = 0 ;

y (y>2^n_bits −1) = 2^ n_bits − 1 ;

In the rest of this dissertation we will use some version of this simulation code for gen-

erating realistic images from a camera.

3.3 Modelling the performance of a camera

Let us switch gears a little bit here. Until now, we have looked at how we can model

any camera. Now, let us take a look at how we can analyze the performance of a camera.

For example, let us say we have two cameras with us. 1. A traditional CMOS image sensor

with 14 bit ADC. 2. A Quanta Image Sensor with 1-bit ADC. There are, of course, more

differences between the sensors, such as full-well capacity and frame rate. We have to decide

which of these two sensors is better for our application. To be able to decide this, we need

to quantify the performance of the two cameras. Signal-to-noise ratio (SNR) is a metric that

we can use to quantify this performance. The rest of this chapter is about understanding

SNR and deriving mathematical expressions that we can use to quantify the performance of

a camera.

3.3.1 Signal-to-noise ratio

The signal-to-noise ratio (SNR) characterizes an imaging device’s performance when

acquiring, transmitting, and processing raw data in the presence of noise. In as early as

1949, when Claude Shannon derived the information capacity of a noisy Gaussian channel,

the concept of SNR was already presented [  73 ]. As the name suggests, the SNR is the ratio

between the signal power and the noise power

SNR = signal power
noise power

, (3.56)

which is sometimes expressed in the logarithmic scale via 10 log10 SNR. In digital image

sensors, since the measured pixel values are results of the analog-to-digital conversion of the
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voltage (instead of power), a more commonly seen definition is the ratio between the mean

and the standard deviation of the raw measurement:

SNRout = E [Y ]√
Var [Y ]

, (3.57)

where, in this equation, Y is a random variable denoting the measurement generated by the

sensor, E [ · ] denotes the statistical expectation, and Var [ · ] denotes the statistical variance.

The resulting SNR is known as the output-referred SNR because it measures directly what

a sensor outputs.

The output-referred SNR is convenient to calculate. In the most straightforward setting

where we have access to the sensor’s analog data, and the sensor’s output is mainly influenced

by the photon shot noise and the electronic read noise, Y will follow the Poisson-Gaussian

distribution [ 29 ], [ 74 ]

Y ∼ Poisson(β) + Gaussian(0, σ2
read),

where β denotes the flux integrated over the surface area and the exposure time, and σread

is the standard deviation of the read noise. Assuming that the full-well capacity is at the

infinity so that the measurement Y will never saturate, the expectation of Y is E [Y ] = β

and the variance is Var [Y ] = β + σ2
read. Thus, SNRout can be computed via

SNRout(β) = β√
β + σ2

read

. (3.58)

If the read noise is negligible such that σread = 0, one can recover an even simpler expression

SNRout(β) =
√

β. This widely adopted equation says that as the scene becomes brighter,

the gain in the signal will override the random fluctuation of the noise, and hence the SNR

will increase.

Limitations of output-referred SNR

The problem arises when the full-well capacity of the sensor is finite. Certainly, the SNRout in

Equation (  3.57 ) is still valid when the exposure β is much smaller than the full-well capacity.

However, if β reaches the full-well and goes beyond it, the mean E [Y ] will stop growing with
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β as illustrated in Figure  3.18 . The variance Var [Y ] will gradually drop to zero because Y

cannot go beyond the full-well capacity. As a result, SNRout according to Equation (  3.57 )

will eventually go to infinity (because Var [Y ] → 0.) However, realistically speaking, this

cannot be true because the SNR beyond saturation must be poor.

Figure 3.18. Expected value of the camera response. With a finite full-
well capacity, the mean E [Y ] will stop growing when the exposure β exceeds
the full-well capacity L = 102.

The SNRout going to infinity is artificially caused by the inability of SNRout to capture

the behavior near and beyond the full-well capacity. The common wisdom here is then to

create a special case by declaring a zero SNRout [ 75 ]:

SNRout(β) =


β√

β+σ2
read

, β < L,

0, β ≥ L,

(3.59)

where L denotes the full-well capacity. The definition in Equation (  3.59 ) is adequate for

image sensors with a sufficiently large full-well capacity. More importantly, it is convenient

for signal processing. Before the saturation, the SNR grows linearly (in the log-log plot).

After that, the SNR is zero 

4
 .

4
 ↑ A subtle point here is that when β > L, the mean E [Y ] is saturated, but an instantaneous observation Y

may still be unsaturated. Thus, technically speaking, the SNR does not drop to zero instantly, but it will
have a finite transient period. The exposure-referred SNR is derived to describe the transient mathematically.
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However, the pixel pitch of image sensors over the past decade has shrunk significantly.

The full-well capacity L is becoming smaller and smaller. For example, in a 1-bit quanta

image sensor (QIS) with a threshold at q photons [ 33 ], [  76 ], [  77 ], the measurement Y is a

binary random variable

Y =


0, X < q,

1, X ≥ q.

(3.60)

This, in turn, is a special case of the more general `-bit digital (CCD or CMOS) image

sensors with a full-well capacity L = 2`− 1 where the measurement follows the equation [  78 ]

Y =


X, X < L,

L, X ≥ L.

(3.61)

Here, X ∼ Poisson(β) + Gaussian(0, σ2
read) is the actual voltage measured before the analog-

to-digital converter. For these small pixels, the nonlinearity is missing and hence the ap-

proximation in Equation ( 3.59 ) is invalid.

Exposure-referred SNR

When the full-well capacity L is small, little is known about how to derive the SNR because

most models assume a large full-well capacity. In 2013, Fossum analyzed the single-bit,

and multi-bit quanta image sensor [  65 ]. In that paper, he argued that instead of using the

output-referred SNR, one could consider the so-called exposure-referred SNR

SNRexp(β) = β√
Var [Y ]

· dµ

dβ
, (3.62)

where µ = E [Y ].

Remark 3.8. Tracing back the history, Mitsunaga and Nayar had the same equation

( 3.62 ) in 1999, although they did not give it a name [ 79 ]. In the sensor literature, El

Gamal called the calibrated noise the “input-referred noise” in his Stanford EE 392B

lecture note (2004-2015) [ 63 ].
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The intuition of the exposure-referred SNR was documented in a supplementary report

of the paper by Elgendy, and Chan [  80 ]. They argued that the derivative dβ/dµ could be

considered the “transfer function” of a black box system that takes the output µ and maps it

back to the input β. Thus dβ/dµ is the gain of such a transfer function that scales the noise

from
√

Var [Y ] to
√

Var [Y ]dβ
dµ

. It is also explained that if β is beyond the full-well capacity

L, the derivative dµ/dβ will become zero because of any change in the exposure β will no

longer affect µ. Hence, the issue of SNRout going to infinity is resolved because when a pixel

saturates, dµ/dβ = 0 and so the SNR will go to zero.

The above intuition is certainly not rigorous. In this section, we will try to fill this

theoretical gap by answering four questions:

(i) What is the correct way of defining the SNR and how to theoretically derive SNRexp(β)

from the first principle?

(ii) What is the relationship between SNRout(β) and SNRexp(β)? Under what condition

would the former become a special case of the latter?

(iii) For complex noise models where closed-form expressions are unavailable, how can

numerically predict the SNR via Monte-Carlo sampling techniques?

(iv) What utilities can SNRexp(β) offer to improve the sensor’s imaging capabilities?

Tools in statistical estimation theory will be utilized to answer these questions.

3.3.2 Some mathematical tools

The purpose of this subsection is to elaborate on two sets of mathematical tools that will

be useful later. For simplicity of the notations, most theoretical results will be derived for

the Poisson random variable that accounts for the shot noise.

Truncated Poisson and the incomplete Gamma function

Let X ∼ Poisson(β) be a Poisson random variable with a parameter β that represents the

total exposure integrated over the sensor area and the exposure time. The Poisson random

variable X is subject to a finite full-well capacity L (a positive integer), beyond which X
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will stay at the saturation level. This leads to a truncated Poisson variable Y as defined in

Equation ( 3.61 ). The probability mass function of Y is given by

pY (y) =


βy

y! e−η, y < L,∑∞
`=L

β`

`! e−β, y = L.

(3.63)

By construction, the random variable Y will never take a value greater than L. The probabil-

ity that Y = L is given by the sum of the Poisson tail, which can be conveniently expressed

via the incomplete Gamma function as shown in Figure  3.19 .

Definition 3.3.1 (Incomplete Gamma function). The upper incomplete Gamma func-

tion is defined as ΨL : R+ → [0, 1], with

ΨL(β) = 1
Γ(L)

∫ ∞

β
tL−1e−tdt =

L−1∑
`=0

β`e−β

`! , (3.64)

for β > 0, L ∈ N where Γ(L) = (L− 1)! is the standard Gamma function.

Figure 3.19. Incomplete Gamma function ΨL(β) as a function of β.

The first-order derivative of ΨL(β) is [ 81 ]

Ψ′
L(β) = −βL−1e−β

(L− 1)! < 0, for all β, (3.65)
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which means that ΨL(β) is a strictly decreasing function in β. The steepest slope can be

determined by analyzing the curvature

Ψ′′
L(β) = −(L− 1)βL−2e−β + e−ββL−1.

Equating this to zero will yield β∗ = L − 1. At this critical point and assume L � 1,

Stirling’s formula implies that 

5
 

Ψ′
L(β∗) ≈ − 1√

2πβ∗ exp
{
−(β∗ − (L− 1))2

2β∗

}
. (3.66)

Therefore, Ψ′
L(β∗) = − 1√

2π(L−1)
. Hence, the slope of the incomplete Gamma function reduces

as L increases.

Remark 3.9. Most papers in the image sensor literature plot curves with respect to log β

instead of β, like the one shown in Figure  3.19 . The x-axis compression caused by log β

will make the curves to appear steeper during the transient. This is expected because

for any function f(β), the slope in the log β space is determined by d
d log β

f(β) = βf ′(β).

So for large β, the slope will appear steeper.

Delta method

The second mathematical tool is a special case of the Delta Method in statistics. It approx-

imates the variance when a random variable undergoes a nonlinear transformation.

Lemma 3.1 (Delta Method). Let X be a random variable with mean E [X] = µ and let

f be a continuously differentiable function within a small neighborhood of µ. Then

E [(f(X)− f(µ))2] ≈ [f ′(µ)]2 Var [X]. (3.67)

Proof. Consider the Taylor expansion

f(X) ≈ f(µ) + f ′(µ)(X − µ).

5
 ↑ The proof of this result is given in the appendix  A 
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Taking the expectation of the (f(X)− f(µ))2 will yield

E [(f(X)− f(µ))2] = E [f ′(µ)2(X − µ)2]

= [f ′(µ)]2 Var [X],

thus proving the result.

The validity of the approximation depends on the second-order term, which is assumed

to be small when the random variable X is sufficiently close to µ. One way for this to hold is

that the random variable X is the sample average of N independent random variables such

that X = (1/N)∑N
n=1 Yn where E [Yn] = µ for all n. For large enough N , X will concentrate

around µ, so the Delta Method is valid.

3.3.3 SNR: A statistical definition

Mean invariance property

When defining the SNR, it is important to clarify the signal formation process. In most of

the imaging problems, the underlying signal is the scene exposure β. This is the signal. The

observations are random samples drawn from a certain distribution pY (y; β) parameterized

by β. For example, if Y ∼ Poisson(β) then pY (y; β) = βye−β/y! is the distribution.

Reconstruction of the signal β from Y is often based an estimator β̂(·). An estimator

can be any mapping that maps Y to an estimate β̂(Y ). The estimator β̂(·) can be the

maximum-likelihood estimator, the maximum-a-posteriori estimator, or other mappings as

long as they make sense. In the context of SNR, a technical requirement of the estimator is

that it has to satisfy the mean invariance property.

Definition 3.3.2 (Mean invariance property). Let Y be a random variable drawn from

a distribution pY (y; β), with a mean E [Y ] = µ(β) for some function µ(·). An estimator

β̂(·) of β is said to satisfy the mean invariance property if

β̂(µ(β)) = β. (3.68)
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That is, the estimator evaluated at the sample mean E [Y ] will return the true estimate

β.

One should not confuse the mean invariance property and the unbiasedness of an estima-

tor. An estimator β̂(Y ) is unbiased if E [β̂(Y )] = β. This is different from mean invariance

which requires β̂(E [Y ]) = β. An estimator satisfying the latter does not necessarily satisfy

the former, and vice versa. One of the exceptions is that β̂(·) is linear.

At first glance, it would seem that the mean invariance property is constructed for some

technical convenience. However, a careful examination would confirm that the property

holds for many estimators. The two examples below shall illustrate this point.

Example 3.1. Let Y ∼ Gaussian(β, σ2
read) where β is the unknown parameter. It can

be shown that the maximum-likelihood estimator is

β̂(Y ) = argmax
β

1√
2πσ2

read

exp
{
−(Y − β)2

2σ2
read

}
= Y.

Notice that since Y is Gaussian, the mean is µ = E [Y ] = β. Therefore, the mean

invariance property holds:

β̂(µ) (a)= µ = β,

where (a) is due to the fact that β̂(Y ) = Y . �

Example 3.2. Let Y be the 1-bit quanta image sensor with a threshold q = 1 in ( 3.60 ).

In this case, the distribution of Y is a Bernoulli such that Y ∼ Bernoulli(1 − e−β).

Then the maximum-likelihood estimator is 

a
 

β̂(Y ) = argmax
β

(1− e−β)Y (e−β)1−Y = − log(1− Y ).
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Since the mean of Y is µ = E [Y ] = 1− e−β, it follows that

β̂(µ) = − log(1− µ) = − log(1− (1− e−β)) = β.

Again, the mean invariance property is satisfied. �
a

 ↑ In practice, Y is often the sample average of N independent measurements so that Y =
(1/N)

∑N
n=1 Yn. For sufficiently large N , the chance that Y = 1 is negligible and hence this will

prevent log(1− Y ) from going to negative infinity.

If it is not difficult for estimators to satisfy the mean invariance property, why bother intro-

ducing this concept? From a practical point of view, the distribution of the measurement

Y may come with a complicated expression. Thus, constructing an estimator β̂(Y ) to max-

imize the likelihood is not always easy. On the other hand, determining the mean E [Y ] is

much easier. Even if one cannot analytically derive an expression for E [Y ], a Monte Carlo

sampling would be sufficient to numerically generate it. Once the mean E [Y ] is determined,

the estimator β̂(Y ) can be defined by citing the mean invariance property: Let µ(β) = E [Y ],

then the property will give

β̂ = µ−1. (3.69)

Going back to Examples  3.1 and  3.2 , the above argument provides a procedure to construct

an estimator that would satisfy the mean invariance principle.

Follow up of Example  3.1 . Let Y ∼ Gaussian(β, σ2
read) where β is the unknown

parameter. Since the mean is E [Y ] = β, it follows that µ(β) = β. This µ is the identity

mapping, and so the inverse mapping is µ−1(s) = s. Thus, one can define an estimator

as β̂(Y ) = µ−1(Y ) = Y , and it is the same result as Example 1. Moreover, β̂(Y ) satisfies

the mean invariance property because β̂ is constructed in that way. �

Follow up of Example  3.2 . Let Y be the 1-bit quanta image sensor with a distribution

Y ∼ Bernoulli(1 − e−β). The mean is µ(β) = 1 − e−β, and so the inverse is µ−1(s) =
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− log(1− s). Therefore, one can define the estimator as β̂(Y ) = − log(1− Y ), and this

β̂(Y ) satisfies the mean invariance property. The result is identical to Example 2. �

The advantage of the mean invariance property is that it bypasses the complication of solving

an optimization (as in maximum likelihood). On the other hand, because of how β̂ is

constructed, it is guaranteed to satisfy the mean invariance property.

Based on the analysis so far, it would seem natural to conjecture that any maximum-

likelihood estimator would satisfy the mean invariance property. That is, β̂ML(E [Y ]) = β for

all reasonably smooth likelihoods. Proving (or giving conditions for) the conjecture would

be valuable. A completely arbitrary estimator β̂(·) does not work for SNR. For example,

β̂(Y ) = 0 for all Y is an estimator but it is useless. Therefore, the mean invariance property

can be considered as a sufficient condition to guarantee a meaningful SNR. However, whether

it is a necessary condition is another open question that would be valuable to explore.

Defining the SNR

After clarifying the assumption of the estimator, it is necessary to discuss the noise in SNR.

First, notice that the estimator β̂(Y ) is random because it is a function of Y . Thus β̂(Y )

fluctuates relative to the true deterministic parameter β. The randomness defines the noise,

which is technically the mean squared error:

noise = E [(β̂(Y )− β)2]. (3.70)

The SNR is then defined as follows.

Definition 3.3.3 (SNR, formal definition). Let Y be a random variable with a dis-

tribution pY (y; β) where β is the underlying parameter to be estimated. Construct an

estimator β̂(Y ) which satisfies the mean invariance property. Then the signal-to-noise

ratio (SNR) is defined as

SNR(β) def= β√
E [(β̂(Y )− β)2]

. (3.71)
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To convince readers that the formal definition of the SNR is valid, consider the two

examples below.

Example 3.3 (Poisson). Let Y ∼ Poisson(β), and consider the maximum-likelihood

estimator β̂(Y ) = Y . It is relatively straightforward to show that E [Y ] = β and that

β̂(E [Y ]) = E [Y ] = β; so the estimator satisfies the mean invariance property. Since

the estimator is β̂(Y ) = Y , it follows that

E [(β̂(Y )− β)2] = E [(Y − β)2] = β,

where the second equality holds because the variance of a Poisson is β. Therefore,

SNR(β) =
√

β, which is consistent with Equation ( 3.58 ) when σread = 0. �

Example 3.4 (Poisson + Gaussian). Let Y ∼ Poisson(β) + Gaussian(0, σ2
read). Then

the maximum-likelihood estimator is β̂(Y ) = Y . The mean invariance property holds

because E [Y ] = β and β̂(E [Y ]) = E [Y ] = β. It then follows that

E [(β̂(Y )− β)2] = E [(Y − β)2] = β + σ2
read,

where the second equality holds because the variance of a Poisson-Gaussian is the sum

of the two variances. Therefore, SNR(β) = β/
√

β + σ2
read. This result is consistent with

Equation ( 3.58 ) for a general σread. �

Exposure-referred SNR

A natural question to ask now is how does SNR(β) compare to SNRexp(β) and SNRout(β).

It turns out that the SNR(β) is the same as SNRexp(β) up to the approximation inherent

from the Delta Method. With that, one can explain where the “magical” derivative dµ/dβ

in Equation ( 3.62 ) comes from.
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Theorem 3.3.1. Let Y be a random variable with a probability density function pY (y; β).

Let E [Y ] = µ, and let β̂(Y ) be an estimator such that β̂(µ) = β. Then the SNR defined

in Equation ( 3.71 ) is related to the SNRout and SNRexp as follows:

SNR(β) ≈ SNRexp(β) = SNRout(β) · β
µ
· dµ

dβ
. (3.72)

Proof. By the delta method, the mean squared error can be approximated by

E
[(

β̂(Y )− β
)2
]

= E
[(

β̂(Y )− β̂(µ)
)2
]

≈
[
β̂′(µ)

]2
Var [Y ].

Since β̂(µ) = β, it follows that dβ̂(µ)
dµ

= dβ
dµ

. So,

E
[(

β̂(Y )− β
)2
]

=
[

dβ

dµ

]2

Var [Y ].

Using the fact that dβ
dµ

= 1/dµ
dβ

, the SNR can be written as

SNR(β) = β√
E
[(

β̂(Y )− β
)2
] = β√

Var [Y ]
· dµ

dβ︸ ︷︷ ︸
SNRexp(β)

.

To show the second relationship, notice that

β√
Var [Y ]

· dµ

dβ
= µ√

Var [Y ]
· β

µ
· dµ

dβ

= E [Y ]√
Var [Y ]︸ ︷︷ ︸

=SNRout(β)

· β
µ
· dµ

dβ
.

This completes the proof.

As one can see from the proof of the theorem, what makes SNRexp(β) and SNRout(β)

different is the derivative term dµ/dβ. The derivative changes the output-referred noise
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σout
def=
√

Var [Y ] to the exposure-referred noise, as noted by Elgendy and Chan [ 80 ] via the

“transfer function” perspective:

σexp
def=
√

Var [Y ] · dβ

dµ
. (3.73)

Thus, while SNRout(β) = µ/σout, the exposure-referred SNR is SNRexp(β) = β/σexp. For

saturated pixels, σexp will have a large value.

Illustrating the SNR via 1-bit QIS

To elaborate on the difference between SNRexp(β) and SNRout(β), it would be instructive to

consider the statistics of a 1-bit quanta image sensor. Let X ∼ Poisson(β) and let Y be a

random variable following Equation ( 3.60 ).

First, consider the case where q = 1. Since Y ∼ Bernoulli(1− e−β), the mean is E [Y ] =

1− e−β. Define the mean as µ = E [Y ] = 1− e−β. As shown in Example  3.1 , the maximum-

likelihood estimate of β is β̂(Y ) = − log(1−Y ) and it satisfies the mean invariance property.

The derivative dµ/dβ is
dµ

dβ
= d

dβ

[
1− e−β

]
= e−β.

Substituting into Theorem  3.3.1 , it can be shown that

SNRexp(β) = β√
Var [Y ]

· dµ

dβ
= β ·

√
e−β

1− e−β
.

For cases where q > 1, one can utilize the incomplete Gamma function for the truncated

Poisson random variable such that

pY (y; β) =


1−Ψq(β), y = 1,

Ψq(β), y = 0.

It then follows that E [Y ] = 1 − Ψq(β) and the estimator can be chosen such that β̂(Y ) =

−Ψ−1
q (1−Y ). The mean invariance property is therefore validated. The derivative dµ/dβ is

dµ

dβ
= d

dβ
(1−Ψq(β)) = βq−1e−β

(q − 1)! .
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Hence, the SNR is

SNRexp(β) = β√
Ψq(β)(1−Ψq(β))

· β
q−1e−β

(q − 1)! , (3.74)

of which the visualization is shown in Figure  3.20 (a).

Unlike SNRexp(β), the output-referred SNR goes to infinity when β grows. For the same

1-bit statistics, the output-referred SNR is simply the ratio between E [Y ] and Var [Y ], which

is

SNRout(β) = E [Y ]√
Var [Y ]

=

√√√√1−Ψq(β)
Ψq(β) . (3.75)

As shown in Figure  3.20 (b), SNRout(β) grows indefinitely as β grows which is known to be

false because when β grows beyond the threshold q, the measurement Y will stay at Y = 1

more likely. The signal degrades and hence eventually the SNR should drop to zero.

(a) SNRexp(β) (b) SNRout(β)

Figure 3.20. Exposure-referred and Output-referred SNR for a 1-
bit quanta image sensor. Y is defined in Equation (  3.60 ). As β goes
beyond the threshold q, SNRexp(β) starts to drop as it should be. However,
SNRout(β) continues to grow because of the inability of SNRout(β) to handle
pixel saturation.
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3.3.4 SNRexp(β) for finite full well capacity

Let us now look at how we can get the SNR for image sensors with finite full well capacity.

Of particular interest are image sensors with low bit-depth ADC, which we will discuss in

the rest of this dissertation.

SNRexp(β) for truncated Poisson

We will start the derivation for a truncated Poisson distribution defined in Equation ( 3.61 ).

Extension to the more complex noise model will be analyzed later.

Theorem 3.3.2 (SNRexp(β) for truncated Poisson). Consider the truncated Poisson

statistics defined in Equation (  3.61 ). Let β̂(·) be an estimator satisfying the mean

invariance property, i.e., β̂(E [Y ]) = β. Then the exposure-referred SNR is

SNRexp(β) = β√
Var [Y ]

· dµ

dβ
, (3.76)

where

E [Y ] = βΨL−1(β) + L(1−ΨL(β)) def= µ,

Var [Y ] = β2ΨL−2(β) + βΨL−1(β) + L2(1−ΨL(β))− µ2,

dµ

dβ
= βΨ′

L−1(β) + ΨL−1(β)− LΨ′
L(β). (3.77)

Proof. Recall the probability density function of Y :

pY (y) =


βy

y! e−β, y < L,∑∞
k=L

βk

k! e−β = 1−ΨL(β), y ≥ L,
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where ΨL(β) is the incomplete Gamma function. The mean of Y can be shown as

µ = E [Y ] =
L−1∑
k=0

k · β
k

k! e−β + L ·
( ∞∑

k=L

βk

k! e−β

)

=
L−1∑
k=1

βk

(k − 1)!e
−β + L · (1−ΨL(β))

= β
L−2∑
k=0

βk−1

(k)! e−β + L · (1−ΨL(β))

= βΨL−1(β) + L · (1−ΨL(β)).

The derivative dµ/dβ is therefore

dµ

dβ
= d

dβ
{βΨL−1(β) + L · (1−ΨL(β))}

= βΨ′
L−1(β) + ΨL−1(β)− L ·Ψ′

L(β).

For the variance, since Var [Y ] = E [Y 2]− µ2, it remains to determine E [Y 2].

E [Y 2] =
L−1∑
k=0

k2 · β
k

k! e−β + L2 ·
( ∞∑

k=L

βk

k! e−β

)

=
L−1∑
k=1

k
βk

(k − 1)!e
−β + L2 · (1−ΨL(β))

=
L−1∑
k=1

(k − 1 + 1) βk

(k − 1)!e
−β + L2 · (1−ΨL(β))

=
L−1∑
k=2

βk

(k − 2)!e
−β +

L−1∑
k=1

βk

(k − 1)!e
−β

+ L2 · (1−ΨL(β))

= β2ΨL−2(β) + βΨL−1(β) + L2(1−ΨL(β)).

This completes the proof.

To illustrate the predicted SNRexp(β) as a function of β, Figure  3.21 shows several curves

evaluated at different full-well capacity L. As is consistent with the 1-bit QIS example, the

exposure-referred SNR for a truncated Poisson random variable also demonstrates a drop
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Figure 3.21. Exposure-referred SNR for a digital image sensor with
a full-well capacity of L electrons.

in SNRexp(β) after the pixel saturates. What is more interesting is that as L increases,

SNRexp(β) becomes a straight line in the log-log plot with a sharp decay after saturation.

This is reminiscent to the heuristic definition of the SNRout(β) in Equation ( 3.59 ). However,

for small L, the smooth transition is something that was not predicted by Equation ( 3.59 ).

The rapid drop after the saturation is attributed to two reasons. First, the log-log plot

compresses the x-axis so that the slope is amplified with β. If one plots the x-axis in the

linear scale (instead of the log scale), the sharp cutoff will appear in a smoother transition.

However, the exposure is always shown in the log scale in practice. Hence, what is shown in

Figure  3.61 is valid. The second reason for the drop after the saturation is due to the limiting

behavior of the incomplete Gamma function. As L increases, the incomplete Gamma function

in the log-log plot will have an increasingly sharp transient as shown in Figure  3.19 .

A corollary of the theorem is the case where there are N i.i.d. observations Y1, . . . , YN

instead of a single measurement. In this case, SNRexp(β) will grow linearly with respect to

the square root of the number of observations
√

N .
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Corollary 3.1. Consider the same setting as Theorem  3.3.2 , but assume a sequence

of i.i.d. random variables Y1, . . . , YN . Define the average Y = (1/N)∑N
n=1 Yn. The

exposure-referred SNR for Y is

SNRexp(β) =
√

N · β√
Var [Y1]

· dµ

dβ
. (3.78)

Proof. Since Y = (1/N)∑N
n=1 Yn, the mean E [Y ] = E [Y1]. It then follows that the derivative

dµ/dβ remains unchanged. For the variance, it is easy to show that Var [Y ] = Var [Y1]/N .

Substituting these results into Equation ( 3.76 ) would yield

SNRexp(β) = β√
Var [Y ]

· dµ

dβ

= β√
Var [Y1]/N

· dµ

dβ
,

which is the desired result.

Limiting Case

Figure  3.61 shows that as the full-well capacity L increases, SNRexp(β) becomes more linear

in the log-log plot. Such a behavior can be theoretically derived by analyzing the limiting

cases of the incomplete Gamma function.

Recall in Figure  3.19 the incomplete Gamma function is a monotonically decreasing

function with a transient located around L. Suppose that the width of the transient is

δ, then there exists an interval {β | L− δ/2 ≤ β ≤ L + δ/2} such that the lower and the

upper limits are

ΨL(β) ≈


1, β ≤ L− δ/2,

0, β ≥ L + δ/2.

(3.79)

Here, the approximation “≈” can be defined based on a confidence, e.g., a 99% confidence.

Under these two limiting cases, the exposure-referred SNR can be derived accordingly.
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Corollary 3.2. Consider the same conditions as in Theorem  3.3.2 but with L� 1. Let

Ψ = ΨL(β). Under the limiting assumption of ΨL(β) described in Equation (  3.79 ), it

holds that when β < L− δ/2,

µ = β, Var [Y ] = β,
dµ

dβ
= 1,

and when β > L + δ/2,

µ = βΨ + L, Var [Y ] = βΨ(β + 1− 2L), dµ

dβ
= Ψ.

Consequently,

SNRexp(β) =


√

β, β ≤ L− δ/2,

0, β ≥ L + δ/2.

(3.80)

Proof. When L is large, ΨL(β) and ΨL−1(β) are close enough that they can be considered

approximately equal. Denote the value ΨL(β) as Ψ. Then by Equation (  3.79 ) it holds that

Ψ → 0 for β ≥ L + δ/2 and Ψ → 1 for β ≤ L − δ/2. In either case, since Ψ is a constant,

it follows that the derivative Ψ′
L(β) = 0 as long as β ≥ L + δ/2 or β ≤ L− δ/2. Therefore,

the two cases can be derived as follows.

When β ≤ L− δ/2, it holds that

µ = βΨ + L(1−Ψ) = β,

Var [Y ] = β2Ψ + βΨ + L2(1−Ψ)− µ2

= β2 · 1 + β · 1 + L2 · 0− µ2 = β,

dµ

dβ
= Ψ− (L− β)Ψ′

L−1(β)

= 1− (L− β) · 0 = 1.
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So, the overall SNR for β ≤ L− δ/2 is

SNRexp(β) = β√
Var [Y ]

· dµ

dβ
=
√

β.

When β ≥ L + δ/2, Ψ→ 0. Therefore,

µ = βΨ + L(1−Ψ) ≈ βΨ + L,

Var [Y ] = β2Ψ + βΨ + L2(1−Ψ)− µ2

= β2Ψ + βΨ + L2(1−Ψ)− (βΨ + L)2

= β2Ψ + βΨ + L2 − β2Ψ2 − 2βΨL− L2

= β2Ψ + βΨ− 2βΨL

= βΨ(β + 1− 2L),
dµ

dβ
= βΨ′

L−1(β) + ΨL−1(β)− LΨ′
L(β)

= β · 0 + Ψ− L · 0 = Ψ.

By taking the limit that Ψ→ 0, it follow that

lim
Ψ→0

SNRexp(β) = lim
Ψ→0

β√
Var [Y ]

· dµ

dβ

= lim
Ψ→0

β√
βΨ(β + 1− 2L)

·Ψ

= lim
Ψ→0

√
βΨ√

(β + 1− 2L)
= 0.

Combining with the case where β ≤ L− δ/2, the overall SNR is proved.

The corollary implies that as L increases, plotting SNRexp(β) in the log-log plot will

give a linear response followed by an abrupt transition. This is exactly what is happening

in the output-referred SNR equation shown in Equation (  3.59 ). Therefore, Theorem  3.3.2 

is a generalized version of the output-referred SNR curves reported in the literature. For
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practical algorithms such as those for high dynamic range imaging, Equation ( 3.80 ) is very

common, for example, used in [ 75 ].

SNRexp(β) for truncated Poisson-Gaussian

We have found the SNR expression for truncated Poisson. Let us make the situation a little

more realistic by adding the read noise and the quantization, which is nothing but the digital

numbers we got in Equation ( 3.52 ). We assume that the conversion gain G = 1 and the

offset O = 0. In such a case, the observation Z can be written as

Z = ADC(Y + ηread) =



0, dY + ηreadc ≤ 0

dY + ηreadc , 0 < dY + ηreadc < L

L, dY + ηreadc ≤ L

, (3.81)

where Y = Poisson(β), and ηread ∼ N (0, σ2
read) and d·c is a function that rounds the real

numbers to the nearest integers. The following theorem gives the expression for the SNR if

data is drawn according to Equation ( 3.81 ).

Theorem 3.3.3 (SNRexp(β) for truncated Poisson Gaussian). Consider the truncated

Poisson Gaussian statistics defined in Equation ( 3.81 ). Let β̂(·) be an estimator satis-

fying the mean invariance property, i.e., β̂(E [Z]) = β. Then the exposure-referred SNR

is

SNRexp(β) = β√
Var [Z]

· dµ

dβ
, (3.82)

where

E [Z] = µ = βΨL−1(β) + L(1−ΨL(β)) + ∆µ(β),

Var [Z] = β2ΨL−2(β) + βΨL−1(β) + L2(1−ΨL(β))− µ2 + ∆2
σ(β),
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and the quantities ∆µ(β) and ∆σ2(β) are respectively

∆µ(β) =
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
q

+ L(ΨL(β)−Ψ[L−k]+(β))
)

(3.83)

∆σ2(β) =
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
q2

+ L2(ΨL(β)−Ψ[L−k]+(β))
)

, (3.84)

where [ · ]+ = max(·, 0) returns the positive value, and

pk =
∫ k+0.5

k−0.5

1√
2πσ2

read

e
− x2

2σ2
read dx (3.85)

is the error probability due to read noise. The derivative dµZ/dβ is

∂µZ

∂β
= ΨL−1(β)− β

e−ββ[L−2]+

[L− 2]+! + L
e−ββ[L−1]+

[L− 1]+! +
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
− e−ββq−k

(q − k)! + e−ββq

q!

)
q

+
L−2∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
(q + 1) + L

(
− β(L−1)e−β

(L− 1)! + β([L−k−1]+)e−β

[L− k − 1]+!
))

.

Proof. Check Appendix  B .

3.3.5 Monte-Carlo simulation

We can see that the expressions for SNR start becoming messy when we are making

the noise model realistic. As we make the models more and more realistic, the analytic

expressions would be significantly more challenging. A more reasonable approach is to resort

to numerical schemes to estimate the approximate SNR.
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General Principle

To compute SNRexp(β) for any given distribution, the more viable approach is to sample the

the distribution defined by the forward model:

Ym = forward model (β | βdark, σread, L) , (3.86)

for m = 1, . . . , M , where M denotes the number of Monte Carlo samples drawn to compute

the SNR. The notation in Equation ( 3.86 ) means that the mth sample Ym is drawn from

any given forward model. The sample Ym is a function of the underlying signal β, among

with other model parameters. When running the Monte Carlo simulation, for each β a set

of {Y1, . . . , YM} will be drawn to compute the mean and variance.

Specifically, for every β, the sample average is an estimate of E [Y ] and the sample

variance is an estimate of Var [Y ]:

µ̂(β) = 1
M

M∑
m=1

Ym, and σ̂2(β) = 1
M

M∑
m=1

(Ym − µ̂)2.

Once µ̂(β) has been determined for every β, the derivative dµ/dβ can be approximated by

dµ̂

dβ
= µ̂(βk+1)− µ̂(βk)

βk+1 − βk

,

where {βk | βk < βk+1, k = 1, . . . , K} is the discrete set of exposures used to evaluate the

mean and variance. Consequently, SNRexp(β) can be approximately estimated by

ŜNRexp(β) = β

σ̂
· dµ̂

dβ
. (3.87)

MATLAB code

The MATLAB code below illustrates the Monte-Carlo simulation of how SNRexp(β) is gen-

erated for a truncated Poisson distribution. Adding other factors to the forward model can

be done by modifying the random variable Y .

N = 100000 ;

L = 10 ;
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theta_set = l og spa c e ( −2 ,3 ,100) ;

mu = z e r o s ( 1 , 100 ) ;

sigma = z e r o s ( 1 , 100 ) ;

f o r i =1:100

the ta = theta_set ( i ) ;

Theta = theta ∗ ones (N, 1 ) ;

Y = po i s s rnd ( Theta ) ;

Y(Y>L) = L ;

mu( i ) = mean(Y) ;

sigma ( i ) = std (Y) ;

end

dmu_dt = [ d i f f (mu) . / d i f f ( theta_set ) 1 ] ;

SNR = theta_set . / sigma . ∗ dmu_dt ;

l o g l o g ( theta_set , SNR) ;

For plotting the theoretical SNRexp(β), one just needs to call the incomplete Gamma

function.

the ta = log spa c e ( −2 ,3 ,100) ;

Ps i = gammainc ( theta , L , ’ upper ’ ) ;

Ps i1 = gammainc ( theta , L−1, ’ upper ’ ) ;

Ps i2 = gammainc ( theta , L−2, ’ upper ’ ) ;

dPsi = −theta . ^ ( L−1) . ∗ exp(− theta ) . . .

/gamma(L) ;

dPsi1 = −theta . ^ ( L−2) . ∗ exp(− theta ) . . .

/gamma(L−1) ;

mu = theta . ∗ Ps i1 + L . ∗ ( 1 − Ps i ) ;

sigma = s q r t ( the ta .^2 . ∗ Ps i2 + . . .

the ta . ∗ Ps i1 + L^2∗(1− Ps i ) − . . .

mu_theory . ^2 ) ;

dmu_dt = theta . ∗ dPsi1 + Psi1 − L∗ dPsi ;
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SNR = theta . / sigma . ∗ dmu_dt ;

l o g l o g ( theta , SNR) ;

Visualizing the Impacts of βdark and σread

With the Monte Carlo simulation technique, complex forward models can be visualized. To

illustrate the utility of the simulation, it would be useful to consider two scenarios as follows.

Figure 3.22. Influence of read noise.Exposure-referred SNR for a digital
image sensor by considering different levels of read noise.

Example 3.5 (Influence of Read Noise). The first scenario considers a fixed dark

current, full-well capacity, and A/D converter, but a varying read noise level. Let

betad = 0.016e- (which is consistent with the quanta image sensor [  46 ]), and a 4-bit

A/D converter. The read noise level σread varies from 0e- to 5e- with a step interval of

0.5e-. By using M = ×106 Monte-Carlo samples, the numerically simulated SNRexp(β)

is plotted in Figure  3.22 .

As one can observe in this example, increasing the read noise leads to a reduced

SNR for all β before saturation. After saturation, the presence of the read noise will

occasionally move a saturated measurement back to an unsaturated state because the

Gaussian noise can take a negative value. See that the purple curves on the right-
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hand side of the plot is higher than the green curves. Therefore, for large β, there is

a minor but noticeable gain in SNR especially when the read noise is high. This is

not necessarily a better outcome because the increased read noise would require a more

powerful denoising algorithm which is not an easy problem either.

The small fluctuation towards the tail in Figure  3.22 is due to the randomness in

the Monte-Carlo simulation. As M goes to infinity, the random estimate will approach

the expectation by the law of large number. �

Figure 3.23. Influence of dark current. Exposure-referred SNR for a
digital image sensor by considering different levels of read noise. The small
fluctuation towards the tail on the left-hand side is due to randomness in the
Monte-Carlo simulation.

Example 3.6 (Influence of dark current). The second scenario considers a fixed read

noise, full-well capacity, and A/D converter, but a varying dark current. To be consistent

with the literature, the dark current βdark is assumed to vary from 0e- to 0.5e- with a

step interval of 0.05e-. The read noise level is fixed at 0.2e- based on [ 46 ]. The full-well

capacity is L = 15 electrons, and a 4-bit A/D converter is used. Same as Example 5,

M = 106 Monte Carlo samples are used to numerically generate the SNRexp(β) plot in

Figure  3.23 .
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Unlike Example 5 where the read noise has a substantial influence to the SNR, an

increased dark current will only show its impact for small β. This should not be a

surprise because when the true signal β is strong, the influence of βdark will be negligible

considering the small magnitude it usually has. For small β, the impact of βdark is more

prominent. A smaller dark current indeed leads to a higher SNR as expected. �

The utility of the Monte Carlo simulation is that it bypasses the complication of seeking

for an analytic expression of SNRexp(β). To account for even more difficult modelings such

as the pixel response non-uniformity, conversion gain, and exposure time, etc, one just needs

to modify the forward image formation model.

3.3.6 Alternatives to SNR?

While SNR is a natural choice for analyzing the performance of an image sensor, it is

by no means the only option. Especially for 1-bit devices such as the quanta image sensor,

there are other ways to characterize the performance.

Entropy

As far as 1-bit measurements are concerned, the entropy is a natural substitute of the SNR.

If Y is binary with pY (1) = 1−Ψq(β) and pY (0) = Ψq(β), the entropy is

H(Y ) = −pY (1) log2 pY (1)− pY (0) log2 pY (0)

= −(1−Ψq(β)) log2(1−Ψq(β))

−Ψq(β) log2 Ψq(β). (3.88)

It is relatively easy to show that the derivative of the entropy with respect to Ψq(β) is

d

dΨq(β)H(Y ) = − log
(

1−Ψq(β)
Ψq(β)

)
.

Setting it to zero will yield Ψq(β) = 1
2 . Therefore, the entropy is maximized when E [Y ] =

1−Ψq(β) = 1
2 . Since E [Y ] is the expected value of the measurement, E [Y ] = 1

2 means that

the entropy is maximized when there are 50% one’s and 50% zero’s in a set of independent
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measurements. So, if the application goal is to identify a threshold q such that the perfor-

mance of the sensor is maximized, then instead of optimizing for the SNR, the alternative

is to optimize the entropy.

Bit Error Rate (BER)

In the presence of read noise, the bit error rate is another commonly used criterion to

evaluate the performance of a sensor. For 1-bit quanta image sensor, the BER measures the

probability of making a wrong decision (i.e., declaring a 0 as a 1, or declaring a 1 as a 0). It

can be readily computed as

BER(β) = pY (0) ·
∫ ∞

q

1√
2πσ2

read

e
− t2

2σ2
read dt

+ pY (1) ·
∫ q

−∞

1√
2πσ2

read

e
− (t−1)2

2σ2
read dt

= 1
2erfc

(
q

σread
√

2

)
Ψq(β)

+ 1
2erfc

(
1− q

σread
√

2

)
(1−Ψq(β)). (3.89)

Therefore, if q = 1/2, the BER is simplified to

BER(β) = 1
2erfc

(
1

σread
√

8

)
, (3.90)

which does not depend on β. If BER(β) can be empirically measured, then by inverting

Equation ( 3.90 ) one can estimate the read noise σread. For a fixed β, one can also optimize

Equation ( 3.89 ) by finding an appropriate q.

3.4 Final thoughts

We have developed a very generic camera model, which could fit any application. Many of

the remaining chapters use the image formation model we have developed here to understand

the physics or generate data for training a machine learning model. In the latter part of

the chapter, we developed the theory for calculating the signal-to-noise ratio for any image

sensor. Chapter  8 uses the SNR expression we have derived here to compare the CMOS
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image sensors and the quanta image sensors. The SNR expression is also used to develop an

HDR reconstruction algorithm.

3.4.1 Where to, from here?

Until now, we have looked at how to model the image formation process for existing cam-

eras, which could be used for developing algorithms and analyzing the cameras. However,

most of the literature seems to miss a critical aspect of developing such a tool. The imaging

model could help us identify the weak points of the existing cameras, using which compu-

tational imaging engineers could develop a feedback loop with the device engineers. Based

on the analysis, the computational imaging engineers could advise the hardware engineers

on the weak points that need immediate attention to get the most significant benefit from

a new modification to the existing sensors. Another obvious application is to develop image

sensors with real-time control, where we can modify the camera setting in real-time based

on the SNR that we get for the scene.
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4. COLOR IMAGING WITH QUANTA IMAGE SENSORS

Color imaging is often achieved by placing a color filter array (CFA) in front of the image

sensor, such as the Bayer pattern CFA, which has only one color channel per pixel. The

captured image will be a mosaic of different colors like in Figure  4.1 . Converting this single-

channel mosaic image into a three-channel RGB image is called demosaicing. Demosaicing is

a difficult task because we are essentially doing a type of super-resolution, where we are going

from one color channel per pixel (different color for different pixels) to three color channels.

We need to deal with aliasing in color channels, which requires careful consideration. Photon-

limited conditions further complicate the matter because of the need to handle demosaicing

and also heavy noise at the same time.

Traditional CIS demosaicing algorithms usually emphasize the mitigation of the aliasing

(aka the Moirè artifacts), for example, using advanced edge-aware demosaicing methods [ 82 ]

or using a post-processing module to remove the demosaicing artifacts [ 83 ], [ 84 ]. However,

aliasing is not a big problem when the pixels are small (Figure  4.1 ) because of the diffraction

limit, which can be thought of as a slight blur introduced by diffraction. Because of diffrac-

tion, aliasing is not dominant anymore. However, note that the image will be blurred due to

diffraction, requiring further processing to be deblurred. We are not worried about this blur

in this chapter. If we ignore the blur, we can use a simple method for demosaicing, possibly

some traditional methods, such as linear demodulation followed by denoising, to reconstruct

the color.

To elaborate on the aliasing problem, we show three illustrations in Figure  4.1 . In

Figure  4.1 (a), we plot the Nyquist sampling limit of the color filter array as a function of

the pixel pitch and illustrate two-color spectra associated with the sampling limits. Nyquist

limit defines the lowest spatial sampling frequency required to prevent aliasing. As the pixels

become small, we effectively oversample the scene, increasing the Nyquist limit. Using a

f/5.6 optical system as an example, the maximum pixel pitch we can afford is 1.6µm, which

is safely above the 1.1µm pitch of the current CIS-QIS [  35 ]. This argument is further justified

by looking at the synthetic data shown in Figure  4.1 (b) and (c), where we show the raw Bayer
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CFA data and the corresponding color spectrum. It can be seen that because of the small

pixel pitch, QIS can potentially offer a much better spectrum.

Figure 4.1. Aliasing is not a problem for small pixels. [Left] Nyquist
limit decreases with pixel pitch. At f-number value of f/5.6, QIS is diffraction-
limited since Nyquist limit exceeds the optical cut-off frequency. [Top Right]
An average of 10 QIS frames at photon level of 5.5e−. The CFA is a Bayer
pattern. [Bottom Right] Fourier spectrum of the color. Notice that interference
between base-band luminance and chrominance components at (π, 0), (0, π)
and (π, π) is minimal.

4.1 Related Work

Classical demosaicing algorithms. Classical demosaicing methods are developed for

CIS with well-illuminated images. The demosaicing algorithm must also have denoising

capabilities under low-light conditions where the noise is heavy. It is important to note

that the order of denoising and demosaicing matters [ 85 ]–[ 88 ]. If demosaicing is performed

first, then the interpolation will destroy the spatial independence of the noise, which will

substantially complicate the denoising process [  89 ]. If denoising is performed first, then most

of the image priors cannot be used because the mosaicked images do not have natural image

statistics [  86 ], [  90 ]–[ 93 ]. Joint demosaicing and denoising methods are better options here.

However, most of the joint demosaicing and denoising methods are iterative [ 87 ], [ 94 ]–[ 99 ].
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Deep neural network based demosaicing. State-of-the-art demosaicing algorithms

are largely based on deep neural networks. The idea is to modify a generic deep neural

network by adding a space-to-depth layer that converts the raw Bayer image into 4 Bayer

channels with quarter resolution. The network processes these down-sampled channels then

upscales them to a full-resolution color image using a depth-to-space layer. For example, the

Demosaic-Net by Gharbi et al. [  90 ] uses a residual network and a customized dataset within

a curriculum training approach. Dong et al. [ 91 ] use generative adversarial training. Tan

et al. [  98 ], Cui et al. [  83 ], Niu-Ouyang [  84 ] use multi-phase approaches. Ehret et al. [  93 ]

study burst reconstruction without ground truth. Wu et al. [  100 ], and Kiku et al. [  101 ] use

a guided filter for chrominance reconstruction. However, they do not consider the effect of

noise.

We propose two solutions in this chapter - one classical and one deep learning-based

demosaicing method. Both the methods consider the physics behind the noise and the color

imaging.

Figure 4.2. Color imaging model.
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4.2 Plug-and-play ADMM based color reconstruction

4.2.1 Modified imaging model

We start by introducing some small changes to the imaging model we introduced in

chapter  3 . Recall that in the absence of dark noise and other non-uniformities, and , if we

assume that the scene is not changing over the integration time, we can write the imaging

model of a camera as

Y = ADC
{
G.
(
Poisson(α · β) +N (0, σ2

readI)
)}

, (4.1)

where β ∈ RN is the underlying ground-truth intensity we want to estimate (N is the total

number of pixels), α is proportional to the integration time and decides the average photon

level of the scene and σread is the read noise. We assume that the offset O for the ADC used

in chapter  3 is zero.

For color imaging, we argued that β contains different color channels for each pixel. This

however is not a convenient notation here, because we want to recover all three channels for

each pixel. So we make a small tweak in the imaging model as follows.

Y = ADC
{
Poisson(β = α · Sθ) +N (0, σ2

readI)
}

, (4.2)

where θ ∈ R3N contains 3 channels (R,G and B) per pixel. S ∈ RM×3M is a fat matrix with

1’s and 0’s which decides the color channel that corresponds to each pixel based on the color

filter array (CFA) used.

S
def= {Sr, Sg, Sb}, (4.3)

where Sr, Sg, and Sb are all diagonal matrices with 1’s and 0’s along the diagonal, and

Sr + Sg + Sb = I. Note that in this case, we want to recover θ.

In this section, we deal with both single-bit ADC and multi-bit. For multi-bit imaging,

we assume that the conversion gain G = 1. For single-bit however, we use any integer

conversion gain G ∈ Z.
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Figure 4.3. The image reconstruction pipeline consists of (i) a temporal bin-
ning step to sum the input frames, (ii) a variance stabilizing transform T to
transform the measurement so that the variance is stabilized, (iii) a joint re-
construction and demosaicing algorithm to recovery the color, (iv) an inverse
transform to compensate the forward transform, and (v) a tone mapping op-
eration to correct the contrast.

4.2.2 Joint denoising and demosaicing

The task of image reconstruction is to recover color scene θ from the measurements Y =

{Y 1, Y 2, . . . Y T}, where T is the number of frames captured. In the gray-scale setting, we

can formulate the problem as maximum-likelihood and solve it using convex optimization

tools [ 80 ], [ 102 ]–[ 104 ]. We can also use learning-based methods, e.g., [  105 ]–[ 108 ] to recon-

struct the signal. The method we present here is based on the transform-denoise approach

by Chan et al. [ 76 ]. Transform-denoise because is a physics-based approach and is robust

to different sensor configurations. For example, in learning-based approaches, if we change

the number of frames to sum, we need to train a different model or neural network like in

chapter  5 .

4.2.3 Reconstruction pipeline

The pipeline of the proposed reconstruction algorithm is shown in Fig.  4.3 . Given the

measurements Y = {Y 1, Y 2, . . . Y T} we first averagew the frames to generate a single image

Z:

Z = 1
T

T∑
t=1

Y t. (4.4)
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This step can be integrated into the hardware of the camera, if we want to, so that the

output of the camera will be the average of multiple frames.

If we assume that there is no processing of the bits besides temporal average, then as

shown in chapter Equation (  3.69 ), using the mean invariance property, we can write the

estimator β̂ as

β̂ = µ−1(Z) (4.5)

where µ(β) is the mean function which maps the underlying parameter β to the corresponding

mean of the the variable Z. Check chapter  3 for more details on how to obtain this estimator.

Variance stabilizing transform

Now, we want to process the data besides just averaging the frames. However, in either single-

bit or multi-bit mode, the Binomial or the Poisson statistics are not easy as the variance

changes with the mean. This prohibits the use of any off-the-shelf algorithms that are based

on i.i.d. Gaussian assumptions. To use any of these methods developed for Gaussian noise

with the assumption that the noise strength is uniform throughout the image, we need to have

a technique that stabilizes the noise to the same strength across the image. Such a technique

is called the variance stabilizing transform (VST) [ 109 ]–[ 111 ]. Figure  4.4 demonstrates the

effect of VST on Poisson data.

The VST for single bit, irrespective of the gain G is simple, as the random variable

is a binomial random variable. As suggested by [ 76 ], we use the corresponding Ancombe

transform.

Tsingle-bit(z) def=
√

T + 1
2 sin−1

√√√√z + 3
8

T + 3
4
. (4.6)

For multi-bit, ideally we should either use [  113 ], [  114 ] to find the corresponding VST. In

this section, we take a lazy route, and assume that the pixels do not saturate in the multi-bit

mode and use the VST corresponding to simple Poisson random variable. It is given by
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Without VST After VST

Figure 4.4. Variance Stabilization Transform. We look at the effect VST
has on Poisson data. We use the Anscombe transform [  112 ] for stabilizing the
transform. We can see that the variance which is directly proportional to the
mean β stabilizes to a value of 1 after VST.

Tmulti-bit(z) def=
√

z + 3
8 . (4.7)

So now if we apply the appropriate VST τ(·) on the sum of frames z, the noise will sta-

bilized, and we can use any Gaussian methods for demosaicing and denoising. The problem

can be formulated as

v̂ = argmin
v

||Sv − T (z)||2 + λg(v), (4.8)

where v ∈ R3N is the RGB image we are interested in recovering, g is some regularization

function controlling the smoothness of v. Note that Equation (  4.8 ) is a standard demosaicing-

denoising problem assuming i.i.d. Gaussian noise.

Joint reconstruction and demosaicing

The optimization problem in Equation (  4.8 ) is a standard least-squares with regularization

function g. Thus, most convex optimization algorithms can be used as long as g is convex.

This section adopts a variation of the alternating direction method of multiplier (ADMM)
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by replacing g with an off-the-shelf image denoiser. Such algorithm is coined the name

Plug-and-Play (PnP) [ 115 ] (and different versions thereafter [ 116 ]).

For the particular problem in Equation ( 4.8 ), the PnP ADMM algorithm iteratively

updates the following two steps:

Demosaicing Module:

x(k+1) = (ST S + ρI)−1(STT (z) + ρ(v(k) − u(k))), (4.9)

Denoising Module:

v(k+1) = Dρ/λ(x(k+1) + u(k)), (4.10)

and updates the Lagrange multiplier by u(k+1) = u(k)−(x(k+1)−v(k+1)). Readers interested in

the detailed derivation can consult, e.g., [  116 ]. Here, ρ is an internal parameter that controls

the convergence. The operator D is an off-the-shelf image denoiser, e.g., Block-matching

and 3D filtering (BM3D) or deep neural network denoisers. The subscript ρ/λ denotes the

denoising strength, i.e., the hypothesized “noise variance”. Since ST S is a diagonal matrix,

the inversion is pointwise.

Non-iterative algorithm

The 1.1µm pixel pitch of the proposed QIS can potentially lead to a spatial resolution as

high as or even higher than a conventional CMOS sensor. When this happens, in certain

applications we can trade-off the color reconstruction efficiency and the resolution. For

example, instead of using one jot for one pixel, we can use four jots for one pixel as shown

in Fig.  4.5 .

Using four jots for one pixel allows us to bypass the iterative ADMM steps because

there is no more missing pixel problem. In this case, the matrix S ∈ RM×3M will become

S = diag{1
4I, 1

2I, 1
4I} ∈ R3M×3M , and hence Equation (  4.8 ) is simplified to a denoising

problem with different noise levels for the three channels. In particular, the green channel has

half of the variance of the red and the blue. For implementation, we can modify a denoiser,

e.g., BM3D to accommodate the different noise variances. Since there is no more ADMM

iteration, the algorithm is significantly faster. While we have used BM3D to demonstrate the
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Figure 4.5. Non-iterative solution. QIS can achieve higher spatial resolu-
tion, we can use four color jots to reconstruct one pixel. In this case, we can
bypass the iterative ADMM algorithm and use a one-shot denoising method.

results, any off the shelf denoiser which is used in CIS based cameras can be used to denoise

the image for the four-jot to one-pixel method. We would also like to stress on the fact that

both the Anscombe transform and the transformM can be implemented as a look up table.

So, this method can be as fast a current denoiser being used in a CIS based camera.

4.2.4 Experimental results

Comparisons

As we will see later in the chapter, in terms of performance, neural networks are miles

ahead. However, traditional methods do not put too much demand on hardware needed for

reconstruction. To be fair, in this section we compare the proposed methods only with non-

neural network solutions. We compare the proposed method with several existing methods

on a synthetic dataset shown in Fig.  4.6 . We simulate the raw color QIS data by assuming

a Bayer pattern and using the image formation pipeline described in the previous section.

We demosaic the images using: (a) a baseline method using MATLAB’s demosaic preceded

by gray-scale BM3D denoising of R, G1, G2 and B channels and followed by color BM3D

denoising; (b) Least-squares luma-chroma demultiplexing (LSLCD) method [  117 ], which has

a built-in BM3D denoiser; (c) Hirakawa’s PSDD method [  118 ], which does joint denoising

and demosaicing for Poisson noise; and (d) the proposed method using BM3D with (λ, ρ) =

(0.001, 5). We apply variance stabilizing transform, except for PSDD which is designed
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for Poisson noise. The results show that the proposed method has a significantly better

performance, both in terms of Peak Signal to Noise Ratio (PSNR) and visual quality.

(a) Ground truth (b) Simulated Input (c) MATLAB 30.91dB

(d) [ 117 ] 30.24dB (e) [  119 ] 29.57dB (f) Ours 31.51dB

Figure 4.6. Simulated QIS experiment. The goal of this experiment is to
compare the proposed iterative algorithm with existing methods. We assume
the observed Bayer RGB image is from a 3-bit QIS sensor. (a) Ground Truth;
(b) One 3-bit QIS frame; (c) MATLAB demosaic preceded and followed by
BM3D; (d) LSLCD[ 117 ]; (e) Hirakawa’s PSDD method [ 119 ], with a built-in
wavelet shrinkage denoiser; (f) Proposed method with BM3D.

Synthesized QIS data

We conduct a synthetic experiment to provide a quantitative evaluation of the performance

of the proposed algorithm. To this end, we simulate the image formation pipeline by passing

through color images to generate the QIS raw input data, with different number of bits.

Figure  4.7 shows one example.

In our simulation, we assume that the number of QIS frames is T = 4, and the average

number of photon per pixel is 0.28, 0.85, 1.98 and 4.23 photons / frame for 1-bit, 2-bit, 3-bit

and 4-bit QIS, respectively. On the measurement side, we generate single-bit and multi-bit

data by thresholding the raw sensor output. To reconstruct the image, we use the proposed

method with PnP and BM3D. The parameters are set as ρ = 1 and λ = 0.007, 0.003, 0.002

and 0.0007 for 1-bit, 2-bit, 3-bit and 4-bit QIS, respectively. With as low as 1-bit, the
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reconstructed image in Fig.  4.7 is already capturing most of the features. As the number of

bits increases, the visual quality improves.

1-bit, 22.67dB 2-bit, 23.86dB 3-bit, 25.37dB 4-bit, 26.73dB

Figure 4.7. Synthetic experiment for quantitative evaluation. [Top
row]: One frame of the QIS measurements using different number of bits. [Bot-
tom row]: Reconstructed images using the proposed method with 20 frames of
QIS data. The average photon counts per pixel are 0.25, 0.75, 1.75 and 3.75
for 1-bit, 2-bit, 3-bit and 4-bit QIS, respectively.

Real QIS data

(a) Raw input, 1-bit (b) Processed from (a) (c) Raw input, 5-bit (d) Processed from (c)

Figure 4.8. (a) One 1-bit frame. (b) Reconstructed color image using 50
frames of 1-bit input with threshold q = 4. (c) One 5-bit frame. (d) Recon-
structed color image using 10 frames of 5-bit input. The average number of
photons per frame is 5.

We first show the reconstruction of an image of the Digital SG ColorChecker chart. We

generate two sets of measurements: (a) a set of 50 one-bit frames, quantized with a threshold

q = 4, and (b) a set of 10 five-bit frames. We use PnP and BM3D with (λ, ρ) = (0.15, 10)
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and (0.01, 10) for the 1-bit and 5-bit data, respectively. After reconstruction, the results

are multiplied by a 3 × 3 color correction matrix to mitigate any color cross-talk. This

matrix is generated by linear least square regression of the 24 Macbeth color patches that

lies inside the SG ColorChecker chart. The results in Fig.  4.8 suggest that while 1-bit mode

has color discrepancy with the ground truth, the 5-bit mode is producing a reasonably-high

color accuracy.

(a) RAW QIS 5-bit data.

(b) Proposed iterative method

(c) Proposed non-iterative method
Figure 4.9. Real QIS image reconstruction. The exposure time for each
frame is 50 µs. The average number of photons per frame is 4.2, 3.0, 1.9, and
2.9 for each image respectively. Both methods use 4 frames for reconstruction.
The raw data has a resolution of 1024 × 1024 pixels. The ADMM method
retains the resolution, whereas the non-iterative method reduces the resolution
to 512× 512. Reconstruction using both the methods are shown at the same
size for easier visual comparison. Notice that the non-iterative algorithm is
able to achieve a visual quality almost similar to the ADMM method.
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Next, we show the result of imaging real scenes. See Fig.  4.9 . In this experiment, the

exposure time for each frame is set to 50µs. The average number of photons per pixel is

approximately 4.2 photons for the ”QIS” sign image, 3 photons for the Pathfinder image,

1.9 photons for the duck image, and 2.9 photons for the mushroom image. For all images,

we collect the data using a 5-bit QIS.

We demonstrate two algorithms: (i) the proposed transform-denoise framework using

PnP + BM3D, and (ii) assuming four-jots to one-pixel scenario by trading half of the spatial

resolution. The typical runtime on an unoptimized MATLAB code is approximately 4 min-

utes for PnP, and 10 seconds for the four-jot to one-pixel method. An interesting observation

is that even in the lower-resolution case, the details are not significantly deteriorated unless

we zoom-in. However, the speed up we get is substantial.

4.3 Learning based demosaicing

We have seen a classical demosaicing method in the last section. In this section, we will

take a look at deep learning based demosaicing method that still takes into consideration

the physics of color imaging.

4.3.1 Innovations

The method proposed in this section makes two major innovations

1. Frequency-selection. The proposed demosaicing algorithm is rooted in the classical

theory of color filter arrays. We develop a color processing module to demodulate

the color channels by selecting the known carrier frequencies of the color filter array.

Existing deep learning-based solutions using generic convolutional neural networks

largely do not use the physics of the color filter arrays.

2. Guided reconstruction. The proposed algorithm leverages the physics that the luma

channel has a much better signal-to-noise ratio than the chroma channels. As such,

signal details that are preserved by the luma channel can be used to guide the filtering
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of the chroma channels. Existing generic convolutional neural networks do not exploit

these characteristics of the data.

4.3.2 Frequency selection demosaicing network

The proposed method leverages the classical frequency selection with new modifications.

In this section, we first provide a background on frequency selection. Afterward, we present

our modifications of learned demosaicing low-pass filters and guided filtering of chroma

channels using the luma channel (III.B). We also present the loss functions and the training

process.

Frequency selection

Consider a color image yrgb ∈ RH×W ×3. We denote the normalized light intensities in the

red, green and blue channels at the pixel (m,n) as

yrgb(m, n) =
[
yr(m, n), yg(m, n), yb(m, n)

]
, (4.11)

where m = 0, . . . , H − 1, n = 0, . . . , W − 1. The color image yrgb ∈ RH×W ×3 is sub-sampled

by the color filter array (CFA) to create a mosaicked image yCFA ∈ RH×W . Assuming that

the CFA follows the standard Bayer pattern, it can be shown that the pixel (m, n) of the

mosaicked image takes the form (See [ 120 ], [ 121 ]):

yCFA(m, n) = yL(m, n) + yα(m, n)
(
ejπm + ejπn

)
+ yβ(m, n)ejπ(m+n), (4.12)

where the components yL, yα and yβ are defined as a linear transformation of the latent

RGB color pixels:


yL(m, n)

yα(m, n)

yβ(m, n)

 =


1/4 1/2 1/4

−1/4 0 1/4

1/4 −1/2 1/4


︸ ︷︷ ︸

def= T


yr(m, n)

yg(m, n)

yb(m, n)

 . (4.13)
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Note that Equation Equation ( 4.12 ) is a forward model. That is, given the luma and chroma

components (yL, yα, yβ) we can determine yCFA. The inverse problem, which is the demo-

saicing problem, is to determine (yL, yα, yβ) from yCFA.

The starting point of frequency selection is to inspect the Fourier spectrum of yCFA. If we

take the 2D discrete Fourier transform of yCFA, we can show that the frequency representation

of yCFA is given by

ỹCFA(µ, ν) = ỹL(µ, ν)︸ ︷︷ ︸
base-band

+ ỹα1(µ− π, ν) + ỹα2(µ, ν − π)︸ ︷︷ ︸
horizontal/vertical side-band

+ ỹβ(µ− π, ν − π)︸ ︷︷ ︸
diagonal side-band

, (4.14)

where µ and ν are the 2D angular frequencies and (̃·) denotes the Fourier transform of the

argument. Equation Equation (  4.14 ) suggests that the spectrum of the mosaicked image

ỹCFA comprises a linear combination of a luma channel ỹL, two alpha chroma channels ỹα1

and ỹα2 , and the beta chroma channels ỹβ. Figure  4.10 illustrates the ideas of the frequency

analysis. Given a color image, we can inspect the image generated by the color filter array.

In the frequency domain, the luma channel occupies the center of the spectrum, whereas the

chroma channels are located on the sides of the spectrum.

Figure 4.10. Objective of classical frequency selection. Given a color
filter array (CFA) image yCFA, the frequency selection method is a Fourier
domain operation that extracts the corresponding frequency components of
the luma yL and chroma yα, yβ channels from the image.
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The Fourier spectrum in Equation Equation ( 4.14 ) indicates that the CFA is effectively

modulating the color channels. As such, a natural solution for demosaicing is to demodulate

yCFA so that we can retrieve (yL, yα, yβ). Demodulation is feasible here because we know the

CFA and also its carrier frequency from basic principles of sampling theorem in 2D domains.

Denoting the carrier frequencies for yα1 , yα2 and yβ are ωα1 and ωα2 , ωβ respectively, then

the carriers are defined as (using α1 as an example):

cα1(m, n) = Aα1 cos

ωT
α1

m

n

+ θα1

 , (4.15)

where Aα1 and θα1 are the amplitude and the phase offset of the carriers. To demodulate

the color, we multiply yCFA(m, n) with the carriers cα1(m, n), followed by convolving with a

predefined lowpass filter g(m, n):

yα1(m, n) = (yCFA(m, n)× cα1(m, n)) ~ g(m, n) (4.16)

The computation for yα2 and yβ is performed in a similar manner. For simplicity, we combine

the two α channels by simple averaging:

yα(m, n) = yα1(m, n) + yα2(m, n). (4.17)

The base-band luma component is recovered by subtracting the re-modulated (i.e., shifted

to their original positions) yα1 , yα2 and yβ components from the input CFA image:

yL(m, n) = yCFA(m, n)− yα1(m, n)× cα1(m, n) (4.18)

− yα2(m, n)× cα2(m, n)− yβ(m, n)× cβ(m, n).

The demodulation process is pictorially illustrated in Figure  4.11 . The input CFA image is

first multiplied by the carriers. In the Fourier domain (the red curves shown at the bottom),

the spectrum is shifted according to the carrier frequency. Since we know the CFA, the carrier

frequency is deterministic. We then pass the signal through a lowpass filter. Afterward, we
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multiply the signal with the carriers again to un-shift the spectrum. The whole pipeline is

reminiscent of the classical sinusoidal demodulation problem in, e.g., [ 122 , Chatper 8].

To customize frequency selection for our problem, we make the lowpass filters trainable.

Specifically, we use three layers of convolutional kernels of size 7 × 7 to reconstruct the

vertical, horizontal, and diagonal chroma channels. During training, filters are regularized

by enforcing the `1 norm of the filter coefficients such that it is equal to unity. This filter

learning approach is more flexible than the minimum mean-squared error (MMSE) filter

estimation such that those used in the classical literature [  123 ] since it performs the filter

estimation jointly with the luma and chroma denoising in an end-to-end training approach.

Figure 4.11. Implementation of the classical frequency selection.
Given the input spectrum xCFA, our goal is to remove the unwanted side-bands.
By adopting the classical demodulation scheme, i.e., carrier+lowpass+carrier,
we can recover the main lobe. The demodulated signals are yα, yβ and yL.
After post-processing (typically the luma-denoising) and coordinate transform
T , we retrieve the RGB signal.

Guided Filtering

The output of the frequency selection stage consists of the luma signal yL, and the two color

signals yα and yβ. All signals are corrupted by noise because during the frequency selection

process, we have only decoupled the colors from the input and have not aggressively removed

the noise. The objective of the guided filtering step is to denoise.

The rationale behind the guided filtering step is the different signal-to-noise ratios of

yL, yα, and yβ. The luma signal yL, by definition, is the average of the RGB signals, i.e.,
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Figure 4.12. The proposed guided filtering. Guided filtering step consists
of three UNets: The luma UNet, and two chroma UNets. Each UNet has a
residual connection. Across the networks, we transfer knowledge from the
luma channel to the chroma channels by concatenating features.

yL = (yr + 2yg + yb)/4. This averaging process suppresses the noise more than that of the

color channels. Classical papers in color processing have long recognized this phenomenon,

e.g., [  124 ], [  125 ]. Instead of independently denoising the three channels or jointly denoising

the channels by treating them as a spectral volume, it is more promising to first denoise the

luma channel, then use the recovered luma signal to guide the filtering of the chroma signals.

Building upon this intuition, we use three deep networks as shown in Figure  4.12 . The

luma denoising network is a standard UNet [  126 ] with the number of layers as shown in

the middle of Figure  4.12 . On top of this luma network, we introduce two smaller UNets

for the chroma channels. The size of the chroma channel UNet is 4 times less than that of

the luma channel UNet. When training the networks, we pull the features generated by the

encoder of the luma UNet, and concatenate with corresponding features generated by the

chroma UNets. The chroma UNets are benefited from this feature sharing since they can

use the high frequency information such as edges and textures from the luma denoiser. The

layers of all the three UNets are convolutional, with a kernel size of 3 × 3. Following [ 127 ],

[ 128 ], the number of feature channels at all image scales is kept fixed to avoid unnecessary

enlargement of the network size. We replace the trainable transposed convolution layers in
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the standard UNet with non-trainable bilinear upsampling layers to reduce the total number

of parameters [ 129 ].

Figure 4.13. Visualization of the proposed guided filtering. Given the
input yα1 , yα2 , yβ and the luma estimate ŷL, the guided filter leverages the
luma estimate to reconstruct the chroma channels which are otherwise very
difficult to recover. The resulting image is ŷrgb.

The effectiveness of the proposed guided filtering step can be visualized in Figure  4.13 . In

this example, we generate the input signal using a QIS imaging model with a mean photon

arrival rate of 10 photoelectrons per pixel. Given the inputs yα1 , yα2 and yβ, straight-forward

denoising on each of these channels independently will be extremely difficult because there

is not much signal in the input. With guided filtering, since xL preserves most of the details

of the image, it serves as a strong prior to the chroma channels. As we can observe in

Figure  4.13 , the reconstructed chroma channels are substantially better than without the

guided filtering.

Loss Functions

The overall system is trained end-to-end. To perform the training, we define the overall

training loss as

L(fΘ) = LRGB(fΘ) + η1Lluma(fΘ) + η2Lchroma(fΘ), (4.19)
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where fΘ denotes the model parameterized by Θ. There are three terms contributing to the

overall loss.

The RGB loss is defined as the sum of a mean absolute error (MAE) loss and the

perceptual loss. The MAE loss is the `1 difference between the predicted image fΘ(yCFA)

and the ground-truth image xrgb, whereas the perceptual loss is the `2 difference between the

feature embedding using a pre-trained network [  130 ]. The intuition is that if our network

is performing well, then the features of the reconstructed image should be close to that of

the clean image. Here, the features are obtained from a VGG-19 network, although other

embeddings can also be used.

The luma and the chroma losses are defined as the `1 loss between the predicted luma and

the ground truth luma, and the predicted chroma and the ground truth chroma, respectively.

The hyper-parameters η1, η2 are chosen empirically to minimize the validation loss.

Implementation

The training of the proposed model is based on the WED database [  131 ] which contains

4744 high-quality color images of natural scenes. Color images are mosaicked using Bayer

CFA. We simulate an average of 1 to 10 photons per pixel (ppp) randomly for every patch.

We also simulate readout noise by a zero-mean Gaussian with the standard deviation set

to 0.25e−. Images are then normalized to the range [0, 1] by dividing by thrice the average

photon count and clipping to [0, 1].

In every training epoch, 128× 128 patches are randomly cropped from each image, and

data augmentation is performed by random flipping in the horizontal and vertical directions.

Pairs of clean and noisy patches are fed into the network with batch size 64 for training. The

network is trained for a total of 1000 epochs in mixed precision using NVIDIA GeForce RTX

2080 GPU with 8GBs of dedicated memory. Adam is used for optimization with a learning

rate of 10−4 and 10−5 for the first and second 500 epochs, respectively.

Training hyper-parameters are η1 = 1, η2 = 1. The trainable lowpass filter g(m, n) is

modeled using a 7×7 kernel. The perceptual loss is based on MSE loss computed at 8th and

35th layers of the VGG-19 network. For validation during training, we compute the average

PSNR and SSIM on the 18 color images of McMaster dataset [ 132 ] every 50 epochs.
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4.3.3 Experiment

Evaluation Metric

We use the WED [  131 ] database for training, the McMaster dataset [ 132 ] for validation,

and 24 images from the Kodak dataset and 100 validation images of Div2k dataset [ 133 ] for

testing. This ensures no overlap between the three different tasks. We simulate noisy images

at signal levels {1, 2, . . . , 10} ppp, and we assume that the read noise is 0.25e− rms.

Since no single image quality metric can address all questions, we use the following suite

of evaluation metrics:

• Peak signal to noise ratio (PSNR), which is the negative log of the mean squared error

between the estimated image and the ground truth image. The mean squared error is

computed per pixel per color. The is the usual PSNR extended to three color channels.

• Structure Similarity Index Metric (SSIM) [ 134 ], used to quantify the visual difference

between two images.

• CIE 2000 color error metric, which measures the mean square color difference in the

CIELAB color space as suggested by the CIE 2000 standard [  135 ]. CIE 2000 metric

captures better the color difference and is used in previous literature in color filter

arrays [  71 ], [ 72 ]. We use the implementation of skimage color module in [ 136 ] to

compute the CIE 2000 metric.

• Learned Perceptual Image Patch Similarity (LPIPS) metric, proposed by Zhang et

al. [ 137 ]. This metric measures the perceptual difference between 2 images using

deep features. According to [ 137 ], this metric shows a good correlation with human

perception. To compute the deep features, we use AlexNet.

Competing Methods

We compare the proposed method with the following classical and deep learning-based meth-

ods. We acknowledge other approaches proposed in the past and recent years. However, due

to limited space, we have chosen to focus on a few representative ones.
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• Classical frequency selection (FS) by Condat [ 123 ], [  138 ]. This method uses a linear

demodulation scheme by decorrelating the luma and chroma from the color data. The

denoising step uses a follow up work by Condat and Mosaddegh [ 94 ] which applies

total variation minimization. We apply Anscombe transform from [  76 ] before the

reconstruction to stabilize the noise variance.

• Classical optimization-based algorithm, using the alternating direction method of mul-

tiplier (ADMM). We use the implementation in [  21 ]. The backbone optimization algo-

rithm is the Plug-and-Play ADMM (PnP-ADMM) where we use BM3D as the denoiser

[ 125 ].

• Demosaic-Net by Gharbi et al. [ 90 ]. This is a generic deep neural network solution.

The method has a standard convolutional structure that takes a raw CFA color image

and converts to a full RGB image. We used the code provided by the authors of [ 90 ],

and trained the network from scratch using our noisy data.

• MM-Net by Kokkinos and Lefkimmiatis [  99 ]. The method combines an explicit forward

degradation model with a deep neural network. The algorithm iterates like classical

optimization approaches, but each iteration is executed by a deep network. We used

the code provided by the authors of [ 99 ], and trained from scratch using our noisy data

and the pre-trained denoiser provided by the author.

Results of Synthetic Experiments

In this section, we report the results of synthetic experiments. We first offer some visual

comparisons. Figure  4.14 shows a few snapshots of several testing images taken from the

Div2K dataset. A few observations we can see from these images:

• Details: It is evident from the first three rows of the images that the classical FS

[ 94 ] and the ADMM approach [  21 ] have hallucinated the details whereas deep learning

approaches tend to over smooth the details. The proposed method gives a more faithful

recovery of details.
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Raw, 1 frame FS ADMM DemosaicNet MM-Net FS-Net Ground

14-bit [ 94 ] (‘12) [  21 ] (‘19) [  90 ] (‘16) [  99 ] (‘19) (Prop.) Truth

Figure 4.14. Synthetic experiments using data from the DIV2k
dataset. We simulate the QIS data at an average of 10 photoelectrons per
pixel. Quantitative image quality metrics PSNR\SSIM are shown on the top
right of every image.

• Color: The proposed method has less false colors than classical methods. This is

especially obvious when we compare the stair-case image and the feather image, where

color bleeding of the classical methods is severe.

A quantitative comparison is shown in Figure  4.15 , where we compared the PSNR, SSIM,

CIE 2000, and LPIPS curves as a function of the photon level. We separately consider the

Kodak dataset and the Div2K dataset so that we can see the generalization capabilities of

the methods. We make some observations:

First of all, the performance of the competing methods is consistent for both datasets.

In particular, we observe that learning-based methods are generally better than classical
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(a) PSNR (b) SSIM (c) CIE 2000 (d) LPIPS

Figure 4.15. Performance of synthetic QIS data with read noise =
0.25e− at different signal levels. The first row shows the results of using
24 images in the Kodak dataset, whereas the second row shows 100 images of
the DIV2K dataset.

methods across different photon levels. The gap appears smaller at stronger photon levels

(10 ppp). Learning-based methods are very competitive, especially between MM-Net and the

proposed method, using PSNR and SSIM. However, as we have seen in the visual comparisons

in Figure  4.14 , similar PSNR values can be drastically different visual appearance. Further

evidence can be seen from the CIE 2000 metric and the LPIPS metric. In both metrics, the

proposed method has a more obvious gap compared to MM-Net and Demosaic-Net.

Second, as photon level drops, the gap between the proposed method and the competing

methods becomes larger. This is particularly evident in the Kodak dataset where the pro-

posed method is almost 0.5dB higher than MM-Net and Demosaic-Net in terms of PSNR.

The visual comparison in Figure  4.16 confirms these numbers. The proposed FS-Net has a

better recovery of both details and colors.

We also simulated a higher readout noise with standard deviation of 2e−, which is similar

to what we can get from a standard CIS, and an average signal level of 2 ppp. We ran the

same networks used in the previous experiment: Demosaic-Net, MM-Net, and FS-Net on a
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Raw, 1 frame FS ADMM DemosaicNet MM-Net FS-Net Ground

14-bit [  94 ] (2012) [  21 ] (2019) [  90 ] (2016) [  99 ] (2019) (Proposed) Truth

Figure 4.16. Visual evaluation using the Kodak synthetic dataset.
The data is simulated at 2 ppp and read noise of 0.25 e−. Observe the strong
color noise in classical methods such as FS, and over-smoothing in learning-
based methods. Quantitative image quality metrics PSNR\SSIM are shown
on the top right of every image.

sample image from Div2K dataset. Figure  4.17 shows that FS-Net can still give more details

and less color noise compared to other networks.

Raw, 1 frame Demosaic-Net MM-Net FS-Net Ground

14-bit [  90 ] (2016) [  99 ] (2019) (Proposed) Truth

Figure 4.17. Visual evaluation of using the Div2K synthetic dataset.
The data is simulated at 2 ppp average signal level and 2e− read noise.

As shown in Figure  4.18 , we show the spatial and spectral representation of the isotropic

Gaussian initialization for the low-pass filters as well as the learned filters for the three

chrominance channels α1, α2 and β. We notice that the network tends to maximize the

spectral support of the chrominance filters to make sure that no chrominance information is
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lost. Although a wider spectrum implies more noise, this noise is removed afterward in the

guided denoising phase. At the same time, the filter response is zeroed-out at the positions

of the luminance channel to avoid aliasing.
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(a) (b) (c) (d)

Figure 4.18. Low-pass filters learnt by FSNet/(a) Initial Gaussian esti-
mate of low-pass filters and the learned filters by FSNet: (b) gα1, (c) gα2 and
(d) gβ. First and second rows show the spatial and frequency representations,
respectively.

Real QIS Data

In this section, we report our experimental results on real QIS data. To conduct the ex-

periments, a QIS camera module developed by Gigajot Tech Inc was used. The sensor has

a resolution of 1024 × 1024 and is equipped with a Bayer color filter array. During the

experiments, short exposure times of 74us were used to limit the number of photoelectrons

per pixel per frame. Eight (8) “ground truth” images were captured with a longer exposure

time of 740us to minimize the impact of photon shot noise, i.e., the average signal level is

approximately 10 times the short-exposure images. We then perform the standard linear

demosaicing algorithm in [ 82 ] to recover the color, and then a simple BM3D denoising al-

gorithm to remove the residual noise. We chose to use the same camera (instead of using a

DSLR camera) to obtain the ground truths because this can minimize the impact generated

by sensor characteristics and focus the comparison on the color reconstruction.

Figure  4.19 shows the snapshots of two scenarios. We only compare Demosaic-Net and

MM-Net because the synthetic experiments showed that they are better than classical meth-

ods. When compared with these methods, we observe that they have more color reconstruc-

tion error. For example, in the “Expo” image, Demosaic-Net and MM-Net have severe color

bleeding occurring near the cap of the green marker (See the zoom-in). They also have
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(a) Raw, 1 frame, 14-bit (b) Demosaic-Net (c) MM-Net (d) FS-Net (e) Ground Truth

Figure 4.19. Real data reconstruction results. (a) Input, collected at
1.8 ppp (1st row) and 5.5 ppp (2nd row), (b) Demosaic-Net, (c) MM-Net, (d)
Proposed FS-Net, and (e) Ground truth, obtained by very long-exposure, with
post-processing using demosaicing and denoising.

more noise issues showing up in the text regions. In the “Duck” image, we observe similar

problems where the color bleeding is severe in the background color chart.

To further evaluate the performance of the methods, we captured a real resolution chart

using a QIS and reconstruct the image. Figure  4.20 shows the visual comparison. It is

evident from the figures that Demosaic-Net and MM-Net have more false colors. Besides,

the resolution that can be recovered by these two methods is less than that of the proposed

FS-Net.

Finally, in Figure  4.21 we show the results using 2-bit and 3-bit data. As we can see, the

performance of the proposed method remains competitive in these low bit-depth situations.

Computational Complexity To evaluate the network complexity, we compute the theo-

retical total number of multiply-add operations (MAC) for each network using code in [ 139 ].

We also compare the total number of parameters for each network to evaluate the required

memory for the network weights.

Table  4.1 shows the comparison between Demosaic-Net, MM-Net with 2 iterations, and

FS-Net. We notice that DemosiacNet has the least complexity since it processes a down-
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Noisy Demosaic-Net MM-Net FS-Net

Figure 4.20. Comparison with resolution chart. Grayscale resolution
chart captured with Integration time 224 µsec, lens aperture f/1.8 and average
signal level per frame is 8.4 ppp. For ideal demosaicing, the result should not
have any false colors.

Raw, 1 out of 10 frames Demosaic-Net MM-Net FS-Net GT

Figure 4.21. First row: 10 frames of 2-bit QIS data, average signal per frame:
1.86 ppp. 2nd Row: 10 frames of 3-bit QIS data, average signal per frame:3.8
ppp

scaled version of the image, and then do up-sampling at the end of the network. However,

this down-scaling leads to a loss of resolution as we saw in visual comparison. MM-Net

has the least number of parameters since it reuses the same network for multiple iterations.

However, it has the highest complexity. FS-Net has comparable complexity and network size

to Demosaic-Net while achieving superior image quality.
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Table 4.1. Comparisons of network complexity and size
Method Demosiac-Net MM-Net FS-Net

Complexity (GMAC) 2.20 12.44 2.76
# Parameters 524k 380k 546k

4.4 Final thoughts

We have proposed two methods for demosaicing - one classical and one deep learning

based. Both the methods take the physics in terms of noise and the color imaging using

color filter arrays into consideration. We have seen that within the classes of methods they

belong to, these methods perform better than their state-of-the-art counterparts.

4.4.1 Where to, from here?

We were able to leverage the small pixel sizes in this chapter for color imaging. However,

smaller pixels come with a few drawbacks which we haven’t dealt with. As we mentioned

earlier in this chapter, one of them is the blur that diffraction introduces. To deal with

diffraction, we need to think about how we can do super resoluction based on the blur

introduced. Another typical issue that shows in smaller pixels is crosstalk, which we defined

in chapter  3 . Crosstalk will only become worse as we start manufacturing even smaller pixels.

It is important to understand how crosstalk works and come up with ways to fix. One way

of mitigating crosstalk is to design color filter arrays (for e.g., [  72 ]) which will inherently lead

to better processing later. It will also be interesting to see how the demosacing algorithms

look like for these new CFA. Furthermore, we need to co-design color imaging with other

applications such as imaging motion, high dynamic range and deblurring which we will see

later in this dissertation.
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5. BURST RECONSTRUCTION WITH QUANTA IMAGE

SENSORS

Imaging a moving scene is a difficult task. Burst imaging is one of the standard solutions

that cameras utilize to solve this problem. The idea is that if we take multiple frames with a

short integration time, each frame will be sharp but noisy. We can then deal with the noise

by coming up with intelligent ways to combine multiple frames. The algorithm’s performance

in combining the burst into a single image generally takes a hit when the frames are too

noisy. So, there is a tradeoff between capturing noisy images, which could be combined using

an intelligent algorithm, and a blurred image, which could be deblurred [ 140 ].

(a) QIS raw data (b) KPN [  141 ] (c) sRED [  142 ] (d) Ours
8-frame avg 23.09 dB 17.74 dB 26.74 dB

Figure 5.1. The dilemma of noise and motion. (a) A simulated QIS
sequence at 2 photons per pixel (ppp), averaged over 8 frames. (b) Result
of Kernel Prediction Network (KPN) [ 141 ], a burst photography method that
handles motion. (c) Result of a single-frame image denoiser sRED [  142 ] applied
to the 8-frame avg. (d) Result of our proposed method.

When imaging a dynamic scene with a quanta image sensor (QIS), especially if we use

low bit depth, the problem of dealing with noise and motion is unavoidable. So, we need

to figure out solutions that can deal with noise and motion together. The dilemma here

is that they are intertwined. To remove noise in a dynamic scene, we often need to either

align the frames or construct a steerable kernel over the space-time volume. The alignment

step is roughly equivalent to estimating optical flow [ 143 ], whereas constructing the steerable

kernel is equivalent to non-local means [  144 ], [  145 ] or kernel prediction [  141 ]. However, if the

images are contaminated by noise, both optical flow and kernel prediction will fail. When
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this step fails, denoising will be difficult because we will not easily find neighboring patches

for filtering.

There are QIS burst solutions that take hundreds of frames to make a reconstruction

[ 146 ]. However, it is unclear how we can reconstruct using fewer frames (< 10 frames).

Existing algorithms in the denoising literature can usually only handle noise or motion. For

example, the kernel prediction network (KPN) [  141 ] can extract motion information from a

dynamic scene, but its performance drops when noise becomes heavy. Similarly, the residual

encoder-decoder networks REDNet [  142 ] and DnCNN [  147 ] are designed for static scenes.

In Figure  5.1 , we show the results of a synthetic experiment. The results illustrate the

limitations of the motion-based KPN [  141 ] and the single-frame REDNet (sRED) [ 142 ]. Our

goal is to leverage the strengths of both and develop a solution that can deal with fewer

frames and still reconstruct an image with good enough quality.

5.1 Method

5.1.1 Student teacher learning

We will look at the working of student-teacher learning for classification and object

detection in chapter  7 . In this chapter, we are going to use it for image reconstruction. The

underlying idea is to use teacher networks that can do more manageable tasks than the task

at hand to distill knowledge into the network we want to be trained in. That is, we ask the

specific question - A kernel prediction network can handle clean image sequences well. A

denoising network can handle static image sequences well. Is there a way we can leverage

their strengths to address the dynamic low-light setting?

Figure  5.2 describes our method. There are three players in this training protocol: a

teacher for motion (based on kernel prediction), a teacher for denoising (based on image

denoiser networks), and a student, which is the network we will eventually use. The two

teachers are individually pretrained using their respective imaging conditions. For example,

the motion teacher is trained using sequences of clean and dynamic contents, whereas the

denoising teacher is trained using sequences of noisy but static contents. During the training
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step, the teachers will transfer their knowledge to the student. During testing, only the

student is used.

Figure 5.2. Overview of the proposed method. The proposed student-
teacher setup consists of two teachers and a student. The motion teacher shares
motion features, whereas the denoising teacher shares denoising features. To
compare the respective feature differences, perceptual losses Lnoise and Lmotion
are defined. The student network has two encoders and one decoder. The final
estimates are compared with the ground truth using the MSE loss LMSE.

In order to transfer knowledge from two teachers, the student is designed to have two

branches - one branch duplicating the architecture of the motion teacher and another branch

duplicating the architecture of the denoising teacher. When training the student, we gen-

erate three versions of the training samples. The motion teacher sees training samples that

are clean and only contain motion, xmotion. The denoising teacher sees a training sample

containing no motion but corrupted by noise, xnoise. The student sees the noisy dynamic

sequence xmotion+noisy.

Because the student has identical branches to the teachers, we can compare the features

extracted by the teachers and the student. Specifically, if we denote φ(·) as the feature

extraction performed by the motion teacher, φ̂(·) the student motion branch, ϕ(·) the de-
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noising teacher, and ϕ̂(·) the student denoising branch, then we can define a pair of perceptual

similarities: the motion similarity

Lmotion = ‖φ̂(ymotion+noisy)︸ ︷︷ ︸
motion student

− φ(ymotion)︸ ︷︷ ︸
motion teacher

‖2 (5.1)

and the denoising similarity

Lnoise = ‖ϕ̂(ymotion+noisy)︸ ︷︷ ︸
denoising student

− ϕ(ynoisy)︸ ︷︷ ︸
denoising teacher

‖2. (5.2)

Intuitively, this pair of equations ensure that the features extracted by the student branches

are similar to those extracted by the respective teachers. These are the features that can be

extracted in good conditions. If this can be achieved, we will have a good representation of

the noisy dynamic sample, and hence we can do a better reconstruction.

The two student branches can be considered as autoencoders that convert the input

images to codewords. As shown on the right side of Figure  5.2 , we have a “decoder” which

translates the concatenated codewords back to an image. The loss function of the decoder

is given by the standard mean squared error (MSE) loss:

LMSE = ‖f(ymotion+noisy)− ytrue‖2, (5.3)

where f is the student network and so f(xmotion+noisy) denotes the estimated image. The

overall loss function is the sum of these losses:

Loverall = LMSE + λ1Lmotion + λ2Lnoise, (5.4)

where λ1 and λ2 are tunable parameters. Training the network is equivalent to finding the

encoders φ̂ and ϕ̂, and the decoder f .
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5.1.2 Choice of teacher and student networks

The proposed student-teacher framework is quite general. Specific to this paper, the two

teachers and the student are chosen as follows.

The motion teacher is the kernel prediction network (KPN) [  141 ]. We modify it by

removing the skip connections to maintain the information kept by the encoder. In addition,

we remove the pooling layers and the bilinear upsampling layers to maximize the amount of

information being fed to the feature layer. With these changes, the KPN becomes a fully

convolutional-deconvolutional network.

The denoising teacher we use is a modified version of REDNet [  142 ], which is also used

in another QIS reconstruction method [  106 ]. To differentiate this single-frame REDNet and

another modified version (to be discussed in the experiment section), we refer to this single-

frame REDNet denoising teacher as sRED. Like the motion teacher, we remove the residual

connections since they hurt the feature transfer in student-teacher learning.

The student network has two encoders and a decoder. The encoders have the same

architecture as the teachers. The decoder is a stack of 15 layers where each layer is a 128-

channel up-convolution. The entrance layer is used to concatenate the motion and denoising

features.

5.2 Experiments

5.2.1 Setting

Training data. The training data consists of two parts. The first part is for global

motion. We use the Pascal VOC 2008 dataset [ 148 ] which contains 2000 training images.

The second part is for local motion. We use the Stanford Background Dataset [  149 ] which

contains 715 images with segmentation. We randomly crop patches of size 64× 64 from the

images to serve as ground truth for both datasets. An additional 500 images are used for

validation. We shift the patches according to a continuous random camera motion to create

global motion. The number of pixels traveled by the camera ranges from 7 to 35 across

8 consecutive frames. This is approximately 1 m/s. We fix the background and shift the
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foreground using translations and rotations for local motion. The translation implementation

is the same as that of the global motion but applied to foreground objects. The rotation is

implemented by rotating the object with an angle ranging from 0 to 15 degrees.

Training the teachers. The motion teacher is trained using a set of noise-free and

dynamic sequences. The loss function is the mean squared error (MSE) loss suggested by

[ 141 ]. The network is trained for 200 epochs using the dataset described above. The denoising

teacher is trained using a set of noisy but static images. Therefore, for every ground-truth

sequence, we generate a triplet of sequences: A noise-free dynamic sequence for the motion

teacher, a noisy static image for the denoising teacher, and a noisy dynamic sequence for the

student. We remark that such a data synthesis approach works for our problem because the

simulated QIS data matches the statistics of real measurements.

Baselines. We compare the proposed methods with three existing dynamic scene recon-

struction methods: (i) BM4D [ 150 ], (ii) Kernel Prediction Network (KPN) [  141 ], and (iii) a

modified version of REDNet [  142 ]. Our modification generalizes REDNet to multi-frame in-

puts by introducing a 3D convolution at the input layer to pool the features. We refer to the

modified version as multi-frame RED (mRED). Note that mRED has residual connections

while sRED (denoising teacher) does not. We consider mRED a more fair baseline since it

takes an input of 8 consecutive frames rather than a single frame. For KPN, the original

method [  141 ] suggested using a fixed kernel size of K = 5; we modify the setting by defining

K as the maximum number of pixels traveled by the motion.

Implementation. All networks are implemented using Keras [  151 ] and TensorFlow [ 152 ].

The student-teacher training is done using a semi-annealing process. Specifically, the regu-

larization parameters λ1 and λ2 are updated once every 25 epochs such that λ1 and λ2 decay

exponentially for the first 100 epochs. For the next 100 epochs, λ1 and λ2 are set to 0 and

the overall loss function becomes Loverall = LMSE.

5.2.2 Synthetic experiments

We begin by conducting synthetic experiments. We first visually compare the recon-

structed images of the proposed method and the competing methods. Figure  5.3 shows some
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(a) QIS raw data, (b) Avg of (c) BM4D (d) KPN (e) mRED (f) Ours (g) Ground
1 frame 8 frames 23.04 dB 25.45 dB 26.42 dB 29.39 dB Truth

Figure 5.3. Simulated QIS data with linear global motion. (a) The raw
QIS image is simulated at 2 ppp, with a global motion of 28 pixels uniformly
spaced across 8 frames. (b) An average 8 QIS raw frames. (c) BM4D [ 150 ].
(d) KPN [  141 ]. (e) mRED, a modification of REDNet [ 142 ]. (f) Proposed
method. (g) Ground truth.

results using global translation. The motion magnitude is 28 pixels across 8 frames, at 2

ppp. Figure  5.4 shows some results using arbitrary global motion, at 4 ppp. The motion

trajectory is shown in the inset in the figure. Figure  5.5 shows some results of local mo-

tion. We simulate QIS data with a real motion video of 30 fps. The photon level is 1.5

ppp. The average inference time of KPN on a 512 × 512 patch is 0.0886 seconds using an

NVIDIA GeForce RTX 2080 Ti graphics card. For the same testing setting, mRED takes

0.0653 seconds, and the proposed method takes 0.1943 seconds. The average time for BM4D

(MATLAB version) is 23.6985 seconds.

To quantitatively analyze the performance, we use the global linear motion to plot two

sets of curves as shown in Figure  5.6 . In the first plot, we show PSNR as a function of

the motion magnitude. The magnitude of the motion is defined as the number of pixels

traveled along the dominant direction over 8 consecutive frames. As shown in Figure  5.6 (a),

the proposed method has a consistently higher PSNR compared to the three competing

methods, ranging from 1.5 dB to 3 dB. The higher PSNR suggests that the presence of both

teachers has provided a positive impact on solving the motion and noise dilemma, which is
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(a) QIS raw (b) avg 8 frames (c) Ours (d) Ground truth

Figure 5.4. Simulated QIS data with arbitrary global motion. (a) QIS
raw data simulated at 4 ppp. The motion trajectory is shown in the inset. (b)
Average of 8 frames. (c) Proposed method. (d) Ground truth.

(a) QIS raw (b) avg 8 frames (c) Ours (d) Ground truth

Figure 5.5. Simulated QIS data with local motion. In this example,
only the car moves. The background is static. (a) Raw QIS frame assuming
1.5 ppp. (b) The average of 8 QIS frames. (c) Proposed method. (d) Ground
truth.

difficult for both KPN and mRED. The second set of curves is shown in Figure  5.6 (b) and

reports PSNR as a function of the photon level. The curves in Figure  5.6 (b) suggest that for

the photon levels we have tested, the performance gap between the proposed method and

the competing methods is consistent, which provides additional evidence of the effectiveness

of the proposed method.

5.2.3 Real experiments

We verify the results using real QIS data. The real data is collected using a prototype

Gigajot PathFinder camera [  46 ]. The camera has a spatial resolution of 1024 × 1024. The

integration time of each frame is 75 µs. Each reconstruction is based on 8 consecutive QIS

171



(a) PSNR vs. Motion (b) PSNR vs. Photon Level
at photon level of 2 ppp at motion magnitude of 4 pixels

Figure 5.6. Quantitative analysis using synthetic data. (a) PSNR as a
function of the motion magnitude, at a photon level of 2 ppp. The magnitude
of the motion is defined as the number of pixels traveled along the dominant
direction, over 8 consecutive frames. (b) PSNR as a function of photon level.
The motion magnitude is fixed at 4 pixels, but the photon level changes.
Our method consistently outperforms BM4D [  150 ], KPN [  141 ], and mRED (a
modified version of [ 142 ]).

frames. When this experiment was conducted, the readout circuit of this camera was still

a prototype that was not optimized for speed. Thus, instead of demonstrating a real high-

speed video, we capture a slowly moving real dynamic scene where the motion is continuous

but slow. We make the exposure period short so that it is equivalent to a high-speed video.

We expect the problem to be solved in the next generations of QIS.

The physical setup of the experiment is shown in Figure  5.7 (a). We put the camera

approximately 1 meter away from the objects, and a light source controls the photon level.

The objects are mounted on an Ashanks SmoothONE C300S motorized camera slide to

create motion, which allows us to control the location of the objects remotely. The “ground

truth” (reference images) in this experiment is obtained by capturing a static scene via 8

consecutive QIS frames. Since these static images are noisy (due to photon shot noise), we

apply mRED to denoise the images before using them as references.

A visual comparison for this experiment is shown in Figure  5.8 . The quantitative analysis

is shown in Figure  5.7 (b), where we plot the PSNR curves as functions of the number of
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(a) Experimental Setup (b) PSNR vs. motion (pixels)

Figure 5.7. (a) Setup of QIS data collection. The QIS camera is placed 1
meter from the object attached to a motorized slider. The lens’s horizontal field
of view (FOV) is 96.8◦. The motion is continuous but slow. (b) Quantitative
analysis on real data. The plot shows the PSNR values as a function of the
motion magnitude under a photon level of 0.5 ppp. The “reference” in this
experiment is determined by reconstructing an image using a stack of static
frames of the same scene. The reconstruction method is based on [  106 ]

(a) QIS raw (b) Average (c) KPN (d) mRED (e) Ours (f) Reference
1 frame 8 frames 25.08 dB 25.33 dB 30.97 dB

Figure 5.8. Real QIS data. (a) A snapshot of a real QIS frame captured at
2 ppp per frame. The number of pixels traveled by the object over the 8 frames
is 28 pixels. (b) The average of 8 QIS frames. Note the blur in the image.
(c) Reconstruction result of KPN [ 141 ]. (d) Reconstruction result of mRED,
a modification of [  142 ]. (e) Our proposed method. (f) Reference image is a
static scene denoised using mRED.

pixels traveled by the object. As we can see, the performance of the proposed method and

the competing methods are similar to those reported in the synthetic experiments. The gap
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appears to be consistent with the synthetic experiments. An additional real data experiment

is shown in Figure  5.9 , where we use QIS to capture a rotating fan scene.

(a) Real image by QIS (b) Real image by QIS (c) Our reconstruction
1 frame, 1.5 ppp avg of 8 frames, 1.5 ppp using 8 QIS frames

Figure 5.9. Real QIS data with rotational motion. The image is captured
at 1.5 ppp. Note the motion blur in the 8-frame average.

5.2.4 Ablation study

We conducted an ablation study to evaluate the significance of the proposed student-

teacher training protocol. Figure  5.10 summarizes the 5 configurations we study. Config A

is a vanilla baseline where the denoising and motion teachers are pretrained. Config B uses

a single encoder instead of two encoders. Ours-I uses a student-teacher set up to train the

denoising encoder. Ours-II is similar to Ours-I, but we use the motion teacher in place of the

denoising teacher. Ours-full uses both teachers. All networks are trained using the same set

of noisy and dynamic sequences. The experiments are conducted using synthetic data at a

photon level of 1 ppp and a motion of 28 pixels across 8 frames. The results are summarized

in Table  5.1 .

Is student-teacher training necessary? Configurations A and B do not use any

teacher. Compared to Ours-full, the PSNR values of Config A and Config B are worse by

more than 1dB. Even if we compare with a single teacher, e.g., Ours-I, it is still 0.8dB ahead

of Config B, which implies that the student-teacher training protocol positively impacts

performance.
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Table 5.1. Ablation study results. This table summarizes the influence
of different teachers on the proposed method. The experiments are conducted
using synthetic data, at a photon level of 1 ppp and a motion of 28 pixels along
the dominant direction.

Configuration # of Encoders Which Teacher? Test PSNR
A 2 None 21.51 dB
B 1 None 22.74 dB

Ours-I 2 Denoising 23.53 dB
Ours-II 2 Motion 23.65 dB

Ours-full 2 Both 23.87 dB

(a) Config A (b) Config B (c) Ours-I (d) Ours-II (e) Ours-full

Figure 5.10. Configurations for ablation study. (a) Config A: Uses
pretrained teachers. (b) Config B: Uses a single encoder instead of two smaller
encoders. (c) Ours-I: Uses denoising teacher only. (d) Ours-II: Uses motion
teacher only. (e) Our-full: The complete model. In this figure, blue layers are
pretrained and fixed. Orange layers are trainable.

Do teacher encoders extract meaningful information? Config A uses two pre-

trained encoders and a trainable decoder. The network achieves 21.51dB, which means

that some features are helpful for reconstruction. However, compared with Ours-full, it is

substantially worse (23.87dB compared to 21.51dB). Since the network architectures are

identical, the performance gap is likely caused by the training protocol, indicating that the

student-teacher setup is better for transferring knowledge from teachers to a student network.

Which teacher to use? Configurations Ours-I and Ours-II both use one teacher. The

results suggest that if we only use one teacher, the motion teacher has a slight gain (0.1dB)

over the denoising teacher. However, if we use both teachers as the proposed method, we

observe another 0.2dB improvement. Thus, the presence of both teachers is helpful.
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5.3 Final thoughts

We have proposed a deep learning based burst image processing algorithm that can take 8

QIS frames as input and produce a clean denoised image. The method uses student-teacher

learning. Using student-teacher learning, we were able to bring together the best of two

worlds - 1. noiseless burst reconstruction and 2. static denoising. We use teachers that are

trained for each of these specific tasks separately. The teachers distill the knowledge into

the student network to deal with both motion and noise at the same time. We have shown

that the proposed method can outperform the existing state-of-the-art.

5.3.1 Where to, from here?

We have demonstrated that even with as few as 8 frames, we can reconstruct a good

image when the scene is moving and at low light. However, the proposed method is too rigid

and will not work for other settings. It is essential to make the proposed method adaptive to

any number of frames and bit-depths. It will be interesting to see how we can combine the

dynamic scene reconstruction with the color reconstruction we saw in chapter  4 . Another

critical aspect of the problem is that these low bit-depth reconstruction methods need fast

output rates, for which we need to make the methods lightweight to improve the inference

time. The student-teacher training scheme we have introduced here is an exciting idea.

We will later see how we can utilize it for classification and object detection in chapter  7 .

Based on [ 153 ], the student-teacher learning also can shrink networks which could be used

to achieve the goal of reducing the inference time.

176



6. LOW LIGHT NON-BLIND DEBLURRING

Image deblurring is a classical restoration problem where the goal is to recover a clean image

from an image corrupted by a blur due to motion, camera shake, or defocus. In the simplest

setting assuming a spatially invariant blur, the forward image degradation problem is

y = h ∗ x + η, (6.1)

where x ∈ RN is the clean image to be recovered from the corrupted image y ∈ RN , the

vector h ∈ Rd denotes the blur kernel, η ∈ RN denotes the additive i.i.d Gaussian noise,

and “∗” denotes the convolution operator. The deblurring problem can be further classified

as non-blind and blind. A non-blind deblurring problem assumes that the blur kernel h is

known whereas a blind-deblurring problem do not make such an assumption. In this work,

we focus on the non-blind case.

While non-blind deblurring methods are abundant [  154 ]–[ 159 ], the majority are designed

for well-illuminated scenes where the noise is i.i.d. Gaussian and the noise level is not

too high. However, as one pushes the photon level low enough that the photon shot noise

dominates, the deblurring task is no longer as simple. As illustrated in Figure  6.1 which is a

real low-light example we captured using a Canon T6i camera at a photon level approximately

5 lux, the observed image is not only dark but is strongly contaminated by photon shot noise

(which is visible in the histogram equalized image). Given the blur kernel, our goal is to

recover the image.

The operating regime of the proposed method is illustrated in Figure  6.2 we use another

real low-light image to compare this work and other mainstream deblurring algorithms. We

highlight the raw sensor capture (shown in the bottom left of each sub-figure) and the tone-

mapped image (shown in the top right of each sub-figure) at different illumination levels.

Our algorithm is specifically designed for an illumination level of 1 lux or lower.

Under such a severe lighting condition, state-of-the-art algorithms have a hard time

working. In Figure  6.3 we use the deep Wiener deblurring network [  158 ] to deblur the image.

When the illumination is strong, the method performs well. But when the illumination is
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(a) Raw camera image (b) Histogram equalized image (c) Our reconstruction

Figure 6.1. Overview. The goal of this work is to present a new algorithm
that reconstructs images from blur at a photon-limited condition.

Raw Image

Tone Mapped

0.5 lux

𝛼 ≈ 2.5
0.1 lux

𝛼 ≈ 0.25

5 lux

𝛼 ≈ 25
100 lux

𝛼 ≈ 500

Our Work Mainstream Deblurring

PSF

Figure 6.2. Comparison of photon-limited scenes (Left) with rel-
atively well illuminated scenes (Right). Raw images and their tone
mapped versions taken in different illuminations and blurred by defocus are
shown in the figure. As illumination of the scene decreases, the photon shot
noise becomes more dominant, making the deblurring problem substantially
more difficult - as shown in Figure  6.3 . In this work, we address the problem
of non-blind deblurring in a photon-limited setting i.e. when the number of
photons captured by the sensor is low leading to corruption of images by the
photon shot noise.

weak, the algorithm performs poorly. We remark that this observation is common for many

mainstream deblurring algorithms.
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Figure 6.3. Limitation of existing image deblurring algorithms when
applied to low-light images. In this example we use the pre-trained neural
network [ 158 ] to recover a well-illuminated scene and a poorly-illuminated
scene. The method fails because of the noise, even though the deblurring in a
well-illuminated scene is satisfactory.

The present problem is best described as photon limited non-blind deblurring. It is a

common problem for a variety of applications such as microscopy [ 160 ] and astronomy [ 161 ].

One should note that photon-limited imaging is a problem even if we use a perfect sensor

with zero read noise and 100% quantum efficiency. The photon shot noise still exists due to

the stochasticity of the photon arrival process [ 48 ]. Therefore, the solution presented in this

work is pan-sensor, meaning that it can be applied to the standard CCD and CMOS image

sensors and the more advanced quanta image sensors (QIS) [ 21 ], [ 23 ], [ 26 ].
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6.0.1 Problem formulation

Consider a monochromatic image x ∈ RN normalized to [0, 1]. We write the blurred

image as Hx where H ∈ RN×N represents the blur kernel h in the matrix form. In photon-

limited conditions, the observed image is given by

y = Poisson(α ·Hx), (6.2)

where Poisson(·) denotes the Poisson process, and α is a scalar to be discussed. The likelihood

of the observed image y follows the Poisson probability distribution:

p(y | x; α) =
N∏

j=1

[αHx]yj
j e−[αHx]j

yj!
, (6.3)

where [ · ]j denotes the jth element of a vector. The scalar α represents the photon level. It

is a function of the sensor’s properties (e.g. quantum efficiency), camera settings (exposure

time, aperture), and illumination level of the scene. For a given illumination, the photon

level α can be increased by increasing the exposure time or the aperture. To give readers a

better idea of the photon level α, we give a rough estimate of the photon flux (measured in

terms of lux level) in Table  6.1 under a few typical imaging scenarios. 

1
 

Table 6.1. Lighting condition and illumination level
Lighting condition Illumination

(lux)
Sunset 400
Dimly-lit Street 20-50
Moonlight 1
α = 5 (This work) 1

1
 ↑ To estimate the photon level α from the photon flux level, we set the scene illumination to 1 lux (measured

using a light meter) and measure the corresponding photons-per-pixel from the image sensor data captured
using a Canon EOS Rebel T6i.
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6.0.2 Contributions and scope

Photon-limited non-blind deblurring is a special case of the Poisson linear inverse prob-

lem. We limit the scope to deblurring so that we can demonstrate the algorithm using real

low-light data.

Existing photon-limited deblurring methods are mostly deterministic [  162 ]–[ 164 ]. To

overcome the limitation of these methods, in this work we present a deep-learning solution.

We make two contributions:

1. We propose an unrolled plug-and-play (PnP [  115 ], [  165 ]) algorithm for solving the

non-blind deblurring problem in photon-limited conditions. Unlike existing work such

as [ 166 ] which uses an inner optimization to solve the Poisson proximal map, we use

a three-operator splitting technique to turn all the sub-routines differentiable. This

allows us to train the unrolled network end-to-end (which is previously not possible),

and hence makes us the first unrolled network for Poisson deblurring.

2. We overcome the difficulty of collecting real photon-limited motion blur kernels and

images for algorithm evaluation. A dataset containing 30 low-light images and the

corresponding blur kernels are produced. We make this dataset publicly available.

6.1 Related Work

6.1.1 Poisson deconvolution

Poisson deconvolution has been studied for decades because of its important applications

[ 167 ]. One of the earliest and the most cited works is perhaps the Richardson-Lucy (RL)

algorithm [ 163 ], [  164 ]. The method assumes a known blur kernel and derives an iterative

scheme which converges to the maximum-likelihood estimate (MLE) of the deconvolution

problem. The RL algorithm was applied to problems such as emission tomography [ 168 ]

and confocal microscopy [  169 ], [ 170 ]. However, since the prior is not used, the quality of

reconstruction is limited.

Another class of iterative methods is based on maximum-a-posteriori (MAP) estimation

by using a signal prior. For example, PIDAL-TV [ 171 ] solves a MAP cost function with the
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total-variation (TV) regularization using an augmented Lagrangian framework. Similarly,

the sparse Poisson intensity reconstruction algorithm (SPIRAL) [  172 ] looks for sparse so-

lutions in an orthonormal basis, whereas [  173 ] solves a MAP cost function with multiscale

prior using the expectation-maximization algorithm.

Shrinkage based approaches such as PURE-LET [  162 ] assume the deconvolution output

to be a linear combination of elementary functions and minimize the expected mean squared

error under a joint Poisson-Gaussian noise model. This boils down to solving a linear system

of equations and has been also used to solve denoising, deblurring processes under Gaussian

noise assumptions [ 174 ], [ 175 ].

Denoising under Poisson noise conditions can be viewed as a special case of the deblurring

problem. One of the widely used techniques for Poisson denoising is the variance stabiliz-

ing transforms (VST) which applies the Anscombe transform [  112 ] to stabilize the spatially

varying noise variance. A standard denoising method is then used, followed by the inverse

Anscombe transform. In [ 176 ], it was shown that an optimal inverse transform can outper-

form other standard Poisson denoising methods such as [ 177 ], [  178 ]. The method in [  110 ]

provides an iterative version of the denoising via VST scheme by treating last iteration’s

denoised image as scaled Poisson data.

6.1.2 Plug-and-play

The Plug-and-play (PnP) framework was first introduced in [  115 ] as a general purpose

method to solve inverse problems by leveraging an off-the-shelf denoiser. Since then, the

framework has been applied to different problems like bright field electron tomography [ 179 ]

and magnetic resonance imaging (MRI) [ 180 ]. Using the same principle but with the half-

quadratic splitting scheme, [  181 ] demonstrated the use of a single denoiser for different image

restoration tasks such as super-resolution, deblurring, and inpainting. Variations of PnP

have also been used for Poisson deblurring [  166 ], [  182 ] and non-linear inverse problems [ 183 ].

A stochastic version of the scheme (PnP stochastic proximal gradient method) has been

proposed for inverse problems with prohibitively large datasets [  184 ]. Using the consensus
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equilibrium (CE) framework [ 185 ], the scheme can be extended to fuse multiple signal and

sensor models.

The convergence of the Plug-and-Play scheme has been studied in detail. For example,

[ 165 ] provided a variation of the scheme which was provably convergent under the assump-

tions of a bounded denoiser and its performance was analysed under assumptions of a graph

filter denoiser in [  186 ]. [  187 ] showed that if a denoiser satisfies certain Lipshitz conditions, the

corresponding Plug-and-Play scheme can be shown to converge. Furthermore, the authors

proposed real-spectral normalization as a way to impose the conditions on deep-learning

based denoisers.

A closely related method which provides a framework to solve inverse problems using

denoisers is REgularization by Denoising (RED) [ 188 ], [  189 ]. The framework poses the

cost function for an inverse problem as sum of a data term and image-adaptive Laplacian

regularization term. This allows the resulting iterative process to be written as a series of

denoising steps. In [  190 ], it was mentioned that for RED to be valid the denoiser needs to

have a symmetric Hessian.

6.1.3 Algorithm unrolling

The difficulty of running PnP and RED is that they need to iteratively use a deep

network denoiser. An alternative way to implement the algorithm was proposed by Gregor

and LeCun in 2010 [ 191 ] to unroll an iterative algorithm and train it in a supervised manner.

For example, one can unroll the iterative shrinkage threshold algorithm (ISTA) for the

purpose of approximating sparse codes of an image. The idea of unrolled networks has been

employed in various image restoration tasks such as super-resolution [ 192 ], deblurring [ 193 ],

[ 194 ], compressive sensing [ 195 ], and haze removal [  196 ]. For a more extensive review of

algorithm unrolling, we refer the reader to [  197 ]. More recently, there are new attempts to

relax the fixed iteration structure of unrolling by analyzing the equilibrium of the underlying

operators [ 198 ] .

As stated in [  197 ], unrolling iterative algorithms provide multiple advantages compared

to generic deep learning architectures. For example, the unrolled networks provide greater
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interpretability and are often parameter efficient compared to their counterparts such as the

U-Net [  126 ]. Since the networks are unrolled version of iterative algorithms, they are less

susceptible to problem of overfitting.

6.2 Method

6.2.1 Algorithm unrolling

The proposed solution for the Poisson deblurring problem is to unroll the iterative PnP

algorithm. The idea is that we start by deriving the PnP iterative update steps. In the

“unrolled” version of the iterative algorithm, each iteration is treated as a computing block.

Each computing block has its own set of trainable parameters. The blocks are concatenated

in series with each other. The output at the end of the last block is used as the target for a

supervised loss to fine-tune the trainable parameters.

Before describing the iterative algorithm we aim to unroll, we briefly describe the under-

lying cost function. Most inverse problem algorithm aim to determine the MAP estimate of

the underlying signal x by maximizing the log-posterior

x∗ = argmax
x

[
log p(y | x) + log p(x)

]
, (6.4)

where p(x) denotes the natural image prior. Plugging ( 6.3 ) in (  6.4 ) and taking the negative

of the cost function, the maximization becomes

x∗ = argmin
x

[
α1T Hx− yT log(αHx)− log p(x)

]
, (6.5)

where 1 represents the all-one vector. Note that the factorial term log y! has been dropped

since it is independent of x. The prior p(x) has not been explicitly specified yet and this

issue will be addressed through the use of a denoiser in the next subsection.
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6.2.2 Conventional PnP for Poisson inverse problems

Now we describe how the Plug-and-Play method can be applied to the Poisson deblurring

problem. We start with the alternate direction of method of multipliers (ADMM) [ 199 ]

formulation – where we convert the unconstrained optimization problem to a constrained

optimization problem by performing the variable splitting x = z

{x∗, z∗} = argmin
x,z

[
− log p(y | x)− log p(z)

]
,

subject to x = z, (6.6)

At the minimum of the above optimization problem, the constraint x∗ = z∗ must be satisfied

and hence the constrained optimization solution is equivalent to the unconstrained solution

in ( 6.5 ).

The augmented Lagrangian associated with the constrained problem in ( 6.6 ) is

{x∗, z∗, u∗} = argmin
x,z

[
α1T Hx− yT log(αHx)

− log p(z) + ρ

2‖x− z + u‖2 − ρ

2‖u‖
2
]
,

(6.7)

where u denotes the scaled Lagrange multiplier corresponding to the constraint x = z, and

ρ denotes the penalty parameter. The corresponding iterative updates are:

xk+1 = argmin
x

[
α1T Hx− yT log(αHx) + ρ

2‖x− x̃k‖2
]

︸ ︷︷ ︸
Proximal operator for the negative log-likelihood

, (6.8a)

zk+1 = argmin
z

[
− log p(z) + ρ

2‖z − z̃k‖2

︸ ︷︷ ︸
]

Proximal operator for the negative-log-prior

, (6.8b)

uk+1 = uk + (xk+1 − zk+1), (6.8c)

with x̃k def= zk − uk and z̃k def= xk + uk. In the Plug-and-Play framework [ 76 ], [ 115 ], the z

update in ( 6.8b ) is implemented by an image denoiser.
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The difficulty of solving the above problem is that the x-update in (  6.8a ) does not

have a closed form expression for the Poisson likelihood. Thus (  6.8a ) needs to be solved

using an inner-loop optimization method such as L-BFGS [ 200 ]. Unrolling this inner-loop

optimization solver can be inefficient as it may not be differentiable. Hence unrolling the

PnP scheme for the Poisson inverse problem using the existing framework is infeasible. To

be more specific, while the z-update in (  6.8b ) can be implemented as a neural network

and hence is differentiable, the same cannot be said for x-update in (  6.8a ). As shown in

Figure  6.4 , when ( 6.8a ) is solved using another iterative method such as L-BFGS (for e.g. in

[ 166 ]), it is not differentiable. As a result, training the unrolled network via backpropagation

is not possible unless ( 6.8a ) can be made differentiable.

6.2.3 Three-operator splitting for Poisson PnP

As explained in the previous subsection, the current framework does not allow for algo-

rithm unrolling. To circumvent this issue, we use an alternate three-operator formulation of

the PnP-framework. Through this reformulation of Plug-and-Play, we derive a series of iter-

ative updates where each step can be implemented as a single-step that is differentiable. The

three-operator splitting strategy we use here has been used in context of Poisson deblurring

in [ 171 ], [ 201 ] and [ 182 ] using a TV and BM3D denoiser respectively.

In this scheme, instead of a two-operator splitting strategy for conventional PnP in Equa-

tion ( 6.6 ), we use three-operator splitting to form the corresponding constrained optimization

problem. Specifically, in addition to splitting the variable as x = z, we introduce a third

variable v corresponding to blurred image Hx and hence the constraint Hx = v.

{x∗, z∗, v∗} = argmin
x,z,v

[
− yT log(αv) + α1T v + log p(z)

]
,

subject to x = z, and Hx = v. (6.9)
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Figure 6.4. Conventional two-operator splitting Plug-and-Play. Con-
ventional Plug-and-Play applied to the Poisson deblurring problem using equa-
tions (  6.8a ) and ( 6.8b ). While ( 6.8b ) is implemented as an image denoiser and
hence differentiable, x-update i.e. (  6.8a ) is implemented as a convex opti-
mization solver and hence not differentiable. This makes the conventional
PnP infeasible for fixed iteration unrolling and hence end-to-end training.

After forming the corresponding augmented Lagrangian, we arrive at the following iterative

updates:

xk+1 = argmin
x

[
ρ1

2 ‖x− x̃k
0‖2 + ρ2

2 ‖Hx− x̃k
1‖2

]
, (6.10a)

zk+1 = argmin
z

[
− log p(z) + ρ1

2 ‖z − z̃k
1‖2

]
, (6.10b)

vk+1 = argmin
v

[
− yT log(αv) + α1T v + ρ2

2 ‖v − ṽk‖2
]
, (6.10c)

uk+1
1 = uk

1 + xk+1 − zk+1, (6.10d)

uk+1
2 = uk

2 + Hxk+1 − vk+1, (6.10e)

where x̃k
0

def= zk+1 − uk
1, x̃k

1
def= vk+1 − uk

2, vk def= Hxk + uk
2, and z̃k def= xk + uk

1. Similar

to the PnP formulation described in last subsection, the vectors u1, u2 denote the scaled

Lagrangian multipliers for the constraints x − z = 0 and Hx − v = 0 respectively. The

scalars ρ1, ρ2 denote the corresponding penalty parameters.

Each of the subproblems defined in (  6.10a ,  6.10b ,  6.10c ) have a closed form solution and

are described below:
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x-subproblem: (  6.10a ) is a least squares minimization problem, whose solution can be

explicitly given as follows:

xk+1 = (I + (ρ2/ρ1)HT H)−1(x̃k
0 + (ρ2/ρ1)HT x̃k

1). (6.11)

Since H represents a convolutional operator, the operation can be performed without any

matrix inversions using Fourier Transforms.

xk+1 = F−1
[F(x̃k

0) + (ρ2/ρ1)F(h)F(x̃k
1)

1 + (ρ2/ρ1) | F(h) |2
]
, (6.12)

where F(·) represents the discrete Fourier transform of the image or blur kernel implemented

using the Fast Fourier Transform after appropriate boundary padding. We refer to it as the

deblurring operator.

z-subproblem: (  6.10b ) is a proximal operator for the negative log prior term. Using the

insight provided in Plug-and-Play scheme, ( 6.10b ) can be viewed as a denoising operation

zk+1 = D(z̃k), (6.13)

where D(·) is any image denoiser. For end-to-end training, we require D(·) to be differentiable

and trainable – a property satisfied by all convolutional neural network denoisers.

v-subproblem: (  6.10c ) is a convex optimization problem but can be solved without an

iterative procedure. Separating out each component of the vector minimization and setting

the gradient equal to zero gives the following equation

− [y]i
[vk+1]i

+ α + ρ2([vk+1]i − [ṽk]i) = 0, (6.14)

for i = 1, 2, ···, N . Solving the resulting quadratic equation and ignoring the negative solution

gives the following update step

vk+1 =
(ρ2ṽ

k − α) +
√

(ρ2ṽ
k − α)2 + 4ρ2y

2ρ2
, (6.15)
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Since the optimization problem in (  6.10c ) is a sum of the the negative log-likelihood for

Poisson noise and a quadratic penalty term, we refer to this update as Poisson proximal

operator.

Algorithm 1 Three-Operator Splitting for Poisson PnP
1: Input: Blurred and Noisy Image y, kernel h, Photon level α

2: Initialize x0 using ( 6.16 )

3: z0 ← x0, v0 ← y u0
1 ← 0, u0

2 ← 0

4: for k = 1, 2, · · ·, K do

5: Update xk using Eq. (  6.12 )

6: Update zk using Eq. (  6.13 )

7: Update vk using Eq. (  6.15 )

8: uk
1 ← uk−1

1 + xk − zk

9: uk
2 ← uk−1

2 + Hxk − vk

10: end for

11: return xK

The convergence of Algorithm  1 has been derived in [  171 ]. It was shown that as long

as G = [HT , I]T has a full column rank, the three-operator splitting scheme converges.

Furthermore, assuming the denoiser D is continuously differentiable and ∇D(·) is symmetric

with eigenvalues in [0, 1], convergence results in [  179 ] show that the corresponding negative-

log prior, i.e., − log(p(·)) is closed, proper and convex. Combined with the result from [  171 ],

it can be shown that the three-operator PnP scheme in Algorithm  1 converges.

6.2.4 Unfolding the three-operator splitting

With an end-to-end trainable iterative process, we can now describe the unfolded iter-

ative network. The Plug-and-Play updates described in Algorithm  1 are now unfolded for

K = 8 iterations and the entire differentiable pipeline is trained in a supervised manner, as

summarized in Figure  6.5 .
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Figure 6.5. Proposed unrolled Plug-and-Play for deblurring. For con-
ventional PnP, the data sub-problem cannot be solved in a single step and
instead requires convex optimization solvers. This stops us from unrolling the
iterative procedure and training it end-to-end via back-propagation. Through
the three-operator splitting formulation of the problem, each sub-module in an
iteration is in closed form and more importantly, differentiable. This allows for
end-to-end training which was not possible in conventional PnP. The network
below the input represents the hyperparameter network which predicts ρ1 and
ρ2 using the blur kernel and the photon level.

Initialization: To initialize the variable x0, we use the Wiener filtering step (not to be

confused with [ 158 ]) :

x0 = 1
α
F−1

 F(h)F(y)
1/α+ | F(h) |2

, (6.16)

where the constant factor 1/α in the denominator represents the inverse of the signal-to-noise

ratio of the blurred measurements. Note that this step can be derived as an `2 regularized

solution of the deconvolution problem as well.

Hyperparameters: The parameters used in updates ( 6.10a ), ( 6.10c ) – ρ1, ρ2 are changed

for each iteration and determined in one-shot by the blurring kernel h and photon level α as

they control the degradation of the image. The kernel h is used as input to 4 convolutional
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layers, flattened to a vector of length 1024. Along the with the photon level α, the flattened

vector is used as an input to a 3-layer fully connected network which output two set of

vectors i.e. {ρ1
1, ρ2

1, ..., ρK
1 } and {ρ1

2, ρ2
2, ..., ρK

2 }. We refer the readers to the supplementary

document for further architectural details.

Note that there is no ground-truth assumed for parameters ρ1, ρ2 as the hyperparameter

network described above is trained simultaneously as rest of the parameters of the network.

Denoiser: For the denoiser used in (  6.13 ), we use the architecture provided in [  192 ] which

introduces skip connections in a U-Net architecture known as ResUNet. Like a standard U-

Net, there are four downsampling operations followed by 4 upsampling operations with skip

connections between the upsampling and downsampling operators. For further details of the

architecture we refer the readers to [  192 ] or the supplementary document. Note that in our

implementation of the architecture, we do not concatenate the denoiser input z̃k with a noise

level.

6.3 Experiments

6.3.1 Training

We train the network described in section  6.2 using `1-loss function. We use images

from the Flickr2K [  202 ] dataset to train the network. The dataset contains a total of 2650

images of which we partition using a 80/20 split for training and validation. All images are

converted to gray-scale, scaled to a size of 256 × 256, and are blurred using motion kernels

generated from [  203 ] and Gaussian blur kernels. Due to memory limits of GPU, random

patches of size 128× 128 were cropped and used as inputs for the network during training.

For training, a combination of 60 motion kernels generated from [  203 ] and 10 isotropic

gaussian blur kernels with σ varying from
[
0.1, 2.5

]
were used. All the kernels were pre-

generated prior to training and were randomly selected during training. Entries of the blur

kernel are non-negative and sum to 1. Photon Shot noise is synthetically added to the blurred

image according to ( 6.2 ). The photon level α is uniformly sampled from the range
[
1, 60

]
.

The inputs to the network consist of the blurred and corrupted image y, the normalized

blur kernel h, and the photon noise level α. The output from the network is the reconstructed
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Figure 6.6. Quantitative evaluation. Comparison of PSNR and SSIM of
the different methods on Levin et. al. dataset [  204 ]. The dataset consists of 32
blurred images generated by blurring 4 images by 8 motion kernels and average
PSNR/SSIM for all images and kernels plotted for different photon levels. The
images were corrupted by Poisson noise at photon levels α = 5, 10, 20, 40 and
60.

image xK where K denotes the number of iterations for which the scheme is unrolled for.

We set the the number of iterations in our implementation to K = 8. Using the `1-loss

function, we train the network with Adam optimizer [  205 ] using a learning rate 1×10−4 and

batch size of 5 for 100 epochs. All the parameters of the network are initialized using Xavier

initialization [ 206 ] and is implemented in Pytorch 1.7.0. For training, we use an NVIDIA

Titan Xp GP102 GPU and it takes approximately 20 hours for training to complete.

6.3.2 Choice of Deblurring Methods for Comparison

Before describing the results of quantitative evaluation, we briefly discuss the other de-

blurring approaches we compare our method with. The methods, namely RGDN [ 154 ],

DWDN [ 158 ], DPIR [ 181 ], and PURE-LET [ 162 ], were chosen because they give state-of-

the-art results on the deblurring problem and because they represent different contemporary

approaches to solving the non-blind deconvolution problem.

RGDN (Recurring Gradient Descent Network) is an unrolled optimization method.

More specifically, the authors take the deconvolution cost function ‖y − k ∗ x‖2 + Ω(x)
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and provide a gradient descent iterative scheme for it. The second term in the cost func-

tions represents image prior and the corresponding gradient term ∇Ω(x) is estimated using

a convolutional neural network and the network, after being unrolled for fixed iterations, is

trained end-to-end.

Deep-Weiner Deconvolution (DWDN) can be viewed as a hybrid deconvolution/de-

noising method. As a U-Net denoiser converts an image into a smaller feature space and then

reconstructs the image using a decoder, DWDN first extracts features, performs Weiner de-

convolution in that feature space, and then followed by decoding to a clean image. Through

this architecture choice, they are able to perform denoising through the encoder-decoder

structure but also deblur the image using Weiner deconvolution.

DPIR (Deep Plug-and-Play Image Restortation) uses a pre-trained denoiser in a

half-quadratic splitting scheme and represents a state-of-the-art method which can be used

for general purpose linear inverse problems like super-resolution and deblurring. Like our

approach, it also boils down to a iterative series of denoising and deblurring steps.

PURE-LET (Poisson Unbiased Risk Estimate - Linear Expansion of Thresh-

olds) proposes the solutions as a linear combination of basis function whose weights are

determined by minimizing the unbiased estimate of the mean squared loss under given noise

conditions. While not a deep-learning method, it performs surprisingly competitively and

can incorporate both Poisson shot noise and Gaussian read noise explicitly.

Table 6.2. Different features of methods used in this work for
Poisson deblurring. We classify the methods based on three criteria -
iterative/non-iterative, end-to-end trainability and whether the model explic-
itly incorporates the fact that the images are corrupted by Poisson shot noise.

Method Iterative? End-to-End Trainable? Handles Poisson Noise?
RGDN [ 154 ] 3 3 5

PURE-LET [ 162 ] 5 5 3

DWDN [ 158 ] 5 3 5

DPIR [ 181 ] 3 5 5

Ours 3 3 3
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6.3.3 Quantitative Evaluation

The results are summarized in Figure  6.6 . We evaluate our method using syntheti-

cally generated noisy blurred images on 100 images from the BSDS300 dataset [  207 ], from

now on referred to as BSD100. We evaluate the performance on different photon levels

(α = 5, 10, 20, 40) representing various levels of degradation in terms of signal-to-noise ratio.

We test the methods for different blur kernels - specifically 4 isotropic Gaussian kernels, 4

anisotropic Guassian kernels, and 4 motion kernels, as illustrated in Figure  6.7 . Note that

the top-left kernel’s width is very small - this can be viewed as an identity operator and hence

equivalent to evaluating the method’s performance on denoising (as opposed to deblurring).

Isotropic Gaussian

Anisotropic Gaussian

Motion Kernel

Figure 6.7. Kernels used for evaluation on BSD100 dataset.
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As described in the previous subsection, we compare our method with the following

deblurring methods - RGDN, PURE-LET, DWDN, and DPIR. Different features of the

abovementioned deconvolution approaches have been summarized in Table  6.2 for reader’s

convenience. For the sake of a fair comparison, the end-to-end trainable methods RGDN

and DWDN were retrained using the same procedure as that of our method.

Table 6.3. Comparison of proposed method with other competing
approaches on BSD100 dataset

Photon Level Kernel RGDN [ 154 ] PURE-LET [ 162 ] DWDN [ 158 ] DPIR [ 181 ] Ours

α = 5

Isotropic PSNR (dB) 21.77 22.78 22.50 22.33 23.46
Gaussian SSIM 0.440 0.502 0.493 0.431 0.531

Anisotropic PSNR (dB) 21.62 22.22 22.19 21.92 22.70
Gaussian SSIM 0.427 0.463 0.464 0.409 0.491

Motion PSNR (dB) 21.14 21.49 21.54 21.35 22.12
SSIM 0.377 0.419 0.413 0.377 0.433

α = 10

Isotropic PSNR (dB) 22.57 23.54 22.86 23.17 24.24
Gaussian SSIM 0.491 0.549 0.527 0.476 0.576

Anisotropic PSNR (dB) 22.30 22.81 22.56 22.60 23.28
Gaussian SSIM 0.466 0.501 0.494 0.448 0.525

Motion PSNR (dB) 21.51 22.07 21.94 21.98 22.80
SSIM 0.399 0.454 0.443 0.411 0.475

α = 20

Isotropic PSNR (dB) 23.11 24.27 23.16 23.98 24.96
Gaussian SSIM 0.528 0.594 0.558 0.522 0.621

Anisotropic PSNR (dB) 22.78 23.34 22.86 23.20 23.83
Gaussian SSIM 0.494 0.536 0.522 0.485 0.557

Motion PSNR (dB) 21.82 22.70 22.27 22.65 23.47
SSIM 0.418 0.494 0.475 0.448 0.515

α = 40

Isotropic PSNR (dB) 23.47 25.00 23.35 24.76 25.68
Gaussian SSIM 0.555 0.638 0.582 0.569 0.663

Anisotropic PSNR (dB) 23.10 23.82 23.10 23.74 24.36
Gaussian SSIM 0.515 0.569 0.545 0.520 0.589

Motion PSNR (dB) 22.07 23.38 22.52 23.36 24.20
SSIM 0.436 0.538 0.502 0.488 0.564

In addition to the BSD100 dataset, we also evaluated these methods on the blurring

dataset provided in Levin et. al [ 204 ]. This dataset contains a set of 32 blurred images

generated by blurring 4 different clean images by 8 different motion kernels. We synthetically

corrupt the blurred images with Poisson noise at different illumination levels.

The results for these evaluations are provided in Table (  6.3 ) and Figure  6.6 . For qualita-

tive comparison on grayscale and colour reconstructions, one can refer to Figure  6.8 . On the

BSDS100 dataset, our method outperforms the competing methods on all blurring kernels
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Input [ 181 ] [  154 ] [  162 ] [  158 ] Ours GT

Figure 6.8. Qualitative Evaluation on synthetic images. We compare
the performance of the proposed method with competing methods on synthetic
grayscale and color images.

and illumination levels. For the dataset by Levin et. al, we outperform the other methods

except DPIR at photon level α = 40. On both datasets, we observe that the gap between
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conventional deblurring and our method decreases as the illumination levels increase. This is

because as the mean of a Poisson random variable starts increasing, the probability distribu-

tion function resembles that of a Gaussian. Therefore, the conventional deblurring methods

which are designed for Guassian noise show improved performance.

6.3.4 Comparison between 2-operator and 3-operator splitting

As explained in Section  6.2.2 , conventional Plug-and-Play using two-operator splitting is

not suitable for algorithm unrolling. The proposed three-operator splitting enables algorithm

unrolling because every iterative step is differentiable. It is this end-to-end training that

allows us to a better performance. In this experiment, we perform an ablation study to

quantify the performance gain through different combinations of unrolling and training.

In Figure  6.9 , we show the reconstruction performance of three schemes on the BSD100

dataset: (a) conventional two-operator splitting PnP using FFDNet denoiser as described in

Section  6.2.2 (b) an alternate three-operator splitting formulation using FFDNet as described

in Section  6.2.3 and (c) the proposed unrolled version of the scheme described in Section  6.2.3 .

The results show that the two iterative schemes (a) and (b) perform similarly. However,

training the proposed algorithm unrolling achieves a consistent performance gain of more

than 1dB across all photon levels.

When implementing the conventional PnP in (a), we use the approach from [  166 ] and

solve the x-update (  6.8a ) using a L-BFGS solver [ 200 ]. Like the original implementation, we

use a surrogate cost function to approximate the near zero entries with a quadratic approx-

imation to avoid the singularities in the original cost function. A pretrained DnCNN [ 147 ]

for noise level σ = 15/255 was used for the z-update (  6.8b ). For the three-operator splitting

scheme in (b), the same denoiser was used. To ensure a fair comparison, in the proposed

fixed iteration unrolled network, we replace the ResUNet denoiser with a DnCNN and train

it using the method described in Section  6.3.1 . Further details about the experiment are

provided in the supplementary document.
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Figure 6.9. Ablation study to quantify significance of algorithm un-
rolling. We evaluate the following three schemes on the BSD100 dataset (a)
conventional PnP (two-operator splitting) with a DnCNN denoiser. (b) al-
ternate PnP (three-operator splitting) with a DnCNN denoiser. (c) proposed
fixed iteration unrolled network using a DnCNN denoiser. The results of this
experiment show that the significant improvement is achieved due to the net-
work unrolling.

(a) Experimental setup, well illuminated scene (b) Real capture

Figure 6.10. Experimental setup. For evaluation of the proposed method
on real images, we collect noisy and blurred images using a DSLR as shown
in the setup shown above. To capture a single degraded image, we reduce the
illumination to a level that shot noise becomes visible. We blur image using
camera shake. For the blur kernel, each scene contains a point source and the
corresponding motion kernels can be visualized in Figure  6.11 .
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Figure 6.11. Real kernels generated by our optical experiment setup.

6.3.5 Color reconstruction

The focus of this work is image deblurring. We acknowledge that most image sensors

today acquire color images using the color filter arrays. However, adding the deblurring task

with demosaicking is substantially beyond the scope of this work. Even for demosaicking

without any blur, the shot noise requires customized design, e.g., [  22 ]. Therefore, color

images shown in this work were processed individually for each color channel and then fused

using an off-the-shelf demosaicking algorithm. While this approach is sub-optimal, our real

image experiments show that the performance is acceptable.

6.4 Experiments using Sensor Data

Unlike conventional deblurring problems where datasets are widely available, photon-

limited deblurring data is not easy to collect. In this section we report our efforts in collecting

a new dataset for evaluating low-light deblurring algorithms.

6.4.1 Photon-limited deblurring dataset

We collect shot-noise corrupted and blurred images using a digital single lens reflex

(DSLR) camera. The DLSR is handheld to generate motion blur. A Dell 24-inch monitor,
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pointing towards the region of interest, was used as a programmable illumination source to

control the photon level α. A light-meter is placed in the scene to measure the photon flux

level.

Image Capture: We use an Canon EOS Rebel T6i camera to capture the images with

exposure time of 30 ms and aperture f/5.0. The ISO was set to the highest possible value

of 12800 to maximize the internal gain of the sensor and hence minimize the quantization

effects of the analog-to-digital convertor (ADC). The same scene was captured using different

illumination levels and correspondingly different motion blur kernels. The raw image files

were used for image processing instead of the compressed JPG files.

Generating Blur: To capture the blur kernel along with the image, we place a point

source in each scene (see bottom right of middle image in Figure  6.10 ). The point source

is created by placing an LED behind a black screen with a 30µm pinhole. The strength of

the point source is maximized to ensure the kernel is not corrupted with shot noise without

saturation of pixel values. Some example kernels collected through this process can be

visualized in Figure  6.11 .

Photon Level: The illumination of the scenes varies between 1-5 Lux, as measured by

the light-meter shown in Figure  6.10 . To maximize the amount of photons captured, the

aperture is kept as large as possible. However shot noise is still present due to the relatively

short exposure time. The estimated average photons-per-pixel (ppp) varied from 5-60.

Generating Ground Truths: For quantitative evaluation, we also provide the ground

truth for each noisy blurred image. For each noisy image corrupted by motion and noise - we

place the camera on a tripod and capture 10 frames of the scene under the same illumination

and camera settings. The frames, captured without any blur due to camera shake, are

averaged to reduce the shot noise as much as possible. These images serve as ground truth

when evaluating the performance of reconstruction methods using PSNR/SSIM.

6.4.2 Reconstruction from real data

Pre-processing: To reconstruct the images using our network, we first need to convert

it into the format representing the number of photons captured from the raw sensor values.
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The raw digital data (yraw) from the .RAW file is presented using a 14-bit value. To convert

the 14-bit format to the number of photons, we use the following linear transform

yi = yi raw − b

G
, (6.17)

where b represents the zero-level offset of the camera which can be obtained from the meta-

data of the image .RAW file and is set equal to b = 2047. G represents the gain factor

between the digital output of the sensor and the actual electrons collected by the sensor.

This gain is calculated from the camera data available at [  59 ]. Specifically, we look at the

read noise of the camera in terms of digital numbers and electrons. The ratio of these two

data will give the gain G. For Canon EOS Rebel T6i, at ISO 12800, the gain is estimated

to be G ≈ 71.

Our reconstruction results are shown in Figure  6.12 . We also compare reconstructions

using proposed method with other contemporary deblurring methods (RGDN, PURE-LET,

DPIR and DWDN) in Figure  6.13 . Through a visual inspection, one can conclude that our

method is able to reconstruct finer details from the noisy and blurred image while leaving

behind fewer artifacts.

Quantitative Evaluation: For evaluation of metrics such as PSNR and SSIM, we

register the ground truth to the reconstruction using homography transformation to account

for the differences in camera positions. The average PSNR and SSIM on the real datset for

the proposed and competing methods are reported in Table  6.4 . We outperform the second-

best competing methods, i.e. [  158 ], by 0.6dB in terms of PSNR and by 0.005 in terms of

SSIM. As shown in Figure  6.13 , when evaluating SSIM on a few patches containing text, the

gap between our method and [ 158 ] becomes much wider.

Table 6.4. PSNR (in dB) and SSIM evaluated on real dataset of 30 images.
Method RGDN [ 154 ] PURE-LET [ 162 ] DPIR [ 181 ] DWDN [ 158 ] Ours
PSNR 19.80 20.88 22.09 22.85 23.48
SSIM 0.476 0.501 0.548 0.561 0.566
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(a) Real input (b) Processed

Figure 6.12. Proposed method on real data. For a qualitative comparison
of other deblurring approaches on these images, refer to Figure  6.13 .

In this work, we formulated the photon-limited deblurring problem as a Poisson inverse

problem. We presented an end-to-end trainable solution using a algorithm unrolling tech-

nique. We performed extensive numerical experiments to compare our approach with other

existing state-of-the-art non-blind deblurring approaches and demonstrated how our method

can be applied to real sensor data. Even though the present solution is focused on image

deblurring, it can be easily extended to other photon-limited inverse problems such as com-

pressive sensing, lensless imaging, and super-resolution.

The algorithm presented in this work can be used to reconstruct a single clean image from

multiple blurred images. This would allow us to take advantage of the temporal redundancy

which would be necessary to obtain a meaningful clean signal in much challenging scenarios

(e.g. photon level α ≤ 5). Another interesting but challenging problem which can be

attempted using the framework is low-light blind deconvolution i.e. recovering the clean

image and blur kernel simultaneously from blurred images corrupted with photon shot noise.
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Raw Image RGDN [ 154 ] PURE-LET [  162 ] DPIR [  181 ] DWDN [ 158 ] Ours
PSNR/SSIM 17.43/0.423 20.83/0.478 21.50/0.546 21.94/0.575 22.69/0.613

Figure 6.13. Qualitative Comparison We look at zoomed in regions of the
reconstructed images from Figure  6.12 using competing methods. The average
PSNR and SSIM evaluated on the given patches is provided at the bottom.
From visual inspection one can see that our method is able to recover finer
details compared to other methods. Note that in the first row, the DPIR
output may look qualitatively similar to our result. This is because the former
often tends to blur out images for a “cleaner“ looking image as observed in the
second row of zoomed in reconstructions.
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7. OBJECT DETECTION IN LOW LIGHT

Until now, we have looked at mostly low-level image processing to reconstruct the underlying

signal. This chapter looks at downstream and high-level tasks such as image classification

and object detection. Robust computer vision that can work in photon-limited scenarios

is vital for night vision, surveillance, and microscopy applications. The mainstream “low-

light” image enhancement methods have produced promising results that improve the image

contrast between the foreground and background through advanced coloring techniques.

Nevertheless, the more challenging problem of mitigating the photon shot noise inherited

from the random Poisson process remains open. In this chapter, we present photon-limited

image classification and object detection frameworks. The primary thread between these

two methods is knowledge distillation in the form of student-teacher learning to improve the

robustness of the feature extractor against noise. To get the absolute best performance in

terms of the light level, we use the more sensitive CIS-QIS (referred to as just QIS in the

rest of the chapter) to capture the images. However, the methods discussed are more general

and can be used with any image sensors.

7.1 Student-teacher learning

When dealing with photon-limited imaging, the Poisson noise statistics creates a funda-

mental limit in the performance of image classifiers or object detectors. Therefore, when

applying a classification method to the raw data, removing the shot noise becomes neces-

sary. The traditional solution to this problem is to denoise the images as shown at the top

of Figure  7.3 . This section aims to introduce an alternative approach using the concept of

student-teacher learning.

The idea of student-teacher learning can be understood from Figure  7.1 . This figure has

two networks: A teacher network and a student network. The teacher network is trained

using clean samples and is pre-trained, i.e., its network parameters are fixed during training

of the student network. The student network is trained using noisy samples with assistance

from the teacher. Because the teacher is trained using clean samples, the features extracted

are in principle “good”, in contrast to the features of the student which are likely to be
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Figure 7.1. Student-teacher learning. Student-teacher learning comprises
two networks: A teacher network and a student network. The teacher network
is pre-trained using clean samples whereas the student is trained using noisy
samples. To transfer knowledge from the teacher to the student, we compare
the features extracted by the teacher and the student at different stages of the
network. The difference between the features is measured as the perceptual
loss.

“corrupted”. We propose to transfer the knowledge from the features of the teacher to the

features of the student. In order to achieve this, we propose minimizing a perceptual loss as

defined below. We define the j-th layer’s feature of the student network as φj(ynoisy), where

φj(·) maps the noisy image ynoisy to a feature vector, and we define φ̂j(yclean) as the feature

vector extracted by the teacher network from the clean image yclean. The perceptual loss is

Lp(ynoisy, yclean) =
J∑

j=1

1
Nj

∥∥∥φ̂j(yclean)− φj(ynoisy)
∥∥∥2

︸ ︷︷ ︸
j-th layer’s perceptual loss

, (7.1)

where Nj is the dimension of the j-th feature vector. Since the perceptual loss measures the

distance between the student and the teacher, minimizing the perceptual loss forces them
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to be close, which in turn, forces the network to “denoise” the shot noise and read noise in

ynoisy before predicting the label.

We conduct a simple experiment to demonstrate the impact of input noise on perceptual

loss and classification accuracy. We first consider a pre-trained teacher network by sending

noisy data at different photon levels. As the photon level drops, the quality of the features

also drops, and hence the perceptual loss increases. This is illustrated in Figure  7.2 (a).

Then in Figure  7.2 (b), we evaluate the classification accuracy by using the synthetic testing

data outlined in the Experiment Section. As the perceptual loss increases, the classification

accuracy drops. This result suggests that the classification accuracy can be improved if we

minimize the perceptual loss.

(a) Perceptual loss vs Photon level (b) Accuracy vs Perceptual loss

Figure 7.2. Effectiveness of student-teacher learning. (a) Perceptual
loss as a function of photon level. (b) Classification accuracy as a function of
the perceptual loss Lp(yclean, yclean). The accuracy is measured by repeating
the synthetic experiment described in the Experiment Section. The negative
correlation suggests that perceptual loss is indeed an influential factor.

Our proposed student-teacher learning is inspired by the knowledge distillation work of

Hinton et al. [  153 ] which proposed an effective way to compress networks. Several follow up

ideas have been proposed, e.g., [  208 ]–[ 211 ], including the MobileNet [  212 ]. The concept of

perceptual loss has been used in various computer vision applications such as the texture-

synthesis and style-transfer by Johnson et al. [ 130 ] and Gatys et al. [  213 ], [  214 ], among many

others [  215 ]–[ 220 ]. The method we propose here is different because we are not compressing

the network. Also, we are not asking the student to mimic the teacher because the teacher
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and the student are performing two different tasks: The teacher classifies clean data, whereas

the student classifies noisy data. In low-light classification and object detection, student-

teacher learning has not been applied.

7.2 Image classification

7.2.1 Related works

The majority of the existing work in classification is based on well-illuminated images.

The first systematic study of the feasibility of low-light classification was presented by Chen

and Perona [  221 ], who observed that low-light classification is achievable by using a few

photons. In the same year, Diamond et al. [  222 ] proposed the “Dirty Pixels” method

by training a denoiser and a classifier simultaneously. They observed that less aggressive

denoisers are better for classification because the features are preserved. Other methods

adopt similar strategies, e.g., using discrete cosine transform [  223 ], training a classifier to

help denoising [  224 ] or using an ensemble method [ 225 ], or training a denoiser that are better

suited for pre-trained classifiers [ 216 ], [ 226 ].

Figure 7.3. Existing classification pipeline vs. Proposed method.[Top]
Traditional image classification methods are based on CMOS image sensors
(CIS), followed by a denoiser-classifier pipeline. [Bottom] The proposed classi-
fication method comprises a QIS and a novel student-teacher learning protocol.
QIS generates significantly stronger signals, and student-teacher learning im-
proves the robustness against noise.
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7.2.2 Method

In out method, the overall loss function for image classification comprises the perceptual

loss and the conventional prediction loss using cross-entropy. The cross-entropy loss Lc,

measures the difference between true label y and the predicted label fΘ(yQIS) generated by

the student network, where fΘ is the student network. The overall loss is mathematically

described as

L(Θ) =
N∑

n=1

{
Lc
(
`n, fΘ(yn

noisy)
)

+ λLp
(
yn

clean, yn
noisy

)}
, (7.2)

where yn denotes the n-th training sample with the ground truth label `n. During the

training, we optimize the weights of the student network by solving

Θ̂ = argmin
Θ

L(Θ). (7.3)

During testing, we feed a testing sample ynoisy to the student network and evaluate the

output:

ŷ = fΘ̂(ynoisy). (7.4)

Figure  7.4 illustrates the overall network architecture. In this figure, we emphasize that

training is done on the student only. The teacher is fixed and is not trainable. In this

particular example, we introduce a very shallow network consisting of 2 convolution layers

with 32 and 3 filters respectively. This shallow network is used to perform the necessary

demosaicking by converting the raw Bayer pattern to the full RGB before feeding into a

standard classification network.

7.2.3 Experiments

Dataset

We consider two datasets. The first dataset (Animal) contains visually distinctive images

where the class labels are far apart. The second dataset (Dog) contains visually similar

images where the class labels are fine-grained. The two different datasets can help to differ-
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Figure 7.4. Proposed method. The proposed method trains a classifica-
tion network with two training losses: (1) cross-entropy loss to measure the
prediction quality, and (2) perceptual loss to transfer knowledge from teacher
to student. During testing, only the student is used. We introduce a 2-layer
entrance (colored in orange) for the student network so that the classifier can
handle the Bayer image.

entiate the performance regime of the proposed method and its benefits over other state-of-

the-art networks.

(a) Animal Dataset (Easier) (b) Dog Dataset (Harder)

Figure 7.5. The two datasets for our experiments.

The construction of the two datasets is as follows. For the Animal dataset, we randomly

select 10 classes of animals from ImageNet [  227 ], as shown in Figure  7.5 (a). Each class

contains 1300 images, giving a total of 13K images. Among these, 9K are used for training,

1K for validation, and 3K for testing. For the Dog dataset, we randomly select 10 classes

of dogs from the Stanford Dog dataset [  228 ], as shown in Figure  7.5 (b). Each class has
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approximately 150 images, giving a total of 1919 images. We use 1148 for training, 292 for

validation, and 479 for testing.

7.2.4 Competing methods and our network

We compare our method with three existing low-light classification methods as shown in

Figure  7.6 . The three competing methods are (a) Vanilla denoiser + classifier, an “off-the-

shelf” solution using pre-trained models. The denoiser is pre-trained on the QIS data, and

the classifier is pre-trained on clean images. (b) Dirty Pixels [  222 ], same as Vanilla denoiser

+ classifier, but trained end-to-end using our noisy data. (c) Restoration Network [ 216 ],

[ 226 ], which trains a denoiser but uses a classifier pre-trained on clean images. Restoration

Network can be viewed as a middle-ground solution between Vanilla and Dirty Pixels.

(a) Vanilla Network (b) Dirty Pixels [ 222 ]

(c) Restoration Network [ 216 ] (d) Proposed Method

Figure 7.6. Competing methods. The major difference between the net-
works are the trainable modules and the loss functions. For Dirty Pixels and
our proposed method, we further split it into two versions: Using a deep de-
noiser or using a shallow entrance network.

To ensure that the comparison is fair w.r.t. the training protocol and not the architecture,

all classifiers in this experiment (including ours) use the same VGG-16 architecture. For

methods that use a denoiser, the denoiser is fixed as a UNet. This particular combination

of denoiser and classifier will undoubtedly affect the final performance, but the effectiveness

of the training protocol can still be observed. Combinations beyond the ones we report here

can be found in the ablation study. For Dirty Pixels and our proposed method, we further
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split them into two versions: (i) Using a deep denoiser as the entrance, i.e., a 20-layer UNet,

and (ii) using a shallow two-layer network as the entrance to handle the Bayer pattern, as we

described in the proposed method section. We will analyze the influence of this component

in the ablation study.

We also conduct experiments comparing how a quanta image sensor (QIS) may help with

improving the classification accuracy compared to a CMOS image sensor (CIS).
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Figure 7.7. Synthetic data on dog dataset. (a) Comparing different
classification methods using QIS as the sensor. (b) Comparing QIS and CIS
using our proposed classifier.

7.2.5 Synthetic experiment

The first experiment is based on synthetic data. The training data are created using the

QIS model. To simulate the QIS data, we follow the simulation model from chapter  3 by

using the Poisson-Gaussian process. the read noise is σread = 0.25e− according to [  46 ]. The

analog-to-digital converter is set to 5 bits. We use a similar simulation procedure for CIS

with the difference being the read noise, which we set to σread = 2.0e− [ 229 ].

The experiments are conducted for 5 different photon levels corresponding to 0.25, 0.5,

1, 2, and 4 photons per pixel (ppp). The loss function weights λ in Equation Equation (  7.2 )

is tuned for optimal performance.

The results of the synthetic data experiment are shown in Figure  7.7 . In Figure  7.7 (a), we

observe that our proposed classification is consistently better than competing methods the
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photon levels we tested. Moreover, since all methods reported in Figure  7.7 (a) are using QIS

as the sensor, the curves in Figure  7.7 (a) reveal the effectiveness of just the classification

method. In Figure  7.7 (b), we compare the difference between using QIS and CIS. As we

expect, CIS has worse performance compared to QIS.

Ground Truth QIS CIS

0.
25

e−
0.

50
e−

1.
00

e−

Figure 7.8. Real image results. This figure shows raw Bayer data obtained
from a prototype QIS and a commercially available CIS, and how they are
classified using our proposed classifier. The inset images show the denoised
images (by [  230 ]) for visualization. Notice the heavy noise at 0.25 and 0.5
ppp, only QIS plus our proposed classification method can produce the correct
prediction.
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Figure 7.9. Real data on animal dataset. (a) Comparing different classi-
fication methods using QIS as the sensor. (b) Comparing QIS and CIS using
our proposed classifier.

7.2.6 Real experiment

We conduct an experiment using real QIS and CIS data. The real QIS data are collected

by a prototype QIS camera Gigajot PathFinder [  21 ], whereas the real CIS data are collected

by using a commercially available camera. We display the images on a Dell P2314H LED

screen (60Hz). The cameras are positioned 1m from the display so that the field of view

covers 256 × 256 pixels of the image. The integration time of the CIS is set to 250µs, and

that of QIS is 75µs. Since the CIS and QIS have different lenses, we control their aperture

sizes and the screen’s brightness such that the average number of photons per pixel is equal

for both sensors.

The network training in this real experiment is still done using the synthetic dataset,

with the image formation model parameters matched with the actual sensor parameters.

However, since the real image sensors have pixel non-uniformity, during the training, we

multiply a random PRNU mask to each of the generated images to mimic the process of

PRNU. We collect 30 real images at each photon level across 5 different photon levels for

testing, which corresponds to 150 real testing images.

When testing, we make two pairs of comparisons: Proposed (shallow) versus Dirty Pixels

(shallow), and QIS versus CIS. The result of the first experiment is shown in Figure  7.9 (a),
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where we observe that the proposed method has a consistent improvement over Dirty Pixels.

The comparison between QIS and CIS is shown in Figure  7.9 (b). QIS has a better per-

formance compared to CIS. Figure  7.8 shows the visualizations. The ground truth images

were displayed on the screen, and the background images in QIS and CIS column are actual

measurements from the corresponding cameras, cropped to 256 × 256. The thumbnail im-

ages in the front are the denoised images for reference. They are not used during the actual

classification. The color bars at the bottom report the confidence level of the predicted class.

Note the significant visual difference between QIS and CIS and the classification results.

7.2.7 Ablation study

This section reports several ablation study results and highlights the most influencing

factors to the design.

Sensor. Our first ablation study is fixing the classifier but changing the sensor from QIS to

CIS. This experiment will underline the impact of the sensor on the overall pipeline. The

result of this ablation study can be seen from Figure  7.7 (b). Specifically, at 4 ppp (high

photon level) of the Dogs dataset, QIS + proposed has a classification accuracy of 72.9%

while CIS has 69.8%. The difference is 3.1%. As the photon level drops, the gap between

QIS and CIS widens to 23.1% at 0.25 ppp. A similar trend is found in the Animals dataset.

Thus at low light, QIS has a clear advantage, although CIS can catch up with a sufficient

number of photons.

Classification pipeline. The next ablation study is to fix the sensor but change the entire

classification pipeline, telling us how important the classifier is and which classifier is more

effective. The results in Figure  7.7 (a) show that among the competing methods, Dirty Pixels

is the most promising one because it is end-to-end trained. However, comparing Dirty Pixels

with our proposed method, at 1 ppp, Dirty Pixels (shallow) achieves an accuracy of 53.9%

whereas the proposed (shallow) achieves 62.7%. The trend continues as the photon level

increases. This ablation analysis shows that a good sensor (QIS) does not automatically

translate to better performance.
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Student-teacher learning. Let us fix the sensor and the network but change the training

protocol, revealing the significance of the proposed student-teacher learning. To conduct

this ablation study, we recognize that Dirty Pixels network structure (shallow and deep) is

the same as Ours (shallow and deep) since both use the same UNet and VGG-16. The only

difference is the training protocol, where ours uses student-teacher learning, and Dirty Pixels

is a simple end-to-end. The result of this study is summarized in Figure  7.7 (a). Our training

protocol offers advantages over Dirty Pixels.

We can further analyze the situation by plotting the training and validation error. Fig-

ure  7.10 [Left] shows the comparison between the proposed method (shallow) and Dirty

Pixels (shallow). If we look at the validation loss, we can see that it drops and then rises,

whereas the training loss keeps dropping, which indicates that the network overfits with-

out student-teacher learning (Dirty Pixels). In contrast, the proposed method appears to

mitigate the overfitting issue. One possible reason is that student-teacher learning provides

regularization in an implicit form so that the validation loss is maintained at a low level.
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Figure 7.10. Ablation study. [Left] Training and validation loss of Our
method and Dirty Pixels. Notice that while our training loss is higher, the
validation loss is significantly lower than Dirty Pixels. [Right] Ablation study
of different classifiers and different training schemes. Reported numbers are
based on QIS synthetic experiments at 0.25 ppp for the Dog Dataset.

Choice of classification network. All experiments reported in this section use VGG-16

as the classifier. In this ablation study, we replace the VGG-16 classifier with other popular

classifiers, namely ResNet50 and InceptionV3. These networks are fine-tuned using QIS

data. Figure  7.10 [Right] shows the comparisons. Using the baseline training scheme, i.e.,

simple fine-tuning as in Dirty Pixels, we can observe that there is a minor gap between

215



the different classifiers. However, using the proposed student-teacher training protocol, we

observe a substantial improvement for all the classifiers. This ablation study confirms that

student-teacher learning is not limited to particular network architecture.

Using a pre-trained classifier. This ablation study analyzes the effect of using a pre-

trained classifier (trained on clean images). If we do this, then the overall system is exactly

the same as the Restoration network [ 216 ] in Figure  7.6 (c). Restoration network has three

training losses: (i) MSE to measure the image quality, (ii) Perceptual loss to measure feature

quality, and (iii) cross-entropy loss. These three losses are used to train the denoiser and not

the classifier. Since the classifier is fixed, it becomes necessary for the denoiser to produce

high-quality images, or otherwise, the classifier will not work. The results in Figure  7.7 (a)

suggest that when the photon level is low, the denoiser fails to produce high-quality images,

and so the classification fails. For example, at 0.25 ppp, Restoration Network achieves 35.6%,

but our proposed method achieves 52.1%. Thus it is imperative that we re-train the classifier

for low-light images.

Deep or shallow denoisers? This ablation study analyzes the impact of using a deep

denoiser compared to a shallow entrance layer. The result of this study can be found by

comparing Ours (deep) and Ours (shallow) in Figure  7.7 (a), as well as Dirty (deep) and

Dirty (shallow). In both methods, the deep version refers to using a 20-layer UNet, whereas

the shallow version refers to using a 2-layer network. The result in Figure  7.7 (a) suggests

that while the deep denoiser has a significant impact on Dirty Pixels, its influence is quite

small compared to the proposed method with the QIS images. One reason is that since we

are using student-teacher learning, the features are already properly handled. Therefore, the

added benefit from a deep denoiser for QIS is marginal. However, for CIS data at low light,

the deep denoiser helps get better classification performance, especially when the signal level

is much below the read noise.
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Figure 7.11. Realated works. While baseline/vanilla methods [ 231 ]–
[ 247 ] are designed to handle well-illuminated scenes, this work focuses on the
photon-limited regime where signals are very weak. Existing “low-light” meth-
ods [ 230 ], [ 248 ]–[ 250 ] typically do not operate in such an extreme condition
where the signal is weak even after tone-map and/or adjusting the sensor’s
ISO.

7.3 Object detection

7.3.1 Related works

The taxonomy of the object detection methods is outlined in Figure  7.11 , where we

compare different detection tasks/methods against the photon-level (measured in lux) and

the sensor gain (measured in ISO).

Baseline / Vanilla Methods

The mainstream object detection methods that are trained using large scale data set such

as ILSVRC[ 227 ] and COCO[  251 ] typically operate at the right most column of Figure  7.11 

where the number of photons is sufficient. Depending on the input data format, the methods

can be categorized into the following two groups:

Single-image detection methods that detect objects from a single image. Some of these

methods focus on speed and real time processing capability [  231 ]–[ 234 ], whereas other meth-

ods based on region proposal focus on detection performance [ 235 ]–[ 238 ]. On top of these

methods, various work are proposed by leveraging multi-scale information [ 252 ], making
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network fully convolutional [  236 ], utilizing multi-task training [ 238 ], tackling foreground-

background imbalance [ 232 ], and improving bounding box prediction quality [ 253 ], [ 254 ].

Video detection methods that detect objects from multiple frames of a video. The premise

of these methods is that the temporal information and the spatial-temporal redundancy pro-

vides valuable information for the detection. The aggregation of temporal cues are typically

done at two levels: (i) feature level aggregation [  239 ]–[ 244 ], and (ii) box level aggregation

[ 244 ]–[ 247 ].

Despite the abundance of baseline methods, the networks and training are not designed

for photon-limited conditions. As a result, directly applying these methods to our problem

is ineffective (performance is limited even if one augment training data) and inefficient (pre-

processing could be computationally expensive but does not necessarily lead to unparalleled

performance), as demonstrated in [ 25 ], [ 249 ] and in our experiment.

Low-light detection methods

Conventional low-light image processing methods can handle darker images than the base-

lines as shown in Figure  7.11 (c) and (d). The easier case, as shown in Figure  7.11 (d), happens

when the lighting condition is not properly adjusted. However, information is mostly intact

after tone-mapping and contrast enhancement. Image enhancement for this class of problem

has been extensively studied hasinoff2016_BurstPhotography, [  141 ], [  255 ]–[ 267 ]. For

object detection, Loh et al. [  248 ] and Yang et al. [ 249 ] created large-scale real low light

detection data sets. The state-of-the-art detection systems in this scenario adopt Multi-

Scale Retinex with Color Restoration (MSRCR) algorithm [  255 ] for pre-processing and fine

tune detectors on pre-processed data [ 249 ]. As will be shown in the experiment section, this

strategy fails to work on photon-limited images; the strong photon shot noise will void the

illumination smoothness assumption held by the Retinex model.

The harder case of the two, as shown in Figure  7.11 (c), happens when the photon level

is further reduced. In this operating regime, one needs to switch to a high sensor gain

(higher ISO) so that the details can be observed. As far as object detection algorithms

are concerned, to the best of our knowledge, no large scale detection dataset is available to

date. Instead, Sasagawa et al. [  250 ] treat detection in this scenario as a domain adaptation

problem and use knowledge distillation to train a detector with normal lighting detection
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Figure 7.12. Proposed non-local module and student-teacher training
scheme. The teacher network is first pre-trained on photon-abundant data
and it enforces the student to extract noise-rejected features of each input
frame. By applying the non-local search in the feature space, similar spatial-
temporal features are aggregated to update the key frame features.

data and SID reconstruction data set [  230 ]. In our study, we simulate the physical process

of photon-limited image formation and demonstrate that our simulation enables our model

to work on real photon-limited images.

7.3.2 Method

Given a sequence of photon-limited frames, our goal is to localize objects and identify

their classes in all frames. Our proposed system is trained on data obtained from Chapter  3 

and consists of key components: the non-local module (Sec  7.3.2 ) and the student-teaching

learning scheme (Sec  7.1 ).

Space-time non-local module

The biggest challenge of detecting objects under photon-limited conditions is the presence

of intense shot noise. Our solution to extract signals from the noise is to utilize the spatial-
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temporal redundancy across a burst of frames. Our hypothesis is that if we are able to find

similar patches in the space-time volume, we can take a non-local average to boost the signal.

To achieve this goal, we design a non-local module as depicted in Figure  7.12 .

Given an image sequence, each frame is fed into a feature extractor (the student-teacher

module) to obtain the feature maps. For each feature vector at location (i, j, t), we conduct

a non-local search for similar features by computing the inner-products of this feature and

all the candidate features in the adjacent frames. This operation produces a set of scalars

representing the similarities between the current feature and the features in the space-time

neighborhood. Then for every time t, we select the top-k candidates with the highest inner

product values. As shown in appendix Table  7.1 , we find that k = 2 is an appropriate

number for most of the experiments. After picking the top-k features, we take the average

to generate the aggregated non-local feature.

Table 7.1. A study of frame numbers and searched similar feature
numbers. T is the number of frames input to our model and K is the number
of searched features per frame for feature aggregation. We test our model under
different photon levels from 0.25 to 5.0. For each column, the best mAP is
shown in bold.

ppp = 0.25 ppp = 0.5 ppp = 1.0 ppp = 2.0 ppp = 5.0
T = 3 T = 8 T = 3 T = 8 T = 3 T = 8 T = 3 T = 8 T = 3 T = 8

k = 1 32.3 33.3 41.5 42.8 49.6 51.9 58.4 59.0 65.1 66.0
k = 2 32.7 33.2 41.6 43.0 50.0 51.9 58.7 59.3 65.6 66.0
k = 3 32.4 33.2 41.5 42.8 49.9 52.1 58.6 59.2 65.4 65.9
k = 4 32.5 33.0 41.5 43.0 50.0 52.1 58.6 59.1 65.4 65.9

Our proposed space-time non-local module differs from the traditional non-local neural

networks [ 268 ] in the following two aspects:

• Before computing the similarity, [  268 ] uses convolutional layers to first project features

onto another feature space. This additional feature space is designed to represent high-

level semantic meanings of the scene, such as interactions. For photon-limited imaging

where the SNR is low, such semantic-level features are generally more corrupted and

hence they are less reliable than low-level features. In addition, feature projection
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could cause confusion to our spatial-temporal feature matching step because the noise

is heavy.

• [ 268 ] aggregates all space-time information via a softmax weighted average. We only

average partially the space-time information from the top-k features because irrelevant

features in the time-space can distract our model. In the Supplementary Material, we

demonstrate that the top-2 features per frame are sufficient for our purpose.

Motion-free
Two realizations of noise

0.25 photons per pixel

Image space
+ Nonlocal search

Feature space
+ Nonlocal search

Student-teacher
+ Feature space

+ Nonlocal search

18.19% 52.98% 69.02%

10 matching patches （Blue: correct Yellow: incorrect）Input

Figure 7.13. Comparison of different non-local patch matching meth-
ods. We synthesize two i.i.d. copies of a photon-limited image. For each com-
peting configuration, we visualize 10 matching patch examples. The blue and
yellow arrows indicate correct and incorrect matching, respectively. As the
image pair is motion-free, the correct matches should be indicated by horizon-
tal arrows. The combination of non-local search and student-teacher learning
demonstrates the best performance.

Rationale of our design

To illustrate the benefit of the proposed non-local module and the student-teacher learning

scheme, we conduct an experiment in this section.

In Figure  7.12 , we synthesize two independent and identically distributed (i.i.d.) copies

of a photon-limited image at a photon level of 0.25 photons per pixel (ppp). We use this pair

of images to check how the feature matching step performs. Three methods are compared: 1)

Non-local search in the image space (i.e., the original non-local search), 2) non-local Search

in the feature space, and 3) student-teacher + non-local Search in the feature space. In the

image space, for each h×w patch, we compute its normalized cross-correlation (NCC) with

all h×w patches in the other image and choose the one with the highest NCC as its matching
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patch. In the feature space, we use features trained with or without student-teacher training

and find correspondence for every feature vector. The correspondence is visualized by the

center of the receptive field of feature vectors.

The benefit of the proposed method can be seen in two aspects: accuracy and speed. As

illustrated in Figure  7.13 , the non-local search in the feature space has a much higher success

rate of finding correct correspondence than the same method applied to the image space.

The student-teacher training further increases the performance by enhancing the robustness

of the feature extractor against noise. We performed the experiment for 100 images and we

observed that the trend was consistent.

For the speed, non-local search in image space is computationally more expensive than

in the feature space. Given an H × W image with desired patch size h × w, the feature

matching process takes approximately (HW )2hw floating-point operations (FLOP) in the

image space and (HW
S

)2
C FLOP’s in the feature space, where C is feature vector dimension

and S is spatial resolution compression ratio by the feature extractor. Reducing the patch

size reduces the computation cost, but the matching quality deteriorates significantly. In our

implementation, we use 64 × 64 for the image space search and it takes ∼ 256 times more

computation than in the feature space.
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(a) Comparison with baselines (b) Comparison with image denoisers.

Figure 7.14. Experiments on synthetic data. (a) Compare different ob-
ject detection methods: Faster R-CNN[  237 ], RED[  142 ] + Faster R-CNN[  237 ],
RDN[ 245 ], and MSRCR[ 255 ] + RetinaNet[  232 ]. (b) Compare methods that
use image denoising as a pre-processing step.
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7.3.3 Experiments

Experimental settings

Dataset. We use the procedure in Chapter  3 to synthesize training data of the photon-

limited images from the Pascal VOC 2007 dataset [  148 ]. To synthesize motion across the

frames, we introduce a random translation of image patches. The total movement varies

from 7 to 35 pixels across 8 frames similar to Chapter  5 . For testing, we created a synthetic

testing dataset and also collected a dataset of real images. The read noise of our model is

assumed to be 0.25e−, based on the sensor reported in [  46 ]. The average photon level we

tested ranges from 0.1 to 5.0 photons per pixel (ppp). With an f/1.4 camera, 1.1µm pixel

pitch, and 30ms integration, this range of photons roughly translates to 0.02 lux to 5 lux

(typical night vision scenarios). For real data, we use the GJ01611 16MP photon counting

Quanta Image Sensor developed by GigaJot Technology [ 46 ].

Implementation details. Our method is implemented in Pytorch based on [  269 ]. The

framework takes a T -frame image sequence as input (T = 1, 3, 5 and 8 in the following

experiments). We adopt ResNet-101[ 17 ] pretrained on ImageNet [  227 ] as the backbone. The

perceputual loss is applied to the features from block_1, block_2 and block_3 of ResNet-101

and the non-local module is processed on the features from block_3. We utilize RoIAlign

[ 238 ] to extract the features from object proposals and block_4 is further applied to the

extracted proposal features before the final classifier. The model is trained for 20 epochs

and we use Adam [  205 ] optimizer with default parameters, learning rate 0.001, and weight

decay 0.1 every 5 epochs.

Competing methods. We compare our method with four baselines. (a) A generic

image object detector: Faster R-CNN [  237 ]; (b) A video object detector: Relation Distilla-

tion Network (RDN)[ 245 ]; (c) A low-light detection framework: color restoration algorithm

(MSRCR) [  255 ] plus a detection RetinaNet [  232 ], which is one of the winning solutions

of 2019 UG2+ low-light face detection challenge; (d) A two-stage pre-denoised detection

framework: RED-Net [ 142 ] plus Faster R-CNN [  237 ]. (a) and (b) are fine-tuned using the

synthesized photon-limited data.

223



7.3.4 Main results

Our first experiment is conducted on synthetic data. We use 8-frame inputs with the

number of features for non-local aggregation set to 2 per frame in the following experiments.

Comparison with the baselines. Figure  7.14 (a) shows the detection rate, measured

in mean average precision (mAP), as a function of the photon level, measured in photons per

pixel (ppp). The proposed method consistently outperforms the competing methods across

the tested photon levels from 0.25 ppp to 0.5 ppp. The difference between our method and

the second-best method is as large as 6% in terms of mAP when the photon level is 2.0 ppp.

Comparison with image denoisers. When handling noisy images, a natural solution

is to first run a denoiser and feed the denoised images into a standard object detector. Figure

 7.14 (b) depicts the comparisons with such baseline methods. The denoiser we use is the

RED-Net [  142 ] previously used in other photon-limited imaging works such as Chapter  5 

and [  25 ]. As the figure indicates, the proposed method outperforms the baselines by a big

margin. In addition, adding a denoiser to the proposed method offers almost no additional

benefit. Therefore, the proposed method has effectively executed the denoising task without

requiring another network for denoising.

Different network designs. Table  7.2 demonstrates the importance of the space-time

non-local module and the student-teacher learning module. In this table, we present the

relative performance gain compared with Faster R-CNN baseline [  237 ]. The addition of the

non-local module and the student-teacher training shows improvement upon the baseline.

We observe that the performance gain shrinks when the photon level increases, as detection

becomes easier. The combination of both designs shows the best performance across all

photon levels, especially in extremely low light, where the relative gain is 20.07%.

Real data. We collected 225 real images in low light and annotate objects from 3

categories: person, sheep, and car. We train our model using the synthetic data and verify

the results using the real data. The results are shown in Table  7.3 . On average, our proposed

method achieves an mAP of 87.9% while the baseline method achieves 66.9%.

Figure  7.15 shows a qualitative comparison between our method and the baseline Faster

R-CNN. The result shows that the baseline suffers from either false alarms or missed de-
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Table 7.2. Comparison of different network designs. Relative mAP
increase are reported with respect to Faster R-CNN baseline. The unit is %.
ST: student-teacher learning; NL: non-local module; ST+NL:student-teacher
learning + non-local module.

Photon Level (ppp) 0.25 0.5 1.0 2.0 5.0
ST 9.12 6.20 4.52 5.44 2.57
NL 16.06 14.56 9.89 10.13 5.14

ST+NL 20.07 15.90 11.61 11.26 5.95

Table 7.3. Detection results of real data. Each class column shows the
number of correct detections versus ground truth. The last column is the
overall mAP.

person car sheep mAP (%)
Faster R-CNN 54/105 58/60 60/60 66.9

Ours 73/105 60/60 60/60 87.9

tection. In contrast, the proposed method is able to detect the static toy car and moving

person on the real data when the photon level is 0.52 ppp and 0.19 ppp, respectively. More

results are given in Figure  7.17 and Figure  7.18 .

False alarms

Correct Correct

Fail to detect

CorrectCorrect

False alarmsFalse alarms
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Synthetic Data Real Data

1.0 ppp 1.0 ppp 0.52 ppp 0.19 ppp

Figure 7.15. Detection results on synthetic and real data. The top
row is the Faster R-CNN [ 237 ]. The bottom row is our method. The photon
level is shown in the top-left corner. The real data is captured by Gigajot
Technology 16 MP Photon Counting Quanta Image Sensor (GJ01611).
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Performance comparison with CIS and QIS

We evaluate the proposed method with a conventional CMOS image sensor (CIS) from

Google Pixel 3XL and a GJ01611 Quanta Image Sensor (QIS) from Gigajot Technology

[ 35 ] under different illumination levels. By combining the proposed algorithm with the QIS

device, we demonstrate the performance of the proposed detection method under extremely

photon-limited conditions (0.02 lux and only 0.20 ppp).

To ensure a fair comparison, we note that the CIS has a pixel pitch of 1.4µm and read

noise of 2.14e−, while the QIS has 1.1µm pixels and read noise of 0.22e−. In the experiments,

the f-number of the lens is adjusted to balance the difference of pixel sizes (f/1.8 for CIS and

f/1.4 for QIS) in the two sensors and 30msec exposure time is used for both sensors.

Lux0.02
0.20 2.41 6.03

CIS + Baseline

CIS + Ours

QIS + Baseline

QIS + Ours

R: 0%   P: 0%

R: 0%   P: 0%

R: 0%   P: 0%

R: 33%   P: 33%

R: 0%   P: 0%

R: 33%   P: 50%

R: 33%   P: 100%

R: 66%   P: 100%

R: 33%   P: 50% R: 66%   P: 66% R: 100%   P: 100%

R: 66%   P: 100%

R: 66%   P: 100%

R: 100%   P: 75%

R: 100%   P: 100%

R: 100%   P: 100%

R: 100%   P: 100%

R: 100%   P: 100%

R: 100%   P: 100%

R: 100%   P: 100%

Avg. ppp
5.0

0.71 1.28

Figure 7.16. Comparison of different sensors and different methods
on real data. The visualized figures are tone mapped and the baseline method
is Faster R-CNN. We choose 5 different lux levels ranging from 0.02 to 5.0,
equivalent to Avg. ppp ranging from 0.20 to 6.03. In the right-top corner
of images, the recall (R) and precision (P) are computed, enclosed in frames
with different colors. Red/Yellow/Green indicates totally failed/partially cor-
rect/totally correct, respectively. In the first row, we zoom into the left-front
side of the yellow car and show details in the right-bottom box. We can see
that in the extremely low light condition, the images suffer from the high-noise
problem.
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The comparison results are shown in Figure  7.16 . The images were taken under illumi-

nation levels from 0.02 lux to 5.0 lux. Under strong illumination conditions such as 5.0 lux,

all the compared methods show high detection accuracy without any false alarms. However,

as the illumination level decreases, the proposed algorithm shows significant advantages over

the baseline methods. This performance improvement is further enhanced with the QIS

compared to the CIS because of its ultra-low read noise. For example, under 0.02 lux and

an average photon level of 0.20 ppp, only the combination of the proposed algorithm and

the QIS device can successfully detect the yellow car in the scene.
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Figure 7.17. More object detection results - Synthetic.

7.4 Final thoughts

We have looked at how we can make the computer vision algorithms work in the presence

of heavy shot noise. The existing computer vision solutions fail at these light levels as they

cannot handle too much noise. We have proposed to use student-teacher learning to deal

with this problem. Equipped with this idea, we have proposed a classification and a object
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Figure 7.18. More object detection results - Real.

detection algorithm that beats the current state-of-the-art in photon limited computer vision

at as low as photon per pixel light level.

7.4.1 Where to, from here?

What we have seen here is how to develop computer vision algorithms for specific camera

settings when used at low light. However, these settings need not necessarily be the best

configuration to use the sensor in. There may exist other settings such as higher frame rate or

even using exposure bracketing and do high dynamic range. It is difficult making this decision

before hand without knowing how the algorithm will behave. One way to get around this

issue is to let the algorithm itself control the camera settings. If the algorithm can control the

sensor based on feedback and also process the data to produce the computer vision results,

it may lead to significantly better performance than what we are seeing right now. Given
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that the image sensors are becoming more programmable, making control algorithms will be

a fruitful direction for future research.
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8. DYNAMIC RANGE EXTENSION FOR QUANTA IMAGE

SENSORS

Dynamic range refers to the range of light levels that a camera can detect. We will get

into the formal definition in a bit, but before that, let us get a basic working idea of what

dynamic range is. We have all taken photos where certain parts of the image are too bright

that the details are washed out, or certain parts are too dark that we cannot see any details.

Figure  8.1 shows a couple examples. This means that the light intensity from the pixels too

dark or washed out is outside the dynamic range of the camera in whatever setting we are

using it in. The signal-to-noise ratio of signals recorded at these pixels is too low to do a

good reconstruction.

(a) Washed-out regions. (b) Dark regions.

Figure 8.1. What is dynamic range? In (a), parts of the image around the
street lamps are too bright, and the details are washed out. In (b), we cannot
see any details behind the house, as it is too dark. This happens because the
signals are outside the dynamic range of the image sensor. In an ideal world,
we would like to recover details from all parts.

Historically, a significant amount of work has gone into increasing the dynamic range of

the image sensors. As we just noted, there are two extremes to this problem, where we will

lose details in the brighter and the darker regions. The pixels get washed out because the

number of photons hitting at these pixels is more than the full-well capacity  

1
 of the image

sensor. A typical way of extending the dynamic range on the brighter side is to increase the
1

 ↑ Check  2 for a rigorous treatment of what full-well capacity is.
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full-well capacity. The signals in the darker regions get lost because there is not enough light

arriving at the sensor to cross the image sensor’s noise floor to recover the signal properly. A

typical way of solving this issue is to make sensors with better read noise and dark current.

As we have seen multiple times in this dissertation, quanta image sensors are an excellent

tool for extending the dynamic range on the darker side. However, the lower bit-depth

severely constraints the full-well capacity of the sensor, which in turn affects the dynamic

range in the brighter parts to a great extent. Compared to a single frame captured using

a CIS, QIS will have a severely limited dynamic range even when the scene has only a few

photons arriving at the sensor. Figure  8.2 shows one such example where only 10 photons

on average are coming per pixel. Even at this light level, 3-bit QIS is heavily washed out

compared to a CIS.

(a) CIS (b) QIS

Figure 8.2. Dynamic range of quanta image sensors. The lower bit
depth of QIS severely affects the full-well capacity and, in turn, the dynamic
range of the image sensor. The QIS image is heavily washed out even at an
average of 10 photons per pixel (ppp). However, all hope is not lost. Please
keep reading to see how we can use QIS to get a dynamic range even more
significant than a CIS.

Does this mean all hope is lost? If it is, then this chapter will end now, but as we can see,

it keeps going on for more than a dozen pages. The answer is obviously no. The high-speed

capabilities of QIS come to the rescue here, and we will show later that capturing multiple

frames help significantly in extending the dynamic range for QIS. We even show that QIS

will have a significantly higher dynamic range under certain conditions than the CIS.
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8.1 Computational imaging for extending the dynamic range

The ways of extending the dynamic range we have discussed till now, are all hardware-

based. Parallelly, there has been a lot of work going on to improve the dynamic range using

computational imaging. We refer the readers to the texts by Banterle et al. [ 18 ] and Reinhard

et al. [  270 ] for an introduction to this subject. In general, these HDR imaging techniques can

be categorized into three families: (i) exposure bracketing [ 75 ], [  79 ], [  271 ]–[ 273 ], (ii) coded ex-

posure [ 274 ], [  275 ], and (iii) burst photography hasinoff2016_BurstPhotography, [  276 ],

[ 277 ].

Exposure bracketing. We take multiple exposures of the scene in exposure bracketing,

some with long and some with shorter exposures. Then, we use a carefully designed image

processing algorithm to merge these differently exposed images to form the final image.

Exposure bracketing is popular on hand-held devices because of its simplicity. The downside,

however, is that it requires capturing many long and short exposure frames before the fusion

step, and the overall acquisition time is thus long.

Despite the variety of exposure bracketing techniques, one thing that remains unchanged

is the original linear combination idea. There are multiple ways of achieving linear recon-

struction. One can combine the processed images instead of the raw image [ 79 ], [  272 ], [  278 ],

or directly use the raw data [  75 ], [  279 ]–[ 281 ]. The choice of the combination weight also plays

a critical role in HDR reconstruction. Mitsunaga et al. [  79 ] choose weights proportional to

the SNR to optimize the overall SNR of the combined image. Hasinoff et al. [  282 ] propose

two different ways to obtain an HDR image, either by maximizing the minimum SNR in

the image or minimizing the overall time taken to obtain an image with a target SNR. In

[ 279 ], Robertson et al. proved that the maximum likelihood estimate of the HDR estimate

is the linear combination with weights inversely proportional to the variance of the signal.

Granados et al. [ 75 ] extend the work of [  279 ] by including different sources of noise in the

model. Mertens et al. [ 283 ] combine LDR images without converting them into HDR values.

Recently, several neural-network based HDR reconstruction methods that hallucinate HDR

images from LDR images [  284 ], [  285 ] or use exposure bracketed images for reconstructing

HDR dynamic scenes have also been proposed [ 286 ], [ 287 ].
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CIS-based coded exposure. We can think of coded exposure as a modified version of ex-

posure bracketing. Instead of capturing multiple frames with different exposures, we capture

a single frame with different exposures and use carefully developed algorithms to combine

these different exposures into a single image. Some representative works include [ 275 ], which

proposed using spatially varying exposures to obtain HDR imaging in a single frame, and

[ 274 ] which extended the idea by using convolutional sparse coding.

CIS-based burst photography. Burst photography aims to acquire a burst of short

exposure frames so that all the frames are below the saturation limit. Then, by properly

aligning the images (for object and camera motion), one can reconstruct an HDR image.

Over the past few years, various burst photography algorithms are proposed, ranging from

traditional motion alignment methods [ 288 ]–[ 290 ] to end-to-end deep learning methods [ 291 ]–

[ 293 ]. However, the photon sensitivity of the sensors intrinsically limits the performance

of CIS-based burst photography. As the exposure becomes short, the sensor’s high read

noise and dark current will prohibit the precise measurement of the signals. In addition,

the random Poisson statistics of the photon arrivals pose a fundamental limit to CIS-based

burst photography, which is difficult to be solved by image processing, including deep learning

algorithms.

A lot of these were developed for CIS sensors. It is unclear how well they can port to

a QIS. There are very few works like [  294 ] answering this question. If they can be prted,

can we use the existing algorithms for the reconstruction? These are a few of the questions

we try to answer in this chapter. At the end of this chapter, we will have answers to the

following questions:

1. Can we make QIS not too limited in their dynamic range, unlike Figure  8.2 ?

2. Can we quantify the dynamic range of QIS?

3. Do we get any dynamic range advantage over CIS by using QIS?

4. If we are to use exposure bracketing to increase the dynamic range of QIS, how do we

reconstruct the scene from the data?
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This chapter builds upon the theoretical work we did on the signal-to-noise ratio (SNR)

in chapter  3 , based on our work [ 27 ].

8.2 Oversampling

The first question is straightforward to answer. Oversampling in QIS helps in extending

the dynamic range. Consider the following scenario. Let us take a CIS and QIS. Let the CIS

have a full-well capacity of 4000 e−. Assume QIS can capture 4000 frames when CIS takes

a single capture. The sensor response of CIS and QIS under such a scenario, using theorem

 3.3.3 is shown in Figure  8.3 . We can see that QIS takes much longer to saturate under such

a scenario than a CIS. This fact has been utilized in many recent works to capture high

dynamic range images [ 53 ] using QIS.

Figure 8.3. Sensor response. The mean signal E [Y [n]] of a CIS and a QIS,
as a function of the exposure β.

8.3 Some HDR theory

8.3.1 Dynamic range

In this section, we theoretically derive the dynamic range of a QIS. Figure  8.5 shows the

meaning of the dynamic range. The dynamic range is the range of the exposures where the

signal-to-noise ratio (SNR) is above a certain threshold. Therefore, to analyze the dynamic

range of QIS, we need to use the SNR defined in Chapter  3 .
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Figure 8.4. Extending dynamic range of QIS with oversampling. This
figure repeats the experiment from Figure  8.2 , but this time we oversample the
scene, i.e., QIS now captures 20 frames instead of a single frame. Oversampling
could be a solution for solving the dynamic range problem in QIS.

Figure 8.5. What is dynamic range? (Formal definition.) Dynamic range
is the range of exposure that the sensor can detect. We define it as the range
of exposure for which the SNR is greater than 1. If a particular part of a scene
has lower exposure than this range, it will appear black. Similarly, excessive
exposure may make a pixel appear saturated.

8.3.2 Exposure bracketing with QIS

Figure  8.6 demonstrates the idea that an additional advantage of oversampling is that

we can do exposure bracketing among the frames, where we use a different integration time

for each frame. The exposure bracketing helps in extending the dynamic range even further.
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Figure 8.6. HDR imaging with quanta image sensors. Quanta Image
Sensors can oversample the scene because of their significantly higher frame
rate. In this chapter, we show that when we combine the oversampling abil-
ity of Quanta Image Sensors with exposure bracketing, the dynamic range
achieved by the system far exceeds the dynamic range of the CMOS Image
Sensors.

So, with QIS we are looking at a burst of N frames, divided into M groups of different

integration times. Then the captured frames can be represented as

Y =
{

Y [1], . . . , Y [m]︸ ︷︷ ︸
Exposure 1

. . . Y [n], . . . , Y [N ]︸ ︷︷ ︸
Exposure M

}
, (8.1)

where each Y [n] = [Y1[n], . . . , Yd[n]] is one captured frame. For the rest of this chapter, we

assume that we are imaging a static scene, with photon rate of λ = [λ1, . . . , λd]. So, for an

integration time of ∆, the mean number of photons arriving at the sensor is

β = [β1, . . . , βd] = λ ·∆. (8.2)
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(a) CIS

(b) 1-bit QIS

(c)3-bit QIS

Figure 8.7. Comparison of signal-to-noise ratio (SNR) for CIS and
QIS. CIS is assumed to have a full well capacity of 4000 electrons. QIS is
assumed to use a spatial oversampling of 2× 2. The number of frames at each
integration time is N = 1000 for single-bit QIS and N = 143 for 3-bit QIS.
The oversampling is chosen such that the total signal obtained by both the
CIS and QIS is the same. Notice that the QIS has a larger dynamic range
than CIS for each exposure and has a more consistent SNR over the entire
range when the low dynamic range images are combined to get a single high
dynamic range image.
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8.4 Comparing CIS and QIS

Using Theorem  3.3.3 , we compare the dynamic range of a QIS and a CIS. Recall Fig-

ure  8.5 . The dynamic range of a sensor is the range of exposures such that the SNR is above

unity. Our goal here is to use the theoretical curves to predict how much dynamic range can

be offered by each sensor.

Considering a typical setup of a CIS where the full-well capacity is L = 4000 e− and the

read-noise is σread = 2e−. We assume that the CIS uses three exposures to capture the image.

For QIS, we operate in an oversampling regime by taking multiple short exposures of equal

length. We assume that the read-noise of QIS is σread = 0.25e−. For QIS, we sometimes do

spatial oversampling too. The number of frames is configured such that the total duration

of the acquisition is the same as a CIS. Afterward, we merge the short-exposure frames to

generate an HDR image using the algorithm described in Section  8.5 .

(a) Ground Truth (b) raw 1 frame (1-bit) (c) raw 1 frame (3-bit)

(d) CIS (e) sum of 4000 frames (1-bit) (f) sum 571 frames (3-bit)

Figure 8.8. Dynamic range of QIS and CIS. The image is simulated so
that the maximum illumination of the image is 6× 106 photons per pixel per
second. CIS can count up to 4000 electrons, single bit QIS - 1 electron and
3-bit QIS - 7 electrons. The exposure times are CIS - 1ms, single bit QIS -
0.25µs, and 3-bit QIS - 1.75µs. We use 1 CIS frame, 4000 frames for single
bit QIS and 571 frames for 3 bit QIS. We observe that CIS is saturated in the
red arrowed regions, whereas QIS still shows the signal.
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Figure  8.7 shows the theoretically predicted curves for CIS and 1-bit QIS. For CIS, we

show three different integration time ∆ = 10−1sec, 10−2sec and 10−3sec. The HDR image

formed by a CIS is the sum of the three exposures. QIS with an integration time of 10−4

uses an oversampling of 2 × 2 × 1000, meaning a spatial oversampling of a 2 × 2 bin and

1000 frames of 1-bit measurements. The HDR versions of the QIS data are obtained using

the reconstruction method described in section  8.5 .

As we can observe from Figure  8.7 , the dynamic range of a QIS using just one integration

time is 74dB (1-bit), which is already substantially more significant than the 64dB of a CIS.

After reconstructing the HDR image by merging multiple integration times, the resulting

dynamic range offered by a QIS is also higher than that of a CIS. Also, Figure  8.7 shows that

the SNR of a combined QIS image never drops below 30dB, which is a big contrast to CIS,

which suddenly drops once the exposure exceeds the full-well capacity. Figure  8.8 illustrates

the visual comparison between a CIS and a QIS. Notice that the QIS offers better details

for the same amount of photons than a CIS.

If we look at the low-light ends of Figure  8.7 , we observe that CIS is performing better

than a QIS. This phenomenon is the result of accumulating read noise from adding multiple

frames. Since, every readout of a QIS frame has a fixed amount of read noise, the more

readouts we do the more read noise we accumulate. In Figure  8.9 we demonstrate this

problem. Assuming a read noise level of σread = 0.25, and an integration time of ∆ = 0.2sec

(or ∆ = 0.02sec), we plot the sum of N frames of 3-bit frames. As the number of frames N

increases, with the total integration time fixed, the image becomes noisier when σread = 0.25.

This is not visible, when σread = 0 or σread = 0.15, because the gaussian read noise is not

strong enough to cause any issues with multiple read-outs.

8.4.1 SNR vs dynamic range trade-off

QIS offers a trade-off between the peak SNR and the dynamic range. Figure  8.10 shows

four sets of curves: (i) a CIS running in LDR mode. The dynamic range is 64dB. (ii) A QIS

operating in LDR mode, with N = 4000 frames, which is equivalent to a CIS exposure. The

dynamic range is 74dB, but the peak SNR is slightly lower than CIS. (iii) A QIS operating
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Figure 8.9. Accumulation of noise. The sub-figures show the sum of N
simulated QIS frames when using different N and different integration times
∆, such that the total integration time N∆ is equal for all the cases considered.
Because of the finite read noise, by summing more frames, we accumulate error,
which in turn leads to a trade-off between the number of frames and the SNR
when the total integration time is fixed.

in an LDR mode, with N = 1000 frames, which is a much weaker signal than a CIS. (iv) A

QIS operating in the way as the previous case, but this time we merge four different LDR

images to create an HDR image. We observe that the dynamic range goes up to 127dB
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Figure 8.10. SNR vs. dynamicrange tradeoff. QIS offers a unique trade-
off where we can choose a setting based on whether we want an image with
a very high SNR or sizeable dynamic range. This figure shows that QIS can
operate under an LDR regime with comparable SNR to a CIS or HDR regime,
where the dynamic range is significantly higher.

which is 63dB higher than CIS. However, the overall peak of this HDR image is still lower

than that of a CIS owing to the lower peak offered by an individual LDR.

This figure shows that we can trade off the peak SNR and the dynamic range of a QIS by

controlling the exposure pattern, e.g., using fewer but longer exposures or more but shorter

exposures. This flexibility can be of importance for various imaging applications.

8.5 HDR reconstruction for QIS

The significance of Theorem  3.3.3 is two-fold. Till now, we have only seen how it informs

us of the SNR and hence the dynamic range of QIS. In this section, we use Theorem  3.3.3 

to derive an optimal linear HDR reconstruction algorithm.

8.5.1 Exposure bracketing

Before we discuss the problem formulation, we should first comment on how a conven-

tional CIS performs HDR reconstruction. To a large extent, conventional HDR methods
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are based on the concept of exposure bracketing [ 295 ]. Given a stack of differently exposed

images, we construct a linear combination of the images to create the final image. Putting

this mathematically, if we denote Y [1], . . . , Y [N ] as a sequence of N differently exposed

images, then the HDR image λ̂ is

λ̂ =
N∑

n=1
w[n]� Y [n], (8.3)

where � denotes the element-wise multiplication, and {w[n]} is a sequence of weight vectors

satisfying the constraint that ∑N
n=1 w[n] = 1. Because the reconstructed image λ̂ is the

linear combination of the input frames, we call such an exposure bracketing technique a

linear reconstruction method. We follow the literature by deriving the theoretical results for

static scenes.

8.5.2 Optimal weights for QIS

Without loss of generality, let us assume that the QIS has acquired a stack of frames

as given by Equation (  8.1 ), where the frames are grouped into M different index sets of

exposures E1, . . . , EM . For example, the set E1 contains all the indices of the frames that

have used the exposure ∆1. We further assume that each Em contains K frames for simplicity.

So for M exposures, each having K frames, the total number of frames is N = KM .

To make the notation simple we focus only on one pixel. The average number of photons

obtained by each exposure ∆m is

β[m] = ∆mλ, (8.4)

Intuitively, since the flux λ is constant, the average number of photons is proportional to the

exposure time ∆m.

Following the camera model from Chapter  3 , each β[m] will generate K observations

Y [n1], . . . , Y [nK ]. Depending on the ADC, each Y [n] can be a one-bit or a multi-bit Poisson

random variable. The mean and variance of each Y [n] are respectively defined as

µY [m] def= E [Y [n]], and σ2
Y [m] def= Var [Y [n]], (8.5)

242



for n ∈ Em, where m = 1, . . . , M . Essentially, this equation says that when we divide the

exposures into M groups, we have M different means and variances.

Note that µY [m] is a function of β[m]; Y [n] is the truncated Poisson random variable

according to the QIS model, and so µY [m] must be a function of the underlying average

photon count β[m]. Denoting µY [m] = f(β[m]) for some function f , it holds that β[m] =

f−1(µY [m]). For example, if the ADC is 1-bit and σread = 0, then

µY [m] = 1− e−β[m] def= f(β[m]),

and so f−1(µY [m]) = − log(1 − µY [m]). As mentioned in [  76 ], this can be regarded as a

tone-mapping.

As far as estimation is concerned, we reconstruct a low dynamic range (LDR) image from

a stack of K frames of the same exposure. We thus define the sum as

S[m] def= K

∆m

f−1

 1
K

∑
n∈Em

Y [n]

 . (8.6)

Here, the quantity inside f−1 is the average of the frames. f−1 resolves the tone-mapping.

The normalization 1/∆m ensures that S[m] is properly scaled with respect to the exposure

time.

To construct the HDR image, we consider using a linear combination scheme by defining

λ̂ =
M∑

m=1
w[m]S[m], (8.7)

where w[m] ∈ R is a weight satisfying the property that ∑M
m=1 w[m] = 1. Because of the

weighted averaging instead of a simple sum, the exposure referred SNR for this estimator λ̂

takes a generalized form of

SNRH(S) =
√

N
β

σY

dµY

dβ
. (8.8)
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Specifically, since each exposure has K frames, the signal in the numerator of Equation (  8.8 )

is

signalHDR = Kλ.

The denominator of Equation ( 8.8 ), which is the exposure-referred noise, becomes

noiseHDR =

√√√√ M∑
m=1

(
w[m]
∆m

)2

σ2
H[m], (8.9)

where σH[m] is the exposure-referred noise standard deviation of the m-th exposure  

2
 :

σH[m] =
√

KσY [m] · dβ[m]
dµY [m]

. (8.10)

Here, σY [m] and dβ[m]
dµY [m] follow from Theorem  3.3.3 , where for each exposure m there is a

different σY [m] and dβ[m]
dµY [m] . Taking the ratio between signalHDR and noiseHDR gives us the

overall SNR of the HDR image:

SNRHDR
H = Kλ√∑M

m=1

(
w[m]
∆m

)2
σ2

H[m]
. (8.11)

The optimization problem is to find the optimal weights w[1], . . . , w[M ] such that SNRHDR
H

is maximized. This gives the following constrained problem:

maximize
w[1],...,w[M ]

Kλ√∑M
m=1

(
w[m]
∆m

)2
σ2

H[m]

subject to
M∑

m=1
w[m] = 1, and w[m] ≥ 0.

(8.12)

To specify the solution of this optimization problem, we define the m-th SNR as

SNRH[m] def= β[m]
σH[m]

= ∆mλ

σH[m]
. (8.13)

2
 ↑ σH[m] can be obtained by taking the variance of λ̂. The derivative appears as a result of applying the

delta method to f−1(S[m]).
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With this definition, we can determine the solution.

Theorem 8.5.1 (Optimal linear combination). The optimal weights w[1], . . . , w[M ]

which solves the optimization problem Equation ( 8.12 ) is given by

w[m] = SNR2
H[m]∑M

m=1 SNR2
H[m]

, (8.14)

where SNRH[m] is defined by Equation ( 8.13 ).

Proof. The optimization problem is

maximize
w[1],...,w[M ]

Kλ√∑M
m=1

(
w[m]
∆m

)2
σ2

H[m]

subject to
M∑

m=1
w[m] = 1, and w[m] ≥ 0.

(8.15)

Using a lagrange multiplier α, we can re-write the optimization problem as

min
wi,j

M∑
m=1

(w[m])2
(

σ2
H[m]
∆m

)2

+ α

(
M∑

m=1
w[m]− 1

)

subject to
M∑

m=1
w[m] = 1, and w[m] ≥ 0.

(8.16)

Solving this optimization problem, we get

w[m] =

(
∆m

σH [m]

)2

M∑
k=1

(
∆k

σH [k]

)2

Comparing this result with the expression for SNRH, we can obtain the necessary expres-

sion.

8.5.3 Comparison with CIS

It is important to understand why a CIS-based reconstruction such as [ 75 ] does not work

for QIS. A CIS assumes a linear sensor response until the photon level reaches the full-well
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capacity, whereas QIS assumes a nonlinear response. The linear response of a CIS implies

that before saturation we have µY [m] = β[m] so that dβ[m]/dµY [m] = 1 in Equation (  8.10 ),

and after saturation, we have that µY [m] = L where L is the full-well capacity and so

dβ[m]/dµY [m] = ∞. For K frames, each with an exposure ∆m, the exposure-referred SNR

is

σH[m] =
√

K · σY [m] · dβ[m]
dµY [m]

=


√

K
√

∆mλ, if ∆mλ < L,

∞, if ∆mλ ≥ L.

(8.17)

Substituting this into SNRHDR, we show that for CIS,

SNRHDR
H = Kλ√∑M

m=1

(
w[m]
∆m

)2
K∆mλ · I {∆mλ < L}

, (8.18)

where I{·} = 1 if the argument is true, and is ∞ if the argument is false. Consequently, one

can solve a similar optimization as we did to obtain the following weight

w[m] = ∆m · I {∆mλ < L}∑M
m=1 ∆m · I {∆mλ < L}

. (8.19)

Therefore, as long as the pixels are not saturated for each exposure, the weight is linear

with respect to the exposure time ∆m. This should be intuitive, because when the pixels are

not saturated, longer exposure time gives higher SNR and so it should be weighted more.

If a pixel becomes saturated, then the SNR will drop abruptly so that the corresponding

exposure is invalidated.

The analysis here shows why a CIS-based reconstruction method does not apply to

QIS. QIS does not have the linear response as CIS does. As a result, the optimal linear

reconstruction method for QIS given by Theorem  8.5.1 is not transferable to CIS, and vice

versa.
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Figure 8.11. HDR reconstruction pipeline. The raw frames from QIS are
first summed and denoised. Then the denoised images are linearly combined
by giving weights to each image proportional to their SNRH iteratively.

8.5.4 Reconstruction algorithm

Theorem  8.5.1 suggests a method to construct an HDR image. The idea is that if we

knew SNRH[m], then the weight is given according to Equation (  8.14 ). Substituting the

weight into Equation ( 8.7 ) will give us the estimate.

In practice, however, since we do not know λ, we need to estimate SNRH[m]. The

estimation is based on an iterative procedure. Denoting wk[m] as the weight at the k-th

iteration, and λ̂k as the estimated HDR pixel in the k-th iteration, the iterative procedure

is given by two steps:

λ̂k+1 =
M∑

m=1
wk[m]S[m],

wk+1[m] = (SNRk+1
H [m])2∑M

m=1(SNRk+1
H [m])2

,

where SNRk+1
H [m] is evaluated based on Equation (  8.13 ), and the exposure referred noise

σH[m], which is a function of λ̂, is updated using Theorem  3.3.3 . The algorithm is summarized

in Algorithm  2 .
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Algorithm 2 HDR Image Reconstruction
1. Acquire QIS frames Y [n], n = 1, . . . N .
2. Obtain M LDR images according to Equation ( 8.6 ).
3. Initilialize w0[m] = 1/M, ∀m = 1, . . . M .
4. Estimate the HDR image λ̂k according to Equation ( 8.7 ).
5. Update SNRk

H[m] according to Equation ( 8.13 ).
6. Update weights wk[m] according to Equation ( 8.14 ).
7. Repeat 4,5,6 till convergence.

8.5.5 Practical considerations

Denoising. The proposed HDR reconstruction method does not include any pre-processing

of the input LDR images. In practice, it may be desirable to perform some degree of denois-

ing using simple methods such as the one introduced in [  76 ]. The denoising is particularly

useful when the number of frames is low. HDR denoising itself is an open problem. We leave

the problem on denoising+HDR reconstruction as future work.

Look up tables. The proposed reconstruction method requires calculating the exposure-

referred SNR for every pixel at the exposure period, and this is computationally very expen-

sive. However, we notice that the exposure-referred SNR is a function of the mean number of

photons collected by the sensor at each frame. It is, therefore, possible to construct a look-up

table to store the values by discretizing the mean signal levels. During the computation, one

can refer to the look-up table when calculating SNRH[m].

Dynamic Scenes. The optimal reconstruction scheme presented in this chapter is analo-

gous to the optimal linear schemes in the conventional CIS-based HDR problems [  75 ], [  279 ],

[ 280 ]. Thus, by design, the method is used for static scenes. We acknowledge the importance

of HDR imaging for dynamic scenes. However, the reconstruction problem becomes substan-

tially harder in the presence of shot noise and motion. Several methods have demonstrated

the feasibility of handling photon-limited data and motion, e.g., [  23 ], [  146 ], [  296 ]. Adding

exposure bracketing to these problems is an important future problem.

Number of iterations. The proposed reconstruction algorithm is iterative. In Figure  8.12 ,

we plot the mean squared error in log scale (LMSE) as used in [ 284 ] between the reconstructed

image and the ground truth image after each iteration. We use the “aisle” image from the
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Figure 8.12. Number of iterations for the proposed algorithm to con-
verge. We use three different integration times and 100 frames per integration
time and use the proposed HDR reconstruction method. The figure shows that
LMSE converges after 5 iterations.

Stanford HDR image dataset [ 297 ] for simulating the QIS data for this experiment. We use

three different integration times and 100 frames per integration time and use the proposed

HDR reconstruction method. We observe that LMSE converges after 5 iterations. We notice

similar results with multiple images, different integration times, and a different number of

frames.

8.6 Experiments

In this section, we report the experimental results. Our results can be divided into two

parts: (i) Comparing CIS with QIS for HDR imaging; (ii) Comparing the optimal HDR

reconstruction algorithm and the existing methods.

8.6.1 Comparing CIS with QIS for HDR imaging

The first experiment evaluates the significance of QIS compared to CIS for HDR imaging.

Some of the results have already been shown. We summarize them here:
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Figure 8.13. Comparing CIS and QIS for HDR imaging. The CIS
image is constructed from three frames, each with an exposure of 33 ms, 3.3
ms, and 0.33 ms, respectively. The QIS image is constructed from a set of
exposures 1.1 ms, 0.11 ms, and 0.011 ms. The CIS is assumed to have a full
well capacity of 4000 electrons. The number of 1-bit QIS frames is 30 times
that of CIS so that the overall integration time for CIS and QIS are equal. The
timestamps shown at the bottom of the figure are the overall integration time
to capture all the exposures. Note that QIS offers better image reconstruction
for a short integration, e.g., 33ms or lower.

• Figure  8.8 illustrates the dynamic range that can be offered by one CIS frame (in 1ms)

and that offered by multiple QIS frames of different bit-depths (within the same 1ms).

Our result shows that CIS saturates, whereas QIS does not.

• Figure  8.10 shows the theoretical dynamic range of CIS and QIS. We observe that

a single QIS exposure has a dynamic range of 10dB higher than a CIS, and fusing

multiple exposures will widen the gap even further.

In addition to these results, we show in Figure  8.13 a visual comparison between a CIS and

a QIS. This experiment considers the practical frame rate limit of a QIS, which was assumed

to be 1000 frames per second according to [ 46 ], which is approximately 30 times faster than

a standard CIS operating at 30 frames per second [  298 ]. While there exists even faster QIS

prototypes (e.g., [  43 ]), Figure  8.13 shows that with 1000 fps, QIS already offers an advantage

over the CIS.

We simulate 30 QIS frames for every CIS frame to conduct this experiment. The bit-

depth of the QIS is 1-bit. Among the QIS exposures, we consider the multi-exposure scheme
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CIS N = 1 1-bit QIS N = 20

Figure 8.14. Comparing CIS and QIS. IWe use a commercially available
CIS in this real experiment and compare it with a prototype QIS. CIS only
captures one frame within a fixed integration time, whereas QIS has captured
multiple frames of different exposures.

consisting of integration times 1.1 ms, 0.11 ms, and 0.011 ms. We use integration times 33

ms, 3.3 ms, and 0.33 ms for CIS. The CIS is assumed to have a full well capacity of 4000

electrons. We use the proposed HDR reconstruction method for obtaining the QIS HDR

image, and [  75 ] for the CIS HDR image. Notice that CIS initially produces good quality

images with limited dynamic range, and the dynamic range improves over time. Compared

to this, the QIS can produce images with a larger dynamic range at only a fraction of the

time taken by the CIS to produce its first frame. Although the images are noisy initially,

the quality gets better over time. At 100 ms, the quality and the dynamic range of the QIS

and CIS images are about the same. However, when the total time taken reduces, QIS offers

a higher dynamic range than the CIS.

In Figure  8.14 , we compare QIS and CIS using real data. We collect a total of N = 20

1-bit QIS frames, with K = 10 frames at 2 different integration times of 50µs, 1000µs. We

compare this to a CIS image obtained using e-con System’s e-CAM40_CUMI4682_MOD

camera module, which uses OmniVision’s OV4682 image sensor. Figure  8.14 shows a clear

distinction between the two sensors.
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∆ = 75µs, 1 frame ∆ = 375µs, 1 frame ∆ = 1875µs, 1 frame

[ 294 ] [ 75 ] Ours
Figure 8.15. The HDR reconstruction algorithm - Real experiment
In this experiment, we collect 10 QIS frames, each at 3 different exposures -
75µs, 375µs, and 1875µs in 3-bit modes. The result shows the advantage of
the proposed HDR reconstruction methods over the other two methods.

8.6.2 Reconstruction algorithm

The second experiment evaluates the optimal reconstruction scheme. While we acknowl-

edge the promising results of deep neural network solutions, in this chapter, we compare

with two deterministic schemes [ 294 ] and [ 75 ] for three reasons:

• The objective of this chapter is not to compete with state-of-the-art HDR image re-

construction algorithms customized for CIS. Moreover, there do not exist QIS datasets

for us to conduct a fair comparison.

• Among the deterministic methods, [  75 ] is theoretically optimal for CIS. No other linear

method can achieve better results. We compare this method to show that CIS methods

cannot be translated to QIS.

• Among the QIS methods, [ 294 ] is one of the latest works in the literature. We compare

this method to show the effectiveness of our method.
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Table 8.1. Comparing the three HDR reconstruction methods.
1 bit

Dutton et al. Granados et al.
Metric [ 294 ] [  75 ] Proposed
LMSE 11.25× 10−2 1.23× 10−2 0.61× 10−2

PU-PSNR 32.53 34.89 35.92
PU-SSIM 0.9138 0.9822 0.9850

3 bits
LMSE 10.02× 10−2 0.59× 10−2 0.49× 10−2

PU-PSNR 33.26 36.42 36.81
PU-SSIM 0.9345 0.9901 0.9912

We first evaluate the methods using the Stanford-HDR dataset [  297 ] containing 88 HDR

images. We normalize the images such that the 0.01 ≤ λ∆ ≤ 8000, if λ 6= 0 at every pixel.

We simulate a total of N = 3000 1-bit and 3-bit frames with with K = 1000 frames each at

3 different integration times of ∆, ∆/10, and ∆/100. We use the LMSE, PU-PSNR and PU-

SSIM [  299 ] as the metrics for comparison. LMSE measures the mean squared error (MSE)

in log-scale. PU-PSNR and PU-SSIM calculate the peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM) using a perceptually uniform (PU) encoding. We compare the

performance of the proposed HDR reconstruction method with reconstruction methods from

[ 294 ] and [  75 ] in Table  8.1 , using the average LMSE, PU-PSNR, and PU-SSIM compared to

the ground-truth for the three methods across the 88 HDR images. We see that the proposed

method outperforms the two competing methods in all the three metrics we have considered,

in single-bit and three-bit modes.

In Figure  8.16 , we visually compare the three methods. We use 3-bit images. 100 frames

are collected at 4 different integration times, thus giving 400 frames. These frames are

then used to reconstruct the high dynamic range image. Notice that the proposed method

outperforms [ 294 ] and [ 75 ], both visually and the in the LMSE metric.

Next, we show the comparisons using real QIS data in Figure  8.15 . We collect a total

of N = 30 frames of 3-bit QIS data, with K = 10 frames at 3 different integration times of

75µs, 375µs and 1875µs. The scene consists of a bright light bulb on the right and two dark

objects on the left. The three LDR images show different levels of saturation. We apply [ 294 ]
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(a) (b) [ 294 ] (c) [  75 ] (d) Ours (e) Ground Truth

LMSE = 0.1310 LMSE = 0.0.0776 LMSE = 0.0653

Figure 8.16. The HDR reconstruction algorithm - Synthetic experi-
ment400 3 bit frames were simulated at 4 different integration times, with 100
frames at each integration time. We can see that the HDR images obtained in
(d) using the proposed method are closer to the ground truth than the other
two methods. The images are displayed on the log scale. LMSE is the mean
squared error measure in log-scale. (Images courtesy : [  297 ])

and [ 75 ] to the image stack and reconstruct a HDR image. We observe that the method by

Dutton et al. [ 294 ] has a weak reconstruction of the darker regions since it provides equal

weights to all three integration times. The method by Granados et al. [  75 ] has a better

dynamic range, but it also generates artifacts in the brighter regions. The proposed method,

which is optimal for QIS, produces an HDR with fewer artifacts.

1
bi

t

75µs 500µs 1100µs HDR image using
15× 2× 2 15× 2× 2 15× 2× 2 proposed algorithm

Figure 8.17. Real experiment. In this experiment, we obtain a K = 15
frames at 3 different integration times of ∆1 = 75µs, ∆2 = 575µs, and
∆3 = 1175µs . Spatial oversampling of 2 × 2 is used. The proposed HDR
reconstruction algorithm is used to obtain the final HDR image. We use MAT-
LAB’s tonemap to re-scale the image intensity for display purposes. The raw
(un-normalized) images are shown in the first column’s small insets.

Finally, we show the reconstruction results for an image containing more complex content.

In Figure  8.17 , we collect a total of N = 45 frames, with K = 15 frames each at 3 different
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integration times of 75µs, 575µs and 1175µs. We use 1-bit QIS with a spatial oversampling

factor of 2× 2. The denoiser from [  76 ] used for denoising the LDR image at each integration

time before using the proposed method for HDR reconstruction. As we can observe in

the images, the short exposure captures the bright regions well, but the image contains

noise, whereas the long exposure has better SNR but is saturated at bright regions. The

reconstructed HDR image has recovered the details and maintained the SNR.

8.7 Final thoughts.

We have seen how QIS can revolutionize the HDR imaging scene. The ability of the QIS

to oversample combined with lower read noise and dark current is the perfect recipe for high

dynamic range imaging. We saw that even with the current prototypes of cameras available,

we can still gain the advantage. In the future, the QIS sensors are only going to get better.

We have done a theoretical study to understand how much real advantage we will get with

these future prototypes, and the results are astounding. We have also contributed a new

algorithm for QIS HDR fusion, as the existing methods do not work that well with QIS data.

8.7.1 Where to, from here?

We have made a significant assumption in this chapter that the scene is static. This

assumption usually does not hold, and when the scene is dynamic, it is a well-known fact

that HDR methods with exposure fusion create ghosting artifacts. Thus it will become

imperative to develop methods that deal with motion. This chapter has not explored other

computational imaging techniques such as coded exposure for extending the dynamic range.

Given that QIS will take some time to get market-ready, it will be interesting to see if the

current prototypes can be combined with the CIS image sensors to get a better imaging

quality than using only the CIS.
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9. SINGLE NEURAL NETWORK FOR MULTIPLE NOISE

LEVELS

The following phenomenon could be familiar to those who develop learning-based image

denoisers. If a neural network is trained at a noise level σ, then its performance is maximized

when the testing noise level is also σ. As soon as the testing noise level deviates from the

training noise level, the performance drops [  300 ], [  301 ]. This is a typical mismatch between

training and testing, which is arguably universal for all learning-based estimators. This

problem becomes even more pronounced when we went a single network to deal with both

photon-limited and well illuminated scenes. While this a general phenomenon that shows

up for any task, let us deal with denoisers in this chapter.

When such a mismatch problem arises, the most straight-forward solution is to create

a suite of networks trained at different noise levels and use the one that matches best with

the input noisy image (such as those used in the “Plug-and-Play” priors [ 165 ], [  181 ], [  186 ]).

However, this ensemble approach is not effective since the model capacity is multiple times

larger than necessary.

A more widely adopted solution is to train one denoiser and use it for all noise levels.

The idea is to train the denoiser using a training dataset containing images of different

noise levels. The competitiveness of these “one size fits all” denoisers compared to the best

individually trained denoisers has been demonstrated in [ 142 ], [  155 ], [  181 ], [  302 ]. However,

as we will illustrate in this chapter, there is no guarantee for such arbitrarily trained one-

size-fits-all denoiser to have a consistent performance over the entire noise range. At some

noise levels, usually at the lower tail of the noise range, the performance could be much

worse than the best individuals. The cause of this phenomenon is related to how we draw

the noisy samples, which is usually uniform across the noise range. The question we ask

here is that if we allocate more low-noise samples and fewer high-noise samples, will we be

able to get a more consistent result?
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9.1 One size fits all denoisers

The objective of this chapter is to find a sampling distribution such that for every noise

level the performance is consistent. Here, by consistent we meant that the gap between the

estimator and the best individuals is balanced. The idea is illustrated in Figure  9.1 . The

black curve in the figure represents the ensemble of the best individually trained denoisers.

It is a virtual curve obtained by training the denoiser at each noise level. A typical “one

size fits all” denoiser is trained by using noisy samples from a uniform distribution, which

is denoted by the blue curve. This figure illustrates a typical in-consistence where there is a

significant gap at low-noise but small gap at high noise. The objective of this chapter is to

find a new sampling distribution (denoted by the orange bars) such that we can achieve a

consistent performance throughout the entire range. The result returned by our method is

a trade-off between the overall performance and the worst cases scenarios.

Figure 9.1. Illustration of the objective. The typical uniform sampling
(blue bars) will yield a performance curve that is skewed towards one side of
the noise range. The objective of this chapter is to find an optimal sampling
distribution (orange bars) such that the performance is consistent across the
noise range. Notations will be defined in Section  9.3 . We plot the risks in
terms of the peak signal-to-noise ratio.
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The key idea behind the proposed method is a minimax formulation. This minimax

optimization minimizes the overall risk of the estimator subject to the constraint that the

worst case performance is bounded. We show that under the standard convexity assumptions

on the set of all admissible estimators, we can derive a provably convergent algorithm by

analyzing the dual. For estimators whose admissible set is not convex, solutions returned

by our dual algorithm are the convex-relaxation results. We present the algorithm, and we

show that steps of the algorithm can be implemented by iteratively updating the sample

distributions.

9.2 Existing solutions

While the above sampling distribution problem may sound familiar, its solution does not

seem to be available in the computer vision and machine learning literature.

Image denoising. Recent work in image denoising has been focusing on developing better

neural network architectures. When encountering multiple noise levels, [  181 ] presented two

approaches: Create a suite of denoisers at different noise levels, or train a denoiser by

uniformly sampling noise levels from the range. For the former approach, [  300 ] proposed

to combine the estimators by solving a convex optimization problem. [  90 ] proposed an

alternative approach by introducing a noise map as an extra channel to the network. Our

work shares the same overall goal as [  301 ]. However, they address problem by modifying

the network structure whereas we do not change the network. Another related work is [ 303 ]

which proposed an ad-hoc solution to the sample distribution. Our work offers theoretical

justification, convergence guarantee, and optimality. We should also mention [ 304 ] which

scales the image intensities in order to match with the denoiser trained at a single noise

level.

Active learning / Experimental design. Adjusting the distribution of the training

samples during the learning procedure is broadly referred to active learning in machine

learning [  305 ] or experimental design in statistics [  306 ]. Active learning / experimental design

are typically associated with limited training data [ 307 ], [  308 ]. The goal is to optimally select

the next data point (or batch of data points) so that we can estimate the model parameters,
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e.g., the mean and variance. The problem we encounter here is not about limited data

because we can synthesize as much data as we want since we know the image formation

process. The challenge is how to allocate the synthesized data.

Constrained optimization in neural network. Training neural networks under con-

straints have been considered in classic optimization literature [ 309 ] [  310 ]. More recently,

there are optimization methods for solving inequality constrained problems in neural net-

works [  311 ], and equality constrained problems [ 312 ]. However, these methods are generic

approaches. The convexity of our problem allows us to develop a unique and simple algo-

rithm.

Fairness aware classification. The task of seeking “balanced samples” can be consid-

ered as improving the fairness of the estimator. Literature on fairness aware classification is

rapidly growing. These methods include modifying the network structure, the data distribu-

tion, and loss functions [ 313 ]–[ 317 ]. Putting the fairness as a constrained optimization has

been proposed by [ 318 ], but their problem objective and solution are different from ours.

9.3 Problem formulation

9.3.1 Training and testing distributions: π(σ) and p(σ)

Consider a clean signal y ∈ Rn. We assume that this clean signal is corrupted by some

random process to produce a corrupted signal xσ ∈ Rn. The parameter σ can be treated

in a broad sense as the level of uncertainty. The support of σ is denoted by the set Ω. We

assume that σ is a random variable with a probability density function p(σ).

Example 9.1. In a denoising problem, the image formation model is given by xσ =

y + ση where η is a zero-mean unit-variance i.i.d. Gaussian noise vector. The noise

level is measured by σ. For image deblurring, the model becomes xσ = hσ ∗ y + ε where

hσ denotes the blur kernel with radius σ, “∗” denotes convolution, and ε is the noise.

In this case, the uncertainty is associated with the blur radius. �

We focus on learning-based estimators. We define an estimator f : Rn → Rn as a mapping

that takes a noisy input xσ and maps it to a denoised output f(xσ). We assume that f
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is parametrized by θ ∈ Θ, but for notation simplicity we omit the parameter θ when the

context is clear. The set of all admissible f ’s is denoted as F = {f(·, θ) | θ ∈ Θ}.

To train the estimator f , we draw training samples from the set S def= {x(`)
σ | ` =

1, . . . , N, σ
i.i.d.∼ π(σ)}, where ` refers to the `-th training sample, and π(σ) is the distribution

of the noise levels in the training samples. Note that π is not necessarily the same as p.

The distribution π is the distribution of the training samples, and the distribution p is the

distribution of the testing samples. In most learning scenarios, we want π to match with

p so that the generalization error is minimized. However, in this work, we are purposely

designing a π which is different from p because the goal is to seek an optimal trade-off. To

emphasize the dependency of f on π, we denote f as fπ.

9.3.2 Risk and conditional risk: R(f) and R(f | σ)

Training an estimator fπ requires a loss function. We denote the loss between a predicted

signal fπ(xσ) and the truth y as L(fπ(xσ), y). An example of the loss function is the

Euclidean distance:

L(fπ(x), y) = midfπ(xσ)− ymid2. (9.1)

Other types of loss functions can also be used as long as they are convex in fπ. To quantify

the performance of the estimator fπ, we define the notion of conditional risk/

Definition 9.3.1 (Conditional risk). We define conditional risk as

R(fπ | σ) def= E(xσ ,y)|σ

[
L(fπ(xσ), y) | σ

]
. (9.2)

The conditional risk can be interpreted as the risk of the estimator fπ evaluated at a particular

noise level σ. The overall risk is defined through iterated expectation.
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Definition 9.3.2 (Overall risk). We defined overall risk as

R(fπ) def= Eσ∼p(σ)
{
R(fπ | σ)

}
=
∫

E(xσ ,y)|σ [L(fπ(xσ), y) | σ]︸ ︷︷ ︸
=R(fπ | σ)

p(σ)dσ. (9.3)

Note that the expectation of σ is taken with respect to the true distribution p since we

are evaluating the estimator fπ.

9.3.3 Three estimators: fπ, fp and fδ(σ)

The estimator fπ is determined by minimizing the training loss. In our problem, since

the training set follows a distribution π(σ), fπ is obtained by minimizing over this distribu-

tion.

Definition 9.3.3. The function fπ is defined as

fπ

def= argmin
f

∫
R(f | σ)π(σ) dσ. (9.4)

This definition can be understood by noting that R(f | σ) is the conditional risk evaluated

at σ. Since π(σ) specifies the probability of obtaining a noisy samples with noise level

σ, the integration in Equation (  9.4 ) defines the training loss when the noisy samples are

proportional to π(σ). Therefore, by minimizing this training loss, we will obtain fπ.

Example 9.2. Suppose that we are training a denoiser over the range of σ ∈ [a, b]. If the

training set is uniform, i.e., π(σ) = 1/(b−a) for σ ∈ [a, b] and is 0 otherwise, then fπ is

obtained by minimizing the sum of the individual losses fπ = argminf

∑N
`=1 L(f(x(`)

σ ), y(`))

where the N training samples have equally likely noise levels. �
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If we replace the training distribution π by the testing distribution p, then we obtain the

following estimator:

fp = argmin
f

∫
R(f | σ)p(σ) dσ = argmin

f
R(f). (9.5)

Since fp minimizes the overall risk, we expect R(fp) ≤ R(fπ) for all π. This is summarized

in the lemma below.

Lemma 9.1. The risk of fp is a lower bound of the risk of all other fπ:

R(fp) ≤ R(fπ), ∀π. (9.6)

Proof. By construction, fp is the minimizer of the risk according to Equation (  9.5 ), it holds

that R(fp) = inff R(f). Therefore, for any π we have R(fp) ≤ R(fπ).

The consequence of Lemma  9.1 is that if we minimize R(f) without any constraint, we

will reach a trivial solution of π = p. This explains why this work is uninteresting if the goal

is to purely minimize the generalization error without considering any constraint.

Before we proceed, let us define one more distribution δ which has a point mass at a

particular σ, i.e., p(σ) is a delta function such that p(σ′) = δ(σ′ − σ).

Definition 9.3.4. The estimator fδ(α) is defined as

fδ(σ) = argmin
f

∫
R(f | σ′)δ(σ′ − σ) dσ′, (9.7)

which is equivalent to minimizing the conditional risk fδ(σ) = argmin
f

R(f | σ).

Because we are minimizing the conditional risk at a particular σ, fδ(σ) gives the best in-

dividual estimate at σ. However, having the best estimate at σ does not mean that fδ(σ)

can generalize. It is possible that fδ(σ) performs well for one σ but poorly for other σ’s.

However, the ensemble of all these point-wise estimates {fδ(σ)} will form the lower bound of

the conditional risks such that R(fδ(σ) | σ) ≤ R(fp | σ) at every σ.
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9.3.4 Main problem (P1)

We now state the main problem. The problem we want to solve is the following con-

strained optimization.

Definition 9.3.5 (Main Problem).

f ∗ def= argmin
f∈F

R(f) (P1)

subject to sup
σ∈Ω

{
R(f | σ)−R(fδ(σ) | σ)

}
≤ ε.

The objective function reflects our original goal of minimizing the overall risk. However,

instead of doing it without any constraint (which has a trivial solution of f ∗ = fp), we

introduce a constraint that the gap between the current estimator f and the best individual

fδ(σ) is no worse than ε, where ε is some threshold. The intuition here is that we are willing

to sacrifice some of the overall risk by limiting the gap between f and fδ(σ) so that we have

a consistent performance over the entire range of noise levels.

Referring back to Figure  9.1 , we note that the black curve is R(fδ(σ) | σ). The blue curve

is R(fp | σ) for the case where p(σ) is a uniform distribution. The orange curve is R(f ∗ | σ).

We show in Section  9.4.2 that f ∗ is equivalent to fπ for some π(σ). Note that all curves are

the conditional risks.

9.4 Dual ascent

In this section we discuss how to solve Equation (  P1 ). Solving Equation ( P1 ) is challeng-

ing because minimizing over f involves updating the estimator f which could be nonlinear

w.r.t. the loss. To address this issue, we first show that as long as the admissible set F is

convex, Equation ( P1 ) is convex even if the estimators f themselves are non-convex. We

then derive an algorithm to solve the dual problem.
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9.4.1 Convexity of Equation ( P1 )

We start by showing that under mild conditions, Equation ( P1 ) is convex.

Lemma 9.2. Let F be a closed and convex set. Then, for any convex loss function L,

the risk R(f) and the conditional risk R(f | σ) are convex in f , for any σ ∈ Ω.

Proof. Let f1 and f2 be two estimators in F and let λ ∈ [0, 1] be a constant. Then, by the

convexity of L, the conditional risk R(· | σ) satisfies

R(λf1 + (1− λ)f2 | σ) = E
{
L(λf1 + (1− λ)f2) | σ

}
≤ E

{
λL(f1) + (1− λ)L(f2) | σ

}
= λR(f1 | σ) + (1− λ)R(f2 | σ),

which is convex. The overall risk R(f) is found by taking the expectation of the conditional

risk over σ. Since taking expectation is equivalent to integrating the conditional risk times

the distribution p(σ) (which is positive), convexity preserves and so R(f) is also convex.

We emphasize that the convexity of R(·) is defined w.r.t. f and not the underlying

parameters (e.g., the network weights). For any convex combination of the parameters θ’s,

we have that R(f(· | λθ1 + (1 − λ)θ2)) 6≤ λR(f(· | θ1)) + (1 − λ)R(f(· | θ2)) because f is

not necessarily convex.

The following corollary shows that the optimization problem Equation ( P1 ) is con-

vex.

Corollary 9.1. Let F be a closed and convex set. Then, for any convex loss function

L, Equation ( P1 ) is convex in f .

Proof. Since the objective function R is convex (by Lemma  9.2 ), we only need to show that

the constraint set is also convex. Note that the “sup” operation is equivalent to requiring

R(f | σ)−R(fδ(σ)|σ) ≤ ε for all σ ∈ Ω. Since R(fδ(σ) | σ) is constant w.r.t. f , we can define
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ε(σ) def= ε + R(fδ(σ) | σ) so that the constraint becomes R(f | σ) − ε(σ) ≤ 0. Consequently

the constraint set is convex because the conditional risk R(f | σ) is convex.

The convexity of F is subtle but essential for Lemma  9.2 and Corollary  9.1 . In a standard

optimization over Rn, the convexity is granted if the admissible set is an interval in Rn. In

our problem, F denotes the set of all admissible estimators, which by construction are

parametrized by θ. Thus, the convexity of F requires that a convex combination of two

admissible f ’s remains admissible. All estimators based on generalized linear models satisfy

this property. However, for deep neural networks it is generally unclear how the topology

looks like although some recent studies are suggesting negative results [  319 ]. Nevertheless,

even if F is non-convex, we can solve the dual problem which is always convex. The dual

solution provides the convex-relaxation of the primal problem. The duality gap is zero when

the Slater’s condition holds, i.e., when F is convex and ε is chosen such that the constraint

set is strictly feasible.

9.4.2 Dual of Equation ( P1 )

Let us develop the dual formulation of Equation (  P1 ). The dual problem is defined

through the Lagrangian:

L(f, λ) def= R(f) +
∫ {

R(f | σ)−
(
R(fδ(σ) | σ) + ε

)
︸ ︷︷ ︸

def= ε(σ)

}
λ(σ)dσ

=
∫

R(f | σ)
{

p(σ) + λ(σ)
}

dσ −
∫

ε(σ)λ(σ)dσ, (9.8)

by which we can determine the Lagrange dual function as

g(λ) = inf
f

L(f, λ), (9.9)
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and the dual solution:

λ∗ = argmax
λ≥0

g(λ)

= argmax
λ≥0

{
inf

f

{∫
R(f | σ)

[
p(σ) + λ(σ)

]
dσ

}

−
∫

ε(σ)λ(σ)dσ

}
. (9.10)

Given the dual solution λ∗, we can translate it back to the primal solution f̂ by minimizing

the inner problem in Equation ( 9.10 ), which is

f̂ = argmin
f

∫
R(f | σ)

{
p(σ) + λ∗(σ)

}
︸ ︷︷ ︸

def= π∗(σ)

dσ. (9.11)

This minimization is nothing but training the estimator f using samples who noise levels

are distributed according to p(σ) + λ∗(σ).  

1
 Therefore, by solving the dual problem we

have simultaneously obtained the distribution π∗(σ), which is π∗(σ) = p(σ) + λ∗(σ), and the

estimator f̂ trained using the distribution π∗.

As we have discussed, if the admissible set F is convex then Equation (  P1 ) is convex

and so f̂ is exactly the primal solution f ∗. If F is not convex, then f̂ is the solution of the

convex relaxation of Equation ( P1 ). The duality gap is R(f ∗)− g(λ∗).

9.4.3 Dual ascent algorithm

The algorithm for solving the dual is based on the fact that the point-wise inff L(f, λ)

is concave in λ. As such, one can use the standard dual ascent method to find the solution.

The idea is to sequentially update λ’s and f ’s via

1
 ↑ For p(σ) + λ(σ) to be a legitimate distribution, we need to normalize it by the constant Z =

∫
{p(σ) +

λ(σ)}dσ. But as far as the minimization in Equation ( 9.11 ) is concerned, the constant is unimportant.
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f t+1 = argmin
f

∫
R(f | σ)

{
p(σ) + λt(σ)

}
dσ (9.12)

λt+1(σ) =
[
λt(σ) + αt(σ)

{
R(f t+1 | σ)− ε(σ)

}]
+

(9.13)

Here, αt is the step size of the gradient ascent step, and [ · ]+ = max(·, 0) returns the

positive part of the argument. At each iteration, Equation ( 9.12 ) is solved by training an

estimator using noise samples drawn from the distribution π(σ)t = p(σ) + λt(σ). The λ-step

in Equation ( 9.13 ) computes the conditional risk R(f t+1 | σ) and updates λ.

Since the dual is convex, the dual ascent algorithm is guaranteed to converge to the dual

solution using an appropriate step size. We refer readers to standard texts, e.g., [  320 ].

9.5 Uniform gap

The solution of Equation ( P1 ) depends on the tolerance ε. This tolerance ε cannot be

arbitrarily small, or otherwise the constraint set will become empty. The smallest ε which

still ensures a non-empty constraint set is defined as εmin. The goal of this section is to

determine εmin and discuss its implications.

9.5.1 The uniform gap problem (P2)

The motivation of studying the so-called Uniform Gap problem is the inadequacy of

Equation (  P1 ) when the tolerance ε is larger than εmin (i.e., we tolerate more than needed).

The situation can be understood from Figure  9.2 . For any allowable ε, the solution returned

by Equation ( P1 ) can only ensure that the largest gap is no more than ε. It is possible

that the high-ends have a significantly smaller gap than the low-ends. The gap will become

uniform only when ε = εmin which is typically not known a-priori.

If we want to maintain a constant gap throughout the entire range of σ, then the op-

timization goal will become minimizing the maximum risk gap and not worry about the

overall risk. In other words, we solve the following problem:
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Figure 9.2. Difference between Equation (  P1 ) and Equation (  P2 ).
In Equation (  P1 ), the solution only needs to make sure that the worst case
gap is upper bounded by ε. There is no control over places where the gap is
intrinsically less than ε. Uniform Gap problem Equation (  P2 ) addresses this
issue by forcing the gap to be uniform. Note that neither Equation (  P1 ) nor
Equation (  P2 ) is absolutely more superior. It is a trade-off between the noise
levels, and how much we know about the testing distribution p.

Definition 9.5.1 (Uniform gapproblem).

f ∗ = argmin
f

sup
σ∈Ω

{
R(f | σ)−R(fδ(σ) | σ)

}
. (P2)

When Equation ( P2 ) is solved, the corresponding risk gap is exactly εmin, defined as

εmin
def= sup

σ∈Ω

{
R(f ∗ | σ)−R(fδ(σ) | σ)

}
. (9.14)

The supremum in the above equation can be lifted because by construction, Equation ( P2 )

guarantees a constant gap for all σ.

The difference between Equation ( P2 ) and Equation (  P1 ) is the switched roles of the ob-

jective function and the constraint. In Equation ( P1 ), the tolerance ε defines a user-controlled

upper bound on the risk gap, whereas in Equation (  P2 ) the ε is eliminated. Note that the

omission of ε in Equation (  P2 ) does not imply better or worse since Equation (  P1 ) and
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Equation (  P2 ) are serving two different goals. Equation (  P1 ) utilizes the underlying testing

distribution p(σ) whereas Equation (  P2 ) does not. It is possible that p(σ) is skewed towards

high noise scenarios so that a constant risk gap will suffer from insufficient performance at

high-noise and over-perform at low-noise which does not matter because of p(σ).

In practice (i.e., in the absence of any knowledge about an appropriate ε), one can solve

Equation (  P2 ) first to obtain the tightest gap εmin. Once εmin is determined, we can choose

an ε > εmin to minimize the overall risk using Equation ( P1 ).

9.5.2 Algorithm for solving Equation ( P2 )

The algorithm to solve Equation ( P2 ) is slightly different from that of Equation ( P1 )

because of the omission of the constraint.

We first rewrite problem Equation ( P2 ) as

minimize
f,t

t (9.15)

subject to R(f | σ)−R(fδ(σ) | σ)︸ ︷︷ ︸
def= r(σ)

≤ t, ∀σ.

Then the Lagrangian is defined as

L(f, t, λ) def= t +
∫ {

R(f | σ)− r(σ)− t

}
λ(σ) dσ (9.16)

= t
(

1−
∫

λ(σ)dσ
)

+
∫ {

R(f | σ)− r(σ)
}

λ(σ)dσ.

Minimizing over f and t yields the dual function:

g(λ) def= inf
f,t

L(f, t, λ) (9.17)

=


inf

f

∫ [
R(f | σ)− r(σ)

]
λ(σ)dσ, if

∫
λ(σ)dσ = 1,

−∞, otherwise.
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Consequently, the dual problem is defined as

λ∗ = argmax
λ≥0

inf
f

{∫ [
R(f | σ)− r(σ)

]
λ(σ)dσ

}
(9.18)

subject to
∫

λ(σ)dσ = 1.

Again, if F is convex then solving the dual problem Equation (  9.18 ) is necessary and sufficient

to determine the primal problem Equation (  9.15 ) which is equivalent to Equation ( P2 ). The

dual problem is solvable using the dual ascent algorithm, where we update λ and f according

to the following sequence:

f t+1 = argmin
f

{∫ [
R(f | σ)− r(σ)

]
λt(σ)dσ

}
(9.19)

λt+ 1
2 =

[
λt + αt

(
R(f t+1 | σ)− r(σ)

)]
+

(9.20)

λt+1 = λt+ 1
2 /
∫

λt+ 1
2 (σ)dσ. (9.21)

Here, Equation ( 9.19 ) solves the inner optimization in Equation ( 9.18 ) by fixing a λ, and

Equation ( 9.20 ) is a gradient ascent step for the dual variable. The normalization in Equa-

tion (  9.21 ) ensures that the constraint of Equation (  9.18 ) is satisfied. The non-negativity

operation [ · ]+ in Equation (  9.20 ) can be lifted because by definition r(σ) def= R(fδ(σ) | σ) ≥

R(f | σ) for all σ. The final sampling distribution is π∗(σ) = λ∗(σ).

Like Equation (  P1 ), the dual ascent algorithm for Equation ( P2 ) has guaranteed conver-

gence as long as the loss function L is convex.

9.6 Practical considerations

The actual implementation of the dual ascent algorithms for Equation ( P1 ) and Equa-

tion ( P2 ) require additional modifications. We list a few of them here.
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9.6.1 Finite epochs

In principle, the f -subproblems in Equation (  9.12 ) and Equation (  9.19 ) are determined

by training a network completely using the sample distributions at the t-th iteration πt(σ) =

p(σ)+λt(σ) and πt(σ) = λt(σ), respectively. However, in practice, we can reduce the training

time by training the network inexactly. Depending on the specific network architecture and

problem type, the number of epochs varies between 10 - 50 epochs per dual ascent iteration.

9.6.2 Discrete noise levels

The theoretical results presented in this chapter are based on continuous distributions

λ(σ) and p(σ). In practice, a continuum is not necessary since nearby noise levels are usually

indistinguishable visually. As such, we discretize the noise levels in a finite number of bins.

And we use the average-value of each bin as the representative noise level for the bin, so that

the integration can be simplified to summation.

9.6.3 Interpolate best individuals

The theory above require knowledge of the best individuals R(fδ(σ) | σ) at all σ’s which is

computationally infeasible. We approximate this by first obtaining a set of values R(fδ(σ) | σ)

at several specific σ’s. This involves training the network separately for a few noise levels.

Afterwards, a simple linear interpolation can be used to predict R(fδ(σ) | σ) at σ’s that

are not trained. Since the function R(fδ(σ) | σ) is typically smooth, linear interpolation is

reasonably accurate.

9.6.4 log-Scale constraints

Most image restoration applications measure the restoration quality in the log-scale, e.g.,

the peak signal-to-noise ratio (PSNR) which is defined as PSNR = −10 log10 MSE where

MSE is the mean squared error. Learning in the log-scale can be achieved by enforcing

constraint in the log-space.
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We define the the log-scale risk function as:

Rlog(f | σ) def= E
[

logL(f(xσ), y) | σ

]
. (9.22)

With this definition, it follows the the constraints in the log-scale are represented as

supσ∈Ω{Rlog(f | σ)−Rlog(fδ(σ) | σ)} ≤ ε. To turn this log-scale constraint into a linear form,

we use the follow lemma by exploiting the fact that the risk gap is typically small.

Lemma 9.3. The log-scale constraint

sup
σ∈Ω

{
Rlog(f | σ)−Rlog(fδ(σ) | σ)

}
≤ ε (9.23)

can be approximated by

sup
σ∈Ω

{
E [L(f(xσ), y)]

Lδ(σ)

}
≤ 1 + ε, (9.24)

where Lδ(σ) is a constant (w.r.t. f) such that the log of Lδ(σ) equals Rlog(fδ(σ) | σ):

log Lδ(σ) def= E [logL(fδ(xσ), y) | σ] . (9.25)

Proof. First, we observe that Rlog(fδ(σ) | σ) is a deterministic quantity and is independent

of f . Using the fact that Lδ(σ) is a deterministic constant, we can show that

Rlog(f | σ)−Rlog(fδ(σ) | σ) = E [logL(f(xσ), y) | σ]− log Lδ(σ)

= E
[
log

(
L(f(xσ), y)

Lδ(σ)

)
| σ

]

= E
[
log

(
1 + L(f(xσ), y)− Lδ(σ)

Lδ(σ)

)
| σ

]

≈ E
[
L(f(xσ), y)− Lδ(σ)

Lδ(σ) | σ

]
,
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where we used the fact that L(f(xσ), y) − Lδ(σ) � Lδ(σ) so that log(1 + x) ≈ x. Putting

these into the constraint Rlog(f | σ)−Rlog(fδ(σ) | σ) ≤ ε and rearranging the terms completes

the proof.

The consequence of the above analysis leads to the following approximate problem for

training in the log-scale:

f ∗ def= argmin
f

R(f), (P1-log)

s.t. sup
σ∈Ω

{
R(f | σ)

Lδ(σ)

}
≤ 1 + ε.

The implication of Equation (  P1-log ) is that the optimization problem with log-scale con-

straints can be solved using the linear-scale approaches. Notice that the new distribution is

now π(σ) = p(σ) + λ(σ)
Lδ(σ) . The other change is that we replace R(fδ(σ) | σ) with Lδ(σ), which

are determined offline.

9.7 Experiments

We evaluate the proposed framework through two experiments. The first experiment is

based on a linear estimator where analytic solutions are available to verify the dual ascent

algorithm. The second experiment is based on training a real deep neural network.

9.7.1 Linear estimator

We consider a linear (scalar) estimator so that we can access the analytic solutions.

We define the clean signal as y ∼ N (0, σ2
y) and the noisy signal as x = y + ση, where

η ∼ N (0, 1). The estimator we choose here is fπ(x) = aπx for some parameter aπ depending

on the underlying sampling distribution π.

Because of the linear model formulation, we can train the estimator âπ using closed-form

equation as

âπ = argmin
a

∫
E [(ax− y)2 | σ]π(σ)dσ =

σ2
y

σ2
y + σ2

π

,
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where σ2
π

def=
∫

σ2π(σ)dσ. Substituting âπ into the loss we can show that the conditional risk

is

R(fπ | σ) = E [(âπx− y)2 | σ]

=
σ4

y

[
σ2

y(σ2
y + σ2)− 2σ2

y(σ2
y + σ2

π
) + (σ2

y + σ2
π
)2
]

(σ2
y + σ2

π
)2 .

Based on this condition risks, we can run the dual ascent algorithm to alternatingly estimate

π and âπ according to Equation (  P1 ). Figure  9.3 shows the conditional risks returned by

different iterations of the dual ascent algorithm. In this numerical example, we let σy = 10

and ε = 9. Observe that as the dual ascent algorithm proceeds, the worst case gap is reducing

 

2
 . When the algorithm converges, it matches exactly with the theoretical solution.

Figure 9.3. Conditional risks of the linear problem. As the dual ascent
algorithm proceeds, the risk approaches the optimal solution.

9.7.2 Deep neural networks

The second experiment evaluates the effectiveness of the proposed framework on real

deep neural networks for the task of denoising. We shall focus on the MSE loss with PSNR

constraints, although our theory applies to other loss functions such as SSIM [ 134 ] and MS-

SSIM [  321 ] also as long as they are convex. The noise model we assume is that xσ = y +ση,
2

 ↑ The small gap in the middle of the plot is intrinsic to this problem, since for any σ2
π there always exists a

σ such that σ2
π = σ. At this σ, the conditional risk will always touch the ideal curve.
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Table 9.1. Results of Section  9.7.2 . This table shows the PSNR values
returned by one-size-fits-all DnCNN denoisers whose sample distributions are
defined according to (i) uniform distribution, (ii) solution of Equation ( P1 ),
and (iii) solution of Equation ( P2 ).

Noise level (σ) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Ideal (Best Individually Trained Denoisers)

PSNR 38.04 31.73 29.23 27.72 26.66 25.86 25.24 24.70 24.25 23.84
Uniform Distribution

Distribution 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0%
PSNR 37.24 31.41 29.04 27.60 26.58 25.81 25.19 24.67 24.23 23.84

Solution to Equation ( P1 ) with 0.4dB gap
Distribution 32.7% 12.0% 9.4% 7.9% 6.8% 6.3% 6.4% 6.2% 6.2% 6.1%

PSNR 37.64 31.46 29.03 27.58 26.56 25.78 25.15 24.63 24.19 23.80
Solution to Equation ( P2 )

Distribution 81.3% 7.6% 3.4% 2.0% 1.3% 1.0% 0.9% 0.9% 0.8% 0.8%
PSNR 37.86 31.54 29.06 27.57 26.53 25.74 25.10 24.57 24.12 23.70

where η ∼ N (0, I) with σ ∈ [0, 100] (w.r.t. an 8-bit signal of 256 levels). The network we

consider is a 20-layer DnCNN [  181 ]. We choose DnCNN just for demonstration. Since our

framework does not depend on a specific network architecture, the theoretical results hold

regardless the choice of the networks.

The training procedure is as follows. The training set consists of 400 images from the

dataset in [ 207 ]. Each image has a size of 180×180. We randomly crop 50×50 patches from

these images to construct the training set. The total number of patches we used is determined

by the mini-batch size of the training algorithm. Specifically, for each dual ascent iteration

we use 3000 mini-batches where each batch consists of 128 patches. This gives us 384k

training patches per epoch. To create the noisy training samples, for each patch we add

additive i.i.d. Gaussian noise where the noise level is randomly drawn from the distribution

π(σ). The noise generation process is done online. We run our proposed algorithm for 25 dual

ascent iterations, where each iteration consists of 10 epochs. For computational efficiency, we

break the noise range [0, 100] into 10 equally sized bins. For example, a uniform distribution

corresponds to allocating 10% of the total number of training samples per bin. The validation

set consists of 12 “standard images” (e.g., Lena). The testing set is the BSD68 dataset [ 322 ],

tested individually for every noise bin. The testing distribution p(σ) for Equation ( P1 ) is
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assumed to be uniform in Figure  9.4 . Two other distributions are illustrated in Figure  9.5 .

Notice that Equation ( P2 ) does not require the testing distribution to be known.

The average PSNR values (conditional on σ) are reported in Table  9.1 and the perfor-

mance gaps are illustrated in Figure  9.4 . Specifically, the first two rows of the Table show

the PSNR of the best individually trained denosiers and the uniform distributions. The

proposed sampling distributions and the corresponding PSNR values are shown in the third

row for Equation (  P1 ) and the fourth row for Equation (  P2 ). For Equation (  P1 ), we set

the tolerance level as 0.4dB. Table  9.1 and Figure  9.4 confirm the validity of our method. A

more interesting observation is the percentages of the training samples. For Equation ( P1 ),

we need to allocate 32.7% of the data to low-noise, and this percentage goes up to 81.3% for

Equation ( P2 ). This suggests that the optimal sampling distribution could be substantially

different from the uniform distribution we use today.
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Figure 9.4. This figure shows the PSNR difference between the one-size-fits-
all denoisers and the ideal denoiser. Observe that the uniform distribution
favors high-noise cases and performs poorly on low-noise cases. By using the
proposed algorithm we are able to allocate training samples such that the gap
is consistent across the range. Equation (  P1 ) ensures that the gap will not
exceed 0.4dB, whereas Equation ( P2 ) ensures that the gap is constant.

9.8 Discussions

9.8.1 Consistent gap = better?

It is important to note that one-size-fits-all denosiers are about the trade-off between

high-noise and low-noise cases; we offer more degrees of freedom for the low-noise cases

because the high-noise cases can be learned well using fewer samples. However, achieving
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Figure 9.5. Usage of Equation (  P1 ) when we are not certain about the
true distribution. (a) The true distribution is unknown but we hypothesize
that it is Uniform[30,50]. If we train the network using this distribution, we
obtain the red curve. Equation (  P1 ) starts with this hypothesis, and returns
the blue curve. (b) Same experiment by hypothesizing that the distribution is
Uniform[20,30]. Observe the robust performance of our method in both cases.
The experimental setup is the same as Section  9.7.2 .

a consistent gap does not mean that we are doing “better”. The solution of Equation ( P2 )

is not necessarily “better” than the solution of Equation (  P1 ). The ultimate decision is

application specific. If we care more about the heavy noise cases such as imaging in the

dark (e.g., [  25 ], [  106 ]) and we are willing to compromise some performance for the weak

noise cases, then Equation (  P1 ) could be a better than the uniform gap solution returned by

Equation (  P2 ). Vice versa, if we know nothing about the testing distribution and we want

to be conservative, then Equation ( P2 ) is more useful.

Another consideration is how much we know about p(σ). If we are absolutely certain that

the noise is concentrated at a single value, then we should just allocate all the samples at

that noise level. However, if we know something about p(σ) but we are not absolutely sure,

then Equation (  P1 ) can provide the worst case performance guarantee. This is illustrated in

Figure  9.5 , where we solved Equation ( P1 ) using two hypothesized distributions. It can be

observed that if we train the network using the hypothesized distributions, the performance

could be bad for extreme situations. In contrast, Equation (  P1 ) compromises the peak

performance by offering more robust performance in other situations.
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9.8.2 Rule-of-thumb distribution — the “80-20” rule

Suppose that we are only looking at image denoisers with p(σ) being uniform, and our

goal is to achieve a consistent gap, then we can construct some “rule-of-thumb” distributions

that are applicable to a few network architectures. Figure  9.6 shows three deep networks:

REDNet [  142 ], DnCNN [  181 ], FFDNet [  155 ], all trained using a so-called “80-20” rule. In

this rule, we allocate the majority of the samples to the weak cases and a few to the strong

cases. The exact percentage of the “80-20” rule is network dependent but the trend is usually

similar. For example, in Figure  9.6 we allocate 70% to [0,10], 15% to [10,20], 8% to [20,30],

5% to [30,40], and 2% to [40,50] to all the three networks. While there are some fluctuations

of the PSNR differences, in general the resulting curves are quite uniform.
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Figure 9.6. “80-20” Rule. We train the network with training samples drawn
from different different noise levels according to the following distribution.
[0, 10]− 70%, [10, 20]− 15%, [20, 30]− 8%, [30, 40]− 5%, [40− 50]− 2%. We
observe that this distribution gives reasonably consistent performance at all
the noise levels over all the denoisers considered here.

9.9 Some final thoughts

Imbalanced sampling of the training set is arguably very common in image restoration

and related tasks. This chapter presents a framework which allows us to allocate training

samples so that the overall performance of the one-size-fits-all denoiser is consistent across

all noise levels. The convexity of the problem, the minimax formulation, and the dual ascent
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algorithm appear to be general for all learning-based estimators. The idea is likely to be

applicable to adversarial training in classification tasks.
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10. CONCLUSION AND FUTURE DIRECTIONS

Over the course of this dissertation, we have looked at ways to deal with imaging in chal-

lenging conditions, especially in low-light situations. To extend the imaging capabilities of

the cameras to extremely low-light conditions, where the number of photons is scarce, it

becomes necessary to use sensors sensitive to each photon. This is where image sensors like

quanta image sensors (QIS) come in. In Chapter 2, we looked at how image sensors work

and how different technologies differ. We built upon chapter 2 to understand the imaging

model of the image sensors in chapter 3. We developed imaging models and tools such

as signal-to-noise-ratio (SNR). The imaging model can be used to simulate different image

sensors, and the SNR can be used to evaluate the performance of different types of sensors.

Based on the mathematical basis built in chapter 3, we solve some of the low light

imaging problems in chapters 4 to 7. Chapter 4 deals with the issue of color imaging in low-

light. Assuming that we use a standard Bayer pattern color filter array (CFA), we propose

a traditional demosaicing algorithm based on plug-and-play ADMM and a neural network

based solution. The proposed solutions could be used for QIS and standard CMOS image

sensors. In chapter 5, we deal with the problem of reconstructing a moving scene utilizing a

burst of frames captured using QIS. The proposed solution uses student-teacher learning to

deal with noise and motion at the same time. In chapter 6, a non-blind deblurring method

for low light is presented. The solution is not limited to any particular type of image sensor

and could be used with any image sensor. We also collect a Canon camera dataset to evaluate

how different methods work on real data in low light. Chapter 7 proposes two high-level

computer vision tasks - image classification and object detection at low light. Both the

methods are based on student-teacher learning.

In chapters 8 and 9, we start looking if our solutions are limited to low light alone or if we

can extend them to other scenarios too. In chapter 8, we look at how quanta image sensors

could be used to solve the problem of high dynamic range imaging. Chapter 9 examines how

the same neural network can be trained to deal with low and high-light images.

Throughout this dissertation, we have looked at some solutions that require specific

image sensors to achieve the goal. We have also looked at other generic solutions, which
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could be easily extended to any type of data. Student-teacher learning is one such example.

It could be used for any noisy data, as long as we can access the corresponding clean data.

Ultimately, the solution to achieve good low light imaging performance does not depend on a

single technology or a solution. It can be achieved only by carefully designing image sensors

and algorithms that complement each other.

The complementary design of algorithms and image sensors has already started redefining

how we image. Until now, we usually have image sensors that generate data and make

algorithms to handle this data. But for many purposes, the data captured by the image

sensor may not be optimal. By co-designing the algorithm and the sensor, we can capture

optimal data for the algorithms. Tools such as the SNR we developed in chapter 3 are the

first step toward achieving this goal. As the image sensors become more and more flexible,

we are moving toward what one can call software-defined cameras. In this dissertation, we

have looked at changing integration times in the HDR chapter. Other than that, we haven’t

played around with the camera settings that much. The ability to control the camera settings

such as frame rate, bit-depth, exposure time, and sensor gain on the fly based which gets

input from the downstream algorithms will be a game-changer. The new sensor technologies

such as quanta image sensors will play a significant role in achieving this goal because of the

flexibility they offer.
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A. GAUSSIAN APPROXIMATION TO POISSON

When deriving the first-order derivative of the incomplete Gamma function, it was mentioned

that the Poisson distribution can be approximated by a Gaussian. The formal statement is

as follows.

Lemma A.1 (Gaussian approximation of Poisson). For large θ (i.e., θ � 1), it holds that

pX(x) def= θxe−θ

x! ≈ 1√
2πθ

e− (x−θ)2
2θ . (A.1)

Note that this is not the Central Limit theorem because it does not involve any sample

average. The approximation compares the two functions.

Proof. First of all, take the log on the Poisson equation:

log pX(x) = log
{

θxe−θ

x!

}
= x log θ − θ − log x!

Stirling’s formula states that for x → ∞, we have x! ≈ xxe−x
√

2πx. Substitute into the

previous equation yields

log pX(x) ≈ x log θ − θ − log
(
xxe−x

√
2πx

)
= x log θ − θ − x log x + x− log

√
2πx.
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The Gaussian has to fit the Poisson well around the mean, which is θ. Thus define x = θ + ε

with θ � ε. Then,

log pX(x) = x log θ − θ − x log x + x− log
√

2πx

= (θ + ε) log θ − θ − (θ + ε) log (θ + ε)

+ (θ + ε)− log
√

2π(θ + ε)

= ε + (θ + ε) log θ

θ + ε
− log

√
2π(θ + ε)

= ε− (θ + ε) log
(

1 + ε

θ

)
− log

√
2πθ − 1

2 log
(

1 + ε

θ

)
= ε− log

√
2πθ −

(
θ + ε + 1

2

)
log

(
1 + ε

θ

)
.

For ε
θ
� 1, it holds that log(1 + ε

θ
) ≈ ε

θ
− ε2

2θ2 + . . .. Therefore,

log pX(x) ≈ ε− log
√

2πθ −
(

θ + ε + 1
2

)(
ε

θ
− ε2

2θ2 + . . .

)

= ε− log
√

2πθ − ε− ε2

θ
− ε

2θ
+ ε2

2θ
+ ε2

4θ2 + . . . .

By canceling terms, and removing ε2

4θ2 and ε
2θ

(because ε
θ
� 1), it follows that

log pX(x) ≈ − ε2

2θ
− log

√
2πθ.

This implies that

pX(x) ≈ 1√
2πθ

e− ε2
2θ .

Substituting x = θ + ε completes the proof.
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B. EXPOSURE REFERRED SNR FOR TRUNCATED

POISSON

Theorem B.0.1 (SNRexp(β) for truncated Poisson Gaussian). Consider the truncated Pois-

son Gaussian statistics defined in Equation (  3.81 ). Let β̂(·) be an estimator satisfying the

mean invariance property, i.e., β̂(E [Z]) = β. Then the exposure-referred SNR is

SNRexp(β) = β√
Var [Z]

· dµ

dβ
, (B.1)

where

E [Z] = µ = βΨL−1(β) + L(1−ΨL(β)) + ∆µ(β),

Var [Z] = β2ΨL−2(β) + βΨL−1(β) + L2(1−ΨL(β))− µ2 + ∆2
σ(β),

and the quantities ∆µ(β) and ∆σ2(β) are respectively

∆µ(β) =
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
q

+ L(ΨL(β)−Ψ[L−k]+(β))
)

(B.2)

∆σ2(β) =
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
q2

+ L2(ΨL(β)−Ψ[L−k]+(β))
)

, (B.3)

where [ · ]+ = max(·, 0) returns the positive value, and

pk =
∫ k+0.5

k−0.5

1√
2πσ2

read

e
− x2

2σ2
read dx (B.4)
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is the error probability due to read noise. The derivative dµZ/dβ is

∂µZ

∂β
= ΨL−1(β)− β

e−ββ[L−2]+

[L− 2]+! + L
e−ββ[L−1]+

[L− 1]+!

+
∞∑

k=−∞
pk

(
L−1∑

q=[k]+

(
− e−ββq−k

(q − k)! + e−ββq

q!

)
q

+
L−2∑

q=[k]+

(
e−ββq−k

(q − k)! −
e−ββq

q!

)
(q + 1)

+ L
(
− β(L−1)e−β

(L− 1)! + β([L−k−1]+)e−β

[L− k − 1]+!
))

. (B.5)

Proof. We first make the observation that

Z = ADC
(
Y + η

)
= ADC

(
dY + ηc

)
.

We introduce a new random variable variable R = dY + ηc. Now,

R = dY + ηc

= Y + dηc .

The final step is possible because Y is an integer. We introduce another new random

variable γ = dηc. Now the pmf of γ is

pk = P(γ = k) =
∫ k+0.5

k−0.5

1√
2πσ2

read

e
− x2

2σ2
read dx. (B.6)

So, R = Y + γ, where

P(Y = j) = e−ββj

j! if j ≥ 0

and γ is simulated according to Equation ( B.6 ). So,

P(R = j) =
∞∑

k=−∞
pk · P(Y = j− k).
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Now, the probability mass function of Z is

P(Z = i) =



0∑
j=−∞

P(R = j) if i = 0,

P(R = i) if 1 ≤ i ≤ L− 1,

∞∑
j=L

P(R = j) if i = L,

0 otherwise.

Now,

E(Z) =
L∑

q=0
i · P(Z = q)

=
L−1∑
q=1

q · P(Z = q) + L.P(Z = L)

=
L−1∑
q=1

q ·

 ∞∑
k=−∞

pk · P(Y = q − k)
+ L ·

 ∞∑
q=L

∞∑
k=−∞

pk · P(Y = q − k)


=
∞∑

k=−∞
pk ·

L−1∑
q=1

q · P(Y = q − k) +
∞∑

q=L

L · P(Y = q − k)


=
L−1∑
q=1

q · P(Y = q) + L ·
∞∑

q=L

P(Y = q) +
∞∑

k=−∞
pk ·

( L−1∑
q=1

q{P(Y = q − k)− P(Y = q)}

+ L ·
∞∑

q=L

{P(Y = q − k)− P(Y = q)}
)

(B.7)

In Equation (  B.7 ), E(Y ) =
L−1∑
q=1

q · P(Y = q) + L ·
∞∑

q=L
P(Y = q) = E(Y ), when the read noise

σread = 0. The expression corresponding to this was derived in Thm.  3.3.2 as β(ΨL−1(β)) +

L(1 − ΨL(β)). By re-arranging the rest of the terms and utilizing the fact that Ψq(β) =
q−1∑
k=0

βke−β

k! and P(Y = j) = e−ββj

j! , we can obtain the expression for µZ = E(Z). We can clearly

see that all the terms in Equation ( B.7 ) is differentiable. Thus, taking the derivative of

Equation ( B.7 ) w.r.t. β gives us the expression for dµZ

dβ

The expression for σ2
Z can also be calculated by following similar steps as above.
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