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ABSTRACT

Three key challenges in developing advanced image-based computational models of cere-

bral aneurysms are: (i) disentangling the effect of biomechanics and confounding clinical

risk factors on aneurysmal progression, (ii) accounting for arterial wall mechanics, and (iii)

incorporating the effect of surrounding tissue support on vessel motion and deformation.

This thesis addresses these knowledge gaps by developing fluid-structure interaction (FSI)

models of subject-specific geometries of cerebral aneurysms to elucidate the effect of coupled

hemodynamics and biomechanics. A consistent methodology for obtaining physiologically

realistic computational FSI models from standard-of-care imaging data is developed. In this

process, a novel technique to estimate heterogeneous arterial wall thickness in the absence

of subject-specific arterial wall imaging data is proposed. To address a limitation in the

mesh generation workflow of the state-of-the-art cardiovascular flow modeling tool SimVas-

cular, generation of meshes with boundary-layer mesh refinement near the blood-vessel wall

interface is proposed for computational geometries with nonuniform wall thickness. Com-

putational murine models of thoracic aortic aneurysms were developed using the proposed

methodology. These models were used to inform external tissue support boundary conditions

for human cerebral aneurysm subjects via a scaling analysis. Then, the methodology was

applied to subjects with multiple unruptured cerebral aneurysms. A comparative computa-

tional FSI analysis of aneurysmal biomechanics was performed for each subject-specific pair

of computational models for the stable and growing aneurysms, which act as self-controls for

confounding clinical risk factors. A higher percentage of area exposed to low shear and high

median-peak-systolic arterial wall deformation, each by factors of 1.5 to 2, was observed in

growing aneurysms, compared to stable ones. Furthermore, a novel metric – the oscillatory

stress index (OStI) – was defined and proposed to indicate locations of oscillating arterial

wall stresses. Growing aneurysms demonstrated significant areas with a combination of low

wall shear and low OStI, which were hypothesized to be associated with regions of collagen

degradation and remodeling. On the other hand, such regions were either absent (or were

a small percentage of the total aneurysmal area) in the stable cases. This thesis, therefore,
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provides a groundwork for future studies, with larger patient cohorts, which will evaluate

the role of these biomechanical parameters in cerebral aneurysm growth.
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1. INTRODUCTION

Cerebral or intracranial aneurysms are dilations in the walls of cerebral arteries, most com-

monly occurring in or near the Circle of Willis. Cerebral aneurysms are estimated to occur

in 5-8% of the population [ 1 ]. Aneurysm rupture results in subarachnoid hemorrhage and

accounts for 3-5% of strokes with a 50% mortality rate [ 2 ]. However, risk of rupture of

an aneurysm is poorly understood and clinicians are often faced with difficult decisions

regarding invasive treatments, which can involve potential morbidity and mortality risks.

The overarching goal of this thesis is to improve understanding of biomechanical factors

affecting cerebral aneurysm growth and rupture through realistic subject-specific computa-

tional models, which can be eventually translated to risk stratification of cerebral aneurysms.

Specifically, by using standard-of-care medical imaging data to develop high-resolution com-

putational models, new understanding of the interaction of hemodynamics and biomechanics

in aneurysms can be established. To this end, the following specific aims are proposed, each

of which is addressed in a separate chapter.

1.1 Specific Aim 1 (SA1): Develop a Computational Fluid–Structure Interac-
tion (FSI) Framework

A new computational strategy to analyze FSIs in cerebral aneurysms is developed, using

the open-source cardiovascular flow modeling framework SimVascular [  3 ], [  4 ]. Key steps

developed as part of this novel process are:

1. Extracting the flow domain from 4DUS (four-dimensional ultrasound) measure-

ments or CT (computed tomography), MRI (magnetic resonance imaging), X-ray

angiography data.

2. Estimating nonuniform thickness of the arterial wall, in the absence of subject-

specific imaging data, by accounting for local wall thickening/thinning effect of

wall shear stress on the diseased region.

13



3. Generating conformal fluid and structural meshes with boundary layer mesh

refinement in the flow domain using a novel workflow to overcome the limitations

of SimVascular’s current meshing methodology.

4. Determining arterial pre-stress for the geometrical configuration segmented from

imaging data.

5. Modeling the effect of the surrounding tissue support through calibrated vis-

coelastic external tissue support (spring-dashpot) boundary conditions that con-

strain displacements.

Outcome: Achieving this specific aim yielded a consistent modeling methodology for per-

forming the physiologically realistic subject/animal specific FSI simulations that are part of

the subsequent specific aims. Important gaps in the SimVascular’s FSI modeling workflow

were addressed, specifically with respect to obtaining vessel wall geometries with user-defined

wall thickness and incorporating boundary-layer mesh refinement near the fluid-solid inter-

face in geometries with nonuniform wall thickness. This outcome enabled accurate estimation

of wall shear stress.

1.2 Specific Aim 2 (SA2): Optimize External Tissue Support Parameter Char-
acterization of AngII Infused Mouse Models Of Thoracic Aortic Aneurysms

Four-dimensional ultrasound (4DUS) measurements of four mice at baseline and 28 days

following AngII infusion (obtained from collaborators at Cardiovascular Imaging Research

Laboratory (CVIRL) at Purdue University) were used to develop a computational FSI model

of the motion of ascending aorta in an idealized healthy and diseased mouse, using the

methodology developed under SA1 (see Section  1.1 ). External tissue support parameters

were then calibrated using these FSI simulations, such that wall displacement data obtained

from simulations matched in vivo displacements obtained from 4DUS imaging.

Outcome: A novel methodology of obtaining tissue support parameters for murine models

of thoracic aortic aneurysms (TAAs) using in-vivo four-dimensional ultrasound (4DUS) data

was developed. Calibrated values of tissue support parameters were obtained for idealized

14



healthy and diseased animal models for use in future studies. Furthermore, tissue support

parameter values from these animal models were used to inform corresponding values for

human subjects, in the subsequent specific aim, using appropriately developed scaling laws.

1.3 Specific Aim 3 (SA3): Comparative Biomechanical Analysis of Subjects
With Multiple Cerebral Aneurysms.

Retrospective longitudinal imaging data on two subjects (each with multiple unruptured

cerebral aneurysms) obtained from clinical collaborators at Indiana University School of

Medicine (IUSM) was used. In each subject, growth was observed in one of the aneurysms

while the other one remains stable between baseline and follow-up imaging. Using the

methodology from SA1 (see Section  1.1 ) and appropriately scaled tissue support parameters

from SA2 (see Section  1.2 ), a computational FSI model was generated for each of the subject-

specific geometries. Biomechanical parameters, such as wall shear stress, oscillatory shear

index, wall deformation, and the orientation of principal arterial wall stress were compared

between the two aneurysms, which can act as self-controls for clinical risk factors affecting

aneurysm progression.

Outcome: Comparison of biomechanical factors for stable and growing aneurysms in the

same subject revealed the influence of the local flow and wall mechanics on aneurysm growth.

Specifically, quantitative differences were observed in the proportion of area exposed to

low wall shear stress, the magnitude of peak systolic wall deformation, and proportion of

combined regions of low shear and significant oscillating arterial wall stresses.
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2. SPECIFIC AIM 1: COMPUTATIONAL FSI FRAMEWORK

This chapter describes the research methodology used to achieve specific aim 1, which is a

prerequisite for achieving the remaining specific aims introduced in Chapter  1 . Figure  2.1 

shows a schematic of the steps implemented to obtain physiologically realistic FSI models of

cerebral aneurysms from subject-specific imaging data. The details of each step are presented

below.

Imaging Data

Image 

Segmentation

Lumen 
Geometry

Arterial Wall 
Geometry

Wall Thickness 

Estimation

Patient-Specific 
FSI Models 

Computational 

Modeling Framework

Figure 2.1. Schematic of the computational model development workflow:
From medical imaging data to FSI simulations.
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2.1 Image Segmentation

Subject or animal data is available in the form of MR, CT, X-ray angiography and/or

4D US images. As an example of each, Figure  2.2 shows an image slice from CT, MR images

of different human subjects with a cerebral aneurysm and 4D US image slice of a healthy

mouse aorta. The first step in creating a computational geometry is extracting the region

of interest (typically the aneurysm and portions of upstream and downstream vessels) from

medical imaging data using 3D image segmentation techniques. In the present analysis, the

open-source 3D medical image segmentation tool ITK-SNAP [  5 ] is used. ITK-SNAP allows

segmentation using manual methods as well as the automatic active contour (snakes) model

implemented using a level set method for extracting volume of interest. Subsequently, the

bounding surface of the extracted volume can be exported in the stereolithographic (.stl)

format. The STL model is then manually smoothed using the commercial computer-aided

design (CAD) software Geomagic® Design X to eliminate any segmentation artifacts such as

sharp edges and bumps and the final 3D geometric model of the flow domain of the aneurysm

and its proximal and distal arteries is generated.

(a) CT image slice of an
aneurysm of the basilar artery
(obtained from IUSM)

(b) MR image slice of
an aneurysm of the right
middle cerebral artery
(obtained from IUSM)

(c) 4D US image slice of a por-
tion of the murine ascending
aorta (obtained from CVIR
Lab)

Figure 2.2. Examples of clinical imaging modalities and the types of data they generate.
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2.2 Estimating Arterial Wall Thickness

For any FSI analysis, information on the wall thickness, either in the form of ex-vivo

histology data from resected aneurysm samples or image data is essential for generating

subject-specific geometries of the arterial wall. However, as seen from Figure  2.2 in-vivo

imaging data may not necessarily possess information on the vessel wall and obtaining his-

tology samples may not be feasible. Therefore, a methodology to obtain physiologically

realistic estimates of the vessel wall thickness from angiographic data of the lumen (inner

arterial wall) is essential. Most prior studies have not accounted for FSI or assumed a uni-

form wall thickness over the region of interest, based on population averaged estimates [ 6 ],

[ 7 ], specifically due to the lack of such data. However, the assumption of constant wall

thickness does not account for the nonuniformity wall thickness due to natural tapering of

arterial vessels, which is found to be of importance while performing FSI simulations [ 8 ].

Some studies (e.g., [  9 ] and the references therein) estimated a nonuniform wall thickness

for their subject-specific FSI models by solving the Laplace equation on the surface of the

lumen. Empirical thickness value estimates, corresponding to 10% of the average diameter

at the inlet and outlet sections were used as boundary conditions. However, these studies

did not account for the effect of hemodynamics on vessel wall thickness, especially over the

diseased region. As shown in [  7 ], [  10 ], regions of abnormally elevated or reduced wall shear

stresses in aneurysms have demonstrated differences in local wall thicknesses. Regions of

low WSS have a tendency to produce stagnation zones, which can cause atherosclerotic de-

position whereas high WSS may result in activation of inflammatory pathways leading to

compromised strength of smooth muscle cells (SMC), SMC degeneration and loss [ 11 ].

In the subsequent specific aims, a methodology to estimate the heterogenous vessel wall

thickness has been implemented for each analysis. This methodology is implemented using

the SimVascular framework, an in-house code developed in python, the open-source visual-

ization tool Paraview [ 12 ], the open source mesh processing software MeshLab [  13 ] and the

commercial computer-aided design (CAD) software Geomagic® Design X. The end result is

a solid geometry of the arterial vessel wall with nonuniform vessel wall thickness, accounting

for the effect of hemodynamic forces on vessel wall thickness. Exact details on the imple-
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Figure 2.3. Abstract schematic showing the reference and current config-
urations of the deformable body under the mapping φ(x, t), along with the
notation used in the main text.

mentation of this methodology vary based on the computational model (human or animal)

being considered and are therefore deferred to subsequent chapters in the thesis. It is em-

phasized that this approximation is not the actual wall thickness in the subject or animal.

This methodology enables the estimation of a realistic nonuniform wall thickness based on

local hemodynamic characteristics, that lies within range of literature-reported values, in the

absence of any subject-specific data.

2.3 Computational Modeling Framework

The open-source cardiovascular modeling tool SimVascular [ 3 ], [  4 ], in particular the FSI

solver, svFSI [  14 ], is used to perform the rigid-wall pulsatile flow simulations for estimating

wall thickness and the FSI simulations. The key mathematical details of the framework are

presented below. Further details on numerical schemes and implementation may be found

in [ 15 ]–[ 17 ].

Consider a representative abstract configuration for a generic FSI problem (as shown in

Figure  2.3 ). Here, Ω0
f and Ω0

s are the reference fluid and solid configurations, with the fluid-

solid interface Γ0
fs. They are related to the current fluid, solid configurations and fluid-solid

interface Ωf , Ωs and Γfs respectively through an ALE mapping φ(x, t).
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2.3.1 Solid Mechanics Problem

A Lagrangian description is used to formulate the structural problem over the reference

solid domain Ω0
s and its weak form may be written as:

Find u ∈ Vs such that ∀ W ∈ Ws,

∫
Ω0

s

[
ρsW · ü + ∇XW : FS

]
dΩ0

s −
∫

Γ0
s,h

W · h dΓ0
s −

∫
Ω0

s

ρsW · f dΩ0
s = 0. (2.1)

Here, ρs, ü, f , F, S, W are the solid density, acceleration, external body force vector,

deformation gradient defined between the reference and current configurations, second Piola-

Kirchhoff stress tensor and test function respectively. Here, ∇X is the spatial derivative

with respect to the material (reference configuration) coordinates and Γ0
s,h is the region of

the solid boundary where natural (Neumann) boundary conditions h are prescribed. The

function spaces are defined as:

Vs =
{
u | u(x, t) ∈ (H1)n × [0, T ], u = ū on Γ0

s,g

}
, (2.2a)

Ws =
{
W | W(x, t) ∈ (H1)n × [0, T ], W = 0 on Γ0

s,g

}
, (2.2b)

where n is the dimension of the computational domain, ū is the imposed Dirichlet boundary

condition, and Γ0
s,g is the part of the boundary on which Dirichlet boundary conditions are

imposed. The second Piola-Kirchhoff stress tensor S in Equation ( 2.1 ) is determined from a

hyperelastic constitutive relation proposed in [ 18 ] via the strain energy density function:

ψ(C, J) = 1
2µs

(
J−2/3 tr C − 3

)
+ 1

2κ
[1
2(J2 − 1) − ln J

]
, (2.3a)

S = 2 ∂ψ
∂C

= µsJ
−2/3

(
I − 1

3(tr C)C−1
)

+ 1
2κ

(
J2 − 1

)
C−1. (2.3b)

Here, ψ is the strain-energy density function, J = det F is the Jacobian, and C = F>F is

the right Cauchy-Green deformation tensor. The material parameters µs and κ are the shear
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and bulk moduli of the solid, respectively, which can be expressed in terms of the Young’s

modulus of elasticity E and the Poisson ratio ν as:

µs = E

2(1 + ν) , (2.4a)

κ = E

3(1 − 2ν) . (2.4b)

In the subsequent chapters, the arterial wall has been modeled as a nearly incompressible,

isotropic hyperelastic material, by choosing a constant value of E and setting ν = 0.49 [ 19 ].

2.3.2 Mesh Motion Problem

In interface-tracking formulations like ALE, the problem of fluid mesh motion needs to be

considered in addition to the flow and structural dynamics equations. The automatic mesh

motion methodology proposed in [ 20 ] is implemented in svFSI. The mesh motion problem

during a particular time step is essentially treated as an elastic boundary value problem to

produce smooth evolution of the fluid mesh. An assumption is made that the configuration

at the beginning of the current time step (end of the previous time step) can be regarded as

a “nearby” configuration to the configuration at the end of the current time step, enabling

the use of infinitesimal strain theory. The weak formulation (in the absence of any external

force and tractions) is ∫
Ωf

[
ε(w) : σ(u)

]
dΩf = 0. (2.5)

Here, u and w are the trial displacement and test functions, respectively. Meanwhile, σ(u)

and ε(w) are the “stress” tensor and the elastic strain measure of the trial and test functions,

respectively, defined as

σ(u) = λ tr(ε(u))I + 2µε(u), (2.6)

ε(w) = 1
2
[
∇w + (∇w)T

]
, (2.7)

21



where tr( · ) is the trace of a tensor, I is the identity, and λm and µm are the Lamé elastic

constants of the fictitious “material” used to represent the mesh. The function spaces for

the trial and test functions are:

Vm =
{
u | u ∈ (H1)n, u = ḡ on Γf,g

}
, (2.8a)

Wf =
{
w | w ∈ (H1)n, w = 0 on Γf,g

}
, (2.8b)

where Γf,g is the part of the boundary where Dirichlet boundary conditions are imposed and

ḡ is the Dirichlet boundary value.

Equation (  2.5 ) can be solved on the fluid domain by imposing the displacement of the

fluid-solid interface (obtained from the structural elastodynamics equations) and the motion

of any other boundary that is prescribed independently, as a Dirichlet boundary condition.

As mentioned in Johnson et al. [ 20 ], in the absence of external forces and tractions, the

problem may be reduced to specifying a single parameter λm/µm = 2νm/(1 − 2νm), where

νm is the Poisson ratio of the fictitious “material” used to represent the mesh. In practice,

the value νm = 0.3 is used [ 15 ].

2.3.3 Fluid Flow Problem

The fluid flow problem in an ALE formulation, as implemented in svFSI is described in

this subsection. For a Newtonian fluid and incompressible flow, the Galerkin weak form of

the Navier-Stokes equation over the flow domain Ωf can be written. The variational problem

to be solved is:

Find v ∈ Sf and p ∈ Pf , such that ∀ w ∈ Wf and q ∈ Qf :

∫
Ωf

[
ρfw · (v̇ + (v − v̂) · ∇xv) + ∇w : (−pI + 2µf∇s

xv)
]
dΩf

−
∫

Γf,h

w · h dΓf +
∫

Ωf

q∇ · v dΩf −
∫

Ωf

ρfw · f dΩf = 0. (2.9)

Here, ρf , v̂, v̇, p, f , µf , w, q are the fluid density, grid velocity of the fluid domain, accelera-

tion, pressure, body force, viscosity, and the velocity and pressure test functions, respectively.
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∇s
xv is the symmetric part of the velocity gradient. Γf,h is the part of the boundary where the

natural (Neumann) boundary conditions h are prescribed. The function spaces are defined

as:

Sf =
{
v | v(x, t) ∈ (H1)n × [0, T ], v = v̄ on Γf,g

}
, (2.10a)

Wf =
{
w | w(x, t) ∈ (H1)n × [0, T ], w = 0 on Γf,g

}
, (2.10b)

Pf = Qf =
{
q | q(x) ∈ L2

}
, (2.10c)

where n is the dimension of the computational domain, v̄ is the imposed Dirichlet bound-

ary, and Γf,g is the part of the boundary where Dirichlet boundary conditions are imposed.

The use of equal order interpolation functions for pressure and velocity results in instabil-

ities in advection-dominated flows, and this limitation arises due to inability to satisfy the

Ladyzhenskaya-Babuška-Brezzi condition [ 21 ]. The RBVMS method (residual-based varia-

tional multiscale method) [ 22 ] is therefore used to overcome this limitation.

The RBVMS adds stabilization terms to the Galerkin weak form (  2.9 ). The infinite

dimensional function spaces Sf ,Pf ,Wf and Qf are decomposed into a finite dimensional

and infinite dimensional function space representing the coarse scales resolved by the finite

element discretization and the subgrid scales respectively as:

Sf = Sf
h

⊕
Sf

s , (2.11a)

Pf = Pf
h

⊕
Pf

s , (2.11b)

Wf = Wf
h

⊕
Wf

s , (2.11c)

Qf = Qf
h

⊕
Qf

s . (2.11d)

The subscripts h and s represent the coarse grid and subgrid spaces respectively. Therefore,

each element of these respective sets may be written as:

v = vh + vs, (2.12a)

p = ph + ps, (2.12b)
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w = wh + ws, (2.12c)

q = qh + qs. (2.12d)

It should be noted that the subgrid functions, though nonzero within an element, vanish

on the element boundaries by definition [ 23 ]. Equations (  2.12d ) is substituted in Equation

( 2.9 ), to give:

∫
Ωf

[
ρf (wh + ws) · (v̇h + v̇s + ((vh − v̂h) − (vs − v̂s)) · ∇x(vh + vs))+

∇(wh + ws) : (−(ph + ps)I + 2µf∇s
x(vh + vs))

]
dΩf

−
∫

Γf,h

(wh + ws) · h dΓf +
∫

Ωf

q∇ · (vh + vs) dΩf −
∫

Ωf

ρf (wh + ws) · f dΩf = 0. (2.13)

The function spaces for the coarse and fine scales are linearly independent [  23 ]. Hence,

Equation (  2.13 ) can be divided into two separate problems involving the coarse scale (qh,wh)

and fine scale (qs,ws) test function pairs. Following the work of Bazilevs et al. [ 22 ], the fine

scale trial functions are modeled as:

vs = −τ
{[
∂vh

∂t
+ vh · ∇vh − fh

]
− phI + 2µf∇s

xvh

}
= −τrmom(vh, ph), (2.14)

ps = −ρfνIC∇ · vh = −ρfνICrcon(vh). (2.15)

Here, rcon and rmom(vh, ph) are the residuals of the continuity and momentum equation

respectively. The stabilization parameters τ and νIC are defined as:

τ =
[ 4
∆t2 + vh · Gvh + CIν

2
f G : G

]−1/2
, (2.16)

νIC = 1
τ tr G

, (2.17)

where νf = µf/ρf is the kinematic viscosity of the fluid, CI is a constant dependent on the

topology of the finite elements, and the order of the basis function polynomials, G is the

metric tensor of the element isoparametric map, i.e. Gij = ∑n
k=1

∂ξk

∂xi

∂ξk

∂xj
with n being the

number of spatial dimensions of the problem. Substituting for the fine scale functions, using
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the fact that ∂vs/∂t = 0 and integration by parts to switch derivatives from v to w, the

following can be obtained:

∫
Ωf

[
ρfwh · (v̇h + (vh − v̂h) · ∇xvh) + ∇w : (−phI + 2µf∇s

xvh)
]
dΩf

−
∫

Γf,h

wh · hh dΓf +
∫

Ωf

qh∇ · vh dΩf −
∫

Ωf

ρfwh · fh dΩf

+
nel∑

n=1

∫
Ωf,e

τ
[
(vh − v̂h) · ∇xwh + 1

ρf

∇qh · rmom(vh, ph)dΩf

+
nel∑

n=1

∫
Ωf,e

ρfνIC∇xwh · whrcon(vh)dΩf

−
nel∑

n=1

∫
Ωf,e

τwh ·
(
rmom(vh, ph) · ∇xvh

)
dΩf

]
−

nel∑
n=1

∫
Ωf,e

1
ρf

∇xwh :
(
τrmom(vh, ph)

)
⊗
(
τrmom(vh, ph)

)
dΩf = 0. (2.18)

Here, nel represents the number of elements in the domain. For rigid wall problems, the

corresponding formulation is obtained by replacing v − v̂ by v, i.e., the grid velocity is set

to 0.

2.3.4 Time Stepping Scheme

The svFSI solver implements the generalized-α algorithm, as proposed by Chung and

Hulbert [  24 ]. The mathematical details for the method are presented in this subsection.

Details on implementation within svFSI and exact definitions of the element-wise residuals

and tangent stiffness matrix terms can be found in [  15 ]. For integration from time step tn

to tn+1, the algorithm works as a multi-stage predictor-corrector. For the fluid equation, the

initial value of the nodal velocity, acceleration and pressure at time tn+1 at some node a is

calculated as:

v̇a,n+1 = γ − 1
γ

v̇a,n, (2.19a)

va,n+1 = va,n, (2.19b)

pa,n+1 = pa,n. (2.19c)
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Here, γ = 0.5 + αm − αf , with the values of αm and αf being chosen as:

αf = 3 − ρ∞

2 + 2ρ∞
, (2.20a)

αm = 1
1 + ρ∞

, (2.20b)

where ρ∞ = 0.2 [ 25 ]. In the next step, acceleration and velocity are calculated at an inter-

mediate time point n+ αm and n+ αf respectively:

v̇a,n+αm = (1 − αm)v̇a,n + αmv̇a,n+1, (2.21a)

va,n+αf
= (1 − αf )va,n + αfva,n+1. (2.21b)

Subsequently, Newton-Rahpson iterations are performed until the momentum and con-

tinuity residuals drop below a pre-specified tolerance value:

K∆v + G∆p = −Rmom
(
v̇n+αm ,vn+αf

, pn+1
)
, (2.22a)

D∆v + L∆p = −Rcon
(
vn+αf

, pn+1
)
, (2.22b)

where Rmom
(
v̇n+αm ,vn+αf

, pn+1
)

and Rcon
(
vn+αf

, pn+1
)

are the residuals of the momentum

and continuity equation (see Equation (  2.15 )) for an individual element. Meanwhile, ∆v and

∆p are the increments in the nodal velocity and pressure, and the tangent stiffness matrices

for nodes a and b, defined as:

Kab = ∂Ra,mom

∂∆vb

, (2.23a)

Gab = ∂Ra,mom

∂∆pb

, (2.23b)

Dab = ∂Ra,con

∂∆vb

, (2.23c)

Lab = ∂Ra,con

∂∆pb

. (2.23d)
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Finally, the nodal acceleration, velocity and pressure are subsequently updated as:

v̇a,n+αm += ∆va, (2.24a)

va,n+1 += Γ∆t∆va, (2.24b)

pa,n+1 += αfγ∆t∆pa. (2.24c)

For the structural equation, a similar methodology is adopted. The displacement u, the

velocity and acceleration u̇ and ü at a node a at time step n+ 1 are initially calculated as:

ua,n+1 = ua,n + u̇a,n+1∆t+ 0.5γ − β

γ − 1 üa,n+1∆t2, (2.25a)

u̇a,n+1 = u̇a,n, (2.25b)

üa,n+1 = üa,n. (2.25c)

Here, β = γ2, and all the other parameters are as previously defined for the fluid equation.

The intermediate displacement at n+ αf is calculated as:

ua,n+αf
= (1 − αf )ua,n + αfua,n+1. (2.26)

Next, Newton-Raphson iterations are conducted:

Ks∆u = −Ra

(
u̇n+αm ,un+αf

)
, (2.27)

where Ra

(
u̇n+αm ,un+αf

)
is the residual of the structural (or mesh motion) equations at the

given node a. The elements of the tangent matrix Ks are defined as:

(Ks)ab = ∂Ra

∂∆ub

. (2.28)

Finally, the updated displacement at tn+1 is calculated as:

ua,n+1 += β∆t2∆ua. (2.29)
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2.3.5 Flow and Structural Boundary Conditions

Cardiovascular flow and FSI problems typically involve domains with multiple inlets and

outlets, depending on the region of vasculature being considered. These problems are also

periodic in time, with the time period being equal to the length of a single cardiac cycle

(i.e., inverse of the cardiac pulse frequency). For the flow inlets, a periodic pulsatile flow

profile, approximated as a Fourier series, is imposed to model the incoming blood flow. Flow

rate data is typically obtained either from subject-specific in-vivo measurement (e.g., phase-

contrast MRI (PC-MRI), pulsed-wave Doppler (PWD) or 4D flow MRI data) or imposed

using population-averaged flow measurements. In order to determine the spatial velocity

profile at the inlet, the Womersley number,

Wo = R

√√√√2πfρf

µf

, (2.30)

is calculated. Here, R is the inlet vessel radius, f is the cardiac frequency (beats per sec-

ond), while µf and ρf are the dynamic viscosity and density of blood, respectively. Spatial

velocity profiles corresponding to Womersley number values between 2 and 4 are found to

be approximately close to the parabolic (Poiseuille) flow profile.

At the outlets, a time-varying pressure is imposed weakly by using 0D lumped pa-

rameter network (LPN) models to mimic the response of the vasculature downstream of

the region of interest. The one element (resistance-only) or three element (resistance–

capacitance–resistance, or RCR) Windkessel models are the most common choices. More

details may be found in [ 26 ]. Their electrical analogues are shown in Figure  2.4 . In the one

element Windkessel model, the outflow pressure P (t) at a given outlet face is specified as:

P (t) = P0 +RQ(t), (2.31)

where P0 is the distal pressure, Q(t) is the time-dependent flow rate through that branch and

R is the vascular flow resistance. On the other hand, the three element Windkessel model,

which is the model of choice in subsequent specific aims, additionally considers a capacitor
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(a) one-element resistance-only model (b) three-element RCR model

Figure 2.4. Electrical analogues of Windkessel models.

element C to model the compliance of the downstream vessels. The flow resistance is also split

into the proximal and distal resistance, accounting for the respective (proximal and distal)

downstream vessels. Since smaller vessels (arterioles and capillaries) offer larger resistance

as compared to proximal mid-sized vessels, the distal resistance Rd value is typically much

higher than the proximal resistance Rp, with the ratio Rd/Rp being assumed to be high in

most cases. Depending on the specific nature of the computational problem and the available

data, there are several ways to estimate these Windkessel parameter values. The subsequent

specific aims contain detailed explanation of these methods.

Before discussing the structural boundary conditions, a distinction is made on a broad

level on the types of boundaries encountered in cardiovascular FSI simulations. Artificial

boundaries are boundaries that arise due to truncation of the computational geometry to

isolate the vascular region of interest. The end caps of the solid domain above the inlet

and outlet faces are artificial boundaries. Natural boundaries are regions of natural contact

between the blood vessel and adjacent bone/tissue. The outer vessel wall, as well as the fluid-

solid interface are natural boundaries where the vessel wall is in contact with surrounding

tissue/structures and the blood respectively. At the fluid-solid interface, a kinematic and

dynamic matching condition is imposed i.e.,

vfluid = ∂

∂t
usolid, (2.32a)

σfluid · nfluid = −σsolid · nsolid. (2.32b)
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For the outer wall, most studies in the past have used a zero traction boundary condition.

However, arterial vessels are constrained within biological tissue/fluid and imposing a ho-

mogeneous Neumann condition would result in artificial motion patterns of the vessel wall.

Moireau et al. [ 27 ] and Bäumler et al. [ 28 ] addressed this problem in their respective

studies of the human aorta by imposing a spring-dashpot traction boundary condition on

the outer wall:

σ · n = −ksu − csu̇ − p0. (2.33)

This approach models contact at the outer wall akin to support from a Kelvin-Voigt vis-

coelastic material, characterized by three phenomenological parameters – an elastic spring

constant ks, a viscous damping co-efficient cs and a constant pressure value p0, which can

be representative of the intracranial/intrathoracic pressure. As explained by Moireau et

al. [ 27 ], these phenomenological values are calibrated by matching wall deformation data

from simulations and corresponding data obtained from imaging.

A key feature of this model is that different values can be specified for these phenomeno-

logical constants on different regions of the outer wall, depending on the type of contact.

In FSI analyses performed in subsequent specific aims, the outer wall is modeled using the

viscoelastic tissue support model to account for the effect of surrounding structures. More-

over, modeling studies of healthy and diseased murine aortae reported in Chapter  3 are used

inform the choice of tissue support parameters used in Chapter  4 .

For the artificial boundary at the end caps, a variety of boundary conditions have been

used in previous cardiovascular FSI studies, depending on modeling problem and region of

vasculature being considered. Bazilevs et al. [ 29 ] and others (see references in [ 9 ]) used a

directional Dirichlet boundary condition (referred to as zero normal displacement boundary

condition hereafter) for modeling cerebral aneurysms, where only in-plane deformations were

allowed for the artificial boundaries. Most other studies have used a homogeneous Dirichlet

boundary condition. This boundary condition is typically used when the pulsatility of vessels

is low. Moireau et al. [ 27 ] proposed relaxing the strong Dirichlet boundary condition by

imposing the same spring-dashpot boundary condition, as stated in Equation (  2.33 ), to

prevent spurious reflections and vibrations close to the fixed ends. However, their study also
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suggests that this effect is less significant as compared to the inaccuracies due to incorrect

modeling the outer wall. Furthermore, application of spring-dashpot boundary conditions at

the artificial boundaries requires calibration of phenomenological constants, which may not

be possible due to lack of relevant wall motion data for cerebral aneurysm cases. Therefore,

in FSI simulations in Chapters  3 and  4 , with the exception of the inlet face for the analysis

in Chapter  3 , a Dirichlet condition is imposed on the artificial boundaries. Discussion of any

additional details is deferred to the pertinent chapters.

2.3.6 Estimating Arterial Pre-Stress

As pointed out by several FSI studies in the past [  30 ]–[ 33 ], the vascular geometry obtained

from imaging data is not stress free. Depending on the time point in the cardiac cycle when

the images are acquired, the arterial wall will have residual stresses as a result of the blood

pressure due to incoming flow. Therefore, appropriate initialization of this residual stress

state of the geometry is necessary to obtain accurate vessel wall deformations. Hsu and

Bazilevs [  34 ] proposed a methodology to account for the residual stress by estimating a

“pre-stress” tensor for the arterial wall geometry. Accordingly the second Piola-Kirchhoff

stress tensor S in Equation ( 2.1 ) is modified by including an additional pre-stress tensor S0,

as:

∫
Ω0

s

[
ρsW · (ü − f) + ∇XW : F(S + S0)

]
dΩ0

s −
∫

Γ0
Ih

W · h dΓ0 −
∫

Γ0
Eh

W · h dΓ0 = 0. (2.34)

Here, Γ0
s,h = Γ0

Ih ∪ Γ0
Eh where Γ0

Ih is the fluid-solid interface, and Γ0
Eh is the rest of the

boundary with natural boundary conditions.

By definition, the pre-stress tensor S0 is the residual stress that is in equilibrium with

incoming blood flow’s tractions (at the time point in the cardiac cycle at which image data

is acquired) for zero displacement i.e.,

∫
Ω0

s

[
∇XW : S0 − ρsW · f

]
dΩ0

s −
∫

Γ0
Ih

W · hFSinterface dΓ0 −
∫

Γ0
Eh

W · h dΓ0 = 0. (2.35)
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Here, the traction hFSinterface on the fluid-solid interface may be obtained from separate

rigid-wall simulation data (steady or pulsatile) extracted at the same flow conditions as

those during image acquisition. Equation (  2.35 ) is a scalar equation for a tensor unknown,

S0, thus has, in principle, an infinite number of solutions. Hsu and Bazilevs [ 34 ] proposed

an algorithm to compute a particular solution, which has been implemented in svFSI. The

same will be used to estimate pre-stress in the initial subject/animal-specific geometries in

the subsequent specific aims. A flowchart of the algorithm is presented in Figure  2.5 .

Start

Integrate 
(2.34) from 
𝑡௡ to 𝑡௡ାଵ

Independent 
rigid wall 

simulation

𝒖, 𝐅, 𝐒

𝒖 = 𝟎,
𝐅 = 𝐈, 𝐒 = 𝟎

𝐒଴ = 𝟎
𝑡௡ୀ଴ = 0, Δ𝑡

YesNo

𝐒଴ = 𝐒଴ + 𝐒
𝒖 = 𝟎

Pre-stress = 𝐒଴ End

𝒉୊ୗ ୧୬୲ୣ୰୤ୟୡୣ

Figure 2.5. Algorithm to obtain a particular solution for the pre-stress S0.
A rigid wall flow simulation is first performed independently to provide the
traction hFSinterface at the fluid-solid interface.
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Initial Conditions

Due to their periodic nature, cardiovascular simulations are typically run for several car-

diac cycles to ensure that the initial transients associated with “flow start-up” are eliminated.

However, appropriate initial conditions are key in achieving this desired periodic solution in

the least number of cardiac cycles. In the present case, a distinction is made between the

flow simulations (required in generating arterial wall thickness or pre-stress tractions) and

FSI simulations.

Based on investigations from a previous study involving flow-only CFD simulations of

arterioveneous malformations (AVMs) [ 35 ], periodic behaviour is found to be achieved within

two cardiac cycles with zero pressure and velocity initialization. Accordingly, flow simulations

in subsequent studies have been initialized with zero flow and pressure and run for at least

two cardiac cycles.

While specifying the initial conditions for FSI simulations, the flow rate at the time point

corresponding to acquisition of image data is chosen as the starting point, Q(t = 0), of the

cardiac cycle. This ensures consistency with the pre-stress calculations from Section  2.3.6 

and enables the prescription of zero displacement and pre-stress tensor as initial deformation

and stress state of the solid domain respectively. The flow domain solution (velocity and

pressure) is initialized using data from the same numerical simulation used to generate

hFSinterface (see Section  2.5 ). FSI simulations are additionally run for multiple cardiac cycles

(at least two) and checked for periodicity of the solution, before being considered as valid

numerical results.

2.4 Generating Conformal Meshes for ALE FSI

The svFSI solver requires flow and structural domain meshes that are conformal at the

fluid-solid interface. With the standard mesh generation workflow available within the Sim-

Vascular platform using the TetGen meshing tool [ 36 ], it is impossible to generate conformal

meshes with boundary layer mesh refinement in the fluid domain for arterial vessel walls

with nonuniform wall thickness. Additionally, svFSI lacks capability of accepting meshes

in formats other than the standard VTK format. A novel mesh generation workflow was
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developed to overcome the meshing limitations of the SimVascular platform and allow for

importing meshes created using the commercial CAE tool ANSYS® Workbench for running

svFSI simulations. The details are presented in this subsection.

The first step in the process involves generating conformal tetrahedral meshes for the flow

and structural domain using the meshing tool of choice. In this specific case, the ANSYS®

meshing tool within the ANSYS® Workbench environment was used and each mesh (fluid

and solid) was separately exported in the ANSYS® Fluent-compatible (.msh) format. These

meshes are converted to .vtu volumetric mesh using the open-source mesh conversion tool

FEconv [ 37 ]. Subsequently, mesh attribute cleanup, geometric scaling (depending on the

problem requirements) and node and element renumbering is performed in Paraview. This

step is essential to produce meshes that the mesh parser in svFSI can read without errors.

The end result is a renumbered .vtu volumetric tetrahedral mesh and .vtp surface mesh

of the external bounding surface. A custom python [ 38 ] script developed in-house is then

executed within the SimVascular python shell to extract the individual boundary faces (on

which boundary conditions are to be imposed) from the combined .vtp file generated above.

The python script used to extract the boundary faces is provided in Appendix  B .
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3. SPECIFIC AIM 2: EXTERNAL TISSUE SUPPORT

PARAMETER CHARACTERIZATION FOR AngII INFUSED

MOUSE MODELS OF THORACIC AORTIC ANEURYSMS

The material presented in this chapter is under review for publication in Engineering with

Computers under the title “Estimating external tissue support parameters with fluid-struc-

ture interaction models from 4D ultrasound of murine thoracic aortae”

Authors: Tanmay C. Shidhore†, Hannah L. Cebull†, Megan C. Madden, Ivan C. Christov,

Vitaliy L. Rayz and Craig J. Goergen

Tanmay C. Shidhore performed the image segmentations, geometry pre-processing, setting

up and running fluid-structure interaction simulations and data post processing. Hannah L.

Cebull acquired the 4D US, PWD and histological data and performed data post-processing.

Megan C. Madden performed image segmentation, setting up and running fluid-structure

interaction simulations. All authors contributed to writing and reviewing the manuscript.
†These authors contributed equally to this work.

3.1 Background

The thoracic aorta is a highly pulsatile elastic artery in the body [ 39 ], [  40 ]. While com-

putational fluid dynamics (CFD) simulations provide an effective technique for quantifying

blood flow patterns and estimating hemodynamic parameters, these models lack important

biomechanical information on the arterial wall. Furthermore, previous studies have shown

that wall shear stress (WSS), an important hemodynamic metric affecting endothelial cell

response, is over-estimated in CFD simulations where the wall is assumed to be rigid [ 41 ],

[ 42 ]. Therefore, fluid-structure interaction (FSI) modeling is needed to accurately capture

the mechanics of the aortic wall and the effect of feedback between hemodynamic and tis-

sue mechanical forces on hemodynamic quantities of interest. There remains a critical need

for improving computational modeling of the thoracic aorta, as thoracic aortic aneurysms
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(TAAs) affect 10 out of 100,000 people [ 43 ]. Current intervention methods often focus on

the volume and diameter of TAAs, neglecting geometry, vessel motion, and effect of blood

flow. Importantly, the biomechanics of wall deformation captured through FSI modeling

allows for improved understanding of aneurysmal growth and progression by providing bet-

ter estimates of WSS and other hemodynamic parameters [  44 ], [ 45 ]. Therefore, improved

biomechanical prediction capabilities through FSI modeling is crucial, as dissections have

been reported in patients with vessel diameters below the typical intervention threshold of

5 to 6 cm [ 46 ], [ 47 ].

There are many contributing factors to the complexity of TAAs on both micro- and

macroscopic scales [  48 ]. On a cellular level, changing levels of elastin, collagen, and inflam-

matory cells influence the biomechanics of the vessel [ 49 ], [ 50 ]. Further, the heart, spine, and

other external tissues affect the vessel movement on a macroscopic level [  27 ], [ 51 ], and the

geometry of the vessel itself (with the aortic valve, arch, and branching vessels) results in

complex flow patterns, even in non-diseased cases [  52 ]. Heterogeneous biomechanics of the

thoracic aorta should be accounted for through a robust computational methodology that

considers all these influencing factors to improve understanding of the role of biomechanical

forces in TAAs, potentially improving non-invasive diagnoses.

The angiotensin II (AngII)-infused mouse model is a popular murine model to study

disease progression of both thoracic and abdominal aortic aneurysms [  53 ]. Animals develop

hypertension, causing expansion and stiffening within the thoracic aorta and occasionally

dissection in the suprarenal abdominal aorta [ 54 ]. Recently, there has been increased inter-

est in computational modeling of small animals because of the ability to collect image data

both pre- and post-aneurysm formation, with a view towards augmenting experimental mea-

surements with high-resolution computational data [  55 ]. From the perspective of developing

high fidelity computational models, the modeling strategy of using tissue support boundary

conditions is highly suitable as such models can be easily customized to simulate a variety

of experimental conditions in-silico without having to redo animal experiments. However,

for the purposes of conducting such FSI simulation studies of murine models, there are lim-

ited reports in the literature on suitable boundary conditions on the outer vessel wall that

account for the effect of the surrounding complex biological environment. Specifically, there
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are no reported studies on characterizing the phenomenological tissue support parameters

(see Equation (  2.33 )) for murine models of TAAs. In this study, this gap in knowledge is

addressed by performing a longitudinal computational FSI analysis of murine aortas and

calibrating the tissue support parameters via comparison to experimental four-dimensional

ultrasound (4DUS) data.

3.2 Methods

3.2.1 Animals and Aortic Expansion

Under the approval of the Purdue Animal Care and Use Committee, male wildtype

C57BL/6J mice (23.5 g ± 1.3; 32 weeks old; n = 5) from The Jackson Laboratory (Bar

Harbor, ME) were infused with AngII (MW: 1046.19; Bachem, Torrance, CA) for 28 days

via subcutaneous implantation of mini-osmotic pumps in the dorsum of each mouse (ALZET

Model 2004; DURECT Corporation, Cupertino, CA) [  56 ]. The pumps systemically delivered

AngII dissolved in saline solution (0.9% sodium chloride) at a rate of 1000 ng/kg/min. One

of the five mice died before the end of the study due to aortic rupture. The remaining four

mice were euthanized 28 days post-implantation with overdose of carbon dioxide.

3.2.2 Image Acquisition, Blood Pressure, and Histology

High-resolution ultrasound images (Vevo2100 Imaging System; FUJIFILM VisualSonics

Inc., Toronto, Ontario, Canada) were acquired at baseline and 28 days post angII infusion

for each mouse (referred to hereafter as “Day 0” and “Day 28” time points respectively). A

depilatory cream was applied before imaging to remove hair from the region of interest to

minimize image artifacts. To obtain inlet velocities, pulsed-wave Doppler (PWD) waveforms

were collected. A custom MATLAB code was then used to quantify the PWD data for

the inlet flow boundary conditions [  57 ]. In order to visualize vessel geometry and wall

deformation, 4DUS from individual electrocardiogram-gated kilohertz visualization (EKV)

cine images was collected. To acquire the 4DUS scans, an automated technique that collected

an EKV every 60 µm using a 40 MHz center frequency linear array transducer (MS550D

FUJIFILM VisualSonics Inc.; axial resolution = 40 µm; lateral resolution = 90 µm) in a
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long axis view was used until the majority of the thoracic aorta and branches off of the arch

were captured [ 58 ].

At the Day 0 and Day 28 time points, diastolic and systolic blood pressure data from

conscious mice using a tail cuff system (CODA 2 Channel Standard, Kent Scientific, Tor-

rington, CT) was also collected. The mice were acclimated to the cone restraints and tail

cuffs prior to collection. Following the final imaging and blood pressure measurements, the

vessels were excised and fixed for a histological analysis using Movat’s Pentachrome stain.

Histological slices were used to obtain average thickness values incorporated in Day 28 wall

properties (see image in Figures  3.1 b and  3.2 a).

3.2.3 Computational Geometries

The fluid and solid geometries were obtained as explained below.

Fluid Domain Geometry

Ultrasound images of flow domain at diastole for one of the mice were segmented to be

used as a representative model. The specific animal case was chosen such that it matched

the mean expansion of all four mice in the ascending aorta region ( 70%). The geometry

included the ascending aorta and portions of the brachiocephalic trunk, left common carotid

artery, left subclavian artery, and the descending aorta via 4DUS imaging data acquired at

days 0 and 28 as described in Section  3.2.2 . Segmentations were performed at end diastole,

as well as peak systole to be used for maximum in vivo deformation measurements. As

the descending aorta was not entirely visible in the image data, the segmentations were

artificially extended. Subsequent smoothing and cleanup of the geometry was performed in

the commercial computer-aided design (CAD) tool Geomagic® Design X to eliminate sharp

edges, bumps, and other initial segmentation artifacts.

Solid Domain Geometry

For the blood flow domain extracted and discussed in the previous subsection, the nonuni-

form arterial wall thickness (the solid computational domain) was estimated by solving the
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Figure 3.1. Proposed modeling pipeline for calibrating tissue support pa-
rameters for FSI simulations. Panels a – e highlight the general steps in this
study beginning with a) acquiring 4DUS data and b) collecting histological
data. Segmentations of the lumen c) can be extracted to generate the geom-
etry of the flow domain. Meanwhile, histological data provides us geometry
of the outer wall (for Day 28) which may then be used to prescribe heteroge-
neous tissue support parameters (red/white), as in d). This is assembled into
a physiologically realistic FSI model e).
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Laplace equation over the luminal surface as originally proposed by Bazilevs et al. [ 59 ].

Specifically, the thickness t(x) at location x along the luminal surface (inner wall ∂Ωinner)

was found as the solution to:

∇2t(x) = 0 on ∂Ωinner. (3.1)

The domain for the Laplace equation is the inner wall ∂Ωinner, and boundary conditions are

prescribed on the sets of curves at the inlets and outlets of the computational geometry.

The thickness values prescribed at the inlet and outlets as boundary conditions are given

in Table  3.1 . For the Day 0 time point, thickness values corresponding to 10% of the average

vessel inlet/outlet diameter were prescribed, following Hsu and Bazilevs [  34 ]. For the Day

28 time point, ex vivo histology measurements from all four mice at the respective inflow

and outflow branches were obtained and the averaged vessel wall thickness values from these

measurements was prescribed. An example of the geometries for the flow domain and the

solid domain is shown in Figure  3.2 b.

3.2.4 Mesh Generation

Tetrahedral meshes were created for the fluid and solid domains, enforcing node confor-

mity at the fluid-solid interface. To ensure that the shear stress was computed accurately

at the fluid-solid interface, local mesh refinement was incorporated in the fluid mesh up to

a constant thickness of 0.06 mm from the fluid-solid interface. A grid independence analysis

was performed on the Day 0 geometry to ensure that the computational results were inde-

Table 3.1. Wall thickness values prescribed at the inlet and outlet locations
for each time point.

Time Point ATA DTA BCA LCCA LSA

Day 0 (mm) 0.14 0.12 0.05 0.04 0.03
Day 28 (mm) 0.15 0.13 0.09 0.07 0.06

ATA = ascending thoracic aorta, DTA = descending thoracic aorta, BCA = brachiocephalic
artery, LCCA = left common carotid artery, LSA = left subclavian artery
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Figure 3.2. Previous literature [  34 ] and histology a) were used to determine
vessel wall thickness at days 0 and 28 respectively. b) shows the solid (trans-
parent red) and fluid (blue) segmented domains of the Day 28 model over a
static slice of the corresponding 4D ultrasound image. c) and e) show the
pulsed-wave Doppler at Day 0 and Day 28 that was used to inform the inlet
boundary condition in panel d). The Windkessel RCR model used at the out-
lets, along with heterogeneous (red and white regions) external tissue support
(applied to simulate in vivo conditions) on the Day 0 outer wall geometry, are
shown in d).
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pendent of the core and near-wall mesh refinement resolutions (see Section  3.2.5 for further

details).

3.2.5 Grid Independence

In order to ensure that computational quantities reported, such as pressure, velocity

and wall shear stress, were independent of the grid resolution of the fluid domain’s mesh, a

grid sensitivity analysis was performed. The pertinent details for each mesh are shown in

Table  3.2 . A two-step approach was used to establish grid independence. First, a core mesh

resolution was determined such that pressure and velocity were independent of the core mesh

resolution. Second, varying degrees of mesh refinement close to the fluid-solid interface were

implemented on top of the chosen core mesh resolution from the previous step, to ensure that

the computed wall shear stress was independent of the near-wall mesh refinement resolution.

In Figure  3.3 c, d, e and f, the area-averaged and point-wise pressure and velocity magnitude

at the inlet plane, as well as at an arbitrary point located in the interior of the ascending

region of the aorta (see Figure  3.3 a) are plotted over a single cardiac cycle.

Based on the plots in Figure  3.3 c, d, e, and f, it was observed that the pressure and

velocity magnitude values computed on both the coarse and medium grid (i.e. with ∆x =

0.015 cm and ∆x = 0.01 cm) were within a 5% margin of the values computed on the fine

grid. However, in Figure  3.3 d, the velocity magnitude for the coarse grid (∆x = 0.015 cm)

was beyond this tolerance margin. Therefore, ∆x = 0.01 cm was determined to be the core

mesh resolution of choice.

Next, Figure  3.4 shows the x, y, and z components of the WSS (wall shear stress)

computed at a point on the surface of the ascending aorta. Here, the core mesh resolution

was identical in all cases (∆x = 0.01 cm). However, close to the fluid-solid interface, different

number of layers of mesh refinement (0, 3, 4, and 5) were considered (see Figure  3.4 a) From

Figures  3.4 b, c and d, non-trivial difference (> 5%) between the surface shear stress values

computed on meshes with and without mesh refinement was observed. Furthermore, meshes

with different levels of mesh refinement (NBL = 3, 4, and 5) yield shear stress values within

the above tolerance limit with minor differences in the computation time. Therefore, a mesh
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Figure 3.3. Pressure and velocity data over a cardiac cycle at the inlet
plane (panels c and e) and at a point (panels d and f) in the interior of the
ascending aorta (shown in a) for different mesh resolutions (shown in b). The
error bars of each plot point show a deviation of 5% from the corresponding
value on the finest mesh (∆x = 0.008 cm). Abbreviations used – |v|: Velocity
magnitude, R: Right, L: Left, A: Anterior, P: Posterior. Based on the above
plots, ∆x = 0.01 cm was chosen as the optimal core mesh resolution.

refinement level of NBL = 4 was chosen balancing the need for increased resolution with the

corresponding computational cost.

A constant time step of ∆t = 10−5 s was used for all cases. Table  3.2 reports an estimate

of the maximum cell-based Courant number computed for each of the meshes used, over a

single cardiac cycle. The Courant number was computed as:

CFL = |v|∆t
∆x , (3.2)

where |v| is the velocity magnitude at the cell center, ∆t is the time step size, and ∆x is a

length scale computed for each cell as ∆x = V1/3, where V is the cell volume.
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Figure 3.4. Components (b,c,d) of the WSS over a cardiac cycle at a point
on the interior surface of the ascending aorta (shown by a dot in the model
geometry in a), for different number of boundary layers each. NBL represents
the number of layers of boundary layer elements. Here, NBL = 0 represents a
mesh without boundary layer refinement. The error bars on each plot point
show a deviation of 5% from the corresponding value on the mesh with the
largest number of boundary layer refinements (i.e. NBL = 5). Based on the
above plots, the boundary layer mesh resolution corresponding to NBL = 4
was chosen as for the FSI simulations. Abbreviations used – R: Right, L: Left,
S: Superior, I: Inferior.

It was observed that, for cases for which the maximum CFL > 1, only a few cells

(< 5) outside the region of interest (viz. the ascending aorta) exceeded the threshold. This

observation, together with the fact that the time integration scheme implemented in svFSI

is an implicit scheme [  24 ], allowed for using the same time step size of ∆t = 10−5 s for the

subsequent FSI simulations as well.
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Table 3.2. Mesh details for grid optimization.
∆xcore (cm) NBL Nelements Nnodes Max. CFL

0.01

0 169,749 32,750 0.4
3 189,832 36,375 1.04
4 190,015 36,401 1.05
5 191,098 36,744 1.01

0.15 53,032 11,078 0.28
0.08 326,791 61,263 0.49

3.3 Solver Details and Boundary Conditions

Three-dimensional numerical simulations were performed using the svFSI solver, as de-

scribed in Section  2.3 .

3.3.1 Flow Domain

Blood was modeled as a Newtonian fluid with constant density ρf and viscosity µf , the

values of which were obtained from literature data [  60 ] (see Table  3.3 ). These values were

assumed to be the same for both the Day 0 and 28 time points.

3.3.2 Structural Domain

As mentioned in Section  2.3.1 , the arterial wall was modelled as nearly incompressible

hyperelastic material with material properties E and ν = 0.49. Different values were assumed

for E at the Day 0 and 28 time points to account for arterial stiffening due to AngII infusion.

The Young’s moduli for the Day 0 and 28 time points were estimated using circumferential

stress-stretch data for wildtype C57BL/6J and AngII-infused apolipoprotein E−/− mice,

respectively, as reported by Bellini et al. [ 61 ]. For a biaxial state of stress of an incompressible

neo-Hookean material, the theoretical relationship between circumferential stress σθθ and

circumferential stretch ratio λθθ is:

σθθ = −p+ E

3 λ
2
θθ, (3.3)
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Table 3.3. Values of the fluid and solid material properties used for simulations.
Property Day 0 Day 28

Blood density ρf 1.06 g/cm3 1.06 g/cm3

Blood viscosity µf 4 cP 4 cP
Arterial wall density ρs 1.0 g/cm3 1.0 g/cm3

Arterial wall Young’s Modulus E 3.11 × 106 dyne/cm2 3.30 × 106 dyne/cm2

Arterial wall Poisson ratio ν 0.499 0.499

where p is the Lagrange multiplier that enforces the incompressibility constraint. Therefore,

using the biaxial stress-stretch data reported in [ 61 ], the Young’s modulus was estimated to

be three times the slope of the best fit line to σθθ versus λθθ (see Figure  3.5 ). The values are

reported in Table  3.3 .

Figure 3.5. Experimental circumferential stress vs. stretch-squared data from
Bellini et al. [ 61 ] along with best fit line(s) and corresponding best fit equa-
tion(s). The Young’s modulus (in kPa) was estimated to be three times the
fitted slope.
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3.3.3 Arterial Pre-Stress

Arterial pre-stress was computed as described in Section  2.3.6 . In this study, since 4D

US images at diastole were used for obtaining the computational geometry, the flow traction

data at diastole, obtained from a separate pulsatile rigid-walled flow simulations was used

to compute the pre-stress tensor S0 (see Equation ( 2.35 )) for both the Day 0 and Day 28

geometries.

3.3.4 Fluid Domain Boundary Conditions

The Womersly number values,calculated using Equation (  2.30 ), for Day 0 and Day 28

time points were found to be 2.7 and 2.9, respectively. Since both values were close to

Wo = 2, a parabolic flow profile was implemented over the cross-section.

The temporal area-averaged inlet velocity profiles over a single cardiac cycle were acquired

at Days 0 and 28 time points for each mouse using PWD measurements. Based on these

measurements, an averaged temporal inlet velocity was estimated for the representative Day

0 and Day 28 cases by averaging the velocity values over all four mice. Figure  3.2 d shows

the temporal velocity profile used in simulations at both time points. This velocity profile

was multiplied by the cross-sectional area at the inlet to obtain the inlet flow rate profile,

which was imposed as a parabolic, periodic inlet flow rate boundary condition.

To account for the effect of the downstream vasculature, a three-element Windkessel

RCR boundary condition was imposed at each of the outlets [ 62 ], as shown in Figure  2.4 .

Initial estimates of the total arterial resistance R0
total and capacitance C0

total were obtained

as:

R0
total = P̃ − P0

Q̃
, (3.4a)

C0
total = Qs −Qd

Ps − Pd

∆t. (3.4b)

Here, P̃ and Q̃ are the time-averaged pressure and flow rate, respectively, over a single

cardiac cycle. Meanwhile, Ps, Qs and Pd, Qd are the systolic and diastolic pressures and flow
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rates, respectively. Finally, P0 is the distal pressure, and ∆t is the time difference between

Qs and Qd.

Subsequently, as outlined in [  63 ], the distal pressure, total resistance, and capacitance

were tuned in an iterative fashion such that both peak systolic, Ps, and pulse, Ps − Pd,

pressures matched the corresponding tail cuff measurement values within an error margin

of 10%. Rigid-wall pulsatile flow simulations were run for six cardiac cycles, and the results

from the fourth cardiac cycle were used in the fine-tuning process. The resistance across

each individual outlet were distributed using Murray’s law (m = 3) [ 64 ]:

Rout,` =
∑p

k=1

√
Am

k√
Am

`

·Rtotal. (3.5)

Here, Rtotal is the net downstream resistance, A` is the cross-sectional area of the `th outlet,

and p is total the number of outlets. The capacitance of each individual outlet branch is

calculated as proposed in [ 63 ]:

Cout,` = R`

Rtotal
· Ctotal. (3.6)

For each outlet branch, the ratio of the distal to proximal resistance was assumed to be 1:9

[ 28 ]. Tables  3.4 and  3.5 list the animal-averaged systolic and diastolic pressures obtained

from tail cuff measurements, along with the values obtained via this fine tuning process for

the proximal resistance Rp, the distal resistance Rd, and the capacitance C at each outlet

for the Day 0 and Day 28 time points, respectively. It should be emphasized that the RCR

parameter values reported in Tables  3.4 and  3.5 are not physiologically realistic but simply

to ensure that inlet diastolic and pulse pressures are within a 10% margin of corresponding

values from cuff measurements.

3.3.5 Structural Boundary Conditions

On the natural boundary (i.e. the outer wall), the Robin boundary condition, previously

introduced in Equation ( 2.33 ), was prescribed. Following the work in [  28 ], a simplification
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Table 3.4. RCR parameter values at each outlet and pressures for Day 0.
Parameters DTA BCA LCCA LSA

Rp (×104 dyne · s/cm5) 1.3 18.5 29.0 86.6
Rd (×104 dyne · s/cm5) 11.5 166.7 260.6 779.0
C (×10−7 cm5/dyne) 6.3 0.4 0.3 0.1
P0 (mmHg) 73.2
Ps (mmHg) 115.7
Pd (mmHg) 83.2

DTA = descending thoracic aorta, BCA = brachiocephalic artery, LCCA = left common
carotid artery, LSA = left subclavian artery; Rp = proximal resistance, Rd = distal resistance
C = capacitance, P0 = distal pressure, Ps = systolic pressure, Pd = diastolic pressure

Table 3.5. RCR parameter values at each outlet and pressures for Day 28.
Parameters DTA BCA LCCA LSA

Rp (×104 dyne · s/cm5) 1.3 8.7 22.4 11.2
Rd (×104 dyne · s/cm5) 11.7 78.0 201.7 100.7
C (×10−7 cm5/dyne) 3.8 0.58 0.22 0.45
P0 (mmHg) 111.4
Ps (mmHg) 164.5
Pd (mmHg) 121.4

DTA = descending thoracic aorta, BCA = brachiocephalic artery, LCCA = left common
carotid artery, LSA = left subclavian artery; Rp = proximal resistance, Rd = distal resistance
C = capacitance, P0 = distal pressure, Ps = systolic pressure, Pd = diastolic pressure

was introduced in Equation  2.33 , wherein the number of parameters to be tuned were reduced

by identically setting the damping coefficient c and the constant pressure p0 to 0. Further-

more, a heterogeneous value was prescribed for the spring constant k [ 27 ]. Specifically, the

outer surface of the arterial wall was divided into three regions to model contact with the

spine and pulmonary artery regions (see, e.g., red regions in Figure  3.2 d) at both the Day 0

and Day 28 time points. Based on observations of wall motion in the 4DUS imaging data,

the estimated 2D Green-Lagrange strain of the pulmonary artery at the location under the

aortic arch did not decrease (3.1% ± 1.1 increase) at Day 28 as compared to the thoracic

aorta (22.5%±1.1 decrease), despite expansion of the thoracic aorta from Day 0 to 28 (18.9%
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increase in diameter). Therefore, both contact areas were simulated by imposing a high stiff-

ness value (k = 109 dyne/cm3) to account for this strong tethering. This value was kept

constant across all the FSI simulations at Day 0 and 28. A spatially uniform stiffness value,

which was progressively varied across different simulations (see Section  3.3.6 ), was imposed

on the remainder of the outer wall, hereafter referred to as the “outer wall with variable

tissue support”. (see, e.g., white region in Figure  3.2 e). For the solid caps at each flow

outlet, a homogeneous Dirichlet boundary condition, u = 0, was imposed. This was found

to be consistent with imaging data, which showed the outflow branches at the corresponding

locations undergoing minimal displacement. Conversely, the artificial boundary ring at the

inlet is influenced by heart motion. This effect was modeled via a Robin boundary condition

with the traction prescribed:

σ · n = −k(u · n)n − c(u̇ · n)n − p0n on ∂Ωinlet, (3.7)

where k, c, p0, and n are as previously defined for Equation (  2.33 ). In contrast to the bound-

ary condition on the outer wall, given by Equation (  2.33 ), the projection onto the normal

direction in Equation (  3.7 ) was used to preclude out-of-plane deformations of the inlet ring,

further guaranteed by imposing a large value for the spring constant (k = 1017 dyne/cm3)

and setting c and p0 to 0.

3.3.6 FSI Simulation Parameters

For each time point (Day 0 and Day 28), 3D pulsatile FSI simulations were run for four

cardiac cycles. The inlet Reynolds number at peak systole for an intermediate value of tissue

support spring parameter (k = 106 dyne/cm3) was calculated as

Re = ρfvpeakDvessel/µf , (3.8)

where vpeak is the centerline velocity at peak systole, and Dvessel = 2
√
Ainlet/π is the effective

vessel diameter at the inlet plane, with Ainlet being the surface area of the inlet face. This

value was estimated to be 358 for the Day 0 time point and 522 for the Day 28 time point. For
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the Day 0 case, k values from 10−2 to 1011 dyne/cm3 (end points included) were considered

for the outer wall with variable tissue support (see Section  3.3.5 ). An additional simulation

was run without any external tissue support — in this case, prescribing a homogeneous

Neumann condition (k = 0) on the outer wall with variable tissue support (white region in

Figure  3.2 d). In total, fifteen simulations were performed for Day 0. Each simulation took

approximately six hours of CPU time to complete all four cardiac cycles on 120 cores of a

single compute node, which consisted of two 64-core AMD Epyc 7662 “Rome” processors

(Bell Community Cluster, Rosen Center for Advanced Computing, Purdue University, West

Lafayette). After determining optimum tissue support parameter values for the Day 0 time

point, a subset of the above tissue support parameter range (103 to 108 dyne/cm3) was tested

for Day 28. In the results shown below, it was verified that periodicity was achieved after

the second cardiac cycle and reported data extracted from the last (fourth) cardiac cycle.

3.4 Results and Discussion

3.4.1 FSI Simulations

A comparison of various flow and structural metrics extracted from the FSI simulations

at Days 0 and 28 is presented here. As mentioned in Section  3.3.6 , the pulmonary artery

and spine tissue support values were fixed while the value prescribed on the remainder of

the outer wall is varied. Figure  3.6 shows the pressure contours, wall shear stress (WSS)

magnitude contours and wall deformation contours for the largest (k = 1011 dyne/cm3),

smallest (k = 0) and two intermediate (k = 107 and 108 dyne/cm3) tissue support values

at Day 0. To enable better quantitative comparison, the percentage change (with respect

to the least tissue support) in pressure, wall shear stress, and arterial deformation across

changing tissue support spring parameter values are listed in Table  3.6 . The comparison is

made at three separate points (as shown in Figure  3.6 a,f and k): Point A, corresponding to

the highest spatial peak systolic pressure, Point B, corresponding to the highest spatial peak

systolic WSS magnitude and Point C, corresponding to the highest spatial peak deformation

magnitude. Point C is located on the ascending aorta, whereas points A and B are located

on the aortic arch. Pressure was found to be minimally affected (< 2% change from lowest to
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Figure 3.6. Pressure, WSS, and deformation from pulsatile 3D FSI simu-
lations at peak systole for Day 0. In each row, the left-most image shows
the location at which the quantity (i.e. pressure, WSS, or deformation) was
computed and the right-most image shows the simulation with the highest
tissue support value k = 1011 dyne/cm3 on the outer wall with variable tis-
sue support. The three middle columns show simulation results at the lowest
tissue support, k = 0 and two intermediate k values, k = 106 dyne/cm3 and
k = 107 dyne/cm3. Overall, minimal differences were observed for pressure
between models with and without homogeneous external tissue support while
WSS and deformation changed appreciably.
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highest tissue support value) by changes in the value of k. However, an appreciable increase

(≈ 13%) in WSS is observable near the aortic arch from k = 0 to k = 1011 dyne/cm3.

The largest observable change was naturally found to be in the displacement field, with the

largest tissue support case being equivalent to assuming a rigid arterial wall.

Table 3.6. Percentage change in hemodynamic and structural metrics across
varying tissue support spring parameter at Day 0. Values of k listed are in
dyne/cm3.

Quantity Point k = 106 k = 107 k = 1011

A 29.63 68.52 99.95
Deformation magnitude (%) B 29.03 69.35 99.92

C 29.09 73.64 99.97
A 3.58 4.25 1.12

WSS magnitude (%) B 1.85 7.88 13.85
C 2.17 3.89 3.98
A 0.15 0.73 1.77

Pressure (%) B 0.16 0.74 1.32
C 0.12 0.62 1.17

WSS = Wall Shear Stress

Large elastic arteries close to the heart undergo non-trivial deformation and translation

[ 27 ]. Therefore, in order to determine the goodness of fit between the simulation and imaging

data, cross-sections at three different locations within the region of interest (ascending aorta)

were extracted at peak systole and compared them with corresponding cross-sections from

4DUS imaging data. This comparison was performed for both time points (Day 0 and Day

28). Figure  3.7 shows the comparison for one of the cross-sections at each time point.

For the Day 0 case, it was observed that except for a small range of values of k, the

cross-section profiles coincided with either the highest or lowest tissue support curves. Fur-

thermore, the match between the cross-section from segmentations and the cross-sections

from simulations varied with location. For example, in the zoomed-in view of the cross-

sections, shown in Figure  3.7 f, the white curve matches better with the cyan curve (k = 106

dyne/cm3) towards the anterior end and the maroon curve (k = 107 dyne/cm3) towards

the posterior end. This indicated that a qualitative visual comparison would be inadequate
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Figure 3.7. Visual comparison of 4D US and FSI simulation data at peak
systole. a) and b) show the locations of the cross-sections being considered
at Day 0 and Day 28 respectively. c) and d) show the cross-sections (colored
rings) obtained for varying values of tissue support parameter k (in dyne/cm3)
overlaid on the 4D US image slice at the corresponding cross-section at peak
systole. The corresponding segmentation cross-section is shown by the white
ring. e) and f) represent zoomed-in views of regions on the cross-section (rep-
resented by the yellow box in c) and d). The white bar in sub-panels c)-f)
corresponds to a scale of 0.2 mm.

54



to determine an optimum value or range of values which provide the best fit for the 4D

US data. Therefore, two quantitative metrics were evaluated: the effective diameter and

the non-overlapping cross-sectional area at all three cross-sections within the region of the

ascending aorta at peak systole. The effective diameter, indicative of arterial expansion, was

computed as:

deffective = 2
√
ACS

π
, (3.9)

where ACS is the corresponding cross-sectional area. The non-overlapping area ANO between

the cross-sections from segmentation and simulations at a given location was computed as:

ANO = Aseg∪sim − Aseg∩sim

= Aseg + Asim − 2 · Aseg∩sim.
(3.10)

Here, Aseg is the cross-sectional area obtained from the systolic 4DUS segmentation, Asim

is the cross-sectional area at the same location computed from simulations at peak systole for

a particular value of tissue support k. Meanwhile, Aseg∪sim and Aseg∩sim are the areas of the

union and intersection of these two cross-sections respectively. Based on the definition, the

non-overlapping area is indicative of how closely the simulation results capture not only the

arterial expansions/contractions but also vessel translation. Figure  3.8 shows the variation

of the effective diameter and non-overlapping area for different values of tissue support k.

Data on the other two cross-sectionsis reported in Section  3.4.2 .

For the Day 0 time point, the variations in effective diameter and non-overlapping area

are observed in a narrow range of k values. This was consistent with observations from Figure

 3.7 , where cross-section profiles from simulations were found to be coincident with the highest

or lowest tissue support curves except for a small, identical range of k = 106 −107 dyne/cm3.

Based on this data obtained for the Day 0 time point, an optimum range of values of k was

chosen to be k = 106 − 107 dyne/cm3. As seen from plots in Figure  3.8 b and c, the effective

diameter obtained from segmentations corresponds to this range of k values and the non-

overlapping area is also the least amongst all simulated cases with varying tissue support

parameter. For the diseased aorta at Day 28, it was observed that the same range of tissue

support values from the Day 0 time point k = 106−107 dyne/cm3 was the optimum range (see
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Figure 3.8. Quantitative metrics comparing segmentations from 4DUS and
FSI simulations for different values of k at peak systole. a) and b) show the
location of the cross-section being considered, which is the same as in Figures
 3.7 a and b. Red squares in c) and d) show the plot of effective diameter of the
cross-section, obtained from FSI simulations (calculated using Equation ( 3.9 ))
as a function of tissue support parameter k. The solid red line represents the
effective diameter of the same cross-section obtained from segmentations of
4D US imaging data. e) and f) show the variation of non-overlapping area at
the cross-section, calculated using Equation ( 3.10 ) as a function of the varying
tissue support parameter k.

Figure  3.8 e and f). This indicates that the tissue support parameter may be kept identical

between healthy and diseased states provided that differences in arterial stiffness between

the healthy and diseased state have been accounted for. As noted previously, strain in the
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ascending thoracic aorta substantially decreased while the pulmonary artery remained the

same suggesting that AngII has a larger effect on the higher pressure in systemic circulation.

3.4.2 Comparison of Other Cross-Sections

Plots of effective diameter and non-overlapping area (see Section  3.4.1 ) at the other two

cross-sections for the Day 0 and Day 28 time points (Figures  3.9 and  3.10 ) are shown below.

Overall, these observations are consistent with data obtained for the cross-section reported

in Section  3.4.1 .

3.4.3 Deformation Profiles Using HGO Model

In order to determine the effect of using a different constitutive model, separate simu-

lations were performed for the Day 0 geometry using the Holzapfel-Gasser-Ogden (HGO)

hyperelastic constitutive model [ 65 ]. The strain energy density function for this model is:

ψHGO = p(J − 1) + E

6 (Ĩ1 − 3) + k1

2k2

∑
i=4,6

exp
[
k2(Ĩi − 1)2

]
− 1. (3.11)

Here, the respective invariants are defined as Ĩ1 = tr C̃, Ĩ4 = C̃ : A1, Ĩ6 = C̃ : A2,

A1 = a01
⊗
a01, A2 = a02

⊗
a02 and C̃ = J−2/3C. The definitions of C, p, J and E are the

same as in Equation ( 2.3a ).

As seen from Equation (  3.11 ), in addition to the energy contribution due to an incom-

pressible hyper-elastic ground matrix, the model assumes contribution due to two families of

collagen fibers, oriented along directions a01 and a02. In this case, the collagen fiber families

were assumed to be perpendicular to each other, oriented along the axial and circumferen-

tial directions of the vessel i.e. a01 · a02 = 0. Incorporating this simplification into the strain

energy density function and using the same procedure as in Section  3.3.2 , the Cauchy stress

tensor was obtained as a function of the circumferential stretch via a symbolic computa-

tions performed with a MATLAB script (see Appendix  A ). Figure  3.11 e shows the fit for

the circumferential stress-stretch data from Bellini et al. [ 61 ]. The associated fit values are:

E = 3 × 106dyne/cm2, k1 = 1.85 × 103dyne/cm2, k2 = 0.046 and p = 80.24 × 103dyne/cm2.
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Figure 3.9. Quantitative metrics comparing segmentations from 4DUS and
FSI simulations for different values of k at peak systole. a) and b) show
the location of the cross-section being considered. Red squares in c) and d)
show the plot of effective diameter of the cross-section, obtained from FSI
simulations (calculated using Equation (  3.9 )) as a function of tissue support
parameter k. The solid red line represents the effective diameter of the same
cross-section obtained from segmentations of 4D US imaging data. e) and
f) show the variation of non-overlapping area at the cross-section, calculated
using Equation (  3.10 ) as a function of the varying tissue support parameter k.

Subsequently, FSI simulations for the same range of ks values i.e. (ks = 10−2 to 107 dyne/cm3)

were run using the HGO model and above fit parameters. Cross-sections at the three planes

considered in Section  3.4.1 and  3.4.2 were then compared for the HGO model and the original

neo-Hookean model for identical values of ks.
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Figure 3.10. Quantitative metrics comparing segmentations from 4DUS and
FSI simulations for different values of k at peak systole. a) and b) show
the location of the cross-section being considered. Red squares in c) and d)
show the plot of effective diameter of the cross-section, obtained from FSI
simulations (calculated using Equation (  3.9 )) as a function of tissue support
parameter k. The solid red line represents the effective diameter of the same
cross-section obtained from segmentations of 4D US imaging data. e) and
f) show the variation of non-overlapping area at the cross-section, calculated
using Equation (  3.10 ) as a function of the varying tissue support parameter k.

Figures  3.11 b), c) and d) show the comparison for the cross-sectional plane in Figures  3.7 

and  3.8 . the comparisons for other cross-sectional planes, though not shown for brevity, show

similar trends. As seen from the comparisons, there is practically no difference between the

deformation profiles obtained using the HGO and neo-Hookean model. However, for some
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values of ks, the HGO model simulations approximately took twice as much time to complete

four cardiac cycles as compared to the neo-Hookean model.

Figure 3.11. Visual comparison of FSI simulation data at peak systole using
the neo-Hookean and HGO model for the Day 0. a) shows the locations of the
cross-section being considered at Day 0. b), c) and d) show the cross-sections
(colored rings) obtained for various values of tissue support parameter k (in
dyne/cm3). e) shows experimental circumferential stress vs. stretch-squared
data from Bellini et al. [ 61 ] along with the best fit curve for the HGO model
(Equation ( 3.11 )).
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3.4.4 Limitations

The study had several limitations related to both image acquisition and computational

assumptions. While 4DUS is an accessible option for studies in mice, the clinical translation

is currently limited. Petterson et al. [ 66 ] have taken a step toward this implementation with a

recent study using multi-perspective ultrasound to mechanically characterize the aorta. Until

4DUS becomes more widely available, the presented FSI approach would work with other

time-resolved imaging methods such as cardiac-gated computed tomography or magnetic

resonance, although these methods typically have much lower temporal resolution.

Additionally, limitations arise when using murine TAA models, as the hemodynamic

characteristics are clearly different between mice and humans. Nevertheless, the blood ve-

locities, systemic pressure, and cyclic strain are similar across mammals. Further, the ability

to collect multiple time points and tissue for analysis, allowed for comparison of simulation

results for Day 0 with the Day 28 simulation using the same external tissue supports. In

terms of the simulation approach, the present analysis assumed uniform material properties

(values of E and ν) throughout entire arterial wall region being modeled. Furthermore, an

isotropic hyperelastic constitutive model was chosen. In reality, arterial wall properties are

not only animal-specific, but also highly anisotropic, as shown in this recent work [  67 ]. How-

ever, in the absence of any animal specific measurements on mechanical properties of the

aortic wall, a simplifying assumption that the arterial wall material properties were isotropic,

constant and could be extracted from available literature data was made in the analysis.

In this analysis, the out-of-plane deformations of the aortic root are neglected owing to

limitations of svFSI associated with imposing a parabolic flow inlet profile. In reality, some

amount of longitudinal displacement is expected due to the motion of the aortic root. As

seen from the study by Moireau et al. [ 27 ], as well as a recent computational study of thoracic

aortic aneurysms in human subjects [  68 ], this motion is found to be more important in the

healthy state as compared to the diseased state. However, allowing for in-plane deformations

enables accounting for some if not the entire motion of the aortic root.

In order to reduce the number of tissue support parameters, the effect of the damping

co-efficient was neglected. Except for the spine and pulmonary artery regions, which are rigid
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contacts, a spatiotemporally uniform value of k was assumed over the remaining surface of

the outer wall. However, as seen in cross-sectional comparisons from Figure  3.7 , parts of

the curve segmented from 4DUS data matched better using different values of the tissue

support parameter k. Moreover, the response of the surrounding tissue is generally expected

to be anisotropic, non-linear and dependent on the stage in the cardiac cycle. This is

particularly important for vessels close to the heart, that can be affected by motion of the

lungs during regular respiration. While accounting for these limitations is out of the scope

of the present analysis, the analysis demonstrated the effect of incorporating some tissue

support parameters and obtained an optimum range for these tissue support parameters.

Accounting for heterogeneity in these values (by accurately considering the various types of

contacts and supports) would further improve the fidelity of computational models.
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4. SPECIFIC AIM 3: COMPARATIVE BIOMECHANICAL

ANALYSIS OF SUBJECTS WITH MULTIPLE CEREBRAL

ANEURYSMS

The material presented in this chapter is under review for publication in the Journal of

Biomechanical Engineering under the title “Comparative Assessment of Biomechanical Pa-

rameters in Subjects with Multiple Cerebral Aneurysms using Fluid-Structure Interaction

Simulations”

Authors: Tanmay C. Shidhore, Aaron A. Cohen-Gadol, Vitaliy L. Rayz, Ivan C. Christov

Tanmay C. Shidhore performed the image segmentations, geometry pre-processing, setting

up and running the fluid-structure interaction simulations and data post processing. Aaron

A. Cohen-Gadol graciously shared anonymized medical imaging data acquired by his team.

All authors contributed to writing and reviewing the manuscript.

4.1 Background

There has been increased interest in subject-specific computational modeling of blood

flow in cerebral aneurysms to augment medical imaging data with high-resolution hemody-

namic information that could be used to assess the risk of aneurysm rupture and, eventually,

provide clinicians with better rupture risk stratification tools. While quantifying the hemo-

dynamic forces acting on the vessel wall endothelium through flow-only computational fluid

dynamics (CFD) simulations can elucidate their effect on aneurysm progression, the as-

sessment of aneurysm stability is incomplete without analyzing the wall deformation and

the mechanical stresses within the vessel wall. Most modeling studies do not involve fluid-

structure interaction (FSI) simulations, as standard-of-care imaging data lacks resolution to

reliably detect subject-specific wall thickness and composition.

Nevertheless, previous computational studies have highlighted the importance of account-

ing for this flow-vessel wall interaction. Torii et al. [ 19 ] demonstrated a reduction in maxi-
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mum wall shear stress (WSS) in areas of flow impingement in the aneurysm by comparing

WSS predictions from rigid-wall simulations against those from FSI simulations. Takizawa

et al. [ 69 ] also compared WSS, oscillatory shear index (OSI), and arterial stress and stretch,

computed from three-dimensional (3D) FSI simulations of ten subject-specific geometries, to

their rigid wall counterparts at mean arterial pressure conditions. Specifically, Takizawa et

al. [ 69 ] found an overestimation of WSS and qualitative differences in OSI computed from the

rigid-wall and FSI simulations. However, the correlations obtained between hemodynamic

and biomechanical factors and disease were for single aneurysms across different subjects,

where growth and stability could be explained by other clinical risk factors.

Previous studies that accounted for FSIs did not have longitudinal subject data and,

moreover, did not analyze subjects with multiple aneurysms. Therefore, in the present

study, a key knowledge gap in the literature was addressed by considering subjects with

multiple aneurysms with one aneurysm demonstrating growth during subsequent follow up

imaging. It was hypothesized that clinical risk factors for aneurysm progression (genetic

predisposition, smoking status, family history, etc) would affect all aneurysms in the same

subject equally. Therefore, comparing biomechanical parameters between stable and growing

aneurysms in the same subject allows for controlling for these subject-specific confounding

factors and reveal the influence of local flow and mechanics on aneurysm progression, and

eventually rupture.

4.2 Anatomical and Computational Modeling

4.2.1 Subject Data

Under a protocol approved by an Institutional Review Board, retrospective CT angiog-

raphy images for two subjects, each with two unruptured cerebral aneurysms were obtained

from the Indiana University School of Medicine. Images were available at baseline and at

one year post baseline (hereafter referred to as ‘follow-up’). Subject 1 (hereafter referred to

as ‘S1’) presented with a fusiform aneurysm of the right internal carotid artery, which was

stable (labeled ‘S1A1’) and a fusiform aneurysm of the left middle cerebral artery, which

grew in size between baseline and follow-up imaging (labeled as ‘S1A2’). Similarly, subject
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2 (hereafter referred to as ‘S2’) presented with two saccular aneurysm, one of the proximal

right posterior communicating artery that remained stable (labeled as ‘S2A1’) and one on

the left superior cerebellar artery, which grew (labeled as ‘S2A2’). Figure  4.1 (a)-(d) shows

the solid baseline geometries, along with the superposed transparent follow up model, visu-

ally demonstrating the extent of growth. Table  4.1 reports the subject characteristics, along

with the percentage of increase in volume for the growing aneurysms between baseline and

follow-up studies.

Figure 4.1. (a)-(d): Subject-specific baseline (solid) and follow-up (trans-
parent) geometries of stable and growing aneurysms. Abbreviations used – R:
Right, L: Left, S: Superior, I: Inferior.
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Table 4.1. Subject and aneurysm characteristics.
Growing Aneurysm Stable Aneurysm

Subject Age, Sex Location Initial diam.
(mm)

Volumetric
growth (%) Location Initial diam.

(mm)

S1 62, Male L MCA 22 65 R ICA 9
S2 67, Female L SCA 5 10.5 R PCommA 3

Abbreviations used – R: Right, L: Left, MCA: middle cerebral artery inferior bifurcation,
ICA: internal carotid artery, PCommA: posterior communicating artery, SCA: superior cere-
bellar artery.

4.2.2 Computational Geometries

Flow Domain Geometry

The fluid flow geometry for each aneurysm was obtained from CT angiographic images

for each aneurysm using the procedure described in Section  2.1 .

Wall Thickness Estimation and Solid Domain Geometry

Accounting for variation in arterial wall thickness is crucial to obtaining physiologically

realistic FSI simulation results [ 7 ], [ 10 ]. In particular, Voß et al. [ 8 ] found differences in

wall shear stress distribution between FSI simulations conducted with constant and subject-

specific wall thickness values. In the present study, the available CT angiography data lacks

resolution to obtain reliable information on the vessel wall. Therefore, a novel workflow to

estimate the nonuniform wall thickness, accounting for the effect of heterogeneous distribu-

tion of hemodynamic forces on the vessel wall was implemented. The nonuniform baseline

arterial wall thickness t(x) was first estimated using the procedure in Section  3.2.3 . Here,

boundary conditions were prescribed on the sets of curves forming the inlets and outlets of

the computational geometry. Specifically, a value corresponding to 10% of the respective

effective inlet/outlet diameter was imposed.

Additionally, the formulation proposed by Cebral et al. [ 7 ] was used to modulate t(x) over

the aneurysm using time-averaged wall shear stress data obtained from a rigid-wall pulsatile

flow simulation. However, unlike [  7 ], where the modulation was determined based on the
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absolute time-averaged wall shear stress, the normalized time-averaged wall-shear stress τ̃ ∗

given by

τ̃ ∗(x) = τ̃(x)
τ̃max

(4.1)

was used. Here, τ̃(x) is the time-averaged wall shear stress magnitude at a given location

x on the aneurysmal surface and τ̃max is the spatial maximum time-averaged wall shear

stress magnitude over the aneurysm, both of which, as mentioned earlier, were obtained via

pulsatile rigid-wall flow simulations.

Furthermore, a different (as compared to [ 7 ]) modulation function was considered:

m(x) =



1.5τ̃ ∗ − 0.3, τ̃ ∗(x) < 0.2,

1.5τ̃ ∗ − 1.2, τ̃ ∗(x) > 0.8,

0, otherwise.

(4.2)

Based on this definition of m(x), it can be seen that regions of low and high wall shear stress

(i.e. for which τ̃ ∗ < 0.2 and τ̃ ∗ > 0.8) are thickened or thinned up to a maximum of 30%

of the baseline value [ 7 ]. Meanwhile, regions of moderate wall shear stress (i.e. for which

0.8 ≥ τ̃ ∗ ≥ 0.2) are left unchanged. The final wall thickness tfinal(x) is calculated as:

tfinal(x) =
[
1 −m(x)

]
t(x). (4.3)

Figure  4.2 (b)-(d) shows plots of m(x) along with an example of the above modulation func-

tion and the final wall thickness for aneurysm S1A2. It should be emphasized that the actual

subject-specific wall thickness of each aneurysm is not given by Equation (  4.3 ). Nevertheless,

the proposed methodology ensured that a physiologically realistic wall thickness estimate,

accounting for the local effects of aneurysmal wall shear, was used in the subsequent FSI

simulations.
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Figure 4.2. Methodology to estimate nonuniform arterial wall thickness from
subject-specific aneurysm geometry. (a) Baseline nonuniform wall thickness
t(x) estimated using Equation (  3.1 ). (b) Graphical representation of the mod-
ulation function m(x) from Equation (  4.2 ) as a function of the normalized
time-averaged wall shear stress τ̃ ∗ from Equation (  4.1 ). (c) Wall thickness
modulation as implemented for aneurysm S1A2 (see Figure  4.1 (b)). (d) Final
nonuniform wall thickness tfinal(x) for aneurysm S1A2 obtained using Equation
( 4.3 ).

Mesh Generation

An unstructured mesh with tetrahedral elements was generated using ANSYS® Work-

bench using the procedure described in Section  2.4 . A mesh resolution of 0.03 cm was chosen

for the fluid and, therefore, the solid domain. To ensure the accuracy of shear stress com-

putations, the local mesh was refined near the fluid-solid interface in the flow domain up to

a constant thickness of 0.03 cm. A grid independence analysis was performed on one of the

aneurysm geometries to ensure that the computational results were independent of the core

and near-wall mesh refinement resolutions (see Section  4.2.2 for further details).
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Grid-Independence Study

To ensure that computational quantities reported, such as pressure, velocity, wall shear

stress and those derived thereof, were independent of the grid resolution used in the simu-

lations, a grid sensitivity analysis for the fluid domain’s mesh was performed. The types of

meshes, properties and refinement levels used are reported in Table  4.2 . A two step approach

was used to establish grid independence of the simulations. First, a core mesh resolution

was determined for which the pressure and velocity averaged over the inlet face, as well as

at a point in the interior of the parent vessel (see Figure  4.3 (a)), were independent of this

core mesh’s resolution. Second, varying degrees of mesh refinement were implemented via

boundary layers close to the fluid-solid interface, on top of the chosen core mesh resolution

from the previous step. This second step ensured that the computed wall shear stress was

independent of the near-wall mesh resolution.

Figure  4.3 shows the chosen representative pressure and velocity magnitude plotted over

a single cardiac cycle. From these plots, it can be observed that the pressure and velocity

values computed on the mesh with ∆x = 0.03 cm lie within a 5% of the values computed on

the most refined mesh (∆x = 0.025 cm). Therefore, a core mesh resolution of ∆x = 0.03 cm

was chosen as the optimal core mesh resolution for simulations.

Table 4.2. Details of meshes used for the grid-independence study.
∆xcore (cm) NBL Nelements Nnodes Max. CFL

0.04 169,370 32,743 0.59

0.03

0 396,208 73,797 0.6
3 400,225 74,673 4.7
4 400,565 74,820 4.48
5 401,517 75,076 4.61

0.025 681,305 124,604 0.88

Based on the plots in Figure  4.3 , it was observed that the pressure and velocity magnitude

values computed on both the coarse and medium meshes (i.e. those with ∆x = 0.04 cm and

∆x = 0.03 cm) lie within a 5% margin of the values computed on the fine grid. However,

69



Figure 4.3. Pressure and velocity data over a cardiac cycle at the inlet plane
(panels (c) and (e)) and at a point (panels (d) and (f)) in the interior of the
feeding vessel (shown in (a)) for different mesh resolutions (shown in (b)). The
error bars of each plot point show a deviation of 5% from the corresponding
value on the finest mesh (∆x = 0.025 cm). Abbreviations used – |v|: Velocity
magnitude

in Figure  4.3 f, the velocity magnitude for the coarse grid (∆x = 0.04 cm) lies beyond this

tolerance margin. Therefore, ∆x = 0.03 cm was determined to be the core mesh resolution

of choice.

Next, Figure  4.4 shows the x, y, and z components of the WSS (wall shear stress)

computed at a point on the surface of the ascending aorta. Here, the core mesh resolution

was identical in all cases (∆x = 0.03 cm). However, close to the fluid-solid interface, different

number of layers of mesh refinement (0, 3, 4, and 5) were considered (see Figure  4.3 (a)).

From Figure  4.4 (b)-(d), a nontrivial difference (> 5%) was observed between the surface

shear stress values computed on meshes with and without mesh refinement. Furthermore,

meshes with different levels of mesh refinement (NBL = 3, 4, and 5) yield shear stress values
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within the above tolerance limit with minor differences in the computational time. Therefore,

a mesh refinement level of NBL = 4,was chosen to balance the need for increased resolution

with the corresponding computational cost.

Figure 4.4. Components (shown in panels (b), (c) and (d)) of the WSS τ
over a cardiac cycle at a point on the aneurysmal surface (shown by a dot in
the model geometry in (a)), for different number of boundary layers each. NBL
represents the number of layers of boundary layer elements. Here, NBL = 0
represents a mesh without boundary layer refinement. The error bars on each
plot point show a deviation of 5% from the corresponding value on the mesh
with the largest number of boundary layer refinements (i.e. NBL = 5).

A constant time step of ∆t = 10−4 s was used for all cases. Table  4.2 reports an estimate

of the maximum cell-based Courant number computed for each of the meshes used, over a

single cardiac cycle. The cell-based Courant number is defined as: CFL = |v|∆t/∆x, where

|v| is the velocity magnitude at the cell center, ∆t is the time step size, and ∆x is a length

scale computed for each cell as ∆x = V1/3, where V is the cell volume.

It was observed that only a few elements (< 1% of the total number of elements) that

were close to the outlet faces exceeded the threshold of having a maximum CFL > 1. This

observation, together with the fact that the time-integration scheme implemented in svFSI
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is implicit [  24 ], allowed for using the same time step size of ∆t = 10−4 sec for the subsequent

FSI simulations as well.

4.3 Governing Equations and Numerical Framework

Three-dimensional numerical simulations were performed using the svFSI solver, as de-

scribed in Section  2.3 .

4.3.1 Fluid Domain

Blood was assumed to be a Newtonian fluid. This modeling assumption is commonly

used in the medium-sized arteries, such as those in the Circle of Willis [  70 ]. Furthermore, the

flow of blood was modelled as an incompressible flow. Identical blood density and viscosity

values (ρf = 1.06 g/cm3, µf = 4 cP) were used for all subjects’ simulations. These values

were taken from previous literature [ 28 ].

4.3.2 Structural Domain

As mentioned in Section  2.3.1 , the arterial wall was modelled as nearly incompressible

hyperelastic material with material properties E = 107 dyne/cm2 and ν = 0.49. These

values were obtained from previous literature [ 19 ].

4.3.3 Tissue Pre-Stress

Arterial pre-stress was computed as described in Section  2.3.6 . In this study, the flow

traction data was obtained for each aneurysm geometry via separate pulsatile rigid-walled

flow simulations. Using these simulations as an input, the pre-stress tensor S0 (see Equation

( 2.35 )) was estimated for all aneurysmal geometries and prescribed as an initial stress state

in subsequent FSI simulations. Here, S0 is defined such that it is in equilibrium with the

incoming blood flow’s tractions at cardiac-cycle averaged conditions.
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4.3.4 Boundary Conditions

Fluid Domain Boundary Conditions

A pulsatile flow profile acquired from MR (magnetic resonance) measurements in the

middle cerebral artery of a healthy volunteer was prescribed at the inlet, as shown in Figure

 4.5 (a). However, to account for differences in the feeding artery in each aneurysmal geom-

etry, this flow profile was scaled such that the centerline velocity at peak systole matched

previously reported population-averaged PC-MRI (phase contrast magnetic resonance imag-

ing) measurements [  71 ]. As in Section  3.3.4 , the Womersley number (see Equation ( 2.30 )),

was estimated based on the radius of the parent/feeding vessel R and the cardiac frequency f

(beats per second). As the Wo values for all aneurysm geometries were found to be between

2 and 4, a parabolic (Poiseuille) flow profile was implemented at the inlet cross-section.

To model the effect of the downstream vasculature, a three-element RCR (or, ‘Wind-

kessel’) boundary condition was imposed at each of the outlets [ 62 ].

The process for tuning the distal pressure, total resistance, and capacitance was the same

as reported in Section  3.3.4 . In the present case, RCR parameters were tuned such that both

diastolic, Pd, and pulse, Ps − Pd, pressures were within 10% of the corresponding normal

values (i.e. 80 mmHg and 40 mmHg, respectively). Rigid-wall pulsatile flow simulations

were run for six cardiac cycles, and the results from the fourth cardiac cycle were used in the

fine-tuning process. The resistance across each individual outlet was distributed using the

allometric scaling law used for cerebral vessels [ 35 ]. That is, instead of using a coefficient

of m = 3, the value m = 2.4 was used in Equation (  3.5 ). For each outlet branch, the ratio

of the distal to proximal resistance was assumed to be 1:9 [  28 ]. Tables  4.3 and  4.4 list the

RCR parameters used for each aneurysm.

Structural Domain Boundary Conditions

As mentioned in Section  2.3.5 , a homogeneous Dirichlet boundary condition, u = 0, was

imposed at the solid caps at each flow outlet and inlet and the effect of surrounding tissue
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Figure 4.5. (a) Inlet pulsatile flow flow rate (in cm3/ sec) obtained from MR
measurements in the middle cerebral artery of a healthy volunteer. Depending
on the inlet vessel for each aneurysm, the flow rate values were scaled to match
population-averaged centerline velocities at peak systole data from [ 71 ]. (b)
and (c) Partitions on the outer vessel wall for aneurysms S1A1 and S2A1 (see
Figures  4.1 (a) and (c)) used to impose nonuniform spring constant values,
depending on the nature of contact for the traction condition in Equation
( 2.33 ).
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Table 4.3. RCR parameter values at each outlet for S1.
Aneurysm Outlet Rp (×103 dyne sec /cm5) Rd (×104 dyne sec /cm5) C (×10−7 cm5/dyne) P0 (mmHg)

S1A1
R MCA inferior 5.19 4.67 1.53

70R MCA superior 5.48 4.93 1.45
R ACA 12.6 11.4 0.63

S1A2
L MCA inferior 3.32 2.99 11.6

70L MCA superior 9.27 8.34 4.14
L ACA 2.42 2.18 15.9

Abbreviations used – R: Right, L: Left, MCA inferior: middle cerebral artery inferior bifur-
cation, MCA superior: middle cerebral artery superior bifurcation, ACA: anterior cerebral
artery, Rp: proximal resistance, Rd: distal resistance C: capacitance, P0: distal pressure.

Table 4.4. RCR parameter values at each outlet for S2.
Aneurysm Outlet Rp (×103 dyne sec /cm5) Rd (×104 dyne sec /cm5) C (×10−7 cm5/dyne) P0 (mmHg)

S2A1
R MCA 1.82 1.64 43.6

70R ACA 7.32 6.59 10.9
R PCommA 10.2 91.5 7.83

S2A2
R PCA 6.47 5.83 12.5

70L PCA 6.71 60.4 12
L SCA 24.7 24.9 2.92

Abbreviations used – R: Right, L: Left, MCA: middle cerebral artery inferior bifurcation,
ACA: anterior cerebral artery, PCommA: posterior communicating artery, SCA: superior
cerebellar artery, PCA: Posterior cerebral artery, Rp: proximal resistance, Rd: distal resis-
tance C: capacitance, P0 = distal pressure.

was accounted for by using the Robin (spring-dashpot) boundary condition (see Equation

( 2.33 )).

Following the simplification made in Section  3.3.5 , c and p0 are set to 0 identically to

account for only linear elastic effects. However, a spatially nonuniform spring constant k was

prescribed, depending on the type of contact (i.e. bone/tissue) as shown in Figure  4.5 (b)

and (c). To maintain consistency, k values were kept identical for the same type of contact

across both subjects. Contact between vessel and bones, which is expected to exhibit smaller

deformations, was modeled by prescribing a large value (k = 109 dyne/cm3).

For the other regions of the vessel, the tissue support parameter(s) must be calibrated by

matching wall deformation data from simulations to in vivo imaging. Here, since the available

data was in the form of static images with no information on vessel wall displacements, a

scaling analysis was performed (see Section  4.3.4 ) to obtain the tissue support parameter
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values for the human aneurysm subjects based on optimum tissue support estimates from

Chapter  2 . Based on the order-of-magnitude scaling analysis, a value of k = 106 dyne/cm3

was chosen and used for simulations, the results for which are shown in Section  4.4 . It should

be noted that the chosen value of k was not only found to be within range of previously used

values for k in literature [  27 ], [ 28 ] but also resulted in peak systolic deformations closest to

physiologically realistic aneueysmal wall deformation values, based on the expert opinion of

clinical collaborators.

Scaling Analysis for Tissue Support Parameters

As discussed by Moireau et al. [ 27 ], the parameters k, c and p0 in Equation ( 2.33 ) must be

tuned such that simulation wall displacements match corresponding in-vivo measurements.

However, standard-of-care imaging data such as CTA or MRI typically lacks information on

wall motion. Furthermore, any ex-vivo experimental tissue characterization is difficult and

in most cases, impossible. Therefore, a methodology was proposed to obtain an order-of-

magnitude estimate of tissue support parameters, specifically the spring constant parameter

k for human aneurysm models based on wall motion measurements from animal studies. It

should be noted that the model used in Equation (  2.33 ) does not directly account for the loca-

tion or type of tissue but relies solely on the magnitudes of k, c and p0 to distinguish between

different types of contacts. Therefore, a scaling analysis, using the simplest mathematical

model that describes flow through a blood vessel (i.e. steady flow through a cylindrical shell),

should allow for development of a relationship between the order-of-magnitude of k values

across different animals and different regions of the vasculature.

In the present case, data from previous work on estimating tissue support parameters

for murine models of thoracic aortic aneurysms reported in Chapter  2 was used. The math-

ematical model considered was analogous to [ 72 ], where a cylindrical shell with thickness t,

undeformed radius R, length `, Young’s modulus E and Poisson ratio ν was considered. The

cylinder was assumed to be thin (i.e. t/R � 1) and long (i.e. R/` � 1) and clamped at both

ends. Due to the cylinder being thin, no distinction was made between the inner and outer

radii [  72 ]. There is a steady flow of a Newtonian fluid, which results in a pressure p acting on
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the inner wall of the cylinder. The outer wall is assumed to be supported by a Kelvin-Voigt

material, whose response is described by Equation (  2.33 ). To maintain consistency with the

tissue support model used in the analysis, an elastic response was assumed i.e. p0 and c were

set to 0, resulting in the traction being proportional to the deformation u, which in this case,

was purely radial.

Following [ 72 ], for locations far away from the clamped ends, the hoop stress σθθ and

axial stress σzz could be written as follows:

σθθ = (p− ku)r
t

, (4.4a)

σzz = pr

2t . (4.4b)

Here, r is the deformed radial coordinate. Assuming an incompressible (ν = 1/2), neo-

Hookean constitutive model for the solid, the deformation gradient in cylindrical coordinates

could be shown to be:

F =


R
r

0 0

0 r
R

0

0 0 1

 . (4.5)

and the hoop and axial stresses are related as

σθθ − σzz = E

3

(
r2

R2 − 1
)
. (4.6)

Substituting for σθθ and σzz from Equations ( 4.4 ) into the last equation, one can solve for

the spring constant k:

k = t

R

[
p

2tε − E

3R + E

3Rε(ε+ 1)

]
. (4.7)

where ε = u/R is the ratio of the deformation to the undeformed radius.
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Equation ( 4.7 ) may be used to relate the tissue support parameter for murine and human

aneurysm models as follows:

kh

km
=

ph

2thεh
− Eh

3Rh
+ Eh

3Rhεh(εh + 1)
pm

2tmεm
− Em

3Rm
+ Em

3Rmεm(εm + 1)

, (4.8)

where subscripts “m” and “h” denote the corresponding parameters for murine and human

models respectively. The corresponding calculations are shown in Table  4.5 .

Table 4.5. Scaling analysis for tissue support spring parameter.
Model Psystole (mmHg) t (mm) R (mm) E (×106 dyne/cm2) u (mm) kh/km

Diseased murine aorta 164.5 0.148 0.76 3.3 0.14 4Human cerebral aneurysm 120 0.5 2.5 10 0.1

The extreme deformation case (i.e. at peak systole) was considered, where the maximum

deformation for the diseased murine aorta was found to be of the order of 0.1 mm. For the

human aneurysm model, the representative diameter and thickness were considered to be

of the order of 5 mm and 0.5 mm, which is typical for the internal carotid artery and a

thickness value roughly 10% of the average diameter [ 59 ] respectively. Based on the expert

opinion of clinical collaborators, a value of 0.1 mm was prescribed as typical deflections

of aneurysmal vessels. From estimates reported in Chapter  2 , an optimum tissue support

parameter range of km = 106 − 107 dyne/cm3 was obtained for both health and diseased

states of the murine aorta. Therefore, in the present analysis, the lower limit of the above

range i.e. km = 106 dyne/cm3 was chosen, which yielded an estimate of kh = 106 dyne/cm3

for the human cerebral aneurysm cases. It should be noted that the above tissue support

parameter value is not the subject-specific support provided in vivo by the surrounding

tissue. In the absence of any means to estimate subject-specific tissue support parameter

values, this methodology allows for obtaining the order of magnitude of the spring constant

k that results in physiologically realistic models of aneurysmal deformation.
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4.3.5 Initial Conditions

The solutions for the flow and structural domain were initialized as per Section  2.3.6 .

4.4 Results and Discussion

FSI simulations were run for four cardiac cycles and periodicity was found to be achieved

after the 2nd cardiac cycle. The results from the last cardiac cycle have been reported below.

Panels (a)-(d) in Figures  4.6 and  4.7 show the pressure and velocity at peak systole for the

stable and growing aneurysms in each subject, respectively. The corresponding Reynolds

number at the inlet at peak systole are reported in Table  4.6 .

4.4.1 Hemodynamic Metrics

Previous hemodynamic modeling studies have focused on wall shear stress or more specif-

ically abnormalities in wall shear stress magnitude and changes in wall shear stress direction

over the cardiac cycle (given by the oscillatory shear index) as indirect measures of assessing

vascular degradation and remodeling. Therefore, in this study, the normalized time-averaged

wall shear stress (referred to as TAWSS∗) and the oscillatory shear index (OSI) data for each

aneurysm was obtained. The oscillatory shear index (OSI) is defined as

OSI = 1
2

1 −

∣∣∣ 1
T

∫ T
0 τw(x, t) dt

∣∣∣
1
T

∫ T
0 |τw(x, t)| dt

 , (4.9)

where τw(x, t) is the wall shear stress vector at a given location x along the wall at time

instant t of the cardiac cycle. OSI is indicative of the directionality of wall shear stress. OSI

values close to 0 imply that the wall shear stress vector does not change direction over the

cardiac cycle, whereas values close to 0.5 indicate reversal (180◦ flip) in the direction of the

wall shear stress vector on a time-averaged basis. Previous studies suggested a correlation

between regions of high OSI, indicative of high oscillatory shear force on the aneurysmal wall,

and aneurysm progression [  73 ]. Panels (e) and (f) of Figures  4.6 and  4.7 show contours of OSI

plotted on the surface of each aneurysm. As seen from the figures, in both subjects, the stable
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Figure 4.6. Hemodynamic metrics for subject S1. Each row shows a single
metric: i.e. contours for pressure at peak systole, flow streamlines at peak
systole, contours of oscillatory shear index (OSI) and normalized time-averaged
wall shear stress magnitude. OSI was calculated using Equation (  4.9 ). The
time-averaged wall shear stress magnitude was normalized by the magnitude of
spatiotemporal average of the wall shear stress over the feeding/parent vessel in
each aneurysm, as per Equation ( 4.10 ). Panels (a), (c) (e) and (g) correspond
to aneurysm S1A1, while panels (b), (d), (f) and (h) correspond to aneurysm
S1A2. Abbreviations used – |v|: Velocity magnitude, OSI: Oscillatory Shear
Index, TAWSS∗: Normalized time-averaged wall shear stress magnitude.
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Figure 4.7. Hemodynamic metrics for subject S2. Each row shows a single
metric: i.e. contours for pressure at peak systole, flow streamlines at peak sys-
tole, contours of oscillatory shear index (OSI) and normalized time-averaged
wall shear stress magnitude. OSI was calculated using Equation (  4.9 ). The
time-averaged wall shear stress magnitude was normalized by the magnitude of
spatiotemporal average of the wall shear stress over the feeding/parent vessel
in each aneurysm, as per Equation (  4.10 ). Panels (a), (c) (e) and (g) cor-
respond to aneurysm S2A1, while panels (b), (d), (f) and (h) correspond to
aneurysm S2A2. Abbreviations used – |v|: Velocity magnitude, OSI: Oscilla-
tory Shear Index. Note that the ranges of velocity and pressure values change
across panels (a)-(d), as made clear by the individual color bars in each panel,
TAWSS∗: Normalized time-averaged wall shear stress magnitude.
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and growing aneurysms demonstrated regions of high OSI (≈ 0.5). However, no association

between high OSI and aneurysm’s growth was found. Furthermore, there appeared to be no

significant pattern of specific regions exposed to high OSI in the aneurysm geometries being

considered.

Next, in panels (g) and (h) of Figures  4.6 and  4.7 , the contours of magnitude of normalized

time-averaged wall shear stress, TAWSS∗, for both subjects are shown. The normalized time-

averaged wall shear stress magnitude is defined as

TAWSS∗(x) = τ̃(x)
τ̃parent

, (4.10)

where τ̃(x) is the time-averaged wall shear stress magnitude at a location x on the aneurysm,

and τ̃parent is the wall shear stress on the parent/feeding artery averaged over its surface as

well as over a single cardiac cycle. In previous studies, abnormally high and low wall shear

stresses have been shown to illicit inflammatory responses resulting in aneurysm initiation

and growth. As reported by Meng et al. [ 11 ], low wall shear stress is predominantly respon-

sible for aneurysmal growth via matrix metalloprotease (MMP) induced degradation of the

extracellular matrix (ECM). Consequently, the areas characterized by abnormally low time-

averaged wall shear stress (TAWSS∗ < 0.1) were compared between the stable and growing

aneurysms [ 74 ].

Table  4.6 lists the percentage of area under low TAWSS∗ as compared to the total surface

area of the aneurysm. It can be observed that abnormally low shear regions are present in

both stable and growing aneurysms. However, within the same subject, the area under low

TAWSS∗ is larger (almost by a factor of 2 in S1 and more in S2) in the growing aneurysm, as

compared to the stable aneurysm. This observation, which is consistent with observations

from previous studies [  75 ], [  76 ], suggests that the proportion of area under low wall shear

(relative to the total aneurysmal surface area) contributes to aneurysm growth or stability,

rather than the mere presence of an area exposed to low wall shear. Physiologically, aneurysm

growth is driven by the imbalance between arterial wall repair and wall degradation caused

by aberrant hemodynamics [  11 ], [ 77 ]. Therefore, t is hypothesized that the larger proportion

of area under low TAWSS∗ on the aneurysm lead to larger regions of the aneurysmal wall
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being subjected to cell degradation and apoptosis, tipping the balance towards aneurysm

growth.

Table 4.6. Reynolds number at peak systole and percentage of area under
abnormal biomechanical loads for each aneurysm.

Aneurysm Re Area under low shear∗ Area under low shear and low OStI∗

S1A1 329 18.3 –
S1A2 250 34.9 23.3
S2A1 490 3.1 3.3
S2A2 292 58.8 32.8

∗As a percentage of total surface area of the aneurysm.

Note that the inlet Reynolds numbers at peak systole given in Table  4.6 are calculated

according to Equation ( 3.8 ).

4.4.2 Structural Metrics

One of the contributions of this FSI-simulation-based analysis was the ability to compute

metrics within the arterial wall in addition to the hemodynamic parameters. Here, two such

biomechanical metrics are considered: the wall deformation and the oscillatory stress index,

referred to as OStI.

Previous work has shown the impact of arterial wall deformation on aneurysm progression

and eventual rupture. Vanrosomme et al. [ 78 ] hypothesized that increased distensibility of

aneurysms is associated with increased risk of rupture due to loss of mural cells. Other

studies (e.g. Liu et al. [ 79 ] and the references therein) indicated that cyclic mechanical stretch

leads to mural cell degradation, thus driving aneurysm growth. Therefore, the deformation

patterns of stable and growing aneurysms were investigated. Panels (a) and (b) of Figures

 4.8 and  4.9 show the deformation at peak systole for each aneurysm. The corresponding

spatial distribution are shown in panel (f) of Figures  4.8 and  4.9 , as a split violin plot.

For both subjects, the median peak deformation, was found to be approximately 1.5

times higher in the growing aneurysms as compared to the corresponding stable aneurysms.

Furthermore, while the largest deformations on the stable and growing aneurysms were
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Figure 4.8. Biomechanical parameters for subject S1. (a) and (b) Deforma-
tion at peak systole for aneurysms S1A1 and S1A2, respectively. (c) and (d)
Oscillatory stress index in aneurysms S1A1 and S1A2, respectively, calculated
using Equations (  4.11 ) and (  4.12 ). (e) Region of overlapping low TAWSS∗

(< 0.1) and low OStI < 0.96) in the aneurysm S1A2. (f) Split violin plot
of distribution of peak systolic deformations (see panels (a) and (b) in the
same figure) over the aneurysmal surface. The data for S1A1 is shown in the
left-hand side plot, whereas the data for subject S1A2 is shown in the right-
hand side plot. Dashed lines (lowest to highest) show the 25-50-75% quartiles.
Abbreviations used – TAWSS∗: Time-averaged wall shear stress normalized
by the parent/feeding vessel spatiotemporal wall shear stress average, OStI:
Oscillatory Stress Index.
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Figure 4.9. Biomechanical parameters for subject S2. (a) and (b) Deforma-
tion at peak systole for aneurysms S2A1 and S2A2, respectively. (c) and (d)
Oscillatory stress index in aneurysms S2A1 and S2A2, respectively, calculated
using Equations (  4.11 ) and (  4.12 ). (e) Region of overlapping low TAWSS∗

(< 0.1) and low OStI < 0.96) in the aneurysm S2A2. (f) Split violin plot
of distribution of peak systolic deformations (see panels (a) and (b) in the
same figure) over the aneurysmal surface. The data for S2A1 is shown in the
left-hand side plot, whereas the data for subject S2A2 is shown in the right-
hand side plot. Dashed lines (lowest to highest) show the 25-50-75% quartiles.
Abbreviations used – TAWSS∗: Time-averaged wall shear stress normalized
by the parent/feeding vessel spatiotemporal wall shear stress average, OStI:
Oscillatory Stress Index. Note that the ranges of velocity and pressure values
change across panels (a) and (b), as made clear by the individual color bars
in each panel.
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not significantly different for S1, they differed by almost a factor of three for S2. These

findings suggested that, as compared to the reference state at diastole, growing aneurysms

underwent larger deformations within the cardiac cycle and were therefore more prone to

mural cell degradation as compared to their stable counterparts.

The oscillatory stress index (OStI) at each location was defined as the time-averaged

change in orientation of the maximum absolute principal stress over the cardiac cycle with

respect to the orientation at diastole as reference. Mathematically, this definition can be

expressed as

OStI(x) = 1
T

∫ T

0
cos(θ(x, t)) dt, (4.11)

where T is the temporal period of the cardiac cycle, diastole is assumed to be at t = 0, and

cos(θ(x, t)) = |PD(x, t) · PD(x, 0)|
|PD(x, t)| · |PD(x, 0)| (4.12)

is the angle between the orientation of the maximum absolute principal stress PD(x, t) at

a given location x at time t and the orientation of the maximum absolute principal stress

at diastole PD(x, 0) (i.e. PD at the same location x and t = 0). The maximum absolute

principal stress at any given location x and time point t is the largest absolute eigenvalue

of the local stress tensor. Subsequently, the orientation of this maximum absolute principal

stress is the orientation of the associated eigenvector.

Based on the definition of OStI, lower values indicate that the direction of the maximum

absolute principal stress fluctuates through the cardiac cycle and higher values (close to

one) indicate that the maximum absolute principal stress orientation remains unchanged.

The methodology used to compute the principal stresses and the corresponding directions

is similar to that used in [  80 ]. The stress tensor on the outer surface of the arterial wall is

expressed in terms of the local coordinate system comprised of two local orthogonal surface

tangent vectors (given by t1 and t2) and the local normal n. The corresponding rotation

tensor R can be written as: [t1 t2 n]. Subsequently, the traction condition on the outer wall is

enforced strongly by modifying the last row and column of the rotated stress tensor. However,

unlike the simulations in [  80 ], for which a zero traction condition was imposed, a value of
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−kδ was prescribed, where k is the tissue support parameter and δ is the deformation. In

the local coordinates, the normal vector can simply be written as n = [0 0 1]T. Therefore,

imposing σ · n = −kδ is equivalent to setting the elements in the last row (and column) of

the rotated stress tensor equal to −k times the corresponding component of the deformation

expressed in the local coordinate system. The deformation expressed in the local coordinate

system, denoted δ̃, and the deformation in the global coordinate system, denoted δ, are

related as δ̃ = RTδ.

Panels (c) and (d) of Figures  4.8 and  4.9 show the contour plots of OStI for the sta-

ble and growing aneurysms in both subjects. Collagen is the main constituent within the

extra-cellular matrix (ECM) of the arterial wall that maintains structural integrity through

dynamic cross-linking of fibres over the cardiac cycle in response to tensile stresses elicited

by blood pressure [  11 ], [  81 ]. Consequently, collagen fibres in regions of low OStI values are

exposed to oscillating tensile stresses requiring repeated realignment and re-orientation of

fibres over the cardiac cycle [ 65 ]. It was hypothesized that this type of ‘structural insult’

was the principal driver of collagen remodeling. In combination with a compromised ECM

due to MMP-induced degradation caused by low wall shear, the result was a degraded and

remodeled collagen fiber network. This would reduce the capability of the arterial wall to

sustain arterial stress under normal loading conditions, driving aneurysmal wall remodeling

and growth.

Subsequently, regions of overlapping low wall shear stress (i.e. where TAWSS∗ < 0.1)

and regions of low OStI (i.e. where OStI < 0.96) were extracted and the proportion of these

regions between the stable and growing aneurysms in the same subject was compared. The

chosen threshold for OStI corresponded to cos(15◦), which was the limit of the small angle

approximation. The corresponding overlapping area (in red) is shown in panel (e) of Figures

 4.8 and  4.9 . It was observed that while such regions occupy a sizeable proportion in the

growing aneurysms, they are almost either entirely absent or negligibly small (< 5%) in

stable aneurysms (see Table  4.6 ). This observation indicates that oscillatory arterial wall

stresses, combined with regions of low wall shear stresses, may be potential biomarkers for

aneurysm progression.
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4.4.3 Limitations

The main limitations of the present analysis lie in the modeling assumptions made for the

arterial wall and boundary conditions for the FSI simulations. Since the models were based

on retrospective imaging data, obtaining subject-specific flow and pressure measurements

for these aneurysms was not possible. Therefore, flow boundary conditions used in the

analysis, i.e. the RCR outflow boundary conditions and inlet flow waveforms, were not subject

specific. However, as explained in Section  4.4 , the flow and structural metrics obtained from

simulations correspond to physiologically realistic conditions in these subject. Therefore,

the relative comparisons between stable and growing aneurysms in the same subject were

meaningful.

The arterial wall thickness model, even though physiologically realistic, was also not

subject-specific. This limitation arose due to lack of vessel wall information in standard-

of-care imaging, including CTA, MRA and X-ray angiography data. Additionally, the as-

sumption that the arterial wall could be modeled as an isotropic neo-Hookean material was

a simplification of the physiological wall response. Moreover, the elasticity model used did

not account for changes in material properties due to the aneurysmal disease.

Blood vessels in the brain are in contact with various tissues, which, in general, have a

nonlinear and anisotropic spatiotemporal response. While the analysis accounted for het-

erogeneity in tissue support, depending on nature of contact, the svFSI platform currently

lacks the capability to model nonlinear or time-dependent support behaviour due to the sur-

rounding tissue. With regard to the spring-dashpot boundary condition used, the analysis

neglected viscous damping due to presence of CSF (cerebrospinal fluid) in the subarachnoid

spaces.

Lastly, in this study, only two subjects were considered, owing to the rarity of sub-

jects with multiple, unruptured and untreated aneurysms who, in addition to possessing

both growing and stable aneurysms, have undergone longitudinal imaging studies. Thus,

the present analysis sets the groundwork for future studies on biomechanical risk factors

in aneurysmal disease in order to help clinicians with the risk stratification of cerebral

aneurysms.
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5. SUMMARY

In this thesis, a computational analysis of cerebral aneurysms, accounting for blood flow-

vessel wall interactions, was performed with a view towards understanding the impact of

biomechanical parameters on aneurysm growth and eventual rupture. Specific aims were

formulated towards this goal, the accomplishments of which, are summarized below.

5.1 Specific Aim 1

In Chapter  2 , a novel methodology wass developed to obtain physiologically realistic

computational FSI models of aneurysms from standard-of-care imaging data (i.e. data that

is available most commonly in clinical settings). A workflow to estimate nonuniform vessel

wall thickness, in particular the impact of hemodynamic forces on aneurysmal wall thickness

was proposed. A unique meshing strategy to obtain conformal computational meshes for

the fluid and solid domain (of non-uniform wall thickness), with mesh refinement close to

the fluid-solid interface, was also devised. This advancement, in particular, is expected to

overcome the limitations of the current meshing workflow within the SimVascular simulation

environment and enhance fidelity of wall shear stress computations in future cardiovascular

FSI analyses performed using the svFSI solver.

5.2 Specific Aim 2

In Chapter  3 , leveraging 4DUS imaging data, a novel methodology was proposed to obtain

animal-specific heterogeneous tissue support parameter values that can be used to model the

effect of surrounding tissue on the outer vessel wall. An optimum range of the tissue support

parameter spring stiffness, k = 106 − 107 dyne/cm3, was determined for the FSI model.

For both non-diseased and hypertensive expanded aortas, these values ensured that arterial

wall deformations predicted by simulations were in good agreement with in vivo 4DUS

measurements at peak systole. Accomplishing this specific aim yielded a methodology, as well

as initial parameter estimates using idealized murine models, for incorporating heterogeneous
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tissue support in FSI simulations of aneurysms biomechanics. This methodology improves

the current state of the art for simulating physiologically realistic vessel wall deformation.

5.3 Specific Aim 3

In Chapter  4 , coupled blood flow and vessel wall motion and deformation was modeled

in two subjects with multiple cerebral aneurysms. Using standard-of-care patient imaging

data, physiologically realistic computational models were developed, which accounted for

both the nonuniform aneurysmal wall thickness and the effect of surrounding tissue support

on the outer wall’s motion and deformation. A scaling analysis was performed to determine

the appropriate order-of-magnitude of tissue support parameters for the cerebral aneurysm

models, based on estimates for diseased murine aortae from Chapter  2 . Hemodynamic and

structural metrics were computed and compared between stable and growing aneurysms in

the same subject. Specifically, the time averaged wall shear stress, the oscillatory shear

index, and peak systolic deformation were considered.

Additionally, a novel metric, the oscillatory stress index, indicative of the fluctuations in

the orientation of the largest arterial principal stress, was defined and computed. Significant

differences were observed between stable and growing aneurysms in the same subject in the

area under low shear, peak systolic deformation, and the area under combined low shear and

low oscillatory stress index. The proportion of aneurysmal area exposed to both low shear

and oscillating arterial stresses was large (≈ 23 to 33%) in the growing aneurysms, compared

to the corresponding stable aneurysms, for which such areas were either nonexistent or less

than 5% of the total area. Based on these results, it can be hypothesized that the presence

of significant regions under this abnormal combined loading, which signifies a large degree of

degradation and remodeling of collagen in the arterial wall, may be predictors of aneurysmal

growth. The proposed computational framework, and the associated biomechanical factors,

provide a proof-of-concept for a novel approach of quantitative assessment of risk of growth

in aneurysms.
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6. FUTURE WORK

In future studies, image-based computational models of cerebral aneurysm can be developed

with a view toward augmenting clinical decision making. To this end, the computational

methodology developed in Chapter  1 , and consequently, the analyses in Chapters  2 and  3 ,

can be extended to include subject/animal-specific flow and structural boundary conditions.

On the one hand, advanced imaging modalities such as 4D flow MRI could be used to

obtain noninvasive estimates of inflow waveforms, as well as subject/animal-specific flow

splits between individual outlet vessels [ 82 ]. Outflow RCR parameters could also be tuned

to match individual diastolic and pulse pressure values as opposed to population averaged

values. This approach would ensure that biomechanical parameters obtained through these

computational models are more individualistic.

On the other hand, subject-specific wall thickness distributions could be incorporated

by utilizing data from advanced imaging modalities such as black-blood MRI or amplified

MRI [  83 ], [ 84 ]. Subject-specific wall thickness distributions will lead to a more accurate esti-

mation of arterial stresses and deformations. While the nearly incompressible neo-Hookean

model is a popular and computationally inexpensive model for the behaviour of the ves-

sel wall, constitutive models of additional complexity (such as the Holzapfel-Gasser-Ogden

(HGO) model [ 65 ]) could be used to account for the vessel wall’s anisotropic and inhomo-

geneous composition. As seen from the comparisons in Section  3.4.3 , however, there were

no discernible differences in vessel wall deformation (between the neo-Hookean and HGO

models) for the purposes of tuning tissue support parameters. However, the HGO model

and its extensions would allow for incorporating the effect of different families of collagen

fibers. Furthermore, with availability of relevant histological data, the analysis presented

herein could be extended along those lines, potentially improving estimation of the stress

distribution within the arterial wall.

In the analysis presented in Chapter  2 , the effect of incorporating some heterogeneity

in tissue support parameters was demonstrated, and an optimum range of tissue support

parameters was found. However, accounting for further heterogeneity in these values, in
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particular, the various types of contacts, as well as spatiotemporal nonlinearity, would further

improve the fidelity of computational models.

Assessment of statistical significance/power of reported biomarkers is needed for transla-

tion of this approach into the clinical setting. Such assessments will not only require a larger

cohort of subjects/animals, but also further testing the efficacy of the proposed methodology

to estimate tissue support parameters for murine models of thoracic aortic aneurysms and

eventually human cerebral aneurysm sujects (Chapters  3 and  4 ) .

Lastly, the present work could be extended to analyze cerebral aneurysms with daughter

sacs or blebs. Presence of blebs or daughter sacs on intracranial aneurysms is a risk factor

for aneurysm rupture. Even though bleb formation is associated with focal weakening of the

wall, the exact effect of blebs on aneurysm rupture is not well understood [  85 ]. Most previous

studies of bleb aneurysms accounting for FSI have assumed uniform material properties over

the aneurysm and the bleb region [  6 ], [ 8 ], [ 29 ]. However, as reported in [ 86 ], blebs can

be atherosclerotic or thin walled, possessing material properties distinct from their parent

aneurysm. The methodology developed in Chapter  2 can easily be extended to incorporate

distinct material properties of the bleb. Therefore, future work could be done to investigate

the consequences of nonuniformity in wall thickness and material properties on enhanced

rupture risk of these bleb aneurysms.
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A. MATLAB Script Used to Compute Stress for the HGO Model

The following script was used to compute the Cauchy stress tensor under the HGO consti-

tutive model (recall Equation ( 3.11 )) for biaxial loading.

1 % Author: Tyler C. Diorio

2 % Modified by: Tanmay C. Shidhore

3 % Last Update: 04/12/2022

4

5 % Deformation Gradient

6 %syms F [3,3]

7 syms f [3,1]

8 F = sym(diag(f))

9 I = sym(eye(3));

10 % Deformation Gradient , transposed

11 F_T=transpose(F);

12

13 %Jacobian of the Deformation Gradient

14 J=det(F);

15 % Right and left Cauchy Green Deformation Tensors

16 C=F_T*F;

17 b = F*F_T;

18

19 % Green-Lagrange Strain tensor

20 E = (1/2)*(C-I)

21 %Invariants of the Right-Cauchy Green Deformation Tensor

22 I_1_C=trace(C);

23 I_2_C=0.5*(trace(C)^2-trace((C)^2));

24 I_3_C=det(C);

25

26 %ISOCHORIC (DEVIATORY) QUANTITIES [_bar]:

27 % Unimodular (distortional) part of the Deformation Gradient

28 F_bar=(J^(-1/3))*F;

29 % Unimodular (distortional) part of the Deformation Gradient , transposed

30 F_bar_T=transpose(F_bar);

31 % Isochoric Right and left Cauchy Green Deformation Tensors
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32 C_bar=F_bar_T*F_bar

33 b_bar = F_bar*F_bar_T;

34 %Invariants of the isochoric Right-Cauchy Green Deformation Tensor

35 I_bar_1_C_bar=trace(C_bar);

36 I_bar_2_C_bar=0.5*(trace(C_bar)^2-trace((C_bar)^2));

37 I_bar_3_C_bar=det(C_bar);

38 %% Constitutive Laws:

39

40 % Modeling the Holzapfel -Gasser-Ogden model, as in

41 % doi:10.1023/A:1010835316564

42 % The only difference is that the constants k_1 and k_2 are assumed to be

43 % different for each of the invariants in the anisotropic contribution.

44 % The overall model also contains a volumetric component , which, for an

45 % incompressible material , reduces to a term pI. This can be added at a

46 % later stage.

47

48 % Material parameters

49 syms a b c p

50 % Fiber orientations

51 a01 = [0 0 1];

52 a02 = [0 0 -1];

53 % Define tensor A_i, i=1,2 as the dyadic of a0i with itself

54 A1 = a01*transpose(a01);

55 A2 = a02*transpose(a02);

56

57 % Evaluating the invariants I_4 and I_6. Note that the double contraction

58 % A:B is nothing but trace(A*B)

59

60 I4 = trace(C_bar*A1);

61 I6 = trace(C_bar*A2);

62

63 % Compute volumetric part of strain energy density function

64 W_vol = (c/2)*(I_bar_1_C_bar - 3);

65

66 %kappa.value = 0;

67 %if kappa.value==0
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68 % Compute anisotropic contributions from I4 and I6

69 W_aniso_4 = (a/(2*b))*(exp(b*(I4-1)^2) - 1);

70 W_aniso_6 = (a/(2*b))*(exp(b*(I6-1)^2) - 1);

71 %elseif kappa.value==1/3

72 % W_aniso_4 = (a4/(2*b4))*(exp(b4*((I_bar_1_C_bar/3)-1)^2) - 1);

73 % W_aniso_6 = (a6/(2*b6))*(exp(b6*((I_bar_1_C_bar/3)-1)^2) - 1);

74 %else

75 % disp('You have not entered a valid kappa value (0 or 1/3).')

76 %end

77

78 % Total W

79 W = W_vol + W_aniso_4 + W_aniso_6

80 %% Stress Computations

81

82

83 % PK1 stress

84 P1_1 = diff(W,f1);

85 %P1_2 = diff(W,F1_2);

86 %P1_3 = diff(W,F1_3);

87 %P2_1 = diff(W,F2_1);

88 P2_2 = diff(W,f2);

89 %P2_3 = diff(W,F2_3);

90 %P3_1 = diff(W,F3_1);

91 %P3_2 = diff(W,F3_2);

92 P3_3 = diff(W,f3);

93 %P = [P1_1 P1_2 P1_3; P2_1 P2_2 P2_3; P3_1 P3_2 P3_3];

94 P = diag([P1_1 P2_2 P3_3])

95 % Cauchy Stress

96 sigma = p*I + (1/J)*P*F_T

97 sigma_simp1 = subs(sigma,f1,1/(f2*f3))
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B. Python Code for Extracting Faces

The python code below is used to extract boundary faces from the combined surface .vtp

mesh file. The code assumes that the .vtp file is named as ‘mesh-complete.exterior.vtp’

and that a folder of the name ‘mesh-surfaces’ exists in the same directory as the python

script file. The code can be executed within the Python programming environment within

SimVascular with the command given below:

1 $ <path_to_SimVascular_executable > --python -- <python_code_name >

1 import os

2 from shutil import copyfile

3 import sv

4 #import sv_vis as vis

5 import sys

6 import vtk

7

8 solid_name = 'outer_shell '

9 solid_file_name = 'mesh-complete.exterior.vtp'

10 mesh_dir = './mesh-surfaces/'

11

12

13 # Set the solid modeling kernel.

14 modeler = sv.modeling.Modeler(sv.modeling.Kernel.POLYDATA)

15

16 # Read the closed surface representing a solid model.

17 #solid = sv.Solid.pySolidModel()

18 solid = modeler.read(solid_file_name)

19

20 # Extract faces.

21 solid.compute_boundary_faces(45.0)

22 solid_face_ids = [int(id) for id in solid.get_face_ids()]

23 print ("Face IDs: " + str(solid_face_ids))

24 #print (solid_face_ids[0])

25

26 for face_id in solid_face_ids:
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27 solid_face_name = mesh_dir + solid_name + "_mesh_face_" + str(face_id

)

28 face = solid.get_face_polydata(int(face_id))

29 #face.write(solid_face_name)

30 #solid_face_pd = sv.Repository.ExportToVtk(solid_face_name)

31 #print(" Face {0:d} num nodes: {1:d}".format(int(face_id)))

32 solid_face_file_name = solid_face_name + ".vtp"

33 writer = vtk.vtkXMLPolyDataWriter()

34 writer.SetFileName(solid_face_file_name)

35 writer.SetInputData(face)

36 writer.Update()

37 writer.Write()
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