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ABSTRACT

We live in an age in which computation touches upon every aspect of our lives in ever

increasing ways. To meet the demand for increased computing power and ability, new com-

putation strategies are continually being proposed. In this dissertation, we consider two

research projects related to two such cutting edge paradigms. We first consider developing

superconducting devices that implement asynchronous reversible ballistic computation. This

paradigm was developed to circumvent Landauer’s principle of a minimum energy required

per bitwise computation operation. We report the design of a new device, the rotary, which is

a critical step towards developing universal computation gates in the scheme of synchronous

reversible ballistic computation. Next, we turn to the consideration of anyons which have

been predicted to enable topological quantum computing, a quantum computing paradigm

that is relatively immune to environmental noise. We consider initial steps in the develop-

ment of a Bethe ansatz solvable model that will help decipher the many-body properties of

Majorana zero modes in superconducting Kitaev wires.
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1. INTRODUCTION AND OVERVIEW

In this dissertation, we will explore research topics related to two computation paradigms

at the cutting edge of research – ballistic reversible computing and topological quantum

computation. These have been proposed as future alternatives to conventional computing

approaches: ballistic reversible computing is expected to lead to much lower energy consump-

tion because it circumvents Landauer’s principle mandating a minimum energy dissipation

per elementary computation step; topological quantum computation is hoped to implement

a decoherence-resistant form of quantum computing, a new paradigm that can outperform

classical algorithms in certain kinds of important tasks.

1.1 Landauer’s Principle and Reversible Computing

Rolf Landauer [ 1 ] applied thermodynamical reasoning to digital computers, arguing that

an elementary computation on a bit, which is conventionally accompanied by erasure of the

input bit and writing of the output bit to memory, requires expenditure of ∆W ≥ kT ln 2

amount of work which eventually gets lost as heat. The act of erasure requires increasing

entropy by ∆S = k ln 2, where k = kB is the Boltzmann’s constant. The subsequent process

of writing leads to the loss of this entropy that needs to be supplied by work done on

the system: ∆W ≥ kT ln 2, where T is the temperature of the surroundings. This lower

dissipation bound is a consequence of the way traditional computation is performed, in a

thermodynamically irreversible fashion.

A simple demonstration of Landauer’s principle comes from considering an elementary

bit memory to be the position of a classical particle in a double well. A simple erasure

technique is to lower the double well barrier to zero and then lift it back up again slowly.

At the end of this process, if we started with a written bit, i.e., we knew that the particle

was in a particular well, the entropy of the memory would have increased by ∆S = k ln 2.

This ‘initialized’ memory can be written onto by lifting the bottom of the well that needs

to be unoccupied above the barrier and then lowering it again, the final state being assured

to be the one in which the particle is in the undisturbed well. Since all previously gained

entropy is lost, external work input of at least ∆W = T∆S, where T is the temperature of
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the surroundings, is necessary. Thus, entire process of erasure and writing requires at least

T∆S = kT ln 2 amount of external work input, which is eventually dissipated as heat.

There have been numerous experimental attempts to test Landauer’s principle using the

picture just presented. In 2012, Berut et. al. [ 2 ] investigated Landauer’s principle by looking

at colloidal particles pinned down in double-well potential. Their experiment was the first

experiment to quantify the small amounts of energy released when a single bit of information

is erased. There have been other high precision experiments [ 3 ], [ 4 ] that demonstrated the

validity of Landauer’s principle in conventional computation processes.

Landauer’s principle is technologically significant for the following reason. Over the last

70 years, computing technology has progressed rapidly, as evidenced by the continuous ap-

plicability of Moore’s exponential increase law to the growth of concentration of computing

power per unit area of integrated circuit chips. This means that computers need to dissipate

increasing amounts of energy per unit area and so simultaneously designs have to be made

more energy efficient. As seen in Figure  1.1 , in near future semiconductor computing effi-

ciency is predicted to increase but is bound above by physical limits that are more stringent

than allowed by Landauer’s principle [ 5 ]. In theory, by inventing other technologies we could

still continue to make conventional computing more and more energy efficient, but finally

Landauer’s principle will make further improvement impossible.

Looking ahead to circumventing the final limit on energy efficiency imposed by Landauer’s

principle, the paradigm of reversible computing [ 7 ] proposes to remove the central condition,

irreversibility, driving Landauer’s principle. The idea is to design computation around gates

which are one-to-one, producing a unique output for every possible input, and reversible,

exchanging the input-output data pair when run in reverse. There is no information erasure

and no known finite minimum energy bound for computation to occur. In practice, this

reversibility of gates has to be paired with lossless, i.e., ballistic propagation of information,

leading to an ideal zero dissipation computation paradigm known as Ballistic Reversible

Computation.

A further improvement is necessary before Ballistic Reversible Computation can become

practical. In the original paradigm, ballistic signals need to arrive together at a reversible

gate for computation to occur. This would require complex clocking circuits and other large
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Figure 1.1. Energy targets from the 2015 ITRS roadmap: Node en-
ergies (red) and gate energies (blue) are shown. The transistor gate energies
are predicted to reach the thermal noise limit (100kBT ) which will limit our
scaling capabilities in the future. Beyond this, we will need to either reduce
the number of gate operations or reuse the large fractions of the logic signal
energy [ 6 ].

design overheads to realize. To eliminate this need, the paradigm of Asynchronous Ballistic

Reversible Computation (ABRC) has been invented[ 6 ], where gates are designed such that

input bits can arrive consecutively at arbitrarily delayed intervals for computation to occur.

It is this paradigm that we are working to design physical devices for, in collaboration with

Drs. Michael Frank and Rupert Lewis at Sandia National Lab.

Specifically, we will consider superconducting networks that implement ABRC. In our

design, ballistic bits will be represented by two possible polarizations of topologically stabi-
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lized soliton excitations in Josephson Junction (JJ) transmission lines. Our focus will be on

designing devices, based on superconducting elements, which can be used to finally construct

universal computation gates in the ABRC paradigm. We will discuss the development and

characterization of a three terminal rotary device for polarization-dependent chiral routing

of fluxons from terminal to terminal.

1.2 Topological Quantum Computation and Majorana fermions

While the paradigm of reversible computation tries to improve energy efficiency of compu-

tation, yet another paradigm – quantum computation – promises to outperform conventional

classical/deterministic bit-based computation when solving some specific yet significant prob-

lems.

The difference between deterministic bit-based ‘classical’ computers and quantum com-

puters fundamentally arise from the objects quantum computers work with – ‘qubits’ – com-

plex wavefunctions in a two-dimensional Hilbert space, instead of classical bits that classical

computers work with, which can only store information in one of two states: 0 or 1. A qubit

can exist in an infinite continuum of complex linear combinations of quantum states |0⟩ and

|1⟩ i.e. α|0⟩ +β|1⟩, where α and β are complex numbers satisfying |α|2 + |β|2 = 1 and whose

overall complex phase is irrelevant. This vastly expanded operation space allows develop-

ment of quantum computation algorithms, based on unitary transformations from quantum

physics, which can outperform classical algorithms for certain tasks. One such task is to

factorize a large m-digit number [ 8 ]. The fastest classical algorithm takes ∼ exp(m 1
3 ) steps

to solve this problem, a daunting task for large m. This difficulty underlies the functioning

of the dominant public encryption platforms we use today. Meanwhile, Shor[ 9 ](1994) showed

that quantum computers can perform this factorization in ∼ m2 logm log logm steps which is

considerably faster than classical computation algorithms. This and other results imply that

we can solve many complex problems using a quantum computer, which are unsurmountable

when using classical computers.

All this is exciting but realizing a quantum computer faces some hurdles. Error correc-

tion is an important part of a computer. In the presence of environmental noise, delicate
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superpositions of quantum states undergo wavefunction collapse leading to failure of the com-

putation. While environment-induced (usually thermal) errors can affect classical computers,

modern designs utilizing appropriate error correction routines can easily assure effectively

faultless operation. Modern technologies have yet to produce a quantum computer, even

though in theory error correction algorithms have been invented to cure the problem of

quantum decoherence [ 10 ]–[ 14 ]. However, keeping in mind the nascent classical computers

and how sensitive they were to the environment, we can be hopeful that in future robust

quantum computers will be built that handle errors so well that, like the situation with

classical computers now, end users are completely unaware of them.

A central goal for building quantum computers today is thus to prevent environmental

decoherence. The challenge is to isolate the computer from the environment well enough

such that decoherence is manageable, yet retain enough external control such that users can

send inputs and receive outputs. One scheme that promises to make this possible is the idea

of topological quantum computation [ 15 ], [ 16 ]. At the heart of this idea is the existence of

novel particles called anyons, more specifically non-abelian anyons, which allow nontrivial

unitary transformations to occur amongst a degenerate set of states due to the simple action

of moving anyons around each other in complex patterns (braiding). A crucial point is that

creating such anyons in conventional matter, composed of ‘non’-anyon fermions and bosons,

requires the creation of an highly non-local quantum-entangled many-body state. Such high

entanglement is expected to be immune to environmental effects, which are local in nature,

unless the environmental disturbance has an energy larger than the energy gap separating

the anyon states from other excited states.

Where can we find such non-abelian anyons? As it turns out, superconductors can

have exotic excitations, called Majorana bound states due to a superficial similarity with

Majorana fermions from particle physics [ 17 ] , which behave like non-abelian anyons [ 18 ].

While originally vortices in exotic two dimensional p + ip superconductors were thought to

host these Majorana states [ 19 ], it was later argued that such anyons can live at the ends of

p-wave superconducting wires [ 20 ]. This idea has been further distilled to the understanding

that if one can create a single fermion mode into which superconductivity is induced by, say,

proximity with a conventional superconductor, then the two ends of the one dimensional
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channel host Majorana bound states [ 21 ]–[ 23 ]. This is thought to be an accessible challenge

with current experimental technologies and a widespread decade-long effort has been made

to study Majorana bound states in superconducting nanowires.

While experiments have reached stunning precision, conclusive establishment of the ex-

istence of Majorana bound states with anyonic properties has remained out of reach. It is

still the most accessible model of a non-abelian anyon and our group has been developing

a Bethe-ansatz solvable model to study the many-body properties of the Majorana bound

state. Such a solvable model requires three critical ingredients: (a) it needs to include lo-

cal attractive interactions; (b) it is a fermionic model with exactly one species of fermion;

and (c) it needs to possess hard wall boundary conditions. Solvable models have previously

been constructed to study the Majorana bound state, but none have been able to meet all

three criteria listed above. We will report some of our progress in the last chapter of this

dissertation.

1.3 Brief Outline

This dissertation is organized as follows. Chapter 2 and Chapter 3 focus on superconduct-

ing electronics, historical attempts at creating superconducting logic, asynchronous ballistic

reversible circuits and the formulation of the rotary device. In Chapter 4, we discuss the

Kitaev model of the Majorana bound state, the Bethe-ansatz solvable Lieb-Liniger model

and its extension to hard walled boundary conditions, an essential step towards realizing

Majorana bound states in the corresponding fermion model.
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2. BALLISTIC FLUXONS IN JOSEPHSON JUNCTION

TRANSMISSION LINES

In this chapter, we will discuss how ballistic fluxons propagating in superconducting circuits

arise, which can then be used to implement asynchronous ballistic reversible computing.

2.1 Superconductivity

Superconductivity was discovered by Onnes over a century ago [ 24 ] and we now have

a very successful theory of superconductivity in many conventional substances [ 25 ]–[ 27 ].

Superconductors, of course, famously have zero resistance. However, they are not just ‘very

good conductors/metals’ but entirely new states of matter – they expel magnetic flux, a

phenomenon known as the Meissner effect [ 28 ], a property that is at odds with the behavior

of metals.

We will use two significant properties of superconductors in what follows. First, a su-

perconductor is characterized at all points inside by a complex order parameter field, Ψ(r⃗)

[ 25 ]–[ 27 ], which can be thought of as a macroscopic condensate wavefunction of −2e-charged

BCS Cooper pairs [  26 ] (see below). Second, the complex phase of the order parameter,

φ = arg(Ψ), couples to the magnetic vector potential such that in equilibrium deep inside

a superconductor, the gradient of the phase is exactly balanced by the vector potential and

so:

φ(r⃗2) − φ(r⃗1) = −2e
ℏ

∫ r⃗2

r⃗1
A⃗(r⃗) · dr⃗. (2.1)

Since the phase of a complex number is unique up to an integer multiple of 2π, by considering

a closed loop (i.e., r⃗1 = r⃗2 above) that is everywhere inside the superconductor and using

Stokes’ theorem, we have:

2mπ = 2e
ℏ

ΦB, ⇒ ΦB = mΦ0. (2.2)
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Herein, ΦB is the magnetic flux, Φ0 = h/(2e) is the universal superconducting flux quantum

and m is an integer. If there is a superconductor everywhere inside the loop, ΦB = 0

due to the Meissner effect and so only m = 0 is allowed. However, if there is a hole

inside the loop, ΦB can be nonzero but has to be an integer multiple of the universal flux

quantum! This is the remarkable property of flux quantization in superconducting rings

that has been observed in experiments [ 29 ], [ 30 ]. As we will see below, ballistic soliton

excitations trapping such quantized fluxes, called ‘fluxons’, can be created in superconducting

transmission lines incorporating Josephson junctions [  31 ], laying the foundation for various

computation paradigms in superconducting systems [ 32 ].

2.2 Josephson Junctions

Central to the construction of fluxon-carrying transmission lines is a novel supercon-

ducting device – the Josephson junction. Josephson Junctions ([ 33 ], [  34 ]) are formed when

two superconductors are sandwiched together with a barrier between them. The barrier

can be a thin insulator (superconductor-insulator-superconductor junction or S-I-S), a non-

superconducting metal (S-N-S), or something that diminishes the superconductivity at the

barrier (S-c-S).

Notably, Josephson Junctions carry a superconducting current, typically known as the

supercurrent, that can exist even in the absence of an external voltage. The physical reason

behind this phenomenon is the flow of BCS Cooper pairs across the barrier (DC Josephson

effect) [ 26 ], [ 35 ]. When an applied voltage is present, the supercurrent oscillates with a well-

defined period (AC Josephson effect). To explain these effects, we will now use an intuitive

derivation given by Feynman [ 36 ].

Consider a Josephson junction made up of two superconductors, as shown in figure  2.1 .

Let Ψ1 and Ψ2 be the order parameters/condensate wavefunctions for the superconductors in

the left and the right superconductor, respectively. Writing down the Schrodinger equations

for the two sides, assuming that the condensate has charge −2e,
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Figure 2.1. Josephson Junction: Two superconductors, 1 and 2, joined by a
thin barrier, form a Josephson junction (JJ). The condensate wavefunctions in
the two superconductors are denoted by Ψ1 and Ψ2, respectively. Supercurrent
flows in the absence of voltage if the complex phases of Ψ1 and Ψ2 are different,
a phenomenon known as the DC Josephson effect. Adding a voltage across
the JJ results in oscillatory flow of the supercurrent with the frequency of
oscillations universally related to the voltage V [ 37 ] – this is the AC Josephson
effect.

iℏ∂Ψ1

∂t
= µ1Ψ1 +KΨ2, (2.3)

iℏ∂Ψ2

∂t
= µ2Ψ2 +KΨ1, (2.4)

where K is some coupling constant that characterizes the junction and µ1, µ2 are the chemical

potentials of the superconductors. Since there is a potential difference between the two

terminals, µ1 − µ2 = −2eV . Defining the zero of energy to be halfway between µ1 and µ2,

we get

iℏ∂Ψ1

∂t
= −eVΨ1 +KΨ2, (2.5)

iℏ∂Ψ2

∂t
= +eVΨ2 +KΨ1. (2.6)
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We now make the substitutions

Ψ1 = √
ρ1 expiφ1 , (2.7)

Ψ2 = √
ρ2 expiφ2 , (2.8)

where φ1, φ2 are the phases and ρ1, ρ2 are the electron densities at the different sides of

the junction. This is related to the interpretation of the order parameter as the condensate

wavefunction. Then, equating the real and imaginary parts in both equations, we obtain the

equations of motion for ρ and φ.

ρ̇1 = +2
ℏ
K

√
ρ1ρ2 sin δ, (2.9)

ρ̇2 = −2
ℏ
K

√
ρ1ρ2 sin δ, (2.10)

φ̇1 = −K

ℏ
K

√
ρ2

ρ1
cos δ + eV

ℏ
, (2.11)

φ̇2 = −K

ℏ
K

√
ρ1

ρ2
cos δ − eV

ℏ
, (2.12)

where δ = φ2 − φ1.

These equations encode both AC and DC Josephson effects and can be written in a more

compact form. From the first two equations, ρ̇1 = −ρ̇2, which is the statement of charge

conservation. Defining 2Kρ/ℏ = Ic as the critical current of the junction, the current from

1 to 2 is given by,

J = Ic sin δ(t). (2.13)

This is the time-dependent Josephson relation. Noting that when V = 0 in Eq. ( 2.9 ),

both phases φ1,2 are time-independent, we see that at zero voltage there is a steady (DC)

25



supercurrent following Eq. ( 2.13 ) with a constant value of δ. We have thus derived the DC

Josephson effect.

When V in nonzero and the phases evolve in time, we can combine the phase equations,

δ̇ = φ̇2 − φ̇1 = −2eV
ℏ
. (2.14)

When V = V0 is constant, δ(t) = δ(0) − (2eV0/ℏ)t and so using Eq. ( 2.13 ), we see that

the supercurrent oscillates (AC) with a frequency 2eV0
h

. This phenomenon is called the AC

Josephson effect and the universal ratio between the AC frequency and voltage, 2e/h = 483.6

GHz/mV, is known as the Josephson constant and used to define a voltage standard in terms

of the very accurately measurable frequency.

In passing, we note that the JJ can be characterized as an inductance. To see this,

combine Eqs. (  2.13 ) and ( 2.14 ) by taking a time derivative of the former:

V = − ℏ
2e δ̇ = − ℏ

2eIc cos δ
dJ

dt
≡ −LS

dJ

dt
. (2.15)

Thus, the JJ can be characterized by an inductance, the Josephson inductance Ls = ℏ/2eIc cos δ,

that depends nonlinearly on the Josephson phase, δ.

In addition to the supercurrent characterized by Eqs. (  2.13 ) and ( 2.14 ), realistic Joseph-

son junctions show additional channels of current flow. These effects are captured by the

RCSJ model below.

2.3 The RCSJ Model of a Josephson Junction

The RCSJ model, i.e., the Resistively and Capacitively Shunted Junction model [ 38 ],

[ 39 ] (figure  2.2 ), captures the behavior of many realistic Josephson junctions. Within this

scheme, the real Josephson junction is modeled as an ideal JJ obeying Eqs. (  2.13 ) and ( 2.14 ),

connected in parallel with a resistance and a capacitor (Figure  2.2 , we neglect the noise source

term for our purposes). The resistance accounts for additional conventional current carried
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by other charge carriers such as thermally excited quasiparticles. The capacitance accounts

for charge accumulation at the two superconductor-barrier interfaces.

Figure 2.2. Schematic diagram of the RCSJ model: Real Josephson
junctions are modeled by an ideal JJ connected in parallel with a conductor
(equivalently, a resistor) and a capacitor. The main driving current source is
I, while the model is often augmented by a fluctuating current source IF . We
neglect IF in this dissertation. The Josephson inductance, LS = ℏ/2eIc cos δ,
depends nonlinearly on the JJ phase δ and characterizes the ideal JJ. The
resistance is given by the inverse of the conductance G [ 40 ].

Using Kirchoff’s law, the current through the entire JJ can be written as follows:

I = IS + IN + ID, (2.16)

where IS, IN and ID correspond to the currents through the ideal JJ, the resistance and the

capacitance respectively.

When written in terms of different voltage and phase parameters, this equation becomes,

I = Ic sin δ + V

RN

+ C
dV

dt
. (2.17)

Using the voltage-phase relationship, Eq. (  2.14 ), in Eq. ( 2.17 ),

I = Ic sin δ + 1
RN

Φ0

2π

dδ

dt
+ C

Φ0

2π

d2δ

dt
, (2.18)
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where Φ0 is the superconducting flux quantum. This is the fundamental expression for JJ

current in the RCSJ model, replacing Eq. ( 2.13 ).

Rewriting this,

(
ℏ
2e

)
C
d2δ

dt
+
(
ℏ
2e

)
1
RN

dδ

dt
+ Ic

(
sin δ − I

Ic

)
= 0. (2.19)

Multiplying by ℏ
2e , using the fact that the Josephson coupling energy EJ0 = ℏIc

2e and

defining normalized current i = I/Ic,

(
ℏ
2e

)2

C
d2δ

dt
+
(
ℏ
2e

)2 1
RN

dδ

dt
+ EJ0

d

dδ
(1 − cos δ − iδ) = 0. (2.20)

This equation of motion can be interpreted in terms of a particle of mass M and damping

η moving in a potential U ,

M
d2x

dt2
+ η

dx

dt
+ ∇U = 0. (2.21)

Comparing equations  2.20 and  2.21 , we can make the associations

M =
(
ℏ
2e

)2

C, (2.22)

η =
(
ℏ
2e

)2 1
RN

, (2.23)

U = EJ0 (1 − cos δ − iδ) . (2.24)

The energy potential in the above equation is often interpreted as the energy of the ideal

Josephson junction:

Epot = EJ0

(
1 − cos δ − I

Ic

δ
)
, (2.25)

and is often referred to as the tilted washboard potential because of its shape, visualized in

Figure  2.3 .
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Figure 2.3. Analogy between gauge-invariant phase difference and
damped motion of a particle in a tilted washboard potential: Increas-
ing the current leads to the tilt of the potential. The mass of the particle
M =

(
ℏ
2e

)2
C and the damping η =

(
ℏ
2e

)2 1
RN

control the motion of the parti-
cle [  40 ].

2.3.1 Underdamped and Overdamped Josephson Junctions

Equation ( 2.20 ) can be made dimensionless in terms of reduced units τ ≡ t/τc =

t/(2eIcRN/ℏ), i(τ) = I(t)/Ic and the Stewart-McCumber parameter βC ,

βC
d2δ

dτ 2 + dδ

dτ
+ sin δ − i(τ) = 0. (2.26)

Herein,

βC = 2e
ℏ
IcR

2
NC, (2.27)

which is may be compared with square of the quality factor of an equivalent LCR circuit

near δ = 0. Clearly, βC ≪ 1 implies that the damping term controls the JJ dynamics – this

is thus referred to as the ‘overdamped’ case. The opposite scenario, βC ≫ 1, leads to the

inertial term being the deciding factor and the junction is then called ‘underdamped’.
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Figure 2.4. Overdamped and Underdamped Josephson Junc-
tions:The I-V characteristics of an (a) overdamped and (b) underdamped
Josephson Junction. The underdamped case has a hysteretic behavior whereas
the overdamped case does not show any hysteresis [ 40 ].

Junctions with smaller capacitance or resistance are thus ‘overdamped’. In this scenario,

using the analogy shown in Figure  2.3 , when I < Ic, the ‘particle’ quickly comes to rest at

an equilibrium point given by the ideal JJ relation. Only a DC supercurrent flows and the

voltage drop is zero. When I > Ic, the tilt is strong enough that the highly damped particle

can pass from well to well in a quasi-steady fashion. Thus, there is an AC supercurrent

but the DC component is dissipative and passes through the resistor. This gives rise to the

current-voltage curve seen in the left panel of Figure  2.4 .

‘Underdamped’ JJs, with βC ≫ 1, show a novel behavior. When I > Ic, the system

behaves similarly to the overdamped case above. When I < Ic, the behavior depends

on initial conditions. If the initial voltage is low, the system sits at an equilibrium point

obeying the usual DC Josephson relation, Eq. ( 2.13 ). However, if the initial voltage and

thus ‘velocity’ is high enough, the system has enough kinetic energy to tip continuously from

well to well, with the kinetic energy overcoming the potential energy barrier after every well

so that the particle coninuously moves down the incline. In this scenario, the junction has

an AC supercurrent but the DC component passes through the resistor. The underdamped
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JJ can thus have two qualitatively different states – ‘superconducting’ and ‘resistive’! This

hysteretic behavior leading to two possible states has been utilized as logic states in some

older superconducting computing circuits. The behavior is sketched in the right panel of

Figure  2.4 .

2.4 Fluxons in Josephson Junction Transmission Lines

We are now ready to discuss the novel dynamics of JJ transmission lines, example shown

in Figure  2.5 . Equations governing Josephson phase evolution along the line can be be

obtained by using the Kirchoff’s current conservation law, the RCSJ current law Eq. ( 2.18 )

and the flux-magnetic field relation Eq. ( 2.1 ). This procedure [ 41 ] leads to what is known

as the discrete sine-Gordon equation:

Figure 2.5. JJ transmission lines: Schematic of a JJ transmission line.
Fluxons are topologically stable excitations where the JJ phase changes by an
integer multiple of 2π going from the far left to the far right. (Image credit:
Dr. Dewan Woods.)

δ̈j + Γδ̇j + sin δj = λ2(δj+1 − 2δj + δj−1) + iext
j , (2.28)

where Γ = 1/β2
c is the damping parameter, time has been rescaled by the inverse of the

‘Josephson plasma frequency’ τp = ω−1
p =

√
Φ0C/(2πIc), λ2 = Φ0/(2πIcL) is the discreteness

parameter and iext
j is proportional to the external current injected into the jth junction.

The role of λ is that when it is large, the Josephson phase varies slowly in space and so
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this discrete-space continuous-time equation can be converted into a more tractable fully

continuous equation:

∂ttδ(x, t) − ∂xxδ(x, t) + sin δ(x, t) = −Γ∂tδ(x, t) + γ(x, t). (2.29)

Herein, we have introduced the quasi-continuous spatial coordinate x = j/λ and defined the

driving current field, γ.

When there is no damping or driving, the phase dynamics at large λ is simply given by

the exactly solvable sine-Gordon equation:

∂ttδ(x, t) − ∂xxδ(x, t) + sin δ(x, t) = 0. (2.30)

This is a significant simplification because the sine-Gordon equation is known to possess

soliton solutions. These are isolated localized ballistic excitations whose form and behaviour

is essentially controlled by the interplay between the nonlinear sin δ term and the remaining

linear terms. This equation can be shown to lead to a conserved energy and momentum.

Remarkably, multiple solitons can pass through each other, retaining their energies!

Two families of solitons are particularly interesting to us:

δ±(x, t) = 4 arctan
exp

±x− x0 − vt√
1 − v2)2

 , |v| < 1. (2.31)

These are popularly known as kinks/antikinks respectively, since these solutions require

the Josephson phase to change by ±2π as one travels from far left to far right. This special

topological requirement means that if one initially creates such a traveling soliton in a system

obeying the ‘pure’ sine-Gordon equation, Eq. ( 2.30 ), and then slowly ‘turns on’ the dissipative

and driving terms in Eq. ( 2.29 ), the localized soliton solution cannot disappear since the

Josephson phase still has to change by ±2π from far left to far right! Thus, solitons whose

phases change by a nonzero multiple of 2π across the region of interest continue to exist in

the more realistic JJ transmission line, Figure  2.5 .

32



We are mostly interested in the specific solutions, Eq. ( 2.31 ), since these are correspond

to the elementary topologically stable solitons in the JJ transmission lines. We have seen

that the superconducting phase accumulation around a closed loop is equal to the magnetic

flux through the loop, equal to one superconducting flux quantum per 2π phase change.

Drawing a large loop running through the upper and lower superconductor lines in Figure  2.5 ,

and closing them far away, we see that the kink/antikink carries one superconducting flux

quantum with it (the two solutions carry magnetic flux in opposite directions, out of or into

the paper, respectively). For this reason, these solitons are known as fluxons/antifluxons

[ 31 ], [ 32 ]. They are the ballistic ‘bit’ carriers in the circuits we numerically study in the next

chapter.
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3. FLUXON-BASED ASYNCHRONOUS BALLISTIC

REVERSIBLE COMPUTATION

In this chapter we introduce a fluxon-based superconducting computation paradigm, the

RSFQ computation paradigm, which is a prominent forerunner of modern superconducting

computation circuits. We then discuss fluxon-based asynchronous reversible ballistic compu-

tation and describe the design of a working rotary circuit: the rotary is a critical device for

implementing asynchronous ballistic reversible computing in superconducting circuits, that

routes fluxons in a circular fashion with direction selected by fluxon polarity.

3.1 RSFQ Logic: The Original Fluxon-based Logic

Likharev et. al. [ 42 ] developed the first seriously pursued superconducting circuits that

implemented fluxon-based computation using a system of logic known as RSFQ (Rapid Single

Flux Quantum) logic. They used overdamped junctions, biased by external currents to keep

them in a critical state such that highly damped (i.e., not ballistic) fluxons were moved

through the circuits with high control. Of course, this was a dissipative paradigm where

power was dissipated maintaining driving currents which provided enough energy to make

up for the large damping, i.e., the average on the right hand of Eq. ( 2.29 ) was zero over the

fluxon width.

Figure 3.1. RSFQ transmission line: The RSFQ transmission line made
from overdamped Josephson junctions biased with an external current. (a)
Equivalent circuit and (b) Progression of the SFQ pulse through different
Josephson junctions (Ib = 0.75Ic, LIc = 0.5Φ0) [  42 ].
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An example RSFQ transmission line circuit is shown in Figure  3.1 . A SFQ pulse (a

fluxon in this driven-dissipative system) arriving from source A travels to the right junction

containing JJ J1. J1 is overdamped and the bias current (Ib < Ic) is very close to the

critical current. Applying the particle in a washboard potential analogy (Figure  2.3 ), the

bias current holds the ‘particle’ at the metastable point of tipping over to either of the two

wells on either side. The SFQ pulse or Iin adding to the bias current makes ‘particle’ tip

over to the next well, direction provided by the sign of change of the current, and then come

to rest right at the next tipping point (since it is overdamped). In the JJ, this translates to

a 2π change of the JJ phase, which matches the change required by the passing of an SFQ

pulse.

Meanwhile, the superconducting strips have really low inductance (L1, L2 and L3 are

much less than L ∼ Φ0/Ic) and so cannot hold a static fluxon in a single loop. For example,

in Figure  3.1 , the loop comprising of J1, L1 and J2 cannot hold an entire fluxon. The SFQ

pulse is forced by this incompatibility to move forward through the successive JJs, leading

to fluxon motion in the direction set by initial conditions.

There are significant advantages of using RSFQ logic [ 43 ]. The most attractive feature

is that this family of circuits can achieve high clock frequencies above 100 GHz! Also the

theoretical power consumption, Pdissτ ≃ 10−18 J per bit, is low compared to the semiconduc-

tor counterparts. However, keeping power consumption this low requires exquisite control of

driving currents, for example setting driving currents to zero in regions where the fluxon is

not present. Overall, this and other criteria necessitated significant overhead in circuit de-

sign to distribute these driving ”power-clock” signals throughout the system. Viable RSFQ

circuits have not yet been announced in the public domain.

3.2 Asynchronous Ballistic form of Reversible Logic (ABRL)

In contrast to the RSFQ paradigm, we now concentrate on the ballistic approach to

computing. As discussed in Chapter 1, in this approach information is conveyed by spatially

and temporally localized pulses that are free to move ballistically under their own inertia

along the system. The energy can be recycled multiple times and used for carrying out a
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large number of operations. One of the first models for ballistic computing was suggested by

Fredkin and Toffoli [ 7 ], also known as the Billiard Ball Model, where perfect dissipationless

elastic billiard balls were used to represent information and gates worked by elastically

colliding and routing the balls! This model cannot be implemented literally since it requires

extreme precise control of trajectories, including their arrival times at gates, and errors

worsened exponentially through the process (due to inherently chaotic dynamics).

The spatial precision issue can be rectified by having the pulses travel in a constrained

path, for example, as fluxons in high-quality JJ transmission lines. The circumvention of the

temporal precision can be done if the the devices do not require synchronicity (Figure  3.2 )

by design so that the precise timing of the pulses is not important in determining the action

of a gate. This lead to the creation of Asynchronous Ballistic Revesible Logic (ABRL)

[ 6 ] that incorporates asynchrony, reversibility and ballistic propagation, and is expected

to be realizable using superconducting circuits utilizing underdamped JJ transmission line

fluxons/antifluxons as ballistic data bits. We will now discuss some of our research into

implementing superconducting circuits that can function as ABRL devices.

Figure 3.2. Synchronous vs Asynchronous: Synchronous ballistic circuits
need precise alignment of incoming data pulses (left). Asynchronous ballistic
circuits can function with any delay between consecutive pulses [ 6 ].

3.3 ABRL devices

The initial set of devices (up to three terminals) that we are targeting to design are listed

in [ 6 ] . We will focusing on two nontrivial devices in the list that have been designed: the
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Reversible Memory cell designed by our collaborators [ 44 ] and the JJ Rotary that we have

designed a first working circuit for.

3.3.1 Reversible Memory Cell

The Reversible Memory (RM) cell is one of the simplest devices in the ABRL class that

conserves the fluxon energy while also reading/writing data using flux polarization . It is

a one-port, two-state device which allows the polarity swap of the stored fluxon after a

forward moving fluxon reaches the port (figure  3.3 ). As a memory cell, it functions as a

device capable of reading and writing the data simultaneously.

Figure 3.3. Reversible Memory cell: Sketch of the circuit implementing a
RM cell. The incoming fluxon should swap its polarity with the stored fluxon
after the interaction. As a memory cell, it is useful in reading out the stored
bit and writing a new bit simultaneously [ 44 ].

Our collaborators at Sandia National Lab have theoretically identified a circuit capable

of performing this operation [  44 ]. The transmission line was created using parallel JJ arrays,

although without any bias currents (i.e., truly ballistic unlike previous RFSQ designs). The

transmission line is terminated with a JJ (critical current Ic) and an inductance (L) in

parallel, their values chosen such that they can store exactly one magnetic flux quantum and

no more (i.e., Φ0 < LIc < 2Φ0). An initial circulating current, I, can be used to set up a

fluxon/antifluxon in the memory cell (thus |LI| = Φ0). The results of a numerical WRSpice
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calculation is shown in Figure  3.4 . The fluxon swaps its polarity with the stored fluxon if

they are of opposite polarity. If the polarities of the fluxons match, the incoming fluxon

reflects back with the same polarity without affecting the stored fluxon.

Figure 3.4. WRSpice simulation for RM cell: The top figure shows the
RM Cell circuit design, reproduced from the Xic design interface. The memory
cell part of the circuit, to the far right, consists of a JJ connected parallel to an
inductor with a circulating current in the loop. The value of the inductor and
the critical current are chosen such that Φ0 < LIc < 2Φ0 and |LI| = Φ0. Plots
(b)-(g) show the dynamics of currents in the corresponding labeled regions of
the upper transmission line in the top image. The current is given by the
spatial derivative of the JJ phase, which is of opposite signs for a fluxon or an
antifluxon passing by the region (see Eq. ( 2.31 )). The fluxon/antifluxon motion
direction is deduced from the relative times of arrival at different regions of
the transmission line. The left column shows what happens when the stored
fluxon has a sign opposite to the incoming fluxon, when the fluxon-antifluxon
pair trade places upon collision. The right column shows what happens when
the incoming fluxon has the same polarity as the stored fluxon – it simply
gets reflected without change in polarity. Thus, this circuit shows the desired
behavior of a reversible memory cell. (Image credit: Dr. Dewan Woods.)
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3.3.2 The JJ Rotary

Three-terminal devices relevant to ABRL computation can be realized by a combination

of a stateless device, the Rotary, and a stateful device, the Flipping Rotary [ 6 ] (Figure  3.5 ).

The Rotary routes the pulses coming to a terminal to the next in a cyclic fashion, with the

direction (e.g., clockwise) being fixed and opposite for fluxons and antifluxons. The clockwise

and the anticlockwise Rotaries are just time-reversed variants of each other.

The Flipping Rotary is a 3-terminal device that respects both time-reversal and D3

symmetries (treating the 3 terminals symmetrically). It functions like the Rotary, except that

it changes its state every time a pulse passes through the junction, for example, transitions

from a clockwise rotary to an anticlockwise rotary as shown in Figure  3.5 .

Figure 3.5. Rotary and Flipping Rotary: Diagrams for 3-terminal ABRC
devices. (a) The rotary routes the fluxons in a circular fashion, clockwise or
anticlockwise according to fluxon polarity. (b) The flipping rotary functions
the same as a rotary, however it also switches its state from clockwise to anti-
clockwise and vice-versa each time a fluxon is routed through the junction [ 6 ].

We now present a working circuit realized by our group that implements the action of a

Rotary. The full schematic of the circuit, drawn using Xic graphic editor [ 45 ], is shown in

Figure  3.6 . A selection of designs attempted are presented in Appendix- B , while additional

custom computer codes that were used to perform parameter sweeps, etc. are reproduced in

Appendix- C .

3.3.3 Parts of the Rotary Circuit

We will now describe, one by one, the different parts of the Rotary circuit.
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Figure 3.6. Rotary circuit: Circuit design in Xic. There are 3 branches,
input, bottom and right branch. The input fluxon is generated from the DC
to SFQ converter at the beginning of the input branch. The inductors L1, L2,
L3, L4, L7, L8 are dummy inductors that are placed between the LJJ20 to
measure the current through the transmission line.

PieceWise Linear pulse (PWL)

The circuit is initialized by a current source at the extreme left of Figure  3.7 . This input

goes to the DCSFQ part of the circuit which generates the SFQ pulse. The setting in the

WRSpice [  46 ] format is given by

pwl (0 0 25p −0.07m 75p 0 .35m 900p 0 r ) ,

where the numbers signify the value of the DC pulse at different times. In this case, the

pulse start with 0 at 0 seconds, then decreases to -0.07mV at 25 picoseconds, increasing

linearly to reach 0.35mV at 75 picoseconds and finally coming back to 0 at 900 picoseconds.

The (optional) last parameter ′r′ stands for repeat that generates successive pulses every 900

picoseconds.
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Figure 3.7. PieceWise Linear Pulse generator: The pulse generator is
used to feed a DC current to the DC to SFQ converter. The parameters inside
the pwl function describe the piecewise pulse. The odd entries denote the time
and the even entries denote the DC amplitude.

DC to Single Flux Quantum (DCSFQ) converter

The DCSFQ or DC to Single Flux Quantum converter is used to convert the incoming

DC pulse generated by the PWL generator to a single flux quantum propagating forward.

The DCSFQ circuit used in our calculations is shown in figure  3.8 and taken from the SUNY

RSFQ Cell Library [ 47 ].

The JJ Transmission Lines

As discussed earlier, a JJ transmission line consists of a series of JJs connected in parallel

by superconducting wires which possess some inductance per segment. The LJJ unit used

in our circuit can be seen in Figure  3.9 . The JJ in the rotary are of the jjk type, that are

also used in these LLJ segments.The jjk JJ is defined as

. model j j k j j ( r type =0, cc t =1, vg=2.8m, i c r i t =1.5u , cap=60 f ) ,

where the critical current is 1.5µA, gap voltage is 2.8mV and capacitance is 60fF . The rtype

decides the shunt resistance which has been set to infinity for our case. The inductance values

are chosen in such a way that the product LIc < Φ0 and no flux quantum gets trapped in

these units. These LJJ units are repeated 20 times to get the DLJJ20 (Figure  3.10 ) which

is then used in our rotary circuit. We do not have the bias current that was present in
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Figure 3.8. DC to SFQ converter: Circuit schematic in Xic. The DCSFQ
converter uses the DC pulse from the power source and converts it into a SFQ
pulse moving forward. This design has been taken from the SUNY RSFQ Cell
Library.

earlier RSFQ circuits and the SFQ pulse can travel ballistically through the transmission

line without any overhead or requiring any synchronicity.

Rotary Junction

Finally, the Rotary junction that is our new contribution, is comprised of three JJs

connected to each of the branches as shown in figure  3.11 . Note that these JJs are similar

to the ones used in our transmission line with infinite shunt resistance. Later, we will also

discuss JJs with finite resistances.

3.3.4 Fluxon Path in the Working Rotary Circuit

Figure  3.12 shows the working Rotary circuit in action. The successive plots show the

currents measured at the dummy inductors L1-6 in Figure  3.6 : Plots 1, 4, 6 correspond to the

42



Figure 3.9. JJ transmission line unit: A unit cell of the JJ transmission
line, also called a DLJJ segment. The parameters of the inductances and the
JJ are chosen in such a way that the product LIc < Φ0. This ensures that
these units do not trap any fluxons.

Figure 3.10. DLJJ 20: The DLJJ segment is repeated 20 times to get DLJJ
20. The transmission lines in our circuits are built by joining successive DLJJ
20 units by superconducting wires.

dummy inductors furthest from the rotary in the left, right and bottom branches respectively;

plots 2, 3, 5 correspond to the dummy inductors near the rotary in the left, right and bottom

branches respectively.

Figure  3.12 can now be used to read out what happens after a fluxon is launched into the

left branch (the pulse launcher is set to launch only a single fluxon without repeating). The

fluxon reaches the rotary and is routed to the bottom branch. It reflects from the grounded

ends of the branch and passes through the rotary junction again. Only this time, it goes to
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Figure 3.11. Rotary junction closeup: The Rotary junction consists of
3 Josephson Junctions connected across each of the attached JJ transmission
lines. The JJ has the same parameters as the ones used in the transmission
line (some variation is allowed).

the right branch. Thus the fluxon follows an anticlockwise trajectory and reaches back to

the input branch. We can see that the fluxon takes 1.4 ns to come back to the source.

If we run the simulation for a longer time (Figure  3.13 ), we find that the fluxon does not

move to the bottom branch after moving through the input branch again. Instead, it chooses

to go to the right branch in a clockwise fashion. The fluxon then goes back to the input

branch without affecting the bottom branch. We can see that the fluxon becomes wider and

hence slower after passing through the rotary junction for the first time. We believe that the

energy of the fluxon plays a crucial role in deciding its movement in the output branches.

Other factors being tuned (not shown here) are by-hand asymmetric delays introduced in

the JJ transmission lines.

3.4 Time Reversal Property of the Rotary

The Rotary junction routes the incoming fluxon to one of the branches depending on the

polarity of the fluxon. This can be seen in figure  3.14 , where an incoming antifluxon shows

the complete opposite behavior to the fluxon. Instead of moving to the bottom branch, the
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Figure 3.12. Fluxon path: The fluxon gets routed to the bottom branch
(L7, L8), gets reflected from the grounded ends and moves to the right branch
(L3, L4). This anticlockwise circulation as it reflects back from the right branch
to the input branch (L1, L2).

chirality of the fluxon routes it to the right branch. The subsequent path is chosen in a

clockwise fashion as opposed to anticlockwise in the previous case.

We can test the time reversal symmetry of the rotary junction by flipping the wires close

to the rotary junction. Our hypothesis is that the chirality of the incoming fluxon decides

whether the fluxon is routed clockwise or anticlockwise. By flipping the superconducting

lines, we are converting a fluxon to an antifluxon and vice versa. Figure  3.15 shows that

as the (now) antifluxon encounters the rotary junction, it gets routed to the right branch,

similar to the antifluxon case and opposite to the fluxon case discussed above.

We can solidify our previous investigations into the time reversal symmetry of the Rotary

by combining the previous two cases, i.e. antifluxon with flipped wires. An antifluxon should

be routed to the right branch if the wires were not flipped as shown in Figure  3.14 . We find
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Figure 3.13. Fluxon path for longer times: The fluxon moves a complete
circle from input branch, bottom branch, right branch and back to the input
branch. As the fluxon encounters the rotary junction for the fourth time, it
gets routed to the right branch instead of the bottom branch.

Figure 3.14. Antifluxon input: If the polarity of the input fluxon is re-
versed, the rotary functions as a clockwise rotary. The antifluxon is now routed
to the right branch first and then to the bottom branch.

that due to the flipped wire transformation, the antifluxon is converted to a fluxon at the

Rotary and gets routed anticlockwise to the bottom branch, as can be seen in Figure  3.16 .
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Figure 3.15. Fluxon input with flipped lines near the Rotary junc-
tion: If the wires connecting the input branch to the rotary junction are
reversed, the fluxon gets converted to an antifluxon before entering the junc-
tion. Since the junction behavior only depends on the chirality of the incoming
fluxon, it gets routed similar to an antifluxon even though the input fluxon was
of a different polarity.

Figure 3.16. Antifluxon input with flipped lines near the Rotary
junction: If we combined the previous two transformations: reversed polarity
of the incoming fluxon and flipped wires near the rotary junction, we find an
anticlockwise rotary.
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3.5 Rotary Behavior vs. Input Fluxon Energy

We have investigated how the energy of the input fluxon decides whether the fluxon

passes through the rotary junction or not. We vary the energy of the fluxon by adding a

finite resistance between the power source and the ground at the fluxon source (Figure  3.17 ).

This ensures that the fluxon is slows down before encountering the LJJ20s, the energy lost

depending on the value of the resistance. The loss becomes especially significant once the

resistance matches the impedance of the JJ transmission line (∼ 16Ω, see Appendix- A ).

Figure 3.17. Varying Fluxon Energy: Adding a resistance across the LJJ
transmission line reduces the energy of the incoming fluxon.

Before we characterize Rotary behavior vs. energy of the input fluxon, we need a scheme

to measure its energy after the damping by the resistor in Figure  3.17 . We do this by

measuring the voltage and loop current across one cross-section of the JJ transmission line,

and integrating it over the time of passage of the fluxon across it. Doing this, we have

measured the non-linear variation of the fluxon energy with the resistance. The results of

our calibration calculations are shown in Figure  3.18 .

Our results can be qualitatively summarized as follows, in terms of a higher and lower

energy threshold whose values sensitively depend on circuit parameters. Above the higher

energy threshold, the fluxon/antifluxon behaves in the the manner summarized in the section
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Figure 3.18. Energy as a function of resistance: The energy of the fluxon
varies non-linearly with the resistance in Figure  3.17 .

above. As the energy dips below this higher threshold but remains above the lower threshold,

opposite chiral behavior is observed at the Rotary. Finally, below the lower energy threshold,

the fluxon/antifluxon is simply ‘eaten’ by the Rotary.
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4. TOWARDS EXACT MODELS OF TOPOLOGICAL

QUANTUM COMPUTATION

In this chapter, we will consider developing an exactly solvable model to help uncover a many-

body description of the braiding properties of Majorana bound states in superconducting

wires. Specifically, we first introduce the Kitaev superconducting wire model underlying

most current experimental projects that are being carried out to realize non-abelian anyonic

Majorana bound states in superconductors. We will then introduce the Lieb-Liniger model

for the one-dimensional Bose gas and discuss how it can be adapted for interacting fermions

in one dimension. Finally, we will show how hard wall boundary conditions can be introduced

and discuss next steps towards realizing a solvable model for studying Majorana bound state.

4.1 Majorana Fermions in Particle Physics and Condensed Matter

In 1928, Paul Dirac discovered the relativistic field theoretical equations for electrons[ 48 ].

A counter-intuitive consequence of this description was that the energy spectrum was not

bounded from below. Dirac proposed to rectify this problem by positing that negative energy

states are all occupied in ‘empty’ vacuum. The notion that vacuum consisted of an infinite

number of filled states was quite disturbing and much effort was expended to resolve this

(then) apparently unphysical result.

As part of this effort, Ettore Majorana proposed a new quantum field theory, which he

named “symmetric theory of electrons and positrons” [ 17 ] where, loosely speaking, particles

were required to be their own antiparticles:

γ†
i = γi. (4.1)

His theory did not have Dirac’s filled Fermi sea as the particle and antiparticles in Dirac’s

theory combined in a specific manner to give rise to the Majorana particles.

While Majorana fermions have never been seen in nature as fundamental particles in free

space, condensed matter systems do allow the Majorana condition, Eq. ( 4.1 ), to be realized.

Superconductors have Bogoliubov excitations that are complex superpositions of holes and
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particles – they are a prime target for trying to realize Majorana physics. Indeed, isolated

quasiparticles in exotic p + ip superconductors can satisfy the Majorana condition – these

are known as Majorana bound states and usually arise in regions where the superconduct-

ing order parameter is made to vanish, such as in vortices [ 19 ] or, as discussed below, at

the ends of superconducting wires [ 20 ]–[ 23 ]. Moreover, they are predicted to satisfy two

remarkable properties: they occur at zero energy, i.e., their presence signifies the presence of

a macroscopically degenerate ground state; braiding two such bound states by, say, moving

vortices around each other, creates a unitary transformation superposing these two ground

states [ 18 ]. These are hallmarks of a system that can be utilized for topological quantum

computation [ 15 ], [  16 ] and thus a topic of considerable focus of experimental research.

Despite the intense decades-long attention focused on the realization of Majorana bound

states in superconducting one dimensional electrons, Majorana bound states with non-

abelian braiding properties are yet to be demonstrated. In the foregoing, we will outline

Kitaev’s original (mean field) model and initial steps towards realizing a many-body Bethe

ansatz solvable model that can mimic the basic requirements for realizing Majorana bound

states.

4.2 Kitaev Quantum Wire

In 2001, Kitaev came up with a theoretical model of a superconducting wire [  20 ] where

a single flavor/spin of fermions interact with a p-wave superconducting interaction. The

Hamiltonian is:

H1 =
∑

j
[ − w(a†

jaj+1 + a†
j+1aj) − µ

(
a†

jaj − 1
2

)
+ ∆ajaj+1 + ∆∗a†

j+1a
†
j ], (4.2)

wherein w is the tunneling amplitude, µ a chemical potential, ∆ = |∆|eiθ is the supercon-

ducting pairing amplitude, and a†
j creates a spinless fermion at site j in the one-dimensional

chain.

Kitaev solved this mean-field quadratic model, in the presence of an boundary, by decom-

posing each site’s fermion operator into two Majorana operators, represented in a visually
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Figure 4.1. Majorana bound states in Kitaev wires: Schematic illustra-
tion of the ground state of the Kitaev wire Hamiltonian for (a) µ ̸= 0, |∆| =
w = 0, (b) |∆| = w > 0, µ = 0[ 49 ]. In the first case, the pairing of Majoranas
happens at the same site that leads to a unique ground state, separated from
the excited state by a gap; In the latter case, the Majoranas pair with the
other site Majoranas and hence there are two of them left unpaired. This gives
rise to 2 Majorana zero modes and a doubly degenerate ground state separated
from Bogoliubov excitations by a gap.

appealing fashion in Figure  4.1 . Depending upon parameters, the inner Majorana operators

in Figure  4.1 are bound together, leaving unpaired and localized Majorana bound states at

the ends. This occurs when |∆| = w > 0, µ = 0. Subsequent research activity has led to

many realistic proposals and experiments that realize the Kitaev chain ([ 21 ], [  22 ]).

The Kitaev model and subsequent realizations employ a mean field Bogoliubov de-Gennes

approach. As we will discuss below, there is evidence that such an approach yields qualita-

tively incorrect results for one dimensional Bosonic systems. Thus, there is reason to believe

that calculations that go beyond mean field theory may reveal qualitatively new details about

Majorana bound states in supercondutors. Our long term goal is to approach this problem

via an exact solution and calculate experimentally measurable signatures like the tunneling

spectrum or the consequences of braiding operations.

4.3 An Invitation: Mean Field vs Exact Solution for a Bose Gas

Lieb and Liniger developed an exactly solvable model of the Bose gas [ 50 ] in one di-

mension, discussed below. Using this, they showed that while the mean-field calculation is

qualitatively accurate up to a certain strength of interactions, for stronger interactions it
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fails to reproduce an entire new branch of excitations in the interacting Bose gas as revealed

by the exactly solved model (Figure  4.2 ).

Figure 4.2. Excitations in an Interacting One-dimensional Bose gas:
The Figure shows the excitation spectrum of a short-range interacting Bose gas
with interaction strength γ = c/ρ = 0.787 (for definition of c see Eq. ( 4.3 )),
with the solid curves derived from the exact Lieb-Liniger solution [  51 ] and the
dashed line showing the corresponding mean field prediction of Bogoliubov’s
theory. The mean field prescription does yield the first type of excitation with
reasonable accuracy but completely fails to capture the emergence of second
type of excitation [ 51 ].

From Figure  4.2 we see that Bogoliubov’s mean-field prescription fails to calculate a novel

branch of excitations present in the system. Is there such a remarkable departure from mean-

field results in the one dimension superconducting wire which are supposed to host Majorana

bound states at its ends? We discuss the Lieb-Liniger model (interacting bosons with periodic

boundaries) and Gaudin’s work (interacting bosons with hard walled boundaries) below

and discuss how extend these boson-based models to the domain of spinless fermions with

attractive interactions, which are expected to shown superconducting correlations and realize

Majorana bound states at the ends of the wire.
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4.4 The Lieb-Liniger model

The Lieb-Liniger model [  50 ] consists of Bosons interacting with each other through a

repulsive Dirac delta potential, satisfying periodic boundary conditions. The corresponding

many-body stationary Schrödinger equation is given by:

[
−

N∑
i=1

∂2

∂x2
i

+ 2c
∑

<i,j>
δ(xi − xj)

]
ψ = Eψ, (4.3)

with repulsion strength c > 0 and < i, j > denoting nearest neighbors. This problem can

be thought as a Kronig-Penny model where interactions come into effect only when two

particles touch each other.

The intrinsic boundary conditions are exactly same as in the case of a single particle

moving in the presence of Dirac delta potential. The singular nature of the potential leads

to a discontinuity in the spatial derivative of the many-body wavefunction whenever two

coordinates have the same value. These ‘boundary’ conditions are derived in Appendix-

 D.1 ):

1. ψ is continuous i.e. ψ|xj=x+
k

= ψ|xj=x−
k

.

2.
[(

∂
∂xj

− ∂
∂xk

)
|xj=x+

k
−
(

∂
∂xj

− ∂
∂xk

)
|xj=x−

k

]
ψ = 2cψ|xj=xk

.

Since the bosonic wavefunction is symmetric, we can rewrite the second boundary con-

dition as [(
∂

∂xj
− ∂

∂xk

)
|xj=x+

k

]
ψ = cψ|xj=xk

. (4.4)

Due to the this symmetry, we can partition the full Hilbert space H into subspaces. We

can then solve the problem in one of the subspaces, say

H1 : 0 ≤ x1 ≤ x2 ≤ x3 ≤ ....... ≤ xN−1 ≤ xN ≤ L
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and the result will be applicable to the full Hilbert space. Thus, we can define

χ(x1, x2, x3, ., xi..., xN−1, xN) =
∑
Q

Θ(xQ(2) − xQ(1))Θ(xQ(3) − xQ(2)) . . .Θ(xQ(N) − xQ(N−1))

ψ(xQ(1), xQ(2), . . . , xQ(N−1), xQ(N)),

whereχ(y1, y2, . . .) = 0 unless 0 ≤ y1 ≤ y2 . . . ≤ yN ≤ L.

The periodic boundary condition which is given by either of the two equations,

χ(0, x2, x3, ...., xN−1, xN) = χ(L, x2, x3, ...., xN−1, xN),

χ(x1, x2, x3, ., xi..., xN−1, xN) = χ(x1, x2, x3, ., xi + L..., xN−1, xN),

is a major point in defining the whole problem here. Note that this does not belong to the

space H1. Thus, we need to tweak it a bit. After some manipulation, we get

ψ(0, x2, x3, ...., xN−1, xN) = ψ(x2, x3, ...., xN−1, xN , L).

This is same as our earlier condition because of periodicity and this belongs to the subspace

H1 which is our area of interest.

Figure 4.3. Partitioning the Hilbert Space: The left Figure shows a
partition of the Hilbert space when particle coordinates are arranged in the
specific order shown. Periodic boundary conditions transform the line into a
ring, this section of Hilbert space is denoted in the main text by H1. Using
Boson symmetry, the wavefunction for all other permutations of coordinates
has the same value as the wavefunction for the arrangement shown.
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4.5 Bethe Ansatz Solution to the Lieb-Liniger Model

Hans Bethe came up with a many body wavefunction ansatz for the scattering problem

in one dimension. He noticed that the only nontrivial thing that can happen in 1D point

scattering is the exchange of momenta between the particles as shown in Figure  4.4 . His

ansatz wavefunction form can be written as a superposition of plane waves summed over all

the permutations of the wavevectors of the individual particles:

ψ(x1, x2, x3, ...., xN−1, xN) =
∑
P

AP exp(i
N∑

j=1
kP (j)xj), (4.5)

in the subset H1 ⊆ H. Here, AP is the scattering amplitude and kP (j) are the wavevectors

for different particles denoted by P (j).

Figure 4.4. Scattering in one dimension: In one dimension, pairwise
scattering can only interchange the momenta or leave them unchanged. This
follows from imposing both momentum and energy conservation. This under-
lies the use of permutations of k values in the Bethe ansatz wavefunction.

To calculate the coefficients AP , we consider two different permutations,

P : (P (1), P (2), ...., P (j − 1), P (j), P (j + 1), ....., P (N)),

P′ : (P (1), P (2), ...., P (j − 1), P (j + 1), P (j), ....., P (N)).

We can apply ( 4.4 ) on these two permutations(Appendix- D.2 ) to find the relation between

AP and AP′ ,
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AP
AP′

= kP (j) − kP (j+1) − ic
kP (j) − kP (j+1) + ic (4.6)

= exp [ − iθ(kP (j) − kP (j+1))],

where

θ(k) = 2 arctan c

k
.

We find that as the particle scatters with the nearest neighbor, it acquires a phase change

θ which is a function of the difference between the momenta. We can also show a fascinat-

ing property, distinct from our simple picture of the non-interacting Bose gas, that all the

wavevectors have to be different for c ̸= 0, otherwise the wavefunction goes to zero. This

can be shown by analyzing the different types of permutation that can exist. If two k′s are

same, swapping them returns a negative coefficient of the same magnitude which cancels the

positive one. Other coefficients can also be broken down into the interchange of these equal

k′s and hence cancel out.

4.6 Bethe Equations

We have not yet exhausted all boundary conditions in the problem. The periodicity of

the system yields:

ψ(x1, x2, x3, ., xi..., xN−1, xN) = ψ(x1, x2, x3, ., xi + L..., xN−1, xN).

The following calculations have been done a bit differently than the original paper. More

details can be found in [ 52 ]. As we discussed, the periodicity condition takes the wavefunction

out of the subspace H1. We now consider a subspace

H2 : x2 ≤ x3 ≤ ....... ≤ xN−1 ≤ xN ≤ x1.
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Now, x1 +L lies in this subspace. Here, a particle when going from xi to xi +L, scatters

with each particle acquiring phases from each of them corresponding to their momentum

difference. This can be seen as follows.

Figure 4.5. Scattering in a ring: A particle on a ring scatters with every
other particle gathering phase shifts to come back at the same place. The
periodic boundary condition suggests that the sum of phase shifts should sum
up to unity.

We write

ψ(x1, x2, x3, ...., xN−1, xN) =
∑
P

AP exp(i
N∑

j=1
kQ(j)xj), (4.7)

where Q(2) = P (1), Q(3) = P (2), .. and so on. Now, equating ψ(x1, x2, x3, ...., xN−1, xN) in

H1 with ψ(x1, x2, x3, ...., xN−1, xN) in H2,

∑
P

AQ exp(i
N∑

j=1
kQ(j)xj) =

∑
P

AP exp(i
N∑

j=1
kQ(j)xj).
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Comparing term by term, we get

AP exp(ikQ(1)L) = AQ. (4.8)

Also, from (  4.6 ), we get

AP

AQ

=
N∏

n=2
exp [ − iθ(kQ(1) − kQ(n))]. (4.9)

Combining ( 4.8 ), ( 4.9 ) and generalizing,

1 = expikjL
N∏

n=1
n̸=j

exp−iθ(kj−kn) . (4.10)

Taking the log of eq.  4.10 , we find

kjL = 2πIj +
N∑

n=1
n ̸=j

θ(kj − kn), (4.11)

where Ij are integers and come out as a result of the periodicity of the exponential function.

Equation ( 4.11 ) is a collection of N equations that are known as Bethe equations and k′
js

are called Bethe roots. Care should be taken in interpreting these Bethe roots as the true

momenta of the particles. Only the total momentum, the sum of these asymptotic momenta,

is conserved as the total physical momentum of the system. For the case of free Boson

gas (c = 0), we get back the quantization condition i.e. kj = 2πIj
L

. The solution of these

Bethe equations gives us the eigenstates and the corresponding eigenenergies. The quantum

numbers Ij play an important role in determining the energies, as we will see later.

4.7 Ground State of the Lieb-Liniger Model

A trivial limit that we can apply to our problem is the infinite interaction limit or the

impenetrable limit (c → ∞). The bosons now transform into free fermions. As expected,

θ = π for this case, to give the required antisymmetry (Figure  4.7 ).
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NOTE :

AP
AP′

= kP (j) − kP (j+1) − ic
kP (j) − kP (j+1) + ic ,

= exp [ − iθ(kP (j) − kP (j+1))].

For c → 0,

AP
AP′

= 1 =⇒ exp−iθk = 1.

(Free particle quantization condition)

For c → ∞,

AP
AP′

= −1 =⇒ θ = π.

(Free fermion condition)

We have to be a bit attentive when considering the cases of odd and even number of

particles in the impenetrable limit.

1. N is odd

The sum on the right hand side in Eq. ( 4.11 ) gives an even multiple of π and we get

back the free particle quantization condition. The lowest energy state corresponds to

filling the I ′
js equidistantly around 0.

Ij = −(N − 1)
2 ,

−(N − 3)
2 , ......,−1, 0, 1, ......, (N − 3)

2 ,
(N − 1)

2 (4.12)

Comparing it with Lieb’s original paper, we see that indeed this choice makes nj = 1

(Appendix- E ).
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2. N is even

The sum on the right hand side in (  4.11 ) gives (N−1)π and the quantization condition

changes to

kjL = 2π

(
Ij + 1

2

)
. (4.13)

For this case, we can choose I ′
js to be half-odd integers to make it k′

js even multiples

of 2π (Free fermions in periodic boundary condition). The only price we have to pay

is that we have to shift our θk by π.

Ij = −N
2 ,

−(N − 2)
2 , ......,−1

2 ,
1
2 , ......,

(N − 2)
2 ,

N

2 (4.14)

If we think about the fermion problem, this quantization condition ( 4.13 ) is strange

as it corresponds to anti-periodic boundary conditions. The bosons do not care as

their wavefunction is the modulus of fermionic wavefunction. The ground state of

an even number of fermions with periodic boundary conditions is actually “two fold

degenerate”, with an extra fermion at one of the Fermi points. For bosons, we just add

a π to the Bethe equations. Even if reduce c from ∞, as long as k′
js evolve smoothly,

we can use this assignment of Ij.

In the thermodynamic limit, the discrete summation can be approximated with

∑
k

(......) → L
∫ K

−K
f(k)dk,

where Lf(k)dk = number of kj in the interval dk and K = kN = −k1. This transforms the

Bethe equations Eq. ( 4.11 ) in the continuum limit,
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kL = 2πI + L
∫ K

−K
θ(k − k′)f(k′)dk′. (4.15)

Differentiating with respect to k and using the fact that dI
dk

= Lf(k)(Density of states),

1 = 2πf(k) +
∫ K

−K
θ′(k − k′)f(k′)dk′, (4.16)

where θ′(k) = − 2c
k2+c2 . This is fixed by the density

ρ = N

L
=
∫ K

−K
f(k)dk. (4.17)

Now, we have two equations and two unknowns (f(k) and K). Eqn. ( 4.16 ) is an inho-

mogeneous Friedholm equation of second type and can be solved numerically. The results

below have been calculated on Mathematica.

Solving for f(k), we find that f(k) is symmetric around 0. We can calculate the total

momentum and total energy of the system,

Ptot = L
∫ K

−K
kf(k)dk, (4.18)

Etot = L
∫ K

−K
k2f(k)dk. (4.19)

Obviously, the total momentum of the ground state is 0 since f(k) is even. If we fix the

density ρ, we can define everything in terms of a dimensionless parameter γ = c
ρ
,

Etot/L ∝ N

L3 ,

= Nρ3e(γ).
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Figure 4.6. Ground state energy: Comparison between the exact ground
state energy and the Bogoliubov approximated energy. The Bogoliubov mean
field result agrees with the exact result for lower values of the interaction
strength and breaks down as the interaction increases. This behaviour is
expected since the fluctuations increase with the increase in the interaction
strength leading to the departure from the mean field result.

Bogoliubov’s mean field result comes out to be :

e(γ) = γ

[
1 − 4

3π

√
γ

]
.

A check would be to calculate the energy in the γ → ∞ limit,

f(k) = 1
2π
, K = kF .

=⇒ ρ = kF

π
.
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e(γ → ∞) = 1
ρ3

∫ K

−K
k2f(k)dk,

= 1
ρ3

∫ kF

−kF

1
2π
k2dk,

= π2

3 .

This is the energy of the gas in the so-called Tonks-Girardeau limit[ 53 ].

4.8 The Excitation Spectrum of the Lieb-Liniger Model

For bosons, we consider two type of excitations from the ground state seeking inspiration

from the impenetrable limit. In this limit, there is a Fermi surface and we can consider

excitations around it but we should keep in mind that we are still dealing with bosons.

1. Type I(particle): A particle is excited from the edge of the Fermi surface.

2. Type II(hole): A particle is excited from within the Fermi surface to the edge of the

Fermi surface.

4.8.1 Type I excitation

We go to the impenetrable limit, and imagine making a hole in the distribution of roots.

We then move one particle above the ’Fermi surface’ (largest of the roots). This will cause all

the other roots to change slightly from their ground state values as they are inter-connected

by Bethe’s equations. Once we remove the largest root kN to a higher value than kF , it

should stand apart from other roots.

For example: the case of N = 7 is shown in the Figure  4.8 .

We can think of this as the ground state of an N − 1 particle problem, with N − 1 roots

being affected by the presence of another root at kI . We have to make adjustments such

that when kI joins others, we get back the original N particle ground state. This is because

of the difference of π when considering odd and even number of particles.
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Figure 4.7. Excitations in a Bose gas: Two types of excitations in the
Bose gas: (a) Type I - This is akin to the conventional particle excitation in
a Fermi gas, where particles in the highest occupied states are promoted to
the lowest unoccupied states. Since we are dealing with bosons, the largest of
the Bethe roots are excited to the next larger value. (b) Type II - There can
be a hole created in the bulk of the Bethe roots and the Bethe roots arrange
themselves due to the interconnectedness by Bethe equations. This also gives
an excitation energy which is directly dependent on which Bethe root we try
to remove.

Figure 4.8. Making a hole in the distribution of the roots: The Bethe
roots arrange themselves as we increase the last Bethe root above kF . This is
a typical particle excitation.

So, for N = 7, we shuffle the N = 6 ground state. As seen in the Figure  4.9 , we see that

since N = 7 is odd, the particles are shifted by π. This now can be generalized to any value

of c.

Suppose the shifts are δki = wi
L

(following the notation used in Lieb’s original paper[ 51 ]),

δkjL+ π =
N−1∑
s=1

θ′(kj − ks)(δkj − δks) + θ(kj − kI),

wj + π = 2c
L

N−1∑
s=1

(ws − wj)
c2 + (ks − kj)2 − θ(q − kj), (4.20)
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Figure 4.9. Ground state re-assignment for N = 6: We emulate the
excitation by reassigning the ground state of N = 6 particles under the effect
of anothe root kI . Since we want the roots to be compatible with the Bethe
equations, we shift the roots by an additional π to the left for the case when
kI joins the rest of the roots and makes the number of particles odd. In other
language, we are changing IN in the Bethe equation to IN +Z, where Z is any
positive non-zero integer.

where q = kI . The last term arises because we add the excited particle to the N-1 particle

ground state. Promoting summation to an integral in the thermodynamic limit,

w(k) + π = 2c
∫ K

−K

(w(r) − w(k))
c2 + (r − k)2 f(r)dr − θ(q − k), (4.21)

where f(k) is the distribution function of k′s in the ground state.

Defining w(k)f(k) ≡ J(k),  4.21 becomes

w(k) + π = 2c
∫ K

−K

J(r)
c2 + (r − k)2dr − 2c w(k)

∫ K

−K

f(r)dr
c2 + (r − k)2 − θ(q − k). (4.22)

But we know from  4.16 ,

2c
∫ K

−K

f(r)dr
c2 + (r − k)2 = [2πf(k) − 1],

=⇒ w(k) + π = 2c
∫ K

−K

J(r)
c2 + (r − k)2dr − w(k)[2πf(k) − 1] − θ(q − k).
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Finally,

2π J(k) = 2c
∫ K

−K

J(r)
c2 + (r − k)2dr − π − θ(q − k). (4.23)

Now, for the momentum of the excited state,

p =
(N−1∑

j=1
k′

j + q
)

−
N∑

j=1
kj,

=
N−1∑
j=1

kj + 1
L

N−1∑
j=1

wj + q,

= 1
L

N−1∑
j=1

wj + q. [ground state momentum is 0]

p =
∫ K

−K
J(r)dr + q. (4.24)

The excitation energy can be calculated in the same way as the momentum,

ϵ1 =
N−1∑
j=1

(k′
j)2 − E0(N) + q2 [E0 is the ground state energy],

=
N−1∑
j=1

(kj + 1
L
wj)2 − E0(N) + q2,

=
N−1∑
j=1

(
k2

j + 2wjkj

L
+O

(
1
L2

))
− E0(N) + q2,

=
N−1∑
j=1

(
k2

j − E0(N)
)

+ q2 +
N−1∑
j=1

2wjkj

L
.

ϵ1 = −µ+ q2 + 2
∫ K

−K
r J(r)dr, (4.25)

where µ is the chemical potential. To find ϵ1(p), we need to eliminate the parameter q from

 4.24 and  4.25 . The terms with J(r) are a result of other k′s being pushed around. In the

limit γ → ∞, J(r) → 0.
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The chemical potential µ is defined as the energy difference between N and N − 1

particles.

µ = ∂E0

∂N
= ∂

∂N
(Nρ2e(γ)),

= 3ρ2e(γ) + ρ3 ∂ρ

∂γ

∂γ

∂N
,

= 3ρ2e(γ) − ρ2γρ̇.

4.8.2 Type II excitation

Similar to the previous case in the impenetrable limit, we think of N + 1 particle ground

state to be shuffled by the presence of a hole. For example: N = 7, we go to the N = 8

ground state and reassign the roots.

Figure 4.10. Ground state re-assignment for N = 8: The hole excitation
is carried out by reassigning the roots of N = 8 particles and removing one
of them. The roots are now shifted to the right by an additional π as we are
going from N = 8 to N = 7 by removing a particle. In other language, we are
changing Ij in the Bethe equation to Ij+1, where j is the position of the hole.
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The signs of π and θ(k − kII) change from  4.23 in this case to accommodate an extra

particle instead of one less particle. The shifts are now,

k′
j = kj + 1

L
wj, j ≤ i;

k′
j = kj+1 + 1

L
wj, j > i;

where ki = q is the root that is shifted. Going the same way as done for Type I excitations,

we get the following equations,

2π J(k) = 2c
∫ K

−K

J(r)
c2 + (r − k)2dr + π + θ(q − k), (4.26)

p =
∫ K

−K
J(r)dr − q, (4.27)

ϵ2 = µ− q2 + 2
∫ K

−K
r J(r)dr. (4.28)

Bogoliubov’s excited state sprectrum is given by:

ϵ(p)
ρ2 =

∣∣∣∣∣pρ
∣∣∣∣∣
[(
p

ρ

)2

+ 4γ
]
.

If you notice in Figure  4.11 , the Bogoliubov result fits the first type of excitations perfectly

for a specified value of γ. But this second type of excitation is completely absent

from Bogoliubov’s prescription.

4.9 Experimental Validation of the Lieb-Liniger Solution

The first experimental challenge was to build a one dimension(1D) gas of bosons. Thank-

fully, this can be done using real, 3D particles. It can be proved, from the Schrodinger equa-

tion for 3D particles in a long cylindrical container, that the one-dimensional Lieb-Liniger

model accurately describes the low energy states. The mathematical description has been

formulated for the ground states[ 54 ] as well as the excited states[ 55 ]. The recent advance-

ments in ultracold atom experiments where the fermions or bosons are trapped in 1D have
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Figure 4.11. Excited state spectrum: Comparison between the exact ex-
cited state energies and the Bogoliubov excitations. The Bogoliubov spectrum
agrees with the Type I excitation energy for specific value of γ = c/ρ = 0.786.
The Type II excitation is absent from the mean field theory for any value of
γ. This was an important revelation that came out from the exact solution.

led to an enhanced knowledge of strong correlation effects and quantum statistics[ 56 ]. The

particles in the waveguides are limited to move in a single direction due to the tight con-

finement in the transverse directions. These particles can then be characterized as quasi

one-dimensional systems. The effective interaction in these systems can be controlled by

varying the confinement parameters[ 57 ]–[ 59 ].

Recent experiments have tested a lot of theoretical predictions such as momentum distri-

bution profiles[ 60 ], [ 61 ], the ground state of the Tonks-Girardeau gas[ 62 ],quantum correla-

tions[ 63 ]–[ 67 ], elementary excitations and dark solitons[ 68 ], [ 69 ], thermalization and quantum

dynamics[ 70 ]–[ 72 ] and many more.

4.10 Hard Wall Boundary Condition: Bethe Ansatz

Since we are ultimately interested in adapting the fermionic version of an attractive Lieb-

Liniger model to investigate Majorana bound states at the ends of the wire, we discuss below
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the procedure for replacing periodic boundary conditions in the Lieb-Liniger model to fixed

or hard-walled boundary condition.

This is the archetypal particle in a box problem generalized to many particles. The

boundary condition now becomes[Figure  4.12 ],

ψ(0, x2, ..., xN−1, xN) = 0 = ψ(L, x2, ..., xN−1, xN). (4.29)

Figure 4.12. Hard wall: Hard wall boundaries signify that the wavefunction
goes to zero there. Such boundaries are essential for realizing Majorana bound
states in exactly solvable models of the Kitaev superconducting wire.

The wavefunction now goes to zero at he boundaries. We still encounter the fact that

ψ(L, x2, ..., xN−1, xN) does not belong to the subspace R1. This problem was first solved by

Gaudin[ 73 ] in 1971.
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For the hard boundary case, a big difference from the original periodic model is that

particles at the edges can be reflected back by the hard walls, flipping their momenta. This

occurs in tandem with the exchange of momenta between particles as shown in Figure  4.13 .

Figure 4.13. Scattering with hard walls: The scattering in the bulk re-
mains the same with hardwalled boundaries. The scattering with the hardwall
at the ends reverses the sign of the momentum. Permutations on the k values
now mixes the negative values of k acquired at the boundaries so that the
Bethe ansatz now becomes a permutation over ϵiki, where ϵi can be +/−.

The ansatz now becomes[ 74 ],

ψ{ϵi,ki}(x1, x2, ...., xN) =
∑

ϵ1,....,ϵN

∑
P

ϵ1......ϵNA(ϵ1kP1 ......ϵNkPN
) expi(ϵ1kP1 x1+.....+ϵN kPN

xN ),

(4.30)

where the sum extends over all the permutations P and all signs ϵi = ±. The ± signs refer

to the particles moving right or left. The wavefunction still belongs to the domain R1.

4.11 Hard Wall Boundary Condition: Bethe Equations

The Bethe equations can be easily generalized by first solving the toy problem with 2

particle(Appendix- E.2 ). We find that for N particles,
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exp (i2kjL) =
N∏

l=1
l ̸=j

(kj − kl + ic)(kj + kl + ic)
(kj − kl − ic)(kj + kl − ic) . (4.31)

Taking the logarithm[ 75 ] of eqn.  4.31 ,

kjL = πIj −
N∑

l=1
l ̸=j

(
arctan

(
kj + kl

c

)
+ arctan

(
kj − kl

c

))
. (4.32)

Defining Θ(k) ≡ − arctan
(

k
c

)
,

kjL = πIj +
N∑

l=1
l ̸=j

(
Θ(kj + kl) + Θ(kj − kl)

)
. (4.33)

These are the Bethe equations for the case of hard walled boundary conditions.

The quantum numbers Ij have to be calculated by going to the c → ∞ limit. We

notice that although the definition of the phases are a bit different than the periodic

case, we do not face the problem with odd or even number of particles. The equation

has Ij in multiples of π, so we can just take the Ij to be same for both odd and even

N .

Also, since we are considering hard walled boundary conditions, we get the product of

sines in the impenetrable limit. Hence, we need to consider only positive values of the

wavevectors. For the ground state in the impenetrable limit,

Ij = 1, 2, ...., N.

We will use these values to calculate the ground state energy for any non-zero value of c.
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4.12 Hard Wall Boundary Condition: Ground State

The ground state energy can be calculated once we have found out the Bethe roots.

Again, we take the thermodynamic limit and convert the sum into an integral,

kL = πI + L
∫ K

0

(
Θ(k + k′) + Θ(k − k′)

)
f(k′)dk′, (4.34)

where K is the largest of the roots.
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Figure 4.14. Ground state energy in the presence of hard walls:
Comparison between the exact ground state energies for the periodic and hard
wall boundary conditions in the thermodynamic limit, and the Boguliubov
result for the ground state energy. The ground state energy for the hardwall
case matches with that of the periodic case. The boundary conditions converge
to the same result when we work in the thermodynamic limit.

Taking the derivative with respective to k and using the same arguments as in the periodic

case,

1 = πf(k) + c
∫ K

0
f(r)dr

[
1

c2 + (k − r)2 + 1
c2 + (k + r)2

]
. (4.35)
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This is fixed by the density

ρ = N

L
=
∫ K

0
f(k)dk, (4.36)

and the energy is calculated as

Etot/L =
∫ K

0
k2f(k)dk = Nρ2e(γ). (4.37)

We see that in the thermodynamic limit, the ground state energy of the periodic case

matches with that of the hard wall case as shown in Figure 4.14. Our aim is to look at the

1D superconductor which is the 1D Fermi gas with interactions. In this section, we focus on

the spinless or spin-polarized fermions.

4.13 Fermions With P-wave Interactions

Since the spins are taken out of the account, the spatial part of the fermion wavefunction

has to be antisymmetric. This poses a problem as we cannot use our beloved delta function

potential with this system. The solution although can be derived from the scattering physics.

The next scattering potential after the s-wave is the p-wave potential. We are interested in

what happens to the fermions in an attractive potential (the other case is not as interesting

as the attractive case). The potential for this has to be antisymmetric so as to balance

the antisymmetricity of the wavefunction. We will use the pseudopotential associated with

p-wave scattering [ 76 ]–[ 78 ],

V (xi, xj) = −2c
(
∂

∂xi
− ∂

∂xj

)
δ(xi − xj)

(
∂

∂xi
− ∂

∂xj

)
. (4.38)

The boundary conditions turn out to be quite different from the δ potential that we are

used to. Also, we have the antisymmetry condition for fermions,

ψ(x) = −ψ(−x).
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The boundary condition comes out to be [ 78 ],

ψ(xi − xj = 0+) = −cψ′(xi = xj). (4.39)

Notice that this is exactly the same boundary condition on the wavefunction derivative

which we encountered in the case of hard-wall bosons but with the parameter −1
c
. The

Bethe equations can be found out exactly by substituting this in our earlier case.

4.14 Bound states in Lieb-Liniger model[  79 ]

Until now, we have only considered the possibility of a repulsive interaction between the

bosons (the original Lieb-Liniger model), but there is a possibilty of getting bound states

when (c < 0). This is a direct consequence of bound state formation for an attractive delta

potential well. Let us look at this for two-particle case. We can always write the Bethe

ansatz by separating into center of mass coordinates and relative coordinates.

ψ(x1, x2) = Θ(x1 − x2)
[
A12ei(k1x1+k2x2) + A21ei(k2x1+k1x2)

]
+ Θ(x2 − x1)

[
A12ei(k2x1+k1x2) + A21ei(k1x1+k2x2)

]
(4.40)

= ei(k1x1+k2x2) [A12Θ(x1 − x2) + A21Θ(x2 − x1)]

+ ei(k2x1+k1x2) [A21Θ(x1 − x2) + A12Θ(x2 − x1)] (4.41)

Introducing the center of mass and relative coordinates,

X ≡ x1 + x2

2 , x ≡ x1 − x2

2 (4.42)

K ≡ k1 + k2, k ≡ k1 − k2. (4.43)

76



We can write the wavefunction as

ψ(X, x) = eiKX


A12eikx + A21e−ikx, x > 0

A21eikx + A12e−ikx, x < 0
(4.44)

Using the standard condition on derivatives generated by the delta potential (integrating

the Schrodinger equation around the discontinuity), we get

ik(A12 − A21) − ik(A21 − A12) = 2c(A12 + A21)

(A12 − A21)k + ic(A12 + A21) = 0. (4.45)

Now, coming back to the bound state solutions which should have complex momenta.

Since we want a solution that does not diverge at ∞, Im(K) = 0 and hence K has to be purely

real. If we choose Im(k) > 0, then A21 = 0 to preserve the finiteness of the wavefunction.

This means that the Re(k) = 0 and k has to be purely imaginary. Hence, for c < 0,

A21 = 0 =⇒ k = −ic (4.46)

A12 = 0 =⇒ k = ic (4.47)

The scattering phase diverges when these above conditions happen. This divergence is

to counter the exponentially growing part of the wavefunction,

A12

A21
= ik + c

ik − c
, (4.48)

=⇒ A12 = A21
ik + c

ik − c
, (4.49)
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where the right hand side goes as 0×∞. This represents a bound state of two particles with

momenta

k1,2 = K ± ic
2 , Im(K) = 0, (4.50)

with energy E = K2

2 − c2

2 and total momentum K. The bound state wavefunction looks like,

ψbound(x1, x2) = eiK(x1+x2)/2ec|x1−x2|/2 (4.51)

For the case of three particles and c < 0, we have two complex momentum solutions:

k1 = α− ic, k2 = α + ic, k3 = β, (4.52)

k1 = k3 − ic, k2 = k3 + ic, Im(k3) = 0. (4.53)

These have been found using the same considerations that we took for the two particle

case i.e. finiteness of the wavefunction and complex momenta. The first one is a two-particle

bound state scattering with a third independent particle. The second one is a three-particle

bound state and is called a ”string” of 3 particles. A string of n-particles has the same

real part of the momentum for each particle and the momentum is equispaced symmetrically

with respect to the real axis.

The repulsive Lieb-Liniger model does not lead to any bound state. Although the attrac-

tive Lieb-Liniger model has string solutions of length n characterized by their quasi-momenta

kj = K

n
− in+ 1 − 2j

2 c, j = 1 . . . n, (4.54)

and total momentum K and energy (calculated by squaring and summing the individual

momenta)

E = K2

n
− n(n2 − 1)

12 c2. (4.55)
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As seen in the case of bound states, the string solutions have a lower energy compared

to the non-string like solutions in the repulsive case. The ground state for N particles has a

zero momentum string that has all the particles and its energy diverging O(N3). The ground

state energy needs to scale linearly with the system size for the thermodynamical limit to be

valid. This means that our attractive Lieb-Liniger model is unstable in the thermodynamic

limit. The first excitations of the attractive Lieb-Liniger are one string state of N particles

with a finite total momentum. For a 2 string solution, we can have a M particle string and

a N-M particle string.

4.14.1 Two-string Bound Solutions

NOTE: The bound state momenta and the energies given below are only when L → ∞.

For details, see the appendix section  G .

Let us look at the attractive case of bosons. Let us assume that the ground state consists

of only two particle strings. Using  4.54 , we see that the imaginary parts of the momenta of

the 2 particle strings would be ±ic/2. The real parts (called as ”string centers”) although

have to be determined by the Bethe equations. These calculations have already been done

in the literature[  80 ]. Since we are dealing with strings of only two particles, the expressions

become really simple.

The string centers satisfy the reduced Bethe equations[ 80 ],

jλj
αL−

∑
k,β

Φjk(λj
α − λk

β) = 2πI j
α (4.56)

where j(or k) = number of particles in a string, α(or β) = 1, 2, . . . Nj labels the strings of

given length, Φjk(λj
α − λk

β) = 2 arctan
(

2λj
α−λk

β

|c|j

)
.

For our case, j=2 for all the strings and there are N/2 strings in total. This implies

that the string center satisfy the normal Bethe equations with the phase shift given by

2 arctan
(

λj
α−λk

β

|c|

)
.
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The total momentum of the ground state is then

P =
∑

α

2λ(2)
α (4.57)

and the total energy is,

E0 = P 2

2 − N

2
c2

2 (4.58)

For getting the string centers, we have to solve the eq. 4.14.1 for j=2, α = 1, 2, . . . , N/2,

2λ(2)
α L−

∑
β ̸=α

Φ(λ(2)
α − λ

(2)
β ) = 2πI(2)

α , (4.59)

where the I(2)
α are even or odd half integers depending on whether N is even or odd. As

we can see from the Bethe equations, the ground state would have the string centers to be

equally distributed around 0. Hence, the total momentum P would has to be 0 making

the energy, E0 = −N
2

c2

2 . Taking only the 2 particle strings as we have done, removes the

non-extensivity of the ground state as now E/N =finite.

4.14.2 Future Outlook

It turns out that delta function potentials cannot capture the formation of antisymmetric

bound states as required for realizing the Lieb-Liniger model version of the Kitaev wire. We

are actively pursuing remedies that address this issue. With this delicate issue addressed,

it is a matter of numerical prowess to discover what happens when hard wall boundary

conditions are introduced and conditions are favourable for constructing Majorana bound

states.
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A. IMPEDANCE CALCULATION FOR THE LJJ

The impedance of the Josephson Junction (JJ) is generally calculated as follows [ 81 ]:

ZJJ = [i(ωCJ − 1/ωLJ(0))]−1 , (A.1)

where CJ and LJ are the JJ capacitance and the intrinsic inductance in the small signal

limit when the phase difference along the junction approaches 0.

The value of the intrinsic inductance is given by the expression [ 82 ]:

LJ(I) = Φ0

2π

√
I2

C − I2
, (A.2)

where Φ0 = 2.07 × 10−15 Wb is the flux quantum, IC is the critical current of the JJ and I

is the superconducting current. The JJs in the transmission line (jjk) have IC = 1.5µA and

I = 0, which gives LJ ∼ 220 pH.

The next bit is calculating the impedance itself. For jjk, the parameters are: CJ = 60

fF, LJ = 220 pH, ω = π/τ , τ = 20ps, we find that

|Zjjk|(transmission line) ∼ 51Ω. (A.3)

The inductors in the transmission line have an impedance

ZL = iωL = i1.23Ω, (A.4)

for the 7.845 pH inductors.

The effective impedance of the LJJ can be calculated by solving a recursion relation in

terms of the ZJJ and ZL, as shown in the figure  A.1 .

The recursive relation comes out to be

(
[ZLJJ + 2ZL]−1 + [ZJJ ]−1

)−1
+ 2ZL = ZLJJ , (A.5)
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Figure A.1. Recursive nature: Diagram showing the recursive relation in
LJJ. The effective impedance of the LJJ can be calculated by equating the
impedance of the left and right diagrams [ 81 ].

which when simplified gives us

|ZLJJ | = 2
√
ZL(ZL + ZJJ) ∼ 16Ω. (A.6)

This is precisely the reason that when we add a resistance at the end of one of the

branches that matches this impedance, the fluxon dies down. This can be seen in figure

 A.2 , where the fluxon does not reflect back if we have a resistance of 16Ω at the end of the

transmission line.
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Figure A.2. Impedance matching: The current traces showing the fluxon
paths as it encounters the branch end. These transmission lines have a resis-
tance at the end with values (Left) 1µΩ, (Middle) 16Ω and (Right) 1GΩ. When
the resistance is very small, the fluxon is reflected back with the same polarity
(closed circuit). When the resistance is extremely large, it resembles an open
circuit termination and the fluxon is reflected with a reversed polarity. If the
resistance value matches the impedance of the transmission line, the resistance
gets absorbed.
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B. PROMISING CIRCUITS

Along with the working circuit discussed in the section  3.3.2 , there were a few circuits that

showed promise. These circuits could be explored further and compared with our present

working circuit in terms of efficiencies and designing capability.

B.1 Rotary with current sources

Most of the older SFQ circuits have bias currents that allow the fluxon to travel forward.

Hence, we tried working with a rotary circuit (Figure  B.1 ) that is symmetric with respect

to the two branches and has a DC current source attached to each of them. The resistors

were added later to block the reflections from the ends as the fluxon was bouncing back and

forth.

Figure B.1. Rotary circuit with current sources: The branches ’bottom’
(L16, L17) and ’right’ (L6, L7) have been supplied with additional DC currents
(4µA). The ends have a resistor which has a value matching the impedance of
the LJJ’s to block the fluxon from reflecting back.
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As we vary the values of the bias current, we find the critical current value that allows

the fluxon to travel to one of the branches (Figure  B.2 ). We also noticed that if the bias

current is between 1.5µA to 4µA, the fluxon only travels to the bottom branch. A sweep

through the bias current gives us the critical value required for the fluxon to travel to the

other branches. The fluxon does not enter the branches for a bias current ≤ 1.22µA.

(a) (b)

Figure B.2. Rotary in action: (a) Positive Bias (4µA), (b) Negative Bias
(−4µA). When we change the sign of the biasing source, the direction of the
rotary is flipped. For negative bias, the fluxon enters the right branch instead
of the bottom branch.

B.1.1 Phases of JJ in the Rotary junction

The Josephson junctions corresponding to different branches and their phases are shown

in figure  B.3 . For the bias current (4µA), as the fluxon travels bottom branch, we can see

that the JJs of the input branch and bottom branch see a phase change of 2π. The right

branch JJ does not show any change which can be seen in figure  B.3a .

Near the critical value of the bias current, we find that the JJ of the input branch shows

a peak but drops down immediately. For Bias = 1.23µA, the JJ of the input and second

branch go up to 2π, whereas for Bias = 1.22µA, the JJs do not switch. This can be seen in

figures  B.3b ,  B.3c .
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(a) Bias = 4µA

(b) Bias = 1.22µA (c) Bias = 1.23µA

Figure B.3. Critical value of bias: Difference in the phases of JJs as a
function of the bias current. We can see that above a critical bias current, the
fluxon chooses a branch. Below the critical value, the fluxon does not enter
any branch. The current traces are for the input branch, branch 2 and branch
3 respectively. The JJ phase plots are also in the same order.

B.1.2 Effect of terminating resistance

To see the influence of the resistor on the fluxon travel trajectory, we remove the bias

sources from the ends of both branches.

Looking at the figure  B.4 , we notice that the reflection of the fluxon can be suppressed by

adding a finite value of the resistor at the ends of output branches. Changing the value of the

resistor does not affect the result as the peaks traveling in the output branch keeps getting
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(a) R = 10−6Ω (b) R = 2Ω

Figure B.4. Terminating with resistors: Including finite resistors at the
ends of branches suppresses the reflection of the fluxon. The value of the zero
resistance is chosen to be a very small value because WRSpice does not allow
absolute zero values for initializing these devices.

wider and wider (figure  B.4a ). This is not a soliton behavior and this is the precise reason

why any value of resistance is able to suppress it by damping the current in the circuit.

B.1.3 Addition of a circulating current

The reason why the bottom branch gets chosen when the fluxon enters from the input

branch is because of the polarity of the fluxon field, as was seen in the working circuit

discussed in section  3.3.2 . Due to this chirality, the JJ attached to the bottom branch gets

activated first and the fluxon travels along the LJJs in this branch. If there is a a circulating

current in the rotary loop (Figure  B.5 ) that reverses this direction, this can lead to the fluxon

entering the other branch (right branch).

Note that without the circulating current, the circuit is still that of the working rotary

with the current sources fixed at 4µA and the resistances set to 15Ω. As we increase the

circulating current value, the fluxon in the bottom branch keeps getting slower. After a
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Figure B.5. Circulating current in the loop: The inductors are given
a very small finite value (0.001pH) and a current can be set using the ic pa-
rameter of WRSpice. Positive (negative) value leads to clockwise (counter-
clockwise) current direction.

critical value of the circulating current, the fluxon enters the right branch instead of the

bottom branch (Figure  B.6d ).

B.1.4 Replacing the source with circulating current

The circulating current suggests that removing the current source should not affect the

rotary, although the current values will be different because of this change. Let us try that.

For no circulating current, the fluxon does not enter any of the branches.

Clockwise

As seen in the case where we only had the current sources, increasing the circulating

current above a critical threshold leads to fluxon entering the right branch (Figure  B.7b ).
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(a) 1µA (b) 1.5µA

(c) 1.9µA (d) 1.95µA

Figure B.6. Loop current: Current traces showing the direction of fluxon
as a function of the circulating current amplitude. We can see that as we
increase the clockwise circulating current, the fluxon slows down and then
after a critical value, moves to Branch 3.

Counter-Clockwise

Intuitively, we expect that reversing the direction of the circulating current should force

the fluxon to travel in the other branch (bottom branch). This is what we observe in figure
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(a) 0.2µA (b) 0.5µA

(c) 1µA (d) 1.5µA

Figure B.7. Clockwise current:Current traces depicting the role of the
circulating current in forcing the fluxon to travel in the other branches. A
positive value of the circulating current above a certain threshold leads to the
fluxon moving to the right branch.

 B.8a . Notice that the current values are different from the ones found when we had a

clockwise current. This is because, in one case (counter-clockwise), the current adds up to

the existing fluxon current whereas, in the other case, it opposes the current (clockwise).

Increasing the current destroys the fluxon in the bottom branch as seen in figure  B.8b .
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(a) −0.2µA (b) −0.3µA

Figure B.8. Anticlockwise current:Current traces depicting the role of
the circulating current in forcing the fluxon to travel in the other branches.
A negative value of the circulating current leads to the fluxon moving to the
bottom branch and a further increase forcing the fluxon to reflect in the input
branch.

B.2 Symmetric rotary

The previous circuits have a built-in chirality that makes it route the pulses in a circular

fashion. We looked at a symmetric version of the circuit that does not have a chirality. The

full circuit can be seen in figure  B.10 and the zoomed version of the rotary junction in figure

 B.11 .

The rotary junction consists of 3 Josephson Junctions (JJs) with configuration different

from the JJs used in the transmission line. The transmission line uses JJ of the type,

.model jjk jj(rtype=0, cct=1, vg=2.8m, icrit=1.5u, cap=60f),

whereas the rotary junction contains JJ of the type,

.model jjk2 jj(rtype=0, cct=1, vg=2.8m, icrit=15u, cap=60f),
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that has a critical current I jjk2
c = 10I jjk

c . There are 4 inductors in rotary junction: L1, L2,

L6 and L7 in the circuit. These inductors have a 300pH inductance with L1 = 0 pH. The

output branches end with a 15Ω resistance to suppress the reflection of the fluxon.

Figure B.9. Built-in chirality: The working rotary circuit has a chirality
with respect to the connection of the branches to the rotary junction.

B.2.1 Motivation for junctions

Wustmann et. al. ([  83 ]) use a JJ in the interface that has critical currents and capacitance

different from the ones used in the transmission line JJ values. The interface has 3 JJs that

have variable parameters used to control the flow as shown in figure  B.12 . This can be

used to make a rotary junction that has JJs with different values of critical currents and

capacitances.

In the following, we will enumerate the steps taken to achieve a working rotary circuit.

1. Step 1: Changing the JJs in the rotary junction

As seen in section  B.2.1 , changing the interface JJs can affect the fluxon progression. If

we only change B1 to a different JJ (.model jjk2 jj(rtype=0, cct=1, vg=2.8m, icrit=15u,

cap=600f)) where Inew
c /Ic = Cnew/C = 10, we find that it allows fluxon to move in

one of the branches as seen in figure  B.13 . Only the first six plots in the figure show

the direction of fluxon in the branches.
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Figure B.10. Symmetric circuit: A symmetric version of the rotary circuit.
One of the legs of the branches is grounded and the other leg is connected to
the rotary junction. The ends of the branches are connected with a resistor
that matches the impedance of the transmission line impedance.

If we change all of the JJs to jjk2, it produces a symmetric output as shown in figure

 B.14 .

2. Step 2: Introducing a current in the rotary loop

We noticed that the current in the rotary starts oscillating due to finite value of inductor

and the capacitance attached to the JJ (finite value of LC). To rectify this so that we

have a smooth trace, we need to extend the time period of the oscillations. We can do

this by increasing the value of the inductor or capacitance, but we will choose inductors

in this case.

We find that we can get the fluxon to travel in different branches as shown in figure

 B.15a . But there is still a problem! The fluxon is still getting reflected back to the

input branch and we have to eliminate this reflection.

3. Step 3: Changing the capacitance of the rotary JJs
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Figure B.11. Symmetric junction closeup: Zoomed in version of figure
 B.10 . There are 4 inductors in the junction: L1, L2, L6 and L7 with L1 being
set to 0. There are 3 JJs: B0, B1 and B2.

Figure B.12. Wustmann junction: An interface between two LJJs which
has variable parameters. Depending on the value of the critical currents and
capacitances of the interface JJ, Wustmann et. al. observe different behaviors
for the fluxon propagation [ 83 ].
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Figure B.13. jjk2 rotary: Current traces showing fluxon propagation in
different branches when B2 is changed from jjk to jjk2. The fluxon prefers to
move towards the changed JJ branch.

Figure B.14. All jjk2 junction: Current traces in the dummy inductors
when all the rotary JJs are changed to jjk2. The fluxon does not move into
any of the branches and keeps shuttling back and forth in the input branch.
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(a) Loop Current = 10µA (b) Loop Current = −10µA

Figure B.15. Addition of loop current: Current traces with L2 = L6 =
L7 = 300pH and loop current ±10µA. The JJs are jjk2. The current polarity
decides the path of the fluxon as it passes through the rotary junction.

In the reference [ 83 ], they use a lower value of capacitance in the interface junction to

allow the fluxon to move forward. Hence, we will reduce the capacitance back to the

capacitance of the JJs used in the transmission line i.e. 60fF .

As expected, this removes the reflection. The plots can be seen in figure  B.17 . The

negative current plot has a fluxon and not an anti-fluxon. The reversed behavior is

due to the positioning of the dummy inductor that detects the current sign depending

on the orientation.

B.2.2 Final working circuit

The final circuit shows symmetric behavior when there is no current in the loop (figure

 B.17a ). The fluxon does not enter any of the branches and gets reflected back to the input

branch. When the loop current is 10µA, fluxon enters the branch with inductors L14 and

L15 (figure  B.17b ). As the loop current is reversed, fluxon enters the other branch with

inductors L10 and L11 (figure  B.17c ).
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(a) Loop Current = 10µA (b) Loop Current = −10µA

(c) Loop Current = 0µA

Figure B.16. Capacitance correction: Current traces with L2 = L6 =
L7 = 300pH and loop current ±10µA and 0µA. The JJs are jjk2 with C =
60fF . The changed capacitance eliminates the reflection to the input branch.
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(a) Loop Current = 0µA

(b) Loop Current = 10µA (c) Loop Current = −10µA

Figure B.17. Working symmetric circuit: Current traces with L2 = L6 =
L7 = 300pH and loop current 0µA and ±10µA. The fluxon does not enter any
of the output branches when there is no current in the rotary loop and gets
reflected back. A positive value of loop current allows the fluxon to travel in
one of the branches whereas a negative value directs it to the other branch.
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B.2.3 Working range of impedance

Let us calculate the impedance of the circuit now that we have a different junction circuit.

We will calculate the intrinsic inductance of the JJ (jjk2) first.Using equation  A.2 and the

fact that we have a supercurrent of 10µA flowing through the JJ, we have

LJ = Φ0

2π

√
I2

C − 10−5
∼ 29.47pH, (B.1)

for a critical current IC = 15µA. Choosing the value of CJ = 300 fF (perfect rotary) and

plugging the value of LJ in equation  A.1 ,

|ZJJ | = 5.92Ω. (B.2)

Since we have two 110 pH inductors in series as well (220 pH combined), we have

|ZL| = 34.56Ω. (B.3)

The effective impedance of a single leg of rotary is

|Zrot| = |ZJJ | + |ZL| = 40.48Ω. (B.4)

The impedance of the JJ jjk2 is affected by three parameters: I, IC and CJ . To calculate

the working range, we fix two of the paramters I = 10µA and CJ = 300 fF. After sweeping

the different values, the range comes out to be

13µA ≤ IC ≤ 17µA, (B.5)

with an uncertainty of 0.1µA. This translates to an impedance range of

39.1Ω ≤ |Zrot| ≤ 43.3Ω. (B.6)
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B.2.4 Failure of loop current reset

A reversible rotary should work in such a way that it can route any number of pulses.

The current circuit is incapable of doing that as the loop current value does not revert to its

original value after interacting with the incoming flux. This means that sending additional

pulses would not be directed towards any particular branch. This can be seen in figure  B.18 .

The rotary junction had a similar behavior in the previous circuit as well.

Figure B.18. Fluxon path for long times: Fluxon path and rotary junc-
tion phases for multiple input pulses. We find that the rotary junction does
not reset simply and the loop current relaxes to zero once the first pulse passes
through. The next pulses do not get directed to any of the output branches.

Moreover, the inductor L0 which is a dummy inductor connected to the rotary end from

the left side, starts conducting a non-zero current after the pulse.

This is due to the fact that we have 3 grounded terminals near the rotary junction. The

grounded terminals along with one of the rotary legs form a loop that has LIc > Φ0. We
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Figure B.19. Trapped fluxon: Inductor L0 conducting a non-zero current
even when the pulse has left the rotary. Due to the high value of inductance
in the rotary junction, the product LIc > Φ0. This leads to a trapped fluxon
in the loop formed by the grounded terminals and the rotary junction legs.

15μ A

15μ A

(a) Before

3μ A

10μ A

7μ A

(b) After

Figure B.20. Junction node diagram: Diagrammatic view of Node 1
before and after the pulse impact. The currents in the rotary legs are different
because the dummy inductor L0 has a non-zero current flowing through.
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have a fluxon trapped in this loop after the pulse travels to the output branch that affects

the future routing of pulses.
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C. CODE FOR AUTOMATING THE CIRCUIT SIMULATION

Our circuits were designed using a software Xic (cite Xic website). The simulations were

carried out using WRSpice which is a computational library for solving differential equations

of electronic circuits. Although good for individual calculations, WRSpice is not a great

choice for doing parameter sweeps along with a restrictive plotting software. We used a

Python wrapper (pyWRSpice) (cite pyWRSpice github) to carry out the simulations and

used Matplotlib for plotting.

C.1 Using pyWRSpice for automation

The circuit file can be generated as a text file from Xic using the dump button. We use

the circuit details in defining our circuit script that will be used in our simulation. The code

given below is for our working circuit.

1 # Circuit script for generating the Xic circuit

2 script_wrspice = """

3 * Generated by Xic from cell DJ - energy

4 .tran {dt}ps {time}ns uic

5 . options maxdata =4134303

6 .model jjMIT jj(rtype =1, cct =1, icon =10m, vg =2.8m, icrit =1m, cap =700f)

7 B0 1 4 29 jjk

8 B1 5 1 30 jjk

9 B2 5 4 31 jjk

10 I0 0 11 pwl ({ tzero} {zero} { tfirst }p {first}m { tsecond }p { second }m { tthird

}p {third}m)

11 L0 10 13 100 pH

12 L1 12 15 0pH

13 L2 14 16 0pH

14 L3 17 19 0pH

15 L4 18 22 0pH

16 L5 21 0 0pH

17 L6 20 0 0pH

18 L7 23 24 0pH

19 L8 25 26 0pH
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20 L9 28 0 0pH

21 L10 27 0 0pH

22 X0 11 10 dcsfq.xic

23 X1 13 0 12 2 dljj20 .xic

24 X2 15 2 14 3 dljj20 .xic

25 X3 16 3 1 4 dljj20 .xic

26 X4 1 5 17 6 dljj20 .xic

27 X5 19 6 18 7 dljj20 .xic

28 X6 22 7 21 20 dljj20 .xic

29 X7 4 5 8 23 dljj20 .xic

30 X8 8 24 9 25 dljj20 .xic

31 X9 9 26 28 27 dljj20 .xic

32 . subckt dljj -seg.xic LT LB RT RB

33 B0 5 6 7 jjk ics =1.5 uA

34 L0 LT 5 7.845 pH

35 L1 5 RT 7.845 pH

36 L2 LB 6 7.845 pH

37 L3 6 RB 7.845 pH

38 .ends dljj -seg.xic

39 . subckt dljj20 .xic LT LB RT RB

40 X0 LT LB 5 25 dljj -seg.xic

41 X1 5 25 6 26 dljj -seg.xic

42 X2 6 26 7 27 dljj -seg.xic

43 X3 7 27 8 28 dljj -seg.xic

44 X4 8 28 9 29 dljj -seg.xic

45 X5 9 29 10 30 dljj -seg.xic

46 X6 10 30 11 31 dljj -seg.xic

47 X7 11 31 12 32 dljj -seg.xic

48 X8 12 32 13 33 dljj -seg.xic

49 X9 13 33 14 34 dljj -seg.xic

50 X10 14 34 15 35 dljj -seg.xic

51 X11 15 35 16 36 dljj -seg.xic

52 X12 16 36 17 37 dljj -seg.xic

53 X13 17 37 18 38 dljj -seg.xic

54 X14 18 38 19 39 dljj -seg.xic

55 X15 19 39 20 40 dljj -seg.xic
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56 X16 20 40 21 41 dljj -seg.xic

57 X17 21 41 22 42 dljj -seg.xic

58 X18 22 42 23 43 dljj -seg.xic

59 X19 23 43 24 44 dljj -seg.xic

60 X20 24 44 RT RB dljj -seg.xic

61 .ends dljj20 .xic

62 . subckt dcsfq.xic IN OUT

63 B1 6 7 14 jjr ics =0.17125 mA

64 B2 10 13 17 jjr ics =0.17125 mA

65 B3 11 12 16 jjr ics =0.1475 mA

66 B4 8 9 15 jjr ics =0.245 mA

67 I1 0 3 0.373 mA

68 L1 IN 5 3.3528 pH

69 L2 5 6 1.2936 pH

70 L3 5 11 1.2672 pH

71 L4 7 4 1.1352 pH

72 L5 11 0 3.5904 pH

73 L6 7 10 0.2112 pH

74 L7 4 8 1.7424 pH

75 L8 8 OUT 2.112 pH

76 LPI1 3 4 0.0792 pH

77 LPJ2 13 0 0.1848 pH

78 LPJ3 12 10 0.6864 pH

79 LPJ4 9 0 0.132 pH

80 .ends dcsfq.xic

81 .model jjr jj(rtype =1, cct =1, icon =10m, vg =2.8m, delv =0.08m,

82 + icrit =1m, vshunt =0.5 mV cap =1.31p)

83

84

85

86 .model jjk jj(rtype =0, cct =1, vg =2.8m, icrit =1.5u, cap =60f)

87

88

89 .save @I1.X0[c]

90 .save @I0[c]

91
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92 * Control section

93

94 . control

95 run

96 set filetype = binary

97 write { output_file } L1# branch L2# branch L3# branch L4# branch L7# branch L8#

branch

98 .endc

99 """

We can define a function getData that takes the circuit script and use pyWRSpice to get

the output data.

1

2 def getData (dt = 0.2, time = 1, power_amp_list =[0, -0.07, 0.35 , 0],

power_time_list = [0, 25, 50, 900] , res = 0, circuit = script_wrspice ):

3

4 engine = simulation . WRWrapper ( script_wrspice ,

5 command = "/usr/local/ xictools /bin/ wrspice ") # Typical for Unix

6

7 dat1 = engine .run(circuit , dt=dt , time=time , zero = power_amp_list [0],

first= power_amp_list [1], second = power_amp_list [2], third =

power_amp_list [3], tzero = power_time_list [0], tfirst = power_time_list

[1], tsecond = power_time_list [2], tthird = power_time_list [3])

8

9

10 df = dat1. to_array ()

11

12 return df

We can also define a function drawPlots to draw the plots from the output data.

1

2

3 def drawPlots (df , num_of_curr , num_of_vol , title , path_name , fsize = (25,

16) , ylabel_loc = 0.07 , yrange = [-2, 15], num_of_xticks = 10):

4 ’’’Draws the fluxon plots for different values of the loop currents ’’’

5
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6 plt. rcParams [’figure .dpi ’] = 300

7 plt. rcParams [’savefig .dpi ’] = 300

8

9 SMALL_SIZE = 8

10 MEDIUM_SIZE = 10

11 BIGGER_SIZE = 12

12

13 plt.rc(’font ’, size=fsize [0] + 1) # controls default text

sizes

14 plt.rc(’axes ’, titlesize = SMALL_SIZE ) # fontsize of the axes title

15 plt.rc(’axes ’, labelsize =fsize [0] + 1) # fontsize of the x and y

labels

16 plt.rc(’xtick ’, labelsize =fsize [1]*20/16) # fontsize of the tick

labels

17 plt.rc(’ytick ’, labelsize =fsize [1]*20/16) # fontsize of the tick

labels

18 plt.rc(’legend ’, fontsize = SMALL_SIZE ) # legend fontsize

19 plt.rc(’figure ’, titlesize = BIGGER_SIZE ) # fontsize of the figure

title

20

21

22 label_list = [’L1’,’L2’, ’L3’, ’L4’, ’L7’, ’L8’]

23

24 colors = plt. rcParams ["axes. prop_cycle "]()

25 ts = df [0]

26

27

28 fig , axs = plt. subplots ( num_of_curr + num_of_vol , figsize =fsize ,

sharex =True , sharey =False)

29 fig. suptitle (title , fontsize =’x-large ’)

30 for i, data in enumerate (df):

31 if i >0:

32 # Get the next color from the cycler

33 c = next( colors )["color"]

34 axs[i -1]. set_xticks (np. linspace (0.0 , time , int(time*

num_of_xticks + 1)), rotation =’vertical ’)
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35 axs[i -1]. set_xlim (left =0)

36 if i<= num_of_curr :

37 axs[i -1]. plot(ts*1e9 , data *1e6 , color=c)

38 axs[i -1]. axhline (0, ls=’--’, color=’b’)

39 axs[i -1]. set_ylim ([ yrange [0], yrange [1]])

40 axs[i -1]. set_ylabel (f’{ label_list [i -1]} ’)

41 else:

42 axs[i -1]. plot(ts*1e9 , data *1e3 , color=c)

43 axs[i -1]. axhline (0, ls=’--’, color=’b’)

44 axs[i -1]. set_ylabel (’Voltage [mV]’)

45

46 fig.text(ylabel_loc ,0.5 , " Current [uA]", ha=" center ", va=" center ",

rotation =90)

47 plt. xlabel ("Time [ns]", labelpad =50)

48 plt. savefig ( path_name )

49 plt.show ()

Once we are done setting up all the functions, we can do a sweep for our parameter

values. For example, we can do a sweep over all the different values of time resolution to see

whether the simulation is missing something for larger resolutions.

1 time = 5

2 for delta_t in numpy. linspace (0.1 , 0.5, 5):

3 df = getData (dt=delta_t , time=time)
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D. SCATTERING CALCULATIONS

D.1 Separation of variables

Let us look at the Schrodinger equation for two particles.

[
−
(
∂

∂x2
1

+ ∂

∂x2
2

)
+ 2c δ(x1 − x2)

]
ψ(x1, x2) = Eψ(x1, x2) (D.1)

Defining new variables with respect to the center of mass and relative coordinates,

K = k1 + k2, k = k1 − k2;

X = (x1 + x2)/2, x = x1 − x2.

Changing the derivatives accordingly,

∂

∂x1
= ∂

∂X
.
1
2 + ∂

∂x
,

∂

∂x2
= ∂

∂X
.
1
2 − ∂

∂x
.

Rewriting the Schrodinger equation in terms of new variables,

[
−
(

1
2

∂

∂X2 + 2 ∂

∂x2

)
+ 2c δ(x)

]
ψ(x1, x2) = Eψ(x1, x2). (D.2)

Now we can use the separation of variables,

ψ(x1, x2) = A(X)B(x).

The equation  D.2 can then be written as

− 1
A

∂A

∂X2 − 4 1
B

∂B

∂x2 + 4c δ(x) = 2E. (D.3)
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Thus,

− 1
A

∂A

∂X2 = K2,

−4 1
B

∂B

∂x2 + 4c δ(x) = 2E −K2.

The first equation tells us that the center of mass stays free even in the presence of this

potential. The second equation gives us the Schrodinger equation in terms of the relative

coordinates and the relative potential.

− ∂B

∂x2 + c δ(x)B =
(
k

2

)2

B (D.4)

The condition on derivatives due to this potential can be found out by integrating the

above equation around the region of singularity,

ψ′|x→0+ − ψ′|x→0− =
∫ ϵ

−ϵ
c δ(x)ψ(x)dx = cψ(0). (D.5)

Reverting back to the original coordinate gives us the general condition,

[(
∂

∂xj
− ∂

∂xk

)
|xj=x+

k
−
(
∂

∂xj
− ∂

∂xk

)
|xj=x−

k

]
ψ = 2cψ|xj=xk

. (D.6)

D.2 Scattering coefficients

Applying the boundary condition  4.4 on permutations P and P′ i.e. on xj and xj+1,

AP

[
i(kP (j+1) − kP (j))

]
+ AP′

[
i(kP (j) − kP (j+1))

]
= c

(
AP + AP′

)
, (D.7)
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which gives us the required condition  4.6 ,

AP
AP′

= kP (j) − kP (j+1) − ic
kP (j) − kP (j+1) + ic .
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E. LIEB’S CALCULATIONS

We outline the original calculations done by Lieb in his paper [ 50 ] in this section.

E.1 Bethe ansatz in the thermodynamic limit

The Bethe equations can also be written as

(−)(N−1)e−ikjL = exp
[
i

N∑
s=1

θsj
]
, (E.1)

where θsj = −2 arctan
(

ks−kj
c

)
.

Define,

δj ≡ (kj+1 − kj)L =
N∑

s=1

(
θs,j − θs,j+1

)
+ 2πnj. (E.2)

For the ground state , nj = 1 which minimizes the δ′s and allows k’s to be as com-

pactly distributed as possible. Eq. ( 4.16 ) is then derived by looking at the difference

θ(ks − kj) − θ(ks − kj+1) and then putting the thermodynamic limit.

After calculating the equations, we do a change of variables,

k ≡ Kx; c ≡ Kλ; f(Kx) ≡ g(x).

Eqns. ( 4.16 ), ( 4.17 ) and ( 4.18 ) then become

1 + 2λ
∫ 1

−1

g(x)dx
λ2 + (x− y)2 = 2πg(y), (E.3)

γ
∫ 1

−1
g(x)dx = λ, (E.4)

e(γ) = γ3

λ3

∫ 1

−1
g(x)x2dx (E.5)

respectively, where γ = c
ρ

is a dimensionless quantity. ( E.3 ) is an inhomogeneous Freidholm

equation of the second kind.
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To solve these equations and get the ground state spectrum, we need to

1. Solve ( E.3 ) for a fixed value of λ.

2. Find λ as a function of γ using ( E.4 ).

3. Use ( E.5 ) gives the energy spectrum.

Now we move on to the excited state spectrum. The first excited state had the following

equations to solve:

2π J(k) = 2c
∫ K

−K

J(r)
c2 + (r − k)2dr − π − θ(q − k),

p =
∫ K

−K
J(r)dr + q,

ϵ1 = −µ+ q2 + 2
∫ K

−K
r J(r)dr.

Defining new variables,

k = Kx; J(Kx) = j(x); q = Ks; c = Kλ.

The equations now become,

2π j(x) = 2λ
∫ 1

−1

j(y)
λ2 + (x− y)2dy − π + 2 arctan

(s− x

λ

)
, (E.6)

p

ρ
= γ

λ

∫ 1

−1
j(y)dy + s, (E.7)

ϵ1

ρ2 = γ
∂ϵ0(γ)/∂λ
∂γ/∂λ

− 3ϵ0(γ) + γ2

λ2

[
s2 + 2

∫ 1

−1
y j(y)dy

]
. (E.8)

The value of γ as a function of λ was already calculated with regards to the ground state

spectrum. The parameter ”s” can be eliminated from  E.8 by using  E.7 and we get ϵ1(p).
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Similarly, the other excitation comes out to be

2π j(x) = 2λ
∫ 1

−1

j(y)
λ2 + (x− y)2dy + π − 2 arctan

(s− x

λ

)
, (E.9)

p

ρ
= γ

λ

∫ 1

−1
j(y)dy − s, (E.10)

ϵ2

ρ2 = 3ϵ0(γ) − γ
∂ϵ0(γ)/∂λ
∂γ/∂λ

+ γ2

λ2

[
2
∫ 1

−1
y j(y)dy − s2

]
. (E.11)

E.2 Friedholm solver

The Friedholm equations of the second kind were solved on Mathematica XI. The code

for the solver was taken from a  StackExchange thread  . This solver can solve the equations

of the form:

f(x) − λ
∫ b

a
K(x, y)f(y)dy = g(x). (E.12)
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F. BETHE’S HARDWALL EQUATIONS FOR 2 PARTICLES

Using the Bethe ansatz for the hardwall case  4.30 , the wavefunction at its full form

ψ(x1, x2) =A(k1, k2) exp(i[k1x1 + k2x2]) + A(k2, k1) exp(i[k2x1 + k1x2])

− A(−k1, k2) exp(i[ − k1x1 + k2x2]) − A(k1,−k2) exp(i[k1x1 − k2x2])

− A(k2,−k1) exp(i[k2x1 − k1x2]) − A(−k2, k1) exp(i[ − k2x1 + k1x2])

+ A(−k1,−k2) exp(i[ − k1x1 − k2x2]) + A(−k2,−k1) exp(i[ − k2x1 − k1x2]).

(F.1)

The boundary condition on the derivative results in a relation between permutations,

A(. . . , ϵjkj, . . . , ϵlkl, . . .)
A(. . . , ϵlkl, . . . , ϵjkj, . . .)

= ϵjkj − ϵlkl + ic
ϵjkj − ϵlkl − ic. (F.2)

So, for our two particle case,

A(k1, k2) =
(
k1 − k2 + ic
k1 − k2 − ic

)
A(k2, k1),

A(−k1, k2) =
(
k1 + k2 − ic
k1 + k2 + ic

)
A(k2,−k1),

A(k1,−k2) =
(
k1 + k2 + ic
k1 + k2 − ic

)
A(−k2, k1),

A(−k1,−k2) =
(
k1 − k2 − ic
k1 − k2 + ic

)
A(−k2,−k1).
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This leaves us with 4 unknown coefficients. Writing the wavefunction again,

ψ(x1, x2) =A(k1, k2) exp(i[k1x1 + k2x2]) +
(
k1 − k2 − ic
k1 − k2 + ic

)
A(k1, k2) exp(i[k2x1 + k1x2])

− A(−k1, k2) exp(i[ − k1x1 + k2x2]) −
(
k1 + k2 + ic
k1 + k2 − ic

)
A(−k1, k2) exp(i[k2x1 − k1x2])

− A(k1,−k2) exp(i[k1x1 − k2x2]) −
(
k1 + k2 − ic
k1 + k2 + ic

)
A(k1,−k2) exp(i[ − k2x1 + k1x2])

+ A(−k1,−k2) exp(i[ − k1x1 − k2x2]) +
(
k1 − k2 + ic
k1 − k2 − ic

)
A(−k1,−k2) exp(i[ − k2x1 − k1x2]).

(F.3)

We can use the hardwall boundary condition now,

ψ(0, x2) = 0 = ψ(x1, L).

Using the first part and equating the coefficients of the exponents, we get

A(k1, k2) = A(−k1, k2),

A(k1, k2)
(
k1 − k2 − ic
k1 − k2 + ic

)
= A(−k1, k2)

(
k1 + k2 − ic
k1 + k2 + ic

)
,

A(−k1, k2)
(
k1 + k2 + ic
k1 + k2 − ic

)
= A(−k1,−k2)

(
k1 − k2 + ic
k1 − k2 − ic

)
,

A(k1,−k2) = A(−k1,−k2).
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Writing everything in terms of A(k1, k2),

ψ(x1, x2) = A(k1, k2)
[
(k1 − k2 + ic)(k1 + k2 − ic) exp(i[k1x1 + k2x2])

+ (k1 − k2 − ic)(k1 + k2 − ic) exp(i[k2x1 + k1x2])

− (k1 − k2 + ic)(k1 + k2 − ic) exp(i[ − k1x1 + k2x2])

− (k1 + k2 − ic)(k1 − k2 + ic) exp(i[k2x1 − k1x2])

− (k1 + k2 + ic)(k1 − k2 − ic) exp(i[k1x1 − k2x2])

− (k1 − k2 − ic)(k1 + k2 − ic) exp(i[ − k2x1 + k1x2])

+ (k1 + k2 + ic)(k1 − k2 − ic) exp(−i[k1x1 + k2x2])

+ (k1 − k2 − ic)(k1 + k2 − ic) exp(−i[k2x1 + k1x2])
]
. (F.4)

Now, moving on to the second part of the hardwall boundary condition i.e. ψ(x1, L) = 0,

exp(ik1L)(k1 − k2 − ic)(k1 + k2 − ic) − exp(−ik1L)(k1 + k2 + ic)(k1 − k2 + ic) = 0,

exp(ik2L)(k1 − k2 + ic)(k1 + k2 − ic) − exp(−ik2L)(k1 + k2 + ic)(k1 − k2 − ic) = 0.

The Bethe equation come out as

exp (i2k1L) = (k1 − k2 + ic)(k1 + k2 + ic)
(k1 − k2 − ic)(k1 + k2 − ic) , (F.5)

exp (i2k2L) = (k2 − k1 + ic)(k2 + k1 + ic)
(k2 − k1 − ic)(k2 + k1 − ic) . (F.6)

This can be genralized for an N-particle system by carefully observing the relations

between the coefficients.
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G. STRING SOLUTION OF TWO PARTICLES

Let us check whether the Bethe equations are satisfied by the string solutions ( 4.50 ) of the

two particles.

eik1L =
(
k1 − k2 + ic
k1 − k2 − ic

)
(G.1)

eik2L =
(
k2 − k1 + ic
k2 − k1 − ic

)
(G.2)

The solution as in  4.50 is given by

k1 = K/2 + ic/2 k2 = K/2 − ic/2 (G.3)

Putting these in  G.1 and  G.2 , we get

ecL/2 = 0 (G.4)

e−cL/2 = ∞ (G.5)

which are only satisfied when L → ∞ or c → −∞.

G.1 Single string solution for 3 particles in a hardwall

A 3 particle solution can be taken as:

k1 = α− iΛ, k2 = α + iΛ, k3 = α (G.6)
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The Bethe equations with these momenta are:

ei2(α−iΛ)L =
(

2Λ − c

2Λ + c

)(
Λ − c

Λ + c

)(2α + ic
2α− ic

)(2α− iΛ + ic
2α− iΛ − ic

)
(G.7)

ei2(α+iΛ)L =
(

2Λ + c

2Λ − c

)(
Λ + c

Λ − c

)(2α + ic
2α− ic

)(2α + iΛ + ic
2α + iΛ − ic

)
(G.8)

ei2αL =
(

2α− iΛ + ic
2α− iΛ − ic

)(
2α + iΛ + ic
2α + iΛ − ic

)
(G.9)

Putting the value from  G.9 in  G.7 and  G.8 ,

e2ΛL =
(

2Λ − c

2Λ + c

)(
Λ − c

Λ + c

)(2α + ic
2α− ic

)(2α + iΛ − ic
2α + iΛ + ic

)
(G.10)

e−2ΛL =
(

2Λ − c

2Λ + c

)(
Λ − c

Λ + c

)(2α + ic
2α− ic

)(2α− iΛ − ic
2α− iΛ + ic

)
(G.11)

The only way  G.10 and  G.11 are consistent with each other is if,

(2α + ic)2

(2α− ic)2 = (2α + ic)2 + Λ2

(2α− ic)2 + Λ2 (G.12)

The only solution to the above equation is Λ = 0 in which case there is no 3 string bound

state solution.
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