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ABSTRACT

In this dissertation, we present work on developing superconducting circuits intended to

advance the implementation of Asynchronous Ballistic Reversible Computation using Fluxon

Logic. In the first Chapter we introduce the need for developing reversible computing, and

discuss implementing asynchronous reversible computing using fluxons in superconducting

circuits. In Chapter 2, we introduce basic superconductivity physics, including the Joseph-

son effects, which is necessary to know for understanding the behavior of Josephson junction

transmission lines. In Chapter 3, we introduce tools to physically understand the behavior

of topologically protected solitons, ‘fluxons’, in Josephson junction transmission lines. Fi-

nally, in Chapter 4, we briefly discuss the history of fluxon-based computation devices and

present current state of the art design of such reversible computation devices, including the

fluxon Rotary gate that we have developed. Taken together, these represent advances in the

direction of implementing asynchronous reversible computing in practice.
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1. OVERVIEW, BACKGROUND, AND MOTIVATION

The overarching motivation for my work presented in this dissertation is to formulate the

basic theoretical rules governing reversible superconducting circuits. Achieving this out-

come entails reaching the following goals: (a) developing a theory of asynchronous ballistic

reversible logic (ABRL) gates, (b) constructing realistic model of Josephson junction (JJ)

circuits that implement such reversible logic gates and (c) quantifying the origin of energy

losses in the system so that these losses can ultimately be reduced with appropriate design

choices. My original contributions are mainly in goal (b); goal (a) has been under develop-

ment by my collaborators at Sandia National Laboratory while achieving goal (c) lies in the

future. I will, however, give brief discussions of progress along both goals (a) and (c), which

will also provide adequate context for discussing my contributions to goal (b).

Computers are involved in more and more aspects of today’s society - entertainment,

communication, information storage, security, etc. Naturally, computational power and

energy efficiency associated with today’s computers are the focus of much attention. Progress

in computational performance relative to power consumed is gradually stalling as we near

the end of Moore’s Law. This has prompted a broad quest for finding new breakthroughs

in computing performance. Asynchronous Reversible Ballistic Computing (ABRC) [ 1 ] is

a paradigm suggested for achieving this quest by reducing energy consumption below the

Landauer limit (see below). In this dissertation, I will consider superconducting circuits

that use ballistic fluxon propagation to implement this computation paradigm. Figure ( 1.1 )

shows the trend of the 10 best known supercomputers. China’s Sunway Tianhu Light is

the most powerful computer in the world, performing 93 petaflops/sec while consuming

about 16 megawatts of power. High performance computing in conventional complementary

metal-oxide-semiconductor (CMOS) technology uses lots of energy and if we want to see the

continued growth and progressing trend in supercomputer performance, the exploration of

new approaches is essential. How can we progress to higher levels of performance for lower

power?

14



Figure 1.1. Trend high performance supercomputers power consumption for
the 10 best supercomputers. (Image credit: Mark A. Gouker, MIT Lincoln
Lab)

1.1 Landauer’s Principle and Reversible Computation

Any computation requires energy and how much energy we use is an issue of great concern.

Rolf Landauer, in 1961, formulated a statement, now known as the Landauer principle,

which states that dissipative, irreversible computation (all computers currently work like

this) requires at least kBT ln 2 energy per bit operation, where kB is Boltzmann’s constant

and T the operating temperature. This is a theoretical limit of consumption of computational

power - any logically irreversible manipulation of a bit of information, exemplified by the

resetting of a bit in a memory register, will generate an entropy increase of at least kB ln 2.

See Figure  1.2 for how the Landauer limit compares with the landscape of energy usage by

various computational platforms.

Reversible computation is a computational paradim for avoiding the Landauer limit by

involving only reversible bit operations. The concept of reversible computation has a storied

history[ 2 ], with the first theoretical prototype of a logic gate being proposed by Edward

Fredkin and Tommaso Toffoli[ 3 ]. In such a computational paradigm, one can configures

logic gates to redirect inputs conditionally towards unique outputs [ 4 ], thereby conserving

15



entropy. Computer scientists argue that if one could thus transform states in a one-to-

Figure 1.2. Gate delay time vs the power dissipation per gate for distinctive
computing systems. (Image credit: [ 5 ])

one fashion, no information will be destroyed and entropy would not be generated - the

computer could theoretically operate with gates dissipating less than kBT ln 2 of energy per

operation. Gates approaching zero energy dissipation could additionally be run in reverse

and with no minimum energy dissipation; there is no reduction in information in a closed

cycle [ 4 ] that ends with the system in the same initial state, and hence no Landauer-type

dissipation. Shown in fig.  1.2 is the relationship between gate delay time and the associated

power dissipation per gate, as developed by the computer science community. There is an

obvious distinction between reversible and irreversible (CMOS) approaches to computing -

the reversible approach offers shorter gate delay times for much lower power consumption. If

we wish to compute at energies below the thermal limit, reversible systems must be employed.

1.2 Asynchronous Ballistic form of Reversible Logic (ABRL)

Original formulations of reversible computing required unrealistic conditions like precise

clock control of the arrival times of bits at logic gates. Asynchronous ballistic reversible

computation (ABRC) [ 1 ], a type of reversible computation that can perform universal logic

16



operations, is a modern prescription for avoiding such drawbacks by allowing different bits

to arrive at logic gates asynchronously.

Fig.  1.3 shows a schematic that draws the clear distinction between both synchronous

and asynchronous ballistic configurations. Synchronous ballistic configuration, requiring

precise timing, has proved to be too impractical to achieve. Such timing uncertainties are

also amplified chaotically when signals interact in larger synchronous circuits (a form of

entropy increase). The asynchronous configuration allows for much looser timing constraints

and has a linear increase in timing uncertainty per logic state as opposed to an exponential

increase for the synchronous configuration. ABRC also significantly simplifies circuit design

as the need for clocking networks is reduced. ABRC thus provides a more realistic paradigm

for implementing energy-efficient reversible computation. Constructing ABRC logic gates

implemented using superconducting fluxons is the main goal of this dissertation, with the

long term goal of constructing realistic highly energy-efficient computers.

Figure 1.3. Schematic of both synchronous and asynchronous ballistic con-
figuration. (Image credit: Dr. Rupert Lewis, Sandia NL.)

1.3 Asynchronous Ballistic Reversible Fluxon Logic using Superconducting Cir-
cuits

Asynchronous ballistic reversible logic requires technology that is inherently low loss and

dissipationless superconducting elements are perfectly suitable for this idea[ 6 ]. Specifically,

superconducting circuits operating in the reversible regime with single flux quanta (fluxons)

being used to encode data have been demonstrated to be highly energy-efficient, with out-

17



put fluxons retaining up to 97% of their input energy [ 7 ] (compare with resistive nature of

transistor-based circuits). As detailed below, such fluxon logic circuits are built using super-

conducting Josephson junction (JJ) switches and superconducting interconnects. Logic in

such superconducting circuits is based on the presence or absence of a magnetic flux quantum

(fluxons) trapped in a superconducting wire loop – fluxons are topologically quantized stable

objects that can exhibit ballistic propagation at low temperatures since they are solitonic

excitations in these circuits[ 6 ], [ 8 ]. Ballistically propagating bits, a basic requirement for

constructing ABRC, can then be encoded as single flux quanta (SFQ).

The long term goal of the research presented in this dissertation is this: to design imple-

mentable low-dissipation ABRC fluxon logic structures in realistic superconducting networks

composed of superconducting wires (inductance elements) and Josephson junctions (weak

links/switches).
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2. SUPERCONDUCTIVITY AND THE JOSEPHSON EFFECTS

2.1 Introduction

Superconductors are substances (superconductors) which, upon cooling below a charac-

teristic critical temperature, exhibit zero DC electrical resistance which also expel magnetic

fields from the bulk. Both these characteristics constitute a hallmark of the property of

superconductivity.

When cooling a (metallic) conductor at room temperaturs, the resistance decreases grad-

ually. Kamerlingh Onnes, curious about the low resistance behavior of metals when cooled

to near absolute zero temperatures and having also liquefied Helium (Nobel prize, 1913) that

enabled him to achieve that end, conducted an experiment seeking insight to the tempera-

ture dependence of the resistivity of Mercury [ 9 ]. He found that at T = 4.20K, there existed

Figure 2.1. Onnes’ experimental result for the temperature dependence of
the resistivity of Mercury [ 9 ], reproduced from [ 10 ].

a sharp transition as Mercury’s resistivity abruptly vanished to levels below detection limits.

In this way, superconductivity was discovered in 1911.

Decades of research followed, some selected highlights being discovery of the Meissner

effect [ 11 ] (1933), i.e., the characteristic magnetic flux expulsion from superconductors that

distinguish them from just ‘very good conductors’; the Landau-Ginzburg effective theory

of superconductivity [ 12 ] (Nobel prizes, 1962 and 2003[ 13 ]); and the quantum mechanical

microscopic Bardeen-Cooper-Schrieffer theory of superconductivity[ 14 ] (Nobel prize, 1972).
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Figure 2.2. Schematic of a Josephson junction, consisting of an insulating
material sandwiched by two superconductors of different order parameters.

Finally, in 1962, Brian Josephson considered seriously a novel element of the Landau-

Ginzburg theory – the concept of a complex superconducting order parameter whose gradient

is related to the supercurrent – and proposed that a supercurrent can flow without any

voltage drop between two superconducting electrodes that are separated by a thin barrier

[ 15 ] (Nobel prize, 1973). Such a junction, a ‘Josephson’ junction, can support a current up

to a characteristic critical current, Ic, before deviating into the resistive, dissipative regime

(see Figure  2.3 ). This supercurrent is given by the Josephson relation [  16 ]

Is = Ic sin ϕ (2.1)

where ϕ = ϕ2 − ϕ1 is the difference between phases of the complex Ginzburg-Landau order

parameters of the two superconducting electrodes. This is the DC Josephson effect. More-

over, if a constant voltage is maintained across the junction, the phase difference evolves

according to [ 17 ]
dϕ

dt
= 2eV

ℏ
. (2.2)

Using equation ( 2.1 ), we see that a steadily changing ϕ giving rise to an alternating current

of frequency 2eV/h [ 18 ]; thus, the Josephson junction can be used to relate frequency to

voltage with a universal conversion factor composed of material-agnostic fundamental con-
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stants! This is the AC Josephson effect and has been used for defining the Josephson voltage

standard.

Figure 2.3. Typical I-V curve for a Josephson junction.

Fig.  2.3 shows a typical IV curve of a JJ - as the system is biased up to the critical current,

Ic, the system remains in its superconductor state. When the applied current exceeds Ic, the

system transitions to its dissipative state.

Figure 2.4. A real Josephson junction (left) is composed of an insulating
barrier sandwiched between two superconductors, the phases, ϕ1,2, of whose
order parameters, Ψ1,2 respectively, differ by an amount ϕ. It is well-modeled
by the RCSJ model (right) consisting of a shunt resistor, a shunt capacitor and
an ideal Josephson junction connected in parallel.
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2.2 The Resistively and Capacitively Shunted Junction (RCSJ) model

While equation ( 2.1 ) suffices to describe zero voltage (stationary) properties of Josephson

junctions, situations involving non-zero, finite voltages need a more extensive description.

Realistic JJs have been found to be adequately described by the resistively and capacitively

shunted junction (RCSJ) model [ 17 ]. Fig.  2.4 shows a schematic layout of the RCSJ circuit

model of a real Josephson junction, consisting of a shunt resistor (due to conductance arising

from, say, thermally excited quasiparticles), a shunt capacitor (due to interfacial charges at

the contacts with superconducting leads) and an ideal Josephson junction connected in

parallel.

I will now use this model to describe the dynamics of a realistic JJ. Consider the dynamics

of the simple circuit shown in Figure  2.4 . The total current flowing through the system is

given by

I = Ijj + Ires + Icap, (2.3)

the three currents on the RHS being those passing through the ideal JJ, the shunt resistor

and the shunt capacitance, respectively. Replacing by respective behaviors,

I = Ic sin ϕ + V

R
+ C

dV

dt
, (2.4)

wherein ϕ is the phase difference across the ideal JJ, Ic its critical current, V the voltage

across the JJ, R the value of the shunt resistance and C the value of the shunt capacitace.

Incorporating equation ( 2.2 ), we obtain the current solely as a function of the phase difference

across the JJ:

I = Ic sin ϕ + ℏ
2eR

dϕ

dt
+ ℏC

2e
d2ϕ

dt2 . (2.5)

For drawing an analogy with classical mechanical systems, we can rewrite the above equation

in the form:

(
ℏ
2e

)2

C
d2ϕ

dt2 +
(
ℏ
2e

)2 1
R

dϕ

dt
+ d

dϕ

[
EJ

(
1 − cos ϕ − I

Ic

ϕ

)]
= 0 (2.6)
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where EJ = ℏIc

2e . Remarkably, as can be made clear by a cosmetic substitution ϕ(t) → x(t),

the reader can see that this is the differential equation governing the damped motion of a one-

dimensional Newtonian particle in a tilted washboard potential whose tilting is controlled

by the applied current (see also Figure  2.5 ):

Figure 2.5. The motion of the phase across a JJ can be understood in analogy
with the damped motion of a particle in the tilted washboard potential above
(equations ( 2.6 ) and (  2.7 ) in the main text). The instantaneous tilting of the
potential is proportional to the instantaneous value of the current through the
JJ. The tilting is enough to allow a particle to ‘roll’ on to the next well only
when the applied current is greater than the critical current of the JJ. (Image
credit: [ 19 ].)

M
d2x

dt2 + η
dx

dt
+ ∂xU(x) = 0, (2.7)

where the mass is M = (ℏ/(2e))2C, the friction coefficient is η = (ℏ/(2e))2/R, and the tilted

washboard potential is given by U(x) = EJ(1 − cos x − (I/Ic)x).

2.3 Response to External Current Source

To gain insight into the driven dynamics of Josephson junctions, I will now consider a

realistic junction, described by the RCSJ model as in Figure  2.4 , being driven by an external
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current source. In particular, I will consider a sinusoidal current source, I(t) = I0 sin ωt,

oscillating at angular frequency ω. Substituting in equation ( 2.5 ):

I0 sin ωt = Ic sin ϕ + ℏ
2eR

dϕ

dt
+ ℏC

2e
d2ϕ

dt2 . (2.8)

Rewriting this expression,

ℏC

2eIc

d2ϕ

dt2 + ℏ
2eRIc

dϕ

dt
+
(

sin ϕ − α sin ωt

)
= 0 (2.9)

where α = I0
Ic

. Setting τ ≡ t/τc, where τc = ℏ/(2eIcR) is the ‘Josephson time constant’ –

relaxation time constant for the particle to come to a halt in the washboard potential of

Figure  2.5 , we can rewrite the equation in a dimensionless form:

ℏC

2eIcτ 2
c

d2ϕ

dτ 2 + ℏ
2eRIcτc

dϕ

dτ
+
(

sin ϕ − α sin ωτcτ

)
= 0, (2.10)

⇒ βc
d2ϕ

dτ 2 + dϕ

dτ
+
(

sin ϕ − α sin ωτcτ

)
= 0. (2.11)

Herein, βc = 2eIcR
2C/ℏ is dimensionless parameter, known as the Stewart-McCumber pa-

rameter [ 20 ], [  21 ]. βc is also inversely related to the damping of the junction and is thus

related to its quality factor, Q =
√

βc. Typical values of various RCSJ parameters for Joseph-

son junctions, used by my experimental collaborators for constructing fluxon networks, are

listed in Table  2.1 .

Table 2.1. Typical JJ parameters in JJ circuits.
Quantity Value
βc, 2eIcR2C

ℏ 0.5436
Frequency, ω 109Hz
Critical Current, Ic 100µA
Resistance, R 1.6 Ω
Capacitance, C 700fF
α, I0

Ic
O(1)
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The formulation in equation  2.11 , coupled with the physical picture shown in Figure  2.5 ,

allows us to delineate characteristic limiting behaviors of the JJ, especially in the DC driven

limit (ωτc ≪ 1).

For βc ≪ 1, the ‘overdamped’ regime (the dissipative first derivative term is dominant

over the intertial second derivative term), when driving current amplitude is below Ic, i.e.,

α < 1, the junction quickly settles to a static value of the phase such that sin ϕ = I(t)/Ic.

The final voltage drop is zero across the junction. This corresponds to a damped particle

slowing to a stop within a single well in a quasi-static slightly tilted washboard potential

in Figure  2.5 . When the driving current rises above Ic, excess current has to be forced

through the shunt resistor, resulting in oscillatory behavior of the superconducting phase.

This corresponds to the particle in Figure  2.5 progressing down the washboard potential,

tilted more than the critical steepness, with a velocity capped by a ‘drift’ value. When

α ≫ 1, this is simply given by the Ohmic limit of V = IR, with a tiny oscillatory component

on top due to the ideal JJ current IJJ = Ic sin(2eV t/h). This is apparent from our intuition

of a damped particle rolling down a very steep (compared to the corrugaton amplitude)

washboard potential.

When the junction is ‘underdamped’, i.e., βc ≫ 1, the problem is equivalent to an un-

damped particle in the washboard potential of Figure  2.5 . A new interesting phenomenon

of hysteresis appears, which is exploited in certain JJ computational circuit designs (sec-

tion  4.1 ). When the current is well above Ic, we have the same behavior as in the over-

damped case, with V = IR. However, as the driving current is reduced to below Ic, i.e., the

washboard potential in Figure  2.5 is slowly brought to level, the particle continues to move

ahead with intertia, continuing to follow the Ohmic law V = IR on the average. However,

after a long enough time or if started from zero driving current to a value less than Ic,

the particle settles into an equilibrium position in one well, settling to the usual Josephson

current relation sin ϕ = I(t)/Ic, with zero voltage drop. In other words, an underdamped

junction can be found in both ‘resistive’ or ‘superconducting’ regimes for I < Ic.

Further discussions can be accessed in standard textbooks [  17 ]. Realistic JJs are usu-

ally somewhere in between, and I will study their dynamics by directly numerically solving

equation ( 2.8 ).
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2.4 The Meissner Effect - Magnetic Flux Quantization

Upon lowering the temperature of a metal to below its characteristic critical temper-

ature, the metal will transition to its superconducting state. During this transition, the

magnetic field is expelled from the superconductor - this is known as the Meissner effect

and is a significant point of difference between a superconductor and a metal with negligible

resistance[ 11 ]. This effect is behind the popular demonstration of magnets being levitated

by superconductors.

There exists a simple relation between the phase of the superconducting order parameter

and the magnetic flux through a non-superconducting region inside it (e.g., the hole inside

a superconducting loop, or a superconducting vortex core). Inside the bulk superconductor

at equilibrium, Landau-Ginzburg theory [ 12 ] says that the change of the complex order

parameter phase is simply related to the line integral of the magnetic vector potential:

ϕ(r⃗2) − ϕ(r⃗1) = −2e
ℏ

∫ r⃗2

r⃗1
dr⃗ · A⃗(r⃗). (2.12)

If the path encloses a non-superconducting region ‘NS’, then using the fact that the super-

conducting phase, being the complex phase of a complex number field, can change by an

integer multiple of 2π around a closed loop, we have using equation ( 2.12 ),

2mπ = −2e
ℏ

∮
dr⃗ · A⃗(r⃗) = 2πΦNS

B

Φ0
, i.e., ΦNS

B = mΦ0, (2.13)

wherein Φ0 = h/(2e) ≃ 2.068×10−15 Wb is the universal superconducting flux quantum, ΦNS
B

is the magnetic flux through the enclosed non-superconducting region, and m is an integer.

This is the famous equation of universal flux quantization showing that the magnetic flux

through holes in the superconductor is quantized to be an integer multiple of the material-

agnostic superconducting flux quantum[ 22 ], [  23 ].

26



2.5 Phase Dynamics in JJ transmission lines

Interesting phenomena occur when a large number of discrete JJs are strung in parallel

between superconducting lines, or equivalently, a long JJ (LJJ) is considered (‘long’ in the

sense that the phase modulation can accommodate one fluxon well within the junction).

Sketches of both possibilities are presented in Figure  2.6 .

Figure 2.6. Schematic of both continuous and discrete long Josephson junc-
tion. (Image credit: [ 24 ].)

Figure  2.7 shows a circuit schematic corresponding to the discrete long junction. The

region between two successive loops can enclose magnetic flux; this is modeled by the induc-

tances on the top and bottom superconducting lines. We continue using the RCSJ model to

describe the individual JJs, which we assume to be identical.

Figure 2.7. Schematic of a JJ transmission line.
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Using the current labels as shown in Figure  2.7 , we can apply Kirchhoff’s current conser-

vation law to the nodes above and below the jth JJ, respectively:

Ic sin ϕj + Vj

R
+ C

dVj

dt
= Ij,in − Ij,upper + Ij−1,upper = Ij,out − Ij,lower + Ij−1,lower

≡ Ij,in + Ij,out

2 + (Ij−1,upper + Ij−1,lower) − (Ij,upper + Ij,lower)
2 . (2.14)

The voltage Vj can be eliminated in favor of the Josephson phase, ϕj, by using equation (  2.2 ):

Vj = Φ0

2π
ϕ̇j, (2.15)

wherein Φ0 is the superconducting flux quantum.

Next, the currents flowing through the upper/lower branches can be eliminated by using

the fact that the line integral of the phase difference around a closed loop on the supercon-

ductor must equal the magnetic flux enclosed by the loop. Thus, for the cell bounded by the

jth and (j + 1)st JJs, we have

ϕj+1 − ϕj = −2π
Φj

Φ0
, (2.16)

wherein Φj is the total flux through the cell coming out of the paper. This total flux the

sum of the flux created by the currents in the upper/lower branches, and that due to any

externally applied magnetic field (with uniform flux Φext per cell at the scale of the Josephson

array):

Φj = Φext − L(Ij,upper + Ij,lower). (2.17)

Using equation ( 2.15 ) to eliminate V from equation ( 2.14 ), and using equations ( 2.17 ) and

( 2.16 ) to eliminate branch currents from equation ( 2.14 ), and rescaling time by the inverse of

the ‘Josephson plasma frequency’, τp = ω−1
p =

√
CΦ0/(2πIc), we arrive at the discrete space

continuous time equation of motion governing Josephson phase evolution in the Josephson

transmission line:

ϕ̈j + αϕ̇j + sin ϕj = λ2(ϕj+1 − 2ϕj + ϕj−1) + Ij

Ic

(2.18)

wherein λ2 = Φ0
2πIcL

controls the scale of spatial variation of the Josephson phase and α =

R
√

Φ0/(2πIcC) controls the dissipation. We have also replaced (Ij,in + Ij,out)/2 → Ij.
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When λ ≫ 1, the Josephson phase does not vary much from one junction to the next and

we can approximate it by a smoothly varying field: ϕj(t) → ϕ(x, t). Choosing the scaling

between x and j to be given by x = j/λ, the discrete second order spatial difference can be

approximated by a second order spatial derivative and the field equation for ϕ becomes:

ϕtt + αϕt + sin ϕ = ϕxx + γ(x, t). (2.19)

Herein, the driving field γ(x, t) = Ij(t)/Ic is a ratio of two terms that scale similarly with

space and so is well-defined in the continuum limit.

For a lossless system and no bias current applied, equation ( 2.19 ) becomes simply the

well-studied sine-Gordon equation,

ϕtt − ϕxx + sin ϕ = 0. (2.20)

Equation ( 2.19 ) is thus the Sine-Gordon equation perturbed by terms that encode dissipation

and an external driving field.
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3. SOLITONS (FLUXONS) IN JJ TRANSMISSION LINES

The Sine-Gordon equation, Equation ( 2.20 ), governing the evolution of the Josephson phase

along a JJ transmission line, supports novel topologically protected particle-like excitations

called solitons. These are called fluxons for the specific physical case of the JJ transmission

line since, as we shall see, the soliton encodes a flux quantum within itself[ 6 ].

3.1 Soliton Family of Solutions: topological protection and ‘fluxons’

Solitons were first described in 1834 by John Scott Russell as he observed solitary wave in

the Union canal - describing it as a "wave of translation", noting that it "continued its course

along the channel apparently without change of form or diminution of speed" [ 25 ]. The wave

was too large an amplitude for it to be a solution to the wave equation, which only arises

as the small-amplitude approximation of the motion of water waves. This pointed to a new

class of particle-like solutions existing for certain classes of nonlinear differential equations.

Solitons have since been found as solutions to a broad class of nonlinear, dispersive par-

tial differential equations describing physical systems. Localized disturbances in dispersive

media usually tend to fall apart as various frequency components travel at different speeds

(nonlinear effects also influence the profile). In the unique case of solitons, the dispersion and

nonlinearities compensate one another, giving rise to stable large amplitude solitary waves

that propagate long distances without the form of the wave profile changing or diminishing.

In addition to the sine-Gordon equation (as in equation ( 2.20 ) above), other well-studied

equations that possess solitary wave solutions are the Korteweg-de Vries (KdV) equation

and the nonlinear Schrödinger (NLS) equation with attractive interaction [ 26 ].

For example, the Korteweg-de Vries equation, often used to model waves on shallow water

surfaces, has the form:
∂u

∂t
+ u

∂u

∂x
= −∂3u

∂x3 , (3.1)

with a soliton solution

u(x, t) = 3α2 sec 1
2(αx − α3t), (3.2)

which travels at a speed, α2, that is proportional to the amplitude!

30



The nonlinear Schrödinger (NLS) equation with attractive interaction, which can be used

to describe, for example, the dynamics of tornadoes, is

i
∂Ψ
∂t

= − 1
2m

∂2Ψ2

∂x2 − λ|Ψ|2Ψ. (3.3)

For λ > 0, it has solitary wave solution that appears as a knot-like kink [  26 ]:

Ψ = ei(kx−ωt)
√

α

mλ
sec

√
α(x − Ut), (3.4)

where k = mU and ω = 1
2mU2 − α

2m
.

Finally, the general sine-Gordon (sG) equation,

ϕtt − ϕxx + m2

β
sin βϕ = 0, (3.5)

has both single- and multi-soliton solutions. The 1-soliton solution, called kink/fluxon (or

antikink/antifluxon for opposite direction of propagation), represents a twist in the ϕ variable

and has an exact solution of the form

ϕ(x, t) = 4
β

tan−1(e±mγ(x−Ut)) (3.6)

where γ =
√

1 − U2, with |U | < 1. These are ‘topologically protected’ solutions, since the

phase changes from 0 (2π/β) at x → −∞ to 2π/β (0) at x → +∞. What this means is

that if one slowly modifies the sine-Gordon equation to something like the the dissipative-

driven equation ( 2.19 ) with the kink/antikink solution as a starting state of the field, the

solution would have to persist to match the nontrivial long distance boundary conditions

which require the the sine-Gordon phase ϕ to change by ±2π/β between x = ±∞.

Not all soliton solutions are ‘topologically’ protected against modifications to the sine-

Gordon equation. For example, an exact soliton solution of the sine-Gordon equation is the

‘breather’ [ 27 ], [  28 ], the coupling of a kink and an antikink,

ϕ(x, t) = 4 tan−1
( √

1 − ω2 cos ωt

ω cosh(
√

1 − ω2x)

)
. (3.7)
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This is a nonlinear wave in which is localized and oscillatory. The breather is not topologically

protected as the boundary conditions are zero, and can decay to a trivial null state if, say,

dissipation is introduced.

The sG equation can be used to describe many systems including the evolution of light

pulses whose frequency is in resonance with an atomic transition in the propagation medium

[ 26 ]. Herein, I will use it to model the behavior of the JJ transmission lines, using the

continuum limit equations ( 2.19 ) and (  2.20 ) above. Specifically, ‘topologically protected’

soliton solutions of the continuum model will survive in the discrete limit, equation ( 2.18 ).

The continuum limit allows one to take advantage of the fact that the pristine sine-Gordon

equation is exactly solvable and dissipation/driving can be perturbatively incorporated.

Finally, we note that a single kink (antikink) soliton in the JJ transmission line requires

the Josephson phase to change by ±2π from left to right (note that here β = 1). How-

ever, using the analysis in equations ( 2.12 ) and ( 2.16 ), it is clear that ±1 superconducting

flux quantum is associated with the kink/antikink solution. It is for this reason that sin-

gle solitons, propagating through the JJ transmission line, are call ‘fluxons’ and form the

basis for encoding ballistic bits moving about in ABRC networks interconnected by such

JJ transmission lines. From this point onward, I will use the terms ‘fluxon’ and ‘soliton’

interchangeably.

3.2 The Sine-Gordon Equation With Dissipation and Driving

The pristine sine-Gordon equation, equation ( 2.20 ), is exactly solvable. However, this

is not the case when the system is perturbed with losses or driving forces, equation ( 2.19 ).

I will outline below some general methods for analyzing the perturbed sG equation, equa-

tion ( 2.19 ).

3.2.1 Formal Perturbative Expansion

In this section, I will present a formal method to generate perturbative 2π-kink solutions

to the perturbed sG equation, equation ( 2.19 ), using a series expansion, as done in [  29 ].

This method can be used in the presence of dissipation and a uniform driving term and
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generates traveling solutions. While the method will systematically generate a new solution,

the physical content is hard to intuit and so readers looking for physical insight can skip

ahead to the next subsection for a Hamiltonian-based approach.

Consider the following general form of the sine-Gordon equation:

ϕxx(x, t) − ϕtt(x, t) − sin ϕ(x, t) = ϵQ(x, t) (3.8)

with Q being an operator containing all perturbative terms (assumed small) and ϵ is intro-

duced by hand for analytic control. We will assume the existence of ballistic solutions that

depend only on η = x − vt, i.e., ϕ(x, t) ≡ ϕ(η) (using the same symbol for the two functions

for brevity) and assume that Q is such that with this substitution, it is also a function only

of η: Q(x, t) ≡ Q(η). Clearly this is true when the dissipative term is included from equa-

tion ( 2.19 ), and if the driving term is independent of x. With this substitution, the general

sine-Gordon equation becomes:

(1 − v2)ϕ′′(η) − sin ϕ(η) = ϵQ(η). (3.9)

We now seek solutions to the above equation as a series expansion in ϵ:

ϕ(η) = ϕ0(η) + ϵϕ1(η) + ϵ2ϕ2(η) + O(ϵ3) + . . . (3.10)

The plan is to substitute this expansion into equation ( 3.9 ) and match the coefficients of

powers of ϵ on both sides. For brevity, I will consider only the dissipative term: Q =

αϕt ≡ −αvϕ′(η). Using this form of Q and the expansion, equation ( 3.10 ), in equation ( 3.9 ),

equating coefficients of the same power of ϵ on both sides, we find a sequence of successively

solvable differential equations for ϕ0, ϕ1, ϕ2, etc. [ 29 ]:

(1 − v2)ϕ′′
0 − sin ϕ0 = 0, (3.11)

(1 − v2)ϕ′
1 − ϕ1 cos ϕ0 + αvϕ′

0 = 0, (3.12)

(1 − v2)ϕ′′
2 + αvϕ′

1 − ϕ2 cos ϕ0 + 1
2ϕ2

1 sin ϕ0 = 0, (3.13)
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and so on.

An exact solution to equation ( 3.11 ), which is just the unperturbed sine-Gordon equation,

is just

ϕ0 = 4 tan−1 e
η√

1−v2 . (3.14)

This can now be input into equation ( 3.12 ) to generate the solution for ϕ1 with null boundary

conditions, then both solutions for ϕ0,1 entered into equation ( 3.13 ) to generate the solution

for ϕ2 with null boundary conditions, and so on to finally generate a perturbative solution

for the kink solution for the sine-Gordon equation with dissipation. While systematic, it is

difficult to intuit how the perturbations modify the soliton shape or motion. This goal is

better achieved by looking at energy dynamics below.

3.2.2 Hamiltonian Approach

Consider first the unperturbed sine-Gordon equation, equation ( 2.20 ),

ϕxx − ϕtt − sin ϕ = 0. (3.15)

Remarkably, its dynamics preserves the energy functional[ 30 ]:

E =
∫ ∞

−∞

(
ϕ2

t

2 + ϕ2
x

2 + (1 − cos ϕ)
)

dx. (3.16)

For example, the exact fluxon solution,

ϕ(x, t) = 4 tan−1 e
x−vt√
1−v2 , (3.17)

corresponds to the (constant) energy

E0 = 8(1 − v2)− 1
2 . (3.18)
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The energy functional is not conserved in the presence of dissipation and driving (equa-

tion ( 2.19 )),

ϕxx − ϕtt − sin ϕ = αϕt − γ, (3.19)

where the right-hand-side consists of the energy dissipation and uniform bias current injection

terms, respectively. These terms cause the energy to change with time:

dE

dt
=
∫ ∞

−∞

d

dt

(
ϕ2

t

2 + ϕ2
x

2 + (1 − cos ϕ)
)

· dx =
∫ ∞

−∞
(ϕtϕtt + ϕxϕxt + ϕt sin ϕ) · dx

= ϕxϕt|∞−∞ +
∫ ∞

−∞
(ϕtϕtt − ϕtϕxx + ϕt sin ϕ) · dx

=
∫ ∞

−∞
−ϕt(ϕxx − ϕtt − sin ϕ) · dx

=
∫ ∞

−∞
−ϕt(αϕt − γ) · dx

=
∫ ∞

−∞
(γϕt − αϕ2

t ) · dx

(3.20)

Immediately we see that it is possible for a soliton to move with no net energy change,

even when dissipation and driving are present. This happens at a special velocity found by

substituting equation (  3.17 ) into the RHS of equation ( 3.20 ) and setting the integral to zero:

|v| = 1√
1 + (4α

πγ
)2

=


πγ
4α

γ ≪ 1

1 γ → 1
(3.21)

This is known as the ‘power balance’ velocity[ 8 ], [  31 ].

Next, for weak damping and driving, we can search for a ‘adiabatic’ modification of the

soliton solution, equation ( 3.17 ), by making the velocity time dependent. This yields a time-

dependent ‘energy’ using equation ( 3.18 ), whose time derivative can be equated to the last

expression in equation ( 3.20 ) (with the substitution of equation ( 3.17 ) with a time-dependent

velocity):
dv

dt
= γπ(1 − v2) 3

2 − 4αv(1 − v2). (3.22)

35



This is a much simpler to solve ODE that describes the physical effects of small driving

currents and dissipation on the fluxon’s velocity [ 32 ]. It allows the calculation of how the

fluxon velocity approaches the steady-state ‘power balance’ velocity, equation ( 3.21 ).

3.2.3 Momentum conservation

The pristine sine-Gordon equation has translational invariance. This, by Noether’s the-

orem[ 33 ], leads to the conservation of momentum, which is found to be[ 30 ]:

P = −
∫ ∞

−∞
ϕxϕtdx. (3.23)

Thus, the fluxon, equation ( 3.17 ), has momentum

P0 = 8v√
1 − v2

. (3.24)

In the presence of uniform driving and damping, the momentum is no longer conserved and

changes as follows, using equation ( 2.19 ):

dP

dt
= −αP + 2πγ. (3.25)

Substituting the ‘adiabatic’ approximation of a time-varying velocity, v(t), in equation ( 3.24 ),

we find

4dv

dt
= γπ(1 − v2) 3

2 − 4αv(1 − v2), (3.26)

whose LHS differs from equation ( 3.22 ) by a factor of 4 while the RHS is the same. Thus,

while qualitatively correct, clearly additional degrees of freedom need to be considered for

the ‘adiabatic’ deformation of the pristine fluxon solution[ 34 ].

A natural new parameter t consider is the fluxon width, in addition to the drifting

position, as captured in the ansatz:

ϕ = 4 tan−1
(

e− x−χ(t)
w(t)

)
. (3.27)
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This form can now be used to variationally find the equations of motion governing the width

and location. This was done in [ 35 ], with improved matching with numerical results. Due

to the increased complexity of the calculations without commensurate increase in physical

content, I leave it to the interested reader to pursue that reference. In what follows, I have

used the aforementioned ideas for developing physical intuition, however I have depended on

numerical calculations to reliably calculate JJ circuit dynamics.
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4. FLUXON LOGIC AND ABRC GATES

I will now present some fluxon logic circuits, including some new ABRC gate designs culmi-

nating with the rotary gate that I helped construct.

4.1 Historical Development: Rapid Single-Flux Quanta (RSFQ) Circuits

The first implementation of logical circuits using Josephson junctions (JJs) as an active

component attempted to mimic voltage state logic in the semiconductor industry. The

attraction then was the ultrafast picosecond timescale switching of JJs (this can be seen

from the AC Josephson effect, which yields THz winding rates at typical maximal bias

voltages of a few mV). As discussed in section  2.3 , underdamped JJs exhibit hysteresis and

can thus be switched between ‘superconducting’ and ‘resistive’ states depending on the time

course of a bias current. They therefore can be used as switches controlled through the bias

current being applied to the junction - the bit state ‘1’ can then be associated with the

resistive state and ‘0’ with the superconducting state [ 36 ]. Such ideas were explored a few

decades ago, including at companies like IBM[ 37 ].

Figure 4.1. Logic in superconducting circuits is based on the presence or
absence of a flux quanta (fluxons) trapped in a superconducting wire loop -
the magnetic flux is quantized in the loop and digital bits can then be encoded
as SFQ.

In contrast to voltage-based logical circuit families, Lihkarev and others proposed logical

families that instead used the absence and presence of single flux quantum (SFQ) pulses

encoded as either logical ‘1’ or ‘0’ [ 36 ], exploiting the topological stability of flux quanta
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in superconducting rings (Figure  4.1 ). The information, in the form of flux quanta, is then

moved around using fluxons (solitons) in analogy with propagating voltage levels through

electrical circuits, as done in usual electronic computers. In this scheme, however, instead

of using underdamped JJs, as was the case for the IBM example mentioned above, driven

overdamped JJs (see related analysis for the ‘power balance’ fluxon velocity, equation (  3.21 ))

were used to maintain tight control on fluxon propagation and eliminate oscillations (hence

overdamped) [ 38 ]. Of course, such designs were inherently dissipative, an issue being ad-

dressed by designing circuits that implement asynchronous ballistic reversible computation

(ABRC) principles, which use somewhat underdamped Josephson junctions minimize dissi-

pation.

4.2 ABRC gate: Reversible Memory Cell Device

My collaborators at Sandia identified a circuit design demonstrating the simplest possible

nontrivial asynchronous ballistic reversible computational logic functional behavior[ 39 ]. In

this circuit, bits are encoded as conserved polarized fluxons in a one-bit reversible memory

cell with one bidirectional I/O port. All JJs are underdamped and there is no driving current

along the JJ lines. The gate circuit schematic and my numerical simulation of its behaviors

are shown in Figure  4.2 . A long Josephson junction transmission line (broken into 5 sections

with 20 cells each, see section  3 ) is terminated at the reversible memory cell at the right end.

The memory cell is just a JJ in a loop with inductance, L, tuned such that LIc ∼ Φ0. The

physical import is that the cell can be initialized to only trap at most one fluxon/antifluxon

and no more. Thus, if an incoming fluxon has the same sign as the fluxon stored in the RM

cell, it gets reflected. If one gets the coupling right between the transmission line and the

RM cell (mostly an art, but can be guided by matching impedance), if the incoming fluxon

has the opposite sign as the fluxon stored in the RM cell, the fluxon exchanges its polarity

and is reflected back with the opposite polarity, while the stored state in the RM cell also

changes sign. This is a nontrivial single-terminal gate in the ABRC context [ 39 ].

In Figure  4.2 , I have shown two numerical simulations performed using the WRspice

circuit simulator. The simulation on the left (right) considers what happens when a fluxon
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Figure 4.2. WRspice circuit schematic of Josephson Junction transmission
line terminated with the reversible memory cell [ 39 ], showing my numerical
calculations for two different values of the initial fluxon polarity in the storage
loop (−1 and +1 on the left and right, respectively, relative to the propagating
fluxon). (a) is a current source that generates a fluxon by rapid switching of
current; (b)-(g) shows the current at each of the 6 positions indicated (these are
zero inductance inductors that allow current to be recorded, an idiosyncrasy
of how WRspice operates); (h) the current circulating in the terminating cell;
(i) the current through the JJ in the terminating cell; (j) the JJ phase; (k) the
voltage drop across the junction.

impinges on the memory cell initialized to include a fluxon of the opposite (same) sign.

Let me explain what the figures show, using the analysis presented in section  2.5 . Using

equations ( 2.16 ) and ( 2.17 ), the spatial derivative of the Josephson phase is proportional to

the currents measured in along the upper/lower superconducting lines. Using equation (  3.6 ),

it is clear that the fluxon shows up as a peaked structure in the current vs. time plot, whereas

the polarity is reflected in the sign of the peak. This procedure does not give the direction

of propagation; this direction is found by observing the order of appearance of the fluxon in

successive points on the transmission line.
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Using these insights, we now turn to interpreting my numerical calculation in Figure  4.2 .

It is clear from the current readings (b)–(g) that in the simulation on the left (incoming

fluxon and stored fluxon have opposite signs), the fluxon is reflected with opposite polarity.

The JJ phase shown in plot (j) changes by 2π such that the current flowing is equal but

opposite to the initial current, showing that the stored fluxon has also changed sign (plot

(h)). In the simulation on the right, when incoming and stored fluxons have the same sign,

the fluxon is reflected without polarity change. The JJ phase also does not change. (The

oscillations are due the underdamped nature of the junction, which ensures minimal energy

loss.)

It is worth noting again the ballistic nature of the circuit, where no appreciable energy

input occurs (except where the fluxon is generated in the left DCSFQ circuit) and there is

little dissipation over the long process of transmission across hundreds of cells and one gate

operation. The little dissipation is reflected in the slowing down and concomitant broadening

of the fluxon (see dependence on v in equation (  3.6 )). I am collaborating with our experi-

mental collaborators at Sandia National Laboratory to ensure successful implementation of

this device.

4.3 ABRC gate: Josephson Junction Rotary Device

4.3.1 Motivation

Following the prediction of realistic circuits implementing one-terminal [ 39 ] and two-

terminal [ 7 ] ABRC fluxon logic gates, let us now consider the minimal set of three-terminal

devices that have been shown to be computationally universal: the rotary and toggled barrier

as shown in Figure  4.3 [ 40 ].

The Rotary is a stateless 3-terminal unary (single input) device that routes pulses cir-

cularly between the terminals in a fixed rotational direction (clockwise or counterclockwise)

[ 40 ]. A pulse will enter through one terminal and leave through the next terminal and so on

in a cyclic fashion, the chirality being determined by the sign of the fluxon, i.e., whether it

is a fluxon or an antifluxon.
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Figure 4.3. Shown on the left: minimal three-terminal ABRC devices that
have been shown to be computationally universal, the Rotary and the Toggling
Barrier (left). The Rotary routes a +1 fluxon in the direction shown and a −1
fluxon in the opposite direction. The Toggling Barrier toggles between having
wire and barrier behavior in effect between its left (a) and right (b) terminals
whenever a pulse reflects off its control (c) terminal. On the right is shown a
possible logic gate constructed from these devices, the Toggling Switch Gate
(TSG), equivalent to an AND gate. The TSG routes an incoming data signal
I to either the upwards U (1) or downwards D (0) output terminal depending
on which ever state is toggled by the control input Cin [ 40 ]. (Image credit: Dr.
Michael Frank, Sandia NL.)

I have worked through some Rotary designs, the schematic of one of them shown in

Figure  4.4 , which did not produce the desired behavior (the fluxon got reflected irrespective

of the presence and polarity of a fluxon trapped in the Rotary). We do now have a working

design that works without any initialization of the rotary, presented in the next section.

4.3.2 Final Working Design of a JJ Rotary

Multiple preliminary designs from this work informed and motivated followup work spear-

headed by Mr. Rishabh Khare, another graduate student in Prof. Biswas’s group. Please

see appendices for extensive details. Here I present the working design for the JJ Rotary

developed by him, as part of this synergistic project.

The working Rotary design schematic is presented in Figure  4.5 . The rotary itself is

composed of three Josephson junctions, each shunting one of the three JJ transmission lines.

Remarkably, even though the design looks perfectly rotationally symmetric, the polarity of
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Figure 4.4. Schematic of a possible Josephson junction Rotary design that
did not produce the desired behavior (the fluxons got reflected). The design
had three inductances and JJs within the rotary chosen such that they could
support a flux quantum at most. The thought was to mimic the behavior of
the RM cell when the rotary was initialized with a stored fluxon/antifluxon,
Figure  4.2 , but have the incoming fluxon transmitted to a different branch.
We do have a working model now, see section  4.3.2 .

the incoming fluxon is sufficient to break the rotational symmetry and choose a handedness

of propagation!

This is demonstrated in the propagation of a solitary fluxon coming in from the left

branch, see Figure  4.6 to follow the propagating ballistic anti-fluxon (hence the sign of the

current peak, note the directions of arrows in Figure  4.5 labeling current measurement direc-

tions). It is evident from the current plots that this anti-fluxon is propagating anticlockwise

through the rotary. The ends of the JJ transmission lines reflect the fluxons with very little

energy change and so multiple transits can be observed in Figure  4.6 . Not shown here, the

a fluxon with the same energy travels in the clockwise direction.

As we try to develop a physical understanding of this process in such a simple and

elegant circuit, from our simulations it is clear that the chirality breaking is a function of the

energy of the fluxon. There appears to be two energy thresholds. Fluxons traveling below

the lowest energy threshold are simply absorbed by the rotary! Between the two energy

thresholds, the antifluxons/fluxons traverse the rotary clockwise/anticlockwise, while above

the higher energy threshold, the opposite behavior happens, i.e., antifluxons/fluxons traverse
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Figure 4.5. Final design for a working JJ rotary. The rotary itself is composed
of three Josephson junctions, each shunting one of the three JJ transmission
lines. This rotary routes antifluxons/fluxons of high enough energy in an anti-
clockwise/clockwise fashion, as demonstrated for the antifluxon (magnetic flux
into the paper, clockwise circulation of supercurrents) case in Figure  4.6 . The
large arrows correspond to the location and polarity of currents being reported
over the successive graphs in Figure  4.6 . (Image credit: Rudro Biswas.)

the rotary in the anticlockwise/clockwise direction. It is the last of these three regimes that

has been demonstrated in Figure  4.6 .

4.3.3 Summary and Future Outlook

We have thus demonstrated a working Rotary device and are developing a parameter

space of its behaviors. In the long term, it is hoped that with the physical understanding

gained from designing such devices, we can develop a straightforward and elegant lumped-

element picture of ballistic fluxon circuits analogous to the well-developed theory of electric

circuits.
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Figure 4.6. Plots of currents measured at the labeled locations of the rotary
Figure  4.6 . The presence of a positive peak corresponds to an antifluxon (flux
directed into the paper in Figure  4.6 ). Clearly, this antifluxon travels anti-
clockwise from the left branch to the bottom, to the right, and finally back
to the left branch. In each branch, the soliton gets elastically reflected when
incident at the far end. (Image credit: Rudro Biswas.)
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A. APPENDIX: JJ ROTARY - BRANCHES TERMINATED

WITH RESISTORS

In this appendix, we outline our method of performing a parameter sweep on resistors added

to the Josephson junction rotary device simulations in WRspice. Below shows the JJ rotary

we are simulating. The incoming flux travels through the 3 rotary branch/terminals in a

counter-clockwise fashion.

Figure A.1. Circuit schematic of Josephson Junction rotary device as seen
in WRspice with each of the 3 branches indicated. Labels 1-9 correspond to
the current at each location and A-C indicate the JJ phase on each of the 3
junctions.

Figure A.1 shows the JJ rotary device we are simulating.

A.1 Both Branch 2 and 3 terminated with resistor

Figure A.2 show resistors are connected to terminate each branch in WRspice. As seen

in the Figures A.3 - A.5 below, both branches 2 and 3 are terminated with a resistor.

A parameter sweep simulation is performed for resistance values, R = 1Ω, R = 5Ω, and
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Figure A.2. JJ branches terminated with resistor.

R = 9Ω. Below are the results for the parameter sweep for each resistance value with both

branches terminated with the resistor.

A.2 Only Branch 2 terminated with resistor

In this section, we show simulation results when only branch 2 is terminated with a

resistor. A parameter sweep is performed and the results are shown in Figures A.6-A.8.

A.3 Only Branch 3 terminated with resistor

In this section, we show simulation results when only branch 3 is terminated with a

resistor. A parameter sweep is performed and the results are shown in Figures A.9-A.11.
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Figure A.3. Branches 2 and 3 are terminated in a 1Ω resistor. Fluxon
absorbed in branch 3.
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Figure A.4. Branches 2 and 3 are terminated in a 5Ω resistor. Fluxon
absorbed in branch 2.
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Figure A.5. Branches 2 and 3 are terminated in a 9Ω resistor. Fluxon
absorbed in branch 2.
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Figure A.6. Branch 2 is terminated in a 1Ω resistor. Fluxon propagates from
branch 1, to branch 3 (reflected from resistor), then enters branch 2 and is
absorbed in branch 2 resistor.
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Figure A.7. Branch 2 is terminated in a 5Ω resistor. Fluxon propagates from
branch 1, to branch 3 (reflected from resistor), then enters branch 2 and is
absorbed in branch 2 resistor.
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Figure A.8. Branch 2 is terminated in a 9Ω resistor. Fluxon re-enters branch 1.
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Figure A.9. Branch 3 is terminated in a 1Ω resistor. Fluxon is absorbed in
branch 3. It does not enter branch 2.
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Figure A.10. Branch 3 is terminated in a 5Ω resistor. Fluxon is absorbed in
branch 3. It does not enter branch 2
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Figure A.11. Branch 3 is terminated in a 9Ω resistor. Fluxon does not enter
branch 3 and is reflected repeatedly between rotary junction and branch 2
resistor.
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B. APPENDIX: JJ ROTARY - CURRENT INITIALIZED IN

ROTARY

Figure B.1. Branch 3 is terminated in a 9Ω resistor.

In this appendix, we outline our method of performing a parameter sweep on an initialized

current in the JJ rotary device. This is done for both clockwise and counter-clockwise

configuration as seen in Figure B.1.

B.1 JJ Rotary - Clockwise Current Initialized in Rotary

In this section, we show simulation results for an initialized clockwise current in the JJ

rotary device. All JJs have a critical current (CW) of Ic = 1.5µA. A parameter sweep

simulation is performed for initial currents I0 = 0.57µA, I0 = 1.06µA, and I0 = 1.39µA.

The results are shown below in Figures B.2-B.4.
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B.2 JJ Rotary - Counter-Clockwise Current Initialized in Rotary

In this section, we show simulation results for an initialized counter-clockwise current

in the JJ rotary device. All JJs have a critical current of Ic = 1.5µA. A parameter sweep

simulation is again performed for initial currents (CCW) I0 = 0.57µA, I0 = 1.06µA, and

I0 = 1.39µA. The results are shown below results are shown below in Figures B.5-B.7.
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Figure B.2. Initial clockwise current of I0 = 0.57µA
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Figure B.3. Initial clockwise current of I0 = 1.06µA
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Figure B.4. Initial clockwise current of I0 = 1.39µA
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Figure B.5. Initial counter-clockwise current of I0 = 0.57µA
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Figure B.6. Initial counter-clockwise current of I0 = 1.06µA
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Figure B.7. Initial counter-clockwise current of I0 = 1.39µA
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C. APPENDIX: JJ ROTARY - BRANCHES 2 AND 3 SHORTED

In this appendix, we show simulation results for rotary branches terminals 2 and 3 shorted

- the upper and lower inductors are connected with a wire. These results are shown in

Figures C.1-C.3.
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Figure C.1. Both branches 2 and 3 are terminated with a short.
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Figure C.2. Branches 2 is terminated with a short.
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Figure C.3. Branch 3 is terminated with a short.
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D. APPENDIX: MATHEMATICA CODES

In this appendix, we provide mathematica codes used for WRspice data extraction and

fluxon visualization.

D.1 WRspice Data Extraction Code

WRspice was used to numerically simulate fluxon behavior (currents and JJ phases at

different points in our circuit designs) and the code below was used to extract the data, obtain

the raw data, group data type, and plot the parameter sweeps on either resistance values or

initialized rotary currents. Each value corresponds to a different color on the plotted data.

Below is the mathematica code used for this data extraction as seen in Figures D.1-D.3.

Figure D.1. Code for importing the sweep data (parameter sweep on either
resistance or initialized current)

Figure D.2. Code for sweep data separation
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Figure D.3. Code for color-coding sweep data for value of resistance or initial current

D.2 Fluxon Visualization

Upon obtaining the raw data from our data extraction from WRspice, these data files

were then used to create visualizations for fluxon propagation through the associated circuit

designs. The code consists of data import, data normalization, image import of circuit

design, image import, a scheme to locate sections on the image file to represent fluxon

propagation (via change in red opacity) and JJ phase (via yellow rotating arrows), and video

file generation. Below is the mathematica code for this task as can be seen in Figures D.4-

D.12.
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Figure D.4. Code for importing the WRspice data for each of the currents
at the 9 locations along the JJ rotary where the fluxon propagates.

Figure D.5. Code for normalization of the data imported. This is done for
all 9 locations along the JJ rotary.

Figure D.6. Code for importing of WRspice data for the phase on each of
the 3 Josephson junctions.
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Figure D.7. Code for separation of phase data.

Figure D.8. Code for importing the JJ rotary image file.

Figure D.9. Code showing a scheme for finding the location on the imported
image for which the fluxon will propagate.
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Figure D.10. A test showing the complete visualization before generating video file.

Figure D.11. Code for generation of video file
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Figure D.12. Code for generating video file for a given file name
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