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ABSTRACT

Temporal point processes (TPP) are mathematical approaches for modeling asynchronous

event sequences by considering the temporal dependency of each event on past events and its

instantaneous rate. Temporal point processes can model various problems, from earthquake

aftershocks, trade orders, gang violence, and reported crime patterns, to network analysis,

infectious disease transmissions, and virus spread forecasting. In each of these cases, the

entity’s behavior with the corresponding information is noted over time as an asynchronous

event sequence, and the analysis is done using temporal point processes, which provides a

means to define the generative mechanism of the sequence of events and ultimately predict

events and investigate causality.

Among point processes, Hawkes process as a stochastic point process is able to model

a wide range of contagious and self-exciting patterns. One of Hawkes process’s well-known

applications is predicting the evolution of viral processes on networks, which is an important

problem in biology, the social sciences, and the study of the Internet. In existing works,

mean-field analysis based upon degree distribution is used to predict viral spreading across

networks of different types. However, it has been shown that degree distribution alone

fails to predict the behavior of viruses on some real-world networks. Recent attempts have

been made to use assortativity to address this shortcoming. This thesis illustrates how the

evolution of such a viral process is sensitive to the underlying network’s structure.

In Chapter  3 , we show that adding assortativity does not fully explain the variance in

the spread of viruses for a number of real-world networks. We propose using the graphlet

frequency distribution combined with assortativity to explain variations in the evolution

of viral processes across networks with identical degree distribution. Using a data-driven

approach, by coupling predictive modeling with viral process simulation on real-world net-

works, we show that simple regression models based on graphlet frequency distribution can

explain over 95% of the variance in virality on networks with the same degree distribution

but different network topologies. Our results highlight the importance of graphlets and iden-

tify a small collection of graphlets that may have the most significant influence over the viral

processes on a network.

13



Due to the flexibility and expressiveness of deep learning techniques, several neural

network-based approaches have recently shown promise for modeling point process inten-

sities. However, there is a lack of research on the possible adversarial attacks and the

robustness of such models regarding adversarial attacks and natural shocks to systems.

Furthermore, while neural point processes may outperform simpler parametric models on

in-sample tests, how these models perform when encountering adversarial examples or sharp

non-stationary trends remains unknown.

In Chapter  4 , we propose several white-box and black-box adversarial attacks against

deep temporal point processes. Additionally, we investigate the transferability of white-

box adversarial attacks against point processes modeled by deep neural networks, which are

considered a more elevated risk. Extensive experiments confirm that neural point processes

are vulnerable to adversarial attacks. Such a vulnerability is illustrated both in terms of

predictive metrics and the effect of attacks on the underlying point process’s parameters.

Expressly, adversarial attacks successfully transform the temporal Hawkes process regime

from sub-critical to into a super-critical and manipulate the modeled parameters that is

considered a risk against parametric modeling approaches. Additionally, we evaluate the

vulnerability and performance of these models in the presence of non-stationary abrupt

changes, using the crimes and Covid-19 pandemic dataset as an example.

Considering the security vulnerability of deep-learning models, including deep temporal

point processes, to adversarial attacks, it is essential to ensure the robustness of the deployed

algorithms that is despite the success of deep learning techniques in modeling temporal point

processes.

In Chapter  5 , we study the robustness of deep temporal point processes against sev-

eral proposed adversarial attacks from the adversarial defense viewpoint. Specifically, we

investigate the effectiveness of adversarial training using universal adversarial samples in

improving the robustness of the deep point processes. Additionally, we propose a general

point process domain-adopted (GPDA) regularization, which is strictly applicable to tem-

poral point processes, to reduce the effect of adversarial attacks and acquire an empirically

robust model. In this approach, unlike other computationally expensive approaches, there

is no need for additional back-propagation in the training step, and no further network is
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required. Ultimately, we propose an adversarial detection framework that has been trained

in the Generative Adversarial Network (GAN) manner and solely on clean training data.

Finally, in Chapter  6 , we discuss implications of the research and future research direc-

tions.
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1. INTRODUCTION

Temporal point process models are employed for a variety of applications ranging from

analyzing electronic transaction records [  1 ], forecasting earthquake aftershocks [ 2 ], mitigating

the spread of fake news [ 3 ], [ 4 ], and allocating police to crime hot spots [ 5 ], [ 6 ].

The current research investigates the sensitivity of point process models used for virality

evolution to the underlying network structure and the robustness of neural point processes

to non-stationary changes in data and adversarial attacks. Moreover, we study and propose

methods to improve their robustness. Ultimately, it contributes to trustworthy and explain-

able artificial intelligence (AI) since, up to date, only a few studies examine the adversarial

attacks against regression models, and expressly none examined point process models that

can be viewed as the time-to-event regressions. Specifically, most advances in trustworthy

AI focus on computer vision and image analysis. Nonetheless, point processes such as the

Hawkes process are utilized in sensitive fields and security-related tasks such as criminology,

fraud detection, anomaly detection, and flight arrival time prediction.

1.1 Motivation

1.1.1 Virality hinges on the underlying network’s structure

A variety of dynamic phenomena, including YouTube video views [  7 ], Tweet resharing

[ 8 ], viral marketing campaigns [ 9 ], the spread of computer viruses on the Internet [ 10 ], and

gang retaliation [ 11 ] can be explained as evolving viral processes on networks. As such, the

study of the evolution of viral processes on networks has attracted considerable attention in

recent years. It is now well known that for a connected network, the largest eigenvalue of

its adjacency matrix is a good metric for predicting the viral process in that network [ 12 ]–

[ 14 ]. The largest eigenvalue can be roughly estimated by the average degree of the network

[ 15 ]. Still, the complete degree distribution of the network is more expressive than the point

estimate of the average degree and has therefore also been considered for predicting these

viral processes. A common approach along these lines is to employ a mean-field analysis

where independence assumptions on the nodes are used [ 16 ]–[ 20 ]. More recently it has been
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shown that in some cases, including real-world networks, these mean-field assumptions fail to

predict the viral spreading [  21 ]. Consequently, assortativity has been proposed for addressing

the limitations of the degree-based, mean-field analyses [  22 ], [  23 ]. Through degree-preserving

network rewiring procedures, it has been shown that the spectral radius of a graph can exhibit

great fluctuations across networks with the same degree distribution and that assortativity

can be used to explain this variation. While there is a clear correlation between assortativity

and the dynamics of viral processes on graphs, the fact remains that, if we control for both

assortativity and degree distribution, viral diffusion on networks with different topologies

can still exhibit greatly different behaviors.

We illustrate this observation with the following example. In Figure  1.1 , we display

results for a Hawkes process [ 7 ] simulation on 2500 networks with identical degree distribution

sampled via degree preserving rewiring [ 24 ] from the Karate network [ 25 ]. In the Hawkes

branching process model, an initial event occurs at a randomly chosen node. Then subsequent

generations of events occur at neighboring nodes of previous events with a fixed probability.

In Figure  1.1 , we plot assortativity vs. the expected total number of events (at time infinity)

of the Hawkes process for each of the simulated networks. While assortativity partially

explains the behavior of the process, for the two highlighted networks with identical degree

distribution and similar assortativity, the expected total number of events in the process

differs by a factor of 4. So, we need to extend our analysis beyond degree distribution and

assortativity to understand better the dynamics of a viral process over a network.

In Chapter  3 , we propose using the frequency distribution of graphlets (see Figure  1.2 

for a preview) to explain the variation in viral processes observed in Figure  1.1 . Specifically,

we show that graphlet frequencies are good predictors for explaining the variation of the

evolution of viral processes over a collection of networks for which the degree distribution

is kept fixed. Our results not only highlight the importance of graphlets but also identify a

small collection of graphlets that may have the highest influence over the viral processes on

a network.
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Figure 1.1. Hawkes process simulation on 2500 rewired Karate networks. De-
gree distribution (far left) is fixed for all of the 2500 networks. The Expected
number of events in a cascade vs assortativity (far right). Two example net-
works (middle) corresponding to large differences in virality despite similar
assortativity and identical degree distribution.

g1 g2

3-node graphlets

g3 g4 g5 g6 g7 g8

4-node graphlets

5-node graphlets

g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19

g20 g21 g22 g23 g24 g25 g26 g27 g28 g29

Figure 1.2. Undirected graphlets with 3, 4, and 5 vertices.
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1.1.2 Adversarial attacks

Due to the success of deep learning models in various domains, neural network-based

approaches to modeling point processes have recently received attention from the research

community [  26 ]–[ 28 ]. These methods attempt to learn non-parametrically key components

of point processes and their intensity to capture real event patterns better than parametric

models.

Despite the remarkable success of deep neural networks (DNNs), they suffer from severe

vulnerabilities to adversarial attacks. As a result, vulnerability’s examination of DNN in

computer vision and natural language processing has received attention recently. In the

point process domain, deep learning approaches run the risk of over-parameterizing models

and overfitting real-world, noisy data despite their success. Furthermore, recent research on

adversarial attacks has gained attention. Such research is crucial for security purposes and

understanding deep learning models in order to make machine learning models trustworthy.

For neural point processes, there is a lack of research on how robust such models are

to natural shocks to systems, e.g., how a pandemic impacts deep point process forecasts of

crime and adversarial attacks. This study investigate neural network-based point process

models and their robustness against natural shocks and adversarial attacks.

It’s noteworthy that, unlike classification tasks, in regression, the adversarial learn-

ing setting is restricted by difficulties in defining the adversarial attacks, their effective-

ness, and evaluation metrics [  29 ]. In examining adversarial attacks against regression mod-

els, application-specified approaches are common. In [  30 ] by studying attacks against au-

tonomous driving models, the authors present the adversarial threshold, which corresponds

to a deviation between the actual prediction and the prediction on the adversarial sample.

The present work is the first to explore the adversarial methods for temporal point

processes modeled by deep neural networks (DNN) and examine their performance. In

particular, in Chapter  4 , I) We propose several adversarial attack approaches to generate

white-box and black-box adversarial perturbation against point processes modeled by deep

learning. In white-box settings, the network’s knowledge is accessible to the adversary. In

contrast, no knowledge about the attacked network is required in black-box attacks. And
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II) We study the transferability of white-box attacks where the adversarial samples are

crafted on networks with more significant parameters and employed to attack the targeted

network. Transferability of adversarial attacks increases the risk of adversarial attacks. III)

We show how adversarial attacks can disturb underlying parameters of point processes that

are considered a threat to parametric modeling.

In Figure  1.3 and Figure  1.4 , we present the overview of white-box attacks and black-

box adversarial attacks respectively. Here, original points are illustrated in Blue, while Red

represents adversarial points that are the input to the model. Moreover, we present the

model’s prediction for the original and corresponding adversarial input sequence in Green

and Orange, respectively. The affiliated intensity of each point has been shown to emphasize

the effect of adversarial attacks on underlying parameters.

Prediction

In
te
ns
ity

Time

Adversarial attackData

t1 t2 t7t3 t5t4 t6

Model

Timet1 t2 t7t3 t5t4 t6
t1 t2 t7t3 t5t4 t6Time

Figure 1.3. The overview of proposed white-box adversarial attacks against
neural point processes. In this framework, temporal components of points, e.g.,
crimes, are the input of the DNN model. The adversary has some knowledge
about the network and employs it to generate adversarial samples.

1.1.3 Robustness to adversarial attacks

As aforementioned, adversarial attacks against deep learning received boosted attention

in recent years. Consequently, for all machine learning models, including neural networks,
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Figure 1.4. The overview of proposed black-box adversarial attacks against
neural point processes. In this framework, temporal components of points,
e.g., crimes, are the input of the DNN model. Unlike white-box attacks, in
black-box attacks, the adversary introduces a fake point (time) independent
of the network architecture and weights.
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adversarial robustness and defense against adversarial attacks are essential for security pur-

poses.

In Chapter  5 , we investigate the robustness of neural point processes against several

proposed adversarial attacks. Specifically, from the adversarial defense viewpoint, adversarial

attack strategies aim to perturb original real data samples that can be systematically adopted

to design defense mechanisms, e.g., adversarial learning. In Chapter  5 , I) We investigate the

effectiveness of adversarial training using universal adversarial samples. II) We propose

domain adopted loss function for neural point processes based on point process residual

analysis theorem to improve the robustness against several adversarial attacks. Finally, III)

We propose an adversarial detector that has been trained in Generative Adversarial Network

(GAN) frameworks and solely on clean training data.

In this research, we extend the topic of trustworthy machine learning to point processes

and sequential data. Specifically, we step towards making neural point process models ex-

plainable, detect their weaknesses, and robustness. Additionally, due to advances in deep

learning, we examine and propose several adversarial attacks against point processes in

general and specific fields. Finally, regarding robustness against adversarial attacks, we ex-

periment theoretical approaches to improve the model robustness empirically by proposing

a simple, novel, and flexible regularization methods.
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2. BACKGROUND

In this research and for Chapter  3 , we will be making several different measurements reflecting

the topology of networks from degree distribution to assortativity to graphlet distribution

– as well as simulating two different viral processes – the Hawkes process and Susceptible-

Infected-Susceptible model – on networks. We provide some background materials on these

topics in this section.

2.0.1 Degree Distribution

The degree of a node is the number of connections of that node to other nodes in the

network. The degree distribution is a discrete probability distribution of degrees over the

nodes in the network. Directed networks have two different degree distributions, the in-

degree and the out-degree distributions. In this study, we restrict our attention to undirected

networks for which only one degree distribution is defined.

2.0.2 Assortativity

Assortativity, or assortative mixing, is defined by the tendency of a network’s nodes to

be connected to others nodes that are similar in some way. While there are several different

mathematical definitions, we will refer to assortativity as the Pearson correlation coefficient

of degrees at either ends of a network edge [  31 ]. In this case the assortativity is given by the

formula [ 31 ],

A =
M−1 ∑

i jiki − [M−1 ∑
i

1
2(ji + ki)]2

M−1 ∑
i

1
2(j2i + k2

i )− [M−1 ∑
i

1
2(ji + ki)]2

, (2.1)

where the edges in a network are indexed by i = 1, ...,M and ji, ki are the degrees of the

nodes at the ends of edge i. In Figure  2.1 , we provide examples of two social networks from

the Network Repository [ 25 ] with different assortativity, one positive and one negative.
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Figure 2.1. The left figure shows a graph with positive assortativity
where nodes with high degree are connected to other nodes with high de-
gree (assortativity = 5.4). The right graph is an example of a disassortative
network,(assortativity = −0.88) where the hubs connect to low degree nodes.

2.0.3 Graphlets

Graphlets can be defined as small, connected  

1
 , non-isomorphic, induced subgraphs of a

large network. In this study, we work with all possible graphlets having k ∈ {3, 4, 5} vertices.

If the graphlet edges are undirected, there are 29 such graphlets as shown in Figure  1.2 . We

refer to a graphlet with k vertices as a k-Graphlet; note that a 1-Graphlet is simply a vertex

and a 2-Graphlet is simply an edge.

The frequency of a graphlet gi in a graph G is the total number of distinct embeddings

of that graphlet gi in the graph G. The Graphlet frequency distribution (GFD) is the

normalized frequency of the graphlets. To obtain GFD, we normalize the graphlet count

vector (a vector of 29 integers which represents the count of each of the graphlets) so that

the L1-norm of the vector is 1; thus, the values in the vector represent a discrete probability

distribution.

As real life networks are generally sparse, frequencies of larger sized graphlets shrink

exponentially, so in GFD, we typically use a logarithm scale for comparing various frequencies

so that the number of occurrences of larger-sized graphlets against that of the smaller-sized

ones are scaled appropriately.

The frequency distribution of graphlets in a network captures the local topology around

the vertices of the network and it has a number of uses in network analysis and prediction.
1

 ↑ disconnected graphlets have also been considered in several graphlet based works, but in this work we
only consider connected graphlets because connectedness is essential for the evolution of a viral process on
a network.
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For example, the frequencies of various graphlets can be used for building a global fingerprint

for a network such that the fingerprints of different networks arising from a real-life domain

are almost identical [  32 ]. Transition of graphlets over temporal snapshots of a network has

also been shown to improve link prediction models for dynamic networks [ 33 ].

A key challenge for finding graphlet frequency distribution is the high computational cost

of graphlet enumeration or counting. However, in recent years, several efficient algorithms

have become available that generate exact graphlet counting [ 32 ], [  34 ]. Yet, for very large

networks exact counting of graphlets is not feasible. So, there exist methods (such as, GUISE

and its variants [  35 ]–[ 37 ]), which can generate approximate graphlet frequency distributions

through uniform sampling of graphlets. Sampling based methods provide very good approxi-

mations of graphlet frequency distributions and can scale to graphs with millions of vertices.

In this work, we use GUISE algorithm for computing the graphlet frequency distributions

of a network.

2.0.4 Hawkes process model

The Hawkes process is a specific kind of self-exciting point process whereby discrete

events occur according to a stochastic intensity λ(t) that increases in response to events

themselves. For a Hawkes process on a network G, given the event observation dyads (ti, vi),

where ti is a time value for an event and vi is a vertex on which the event occurred, the

conditional intensity (rate) of events at node v, λv(t), is given by the equation

λv(t) = µ+
∑
t>ti

vi∈N(v)

θf(t− ti). (2.2)

In (  2.2 ), N(v) is the set of nodes that are neighbor of v on G (note that v ∈ N(v) for this

process) so that the intensity is a superposition of a Poisson background intensity µ and

Poisson intensities θf(t − ti) centered at previous event times ti such that vi is a neighbor

of v on the graph G. The triggering kernel f(t) is a probability density defined on [0,∞)

and, when the model is interpreted as a branching process, the productivity parameter θ
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determines the expected number of direct offspring events at node v triggered by an event

at a node vi ∈ N(v).

2.0.5 Susceptible-Infected-Susceptible model

The second model we consider is based on the well-known Susceptible-Infected-Susceptible

(SIS) model in epidemiology. In this model, each node of the network can be in one of two

states at any given time - susceptible or infected. Let S(t) be the set of all susceptible

nodes at time t, I(t) be the set of all infected nodes at time t, λv(t) be the rate at which a

susceptible node v ∈ S(t) becomes infected, and µu be the rate at which an infected node

u ∈ I(t) becomes susceptible. The model is then

λv(t) =
∑

q∈N(v)∪I(t)
θ (2.3)

µu = 1 . (2.4)

So, a susceptible node v switches to being infected via a Poisson process with time varying

rate equal to a parameter θ times the number of neighbors of v that are infected at that time,

and an infected node u switches to being susceptible via a homogeneous Poisson process with

rate 1 (without loss of generality). In terms of virality, one may be interested in a scenario

in which all nodes are initially susceptible except for a potentially small number of infected,

then tracking how many further infections occur as a result of these initial infections. The

result will clearly depend on which nodes are initially infected, the adjacency matrix of the

network A, and the parameter θ.
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3. THE ROLE OF GRAPHLETS IN VIRAL PROCESSES ON

NETWORKS

3.1 Methodologies

Our primary objective is to show that graphlet frequency distribution, in addition to

assortativity, is a good predictor for the virality in a network when degree distribution is

controlled for. Many earlier works use analytic approaches for finding the influence of network

topology or network based metrics on the viral process on a network [  12 ], [  13 ]. However,

such methods are very cumbersome for graphlets, as graphlets are combinatorially complex

objects and their influence over the dynamic process is difficult to represent by a simple

model that can be solved analytically. So, in this work we forgo a mathematical analysis in

favor of a data science approach to the problem.  

1
 

Our overall strategy is to use simulation and empirical measurement to explore the con-

nection between graphlet distribution and the evolution of viral processes on networks. For

this purpose we use several real-world networks as input to a simulation model. Given a

particular network and model for a viral process, we perform the following steps:

1. Generate M synthetic networks through re-wiring (explained below) with identical

degree distributions to the original real-world network.

2. For each generated network, compute the assortativity and graphlet frequency distri-

bution.

3. For each generated network, compute the expected number of events, E[N∞], of the

viral process of interest running on the network.

4. Regress E[N∞] against the assortativity and/or graphlet frequency distribution to

assess the role that these measures play beyond degree distribution.

Below we provide more details of the above steps.
1

 ↑ Reproduced with permission from Springer Nature
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3.1.1 Generating Simulation Graphs

We have shown in the Introduction section, degree distribution and assortativity are not

adequate for explaining the evolution of a viral process in a network—which motivate us

to find the influence of graphlet frequency distribution in a viral process. However, degree

distribution does provide a partial explanation of a viral process. To nullify the influence of

degree distribution in our analysis, we use degree distribution as a control variable, i.e., we

generate a collection of synthetic networks for which degree distribution is a constant.

Generating networks with a given degree distribution is a well-studied problem, specifi-

cally for the task of network motif discovery [ 38 ]. There are two well-known approaches for

solving this problem, (i) edge swapping [  39 ], [ 40 ] and (ii) stub-matching. Edge swapping

starts from a given graph and makes local modification on the given graph to generate an-

other graph having the same degree sequence. One edge swapping approach that preserves

the degree sequence is the following. First, select two edges uniformly at random from the

graph G; for example, suppose these are e1 = (a, b) and e2 = (c, d). Then, replace these

two edges by two new edges where the second vertices are swapped between the original two

edges, assuming those new edges are not already present in G; in our example, these would

be the two new edges e3 = (a, d) and e4 = (c, b). If the edge e3 or e4 (or both) already

exists in G, this proposed swap is rejected and the process is repeated with a new pair of

randomly chosen edges e1 and e2. It is easy to see that the degree of each vertex remains

invariant under a successful edge swap process. The edge-swapping can be continued and a

sequence of graphs can be generated, such that all of these graphs have an identical degree

distribution.

If we consider the sequence of graphs as a Markov chain, then the stationary distribution

of the Markov chain is a uniform distribution over the graphs having identical degree distri-

bution. For stub-matching, the configuration model is very popular [ 41 ]. In this method, the

algorithm creates as many stubs (dangling half-edges) for each vertex as its degree. Then

edges are created by choosing pairs of vertices randomly and connecting their stubs. This

approach may create parallel edges, which are dealt with by restarting the process; for large

graph the re-starting may become very costly.
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In this work, we use the edge-swapping method, as it is easy to implement. By choosing

a sufficiently large number of steps for the Markov chain, we generate graphs which are

sufficiently different from each other with widely different graphlet frequency distributions.

3.1.2 Preparing Topology and Virality Data for Regression

For our study, a collection of graphs with identical degree distribution is a regression

dataset in which each graph is an instance. For each graph we compute graphlet degree

distribution and assortativity, which become the explanatory variables for our regression.

Below we discuss how we compute these values for a given graph.

Computing graphlet frequency distribution by counting each of the graphlets in a graph

is a costly task as the number of graphlet embeddings grows exponentially with the size of the

graphlets. In fact, if both connected and disconnected graphlets are considered, the number

of k-graphlets on a graph with K vertices is equal to O(
(

K
k

)
). In this work, we consider

graphlets up to size 5, for which a brute-force graphlet enumeration complexity is equal to

(O(K5), which is not scalable for many real-life networks. An alternative to counting is

uniform sampling of graphlet embeddings, which is sufficient to obtain a graphlet frequency

distribution. In an earlier work [  34 ], we have shown how graphlets can be sampled under

uniform distribution by using a Monte Carlo Markov Chain (MCMC) sampling algorithm.

Specifically, we have proposed a method named GUISE, which performs a random walk

over the graphlet embeddings by following a double-stochastic transition matrix; the station-

ary distribution of the Markov chain is a uniform distribution over the graphlet embeddings.

By counting the type of graphlets that are traversed in this random walk and then normal-

izing the vector as described above, GUISE returns a graphlet frequency distribution vector.

In this work, we use GUISE algorithm for computing the graphlet frequency distribution.

It returns a 29-size vector, in which each component d(gi) represents the normalized fre-

quency of the graphlet gi as illustrated in Figure  1.2 . We also compute the assortativity of

the network using (  2.1 ). The components of the graphlet frequency distribution vector and

assortativity (a 30-size vector) become the covariates of our regression analysis.
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The target value of our regression is the expected number of events – excited offspring

events in the case of the Hawkes process and secondary infections in the case of the SIS

process – that are spawned from a single initiating event placed randomly within the network.

The way this target value is computed depends on the viral process used. For the Hawkes

process [ 7 ], [ 8 ], [ 11 ], we consider a simplified model where

1. a node is chosen uniformly at random

2. an initial event at time t1 = 0 occurs at the chosen node

3. the Hawkes process with µ = 0 is simulated and the total number of events, N∞, at

time infinity is observed

In the case of this simplified model, the expected number of total events is given by,

E[N∞] = 1
K

1T · (
∞∑

j=1
(θA)j · 1), (3.1)

where K is the number of nodes in G, 1 is a column vector of ones, and A is the adjacency

matrix of G (A is symmetric because the graph G is undirected). The expected total number

of events E[N∞] will be finite up to a critical threshold value of the productivity parameter,

θc.

For the SIS model, we approximate the continuous time version described in Section

 2 above with a discrete time version that allows us to more easily count the number of

secondary infections arising from a single initially infected node, and which greatly simplifies

the simulations. Here, time is discretized into units of step 1, and we define a vector I(t)

such that Iu(t) = 1 if node u is infected at time t and 0 if node u is susceptible at time t.

Initially, Iu(0) is zero for all u except for a single node chosen uniformly randomly. Then

the model proceeds via iterations of the following steps:

1. nodes v susceptible at time t become infected at time t+ 1 with probability 1− e−λv(t),

where λv(t) = θ(AI(t))v

2. all nodes infected at time t become susceptible at time t+ 1
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3. at each timestep t > 0, the product 1T · I(t) is equal to the new number of infections

4. the total new infections N∞ are observed as time goes to infinity

For this simplified model, an approximation of the expected number of total new infections

can be found via

E[N∞] = 1
K

1T ·
K∑

k=1

∞∑
t=1

I(t; k) (3.2)

Iv(0; k) = δv,k (3.3)

Iv(t+ 1; k) = (1− Iv(t; k))
[
1− e−θ(AI(t;k))v

]
. (3.4)

As in the Hawkes model, the value of E[N∞] is expected to be finite up until some critical

value of θ, below which the infection is expected to disappear at some finite time (is at

most epidemic), and above which the infection in expectation never leaves the network (is

endemic).

3.1.3 Regression Model for Predicting Virality

For each real-world network we simulate M = 500 rewired networks holding the degree

distribution fixed. Next, for each simulated network, we compute the assortativity, the

graphlet frequency distribution, the largest eigenvalue λmax, as well as E[N∞] for the Hawkes

and SIS models. When calculating E[N∞] for the Hawkes and SIS models, the value of θ is

chosen to be a constant multiple of the largest eigenvalue of the original network. To explain

the observed variation in E[N∞] across the simulated networks, we run a regressions of the

form

log(E[N∞]) = b+ c0A+
29∑

i=1
ci log(d(gi)) + ε (3.5)

where b is the intercept, A is the assortativity, d(gi) is the frequency distribution value of

graphlet gi, and ci are coefficients of a linear regression where the model errors ε are assumed

to be normal. Note that, although our regression is simply a linear fit, the underlying

relationship between virality and the various graph topology measures is proposed to be

nonlinear due to the logarithms present in (  3.5 ). This nonlinearity is certainly plausible at
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Table 3.1. Network statistics as reported by [ 25 ].
rt-retweet karate soc-dolphins soc-firm-hi-tech

Nodes 96 34 62 33
Edges 117 78 159 124.5
Density 0.0257 0.1390 0.0841 0.2358
Maximum degree 17 17 12 28
Minimum degree 1 1 1 0
Average degree 2 4 5 9.19
Assortativity -0.1792 -0.4756 -0.0436 -0.1200
Number of triangles 36 135 285 454.5
Average number of triangles 0 3 4 13.77
Maximum number of triangles 6 18 17 88.5
Average clustering coefficient 0.0608 0.5706 0.2590 0.4050
Fraction of closed triangles 0.0742 0.2557 0.3088 0.2960
Maximum k-core 4 5 5 8

least for the assortativity, given the plotted relationship in Fig.  1.1 . Further, as discussed

above, it is natural to consider the logarithm of the graphlet frequency distribution, which

is why we do so here. We estimate the model on 70% of the 500 simulated networks and

then evaluate the R2 and mean square error (MSE) on the remaining 30% test data.

3.2 Data and Results

We consider four real-world networks obtained from the Network Repository [  25 ]. The

networks include 1) a retweet network where the nodes are twitter users and edges are

retweets (collected from various social and political hashtags); 2) a karate network where

the dataset contains social ties among the members of a university karate club collected by

Wayne Zachary in 1977; 3) a social network of bottlenose dolphins where the dataset contains

a list of all the links (a link represents frequent associations between dolphins); and 4) a social

network from a high tech firm where no description is available on the network repository.

The statistics for the four networks as reported by the Network Repository are

provided in Table  3.1 . The θ values used in the viral processes for the networks are:

retweet θ = .98λmax, karate θ = .96λmax, dolphins θ = .95λmax, firm-hi-tech θ = .99λmax.
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In Figure  3.1 we plot E[N∞] vs. assortativity for the rewired versions of each of our

four networks. There is clearly a positive but nonlinear relationship between virality and

assortativity. However, for fixed assortativity (and fixed degree distribution by design) the

virality models produce E[N∞] values differing by an order of magnitude between network

rewirings in some cases. This highlights the need for further explanatory variables to explain

the virality, such as our proposed graphlet frequency distribution. As an important first check

as to whether graphlet frequency distribution might possibly play an important role, we also

plot in Figure  3.1 the variation in graphlet frequency distribution across the rewired networks,

observing that there can be significant differences in graphlet frequency distribution between

network rewirings. We emphasize here that the graphlet frequency distribution is a measure

that is made on each individual rewiring, and that the plot in Figure  3.1 summarizes these

various distributions for all of our simulated rewirings. So, for example, g28 in network soc-

firm-hi-tech displays a small value within the graphlet frequency distribution, meaning that

in any given rewiring, there are relatively few of these graphlets present. However, noting

that the spread of values for this graphlet on the plot does not include 0, it can be concluded

that every rewiring of this network displayed this graphlet to some extent. Since the box plot

displays non-trivial variations of graphlet frequency distribution between network rewirings,

it is at least possible that the graphlet frequency distribution could be a contributing factor

to the variance of E[N∞] observed at fixed assortativity in Figure  3.1 .

To verify whether graphlet frequency distribution does in fact play an important role in

virality, in Table  3.2 we provide the results for a nested regression predicting the Hawkes

virality statistic where assortativity or graphlets alone are used, compared to the full model

(( 3.5 )) with both assortativity and graphlets. We observe that the R2 values when using

only graphlets are slightly larger than when using only assortativity for all networks but soc-

dolphins, where the R2 for graphlets alone is considerably smaller than that of assortativity

alone. We observe that the R2 values increase by around 10% over assortativity alone when

graphlets are also considered, and in all cases but one, including graphlets with assortativity

allow for over 90% of the variance to be explained. The mean square error also improves with

the addition of graphlets to assortativity in the model, with the improvement being a factor of

2 to 4. In Table  3.3 and  3.4 we provide the analogous results for a nested regression predicting
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the SIS statistic and largest eigenvalue (respectively). Here we see similar improvements

when the graphlets are added to the regression model over assortativity alone, and find that

graphlets alone compare to assortativity alone in a similar manner as in the Hawkes model.

Table 3.2. Model comparison for predicting log number of events for Hawkes.
Assort GFD Assort+GFD

Network R2 MSE R2 MSE R2 MSE

Rt-retweet 7.22E-01 1.27E-01 7.81E-01 9.96E-02 8.62E-01 6.31E-02
Karate 8.14E-01 3.95E-02 8.97E-01 2.19E-02 9.63E-01 7.94E-03
soc-dolphins 8.65E-01 3.03E-04 7.12E-01 6.43E-04 9.04E-01 2.15E-04
soc-firm-hi-tech 8.54E-01 2.33E-03 8.70E-01 2.08E-03 9.33E-01 1.07E-03

Table 3.3. Model comparison for predicting log number of events for SIS.
Assort GFD Assort+GFD

Network R2 MSE R2 MSE R2 MSE

Rt-retweet 8.36E-01 1.32E-02 8.58E-01 1.14E-02 9.28E-01 5.78E-03
Karate 8.77E-01 2.91E-03 9.08E-01 2.17E-03 9.76E-01 5.59E-04
soc-dolphins 8.86E-01 1.47E-04 7.05E-01 3.80E-04 9.16E-01 1.08E-04
soc-firm-hi-tech 8.93E-01 5.24E-04 8.78E-01 6.00E-04 9.57E-01 2.09E-04

Table 3.4. Model comparison for predicting log of largest eigenvalue.
Assort GFD Assort+GFD

Network R2 MSE R2 MSE R2 MSE

Rt-retweet 8.51E-01 4.21E-05 8.98E-01 2.87E-05 9.50E-01 1.41E-05
Karate 8.66E-01 9.74E-06 9.14E-01 6.28E-06 9.78E-01 1.61E-06
soc-dolphins 8.74E-01 3.98E-06 7.21E-01 8.80E-06 9.15E-01 2.69E-06
soc-firm-hi-tech 9.25E-01 2.82E-06 8.77E-01 4.62E-06 9.72E-01 1.04E-06

Next we inspect the statistical significance of the regression coefficients to better under-

stand which graphlets are predictive of E[N∞] and λmax. In Table  3.5 , we list the independent

variables in (  3.5 ) that are significant at the .01 level. For the rt-retweet and soc-dolphins

networks, graphlets lower than g8 are never selected and it appears that larger graphlets are

needed to improve the model beyond assortativity. On the other hand, lower order graphlets
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Figure 3.1. Top: Hawkes E[N∞] vs. assortativity in the 500 rewired networks
for each real-world network. Middle: SIS E[N∞] vs. assortativity. Bottom:
Box plot of graphlet frequency distributions d(gi) across the 500 simulated
networks for each real-world network.
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are significant for the soc-firm-hi-tech network, where triangles are significant across the viral

process models.

To improve the regression model in (  3.5 ), we consider an interaction model where the

statistically significant variables from Table  3.5 are used and interaction terms of the form

A · log(d(gi)) are added. In Table  3.5 we display the R2 values for this interaction model. In

some cases we see large improvements, for example in the case of the retweet network and

the Hawkes model the R2 value increases from .86 to .95 (the R2 for assortativity alone is

.72). In the majority of cases the R2 value of this interaction model is above .95 and for the

karate model is above .98. The R2 value for the soc-dolphins network is slightly lower, .9 to

.92. Given that only high order graphlets are selected in the soc-dolphins network, it may

be the case that graphlets beyond g29 are needed to achieve R2 values close to 1 for that

network.

Table 3.5. Important variables along with R2 values for interaction regression model.
network important variables (.01 level) R2

H
aw

ke
s rt-retweet A,g8,g10,g13,g18,g21,g22,g24,g25,g27 0.950

karate A,g1,g3,g4,g6,g9,g10,g11,g12,g13,g14,g16,g17,g18,g19,g28 0.983
soc-dolphins A,g10,g12,g25,g26,g28 0.913
soc-firm-hi-tech A,g1,g3,g4,g6,g9,g10,g11,g12,g13,g14,g16,g17,g18,g19,g23,g27,g28,g29 0.977

SI
S

rt-retweet A,g10,g11,g14,g15,g16,g17,g19,g20,g21,g23,g24,g25 0.969
karate A,g3,g10,g12,g14,g15,g18,g19,g20,g24,g26,g27,g28 0.986
soc-dolphins A,g21,g24,g26 0.902
soc-firm-hi-tech A,g3,g8,g10,g12,g15,g19,g25,g27,g28 0.972

λ
m

a
x

rt-retweet A,g10,g13,g18,g21,g22,g24,g25,g27 0.940
karate A,g10,g12,g13,g14,g15,g18,g19,g20,g23,g24,g25,g26,g27,g28 0.984
soc-dolphins A,g10,g12,g14,g21,g26 0.929
soc-firm-hi-tech A,g1,g3,g4,g6,g9,g10,g11,g12,g13,g14,g16,g17,g18,g19,g23,g28 0.977
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4. ADVERSARIAL ATTACKS AGAINST DEEP TEMPORAL

POINT PROCESSES

4.1 Related works

Temporal point processes are practical mathematical tools for modeling event data in

which the inter-event times as a random variable are modeled. Therefore, there is no required

time window to aggregate events, which may cause discretization errors; this is the main

difference between point process models and the discrete-time representation utilized in

time series analysis [  42 ]. Moreover, point processes can be deterministic or stochastic, and

non-stationary Poisson, self-correcting, and Hawkes process are stochastic point processes

that we have utilized in the current work.

As a result of advances in deep learning techniques, researchers have proposed RNN to

model the intensity function of point processes [  26 ], [  43 ]. Most of the proposed methods

utilize Long-Short Term Memory (LSTM) [ 44 ]; that we reiterate its formulation as follows

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ),

ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot � tanh(ct)

(4.1)

where � is element-wise multiplication, and σ is the logistic sigmoid function. The above

system can be abstract as an LSTM equation as (ht, ct) = LSTM(xt,ht−1 + ct−1) [ 26 ].

Such a model can encode a nonlinear link between the predicted transient occurrence

intensity of different types of events with the history of participator events, which is more

expressive, and it can model more complexity in data than previous parametric or non-

parametric models[ 45 ].

The RNN-based model proposed in [  26 ] provides a black-box approach to model the

intensity while both background and effect of history are considered. In their modeling,

presented in (  4.2 ) below, the background intensity is modeled by an RNN as a time series
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with its units aligned with time series indexes, {yt}T
t=1, while another RNN handles the

historical events whose units are aligned with asynchronous events to capture the long-range

dynamics, {zi, ti}N
t=1.

(hy
t , c

y
t ) = LSTMy(yt,h

y
t−1 + cy

t−1),

(hz
t , cz

t ) = LSTMz(zt,hz
t−1 + cz

t−1),

et = tanh(Wf [hy
t ,hz

t ] + bf ),

Ut = softmax(WUet + bU),

ut = softmax(Wu[et,Ut] + bu),

st = Wset + bs,

(4.2)

In ( 4.2 ), the subscripts U and u indicate the primary type and sub-type of events, and s is

the timestamp of each event.

Besides achievements in neural networks and their applications, recent research has re-

vealed that neural network models in practice are vulnerable to misclassifying adversarial

samples that have been crafted by adding an imperceptible additive perturbation to the

data samples. In deep learning models, such a vulnerability was assumed to be explained

by nonlinearity and overfitting. However, [ 46 ] argues such an assumption and shows deep

learning models are vulnerable because of the linearity of adversarial perturbations, which

can be analyzed as a property of high-dimensional dot products. On the other hand, neural

networks, e.g., ReLU, and LSTM networks, are overly linear to oppose linear adversarial

perturbation. In their work, they have suggested fast methods to generate adversarial sam-

ples, such as the fast gradient sign method (FGSM) [ 46 ], and claimed in adversarial sample

creation, the perturbation’s direction is more important than the specific point in space.

In addition to security concerns, research in the robustness of deep learning models are

showing study of adversarial examples crafted under limited situations is helpful since it

provides new insight into the geometrical characteristics and behavior of models in high-

dimensional space; e.g., the characteristics of adversarial images close to the decision bound-

aries can help describe the boundaries’ shape[ 47 ].

Recent research experiments have shown the amount of perturbation to fool deep learning

models can be extremely limited, as [  48 ] proposed a low cost, black-box attack to fool
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visionary deep learning models, where the only available information is the probability labels

and only one pixel can be modified based on differential evolution (DE). One critical property

of such attacks is their flexibility; they can attack different networks regardless of their

differentiability.

Generally, adversarial attacks are not limited to visionary, and speech-to-text systems are

also exposed to misclassifying adversarial samples. Reference [  49 ] examines the adversarial

attacks in the audio domain using the Connectionist Temporal Classification Loss Function

(CTCLF) as an attack mechanism and PCA as an attack and defense mechanism. In this

experiment, CTCLF and PCA, as black-boxed approaches, have successfully attacked Deep-

Speech 

1
 . In contrast, PCA as a defense mechanism does not improve the performance of

DeepSpeech against adversarial attacks.

Point processes and viral processes are confirmed to be sensitive to changes in network

structure. Reference [  50 ] has shown the evolution of viral processes on a network is highly

sensitive to the structural features of the network. They have discussed that assortativity

and degree distribution cannot fully explain the variance in the spread of viruses; instead,

graphlet distribution can explain such a variance.

Additionally, Hawkes process is used in anomaly detection. For example, reference [ 51 ]

proposes a framework using the multivariate Hawkes process and reinforcement learning as

a fake news mitigation framework on networks. The point process defines “mitigation” in

this work on the network, and finding the optimal mitigation strategy is the objective that

determines how to adjust the exogenous intensity of the few mitigator nodes on the network.

In today’s electronic life, people use smartphones to monitor their activities, sleep, and

health. Dealing with missing data is a new issue that arises while having augmented medical

applications under partially observed Event Streams. To impute missing events, in 2019,

Mei et al. [  52 ] proposed a general sequential Monte Carlo (SMC) method using the point

process, which approximates the posterior distribution over partially observed draws from a

neural point process, specifically neural Hawkes process [ 53 ]. The developed method utilizes

bidirectional continuous-time LSTM that allows the proposals to be conditional on future and

past observed events. Additionally, they have proposed a new metric, “an optimal transport
1

 ↑ Speech-to-text neural network implemented by Mozilla
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distance between event sequences”, that measures an event sequence as a 0-1 function over

times and employs a variant of Wasserstein distance [  54 ] or Earth Mover’s distance [  55 ]–[ 57 ].

In time series area, there are two type of anomalies, point anomaly and collective anomaly.

Anomalies can be detected through thresholding which is a simple filter, however they are

unable to detect contextual anomalies. Another approach is Statistical Process Control which

data points are considered as anomaly if they failed to pass the statistical hypothesis test.

Another set of approaches are unsupervised machine learning approaches such as clustering

and finding outliers.

It’s not surprising that deep learning methods are also proposed to both generate and

detect anomalies in time series. In 2020, TadGAN [  57 ], Time Series Anomaly Detection Using

Generative Adversarial Networks, has been proposed, which utilizes cycle-consistent GAN

to detect anomalies by reconstructing time series and examination of error contextually, and

anomaly score is a function of the output of both Generator and Discriminator. The method

is unsupervised learning, meaning no prior knowledge about anomalies is provided during

training. We have found this work interesting since No precise segmentation is possible,

meaning they have focused on signals that cannot be segmented. Also, the length of the

anomaly sequence is variable. Adversarial attacks on time series models are another related

work. In [ 58 ], the authors propose adversarial attacks on deep learning time series classifiers

using the fast gradient sign method (FGSM) [  46 ], and the basic iterative method (BIM) [  59 ],

[ 60 ]. However, their methods are considered as black-box attacks since, in both approaches,

adversarial samples are generated using the gradient of ResNet [ 61 ], rather than the targeted

network. Lastly, [  62 ] proposes adversarial attacks on Convolutional Neural Network (CNN),

LSTM, and Gated Recurrent Unit (GRU) networks as multivariate time series regressions

where the adversarial samples are crafted using FGSM and BIM.

4.2 Methodology

The robustness of neural point processes to natural shocks and adversarial attacks re-

mains an open problem to date. We leverage existing research on adversarial attacks in vision

and signal processing and extend such methods, when possible, to temporal point processes.
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We additionally examine the transferability of attacks and compare their performance in

transferred black-box settings. We especially believe methods developed for time series data

will be applicable to point processes since they share common characteristics such as se-

quential and noisy data; the difference is that point processes model discrete events using

a continuous intensity and time series bin events or other variables in time. For each data

point x in our real dataset, we allow the perturbations to be within the l∞ ball around x as

has been proposed to be an acceptable notion for adversarial perturbations[ 46 ], [ 59 ].

4.2.1 Contribution

Despite the remarkable success of deep neural networks (DNNs), they suffer from serious

vulnerabilities to adversarial attacks. Vulnerability’s examination of DNN in computer vi-

sion and natural language processing has received attention recently. However, To the best

of our knowledge, we are the first to explore the adversarial methods for point processes

modeled by DNN and examine their performance. In particular, I) We propose several ad-

versarial attack approaches to generate white-box and black-box adversarial perturbation

against point processes modeled by deep learning. II) We show how adversarial attacks can

disturb underlying parameters of point processes which are considered a threat to paramet-

ric modeling. Furthermore, III) We illustrate how susceptible deep point processes are to

natural shocks and non-stationary changes in data.

4.2.2 Models

This work is limited to three type of point processes, non-stationary Poisson, self-

correcting, and Hawkes processes, where the main focus is Hawkes processes. In non-

stationary Poisson process, unlike regular Poisson process, the average rate of events is

allowed to change by time. Non-stationary Poisson has all properties of a Poisson process,

except for the fact that the intensity is a function of time, i.e. λ = λ(t), instead of being

fixed.
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A point process N is called self-correcting if cov(N(s, t), N(t, u)) < 0 for s < t < u. In

this formulation, cov denotes the co-variance of the two quantities [  63 ]. Intuitively, due to

the negative correlation, past points’ occurrence, inhibits the future points’ occurrence [ 64 ].

Lastly, in Hawkes processes [  65 ]–[ 67 ], the event rate is not fixed, but is dependent on

some random inputs, including the history of the process. Hawkes process is a self-exciting

process, each arrival increases the rate of future arrivals for some time and is determined

by a background Poisson process λ0(t), which reflects spontaneous events and at each event

in the history a Poisson process g is centered at that event reflecting the increase in the

intensity in near future. In summary, the intensity of the Hawkes process can be modeled

as follows

λ(t) = λ0(t) +
∑
ti<t

g(t− ti), (4.3)

where λ(t) donates the event rate at time t [ 66 ].

In this work, we explore the performance of two deep neural networks-base point pro-

cesses. For the exponential hazard (EXP) model as proposed by the authors of [  43 ] and

followed by [ 27 ], the inter-event time, xi = (ti − ti−1) is fed into a the RNN and the hidden

unit of RNN is updated by hi = f(W hhi−1 + W xxi + bh). Here f represents the activation

function, and W h, W x, and bh are the recurrent weight matrix, input weight matrix, and

bias term, respectively [  43 ]. The conditional intensity is a function of the elapsed time from

the latest event and the hidden state of the RNN, as:

λ(t|Ht) = φ(t− ti|hi) (4.4)

and φ is a non-negative function that is the hazard function with the following form as

assumed by [ 43 ]:

φ(τ |hi) = exp(wtτ + vφ.hi + bφ) (4.5)

And τi = ti+1 − ti is the inter-event interval.

The other examined model is the fully neural network-based (NN) model for general tem-

poral point process [ 68 ], that relaxes the constraints on the time course for hazard functions

of point processes while they are modeled using RNNs. In this model, the cumulative inten-
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sity function is modeled by the integral of intensity function and the instantaneous intensity

is obtained by taking the derivative of the cumulative intensity function. Such a model allows

us to have flexible and general intensity function with exact evaluation. Formally, instead

of modeling the hazard function φ, in this model the cumulative hazard function Φ(τ,hi) is

modeled where;

Φ(τ,hi) =
∫ τ

0
φ(s,hi)ds (4.6)

And, one can achieve the hazard function by;

φ(τ,hi) = ∂Φ(τ,hi)
∂τ

(4.7)

In this setting, hi is the hidden state of the RNN and τi = ti+1− ti is the inter-event interval

[ 68 ].

Although the main contribution of existing work is temporal point processes, it is worth

mentioning that the proposed attacks are extendable to multivariate point processes. More-

over, in multivariate settings, other features such as event type are available that may make

models more robust or fragile against attacks since different features are available to constrain

with from both attacker and defender point of view. In next part, we describe employed

adversarial attacks.

4.2.3 Adversarial attacks

In classification scenario, adversarial attacks against a model given input x and label y

for the classifier C(x) is expressed as an optimization [ 69 ]: argmin
xadv

l(xadv, x) s.t;


C(xadv) 6= C(x) untargeted attack

C(xadv) = yt targeted attack, yt is the desired label

where l() is a distance metric between samples in input space (e.g., the l2 norm).

In contrast and in regression problems, adversarial attacks can be defined based on nu-

merical instability of the models. The numerical (in-)stability of an algorithm is defined
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based on the extent to which a function’s output changes with changes in the input [ 70 ]

and adversarial attacks are toward increasing the instability of the model where defense

mechanisms decrease it. Formally, considering a neural regression model T (x, θ), where

T : RN0 → RNm has N0 scalar inputs and Nm scalar outputs, the objective of T (x, θ) for

x ∈ RN0 and corresponding target y ∈ RNm is [ 71 ]

argmin
θ

l(T (x, θ), y) (4.8)

Then given T (x, θ), in the adversarial attack setting, the objective of adversary with budget

ε is to maximize the instability of T (x, θ), which is mathematically formulated below

argmax
||xadv−x||p≤ε

l(T (xadv, θ), y) (4.9)

where p = 1, 2, or ∞.

Notice that the optimal solution, xadv, to the above optimization problem is not unique.

In the current work and for the adversarial attacks, among all possible solutions, by per-

forming a search on candidates for ε, we choose the minimum candidate that satisfies the

adversary’s objective.

Furthermore, depending on the algorithm utilized in adversarial attack generation and

the degree of provided information to the attacker, attacks can be white-box or black-box

attacks. For white-box attacks, the attacker is fully aware of the internals of the target

model and its weights (θ) and uses the model’s gradient to find the vulnerable regions

of the input space that affects the model’s output drastically. In a black-box setting, no

information about the attacked network is provided to the attacker. However, the attacker

can compose transferable adversarial perturbations to the target model using an alternate

model. In existing work, we have crafted the adversarial samples by strategies presented in

the following to attack temporal point processes.
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Fast Gradient Sign Method (FGSM)

FGSM 

2
 [ 46 ] is a bounded attack initially proposed for the visionary. Here, we extend

it to point process regression, and the adversarial sample is formed by using perturbations

in the direction of the gradient. The adversarial sample generated by the FGSM can be

formulated as

Xadv = clip(X + ψ(θ,X),min(X),max(X)) (4.10)

Where,

ψ(θ,X) = ε · sign(∇xJ (θ,X)) (4.11)

where J (θ,X)) is the required training’s cost of the neural network, ε is the perturbation

factor, and clip(·, a, b) function squeezes its input to the range of [a, b]. Such a transformation

of input X increases the loss. Finally, for lp norms with p = 1, 2, ψ(θ,X) is calculated as

[ 72 ]

ψ(θ,X) = ε · ∇xJ (θ,X))
||∇xJ (θ,X))||p

(4.12)

Iterative Fast Gradient Sign Method (iFGSM)

ifGSM, also known as Basic Iterative Method (BIM) [  59 ], [  60 ], is an iterative form of

FGSM that, instead of one single step, k steps attack with a budget α is applied iteratively

as presented in ( 4.13 ).

Xadv0 = X

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,Xadvt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ε,Xadvt+1 + ε)

Xadv = Xadvk

(4.13)

The iFGSM, as mentioned above, is based on l∞.
2

 ↑ The term sign is referring to l∞ norm used in this attack.
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Projected Gradient Descent (PGD)

PGD attack as presented by [  60 ] without random start, is a more potent iterative version

of FGSM. However, unlike the original PGD, in this work, we apply PGD as a generalization

of iFGSM with random initialization.

Xadv0 = X + clip(N (0d, Id),−ε,+ε)

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,Xadvt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ε,Xadvt+1 + ε)

Xadv = Xadvk

(4.14)

PGD is also considered as an iterative generalization of FGSM where the compact formula-

tion can be written as in (  4.15 ) to, where P is the projection onto the ball of interest,e.g.,

clipping for l∞ norm.

repeatδ := P(δ + α∇δl(hθ(X + δ), y)) (4.15)

In this generalized formulation of PGD, hθ is the logits of the networks for, l is the loss

function and δ is the parameter that needs to be optimized in adversarial attack, and δ = ε

is the lower bound for the objective. We discuss the optimization in next chapter. For both

iFGSM and PGD, we consider k = 10 and α = ε/10.

Momentum Iterative Fast Gradient Sign Method (miFGSM)

miFGSM [  73 ] is a transformation of iFGSM such that, before applying FGSM with a

budget α, the gradient of the previous t steps with a decay factor µ is employed to update the

gradient at step t+1. In this approach, the update directions are stabilized, and the algorithm

skips poor regional maxima during the iterations. Therefore, the crafted adversarial samples

are more transferable. However, despite the high cost of miFGSM attack, as we see in Section
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 4.4 , it is not generating more transferable samples in comparison to previous single step and

iterative attacks.
Xadv0 = X, g0 = 0

gt+1 = µ · gt + ∇xJ (θ,Xadvt)
|∇xJ (θ,Xadvt)|1

Xadvt+1 = Xadvt + α · sign(gt+1)

Xadvt+1 = clip(Xadvt+1Xadvt+1 − ε,Xadvt+1 + ε)

Xadv = Xadvk

(4.16)

RAND+FGSM (R+FGSM)

R+FGSM has been proposed by [  74 ] to attack the adversarially trained neural networks.

Here, in one step, a small random perturbation with size α is applied to the input before

applying FGSM of (ε−α) cost. R+FGSM is a randomized, single-step and computationally

efficient form of PGD.

Xadv = X + α · sign(N (0d, Id))

Xadv = Xadv + (ε− α) · sign(∇xJ (θ,Xadv))
(4.17)

Saliency Map (SM)

A saliency map in computer vision indicates the level of significance of a pixel to the

human visual system that has application in region-of-interest extraction, image cropping,

image captioning, and beyond [ 75 ], [ 76 ]. Similarly, we propose another single step, low cost

adversarial attack where we first identify the important events, depending on the gradient

of the neural network at a particular event, within the input sequence and then perturb
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identified events by the adversarial saliency map approach to achieve the adversary sample.

Formally, we propose the following attack strategy

Xadv = X

Xadv
i = Xi + ε · sign(∇xJ (θ,Xi))

Xadv
j = Xj − ε · sign(∇xJ (θ,Xj))

(4.18)

where event i maximizes ∇xJ (θ,X) and event j minimizes it w.r.t. the input event sequence.

J (θ,X) is the neural network’s training cost, and ε is perturbation factor. In this approach,

2 ≤ |a| ≤ |X|, where a is the set of adversarial components in the input sequence X and |·|

is the notation for the number of components in a set.

As aforementioned, our SM attack is a low cost, w.r.t. the number of iterations, l∞
attack. However, in [  76 ], an iterative l0 attack has been proposed based on the saliency map

for image classification in which the adversarial attack modifies the input image’s elements

until the misclassification goal is acquired or the total number of modified elements surpasses

the attack’s budget. Compared to single-step adversarial attacks, iterative approaches result

in more effective attacks. Nevertheless, the cost of crafting such an attack is relatively higher

than single-step attacks.

Gradient descent (GD)

In gradient descent approach, we remove the first event from the input sequence and

add a new event time within interval of first and last event of the sequence using gradient

descent. The procedure of gradient decent attack is presented in Algorithm  1 .
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Algorithm 1 Gradient descent adversarial attack procedure
Parameter: Original event sequence (X), Perturbation factor ε, Perturbation step α

Output: Adversarial event sequence (Xadv)

1: procedure GDAdversarial(X, ε, α)

2: Xadv ← X . Initialization

3: event← genRandomVal[ min(Xadv),max(Xadv)]

4: idx← genRandomInt[0, length(Xadv)]

5: Xadv.pop(0)

6: Xadv.insert(idx, event)

7: while (∇xJ (θ,Xadv
idx ) is changing) and α < ε do

8: event← event+ (α · ∇xJ (θ,Xadv
idx ))

9: Xadv[idx]← event

10: idx← getIdx(Xadv, event)

11: end while

12: return Xadv

13: end procedure

Time manipulation (TM)

In point process applications, e.g., crime forecasting based on reported crimes to the police

departments, one can easily report a fake crime, misleading the point process algorithm.

Following the same context, we propose a time manipulation attack. Here, we remove the

first event in the event sequence and add a random event within the interval of the first and

last event’s time regardless of the model weight and architecture. Therefore, we consider

TM a black-box version of the GD attack since it is independent of the network architecture

and cost of training. Additionally, TM is the cheapest attack since it is a single-step attack

independent of the network’s gradient.
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Transferability and transferable black-box setting

Regardless of the strength of adversarial attacks against deep learning models, recently,

the transferability of adversarial samples has raised concerns in literature[  46 ], [ 77 ], [ 78 ]. In

this phenomenon, adversarial samples between two independent trained models are trans-

ferred. In the current work, we study this phenomenon by proposing transferable adversar-

ial attacks, such that we craft the adversarial instances by the white-box attacks, FGSM,

iFGSM, PGD, miFGSM, R+FGSM, SM, and GD presented in Section  4.2.3 , on neural net-

works with more trainable parameters. Then, we used the crafted adversarial samples to

attack small networks with fewer trainable parameters. To control the parameters, attackers

can have either more neural network layers, RNN units, or hidden units. We present details

in Table  4.1 . Specifically,

• RNN units: Means the number of units in an RNN layer [  68 ].

• Network depth (layers): The number of hidden layers of the cumulative hazard function

network.

• Hidden neural network (NN) units: The number of units in each hidden layer of the

fully neural network model [ 68 ].

Table 4.1. Hyper-parameters of transferability check for white-box adversar-
ial attacks. An example of an attacker has either 4 layers, 256 hidden units,
or 256 RNN units, and FGSM adversarial approach.

Attacked Attacker Approach
Network depth 2 4 miFGSM, R+FGSM

PGD, iFGSM
FGSM, SM
GD

Hidden units 64 256
RNN units 64 256

4.2.4 Baseline and Metrics

Baseline corresponds to the standard case when a model is built without any adversarial

assumptions. We will compare each potential adversarial attack’s performance when under
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attack to the baseline and its performance when no attack has occurred. Our metrics in this

comparison are:

• Mean Negative Log Likelihood Our first metric in the mean negative log likelihood

which is also part of the loss function of neural network models in this work. Since NLL

depends on the predictive uncertainty, it’s a reasonable metric in evaluating predictive

uncertainty [ 79 ], [ 80 ].

• Mean Absolute Error

MAE = 1
K

K∑
k=1
||T (xk)− yk||1 (4.19)

MAEadv = 1
K

K∑
k=1
||T (xadv

k )− yk||1 (4.20)

• Fooling Error

FE = 1
K

K∑
k=1
||T (xadv

k )− T (xk)||q (4.21)

• Symmetric Mean Accuracy Percentage Error [ 71 ]

SMAPE = 2
K+

K+∑
k=1

||T (xadv
k )− yk||q − ||T (xk)− yk||q

||T (xadv
k )− yk||q + ||T (xk)− yk||q

(4.22)

Where q norm in FE and SMAPE metrics, must match the lp norm employed in generating

adversarial attacks and SMAPE is limited to the K+ positive elements in the summation.

Goodness of fit

In addition to previous metrics, and due to the nature of our problem and data, we are

assessing the goodness of fit. The time-rescaling theorem and thinned residuals are two ways

as following to ensure the deep learning models fit our data properly[ 81 ], [ 82 ];

• Time-rescaling (Theorem) [ 83 ]–[ 85 ] Consider t1, t2, , tk as realizations of a particular

point process wherein its conditional intensity function is λ∗(·) over time [0, T ]. If
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λ∗(·) > 0 over [0, T ] and Λ(T ) < ∞, then {Λ(t1),Λ(t2), . . . ,Λ(tk)} as transformed

points, form a unit rate Poisson process.

The time-rescaling is well-known in point processes and assessing the goodness of fit.

In its univariate form, by using this theory, “any” point process with an integrable

conditional intensity function can be transformed into a unit rate Poisson process [ 83 ].

Therefore, if a deep learning model has successfully modeled a point process, the the

inter-event intervals of the orderly point process should be transformed, or rescaled,

such that the result is a unit rate Poisson process.

• Ordinary thinned residuals [ 86 ]: Thinning data based on estimated λ matches

Poisson process with rate m. Here, data point ti, will be removed with probability
1−m

λ(ti|H) . The remaining points assemble a Poisson process with λ = m over the original

domain S.

Where λ(·) is the conditional intensity function, 0 < m < max(λ(ti|Hi)) and i =

1, . . . n.

In Appendix  A we report the result of the experiments that shows both models are capable

of modeling the data properly.

4.3 Data

Similar to [ 43 ], [  68 ], experiments are run on the following point process datasets. We

split each dataset into train and test sets. The train set is then used to estimate the model’s

parameters in the training phase, and the model’s performance on the test set is quantified

by the evaluation metrics.

4.3.1 Hawkes Process

In this work, we have simulated [ 66 ] 100,000 event times from the Hawkes process with

the sum of exponentials kernel, and the conditional intensity function is given by:

λ(t|Ht) = µ+
M∑
j

∑
ti<t

αjβj exp{βj(t− ti)} (4.23)
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Where M = 1, µ = 0.2 , α1 = 0.8, and β1 = 1.0. In ( 4.23 ), µ is the background intensity, α

is adjacency and represents the jump in intensity after the arrival of a new event, and β is

the intensity decay rate after arrival.

In the exponentially decaying Hawkes process, α
β

is known as branching ratio The ratio
α
β

is known as branching ratio and is the declaration of the Hawkes process regime and if the

Hawkes process explodes (super-critical regime and α
β
> 1), or not [  66 ]. The Hawkes process

can be in three regimes depending on the branching ratio. Specifically, if the branching ratio

is 0, the model will become a non-homogeneous Poisson process since the initial immigrants

will trigger no further events. Indeed, this is Hawkes process as a generalization of the

Poisson process that considers the time and history of a process [ 87 ].

For α
β

ratio, the critical threshold is 1, which splits the process into subcritical (α
β
< 1)

and supercritical (α
β
> 1) regimes. If α

β
> 1 for a sustained amount of time, the modeled

intensity may explode.

Finally, if the background intensity is a constant and the process is in the subcritical

regime (α
β
< 1), the branching ratio can be seen as a probability [ 88 ].

4.3.2 Self-correcting Process

For Self-correcting process, 100,000 event times are simulated by the conditional intensity

function that is given as λ(t|Ht) = exp(t− ∑
ti<t

1).

4.3.3 Non-stationary Poisson Process (N-Poisson)

Finally for non-stationary Poisson dataset, 100,000 events time are simulated from the

following conditional intensity function λ(t|Ht) = 0.99 sin( 2πt
20000) + 1 as suggested by [ 68 ].

4.3.4 Crimes and Covid-19

To assess the performance of models concerning non-stationary changes, such as the effect

of the Covid-19 pandemic on reported crimes in Chicago, we use the reported crimes to the
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Chicago police department from 2016 to 2018 as training, and crimes in 2019 and 2020 as

test set, separately 

3
 .

4.4 Results and Discussion

This section presents the results of our adversarial attacks on the deep point process

models on the specified datasets. We present the predictive performance-related experiments

on all point process datasets.

We see that the choice of metric is a critical factor in evaluating adversarial attacks’

effectiveness. Specifically, we illustrate that MAE is the least expressive evaluation metric

in an adversarial setting. Furthermore, through extensive experiments, we see our proposed

PGD can be considered as a “universal first-order attack” such that by first-order, we mean

the adversarial attacks solely depend on the gradient of the neural network as suggested by

[ 59 ]. However, our results reveal that such a generalization is limited to first-order adversarial

attacks utilizing the entire gradient vector. For single-point adversarial attacks, e.g., gradient

descent method (GD), PGD can not be considered a universal attack.

From the results, iFGSM has the best overall performance in white-box attacks against

both fully neural network (NN) and exponential kernel (EXP) models. Furthermore, similar

to [ 59 ], our results suggest that the transferability of attacks decreases as the power of attack

increases, and single-step attacks have more transferability in comparison to iterative attacks.

We discuss adversarial attacks manipulating the parameters and branching ratio of the

Hawkes process. Finally, we investigate the effect of non-stationary abrupt changes on the

models’ performance, using the crimes dataset during the Covid-19 era.

It is essential to emphasize the role of lp norm in adversarial attacks. In generating

adversarial samples, ε, the perturbation factor, in l2 norm perturbations is more significant

than l∞ perturbations since the volume of l2 ball in n-dimensional space with radius r is

smaller than the volume of l∞ ball in n dimension space with the same r. It is noteworthy

to mention that ε is one of the constraints of the cost of adversarial attacks. Thus from the
3

 ↑ https://data.cityofchicago.org/Public-Safety/Crimes-Map

54



defense point of view as we discuss in next chapter, in adversarial training, l∞ can increase

the cost of adversarial attacks for the adversary.

Another point on the use of lp norm is the characteristics of each norm for p = 1, 2, and

∞, which can be adapted to the context of data. In l∞ adversarial attacks, the perturbation

is allowed under the l∞ ball, meaning l∞ attacks make slight noise everywhere in the input

sample. On the other hand, l2 attacks lead to more localized perturbations in the input

sample since we can trade-off a more significant perturbation in one point of the space

for minor perturbation in another. Finally, under l1 norm-based attacks, the sparsity in

the perturbation is encouraged, which means only a few adjusted input sample elements

is present in the input sample. In practice, the adversarial attacks under the l1 norm are

computationally expensive to craft. In all adversarial attacks in this chapter, we use l∞.

In Figure  4.1 , we present two adversarial samples along with the conditional intensity

values for each sequence and simulation of the model prediction for the real and adversarial

input. From the examples, it can be inferred that unlike their intensity, the adversarial

samples are close to real sample in time space.
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Figure 4.1. Real input sequence (Green) and the corresponded adversarial
sequence (Red) on Hawkes data. Left: Transferred FGSM from larger network,
layers = 4. Right: Transferred FGSM from larger network, RNN=256. The
x-axis represents time and y-axis represents the conditional intensity.

In adversarial attacks against regression models, we expect some change in response for

any change in the input. In this situation, the adversary aims for a dramatic change in

output for a small change in input[  70 ]. According to Figure  4.2 , in white-box setting and to
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have high transferability, the perturbation factor (ε) needs to be large enough, although with

ε = 0.1, the change in performance is statistically significant yet. We present the associate

cost with each adversarial attack in Table  4.2 . In all of our attacks, ε is set to 0.1 and

α = 1
10ε.

Table 4.2. Associated cost with white-box and black-box adversarial attacks
on Fully neural network (NN) model and Exponential hazard (EXP) model

Attack Step perturbation Perturbation factor # of eventadv Iterations
PGD α ε 20 10

iFGSM α ε 20 10
R+FGSM NA ε 20 1
miFGSM α ε 20 10
FGSM NA ε 20 1

SM NA ε 2 1
GD α ≤ ε 1 ≤ 100
TM NA ε 1 1

# of eventadv is the number of adversarial events in each input sequence of events.
Each iteration requires ∇xJ (θ, X) calculation
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Figure 4.2. FGSM attack’s sensitivity to perturbation factor. Left: MAE,
Right: MNLL. Fully neural network (NN) is in blue and exponential hazard
(EXP) in green.

In Table  4.3 , the performance of the fully neural network model on the specified datasets

as well as the most effective white-box and black-box attacks are presented. Consecutively,

in Table  4.4 , we present the performance of exponential hazard model on the same datasets

and the most effective attack mechanisms.
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Table 4.3. Predictive performance of fully neural network (NN) model against
the most effective∗ white-box and black-box attacks.

Point process Attack MNLL
(e-01)

MAE
(e-01)

FE
(e-02)

SMAPE
(e-01)

Hawkes
No Attack 4.1 7.77 NA NA

iFGSM 6.54 8.21 4.75 3.66
TM 5.98 8.36 2.12 7.08

NS-Poisson
No Attack 9.83 10.0 NA NA

iFGSM 10.41 10.38 4.64 1.573
TM 12.91 11.46 40.56 4.05

Self-correcting
No Attack 8.21 4.97 NA NA

iFGSM 16.31 9.52 48.00 7.77
TM 11.94 7.05 49.79 8.32

∗ We recognize a white-box attack as ”effective”, if both FE and SMAPE are the highest
among first-order white-box attacks.

The column-wise scale of each metric is presented in () below it.

Table 4.4. Predictive performance of exponential hazard (EXP) model
against the most effective∗ white-box and black-box attacks.

Point process Attack MNLL
(e-01)

MAE
(e-01)

FE
(e-02)

SMAPE
(e-01)

Hawkes
No Attack 4.63 8.01 NA NA

iFGSM 5.67 8.26 3.66 2.32
TM 6.67 8.72 28.58 6.27

NS-Poisson
No Attack 9.7 10.2 NA NA
miFGSM 10.32 10.60 5.27 1.65

TM 13.36 11.42 37.74 4.25

Self-correcting
No Attack 7.82 4.94 NA NA

iFGSM 18.86 9.65 50.41 8.01
TM 11.49 6.91 49.02 8.36

∗ We recognize a white-box attack as ”effective”, if both FE and SMAPE are the highest
among first-order white-box attacks.

The column-wise scale of each metric is presented in () below it.
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As aforementioned, MNLL is a metric to quantify the predictive uncertainty. From Table

 4.3 and Table  4.4 , for instance, iFGSM and TM are both increasing the MNLL of the NN

model. However, against the EXP model, iFGSM is not as effective as the NN model, but,

it still increases the predictive uncertainty. In Table  A.1 and Table  A.2 in Appendix  A ,

we provide the effect of all adversarial attacks using the evaluation metrics. Additionally,

In Figure  4.3 , we compare all attacks for both the NN and the EXP models. As it can be
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Figure 4.3. Effect of adversarial attacks against NN (Blue) and EXP (Or-
ange) models on their predictive performance in terms of MNLL  4.2.4 , MAE
 4.2.4 , FE  4.2.4 , and SMAPE  4.2.4 

inferred from Figure  4.3 , MAE is the least expressive metric for comparing the performance of

adversarial attacks and the model’s robustness. One reason for that is the error quantification
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in MAE that considers the ”absolute value of error” and therefore MAE is not sensitive to

adversarial attacks. Yet, an adversarial attack can affect the input sample while keeping the

absolute error low, and again, choice of metric is critical in evaluating adversarial attacks.

In Figure  4.4 , we compare the effectiveness of adversarial attacks against the NN model

in a sorted presentation. As illustrated, with respect to Fooling error (FE) and Symmetric

Mean Accuracy Percentage Error (SMAPE), TM is the most effective attack, although, unlike

others, TM is a single-step black-box attack, and the perturbation is local. Conversely, in

first-order attacks, the perturbation is dispersed over the input sample, and the attack affects

every event time in the sequence utilizing the gradient of the network. Such outcomes imply

despite the history term in the Hawkes process’s conditional intensity, the model is vulnerable

to spikes in the input and more robust against global perturbations.

In adversarial attacks against point processes, the neural point process model’s predictive

performance is the goal of the attacks. Not surprisingly, the estimated parameters are

also vulnerable if the neural point process model is used to estimate the intensity function.

Considering an application of the Hawkes process, e.g., anomaly detection, the intensity of

the event’s arrival is increased by an event occurrence and then exponentially decays towards

the baseline level. Therefore, the values of µ, α, and β influence the model’s behavior in

predicting the arrival time of the event.

In the studied Hawkes process in the current work, since the background intensity, µ,

is fixed, depending on the branching ratio, the Hawkes process will explode and will be in

super-critical regime, if α
β
> 1, as we discussed in Section  4.3 .

From Table  4.5 , the test set is a subcritical (α
β
< 1) Hawkes process. Moreover, on

adversarial sets, for both the NN and EXP models, all adversarial sets, except GD against

NN, are subcritical Hawkes processes. However, the predicted events by the NN model are all

super-critical Hawkes processes, except for predictions in presence of SM and GD attacks. On

the other hand, the predictions made by the EXP model are all subcritical Hawkes processes,

except for GD. Preserving the Hawkes process’s regime is an important characteristic and

results suggest the NN model cannot maintain it. From here, we recommend considering

the effects of adversarial attacks on the predictive performance and point process parameters

to be regarded as Micro and Macro effects, respectively. In the Micro effect, the effect
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Figure 4.4. Effect of each attack on predictive performance of NN model in
terms of MNLL (top left), MAE (top right), FE (bottom left), and SMAPE
(bottom right).
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Table 4.5. Adversarial attack’s Macro effect on fully neural network (NN)
and exponential hazard (EXP) models w.r.t. Hawkes process parameters, µ, α,
and β.

Fully neural network Exponential hazard
µ

(e-02)
α

(e-01)
β

(e-01)
µ

(e-02)
α

(e-01)
β

(e-01)

Test set 1.29 8.74 9.11 1.29 8.74 9.11
First-order attacks 99.8 10.0 13.0 99.8 10.0 13.0

GD 99.6 9.9 9.08 99.6 9.9 10.2
TM 99.6 9.99 11.5 99.6 9.99 11.0

Prediction in presence of adversarial attacks
No Attack 1.25 8.79 8.43 1.32 8.70 9.43

PGD 1.20 8.82 7.94 1.32 8.71 9.19
iFGSM 1.17 8.84 7.77 1.32 8.71 9.16

R + FGSM 1.18 8.83 7.84 1.32 8.72 9.11
miFGSM 1.18 8.84 7.80 1.32 8.71 9.15
FGSM 1.18 8.83 7.83 1.32 8.71 9.24

SM 1.23 8.81 8.19 1.32 8.70 9.35
GD 1.12 8.88 7.372 1.23 8.81 8.20
TM 2.73 7.30 53.5 1.54 8.41 10.00

The column-wise scale of each parameter is presented in () below it.
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Figure 4.5. Adversarial attack’s macro effect on the fully neural model (NN)
parametric modeling performance. Top: Conditional intensity of real events
(Blue), predicted events (Green), and adversarial events generated by PGD
attack (Red), GD (Gray), and TM (Purple), respectively. Bottom: Enlarged
view. Note that adversarial samples’ intensity, λ(t|H), range is far from the
real and predicted samples. Here, λ(t|H) of all other first-order attacks and
corresponded predictions have been presented in ”light gray” as they are tight
to PGD. Additionally, we represent λ(t|H) of GD and predicted event arrivals
in the presence of GD in ”Olive”. The same for TM attack is shown in ”Indigo”.
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Figure 4.6. Adversarial attack’s macro effect on the exponential hazard
(EXP) parametric modeling performance. Top: Conditional intensity of real
events (Blue), predicted events (Green), and adversarial events generated by
PGD attack (Red), GD(Gray), and TM (Purple), respectively. Bottom: En-
larged view. Note that adversarial samples’ intensity, λ(t|H), range is far from
the real and predicted samples. Here, λ(t|H) of all other first-order attacks
and corresponded predictions have been presented in ”light gray” as they are
tight to PGD. Additionally, we represent λ(t|H) of GD and predicted event
arrivals in the presence of on GD in ”Olive”. The same for TM attack is shown
in ”Indigo”.
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of an adversarial attack is limited to each input sequence and it’s reflected in predictive

performance. In contrast, for the Macro effect, the adversarial attack may affect the modeled

point process parameters and this affect the parametric modeling performance. Presented

results both on predictive performance and Hawkes process parameters suggest that although

adversarial attacks show disagreement in their Micro effects, but all first-order white-box

attacks agree on their Macro effects.

In Figures  4.5 and  4.6 we represent the effect of adversarial attacks on Hawkes parameters.

As aforementioned and presented in Figure  4.5 and Figure  4.6 , all first-order white-box

attacks (light gray area around PGD), both against the NN model and the EXP model,

share the underlying parameters, µ, α, and β and agree on their Macro effects. Additionally,

although all adversarial sets have a greater intensity range in comparison to real data, but

both models are predicting points (events) based on the adversarial input which the range

of the predictions are between 0 and 10. Such a result suggest both models are successful

in maintaining the range of intensity functions. However, if the adversarial sets, e.g., PGD,

GD, etc. be fed to a parametric model, the model will failed in modeling them.

Moreover, in NN model, although first-order white-box attacks share their parameter,

but there is a shift in intensity of predictions made by the model. However, in EXP model,

the prediction on adversarial sets are also sharing their Hawkes’s parameters. Considering

single sample attacks such as GD and TM, they are not following the rest of adversarial

attacks, but are more proximate to each other. The algorithm responsible for generating GD

samples can explain the shift in parameters and intensity functions of TM and GD since the

GD attack can be considered as a steady version of TM.

To evaluate the transferability of white-box attacks against NN and EXP models, for each

attack, we perform attacks against independently trained networks with more complexity and

larger architecture and then deploy the adversarial set to our original targeted models. To

increase the complexity, we try hyper-parameters as discussed in the transferability Section

 4 . For the exponential hazard model, the ”RNN units” is the only available hyper-parameter.

In Figure  4.7 and Figure  4.8 , we illustrate the transferability power of each attack against

our models. The full version of results is available in Table  A.3 ,  A.4 ,  A.5 ,  A.6 in Appendix

 A . Our transferability investigation implies the susceptibility of both models to iFGSM
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adversarial attack, the strongest attack w.r.t. predictive performance, is not increased in

transferring. For the EXP model to have an single-step effective attack, the adversarial

samples require to be crafted in a white-box setting. On the other hand, for the NN model,

the adversarial objective is achievable in both black-box (transferred) and white-box settings.
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Figure 4.7. Fooling error (FE) of each attack in the white box and semi-black-
box settings against (left) fully neural model (NN) and (right) exponential
kernel hazard model (EXP). The attacker has either 4 layers, 256 neural units,
or 256 RNN units for the semi-black-box setting.

Finally, in Table  4.6 , we evaluate the performance of models with respect to non-stationary

abrupt changes, Covid-19 pandemic’s impact on reported crimes to Chicago Police Depart-

ment in 2020. According to the results, fully neural network model has better performance in

modeling crimes, but the exponential hazard model is more robust (% of change in MNLL)

against non-stationary abrupt changes, although it’s still sensitive to non-stationary changes.

Table 4.6. The performance of the models on crime prediction in 2019 and
2020. fully neural network hazard function (Left half), and exponential hazard
model (Right half)

Fully neural network Exponential hazard
Data MNLL (e+00) MAE (e+01) MNLL (e+00) MAE (e+01)

Crime(2019) 5.08 9.66 5.672 11.06
Crime(2020) 5.44 13.1 5.929 14.62
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Figure 4.8. Symmetric Mean Accuracy Percentage Error (SMAPE) of each
attack in the white box and semi-black-box settings against (left) fully neural
model (NN) and (right) exponential kernel hazard model (EXP). The attacker
has either 4 layers, 256 neural units, or 256 RNN units for the semi-black-box
setting.
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5. ADVERSARIAL ROBUSTNESS

5.1 Related works

From the optimization standpoint of adversarial robustness, the decision-making process

of a machine learning model can be viewed as an empirical risk assessment, and the objective

is to minimize the risk of decision-making by machine learning algorithms. Accordingly, in

the presence of adversarial samples and adversarial training as a defense mechanism, the

objective evolves to reduce the empirical adversarial risk, which is the objective of adversarial

training. Adversarial training is a MinMax between adversary and model’s loss function, so

it can be written as

min
θ

1
D

∑
x,y∈D

max
||δ||≤ε

L(θ, (x+ δ), y) (5.1)

where D is the clean dataset containing (x, y) pairs and L is the loss function.

In this optimization problem, the objective of the inner maximization problem is to find

an adversarial sample of a given data point x that maximizes the loss function. At the same

time, for the outer optimization, the goal is to find a set of parameters, θ, such that given

the inner attack problem, the adversarial loss is minimized. Where the former statement is

the precise definition of adversarial attacks against a network, and the latter is the problem

of training a robust network using adversarial training techniques [ 60 ].

For a deep learning model, there are three strategies to solve the inner optimization

problem; lower bound, exact solution, and upper bound. In the following, we discuss each

strategy briefly.

Finding the lower bound for the inner optimization is equivalent to finding an adversarial

attack since any possible δ will provide a lower bound resulting from a practical solution for

the optimization problem that is also a local optimum. In practice, lower bound solutions are

not always solid adversarial attacks, and therefore they are not utilized in adversarial training

to provide robust models. However, they are still valuable for improving the robustness of

the model.

Finding the exact solution for the inner optimization for some activation functions is

achievable, which can be formulated as a combinatorial optimization problem. The combi-
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natorial optimization then is solved through techniques such as mixed-integer programming

[ 89 ], [  90 ]. However, optimization via mixed-integer programming has substantial challenges

in scaling to large models, and not all can be written as mixed-integer linear programs.

Ultimately, the optimization objective can be upper bounded using the network struc-

ture’s relaxation strategy. In this approach, the relaxed version contains the original network

while it is much easier to optimize exactly over, which involves building convex relaxations

of the network structure itself [ 91 ], [ 92 ]. The noteworthy point is that since this method

is based on the relaxed version, it does not produce an actual adversarial example for the

original model. Nevertheless, it can certify that a network is provably robust against an ad-

versarial attack, and if being utilized in adversarial training, the result is a provably robust

model.

All considered, the common Fast Gradient Sign Method (FGSM) which is a single step

l∞ bounded adversarial attack, we discuss in  4.2.3 , is lower bounding the inner maximization

that is maximizing the loss function given the optimal δ which is

δ∗ = ε · sign(∇δL(θ, (x+ δ), y)

A more powerful attack, such as PGD adversarial attack  4.15 , is also another solution that

maximizes the inner optimization. Nevertheless, compared to single-step attacks, as men-

tioned in Chapter  4 , the cost of optimization is proportional to the number of iterations

in PGD that can be overextending. Additionally, the optimization is very sensitive to the

scale of the gradient. Therefore, in practice, steepest descent is utilized instead of regular

gradient descent, and generally, the steepest descent norm is matched with the norm that is

minimized for the adversarial attack.

In robustness certification and for the classification models, one needs to perform the

integer programming solution using a targeted attack for every possible alternative class

label to examine precisely whether any adversarial example exists for a given model. Through

this investigation, if none of the optimization objectives is negative for any target class, the

classifier is certified to be robust on the particular attack. Nonetheless, certified robustness

is not feasible for regression models such as the point processes in the current study.
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For instance, considering the Hawkes process, all non-negative values for inter-event times

represent a valid adversarial instance, and any time t in the future that fits the intensity

functions, is a candidate for the foretasted event. Accordingly, the size of such a set is not

exhausted, and finding a solution within such a search space is not computationally feasible.

Interval-propagation-based bounds (IPB) [  93 ] is another approach to solve the optimiza-

tion problem of the inner optimization problem of the adversarial robustness. Although the

IPB approach results in a weak bound for feed-forward networks trained for classification

purposes, it has a significant computational advantage and only requires two forward passes

through the network. Therefore IPB can be applied to significantly larger feed-forward mod-

els and trained with extensive hyper-parameter tuning. Regardless, this technique does not

apply to regression models unless one can discretize the problem.

5.2 Adversarial training

In adversarial robustness, as aforementioned, a practical defense approach is adversarial

training that linearizes the inner maximization problem [  46 ]. In this low cost, feasible ap-

proach, the training dataset is augmented with adversarial examples created by FGSM 4.2.3 .

Nevertheless, results of [  60 ] indicate that in image classification models, it cannot ensure the

robustness of multiple adversaries and iterative adversarial attacks, e.g., PGD  4 attack with

a significant perturbation factor, ε = 0.3, and a high number of iterations, 20+ steps.

In addition to ineffectiveness, another limitation of adversarial training with FGSM is

label leaking for significant perturbation factors[  59 ]. In this case, the adversary constructs

a minimal set of adversarial samples that raises the risk of overfitting the network. Instead

of improving the robustness of the model, it will reduce the performance on actual samples

and does not improve the robustness against PGD adversaries.

Therefore, recently, augmenting the training dataset with PGD and other iterative at-

tacks has acquired attention to improving the robustness of models [  59 ]. However, it is

noteworthy that the cost of iterative attacks increases with the number of steps, which

introduces a severe practical limitation.
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Ensemble-adversarial training is another alternative technique that addresses the in-

capability of FGSM adversarial training against non-FGSM adversarial attacks [ 74 ]. In

ensemble-adversarial training, the adversarial examples transferred from several fixed pre-

trained models are augmented with the original training data to improve the robustness on

black-box adversarial attacks.

For adversarial training, scaling to large data sets and weak generalization has remained

challenging since the adversarial samples region for each data sample is large and contiguous

[ 74 ]. Regardless, experimental results of [  59 ] show that the inner optimization of  5.1 is

tractable. For the first-order attacks, although there are many regional maxima scattered

for each actual sample, they tend to have very well-concentrated loss values. Furthermore,

their experiments, in addition to our results in  4 , confirm that PGD is a “universal” attack,

and robustness against PGD will result in robustness against all attacks solely dependent on

first-order information [ 59 ] .

5.3 Towards universal robust deep point process

Besides studies on adversarial learning, robustness against adversarial attacks [ 77 ], [ 94 ]

via architecture has recently become a noticeable aspect of the design and development

of deep neural networks [  95 ]. Specifically, architecture benchmarking and regularization

techniques for robustness [  60 ], [  96 ], [  97 ] has got attention. For example, in [ 97 ], the Euclidean

(Frobenius) norm of the Jacobian of the network is employed as a regularization term and

post-processing technique to improve the robustness of the original model, empirically.

In another study, to fulfill general adversarial training for the neural image classifier, [ 98 ]

proposes an adversarial training method with a domain adaptation technique. According to

the authors, in regular adversarial training, since a specific attack develops the adversarial

samples, e.g., FGSM, the defense is targeting that precise attack and is not generalized over

further potential attacks [ 59 ]. Therefore, from the domain adaptation standpoint, the gap

between the distribution of clean data(D) and adversarial data(A) distributions is consider-

able. Yet, the perturbation is inapprehensible to human eyes. In [  98 ], such a significant gap

has been minimized in high-level representation space by introducing two unsupervised and
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supervised domain-adaptation adversarial learning methods. Accordingly, the distribution

of adversarial images converges on real images’ distribution. The unsupervised component

addresses the shift in clean and adversarial data distribution in high-level representation

space by aligning the covariance matrices and mean vector of clean and adversarial data.

Therefore, they have added the following to the objective function:

LCORAL(D,A) = 1
k2 ||Cϕ(D) − Cϕ(A)||l1

LMMD(D,A) = 1
k

∣∣∣∣∣
∣∣∣∣∣ 1
|D|

∑
x∈D

ϕ(x)− 1
|A|

∑
xadv∈A

ϕ(xadv)
∣∣∣∣∣
∣∣∣∣∣
1

LUDA(D,A) = LCORAL(D,A) + LMMD(D,A)

(5.2)

Where Cϕ(D) and Cϕ(A) are the clean and the adversarial data’s covariance matrices in the

logit space.

LMMD(D,A) is the standard distribution distance metric, Maximum Mean Discrepancy

(MMD). And, LUDA(D,A) is the loss function for Unsupervised Domain Adaptation (UDA)

[ 98 ].

Ultimately, for adversarial training, they have used a variant of FGSM [  59 ] that avoids

label leaking effect by using ypred instead of ytrue in generating adversarial samples as follows:

Xadv
i = Xi + ε · sign(∇xJ(Xi, ypred)) (5.3)

Where ypred is the predicted class of the model.

Another defense mechanism based on adversarial training is Virtual Adversarial Training

(VAT) [ 99 ] wherein adversarial samples are produced by the virtual adversarial method

[ 100 ]. In [ 72 ], for original training set (x1, y1), (x2, y2), ..., (xn, yn) and set of attacks and

classifiers (ρ1, C1), ..., (ρm, Cm), the adversarial training set is generated by applying (ρi, Ci)

for i = 1, 2, . . . ,m to the original training set. As a result, the adversarial training set will

have the size of m·n and can be used to train a harder classifier. Note that not all adversarial

training approaches utilize the entire dataset to generate adversarial instances, and generally,

a subset of the dataset is used for adversarial training.

71



Besides adversarial robustness, several approaches have been proposed to detect the ad-

versarial samples [  101 ]–[ 103 ]. In 2017, [ 102 ] proposed feature squeezing as a method to

detect adversarial examples. Later, in 2019, [  103 ] examine five defense mechanisms for

sequence-based RNN models, including sequence squeezing, adversarial Signatures, adver-

sarial training, RNN Ensemble, and Defense SeqGAN[  104 ]. The proposed methods can be

attack-specific or attack agnostic for detecting adversarial examples and making classifiers

more robust against adversarial attacks.

As a result of GAN’s success in self-supervise modeling, attempts to integrate GAN[ 105 ]

and adversarial learning in anomaly detection are increasing every day[ 57 ], [  106 ]. In an

ongoing research project from 2019 to 2021, Zhu et al.[  107 ] employ adversarial learning,

Long Short-Term Memory (LSTM), and point process models to detect adversarial anomaly

for Spatio-temporal streaming event data. In their framework, the current event’s nonlinear

dependency regarding past events is modeled using the LSTM. As shown in Figure  5.1 , the

generator is LSTM. The discriminator is a multi-layer, fully connected network. Finally,

The output layer is a softmax that returns the sequence’s probability of being an anomaly

trajectory.

Generator Discriminator
D(G(z)) D(x)

Zi+1

Zi

Zi-1

h'0 h'i h'N+1 hN+1 hi h0

Xi+1

Xi

Xi-1

LSTM cell LSTM cellNeural Network

Figure 5.1. Adversarial learning framework proposed by Zhu et al.[ 107 ] con-
sists of a LSTM structure and a fully connected neural network.

5.4 Methodology

The robustness of neural point processes to natural shocks and synthetic attacks remains

an open problem to date. In the previous Chapter  4 , we examined the effect of several existing
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and proposed adversarial attacks on predictive performance and parameter modeling of deep

point processes. This section presents our methodology to improve the robustness of deep

point processes. The discussed adversarial robustness in this section remains within the scope

of adversarial attacks proposed in Chapter  4 . Specifically, FGSM  4.2.3 , PGD  4 , R+FGSM  4 ,

momentum iFGSM  4 , saliency  4 ,GD  4 , and TM  4 are the precise definition of the attacks our

models should be resistant. Since the scope of adversarial attacks is l∞ attacks, therefore, we

focus on the robustness of deep point process models against l∞ bounded attacks in Chapter

 4 .

5.4.1 Models

The domain of current chapter is limited to Temporal Hawkes process. In Hawkes process

[ 65 ]–[ 67 ], Hawkes process [  65 ], [  67 ], the event rate is not fixed, but depends on some random

inputs, including the history of the process. Hawkes process is a self-exciting process, each

arrival increases the rate of future arrivals for some time and is determined by a background

Poisson process λ0(t), which is reflecting spontaneous events and at each event in the history

a Poisson process g is centered at that event reflecting the increase in the intensity in near

future.

λ(t) = λ0(t) +
∑
ti<t

g(t− ti), (5.4)

where λ(t) donates the event rate at time t [ 66 ].

In this work, we are exploring the performance of two deep neural networks implemen-

tation of point processes as presented in Chapter  4 .

5.4.2 Contribution

The contributions of this section are as follows:

• We evaluate the role of adversarial training in improving the robustness of the deep

point processes.

• we propose general point process domain-adopted (GPDA) regularization, which is

specifically applicable to point processes. In particular, we differentiate ourselves from
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the methods proposed in [  98 ] and [ 97 ] by adopting our method to stochastic point

processes and using a distinct regularization in the loss function. In addition to the ro-

bustness improvement, our method stabilizes the training and improves generalization

while the training process remains untouched.

• GPDA regularization is scalable to large networks and uses the available information

in the last layer of the model. Therefore, as opposed to other very computationally

expensive approaches, there is no need for additional back-propagation in the training

step[ 97 ] and no need for an additional network[ 108 ].

• Ultimately, we leverage the concept of self supervision in generative adversarial net-

works to propose an adversarial sample detector trained in a Generative Adversarial

Network(GAN) setting.

In the next part, we describe each adversarial robustness strategy.

5.4.3 Adversarial training

To the best of our knowledge, adversarial training is not explored for point process

models. We explore this phenomenon by augmenting adversarial examples with training data

to highlight the robustness of the model against adversarial attacks. Specifically, we augment

the clean training set with a set of adversarial samples generated by the PGD  4 against the

test set while the perturbation factor, ε = 0.1, α = ε/10, k = 10. Such a procedure maintains

the cost of adversarial training minimal and results in feasible adversarial learning.

Due to random initialization and comprehensive coverage of PGD, in addition to adver-

sarial robustness improvement, proposed adversarial training boosts the model’s generaliza-

tion.

5.4.4 General point process domain-adopted (GPDA) regularization

As mentioned in Chapter  4 , time-rescaling theorem  4.2.4 and thinned residuals are two

methods to evaluate the goodness of fit for some point data to a point process [  81 ], [ 82 ]. In
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such an examination, the compensator (Λ(·)) of the point process is essential as it is the core

of the time rescaling theorem and residual analysis.

Compensator (Definition) [ 109 ]

For a particular point process, the compensator is formulated as

Λ(t) =
∫ t

0
λ∗(s)ds (5.5)

Compensator is a non-decreasing function and exists event if λ∗(·), the conditional intensity,

does not exists.

Time-rescaling (Theorem) [ 83 ]–[ 85 ]

Consider t1, t2, , tk as realizations of a particular point process wherein its conditional

intensity function is λ∗(·) over time [0, T ]. If λ∗(·) > 0 over [0, T ] and Λ(T ) < ∞, then

{Λ(t1),Λ(t2), . . . ,Λ(tk)} as transformed points, form a unit rate Poisson process.

The time-rescaling is well-known in point processes and assessing the goodness of fit. In

its univariate form, by using this theory, one can transform “any” point process with an

integrable conditional intensity function into a unit rate Poisson process [ 83 ].

Residual analysis (Theorem) [ 84 ], [ 110 ], [ 111 ]

Consider t1, t2, . . . as event times, and a monotonic, continuous compensator Λ(·) such

that lim
t→∞

Λ(t) = ∞. The transformed points, {Λ(t1),Λ(t2), . . . ,Λ(tk)} are the realization of

a unit rate Poisson process “if and only if” the original sequence, {t1, t2, . . . } is a realization

of the point process defined by Λ(·).

In the previous chapter, we discussed how the residual analysis is utilized to examine

the ”goodness of fit”. In this assessment, for a fitted model, the inter-event intervals of

the orderly point process are resalable, such that the result (Λ(ti+1) − Λ(ti)) are i.i.d and

exponentially distributed with mean 1.
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Here, we leverage Theorem  5.4.4 as a regularization term to propose a general point

process domain-adopted (GPDA) regularization. In the unguarded model, the loss function

is defined as the mean negative log-likelihood (MNLL) such that the log-likelihood function

is as follows [ 68 ]:

LLi =
∑

i

[
log

{
∂Φ
∂τ

(τ = ti+1 − ti|hi)
}
− Φ(τ = ti+1 − ti|hi)

]
(5.6)

Accordingly, for the guarded model, in addition to maximizing  5.6 , we ensure (Λ(ti+1)−Λ(ti))

are i.i.d and exponentially distributed with mean 1. Therefore the loss function is defined

for a deep temporal point process utilizing GPDA is defined as follows:

L = − 1
N

∑
i
LLi + ξ(1− 1

N

∑
i

Φ(τ = ti+1 − ti|hi)) (5.7)

Where the ξ controls the regularization term. From another standpoint, GPDA regulariza-

tion forces the deep learning model to fit the data such that the estimated Λ(T ) is as close

as possible to N(t), Λ(T )−N(t) ≈ 0 , and for a perfectly fitted model, N(t) = Λ(T ).

In section  5.6 , we illustrate ξ = 0.1 is effective in decreasing the effect of adversarial

attacks empirically.

5.4.5 Generative adversarial networks

Generative adversarial networks (GANs)  

1
 are a class of unsupervised deep learning mod-

els [  105 ], [ 112 ]. Each GAN has two primary components – a Generator Neural Network (G)

and Discriminator Neural Network (D). The generator G(z) takes an input, z, a sample from

probability distribution p(z) (typically Gaussian), and generates synthetic (fake) data. The

discriminator takes as input either a real observation, in our case inter-event time sequence,

or synthetic output from the generator, and determines through binary classification whether

the input is real or fake. The two networks are trained jointly, where alternating gradient

descent steps are made to I) train the generator by freezing the weights of the discriminator
1

 ↑ 

© 2020 IEEE. Reprinted, with permission, from S. Khorshidi, G. Mohler and J. G. Carter, Assessing
GAN-based approaches for generative modeling of crime text reports, IEEE International Conference on
Intelligence and Security Informatics (ISI), Nov, 2020
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and then update the weights of the generator so as to increase the probability that fake

data is labeled real and II) train the discriminator to correctly classify real and fake data.

Upon successful training, the two networks reach an equilibrium in what can be viewed as a

minimax game [ 113 ].

Much of the success of GANs has occurred for continuous data in the context of images

[ 114 ][ 115 ] [  116 ][ 104 ] [  117 ], and using GAN on discrete data such as sequence-based data is a

challenging task.

Previously, in [ 118 ], we examined the effectiveness of GANs in generating domain-specific

text. In particular, we utilized several GAN frameworks to generate and represent crime

report text data. Here, we employ GAN for an different purpose, to discriminate adversarial

sequences. In particular, we propose a novel GAN-based point process adversarial sample

detection (PointGAN) in this section, as presented in Figure  5.2 . Specifically, we propose

a GAN framework utilizing LSTM for both the Generator and Discriminator networks. In

this framework, we train our GAN only on the real dataset, no adversarial, in the training

phase. Subsequently, the trained discriminator acts as an adversarial sample detector that

distinguishes the adversarial samples from the real samples in the detection phase.

Same as the deep point process models, here, GAN is provided with sequences of inter-

event times, ti− ti−1, and the LSTM architecture with 100 units [  119 ] captures the temporal

relation in the input sequence and takes into account the latent interactions between them.

To improve the performance of the generator, the latent space has size of 5. In the training

phase, similar to the original GAN, the discriminator and generator networks are playing

a minmax game while generator tries to fool discriminator by generating more realistic

data samples by getting feedback from the discriminator and finally they both reach an

equilibrium[ 113 ].

Goodfellow et al. [  105 ] have proposed the minimax formulation for an optimal discrim-

inator to minimize the Jensen Shannon Divergence (JSD) between the generator’s output

distribution and the actual data distribution as follows:

min
G

max
D

V (D,G) = E
x∼P (x)

[ logD(x)] + E
z∼P (z)

log(1−D(G(z))) (5.8)
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Figure 5.2. GAN-bases adversarial sample detection (PointGAN) framework.
In training stage (Left), the discriminator is trained on training-set of real data
(No adversarial) and the generated samples from the Generator. In Detection
phase (Right), the performance of pre-trained discriminator is evaluated on a
mixed data, containing both real and adversarial sequences. τ is the adversarial
probability threshold.
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In the current work, we follow the same optimization approach. For the discriminator,

similar to [ 106 ], we define the loss function as

Dloss = 1
m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))]⇔
1
m

m∑
i=1

[−logD(xi)− log(1−D(G(zi)))]

(5.9)

And for the Generator,

Gloss =
m∑

i=1
[log(1−D(G(zi)))]⇔

m∑
i=1

log(−D(G(zi))) (5.10)

Where xi, i = 1, . . . ,m are the the real samples and G(zi) for i = 1, . . . ,m are the

synthetic samples generated by the generator. In this framework, the discriminator averages

the negative cross-entropy between its predictions and sequence labels. Simultaneously, the

generator aims to mislead the discriminator by generating realistic samples. In section  5.6 ,

we present some generated samples by the generator at early and late stages that confirm

the generator can generate realistic samples.

5.4.6 Baseline and Metrics

The baseline corresponds to the standard case when a model is built without adversarial

assumptions and has no guard against potential adversarial attacks. We compare the per-

formance of each defense mechanism in improving the robustness against adversarial attacks

discussed in Chapter  4 . Specifically, to quantify the performance of each mechanism, we

compare the performance of our models utilizing robustness mechanisms in the presence of

adversarial attacks using the following metrics:

• Mean Negative Log Likelihood Our first metric in the mean negative log likelihood

which is also part of the loss function of neural network models in this work. Since NLL

depends on the predictive uncertainty, it’s a reasonable metric in evaluating predictive

uncertainty [ 79 ], [ 80 ].
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• Mean Absolute Error

MAE = 1
K

K∑
k=1
||T (xk)− yk||1 (5.11)

MAEadv = 1
K

K∑
k=1
||T (xadv

k )− yk||1 (5.12)

• Fooling Error[ 71 ]

FE = 1
K

K∑
k=1
||T (xadv

k )− T (xk)||q (5.13)

• Symmetric Mean Accuracy Percentage Error [ 71 ]

SMAPE = 2
K+

K+∑
k=1

||T (xadv
k )− yk||q − ||T (xk)− yk||q

||T (xadv
k )− yk||q + ||T (xk)− yk||q

(5.14)

Where q norm in FE and SMAPE metrics, must match the lp norm employed in

generating adversarial attacks and SMAPE is limited to the K+ positive elements in

the summation.

• Local Loss sensitivity Theoretically, a critical characteristic of deep learning models

that makes them susceptible and puts them at higher risk of adversarial attacks is the

degree of smoothness in the loss surface, as a raggeder loss surface is at a higher

risk. The local loss sensitivity (LLS) quantifies loss surface smoothness by assessing its

Lipschitz continuity constant, which is a strong form of uniform continuity for functions

and measures the largest variation of a function for a slight modification in the input

[ 120 ]. In deep learning modeling, LLS can be estimated based on the gradient of the

models [ 72 ], [ 121 ]. LLS is defined as:

LLS(T,X, y) = 1
n

n∑
i=1
||∇xL(xi, yi)||2 (5.15)

Where here, T is the deep learning model, X = (x1, . . . , xn) is the test set, and yi is the

correspondent target value. In this metric, lower LLS means more robust the model is
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against adversarial attacks. Additionally, as it can be inferred from (  5.15 ), LLS is an

attack-independent metric and provides insight into the model’s characteristics.

It’s notable that the q norm in FE and SMAPE metrics, must match the lp norm employed

in generating adversarial attacks.

5.5 Data

Similar to [ 43 ], [  68 ], experiments are run on the following point process datasets. We

split each dataset into train and test sets. The train set is then used to estimate the model’s

parameters in the training phase, and the model’s performance on the test set is quantified

by the evaluation metrics.

5.5.1 Hawkes Process

Similar to Chapter  4 , to asses the effectiveness of defense mechanisms, we have simulated

[ 66 ] 100,000 event times from the Hawkes process with the sum of exponentials kernel, and

the conditional intensity function is given by:

λ(t|Ht) = µ+
M∑
j

∑
ti<t

αjβj exp{βj(t− ti)} (5.16)

Where M = 1, µ = 0.2 , α1 = 0.8, and β1 = 1.0.

In equation  5.16 , µ is the background intensity, α is adjacency and represents the jump

in intensity after the arrival of a new event, and β is the intensity decay rate after arrival.

In the exponentially decaying Hawkes process, α
β

is known as branching ratio where the

value of α
β

is the declaration of whether or not the Hawkes process explodes. The Hawkes

process can be in three regimes depending on the branching ratio.

Specifically, if the branching ratio is 0, the model will become a non-homogeneous Poisson

process since the initial immigrants will trigger no further events. Indeed, this is Hawkes

process as a generalization of the Poisson process that considers the time and history of a

process [ 87 ]. For α
β

ratio, the critical threshold is 1, which splits the process into subcritical
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(α
β
< 1) and supercritical (α

β
> 1) regimes. If α

β
> 1 for a sustained amount of time, the

modeled intensity may explode.

Finally, if the background intensity is a constant and the process is in the subcritical

regime (α
β
< 1), the branching ratio can be seen as a probability [ 88 ].

5.5.2 Crimes and Covid-19

To assess the performance of models concerning non-stationary changes, such as the effect

of the Covid-19 pandemic on reported crimes in Chicago, we use the reported crimes to the

Chicago police department from 2016 to 2018 as training, and crimes in 2019 and 2020 as

test set, separately 

2
 .

5.6 Results and discussion

This section presents the effectiveness of proposed defense mechanisms in improving

the robustness of both fully neural network (NN) and exponential hazard (EXP) models

against adversarial attacks. As aforementioned, we proposed two approaches to improve

models’ robustness: adversarial training and general point process domain-adopted (GPDA)

regularization. In all presented results related to adversarial training, %10 of the original

training set is augmented with adversarial sets crafted via PGD algorithm as we discussed in

Section  5.4.3 . Moreover, for results on GPDA, we have considered ξ = 0.1, which we found

to be effective. The adversarial attacks we aimed to defense against are previously proposed

attacks in Chapter  4 . For the exponential hazard (EXP) model, since adversarial training

destabilizes the training process, GPDA is the only experimented defense mechanism.

Additionally, this section presents the effectiveness of defense mechanisms in reducing the

effect of non-stationary abrupt changes on the models’ performance using the COVID-19.

Regarding macro robustness, we illustrate the capability of both defense mechanisms in

improving the generalization as well as adversarial robustness. Specifically, we show how

proposed defense mechanisms are able to reduce and neutralize the effect of adversarial

attacks on the modeled Hawkes process’s parameters.
2

 ↑ https://data.cityofchicago.org/Public-Safety/Crimes-Map
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Finally, we present the performance of poinGAN as a self-supervised adversarial sample

detection compared to well-known supervised methods.

In Table  5.1 , we present the effect of each defense mechanism on the model’s general-

ization where the performance of models on real (clean) data has been provided. According

to the result, both defense mechanisms reduce the prediction uncertainty on real data, as

shown in the MNLL metric. Additionally, Adversarial training (AT) and GPDA effectively

reduce models’ local loss sensitivity (LLS). However, since GPDA illustrates more signifi-

cance than AT, we conclude the effect of the merged defense mechanism on LLS is because

of PGDA. Finally, although the MAE of guarded models on real data is enhanced by each

defense mechanism individually when both defense methods are utilized together, the NN

model’s MNLL and MAE are not improved compared to the unguarded model.

Table 5.1. Adversarial training (AT) and GPDA effect on regular perfor-
mance of the fully neural network model (NN) and Exponential (EXP) model.

Model GPDA AT MNLL(e− 01) MAE(e− 01) LLS(e− 05)

NN

– – 4.10± 2.82e− 03 7.77± 1.72e− 04 7.55± 2.85e− 06
– X 4.06± 2.02e− 03 7.68± 1.38e− 04 6.04± 1.81e− 06
X – 4.04± 1.45e− 02 7.70± 4.39e− 04 0.00± 3.27e− 07
X X 4.30± 2.66e− 02 7.80± 4.58e− 04 0.00± 0.00e + 00

EXP – – 4.63± 7.15e− 03 8.01± 1.26e− 02 2.87± 3.34e− 06
X – 4.41± 4.69e− 03 7.89± 1.28e− 03 0.13± 1.22e− 07

In Table  5.2 and Table  5.3 , we present the effectiveness of defense mechanisms against

adversarial attacks. We evaluate their capability in these tables when employed indepen-

dently and merged. In Figure  5.3 and Figure  5.4 the predictive performance of the models

when they have no guard against the adversarial attack has been represented as compared to

employing defense mechanisms. According to experimental results, proposed defense mech-

anisms are reducing the error in prediction. Effectiveness of adversarial training in reducing

the prediction uncertainty of the fully Neural network (NN) model in presence of first order

attacks, confirms PGD to be universal first-order white-box attack. Albeit GPDA doesn’t

improve the MNLL of models in presence of all adversarial attacks, it’s competent in reducing

the effect of adversarial attacks on fooling error (FE) and SMAPE.
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Table 5.2. Effectiveness of adversarial training (AT) and GPDA in improving
the robustness of the fully neural network model (NN) against each attack.

Attack GPDA AT MNLL(e− 01) MAE(e− 01) FE(e− 02) SMAPE(e− 01)

PG
D

– – 5.90 8.09 3.64 3.13
– X 5.83 8.03 3.06 2.71
X – 6.46 8.02 2.95 2.93
X X 6.97 8.01 2.27 2.53

iF
G

SM

– – 6.54 8.21 4.75 3.66
– X 6.12 8.11 3.67 2.92
X – 7.76 8.07 2.98 3.20
X X 7.00 8.34 4.93 3.02

R
+

FG
SM

– – 6.04 8.11 3.83 3.26
– X 5.88 8.04 3.19 2.70
X – 6.62 8.04 2.98 2.89
X X 6.54 8.02 2.80 2.61

m
iF

G
SM

– – 6.64 8.20 4.75 3.67
– X 6.30 8.10 3.88 3.05
X – 7.32 8.10 3.58 3.21
X X 6.94 8.18 4.11 2.95

FG
SM

– – 6.56 8.18 4.75 3.60
– X 6.27 8.11 3.88 3.10
X – 7.92 8.09 2.99 3.18
X X 7.06 8.08 3.29 2.81

SM

– – 4.64 7.91 1.58 1.56
– X 4.89 7.86 1.04 1.24
X – 5.16 7.88 1.14 1.40
X X 5.86 7.99 1.21 0.986

G
D

– – 6.73 7.85 2.43 3.33
– X 5.20 7.87 2.99 3.30
X – 6.79 7.85 2.06 3.39
X X 6.14 7.90 2.22 3.24

T
M

– – 5.98 8.36 21.2 7.08
– X 6.52 8.38 21.2 6.89
X – 7.08 8.23 14.1 6.30
X X 7.42 8.24 15.7 6.12
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Table 5.3. Effectiveness of GPDA in improving the robustness of the expo-
nential model (EXP) against each attack.

Attack GPDA MNLL(e− 01) MAE(e− 01) FE(e− 02) SMAPE(e− 01)

PGD – 5.38 8.30 2.62 1.76
X 5.54 8.04 1.00 1.24

iFGSM – 5.67 8.26 3.66 2.32
X 5.41 8.06 1.25 1.01

R+FGSM – 5.43 8.19 2.89 1.93
X 5.24 8.01 1.41 1.29

miFGSM – 5.65 8.30 3.57 2.16
X 5.59 7.96 1.16 1.32

FGSM – 5.72 8.33 4.01 2.28
X 5.28 8.11 1.46 1.25

SM – 4.76 8.06 0.673 0.805
X 5.12 7.99 0.287 0.707

GD – 5.28 8.16 4.73 2.24
X 5.20 8.02 3.01 2.16

TM – 6.67 8.72 28.6 6.27
X 7.21 8.29 16.4 5.41
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Figure 5.3. Effectiveness of each guard on the performance of each attack
against the fully neural network (NN) model, in terms of MNLL (top left), FE
(top right), SMAPE (bottom left), and MAE (bottom right).
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Figure 5.4. Effectiveness of each guard on the performance of each attack
against the exponential (EXP) model, in terms of MNLL (top left), FE (top
right), SMAPE (bottom left), and MAE (bottom right).
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Considering the danger of adversarial attacks to parametric modeling of point processes,

as discussed in Chapter  4 , we assess the capability of the defense mechanisms in eliminating

such a risk. Specifically, in Table  B.3 and Table  B.4 presented in Appendix  B , we present

the beneficial effect of defense mechanisms utilized individually and together on the Hawkes

process’s parameters in the presence of adversarial attacks.

Accordingly, in Figure  5.5 , Figure  5.6 , and Figure  5.7 we illustrate the effectiveness of

GPDA, AT, and GPDA+AT in reducing the effect of white-box adversarial attacks, on

predicted Hawkes process parameters by the fully neural network model (NN). Likewise, in

Figure  5.8 , we demonstrate the effectiveness of GPDA in eliminating the effect of adversarial

attacks on predicted Hawkes process parameters by the Exponential hazard model (EXP).

Note, in these figures we have not presented all first-order adversarial attacks since the are

tighten to PGD.

Figure 5.5. GPDA effectiveness in diminishing adversarial attack’s macro
effect on the fully neural model (NN) parametric modeling performance. Top:
Conditional intensity of real events (Blue), predicted events (Green), adver-
sarial events generated by PGD attack (Red), and GD(Gray), respectively.
Bottom: Enlarged view. Note that adversarial samples’ intensity, λ(t|H),
range is far from the real and predicted samples. Here, we represent λ(t|H)
of predicted events in presence of GD attack in ”Olive”. Intensity functions in
the unguarded phase are presented in −− lines.
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Figure 5.6. Adversarial training (AT) effectiveness in diminishing adversarial
attack’s macro effect on the fully neural model (NN) parametric modeling per-
formance. Top: Conditional intensity of real events (Blue), predicted events
(Green), adversarial events generated by PGD attack (Red), and GD(Gray),
respectively. Bottom: Enlarged view. Note that in the unguarded situation,
the adversarial samples’ intensity, λ(t|H), range is far from the real and pre-
dicted samples. Here, we represent λ(t|H) of predicted events in the presence
of GD attack in ”Olive”. Intensity functions in the unguarded phase are pre-
sented in −− lines.

In these figures, we present the conditional intensity of samples in the absence of any

defense mechanism in dashed lines (−−). From Figure  5.5 , GPDA can reduce adversarial

effects on predicted parameters and improve the model’s generalization on real samples as

”Prediction on real data” is approaching real data intensity. Note that GPDA does not affect

first-order adversarial samples’ intensity and Hawkes parameters.

As shown in Figure  5.6 , utilizing adversarial training (AT) and the effect of predicted

Hawkes processes tighten the intensity of adversarial samples to real samples. Also, AT can

improve the model’s generalization on real samples. However, it’s less capable of reducing

the effect of first-order adversarial attacks on predicted samples, as ”Prediction on PGD” in

GPDA is closer to real samples’ intensity.
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Figure 5.7. GPDA and AT joint effectiveness in reducing adversarial attack’s
macro effect on the fully neural model (NN) parametric modeling performance.
Top: Conditional intensity of real events (Blue), predicted events (Green), ad-
versarial events generated by PGD attack (Red), and GD(Gray), respectively.
Bottom: Enlarged view. Note that in the unguarded situation, the adversarial
samples’ intensity, λ(t|H), range is far from the real and predicted samples.
Here, we represent λ(t|H) of predicted events in the presence of GD attack in
”Olive”. Intensity functions in the unguarded phase are presented in −− lines.
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Figure 5.8. GPDA effectiveness in reducing the adversarial attack’s Macro
Effect against the exponential hazard (EXP) model’s parametric modeling
performance. Top: Conditional intensity of real events (Blue), predicted events
(Green), adversarial events generated by PGD attack (Red), and GD(Gray),
respectively. Bottom: Enlarged view. Note that adversarial samples’ intensity,
λ(t|H), range is far from the real and predicted samples. Here, we represent
λ(t|H) of predicted events in presence of GD attack in ”Olive”. Intensity
functions in the unguarded phase are presented in −− lines.
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Finally, by employing both adversarial training and GPDA in defending the fully neural

network (NN) model shown in Figure  5.7 , we can maximize the usefulness of defense ap-

proaches in eliminating the threat of the adversarial attacks to parametric modeling as well

as enhancing the model’s generalization.

Similarly, we present the positive effect of utilizing GPDA as a defense mechanism in

both improving the model’s generalization an reducing the adversarial effect on parametric

modeling of Exponential hazard model (EXP).

To evaluate the effectiveness of the defense mechanisms in reducing the transferability

of white-box attacks against NN and EXP models, for each attack, we perform attacks

against independently trained networks with more complexity and larger architecture and

then deploy the adversarial set to our original targeted models and compare the performance

with unguarded models. Similar to the transferability analysis in the previous chapter, to

increase the complexity, we try hyper-parameters as discussed in the transferability section

 4 . The ”RNN units” is the only available hyper-parameter for the exponential hazard model.

In Figure  5.9 and Figure  5.10 , we illustrate the transferability power of each attack against

our models in the presence of defense mechanisms. Considering readability of plots, not

all white-box attacks are presented. The presented results imply that the proposed defense

mechanisms can relieve the risk of transferability of white-box attacks to be utilized as

black-box attacks.

In the following, in Table  5.4 , we illustrate the defense mechanism’s ability to improve the

models’ performance in the presence of non-stationary changes in data. According to the re-

sults, GPDA drives both the exponential and NN models to become more robust. We should

note that the COVID-19 pandemic that causes non-stationary changes started in March 2020.

Thus, although the defense mechanisms have not improved the NN’s performance on 2019’s

reported crimes, PGDA still improved its performance concerning non-stationary abrupt

changes in 2020. In all other cases, including EXP in 2019, GPDA has boosted the LLS,

which results in adversarial robustness, improves the predictive performance as shown by

MAE, and reduces predictive uncertainty as reported by MNLL; in other words, enhancing

generalization.
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Table 5.4. Effectiveness of adversarial training and GPDA in improving the
robustness of the models on non-stationary changes in reported crimes in
2019 and 2020.

Data Model GPDA AT MNLL(e + 00) LLS(e− 08) MAE(e + 02)

Crimes (2019)

NN

– – 5.08 8.66 0.96
– X 5.16 6.04 0.99
X – 5.23 1.23 1.01
X X 5.27 0.836 1.05

EXP – – 5.67 1.02 1.11
X – 5.64 0.234 1.11

Crimes (2020)

NN

– – 5.44 6.38 1.31
– X 5.41 6.48 1.30
X – 5.22 3.23 1.25
X X 5.49 1.68 1.30

EXP – – 5.929 1.60 1.46
X – 5.85 0.355 1.44

∗ Non-stationary changes in data are not measurable with FE and SMAPE metrics.
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As we discussed before, the limitation of the Exponential hazard model (EXP) model is

its explicit functional form for the time course of the hazard function [ 68 ]. Such an assump-

tion diminishes the expressiveness of the exponential hazard (EXP) model in modeling the

general dependency of the event occurrence on the past points, as confirmed by the results

on adversarial attacks and non-stationary abrupt changes, Covid-19 effect on crimes. A

straightforward approach to reclaim such a dependency is employing a more complex func-

tional form of hazard function to generalize the model, which to the same extent increases

the model complexity and is intractable because of the log-likelihood function, specifically in

deep learning modeling as suggested by [  68 ]. Due to the unrestricted context of the proposed

GPDA in the current work and according to the presented results on predictive performance

and parametric modeling, the GPDA approach is able to improve the generalization and

robustness of the Exponential hazard (EXP) model without any additional requirement or

other complex function. Ultimately, we examine the ability of the generative adversarial

network (GAN) to generate point process sequences and provide a self-supervised trained

adversarial detector. As mentioned in the previous section, we have trained the adversarial

detector in GAN-setting. To ensure the quality of generated sequences by the generator, we

present two sets of generated samples at early and late stages by the generator of pointGAN

in Figure  5.2 . As illustrated, at later stages, the generated samples look realistic, which

implies the generator of pointGAN has learned the latent space distribution of the real clean

dataset.

Finally, in Table  5.5 and Table  5.6 provided in Appendix  B , we present the capability

of pointGAN’s discriminator in detecting the adversarial samples from each attack. In the

interest of completeness, in Figure  5.11 and Figure  5.12 , we illustrate the overall perfor-

mance of the pointGAN detector in detecting adversarial samples compared to the support

vector machine (SVM) and K-nearest neighborhood (KNN) classifiers. In this experiment,

the discriminator threshold (τ) of the pointGAN discriminator is 0.6, and both SVM and

KNN classifiers have been well-tuned prior to experiment. The figure shows that the point-

GAN detector outperforms SVM and KNN in detecting adversarial attacks against NN and

EXP models. The consistent performance of pointGAN in detecting attacks suggests that

all first-order white-box attacks share similar latent distribution. Regarding adversarial de-
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tection, high recall and precision are preferred, and according to the experimental results,

the proposed pointGAN detector achieves high consistent recall and precision. At the same

time, KNN and SVM show varying performance depending on adversarial attacks. It’s note-

worthy that adversarial sample detection is considered an imbalanced classification problem.

Thus ”Accuracy” is not a suitable metric of evaluation. The detailed results are provided in

Appendix  B .
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Figure 5.11. Overall performance of PointGAN compared to KNN and SVM
in detecting adversarial samples against fully neural network model (NN).
Bottom: Recall. Middle: Precision. Top: F1 score.
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Table 5.5. PointGAN attack detection performance on different adversarial
attacks against the NN model

Attack Accuracy Precision Recall F1 score
PGD 55.99 0.98 0.89 0.62

iFGSM 56.26 0.98 0.89 0.62
R+FGSM 55.95 0.98 0.90 0.62
miFGSM 56.01 0.98 0.90 0.62
FGSM 55.92 0.98 0.89 0.61

SM 56.08 0.99 0.89 0.61
GD 56.30 0.98 0.90 0.62
TM 57.18 0.52 0.64 0.36

∗ Reported metrics are averaged over 1000 epochs

Table 5.6. PointGAN attack detection performance on different adversarial
attacks against the EXP model

Attack Accuracy Precision Recall F1 score
PGD 56.18 0.98 0.90 0.62

iFGSM 55.93 0.98 0.90 0.62
R+FGSM 56.28 0.98 0.90 0.62
miFGSM 55.71 0.99 0.90 0.62
FGSM 55.99 0.98 0.89 0.61

SM 56.05 0.99 0.90 0.62
GD 56.33 0.98 0.89 0.61
TM 55.78 0.98 0.89 0.61

∗ Reported metrics are averaged over 1000 epochs
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generated samples at the early stage are relatively random. In contrast, gen-
erated samples at later stages look more realistic and close to the original
ones.
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6. SUMMARY

Temporal point processes are powerful tools in modeling and inferring the occurrence of

events. Point processes and in specific Hawkes process are employed in sensitive and security-

related fields, such as criminology. Additionally, due to the advances of neural network and

deep learning methods, recently neural network modeling of point processes have received

the attention. However, up to date, it’s not been studied how underlying network structure

affect the point process’s evolution, how robust they are to adversarial attacks and how they

can become robust against adversarial attacks and non-stationary abrupt changes in data.

In Chapter  3 , we study the dependency of Hawkes process virality on the network’s

structure and characteristics. Specifically, the results show that Hawkes process on networks

with the same degree distribution and assortativity can exhibit very different levels of virality.

With the inclusion of graphlets in predictive models of virality, R2 values improve by 10-

20% depending on the network and specific process. These results have implications for

prediction of real network viral processes, as current methods are generally based upon

degree distribution alone. Typically, approximate models of viral processes on networks can

be somewhat readily written in terms of degree distribution, which explains the popularity of

this basic network measure in understanding these processes. Better approximate models can

be formulated by adding assortativity, which may also be plausible from an analytic point

of view. Our results show that adding graphlet frequency distribution to these approximate

models could be quite valuable. Here it may be beneficial to consider local graphlet statistics

[ 122 ] around the source node of the process. For example, the local graphlet frequency around

a Tweeter may help predict the number of re-shares of that user’s Tweet.

In Chapter  4 , we propose and study several white-box and black-box adversarial attacks

against two state-of-the-art deep learning point processes that provide non-parametrical

modeling of temporal point processes, and investigate the transferability of proposed adver-

sarial attacks. Adversarial sample creation is a critical step, especially when the prediction

from such models is utilized in safety and cost-critical applications. Moreover, we study the

performance of the models facing non-stationary abrupt changes such as Covid-19. Finally,

we examine how Hawkes process’s parameters, in specific, are vulnerable to adversarial at-
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tack. According to our experimental results, one can attack both predictive and parameter

estimation performance of neural point processes with a small perturbation amount. Addi-

tionally, results imply the models are less sensitive to transferable attacks, still neural point

processes are not robust to non-stationary changes in the data such as Covid-19. According

to the results, although first-order white-box attacks are relatively analogous regarding pre-

dictive performances and underlying parameters, one crucial consideration is the associated

cost of each attack.Iterative methods such as PGD, iFGSM, and miFGSM are expensive

attacks in adversarial settings.

Finally, in Chapter  5 , we study the robustness of previously studied state-of-the-art deep

learning point processes that provide non-parametrical modeling of point processes. Specif-

ically, we examined the effectiveness of adversarial training in improving robustness empir-

ically. Adversarial training as a defense mechanism may be considered an attack-specific

mechanism where first-order white-box attacks are the goal of the defense approach. In this

setting, since previous results presented in Chapter  4 confirm PGD as a universal attack, the

clean training set is augmented with adversarial samples from PGD. The associated cost is

noteworthy regarding adversarial attacks and defense mechanisms. From an adversary view-

point, low-cost attacks are preferred. However, from the defense standpoint, the ultimate

goal of utilizing PGD in adversarial training as a defense mechanism is to increase the cost

of adversarial attacks.

In addition to adversarial training, we propose general point process domain-adopted

(GPDA) regularization as a low-cost attack-agnostic defense mechanism. This method lever-

ages the theoretical property of the point process’s compensator in a form of a regularization

term. Experimental results suggest the proposed defense mechanisms can improve the ro-

bustness of both deep learning models against adversarial attacks imperially and boost their

generalization on real data samples as shown by predictive performance and parametric

modeling. The proposed GPDA defense mechanism joined by the exponential hazard model

(EXP) may be considered as an alternative to complex and high cost modeling approaches

as GPDA approach is able to improve the generalization and robustness of the Exponential

hazard (EXP) model without any additional requirement or other complex function.
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Finally, we propose a self-supervised adversarial detector that has been trained in the gen-

erative adversarial network (GAN) framework. According to the performance of pointGAN

on adversarial detection, the proposed detector outperforms typical supervised and unsuper-

vised adversarial detectors. Furthermore, the quality of generated sequences by pointGAN

suggests examining GAN as a neural point process representation in which the generator

can be used as a feature extractor.

In the following, we disclose how the implications of each chapter can be the direction

to extend our methods. For instance, regarding the sensitivity analysis of point processes

on the underlying network, future work may focus on analytical attempts at capturing the

role graphlet frequency distribution plays in these viral processes now that their role has

been experimentally verified. The statistically significant graphlets for a given network may

also provide useful information for network optimization. When the goal is to reduce the

spread of viruses, for example, to mitigate infectious virus breakouts such as Covid-19, one

may wish to isolate nodes in a way that leads to the most significant reduction in viral

spreading. While the degree may be used to make such selections, further gains may be

made by considering assortativity and graphlet frequency.

Although the main contribution of Chapter  4 is adversarial attacks against temporal point

processes, specifically the Hawkes process, multivariate Hawkes processes are an extension

of our current framework. Here we don’t consider the event marks, i.e., the associated

information to each point. However, the proposed adversarial attacks are applicable to

multivariate and marked temporal point processes.

Towards robustness of deep point processes, current work examines the effectiveness of

adversarial training and a regularization approach. Nevertheless, alternative architectures

such as transformers, graph neural networks, and Bayesian neural networks may be consid-

ered, regardless of their associated cost.

The primary focus of adversarial attacks and defense mechanisms here is l∞ attacks. How-

ever, results on single-point adversarial attacks suggest the danger of l2 localized adversarial

attacks may be serious. On the other hand, the effectiveness of defense mechanisms against

localized adversarial attacks suggests their capability in defending against corresponding l2
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norm adversarial attacks where the perturbation is localized. Therefore, exploring effect and

robustness against l2 norm attacks is the direction of future works.

In this research, we leveraged GAN for adversarial detection purposes. Nonetheless,

based on the quality of generated sequences in addition to the quantitative performance of

GAN frameworks in generating domain-specific text in our previous publication [  65 ], another

line of future research would be to use GAN-based representation and knowledge extraction

tools for point processes and event sequence. Such embeddings may be helpful in crime

linkage analysis, anomaly detection, and crime clustering.

In conclusion, in this research, we extend the topic of trustworthy machine learning to

point processes and sequential data. Specifically, towards transparency, in Chapter  3 , we

exemplify how the virality of the Hawkes process can be explained by network character-

istics such as graphlet distribution and assortativity. Furthermore, in Chapter  4 we step

towards making neural point process models explainable and recognize their weaknesses and

robustness by proposing several adversarial attacks against point processes in general and

specific fields. Finally, regarding robustness against adversarial attacks, we utilize adversar-

ial training and leverage theoretical approaches to propose a novel and flexible regularization

method that improve the model robustness empirically. With the aid of our work in Chapter

 3 , one may wish to isolate nodes in a way that leads to the most significant reduction in viral

spreading. For example, in the case of the dolphins-SIS simulation, choosing nodes that re-

duce the frequency of graphlets 21, 24, and 26 may provide a better mitigation strategy than

other metrics like centrality or degree. Our proposed and studied adversarial attacks can

be employed to identify weaknesses of point processes in sensitive fields such as criminology,

natural disaster rescue systems, and stock market prediction. Also, our proposed GPDA

method to improve the point process’s robustness provides a low-cost defense mechanism

that can be considered an alternative to computationally expensive deep learning modeling

of point processes. Finally, the proposed pointGAN framework may be used in warning

systems to detect adversarial sequences before providing the input sequence to the target

network. Such a framework provides a robust and standalone system without requiring any

specification on potential adversarial attacks.
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A. SUPPLEMENTARY MATERIALS FOR ADVERSARIAL

ATTACKS AGAINST DEEP TEMPORAL POINT PROCESSES

This Chapter presents supplementary materials on the results of the proposed adversarial

attacks against the deep point process models on the specified datasets.

In Figure A.1 we are assessing the goodness of fit for both of our models to the specified

datasets. The time-rescaling theorem and ordinary thinned residual process, as residual

analysis approaches, on point processes ensure the deep learning models fit our data properly.

In all figures, the green line represents the exponential hazard model and blue line represents

the fully neural network model. In all figures, the gray area represents the 95% confidence

band of the corresponding Poisson process.
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Figure A.1. Residual analysis and goodness of fit. Top: Re-scaled event times
is withing unit rate Poisson process Down: Thinned data based on estimated
λ matches Poisson process with rate m. Left: Hawkes process, Middle: Self-
correcting, and Right: Non-stationary Poisson process.

In Table  A.1 , the complete version of the fully neural network model’s performance on

the specified datasets as well as adversarial attacks are presented. Consecutively, in Table
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 A.2 , we present the performance of the exponential hazard model on the same datasets and

adversarial attacks.

Table A.1. Predictive performance of fully neural network model against
each attack on different point processes.

Data Attack MNLL(e− 01) MAE(e− 01) FE (e− 02) SMAPE (e− 01)

H
aw

ke
s

No Attack 4.1± 2.838e− 03 7.77± 1.72e− 04 NA NA
PGD 5.90± 1.34e− 02 8.09± 1.15e− 03 3.64± 1.15e− 03 3.13± 5.35e− 03

iFGSM 6.54± 1.56e− 02 8.21± 1.83e− 03 4.75± 1.65e− 03 3.66± 8.23e− 03
R+FGSM 6.04± 8.67e− 03 8.11± 9.73e− 04 3.83± 7.68e− 04 3.26± 4.70e− 03
miFGSM 6.64E ± 1.54e− 02 8.20± 1.43e− 03 4.75± 1.10e− 03 3.67± 5.35e− 03
FGSM 6.56± 1.82e− 02 8.18± 2.09e− 03 4.75± 1.61e− 03 3.60± 5.67e− 03

SM 4.64± 3.46e− 03 7.91± 6.23e− 04 1.58± 5.79e− 04 1.56± 3.61e− 03
GD 6.73± 1.69e− 02 7.85± 1.45e− 03 2.43± 1.41e− 03 3.33± 8.04e− 03
TM 5.98± 8.50e− 03 8.36± 1.10e− 03 2.12± 3.82e− 03 7.08± 4.51e− 03

N
on

St
at

io
na

ry
Po

iss
on No Attack 9.83± 4.99e− 03 10.00± 4.09e− 03 NA NA

PGD 10.25± 5.812e− 03 10.29± 2.849e− 03 3.38± 4.24e− 03 1.21± 8.87e− 03
iFGSM 10.41± 5.471e− 03 10.38± 5.75e− 03 4.64± 4.3e− 03 1.57± 7.63e− 03

R+FGSM 10.27± 5.30e− 03 10.29± 3.62e− 03 3.52± 3.57e− 03 1.27± 1.05e− 02
miFGSM 10.44± 1.05e− 02 10.39± 7.11e− 03 4.60± 4.34e− 03 1.57± 1.16e− 02
FGSM 10.41± 4.88e− 03 10.36± 3.59e− 03 4.53± 3.64e− 03 1.54± 8.63e− 03

SM 9.89± 5.46e− 03 10.0± 3.63e− 03 4.37± 7.81e− 04 0.44± 4.93e− 03
GD 9.86± 5.96e− 03 10.04± 4.08e− 03 4.30± 6.42e− 03 1.75± 9.34e− 03
TM 12.91± 2.76e− 02 11.46± 5.31e− 03 40.56± 3.66e− 02 4.05± 1.99e− 02

Se
lf

co
rr

ec
tin

g

No Attack 8.21± 5.58e− 02 4.97± 6.80e− 03 NA NA
PGD 14.04± 1.16e− 01 8.24± 7.79e− 02 36.13± 8.67e− 02 6.62± 1.01e− 01

iFGSM 16.31± 1.36e− 01 9.52± 9.94e− 02 48.00± 1.11e− 01 7.77± 1.05e− 01
R+FGSM 14.83± 6.33e− 02 8.70± 4.95e− 02 40.13± 6.03e− 02 7.08± 6.44e− 02
miFGSM 16.99± 1.78e− 01 9.64± 6.85e− 02 49.53± 7.55e− 02 7.90± 6.44e− 02
FGSM 16.58± 1.86e− 01 9.65± 1.07e− 01 49.29± 1.18e− 01 7.78± 1.24e− 01

SM 9.02± 6.66e− 02 5.43± 4.45e− 03 5.69± 3.34e− 03 1.91± 7.99e− 03
GD 15.49± 1.72e− 01 7.55± 8.04e− 02 31.47± 9.86e− 02 5.71± 1.12e− 01
TM 11.94± 7.39e− 02 7.05± 3.04e− 02 49.79± 4.84e− 02 8.32± 3.60e− 02

∗ All numbers are the average over 10 times bootstrap experiments.

In Table  A.3 , Table  A.4 , Table  A.5 , and Table  A.6 , we present the transferability power of

each adversarial attacks against both NN and EXP models. For Exponential hazard model

(EXP), RNN units are the only parameters that can be modified to obtain transferred

attacks.
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Table A.2. Predictive performance of exponential hazard model against each attack.
Data Attack MNLL(e− 01) MAE(e− 01) FE (e− 02) SMAPE (e− 01)

H
aw

ke
s

No Attack 4.63± 7.15e− 03 8.01± 1.26e− 02 NA NA
PGD 5.38± 9.29e− 03 8.30± 3.13e− 02 2.62± 4.36e− 03 1.76± 2.60e− 02

iFGSM 5.67± 1.30e− 02 8.26± 3.33e− 03 3.66± 4.39e− 03 2.32± 2.36e− 02
R+FGSM 5.43± 4.12e− 03 8.19± 1.59e− 03 2.89± 2.07e− 03 1.93± 1.27e− 02
miFGSM 5.65± 1.32e− 02 8.30± 5.41e− 03 3.57± 5.27e− 03 2.16± 2.72e− 02
FGSM 5.72± 8.93e− 03 8.33± 6.86e− 03 4.01± 3.20e− 03 2.28± 1.88e− 02

SM 4.76± 7.46e− 03 8.06± 1.54e− 02 0.67± 5.69e− 04 0.80± 3.30e− 03
GD 5.28± 1.59e− 02 8.16± 2.42e− 02 4.73± 1.76e− 02 2.24± 5.79e− 03
TM 6.67± 3.70e− 03 8.72± 1.68e− 02 28.58± 3.52e− 02 6.27± 8.52e− 03

N
on

St
at

io
na

ry
Po

iss
on No Attack 9.7± 1.97e− 03 10.2± 4.22e− 03 NA NA

PGD 10.1± 2.34e− 03 10.5± 2.96e− 03 3.92± 1.3e− 03 1.29± 2.91e− 03
iFGSM 10.3± 3.741e− 03 10.6± 5.51e− 03 2.24± 2.12e− 03 1.62± 5.76e− 03

R+FGSM 10.19± 1.59e− 03 10.56± 4.4e− 03 4.24± 1.29e− 03 1.37± 3.56e− 03
miFGSM 10.32± 1.49e− 03 10.60± 3.52e− 03 5.27± 1.07e− 03 1.65± 3.50e− 03
FGSM 10.31± 2.53e− 03 10.62± 4.07e− 03 5.22± 1.48e− 03 1.62± 4.31e− 03

SM 9.76± 3.06e− 03 10.29± 6.5e− 03 0.68± 4.91e− 04 0.46± 2.18e− 03
GD 9.71± 1.96e− 03 10.24± 4.68e− 03 4.71± 2.71e− 03 1.83± 5.52e− 03
TM 13.36± 1.2e− 02 11.42± 1.5e− 03 37.74± 9.02e− 02 4.25± 4e− 03

Se
lf

co
rr

ec
tin

g

No Attack 7.82± 9.04e− 04 4.94± 6.90e− 04 NA NA
PGD 15.30± 3.02e− 02 8.52± 4.76e− 03 39.48± 4.46e− 03 7.05± 4.58e− 03

iFGSM 18.86± 2.72e− 02 9.65± 8.27e− 03 50.41± 8.51e− 03 8.01± 8.02e− 03
R+FGSM 15.87± 2.49e− 02 8.78± 5.84e− 03 41.83± 5.89e− 03 7.24± 4.95e− 03
miFGSM 19.00± 3.72e− 02 9.65± 1.36e− 02 50.40± 1.36e− 02 8.02± 1.17e− 02
FGSM 19.06± 4.85e− 02 9.60± 9.67e− 03 49.90± 9.93e− 03 7.98± 9.04e− 03

SM 8.52± 1.48e− 03 5.37± 3.78e− 04 5.67± 7.95e− 04 1.92± 2.64e− 03
GD 23.39± 2.84e− 01 7.05± 6.79e− 03 27.58± 8.00e− 03 5.74± 1.20e− 02
TM 11.49± 5.45e− 03 6.91± 5.31e− 03 49.02± 6.42e− 03 8.36± 4.68e− 03

∗ All numbers are the mean over 10 times bootstrap experiments.

Table A.3. MNLL compares attacks in transferred settings versus white-
box settings against both fully neural network (NN) and exponential hazard
(EXP). Stronger attack is marked in bold.

Attack
Model

NN EXP
Transferred Transferred

White-box RNN (256) NN (256) Layers (4) White-box RNN (256)
PGD 5.90e− 01 6.58e-01 4.73e− 01 5.58e− 01 5.38e− 01 5.87e-01

iFGSM 6.54e-01 5.64e− 01 5.50e− 01 6.67e-01 5.67e-01 5.48e− 01
R+FGSM 6.04e− 01 5.49e− 01 5.80e− 01 6.59e-01 5.43e− 01 5.84e-01
miFGSM 6.64e− 01 6.17e− 01 6.51e− 01 6.62e-01 5.65e− 01 6.05e-01
FGSM 6.56e− 01 5.23e− 01 6.63e-01 5.74e− 01 5.72e− 01 4.75e-01

SM 4.64e− 01 6.57e-01 6.53e− 01 5.59e− 01 4.76e− 01 5.27e-01
GD 6.73e-01 5.34e− 01 6.58e− 01 5.84e− 01 5.28e-01 4.63e− 01

∗ All numbers are averaged over 10 times bootstrap experiments.
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Table A.4. MAE compares attacks in transferred settings versus white-
box settings against both fully neural network (NN) and exponential hazard
(EXP). Stronger attack is marked in bold.

Attack
Model

NN EXP
Transferred Transferred

White-box RNN (256) NN (256) Layers (4) White-box RNN (256)
PGD 8.09e− 01 8.21e-01 8.07e− 01 8.20e− 01 8.30e-01 8.11e− 01

iFGSM 8.21e− 01 8.24e-01 8.21e− 01 8.20e− 01 8.26e− 01 8.30e-01
R+FGSM 8.11e− 01 8.25e-01 7.85e− 01 8.16e− 01 8.19e-01 8.09e− 01
miFGSM 8.20e− 01 8.14e− 01 8.21e− 01 8.21e-01 8.30e-01 8.11e− 01
FGSM 8.18e− 01 7.84e− 01 8.19e− 01 8.44e-01 8.33e-01 8.14e− 01

SM 7.91e− 01 8.19e-01 7.84e− 01 8.18e− 01 8.06e− 01 8.17e-01
GD 7.85e− 01 8.11e− 01 8.20e-01 8.08e− 01 8.16e-01 7.89e− 01

∗ All numbers are the mean over 10 times bootstrap experiments.

Table A.5. FE compares attacks in transferred settings versus white-box set-
tings against both fully neural network (NN) and exponential hazard (EXP).
Stronger attacks is marked in bold.

Attack
Model

NN EXP
Transferred Transferred

White-box RNN (256) NN (256) Layers (4) White-box RNN (256)
PGD 3.64e− 02 4.78e-02 3.86e− 02 3.26e− 02 2.62e− 02 3.53e-02

iFGSM 4.75e− 02 3.51e− 02 3.13e− 02 4.81e-02 3.66e-02 3.05e− 02
R+FGSM 3.83e− 02 3.06e− 02 2.30e− 02 4.71e-02 2.89e− 02 3.55e-02
miFGSM 4.75e-02 4.62e− 02 4.69e− 02 4.68e− 02 3.57e− 02 3.80e-02
FGSM 4.75e− 02 2.13e− 02 4.75e-02 4.30e− 02 4.01e-02 5.21e− 03

SM 1.58e− 02 4.74e-02 2.71e− 02 3.29e− 02 6.73e− 03 2.28e-02
GD 2.43e− 02 4.22e− 02 4.82e-02 3.66e− 02 4.73e-02 1.54e− 02

∗ All numbers are the mean over 10 times bootstrap experiments.
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Table A.6. SMAPE compares attacks in transferred settings versus white-
box settings against both fully neural network (NN) and exponential hazard
(EXP). Stronger attack is marked in bold.

Attack
Model

NN EXP
Transferred Transferred

White-box RNN (256) NN (256) Layers (4) White-box RNN (256)
PGD 3.13e− 01 3.64e-01 2.29e− 01 2.23e− 01 1.76e− 01 2.79e-01

iFGSM 3.66e− 01 2.34e− 01 2.19e− 01 3.69e-01 2.32e-01 1.96e− 01
R+FGSM 3.26e− 01 2.16e− 01 3.55e− 01 3.60e-01 1.93e− 01 3.04e-01
miFGSM 3.67e− 01 3.51e− 01 3.68e− 01 3.70e-01 2.16e− 01 3.24e-01
FGSM 3.60e− 01 3.32e− 01 3.64e-01 2.34e− 01 2.28e-01 7.99e− 02

SM 1.56e− 01 3.55e− 01 3.69e-01 2.19e− 01 8.05e− 02 1.62e-01
GD 3.33e− 01 2.30e− 01 3.68e-01 3.12e− 01 2.24e-01 1.52e− 01

∗ All numbers are averaged over 10 times bootstrap experiments.
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B. SUPPLEMENTARY MATERIALS FOR ADVERSARIAL

ROBUSTNESS

This Chapter presents supplementary materials on the results of the proposed defense mech-

anisms for deep point process models.

In Table  B.1 , the complete version of the pointGAN’s performance in detecting adver-

sarial samples against fully neural network (NN) model, compared to SVM and KNN are

presented. Consecutively, in Table  B.2 , we present the performance of pointGAN’s perfor-

mance in detecting adversarial samples against the exponential hazard (EXP) model.

Finally, in Tables  B.3 and  B.4 the affect of adversarial attacks on the Hawkes process

intensity function’s parameters at prediction is presented.
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Table B.1. Point-GAN attack detection performance on different adversarial
attacks against the NN model

Attack Model Accuracy(%) Precision Recall F1 score

PGD
pointGAN 55.99 0.98 0.89 0.62

KNN 75.05 0.92 0.55 0.69
SVM 50.70 0.60 0.05 0.10

iFGSM
pointGAN 56.26 0.98 0.89 0.62

KNN 73.80 0.89 0.54 0.67
SVM 50.68 0.57 0.05 0.09

R+FGSM
pointGAN 55.95 0.98 0.90 0.62

KNN 73.90 0.89 0.53 0.67
SVM 48.65 0.49 0.98 0.65

miFGSM
pointGAN 56.01 0.98 0.90 0.62

KNN 74.05 0.90 0.54 0.67
SVM 50.53 0.53 0.06 0.12

FGSM
pointGAN 55.92 0.98 0.89 0.61

KNN 73.72 0.91 0.54 0.67
SVM 49.50 0.60 0.02 0.04

SM
pointGAN 56.08 0.99 0.89 0.61

KNN 73.32 0.89 0.52 0.66
SVM 46.92 0.48 0.93 0.63

GD
pointGAN 56.30 0.98 0.90 0.62

KNN 75.83 0.91 0.56 0.69
SVM 47.80 0.48 0.96 0.64

TM
pointGAN 57.18 0.52 0.64 0.36

KNN 69.07 0.81 0.52 0.63
SVM 49.02 0.51 0.05 0.09
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Table B.2. Point-GAN attack detection performance on different adversarial
attacks against the EXP model

Attack Model Accuracy(%) Precision Recall F1 score

PGD
pointGAN 56.18 0.98 0.90 0.62

KNN 73.02 0.90 0.52 0.66
SVM 50.15 0.60 0.03 0.06

iFGSM
pointGAN 55.93 0.98 0.90 0.62

KNN 74.15 0.92 0.53 0.68
SVM 49.65 0.55 0.02 0.03

R+FGSM
pointGAN 56.28 0.98 0.90 0.62

KNN 74.07 0.89 0.54 0.67
SVM 51.50 0.54 0.12 0.19

miFGSM
pointGAN 55.71 0.99 0.90 0.62

KNN 73.55 0.87 0.53 0.66
SVM 47.95 0.48 1.00 0.65

FGSM
pointGAN 55.99 0.98 0.89 0.61

KNN 74.85 0.92 0.54 0.68
SVM 47.00 0.48 0.84 0.61

SM
pointGAN 56.05 0.99 0.90 0.62

KNN 73.45 0.87 0.54 0.67
SVM 44.07 0.46 0.76 0.57

GD
pointGAN 56.33 0.98 0.89 0.61

KNN 79.35 0.93 0.63 0.75
SVM 45.77 0.47 0.90 0.62

TM
pointGAN 55.78 0.98 0.89 0.61

KNN 69.07 0.81 0.52 0.63
SVM 49.02 0.51 0.05 0.09
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Table B.3. The effect of adversarial attacks against fully neural network
(NN) model on Hawkes process parameters, µ, α, and β.

Defense Income data Predicted data
GPDA AT µ(e− 01) α(e + 00) β(e + 00) µ(e− 02) α(e− 01) β(e− 01)

No attack

– – 0.129 0.874 0.911 1.25 8.79 8.43
X – 0.129 0.874 0.911 1.26 8.77 8.60
– X 0.1292 0.874 0.911 1.30 8.73 9.01
X X 0.129 0.874 0.911 1.31 8.73 9.15

PGD

– – 9.98 1.00 1.30 1.20 8.82 7.94
X – 9.98 1.00 1.30 1.26 8.78 8.56
– X 9.98 1.00 1.30 1.24 8.80 8.27
X X 9.98 1.00 1.30 1.31 8.72 9.20

iFGSM

– – 9.98 1.00 1.30 1.17 8.84 7.77
X – 9.98 1.00 1.30 1.27 8.76 8.72
– X 9.98 1.00 1.30 1.21 8.82 8.03
X X 9.98 1.00 1.30 1.31 8.73 9.13

R+FGSM

– – 9.98 1.00 1.30 1.18 8.83 7.84
X – 9.98 1.00 1.30 1.26 8.78 8.59
– X 9.98 1.00 1.30 1.23 8.80 8.19
X X 9.98 1.00 1.30 1.31 8.72 9.17

miFGSM

– – 9.98 1.00 1.30 1.18 8.84 7.80
X – 9.98 1.00 1.30 1.27 8.77 8.63
– X 9.98 1.00 1.30 1.24 8.79 8.32
X X 9.98 1.00 1.30 1.31 8.73 9.14

FGSM

– – 9.98 1.00 1.30 1.18 8.83 7.83
X – 9.98 1.00 1.30 1.26 8.78 8.58
– X 9.98 1.00 1.30 1.21 8.81 8.06
X X 9.98 1.00 1.30 1.30 8.73 9.09

SM

– – 9.98 1.00 1.30 1.23 8.81 8.19
X – 9.98 1.00 1.30 1.26 8.77 8.60
– X 9.98 1.00 1.30 1.29 8.75 8.86
X X 9.98 1.00 1.30 1.31 8.72 9.15

GD

– – 9.96 0.99 0.908 1.12 8.88 7.37
X – 9.96 1.00 0.80 1.24 8.80 8.29
– X 9.97 1.00 1.03 1.20 8.83 7.99
X X 9.97 1.00 1.02 1.28 8.76 8.82

TM

– – 9.96 0.999 1.15 2.73 7.30 53.5
X – 9.96 1.00 1.07 1.79 8.22 25.61
– X 9.97 1.00 1.15 2.92 7.12 72.14
X X 9.97 1.00 1.18 2.30 7.72 44.33

∗ All reported numbers are the mean over 10 bootstrapped experiments.
∗ α

β
is the branching ratio of Hawkes process.
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Table B.4. The effect of adversarial attacks against exponential hazard
(EXP) model on Hawkes process parameters, µ, α, and β.

Defense Income data Predicted data
GPDA AT µ(e− 01) α(e + 00) β(e + 00) µ(e− 02) α(e− 01) β(e− 01)

No attack – – 0.129 0.874 0.911 1.32 8.70 9.43
X – 0.129 0.874 0.911 1.33 8.70 9.48

PGD – – 9.98 1.00 1.30 1.32 8.71 9.19
X – 9.98 1.00 1.30 1.31 8.71 9.31

iFGSM – – 9.98 1.00 1.30 1.32 8.71 9.16
X – 9.98 1.00 1.30 1.32 8.70 9.48

R+FGSM – – 9.98 1.00 1.30 1.32 8.72 9.11
X – 9.98 1.00 1.30 1.32 8.70 9.45

miFGSM – – 9.98 1.00 1.30 1.32 8.71 9.15
X – 9.98 1.00 1.30 1.33 8.70 9.47

FGSM – – 9.98 1.00 1.30 1.32 8.71 9.24
X – 9.98 1.00 1.30 1.33 8.69 9.52

SM – – 9.98 1.00 1.30 1.32 8.70 9.35
X – 9.98 1.00 1.30 1.32 8.70 9.43

GD – – 9.96 0.999 1.02 1.23 8.81 8.20
X – 9.97 1.00 0.95 1.29 8.75 8.93

TM – – 9.96 0.999 1.10 1.54 8.41 10.00
X – 9.97 1.00 1.28 3.04 7.01 100.00

∗ All reported numbers are the mean over 10 bootstrapped experiments.
∗ α

β
is the branching ratio of Hawkes process.
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