
DEFEATING CRITICAL THREATS TO CLOUD USER DATA
IN TRUSTED EXECUTION ENVIRONMENTS

by

Adil Ahmad

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Pedro Fonseca, Co-Chair

Department of Computer Science

Dr. Byoungyoung Lee, Co-Chair

Department of Electrical and Computer Engineering, Seoul National University

Dr. Aniket Kate

Department of Computer Science

Dr. Changhee Jung

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To my family, both given and chosen.

3

ACKNOWLEDGMENTS

This dissertation is the culmination of efforts from several individuals in my professional

and personal life, to whom I will remain forever indebted.

First and foremost, I would like to express my sincere gratitude to my advisors—Pedro

Fonseca and Byoungyoung Lee—for their love and support throughout my doctoral studies.

Byoungyoung’s kind, fun-loving, and empathetic nature was the major reason I decided to

pursue computer security as a field of study, despite pursuing my undergraduate thesis in

the area of computer networks. I will remain indebted to him for inculcating in me a love

of trusted execution environments. Even though Pedro joined as an advisor after my third

year as a doctoral student, I learned a great deal about how to be passionate and meticulous

about my research from him. His advice on improving my presentation and paper writing

skills have enabled me to bring significant more accessibility to my work.

Over the course of my studies, I was extremely fortunate to undertake several internships

at industry research labs like Microsoft Research and NEC Labs America. There is no

exaggeration when I say that I found the absolute best mentors in Sangho Lee, Marcus

Peinado, and Chung Hwan Kim, at these internships. Sangho’s passion for research and

knowledge of implementation details was instrumental in helping me complete several research

projects. I will always be thankful to him for helping me, not just during the internships, but

even in the writing of this dissertation. Marcus has an excellent eye for locating high-impact

research problems and carefully cross-examining every small detail in a potential solution. I

strongly believe that I improved my own abilities in this important domain by working with

Marcus. I remain thankful to Chung Hwan, who was my first mentor outside Purdue, for

allowing me the space to grow as a young researcher at NEC Labs.

Perhaps I would never have dreamt of pursuing a doctorate, if it was not for the efforts of

my undergraduate thesis advisors—Ihsan Ayyub Qazi and Muhammad Fareed Zaffar—at

Lahore University of Management Sciences (LUMS). Ihsan’s undergraduate summer research

program introduced me to the concept high-quality research, and it was his teaching passion

that significantly contributed to my own pursuit of an academic faculty career after the

completion of this dissertation. The help from Ihsan and Fareed, during my PhD search,

4

was monumental in getting a position at Purdue. Fareed also provided me with ample

opportunities to establish my credentials in computer security undergraduate research.

I would also like to thank my other thesis committee members—Aniket Kate, Dongyan

Xu and, Changhee Jung—for their advice. I remain especially thankful to Dongyan and

Aniket for motivating me to apply for academic faculty positions at separate occasions.

The material in this dissertation is spawned from several research projects, none of which

would be possible if not for the help I received from many different collaborators. These

collaborators include Jaebaek Seo, Kyungtae Kim, Juhee Kim, Yuan Xiao, Muhammad

Abubakar, Seounghyun Park, Hyunyoung Oh, Yinqian Zhang, Insik Shin, and Yunheung

Park. I want to especially thank Jaebaek, since he was the first to help me navigate research

and his examples significantly improved my coding and development skills.

Although I never had the opportunity to work on research projects with other members

of my research group—Sishuai Gong, Tapti Palit, Congyu Lu, Dinglan Peng, Paul Pok Hym,

and Sruthi Panchapakesan—I greatly enjoyed my time with them. I want to especially express

my gratitude to Tapti for spending so much time to help me improve my faculty job talk.

During my doctoral studies, I went to the Fiesta Mexican grill in West Lafayette countless

times. The owner’s constant happy face and our chats often made my day, especially when I

seem defeated by a research matter. I would like to thank him for his chats.

Last but not least, I remain indebted to my given and chosen family. My parents and

siblings supported me throughout the process. My partner’s constant love and support was

the bedrock of my foundation and this dissertation would not be possible without her. My

brother’s advice was instrumental in improving the quality of my research. My friends—Ali

Shan, Muhammad Mustafa, Habiba Farrukh, Bader AlBassam, Aqib Nisar, and Zeeshan

Hakim—were my tether and I remain thankful for their constant support, even when I did

not deserve it. This dissertation is dedicated to all of them.

5

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 12

ABSTRACT . 15

1 INTRODUCTION . 16

1.1 Trusted Execution Environments (TEEs) for Data Protection 16

1.2 Threats to User Data Protected by TEEs . 17

1.2.1 Adversarial Cloud Services . 17

1.2.2 Memory Side-Channels . 18

1.3 Thesis and Research Question . 18

1.4 Contributions . 18

1.5 Outline . 20

2 BACKGROUND . 22

2.1 Computer Architecture and Systems Overview 22

2.1.1 CPU Execution and Optimization . 22

2.1.2 Privileged System Software . 23

2.2 Computer Security and Cryptography Overview 25

2.3 Trusted Execution Environments (TEEs) . 26

2.4 Intel Software Guard eXtensions (SGX) . 27

2.4.1 Platform Secret . 27

2.4.2 Physical Memory Organization . 27

2.4.3 Instruction Set Architecture (ISA) Extensions 28

2.4.4 Enclave Lifecycle . 28

2.4.5 Remote attestation . 31

2.4.6 Demand paging . 32

2.4.7 Security Overview . 33

2.5 Memory Side-Channels . 35

6

2.5.1 Root Cause and Classification . 35

2.5.2 Attack Case-Study . 37

2.5.3 Relation to Micro-Architectural Defects 39

2.6 Oblivious Random Access Memory (ORAM) 40

2.6.1 Path ORAM . 41

3 RELATED WORK . 43

3.1 Towards the Development of SGX . 43

3.2 General Systems Designed using Enclaves . 44

3.3 Software Protection for Enclaves against Memory Side-Channels 45

3.4 Hardware Protection for Enclaves against Memory Side-Channels 47

3.5 Other Attacks against Enclaves and Proposed Protection Schemes 48

4 SOFTWARE SANDBOXING TO DEFEAT ADVERSARIAL CLOUD SERVICES 51

4.1 Motivation . 52

4.1.1 System Model . 52

4.1.2 Examples of Target Scenarios . 54

4.2 Chancel Design . 55

4.2.1 Overview . 55

4.2.2 Workflow . 57

4.2.3 Multi-Client SFI (MCSFI) . 58

4.2.4 Shared Data Initialization . 64

4.2.5 Runtime Services . 65

4.3 Implementation . 66

4.3.1 Program Development Toolchain . 66

4.3.2 SecureLayer Components . 67

4.4 Security Analysis . 68

4.5 Performance Evaluation . 70

4.5.1 Improvement over Multi-Process Sandbox 70

4.5.2 Overhead of Chancel . 73

4.5.3 Performance with Real-world Programs 74

7

4.6 Discussion . 83

4.6.1 Comparison with Other Enclave SFI Schemes 83

4.6.2 Supporting Multi-Hop Adversarial Programs 85

4.6.3 Strengthening Protection against Covert Channels 86

4.7 Summary . 86

5 SOFTWARE OBFUSCATION TO DEFEAT MEMORY SIDE-CHANNELS . . . 87

5.1 Approaching Obfuscation using Scratchpads and Instrumentation 88

5.2 Obfuscuro Design . 89

5.2.1 Secure ORAM Scheme . 91

5.2.2 Repurposing Native Programs . 95

5.2.3 Code Execution Model . 97

5.2.4 Data Access Model . 98

5.2.5 Start-to-End Obfuscation . 99

5.3 Implementation . 101

5.4 Security Analysis . 102

5.4.1 Access Pattern Attacks . 103

5.4.2 Timing-based Attacks . 106

5.5 Performance Evaluation . 107

5.6 Discussion . 109

5.6.1 Comparison with Cryptographic Program Obfuscation 110

5.6.2 Automating Efficient Application of Obfuscation 110

5.7 Summary . 111

6 HARDWARE EXTENSIONS TO DEFEAT MEMORY SIDE-CHANNELS 112

6.1 Approaching Hardware Protection against Memory Side-Channels 113

6.1.1 Protection against Controlled Channels 113

Controlling Demand Paging . 113

Controlling Page Tables . 114

6.1.2 Protection against Shared Channels 116

6.2 Reparo Design . 116

8

6.2.1 Enclave-Controlled Paging . 117

6.2.2 Microarchitectural Resource Isolation 119

6.3 Architectural Support for Reparo . 121

6.3.1 Protection Enablement . 121

6.3.2 Address Translation Checks . 122

6.3.3 Physical Memory Management . 123

6.3.4 Cache Partition . 124

6.3.5 Branch Predictor Invalidation . 125

6.3.6 Summary of Architectural Support 125

6.4 Implementation . 126

6.5 Performance Evaluation . 128

6.5.1 Setup . 128

6.5.2 Micro-Benchmarks . 128

6.5.3 Real-world Enclave Programs . 129

6.5.4 Non-Enclave Programs . 133

6.6 Discussion . 135

6.7 Summary . 136

7 GENERALIZATION TO OTHER ENCLAVES 137

8 FUTURE RESEARCH DIRECTIONS . 138

8.1 Securing Interactions between Enclaves and Devices 138

8.2 Leveraging Virtual Machine Enclaves for Data Protection 139

9 CONCLUSION . 141

REFERENCES . 142

9

LIST OF TABLES

2.1 A list of supervisor and user instructions added to the Intel x86 ISA by SGX [23],
[32]. Within each category, the instructions are ordered alphabetically. 29

2.2 An overview of SGX’s defense against attacks from a malicious operating system
during all important SGX operations and stages of an enclave’s lifecycle. In terms
of attack goal, C+I means attacks that can compromise both confidentiality and
integrity, C means attacks that only hurt confidentiality, and I means attacks
that hurt integrity. In many instances, attacks that hurt integrity can also hurt
confidentiality. 34

2.3 An overview of known memory side-channels, including the information leaked,
and disclosed attacks. 36

3.1 An overview of protection against memory side-channels provided by our systems—
Obfuscuro and Reparo—and other existing SGX software and hardware de-
fenses. △ means partial protection. Obfuscuro incurs more overhead than
others because it additionally provides the strong notion of cryptographic program
obfuscation. As discussed in §5.6.1 , Obfuscuro is orders of magnitude faster
than all other systems that provide cryptographic program obfuscation. 47

4.1 Chancel’s components included in the enclave. 67

4.2 Chancel’s defenses against various attack vectors. Instr. means instrumentation. 68

4.3 Nbench [126] running inside Chancel. The table shows slowdown incurred and
additional instructions executed. 72

4.4 Real-world evaluated program statistics. The table shows each program’s Native
code (.text section) size and its increase due to Chancel’s instrumentation. The
table also shows the total instrumented binary size (including code and static
data) and its loading time. 75

4.5 Average delay (and the number of page faults in the parenthesis) for inspecting
a payload with regex matching in OSSEC. The overhead imposed by Chancel
over Native is 2.7 − 13.1%. 76

4.6 Average delay (and the number of page faults in the parenthesis) to search
2, 000, 000 queries in DrugBank. The overhead imposed by Chancel over Native
is 0.2 − 11.4%. 78

4.7 Average delay (and the number of page faults in the parenthesis) to access a
recommendation result. The overhead imposed by Chancel over Native is
1.3 − 13.1%. 80

4.8 Average delay (and the number of page faults in the parenthesis) to search 100, 000
queries using ShieldStore [150]. The overhead imposed by Chancel over Native
is 1.1 − 8.4%. 81

10

4.9 Average delay (and the number of page faults in the parenthesis) to inspect 3, 000
packets using Snort [151]. The overhead imposed by Chancel over Native is
0.5 − 11.8%. 82

4.10 A comparison between Chancel and related schemes that implement SFI in
enclaves. For Occlum [74] and MPTEE [145], both SGX and MPX are required
hardware features. 84

5.1 Security analysis of secure ORAM implementation used by the code and data
controller. 102

5.2 Performance improvement achieved by using the AVX2 register extensions as the
ORAM stash compared to CMOV-based stash. 108

6.1 Architectural support required by Reparo and the CPU components involved. . 121

6.2 Reparo’s defense for memory side-channels. 127

6.3 Machine platforms used for evaluation. 128

6.4 Reparo’s isolation overhead in micro-benchmarks. 130

11

LIST OF FIGURES

2.1 SGX page fault handling. The dotted lines denote operations performed using
SGX microcode instructions. 32

2.2 Illustration of a victim enclave code and its shadow code. The lines are assumed
to be aligned to the same virtual address in each code. Due to a potential
misprediction, the execution time of the correct shadow branch (lines 5 − 8(∗))
depends on the branching outcome of the victim code. 38

2.3 Montgomery multiplication used by a popular and widely-used cryptographic
library, mbedTLS [49]. This code is taken from the file bignum.c in the mbedTLS
GitHub repository [50]. It was also previously used by the BranchShadowing
paper [15] to demonstrate their attack. 40

2.4 A simplified illustration of the Path Oblivious RAM (ORAM) cryptographic
protocol. 42

4.1 Chancel’s system model with three participants: the clients, the service provider,
and the cloud provider. 53

4.2 Chancel workflow. A) An enclave containing SecureLayer is created, which then
validates and loads a program provided by the service provider. B) The runtime
behavior of the program is restricted, and SecureLayer mediates all interactions
originating from it to avoid any security threat. 56

4.3 Chancel’s memory layout and permissions enforced during 5 stages of its execution. 59

4.4 Software enforcement on an indirect memory load instruction. Chancel first
checks if destination is less than the base of sgx.code (i.e., r14), as shown in line
6. If yes, Chancel uses r15 as a base address to read the thread region (lines
9-12). Otherwise, the target is greater than sgx.code, i.e., cannot be SecureLayer
or another thread region, and is allowed since it can only be sgx.shared (lines
14-15). r13 is a temporary register that is assumed to either already be available
at this point or spilled before use. 61

4.5 Software enforcement on an indirect memory store instruction. The line 6 clears
the upper 34 bits of r13. As a result, r13 becomes an offset within the thread
region. Then, r15+r13 in line 7 becomes an address in the thread region. It is
assumed that r13 is an available register (or spilled beforehand) and thus used as
a temporary register. 62

4.6 Updating rsp register. SecureLayer safeguards direct updates to rsp and rbp,
ensuring they stay within a thread’s private region. 62

4.7 Software enforcement on an indirect branch instruction. The line 5 clears the
upper 34 bits of rax and aligns it with 32 bytes, similar to the indirect branch
enforcement of Native Client [133]. It prevents the program from bypassing
Chancel’s instrumentation checks or jumping outside sgx.code. 62

12

4.8 Some runtime interfaces supported by SecureLayer. 65

4.9 (a) Average completion time and (b) the total number of EPC page faults when
the amount of memory shared increases linearly. Chancel is 4.06 − 53.70× faster
than Chancel-MP and incurs a slowdown of only 0.8 − 7.5% over Native. . 71

4.10 (a) Average completion time and (b) the total number of EPC page faults when
the number of processes/threads increases linearly. Chancel is 13.59 − 41.73×
faster than Chancel-MP and incurs an overhead of only 0.2 − 1.0% over Native. 71

4.11 (a) Average completion time and (b) the total number of EPC page faults when
the number of memory accesses to each EPC page increases linearly. Chancel
is 37.88 − 48.08× faster than Chancel-MP and incurs an overhead of only
0.1 − 0.8% compared to Native. 72

5.1 Obfuscuro’s system-level overview. 90

5.2 Register-based stash versus CMOV-based stash. CMOV-based stash has to access an
entire array placed in DRAM whereas register-based stash can directly retrieve
an item from CPU’s AVX registers. 92

5.3 Implementation snippets of Obfuscuro’s stash access: (a) Obfuscuro oblivi-
ously retrieves a block from the stash using CMOV; and (b) Obfuscuro leverages
YMM registers to obliviously access stash indices. As can be observed, there are
no conditional branches and/or data-dependent access in both cases. 93

5.4 Instrumentation on code and data access. 98

5.5 Obfuscuro’s continuous execution. 100

5.6 Data oblivious execution cycle of Obfuscuro 102

5.7 Confusion matrix for native access patterns vs. obfuscated patterns shown by
Obfuscuro. 105

5.8 (a) Distributions of code execution cycles of different types of code blocks (y-axis)
with 10%∼90% percentile intervals. (b) Distributions of total execution cycles of
various test programs (y-axis) with 10%∼90% percentile intervals. 106

5.9 Performance benchmarks from our test applications. The average performance
overhead of Obfuscuro-CMOV is 83× and for Obfuscuro-AVX (simulated) is
51×. 109

6.1 Reparo’s enclave-controlled paging. 117

6.2 Reparo’s simplified FSM for a 1-level page table. 123

6.3 SPEC 2006 performance with Reparo using the reference dataset on the server
machine. The enclave partition was 1/12*LLC. For this test, the enclave exits
per-second were: 3, 105, 4, 3, 3, 2, 2, 1, 11, 1, 8, from left to right. 130

13

6.4 SPEC CPU 2006 performance with Reparo using the test dataset on the desktop
machine. The enclave partition was 1/8*LLC. For this test, the enclave exits
per-second were 29, 2184, 3071, 965, 25, 3444, 417, 298, 60, 22, 91, from left to right. 131

6.5 SPEC CPU 2006 performance with Reparo using different enclave LLC partitions
on the desktop machine. 134

6.6 Memcached’s performance as a non-enclave program, alongside SGX and Reparo,
on the desktop machine. 134

14

ABSTRACT

In today’s world, cloud machines store an ever-increasing amount of sensitive user data,

but it remains challenging to guarantee the security of our data. This is because a cloud

machine’s system software—critical components like the operating system and hypervisor that

can access and thus leak user data—is subject to attacks by numerous other tenants and cloud

administrators. Trusted execution environments (TEEs) like Intel SGX promise to alter this

landscape by leveraging a trusted CPU to create execution contexts (or enclaves) where data

cannot be directly accessed by system software. Unfortunately, the protection provided by

TEEs cannot guarantee complete data security. In particular, our data remains unprotected

if a third-party service (e.g., Yelp) running inside an enclave is adversarial. Moreover, data

can be indirectly leaked from the enclave using traditional memory side-channels.

This dissertation takes a significant stride towards strong user data protection in cloud

machines using TEEs by defeating the critical threats of adversarial cloud services and

memory side-channels. To defeat these threats, we systematically explore both software and

hardware designs. In general, we designed software solutions to avoid costly hardware changes

and present faster hardware alternatives.

We designed 4 solutions for this dissertation. Our Chancel system prevents data leaks

from adversarial services by restricting data access capabilities through robust and efficient

compiler-enforced software sandboxing. Moreover, our Obliviate and Obfuscuro systems

leverage strong cryptographic randomization and prevent information leakage through memory

side-channels. We also propose minimal CPU extensions to Intel SGX called Reparo that

directly close the threat of memory side-channels efficiently. Importantly, each designed

solution provides principled protection by addressing the underlying root-cause of a problem,

instead of enabling partial mitigation.

Finally, in addition to the stride made by our work, future research thrust is required

to make TEEs ubiquitous for cloud usage. We propose several such research directions to

pursue the essential goal of strong user data protection in cloud machines.

15

1. INTRODUCTION

Users increasingly send sensitive data, like personally identifiable and healthcare information,

to cloud machines for processing. Unfortunately, this data is exposed to attacks from numerous

vectors (e.g., untrusted cloud administrators and other machine tenants). As evident in

several high-profile data breaches, like the T-Mobile breach that exposed the social security

number (SSN) of millions of people, even some of our most crucial and privacy-sensitive data

is not secure. Such data breaches affect everyone – governments, businesses, and individual

citizens. Moreover, despite strict data protection regulations (e.g., GDPR, CCPA, HIPAA)

introduced to reduce breaches, data breaches are still frequent.

Protecting user data on cloud machines is challenging because the system software

(e.g., operating system) is untrusted, despite having the ability to access and thus leak

user data. This lack of trust stems from several factors. In particular, modern system

software is exceedingly complex—tens of millions of lines of code [1] needed to implement

various functions—leading to numerous vulnerabilities. Unlike personal machines, where a

large system software executes too, cloud machines are also readily accessible to numerous

tenants. This access lowers the bar significantly for an adversarial tenant to compromise

the system software. The most important concern with cloud machines, however, is the fact

that we cannot even trust a vulnerability-free system software implementation (e.g., like the

verified seL4 operating system kernel [2]) because it would be configured by untrusted cloud

administrators. Notably, cloud administrators control privileged software (e.g., hypervisors)

and build baseline system images used by cloud users (e.g., VM and container images).

Hence, it is trivial for administrators to leverage their control over cloud machines and collect

sensitive data without a trace visible to users.

1.1 Trusted Execution Environments (TEEs) for Data Protection

One of the most promising solutions to protecting user data in cloud machines is hardware-

assisted trusted execution environments (TEEs). These features allow CPUs to create

protected execution regions, called enclaves, where software can securely compute on sensitive

user data. Enclaves cannot be directly accessed by any software executing outside the enclave’s

16

trusted boundary, including privileged software like the operating system, hypervisor, and

BIOS. Hence, sensitive user data in enclaves is protected even if all external machine software

is malicious. Moreover, computations running in enclaves can execute alongside traditional

computations on the same machine. Therefore, cloud providers do not need to purchase extra

hardware to support enclaves which makes them cost-effective. Examples of TEEs supported

by commodity server CPUs include Intel SGX [3], AMD SEV [4], ARM TrustZone [5], and

the upcoming ARM CCA [6].

Due to their desirable properties, TEEs are widely-deployed on cloud machines and

increasingly leveraged for sensitive data protection. In particular, major cloud providers,

including Microsoft Azure [7], IBM Cloud [8], and Alibaba Cloud [9], allow users to run SGX

enclaves on their cloud machines. In addition, many companies are using enclaves to provide

privacy-preserving user services, which allows them to standout amongst competitors with

traditional solutions. For instance, Signal uses enclaves to enable its private contact discovery

service, where users can locate other users of the Signal messenger without leaking their

contact information [10]. Other emerging enclave applications include privacy-preserving

machine learning analytics on confidential patient data in cloud machines [11].

1.2 Threats to User Data Protected by TEEs

Although TEEs protect user data in cloud machines from several important attacks (e.g.,

direct memory reads from operating system), there remain critical unprotected attack vectors.

In this dissertation, we explore these attack vectors from the perspective of Intel SGX—the

most widely-deployed TEE in cloud machines. Nevertheless, these attack vectors are also a

problem for other TEE implementations, and our work can be generalized to other TEEs (as

discussed in §7). The rest of this section provides a brief overview of the attack vectors.

1.2.1 Adversarial Cloud Services

Enclaves allow users to secure sensitive data provided to their own enclave code on a

remote machine. This design excludes an important model where users only send their data

to a cloud machine and receive a service from a provider’s code—we call this the cloud service

17

model. The machine in this model could be privately-owned by the service provider or rented

from a public cloud (refer to §4.1 for a full model description). An example of a cloud service

is a genetic analytic service (e.g., 23andMe [12]) which analyzes their user’s DNA sequence

on cloud machines. If such a service is adversarial, it can collect user data (e.g., to sell) even

without asking users for permission. Unfortunately, the provider can still trivially collect

user data even if they run the service inside an enclave (e.g., to appease user concerns), since

enclave code has full control over the provided data.

1.2.2 Memory Side-Channels

Enclaves are appealing because they reduce deployment costs by sharing machine resources

(like CPU and memory) with non-enclave software. However, sharing resources also allows

untrusted non-enclave software to leak user data through memory side-channels borne out of

contention of resources [13]–[17] and control of important resources (e.g., page tables [18], [19]).

Memory side-channels can reveal a variety of sensitive enclave content from cryptographic

keys [14] to database queries [20]. Please refer to §2.5 for a detailed description of memory

side-channels and an end-to-end attack. Unfortunately, without effective defense mechanisms,

memory side-channels potentially render enclaves inapplicable for high-security use cases.

1.3 Thesis and Research Question

Our thesis is that in the pursuit of strong user data protection on cloud machines,

trusted execution environments (TEEs) provide a promising foundation for us to build upon.

Naturally, this raises a pertinent question: how to protect user data in TEEs against the

critical threats of adversarial cloud services and memory side-channels?

1.4 Contributions

In this dissertation, we answer our posed research question by undertaking a systematic

exploration of both software and hardware solutions to protect user data in TEEs. Initially, to

avoid complex hardware modifications—which might be hard to adopt—we designed several

software solutions to protect enclave data from adversarial services and memory side-channels.

18

However, given the hardware root cause of memory side-channels, more efficient side-channel

protection can be achieved using hardware solutions. Hence, we also designed hardware

extensions to efficiently protect enclaves against memory side-channels while minimizing costly

architectural changes. Through such a systematic study, we believe that this dissertation

significantly enhances the promise of enclaves as a cloud user data protection solution.

We contribute the design and implementation of four solutions in this dissertation. Three

of these solutions were presented at a top-tier computer security conference, while the last

system is being prepared for submission. The rest of this section provides a brief overview of

these systems and the conclusions that can be drawn from each research work.

• Chancel [NDSS 2021]. Adversarial cloud services running inside enclaves can collect

user data because the enclave code has unrestricted access to the provided user data.

Our Chancel system addresses this attack vector by restricting data access capabilities

of untrusted enclave code using compiler-enforced sandboxing (also called software fault

isolation). Chancel encrypts all user data sent outside the enclave and prevents indirect

data leaks through several covert channels. Moreover, Chancel efficiently supports

multi-client programs by enabling secure data sharing between different enclave threads.

Through Chancel, we show that robust user data protection under adversarial services

is achievable with an order of magnitude higher memory efficiency and performance,

compared to existing sandbox implementations.

• Obfuscuro [NDSS 2019]. Memory side-channels disclose distinguishable traces of

an enclave’s execution outside the enclave, which reveal sensitive data. Obfuscuro

provides principled protection against all memory side-channels in a program by making

all enclave traces indistinguishable. This indistinguishability property does not only

apply to different executions of the same program but also holds across different

programs. Obfuscuro achieves such principled protection through a scratchpad-based

execution model and a strong cryptographic randomization technique called Oblivious

RAM (ORAM). This research shows that principled protection for enclaves against

memory side-channel attacks is an achievable goal.

19

• Obliviate [NDSS 2018]. File systems form the cornerstone of many important cloud

programs that handle sensitive data (e.g., web servers and databases). Unfortunately,

enclaves are user-mode and rely on an untrusted file system (controlled by the operating

system). Our case-study shows that even though file encryption prevents direct data

leak from sensitive files, attackers can indirectly leak data through file system access

traces (e.g., observed through system calls and memory side-channels). To avoid

this data leak, we designed the Obliviate

1
 file system, which transforms all file

system operations (e.g., read, write, sync) into data oblivious variants. Obliviate also

implements several systematic optimizations (e.g., intelligent memory utilization and

asynchronous processing) to improve performance of file system operations. Through

this work, we both shine a light on a previously unexplored information leak source for

enclaves (i.e., file systems) and design a strong protection approach.

• Reparo [under preparation]. This shows that a tiny set of architectural extensions to

close several memory-based side-channels in Intel SGX and enable efficient side-channel

protection. The extensions are designed only using widely supported Intel CPU features

to ensure easy future implementation on Intel CPUs. Reparo incurs a performance

reduction of only 17% compared to native enclave execution, more than 60× faster than

software solutions with strong side-channel protection. Using Reparo, we show that

contrary to popular belief, strong architecture-level side-channel protection requires

only minor CPU extensions and modest performance costs.

1.5 Outline

The rest of this dissertation is structured as follows. §2 discusses the relevant background

and §3 presents an overview of the related work. §4 presents our security enforcement to

address the threats posed by adversarial programs in enclaves. §5 introduces the design of a

principled software solution to address information leak through memory side-channels inside

enclaves. §6 describes novel hardware extensions to enclave designs that efficiently address
1

 ↑ For brevity, important insights gathered from Obliviate were incorporated in §5 (without full details).
Please refer to the Obliviate research paper [20] for full details.

20

memory side-channels. §8 discusses future research directions this dissertation can spawn

and finally the dissertation concludes in §9 .

21

2. BACKGROUND

This chapter provides the background needed to understand this dissertation. It is divided into

six parts. The first part provides a brief overview of computer systems and architecture (§2.1),

followed by a second part with relevant security concepts (§2.2) Since our work employs

trusted execution environments (TEEs) for data protection, the third part provides a brief

overview of TEEs (§2.3), followed with a fourth part providing an an in-depth explanation of

Intel SGX (§2.4). One focus of this dissertation is towards defeating memory side-channels;

hence, the fifth part overviews memory side-channels (§2.5). The sixth and final part describes

Oblivious RAM (ORAM) (§2.6), a technique we employ to defeat memory side-channels.

2.1 Computer Architecture and Systems Overview

Subtle architectural and system aspects of modern computers play an important role in

the security of TEEs. In general, a computer has two main hardware resources: the processor

and memory. The memory contains some information that the processor uses to obtain a

computational result through a sequence of coded operations (or instructions). The processor

is a sealed package that contains one or more Central Processing Unit (CPU) cores, each of

which can independently execute instructions. Since these hardware resources must be used

by many different tasks, it is the duty of the system software to divide these resources. The

remainder of this section provides further relevant details about CPU execution (including

modern optimizations) (§2.1.1) and the system software’s role (§2.1.2).

2.1.1 CPU Execution and Optimization

CPUs execute instructions in a pipeline that consists of four main stages: fetch, decode,

execute, and write-back. In older CPUs, the main bottleneck in this pipeline was the very

slow DRAM access for fetch and write-back stages. Modern CPUs implement three major

optimizations to mitigate this bottleneck: simultaneous multi-threading (SMT) (also called

hyper-threading), caching, and out-of-order execution. Since these optimizations have serious

security consequences (described in §2.5.1), we briefly explain them next.

22

Simultaneous multi-threading (or hyper-threading). In many modern computers

(especially Intel and AMD-based), each CPU core contains two or more logical threads (or

hyper-threads [21]) that can execute two separate stream of instructions simultaneously. If a

hyper-thread is stalled at a memory fetch or write-back operation, the other thread uses the

CPU core’s decode and execution units to maximize the overall utilization of the CPU.

Caching. Modern computers feature several caches where memory is retrieved and stored for

small periods to avoid expensive continuous DRAM accesses. These caches are implemented

as a hierarchy, where caches closer to CPUs (namely L1 and L2 caches) are smaller but faster,

while the cache closer to memory (namely the last-level cache) is larger and slower [22].

Out-of-order execution. CPUs also exploit instruction-level parallelism to execute different

instructions out-of-order but retire their results to memory in-order of their occurrence. This

avoids busy-waiting on memory fetch and write-back. However, out-of-order execution

encounters a problem when the code contains branches—the code jumps to a different set of

instructions depending on a certain condition. Traditionally, a CPU could not execute past

the branch until its outcome is known. This problem is solved by branch prediction [15] and

speculative execution. In particular, a branch prediction unit (BPU) predicts the outcome

of the branch by keeping a history of previously-taken program branches and speculatively

continues execution. If the predicted branch outcome is incorrect (which is rare), the

speculated results are rolled back and the execution is repeated with the correct branch.

2.1.2 Privileged System Software

Computers must execute many computations but they cannot all execute at once due to

limited CPU and memory resources. Therefore, computers run privileged system software, like

the operating system and the hypervisor, whose main role is to allocate hardware resources

to computations at different times. Unfortunately, both system software can abuse their

privilege to leak information through side-channels (refer to §2.5.1). The key privilege that

enables system software to open such side-channels comes from the concept of virtualization

and one of the major components of virtualization, memory address translation. We explain

both in the remaining paragraphs of this section.

23

Virtualization. Both the operating system and hypervisor heavily rely on the notion

of virtualization to allocate hardware resources to different computations. The idea is to

create a virtual environment where a computation executes as if it were executing on its own

physical machine. Due to this virtual environment, developers can ignore other computations

while writing software and it minimizes interference during execution. The operating system

allocates resources to software computations that we call processes, while the hypervisor

allocates resources to multiple operating system instances (also called virtual machines).

Memory address translation. One of the most important cornerstone of virtualization

is memory address translation. Each software accesses memory through a set of virtual

addresses that are translated to the physical memory address on DRAM modules. This

allows isolation between memory contents of different computations. The system software

decides how addresses are translated by dividing memory into small regions called pages

(usually 4 KB) and setting up page tables. In modern computers, page tables are operated

by hardware units in processors called the memory management units (MMUs) [23]. Such

hardware operation ensures efficient and transparent translation.

Memory address translation using page tables also allows a system software to extend a

machine’s available memory using an external disk device. In particular, when the machine

runs out of memory, the system software copies pages to disk and sets their corresponding

page table entries as invalid. If a software accesses a page whose page table entry is invalid, the

MMU raises a page fault. The operating system catches this fault and retrieves the required

page from disk. Since page swaps are expensive, computers try to minimize them through

different heuristics. For instance, a well-known heuristic is the least-recently used (LRU)

algorithm—the system software assumes that memory pages recently used by a computation

will be used again; hence, it tries not to swap them to disk. To support such heuristics, the

MMU marks the memory regions written or read by computations (during address translation)

in dirty and access bits inside their page table entries [23].

24

2.2 Computer Security and Cryptography Overview

Many security properties of TEEs are derived from cryptographic primitives. This section

will provide a limited background of major security and cryptography concepts required for

understanding this dissertation. Please refer to other sources [24], [25] for a more in-depth

explanation of these concepts.

Several concepts we are interested in rely on a primitive called cryptographic keys, a piece

of information used alongside a cryptographic algorithm that determines the algorithm’s

operation [26]. Cryptographic keys must be disclosed only according to certain rules. These

keys are generated using a key generation algorithm that uses a random number to ensure

uniqueness. Key generation can be symmetric or asymmetric. Symmetric key cryptography

produces a key called shared secret key, which should only be disclosed to trusted participants

of a system. An example of a symmetric key algorithm is Advanced Encryption Standard

(AES). Asymmetric key cryptography, on the other hand, uses two keys—public and private.

The public key can be disclosed to all participants while the private key should be kept

secret by the participant that generated it. An example of an asymmetric key algorithm is

Rivest-Shamir-Adleman (RSA).

In computer systems, an important security property provided by cryptographic primitives

is confidentiality—unauthorized users in a system should not be able to access sensitive

contents [27]. This is a useful property when untrusted system participants can watch

messages passed between trusted participants (e.g., over a public communication channel).

Cryptosystems guarantee confidentiality using keys and the concepts of encryption and

decryption. Encryption is the cryptographic transformation of data (called plaintext) into a

form (called ciphertext) that conceals the data’s original meaning to prevent it from being

known by unauthorized users. The corresponding reversal process is called decryption which

is a transformation that restores ciphertext to its original plaintext [28].

In many instances, confidentiality cannot be guaranteed without two additional properties—

integrity and freshness. Integrity is the property that data or information has not been altered

in an unauthorized manner [27]. One way of ensuring integrity is using secure hashing

functions (e.g., SHA) that transform an unbounded input to a small fixed output (called an

25

integrity hash). The hashing is one-way, i.e., an adversary cannot recreate the original input

through the integrity hash. A trusted entity can use the integrity hash to check if the data is

in its correct state. Freshness is a property that ensures that either the system will have the

most updated version of data or it will detect an attack [24]. This ensures that an attacker

cannot replay old data and revert a system to its old state. Typically, cryptosystems provide

freshness by encoding unique information (nonce) each time an integrity hash is created.

Finally, apart from general cryptographic concepts, it is important to understand the

concept of Trusted Computing Base (TCB). This refers to the cummulative protection

mechanisms, including software, hardware and firmware, that are responsible (and must be

trusted) for the enforcement of a security property [29].

2.3 Trusted Execution Environments (TEEs)

System software

1
 is the most critical part of a machine’s software infrastructure because all

other software depend on its correctness. However, system software cannot be trusted due to

several reasons. In particular, system software has seen an exponential growth over the years

due to an increasingly diverse range of expected functions (e.g., supporting many devices).

The Linux operating system kernel, for instance, grew from 2.4 million lines of source code in

2001 [1] to a staggering 27.8 million lines of source code in 2020 [30]. Unfortunately, because

larger kernels increase the TCB, systems have become increasingly vulnerable to attacks that

exploit defects to take complete control of the machine. Moreover, even if we can develop

bug-free system software (e.g., formally verified operating systems [2]), we cannot trust such

software in cloud machines where it is configured by untrusted administrators.

The distrust of system software has fueled interest in a research domain called Trusted

Execution Environments (TEEs). The core idea of TEEs is to have sensitive code and data

execute in isolated containers (or enclaves) that are inaccessible to even system software.

Enclaves share system resources (including CPU and memory) with other software components

on the machine. However, the CPU enforces isolation to ensure confidentiality and integrity

of sensitive enclave computations, if the system software is malicious. While there are many
1

 ↑ From this point onwards, we use system software and operating system interchangeably

26

different variants of TEEs (some of which are discussed in §3.1), the next section provides

details about Intel SGX (the TEE under consideration of this dissertation).

2.4 Intel Software Guard eXtensions (SGX)

Intel SGX [3] is the most widely-deployed TEE implementation in cloud machines. SGX

allows a user process to create an enclave region in its virtual address space. This section

provides an overview of the critical SGX aspects that are relevant to this dissertation. For

the sake of simplicity, we only overview SGX in terms of the operating system and the user

process. Please refer to other sources [23], [24], [31], [32] for understanding the interactions

between the hypervisor and the operating system and more comprehensive information

regarding SGX.

2.4.1 Platform Secret

Each SGX CPU is manufactured with an embedded random and very long secret. This

secret is utilized to create a unique platform secret key. Intel uses this key to verify its CPUs

and allow users to attest that their computations are running inside SGX enclaves. Details

about attestation are provided later in this section.

2.4.2 Physical Memory Organization

The SGX CPU reserves a region of physical memory during system boot for assigning

pages to enclaves and maintaining internal SGX data structures. This physical memory

region is called the processor reserved memory (PRM). The size of the PRM region depends

on the computer’s BIOS settings. In the earlier versions of SGX, the PRM size was limited

to 256 MB, but it can cover a region up to 512 GB in the latest versions [33].

The PRM is reserved using a special CPU register, called the variable memory type

range register (vMTRR). The vMTRR contains a base and size component, which reference

a contiguous physical region on the DRAM. On each memory access, the CPU’s memory

management unit (MMU) uses the vMTRR to check if an access falls in the PRM and

aborts all access from non-enclave software. Given the contiguous region requirements of the

27

vMTRR, this check is very efficient [24]. The CPU also protects the PRM from malicious

devices by aborting direct memory access (DMA) requests to its memory.

Within the PRM, there are two important sub-regions: the enclave page cache (EPC) and

the enclave page cache map (EPCM). The EPC is where SGX allocate enclave pages from.

While most pages allocated to an enclave from the EPC are visible to the enclave program

(e.g., pages that hold the program’s code and data), SGX maintains some pages internally for

important per-enclave data structures. One such data structure is the SGX enclave control

structure (SECS), containing important information like the enclave measurement for remote

attestation (§2.4.5) and setup parameters (e.g., number of allowed threads, size of the heap,

etc.). SGX employs the EPCM data structure to track the EPC’s status. This structure

contains vital information like which EPC page was allocated to an enclave and a reverse

mapping of enclave virtual addresses to corresponding physical pages.

2.4.3 Instruction Set Architecture (ISA) Extensions

SGX extends the Intel x86 ISA with a set of new instructions (Table 2.1), provided to

both privileged software and user computations. Privileged software is allowed to execute

SGX supervisor instructions to manage enclaves. This management includes initialization

of an enclave within a user process, allocation or deallocation of EPC pages to an enclave,

and terminating enclaves. Once the privileged software creates an enclave region for the

process, the process executes SGX user instructions to transition between the enclave and

non-enclave world. In particular, the user process transitions to the enclave world to start

secure computation, while the enclave exits back to the non-enclave world to leverage a

privileged software service (e.g., execute a system call, service an interrupt). A complete

end-to-end enclave lifecycle is provided in §2.4.4 .

2.4.4 Enclave Lifecycle

This section explains an enclave’s lifecycle, from initialization to termination.

Initialization. The operating system creates an enclave context inside a user process’ virtual

address space using ECREATE. This instruction requires supplying initial enclave parameters

28

Table 2.1. A list of supervisor and user instructions added to the Intel x86
ISA by SGX [23], [32]. Within each category, the instructions are ordered
alphabetically.

Instruction Description

Supervisor instructions:
EADD Allocate an EPC page to an enclave
EAUG Add a page to an initialized enclave
EBLOCK Mark a page in EPC as blocked
ECREATE Create an enclave
EDBGRD Read from a debug enclave
EDBGWR Write from a debug enclave
EEXTEND Measure an EPC page for attestation
EINIT Finalize enclave initialization
ELDB/ELDU Swap a backing store page to the EPC
EMODPR Restrict permissions of an EPC page
EMODT Change the type of an EPC page
EPA Add version array
EREMOVE Remove an EPC page from an enclave
ETRACK Activates EBLOCK checks
EWB Swap an EPC page to backing store

User instructions:
EACCEPT Accept changes to an EPC page
EACCEPTCOPY Initialize changes to a pending page
EENTER Enter an enclave for the first time
EEXIT Exit an enclave (e.g., interrupt, system call)
EGETKEY Retrieves a cryptographic key
EREPORT Create a cryptographic report
ERESUME Resume an enclave after exit

(e.g., initial virtual address size, number of threads, stack and heap size). These parameters

are saved in the SECS (§2.4.2). Once an enclave context is created, the operating system

populates the enclave with initial code and data, copied from untrusted memory into an EPC

page (allocated to the enclave) using the EADD instruction.

After populating the initial enclave contents into EPC pages, the operating system must

also initiate a measurement of these contents using the EEXTEND instruction. This instruction

generates a SHA-256 integrity hash (§2.2) of the populated EPC page’s contents and offset

within the enclave. The offset ensures that the operating system creates an enclave memory

layout according to the user’s specifications. The integrity hash is extended with the hash

calculated from any previous page. The final integrity hash—reached after the enclave is fully

populated and initialized using EINIT—is called the enclave measurement (or MRENCLAVE).

29

The MRENCLAVE is stored in the enclave’s SECS. Without generating and finalizing

MRENCLAVE, SGX does not allow the enclave to start executing.

Importantly, the initial enclave contents should not have any sensitive data, since these

contents are visible to the operating system. It is expected that, once the enclave is initialized,

the user will initiate remote attestation (§2.4.5) with the enclave to verify the enclave’s

correctness (using MRENCLAVE) before sending sensitive data. The user can also implement

an in-enclave loader [34], [35] to load sensitive code after remote attestation.

Execution. Once the enclave context is initialized (using EINIT), the user process transitions

into the enclave (using EENTER). The enclave must periodically pause its execution and return

to the untrusted non-enclave world (e.g., to let the operating system service an interrupt).

The paused execution is later resumed.

An enclave stops its execution using EEXIT to let the operating system handle processor

interrupts/exceptions (e.g., timer interrupts and page faults) and system calls. Enclave exits

to handle processor interrupts and exceptions are called asynchronous exits because the

enclave has no control over when such an exit happens. We provide additional details about

asynchronous exits due to page faults in §2.4.6 . System call exits, on the other hand, are

synchronous. Regardless of the exit type, the SGX CPU saves the enclave’s processor state

(e.g., registers, flags, etc.) inside the enclave’s state save area (SSA), a per-thread reserved

enclave page [23]. After the operating system has finished its task, it resumes the user process.

At this point the process is executing in a non-enclave state. To context switch into the

enclave, the process executes ERESUME. On this instruction, the enclave state stored in the

SSA is restored. This state save and restore prevents the malicious operating system from

manipulating the enclave through its register context [36].

Termination. When the enclave has completed its execution, the user process asks the

operating system to terminate the enclave context within the process’s address space. The

operating system executes EREMOVE to reclaim all EPC pages allocated to the enclave. On

EREMOVE, SGX clears the entire page to ensure that a future enclave cannot access prior

enclave’s contents.

30

2.4.5 Remote attestation

Users can attest that their programs are correctly loaded onto SGX enclaves using remote

attestation before sending sensitive data. Generally, there are two steps needed for remote

attestation. Both steps are explained in this section.

Platform provisioning. Before an SGX CPU can be used for remote attestation, it must

be provisioned by Intel. For provisioning, SGX initiates two special enclaves: the provisioning

and quoting enclave. These enclaves do not contain user programs, rather they are built by

Intel only for attestation purposes. The provisioning enclave executes EGETKEY to derive a

provisioning key based on the platform secret (§2.4.1) and sends it to an Intel provisioning

service [32]. If the key is verifiable, Intel’s provisioning service sends an attestation key to the

provisioning enclave. The provisioning enclave seals the attestation key using a provisioning

seal key (also derived from the platform secret) and hands it to the system software for

storage. The sealing of the attestation key ensures that platform provisioning is only needed

once even when the machine switches owners [24], ensuring machine ownership switch is not

known to Intel. The attestation key is then unsealed by the quoting enclave to subsequently

attest enclaves created for the user by the operating system.

Local attestation and reporting. Once the platform is provisioned, any enclave can

locally attest itself to the quoting enclave and receive an attestation digest. The enclave sends

the attestation digest to the user for verification and shared secret establishment.

An enclave that wants to be attested executes EREPORT. On this instruction, the SGX CPU

retrieves the enclave’s MRENCLAVE (§2.4.4) and sends it to the quoting enclave. EREPORT

additionally accepts some data that the enclave wants to include in the report. Typically,

this data is the initial secret that the enclave and user will employ to establish a shared secret

key (e.g., through diffie-hellman). The quoting enclave uses the information provided by the

SGX CPU (through EREPORT) and create an attestation digest, signed with the platform’s

attestation key. The digest is sent back to the enclave that requested attestation.

The enclave will then send this digest to the user for enclave verification and establish

a shared secret. On receiving the digest, the user first queries the Intel attestation service

to verify the correctness of the signature on the digest. Once the digest is verified, the user

31

mov %rax, 0x1000 SSA

Enclave

Operating system

VA PA

Pause
and store

0x1000 0x5000

Swap pages AEX

Page fault
1

2

Backing store

4

5

Update

6
Resume 3

Untrusted

0x2000 0x8000

Figure 2.1. SGX page fault handling. The dotted lines denote operations
performed using SGX microcode instructions.

recreates the MRENCLAVE on their local machine to validate that initial enclave contents

were correctly loaded by the operating system. If MRENCLAVE is valid, the user leverages

the secret reported in the digest to establish a shared secret key with the enclave.

2.4.6 Demand paging

SGX allows the operating system to over-subscribe the EPC pages to many enclaves

using demand paging. On page faults, SGX demand paging requires the operating system to

(a) swap enclave pages between a backing store in the untrusted memory and EPC and (b)

update the enclave page tables to reflect changes.

Importantly, even though the operating system is allowed to implement demand paging,

SGX ensures several important security properties. First, SGX ensures the confidentiality,

integrity, and freshness for EPC pages that are swapped to the backing store. Confidentiality

is achieved by encrypting enclave pages using a per-enclave secret key, while integrity

and freshness is achieved using message authentication codes (MAC) and page versions,

respectively [24], [32]. Second, SGX ensures that the operating system cannot maliciously

modify the memory layout of an enclave (e.g., swap a different physical page to a virtual

address) in the process’ page tables. This is achieved using the reverse address mapping

(virtual to physical address) of each enclave page in the EPC, stored inside the enclave page

cache map (EPCM) (§2.4.2). If the operating system maps the wrong physical page to an

32

enclave virtual address, the SGX CPU will abort on an enclave access to that page because

the reverse mapping will fail. When an EPC page is swapped to the backing store, its reverse

mapping is also stored alongside the page’s contents [24].

 Figure 2.1 provides a simplified view of SGX enclave’s page fault handling. The enclave

tries to access a part of the enclave region whose corresponding physical page is not valid,

therefore, a page fault happens (1). The SGX CPU stops the enclave and saves the enclave’s

context within the save state area (SSA) (2). Then, the CPU performs an asynchronous

enclave exit (AEX) and transfers execution to to the operating system’s page fault handler

(3). If there are no free EPC pages in the EPC, the fault handler uses an SGX microcode

instruction, EWB, to free an EPC page by copying its encrypted and integrity-protected

contents to the backing store. Afterwards, the fault handler uses ELDU to load the faulted

backing store page into the EPC (4). On ELDU, SGX first verifies the integrity and freshness

of the backing store page. Finally, the fault handler updates the page tables to reflect that

the page is available (5) and resumes enclave execution (6)

2.4.7 Security Overview

SGX promises confidentiality and integrity of enclave computations. Table 2.2 provides

an overview of how SGX’s promises hold up against various attacks from system software

during important SGX operations (e.g., platform provisioning) and all stages of an enclave’s

lifecycle. Since we already explain different SGX defense mechanisms in previous sections,

we refer the reader to previous sections (also marked in Table 2.2).

In addition to protection against malicious system software, SGX also protects against

physical attackers (e.g., untrusted cloud administrators) that try to inspect DRAM memory

contents (e.g., through cold boot attacks [37]). SGX achieves this protection by encrypting

all EPC pages on the DRAM. The encrypted pages are only decrypted within the trusted

CPU caches. Thus, a physical attacker is unable to access decrypted contents.

Notably, all of SGX’s protections are geared towards attacks that directly harm an enclave’s

confidentiality and integrity. For instance, attacks that allow the operating system to directly

access enclave memory and extract sensitive information. While this is a significant step in

33

Table 2.2. An overview of SGX’s defense against attacks from a malicious
operating system during all important SGX operations and stages of an enclave’s
lifecycle. In terms of attack goal, C+I means attacks that can compromise both
confidentiality and integrity, C means attacks that only hurt confidentiality,
and I means attacks that hurt integrity. In many instances, attacks that hurt
integrity can also hurt confidentiality.

Attack goal Detailed method SGX defence
During platform provision

C+I Steal platform secret Platform secret is burned into CPU
and not revealed to software (§2.4.1)

C+I Steal provisioning seal key Key can only be accessed by a signed
Intel provisioning enclave (§2.4.5)

C+I Steal attestation key Key can only be accessed by a signed
Intel quoting enclave (§2.4.5)

During enclave creation
C Extract secrets from initial code/data Initial code/data is not secret,

otherwise use an in-enclave loader (§2.4.4)
I Load malicious code/data Caught on MRENCLAVE verification

during remote attestation (§2.4.4)
I Load code/data at incorrect offsets Caught on MRENCLAVE verification

during remote attestation (§2.4.4)
I Extend measurement using non-enclave page EEXTEND only accepts EPC pages

assigned to current enclave (§2.4.4)
I Compromise measurement after initialization MRENCLAVE is stored in the enclave’s

SECS, accessible to only SGX (§2.4.4)
During enclave execution

C Directly read from enclave pages in EPC EPC pages are inaccessible
outside an enclave (§2.4.2)

C Directly read from enclave pages in backing store Backing store pages are encrypted
with a key known only to SGX (§2.4.6)

C Assign enclave pages to a malicious enclave EPC pages from one enclave cannot
be assigned to another (§2.4.4)

I Directly write to enclave pages in EPC EPC pages are inaccessible outside
an enclave (§2.4.2)

I Directly write to enclave pages in backing store Integrity of backing store page is checked
before inserting them (§2.4.6)

I Replay old enclave pages during page faults Freshness of backing store pages is
checked before inserting (§2.4.6)

I Modify enclave register state on enclave exits Enclave register state is stored
inside the enclave (in SSA) (§2.4.4)

I Modify enclave virtual memory layout in page tables Leverage reverse map (EPCM) to ensure
correct layout (§2.4.6)

During enclave termination
C Assign uncleared EPC pages to a malicious enclave Pages not cleared (with EREMOVE)

cannot be assigned (§2.4.4)
During remote attestation

C+I Replay old measurement Random nonces in communication
to ensure freshness [24]

34

the right direction, it excludes all attacks that indirectly extract sensitive contents from the

enclave memory. In the next section, we describe memory side-channels as a critical example

of indirect attacks that SGX does not protect enclaves from. The remaining attacks found

against SGX enclaves are described in §3.5 .

2.5 Memory Side-Channels

A side-channel is an aspect of a computer system’s behavior that can be used to infer

secret information [38]. Side-channels arise from the physical implementation of the computer

system, rather than a defect in its algorithms. Common computer system aspects that are

leveraged in side-channels include timing and power consumption [39].

Amongst side-channels, memory side-channels refers to a sub-class that allow an attacker

to determine how a target program accesses memory, or memory access patterns. This

section first explains why memory side-channels exist in enclave computations and provides a

taxonomy of different memory side-channels. Then, the section includes a brief demonstration

of how memory access patterns can leak sensitive user data from programs.

2.5.1 Root Cause and Classification

The root cause of memory side-channels in SGX is (a) the control of paging by untrusted

software (controlled channels) or (b) the sharing of microarchitectural resources between

enclaves and untrusted software (shared channels). Table 2.3 lists known memory SGX

side-channels.

Controlled channels. The operating system controls all enclave paging functions (§2.4),

including handling an enclave’s page tables and retrieving pages from a backing store on page

faults. By controlling the page tables, the operating system can observe enclave execution—at

the granularity of pages—through page access or dirty bits [18], [19], [40]. In particular,

whenever an enclave accesses any memory page, the hardware memory management unit

(MMU) automatically sets these bits in the page table entry. Moreover, a malicious operating

system can invalidate page table entries of an enclave (e.g., remove present bit) and force an

35

Table 2.3. An overview of known memory side-channels, including the infor-
mation leaked, and disclosed attacks.

Memory side-channel Information leaked Known attacks

Controlled
Page faults Page fault address CCA [18]
Page tables Page access/dirty bits Multiple [19], [40]

Shared
L1/L2 cache Cache access patterns Multiple [13], [41]–[43]
Branch target buffer (BTB) All branch patterns BranchShadow [15]
Pattern history table (PHT) Cond. branch patterns BranchScope [16]
Translation lookaside buffer (TLB) TLB access patterns TLBleed [44]
Last level cache Cache access patterns Multiple [14], [45]
Memory bus Cache access patterns WIHS [17]

enclave to incur a page fault. This allows the operating system to observe the order in which

an enclave accesses pages through page faults.

Shared channels. Modern CPUs implement many micro-architectural resources that are

shared between enclaves and untrusted software. Since these resources have limited storage

space, shared usage results in eviction of contents. If a software needs evicted contents, it

must incur an additional delay to populate them again in the micro-architectural resources.

An untrusted software can measure this delay to leak an enclave’s memory access patterns.

Some resources are shared at the level of hyper-threads—only hyperthreads of the same

processor core can simultaneously access the resource—which we will call per-core resources.

Other resources are shared at the level of processor cores—any processor core can access this

resource at any given time—and we will call them cross-core resources.

Per-core resources include L1/L2 caches, branch predictor units (namely the branch target

buffer, return stack buffer, and pattern history table), and translation-lookaside buffer (TLB).

The general approach to exploit side-channels of per-core resources is for an attacker to

concurrently execute their malicious code alongside a victim enclave code on hyper-threads

of the same processor core. This concurrent execution will result in contention. For instance,

both the malicious code and enclave code will try to retrieve contents into the L1/L2 caches.

Such contention results in timing differences that the malicious code can measure. In §2.5.2 ,

we provide an end-to-end attack involving a per-core resource.

36

Cross-core resources include the last-level cache (LLC), CPU ring interconnect, and

the memory bus. Side-channel attacks through cross-core resources do not require strict

scheduling on same hyper-thread like per-core resources. However, side-channel attacks

through cross-core resources are more noisy, because of significant background noise from all

shared usage from all other cores.

2.5.2 Attack Case-Study

This section details a case-study on leaking sensitive data from enclaves using a component

of the branch predictor unit—the branch target buffer (BTB). This case-study and all example

codes have been adapted and simplified from the branch shadowing paper [15]. Please refer

to the paper for full details. The rest of this section (a) provides an overview of the BTB, (b)

explains how the operating system can deduce an enclave’s branches using the BTB, and (c)

describes how deduced branches leak secret data from a real-world enclave program.

Branch target buffer (BTB). Branch prediction is a vital performance optimization in

modern computers to avoid stalls during out-of-order execution (§2.1). One of the components

that CPUs use to perform branch prediction is the branch target buffer (BTB), a per-core

data structure that resembles a processor cache. The BTB stores information about the

branches recently taken by a program. At a high-level, this history is maintained in the

form of entries that are referenced using branch virtual addresses. If a program executes a

branch, the corresponding branch address is stored in an entry of the BTB. During subsequent

out-of-order execution, when the CPU reaches a branch whose outcome is not yet known, the

CPU will speculate whether to execute the branch or not based on the address stored in its

BTB entry. Please note that the full prediction process using the BTB is more complex and

dependent on the CPU model (refer to [15] for more details).

Deducing taken branches from a custom enclave. In a branch shadowing attack,

the attackers goal is to determine if a branch was taken and at what virtual address. The

program’s branching information is highly-sensitive (e.g., it can be used to leak cryptographic

keys [15]). This section explains how an attacker can determine the required information

from a simplified enclave program by exploiting a side-channel in the BTB.

37

1 if (cond != 0) {
2 ++i;
3 ...
4 }
5 else {
6 --i;
7 ...
8 }

(a) Victim enclave code.

1 ⋆ if (cond != cond) {
2 nop; // should never be executed
3 ...
4 }
5 ⋆ else {
6 ⋆ nop; // should always be executed
7 ⋆ ...
8 ⋆ }

(b) Shadow code aligned with (a).

Figure 2.2. Illustration of a victim enclave code and its shadow code. The
lines are assumed to be aligned to the same virtual address in each code. Due
to a potential misprediction, the execution time of the correct shadow branch
(lines 5 − 8(∗)) depends on the branching outcome of the victim code.

There are two main assumptions for a successful branch shadowing attack. First, the

attacker should know the exact branch addresses in a victim code. This is a realistic assumption

because operating system loads an initial program code inside the enclave (§2.4.4); hence, it

knows what code is executing inside the enclave. Even if a user leverages an in-enclave loader

to hide their code, a significant portion of the sensitive enclave code (e.g., for cryptographic

libraries) is standard and open-source [46]. Second, the attacker should create a program

with branch conditions aligned to the same virtual address as the victim program’s code.

Such a program’s code is called the shadow code. Given knowledge of enclave code, creating

a shadow code is not challenging for the operating system.

Once the shadow code is ready, the attacker must carefully execute the victim and shadow

code on the same processor core and measure timing differences for the execution of branches.

Consider Figure 2.2 for an illustrative example of the branch shadowing attack on a custom

enclave program. In the victim enclave code (Figure 2.2a), the execution of the if conditional

statement block depends on the value of cond. If the victim enclave is first executed and

the value of cond is not zero, then the program will take that if block (lines 1 − 4) and

the BTB will record that the branch was taken for future predictions. When the shadow

code (Figure 2.2a) is executed next (on the same processor core), the CPU will predict that

its if branch (at line 1∗) should also be taken. This prediction, however, is incorrect since the

shadow program’s if condition can never be true. Eventually, when the in-order execution

of the CPU catches up, it will realize that the branch was mispredicted and the CPU will

38

roll-back the predicted changes (as explained in §2.1). The roll-back will increase the time

taken to execute the shadow code’s branch that should have been taken (lines 5 − 8(∗)). An

attacker can measure this timing increase using several techniques (e.g., RDTSC CPU counter,

Intel processor trace, etc.).

Leaking cryptographic keys from an mbedTLS enclave. MbedTLS is a well-known

cryptographic library that is even hardened against timing side-channels. It is also a popular

choice for SGX developers [34], [35], [47] due to its portability. The library uses montgomery

multiplication (Figure 2.3) to perform fast modular arithmetic, required by various algorithms

like RSA and Diffie-Hellman. The montgomery multiplication algorithm has a side-channel

problem, which is that it performs a conditional final subtraction of the modulus based on

the input operands (at line 20). MbedTLS mitigates this problem by performing a dummy

substraction (lines 24 − 27).

Unfortunately, the dummy substraction-based mitigation is not enough to thwart the

branch shadowing attack. An attacker can create shadow code for both branches of the

montgomery multiplication algorithm and accurately deduce when a dummy branch is taken.

This allows an attacker to determine the input operand, which can then be used to leak the

entire cryptographic key [48] from a victim enclave.

2.5.3 Relation to Micro-Architectural Defects

In the last few years, the security community has uncovered several micro-architectural

defects [51]–[55] in CPU processors from several hardware vendors, including Intel, AMD, and

ARM. These defects exploit CPU optimizations like speculative execution and out-of-order

execution (explained in §2.1) to break hardware-supported isolation between processes on a

machine and retrieve forbidden memory contents. For instance, the defects can break isolation

between an enclave and the operating system, allowing the operating system to dump the

entire enclave memory. Interestingly, to leak information through defects, attackers must also

leverage memory side-channels (please refer to [51]). Nevertheless, these defects are inherently

different from memory side-channels since they come from buggy or inconsistent hardware

implementation of processors. For example, earlier SGX CPUs would enforce EPC access

39

1 static int mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
2 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
3 const mbedtls_mpi *T) {
4 size_t i, n, m;
5 mbedtls_mpi_uint u0, u1, *d;
6

7 d = T->p; n = N->n; m = (B->n < n) ? B->n : n;
8

9 for (i = 0; i < n; i++) {
10 u0 = A->p[i];
11 u1 = (d[0] + u0 * B->p[0]) * mm;
12

13 mpi_mul_hlp(m, B->p, d, u0);
14 mpi_mul_hlp(n, N->p, d, u1);
15

16 *d++ = u0; d[n+1] = 0;
17 }
18

19 if (mbedtls_mpi_cmp_abs(A, N) >= 0) {
20 mpi_sub_hlp(n, N->p, A->p);
21 i = 1;
22 }
23 else { // dummy subtraction to normalize timing differences
24 mpi_sub_hlp(n, N->p, T->p);
25 i = 0;
26 }
27 return 0;
28 }

Figure 2.3. Montgomery multiplication used by a popular and widely-used
cryptographic library, mbedTLS [49]. This code is taken from the file bignum.c
in the mbedTLS GitHub repository [50]. It was also previously used by the
BranchShadowing paper [15] to demonstrate their attack.

control checks (§2.4.2) during in-order execution, but due to a bug, ignore these checks during

out-of-order execution [54]. Therefore, micro-architectural defects are routinely patched by

hardware vendors [56]–[58], unlike memory side-channels.

2.6 Oblivious Random Access Memory (ORAM)

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [59], is a cryptographic

primitive that enables confidential access to (encrypted) sensitive data, such that access

patterns during the computation reveal no secret information [60]. Such a secure access is

also called an oblivious access. ORAM was originally introduced for a setting where a user

40

retrieves encrypted data from an untrusted memory region (e.g., cloud machine) and does

not want an attacker to learn what data is being retrieved. The untrusted memory region is

called the server, while the user is called the client.

As the name suggests, ORAM securely randomizes accessed memory regions, so that the

attacker cannot link a memory access to a prior one. At a high-level, secure randomization

is achieved through three steps. Initially, for every memory block to be retrieved, ORAM

retrieves multiple blocks to prevent the attacker from determining the needed block. Then,

ORAM writes-back each retrieved block to the server at a randomized location. To prevent

the attacker from breaking the randomized location of blocks, each block is re-encrypted with

a random nonce, making each block look distinct from its previous version. For its operations,

ORAM requires access to a small amount of trusted client memory (e.g., on a user’s personal

machine). This region holds retrieved blocks and stores metadata for the encrypted blocks in

untrusted memory (e.g., which block is located where in untrusted memory?). In the next

section, we describe the details of Path ORAM, the variant that we used in our work.

2.6.1 Path ORAM

Path ORAM [61] provides a faster ORAM construction compared to the original con-

struction proposed by Goldreich and Ostrovsky. It uses a binary tree-like formation (called

an ORAM tree) to store encrypted memory on the server. Each node within the tree is

composed of K blocks, where K is a constant defined during initialization. An ORAM tree

contains both real blocks with actual client data, and dummy blocks with false data to fool

an attacker. The number of real blocks within a tree of L leaf nodes can be at most L in

order to ensure secure access patterns.

Using Path ORAM, the client runs an ORAM controller within a small, completely trusted

memory region. There are two key data structures for Path ORAM—the position map and

the stash. Typically, the position map is an integer array, which links the real block to its

corresponding leaf-index within the ORAM tree. Whenever the client needs to access a

block, the ORAM controller (a) finds the corresponding leaf from the position map and (b)

41

d2 d3

d1

A B C D

0

0 1 0 1

1

Initial state Read operation

A

B

C

D

00

01

10

11

1 2

d2 d3

d1

A B C D

0

0 1 0 1

1A

B

C

D

00

01

10

11

d1

d3

D d2 D

d4

A B C d5

0

0 1 0 1

1A

B

C

D

00

01

10

10

Write operation3

pos.

map
stash pos.

map
stash pos.

map
stash

Figure 2.4. A simplified illustration of the Path Oblivious RAM (ORAM)
cryptographic protocol.

extracts all nodes (both real and dummy) in the path towards the leaf in the ORAM tree.

The extracted blocks are stored inside the stash.

 Figure 2.4 illustrates the Path ORAM algorithm. The client attempts to access the block

D from the server containing the ORAM tree (1). First, the client looks-up the leaf index

corresponding to block D, which is 11 in our example (2). Then, the client extracts the

complete path from the root of the tree to the leaf (i.e., d1, d3, D) and saves it in the stash.

The dummy blocks (i.e., d1, d3) are discarded at this point to keep the stash size small. After

accessing the block D, the client randomizes its position, i.e., initial leaf was 11 and final leaf

is 10, and re-encrypts the block with a random nonce (3). The client then tries to write-back

to the tree from the old leaf (11) back to the root. To ensure consistency, the client only

writes back a real block on a certain node, iff, that node is the new leaf, i.e., 10, or that node

is in the path to the new leaf. If the client does not have a real block to put into the node, it

generates dummy data, encrypts it (using random nonce) and writes it to that node. For

example, in the figure, (d4, d5) corresponds to the generated dummy data.

42

3. RELATED WORK

This chapter relates the work presented in this dissertation with previous work. Since this

dissertation heavily relies on Intel SGX, it is useful look at the research that led to the

development of SGX (§3.1) and the notable secure systems built using SGX (§3.2). Memory

side-channels are a critical source of data leak from enclaves (as discussed in §2.5) and one

of the main focus of this dissertation. Hence, this section also describes the software (§3.3)

and hardware (§3.4) solutions presented to defeat memory side-channels, and compares them

to our proposed solutions. Finally, the section concludes with a description of other attacks

against enclaves and their proposed defenses (§3.5).

3.1 Towards the Development of SGX

Several solutions [36], [62]–[65] inspired the development of modern TEEs like Intel SGX.

This section briefly overviews these solutions and relates them to SGX.

The execute-only memory (XOM) architecture [62] introduced the idea of having sensitive

code and data execute in isolated containers, managed by the untrusted operating system.

XOM also outlined the mechanisms needed to isolate the container’s data from an untrusted

operating sytem. For instance, the paper showed that it is critical to save the register state to

protected memory before servicing an interrupt. SGX enclaves are similar to XOM’s isolated

containers and SGX borrows the idea of register state protection from XOM.

Aegis [36] built on the container concept introduced by XOM. Unlike XOM, Aegis creates

containers using a trusted software security kernel executing at the highest privilege on the

machine. Aegis additionally proposed the idea of remote attestation for a container. In

particular, Aegis computed a cryptographic integrity hash of the security kernel at boot

and extended it with the container’s hash at runtime. The combination of these hashes was

used to attest to a remote user and establish trust on the container. SGX leverages the key

concept of remote attestation from Aegis.

Prior to SGX, the idea of attestation using a trusted hardware was leveraged by the

trusted platform module (TPM). The TPM is an auxiliary tamper-resistant chip that can be

connected to any machine without requiring CPU changes. The TPM chip contains a tiny

43

co-processor with a unique secret and a small amount of memory. During system boot-up,

the TPM is invoked to measure initial boot contents, including the BIOS, UEFI, and initial

OS image. The TPM is now widely deployed on all modern computers and even used by

modern operating systems to ensure boot-time security [66]. SGX’s provisioning and quoting

enclave (§2.4.5) designs are heavily inspired by the TPM [24].

Although the TPM is mainly used to verify boot-time contents, it can also verify contents

at runtime. Several systems [63]–[65], [67], [68] used this capability to install and attest

a trusted hypervisor on a machine at runtime. This trusted hypervisor acted similar to

Aegis’ security kernel and ensure that the operating system does not interfere with secure

containers. The hypervisor approach was very viable (performance-wise) due to hardware

extensions [23] that enabled low-cost virtualization (e.g., nested page tables). Unfortunately,

several attacks [69] were found to compromise such trusted hypervisor-based solutions, limiting

their adoption. Nevertheless, SGX leverages several key concepts from virtualization solutions

(e.g., efficient hardware memory protection of enclaves).

3.2 General Systems Designed using Enclaves

Since the advent of SGX, there has been a consistent significant interest from the academia

and industry to build secure systems using enclaves. This section goes over some of the major

systems that leverage enclaves.

Haven [70] is the seminal work in SGX research. It implements a library operating system

(LibOS) which allows native Windows programs to execute inside enclaves. Haven also showed

how to protect enclave programs against several system call-based attacks (discussed in §3.5)

and protect files inside the enclave through an in-memory filesystem. Building on the work

of Haven, several other library operating systems were introduced for Linux environments

too, including Graphene [71], Panoply [72], Scone [73], and Occlum [74].

One of the most attractive use-case of TEEs like SGX is to run secure machine learning

and data analytics on sensitive user data in cloud machines. VC3 [75] demonstrated how to

run secure distributed MapReduce computations inside enclaves, while providing additional

integrity guarantees against bugs in such computations. M2R [76] provided even stronger

44

privacy guarantees to MapReduce using ORAM and SGX. Moreover, Ohrimenko et al. [77]

described the design of several oblivious machine learning algorithms using SGX. Finally,

Opaque [78] created a general distributed data analytics framework using SGX.

In addition to cloud machines, SGX was also found very useful to secure computations on

personal machines. Baumann et al. [79] proposed using SGX to protect video game digital

rights management (DRM) software from tampering on PCs. BlackMirror [80] (a research

work from our group) showed how to defeat the notorious wallhack cheats in video games

using SGX. Moreover, PowerDVD, a DVD player software, used SGX to protect its own

DRM engine on user machines. Intel also demonstrated how to secure authentication tokens

in client web browsers (like Chromium) using SGX [81].

Finally, SGX has also received significant interest from the industry. Fortanix [82], a

now successful company, spun as a startup with the goal of securing sensitive computations

on enterprise and cloud machines using SGX enclaves. Some of Fortanix’s major clients

include NEC [83] and UC San Francisco [11]. Microsoft implemented the Open Enclave (OE)

SDK [84] to speed-up development for SGX enclaves. Signal, a private internet messenger,

uses SGX to implement private contact discovery between its clients [10].

3.3 Software Protection for Enclaves against Memory Side-Channels

Since TEEs like SGX do not trust software outside the enclave, software schemes must

be implemented inside enclaves. Such schemes cannot prevent side-channels from disclosing

memory access patterns since that is a hardware limitation (§2.5.1). Therefore, software

protection schemes either rely on cryptographic protocols—like Oblivious RAM (§2.6)—to

obfuscate all memory access patterns (i.e., make all access patterns indistinguishable) or use

heuristics to detect attacks. The obfuscation approach—also employed by our Obliviate

and Obfuscuro systems (§5)—provides strong protection but at high performance costs.

In contrast, the remaining approaches provide weak but efficient protection.

Obliviate obfuscates access patterns related to the file system component of enclaves.

Obfuscation of only certain components of the enclave helps reduce performance impact, and

it has been adopted by other systems. In particular, ZeroTrace [85] uses ORAM to secure

45

access to sensitive data structures (e.g., arrays) inside an enclave. Ohrimenko et al. [77]

show how to adapt parts of machine learning algorithms to exhibit oblivious memory access

patterns. Additionally, T3 [86] obfuscates access patterns on cloud-based bitcoin clients.

Compared to Obliviate, the scope of these systems is different and complementary.

Our Obfuscuro system obfuscates all memory accesses of a program and even ensures

that different programs executing in an enclave are indistinguishable (attaining the elusive

property of program obfuscation discussed in §5). While there is no other enclave system that

provides such a guarantee, Raccoon [38] can ensure data-obliviousness—attackers cannot

distinguish between different inputs to the same program.

Unlike obfuscation-based systems that provide strong protection against all memory

side-channels, several systems use heuristics to provide protection against a few side-channels.

Varys [87] is a heuristic-based software defense against side-channels that can partially defeat

page table and cache side-channel attacks. Its approach is to monitor the system for known

side-channel attack patterns. For instance, Varys detects if an enclave is being stopped

frequently (since that could indicate an attack) and aborts the enclave. Unfortunately, this

approach only raises the bar for attack and it can result in false positives.

Various defenses [47], [88] were proposed against the page table (or controlled channel)

side-channel attacks. In particular, T-SGX [47] uses Transactional Memory (TSX) to run

a program without incurring page faults. However, T-SGX is vulnerable to the improved

controlled channel attack [19]. Cloak [89] also utilizes TSX as a defense primitive, but its

technique can only defeat attacks that exploit the cache side-channel.

Another potential approach to mitigate passive side-channel attacks is by randomizing the

program periodically [34], [88]. Note that this randomization is not cryptographic in nature

like Oblivious RAM; hence, an active adversary (who can observe the entire randomization

process) can break it. Finally, while there are other solutions designed for non-enclave

environments [90]–[92], they cannot be employed to protect enclave computations since they

require support from a trusted operating system or hypervisor.

46

Table 3.1. An overview of protection against memory side-channels provided
by our systems—Obfuscuro and Reparo—and other existing SGX software
and hardware defenses. △ means partial protection. Obfuscuro incurs more
overhead than others because it additionally provides the strong notion of
cryptographic program obfuscation. As discussed in §5.6.1 , Obfuscuro is
orders of magnitude faster than all other systems that provide cryptographic
program obfuscation.

Channel Software defenses Hardware defenses

Obfuscuro Raccoon Varys Autarky InvisiPage Reparo
[our],[93] [38] [87] [94] [95] [our]

Controlled
Page faults ✓ ✓ △ ✓ ✓ ✓
Page tables ✓ ✓ △ ✓ ✗ ✓

Shared
L1/L2 cache ✓ ✓ △ ✗ ✗ ✓
Branch target buffer ✓ ✓ ✗ ✗ ✗ ✓
Pattern history table ✓ ✓ ✗ ✗ ✗ ✓
Translation lookaside buffer (TLB) ✓ ✓ △ ✓ ✓ ✓
Last level cache ✓ ✓ ✗ ✗ ✗ △
Memory bus ✓ ✓ △ ✗ ✓ ✗

Overhead 5100% 2180% 15% 8% 354% 17%

3.4 Hardware Protection for Enclaves against Memory Side-Channels

Given the hardware root cause of memory side-channels, our Reparo research provides a

solution to close a diverse range of memory side-channels in SGX environments with minimal

hardware changes and high performance (§6). Other researchers have also proposed ways to

update the hardware and close memory side-channels. Note that the basic way to close a

memory side-channel remains the same across many different systems. For instance, cache

side-channels can only be fully defeated by partitioning the use of caches between enclave

and non-enclave computations. The difference between different research is how these ideas

are implemented in the hardware. In general, Reparo requires fewer hardware changes to

SGX than existing approaches, while closing more side-channels.

The closest research work to Reparo is Sanctum [96]. It proposed a software-hardware

co-design for a TEE that is similar to the SGX model. Sanctum also closes several side-

channels by providing control of page tables to the enclave and partitioning/invalidating the

47

caches. Compared to Reparo, the set of side-channels addressed by Sanctum is still limited

and many of its proposed implementations require substantial hardware changes (e.g., a new

address translation mechanism alongside a redesigned last-level cache).

The ideas proposed by Sanctum—page tables controlled by enclaves and cache partitioning—

have also been implemented by other academic TEE solutions like Komodo [97], Penglai [98],

and Keystone [99]. However, these systems design entirely new TEE solutions that require

substantial changes to the SGX model for deployment. For instance, all of these systems

requires enclave implementations that have both privileged and unprivileged software layers,

which is incompatible with the SGX model.

Autarky [94] and InvisiPage [95] close some attack vectors for controlled channels in SGX,

namely page faults and page table access bits, using enclave-operating system collaborative

paging. This collaborative approach does not fully address the root cause of controlled

channels—the operating system is still required to retrieve pages from the backing store using

paging instructions. In particular, to securely retrieve pages without leaking access patterns,

these defenses must still obfuscate patterns using the expensive ORAM.

The HOP [100], Ascend [101], and Phantom [102] secure processors implemented ORAM

techniques in the CPU’s memory controller to provide full hardware protection against

memory side-channels. While these approaches can defeat side-channels even at the physical

bus layer (which is beyond Reparo’s scope), they incur very high performance costs compared

to Reparo. These costs hinder their potential deployment.

Finally, there are many other proposed hardware schemes [103]–[109] that can defeat a

subset of side-channel attacks with high performance. However, given hardware complexity,

it is challenging in practice to combine diverse hardware defenses for full protection.

3.5 Other Attacks against Enclaves and Proposed Protection Schemes

In addition to memory side-channel attacks (§2.5), SGX enclave computations are vulner-

able to other new and traditional attack vectors against computation. This section describes

all such attack vectors and proposed protection schemes.

48

SGX enclave computations rely on the operating system for handling page tables and

other privileged functionalities (e.g., accessing disk through system calls). While page table

handling by the operating system opens up the controlled channel attacks (discussed in §2.5.1),

system call handling opens up another attack vector, IAGO attacks [110]. In IAGO attacks,

the operating system returns malicious results to enclave system calls (e.g., incorrect memory

address in response to the mmap system call). These malicious results can trigger an enclave

to inadvertently reveal sensitive information (e.g., cryptographic keys).

IAGO attacks can be defeated by rigorously sanitizing the results of system calls. For

instance, the mmap system call result should be checked to ensure that it does not overlap pro-

tected memory. Fortunately, the SGX SDK [111] (provided by Intel) already protects against

some IAGO attacks by implementing internal memory allocation. Other library operating

systems (LibOS)—Graphene-SGX [71], [112], Haven [70], and Occlum [74]—implemented

for SGX to port native Linux/Windows applications provide more comprehensive protection

against IAGO attacks by sanitizing most/all system call results.

SGX was also found to be vulnerable to voltage manipulation attacks, namely Plunder-

Volt [113]. In this attack, the operating system operates the enclave-running CPU core at a

low voltage, inducing faults in the enclave computation. Such faults can be carefully and

predictably inserted into an enclave’s computation to leak cryptographic keys and induce

memory-safety bugs in bug-free enclave code. Intel addressed this attack by restricting the

undervolting capabilities presented to the operating systems (through model specific registers)

in SGX CPUs [57]. However, physical variants of this attack are still possible.

Unlike PlunderVolt, which exploits physical properties of the CPU package, rowhammer

attacks [114] leverage the physical DRAM properties to inject faults during an enclave

computation. In particular, due to high-density packaging of memory cells in modern

DRAMs, it is possible for memory cells to interact electrically between themselves. Such

electrical interactions lead to bit flips in neighbouring memory rows that are not addressed

by the current memory access. An attacker can craft special memory access patterns that

lead to predictable bit flips and leak sensitive information.

Although there exist software protection schemes [115] against rowhammer attacks, they

are incompatible with SGX (since they require trusted privileged software). The previous

49

version of SGX provided full protection against rowhammer attacks through Merkle Hash

Trees (MHT) with root protected on the CPU chip [116]. However, MHT-based protection

is very expensive, and the current version of SGX (implemented on server CPUs) relies on

error-correcting code (ECC) memory for partial mitigation of rowhammer.

Finally, like non-enclave computations, enclave code is also vulnerable to traditional

memory corruption and safety vulnerabilities, like return-oriented programming (ROP) [117]–

[119] and buffer overflows. Many traditional defenses (e.g., memory randomization) against

these attacks cannot directly be leveraged inside enclaves. Nevertheless, there exist many

systems built for SGX to address these attacks. In particular, SGX-Shield [34] implements

memory randomization inside SGX enclaves. Moreover, SGX-Bounds [120] implements

pointer bounds checking for SGX. Our Chancel system (§4) also protects against memory

corruption vulnerabilities in untrusted programs running inside enclaves.

50

4. SOFTWARE SANDBOXING TO DEFEAT ADVERSARIAL

CLOUD SERVICES

Traditionally, TEEs like SGX assume that the program running inside the enclave is trusted.

Unfortunately, this assumption is not always valid because applications may contain bugs or

may have been built by malicious programmers (i.e., adversarial programs). Hence, users

cannot trust remote programs because they may leak confidential data, even if protected by

SGX. For example, consider a scenario where a service provider rents a cloud machine, with

SGX capabilities, to provide a service to its clients. In this scenario, SGX will protect client

data from a malicious cloud provider, but cannot prevent the data from being collected by

the service provider using an adversarial program. Therefore, clients must trust the service

provider to not leak their confidential data.

The significant value of private user data makes it an appealing target for collection by

service providers. For example, consider a popular messaging platform, Signal [121], which

supports private contact discovery [122]. Signal keeps an offline database of its users and

periodically updates it on an SGX machine. The users connect to the SGX machine to

discover which contacts use Signal. The private contact discovery is meant to prevent Signal

from extracting a social graph, i.e., determine which contacts know each other. However,

although Signal’s source code is available for inspection, it is non-trivial to determine that it

satisfies such security properties. Moreover, unlike Signal, many companies do not disclose

their proprietary algorithms which further aggravates the problem by requiring users to

blindly trust service providers.

This chapter introduces Chancel, a sandbox environment that restricts adversarial

programs from leaking user data provided to enclaves. Chancel leverages software fault

isolation (SFI) [123] principles for its sandbox. In particular, Chancel implements on a novel

Multi-Client SFI (MCSFI) scheme to securely and efficiently handle requests from different

clients, within a single enclave (§4.2). Multi-Client SFI ensures thread isolation, i.e., sensitive

client data and other thread content is only available within the thread’s context, and shared

memory enforcement, i.e., threads can only use shared memory that is protected against data

leakage or tampering. Furthermore, Chancel ensures the confidentiality of computational

51

results by encrypting all outgoing data using a shared secret key with each client. Lastly,

Chancel provides various in-enclave functionalities (e.g., an in-memory filesystem) and

offers practical protections against covert channel attacks.

To ease program development for Chancel, we implement a compiler toolchain using

LLVM [124] (§4.3). Our evaluated programs required no manual changes to build using our

toolchain and few additional code to utilize Chancel’s runtime services.

We evaluate Chancel on SGX hardware to assess its security impact and performance.

Our security evaluation (§4.4) confirms that Chancel can prevent a wide range of attack

scenarios, including attempts to compromise the instrumentation checks, perform code injec-

tion attacks, and leak client data. Our performance evaluation (§4.5) shows that Chancel

has significantly higher performance than the baseline sandbox approach (e.g., Ryoan [125]).

Chancel showed a 4.06 − 53.70× performance improvement in micro-benchmarks and

0.02 − 21.18× improvement across a range of important real-world workloads. Finally, the

average overhead of Chancel compared to native execution is only 12.43% on the nbench

benchmark [126], which demonstrates Chancel’s applicability to a wide range of scenarios.

4.1 Motivation

This section overviews the multi-client system model that Chancel is concerned with

(§4.1.1) and enumerates examples of critical services (e.g., private information retrival and

product recommendation services) that are relevant to the system model (§4.1.2).

4.1.1 System Model

Our work considers a computing model in which a server program runs on a machine to

provide a service (database, intrusion detection, etc.) to multiple clients (shown in Figure 4.1).

This model has three main entities: the service provider, the clients, and the cloud provider.

The underlying assumption is that none of the parties trust each other. In the following, we

explain the role of each participant in the system.

• Service provider. The service provider builds and deploys a possibly adversarial program

that serves many clients. The program uses multi-threaded programming abstractions

52

Intel SGX

Adversarial
program

1. Adversarial
program

Cloud service

Untrusted
cloud provider

Untrusted
service provider

Client A

Client B

No user data
leakage

2. Private
data & result

No user data
leakage

Figure 4.1. Chancel’s system model with three participants: the clients, the
service provider, and the cloud provider.

to handle multiple clients efficiently. Importantly, each thread handles a request which

involves confidential data from one client at a time while accessing information from a

shared read-only region (e.g., database).

The service provider is honest but curious—it provides a functionally correct service but is

tempted to collect its client’s data for monetary purposes (e.g., advertisements). In most

cases, dishonesty is easy for clients to detect using redundancy (e.g., ask two providers

for the same service and compare results). Furthermore, dishonesty may result in lower

service quality, prompting the clients to terminate their contracts with the provider. In

contrast, clients cannot detect secrecy violations; hence, secrecy violations are a more

significant concern. Finally, despite the provider’s curiosity, we expect the service provider

will still deploy security mechanisms (e.g., SGX) due to client privacy concerns and to

observe governmental regulations (e.g., GDPR [127]).

• Client. The client issues requests, containing confidential data (e.g., database query,

internet history, etc.) to the program to utilize the provided service. The client wants to

ensure that their confidential data is not leaked from the program. Note that the client

might intentionally share some data (e.g., passwords) with the service provider, before

accessing the service. Such intentionally shared data is not considered confidential.

53

• Cloud provider. A third entity, the cloud provider, may exist if the service provider rents

hardware from third-parties such as Microsoft Azure [7]. In such scenarios, we assume

that the cloud provider is also honest but curious, i.e., it will not deny a client access to

the service but desires to extract the client’s sensitive data.

4.1.2 Examples of Target Scenarios

Many critical real-world scenarios follow this chapter’s system model (§4.1.1), including

private information retrieval, intrusion detection systems, and product recommendation

services. This section describes how an efficient multi-client sandbox (such as Chancel) can

be beneficial in such cases.

Private information retrieval. Consider a company that provides health-care suggestions

(e.g., drug information [128]) based on a client’s provided information, such as previous

medical history. The company can determine the health condition of its clients by observing

their queries. A multi-client sandbox could serve many clients in a single sandbox, allow

each client to query a shared database, and get relevant information without revealing their

health conditions. Other examples include Signal’s private contact discovery [10], navigation

services, and web servers that serve sensitive pages (e.g., prohibited political content).

Intrusion detection systems. Intrusion detection systems (IDS) analyze packet payloads

to detect trojans, viruses, and malware based on a pre-defined signature dictionary. Since

dictionaries are huge and inspection can take many computational cycles, cloud-based

systems [129]–[131] allow uploading files which are scanned on cloud machines and a report is

provided to the client. However, such services inspect unencrypted sensitive files, potentially

from many untrusted users simultaneously. Multi-client (and multi-threaded) sandboxes can

enable secure, efficient, and parallel inspection of many files from the same or different clients,

within isolated threads, using a common dictionary.

Product recommendation services. Modern product recommendation services [132]

use machine learning algorithms on their product’s catalog and a user’s search history to

predict the products that users are most likely to buy. However, purchase or search history

is sensitive, so many companies provide the option of anonymizing such history but at the

54

cost of less relevant recommendations. A multi-client sandbox enables secure servicing of

many users’ previous history on the service provider’s common catalog and provides relevant

recommendations.

4.2 Chancel Design

This section begins with an overview of Chancel (§4.2.1) and an operation workflow

related to the service provider and clients (§4.2.2). Then, it describes Chancel’s imple-

mentation of Multi-Client SFI (MCSFI) within an SGX enclave (§4.2.3). Finally, it details

shared data initialization mechanisms (§4.2.4), and Chancel’s runtime services (§4.2.5).

4.2.1 Overview

Chancel implements Multi-Client SFI, an efficient and scalable multi-client isolation

scheme under adversarial programs to guarantee client data confidentiality within an SGX

enclave. In particular, Chancel guarantees the following properties:

• P1. Program isolation. The program is isolated from the untrusted world to prevent

direct external leakage.

• P2. Thread isolation. Each thread handles sensitive data from a single client and is

isolated to protect the data from leakage across thread boundaries.

• P3. Shared memory enforcement. All threads share a memory region, holding

common non-sensitive data, and enforced with read-only permissions during servicing.

• P4. Encrypted outgoing communication. All data leaving the enclave is encrypted

with a shared secret key known only to the client (of a specific thread).

• P5. Mediated interactions. All interactions between the program and the untrusted

world are fully mediated to prevent leakage through such channels.

To ensure the properties mentioned above, Chancel runs a sandboxed execution envi-

ronment, SecureLayer, inside the enclave. SecureLayer bounds the program’s load and store

55

Enclave

Program
Space

User address space

Service
provider

Enclave

User address space

Client

No leak

Adver.
program

A. Multi-stage loading
(Step-3)

B. Servicing
(Step-4)

A2. Validation

SecureLayer

A3. Load program

SecureLayer

B0. Secure
channel setup

A0. Secure
channel setup

A1. Program
transfer

B1. encrypted
query & result

Figure 4.2. Chancel workflow. A) An enclave containing SecureLayer is
created, which then validates and loads a program provided by the service
provider. B) The runtime behavior of the program is restricted, and SecureLayer
mediates all interactions originating from it to avoid any security threat.

operations according to Multi-Client SFI, with three rules. First, reading or writing outside

the enclave by the program is prohibited (P1). Second, each thread can read and write to its

private memory region (P2). Third, each thread can only read from memory shared with

other threads of the program (P3).

Besides, SecureLayer provides a shielded communication interface to allow the program

to obtain data from the client and return its results securely. SecureLayer encrypts all

outgoing data with a corresponding client’s session key so that only the client can decrypt it

(P4). Lastly, SecureLayer provides a set of required functionalities, e.g., in-enclave filesystem

and dynamic memory allocation. Through this, Chancel ensures that all interactions are

handled internally to the enclave and mediated by SecureLayer (P5).

56

4.2.2 Workflow

The workflow of Chancel consists of five steps. The first two steps (Step-1 and Step-2)

can be performed anytime before running a program, and the following three steps are

performed while the program is running (Figure 4.2).

Step-1. Agreement (Offline). Both parties, a service provider and a client, inspect and

agree on the implementational details of SecureLayer. In particular, they ensure that the

source code of SecureLayer satisfies their security requirements. Then, each party computes

a SHA-256 hash of SecureLayer, which acts as the trust anchor of their agreement and is

required for verification during SGX remote attestation (Step-3 and Step-4).

Step-2. Program Building (Offline). The service provider builds a program using

Chancel’s development toolchain (i.e., compiler and compatible libraries). Chancel’s

compiler enforces its security requirements (§4.2.3) and outputs a binary which will be loaded

into the enclave (Step-3).

During program building, some service providers obfuscate program binaries to protect

their intellectual property. However, Chancel obviates the need for such obfuscation by

guaranteeing stronger protection using end-to-end binary encryption between the service

provider and Chancel’s enclave (as we explain in Step-3). Note that since the service

provider already inspected Chancel’s implementation (in Step-1), it verified that Chancel

would not leak program contents.

Step-3. Multi-stage Loading (Online). This step involves loading two binaries into the

enclave, SecureLayer and the target program (Step-2).

Initially, the service provider creates an enclave containing SecureLayer, either locally or

on a remote machine (e.g., cloud machines). Then, SecureLayer obtains the target program’s

binary from the service provider and loads it into the enclave. More specifically, the second

loading phase involves the following: (a) concerning remote enclaves, SecureLayer and the

service provider mutually authenticate using SGX remote attestation and the pre-computed

hash value; (b) the service provider sends the encrypted program built during Step-2; (c)

SecureLayer decrypts the program and ensures (using a binary disassembler) that all desired

57

security properties are applied; (d) if validation is successful, SecureLayer loads the program

and jumps to the program’s entry point.

Step-4. Servicing (Online). At this point, SecureLayer is waiting for client requests.

Upon receiving a request, SecureLayer provisions an available thread which authenticates to

the client using SGX remote attestation and establishes a secure channel with the client (e.g.,

using Diffie-Hellman key exchange). Then, the client’s data is securely transmitted to the

thread. After receiving the data, all external interactions are encrypted through SecureLayer

using the exchanged session key, thereby restricting the visibility of all results only to the

connected client. Lastly, to stop covert channels, Chancel normalizes communication

patterns (see §4.2.5 for more details).

Step-5. Cleanup (Online). After servicing, SecureLayer clears the thread’s private region

to avoid potential misuse by the next user of the thread. In particular, SecureLayer cleans

up the thread context, including registers and memory contents. In some cases, the thread

contains some initialization data, i.e., data put there by the program before servicing a client.

In those cases, SecureLayer restores the data to its original (unmodified) version for the next

request.

4.2.3 Multi-Client SFI (MCSFI)

This section presents Chancel’s design of SFI for multiple clients, which supports thread

isolation and enforced sharing of memory between threads in an enclave, using only low-

overhead compiler instrumentation. Chancel’s MCSFI requires a custom memory layout, a

mechanism to enforce and modify permissions during various stages of its executions, and

compiler instrumentation.

Memory layout. Apart from an enclave’s native memory segments (e.g., .code, .bss),

MCSFI requires the following additional segments: (a) a private region dedicated to each

thread, (b) a shared region available to all threads, and (c) an extra executable region. In

particular, the private region is used by threads to store client’s sensitive data, the shared

region is provisioned with non-sensitive memory (e.g., a map database), and the executable

58

Out of Enclave

Out of Enclave

2. Load program
(HW permission)

3. Init shared data
(HW+ SW permission)

5. Service request
(HW+ SW permission

in the view of thread i)

SecureLayer

thread i

thread j

sgx.code

sgx.shared

1GB

1GB

1GB

1GB

(ELF spec) No permission

RWX

RW

RW No permission

No permission

RX

RW

RX

R

r14

r15

r14

r15

No permission

RW

No permission

1GB-aligned
enclave base

4GB-aligned sgx.code region

RW

1GB

(a) Memory Layout

Thread 0

Thread 1

Thread N

…

② Load
adversarial

program
① Setup enclave

③ Init
shared

data

(by multiple
threads)

④ Clone
non-shared

data

(to all
thread)

Enter enclave Wait for request

⑤ Service
request

(b) Timeline

Figure 4.3. Chancel’s memory layout and permissions enforced during 5
stages of its execution.

region holds the code of the target program. Based on these requirements, Chancel sets up

a suitable enclave layout.

 Figure 4.3a shows the enclave’s memory segments and the size of their reserved addresses.

The SecureLayer memory region contains the attestation and validation code (and data)

required to load the target program correctly. The rest of the enclave memory contains per-

thread private memory segments (with guard regions in between), the executable sgx.code

segment, and the sgx.shared segment, which contains data shared by all threads. The upper

limit on the size of each segment (apart from the guard regions) is configurable as 2n×

59

4 KB (in our experiments we use 1 GB segments). The limit must be fixed to ensure bounded

data access and code execution (more details in §4.2.3 -(c)).

Like other SGX SFI schemes [74], [125], MCSFI requires static allocation of thread regions

and their reserved addresses at compile-time. In fact, SGX itself requires the specification

at compile-time of the maximum number of threads in an enclave and SGX1 only allows

statically-allocated enclave memory. While SGX2 allows dynamically increasing the enclave

memory, permitting such allocation would allow the program to leak confidential information

directly through the pages or covertly through the allocation. Therefore, MCSFI’s required

memory layout fits well with SGX’s design philosophy and ensures strong security properties.

Furthermore, while MCSFI can theoretically support an arbitrary number of threads, it is

bound by the limited virtual address space of SGX (i.e., 64 GB). Therefore, considering the

described memory layout (Figure 4.3a), Chancel can support 60 threads when configured

with 1 GB segments per thread (4 GB is reserved for SecureLayer, sgx.code, sgx.shared,

and guard regions). Nevertheless, the size of thread regions can be configured, e.g., 512 MB

segments allow 120 threads.

Timeline and permissions. Figure 4.3b shows the timeline of Chancel’s execution and

the permissions enforced at various execution stages are shown in Figure 4.3a .

Before loading the target program (1), only hardware permissions are enforced in the

enclave (second column of Figure 4.3a). Therefore, SecureLayer can install a received target

program binary (after validation) in sgx.code (2). After loading, both hardware and software-

based mechanisms (i.e., MCSFI) enforce permissions. At this stage, Chancel allows the

program to initialize sgx.shared (3) (explained in §4.2.4). For example, a health service

could install its drug database in sgx.shared before handling user queries. However, before

allowing the program to execute, Chancel ensures that all segments of SecureLayer and

sgx.code are non-writable, preventing modification of its code or the (validated) program

code. After initializing shared data, the program returns to SecureLayer, which then clones

per-thread data (e.g., private global data) to each thread’s private region (4).

Finally, Chancel allows the program to execute in different threads and service client

requests (refer to §4.2.5) (5). At this stage, Chancel enforces permissions (illustrated

60

1 ; Before instrumentation
2 movq rax, [rdx] ; rax = *(rdx)
3

4 ; After instrumentation
5 leal r13, [rdx] ; r13 = rdx & (4GB - 1)
6 cmpq r13, r14
7 jge READ_SGX_SHARED ; If r13 >= r14, read sgx.shared
8 ; Otherwise, read from thread i
9 READ_THREAD_LOCAL:

10 andl r13d, 0x3fffffff ; r13 = r13 & (1GB - 1); masking
11 movq rax, [r15 + r13] ; rax = *(r15 + r13)
12 jmp DONE ; jump to DONE
13

14 READ_SGX_SHARED:
15 movq rax, [r13] ; rax = *(r13)
16

17 DONE:
18 ...

Figure 4.4. Software enforcement on an indirect memory load instruction.
Chancel first checks if destination is less than the base of sgx.code (i.e., r14),
as shown in line 6. If yes, Chancel uses r15 as a base address to read the
thread region (lines 9-12). Otherwise, the target is greater than sgx.code, i.e.,
cannot be SecureLayer or another thread region, and is allowed since it can
only be sgx.shared (lines 14-15). r13 is a temporary register that is assumed
to either already be available at this point or spilled before use.

in the last column of Figure 4.3a) as follows: (a) read-only permissions on sgx.shared to

ensure that malicious threads cannot tamper with the service or leak their sensitive data,

(b) read-or-execute permissions on sgx.code to prevent code injection, and (c) read-or-write

permissions on each thread’s private region only to avoid malicious writes outside a thread

context.

Compiler instrumentation. This section explains how Chancel enforces MCSFI during

its execution (§4.2.3 -(b)) through compiler instrumentation. Since the target program must

both initialize sgx.shared (i.e., stage 3) and service user requests from various thread regions

(i.e., stage 5), Chancel must dynamically enforce permissions based on the execution stage

and thread context.

Chancel takes advantage of per-thread general-purpose registers, i.e., r14 and r15, to

achieve dynamic permissions. In particular, Chancel reserves r14 to hold the base address

of the program’s code (sgx.code). Furthermore, Chancel reserves r15 to hold either (a)

61

1 ; Before instrumentation
2 movq [rdx], rax ; *(rbx) = rax
3

4 ; After instrumentation
5 leal r13d, [rdx] ; r13 = rdx & (4GB - 1)
6 andl r13d, 0x3fffffff ; r13 = r13 & (1GB - 1); masking
7 movq [r15 + r13], rax ; *(r15 + r13) = rax

Figure 4.5. Software enforcement on an indirect memory store instruction.
The line 6 clears the upper 34 bits of r13. As a result, r13 becomes an offset
within the thread region. Then, r15+r13 in line 7 becomes an address in
the thread region. It is assumed that r13 is an available register (or spilled
beforehand) and thus used as a temporary register.

1 ; Before instrumentation
2 subq rsp, 0x30 ; rsp = rsp - 0x30
3

4 ; After instrumentation
5 subl esp, 0x30 ; rsp = (0xffffffff & rsp)-0x30
6 leaq [r15 + rsp], rsp ; rsp = r15 + rsp

Figure 4.6. Updating rsp register. SecureLayer safeguards direct updates to
rsp and rbp, ensuring they stay within a thread’s private region.

1 ; Before instrumentation
2 call rax
3

4 ; After instrumentation
5 andl eax, 0x3fffffe0 ; i.e., mask and align
6 leaq rax, [r14 + rax] ; rax = r14 + rax
7 call rax

Figure 4.7. Software enforcement on an indirect branch instruction. The
line 5 clears the upper 34 bits of rax and aligns it with 32 bytes, similar
to the indirect branch enforcement of Native Client [133]. It prevents the
program from bypassing Chancel’s instrumentation checks or jumping outside
sgx.code.

the base address of shared region (sgx.shared) during shared data initialization (the third

column of Figure 4.3a) or (b) the base address of each thread’s private region during servicing

(the last column of Figure 4.3a). Then, Chancel enforces permissions by instrumenting

the program’s control-flow and data-flow instructions using these registers. The following

paragraphs explain Chancel’s MCSFI instrumentation concerning the servicing stage only

but permissions during initialization are enforced in the same way.

62

 Figure 4.4 shows how Chancel instruments load instructions to bound them to a thread’s

private region and sgx.shared. In particular, if the target of the load instruction (r13) is less

than the base of sgx.code (r14), the destination is masked to point to the thread’s private

region (see lines 10-12). Otherwise, Chancel allows accessing the original target, since the

target must be sgx.shared.

 Figure 4.5 depicts how Chancel instruments store instructions to bound them to a

thread’s private region only. In particular, line 6 masks the destination to set r13 as the

distance from the base of the thread region (r15). Therefore, the destination of the store in

line 7 (r15+r13) points to the thread region. Note that this instrumentation also prevents

the program from rewriting the enclave’s executable regions, sgx.code and SecureLayer.

However, Chancel does not need to instrument all load and store instructions. In

particular, Chancel confines data-flow concerning stack objects (e.g., local variables), by

ensuring that the stack registers, rsp and rbp, point to a thread’s private region (Figure 4.6).

The guard region between segments (shown in Figure 4.3a) prevents a malicious stack incursion

on another thread’s private region or code regions.

Moreover, to ensure that the program does not bypass Chancel’s instrumented data-flow

checks or execute code that contains no checks (e.g., SecureLayer), Chancel aligns the

target program’s code and instruments every indirect branch instruction including call, jmp,

and ret (Figure 4.7). In particular, each valid call target in the program is aligned with

32 bytes (using nop instructions). Therefore, an indirect branch’s target is also forced to

be aligned with 32 bytes (line 5), which ensures each transfer is a valid starting address

of Chancel’s instrumented indirect branch sequence, i.e., not a direct jump to the call

instruction. Then, the indirect branch’s target is masked to 1 GB (line 5) and redirected

using r14 (line 6), ensuring that the target is within sgx.code.

Importantly, unlike other control-flow checks that are vulnerable under multi-threaded

execution (e.g., shadow stack [134]), Chancel’s checks are thread-safe. In particular,

Chancel loads the indirect branch address into a register, performs all transformations on

the register, and jumps to the final target stored in the register (Figure 4.7). Since a thread

cannot manipulate another thread’s registers, it cannot divert the other thread’s control-flow.

63

Finally, direct memory access (i.e. using an absolute or rip-relative address) can be

abused to read memory belonging to other threads during execution or overwrite executable

pages. Therefore, Chancel validates (§4.2.2) that the program binary does not contain

direct memory access instructions.

4.2.4 Shared Data Initialization

The read-only data, shared between threads, may belong to global variables, the enclave’s

heap, or shared (in-enclave) files. The service provider specifies the shared data using

annotation (for global objects), run-time specification (for heap objects) and load-time

specification (for shared files). Furthermore, Chancel allows the initialization of shared

data both after program loading and servicing all client requests.

Shared global objects. Chancel’s compiler provides an attribute, annotate("sgx.shared"),

to indicate that a certain global variable is shared. During program loading, Chancel moves

the marked global data into sgx.shared.

Shared heap objects. Chancel initializes a heap region in sgx.shared and allows the

program to use heap allocation routines (e.g., malloc, calloc) to allocate and subsequently

initialize shared data within the heap. Importantly, the shared heap is meant only to share

read-only data. While servicing user requests, each thread writes to an internal heap initialized

at the thread’s private memory region (§4.2.5).

Shared files. The program developer informs Chancel (during enclave creation) about

the program’s required files and their permissions (i.e., read-only or writable). Chancel

loads the read-only files into the sgx.shared segment and exposes file system routines (§4.2.5)

to permit initialization.

In the future, Chancel can automate shared data initialization using static data-flow

analysis to determine shared objects and files, without developer annotation, similar to an

existing SGX automated compartmentalization scheme [135]. Furthermore, if the resulting

analysis is too imprecise, it can be improved through dynamic analysis with a representative

workload [136], [137]. Importantly, developer-assisted identification does not pose security

threats. In particular, shared objects are read-only during servicing and cannot harm

64

1 // Receive data from the corresponding client.
2 bool recv(void* buf, uint buflen);
3 // Send data to the corresponding client.
4 bool send(void* buf, uint buflen);
5 // Notify the end of data migration
6 void end_migration();
7 // Terminate the thread.
8 void exit();

Figure 4.8. Some runtime interfaces supported by SecureLayer.

Chancel’s goals. Hence, imprecise or malicious identification only reduces performance

since redundant data exists in thread regions.

4.2.5 Runtime Services

SecureLayer provides three runtime services to the program: in-enclave file system,

dynamic memory allocation, and shielded client communication.

In-enclave file system. Chancel implements an in-enclave file system for application

compatibility since many applications, like web servers, extensively use file system abstractions

for operation. To use the file system, the program developer specifies a list of files, which

SecureLayer loads into the enclave during initialization. In particular, SecureLayer loads the

read-only files into the sgx.shared segment and the writable files into private thread regions.

While servicing client requests, SecureLayer exposes the POSIX file system routines (e.g.,

open, read) to access these files. Finally, after servicing, the writable files, in each thread’s

private region, are restored to their original contents to avoid the leakage of confidential data

through overwritten files.

Dynamic memory allocation. Chancel provisions each thread with a private heap,

initialized at the thread’s private region. The size of the internal heap is configurable but

must be specified by the program developer, similar to the heap in native enclave programs.

While servicing user requests, SecureLayer exposes heap allocation routines (e.g., malloc,

calloc) to allow the thread to dynamically allocate memory from its internal heap. After

servicing a client’s request, the thread’s private heap contents are cleared to avoid confidential

data leakage.

65

Shielded client communication. Chancel mediates the entire communication between

a client and their connected thread, to avoid direct and covert confidential data leakage

through this communication. Initially, SecureLayer validates that the program binary does not

contain instructions to exit the enclave, i.e., EEXIT instructions required for SGX system calls

(OCALLs). Then, SecureLayer provisions two API functions, recv() and send() (Figure 4.8),

allowing a thread to receive or send client data, respectively. However, to ensure confidentiality,

SecureLayer encrypts all outgoing data with a shared key established with the concerned

client (refer to §4.2.2). Finally, to stop covert channels created by the service provider (i.e.,

encode client data into either size or timing of outgoing data), SecureLayer transmits a fixed

size of data at every predefined time intervals, similar to prior work [125].

Note that, despite encryption, a program could try to encode sensitive information in

the output if it knows the encrypted output. However, the encrypted output is generated

by SecureLayer, as mentioned previously. Hence, such encoding-based attempts to exfiltrate

sensitive information from the enclave are unsuccessful.

4.3 Implementation

This section describes Chancel’s development toolchain and procedure to build the target

program (§4.3.1), as well as SecureLayer’s components, executing in the enclave (§4.3.2).

4.3.1 Program Development Toolchain

The toolchain compiles and instruments a target program and its shared libraries into a

binary (.so) file. The components of the toolchain are not included in the trusted computing

base (TCB) since SecureLayer validates the instrumentation of the output binary during

program loading. Note that SecureLayer is not developed using this toolchain.

Compiler. The Chancel compiler is based on the LLVM backend [138] with 1,162 lines of

code changes and 94 lines of linker scripts. The backend instruments the program according

to MCSFI, whereas the linker script provisions a MCSFI-aware memory layout (§4.2.3).

Supported C libraries. Chancel supports Linux programs that are built using either

tlibc [139], a minimalistic C library provided by Intel, or musl libc [140], a robust C library

66

Table 4.1. Chancel’s components included in the enclave.

Component KLoc Base

SecureLayer
Validator 53 Capstone [141]
Loader 1.3 -
Runtime services library 0.5 -

C library 15 / 66 tlibc [139] / musl [140]
Crypto library 23 tcrypto [46]

Total 92.8 / 143.8

which simplifies program development. For Chancel’s musl libc, we statically removed all

routines requiring system calls and redirected all supported system call functionality (e.g.,

file system) to SecureLayer.

Required routines. Chancel expects the program to have two additional routines,

shared_init, which initializes shared data, and service, which services a client’s request.

These routines are not unique since they are required for any program that processes client

requests. Chancel’s only additional requirement is that the service routine must use the

shielded client communication (§4.2.5) to send and receive data.

4.3.2 SecureLayer Components

SecureLayer runs within the enclave, loads and validates a provided binary, and enables

runtime services. Therefore, the SecureLayer constitutes Chancel’s TCB. Table 4.1 provides

a breakdown of SecureLayer’s components alongside other libraries included within the enclave.

Validator. SecureLayer includes an x86 disassembler, based on Capstone [141], which

validates that the provided binary is correctly instrumented (§4.2.3).

Loader. The loader relocates program symbols, enforces MCSFI (i.e., using r14 and r15),

and provisions the shared (i.e., sgx.shared) and per-thread data (e.g., private global data).

Runtime services library. This library supports the services mentioned in §4.2.5 . For

heap allocation, it includes wrapper functions (e.g., malloc) but reuses the SGX SDK’s [111]

heap allocation logic to initialize and maintain a heap in private thread regions. Furthermore,

for secure communication channels with clients, it uses Intel’s cryptographic library, tcrypto.

67

Table 4.2. Chancel’s defenses against various attack vectors. Instr. means
instrumentation.

Attack goal Detailed attack method Defence

Instr. bypass using existing code
Jump after checks jmp, call, or ret using register Aligned (32-bytes) indirect branch transfers (Figure 4.7)
Jump outside sgx.code jmp, call using register Mask branch target and redirect to sgx.code (Figure 4.7)

An invalid return (ret) Instrument pop, mask target, and redirect to sgx.code (Figure 4.7)
Modify r14 or r15 Assembly instructions Caught during validation (§4.2.2)

Use SecureLayer code [142] Not located in sgx.code; therefore, not executable

Instr. bypass using injected code
Modify SecureLayer Write using register Instrumented to target thread region only (Figure 4.5)
or sgx.code Update rsp, rbp and push Ensure rbp, rsp point to thread region (Figure 4.6);

Guard page before thread regions
Add new code pages Use SGX2 instructions (EACCEPT) Caught during validation (§4.2.2)

Extract confidential client data
Read from other threads Read using register Instrumented to target thread region and sgx.shared (Figure 4.4)

Update rsp, rbp and pop Instrumented to ensure rbp, rsp point to thread region (Figure 4.6);
Guard page after thread regions

Write outside the enclave Write using register Instrumented to target thread region only (Figure 4.5)
EEXIT and leak values in registers EEXIT is caught during validation (§4.2.2)

Others Save thread data and leak it later Clear thread region after servicing each user (§4.2.2)
Absolute or PC-relative access Caught during validation (§4.2.2)

4.4 Security Analysis

This section first elaborates on Chancel’s defenses against attempts to bypass its

instrumentation either using existing code or by injecting code. Then, it describes how

Chancel’s instrumentation prevents the extraction of sensitive client data. Finally, this

section presents our validation results based on several implemented attacks. Table 4.2

provides an overview of all attacks and defenses.

Prevent instrumentation bypass using existing code. The attacker can attempt

code reuse attacks to bypass Chancel’s instrumentation checks (e.g., jump directly to a mov

instruction), execute code that does not contain instrumentation checks (e.g., SecureLayer), or

modify general-purpose registers (e.g., r14, rbp) to render instrumentation checks ineffective.

Chancel prevents all such attempts by restricting the code that the attacker can execute.

During compilation, Chancel aligns all valid call targets in the program with 32 bytes.

Then, Chancel instruments control-flow instructions (e.g., call, jmp, ret) to ensure that

indirect branch targets are aligned with 32 bytes to prevent the attacker from jumping to

the middle of an instrumentation sequence (Figure 4.7). The control-flow instrumentation

68

also ensures that the attacker can only execute code within sgx.code, preventing code reuse

attacks involving the remaining enclave code (i.e., SecureLayer and others).

Furthermore, Chancel protects instrumentation-critical registers, i.e., r14, r15, rbp, and

rsp. In particular, the target program is not allowed to contain instructions to modify r14

or r15, while all explicit updates to rbp and rsp are instrumented to ensure they remain

within the thread’s region (Figure 4.6). Finally, while some pre-loaded enclave code (e.g.,

asm_oret) can also modify these registers [142], all such code is part of SecureLayer, and is

not executable by the program.

Prevent instrumentation bypass using injected code. The attacker might try to

inject malicious code into either of the two executable regions, i.e., SecureLayer or sgx.code.

However, Chancel instruments memory writes (Figure 4.5), which ensures that the program

cannot modify these regions. Furthermore, Chancel prevents stack operations (e.g., push)

from overflowing to code regions using guard pages. Finally, the attacker might use SGX2

instructions (e.g., EACCEPT and EMODPE) to add additional executable pages, during execution,

and inject their malicious code. Such instructions are forbidden and caught during validation.

Prevent extraction of confidential client data. The previous sections explain how

Chancel ensures that its instrumentation is not bypassed. This section explains how

Chancel’s instrumentation prevents the extraction of confidential data.

Chancel prevents the program from leaking sensitive client data by ensuring that all

memory writes target each thread’s private region (Figure 4.5). Chancel also prevents

malicious writes using stack operations (e.g., push) through guard pages (Figure 4.3a)

and instrumentation of explicit updates to stack registers (Figure 4.6), ensuring all stack

operations are in the thread’s private region. Furthermore, to prevent the program from

disclosing memory outside the enclave through SGX system calls (i.e., OCALLs), Chancel

validates that the program binary does not contain EEXIT instructions. Hence, all outside

communication is through Chancel’s shielded service (§4.2.5), which ensures confidentiality

through encryption using a shared key with the concerned client.

Chancel also instruments load instructions (Figure 4.4) to prevent a thread from directly

reading another thread’s private memory region and leaking the sensitive client data belonging

69

to that thread. Finally, guard pages between thread regions and instrumented updates to

stack pointers prevent the abuse of pop instructions to read data from other threads.

4.5 Performance Evaluation

In this section, we provide a performance evaluation of Chancel with the goal of

answering the following questions:

• How does Chancel compare to a multi-process sandbox (§4.5.1)?

• What is the overhead of Chancel on benchmarking applications (§4.5.2)?

• How does Chancel perform for real-world target scenarios (§4.5.3)?

Experimental setup. All experiments were conducted on an Intel (R) Core (TM) i7-6700K

CPU 3.40GHz (4 cores and 8 threads) and 64GB RAM (128 MB for EPC). The machine ran

a 64-bit Ubuntu 16.04.5 LTS with Linux version 4.4.207. We ran our SGX enclaves using

Intel SGX SDK v2.2 [111] and Intel SGX driver v2.6 [143].

Terminology. For each experiment, we compare (a) Native, referring to an enclave

running the target application in multiple threads, without Chancel’s instrumentation,

(b) Chancel, which refers to an enclave running Chancel’s multi-client sandbox using

multiple threads, and (c) Chancel-MP, which refers to enclaves running Chancel but

with different enclave processes rather than threads.

4.5.1 Improvement over Multi-Process Sandbox

This section analyzes the performance of Chancel in comparison with a traditional

multi-process sandbox approach such as Ryoan [125].

Settings. Our benchmark application allocated a large in-enclave memory region and

sequentially accessed the memory region. For enclaves running Native and Chancel,

the memory was allocated once in sgx.shared and was read by different enclave threads.

However, the memory was cloned to each enclave process with Chancel-MP. The benchmark

application executed as follows: read 8 bytes k times in each 512 KB region of the m MB

memory chunk from each thread or process. Furthermore, we also measured the number of

70

16 32 48 64 80
Shared Memory (MB)

101

103

105

Ti
m

e
Ta

ke
n

(m
s)

Native
Chancel-MP
Chancel

16 32 48 64 80
Shared Memory (MB)

102

104

106

108

1010

Pa
ge

 F
au

lts

Figure 4.9. (a) Average completion time and (b) the total number of EPC
page faults when the amount of memory shared increases linearly. Chancel
is 4.06 − 53.70× faster than Chancel-MP and incurs a slowdown of only
0.8 − 7.5% over Native.

2 4 6 8
Threads/Processes

101

103

105

Ti
m

e
Ta

ke
n

(m
s)

 Native
Chancel-MP
Chancel

2 4 6 8
Threads/Processes

102

104

106

108

1010
Pa

ge
 F

au
lts

Figure 4.10. (a) Average completion time and (b) the total number of EPC
page faults when the number of processes/threads increases linearly. Chancel
is 13.59 − 41.73× faster than Chancel-MP and incurs an overhead of only
0.2 − 1.0% over Native.

EPC page faults by hooking the SGX page fault handler. Finally, we ran each experiment 50

times and report the average.

Results. Figure 4.9 shows the impact on completion time and number of page faults

while varying the amount of memory accessed (m). We configured all runs as n = 8

processes/threads and k = 16. The figure shows that Chancel out-performs Chancel-MP

by 4.06 − 53.70×. As far as Chancel-MP is concerned, the memory chunk is cloned to

each process. Therefore, it exerts a high memory pressure on the limited EPC, evident from

the considerable increase in page faults, as we increase m. On the other hand, Native and

71

16 32 48 64 80
Number of Access

101

103

105

Ti
m

e
Ta

ke
n

(m
s)

Native
Chancel-MP
Chancel

16 32 48 64 80
Number of Access

102

104

106

108

1010

Pa
ge

 F
au

lts

Figure 4.11. (a) Average completion time and (b) the total number of EPC
page faults when the number of memory accesses to each EPC page increases
linearly. Chancel is 37.88 − 48.08× faster than Chancel-MP and incurs an
overhead of only 0.1 − 0.8% compared to Native.

Table 4.3. Nbench [126] running inside Chancel. The table shows slowdown
incurred and additional instructions executed.

Benchmark Native Chancel

Slowdown Additional instr.
(iterations/sec) (%) (%)

NUMERIC SORT 906.28 17.09 39.07
BITFIELD 4.55 × 108 24.89 40.23
STRING SORT 669.77 22.76 39.99
FP EMULATION 94.72 16.28 38.18
FOURIER 53470.00 2.39 4.21
ASSIGNMENT 23.52 3.44 11.72
IDEA 2962.20 0.63 7.45
HUFFMAN 2535.40 23.40 22.60
NEURAL NET 36.94 12.54 24.78
LU DECOMPOSITION 1066.50 0.91 6.99

Average - 12.43 23.52

Chancel scale nicely, incurring no page faults for smaller memory chunks and fewer page

faults otherwise. Note that we observe page faults starting from 48 MB since some memory

is allocated for SecureLayer components and runtime services (refer to §4.3.2).

Furthermore, we show how the performance scales while increasing the number of enclave

threads versus enclave processes. Figure 4.10 shows the results while increasing the pro-

cess/thread count (n) from 2 to 8 while keeping m = 48 MB and k = 16. Despite increasing

the number of processes, Chancel shows very similar completion times (i.e., less than 5%

72

overhead for 8 threads compared to 2 threads) and a similar number of page faults due to

the sharing of memory. Note that our benchmark application uses negligible per-thread

memory; therefore, there is no noticeable increase in page faults when increasing the number

of threads. In contrast, each new enclave process incurs additional page faults and degrades

the performance of Chancel-MP.

 Figure 4.11 depicts the average completion time and number of EPC page faults when

the number of memory accesses (k) increases with n = 8 processes/threads and m = 48 MB.

In particular, as we increase the number of memory accesses for Chancel-MP, each enclave

process accesses an enclave page for a longer duration, resulting in more contention on the

EPC memory, more page faults, and longer completion time. In contrast, Chancel shares

the shared memory page with other threads; therefore, there is no noticeable increase in page

faults even as we increase k. However, we observe a longer completion time for Chancel

and Native as we increase k because each additional memory access adds latency.

Takeaway. Chancel outperforms a multi-process sandbox by 4.06−53.70× when increasing

the amount of shared memory, number of accesses, or number of threads.

4.5.2 Overhead of Chancel

We calculate the overhead of Chancel using a popular benchmarking application,

nbench [126]. The application executes various CPU and memory-intensive tasks including

sorting algorithms, bit manipulation, and floating point emulation. Each task is executed

for a fixed amount of time and nbench outputs the average number of iterations it executed

per-second (i.e., throughput). Nbench has previously been used in the evaluation of similar

SGX systems [144], [145].

Settings. We ran nbench in a non-enclave setting but using Chancel’s program loader

and validator, i.e., the setting was the same as it would be in an enclave. A non-enclave

execution allows us to ascertain the actual cost of Chancel without amortization due to

EPC page faults. We ran each test 50 times and report the average.

73

Results. Table 4.3 reports both the throughput slowdown and the number of additional

instructions executed (determined using perf [146]). The performance overhead was 0.91 −

24.89%, averaging at 12.43%.

Chancel adds overhead due to two reasons: (a) reserving r14 and r15, which results in

more memory-spills due to fewer available registers and (b) executing additional instructions

to enforce Multi-Client SFI, which increases overall computational cycles. Concerning the

latter, since data accesses generally outnumber control-flow transfers, Chancel’s major

overhead is from the instrumentation checks on data accesses. Therefore, memory-intensive

benchmarks (e.g., NUMSORT and STRINGSORT) are more affected by Chancel and

exhibit a higher overhead.

Note that for some applications (e.g., IDEA and FOURIER), the number of additional

instructions executed by Chancel is minimal; therefore, they exhibit negligible overheads.

Such scenarios happen for two reasons. First, the application is CPU-intensive; i.e., executes

fewer instrumentation checks for data access. Second, the application mostly performs

stack-based data access (e.g., allocate an array on the stack and perform computation on the

array). In the latter case, Chancel has to execute fewer checks since data access targeting

the stack is protected by ensuring that rsp and rbp always point to a thread’s private memory

region (refer to §4.2.3).

Therefore, under many scenarios, Chancel’s overhead is low. Importantly, Chancel’s

performance overhead is comparable or superior to existing SGX SFI implementations [125],

[145]. In particular, MPTEE [145] reported an overhead of 0.4 − 34% on nbench, while

Ryoan [125] reported an (emulated) overhead of 12 − 100% on its evaluated real-world

applications. In contrast, even in highly memory-intensive scenarios, Chancel exhibits a

worst-case overhead of less than 25%. Hence, we expect that Chancel is applicable to a

wide range of scenarios.

4.5.3 Performance with Real-world Programs

Based on Chancel’s target scenarios (§4.1.2), we evaluate five real-world programs—

DrugBank [128], [147], OSSEC [148], Recommender [149]), ShieldStore [150], and Snort [151].

74

Table 4.4. Real-world evaluated program statistics. The table shows each
program’s Native code (.text section) size and its increase due to Chancel’s
instrumentation. The table also shows the total instrumented binary size
(including code and static data) and its loading time.

Application Code Chancel Binary

Native Chancel Size Load time
(KB) (+%) (MB) (ms)

OSSEC (IDS) 26.17 49.66 123.51 529.94
DrugBank (PIR) 15.22 23.40 2.12 82.12
Recommender (PRS) 55.35 89.23 2.29 84.17
ShieldStore (PIR) 11.65 76.62 2.07 81.23
Snort (IDS) 40.12 100.57 2.04 80.89

Common settings. We ran the programs using four and eight clients. The four client

setting exhibits Chancel’s realistic performance on our machine when hyper-threading (HT)

is disabled to defeat SGX micro-architectural defects, as recommended by Intel [152]. In

contrast, the eight client setting shows Chancel’s performance with more capable current

SGX CPUs that support eight processor cores even when hyper-threading is disabled.

Moreover, we ran each program under two workload types, light (less than 128 MB) and

heavy (greater than 128 MB). This distinction considers whether the workloads are small

enough to fit within our machine’s EPC memory (128 MB) entirely or not. Each thread was

allocated 8 MB of private memory for the Native and Chancel experiments. Finally, we

ran each experiment 50 times and report the average.

 Table 4.4 shows the overall statistics, including code size and its increase, instrumented

binary size and loading time, for each application.

OSSEC (intrusion detection system). We evaluate OSSEC [148], which is a famous

and widely-used IDS, using Chancel. OSSEC analyzes packet payloads to detect trojans

and viruses, based on a dictionary of pre-defined signatures.

Settings. We initialized OSSEC using a database of virus signatures from ClamAV [153].

In the case of Native and Chancel, OSSEC initialized its internal dictionary on the shared

heap. Throughout the experiments, we gradually inserted a different number of signatures to

increase the size of its dictionary. Then, we analyzed 100 packets (60 bytes each) from each

thread or process, to check for malicious content.

75

Table 4.5. Average delay (and the number of page faults in the parenthesis)
for inspecting a payload with regex matching in OSSEC. The overhead imposed
by Chancel over Native is 2.7 − 13.1%.

sgx.shared Native Chancel-MP Chancel Improv.
Four clients (HT off)
Light workloads
18 MB 29.48 ms 38.04 ms 31.41 ms 0.21×

(130K) (718 K) (130 K)
36 MB 53.51 ms 169.38 ms 58.13 ms 1.90×

(136K) (1668 K) (136 K)
72 MB 92.11 ms 650.86 ms 100.77 ms 6.45×

(146K) (4442 K) (146 K)
Heavy workloads
144 MB 724.70 ms 1437.23 ms 769.02 ms 0.87×

(2655 K) (11463 K) (2655K)
288 MB 1314.70 ms 2713.26 ms 1335.82 ms 1.03×

(4794 K) (19415 K) (4797K)
576 MB 2625.10 ms 6169.55 ms 2653.58 ms 1.32×

(9106 K) (35752 K) (9112K)
Eight clients (HT on)
Light workloads
18 MB 34.80 ms 178.55 ms 38.10 ms 3.69×

(497 K) (7185 K) (501K)
36 MB 66.07 ms 418.51 ms 69.56 ms 5.02×

(503 K) (8705 K) (508K)
72 MB 111.34 ms 1090.45 ms 125.94 ms 7.66×

(514 K) (13072 K) (538K)
Heavy workloads
144 MB 934.70 ms 2560.97 ms 961.69 ms 1.66×

(2655 K) (24211 K) (2696K)
288 MB 1794.70 ms 6192.66 ms 1948.20 ms 2.18×

(4794 K) (46837 K) (4815K)
576 MB 2925.10 ms 12656.20 ms 3185.80 ms 2.97×

(9106 K) (89373 K) (9948K)

Results. Table 4.5 shows the results obtained on dictionaries of size 18 − 576 MB. In

particular, Chancel shows a performance improvement of 0.21 − 7.66× over Chancel-MP.

Since OSSEC performs regular expression (regex) matching to compare a query (packet)

with each signature in its dictionary, a query’s working set and analysis time should increase

proportionally to the dictionary size. We observe that Chancel and Native incur few page

faults under light workloads; hence, they show proportional analysis time increase relative

to the dictionary size. However, Chancel-MP shows a disproportional increase in analysis

time due to a significant number of page faults.

76

Interestingly, under heavy workloads, Chancel’s improvement against Chancel-MP

reduces (0.87−1.32× with four clients). In particular, even multi-threaded execution over the

EPC limit incurs many page faults because OSSEC must access a large amount of memory

for reach request. Hence, we see a significant jump in analysis time even for Native and

Chancel. Nevertheless, Chancel’s improvement increases with the increase in dictionary

size of heavy workloads and the number of clients (up to 1.32× and 2.97× with four and

eight clients, respectively). Judging by the observed trend, we expect more improvement

with additional clients and heavier workloads. Hence, Chancel suits IDS applications such

as OSSEC in both light and heavy workloads.

DrugBank (private information retrieval). We use a C hash map application [147] to

act as a secure database for a company providing drug recommendations. The application

uses CRC32-based hashing to insert and retrieve entries.

Settings. We populated the hash map using a drug database obtained from the famous

DrugBank website [154]. For Native and Chancel, the program used the shared heap to

allocate its backing store. During the experiment, we inserted a varying number of entries

from the database into the hash map. Then, we searched 2, 000, 000 drug-related queries

from the hash map using each thread or process.

Results. Table 4.6 shows the results obtained while increasing the hash map size from

30 − 480 MB. The application shows an improvement of 0.02 − 10.01×. Unlike OSSEC, the

DrugBank application exhibits a continuous rising trend in improvement, even with heavy

workloads. The DrugBank program has a minimal working set for each query. In particular,

due to hashing, the application retrieves a small set of enclave pages for each query.

Under light workloads, due to DrugBank’s minimal query working set, Chancel-MP

shows reasonable performance—Chancel improves only up to 0.76×. However, under heavy

workloads, the competition for EPC memory increases due to larger per-enclave hash maps;

hence, Chancel-MP naturally incurs more page faults. In contrast, the shared hash map

alongside the minimal query working set ensures that even under heavy workloads, Chancel

incurs few additional page faults. Therefore, Chancel further improves over Chancel-MP

77

Table 4.6. Average delay (and the number of page faults in the parenthesis)
to search 2, 000, 000 queries in DrugBank. The overhead imposed by Chancel
over Native is 0.2 − 11.4%.

sgx.shared Native Chancel-MP Chancel Improv.
Four clients (HT off)
Light workloads
30MB 411.64 ms 420.79 ms 412.51 ms 0.02×

(82K) (556K) (82K)
60MB 414.80 ms 526.95 ms 419.81 ms 0.12×

(90K) (651K) (90K)
90MB 414.90 ms 564.49 ms 422.92 ms 0.27×

(99K) (670K) (99K)
Heavy workloads
180 MB 413.02 ms 805.98 ms 423.44 ms 0.90×

(322 K) (3227 K) (324K)
360 MB 416.39 ms 2422.80 ms 424.09 ms 4.71×

(346 K) (10073 K) (350K)
480 MB 418.39 ms 3150.80 ms 425.82 ms 6.41×

(429 K) (25389 K) (429K)
Eight clients (HT on)
Light workloads
30 MB 571.12 ms 861.18 ms 616.08 ms 0.38×

(299 K) (5940 K) (299K)
60 MB 569.15 ms 943.80 ms 621.50 ms 0.52×

(309 K) (6015 K) (312K)
90 MB 558.84 ms 1094.59 ms 622.36 ms 0.76×

(309 K) (5706 K) (316K)
Heavy workloads
180 MB 580.53 ms 2579.74 ms 627.95 ms 3.11×

(343 K) (18894 K) (345K)
360 MB 581.87 ms 5666.67 ms 628.47 ms 8.02×

(408 K) (40650 K) (418K)
480 MB 582.75 ms 6960.90 ms 631.71 ms 10.01×

(447 K) (45338 K) (451K)

under heavy workloads (up to 6.41× for four clients). Finally, like OSSEC, increasing the

clients emphasizes Chancel’s improvement (up to 10.01× for eight clients).

Hence, applications like DrugBank, with a minimal query working set, benefit modestly

from Chancel under light workloads but considerably under heavy workloads.

Recommender (product recommendation service). Recommender [149] is an open-

source tool that uses Collaborative Filtering (CF) to suggest products. The tool builds a

model based on a user’s past behavior and the behavior extrapolated from other users to

provide highly accurate suggestions.

78

Settings. We used a benchmark that creates a set of clients and populates their history of

purchases. Similar to other experiments, the benchmark used the shared heap to allocate a

product catalog under Chancel. Then, each thread/process used the randomly populated

client information to search through and recommend products from the catalog.

Results. Table 4.7 shows the results as we increase the product catalog size from 28 MB

to 504 MB. We notice a pattern similar to OSSEC but with Chancel having even more

significant performance improvement over Chancel-MP (up to 17.20×) under light work-

loads. We expect these results since recommender uses CF on each product in the catalog;

hence, its query working set depends on the catalog size, like OSSEC. Furthermore, under

heavier workloads, Chancel’s performance improvement reduces but remains significant

and shows an upwards trend with increasing catalog size (up to 2.01×). Finally, with eight

clients, Chancel’s performance improvement expands to 21.18× and 4.02×, under light and

heavy recommender workloads, respectively.

ShieldStore (private information retrieval). ShieldStore [150] is an optimized key-value

store that reports up to 20× better performance than memcached [155] in SGX enclaves,

through various key-based optimizations.

Settings. We populated the store using a provided benchmark that inserts random 16B

key-value pairs. Then, we implemented a custom benchmark to retrieve 100, 000 keys at fixed

offsets relative to the number of populated keys—if 1, 000, 000 keys were populated initially,

the test retrieved every tenth key.

Results. Table 4.8 shows the results obtained with various stores ranging from 16 to

384 MB in size. Chancel exhibits a performance improvement over Chancel-MP of

0.68 − 16.32×. The observed trend is similar to OSSEC and Recommender—Chancel’s

performance improvement, with four clients, in light workloads (up to 11.44×) is better than

on heavy workloads (up to 1.20×). We believe that is because our benchmark deliberately

accesses keys at fixed intervals; therefore, it retrieves a large portion of the store. Consequently,

Chancel and Native also incur many page faults on heavy workloads, which reduces

performance.

79

Table 4.7. Average delay (and the number of page faults in the parenthesis)
to access a recommendation result. The overhead imposed by Chancel over
Native is 1.3 − 13.1%.

sgx.shared Native Chancel-MP Chancel Improv.
Four clients (HT off)
Light workloads
28 MB 1.46 ms 2.22 ms 1.56 ms 0.41×

(94 K) (204 K) (94 K)
56 MB 3.94 ms 13.03 ms 4.19 ms 2.11×

(100 K) (619 K) (100 K)
112 MB 8.45 ms 157.98 ms 8.68 ms 17.20×

(114 K) (2472 K) (114 K)
Heavy workloads
252 MB 420.17 ms 945.41 ms 429.54 ms 1.20×

(2063 K) (12884 K) (2064 K)
378 MB 621.21 ms 1645.87 ms 639.23 ms 1.56×

(2765 K) (17324 K) (2778 K)
504 MB 838.54 ms 2545.92 ms 842.78 ms 2.01×

(3787 K) (21400 K) (3793 K)

Eight clients (HT on)
Light workloads
28 MB 2.17 ms 4.24 ms 2.37 ms 0.78×

(351 K) (2980 K) (353K)
56 MB 4.66 ms 41.57 ms 5.11 ms 7.13×

(357 K) (3926 K) (358K)
112 MB 9.67 ms 217.56 ms 9.78 ms 21.18×

(364 K) (4412 K) (370 K)
Heavy workloads
252 MB 460.49 ms 1879.63 ms 465.40 ms 3.04×

(2081 K) (24200 K) (2092K)
378 MB 682.28 ms 3137.23 ms 702.36 ms 3.47×

(2784 K) (35619 K) (2891K)
504 MB 916.97 ms 4699.94 ms 936.38 ms 4.02×

(3820 K) (52573 K) (3836K)

Nevertheless, like previous programs, eight clients further improves Chancel’s per-

formance, compared to Chancel-MP, by up to 16.32× and 2.92× for light and heavy

workloads, respectively. Furthermore, Chancel exhibits an upward improvement trend,

against Chancel-MP, in heavy workloads and servicing more clients. Hence, in real-world

settings, where many clients and heavier workloads are normal, Chancel should significantly

outperform Chancel-MP for applications like ShieldStore.

80

Table 4.8. Average delay (and the number of page faults in the parenthesis)
to search 100, 000 queries using ShieldStore [150]. The overhead imposed by
Chancel over Native is 1.1 − 8.4%.

sgx.shared Native Chancel-MP Chancel Improv.

Four clients (HT off)
Light workloads
16 MB 57.11 ms 99.42 ms 59.11 ms 0.68×

(419 K) (1144 K) (419K)
32 MB 61.15 ms 343.02 ms 62.15 ms 4.52×

(420 K) (5868 K) (420K)
64 MB 64.21 ms 823.34 ms 66.21 ms 11.44×

(429 K) (15003 K) (429K)
Heavy workloads
128 MB 508.74 ms 976.25 ms 518.74 ms 0.88×

(3648 K) (33595 K) (3648K)
256 MB 967.50 ms 1930.33 ms 997.06 ms 0.94×

(13222 K) (76968 K) (13275K)
384 MB 1107.10 ms 2465.58 ms 1118.93 ms 1.20×

(22406 K) (108189 K) (22431K)

Eight clients (HT on)
Light workloads
16 MB 90.47 ms 434.33 ms 94.71 ms 3.59×

(595 K) (7401 K) (298K)
32 MB 95.45 ms 488.47 ms 97.80 ms 3.99×

(304 K) (11739 K) (305K)
64 MB 99.31 ms 1739.63 ms 100.44 ms 16.32×

(311 K) (32121 K) (314K)
Heavy workloads
128 MB 696.67 ms 2029.59 ms 719.84 ms 1.82×

(3204 K) (81130 K) (3230K)
256 MB 1245.70 ms 3891.65 ms 1261.72 ms 2.09×

(12325 K) (196678 K) (12434K)
384 MB 1383.82 ms 5664.49 ms 1446.32 ms 2.92×

(21536 K) (303476 K) (21542K)

Snort (intrusion detection system). Snort [151] is a widely-deployed and open-source

network intrusion detection system that is capable of real-time traffic analysis and logging.

Snort routinely publishes its set of rules that aid its detection of malicious network activity.

Settings. We divided Snort’s official published rules into different sizes and populated

the rules in Snort’s internal malware database. Then, we examined 3, 000 randomly-created

network packets using snort.

Results. Table 4.9 shows the results obtained while using various databases of sizes 32 to

1047 MB. In general, Chancel exhibits a performance improvement over Chancel-MP

of up to 4.14× and 5.24× on four and eight clients, respectively. The Snort experiment

81

Table 4.9. Average delay (and the number of page faults in the parenthesis) to
inspect 3, 000 packets using Snort [151]. The overhead imposed by Chancel
over Native is 0.5 − 11.8%.

sgx.shared Native Chancel-MP Chancel Improv.
Four clients (HT off)
Light workloads
32 MB 1.23 ms 1.64 ms 1.32 ms 0.24×

(589 K) (2764 K) (688K)
57 MB 1.46 ms 2.05 ms 1.47 ms 0.39×

(688 K) (2876 K) (694K)
92 MB 1.63 ms 2.46 ms 1.67 ms 0.47×

(705 K) (2985 K) (706K)
Heavy workloads
572 MB 1.85 ms 4.93 ms 1.97 ms 1.50×

(857 K) (3694 K) (857K)
868 MB 1.94 ms 8.75 ms 2.17 ms 3.03×

(950 K) (3952 K) (950K)
1047 MB 2.25 ms 12.00 ms 2.34 ms 4.14×

(1011 K) (4176 K) (1013K)
Eight clients (HT on)
Light workloads
32 MB 2.08 ms 2.73 ms 2.15 ms 0.27×

(701 K) (5623 K) (702K)
57 MB 2.21 ms 3.36 ms 2.30 ms 0.46×

(705 K) (5703 K) (710K)
92 MB 2.24 ms 4.20 ms 2.40 ms 0.75×

(714 K) (5776 K) (716K)
Heavy workloads
572 MB 2.95 ms 8.10 ms 3.11 ms 1.61×

(870 K) (6991 K) (872K)
868 MB 3.19 ms 13.19 ms 3.48 ms 2.79×

(968 K) (8453 K) (979K)
1047 MB 3.28 ms 22.57 ms 3.62 ms 5.24×

(1026 K) (10738 K) (1032K)

closely resembles DrugBank—minor performance improvement on light workloads due to a

minimal query working set and a significant improvement on heavy workloads. Based on the

observed trend, we expect Chancel’s performance to improve over Chancel-MP as heavier

workloads are employed or more clients are serviced. Hence, these results further emphasize

our previous finding that minimal query working set applications, like Snort, greatly benefit

from Chancel, especially under heavy workloads and many clients.

Key takeaways. In realistic scenarios and with a modest number of clients (4 − 8),

Chancel outperforms Chancel-MP by 0.02 − 21.18× while only incurring a performance

82

overhead of 0.2 − 13.1% over Native. Importantly, we observe that a query working set

and the number of clients factor considerably in Chancel’s performance improvement over

Chancel-MP. We summarize our findings below.

• Programs with a robust query working set (e.g., OSSEC and Recommender) show substan-

tial performance improvements for Chancel over Chancel-MP (up to 21.18×) with a

light workload due to fewer page faults. However, such programs under heavy workloads

incur high slowdown even for Native due to many page faults. Hence, Chancel yields

lesser yet significant improvements under heavy workloads (up to 4.02×).

• Programs with a minimal query working set (e.g., DrugBank) show modest performance

improvements for Chancel over Chancel-MP on light workloads. However, the minimal

query working set ensures few page faults even under heavy workloads. Hence, Chancel

exhibits huge improvement over Chancel-MP under heavy workloads and a minimal

query working set (up to 10.01×).

• Regardless of the type of query working set and workload, servicing more clients increases

Chancel’s performance improvement over Chancel-MP, because the latter adds enclave

processes that incur more page faults.

4.6 Discussion

This section describes how Chancel compares to related work and how it can be extended

to support multi-hop cloud programs and provide further covert channel protection.

4.6.1 Comparison with Other Enclave SFI Schemes

Chancel (§4) leverages Multi-Client SFI to prevent adversarial enclave code from col-

lecting user data. This section provides a comparison between Chancel and other systems

that provide security enforcement through SFI.

Ryoan [125] is the closest system to Chancel. It also protects user data from adversarial

code inside the enclave using the Native Client SFI [133]. However, Ryoan does not consider

multi-client scenarios in a single enclave. In particular, Ryoan lacks thread isolation, requiring

83

Table 4.10. A comparison between Chancel and related schemes that
implement SFI in enclaves. For Occlum [74] and MPTEE [145], both SGX and
MPX are required hardware features.

System Scope Multi-client Requirements

Adversarial Unintended Thread Shared mem.
program bugs isolation and enforce.

Ryoan [125] ✓ ✓ ✗ ✗ SGX2
Occlum [74] ✗ ✓ ✓ ✗ SGX1/SGX2 + MPX
MPTEE [145] ✗ ✓ ✗ ✓ SGX1/SGX2 + MPX

Chancel [our],[35] ✓ ✓ ✓ ✓ SGX1/SGX2

multiple clients to be isolated in different enclave processes. Multiple enclave processes

are inefficient—they significantly increase memory consumption (due to redundant copies

of common data) and reduce performance (§4.5.1). Moreover, Ryoan requires advanced

memory protection features—dynamic page permissions—which are only implemented in a

few SGX CPUs that support SGXv2. This makes it challenging to deploy Ryoan. In contrast,

Chancel implements thread isolation to efficiently handle multiple clients in a single enclave

and it can be deployed without advanced hardware features.

Occlum [74] and MPTEE [145] are also systems that implement SFI inside SGX enclaves.

Unlike Chancel, these systems does not consider adversarial code in the program, instead

they only protect data from unintended bugs introduced by benign program developers.

Hence, adversarial code can divulge sensitive client data through direct disclosure (e.g.,

transmitting information outside the enclave) or covert channels. Moreover, neither of these

systems efficiently support multiple clients and their SFI implementations depends on a

deprecated hardware feature, Intel Memory Protection eXtensions (MPX) [156], [157].

VC3 [75] aims to securely process data under the Hadoop [158] framework. It offers a

compiler invariant of SFI to prevent data leakage through unsafe memory accesses but only

addresses benign mistakes rather than intentional memory leakage since it does not consider

adversarial programs. Also, unlike Chancel, it is not designed for multi-client scenarios

in a single enclave, making it inefficient like Ryoan and other systems. Furthermore, Rohit

et al. [159] introduce a runtime library that offers an interface to communicate outside the

84

enclave securely. They provide a framework to automatically verify applications and ensure

that they meet confidentiality guarantees. However, their model does not cater to covert

channels or consider multi-client scenarios.

SGX-SHIELD [34] also implements a custom SFI implementation to enable in-enclave

Address Space Layout Randomization (ASLR). However, SGX-SHIELD is concerned with

a different threat model (i.e., memory vulnerabilities). Therefore, it does not prevent data

leakage from adversarial programs.

Beyond enclaves, SFI has been used in many different contexts. The idea itself was

introduced by Wahbe et al. [123] as a novel way to isolate faults in a software-based manner.

XFI, BGI, and LXFI [160]–[162] design further SFI mechanisms to isolate Windows kernel

modules. Among non-enclave SFI research, the design of Chancel is inspired by Native

Client (NaCl) [133], [163]. However, Chancel identifies and overcomes various challenges to

propose an SFI scheme that is both SGX-compatible and supports multi-client isolation in a

single principle, without relying on strict hardware requirements (e.g., Intel MPX).

4.6.2 Supporting Multi-Hop Adversarial Programs

The current implementation of Chancel assumes a self-contained program that only

communicates with the client (except during setup and update steps as mentioned in §4.2.2).

However, many cloud-based programs contain multiple process hops, where results from one

application process is passed to another process before returning the result to a client. For

instance, imagine a web server that is designed to obtain additional pages from a separate

database. Transforming such programs to a self-contained version could be non-trivial.

In such cases, Chancel can support such programs by having each application process

sandboxed in Chancel enclaves and implementing information-flow tracking labels between

sandboxes [125]. Such an extension also requires carefully mitigating covert channels through

information passed between sandboxes (e.g., normalize size and timing of messages).

85

4.6.3 Strengthening Protection against Covert Channels

Chancel addresses many high-bandwidth channels (e.g., size and intervals of encrypted

messages). Nevertheless, covert channels remain a long-standing problem for all computer

systems and merit additional investigation for Chancel. In particular, it would be very useful

if a future system could monitor different channels (e.g., micro-architectural components,

system calls, encrypted messages, etc.) and rank the amount of data leak through them.

This could help Chancel focus on the most critical covert channels.

4.7 Summary

Chancel ensures protects user data from adversarial services using Multi-Client SFI

(MCSFI). Chancel supports thread isolation and shared memory enforcement, thereby

ensuring secure servicing of multiple clients in different threads of an enclave while permitting

the secure sharing of non-sensitive data. Our evaluation showed that Chancel outperforms

a multi-process sandbox by 4.06 − 53.70× while providing strong security guarantees.

86

5. SOFTWARE OBFUSCATION TO DEFEAT MEMORY

SIDE-CHANNELS

Cryptographic program obfuscation [164], [165] is a popular construct with important cloud

applications towards protecting sensitive user data, as well as the intellectual property of

software owners. Under program obfuscation, a sender, who owns a program, transforms it to

create an obfuscated version of the program which is: (a) functionally identical to the original

version, and (b) runs for a fixed time before returning an output. The sender then sends this

obfuscated program to a receiver. The receiver runs the obfuscated program within a black

box-like environment — the receiver cannot see (or infer) intermediate computational results

and/or footprints from the obfuscated program. Consequently, even though the receiver can

run the obfuscated program using any input of their choice, they will learn nothing about

the program or be able to distinguish the program from another that is similarly obfuscated.

Therefore, as far as the attacker is concerned, they are interacting with a virtual black box,

which takes an input and gives the intended output.

In the past, there has been significant theoretical research [166]–[169] in achieving program

obfuscation, but with crippling performance overheads. Recently, there has been a systematic

breakthrough, HOP [100], in achieving program obfuscation through relaxed assumptions of

trust on the underlying hardware. However, HOP relies on special-purpose hardware, severely

limiting its deployment potential.

We asked ourselves the question: can we leverage trusted execution environments (TEEs)

like Intel SGX to achieve the strong guarantees of program obfuscation on commodity hardware?

As it turns out, it is non-trivial to support program obfuscation using Intel SGX. In particular,

SGX suffers from critical memory side-channels (§2.5) that break a key assumption in program

obfuscation—the program should be run in a black-box-like environment—allowing attackers

to observe both code execution and data access patterns within the SGX enclave. Moreoever,

enclave environments do not have access to a secure clock (the CPU timer information is

controlled by the operating system), making it challenging for a computation to execute for a

fixed amount of time, another key requirement of program obfuscation schemes.

87

This chapter addresses the aforementioned challenges to take a significant stride towards

commodity program obfuscation. Initially, this chapter outlines a program obfuscation

approach that can be readily-adopted for legacy programs written for SGX environments (§5.1).

Using this approach, we designed Obfuscuro (§5.2). Our thorough security analysis (§5.4)

of Obfuscuro shows that it prevents information leak through both access pattern-based

and timing-based side-channels—achieving program obfuscation. On the performance side,

Obfuscuro incurs an average overhead of 51× over native SGX execution for our custom

benchmarks (§5.5), several orders of magnitude faster than existing cryptographic research

that achieves program obfuscation on commodity hardware (§5.6.1).

5.1 Approaching Obfuscation using Scratchpads and Instrumentation

SGX provides a partial black-box environment for program obfuscation—the attacker

cannot directly access contents of programs running inside enclaves (§2.4.7). However, SGX

suffers from memory side-channel limitations (§2.5) and lacks access to a trusted timer source.

Therefore, any system attempting to realize program obfuscation using SGX must answer

the following three questions — (a) how to execute a target program’s code inside an enclave

without leaking memory access patterns?, (b) how to provide secure access to data regions

(e.g., stack, heap etc.) without leaking memory access patterns?, and (c) how to ensure that

the program leaks no information through its execution time?

The answer to (a) and (b) lies in the design of fixed scratchpad regions for code execution

and data access—each code block in the program is executed from a code scratchpad, while

data block is accessed from a data scratchpad. The scratchpad regions are both a single cache-

line (i.e., 64 B), which is the smallest observable granularity of non-branching side-channels

(e.g., using caches, page tables, etc.). To secure the code scratchpad against branching

side-channels (e.g., Branch Shadowing [15]), Obfuscuro ensures that all branches to/from

the scratchpad are at fixed locations. All these scratchpad protections nullify memory side-

channels because from a memory side-channel attacker’s perspective, each code execution and

data access from a scratchpad region looks indistinguishable.

88

The scratchpad design raises two important questions — (i) how to support code execution

at the granularity of cache-line and normalized branches within the scratchpad?, and (ii)

how to securely fetch code and data blocks onto the scratchpads without leaking information

through side-channels? Scratchpad code execution is supported by instrumenting (e.g., using

a compiler) the target program’s code into 64 B basic blocks with branch instructions at fixed

offsets within each basic block. To securely fetch code and data blocks onto the scratchpad

regions without leaking information through side-channels, a system should utilize Oblivious

RAM (ORAM) (§2.6) to hide access patterns. As shown by several previous work [20], [38],

[85], the ORAM controller must be further provisioned to avoid leaking information through

side-channels (more details in §5.2.1).

Finally, to counter the threat of timing channels and consequently answer (c), the execution

time of the target programs is fixed by extending the program’s execution using dummy (but

indistinguishable) code blocks. The enclave stops only after the a fixed number N of code

blocks have been executed. As we show in §5.4.2 , each code block execution takes the same

time, resulting in execution-time-normalization for the program.

5.2 Obfuscuro Design

Leveraging the approach outlined in §5.1 , we designed Obfuscuro, the first system to

achieve program obfuscation on commodity SGX hardware. The core design features of

Obfuscuro can be summarized as follows.

• Secure ORAM scheme. Obfuscuro implements its ORAM controller using data obliv-

ious algorithms, protecting itself from side-channel attacks (§5.2.1). Also, Obfuscuro

implements a register-based stash which improves on the existing side-channel resilient

ORAM implementations [20], [85].

• Repurposing native programs. Obfuscuro transforms native programs (§5.2.2)

through memory layout transformation and virtual address translation in order to bridge

the semantic gap between native program execution and ORAM-based operations.

89

Code ORAM

Controller

Data ORAM

Controller

C-Pad

D-Pad

stash

pos. map

Register-based

Data-oblivious

Code access

Retrieve

code block

Retrieve

data block

C-Tree

D-TreeData access

Fetch data

Actual

data

access

Fetch code &

jump

1
2

3

1

2

3

4

64B

64B

Code execution model (§V-D) Data access model (§V-E)

5
Flush data

stash

pos. map

Register-based

Data-oblivious

§V-B

§V-C

§V-B

§V-C

ORAM Bank

Data access jmp

Code access jmp

Figure 5.1. Obfuscuro’s system-level overview.

• Code execution model. Obfuscuro ensures that the code execution (of a target

program) is exclusively performed within a fixed location, C-Pad (§5.2.3). All instructions

are loaded onto the scratchpad using ORAM operations and executed from the start to

the end of the scratchpad (1 ∼ 3).

• Data access model. Obfuscuro ensures that all data access is performed at a data

scratchpad, D-Pad, a fixed memory location updated using ORAM operations (§5.2.4).

The target program’s read and write operations are performed at the same memory location

regardless of execution context (1 ∼ 5). Obfuscuro also ensures that the data access is

always performed once per C-Pad, normalizing the number of data accesses patterns.

• Start-to-end obfuscation. Obfuscuro ensures that the target program continues

executing till a predefined time to mitigate timing-based channels (§5.2.5). Obfuscuro

achieves this by instrumenting the target application to introduce dummy memory blocks,

after the termination of the intended logic.

Workflow. The input to Obfuscuro is the source code of a target enclave application.

Using the input, Obfuscuro produces an instrumented executable, fully loaded with a

runtime library (containing the ORAM controller). During initialization, the runtime library

populates the code and data blocks into different ORAM trees. Afterwards, the ORAM

controller extracts the first code block to be executed, loads it onto the code scratchpad,

90

and ensures execution starts from the beginning of code scratchpad. When the code block

performs a branch instruction, the branch instruction is replaced with new jump instruction

to the ORAM controller for codes. Then, the ORAM controller loads the required code block

onto the code scratchpad using ORAM operations, and jumps back to the beginning of the

code scratchpad. While accessing data (i.e., global/heap/stack objects), the access instruction

is replaced with new jump to the ORAM controller for data. The ORAM controller for data

always loads the corresponding data block onto the data scratchpad using ORAM operations,

and returns the appropriate address (i.e., base address of D-Pad + access offset). Finally,

Obfuscuro ensures that the program keeps executing till a certain time period has elapsed

before returning an output to the user thereby ensuring complete start-to-end obfuscation.

5.2.1 Secure ORAM Scheme

This section explains how Obfuscuro designs a secure ORAM scheme to ensure oblivious

program execution. First, Obfuscuro places both the ORAM controller and trees within an

SGX enclave. Second, in response to side-channel threats against SGX enclaves, Obfuscuro

secures working mechanisms of its ORAM controller, i.e., ensuring that each operation is

branch-free (to mitigate the risk of branch-prediction) and data-independent (to mitigate the

risk of page table and cache attacks). In this regard, Obfuscuro constructs two stash designs:

CMOV-based and register-based stash for the ORAM controller. Furthermore, Obfuscuro

employs a data-oblivious population scheme to securely populate the ORAM trees.

ORAM controller. Obfuscuro secures the two main data structures of the ORAM

controller, i.e., position map and stash, against access-pattern leakage. By securing access

onto these data structures, Obfuscuro also ensures that its code is devoid of conditional

branches (i.e., secure against branch-prediction attacks).

Oblivious position map. The position map contains sensitive information regarding

ORAM blocks, i.e., mapping from block-id to the leaf in ORAM tree. An attacker can leak

sensitive information about program execution by observing the access patterns onto the

position map. Obfuscuro employs data oblivious access mechanism to prevent information

leakage from the position map. The key security primitive of this mechanism is in leveraging

91

ORAM

Controller

C-pad or

D-pad

DRAM

Genuine access Bogus access

Stash block Target block

Regular arraya) cmov-based

stash

b) Register

only stash

CPU
AVX registers

Figure 5.2. Register-based stash versus CMOV-based stash. CMOV-based stash
has to access an entire array placed in DRAM whereas register-based stash can
directly retrieve an item from CPU’s AVX registers.

cmov instruction in x86 to stream through the entire data structures. Similar to Raccoon [38],

we devise a wrapper function for the cmov instruction to add additional bogus memory access.

Depending on the flag value provided to the wrapper function of the cmov instruction, the

function performs either the actual memory write (if the flag is true) or a bogus memory

access without writing (if the flag is false).

Next, we describe how Obfuscuro secures access onto the stash. Naively accessing

the stash would leave memory traces that can be used to distinguish between real and

dummy blocks in the extracted ORAM tree path. Obfuscuro can utilize two different stash

designs, CMOV-based stash and a novel register-based stash. While both completely secure

stash accesses, it imposes different performance characteristics depending on the underlying

hardware architecture.

CMOV-based stash. Obfuscuro can use data-oblivious access (using CMOV) to stream

through the complete stash memory region (Figure 5.2 -a), similar to previous schemes [20],

[85]. As a result, the CMOV-supported access guarantees that the attacker learns nothing

from the leaked access patterns as the attacker observes accesses onto all stash indices. One

caveat of this approach is that the stash is a large memory region, i.e., >= Blog2N bytes;

where B is the block-size in bytes and log2N is the size of the ORAM tree containing N

nodes. Therefore, using CMOV within the stash can result in performance overhead as noted

by previous works and reported in §5.5 . Figure 5.3a shows a code snippet illustrating how

the CMOV-based stash functions.

Register-based stash. Obfuscuro also designs a novel register-based stash, which

leverages Advanced Vector Extensions (AVX) instruction set along with the XMM and

92

1 void retrieve_from_stash_cmov(void* cpad, int required_blk) {
2 bool flag = false;
3

4 for (int i = 0; i < NUM_STASH_BLOCKS; i++) {
5 // Check the validity of the condition, i.e.,
6 // is this the block to retrieve from the stash
7 flag = ((stash[i].blocknum == required_blk));
8

9 // Based on the flag, either perform a real or a dummy copy
10 x86_cmov(cpad, stash[i].memblk, flag);
11 }
12 }

(a) CMOV-based stash
1 ; %rsi points to the base address of ORAM tree block.
2 movaps (%rsi), %xmm0
3 vinserti128 $0x0, %xmm0, %ymm5, %ymm5
4 add $16, %rsi
5 movaps (%rsi), %xmm0
6 vinserti128 $0x1, %xmm0, %ymm5, %ymm5
7 add $16, %rsi
8 movaps (%rsi), %xmm0
9 vinserti128 $0x0, %xmm0, %ymm6, %ymm6

10 add $16, %rsi
11 movaps (%rsi), %xmm0
12 vinserti128 $0x1, %xmm0, %ymm6, %ymm6

(b) Register-based stash

Figure 5.3. Implementation snippets of Obfuscuro’s stash access:
(a) Obfuscuro obliviously retrieves a block from the stash using CMOV; and
(b) Obfuscuro leverages YMM registers to obliviously access stash indices.
As can be observed, there are no conditional branches and/or data-dependent
access in both cases.

YMM registers. We collectively refer to these registers as AVX registers. The key idea is to

reserve these registers for ORAM stash only and restrict the program and associated libraries

from using them. An operation performed on any CPU register does not imprint traces on

memory-related units (cache, TLB/MMU, DRAM etc.) and is therefore oblivious to even

privileged attackers such as the OS (Figure 5.2 -b). Therefore, Obfuscuro copies each tree

block onto a set of AVX registers and performs all required operations on these registers. This

limits the involvement of CMOV and therefore provides a performance improvement of 30 − 40%

as compared to the CMOV-based stash as shown in §5.5 . Figure 5.3b shows an example of

where the memory located at rsi is moved in chunks of 32-bytes into ymm5 and ymm6.

93

However, there are two things to consider while opting for the register-based stash over

the CMOV-based stash. Firstly, the register-based stash limits the involvement of AVX registers

for other important operations such as AES-NI instruction set and if the enclave program

requires these operations, it would be better suited to use the CMOV-based stash. Secondly,

current desktop hardware only supports AVX2 [170] which provides 16 YMM registers of 32 B

memory each, totaling to 512 B of memory for the stash. This size is enough for small ORAM

tree size (e.g., 4-8KB) but is insufficient for larger tree sizes. However, the AVX-512 [171]

instruction set architecture introduces larger AVX registers (ZMM registers), currently present

on high-end hardware [172], [173]. The ZMM registers are 32 registers in total, with each

being 512-bit wide and can support a total stash size of 2-kilobytes which increases our tree

size that can be supported from 8KB to 256MB.

Workflow. We now illustrate how Obfuscuro performs a secure ORAM access. First,

Obfuscuro uses CMOV to scan through the whole position map to find the required ORAM

block. Then, Obfuscuro sequentially copies the tree blocks to either memory (if CMOV-based

stash is used) or the registers (if the register-based stash is used). Afterwards, Obfuscuro

performs an oblivious retrieval of the required block from the stash. In the case of CMOV-based

stash, it performs a sequential CMOV access on each individual stash index and in the case

of register-based stash, it performs an inline assembly move operation to move it from the

register to the memory. After performing the relevant tasks on the ORAM block, we rewrite

the block back using similar approach as mentioned above.

ORAM bank. Obfuscuro places the ORAM bank, comprising of the ORAM trees,

within the enclave memory. Obfuscuro performs secure ORAM tree population to mitigate

side-channel leakage.

Allocation. The ORAM trees are allocated as global arrays within the enclave program’s

memory space (i.e., within the EPC). Obfuscuro can avoid encrypting ORAM trees, which

is an important step in the ORAM protocol, because the Memory Encryption Engine (MEE)

in SGX [174] implicitly performs the encryption. There are two things to note here: (a)

the allocation step does not leak any important information to the attacker apart from the

location of the ORAM tree (which is public information in the ORAM attack model) and (b)

94

the size of the code and data trees should be carefully considered prior to allocation since as

per Path ORAM’s design, the size of the trees cannot be dynamically adjusted.

Population. As per Path ORAM’s requirement, the population of each block into

the ORAM tree should be performed as a regular ORAM access. To further illustrate, the

population of code and data blocks in C-Tree and D-Tree respectively, is carried out as follows:

(a) Obfuscuro picks a block which is to be added to the ORAM tree. (b) Obfuscuro

determines a random position to store the block within the ORAM tree. The random position

is determined using the RDRAND hardware instruction, which only involves the trusted CPU.

(c) Obfuscuro performs an ORAM access onto the path that corresponds to the selected

position. At first glance, this might leak some information to the attacker. However, since

this is an ORAM access, the final destination of the block will be randomized within the

path once more which ensures strong secrecy. (d) Obfuscuro repeats the above steps until

all real blocks are populated to the ORAM tree.

5.2.2 Repurposing Native Programs

In order to bridge the semantic gap between native and oblivious execution, Obfuscuro

transforms the target program’s memory layout into an ORAM-compatible memory layout,

provides virtual address translation to support dynamic memory relocation, and introduces

scratchpad regions for code execution and data access.

Memory layout transformation. Obfuscuro separates the target program into two

sections, i.e., code and data, and allocates a dedicated ORAM tree for each section, namely

C-Tree for code and D-Tree for data. Obfuscuro can estimate the size of the C-Tree since

the program’s code size remains static. Since the size of dynamically allocated data (e.g., heap

and stack) cannot be precisely estimated, Obfuscuro sets a maximum limit on the size of

the D-Tree. This is not a limitation since SGX programs themselves are initialized with a user-

provided stack and heap size. Code blocks are prepared during the compilation phase, where

the code is divided into blocks of the same size and filled with instrumented instructions by

Obfuscuro (more details in §5.2.3). During program initialization, Obfuscuro populates

both the code blocks and data blocks into the C-Tree and D-Tree respectively. The initialized

95

data objects (i.e., global variables) are filled in their corresponding blocks whereas the blocks

corresponding to uninitialized data blocks are zero-initialized.

Virtual address translation. All memory accesses in a traditional program are realized

through virtual addresses, while ORAM operations deal in blocks of the ORAM tree. To

reconcile this, Obfuscuro performs on-the-fly translation of virtual addresses into ORAM

block indices. Obfuscuro linearly maps the virtual address space of a program into ORAM

blocks and performs bitwise right-shift to secure translation.

Heap management. Since SGX enclaves do not have support for dynamic memory

allocation, the maximum heap size required for the application has to be decided at compilation

time. Obfuscuro provides a wrapper for the malloc and free function calls, i.e., malloc_ob

and free_ob, which are responsible for managing the heap memory (alongside the metadata)

requested by the enclave program. In particular, malloc_ob obliviously picks a block from

the D-Tree which is already provisioned with blocks to handle heap memory requests during

program initialization. The wrapper function returns the virtual address corresponding to

the selected block. Later, when free_ob is called, it deallocates the heap memory region,

figures out which blocks from the D-Tree are now free and tags them as such.

Scratchpad. In traditional ORAM, the program can simply access the extracted block from

the stash. However, doing so within the SGX environment will leak a considerable amount of

information. To deal with this problem, Obfuscuro prepares two fixed locations (determined

during program initialization) of fixed size (one cache line, i.e., 64 B) to access code and data

blocks, called C-Pad and D-Pad respectively. These memory regions are provisioned with

SGX-specific defenses (refer to §5.2.3 and §5.2.4). After Obfuscuro performs oblivious

operation and locates a target block in stash, Obfuscuro copies the target block in stash

to scratchpad. Note that this copy from stash is oblivious (as described in §5.2.1). Therefore,

by normalizing access location and size through scratchpads, Obfuscuro can successfully

hide actual memory location and the attacker can not infer that information. We provide

more details as to how this is accomplished in the next two sections.

96

5.2.3 Code Execution Model

Obfuscuro ensures the following three security properties in its code execution model:

C1) Code execution is always performed within the C-Pad

1
 ; C2) Code access instructions

(i.e., branch instructions which impact the control-flow of a program, including call, return,

unconditional branch, and conditional branch instructions) are only executed at a fixed

location (i.e., the end of the C-Pad); C3) All code access instructions are replaced with an

instruction jumping to a runtime function (i.e., code_oram_controller), which performs an

ORAM operation to fetch the code block required.

The above mentioned security properties of Obfuscuro protect code execution from

access-based side-channel attacks. Since the size of the C-Pad is the same as the minimum

granularity of page table and cache-based attacks (i.e., 64 B), C1 prevents these attacks

from gaining any meaningful information. C2 and C3 prevent a branch prediction attack,

because all the control-flow changes are made from the same location (i.e., the end of C-Pad

as specified by C2) to the same destination (i.e., code_oram_controller as specified by C3),

irrespective of the semantics of the original branch instruction.

To meet the property C1, Obfuscuro restricts all basic blocks to be at the size of C-Pad

(i.e., 64 B) during the compilation phase. Specifically, Obfuscuro breaks up larger basic

blocks into smaller ones equaling the size of the C-Pad. If the size of the basic block is

smaller than the C-Pad, Obfuscuro inserts nop instructions to fill the space. To meet

the properties C2 and C3, Obfuscuro replaces all branch instructions with a sequence of

equivalent instructions invoking code_oram_controller. This invocation is always performed

using jmp instruction to code_oram_controller, which is aligned at the end of the basic block.

For example, Figure 5.4a shows how Obfuscuro replaces a unconditional branch in-

struction. Given the original jmp instruction, Obfuscuro first instruments an instruction

storing the virtual address of the jump target in R15. Then, Obfuscuro inserts a jmp

instruction to the code_oram_controller. The code ORAM controller computes the ORAM

block index using the virtual address stored in R15 (as mentioned in §5.2.2), and retrieves the
1

 ↑ The C-Pad is a writable and executable region but it can be secured against attacks by employing SFI
similar to SGX-Shield [34] and/or dynamic page protection available in SGXv2.

97

1 ; Before
2 jmp jump_target
3

4 ; After
5 mov R15, jump_target ; Pass jump_target through R15
6 jmp code_oram_controller ; code_oram_controller loads the code
7 ; block to C-Pad and then jumps to the
8 ; beginning of C-Pad.

(a) Unconditional branch (code access)
1 ; Before
2 mov 4(RAX), RBX ; Store RBX at where (RAX + 4) points to
3

4 ; After
5 lea R15, 4(RAX) ; Pass the store address through R15
6 mov R14, after_fetch ; Pass the return address through R14
7 jmp data_oram_controller ; data_oram_controller fetches data block
8 ; and returns address of (D-Pad + offset)
9 ; through R15

10 after_fetch:
11 mov (R15), RBX ; Write a value RBX to (D-Pad + offset)

(b) Store (data access)

Figure 5.4. Instrumentation on code and data access.

required code block from the C-Tree through an ORAM access. Afterwards, Obfuscuro

overwrites C-Pad using the obtained code block and resumes execution from the beginning

of C-Pad. In this manner, Obfuscuro translates all types of control flow instructions,

including conditional jump, function call, return.

5.2.4 Data Access Model

Obfuscuro ensures the following security properties in the data access model: D1) Data

access is always performed within the D-Pad of size 64 B; D2) Data access instructions are

only executed once per C-Pad at a fixed location (i.e., the beginning of the C-Pad); and D3)

All data access instructions are replaced with an instruction jumping to a runtime function,

data_oram_controller, which performs an ORAM operation to load the corresponding data

block onto the D-Pad. Similar to the code execution model (§5.2.3), these properties prevent

cache and page table attacks. This is because attackers will always observe the same data

access patterns onto D-Pad.

One thing to note here is that D2 enforces each code block to perform a single jump to the

data_oram_controller. This restriction is partly due to the constraint of the 64-byte code

98

block. In particular, Obfuscuro’s data access instructions take 28-bytes and the code access

instructions (mentioned in §5.2.3) take 20-bytes. Since a code block requires at least one code

access instruction, i.e., to access the next code block, it leaves room for only a single data

access. However, as a result of this, Obfuscuro ensures that there is a normalized number

of data access per code block, which cannot be exploited by an attacker. Obfuscuro also

prevents branch-prediction attacks by placing the data access instruction at a fixed location.

If a certain code block does not require a data access, Obfuscuro performs a dummy data

access in order to portray the same memory footprints for each block.

Unlike the code execution model, the data access model allows offset-based access within

the D-Pad such that a memory access can be directly performed at any location within

D-Pad. This offset-based access is secure against memory-based side-channel attacks since

the D-Pad is the size of the minimum granularity of attack resolution, i.e., 64 B. In order to

reflect changes made by the enclave code on the D-Pad back to the ORAM tree, Obfuscuro

flushes the extracted data block after performing required memory access.

For example, Figure 5.4b illustrates how Obfuscuro instruments the store instruction.

Similar to the code execution model, Obfuscuro uses the reserved R15 register to pass the

virtual address (i.e., the memory operand of a store instruction) to the data_oram_controller.

Then the data_oram_controller translates the virtual address into the corresponding ORAM

block index, and updates D-Pad after extracting the data block using an ORAM access.

Afterwards, the data_oram_controller returns the virtual address through R15, which points

within D-Pad (i.e., p1 + p2, where p1 is the base address of D-Pad and p2 is the offset within

the D-Pad). Therefore, the enclave program correctly performs the store instruction using

R15, and the data block is later flushed back into the D-Tree.

5.2.5 Start-to-End Obfuscation

In the previous subsections, we explain how Obfuscuro ensures that the target program’s

code blocks perform a normalized sequence of operations, irrespective of their original logic.

However, that is not enough for complete obfuscation. In particular, there is one further

distinguishing factor in the program, i.e., execution time of the program. For example,

99

target_main()

{

[original_function_body]

*V = ret_val

continuous_dummy()

}

entry()

{

RT_return_addr = R

target_main ()

R:

ret_val = data_oram_controller(V)

}

code_oram_controller (code_block_id)

{

*C-Pad = obtain_oram_block (code_block_id)

flag = (num_executed_blocks < limit)

num_executed_blocks++

CMOV(flag, C-Pad, RT_return_addr)

jmp C-Pad

}

Instrumented Target Application

Obfuscuro Runtime Library

1

2

3

4

5

6

Original Target Application

target_main()

{

[original_function_body]

return ret_val

}

entry()

{

ret_val = target_main()

}

continuous_dummy()

{

while(true)

{

}

}

Obfuscated reigion Return valueReturn

Figure 5.5. Obfuscuro’s continuous execution.

running different programs or just running the same programs with different inputs can result

in drastically different execution times, which can be abused by an attacker.

Obfuscuro handles both of these cases to ensure that, irrespective of program logic,

the obfuscated execution always terminates after a fixed amount of time. In order to fix

the execution time, Obfuscuro inserts dummy code blocks within a native program’s code

ensuring that the program keeps executing even after completing the intended program logic.

Obfuscuro instruments the target application as shown in Figure 5.5 . As shown in the

figure, Obfuscuro injects a dummy function called continuous_dummy into the program.

The dummy function is meant to execute a while loop indefinitely, ensuring that program

will not terminate of its own will. As mentioned in §5.2.3 , each code access will go through

the code_oram_controller. Therefore, Obfuscuro can stop the program execution after a

certain predefined number of code blocks, even if the dummy function never stops executing.

However, to do so and provide the required output back, Obfuscuro needs an address to

jump to after reaching the limit on code blocks.

100

Now, we explain the workflow of the instrumented target program. The application code is

defined as target_main whereas the enclave officially starts execution from the entry function

(1). At the start of the entry, Obfuscuro ensures that the return address R is passed to the

runtime library by writing RT_return_addr (2). Afterwards, Obfuscuro starts running the

target_main function and writes its output to a global memory within the program (3). It is

worth noting that this write will also be achieved through an ORAM access (as per all data

access mentioned in §5.2.4) and is therefore oblivious to the attacker. Then, Obfuscuro

invokes continuous_dummy (4), ensuring that the program continues executing.

As the program executes, it will jump to the code_oram_controller on each code access.

At this time, Obfuscuro checks that the predefined limit on the number of code blocks has

been reached or not. If the limit has been reached, the program jumps back to RT_return_addr

instead of jumping to the C-Pad (5). At this point, we completed the execution of original

program logic but have not obtained the output. To get the output, Obfuscuro calls

the data_oram_controller to extract the output from the D-Tree (6). Through the above

mentioned steps, Obfuscuro ensures that there is a start-to-end obfuscation of the target

program, which always executes the same number of code blocks and thus terminates after a

fixed amount of time.

5.3 Implementation

We prototyped Obfuscuro using the LLVM compiler suite. We modified the LLVM

backend to emit 64B of code blocks as well as to instrument code and data access instruction.

Additionally, we implemented a compiler runtime library for ORAM controllers. In the LLVM

backend, especially the assembly emitter, we arranged a new code emitter to measure the size

of instructions in parallel with default emitter. We also utilized built-in machine code builder

to redirect the codes and data accesses to the runtime ORAM controllers. The compiler

runtime library includes the implementation of data-oblivious ORAM, and interfaces for

LLVM backend and applications to employ it. The oblivious stash access is implemented

with vinserti128, and vextracti128 AVX register manipulating instructions in the assembly

language level. The oblivious position map access is based on the CMOV instruction, and we

101

Code ORAM

controller

Code execution (C-Pad)

Data ORAM controller

1
a

b

3

c d

2
e

D-Pad

Fixed offset

Interaction

Component#

#
4

Figure 5.6. Data oblivious execution cycle of Obfuscuro

Table 5.1. Security analysis of secure ORAM implementation used by the
code and data controller.

ORAM operations Sensitive info. Obfuscuro defense Observed traces by adversaries

1. Locating corresponding pos-map Pos-map offset CMOV-scanning read Sequential read traces on pos.map
element

2. Extracting requested ORAM - - Sequential copy traces from requested
path to stash ORAM path to stash

3-a. Copying ORAM block in stash Stash offset CMOV-scanning copy Sequential copy traces from stash
to scratchpad (CMOV-based) to scratchpad

3-b. Copying ORAM block in stash Stash offset Register operations No traces since registers are
to scratchpad (Register-based) oblivious to memory

4. Updating pos-map with new Pos-map offset CMOV-scanning write Sequential write traces on pos.map
leaf number

5-a. Writing back scratchpad to stash Stash offset CMOV-scanning write Sequential write traces from
(CMOV-based) scratchpad to stash

5-b. Writing back scratchpad to stash Stash offset Register operations No traces since registers are
(Register-based) oblivious to memory

6. Writing back stash to requested - - Sequential write traces from stash
ORAM path to requested ORAM path

generalized its operation to variable lengths. We also changed the enclave loader of the Intel

SGX SDK to make C-Pad using SGX’s EADD instruction.

In total, Obfuscuro introduces 3,117 LoC in LLVM backend, 2,179 LoC in compiler

runtime library, and 25 LoC in Intel SGX SDK. Its implementation is available at https:

//github.com/adilahmad17/Obfuscuro .

5.4 Security Analysis

This subsection provides a security analysis of Obfuscuro. In general, there are two

ways an attacker can steal information from SGX enclaves using side-channels. Firstly, an

attacker can abuse observed access-patterns to infer some information about the program

and/or its input. Secondly, an attacker can perform timing-based attacks to leak some

102

https://github.com/adilahmad17/Obfuscuro
https://github.com/adilahmad17/Obfuscuro

information. We provide a systematic security analysis of Obfuscuro against both of these

attack avenues.

5.4.1 Access Pattern Attacks

As Obfuscuro is composed of multiple components to realize obfuscated program

execution, we start by showing the security properties of the individual components of

Obfuscuro. Then we show how these components interact with each other and show that

these interactions are completely oblivious as well. Finally, we present the results of an

empirical study showing that Obfuscuro achieves access pattern obliviousness.

Obliviousness of individual components. Obfuscuro introduces new components to

legacy programs in order to achieve obfuscated execution, as shown in Figure 5.6 . In the

figure, we show the four components of Obfuscuro (labeled as 1 ∼ 4). We comment on

each component individually in the following.

1 Code ORAM controller: The code ORAM controller takes the virtual address

of next required code block as input, and it places the corresponding code block on the

C-Pad. An attacker cannot decipher the virtual address because Obfuscuro performs

secure computation based on this address. In particular, the address is first translated to a

specific ORAM block using data oblivious right-shift operation (§5.2.2), which returns the

corresponding block number in the ORAM tree. Then, Obfuscuro finds the corresponding

leaf for this block through sequential CMOV-based scanning of the position map.

For the stash, Obfuscuro uses two variants, a CMOV-based and a register-based. The

CMOV-based stash performs CMOV-based memory access similar to how Obfuscuro shields

the position map. This includes both (a) while copying the required block from the stash to

the C-Pad or D-Pad and (b) while writing back the blocks from the C-Pad or D-Pad to the

stash. For the register-based stash, the AVX registers are retrofitted as stash space. Since all

operations on the AVX registers are oblivious to the underlying system, we can perform a

direct memory access to/from a specific register while ensuring that no information is leaked.

Please refer to Table 5.1 for detailed operations performed by the code controller.

103

2 C-Pad: Obfuscuro ensures that the C-Pad has a fixed location (determined at the

program loading) and a fixed size (i.e., 64B), and ensures that all oblivious code execution

occurs from this location. Since 64B is the cache-line size (i.e., the finest visible granularity

through access pattern-based side-channel attacks), the attacker learns no useful information

to infer semantics during the C-Pad execution. In other words, as Obfuscuro runs the

target program, the attacker will keep observing the same memory activity over C-Pad, which

is completely independent of the code block being executed.

3 Data ORAM controller: The data ORAM controller takes the virtual address of data

objects as input, and places the corresponding data block to D-Pad. The data controller

follows the exact same workflow of the code controller except that it operates on the D-Tree

instead of the C-Tree. As previously shown for the code controller, the data controller also

does not leak any sensitive information.

4 D-Pad: The D-Pad is functionally and structurally similar to the C-Pad, except that

data access is performed on it and not code execution. Similar to the C-Pad, it has a fixed

location and the same size, thereby showing the same memory activity for each data access.

Oblivious interactions between components. The aforementioned components perform

five interactions between them (labeled as a ∼ e). We illustrate below how each of these

interactions is secure against access pattern-based attacks.

a Jump from Code ORAM controller to C-Pad after fetching code block: After

obliviously extracting a block from the C-Tree and copying it to C-Pad, the code controller

performs a single jump to the start of the C-Pad. This step only reveals that some code

block of a target program will now be executed, which entails no semantics behind the code

block being executed.

b Jump from C-Pad to Data ORAM controller for fetching data block: Each

code block (executing within the C-Pad) is strictly enforced to perform a single jump to the

data controller, because Obfuscuro normalizes the number of data access within each code

block to be exactly one (refer §5.2.4). Moreover, this jump is performed at a fixed offset

within C-Pad to mitigate the risk of branch prediction attacks. The target address of this

jump is also fixed, i.e., the start of the data controller’s logic.

104

1.0

-1.0

0.0

anagram

pi

mattrans-

pose
sum

fibonacci

palin-

drome

(a) Before (b) After

Figure 5.7. Confusion matrix for native access patterns vs. obfuscated
patterns shown by Obfuscuro.

c Return from Data ORAM controller to C-Pad: There is only a single jump from

the data controller to the C-Pad at a fixed offset within the C-Pad, after fetching/updating

the required data block on the D-Pad.

d Single D-Pad access: There is only a single access to the D-Pad per code block. Since

the size of the D-Pad is 64B, this access does not reveal offset information either.

e Jump from C-Pad to Code ORAM controller: Finally, Obfuscuro enforces that

there is only one jump from C-Pad to the code controller at a fixed address. The target

address of this jump is also fixed at the start of the code controller logic.

Empirical study. We also present the results of our empirical study on native and

obfuscated memory traces exhibited by various applications (Figure 5.7). For this study, we

chose six target applications: anagram, pi, mattranspose, sum, fibonacci, and palindrome.

These applications were chosen due to the diversity of their computational complexity. We

measured ten runs for each application. For each run, we collected a sequence of the addresses

accessed by the application. Using this data, we calculated the Pearson correlation value

between the test applications and populate a confusion matrix.

 Figure 5.7 -(a) shows the confusion matrix formed while comparing native execution

of the applications. Consider the (anagram, anagram) cell in Figure 5.7 -(a), the Pearson

correlation value is very close to 1 because this cell is comparing the memory traces between

105

ADD SUB IMUL IDIV pi sum fibonaccianagramNOP

of ORAM tree leaves = 128

19.5K

18.5K

17.5K

20.5K

800M

760M

840M

880M

Figure 5.8. (a) Distributions of code execution cycles of different types of code
blocks (y-axis) with 10%∼90% percentile intervals. (b) Distributions of total
execution cycles of various test programs (y-axis) with 10%∼90% percentile
intervals.

two native executions of the same program. On the other hand, the correlation value in the

(anagram, pi) cell is nearly 0 because their (native) access patterns are unique.

 Figure 5.7 -(b) shows the confusion matrix formed while comparing the execution of

obfuscated application (using Obfuscuro). In general, we observed no correlation between

native and obfuscated memory traces of the same application nor any correlation between

two executions of an obfuscated application.

5.4.2 Timing-based Attacks

Apart from access pattern attacks, a privileged attacker can also break program obfuscation

within Intel SGX by abusing timing channels. In particular, we expect following two ways

in which an attacker can abuse timing channels to leak information from Obfuscuro—(a)

observing the time it takes for individual code blocks (in C-Pad) to execute, and (b) observing

the total time it takes for an obfuscated program to execute. We individually show the

infeasibility of each of these timing channels.

C-Pad execution time. Timing differences in executing each code block (i.e., C-Pad) can

leak information about the execution semantic of the program. We statistically show that

this side channel is infeasible within Obfuscuro’s execution. The reason for this is that

the execution time for the data ORAM access (which is performed exactly once per C-Pad)

dominates the entire execution time of the C-Pad, and the time taken to perform the ORAM

106

access is independent to which data block it accesses. We conducted a statistical experiment

measuring CPU cycles in executing different classes of code blocks. We constructed five

different code blocks, including NOP, ADD, SUB, IMUL, IDIV code blocks. Each code block

initially jumps to the data controller to fetch a data block and the remaining space is filled

using one of the instruction type. Furthermore, we impose data dependencies within the

instructions to prevent out-of-order execution. We accumulated the execution times for each

class over 10,000 repetitions, and the distribution is shown in Figure 5.8 -(a). As illustrated,

the 10%∼90% percentile intervals for each type (marked as two broken lines) largely overlap,

which is hardly possible for an attacker to distinguish.

Program execution time. Obfuscuro ensures that a program continues executing until

its number of executed code blocks reaches a fixed user-configured limit. If the program’s

logic terminates before that number is reached, Obfuscuro continues executing dummy

code blocks to complete the number of C-Pad executions.

In order to show that this results in a uniform execution time irrespective of the target

program being executed, we performed an experiment on a diverse set of applications as

shown in Figure 5.8 -(b). In the experiment, we fixed the total number of C-Pad executions for

each of these applications to 30, 000 and measured the total execution time. We accumulate

100 executions for each program, and plot the distributions of them. As shown in the

figure, the ranges of total execution times for the chosen evaluation set largely overlaps,

despite computational diversity of these applications. The reason for this is that each C-Pad

execution, as illustrated before, is bounded at very similar execution times irrespective of

the underlying CPU instructions. Therefore, it is expected that the program execution time

(with same number of C-Pad executions) will also be very similar.

5.5 Performance Evaluation

This section reports Obfuscuro’s performance using micro-benchmarks, custom bench-

marks, and a real-world program (OpenSSL [175]).

Experimental setup. All our evaluations were performed on Intel(R) Core(TM) i7-6700K

CPU @ 3.40GHz with 64 GB RAM (128 MB for EPC). Our system ran Ubuntu 16.04 with

107

Table 5.2. Performance improvement achieved by using the AVX2 register
extensions as the ORAM stash compared to CMOV-based stash.

Data Size (Bytes) CMOV (cycles) AVX (cycles) Improvement

1,024 272M 206M 32%
2,048 521M 388M 34%
4,096 1,044M 741M 41%
8,192 2,050M 1,481M 38%

Linux v4.4.0.59. We performed our experiments using Intel SGX SDK [111] and the Intel

SGX drivers [143]. Due to the current unavailability of AVX-512 for SGX-enabled computers,

most of our experiments (having large code and data sizes) used CMOV-based stash. However,

we experimented with AVX2 registers to find the expected benefit of using the register-based

stash and have accordingly simulated the performance improvement achieved by register-based

stash on our target applications.

Micro-benchmark (comparison between CMOV-based and Register-based stash).

Through this micro-benchmark, we answer the question — what is the performance benefit

attained by using register-based stash over the CMOV-based stash? One caveat is that all our

experiments are based on the AVX2 registers but we expect the performance benefits to be

similar while using the AVX-512 registers. Table 5.2 attempts to illustrate the performance

benefit achieved by AVX extensions over CMOV while accessing data of variable size through

ORAM. The improvement is between 30–40%. Compared to the CMOV-based stash, since

the register-based stash performs just a single oblivious access onto the AVX registers, it

outperforms the CMOV-based stash.

Custom benchmarks. We ported benchmarking applications to Obfuscuro in order

to show the feasibility of obfuscated execution using commodity hardware such as Intel

SGX. In particular, we ported a diverse set of applications from simple ones like finding

the maximum within a given array to complex binary searching. Figure 5.9 -(a) shows the

performance shown by Obfuscuro while running the test set of applications described above.

We also simulate the performance of Obfuscuro-AVX (the version of Obfuscuro which

uses register-based stash. These simulated results are based on the experiments we performed

on AVX2. In general, the performance overhead of Obfuscuro-CMOV is on average 83×

108

S
lo

w
d

o
w

n
 (

ti
m

es
)

50

100

150

200

250

20 40 60 80 100

20

40

60

80

of encryptions
(a) General programs (b) OpenSSL

Obfuscuro-CMOV

Obfuscuro-AVX
Obfuscuro-CMOV

Obfuscuro-AVX

Figure 5.9. Performance benchmarks from our test applications. The average
performance overhead of Obfuscuro-CMOV is 83× and for Obfuscuro-AVX
(simulated) is 51×.

and Obfuscuro-AVX is 51× The overhead is attributed to: (a) code access control especially

dealing with branch-alignment, (b) data access normalization and (c) side-channel-resistant

ORAM-based access inside Intel SGX. Of these three causes, (c) is the dominant cost.

Real-world program (OpenSSL). OpenSSL is a popular cryptographic library; hence, we

ported it to Obfuscuro. Figure 5.9 -(b) shows OpenSSL’s performance—with and without

Obfuscuro—on a variable number of consecutive encryption operations using the AES

algorithm. As the number of encryptions increase, the difference between the performance

of Obfuscuro and native also increases. The reason is that Obfuscuro must perform a

fixed number of ORAM operations which adds significant overhead per-encryption whereas

the per-encryption overhead of native execution is very small.

5.6 Discussion

This section compares Obfuscuro to cryptographic program obfuscation solutions and

describes how to selectively apply its protections to ensure more efficient performance.

109

5.6.1 Comparison with Cryptographic Program Obfuscation

This section compares Obfuscuro with theoretical program obfuscation techniques,

which also construct a virtual black box (VBB). We note that, unlike Obfuscuro which

performs hardware-assisted secure remote computation, theoretical program obfuscation

techniques [176], [177] do not rely on specific architectural characteristics and thus are

designed to be resistant to memory-based side-channel attacks.

Two well-known cryptographic primitives, fully-homomorphic encryption (FHE) and

garbled circuits are combined to achieve program obfuscation, but both of them are limited in

terms of either performance and generality. In the case of FHE [178], its performance overhead

is in twelve orders of magnitude scale in string search [179] without ensuring integrity. On

the other hand, garbled circuits [180] incur a performance overhead of around four orders of

magnitude. Moreover, they cannot be used for generic programs (i.e., a loop structure in a

program cannot be supported), and the integrity cannot be guaranteed similar to FHE. To

ensure integrity, verifiable computing techniques can be adopted but verifiable computing

itself imposes huge overheads (i.e., about 104 times [181]).

In contrast to cryptographic solutions, Obfuscuro leverages memory protection and

remote attestation mechanisms of SGX. Obfuscuro is a more practical solution since it

imposes two orders of magnitude performance overhead, as opposed to twelve and four orders

in the case of FHE and circuit representation, respectively. Obfuscuro also supports generic

programs since it retains the form of the host-architecture instruction.

5.6.2 Automating Efficient Application of Obfuscation

Instead of cryptographic program obfuscation, for many enclave use-cases, a lesser property

where the program does not exhibit data-dependant access patterns can suffice. This can be

efficiently achieved by applying Obfuscuro’s protection only to certain sensitive parts of a

program. However, this raises two important questions: (a) how to automatically determine

what parts are sensitive? and (b) how to connect sensitive and non-sensitive parts?

In principle, a system can automatically determine what parts of a program are sensitive

through a combination of static and dynamic analysis. In particular, pointer analysis [182] can

110

be employed at compile-time to determine what parts of the code sensitive user data interacts

with. The inaccuracy of pointer analysis can be overcome by tracking data at runtime

using well-known techniques (e.g., taint tracking [183], hardware memory protection [184]).

Connecting sensitive and non-sensitive parts of a program requires to accurately track how

information flows between these parts. If the program is partitioned at well-defined points

(e.g., function entry or exit), this will be less challenging. We leave the study of the feasibility

of this approach to future work.

5.7 Summary

Obfuscuro is the first system to achieve cryptographic program obfuscation on com-

modity hardware by leveraging the functionality of SGX alongside a principled scratchpad

and instrumentation approach. Obfuscuro systematically protects the SGX enclave against

information leakage through all side-channels, thereby neutralizing all memory and timing

footprints to create a virtual black box program execution. Our evaluation shows that

Obfuscuro is significantly faster than existing cryptographic schemes and more deployment-

friendly than existing system-based solutions.

111

6. HARDWARE EXTENSIONS TO DEFEAT MEMORY

SIDE-CHANNELS

Despite the hardware root cause of memory side-channels and its impact to SGX, side-

channel protection is left to program developers [185]. The assumption is that the hardware

design changes to SGX and performance costs to address these side-channels are too high.

Unsurprisingly, program developers must choose between (a) overcoming the hardware

inadequacies through slow but strong cryptographic protection (like our Obfuscuro system

does in §5) or (b) efficient but weak selective protection (discussed in §3.3).

This chapter questions the assumption that closing critical memory side-channels in SGX

requires significant hardware changes and performance costs using Reparo, a small set of SGX

model extensions. SGX CPUs can support Reparo with minor architectural modifications,

consisting of microcode updates and widely-used hardware components. Importantly, Reparo

retains compatibility with legacy SGX—users can run Reparo and legacy enclaves together

on future machines. Moreover, even under conservative estimates, Reparo incurs a geometric

mean slowdown of only 17% across SPEC CPU 2006 on the latest SGX server machines.

To design Reparo, we extensively analyzed existing hardware memory side-channel pro-

tection proposals (§6.1). Since these systems were mostly built for non-SGX contexts, in SGX

contexts, they require intrusive architectural changes (e.g., break backwards-compatibility).

Moreover, they sometimes provide partial protection or remain inefficient. In light of these

problems, our work answers three questions: (a) can we adapt existing approaches to provide

strong protection, compatibility, and efficiency in SGX contexts?, (b) what concrete changes to

SGX CPUs are required to support our design?, and (c) how do we conclusively demonstrate

our design’s performance on real SGX hardware?

Surprisingly, SGX CPUs can support Reparo (§6.2) with only a small set of architectural

modifications. In fact, four out of five changes (§6.3) can be applied using microcode updates

without CPU hardware design changes. Note that CPUs routinely implement new features

at both the microcode and hardware design levels [186]. Reparo only requires hardware

design changes in the form of a single new bound check, a well-understood feature that is

efficiently implemented in SGX CPUs, such as in the memory protection extensions (MPX).

112

Importantly, Reparo can be flexibly enabled for only highly-sensitive enclaves, allowing

users to run Reparo and SGX enclaves on the same machine.

We built an emulator, Reparo-EMU, which employs virtual machine extensions to

conservatively emulate Reparo on real SGX machines (§6.4). We ran both benchmarks and

real-world programs—the SPEC CPU 2006 integer suite [187], Redis [188], and Lighttpd [189].

Reparo incurred a geometric mean performance overhead of 17% on SPEC and only up to

11% across remaining programs.

The findings of this chapter suggest that strong and efficient hardware protection against

SGX memory side-channels only requires modest architectural and performance costs. There-

fore, we urge the community to consider hardware protection against critical memory side-

channels, especially in SGX contexts where software approaches are inefficient.

6.1 Approaching Hardware Protection against Memory Side-Channels

This section analyzes several possible approaches to implement hardware protection

against controlled and shared memory side-channels (§2.5). Most of these approaches were

proposed in non-SGX contexts (e.g., clean-slate enclave designs). The section describes each

approach’s trade-off in terms of protection, architectural changes required for SGX adoption,

and efficiency.

6.1.1 Protection against Controlled Channels

Closing controlled channels requires handing the control of demand paging and page

tables to a trusted software component (e.g., enclaves).

Controlling Demand Paging

Under current enclave design philosophy (i.e., unprivileged processes), enclaves can only

partially control demand paging through collaboration with the operating system. However,

privileged enclaves can fully control demand paging or enclaves can rely on an external

trusted privileged software.

113

Collaborating between enclaves and untrusted software. An enclave and operating

system can coordinate page fault-handling to secure demand paging. In particular, page

faults are sent to the enclave, which then tells the operating system what page to retrieve.

The enclave can leverage ORAM [59] to securely retrieve multiple pages and avoid leaking the

faulting address. Such collaborative demand paging is proposed by several systems [94]–[96].

Limitation: partial protection and inefficiency. While this approach does not require

invasive changes [94], [95], it does not fully close controlled channels. In particular, the

operating system still controls paging instructions, which it uses to swap pages. The operating

system can abuse these instructions to leak enclave data through Foreshadow, even when

the enclave is stopped (i.e., no collaboration) [54]. Even if we ignore Foreshadow (for which

partial hardware mitigations exist [56]), this approach significantly increases the performance

cost incurred for the already expensive enclave page faults [190] since enclaves and OS must

coordinate with each other.

Elevating enclave privileges or leveraging an external privileged software. If

enclave privileges are elevated, they can fully handle page faults without any involvement

from the operating system [99]. Alternatively, an external (fully-trusted) privileged software

(e.g., trusted hypervisor [191], [192]) can be used to handle page faults. With either design,

enclave pages can be swapped to a protected disk.

Limitation: invasive changes. Both approaches provide full protection and would be

efficient. However, they require completely rethinking the SGX design, and implementing

several new functionality (e.g., protected IO for enclaves [193]). Such a redesign will hurt

backwards compatibility.

Key takeaway. Secure and efficient enclave demand paging requires redesigning

SGX.

Controlling Page Tables

A hardware scheme could install page tables inside the enclave where the operating system

cannot observe page table bits or make changes. An alternate scheme could keep page tables

114

in the operating system’s memory but allow the enclave to track (and verify) all critical

changes.

Splitting page tables and protecting in enclave memory. Address translation can be

divided into enclave and untrusted page tables [96]. The hardware implements protection

checks during translation to ensure each page table can only reference its own region. Only

enclave page tables are installed in the enclave. This prevents enclaves from abusing page

tables to launch attacks (e.g., corrupt system memory), and it allows the operating system

to manage untrusted memory.

A major challenge is to efficiently implement protection checks. Sanctum [96] implements

them efficiently by dividing the DRAM into large fixed regions and ensuring enclaves occupy

an entire region.

Limitation: invasive changes. This approach is both secure and efficient. The latter is

because enclaves can easily implement any page permission changes (needed for several SGX

tasks [34], [35], [70], [71], [74], [125]). However, Sanctum’s implementation is incompatible with

SGX. In particular, since SGX allocates memory using traditional (4 KB) pages, implementing

fixed DRAM regions hurts backward compatibility. DRAM region-based allocation is also

inefficient. It only allows (a) fixed size enclaves at multiples of DRAM regions and (b) a

limited number of enclaves (e.g., 8 enclaves [96]).

Hiding and tracking page tables in untrusted memory. If page tables are kept in the

operating system’s memory, the hardware can be updated to hide sensitive information of

enclave address translation in page tables (e.g., avoid the setting of page access and dirty

bits). However, the operating system can still make changes to the page tables (e.g., induce

page faults by unsetting a page table valid bit). To prevent malicious changes, the hardware

can help the enclave track all critical changes made by the operating system (refer to [94] for

details).

Limitation: inefficiency. Despite all these hardware changes, an enclave still must

redundantly implement memory management functionality. Moreover, since the operating

system controls the page tables, every change (e.g., updating page permissions) still requires

coordinating with the operating system.

115

Key takeaway. Efficiently controlling page tables require direct enclave control, but

existing implementation requires invasive changes to SGX.

6.1.2 Protection against Shared Channels

Closing a side-channel through a shared microarchitectural resource requires isolating

the use of that resource. Isolation can be achieved by (a) redesigning the hardware to

automatically enable isolation or (b) leveraging a trusted privileged software layer to manually

isolate resource usage.

Redesigning hardware components. We could redesign system memory components (e.g.,

caches, branch predictors) to automatically isolate their use amongst different computations.

Several systems [96], [103]–[109] have proposed such secure memory components.

Limitation: invasive changes. This requires a fundamentally new silicon design (for each

insecure hardware component) and oftentimes changes to address translation components [96]

to support the new hardware design.

Leveraging a trusted privileged software. Modern CPUs implement several microar-

chitectural resource isolation features. A privileged software can enforce isolation of resources

between computations using these features [192], [194]. For instance, Time Protection [194]

uses a trusted operating system to partition the last-level cache between computations [195].

Limitation: invasive changes. Implementing a privileged trusted software layer requires

significant architectural modifications to SGX (refer to §6.1.1).

Key takeaway. Many isolation features are already implemented in SGX CPUs, but

they require configuration through a trusted privileged software.

6.2 Reparo Design

Reparo is a set of SGX model extensions, namely enclave-controlled paging and mi-

croarchitectural resource isolation, that close information leakage through controlled and

shared channels, respectively. We carefully designed these extensions by adapting previous

116

OS

VA PA

0x2000 0x8000

Page table handler

VA PA

0x1000 0x5000

Pkey

0x1

Pkey

0x1

Enclave PTs

Enclave
Untrusted

Untrusted PTs

References
untrusted region

References
enclave region

Changes
permissions

Figure 6.1. Reparo’s enclave-controlled paging.

approaches (§6.1) to avoid significant architectural changes, ensure strong protection, and

enable efficiency. In §6.3 , we explain how future SGX CPUs can enable Reparo alongside

existing (legacy) SGX enclaves.

6.2.1 Enclave-Controlled Paging

Reparo restricts the operating system from demand paging enclave memory and enables

enclaves to maintain page tables without any help from the operating system. The following

sections explain our rationale behind these changes and provide further details.

Restricted enclave demand paging. Reparo does not allow demand paging on enclave

memory, but the enclave can implement user-level paging [190]. We chose this design given

limitations of enclave demand paging approaches. In particular, the only architecturally-

feasible demand paging approach, collaborative demand paging (§6.1.1), provides partial

protection and does not offer performance advantages compared to user-level paging (as we

explain in the paragraphs below). Moreover, Intel’s latest server machines have a significant

amount of EPC memory (§2.4).

In cases where an enclave requires additional trusted memory, it can employ user-level

paging—use software mechanisms to implement custom protection of untrusted memory

pages and self-page them. Many existing SGX research proposals [20], [73], [190] have already

117

implemented user-level paging. In the future, user-level paging can be included in software

development kits to avoid burdening developers (like [94] did).

User-level paging has several advantages over collaborative demand paging. First, it is

secure since the operating system does not control any aspect of paging. Second, user-level

paging is faster than traditional enclave demand paging (e.g., up to 2.2× more throughput

in memcached [190]) since enclave page faults are very costly. Finally, ORAM can protect

access patterns on user-level paged memory [20], [85] (like how it is used in collaborative

enclave demand paging).

SGX-compatible split page tables. Since Reparo restricts insecure demand paging,

there is no need for the operating system to access page table entries for enclave regions.

Therefore, Reparo divides the address translation task into enclave and untrusted page

tables (discussed in §6.1.1). Then, Reparo stores enclave page tables in protected enclave

memory and allows them to be controlled by the enclave. Figure 6.1 illustrates split enclave

and untrusted page tables.

Importantly, Reparo keeps enclave memory allocation at the granularity of pages instead

of fixed-size DRAM regions used by Sanctum’s split page tables (§6.1.1). Page-based allocation

is crucial to maintain (a) backwards-compatibility with current SGX versions (which also

use pages for allocation) and (b) enclave flexibility—enclaves can be arbitrary sizes and an

unlimited number of enclaves are possible.

One challenge with page-based allocation is efficiently ensuring that enclave and un-

trusted page tables only reference their own regions. This is important to prevent attacks

from malicious enclaves and operating systems (§6.1.1). Reparo efficiently ensures this

requirement using contiguous enclave physical pages and reusing two existing SGX checks.

Contiguous memory checks are efficient and many forms of such checks are implemented in

SGX CPUs (refer to §6.3.2).

Enclave page tables are created by the operating system, and installed inside enclave

memory during initialization. Since SGX verifies enclave address translation (§2.4), the oper-

ating system cannot prepare malicious enclave page tables (e.g., map a virtual address to the

wrong physical address). During enclave execution, an enclave can update its own page tables.

118

For instance, the enclave can change its page permissions using Intel Memory Protection

Keys [23]. Permission changes are needed for many security tasks (e.g., implementing address

space layout randomization [34] and isolating untrusted code [35], [74], [125]).

Finally, Reparo secures enclave virtualization by ensuring that enclave page tables

cannot be nested, hence, the hypervisor cannot observe enclave access patterns using nested

page tables. Importantly, despite lacking nested page tables, enclave regions inside a virtual

machine can be correctly translated because Reparo ensures there is (1) a direct mapping

between guest physical and host physical EPC addresses and (2) a static partitioning of

EPC to each virtual machine at creation, which is also the norm in current data centers

that provide SGX [7], [8], [196], [197]. Furthermore, since Reparo ensures that enclave page

tables can only reference an enclave region, there is no risk of an enclave misusing these page

tables to access another virtual machine’s memory.

6.2.2 Microarchitectural Resource Isolation

Reparo enables the SGX microcode to isolate microarchitectural resources using existing

and new hardware isolation features. Since these features can also be configured by the

system software, Reparo restricts their configuration from system software when enclave

computations execute.

Isolation can either be spatial or temporal. Spatial isolation guarantees that untrusted

software and enclaves access different parts of the resource at the same time. In contrast,

temporal isolation ensures that untrusted software and enclaves do not access shared hardware

resources at the same time. For each resource, Reparo adopts one of the two policies by

considering the resource’s sharing property: cross-core or per-core. Cross-core resources (e.g.,

last level cache) can be accessed from other processor cores while the enclave executes. In

contrast, per-core resources (e.g., L1/L2) can only be accessed after the enclave stops (if

hyper-threading is disabled).

Cross-core spatial isolation. Reparo spatially isolates the last-level cache (LLC) using

Intel Cache Allocation Technology (CAT) [23], [195], a widely-implemented feature in Intel

119

CPUs. In current CPUs, only the system software can configure CAT. With Reparo, CAT

is fully-controlled by the trusted SGX microcode when an enclave executes (§6.3.4).

The number of supported enclave partitions by CAT depends on the number of ways in

the LLC (refer to [195] for details). Current LLCs contain 12–20 ways [192], [195], and a

CAT partition needs at least a 1 way allocation. Since a partition must be reserved for the

untrusted software (e.g., the operating system) to execute, current CPUs can support 11–19

mutually-untrusted enclaves. Note that Reparo allows unlimited mutually-trusted enclaves

(e.g., from the same user) if they share a partition (as we describe in §6.3.4).

We expect that future SGX CPUs can introduce additional LLC ways (or an alternative

partitioning mechanism) to support more tenants. This is likely since caches are increasingly

large due to new 3D stacking technologies. For example, AMD recently introduced their

3D-stacked CPU, which tripled the LLC over its predecessor with minor increase to CPU

power consumption [198]. Intel has also announced similar future 3D-stacked designs [199].

Further strengthening this proposal is our evaluation, which shows that even tiny (<1 MB)

cache partitions do not significantly reduce performance in many realistic scenarios (§6.5.3).

Per-core temporal isolation. By design, it is infeasible to spatially isolate per-core

resources between hyper-threads of a processor core in SGX CPUs. Hence, Reparo temporally

isolates these resources by disabling hyper-threading, ensuring enclaves have sole access to

them during execution. Once the enclave exits, Reparo invalidates microarchitectural

resources to clear enclave execution traces from them.

Modern SGX CPUs [200] implement hardware control to disable hyper-threading on each

CPU core. Reparo leverages this control to ensure that enclave-running CPU cores are not

allowed to run hyper-threads. Importantly, since hyper-threading can be disabled on each

core separately, this reduces its performance impact (as we show in §6.5.4).

SGX CPUs already implement mechanisms to invalidate several micro-architectural

resources. In particular, on enclave exits, Reparo uses the cache invalidation instruction

(WBINVD) to clear the processor caches, TLB, and internal data buffers. While current SGX

CPUs do not provide mechanisms to invalidate some branch predictors—branch target buffer

120

Table 6.1. Architectural support required by Reparo and the CPU compo-
nents involved.

Component Description

Protection enablement (§6.3.1) Microcode Set a CPU bit to enable/disable Reparo;
report protection in SECS

Enclave-controlled paging (§6.2.1)
Address translation checks (§6.3.2) MMU One new bound check for enclave region;

two existing bound checks
Physical page management (§6.3.3) Microcode Update EPC instructions (EADD and EAUG)

to allocate contiguous pages
Hardware resource isolation (§6.2.2)
Cache partition (§6.3.4) Microcode Enforce partitions at enclave start

(e.g., EENTER); update WRMSR
Branch predictor invalidation (§6.3.5) Microcode Two new entries in IA32_FLUSH_CMD

for invalidating BTB/PHT

and pattern history table—they can easily be implemented using features like Intel has used

in the past (§6.3.5).

6.3 Architectural Support for Reparo

This section describes how SGX CPUs can support Reparo with small architectural

changes. Implementing new architectural components is a complex task that holds back

adoption. To avoid this hurdle, this section proposes Reparo’s required support only using

components previously implemented in SGX CPUs (summarized in §6.3.6). All components

we built on are well-documented in several Intel manuals [23], [201] and technical reports [24],

[202], [203]. Table 6.1 provides an overview of the necessary support.

6.3.1 Protection Enablement

Reparo implements one additional bit in the SGX Enclave Control Structure (SECS)

for enabling memory side-channel protections when an enclave is created. The SECS is a

structure that holds several enclave attributes (e.g., 64-bit mode, debug enabled, etc.), and it

is protected inside the enclave. If the Reparo bit is set, a CPU flag is raised, and the changes

mentioned in the remaining subsections apply. Otherwise, enclaves execute in legacy (insecure)

121

mode. The measurement of the SECS is sent to a user during remote attestation [23]; hence,

the user can determine whether their enclave computations are protected against memory

side-channels.

6.3.2 Address Translation Checks

Enclave-controlled paging requires that enclave and untrusted page tables should only

reference their own regions (§6.2.1). Reparo enforces this rule through the memory manage-

ment unit (MMU), a CPU component that performs virtual to physical address translation

by walking the page tables using a finite state machine (FSM) implementation. In fact, SGX

also uses the MMU to enforce rules (e.g., reserve EPC [24]). Importantly, Reparo’s rule

can be enforced with a single new bounds check, which complements the two bounds checks

already present in SGX CPUs (Figure 6.2).

First, at the start of translation, the MMU checks if the enclave tried to access an enclave

virtual address (1). If yes, the MMU translates it using enclave page tables whose base is

stored in an additional control register, enclave CR3 (eCR3). SGX MMUs already implement

this check to ensure the untrusted host process receives an abort transaction when it tries

to access an enclave virtual address [24]. In particular, this check is efficiently implemented

using a variable memory type range register (MTRR) [23], which requires that enclave virtual

addresses are contiguous and their base and size is aligned to the same power of two.

Second, while walking each level of the enclave page tables (from eCR3), the MMU checks

if the obtained physical address belongs to the enclave’s physical region or not (2). If it

does not, the MMU aborts the translation since an enclave is trying to access untrusted

regions using enclave page tables. To implement this check, Reparo requires enclaves to have

contiguous EPC physical pages (§6.2.1), allowing an efficient bounds check on the address.

This bounds check cannot be implemented using a variable MTRR, because an MTRR limits

where an enclave could exist within the EPC based on enclave region size, thus, it is not

suitable for allocating enclaves at arbitrary locations.

Fortunately, CPUs have other efficient ways to check arbitrary contiguous memory bounds.

One example is using memory protection extensions (MPX), which verifies if an address

122

Abort

Yes

Yes

No

Insert TLB entry

Yes

Translate VA

Abort

NoNo

Perform other
SGX checks

Does PA belong
to the EPC?

3

Checks also done
by the SGX MMU

Does PA belong
to this enclave?

2

Perform walk
using eCR3

Does VA belong
to this enclave?

1

Perform walk
using CR3

Figure 6.2. Reparo’s simplified FSM for a 1-level page table.

falls within an arbitrary upper and lower bound stored in registers to implement access

control [23]. Importantly, MPX checks are efficient—research has shown that both upper and

lower bounds can be checked in a single cycle [203]. Please refer to §6.4 for more details.

Note that check 2 does not verify if the final translation is correct—is this the correct

physical address corresponding to the starting virtual address? Fortunately, SGX MMUs

already verify this using the enclave page cache map (EPCM) before inserting TLB entries

(§2.4). While EPCM can also perform check 2 [204], it would incur a higher performance

cost to read EPCM on each page table walk.

Lastly, while walking the untrusted page tables (from CR3), the MMU checks if the

physical address belongs to the EPC (3). If yes, the MMU aborts since enclave regions

should only be translated using enclave page tables. SGX already implements this check

using a variable MTRR to prevent the operating system from accessing the EPC [24].

6.3.3 Physical Memory Management

Reparo updates SGX instructions to ensure, for Reparo-protected enclaves, the oper-

ating system (a) allocates contiguous EPC pages and (b) can only reclaim all EPC pages.

Moreover, Reparo allows enclaves to invalidate TLB entries and enforce enclave page table

123

updates. All these changes only require microcode updates—Intel has shown that microcode

updates can change instructions (e.g., VERW [205]) even to perform completely different tasks.

During enclave creation, the operating system uses EADD to allocate EPC pages to an

enclave. In SGX version 2, EAUG is used to allocate additional EPC pages to an enclave that

is already executing. Both instructions are provided with the EPC page physical address [23],

making it trivial to ensure contiguous pages. It is the enclave’s duty to ensure that runtime

allocation using EAUG does not leak information.

The operating system can only kill the enclave and reclaim all its pages, instead of

reclaiming pages. To ensure this, Reparo updates the EWB instruction (which swaps an EPC

page to untrusted memory) to ensure that Reparo-protected enclave pages are not swapped

out. When an enclave is killed and its pages are reclaimed (using EREMOVE), those pages are

already cleared by the SGX microcode.

Finally, Reparo allows enclaves to execute INVLPG (TLB entry invalidation instruction)

to enforce changes to enclave page table entries (e.g., page permissions). Since enclaves

can only update their own (enclave) page tables, there is no harm in allowing enclaves to

invalidate TLB entries.

6.3.4 Cache Partition

Reparo partitions the last-level cache (LLC) using Cache Allocation Technology (CAT) (§6.2.2).

The paragraphs below describe how Reparo ensures CAT is only configured by the SGX

microcode and creates CAT partitions for enclaves.

CAT is configured by system software using model-specific registers (MSRs) [23]. Once

enclaves start executing, privileged software (e.g., operating system) is not allowed to use CAT.

This is fulfilled by modifying the microcode instruction that updates MSRs—WRMSR—ensuring

it does not change CAT-related MSRs when enclaves are running [204].

During enclave initialization, Reparo creates an enclave partition and coordinates with

other processor cores (using inter-processor-interrupts) to ensure no other core uses that

partition. This coordination is a one-time cost during enclave initialization since CAT

configuration cannot be changed by untrusted software.

124

When an enclave executes on a processor core, Reparo updates the core’s MSR to use its

dedicated enclave partition. On enclave exits, Reparo switches the processor core back to

an untrusted partition. Each time a partition is changed, the cache is invalidated to enforce

those changes [23].

Finally, enclave owners can specify if their enclaves are mutually-trusted so that they can

share a partition. Like SGX, Reparo determines ownership using MRSIGNER, a SHA-256

hash of the enclave owner’s public key in the enclave’s initialization token [23].

6.3.5 Branch Predictor Invalidation

Reparo invalidates two branch predictor units, the branch target buffer (BTB) and

pattern history table (PHT), on enclave exits. While SGX CPUs do not provide mechanisms

to invalidate these units, they can be implemented as new entries in IA32_FLUSH_CMD,

an MSR that SGX CPUs use to invalidate processor structures. Intel has previously issued

microcode updates to add new entries to the MSR (e.g., to allow L1D cache invalidation [206]).

Additionally, since the structures of these units are standard—PHT is a finite state ma-

chine [16], and BTB is an associative cache [15]—it is not challenging to implement such

mechanisms [204].

6.3.6 Summary of Architectural Support

Previous subsections demonstrate that defeating several critical memory side-channels

only involves a small set of architectural changes. In fact, four out of five changes (§6.3.1

and §6.3.3 ∼ §6.3.5), only require microcode updates to current SGX CPUs. These microcode

updates only make small changes that directly employ existing features used by SGX, such

as instructions (e.g., EPC allocation and paging) and mechanisms (e.g., L1D invalidation).

Reparo additionally needs a minor change to the CPU hardware design (§6.3.2), essentially

a single new bounds check, such as those of MPX, which is already used in SGX CPUs [23],

[203]. Note that Intel routinely introduces new features at both the microcode and hardware

level each year [186]. Without going to the point of actually building the chip (which is only

possible for Intel), all our findings strongly suggest Reparo’s feasibility on SGX CPUs.

125

6.4 Implementation

We built Reparo-EMU to conservatively emulate Reparo on Intel’s latest machines

(§6.5). Reparo-EMU leverages virtual machine extensions (VMX) [23] to mimic the

microcode. In particular, it intercepts all transitions between the enclave and the untrusted

world. On intercepts, Reparo-EMU implements Reparo’s protections using hardware

features and software. Reparo-EMU is built by adding 1,578 code lines to the Bareflank

extensible hypervisor [207].

While Reparo’s page walk checks (§6.3.2) cannot be emulated by Reparo-EMU, these

checks should have a negligible performance impact. In particular, the untrusted page table

check uses a variable MTRR, while the enclave page table check verifies an MPX upper and

lower bound. Both checks can be evaluated in a single cycle [24], [203]. Since page walks can

take up to many hundreds of cycles and are very infrequent due to TLB caches, an additional

single cycle latency only has a 0.01% impact on system performance [96].

Reparo-EMU intercepts an enclave entry using the extended page tables (EPT), a VMX

feature that can revoke execute permissions from any physical memory region. Using this

feature, Reparo-EMU revokes execute permissions from the enclave page cache (EPC).

Hence, when a process enters an enclave region and executes an instruction, the machine

raises a protection trap to Reparo-EMU.

Reparo-EMU also intercepts when an enclave stops executing (generally called an

enclave exit). Traditionally, enclave exits occurred for three reasons: system calls, page

faults, or interruptions. However, modern enclaves use the SGX switchless system call

feature [73], [208] and background threads to service system call without exits. Furthermore,

due to enclave-controlled paging (§6.2.1), Reparo ensures there are no page fault-based exits.

Hence, Reparo-EMU only needs to trap enclave exits due to interrupts. This is achieved

by setting the interrupt-exiting bit in the x86 virtual machine control structure, a feature of

VMX [23].

When an enclave is created, Reparo-EMU (a) creates a dedicated LLC partition for

that enclave using Intel CAT and (b) sends an inter-processor-interrupt to ensure that no

processor core uses that partition. The partitions are created using model-specific-registers:

126

Table 6.2. Reparo’s defense for memory side-channels.

Channel Reparo defense

Controlled
Page fault Restrict insecure demand paging (§6.2.1)
Page table entry Keep page tables in enclave region (§6.2.1)
Paging instructions OS cannot execute the instructions (§6.3.3)

Shared
Last-level cache Partition LLC during execution (§6.3.4)
L1/L2 cache Invalidate L1/L2 on enclave exit (§6.3.4)
Branch target buffer Invalidate BTB on enclave exit (§6.3.5)
Pattern history table Invalidate PHT on enclave exit (§6.3.5)
TLB Invalidate TLB on enclave exit (§6.2.2)
Internal data buffers Invalidate buffers on enclave exit (§6.2.2)

IA32_L3_MASK_{0-N}. When a processor core starts executing an enclave (i.e., enclave

entry), Reparo-EMU enforces the enclave’s dedicated CAT partition by setting IA32_-

PQR_ASSOC. The processor core uses the partition until there is an enclave exit, at which

point, Reparo-EMU switches the processor core to an untrusted partition. Each time a

partition is changed, the cache is invalidated using WBINVD to enforce the changes.

Since current SGX CPUs do not implement mechanisms for branch predictor invalidation,

Reparo-EMU implements a software branch predictor flush on enclave exits. The idea

behind our flush is to leverage reverse-engineered structures and addressing mechanisms of

the predictors [15], [16] to fill them with bogus entries. Our flush executes 49,152 conditional

branches and 4,096 other branch instructions to fill the PHT and BTB, respectively. The

correctness of this manual flush is dependent on the reverse-engineered addressing mechanisms

of the branch predictors. However, given that this flush is shown to be suitable for high-

resolution branch predictor side-channel attacks and a lack of alternatives, we chose this

mechanism. In all likelihood, our flush is over-estimating the performance impact, rather

than under-estimating, because hardware invalidation is considerably more efficient than

filling branch predictors with bogus data.

127

Table 6.3. Machine platforms used for evaluation.

Desktop Server

Hardware
CPU model i7-8700 Xeon Gold 6348
CPU sockets 1 2
Cores × threads 6 × 2 28 × 2
Clock speed 3.20GHz 2.60GHz
Cache (L1/L2/LLC) 64KB/256KB/12MB 64KB/1.2MB/42MB
LLC ways 16 12
RAM size 16GB 512GB
EPC size 128MB 128GB

Software
Linux kernel 5.4 5.11
SGX SDK 2.3 2.15
SGX driver Legacy 2.6 DCAP 1.41

6.5 Performance Evaluation

This section describes Reparo’s performance through custom benchmarks and diverse

real-world programs.

6.5.1 Setup

We evaluated Reparo using both desktop and server machines. Although SGX is

deprecated in desktop machines [209], we also used this machine because it has a very small

last-level cache. This allows us to estimate Reparo’s performance on future CPU iterations

where enclaves are provided smaller LLC partitions to support more untrusted enclaves.

 Table 6.3 lists the specifications of our machines. Both machine kernels were configured as

tickless [210] to reduce enclave exits due to timer interrupts [87].

6.5.2 Micro-Benchmarks

This section describes the direct overhead of Reparo’s cache and branch predictor

protections at enclave exits (§6.2.2).

128

Settings. We used Reparo-EMU (§6.4). We ran a benchmark enclave program that

continuously writes to a large 256 MB buffer on both machines. We ran the enclave

continuously for 60 seconds and measured protection overheads (Table 6.4) at enclave exits.

Extra emulation overhead. The framework adds a tiny overhead (∼0.003 milliseconds) to

intercept enclave entries and exits. Although this is extra overhead that is not incurred in a

real hardware implementation, it is significantly smaller than the overhead of other protections

(mentioned below). Thus, its impact on our real-world program results is negligible.

Cache partitioning and invalidation. Reparo’s cache defenses require (a) partitioning

the last-level cache (LLC) and switching partitions during enclave execution and (b) writing

back and invalidating the caches at enclave exits.

Partitioning the LLC and switching partitions is fast: it takes ∼200 cycles to update a

model-specific register (using WRMSR). Cache write-back and invalidation time depends on the

state and size of the cache. On the desktop machine, we noticed that it took up to 3.35 ms,

whereas its lower bound (through consecutive invalidations) was 0.08 ms. Cache invalidation

took from 1.25 ms to 7.48 ms on the server.

Despite a smaller cache, invalidation on the desktop is not much faster than the server.

The reason is that, unlike server machines where SGX does not implement hardware memory

integrity [98], the desktop enforces integrity using a Merkle tree. This tree is updated on

each cache-line flush [116], incurring 6 additional memory accesses. Notably, invalidating

non-enclave memory on the desktop machine took only up to 0.81 ms.

Branch predictor invalidation. We executed our custom branch predictor flush to

invalidate the BTB and PHT (§6.4). The lower bound for both invalidations together was

0.04 and we saw an upper bound of 0.30 milliseconds. This is expected given the small size

of these units and it is consistent with prior simulation results [15], [211].

6.5.3 Real-world Enclave Programs

This section discusses Reparo’s performance on diverse real-world programs, including

an assorted program suite, a key-value store, and a web server.

129

Table 6.4. Reparo’s isolation overhead in micro-benchmarks.

Invalidation Time (kcycles) Time (ms)
Min Max Min Max

Desktop
Cache (L1/L2 + LLC) 247 10560 0.08 3.35
Branch (PHT + BTB) 120 844 0.04 0.30
Total 367 11404 0.12 3.65

Server
Cache (L1/L2 + LLC) 3240 19454 1.25 7.48
Branch (PHT + BTB) 373 494 0.14 0.19
Total 3613 19947 1.39 7.67

401.bzip
2

403.gcc
429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d
(%

)

296% 311%

15% 17%

Reparo (Cache only)
Reparo (Branch only)
Reparo

Figure 6.3. SPEC 2006 performance with Reparo using the reference dataset
on the server machine. The enclave partition was 1/12*LLC. For this test, the
enclave exits per-second were: 3, 105, 4, 3, 3, 2, 2, 1, 11, 1, 8, from left to right.

Common settings. Since running complex Linux programs inside enclaves is challenging,

we used the Occlum and Graphene library OSs [74], [112]. Unless noted otherwise, we ran

programs on the server machine using an enclave partition size of 1/12*LLC, the smallest

allowed partition on the server machine (the server machine’s LLC is divided into 12 ways).

This setting allows the machine to be shared amongst the most number of users, highly

desirable in cloud machines. We ran each program 5 times and report the average.

Since it is challenging to reason about background workloads in diverse cloud settings,

we ran no heavy background workloads. This setting essentially compares the performance

of the worst-case of Reparo with the best-case of SGX. In practice, background workloads

significantly reduce SGX performance through normal cache contention. These workloads do

130

401.bzip
2

403.gcc
429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200
Pe

rf
or

m
an

ce
 o

ve
rh

ea
d

(%
)

1032% 1085% 970% 982%

31% 34%

Reparo (Cache only)
Reparo (Branch only)
Reparo

Figure 6.4. SPEC CPU 2006 performance with Reparo using the test dataset
on the desktop machine. The enclave partition was 1/8*LLC. For this test, the
enclave exits per-second were 29, 2184, 3071, 965, 25, 3444, 417, 298, 60, 22,
91, from left to right.

not impact Reparo since its last-level cache is isolated. Thus, this setting is very conservative

and we chose it to estimate Reparo’s upper-bound overheads.

Assorted (SPEC CPU 2006). SPEC CPU 2006 is a collection of well-known CPU and

memory-intensive programs, hence, it is useful to assess real-world system performance.

 Figure 6.3 illustrates Reparo’s performance across SPEC programs using reference

datasets on the server machine. Encouragingly, most programs incurred a modest performance

overhead—7 out of 11 incurred less than 20% slowdown, and the geometric mean slowdown was

17%. Across all programs, the biggest slowdown factor was cache protections at enclave exits.

Since our experiments used switchless system calls and tickless kernels (§6.4), most programs

incurred very few enclave exits and showed modest performance overhead. Nevertheless, the

smaller enclave LLC partition had a considerable effect (e.g., 311%) on the performance of

highly memory-intensive programs like gcc and omnetpp.

We also ran SPEC programs on the desktop machine using test datasets to estimate

performance in even more cache-constrained scenarios. Since reference workloads require

significant memory, it is infeasible to run them on the desktop. In Figure 6.4 , we show

Reparo’s performance on the desktop using 1/8*LLC, the closest to fair sharing for each

core. We also show desktop performance using 1/16*LLC, the smallest possible partition,

and 1/4*LLC (Figure 6.5).

The geometric mean overhead was 34% on the desktop machine with 1/8*LLC. A factor

out of our control on this machine was demand paging using page faults, which is restricted

131

under Reparo. In particular, even with test datasets, the SPEC programs required between

150 MB - 1 GB of memory. Since the desktop machine only has a 128 MB EPC, demand

paging was inevitable. Thus, the programs incurred many more enclave exits because of page

faults and performance was (expectedly) lower than the server machine. We noticed two

programs, mcf and sjeng, incurred a very high overhead. We found that their test datasets

required up to 1 GB of memory, hence their enclaves incurred the most exits (due to page

faults) per-second.

Finally, even with a 1/16*LLC enclave partition, enclaves used only 0.75 MB of the

desktop’s LLC, SPEC showed an 86% geometric mean overhead. We expect this performance

is acceptable in high-security use-cases. Indirectly, this shows that server CPUs with large

caches can further divide the cache to support additional enclave partitions, while maintaining

acceptable performance. For instance, if our server machine divides its cache into 0.75 MB

partitions, it would support 110 enclave partitions (for both sockets).

Key-value store (Redis). Key-value stores like Redis [188] are widely used in cloud

environments. We evaluated Redis using its official redis-benchmark, which tests 20 different

key-value store operations including GET, SET, MSET, and POP. We ran each operation for

100,000 iterations using the default settings of 50 parallel clients.

Reparo reduced throughput by 4–21% (geometric mean was 11%) across these operations,

compared to native SGX. We observed 27 enclave exits per-second during the benchmark’s

119 second execution. Given a low number of enclave exits and the fact that Redis is

highly memory-intensive, the major factor behind its throughput reduction was the program

executing on a very restricted LLC partition.

Web server (Lighttpd). Webservers like Lighttpd [212], handle sensitive queries to fetch

webpages, and hence are a good fit for SGX. We ran Lighttpd with 8 worker threads because

this setting maximized throughput. From a separate server machine (average latency between

machines was 0.09 ms), we used ApacheBench to send 10,000 requests for a 10 KB file from

up to 256 concurrent clients.

Reparo’s geometric mean throughput reduction across the test was only 5%. Interestingly,

requests from a single client incurred a 65% throughput reduction, while requests from 256

132

concurrent clients incurred only 1% reduction. The reason is that the worker threads go to

sleep when there are no requests and they are awakened through inter-processor-interrupts,

hence they incur additional enclave exits. With greater concurrency, the workers are always

busy handling requests, thus they do not go to sleep and incur fewer exits. In practice, the

performance for single client scenarios can be improved using spinlocks to ensure threads

never sleep.

6.5.4 Non-Enclave Programs

Reparo addresses the root cause of critical side-channels by avoiding resource sharing.

This inevitably reduces non-enclave (and non-Reparo enclave) performance since there

are performance advantages of insecurely sharing hardware resources between processes.

Generally, Reparo impacts their performance due to (a) smaller LLC partition and (b)

limited hyper-threading. Note that Intel also recommends disabling hyper-threading [56] to

defeat foreshadow. We evaluate this impact in the paragraphs below.

Settings. Since the desktop machine has a smaller cache and fewer cores, its non-enclave

impact is likely greater, hence we used it for this test. We ran memcached [155] as a non-

enclave program which serves requests using 12 threads. From a separate machine (average

latency was 0.32 ms), we executed the official memaslap [213] benchmark to request keys

with a 9:1 split of GET:SET for 60 seconds using 12 threads. In the background, we ran up

to 5 memory-intensive enclaves (since the machine only has 6 cores) using native SGX and

Reparo. Each enclave allocated and accessed 16 MB of memory continuously. For Reparo,

we tested with both disjoint 1/8*LLC and 1/16*LLC partitions for each enclave. For both

SGX and Reparo, we progressively disabled hyper-threading on each spawned enclave’s

processor core.

Results. Intriguingly, memcached performed better alongside Reparo than legacy SGX

enclaves under 1 to 4 enclaves (Figure 6.6). The reason is that Reparo’s CAT partitioning

ensures that the memory-intensive background enclaves cannot flush memcached’s cache

contents. In fact, this is precisely the reason why CAT was introduced [202].

133

401.bzip
2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d
(%

)

235% 1124% 758% 1032%

20%

86%

Reparo (1/4*LLC)
Reparo (1/16*LLC)

Figure 6.5. SPEC CPU 2006 performance with Reparo using different
enclave LLC partitions on the desktop machine.

1 2 3 4 5
Number of background enclaves

0

20

40

60

80

100

120

T
hr

ou
gh

pu
t (

M
B

/s
)

SGX
SGX (with HT)
Reparo (1/8*LLC)
Reparo (1/16*LLC)

Figure 6.6. Memcached’s performance as a non-enclave program, alongside
SGX and Reparo, on the desktop machine.

With 5 background enclaves, the combined effect of reduced hyperthreading and a tiny

LLC partition available to memcached produced a throughput reduction of 5% compared to

SGX. If we consider SGX with hyper-threading (not recommended by Intel), the reduction

is 54%. In this scenario, the machine is significantly over-exerted, hence it is unlikely to

be a common use-case. In general, we expect non-enclave impact can be minimized by

load-balancing computations.

134

6.6 Discussion

This section discusses how Reparo can be optimized and describes Reparo’s protection

against other shared micro-architectural resources. It concludes by discussing the limitations

of the isolation guarantees provided by CAT.

Efficiency optimizations. If additional architectural changes are feasible, Reparo can

improve enclave memory efficiency and performance using two techniques.

First, Reparo could employ the enclave page cache map (EPCM), instead of the MPX

check to secure enclave page tables (§6.3.2). This would allow an enclave’s pages to be

allocated anywhere in the EPC, avoiding memory fragmentation. However, there would be an

additional performance penalty, since accessing the EPCM would require one more memory

access at each page walk.

Second, Reparo could decouple CAT partition switching from WBINVD and introduce an

L1/L2 cache flush instruction to reduce enclave exit cost. Currently, CAT uses WBINVD to

switch partitions, but this instruction also flushes the last-level cache, which is not required

since it is partitioned. However, this extension might require changes to CAT.

Other micro-architectural resources. Apart from the memory resources directly targeted

by Reparo, we briefly discuss other micro-architectural resources below.

Per-core computational resources. Hyper-threads in a CPU core share various non-memory

computational resources, including the execution ports [214] and functional units [215].

Reparo closes side-channels through these resources by disabling hyper-threading for enclave-

running cores. Since these resources are stateless (no residual state when enclave stops),

invalidation is not needed.

Memory bus. CPU cores share a memory bus to retrieve contents from DRAM. The

limited bus bandwidth creates a contention-based side-channel [17]. Unfortunately, the

memory bus is a fundamental architectural component of modern CPUs, and securing it

requires architectural redesigns [216]. We leave its study to future work.

CPU ring interconnects. Intel desktop CPUs (where SGX is deprecated) use a ring to

connect processor cores, which can be used as a side-channel [217]. Intel server CPUs do not

use a CPU ring, rather they use a mesh interconnect [218].

135

CAT isolation properties. Although CAT enables isolation and protection against an

extensive range of last-level cache attacks [192], [195] (especially in SGX scenarios where

memory is not shared), it does not offer full isolation against subtle attacks [219]. There are

well-known proposals [220] to extend last-level caches with full isolation, small changes, and

similar performance to CAT. In the future, hardware vendors should consider these proposals

to fully-protect last-level caches.

6.7 Summary

Protection against memory side-channels is a task left for enclave developers because it is

assumed to require significant architectural and performance penalties. In this chapter, we

question this implicit assumption. We present Reparo, a set of SGX model extensions that

close critical memory side-channels with very few architectural modifications and a geometric

mean performance overhead of only 17%. Given these insights, we urge the community to

reconsider hardware protection against memory side-channels, especially in enclave scenarios

where software solutions are prohibitively slow or provide weak protection.

136

7. GENERALIZATION TO OTHER ENCLAVES

All solutions proposed in this dissertation are built for SGX enclaves, because SGX is the

most widely-adopted TEE in cloud machines at the time of this dissertation. While the

design of our hardware extensions (Reparo) is tied to the SGX hardware, our built systems—

Chancel, Obfuscuro, and Obliviate—are not specific to SGX. Instead, these systems

can be generalized to other TEEs that provide process-based enclaves, including Keystone [99],

Sanctum [96], and ARM Confidential Computing Architecture (CCA) [6]. The rest of this

section explains why we expect this generalization to be feasible and how to approach it.

Chancel. Chancel’s Multi-Client SFI does not require architecture-specific features,

unlike other SGX SFI (e.g., Occlum [74] requires advanced memory protection provided by

Intel MPX). In particular, MCSFI only requires general-purpose registers. Hence, by carefully

porting its logic, MCSFI can be extended to any potential architecture. This is similar to

how the Native Client SFI was ported to ARM [221]. The major porting effort required

would be to carefully reason about how an enclave interacts with the untrusted world (e.g.,

enclave exits to the operating system) on the platform being ported to defeat data leaks.

Obfuscuro. Obfuscuro’s scratchpad-based program obfuscation approach (§5.1) is not

specific to the SGX hardware. Instead, the approach carefully considers the information

leaked from memory side-channels opened by different micro-architectural resources (§2.5.1).

Generally, these resources behave in a similar manner even across hardware platforms and leak

information in the same way (e.g., all platforms leak data access patterns at the cache-line

granularity). Finally, although the ARM instruction set does not have a CMOV instruction

or AVX registers—needed by Obfuscuro’s secure ORAM implementation (§5.2.1)—it has

conditional execution primitives [222] which we believe can be used to create a similarly

secure ORAM implementation.

Obliviate. The Obliviate file system implementation follows the POSIX system call

standards and leverages ORAM for data obliviousness (please refer to the paper [20]). As we

discussed in the previous section, ORAM can be securely implemented in different platforms;

hence, Obliviate can also be extended to such platforms.

137

8. FUTURE RESEARCH DIRECTIONS

While the work described in previous sections significantly enhances the promise of enclaves for

user data protection on cloud machines, there is still a long path ahead to ensure ubiquitous

data protection in all cloud scenarios. This section provides a non-exhaustive list of research

directions that can be spun from this dissertation.

8.1 Securing Interactions between Enclaves and Devices

Enclave solutions like SGX confine the trusted boundary of a protected computation to

the CPU and do not implement techniques to securely interact with external devices. This

is a significant limitation because increasingly cloud computations rely on external device

accelerators like GPUs and FPGAs. For instance, deep learning computations on sensitive

user data (e.g., patient data collected from hospitals [11]) rely extensively on GPUs. Hence,

it is vital for enclave computations to securely connect to external devices. The rest of

this section discusses several ways to create a secure communication channel between SGX

enclaves and external devices, while discussing various trade-offs.

Leveraging trusted devices. We can design new external devices that are retrofitted

with mechanisms to allow enclave-to-device attestation, like a secret key burned in the device

e-fuses during manufacturing. A user can supply the device’s public key to an enclave and

let the enclave attest the device through standard attestation protocols. After attestation,

the device and enclave can establish a shared secret key for secure communication. In fact,

although not formally part of this dissertation, our group has shown how to design FPGA [223]

and USB [224] devices with attestation capabilities using commodity hardware components.

Another research work showed how to create a trusted GPU device [225]. Given the diversity

of devices and device manufacturers, it is challenging to deploy all devices with such trusted

attestation primitives. Moreover, the device should have some basic computational capability

(e.g., for attestation), which is not feasible for all devices (e.g., tiny sensors).

Retrofitting enclaves with a trusted software privileged layer. The SGX design can

be extended to implement trust on a software privileged layer (external to the enclave), which

ensures a trusted path between the enclave program and the device [226]. This privileged

138

layer must control the device’s configuration and interrupts. The advantage of this approach

is that it maintains compatibility with current or future devices. A straightforward candidate

for a trusted privileged layer is the VMX (or hypervisor) layer [23], which has the capability to

fully control device communication on a machine. Unfortunately, it is challenging to trust the

hypervisor in already virtualized cloud environments, relegating the use of this approach only

to baremetal SGX deployments [196]. Another possibility is to install a trusted software in

the system management mode (SMM), a privileged layer present in all SGX CPUs to handle

system-wide operations like power management and hardware-assisted debugging. Recently,

a research work leveraged the SMM layer to debug the enclave memory [227]. Finally, future

Intel server machines are implementing a new trusted privileged layer for their new security

technologies (e.g., Intel TDX [228]). This layer could also be a potential candidate.

Implementing architectural extensions. A third approach could be to extend the

architectural design of CPUs and allow enclaves to directly contact external devices. One

way to implement this approach is to change the PCIe interconnect and MMU design to

secure a device’s configuration and map its memory-mapped I/O (MMIO) regions to a com-

putation [193]. However, this implementation is only suitable for PCIe devices and alternate

mechanisms would need to be implemented for legacy device interconnect technologies. Like

the trusted device approach, the significant advantage of such architectural extensions is that

they would minimize trusting software external to the enclave. The extension approach also

does not require encryption/decryption during enclave-to-device data transfer.

8.2 Leveraging Virtual Machine Enclaves for Data Protection

In recent years, AMD Secure Encrypted Virtualization (SEV) [4] introduced a new trusted

execution environment (TEE) that protects entire virtual machines—including the operating

system and multiple applications—within the enclave boundary. The virtual machine enclave

approach has both benefits and drawbacks. The benefit is that applications can natively

execute within virtual machine enclaves, unlike SGX enclaves which require rewriting or a

library operating system [70]. Unfortunately, this software compatibility comes at the cost of

a very large trusted computing base (TCB) (e.g., the entire Linux operating system with

139

millions of code lines). In practice, however, the advantages of virtual machine enclaves

seem to outweigh the drawbacks, which is why they are increasingly being adopted by other

hardware vendors [6], [228]. The rest of this section discusses how to address the large TCB

challenges raised by virtual machine enclaves.

Minimizing software trusted computing base (TCB). The software TCB of virtual

machine enclaves can be minimized by (a) reducing the operating system codebase (e.g., micro-

kernels or software debloating [137]) or (b) implementing a higher privileged tiny security

monitor to protect sensitive applications. We find the latter approach more interesting; hence,

we discuss it in the next paragraph.

We can use a security monitor to protect trusted computations inside a virtual machine

enclave. Significant previous research [63], [68] implement such security monitors using a

trusted hypervisor, which is incompatible with SEV. An alternate method to implement

such a security monitor is through software fault isolation (SFI) or newly-introduced intra-

guest hardware privilege isolation mechanisms. In particular, like Chancel, a robust SFI

technique can reduce the privileges of the untrusted guest operating system and prevent it

from accessing a trusted computation’s memory regions [191], [192]. Modern processors have

also introduced two new hardware privilege isolation mechanisms, namely virtual machine

privilege levels (VMPL) [229] and protection keys for supervisors (PKS) [23]. These features

allow a trusted supervisor-level software to control page access/execution permissions. Unlike

the VMX layer, both mechanisms are still available to implement a security monitor inside a

guest machine and protect trusted computations.

Monitoring the virtual machine state. Another approach to increase trust on the

correctness of a virtual machine enclave is to continuously log sensitive operations [224] (e.g.,

network-related system calls) and analyze logs to determine the virtual machine’s state before

running sensitive computations. This can be used as a form of dynamic attestation of the

enclave. A key challenge with a logging approach is the protection of system logs—once

the operating system is compromised, it can trivially destroy logs. The privileged security

monitor (described in the previous section) is one possible way of implementing log protection.

140

9. CONCLUSION

This dissertation makes a significant stride towards the ideal of strong user data protection on

cloud machines. We achieve such protection by leveraging Trusted Execution Environments

(TEEs) like Intel SGX while defeating the critical threats of adversarial cloud services and

memory side-channels through software and hardware approaches. All leveraged approaches

provide principled protection—address the underlying root cause of a problem instead of

providing partial mitigation. Finally, we outline several future research directions to explore

in the pursuit of ubiquitous data protection in cloud machines using TEEs.

141

REFERENCES

[1] Tom’s Hardware, Linux kernel grows past 15 million lines of code, https : / /www .
tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html .

[2] G. Klein, K. Elphinstone, G. Heiser, et al., “seL4: Formal verification of an OS kernel,”
in Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP), Big
Sky, MT, Oct. 2009.

[3] F. McKeen, I. Alexandrovich, A. Berenzon, et al., “Innovative instructions and software
model for isolated execution.,” in Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP), Tel Aviv, Israel, Jun. 2013.

[4] D. Kaplan, “AMD x86 memory encryption technologies,” https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/kaplan , Austin, TX: USENIX
Association, Aug. 2016.

[5] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding the prevailing
security vulnerabilities in trustzone-assisted TEE systems,” in Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2020.

[6] ARM, Arm confidential compute architecture, https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture , 2022.

[7] Microsoft, Azure confidential computing, https://azure.microsoft.com/en-us/blog/azure-
confidential-computing/ , 2018.

[8] IBM, Data-in-use protection on IBM Cloud using Intel SGX, https://www.ibm.com/
blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/ , 2018.

[9] Alibaba Cloud, ECS bare metal instances, https://www.alibabacloud.com/product/ebm .

[10] Signal, Technology preview: Private contact discovery for Signal, https://signal.org/
blog/private-contact-discovery/ .

[11] Fortanix, UCSF, Fortanix, Intel, and Microsoft Azure utilize privacy-preserving analytics
to accelerate AI in healthcare, https://www.fortanix.com/company/pr/2020/10/ucsf -
fortanix-intel-and-Microsoft-azure-utilize-privacy-preserving-analytics-to-accelerate-ai-in-
healthcare/ .

[12] 23andMe, 23andMe: Dna genetic testing and analysis, 2017. [Online]. Available: https:
//www.23andme.com .

142

https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.tomshardware.com/news/Linux-Linus-Torvalds-kernel-too-complex-code,14495.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kaplan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kaplan
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.alibabacloud.com/product/ebm
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://www.fortanix.com/company/pr/2020/10/ucsf-fortanix-intel-and-Microsoft-azure-utilize-privacy-preserving-analytics-to-accelerate-ai-in-healthcare/
https://www.fortanix.com/company/pr/2020/10/ucsf-fortanix-intel-and-Microsoft-azure-utilize-privacy-preserving-analytics-to-accelerate-ai-in-healthcare/
https://www.fortanix.com/company/pr/2020/10/ucsf-fortanix-intel-and-Microsoft-azure-utilize-privacy-preserving-analytics-to-accelerate-ai-in-healthcare/
https://www.23andme.com
https://www.23andme.com

[13] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on Intel SGX,” in
Proceedings of the 10th European Workshop on Systems Security (EUROSEC), Belgrade,
Serbia, Apr. 2017.

[14] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard extension:
Using SGX to conceal cache attacks,” in Proceedings of the 14th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA), Bonn, Germany, Jul. 2017.

[15] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring fine-grained
control flow inside SGX enclaves with branch shadowing,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Aug. 2017.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev, “Branchscope:
A new side-channel attack on directional branch predictor,” in Proceedings of the 23rd
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, 2018.

[17] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed covert channel
attacks in the cloud,” in Proceedings of the 21st USENIX Security Symposium (Security),
Bellevue, WA, Aug. 2012.

[18] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side channels
for untrusted operating systems,” in Proceedings of the 36th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2015.

[19] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved execution,” in
Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, BC, Aug. 2017.

[20] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data oblivious file system
for Intel SGX,” in Proceedings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[21] Intel, What is hyper-threading? - intel, https://www.intel.com/content/www/us/en/
gaming/resources/hyper-threading.html .

[22] 7-CPU, Intel haswell, https://www.7-cpu.com/cpu/Haswell.html .

[23] Intel, “Intel 64 and ia-32 architectures software developer’s manual,” Volume 3A: System
Programming Guide, 2016.

[24] V. Costan and S. Devadas, “Intel SGX explained.,” IACR Cryptology ePrint Archive,
2016.

143

https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://www.7-cpu.com/cpu/Haswell.html

[25] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman and Hall/CRC
Press, 2007, isbn: 978-1-58488-551-1.

[26] W. Newhouse, M. Bartock, J. Cichonski, et al., “Derived personal identity verification
(piv) credentials,” NIST Special Publication, Aug. 2019.

[27] M. Scholl, K. Stine, J. Hash, et al., “An introductory resource guide for implementing
the health insurance portability and accountability act (HIPAA) security rule,” NIST Special
Publication, Oct. 2008.

[28] K. Stouffer, J. Falco, K. Scarfone, et al., “Guide to industrial control systems (ICS)
security,” NIST Special Publication, May 2015.

[29] M. Nieles, K. Dempsey, V. Y. Pillitteri, et al., “An introduction to information security,”
NIST Special Publication, Jun. 2017.

[30] Phoronix, The linux kernel enters 2020 at 27.8 million lines in git but with less developers
for 2019, https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-
EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%
20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%
2027.8%20million%20lines! .

[31] F. McKeen, I. Alexandrovich, I. Anati, et al., “Intel® software guard extensions (Intel®
SGX) software support for dynamic memory allocation inside an enclave,” in Proceedings
of the 5th International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), Seoul, South Korea, Jun. 2016.

[32] Intel, Intel software guard extensions programming reference, https://www.intel.com/
content/dam/develop/external/us/en/documents/329298-002-629101.pdf .

[33] Intel, Intel 3rd gen xeon scalable processors (ice lake), https://www.storagereview.com/
news/intel-3rd-gen-xeon-scalable-processors-ice-lake .

[34] J. Seo, B. Lee, S. Kim, et al., “SGX-Shield: enabling address space layout randomization
for SGX programs.,” in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[35] A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee, “Chancel: Efficient multi-
client isolation under adversarial programs,” in Proceedings of the 2021 Annual Network and
Distributed System Security Symposium (NDSS), Virtual Event, 2021.

[36] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis: Architec-
ture for tamper-evident and tamper-resistant processing,” in Proceedings of the 28th ACM
International Conference on Supercomputing (ICS), Munich, Germany, Jun. 2014.

144

https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019#:~:text=The%20Linux%20Kernel%20Enters%202020,Less%20Developers%20For%202019%20%2D%20Phoronix&text=As%20of%20this%20morning%20in,in%20at%2027.8%20million%20lines!
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake

[37] J. A. Halderman, S. D. Schoen, N. Heninger, et al., “Lest we remember: Cold-boot attacks
on encryption keys,” in Proceedings of the 17th USENIX Security Symposium (Security), San
Jose, CA, Jul. 2008.

[38] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels through
obfuscated execution,” in Proceedings of the 24th USENIX Security Symposium (Security),
Washington, DC, Aug. 2015.

[39] P. Grassi, M. Garcia, and J. Fenton, “Digital identity guidelines,” NIST Special Publica-
tion, Jun. 2017.

[40] W. Wang, G. Chen, X. Pan, et al., “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct. 2017.

[41] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,
“Software grand exposure: SGX cache attacks are practical,” in Proceedings of the 11th
USENIX Workshop on Offensive Technologies (WOOT), Vancouver, BC, 2017.

[42] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: A fast and stealthy
cache attack,” in in Proceedings of the 15th Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), Paris, France, Jun. 2016.

[43] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling hardware-based
data prefetcher, a hidden source of information leakage,” in Proceedings of the 25th ACM
Conference on Computer and Communications Security (CCS), Toronto, ON, Oct. 2018.

[44] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[45] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[46] Intel, Linux-sgx/sdk/tlibcrypto/. [Online]. Available: %5Chowpublished%7Bhttps://
github.com/intel/linux-sgx/tree/master/sdk/tlibcrypto%7D .

[47] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: eradicating controlled-channel
attacks against enclave programs,” in Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[48] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in Proceedings of the
12th USENIX Security Symposium (Security), Washington, DC, Aug. 2003.

145

%5Chowpublished%7Bhttps://github.com/intel/linux-sgx/tree/master/sdk/tlibcrypto%7D
%5Chowpublished%7Bhttps://github.com/intel/linux-sgx/tree/master/sdk/tlibcrypto%7D

[49] Mbedtls, https://tls.mbed.org , 2017.

[50] Mbedtls/bignum.c at archive/mbedtls-2.3 - mbed-tls/mbedtls - github, https://github.
com/Mbed-TLS/mbedtls/blob/archive/mbedtls-2.3/library/bignum.c .

[51] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting speculative execution,”
in Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2019.

[52] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading kernel memory from user
space,” in Proceedings of the 27th USENIX Security Symposium (Security), Baltimore, MD,
Jul. 2018.

[53] S. van Schaik, A. Milburn, S. Österlund, et al., “RIDL: Rogue in-flight data load,” in
Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[54] J. V. Bulck, M. Minkin, O. Weisse, et al., “Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution,” in Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[55] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing Intel
secrets from SGX enclaves via speculative execution,” in Proceedings of 4th IEEE European
Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, Jun. 2019.

[56] Intel, L1 terminal fault / cve-2018-3615 , cve-2018-3620,cve-2018-3646 / intel-sa-00161,
 https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-
fault .

[57] Intel, Intel® processors voltage settings modification advisory, https://www.intel.com/
content/www/us/en/security-center/advisory/intel-sa-00289.html .

[58] Intel, “Intel analysis of speculative execution side channels,” 2018. [Online]. Available:
 https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of -
Speculative-Execution-Side-Channels.pdf .

[59] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,”
in Journal of the ACM (JACM), 1996.

[60] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of the goldreich-ostrovsky
lower bound,” in Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, Oct. 2015.

146

https://tls.mbed.org
https://github.com/Mbed-TLS/mbedtls/blob/archive/mbedtls-2.3/library/bignum.c
https://github.com/Mbed-TLS/mbedtls/blob/archive/mbedtls-2.3/library/bignum.c
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

[61] E. Stefanov, M. van Dijk, E. Shi, et al., “Path ORAM: an extremely simple oblivious ram
protocol,” in Proceedings of the 20th ACM Conference on Computer and Communications
Security (CCS), Berlin, Germany, Oct. 2013.

[62] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz,
“Architectural support for copy and tamper resistant software,” in ACM SIGARCH Computer
Architecture News, Nov. 2000.

[63] D. Champagne and R. B. Lee, “Scalable architectural support for trusted software,”
in Proceedings of the 16th IEEE International Symposium on High Performance Computer
Architecture (HPCA), Bangalore, India, Jan. 2010.

[64] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “Inktag: Secure
applications on an untrusted operating system,” in Proceedings of the 18th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Houston, TX, Mar. 2013.

[65] Intel, Intel Trusted eXecution Technology (TXT), https://software.intel.com/content/
www/us/en/develop/articles/intel-trusted-execution-technology.html?wapkw=TXT .

[66] Microsoft, Windows 11 system requirements, https ://www.microsoft .com/en- us/
windows/windows-11-specifications?r=1 .

[67] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker: An execution
infrastructure for TCB minimization,” in Proceedings of the ACM SIGOPS Operating Systems
Review (SOSR), vol. 42, May 2008.

[68] X. Chen, T. Garfinkel, E. C. Lewis, et al., “Overshadow: A virtualization-based approach
to retrofitting protection in commodity operating systems,” in Proceedings of the 13th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Houston, TX, Mar. 2013.

[69] L. Zhao, H. Shuang, S. Xu, et al., Sok: Hardware security support for trustworthy
execution, 2019. [Online]. Available: https://arxiv.org/abs/1910.04957 .

[70] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud
with Haven,” in Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[71] C.-c. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library OS for unmodified
applications on SGX,” in Proceedings of the 2017 USENIX Annual Technical Conference
(ATC), Santa Clara, CA, Jun. 2017.

147

https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology.html?wapkw=TXT
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology.html?wapkw=TXT
https://www.microsoft.com/en-us/windows/windows-11-specifications?r=1
https://www.microsoft.com/en-us/windows/windows-11-specifications?r=1
https://arxiv.org/abs/1910.04957

[72] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB Linux applications
with SGX enclaves,” in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[73] S. Arnautov, B. Trach, F. Gregor, et al., “Scone: Secure Linux containers with Intel
SGX,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, Nov. 2016.

[74] Y. Shen, H. Tian, Y. Chen, et al., “Occlum: Secure and efficient multitasking inside
a single enclave of Intel SGX,” in Proceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Lausanne, Switzerland, 2020.

[75] F. Schuster, M. Costa, C. Fournet, et al., “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2015.

[76] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2r: Enabling
stronger privacy in MapReduce computation,” in Proceedings of the 24th USENIX Security
Symposium (Security), Washington, DC, Aug. 2015.

[77] O. Ohrimenko, F. Schuster, C. Fournet, et al., “Oblivious multi-party machine learning
on trusted processors.,” in Proceedings of the 25th USENIX Security Symposium (Security),
Austin, TX, 2016.

[78] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Opaque:
An oblivious and encrypted distributed analytics platform,” in Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI), Boston,
MA, Mar. 2017.

[79] E. Bauman and Z. Lin, “A case for protecting computer games with SGX,” in Proceedings
of the 1st Workshop on System Software for Trusted Execution (SYSTeX), Trento, Italy, 2016.

[80] S. Park, A. Ahmad, and B. Lee, “BlackMirror: Preventing wallhacks in 3D online FPS
games,” in Proceedings of the ACM Conference on Computer and Communications Security
(CCS), Virtual Event, Oct. 2020.

[81] Intel, Hardening authentication tokens in web browsers using intel software guard ex-
tensions, https://www.intel .com/content/dam/develop/external/us/en/documents/
tokenbinding-whitepaper-final.pdf .

[82] Fortanix, Fortanix: Data-first multi-cloud security, https://fortanix.com/ .

148

https://www.intel.com/content/dam/develop/external/us/en/documents/tokenbinding-whitepaper-final.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tokenbinding-whitepaper-final.pdf
https://fortanix.com/

[83] Fortanix, Nec partners with fortanix for confidential computing, https://www.fortanix.
com/resources/case-study/nec-partners-with-fortanix-for-confidential-computing .

[84] Microsoft, Open source solutions to build enclave applications, https://docs.microsoft.
com/en-us/azure/confidential-computing/enclave-development-oss#oe-sdk .

[85] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory primitives
from Intel SGX,” in Proceedings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[86] D. V. Le, L. T. Hurtado, A. Ahmad, M. Minaei, B. Lee, and A. Kate, “A tale of two
trees: One writes, and other reads. optimized oblivious accesses to large-scale blockchains,” in
Proceedings of the Privacy Enhancing Technologies Symposium (PETS), Virtual Event, 2020.

[87] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys: Protecting SGX
enclaves from practical side-channel attacks,” in Proceedings of the 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, Jun. 2018.

[88] S. Shinde, Z. Chua, V. Narayanan, and P. Saxena, “Preventing your faults from telling
your secrets,” in Proceedings of the 11th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), Xi’an, China, May 2016.

[89] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong and
efficient cache side-channel protection using hardware transactional memory,” in Proceedings
of the 27th USENIX Security Symposium (Security), Vancouver, BC, 2017.

[90] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating side chan-
nels in last-level caches,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[91] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level protection against
cache-based side channel attacks in the cloud,” in Proceedings of the 21st USENIX Security
Symposium (Security), Bellevue, WA, Aug. 2012.

[92] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter, “Practical mitigations
for timing-based side-channel attacks on modern x86 processors,” in Proceedings of the 30th
IEEE Symposium on Security and Privacy (Oakland), Oakland, CA, May 2009.

[93] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “Obfuscuro: A commodity
obfuscation engine for Intel SGX,” in Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2019.

149

https://www.fortanix.com/resources/case-study/nec-partners-with-fortanix-for-confidential-computing
https://www.fortanix.com/resources/case-study/nec-partners-with-fortanix-for-confidential-computing
https://docs.microsoft.com/en-us/azure/confidential-computing/enclave-development-oss#oe-sdk
https://docs.microsoft.com/en-us/azure/confidential-computing/enclave-development-oss#oe-sdk

[94] M. Orenbach, A. Baumann, and M. Silberstein, “Autarky: Closing controlled channels
with self-paging enclaves,” in Proceedings of the 15th ACM European Conference on Computer
Systems (EuroSys), Virtual Event, 2020.

[95] S. Aga and S. Narayanasamy, “Invisipage: Oblivious demand paging for secure enclaves,”
in Proceedings of the 46th ACM/IEEE International Symposium on Computer Architecture
(ISCA), Phoenix, AZ, 2019.

[96] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for
strong software isolation,” in Proceedings of the 25th USENIX Security Symposium (Security)),
Austin, TX, Aug. 2016.

[97] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Using verification
to disentangle secure-enclave hardware from software,” in Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP), Shanghai, China, Oct. 2017.

[98] E. Feng, X. Lu, D. Du, et al., “Scalable memory protection in the PENGLAI enclave,” in
Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Virtual Event, Jul. 2021.

[99] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open
framework for architecting trusted execution environments,” in Proceedings of the 15th ACM
European Conference on Computer Systems (EuroSys), Virtual Event, 2020.

[100] K. Nayak, C. Fletcher, L. Ren, et al., “Hop: Hardware makes obfuscation practical,” in
Proceedings of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2017.

[101] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure processor architecture for encrypted
computation on untrusted programs,” in Proceedings of the 7th ACM workshop on Scalable
trusted computing (STC), ACM, Raleigh, NC, Oct. 2012.

[102] M. Maas, E. Love, E. Stefanov, et al., “Phantom: Practical oblivious computation in a
secure processor,” in Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), Berlin, Germany, Oct. 2013.

[103] D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, and J. Torrellas, “Jamais vu:
Thwarting microarchitectural replay attacks,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Virtual Event, 2021.

150

[104] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel, A. Sapello, and A. Ghosh, “Computing
with time: Microarchitectural weird machines,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Virtual Event, 2021.

[105] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas, “Invisispec:
Making speculative execution invisible in the cache hierarchy,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka City,
Japan, Oct. 2018.

[106] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander, “Efficient invisible
speculative execution through selective delay and value prediction,” in Proceedings of the 46th
ACM/IEEE International Symposium on Computer Architecture (ISCA), Phoenix, AZ, 2019.

[107] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfuscating cache conflicts with
localized randomization,” in Proceedings of the 2021 Annual Network and Distributed System
Security Symposium (NDSS), Virtual Event, 2021.

[108] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hybrid side-channel-resilient
caches for trusted execution environments,” in Proceedings of the 29th USENIX Security
Symposium (Security), Virtual Event, Aug. 2020.

[109] J. Behrens, A. Cao, C. Skeggs, A. Belay, M. F. Kaashoek, and N. Zeldovich, “Efficiently
mitigating transient execution attacks using the unmapped speculation contract,” in Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Nov. 2020.

[110] S. Checkoway and H. Shacham, “Iago Attacks: why the system call API is a bad untrusted
RPC interface,” in Proceedings of the 18th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Houston, TX, Mar.
2013.

[111] 01org, Intel(r) software guard extensions for linux* os (source code), https://github.
com/01org/linux-sgx , 2016.

[112] C.-C. Tsai, K. S. Arora, N. Bandi, et al., “Cooperation and security isolation of library
OSes for multi-process applications,” in Proceedings of the 9th European Conference on
Computer Systems (EuroSys), Amsterdam, The Netherlands, Apr. 2014.

[113] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens, “Plun-
dervolt: Software-based fault injection attacks against Intel SGX,” in Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland), Virtual Event, May 2020.

151

https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx

[114] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one cloud flops: Cross-
VM row hammer attacks and privilege escalation,” in Proceedings of the 25th USENIX
Security Symposium (Security)), Austin, TX, Aug. 2016.

[115] R. K. Konoth, M. Oliverio, A. Tatar, et al., “ZebRAM: comprehensive and compati-
ble software protection against rowhammer attacks,” in Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2018.

[116] S. Gueron, A memory encryption engine suitable for general purpose processors, Cryp-
tology ePrint Archive, Report 2016/204, https://eprint.iacr.org/2016/204 , 2016.

[117] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct. 2007.

[118] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking blind,” in
Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2014.

[119] J. Lee, J. Jang, Y. Jang, et al., “Hacking in darkness: Return-oriented programming
against secure enclaves,” in Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Aug. 2017.

[120] D. Kuvaiskii, O. Oleksenko, S. Arnautov, et al., “Sgxbounds: Memory safety for shielded
execution,” in Proceedings of the 12th ACM European Conference on Computer Systems
(EuroSys), Belgrade, Serbia, Apr. 2017.

[121] Signal, Signal » home, https://signal.org , 2019.

[122] Signal, Technology preview: Private contact discovery for signal, https://signal.org/blog/
private-contact-discovery/ , 2019.

[123] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based fault
isolation,” in ACM SIGOPS Operating Systems Review (SOSR), 1994.

[124] LLVM, The LLVM compiler infrastructure, 2016. [Online]. Available: http://llvm.org/ .

[125] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox for
untrusted computation on secret data,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Savannah, GA, Nov. 2016.

[126] Uwe F. Mayer, Linux/unix nbench. [Online]. Available: https://www.math.utah.edu/
~mayer/linux/bmark.html .

152

https://eprint.iacr.org/2016/204
https://signal.org
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
http://llvm.org/
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html

[127] Proton AG, General data protection regulation compliance guidelines, https://gdpr.eu .

[128] D. S. Wishart, C. Knox, A. C. Guo, et al., “Drugbank: A comprehensive resource for in
silico drug discovery and exploration,” Nucleic Acids Research, vol. 34, 2006.

[129] OPSWAT, MetaDefender Cloud, https://metadefender.opswat.com/?lang=en .

[130] VirusTotal, Virustotal, https://www.virustotal.com/gui/home/upload .

[131] Jotti, Jotti malware scan, https://virusscan.jotti.org/en-US/scan-file .

[132] Amazon, Amazon personalize, https://aws.amazon.com/personalize/ .

[133] B. Yee, D. Sehr, G. Dardyk, et al., “Native client: A sandbox for portable, untrusted x86
native code,” in Proceedings of the 30th IEEE Symposium on Security and Privacy (Oakland),
Oakland, CA, May 2009.

[134] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow stacks,” Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), May 2019.

[135] J. Lind, C. Priebe, D. Muthukumaran, et al., “Glamdring: Automatic application
partitioning for Intel SGX,” in Proceedings of the USENIX Annual Technical Conference
(ATC), Santa Clara, CA, 2017.

[136] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “Face-change: Application-driven
dynamic kernel view switching in a virtual machine,” in Proceedings of 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2014.

[137] M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “Shard: Fine-grained kernel specializa-
tion with context-aware hardening,” in Proceedings of the 30th USENIX Security Symposium
(Security), Virtual Event, Aug. 2021.

[138] LLVM, Writing an llvm backend, http://llvm.org/docs/WritingAnLLVMBackend.html ,
2017.

[139] Intel, Linux-sgx/sdk/tlibc/, https://github.com/intel/linux-sgx/tree/master/sdk/tlibc .

[140] Musl-Libc, Musl-libc, https://www.musl-libc.org , 2017.

[141] Capstone, Capstone. the ultimate disassembler, http://www.capstone-engine.org , 2017.

[142] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The guard’s dilemma:
Efficient code-reuse attacks against Intel SGX,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

153

https://gdpr.eu
https://metadefender.opswat.com/?lang=en
https://www.virustotal.com/gui/home/upload
https://virusscan.jotti.org/en-US/scan-file
https://aws.amazon.com/personalize/
http://llvm.org/docs/WritingAnLLVMBackend.html
https://github.com/intel/linux-sgx/tree/master/sdk/tlibc
https://www.musl-libc.org
http://www.capstone-engine.org

[143] 01org, Intel(r) software guard extensions for linux* os (linux sgx driver), https://github.
com/01org/linux-sgx-driver , 2016.

[144] J. Seo, B. Lee, S. Kim, et al., “SGX-Shield: enabling address space layout randomization
for SGX programs,” in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[145] W. Zhao, K. Lu, Y. Qi, and S. Qi, “MPTEE: bringing flexible and efficient memory
protection to Intel SGX,” in Proceedings of 12th ACM European Conference on Computer
Systems (EuroSys), Heraklion, Greece, Apr. 2020.

[146] Perf wiki, https://perf.wiki.kernel.org/index.php/Main_Page .

[147] P. Warden, C_hashmap, https://github.com/petewarden/c_hashmap .

[148] OSSEC, Ossec - world’s most widely used host intrusion detection system - hids, http:
//ossec.github.io , 2017.

[149] Ghamrouni, Recommender is a c library for product recommendations/suggestions using
collaborative filtering (cf), 2016. [Online]. Available: http://ghamrouni.github.io/Recommend
er/index.html .

[150] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “ShieldStore: shielded in-memory key-value
storage with SGX,” in Proceedings of the 14th European Conference on Computer Systems
(EuroSys), Dresden, Germany, 2019.

[151] SNORT, Snort - Network Intrusion Detection & Prevention System, 2016. [Online].
Available: https://www.snort.org/ .

[152] Engineering new protections into hardware. [Online]. Available: %5Chowpublished%
7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/engineering-
new-protections-into-hardware.html%7D .

[153] ClamAV, ClamAVNet, https://www.clamav.net/ , 2018.

[154] DrugBank, Drugbank online, 2017. [Online]. Available: http://www.drugbank.ca .

[155] memcached, Memcached - a distributed memory object caching system, https://memcac
hed.org/ .

[156] Phoronix, Intel MPX support is dead with Linux 5.6, https://www.phoronix.com/scan.
php?page=news_item&px=Intel-MPX-Is-Dead .

154

https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/petewarden/c_hashmap
http://ossec.github.io
http://ossec.github.io
http://ghamrouni.github.io/Recommender/index.html
http://ghamrouni.github.io/Recommender/index.html
https://www.snort.org/
%5Chowpublished%7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html%7D
%5Chowpublished%7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html%7D
%5Chowpublished%7Bhttps://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html%7D
https://www.clamav.net/
http://www.drugbank.ca
https://memcached.org/
https://memcached.org/
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead

[157] Phoronix, Intel MPX support removed from GCC 9, https://www.phoronix.com/scan.
php?page=news_item&px=MPX-Removed-From-GCC9 .

[158] Apache, Apache hadoop project, 2017. [Online]. Available: http://hadoop.apache.org .

[159] R. Sinha, M. Costa, A. Lal, et al., “A design and verification methodology for secure
isolated regions,” in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Jun. 2016.

[160] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI: software guards
for system address spaces,” in Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, Nov. 2006.

[161] M. Castro, M. Costa, J.-P. Martin, et al., “Fast byte-granularity software fault isolation,”
in Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP), Big
Sky, MT, Oct. 2009.

[162] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Software
fault isolation with API integrity and multi-principal modules,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), Cascais, Portugal, Oct. 2011.

[163] D. Sehr, R. Muth, C. Biffle, et al., “Adapting software fault isolation to contemporary
CPU architectures,” in Proceedings of the 19th USENIX Security Symposium (Security),
Washington, DC, Aug. 2010.

[164] B. Barak, O. Goldreich, R. Impagliazzo, et al., “On the (im)possibility of obfuscating
programs,” in Journal of the ACM (JACM), vol. 59, May 2012.

[165] S. Hada, “Zero-knowledge and code obfuscation,” in Proceedings of the 6th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), Kyoto, Japan, Dec. 2000.

[166] N. Bitansky, R. Canetti, S. Goldwasser, S. Halevi, Y. T. Kalai, and G. N. Rothblum,
“Program obfuscation with leaky hardware,” in Proceedings of the 17th International Confer-
ence on the Theory and Application of Cryptology and Information Security (ASIACRYPT),
Seoul, South Korea, Dec. 2011.

[167] K.-M. Chung, J. Katz, and H.-S. Zhou, “Functional encryption from (small) hardware
tokens,” in Proceedings of the 19th International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT), Bangalore, India, Dec. 2013.

[168] N. Döttling, T. Mie, J. Müller-Quade, and T. Nilges, “Basing obfuscation on simple
tamper-proof hardware assumptions,” In IACR Cryptology ePrint Archive, 2011.

155

https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9
https://www.phoronix.com/scan.php?page=news_item&px=MPX-Removed-From-GCC9
http://hadoop.apache.org

[169] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding cryptography
on tamper-proof hardware tokens,” in Proceedings of the 7th IACR Theory of Cryptography
Conference (TCC), Zurich, Switzerland, Feb. 2010.

[170] Intel, “Overview: Intrinsics for intel (r) advanced vector extensions 2 (intel(r) avx2)
instructions,” 2014. [Online]. Available: https://software.intel.com/en-us/node/523876 .

[171] Intel, Intel(r) advanced vector instructions 512 (AVX-512) overview, https://www.intel.
com/content/www/us/en/architecture-and-technology/avx-512-overview.html .

[172] Intel, “Intel (r) core (tm) i9-7980xe extreme edition processor,” 2017. [Online]. Available:
 https://ark.intel.com/products/126699/Intel-Core-i9-7980XE-Extreme-Edition-Processor-
24%5C_75M-Cache-up-to-4%5C_20-GHz .

[173] Intel, “Intel (r) core (tm) i9-7970x processor,” 2017. [Online]. Available: https://ark.
intel.com/products/126697/Intel-Core-i9-7960X-X-series-Processor-22M-Cache-up-to-
4%5C_20-GHz .

[174] S. Gueron, A memory encryption engine suitable for general purpose processors, Cryp-
tology ePrint Archive, 2016. [Online]. Available: https://eprint.iacr.org/2016/204 .

[175] OpenSSL Software Foundation, OpenSSL: Cryptography and SSL/TLS Toolkit, https:
//www.openssl.org/ , 2017.

[176] N. Döttling, T. Mie, J. Müller-quade, and T. Nilges, “Basing obfuscation on simple
tamper-proof hardware assumptions.,” in IACR Cryptology ePrint Archive, 2011.

[177] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding cryptography
on tamper-proof hardware tokens,” in Proceedings of the 7th IACR Theory of Cryptography
Conference (TCC), D. Micciancio, Ed., Zurich, Switzerland, Feb. 2010.

[178] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC), New York, NY, USA: ACM,
2009.

[179] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: Protecting
confidentiality with encrypted query processing,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, Oct. 2011.

[180] O. Goldreich, “Cryptography and cryptographic protocols,” Distributed Computing,
2003.

[181] J. Thaler, Verifiable computing: Between theory and practice, https ://people .eecs .
berkeley.edu/~alexch/docs/pcpip_thaler.pdf , 2017.

156

https://software.intel.com/en-us/node/523876
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://ark.intel.com/products/126699/Intel-Core-i9-7980XE-Extreme-Edition-Processor-24%5C_75M-Cache-up-to-4%5C_20-GHz
https://ark.intel.com/products/126699/Intel-Core-i9-7980XE-Extreme-Edition-Processor-24%5C_75M-Cache-up-to-4%5C_20-GHz
https://ark.intel.com/products/126697/Intel-Core-i9-7960X-X-series-Processor-22M-Cache-up-to-4%5C_20-GHz
https://ark.intel.com/products/126697/Intel-Core-i9-7960X-X-series-Processor-22M-Cache-up-to-4%5C_20-GHz
https://ark.intel.com/products/126697/Intel-Core-i9-7960X-X-series-Processor-22M-Cache-up-to-4%5C_20-GHz
https://eprint.iacr.org/2016/204
https://www.openssl.org/
https://www.openssl.org/
https://people.eecs.berkeley.edu/~alexch/docs/pcpip_thaler.pdf
https://people.eecs.berkeley.edu/~alexch/docs/pcpip_thaler.pdf

[182] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis in LLVM,” in
Proceedings of the 25th International Conference on Compiler Construction (CCC), Barcelona,
Spain, Mar. 2016.

[183] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser: Protecting sensitive
data leaks using application-level taint tracking,” in ACM SIGOPS Operating Systems Review
(SOSR), vol. 45, 2011.

[184] A. Ahmad, S. Lee, P. Fonseca, and B. Lee, “Kard: Lightweight data race detection with
per-thread memory protection,” in Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual
Event, Apr. 2021.

[185] Intel, Intel sgx and side-channels, https ://www.intel .com/content/www/us/en/
developer/articles/technical/intel-sgx-and-side-channels.html .

[186] A. Baumann, “Hardware is the new software,” in Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS), Whistler, BC, May 2017.

[187] SPEC, SPEC CPU 2006, https://www.spec.org/cpu2006/ .

[188] Redis, Redis, https://redis.io/ .

[189] NGINX, Advance load balancer, web server, and reverse proxy - nginx, https://www.
nginx.com/ .

[190] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless OS services
for SGX enclaves,” in Proceedings of the 11th European Conference on Computer Systems
(EuroSys), Belgrade, Serbia, Apr. 2017.

[191] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting applications from
hostile operating systems,” in Proceedings of the 19th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), Salt
Lake City, Utah, 2014.

[192] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas, “Shielding software from
privileged side-channel attacks,” in Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[193] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous isolated
execution for commodity gpus,” in Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Providence, RI, 2019.

157

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.spec.org/cpu2006/
https://redis.io/
https://www.nginx.com/
https://www.nginx.com/

[194] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: The missing OS
abstraction,” in Proceedings of the 14th ACM European Conference on Computer Systems
(EuroSys), Dresden, Germany, Mar. 2019.

[195] F. Liu, Q. Ge, Y. Yarom, et al., “Catalyst: Defeating last-level cache side channel
attacks in cloud computing,” in Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), Barcelona, Spain, Mar. 2016.

[196] Microsoft, Intel SGX based confidential computing VMs now available on Azure Dedicated
Hosts, https://azure.microsoft.com/en-us/updates/intel-sgx-based-confidential-computing-
vms-now-available-on-azure-dedicated-hosts/ .

[197] Packet, Packet platform features, https://www.packet.com/cloud/features/ .

[198] AnandTech, AMD demonstrates stacked 3d v-cache technology: 192 mb at 2 tb/sec,
 https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-
2-tbsec-for-15-gaming .

[199] Electronic Design, Intel proposes new path for moore’s law with 3d stacked transistors,
 https://www.electronicdesign.com/technologies/embedded-revolution/article/21183706/
electronic-design-intel-proposes-new-path-for-moores-law-with-3d-stacked-transistors .

[200] Intel, Product brief 11th gen intel(r) core(tm) desktop processors, https://newsroom.
intel.com/wp-content/uploads/sites/11/2021/03/11th-gen-product-brief.pdf .

[201] Intel, Speculative execution side-channel mitigations, https://www.intel.com/content/
dam/develop/external/us/en/documents/336996- speculative- execution- side- channel-
mitigations.pdf .

[202] Intel, Introduction to Cache Allocation Technology in the Intel(r) Xeon(r) Processor E5
v4 Family, https://software.intel.com/content/www/us/en/develop/articles/introduction-to-
cache-allocation-technology.html .

[203] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel MPX explained:
A cross-layer analysis of the Intel MPX system stack,” in Proceedings of the ACM Conference
on Measurement and Analysis of Computing Systems (SIGMETRICS), Irvine, CA, Jun. 2018.

[204] Personal correspondence with Intel, Mar. 2021.

[205] The kernel development community, 18. Microarchitectural Data Sampling (MDS)
mitigation – The Linux Kernel Documentation, https://www.kernel.org/doc/html/latest/
x86/mds.html .

158

https://azure.microsoft.com/en-us/updates/intel-sgx-based-confidential-computing-vms-now-available-on-azure-dedicated-hosts/
https://azure.microsoft.com/en-us/updates/intel-sgx-based-confidential-computing-vms-now-available-on-azure-dedicated-hosts/
https://www.packet.com/cloud/features/
https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming
https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming
https://www.electronicdesign.com/technologies/embedded-revolution/article/21183706/electronic-design-intel-proposes-new-path-for-moores-law-with-3d-stacked-transistors
https://www.electronicdesign.com/technologies/embedded-revolution/article/21183706/electronic-design-intel-proposes-new-path-for-moores-law-with-3d-stacked-transistors
https://newsroom.intel.com/wp-content/uploads/sites/11/2021/03/11th-gen-product-brief.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2021/03/11th-gen-product-brief.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://www.kernel.org/doc/html/latest/x86/mds.html
https://www.kernel.org/doc/html/latest/x86/mds.html

[206] L1TF - L1 Terminal Fault, https://projectacrn.github.io/latest/developer-guides/l1tf.
html .

[207] Bareflank, Bareflank/hypervisor, https://github.com/Bareflank/hypervisor .

[208] Intel, Switchless enclave example, https://github.com/intel/linux-sgx/tree/master/
SampleCode/Switchless .

[209] Techspot, Intel’s SGX deprecation impacts DRM and ultra hd blu-ray support, https:
//www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html .

[210] Wikipedia, Tickless kernel, https://en.wikipedia.org/wiki/Tickless_kernel .

[211] J. Dean, Latency numbers every programmer should know, https://gist.github.com/
jboner/2841832 .

[212] Lighttpd, Home - lighttpd - fly light, https://www.lighttpd.net/ .

[213] B. Aker, Memaslap - load testing and benchmarking a server, http://docs.libmemcached.
org/bin/memaslap.html .

[214] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García, and N. Tuveri, “Port
contention for fun and profit,” in Proceedings of the 40th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2019.

[215] Z. Wang and R. B. Lee, “Covert and side channels due to processor architecture,” in
Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC), Miami,
FL, Dec. 2006.

[216] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses for memory bus
side channel,” in Proceedings of the 44th Annual International Symposium on Computer
Architecture, Toronto, ON, Canada, 2017.

[217] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side channel attacks
on the CPU on-chip ring interconnect are practical,” in Proceedings of the 30th USENIX
Security Symposium (Security), Virtual Event, Aug. 2021.

[218] Intel, New Intel (r) mesh architecture: The ‘superhighway’ of the data center, https:
//silix.com.br/pdf/Intel/Intel_Mesh_Whitepaper.pdf .

[219] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “Attack
directories, not caches: Side channel attacks in a non-inclusive world,” in Proceedings of the
40th IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2019.

159

https://projectacrn.github.io/latest/developer-guides/l1tf.html
https://projectacrn.github.io/latest/developer-guides/l1tf.html
https://github.com/Bareflank/hypervisor
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://en.wikipedia.org/wiki/Tickless_kernel
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://www.lighttpd.net/
http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
https://silix.com.br/pdf/Intel/Intel_Mesh_Whitepaper.pdf
https://silix.com.br/pdf/Intel/Intel_Mesh_Whitepaper.pdf

[220] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “Dawg: A defense
against cache timing attacks in speculative execution processors,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka City,
Japan, Oct. 2018.

[221] Google, Chromium blog: Native client support on Arm, https://blog.chromium.org/
2013/01/native-client-support-on-arm.html .

[222] Arm, Conditional execution in Arm state, https://developer.arm.com/documentation/
dui0473/c/condition-codes/conditional-execution-in-arm-state?lang=en .

[223] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, “Trustore: Side-channel resistant
storage for SGX using Intel hybrid CPU-FPGA,” in Proceedings of the 2020 ACM Conference
on Computer and Communications Security (CCS), Virtual Event, Oct. 2020.

[224] A. Ahmad, S. Lee, and M. Peinado, “Hardlog: Practical tamper-proof system auditing
using a novel audit device,” in Proceedings of the 43rd IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2022.

[225] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution environments on
GPUs,” in Proceedings of the 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Carlsbad, CA, Oct. 2018.

[226] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building verifiable trusted
path on commodity x86 computers,” in Proceedings of the 33rd IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2012.

[227] L. Zhou, X. Ding, and F. Zhang, “Smile: Secure memory introspection for live enclave,” in
Proceedings of the 43rd IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2022.

[228] Intel, Intel trust domain extensions, https://software.intel.com/content/dam/develop/
external/us/en/documents/tdx-whitepaper-final9-17.pdf .

[229] AMD, AMD SEV-SNP: strengthening VM isolation with integrity protection and more,
 https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf .

160

https://blog.chromium.org/2013/01/native-client-support-on-arm.html
https://blog.chromium.org/2013/01/native-client-support-on-arm.html
https://developer.arm.com/documentation/dui0473/c/condition-codes/conditional-execution-in-arm-state?lang=en
https://developer.arm.com/documentation/dui0473/c/condition-codes/conditional-execution-in-arm-state?lang=en
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Trusted Execution Environments (TEEs) for Data Protection
	Threats to User Data Protected by TEEs
	Adversarial Cloud Services
	Memory Side-Channels

	Thesis and Research Question
	Contributions
	Outline

	Background
	Computer Architecture and Systems Overview
	CPU Execution and Optimization
	Privileged System Software

	Computer Security and Cryptography Overview
	Trusted Execution Environments (TEEs)
	Intel Software Guard eXtensions (SGX)
	Platform Secret
	Physical Memory Organization
	Instruction Set Architecture (ISA) Extensions
	Enclave Lifecycle
	Remote attestation
	Demand paging
	Security Overview

	Memory Side-Channels
	Root Cause and Classification
	Attack Case-Study
	Relation to Micro-Architectural Defects

	Oblivious Random Access Memory (ORAM)
	Path ORAM

	Related Work
	Towards the Development of SGX
	General Systems Designed using Enclaves
	Software Protection for Enclaves against Memory Side-Channels
	Hardware Protection for Enclaves against Memory Side-Channels
	Other Attacks against Enclaves and Proposed Protection Schemes

	Software Sandboxing to Defeat Adversarial Cloud Services
	Motivation
	System Model
	Examples of Target Scenarios

	Chancel Design
	Overview
	Workflow
	Multi-Client SFI (MCSFI)
	Shared Data Initialization
	Runtime Services

	Implementation
	Program Development Toolchain
	SecureLayer Components

	Security Analysis
	Performance Evaluation
	Improvement over Multi-Process Sandbox
	Overhead of Chancel
	Performance with Real-world Programs

	Discussion
	Comparison with Other Enclave SFI Schemes
	Supporting Multi-Hop Adversarial Programs
	Strengthening Protection against Covert Channels

	Summary

	Software Obfuscation to Defeat Memory Side-Channels
	Approaching Obfuscation using Scratchpads and Instrumentation
	Obfuscuro Design
	Secure ORAM Scheme
	Repurposing Native Programs
	Code Execution Model
	Data Access Model
	Start-to-End Obfuscation

	Implementation
	Security Analysis
	Access Pattern Attacks
	Timing-based Attacks

	Performance Evaluation
	Discussion
	Comparison with Cryptographic Program Obfuscation
	Automating Efficient Application of Obfuscation

	Summary

	Hardware Extensions to Defeat Memory Side-Channels
	Approaching Hardware Protection against Memory Side-Channels
	Protection against Controlled Channels
	Controlling Demand Paging
	Controlling Page Tables

	Protection against Shared Channels

	Reparo Design
	Enclave-Controlled Paging
	Microarchitectural Resource Isolation

	Architectural Support for Reparo
	Protection Enablement
	Address Translation Checks
	Physical Memory Management
	Cache Partition
	Branch Predictor Invalidation
	Summary of Architectural Support

	Implementation
	Performance Evaluation
	Setup
	Micro-Benchmarks
	Real-world Enclave Programs
	Non-Enclave Programs

	Discussion
	Summary

	Generalization to Other Enclaves
	Future Research Directions
	Securing Interactions between Enclaves and Devices
	Leveraging Virtual Machine Enclaves for Data Protection

	Conclusion
	REFERENCES

