
HIGH-PERFORMANCE AND RELIABLE INTERMITTENT
COMPUTATION

by

Jongouk Choi

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Changhee Jung, Chair

Department of Computer Science

Dr. Pedro Fonseca

Department of Computer Science

Dr. Z. Berkay Celik

Department of Computer Science

Dr. Muhammad Shahbaz

Department of Computer Science

Approved by:

Dr. Kihong Park

2

ACKNOWLEDGMENTS

First of all, I would like to thank our Lord, Jesus Christ, who has delivered me and granted

countless blessing. As always, our Lord is magnificent, eternally glorious, and faithful. Thanks to

His guidance, I have been able to complete this dissertation. In particular, I would like to thank

to my wife, Sujeoung. There has been times I felt down. But in the disappointing hours, she

encourages me, comforts me, and lets me overcome.

I am deeply indebted to my advisor, Prof. Changhee Jung. He introduced me to an interesting

research domain, energy harvesting system research, provided me challenges to improve my writ-

ing/teaching/presentation skills, and helped me out with brilliant ideas. I have learned a lot lessons

from him, not only how to find a research problem, how to see a problem from a different angle,

how to solve a problem, but also how to be a good scholar, teacher, and mentor. I owe thanks

to the committee members of my dissertation, Prof. Pedro Fonseca, Prof. Z. Berkay Celik, and

Prof. Muhammad Shahbaz. They all gave invaluable feedback and spent their time to shape this

dissertation. I am also grateful to Prof. Dongyoon Lee, Prof. Changwoo Min, Prof. Amro Awad,

Dr. Hyunwoo Joe, and Dr. Yongjoo Kim for their advice and support that helped me to develop

this work. I would also like to thank Dr. Doug Joseph, Dr. Casey Battaglino, Dr. Alejandro Rico,

and Prof. Fredrik B. Kjolstad for their mentorship during my internship at ARM research.

I also owe thanks to my lab-mates and colleagues during my Ph.D journey, Qingrui Liu, Tong

Zhang, James Davis, Xinwei Fu, Hongjune Kim, Larry Kittinger, Jianping Zeng, Shao-Yu Huang,

Yuchen Zhou, and Byounguk Min. I thank my church, Purdue Korean Presbyterian Church where

I spent wonderful tine in Christ. Lastly, I thank my family for their unconditional love that made

this work possible.

3

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 14

1 INTRODUCTION . 15

1.1 Challenges of Energy Harvesting Systems . 15

1.1.1 Run-time Overhead of Recovery Solutions 16

1.1.2 Reliability Issue of Recovery Solutions 18

1.2 Thesis Statement . 19

1.3 Contributions . 22

1.4 Organization . 23

2 BACKGROUND AND RELATED WORK . 25

2.1 Energy Harvesting System Platform . 25

2.2 Software-based Approaches for Power Failure Recovery 26

2.2.1 Rollback Recovery . 26

2.2.2 Challenge in Software-based Recovery Solutions 26

2.3 Hardware-based Approaches for Power Failure Recovery 28

2.3.1 Roll-forward Recovery . 28

2.3.2 Challenge in Hardware-based Recovery Solutions 29

2.4 Reliability Problem . 30

2.4.1 Capacitor Error Experiments . 30

2.4.2 Capacitor Recovery . 32

3 ELASTIN: ACHIEVING STAGNATION-FREE INTERMITTENT COMPUTATION WITH

BOUNDARY-FREE WITH BOUNDARY-FREE ADAPTIVE EXECUTION 33

3.1 Introduction . 33

3.2 Background and Challenges . 35

4

3.2.1 Curse of Stagnation . 35

3.2.2 Lack of Checkpoint Adaptation . 35

3.3 Design . 36

3.3.1 Watchdog Timer Based Checkpointing of Volatile Registers 36

3.3.2 Page Protection Based Backup of Nonvolatile Memory 37

3.3.3 Adaptive Execution . 39

3.3.4 Challenges in Forward Progress Guarantee 41

3.3.5 Stagnation-free Adaptation Solution . 42

3.4 Implementation . 43

3.4.1 Register Checkpointing, Permission Clearing Protocol 43

3.4.2 Memory Organization . 44

3.4.3 Invariant Checking for Capacitor Malfunction Detection 44

3.4.4 DMA-Based Fast Page Copy . 45

3.4.5 Page Size Adaptation Range . 47

3.4.6 Worst Case Power Consuming Time . 47

3.5 Evaluation . 49

3.5.1 Intermittent Computing Platform . 50

3.5.2 Execution Time Overhead Analysis with No Power Failure 51

3.5.3 Execution Time Overhead Analysis with Power Outages 52

3.5.4 Energy Consumption Breakdown across Power Outages 53

3.5.5 Exception Handling for Capacitor Malfunction 54

3.6 Summary . 55

4 ROCKCLIMB: COMPILER-DIRECTED HIGH-PERFORMANCE INTERMITTENT

COMPUTATION WITH POWER FAILURE IMMUNITY 57

4.1 Introduction . 57

4.2 Background and Challenges . 59

4.2.1 Expensive Centralized Checkpointing 59

4.3 Design . 62

4.3.1 PFI: Power Failure Immunity . 62

5

4.3.2 ROCKCLIMB: Never Fail Whatsoever! 64

4.4 Implementation . 66

4.4.1 SAT Calculation . 66

4.4.2 WCET Analysis . 67

4.4.3 SAT-Driven Region Formation . 68

4.4.4 Discussion . 70

4.5 Optimization . 71

4.5.1 Securing Full Capacitance for Rollback-Free Computation 71

4.5.2 Compiler Optimization: Distributed Checkpointing 71

4.6 Evaluation . 73

4.6.1 Experimental Setting . 73

4.6.2 Stagnation Analysis . 74

4.6.3 Sensitivity Analysis . 78

4.7 Summary . 81

5 COSPEC: COMPILER-DIRECTED SPECULATIVE INTERMITTENT COMPUTATION 82

5.1 Introduction . 82

5.2 Background and Challenges . 84

5.3 Overview . 86

5.3.1 CoSpec Hardware Design . 86

5.3.2 CoSpec Compiler . 87

5.3.3 Architecture/Compiler Co-design . 89

5.4 Implementation . 92

5.4.1 Instruction Level Parallelism . 92

5.4.2 Stagnation-Free Intermittent Computation 94

5.4.3 Energy-Efficient Store Buffer Search 95

5.4.4 Direct Memory Access (DMA) . 97

5.5 Evaluation . 98

5.5.1 Hardware Cost Analysis . 99

5.5.2 Execution Time Analysis with No Outage 102

6

5.5.3 Execution Time Analysis with Outages 104

5.5.4 Energy Breakdown with Outages . 105

5.6 Summary . 107

6 WRITE-LIGHT CACHE: LIGHTWEIGHT CRASH CONSISTENT CACHE FOR EN-

ERGY HARVESTING SYSTEMS . 108

6.1 Introduction . 108

6.2 Background and Challenges . 111

6.2.1 Cache and Write Policy . 111

6.2.2 Crash Consistency with a Cache . 112

6.3 Design . 115

6.3.1 Overview . 115

6.3.2 Crash Consistency with WLCache . 117

6.3.3 Discussion . 118

6.4 Adaptive Management . 119

6.5 Hardware and Protocols . 120

6.5.1 DirtyQueue Insertion Protocol . 121

6.5.2 DirtyQueue Replacement Policy . 121

6.5.3 DirtyQueue Replacement Protocol . 122

6.5.4 Cache Replacement Policy . 123

6.5.5 DirtyQueue Threshold Management . 124

6.6 Evaluation . 124

6.6.1 Experimental Settings . 124

6.6.2 Hardware Cost . 125

6.6.3 Performance Analysis . 126

6.6.4 DirtyQueue Replacement Policy . 128

6.6.5 Sensitivity Analysis . 129

6.6.6 Adaptive Maxline/Waterline Threshold Management 132

6.6.7 Energy Consumption Analysis . 132

6.7 Summary . 133

7

7 CAPOS: CAPACITOR ERROR RESILIENCE FOR ENERGY HARVESTING SYSTEMS 134

7.1 Introduction . 134

7.2 Background and Challenges . 137

7.2.1 Rollback Solutions . 137

7.2.2 Periodic Capacitor Isolation . 138

7.2.3 Voltage Margin Solution . 139

7.3 Design . 140

7.3.1 CapOS in Normal Mode . 141

7.3.2 CapOS in Safe Mode . 142

7.3.3 CapOS Mode Change . 145

7.4 Implementation . 146

7.4.1 JIT checkpoint with Duplicated PC . 146

7.4.2 Timer handler . 147

7.4.3 Reboot process . 148

7.5 Evaluation . 149

7.5.1 Experimental Setting . 149

7.5.2 Energy Harvesting System Lifespan Analysis 149

7.5.3 Performance Analysis . 150

7.5.4 Sensitivity Analysis . 152

7.6 Summary . 155

8 CONCLUSION . 156

REFERENCES . 158

VITA . 174

8

LIST OF TABLES

2.1 Power failure recovery solutions for energy harvesting systems. Any type of recovery
solution is susceptible to the capacitor error. 31

4.1 Comparison of prior software solutions for a stagnation problem in energy harvesting
systems. Partitioning time means how long it takes to form stagnation-free regions/-
tasks. H/W Support represents an energy debugger requirement while User Interven-
tion means whether a programmer must use a special programming language. Log
indicates whether the work requires a logging mechanism for memory restoration. Re-
execution shows whether the work involves re-execution inherently. 60

4.2 Comparison of stagnation-aware region formation schemes in terms of the time taken
to complete the region formation . 61

4.3 The number of power failures per second in traces. 78

5.1 Simulation configuration . 99

5.2 Hardware cost comparison: In the first column, the entries in bold are non-commodity
hardware components, i.e., the bold marks represent expensive hardware modifica-
tions. Others have already been adopted to commodity hardware designs. 100

5.3 Write-to-read ratios of different NVM technologies. 104

6.1 Hardware complexity and performance comparison in prior cache schemes for energy
harvesting systems. 113

6.2 Simulation configuration. 125

7.1 Lifespan analysis varying applications . 148

7.2 The number of power failures per second in traces 153

7.3 Lifespan analysis (days) for energy harvesting systems varying power traces 153

9

LIST OF FIGURES

2.1 Energy breakdown of Ratchet for a real energy harvesting condition. For dhrystone,
100% re-execution means stagnation. A geometric mean (gmean) is calculated only
for those non-stagnated. 27

2.2 Just-In-Time (JIT) checkpointing mechanism . 28

2.3 Capacitor degradation in real energy harvesting systems. Within seven days, a capaci-
tors can be severely degraded causing capacitor error. 31

3.1 Overall workflow: checkpoint interval can be adjusted when it ends at timer expiration
and in the wake of power outage at boot time . 36

3.2 Memory inconsistent recovery due to anti-dependence 37

3.3 copy-on-write backup: ¶ page number vector (PNV) lookup, · copy the page to
shadow, ¸ PNV insertion, ¹ memory write . 37

3.4 Timer reconfiguration example . 40

3.5 NVM write latency with DMA (Cycles per byte) 45

3.6 Copy-on-write overhead breakdown in stable power input case. With the page size of
256 bytes, the major overhead comes from the page copy. 46

3.7 Average execution time overhead of the best 4 page size configurations for all bench-
marks when DMA and shadow memory are used with stable power input, i.e., no
power failure. 48

3.8 Realistic intermittent power traces (simplified) . 50

3.9 Normalized performance overhead of Elastin (shadow memory design) 51

3.10 Normalized performance overhead of Elastin (2-level radix tree design) 52

3.11 Application completion time in the presence of power failures using trace#1: the bar
of stagnated applications reaches ∞, and the geomean of Ratchet is calculated only for
non-stagnated applications. 53

3.12 Application completion time in the presence of power failures using trace#2: the bar
of stagnated applications reaches ∞, and the geomean of Ratchet is calculated only for
non-stagnated applications. 54

3.13 Energy consumption breakdown of Elastin . 55

3.14 Elastin’s robustness against capacitor malfunction 56

4.1 Workflow of PFI compiler: it partitions program into a series of PFI-enforced regions
and instruments them to achieve rollback-free and high-performance intermittent com-
putation. 63

10

4.2 Comparison of intermittent computation schemes: Each scheme runs the same pro-
gram (Task A). While prior works form many regions, e.g., Region 1∼5 in Task A,
PFI generates a few regions, and PFI+ROCKCLIMB further lengthens the region size
and eliminates the re-execution. 65

4.3 Region partitioning with the SAT threshold of 200; the number in each basic block
(box) represents its total execution cycles, and dashed lines represent region boundaries. 69

4.4 Checkpoint reduction by distributed checkpointing: (a) centralized checkpointing and
(b) distributed checkpointing. Each box represents a program region. 73

4.5 Performance results in real energy harvesting situation. We compare PFI+ROCKCLIMB

with Ratchet and Chinchilla. Y-axis shows the normalized execution time to PFI+ROCKCLIMB.
∞ represents the stagnation problem. 74

4.6 Performance Breakdown of PFI-only. 75

4.7 Region Size Comparison of Ratchet/Chinchilla/PFI. 75

4.8 Checkpoint reduction by distributed checkpointing. 78

4.9 Energy harvesting trace; the plots in this table show voltage input fluctuations to MCU
during 12 different movements from an RF energy harvesting reader [25], [95] 79

4.10 Performance results in various situations; Y-axis shows the normalized execution time
to the baseline. 80

5.1 CoSpec’s checkpoint protocol for a normal case (a) and an exceptional case such as
stagnation (b) . 89

5.2 Performance benefit thanks to ILP. DMA is not enabled here, though it can accelerate
the 2nd phase of the SB release. 91

5.3 Store buffer bypass rates at compile time and run time. Both BasicAA and SVF are
static alias analysis. 96

5.4 Energy consumption breakdown of different SB search schemes. For each SB config-
uration on x-axis, the first and second bars represent conventional CAM search and
CoSpec’s sequential search, respectively. 96

5.5 Normalized energy/latency overheads of the sequential SB search compared to the
CAM based associative search . 97

5.6 Energy harvesting voltage traces. Trace#1 and#2 incur ≈20 and ≈400 power outages
in every 30 seconds, respectively. 99

5.7 Completion time comparison. The 1st/2nd bars of each application represent the times
of NVP and CoSpec, respectively. 101

5.8 Normalized execution time of CoSpec compared to NVP [21]. As a default, CoSpec
enables SB bypass, ILP, and DMA support for all other experiments 101

11

5.9 Normalized execution time of CoSpec compared to NVP [21] varying DMA speed.
DMA(4X) is the default configuration for all other experiments. 101

5.10 ILP Efficiency comparison varying DMA speed. DMA(4X) is the default configura-
tion for all other experiments . 102

5.11 Normalized execution time of CoSpec compared to NVP [21] varying the write-to-
read ratio of NVM. The ratio, 6:1, is the default configuration for all other experiments. 103

5.12 Completion time comparison. The 1st/2nd bars of each application represent the times
of NVP and CoSpec, respectively. 103

5.13 Energy consumption breakdown of CoSpec . 106

6.1 Design comparison of cache architectures in NVP. Gray boxes are non-volatile while
white boxes are volatile. Red arrows represent JIT checkpointing. 112

6.2 Running example of WLCache. WLCache holds dirty cache lines and keeps track of
their memory addresses in DirtyQueue (DQ). When the number of dirty lines exceeds
waterline (blue dashed line), WLCache asynchronously writes back a dirty line to
NVM while a processor executes the next instructions. When the number of dirty lines
reaches maxline (red dashed line), WLCache stalls the store instruction, bounding the
total number of dirty lines in WLCache. 114

6.3 An example execution with adaptive maxline, waterline, and Vbackup. The red and
white intervals represents power-off and power-on periods, respectively. The system
boots and runs when the charge reaches Von, and starts JIT-checkpointing (gray inter-
val) when it becomes below Vbackup. Tn represents the power-on time of n-th interval. 118

6.4 Non-Volatile Processor (NVP) with WLCache. Gray boxes represent non-volatile
counterparts. Yellow boxes represent WLCache as newly introduced hardware sup-
port. Alongside DirtyQueue, WLCache has configuration registers such as waterline
(W), maxline (M), and timer (T). 121

6.5 Normalized speedup of each cache design compared to NVCache with no power fail-
ure. WLCache is 3.1x, 2.18x, and 1.2x faster than NVCache-WB, VCache-WT, and
ReplayCache, respectively; NVSRAM-WB is 4% faster than WLCache. 126

6.6 Normalized speedup of each cache design compared to NVCache in Power Trace 1.
WLCache is 2.25x, 1.71x, 1.32x, and 1.09x faster than NVCache-WB, VCache-WT,
ReplayCache, and NVSRAM-WB, respectively. 126

6.7 Normalized speedup of each cache design compared to NVCache in Power Trace 2.
WLCache is 1.98x, 1.55x, 1.3x, and 1.12x faster than NVCache-WB, VCache-WT,
ReplayCache, and NVSRAM-WB, respectively. 126

6.8 Normalized write traffic increase compared to NVSRAMCache in Power Trace 1. . . 128

6.9 Normalized speedup of WLCache with different DirtyQueue replacement and different
cache set associativity compared to NVCache-WB on average. 128

12

6.10 Sensitivity analysis on applications varying maxline sizes and cache replacement poli-
cies. 129

6.11 Normalized speedup of each cache design compared to NVCache in Power Trace 1
varying (a) each cache size and (b) capacitor size on average. 130

6.12 Normalized speedup of WLCache with adaptive management compared to NVCache
in Power Trace 1. WLCache is 2.8x, 2.12x, 1.63x, and 1.35x faster than NVCache-
WB, VCache-WT, ReplayCache, and NVSRAM-WB, respectively. 130

6.13 Normalized speedup of WLCache with adaptive management compared to NVCache
in Power Trace 2. WLCache is 2.49x, 1.93x, 1.64x, and 1.48x faster than NVCache-
WB, VCache-WT, ReplayCache, and NVSRAM-WB, respectively. 130

6.14 Normalized energy consumption breakdown in different cache designs. 133

7.1 Capacitor degradation deceleration and its side-effect analysis in energy harvesting
systems . 138

7.2 CapOS workflow: CapOS diagnoses a capacitor at each reboot time. If the capacitor
error is detected, CapOS disables the JIT checkpointing and switches its execution
mode from normal (blue shaded box) to safe (yellow shaded box). If a capacitor can
be recovered in the safe mode, CapOS would switch its execution mode back to normal. 141

7.3 JIT checkpoint failure (capacitor error) detection mechanism with a duplicated PC . . 142

7.4 CapOS marks the populated pages in a page table during a checkpoint interval. Across
power failure, CapOS restores checkpointed registers and the marked page(s) to re-
sume the interrupted program. 143

7.5 Copy-on-Write with memory protection unit (MPU). Dashed lines represent no per-
mission while solid lines mean the system has a permission. 145

7.6 Normalized throughput of each recovery scheme compared to Samoyed without a de-
graded capacitor. 150

7.7 Normalized throughput of each recovery scheme compared to Samoyed with a de-
graded capacitor. 151

7.8 Overview of Capacitor Aging Simulator (CapSim) 152

7.9 Sensitivity analysis varying power failure patterns and recovery solutions 154

13

ABSTRACT

An energy harvesting system (EHS) provides the intriguing possibility of battery-less comput-

ing and enables various applications such as wearable, industrial or environmental sensors, and

implantable medical devices. The biggest challenge of EHS is the instability of energy sources

(e.g., Wi-Fi, solar, thermal energy, etc.) which causes unpredictable and frequent power outages.

To address the challenge, existing works introduce software-based and hardware-based power fail-

ure recovery solutions that ensure program correctness across a power outage. However, they

cause a significant performance overhead without providing the high quality of service in real-

ity, and suffer from a reliability issue. In this dissertation, we address the limitations of recovery

solutions across the system stack, from the compiler-directed approach and run-time systems to

hardware mechanisms, and demonstrate the effectiveness of the approaches using real EHS plat-

forms and simulators. We first present software-based recovery solutions by leveraging compiler

support. We develop a compiler-directed solution built upon commodity EHS platform that can

achieve 3X speedup compared to the software-based state-of-the-art solution. We also introduce a

compiler optimization technique that can cooperate with run-time systems and hardware support,

achieving 8X speedup compared to the software-based solution. We then present hardware-based

recovery solutions by leveraging compiler and hardware support. We develop an architecture/-

compiler co-design solution that re-purposes existing hardware components in a core for power

failure speculative execution, a new speculation paradigm, and leverages a novel compiler anal-

ysis for correct power failure recovery. Our result highlights 2 ∼ 3x performance improvement

compared to the hardware-based state-of-the-art solution without requiring hardware modification.

Next, we present a new cache design for EHS that can achieve cost-effective, high-performance

intermittent computing. According to experimental results, the new cache design outperforms the

state-of-the-art cache scheme by 4X and reduces the hardware cost by 90%. Finally, we present an

operating system (OS)-driven solution to address a reliability problem on EHS devices while all

existing works are vulnerable, causing the wrong recovery across power failure. Our experiments

demonstrate that the solution causes less than 1% run-time overhead and successfully addresses

the reliability problem without compromising correct power failure recovery.

14

1. INTRODUCTION

The number of devices connected to the Internet of Things (IoT) continues to grow, enabling new

application domains such as smart homes, buildings, structures, and cities. Powering these IoT

devices is a key challenge since their batteries are bulky, have a limited lifetime, and are expensive

to replace. This has brought a tremendous amount of interest in energy harvesting system (EHS)

that extracts ambient energy from surroundings for free, e.g., sunlight, radio waves, vibration, and

thermal gradients, and provides the intriguing possibility of battery-less computing. Thanks to its

self-powering, maintenance-free, and environmentally-friendly nature, EHS is the logical next step

in the evolution of IoT.

Due to the unstable nature of harvested energy and the absence of a battery, EHS leverages

a tiny capacitor as an energy buffer. It intermittently computes when it provides sufficient en-

ergy, which would otherwise die, thus being called intermittent computation. This implies that

frequent power interruptions become the norm of program execution, producing incorrect output

or failing to provide any service to end-users. Hence, researchers adopt low-power microcontroller

(MCU) with byte-addressable nonvolatile memory (NVM) and offer some form of recovery sup-

port to checkpoint (backup) necessary data and restore them across power outages [1]–[9]. From

the system administrator’s perspective, however, it is uniquely challenging to design hardware and

develop software for EHS. This is because merely ensuring correct power failure recovery is insuf-

ficient to bring EHS to the IoT applications; major challenges remain in run-time overhead, energy

efficiency, and reliability.

To achieve high-performance and reliable intermittent computing, we design, develop, and

evaluate compiler-directed approaches, architecture/compiler co-design recovery mechanisms, OS-

driven reliability solution, and hardware support across the system stack, showing that they help

existing EHS platforms to deliver high quality of service to end-users.

1.1 Challenges of Energy Harvesting Systems

The correct recovery challenge is at the heart of EHS. To achieve power failure recovery, EHS

often creates a checkpoint on which the volatile registers are saved into the NVM to roll back to

the most recently checkpointed states when the power comes back after an outage. Nevertheless,

15

this simple checkpointing mechanism alone cannot consistently achieve correct recovery due to the

inconsistency of data in NVM. NVM data can be corrupted across power failure when there exists

write-after-read (WAR) dependence [4], [10]. For example, increasing an NVM-allocated variable

i, whose initial value is 0, after the checkpointing of registers (i.e., checkpoint;i++) should

generate 1 as the output value of i provided the code executes without power failure. However,

if the code is power-interrupted after i is updated to 1 in NVM with the increment, the rollback

recovery—in the wake of power failure—restarts the code from the checkpoint point and thus ends

up re-doing the increment, thereby generating wrong output 2. Thus, such WAR-induced memory

inconsistency makes EHS fail to achieve correct power failure recovery.

With that in mind, researchers and practitioners have designed various power failure recovery

solutions. While they ensure correct recovery across frequent power failure, there are three critical

challenges still hindering the wide adoption of such solutions in practice: (1) run-time overhead, (2)

energy overhead with expensive hardware cost, and (3) reliability issues. This section elaborates

on these problems and discusses the relevant state-of-the-art solutions for each category. More

discussion on other related works is deferred to Chapter 2 .

1.1.1 Run-time Overhead of Recovery Solutions

To ensure correct recovery, researchers develop many software and hardware solutions; how-

ever, adopting the solutions in IoT applications is complex since they incur high run-time and

energy (power) overheads. The software solutions caused a significant slowdown, and the hard-

ware solutions were cost-ineffective and energy-inefficient. The following two problem statements

(PS) summarize these two overhead problems.

PS 1. Software recovery solutions cause a high run-time overhead.

Existing software-based recovery schemes partition program into a series of recoverable re-

gions (tasks) by checkpointing/logging their input register/memory data in NVM. If any region

is interrupted due to power failure, the recovery schemes, in the wake of the failure, first restore

the checkpointed/logged data by loading them from NVM and then resume the program at the

beginning of the interrupted region [2], [4], [11], [12]; this is so-called rollback recovery.

16

Unfortunately, the existing recovery schemes are not systematic since they form their regions

sometimes too conservatively or aggressively. If regions are too short (i.e., unnecessarily making

frequent checkpoints at each region boundary), the schemes consume more energy for checkpoint-

ing but use less energy for computing. This is because checkpoints are essentially NVM stores,

which are the most energy-consuming instructions in EHS. While one could take an aggressive

approach by forming long regions for fewer checkpoints, expensive re-execution overhead has to

be paid by restarting such a long region, possibly many times across power outages. Either way,

the forward execution progress is limited, leading to significant performance degradation. Even

worse, the existing recovery schemes could suffer from a stagnation problem [8], [9]—livelock-

like situation where power failure repeatedly occurs before some long region finishes—making no

forward progress despite continuous energy consumption (also called a non-terminating bug [13]).

PS 2. Hardware recovery solutions are energy-inefficient and cost-ineffective.

Hardware recovery solutions introduce nonvolatile processors (NVP) [3], [14]–[18]; however,

it is hard to adopt the NVPs to real EHS devices since they require expensive hardware modifica-

tion and consume hard-won energy inefficiently. First, unlike traditional embedded devices, NVPs

use specialized hardware components for correct recovery. NVPs rely on a voltage monitor based

on a just-in-time (JIT) checkpoint mechanism that checkpoints volatile registers—when the volt-

age monitoring system detects the voltage drop below a defined threshold—by using the buffered

energy in the capacitor. In addition to the voltage monitor, the schemes require non-trivial hard-

ware modifications such as nonvolatile flip-flops, that must be laid out next to volatile flip-flops

for fast backup/restoration, special hardware checkpoint/controller logic, and additional capacitors

for the voltage monitor. Second, existing works reserve a significant amount of energy for check-

pointing purposes, which cannot be used for forward progress execution. This is mainly because

the voltage monitor may cause stability issues such as excessive leakage or crack of the capac-

itors leading not only to reduced capacitance [19], [20] but also to voltage detection delay with

unexpected cold-start glitch [21]. Consequently, they waste hard-won energy, making no forward

progress until such a high voltage is secured to wake up the system for sure.

17

Furthermore, NVPs leverage the same JIT checkpoint mechanism to enable a volatile cache,

that has a high potential to improve performance for EHS devices. Given an energy budget, EHS

can make a further forward progress by avoiding NVM accesses on cache hits. However, all dirty

cache lines are lost upon a power failure so the NVM state upon power failure could be inconsistent,

causing incorrect program behavior when the program resumed. To ensure crash consistency, a

traditional SRAM-based write-through cache can be used in EHS devices without modification

since it naturally supports crash consistency by persisting data at every store in a synchronous

manner while updating the same data in the cache—though the requirement of synchronous writes

lead to the long store latency as in the case without a cache.

For crash consistency, NVCache [22], [23] is designed as a full non-volatile cache, instead of a

traditional SRAM-based volatile one. However, NVCache is inevitably slower and requires more

energy than a traditional SRAM-based cache. Finally, the state-of-the-art introduces NVSRAM-

Cache [24]–[27] that couples a traditional write-back SRAM cache with an NVM counterpart. It

achieves crash consistency via JIT checkpointing; it monitors a remaining energy in a capacitor

(energy buffer) and copies the SRAM cache states to the NVM counterpart right before a power

loss. NVSRAMCache can achieve higher performance improvement as it uses write-back pol-

icy and absorb write hits (unlike WTCache) and it uses a SRAM-based cache at runtime (unlike

NVCache). However, they require to reserve more energy for failure-atomic JIT checkpointing,

causing an energy efficiency issue. Moreover, the NVM counterpart is underutilized since it is only

required for checkpointing purpose.

1.1.2 Reliability Issue of Recovery Solutions

EHS leverages a capacitor as an energy buffer, achieving the full potential of maintenance-free

batteryless IoT. However, we found that a capacitor can be degraded in real energy harvesting

settings. Since ambient energy sources are unstable, causing frequent power failure, the capaci-

tor is repeatedly charged and discharged, which is a stressful condition expediting the capacitor

degradation [19], [28]–[30]. Furthermore, since energy harvesting systems are used as IoT devices

in various environments, their capacitors are often exposed to other stressful conditions, e.g., high

humidity/temperature [28], [31]. Under the circumstances, the capacitor is seriously degraded over

18

time and finally unable to buffer enough energy to run applications; we refer to the problem as a

capacitor error.

PS 3. Both software and hardware recovery solutions are vulnerable to the capacitor reliability

issue.

Due to the insufficient amount of buffered energy in the degraded capacitor, software recovery

solutions can fail the forward progress execution. Since the solutions generate a series of recover-

able program regions, the statically-formed program region size can be too long to be completed

within a given energy budget in the degraded capacitor, suffering from the stagnation problem. To

address the problem, they can generate shorter regions; however, they require additional check-

point stores, spending hard-won energy inefficiently and causing a significant run-time overhead

(by more than 5x slowdown compared to original recovery solution [12]).

On the other hand, when the capacitor does not buffer sufficient energy due to the reliability

issue, hardware solutions fail the JIT checkpointing, corrupting/losing volatile data (without pro-

viding any further service) across power failure. To ensure safe JIT checkpointing, existing works

reserve 10% checkpoint voltage margin in case of unexpected errors [3], [6], [7], [14]. However,

it is impractical to leverage the large safe margin for safe JIT checkpointing. Since the increased

voltage/energy can only be used for checkpointing purposes, not for computation/progress, it also

causes significant performance degradation. Moreover, such a large safe margin can further in-

crease the start-up voltage level, leading to a lot longer reboot/recharge time to secure enough

energy across power failure. More importantly, although they reserve such a large safe margin,

the prior works are still not free from the reliability issue. Since the capacitor can eventually be

degraded by more than 50% within a year in real energy harvesting situation, the large safe margin

can finally be unavailable for the reliability problem.

1.2 Thesis Statement

This thesis aims to solve the research challenges mentioned above and design a high-performance

and reliable system stack that can support IoT applications on EHS devices. The scope of the sys-

tem stack spans from compiler analysis to mechanisms in the device’s hardware and includes oper-

ating system support for diagnosis and maintenance. The system brings value to the application by

19

providing high-quality service without effort from programmers. Once incorporated into existing

EHS platforms, the system stack we introduce in this thesis serves as evidence for the following

thesis statements (TS):

TS 1: To address the performance problem in software recovery solutions, we leverage compiler-

directed approaches with hardware support available in commodity hardware (originally de-

signed for other purposes).

Software solutions statically partition program into a series of recoverable regions, the bound-

ary of which serves as a rollback recovery point in case the following region is interrupted by

power failure [12], [32], [33]. The implication is that they make a checkpoint that entails mul-

tiple energy-consuming NVM writes at every (fixed) pre-defined task boundary, which would be

unnecessary under stable energy-harvesting conditions. The crux of the problem is that due to the

compile-time fixed tasks, they always need to checkpoint data at every boundary, even when there

is no power failure, causing a significant slowdown (50∼400%). Also, the solutions must roll

back to the beginning of the interrupted task across power failure, and re-execute the same instruc-

tions causing the re-execution penalty [10], [34], [35]. In the worst case, they can suffer from the

stagnation problem by repeatedly re-executing the same interrupted region across power failure.

Instead of using the region boundaries, we see an opportunity to make a recovery point flexibly

by leveraging a timer-based checkpoint scheme with a copy-on-write (CoW) memory protection

mechanism. In Chapter 3 , we demonstrate how the solution can be used to ensure correct power

failure recovery without requiring program region formation. Furthermore, we also study compiler

analysis to remove unnecessary checkpoint stores and eliminate the re-execution penalty caused

by rollback recovery. In Chapter 4 , we show how to leverage compiler optimization techniques for

checkpoint reduction and rollback-free intermittent execution.

TS 2: To address energy-efficiency and cost-effectiveness problems in hardware solutions, we

leverage software support while improving run-time performance.

To ensure correct power failure recovery, researchers propose hardware solutions (NVPs) with

a capacitor-backed JIT checkpointing that checkpoints volatile registers to non-volatile counter-

parts placed right next to a register file by spending buffered energy in a capacitor. To achieve

correct recovery without requiring unconventional architectural support, we developed a new spec-

20

ulation paradigm called power failure speculation with the help of compiler support. Instead of

using the non-volatile counterpart with extra energy, we find a way to ensure correct power failure

recovery by leveraging a compiler-directed approach. For example, we study an architecture/-

compiler co-design scheme that works for commodity in-order processors used in EHS devices.

The speculation assumes that power failure will not occur, and thus a processor holds all commit-

ted stores—as if they were speculative—in case of mispeculation. If power failure occurs during

speculative execution, all speculative stores disappear. Then, when the program control reaches a

compiler-directed recovery point, a processor assumes that the speculation turns out to be success-

ful and persists all speculative stores. More details are explained in Chapter 5 .

On the other hand, we see a chance to enable volatile caches on top of NVPs by leveraging

a small size buffer (e.g., write-back buffer) without requiring such a non-volatile counterpart and

a significant amount of extra energy. We develop a new cache architecture for EHS devices that

can reduce hardware costs yet accelerate run-time performance. More details are explained in

Chapter 6 .

TS 3: To address reliability problem in power failure recovery solutions, we leverage operating

system modules that can detect the problem and prevent from it in a seamless manner.

Both software and hardware solutions assume that a capacitor (i.e., energy buffer) in EHS is

reliable; however, it turns out to be a fallacy. Indeed, capacitors can be degraded, losing their origi-

nal capacitance by more than 20% regardless of their size or material—a capacitor is considered as

dead at 20% degradation [28]–[31], [36]. When the capacitor is degraded, both solutions can suf-

fer from capacitor degradation such as data loss/corruption or stagnation; we call it as a capacitor

error.

To deal with the capacitor error, we study common capacitor degradation patterns in real EHS

devices and apply them to build a degradation detection mechanism. However, the detection mech-

anism is not enough because neither software nor hardware recovery solutions can ensure forward

progress execution, i.e., no service to end-users with the degraded capacitor. Fortunately, we find

out that we can leverage the capacitor’s resilience nature to prevent no forward progress execution

issues, which is that the capacitor can restore its original capacitance by itself with the help of its

resilient nature. By leveraging nature, we can not only detect the capacitor degradation but also re-

21

cover the degraded capacitor and keep providing high-quality service as a practical capacitor error

resilience solution. In Chapter 7 , we present an OS-driven capacitor error resilience solution built

upon this analysis.

1.3 Contributions

In this thesis, we focus on solving three problems: (PS1) the run-time overhead issue in soft-

ware solutions, (PS2) the energy overhead and the hardware cost issue in hardware recovery so-

lutions, and (PS3) the reliability issue in EHS devices. We envision that the contributions made

in this thesis can be applied to real EHS devices to improve their performance and efficiency. We

summarize our efforts in solving the problems as contributions in the following sections.

• We propose a compiler-directed rollback recovery solution, which strongly guarantees for-

ward execution progress across power failure by leveraging a boundary-free checkpointing

mechanism. It requires neither user intervention nor program partitioning for region (task)

formation while its boundary-free checkpointing can maximize the forward progress; our

implementation is released in the Elastin library [8]. Experimental results show that Elastin

is able to complete all benchmark applications, whereas the state-of-the-art work cannot due

to stagnation.

• We develop a compiler-directed program analysis tool that statically identifies the no-forward-

progress (stagnation) problem in intermittent programs and decomposes a program into

stagnation-free regions to ensure it makes forward progress when executed intermittently.

Within the analysis tool, we develop a compiler optimization technique that can cooperate

with a run-time system and hardware support. The technique makes each program region

free from power failure interrupt, achieving stagnation-free and power-failure-interrupt-free

intermittent execution. We implemented the analysis within the LLVM framework and re-

leased it as RockClimb [37].

• We build an architecture/compiler co-design for hiding long latency of NVM writes and

improving performance during intermittent program execution. This solution enables a new

speculation paradigm called power failure speculation. By leveraging the speculation, the

solution overlaps NVM writes with the next instructions’ execution. Such instruction level

22

parallelism (ILP) gives an illusion of out-of-order execution on top of the in-order processor.

We develop the co-design named CoSpec [9] and demonstrate the improved performance

and correct recovery that the new speculation brings.

• We develop specialized cache architecture with a new write policy for power-hungry EHS.

Without requiring non-volatile counterparts or a huge amount of extra energy, the proposed

cache architecture can energy-efficiently and cost-effectively persist volatile data in NVM

across power failure. In particular, we build the cache architecture upon traditional SRAM

cache design, taking advantages of both write-back’s efficiency and write-through’s per-

sistence. It adaptively behaves as a write-through or a write-back cache by changing its

characteristic back and forth with a help of run-time system. We introduce the new cache

design named as Write-light Cache and demonstrate the performance improvement and cost

reduction.

• We discover a capacitor error where all EHS devices can corrupt/lose their data or fail to

provide any service when their energy buffer (i.e., capacitor) is degraded. To address the

error, we introduce an OS-driven capacitor error resilience solution called CapOS, that can

preserve volatile data against capacitor errors and recover the degraded capacitor by lever-

aging its self-recovery nature. Our experiments demonstrate that CapOS causes less than

1% performance overhead on average compared to a (unprotected) roll-forward recovery

when there is no capacitor error. In the presence of capacitor errors, CapOS incurs only 15%

performance overhead on average.

1.4 Organization

The remainder of the thesis is organized as follows. Chapter 2 discusses related work for ar-

chitectural design of EHS, software- and hardware-based power failure recovery solutions, and

capacitor reliability problem. Each of the following chapters elaborates on each challenge of inter-

mittent computing briefly outlined in the introduction and presents our contribution that addresses

it in detail. These chapters are ordered by the abstraction level, from software to hardware. Chapter

3 presents a software recovery solution, introducing a compiler-directed recovery scheme that can

ensure stagnation-free intermittent execution without requiring fixed region boundaries. Chapter 4

23

presents a compiler-directed high-performance intermittent computation scheme with power fail-

ure immunity, that enables rollback-free and power-failure-interrupt-free execution by leveraging

static analysis with run-time system and hardware support. Chapter 5 presents a compiler/archi-

tecture co-design recovery solution, that introduces a new speculative execution paradigm called

power failure speculation, enabling the ILP execution for performance improvement. Chapter 6

introduces a new cache architecture for high-performance intermittent computing in EHS devices.

Chapter 7 presents an OS-drive capacitor error resilience solution that detects the capacitor error

and preserve all data against the error. We conclude in Chapter 8.

24

2. BACKGROUND AND RELATED WORK

In this chapter, we discuss the hardware design of EHS devices and their capabilities and limitation

on the execution of program. Then, we focus on the power failure recovery problem and discuss

related works. We first study software-based recovery solutions, which includes compiler support

and a new programming model, and discuss their limitation. We then investigate existing hardware

solutions for power failure recovery with a voltage monitor based JIT checkpointing mechanism.

Finally, we discuss a reliability problem in EHS devices.

2.1 Energy Harvesting System Platform

Given the power-hungry nature of EHS devices, existing platforms have opted for extremely

low-power in-order processor architecture, leveraging a low-power MCU such as TI-MSP430 [38].

Despite the low performance of in-order processor architecture, it is more suitable than power-

consuming and complex out-of-order processor architecture [39], [40]—though some prior works

propose to use out-of-order processors or even hybrid cores equipped with both in-order and out-

of-order pipelines by assuming strong energy harvesting source that can deliver stable power for

the out-of-order execution. With the low-power processor architecture, the platforms use a tiny ca-

pacitor as energy storage to intermittently compute only when sufficient energy is buffered in the

capacitor. If the buffered energy is depleted, EHS dies due to the lack of enough energy to power

the device, i.e., it is power-interrupted. In light of this execution behavior, the term intermittent

computation [41] is often used to characterize the execution of EHS. With the intermittent com-

putation in mind, the existing platforms use (1) byte-addressable NVM, e.g., FRAM [42], as the

main memory for data to survive frequent power failure and (2) some form of crash consistency to

checkpoint necessary data at run time and restore them in the wake of the power failure. We target

the low-power in-order processor architecture made up of NVM without cache as prior works [4],

[5], [8], [9], [14], [16], [43]. In the absence of cache, only data in a processor core, i.e., registers,

are transient and will be lost when power is cut off. Thus, registers need to be checkpointed—i.e.,

saved in NVM—for their safe restoration in the wake of power failure.

25

2.2 Software-based Approaches for Power Failure Recovery

2.2.1 Rollback Recovery

Due to unreliable ambient energy sources, energy harvesting systems suffer frequent power

failure that must be recovered in a crash consistent manner [4], [7], [18], [44]–[64]. To achieve

crash consistency, software-based prior works partition program into a series of recoverable re-

gions/tasks (and back up necessary data therein to NVM) so that their re-execution results in the

same and correct output across power failure; hereafter, we use the term region(s) as the same

meaning as task(s).

To a large extent, there are two crash consistency approaches that both require handling mem-

ory antidependence [65] also known as Write-After-Read (WAR) dependence—since it overwrites

an input to be read for re-execution. First, automatic idempotent region formation scheme such

as Ratchet [4], places a region boundary to cut the antidependence(s), and checkpoints live [65]

registers at compile time; the checkpoints are essentially NVM store instructions. Second, pro-

grammers can alternatively partition program into a series of regions on their own by using a new

programming model. The model can help users to preserve the memory locations being overwrit-

ten by antidependent stores by logging the original value to NVM, and checkpoint registers [2],

[11], [12]. In the wake of power failure, these two types of prior works restart from the beginning

of the interrupted region after restoring the checkpointed registers (and the logs, if necessary) from

NVM.

2.2.2 Challenge in Software-based Recovery Solutions

Unfortunately, the software-based recovery solutions can have a critical performance problem.

Suppose a region whose execution time is greater than the power failure period, i.e., the time

between the failures. If they periodically occur with the same frequency, the program ends up

rolling back to the beginning of the region indefinitely. That is because the failures keep occurring

before the end of the region is reached, in which case the program just wastes harvested energy

in vain making no forward execution progress. Researchers call this livelock-like phenomenon

stagnation [8], [9], [11]–[13], [66], [67].

26

stagnation

Figure 2.1. Energy breakdown of Ratchet for a real energy harvesting condition.
For dhrystone, 100% re-execution means stagnation. A geometric mean (gmean) is
calculated only for those non-stagnated.

It turns out that prior works can suffer the stagnation problem [2], [4], [68]–[72]. To investigate

the phenomenon, we conducted experiments by using one of the prior works, the idempotence-

based power failure recovery scheme called Ratchet [4]. We ran 11 benchmark applications on a

real energy harvesting board (the evaluation setting is described in Section 4.6.1) and analyzed the

cost of re-execution across power failure by breaking down the total energy consumption of each

application into two parts: re-execution and forward progress as shown in Figure 5.13 . Note that

we disabled Ratchet’s timer based checkpointing, since it could result in wrong recovery for those

regions that have Write-After-Read-After-Write (WARAW) dependence [34], [65].

We discover that Ratchet can be trapped in some long regions leading to stagnation, thus never

finishing the program as in the case of dhrystone in Figure 5.13 . Even for non-stagnating applica-

tions, Ratchet ends up wasting 47-75% of hard-won energy by repeatedly checkpointing/restarting

the same interrupted region across power failure—before getting out of the region. Overall, Ratchet

spends 52% of the total energy consumption for re-executions, leading to significant performance

degradation. The performance problem leads to the advent of hardware based approaches.

27

2.3 Hardware-based Approaches for Power Failure Recovery

2.3.1 Roll-forward Recovery

A root cause of the wrong recovery (memory inconsistency) is that in the wake of power fail-

ure, program control rolls back across WAR dependence, reading values updated by stores left

behind the failure. The insight is that it is possible to eliminate the inconsistency if EHS moves

forward for recovery instead of the roll-back. Hardware-based crash consistency schemes leverage

the insight taking the roll-forward only recovery. When power comes back, the roll-forward re-

covery mechanism resumes the interrupted program exactly at the same failure point on which the

power interruption occurred. Thus, the hardware roll-forward recovery schemes never cross WAR

dependence, thereby achieving crash consistency [3], [6], [7], [14].

Non-volatile memory

Voltage
Monitor

Backup/recovery
Controller

NVFFVolatile
register

Digital
Logic

Digital Logic

Harvested
Energy

Cap

Ca
pa

cit
or

 C
ha

rg
e

Time

V_backup

V_on

V_off

Power ResumesPower failure 1 2
3

NVP CatNap

4

Figure 2.2. Just-In-Time (JIT) checkpointing mechanism

Figure 2.2 describes the high-level design of the hardware schemes, i.e., NVP [14] and Quick-

Recall [3] that are two most common EHS solutions. To achieve energy-efficient checkpoint/re-

covery, NVP takes advantage of a hybrid register file circuitry comprising standard flip-flops and

non-volatile flip-flops (NVFF). Since the volatile and non-volatile flip-flips are laid out right next

to each other in the circuit, their data movement is swift, enabling fast register checkpoint/recov-

ery. However, such a hybrid register file requires significant microarchitecture modification. To

lower the hardware design cost, QuickRecall dedicates a part of non-volatile memory (NVM) as

28

checkpoint storage of registers instead of using the NVFF. Both hardware schemes exploit the

roll-forward recovery to achieve crash consistency based on another circuit mechanism called just-

in-time (JIT) checkpointing.

The JIT checkpointing saves volatile registers to their checkpoint storage—i.e., NVFF as with

NVP or NVM as with QuickRecall—when EHS is about to have a power outage. To recognize the

impending power failure, the EHS leverages a capacitor and a voltage monitor. If the voltage level

in the capacitor is lower than a pre-defined voltage threshold, i.e., Vbackup for power-failure-free

checkpointing of all registers, the voltage monitor assumes that power is about to be cut off. Thus,

the monitor sends a signal to the controller logic that lets the processor copy all registers to their

checkpoint storage, i.e., NVFF or NVM.

Note that EHS can also identify when a sufficient amount of energy is secured in the capacitor

to start the processor. As shown in Fig. 2.2 , NVP and QuickRecall first buffer harvested energy

into the capacitor. The voltage monitoring system can then check whether the buffered energy is

enough to operate the system by comparing the capacitor’s current-voltage level to another pre-

defined threshold Von. Suppose the voltage level has become greater than the threshold since

power failure. In that case, the voltage monitor sends a wake-up signal to the controller to restore

checkpointed registers (from NVFF or NVM) and, in turn, resume the (interrupted) program. In

summary, the JIT checkpointing enables EHS to observe both consistent NVM and register file

states—since the recovery point is the same as the power-off point—and ensures the absence of

roll-back, thereby always making forward progress across power failure.

2.3.2 Challenge in Hardware-based Recovery Solutions

Although the voltage monitor based JIT checkpointing mechanism can address the memory

inconsistency, it is not free from cost-effectiveness and energy efficiency issues. First, the JIT

checkpointing requires expensive hardware support for roll-forward recovery such as NVFF, spe-

cial checkpoint/controller logic, voltage monitor, and additional capacitors for voltage monitor.

Second, the JIT checkpointing wastes hard-won energy to run hardware support. Unfortunately,

the voltage monitor can be unstable, due to excessive leakage or crack of the capacitors, causing

voltage detection delay. If the monitor cannot detect the power failure at a right time, the JIT check-

29

pointing mechanism can fail to persist all required data, thereby causing wrong recovery problem.

To mitigate the issues, existing works aggressively increase the voltage threshold of the system

wake-up/backup. Consequently, they waste hard-won energy with making no forward progress

until such a high voltage is secured to wake up the system for sure.

2.4 Reliability Problem

Although all the prior works assume that a capacitor is reliable, it turns out to be a fallacy.

Indeed, capacitors can be degraded losing their original capacitance by more than 20% regardless

of their size or material—a capacitor is considered as dead at 20% degradation [28]–[31], [36].

The capacitor error can be caused in following conditions. First, the humidity change can damage

the capacitor. If its film is absorbed moisture, the capacitor can lose its original capacitance [28].

Second, the high operating temperature can make a negative impact on its quality of electrode

metalization [28]. Third, the over voltage can degrade the capacitor film’s capacity and increase

leakage current flow[31] and operating temperature. Fourth, the continuous charge/discharge can

also degrade the original capacitance due to electro-chemical corrosion by high operating temper-

ature or formation of additional dielectric layer[30]. In particular, the fourth condition is normal in

energy harvesting systems due to frequent power failure, i.e., the systems are naturally exposed to

such stressful condition. Finally, when they are degraded, capacitor errors occur.

We found that there are two types of capacitor errors, data loss/corruption and stagnation [8]—

making no forward progress in spite of continuous energy consumption (also called a non-terminating

bug [12], [13], [33]). The data loss problem occurs when the JIT checkpoint fails to persist volatile

data. On the other hand, the stagnation problem happens when the JIT checkpoint fails to make a

correct recovery point (e.g., PC or SP lost); the systems can resume the interrupted program from

the same or wrong recovery point across power outages.

2.4.1 Capacitor Error Experiments

To analyze the capacitor error in energy harvesting systems, we conducted experiments with

a roll-forward recovery solution [6], having a 1mF supercapacitor as energy buffer on a real eval-

uation board (MSP430FR5994); we tested four different 1mF supercapacitors (e.g., cap.1∼4).

30

For realistic experiments, we developed the power generator board with MSP430FR5969 to in-

cur power failures; the power generator supplies voltages to our target board through GPIO pins.

Then, we mimicked energy harvesting situation by injecting square wave voltages [73] into the

target board. For square wave voltage input, we used a power trace whose frequency was 0.3Hz at

5V; We empirically found that the frequency affects the capacitor as the most in our experimental

setting by considering a resistor-capacitor (RC) time constant [74], where R is the MCU connected

to the capacitor (C). At this frequency, the capacitor is charged and then discharged quickly. We

periodically measured the capacitance of each capacitor.

Table 2.1. Power failure recovery solutions for energy harvesting systems. Any
type of recovery solution is susceptible to the capacitor error.

Scheme Recovery Cap. Error Cap. Rest.
Chinchilla [12] Rollback Stagnation No

Sytare [75] Roll-forward Data Loss/Stagnation No
QuickRecall [3] Roll-forward Data Loss/Stagnation No

Samoyed [6] Rollback/forward Data Loss/Stagnation No

0 1 2 3 4 5 6 7
dDys

−14
−12
−10

−8
−6
−4
−2

0

3
e
rc

e
n

t.
 D

e
cr

e
D
se

 i
n

 C
D
p

D
ci

tD
n

ce

cDp.1 cDp.2 cDp.3 cDp.4

checkpoint failure

Figure 2.3. Capacitor degradation in real energy harvesting systems. Within seven
days, a capacitors can be severely degraded causing capacitor error.

From the experiments, we found that the capacitors gradually lose its original capacitance

by more than 10% as shown in Fig. 2.3 within seven days, which could cause a JIT checkpoint

failure corrupting data in NVM, i.e., capacitor error. For further analysis, we also tested our real

energy harvesting board (TIDA-00588), which is equipped with the on-board solar cells with 47mF

capacitor as energy buffer, in real harvesting environment. We found that the capacitance could

31

be decreased by up to 50% within a year. Consequently, with the degraded capacitor, all the prior

works suffer the capacitor error problem achieving neither correct recovery (data loss) nor forward

progress execution as shown in Table 2.1 . Therefore, we believe there is a compelling need to

address the capacitor error problem for practical energy harvesting systems.

2.4.2 Capacitor Recovery

Although capacitors are degraded in stressful conditions, a supercapacitor can particularly re-

cover its capacitance when it is (electrically) isolated thanks to its self-recovery nature [29], [76].

A prior work demonstrates the capacitor recovery phenomenon [29] with a recovery model defined

as: Crecovery(t,T,Vend)= a∗exp(− t
τ1

)+b∗exp(− t
−τ2

), where a and b characterize the capacitor state,

and τ1 and τ2 are the time constants governing the recovery rate of the capacitor.

To explore the capacitor self-recovery phenomenon in energy harvesting systems, we inten-

tionally stressed supercapacitors to be degraded. Then, when the capacitor was degraded by 10%,

we electrically isolated them and measured their capacitance variation over time. Finally, we found

that all of the degraded capacitors could be healed within 2 hours.

Type of Capacitors Some prior works for energy harvesting systems leverage another type of

capacitor such as ceramic or electrolytic capacitor instead of using a supercapacitor [4], [12], [14].

To explore the capacitor degradation and self-recovery nature broadly, we also tested ceramic (1nF,

10nF, 47nF, and 100nF) and electrolytic (1uF, 10uF, 47uF, and 100uF) in the same environment.

We found that they were all degraded causing the capacitor error problem (e.g., checkpoint failure)

within at least a month as demonstrated in prior works [28], [30], [31], [36]. However, they were

unable to recover their degraded capacitance when they were in idle; their capacitance recovery

is highly dependent on chemical reaction in their material [77]. The reliability work in this thesis

(Chapter 7) specifically target the supercapacitor as energy buffer like prior works [7], [33], [72],

[78]–[83] while assuming a small capacitor for other works.

32

3. ELASTIN: ACHIEVING STAGNATION-FREE INTERMITTENT

COMPUTATION WITH BOUNDARY-FREE WITH BOUNDARY-FREE

ADAPTIVE EXECUTION

Ensuring correct power failure recovery is important for intermittent computation in EHS devices,

but the high runtime overhead prevents the wide use of software recovery solutions. In this chapter,

we present Elastin, a compiler-directed software recovery solution that achieves a boundary-free

intermittent computing system without causing the high overhead (PS1). Furthermore, Elastin

achieves stagnation-free computation for energy-harvesting devices that ensures forward progress

in the presence of frequent power outages; such a boundary-free nature allows Elastin to realize

full potential of checkpoint adaptation. Thanks to the adaptive execution, Elastin outperforms the

state-of-the-art by 3.5X on average (up to orders of magnitude speedup) and guarantees forward

progress.

3.1 Introduction

Adoption of energy harvesting technologies in Internet of Things (IoT) has led to the advent of

batteryless low-power embedded systems [84]–[87]. However, due to the unreliable power source,

energy-harvesting systems suffer from unpredictable and frequent power failure. To address the

power failure problem, prior software recovery schemes partition program into a series of recov-

erable regions (tasks) so that their re-executions always result in the same and correct output [4],

[12], [13], [88]–[90]. Such a recoverability is achieved by either compiler-directed idempotent

region formation [4], [10], [49]–[51], [91], [92] or user-based manual task partitioning [12], [13],

[88]–[90]. In the wake of power failure, the prior schemes restart from the beginning of the in-

terrupted region (task) after restoring the checkpoints saved at the region/task (task) boundary for

correct recovery.

However, the region (task) based schemes [13], [88]–[90], [93], [94] face several critical is-

sues. First, the schemes end up wasting the hard-won energy due to the lack of flexibility in the

checkpoint interval; they make a checkpoint, that entails multiple energy-consuming NVM writes,

at every pre-defined region (task) boundary, which would be unnecessary under stable energy-

33

harvesting condition. The crux of the problem is that due to the compile-time fixed regions (tasks),

checkpoint interval cannot be adapted to the underlying energy harvesting quality and the power

outage behavior.

Unfortunately, the inability to adapt checkpoint interval can cause a more serious issue, i.e.,

making the system stagnate while consuming the hard-won energy; that is why the prior schemes [43],

[89], [90], [95]–[97] cannot ensure forward progress. If power outages repeatedly occur within a

certain region (task) before it ends, the schemes continually attempt to re-execute the same inter-

rupted region (task). This work refers to such a livelock-like situation as stagnation. Due to the

small capacitance of an energy buffer, stagnation often occurs during the execution of long re-

gions (tasks). Without solving the stagnation problem, all other efforts to make energy-harvesting

systems reality would eventually fail, calling for a practical solution.

To address above issues, we present Elastin, a stagnation-free intermittent computing system

for energy-harvesting devices that ensures forward progress in the presence of frequent power out-

ages. Without requiring statically-defined region boundaries, Elastin leverages both timer-based

checkpointing of volatile registers, that checkpoints registers when a time expired, and copy-on-

write mappings of nonvolatile memory pages for correct recovery purpose. During each checkpoint

interval, Elastin tracks memory writes on a per-page basis and backs up the original page—i.e., the

copy-on-write granularity, not a virtual memory page—using software-controlled memory pro-

tection without MMU or TLB; Elastin can be regarded as library OS that only offers memory

protection and timer interrupt. When a new interval starts at each timer expiration, Elastin clears

the write permission of all the pages written in the previous interval and checkpoints all regis-

ters including a program counter as a recovery point. Elastin reconfigures the checkpoint interval

and the page size based not only on the underlying energy harvesting quality but also on the ob-

served forward progress. Consequently, Elastin achieves stagnation-free intermittent computation,

ensuring forward progress across power outages.

The contributions of Elastin are as following:

• Elastin strongly guarantees forward execution progress. Experimental results show that

Elastin is able to complete all benchmark applications, whereas the state-of-the-art work

cannot due to stagnation.

34

• Elastin’s boundary-free checkpointing requires neither user intervention nor program parti-

tioning for region (task) formation while its 2-dimensional adaptation of timer interval and

page size can maximize the forward progress.

• Elastin achieves 3.5X average speedup over the state-of-the-art region based scheme.

3.2 Background and Challenges

This section briefly discusses the challenges in software recovery solutions.

3.2.1 Curse of Stagnation

Suppose a program region/task whose execution time is greater than the power failure period,

i.e., the time between the failures. If they periodically occur with the same frequency, the program

ends up rolling back to the beginning of the same region again and again. That is because the

failures keep occurring before the end of the region is reached, in which case the program just

wastes harvested energy in vain making no forward progress.

3.2.2 Lack of Checkpoint Adaptation

Adaptive execution can achieve energy efficient intermittent computation by taking into ac-

count the underlying energy harvesting condition. For example, if the amount of harvested energy

is sufficient, the energy-harvesting system does not have to frequently checkpoint to back up nec-

essary program status due to low likelihood of power failure. On the other hand, if the harvesting

energy source is weak or unstable, the system would need to checkpoint more frequently than

usual. Unfortunately, all prior software schemes partition program to regions or re-structuring it

as tasks to form recoverable regions/tasks without considering the level of harvested energy. Since

the schemes checkpoint program status at each region/task boundary fixed at compile time, they

cannot adapt to the varying quality of harvested energy at run time. Even if power failure rarely

occurs, the schemes can waste hard-won energy by performing an unnecessary checkpoint at ev-

ery single boundary during the execution of consecutive regions (tasks). Even worse, the schemes

35

Restore

Original

Shadow Page size = 1->2

Power-Off Boot

Timer = 30->15ms

Timeline
PC: 1000

Checkpoint

PC: 1000

Original

Shadow

Active

a Original

Shadow

Page#1

Active

MemoryDouble Buffer Memory Memory

Memory Write

Page#1

Memory WriteReconfigure Checkpoint

Double Buffer

PC: 1100

Double Buffer

RegistersRegisters Registers

Figure 3.1. Overall workflow: checkpoint interval can be adjusted when it ends at
timer expiration and in the wake of power outage at boot time

can suffer from stagnation during the execution of a long region (task) when power outages occur

frequently.

3.3 Design

To realize full potential of adaptive execution according to energy-harvesting condition, we

design Elastin’s backup and recovery mechanisms in a boundary-free way without inserting region

or task boundaries to program. For this purpose, Elastin leverages both timer-based checkpointing

of volatile registers (Section 3.3.1) and copy-on-write mappings of nonvolatile memory (NVM)

pages (Section 3.3.2) to restore them in the wake of power failure. Figure 3.1 describes the overall

workflow of Elastin.

3.3.1 Watchdog Timer Based Checkpointing of Volatile Registers

Elastin leverages a watchdog timer, that can be adjusted at both its expiration and boot time

(Section 3.3.3), to form flexible checkpoint interval. At each timer expiration where the current

checkpoint interval finishes and the new one is about to start, Elastin checkpoints all registers

including the program counter (PC) to a reserved area in NVM. In case of power outage during

the register checkpoint, Elastin leverages double buffering to leave at least one of the two buffers

intact [4], [98]; see Figure 3.1 .

Note that Elastin saves the registers for the new interval in case it is interrupted due to power

failure. As described in Figure 3.1 , when power comes back, Elastin uses the PC as a recovery

point to restart the interrupted interval after restoring all the other registers; they serve as inputs

36

to the interval to be restarted. As will be shown in Section 3.3.2 , in addition to a volatile register

file, Elastin needs to make a copy of NVM pages, which is invalidated at both timer expiration and

boot time, for correct recovery. Thus, the recovery process includes the page restoration as well.

3.3.2 Page Protection Based Backup of Nonvolatile Memory

Write #1 -> mem[a]
Write #2 -> mem[a+2]
Checkpoint()
Read mem[a] -> r3
…
Write #3 -> mem[a]
Write #4 -> mem[a+4]

power outage

Write #1 -> mem[a]
Write #2 -> mem[a+2]
Checkpoint()
Read mem[a] -> r3
…
Write #3 -> mem[a]
Write #4 -> mem[a+4]
…

Recovery

WAR dependence

Figure 3.2. Memory inconsistent recovery due to anti-dependence

The timer-based checkpointing alone can lead to a memory inconsistency problem. Consider

an example shown in Figure 3.2 . Here, an energy-harvesting system checkpoints between write#2

and the following read instruction and encounters a power failure right after write#3. In this case,

the write#3 and the Read instruction access to the same memory, mem[a]. Thus, these two in-

structions are anti-dependent, i.e., they form a WAR (write-after-read) dependence. In the wake

of the power failure, the system starts from the most recently checkpointed point, thus subse-

…
Add r1 r2
Add r3, r4
copy-on-write (mem[10])
store r1 -> mem[10]
…

Program
PageNumberVector

Memory

page#4

Original Memory

Shadow Memory

1

2Page#4

4

page#4#6

#3

…

page#3

page#6

3
#4

Figure 3.3. copy-on-write backup: ¶ page number vector (PNV) lookup, · copy
the page to shadow, ¸ PNV insertion, ¹ memory write

37

quently reading mem[a]. However, it ends up reading not the original value but the one updated

by write#3, thereby leading to incorrect recovery.

To address the memory inconsistency, during each checkpoint interval, Elastin tracks memory

writes on a per-page basis and backs up the original page; in the wake of power failure, Elastin first

reverts all the writes (including anti-dependent ones) performed in the interrupted interval using

the backup page and then jumps back to the recovery PC (Section 3.3.1) where the interval started.

That way Elastin can restart the interrupted interval with original memory status as if it were being

started for the first time.

To achieve this, Elastin leverages a conventional page protection mechanism of operating sys-

tems which tracks writes to non-writable page as a page fault and backs up the page with a copy-

on-write mechanism [99]. In general, energy-harvesting systems do not run OS due to the scarce

power supply, and thus we implemented custom page protection library; in a sense, Elastin can be

regarded as a library OS that only supports page protection

1
 and timer interrupt handling.

Interaction with Timer Based Checkpointing: When the watchdog timer is expired (i.e., the

current checkpoint interval has just been finished), Elastin clears the write permission of all the

pages written in the interval. In other words, when the upcoming new interval starts, no page has a

write permission. This gets the new interval ready to track its own writes and trigger copy-on-write

for backing up the corresponding pages. In this way, Elastin can ensure that each interval starts

with clean memory status.

Custom Software-Controlled Page Protection: To track memory writes and trigger their copy-

on-write if needed, Elastin instruments store instructions at compile time while maintaining a page

number vector (PNV) to record which page has a write permission at run time. For each store,

Elastin first checks if the target page has a write permission by consulting PNV (¶ in Figure 3.3).

If not, i.e., the page number is not found in PNV, Elastin creates a copy of the page (i.e., copy-

on-write) in shadow memory or radix tree based data structure (·); Section 3.4.2 discusses the

overhead of these alternatives. Then, to grant the page a write permission, Elastin inserts the page

number (#4 in Figure 3.3) to PNV as a mark for the permission (¸). In this way, Elastin can

preserve the copy of the page until the end of the current checkpoint interval so that the copy can

1
 ↑ It is only for page backup and does not support virtual memory. The MCU of energy harvesting systems lacks

MMU/TLB due to power constraint.

38

be used to recover from possible outages during the interval. Finally, Elastin performs the write

(¹).

On the other hand, if the page being stored has a write permission

2
 , i.e., the page number is

found in PNV, Elastin skips both the page copy and the PNV insertion. In summary, for a store

to writable pages, Elastin takes only two steps (¶→¹) while a store to non-writable pages goes

through all four steps (¶→·→¸→¹). Note that any power outage between these steps does not

cause a memory inconsistency problem during the recovery as long as their order is enforced.

In the wake of power failure, Elastin reverts all the written pages (i.e., those populated in PNV)

by using their original copy in shadow memory along with restoring all registers as shown in Fig-

ure 3.1 . Obviously, this software-controlled page protection mechanism consumes the harvested

energy for both page backup and restoration; Section 3.3.3 describes how Elastin adjusts the page

size to minimize the copy-on-write overhead, and Section 3.3.5 shows how Elastin bounds the

energy consumption to ensure forward progress.

Discussion: PNV is small enough to keep the lookup cost low. In energy-harvesting systems, the

common case is that they encounter frequent power failures, e.g., in a few tens of milliseconds.

During the short power-on period (one charge cycle run time), PNV is populated with only a

handful number of pages in reality. Another reason for the small size of PNV is spatial locality;

many stores fall into a few previously-populated pages during the short period of intermittent

execution [5].

In particular, the size of PNV never grows unboundedly. To avoid stagnation not only at run

time but also at boot time, Elastin bounds the number of pages, that can be populated at run time,

by taking into account their restoration cost at boot (i.e., recovery) time. Section 3.3.4 shows how

Elastin bounds the number of the populatable pages.

3.3.3 Adaptive Execution

To enable energy efficient intermittent computation, Elastin dynamically adjusts the checkpoint

interval and the page size at both timer expiration time and boot time if needed.

2
 ↑ In other words, the page has already been accessed before in the current checkpoint interval.

39

Checkpoint Interval Adaptation: Elastin reconfigures the checkpoint interval by taking into

account the condition (quality) of the energy harvesting source. This harvesting condition is an

important factor for Elastin to determine whether the checkpoint interval should be adjusted or not.

If the quality of the harvested energy is sufficiently good, there is no need to frequently checkpoint

at run time; not doing so can make a better forward progress by saving the high energy of NVM

writes required for the register checkpoint and the page backup. In contrast, if the harvested energy

is not enough, a system should checkpoint before the impending power outage. In light of this,

Elastin leverages the timer itself to figure out the underlying energy harvesting condition.

Start Reboot

6ms 12ms(doubling) 12ms

Reboot

6ms

Power failure Unexecuted area

Reconfiguration Reconfiguration

Figure 3.4. Timer reconfiguration example

Figure 3.4 describes how Elastin reconfigures the checkpoint interval. If the timer expires two

times in a row

3
 while the energy-harvesting system is active, Elastin assumes that the system have

gone through good energy harvesting condition. Thus, it doubles the checkpoint interval at the

second timer expiration. The rationale behind this heuristic is that at the second timer expiration,

at least the first checkpoint interval turns out to be unnecessary because it did not encounter a

power outage; the harvested energy was that sufficient. However, the second interval should not be

considered as unnecessary because the next interval may encounter a power outage.

On the other hand, if the timer has never expired since the last reboot, i.e., checkpoint counter

is 0, then Elastin assumes that the system is under poor energy-harvesting condition. The intuition

here is that the harvested energy was insufficient to pass even the first checkpoint interval without

interruption due to power failure. With that in mind, Elastin sets the interval as a half of the last

3
 ↑ To detect this, we use a metadata variable called checkpoint counter.

40

timer value in the wake of the power failure, i.e., at the reboot time. This particular approach (i.e.,

timer-halving mechanism) helps the system to overcome the stagnation problem for most of the

time, though there are a few exceptional cases; Section 3.3.4 shows how Elastin handles them for

stagnation-free intermittent computation.

Page Size Adaptation: To reduce the copy-on-write overhead, Elastin attempts to find the opti-

mal page size; the spatial locality of memory writes is likely to vary due to program phase behav-

ior [100], and therefore the best page size might vary for each phase.

In our current design, the memory page size cannot be changed at run time, which would

otherwise cause significant metadata (e.g., PNV) updates overheads and a subtle correctness issue

due to power failure between them. Instead, Elastin reconfigures the page size at reboot time as

shown in Figure 3.1 to make the adaptation easier and still find the best size across power outages.

In the wake of a power outage, Elastin first restores all the pages populated in PNV. Then, it

measures the cost of the current page configuration by the product of the page size and the number

of populated pages, i.e., the size of PNV. Finally, Elastin resets the page size to the best-performing

one using the decision logic of adaptive execution [101], [102].

That is, as decision runs, Elastin tries a set of page sizes to select the best among them across

power outages; Section 3.4.5 shows how the set is determined. Even though the best page size is

selected at the end of decision runs, it is not fixed for the upcoming reboot times. Instead, at every

reboot time, Elastin measures the cost of its current pick, which is compared to the most recent

costs of the other page sizes, to see if it is still the best or one of them becomes the new best.

3.3.4 Challenges in Forward Progress Guarantee

When the system repeatedly starts at the same recovery point due to stagnation, Elastin reduces

the checkpoint interval by halving the watchdog timer value in the wake of each power outage

(Section 3.3.3). In this simple way, Elastin can effectively avoid the stagnation problem.

However, there are a couple of challenges that must be addressed to ensure forward progress

for stagnation-free intermittent computation; (1) an excessive pages populated during a checkpoint

interval, and (2) capacitor (i.e., energy buffer) malfunction due to wear-out, environmental fac-

tors such as temperature change, physical access attacks, and so on. First, if there are too many

41

populated pages which must be restored at recovery time, the system may be stagnated in the mid-

dle of the recovery process. Second, if the capacitor is malfunctioning, the system may suffer

from stagnation—e.g., the buffered energy is not enough to complete even single page backup or

restoration.

To tackle these potential stagnation problems, Elastin defines thresholds for each condition: (1)

the quota (i.e., maximum number) of populatable pages during a given checkpoint interval and (2)

the lower bound of the power-on period (i.e., one charge cycle run time) of the energy harvesting

system while its capacitor works fine. We assume that the lower bound as the worst case scenario

to ensure forward progress even in the most harsh situation, i.e., the lower bound is called WCPT

(the worst case power consuming time)

4
 .

3.3.5 Stagnation-free Adaptation Solution

In this section, we first delve into WCPT and then show how to use it for detecting the capacitor

malfunction problem. Finally, we show how WCPT can be used as a basis for solving the other

problem, i.e., how to bound the number of the pages populated in a checkpoint interval.

Worst Case Power Consuming Time: Specifically, we define WCPT as follows: how long

can an energy harvesting system sustain its execution under the maximum power consumption

mode? To figure this out for the target energy harvesting system, Elastin analyzes its capacitor,

i.e., energy buffer

5
 . This is motivated by the insight that energy harvesting systems do not boot

until the capacitor (energy buffer) is fully charged as with commodity systems such as WISP [105].

In the wake of each power outage, it is thus assured that the program can make as much progress as

the fully charged capacitor allows, even if no additional energy is harvested. Section 3.4.6 shows

how Elastin calculates WCPT with this in mind and discusses how the calculation can be extended

in case the system is equipped with other components such as sensors.

Energy Buffer Malfunction: Once WCPT is obtained, Elastin leverages it to detect the capacitor

malfunction problem based on the following invariant: the power-on period of an energy harvest-

ing system should not be shorter than its WCPT—as long as the capacitor works well. That is, if

4
 ↑ Elastin can precisely bound WCPT due to the MSP430 MCU’s simple architecture and execution environment, i.e.,

in-order core without cache/OS.
5

 ↑ A capacitor is used as an energy buffer [103], [104]. When an electric component depends upon a specific amount
of power, the energy buffer is placed to provide the required power.

42

this invariant does not hold, the capacitor is malfunctioning. However, it is impossible for a timer

to measure the power-on period because the timer value is reset on a power outage; Section 3.4.3

shows how Elastin checks the invariant without measuring the power-on period.

If the capacitor turns out to be malfunctioning based on the invariant checking, Elastin treats

this situation as an exception and switches to its handling mode. At the reboot time, Elastin first

decreases the page size to the minimum (2 bytes) and then sequentially restores the registers and

pages one by one in case there is an insufficient amount of energy for their restoration in a the batch

manner. With the exception handling mechanism, Elastin can avoid stagnation even if the capac-

itor malfunctions—provided the system can run at least a single read/write instruction without

interruption

6
 .

Populatable Pages: Elastin also leverages WCPT to determine the maximum number of the pop-

ulatable pages with their boot-time restoration cost in mind. To ensure that at recovery (boot) time,

all the pages populated in the last checkpoint interval can be safely restored, the total page restora-

tion time must be shorter than WCPT, i.e., Number o f Pages∗Single Page Restore T ime<WCPT ;

otherwise, power failure may occur in the middle of the restoration process. For the threshold of

Number o f Pages, Elastin therefore uses the maximum value among those that satisfy the above

inequality. In this way, when Elastin reconfigures the page size at boot time, the threshold is also

updated according to the new page size. If the number of the pages populated in a checkpoint

interval happens to exceed the threshold, which is detected by checking a metadata variable called

populated page counter, Elastin makes an additional checkpoint right at the moment. This allows

Elastin to safely restore all the pages at the next reboot time without interruption due to power

failure.

3.4 Implementation

3.4.1 Register Checkpointing, Permission Clearing Protocol

As shown in Section 3.3.2 , at each timer expiration, Elastin checkpoints all registers including

PC with double buffering and invalidates out the write permission of all pages. For this purpose,

6
 ↑ If the capacitor cannot even secure energy required for one memory instruction, Elastin assumes that the system is

completely unusable.

43

Elastin maintains two bits: (1) a double buffer index bit that is toggled at the end of the register file

checkpointing and (2) a PNV valid bit whose reset invalidates the write permission of all pages.

Note that these two bits must be atomically updated. Otherwise, a power outage between the

two separate updates leads to incorrect recovery; in the wake of the power outage, Elastin ends up

reverting the pages written in the formerly finished interval though it is about to start a new interval

from the checkpointed PC, not the former. To avoid the incorrect recovery, Elastin updates the two

bits in a single store instruction that guarantees failure atomicity [106]. Once they atomically

updated, Elastin clears out all page numbers in PNV by using a single DMA operation

7
 as will be

shown in Section 3.4.4 ; the amount of the DMA write is determined by populated page counter.

Once it is successfully done, Elastin finally sets the counter to zero before starting the new interval.

3.4.2 Memory Organization

Elastin divides the whole nonvolatile memory into four areas: main (original) memory, shadow

memory, register double buffer, and reserved memory for PNV and the rest of various metadata,

i.e., the checkpoint counter, valid bits for checkpoint and PNV, a performance table of page sizes,

the populated page counter, thresholds for the number of populatable pages and WCPT, and so on.

The biggest problem with shadow memory is that it occupies a half of the total memory size,

thus failing to run those applications that have high memory footprints. To overcome this chal-

lenge, Elastin proposes another design choice, radix tree memory management; as OS implements

the page table using a radix tree, we used the same kind of data structure. By using radix tree

as backup page storage, Elastin can increase available main memory size for applications at the

expense of the increased page search overhead. Section 3.5 evaluates the performance overhead of

both shadow memory and radix tree.

3.4.3 Invariant Checking for Capacitor Malfunction Detection

To detect capacitor malfunction, Elastin uses the invariant of an intact capacitor, i.e., the power-

on period (one charge cycle run time) should not be shorter than WCPT; see Section 3.3.5 . How-

7
 ↑ Even if the DMA operation fails due to power failure, Elastin does not lead to incorrect recovery. In the wake of the

power failure, Elastin simply starts the DMA operation over and follows the rest of the protocol.

44

ever, Elastin cannot use a timer to measure the period because the timer value will be reset on

power outage. To achieve the invariant checking without a timer, Elastin relies on the following

observation: when the first checkpoint is not made—due to power outage—since the last reboot,

we can infer that the power-on period must be less than the checkpoint interval; this is the rea-

son Elastin to halve the interval (Section 3.3.3). With this in mind, Elastin detects the capacitor

malfunction as follows.

While the capacitor malfunctions, Elastin keeps decreasing the checkpoint interval due to fre-

quent power outages. Thus, after many outages and resumptions, the interval would eventually

become WCPT at some recovery time. At the moment, if it turns out that no checkpoint was per-

formed since the last boot, i.e., checkpoint counter is 0, then we know that the power-on period is

definitely shorter than the interval (WCPT). Thus, we conclude that capacitor is malfunctioning.

In short, when a checkpoint interval is the minimum (WCPT), if the checkpoint is not made before

power failure, Elastin switches to the exception handling mode (Section 3.3.5).

3.4.4 DMA-Based Fast Page Copy

2 4 8 16 32 64 128 256 512 1024 2048 4096
Page Size (bytes)

2.5

5.0

7.5

10.0

12.5

W
rit

e
La

te
nc

y
(c

yc
le

s/
by

te
)

DMA
Non-DMA

Figure 3.5. NVM write latency with DMA (Cycles per byte)

Elastin’s copy-on-write mechanism entails NVM writes for the page copy. However, due to the

nature of NVM, memory writes incur very significant latency [107]–[116]. To reduce the overhead,

45

Elastin leverages direct memory access (DMA) hardware accelerator available in the target energy

harvesting system. Figure 3.5 demonstrates that a single byte DMA transfer takes only 8 cycles

which is about 1.5X faster than the standard memory copy without DMA. When the copy size is

larger than a single byte [117]. DMA copy becomes 4∼5X faster.

Non-DMA DMA
0

1000

2000

Ex
ec

ut
im

e
Ti

m
e

[u
s] PNV clear

PNV lookup
Page copy
PNV insert

Figure 3.6. Copy-on-write overhead breakdown in stable power input case. With
the page size of 256 bytes, the major overhead comes from the page copy.

We also measured the impact of DMA on Elastin’s per-page based copy-on-write mechanism

for all of our benchmarks. Figure 3.6 shows the average execution time breakdowns of the copy-

on-write for a 256B page with and without DMA. The page copy overhead occupies the most

significant portion, and the PNV lookup overhead follows. With DMA, the overall execution time

becomes about one third of the original time without DMA; this results from the large reduction

of the page copy overhead which is about 6X speedup. In particular, the PNV clearing overhead

is negligible because all page numbers are cleared by one DMA operation. In contrast, PNV

insertions cannot be batched, since they are far apart from each other. Even though DMA can be

leveraged for them, the DMA initialization and completion costs offset the benefit. Consequently,

Elastin takes advantage of the DMA only for the page copying and the page clearing.

46

3.4.5 Page Size Adaptation Range

Elastin’s page size selection is based on a series of decision runs for testing each size; see

Section 3.3.2 . Since most of them are suboptimal, Elastin tries to minimize the decision runs by

limiting the range of page sizes to be tested.

To find the optimal page size, it is necessary to understand the tradeoff between the cost of

PNV copying and the cost of page clearing. For example, if the page size is too small, it may incur

frequent page copies causing expensive PNV clearing cost at reboot time or timer expiration. In

contrast, if the page size is too large, the system may consume too much energy for copying even

on page. In addition, the spatial locality of memory writes is another important factor. The high

locality lets Elastin skip the page copy and PNV insertion since the memory writes are likely to

be concentrated on a few pages. while the low locality increases them since many writes tend to

touch many different pages.

The tradeoff is affected by the locality, e.g., with the high locality can amortize the cost of a

large page copy by many subsequent writes whose address falls into the same page. To a large

extent, the locality significantly varies across applications due to their different pattern of memory

writes. With that in mind, we empirically measured the performance of each page size for all of

our benchmarks. Figure 3.7 shows the average execution time overhead of the best 4 page size

configurations, i.e., 32B, 64B, 128B, 256B. As a result, Elastin’s adaptive execution uses them for

decision runs, i.e., the page size adaptation range is 32∼256 bytes.

3.4.6 Worst Case Power Consuming Time

In this work, WCPT is defined as: how long a program can sustain its execution under the

maximum power consumption mode of the microcontroller (MCU) which drains the energy from

the capacitor at the highest rate. To measure WCPT, Elastin needs to know the energy buffer size

(capacitance), because the MCU may rely on only the buffer without any input from harvesting

energy sources in the worst case. For a given capacitance of the energy buffer (e.g., 47µF in

47

256 128 64 32
Page Size (bytes)

1.80

1.85

1.90

1.95

2.00
Ru

n
Ti

m
e

Sl
ow

do
wn

Figure 3.7. Average execution time overhead of the best 4 page size configurations
for all benchmarks when DMA and shadow memory are used with stable power
input, i.e., no power failure.

WISP5), it provides the MCU with the operating voltage from its starting point (Vmax) to the power

outage point (Vmin). Then, Elastin estimates the available energy input as follows:

Available Energy Input =
1
2

Cbu f ∗ (V 2
max−V 2

min). (3.1)

For the maximum power consumption estimation of MCU, Elastin leveraged the following equa-

tion [118] :

Etot = Ptott =VddIleakt +CmspV 2
dd (3.2)

where Vdd , Ileak, and Cmsp are input voltage to MCU, leakage current, and the MCU capacitance,

respectively. Elastin considers the input voltage to MCU by taking into account the capacitor

discharge behavior, since the capacitor cannot consistently provide the same amount of power.

Elastin models the input voltage variation while the energy buffer is discharged with a simple

equation: vo(t) = Voe −t
CR for which the capacitance (C) is already given by Equation 3.1 , and

the resistance (R) can be calculated by Ohm’s law, R = V/I. Elastin views the MCU as a huge

constant resistor, R, under the maximum power consumption mode. That is, Elastin refers to the

MCU manual to figure out the maximum current (I)—that the device can consume—and use it to

calculate the resistance (R). For Ileak and Cmsp, Elastin refers to the manual as well; If a certain

48

MCU’s manual does not specify them in any case, Elastin can adapt the typical leakage current

and capacitance model as one used in [118]. With all these findings, the available energy input

obtained by Equation 3.1 should be always greater than the energy consumption of the underlying

MCU given by Equation 3.2 . With that in mind, Elastin calculates the WCPT by calculating a

threshold t in the following equation:

1
2

Cbu f ∗ (V 2
max−V 2

min)>Voe
−t
CR (Ileak)t +Cmsp(Voe

−t
CR)2 (3.3)

In particular, this is applicable to commodity energy harvesting devices. For instance, WISP5

consists of 47µF energy buffer and MSP430FR5969. This MCU consumes 2650µA at 3.0V,

16MHz, in an active mode [119]. The MCU starts to operate at 2.4V and performs down to 1.8V

while the resistance value of the MCU is 1133Ω. Therefore, the resulting WCPT is approximately

11.6ms.

Discussion: Thanks to the simplicity of the above analytical model, it is easy for Elastin to incor-

porate other system components in the WCPT calculation. For example, if the system is equipped

with other components, e.g., sensors and actuators. For this purpose, Elastin needs to update the

resistance part of Equation 3.3 , i.e., R = V
IMCU+ISensor+IActuator

. To figure out the maximum current of

the components, Elastin simply refers to their manuals as usual.

3.5 Evaluation

We conducted all the experiments on TI’s MSP430FR5994 Launchpad development kit board

8

and implemented Elastin described in Section 3.3 as a runtime library. To instrument nonvolatile

memory (NVM) writes (Figure 3.3), we implemented a source-to-source translator using the LLVM

compiler infrastructure [120]. Then, the instrumented program and the runtime library are com-

piled and linked using TI’s MSP430 GCC toolchain to generate the binary executable.

To compare Elastin with Ratchet [4], the state-of-the-art region based work, we ported it to

MSP430 since it was originally implemented for ARM [121]. Note that we omitted Ratchet’s timer

based checkpointing, because it does not work—i.e., it may cause incorrect recovery—for those

idempotent regions that contain WARAW (Write-After-Read-After-Write) dependence as admitted

8
 ↑ FRAM is used as main memory, and we do not use SRAM at all.

49

by the author [4]. We evaluated both Elastin and Ratchet for total 11 benchmarks comprised of

a subset of MiBench applications [122], [123] and others from prior works [90], [94]. All the

benchmark applications were compiled with standard -O3 optimization.

3.5.1 Intermittent Computing Platform

Power On

Power Off

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

Trace #1 (ms)

(a) Power trace 1

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2
9

8

3
3

1

3
6

4

3
9

7

4
3

0

4
6

3

4
9

6

5
2

9

Trace#2 (ms)

Power On

Power Off

(b) Power trace 2

Figure 3.8. Realistic intermittent power traces (simplified)

We developed a special power generator board with TI’s MSP430FR5969 to mimic various

power outages and resumptions as with prior work [18]. The power generator board provides sup-

ply voltage between 0 to 3.3V, directly to the target evaluation board (i.e., TI’s MSP430FR5994)

through GPIO pins to power it on/off at will based on power input traces. Unlike prior works [4],

[5], [12], [89], [90] that do not vary the power failure frequency, we randomly increase and de-

crease the power-on period to model various energy sources and environments, which serves to

stress-test Elastin. The minimum bound of the power-on period is set to 15ms

9
 while the min-

imum bound to a half of the execution time of the smallest application among our benchmarks.

With that in mind, we synthesized two power traces for our intermittent computing experiments as

shown in Figure 3.8 . At power-on, the power generator board provides voltage to the target board

while it cuts the voltage at power-off for outage.

9
 ↑ WISP5 [105], a commodity energy-harvesting system, has an a capacitor of 47µF, and it can sustain about 15ms as

one charge cycle run time [90].

50

2 4 8 16 32 64 128 256 512 1024 2048 4096
Page Size (bytes)

2

4

6

8

10
Ru

n
Ti

m
e

Sl
ow

do
wn

bitcnt
stringsearch
dijkstra
crc16
crc32
fir
qsort
dhrystone
fft
basicmath
blinker
geomean

Figure 3.9. Normalized performance overhead of Elastin (shadow memory design)

3.5.2 Execution Time Overhead Analysis with No Power Failure

We first analyze Elastin’s execution time overhead when the power source is stable, i.e., there

is no power failure. Here, we set the baseline to the uninstrumented binaries that have no check-

point/restart support. We measured the overhead of Elastin for 11 benchmark applications varying

the page size from 2B to 4KB and alternating the backup page storage between a shadow memory

and a 2-level radix tree data structure. Figure 3.9 shows the normalized overhead of Elastin com-

pared to the baseline when shadow memory is used while 3.10 shows that when the 2-level Radix

tree is used. Overall, the average overhead of Elastin is 88% with the best page size of 256 bytes

in shadow memory (see Figure 3.7) while 2-level Radix tree results in 243% with the same page

size as the best. Nevertheless, it would be a mistake to take this to mean that Elastin incurs such

a significant overhead for intermittent computation. Recall that frequent power failures are the

norm in energy-harvesting systems, and this particular experiment has no power failure at all; Sec-

tion 3.5.3 evaluates the performance impact of Elastin on intermittent computation with frequent

power outages.

As shown in the figures, some applications such as bitcnt, dijkstra, and stringsearch prefer

larger page size. Even if the copy-on-write of a large page size is expensive due to high volume

of NVM copy, the cost is amortized by high spatial locality in the following memory writes. In

contrast, the other applications show performance degradation when the page size is bigger than

256 bytes. That is because the cost of such a large page copy cannot be paid off in the applications

due to their low spatial locality. The takeaway is that the best page size varies depending on

application characteristics. Furthermore, the best page might vary even during program execution

51

2 4 8 16 32 64 128 256 512 1024 2048 4096
Page Size (bytes)

2

4

6

8

10

12

14
Ru

n
Ti

m
e

Sl
ow

do
wn

bitcnt
stringsearch
dijkstra
crc16
crc32
fir
qsort
dhrystone
fft
basicmath
blinker
geomean

Figure 3.10. Normalized performance overhead of Elastin (2-level radix tree design)

due to phase behavior [100]. In such a case, Elastin’s boundary-free adaptive execution can find

the right page size across power failures.

3.5.3 Execution Time Overhead Analysis with Power Outages

To evaluate the forward execution progress in the presence of power failures, we measured

the application’s completion time i.e., the execution time taken to complete the application across

power failures. In Figure 3.11 and Figure 3.12 , total three cases are compared using the two

power traces shown in Figure 3.8 : the state-of-the-art [4], i.e., Ratchet in the legend, Elastin with

timer only adaptation, i.e., Elastin (timer), and Elastin with both timer and page size adaptation,

i.e., Elastin (timer+page). Note that in Figure 3.11 (trace#1) and Figure 3.12 (trace#2), we set

the baseline to our approach, i.e., Elastin (timer+page) because Ratchet makes many applications

stagnate.

As shown in the figures, Ratchet [4] incurs stagnation problem in five applications on both

traces. For the rest applications where Ratchet does not stagnate, Elastin (timer+page) outper-

forms Ratchet on average by 3.5X and 3X for trace#1 and trace#2, respectively. Also, it turns

out that Elastin (timer+page) improves Elastin (timer) on average by 40% and 8% for trace#1 and

trace#2, respectively. This confirms that Elastin’s boundary-free 2-dimensional (timer and page

size) adaptation works effectively.

Interestingly, Figure 3.11 shows that Ratchet could outperform Elastin for basicmath. That is

because in basicmath, Ratchet happens to have the optimal size of regions which corresponds to the

input power cycle characteristics, i.e., trace#1. Thus, when a different power trace is used, Ratchet

52

bi
tc

nt

st
rin

gs
ea

rc
h

di
jk

st
ra

cr
c1

6

cr
c3

2 fir

qs
or

t

dh
ry

st
on

e fft

ba
sic

m
at

h

bl
in

ke
r

ge
om

ea
n

0

1

2

3

4

No
rm

al
ize

d
Ov

er
he

ad
Ratchet ELASTIN(timer) ELASTIN(timer+page)
∞ ∞ ∞ ∞ ∞599X 28X

Figure 3.11. Application completion time in the presence of power failures using
trace#1: the bar of stagnated applications reaches ∞, and the geomean of Ratchet is
calculated only for non-stagnated applications.

cannot beat Elastin, which is confirmed by our experiment with trace#2. As shown in Figure 3.12 ,

for the same application (basicmath), Elastin significantly outperforms Ratchet under trace#2.

3.5.4 Energy Consumption Breakdown across Power Outages

We also analyzed the energy consumption breakdown across power outages. Figure 3.13 shows

that copy-on-write and the register checkpoint (ckpt in the legend) do not consume significant

amount of energy, i.e., less than 1% on average. That is because the average number of copied

pages in intermittent computation is only about 1 or 2 thanks to spatial locality and high power

outage frequency; as shown in Figure 3.6 , the PNV lookup overhead is trivial as well, and thus

overall copy-on-write overhead is not significant.

Overall, the overhead of Elastin comes from the re-execution cost; in the legend, ’forward’

means the energy consumption for a portion of execution time that has never been restarted, thus

it is not an overhead technically. Even if Elastin reconfigures the checkpoint interval by halving

53

∞ ∞ ∞ ∞ ∞

Figure 3.12. Application completion time in the presence of power failures using
trace#2: the bar of stagnated applications reaches ∞, and the geomean of Ratchet is
calculated only for non-stagnated applications.

the previously selected interval when the system dies without forward progress, the re-defined

checkpoint interval may not help for the first time to make progress. For example, to get out of

stagnation, Elastin might need to perform multiple times of checkpoint interval halving across

power failures, and the re-execution of the reduced intervals consumes the harvested energy. As

shown in Figure 3.13 , this re-execution overhead is about 39% on average.

3.5.5 Exception Handling for Capacitor Malfunction

Capacitor (i.e., energy buffer) can malfunction either by natural worn-out or physical security

attacks [124]. For example, when cracked, the capacitor leaks the buffered energy more quickly

and the original capacitance is significantly reduced [19]. To have a scenario of the malfunctioning

capacitor, we set the power-on period to 5X lower than the normal minimum bound mimicking

the cracked energy buffer. That is, the system only runs for 3ms intermittently. As shown in

Figure 3.14 , Ratchet was unable to complete all of benchmark applications. In contrast, Elastin

54

bi
tc

nt

st
rin

gs
ea

rc
h

di
jk

st
ra

cr
c1

6

cr
c3

2 fir

qs
or

t

dh
ry

st
on

e fft

ba
sic

m
at

h

bl
in

ke
r

ge
om

ea
n

0

20

40

60

80

100
En

er
gy

 C
on

s.
Br

ea
k.

[%
]

ckpt copy-on-write re-exec. forward

Figure 3.13. Energy consumption breakdown of Elastin

successfully completes them all. This implies that Elastin is not only robust against capacitor mal-

function but also capable of working with smaller capacitance, e.g., less than 10µF. Consequently,

we believe that Elastin enables using a smaller capacitor, which should be a desired approach for

smaller chips required for IoT industry such as wearable markets.

3.6 Summary

We present Elastin, a stagnation-free intermittent computing system that ensures forward progress

in the presence of frequent power outages. Elastin leverages both timer-based checkpointing of

volatile registers and copy-on-write mappings of nonvolatile memory pages to restore them in

the wake of power failure. Unlike prior works, Elastin does not partition program into recover-

able regions or tasks. The boundary-free nature allows Elastin to realize full potential of adaptive

execution, adjusting both the checkpoint interval and the page size at will. Consequently, Elastin

can achieve stagnation-free intermittent computation and maximize forward progress across power

outages.

During each checkpoint interval, Elastin tracks memory writes on a per-page basis and backs up

the original page—i.e., the copy-on-write granularity, not a virtual memory page—using software-

55

bi
tc

nt

st
rin

gs
ea

rc
h

di
jk

st
ra

cr
c1

6

cr
c3

2 fir

qs
or

t

dh
ry

st
on

e fft

ba
sic

m
at

h

bl
in

ke
r

107

108

109

1010
Co

m
pl

et
e

Ti
m

e
(m

s) Ratchet
ELASTIN

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Figure 3.14. Elastin’s robustness against capacitor malfunction

controlled memory protection without MMU or TLB; Elastin can be regarded as library OS that

only offers memory protection and timer interrupt. In general, energy-harvesting devices do not run

OS. When a new interval starts at each timer expiration, Elastin clears the write permission of all

the pages written in the previous interval and checkpoints all registers including a program counter

as a recovery point. Elastin reconfigures the checkpoint interval and the page size based not only on

the underlying energy harvesting quality but also on the observed forward progress. Consequently,

Elastin achieves stagnation-free intermittent computation, ensuring forward progress across power

outages.

56

4. ROCKCLIMB: COMPILER-DIRECTED HIGH-PERFORMANCE

INTERMITTENT COMPUTATION WITH POWER FAILURE

IMMUNITY

In this chapter, we present ROCKCLIMB, a rollback-free and memory-log-free software recov-

ery solution. ROCKCLIMB runs program without having power failure interrupt, achieving high-

performance intermittent computation (TS1). ROCKCLIMB outperforms the state-of-the-art by

5%—550% on average in various energy harvesting conditions.

4.1 Introduction

Software-based recovery solutions statically partition the program into a series of recoverable

tasks so that their re-execution can always result in the same and correct output. However, they can

cause a severe issue, i.e., stagnating the system while consuming hard-won energy. Supposedly,

if power outages repeatedly occur within a particular task before it ends, the solutions continually

attempt to re-execute the same interrupted task, i.e., stagnation. In other words, although the

software-based recovery schemes ensure correct recovery across power failure, they cannot provide

any service to end-users at all. Therefore, we see there is an urgent need for recovery solutions to

address the stagnation problem.

To overcome the challenge, we introduce power failure immunity (PFI), a novel program ex-

ecution property for achieving energy-efficient intermittent computation. PFI ensures that each

code region can fail at most once, i.e., a single in-region outage, regardless of power failure fre-

quency. If a region ever encounters power failure, it never fails again during the re-execution—as

if it was immunized after the first failure. The never-fail-again nature makes it possible for inter-

mittent computation schemes to take the aggressive region formation (i.e., long regions) without

the expensive re-execution penalty.

In particular, we leverage PFI to achieve rollback-free intermittent computation without ex-

pensive hardware support, e.g., just-in-time (JIT) checkpointing of nonvolatile processors which

preserves their volatile states when power is about to be cut off [14], [15], [17], [21], [125]. To

achieve the rollback freedom, we propose ROCKCLIMB guarantees that PFI-enforced regions never

57

fail, i.e., there is no in-region outage at all. At a high level, ROCKCLIMB checks if a fully buffered

energy is secured at each region boundary to ensure the completion of the next region without

power failure. If it is not secured, ROCKCLIMB waits at the boundary until the energy buffer is

fully charged before executing the following region. The upshot is that the rollback-free nature

of ROCKCLIMB obviates the need to perform logging for each memory write—required for prior

work [1], [2], [11]–[13], [98] to achieve rollback recovery of power failure.

Although no region is power-interrupted, a power outage can still occur while ROCKCLIMB

waits for the energy buffer to be fully charged at a region boundary; volatile states, i.e., registers,

can still be lost upon an outage. To address the issue, our compiler leverages a novel optimiza-

tion called distributed checkpointing that saves only essential registers without compromising the

recovery guarantee. Unlike prior rollback recovery schemes [2], [4], [11], [12] that insert check-

points (i.e., store instructions saving registers to NVM) at the beginning of each region/task bound-

ary, distributed checkpointing spreads them out where each register is defined, thereby eliminating

unnecessary checkpoints and their energy consumption.

Consequently, PFI+ROCKCLIMB achieves high-performance intermittent computation, ensur-

ing forward execution progress and maximizing it even in the presence of frequent power outages.

Our real board experiments demonstrate that PFI-enforced program never suffers from stagnation,

and PFI+ROCKCLIMB outperforms the state-of-the-art intermittent computation work by 5%—

550% on average depending on power failure behaviors.

• We define PFI as a basic program execution property for achieving energy-efficient intermit-

tent computation and implement its compiler-directed enforcement.

• Our compiler automatically enforces PFI forming stagnation-free regions in 1.4 seconds on

average, unlike dynamic approaches that take many hours of testing but can only remove the

stagnation found on tested paths.

• We propose ROCKCLIMB that can ensure PFI-enforced regions never fail, i.e., there is no

in-region outage at all.

• We propose a new compiler optimization called distributed checkpointing that can remove

unnecessary checkpoints thus extending forward progress with their saved energy.

58

4.2 Background and Challenges

4.2.1 Expensive Centralized Checkpointing

Software-based recovery schemes achieve crash consistency by handling antidependences and

checkpointing registers [4], [7], [18], [44]–[63]. In particular, no matter how antidependence is

addressed, the prior works [2], [4], [11], [12] checkpoint every volatile input at the beginning of

each region, thus being called centralized checkpointing. More precisely, they checkpoint all live-

in [65] registers—that hold live [65] values at the beginning of a region—for every region at its

entry in case it is interrupted due to power failure; in the wake of the failure, the interrupted region

must be restarted from the entry for recovery. Unfortunately, many of live-in register checkpoints

tend to be unnecessary wasting harvested energy that could otherwise be used to make further exe-

cution progress; it is important to note that because of the NVM write latency/energy, checkpoints

are the most expensive instruction in energy harvesting MCUs.

We observe that the live-in registers are often not used in the current region, but read in the later

regions; the more regions the live-range [65] of registers spans, the more redundant checkpoint

stores the centralized checkpointing generates. As an extreme example, if registers are defined at

the beginning of program and read at the end of it, they must be checkpointed at every single region

entry. The takeaway is that although the registers are not used in the current region, the centralized

checkpointing has no choice but to save them, otherwise their values are lost upon power failure;

this is why all the prior works end up checkpointing all live-in registers every time a region starts.

With that in mind, we propose a new compiler optimization called distributed checkpointing. It

spreads out checkpoint stores to where volatile registers become live-out [65], i.e., at their last-

update point in each region.

1
 In this way, they do not have to be checkpointed repeatedly in the

following regions unless they are updated and live-out again. Section 4.5.2 details the distributed

checkpointing.

1
 ↑ Distributed checkpointing is akin to incremental checkpointing that can be achieved with either hardware [126] or

runtime support [127], because they checkpoint only updated registers. However, all updated registers do not require
checkpointing, e.g., some registers could be re-defined before their use, in which case the incremental checkpointing
wastes harvested energy by persisting such dead registers unnecessarily. In contrast, our distributed checkpointing
preserves only essential (live-out) registers by taking into account their liveness at compile time.

59

Table 4.1. Comparison of prior software solutions for a stagnation problem in
energy harvesting systems. Partitioning time means how long it takes to form
stagnation-free regions/tasks. H/W Support represents an energy debugger require-
ment while User Intervention means whether a programmer must use a special pro-
gramming language. Log indicates whether the work requires a logging mecha-
nism for memory restoration. Re-execution shows whether the work involves re-
execution inherently.

Auto-tuning [11] Chinchilla [12] PFI+ROCKCLIMB
Partitioning Time Very long Very long Short

Analysis Dynamic Dynamic Static
Memory Log Yes Yes No
HW Support No Yes No

User Intervention No Yes (energy debugging) No
Checkpoint Type Centralized Centralized Distributed

Re-execution Yes Yes No

To address the stagnation problem, the state-of-the-art works use dynamic testing approaches

by using an energy debugger [12], [13], [66], [67] or an auto-tuning framework [11] as summarized

in Table 4.1 . However, such dynamic testing approaches have several limitations.

The energy debugger based approach requires multi-step expert-level user interventions for

precise diagnosis [12], [13], [66], [67]. First, users should manually measure basic blocks’ energy

consumption with randomized inputs. Second, users need to compare the energy consumption of

a given basic block to the total energy availability obtained by estimating the storage capacity of

the energy buffer. Third, if the basic block consumes more energy than the available amount thus

being vulnerable to stagnation, users should rewrite the code or let the prior work [13] split the

block to smaller pieces with inserting checkpoint stores and memory logs therein.

The crux of the problem with the debugger based schemes is that the energy profiling [13]

takes about 30 minutes on average even for toy applications, which makes the schemes imprac-

tical. Furthermore, the resulting program can still suffer stagnation provided some of untested

program paths is taken; this is technically possible since users cannot cover all possible paths with

dynamic testing due to its inherent unsoundness [128]. Due to the issue, the state-of-the-art work

Chinchilla [12] ends up inserting its region boundary at each basic block, rendering the regions too

small—though it can adaptively skip register checkpointing when energy harvesting condition is

good.

60

Table 4.2. Comparison of stagnation-aware region formation schemes in terms of
the time taken to complete the region formation

Benchmark Auto-tuning Energy-debugging Compiler-directed
Application [11] [12], [13], [66] PFI enforcement

[3], [11], [12], [25] (in hours) (in hours) (in seconds)
basicmath 124.2 9.3 2

blinker 11.2 0.5 1
bitcnt 9.6 9.7 4
crc16 2.3 1.7 1
crc32 18.1 3.7 1

dijkstra 7.2 5 1
fft 8.9 19.3 2
fir 6.0 2 1

dhrystone 1.0 5 1
stringsearch 6.2 22 2

qsort 53.5 4 1
geomean 9.6 hours 4.7 hours 1.4 seconds

On the other hand, the auto-tuning based dynamic approach first tests a user-defined range of

region sizes (instruction counts) for a given power failure trace and then picks the best-performing

size for all regions of each program. However, it is based on one-size-fits-all assumption, i.e.,

every region size is identical. Also, due to the large search space, the tuning time takes a while.

Unfortunately, users must go through the same tuning procedure again for the change of the energy

harvesting condition, which is frequent and unpredictable in reality.

To evaluate the usability of the prior dynamic testing approaches, we measured the total elapsed

time for completion of their recoverable region formation; two different test inputs were used

for each of 11 applications. For the auto-tuning approach, we tested 200 different region size

variants as suggested in the original work [11] with two different power failure traces. As shown

in Table 4.2 , the auto-tuning (2nd column) and the energy-debugging (3rd column) approaches take

a considerable amount of time for each application (up to more than 5 days as in basicmath). Note

that although both dynamic approaches finally form regions after many hours, such a high cost

has to be paid anew for different program/input combinations and various power failure behaviors.

Unfortunately, this is a serious problem in that energy harvesting systems inevitably encounter

the significant change of the failure behavior—because the underlying harvesting condition often

61

unpredictably varies over time. In contrast, our proposal only requires a few seconds of compilation

time as shown in the 4th column in the table. On average, PFI compiler is five orders of magnitude

faster than the both dynamic testing approaches. More importantly, unlike the approaches, our

static analysis can guarantee stagnation-free execution regardless of program paths and inputs.

4.3 Design

The goal of this work is to achieve high-performance energy harvesting systems. As the first

step to achieving the goal, we define power failure immunity (PFI), a basic execution property

of intermittent program. PFI ensures that each recoverable region of program never fails more

than once i.e., at most single in-region outage (Section 4.3.1). Thus, PFI-enforced regions are

robust against both stagnation and expensive re-executions across power failure, achieving energy-

efficient power failure recovery.

The second step is leveraging PFI to achieve rollback-free and high-performance intermittent

computation—that we call ROCKCLIMB—where no region is power-interrupted (Section 4.3.2).

That is, ROCKCLIMB not only ensures that hard-won energy is never wasted for region re-execution,

but also maximizes the forward execution progress fully utilizing the energy only for computa-

tion. Furthermore, since all regions are sure to finish thanks to ROCKCLIMB, it can eliminate

expensive per-region memory logging—that is required by prior work for crash consistent rollback

recovery—without compromising the correctness guarantee. The rest of this section details the PFI

and its compiler-directed enforcement, the workflow of which is shown in Figure 4.1 , and shows

how it guarantees that no region ever fails.

4.3.1 PFI: Power Failure Immunity

To prevent repetitive in-region outages, we leverage two important observations. First, energy

harvesting systems do not start to operate their microcontoller (MCU) until the energy buffer (ca-

pacitor) is fully charged as with virtually all commodity systems, e.g., WISP [129]. That is, when

the MCU is ready to resume the execution in the wake of power outage, the capacitor is always

sure to have the fully buffered (charged) energy at the starting point of the resumption. The im-

plication is that the power-interrupted region can make as much progress as the full energy buffer

62

main(){
…
…
…
for(i=0;i<100;i++){
A[i] += b[i]*c;
}
…
Print();
…
}

main(){
…
…
…
for(i=0;i<100;i++){
A[i] += b[i]*c;
}
…
Print();
…
}

(a) Original program (b) Initial region formation

main(){
…
…
…
for(i=0;i<100;i++){
A[i] += b[i]*c;
}
…
Print();
…
}

(c) SAT-driven region partitioning

main(){
…
…
…
for(i=0;i<100;i++){
A[i] += b[i]*c;
}
…
Print();
…
}

pass

(d) In-region instrumentation

Distributed
checkpoint
for
registers

NVMSAT SAT-unsafe point SAT-safe point Last updated point of live-out registers

Figure 4.1. Workflow of PFI compiler: it partitions program into a series of
PFI-enforced regions and instruments them to achieve rollback-free and high-
performance intermittent computation.

allows, even if there is no additional energy is harvested. We refer to the minimum progress time,

for which the MCU can be sustained under the fully buffered energy, as safe active time (SAT).

The second observation is that if the worst-case execution time (WCET) of any region is shorter

than the SAT, the region is assured to finish with no power failure under the fully buffered energy.

PFI enforcement constraint: WCET (r)< SAT (µ) (4.1)

With that in mind, for a given region (r) and the underlying MCU (µ), we formulate the problem

of ensuring the forward execution progress as Eq. 4.1 above.

Thus, PFI can achieve stagnation freedom by partitioning the original program into SAT-safe

regions, each of which satisfies the PFI constraint Eq. 4.1 ; even if the SAT-safe regions may en-

counter power failure, they never fail again upon recovery from the failure. In other words, when

power comes back, the previously interrupted region never retreats before reaching the end of the

region, which ensures forward progress to the next region without exception.

SAT Calculation under Worst-Case Execution Scenario: To calculate the SAT for a given

MCU’s full energy buffer in a sound way (where all regions satisfy the PFI constraint Eq. 4.1), we

must consider the worst-case scenario of MCU operation, which would otherwise fail to achieve

PFI for those regions power-interrupted under the scenario. Hence, our PFI compiler considers the

most harsh environmental setting where there is no harvested energy, and the MCU consumes the

maximum amount of energy all the time. That is, the compiler calculates the SAT by analyzing

how long program can sustain its execution, under the maximum power consumption mode of the

63

MCU—which drains the energy from the capacitor at the highest rate—to take into account the

worst-case scenario.

PFI Region Formation: To form PFI-enforced regions that satisfy the above constraint Eq. 4.1 ,

the compiler takes a 2-step approach. First, it forms initial regions at function call boundaries and

loop headers. As shown in Figure 4.1 (b), the input program (a) gets to have a region boundary at

a Print() callsite and the entry of a for loop.

Second, after finishing the initial region formation, the compiler performs per-region WCET

analysis to check if the initial regions satisfy the PFI constraint Eq. 4.1 . If so, the regions remain

the same—until they are instrumented later for rollback-free intermittent computation; otherwise,

the compiler partitions the SAT-unsafe region, that violates the PFI constraint Eq. 4.1 , into a series

of SAT-safe regions; the SAT-driven partitioning might need to be repeated if the remainder of the

cut is still too long to satisfy the constraint. For example, as shown in Figure 4.1 (c), the first

two initial regions in (b) are both cut at the point where their WCET hits SAT. As a result, every

program point belongs to one of SAT-safe regions where PFI is enforced.

4.3.2 ROCKCLIMB: Never Fail Whatsoever!

Once SAT-safe regions are formed, our compiler enables ROCKCLIMB that leverages the PFI

as a basis for achieving rollback-free intermittent computation, i.e., extending the PFI to much

stronger guarantee that no region ever fails. In fact, the name ROCKCLIMB is inspired by rock

climbing; climbers divide their route into multiple sections, and at the entry of each section they

usually rest eating energy bars until they get powered up enough to pass the section. Similarly, to

complete each PFI-enforced region with no power failure, ROCKCLIMB checks the energy buffer

at each region boundary. If the buffer is not fully charged, ROCKCLIMB waits for the buffer to

secure the full energy before starting the next region; otherwise, it is immediately started with the

guarantee of failure-free completion—because a PFI-enforced region can always finish with a fully

buffered capacitor.

2

In particular, ROCKCLIMB’s guarantee of no in-region failure simplifies achieving crash con-

sistency obviating the memory logs in each region. As discussed in Section 4.2.1 , a root cause of

2
 ↑ We assume that the energy harvesting system does not suffer accidental reliability issues such as energetic particle

striking or capacitor malfunctioning in the circuit.

64

Energy in Cap.

Tim
e

A[0] += b[0]*c;
…

A[100] += b[100]*c;
…

B[0] += c[0]*c;
…

Task A
Original binary Prior works PFI+RockClimb

(our solution)

A[0] += b[0]*c;
…
…

Task A

A[0] += b[0]*c;
(undo/redo) logs

…

Region 1 in Task A

…

A[100] += b[100]*c;
…

Region 5 in Task A

A[100] += b[100]*c;
…
…

Region 5 in Task A

A[0] += b[0]*c;
…

A[100] += b[100]*c;
…

B[0] += c[0]*c;
…

Region 1 in Task A

log restoration
…

B[100] += c[100]*c;
…
…

Region 2 in Task A

energy buffer check

Recharging Recharging

Recharging

V_off

PFI+RockClim
b

Prior w
orks

PFI-only

A[0] += b[0]*c;
(undo/redo) logs

…
A[100] += b[100]*c;

…
…

Region 1 in Task A

…

Region 5 in Task A

B[0] += c[0]*c;
…
…

Region 2 in Task A

log restoration

Recharging

Region 2 in Task A
B[0] += c[0]*c

…

Figure 4.2. Comparison of intermittent computation schemes: Each scheme runs
the same program (Task A). While prior works form many regions, e.g., Region 1∼5
in Task A, PFI generates a few regions, and PFI+ROCKCLIMB further lengthens the
region size and eliminates the re-execution.

the memory inconsistency is that in the wake of power failure, program control rolls back across

antidependence, reading values updated by stores left behind the failure. That is why prior work

logs memory inputs of each region to make a copy of the original values before they are overwritten

by antidependent store instructions.

On the contrary, since ROCKCLIMB’s regions are never power-interrupted (thus no rollback),

they do not have to log memory inputs at all; the absence of rollback recovery means no need

to handle the restoration of memory inputs. The upshot is that ROCKCLIMB’s rollback-freedom

saves the high energy/latency of the NVM logging stores, thereby achieving an energy-efficient

and high-performance energy harvesting system. Figure 4.2 highlights ROCKCLIMB compared to

prior works that partition program into several regions with memory logs for recovery. While the

prior works keep spending their energy for logging, restoring, and re-executing as shown in the

figure, ROCKCLIMB here makes a further forward progress due to its log-free and re-execution-

free intermittent computation.

Region Instrumentation: When a program control reaches the end of a region, ROCKCLIMB

checks the energy availability (full capacitance) before starting the next region. For this purpose,

as shown in left side of Figure 4.1 (d), the compiler thus inserts—at each region boundary—the

65

voltage-level checking code offered by commodity energy harvesting systems, e.g., TI-MSP430’s

power management library [38], [130] supports the checking through a voltage comparator inter-

rupt; Section 4.5.1 offers more details.

Finally, our compiler, if necessary, inserts checkpointing stores to save volatile registers in

some regions. Although PFI-enforced regions are never interrupted by power failure, it can still

occur at region boundaries while ROCKCLIMB waits the capacitor to be fully charged. In this case,

unlike NVM resident data, volatile registers are lost on power failure. To this end, as shown in the

right side of Figure 4.1 (d), the compiler checkpoints registers using a novel compiler optimiza-

tion called distributed checkpointing that saves only essential registers without compromising the

recovery guarantee (Section 4.5.2).

4.4 Implementation

4.4.1 SAT Calculation

To obtain the safe active time (SAT), our PFI compiler first measures the available energy input

as:

Available Energy Input =
1
2

Cbu f ∗ (V 2
max−V 2

min), (4.2)

where Cbu f ,Vmax,Vmin are capacitance, MCU power-on voltage level, and MCU power-off voltage

level, respectively. Then, the compiler measures MCU’s energy consumption during operation

as [118]:

Etot = Ptott =VddIleakt + CmspV 2
dd, (4.3)

where Vdd, Ileak,Cmsp are input voltage to MCU, leakage current, and the MCU capacitance, re-

spectively. However, the input voltage (Vdd) is not constant; it decreases as the energy buffer is

discharged (Section 4.3.1). With that in mind, we consider the MCU as a resistance-capacitor

(RC) circuit, i.e., our PFI compiler substitutes the input voltage with vo(t) = Voe−t/CR, where the

capacitance (C) is the same as Cbu f , and the resistance (R) can be estimated as R =V/I. Here, we

can readily get the V and I as the operating voltage and the maximum current, respectively, from

the MCU manual. If a certain MCU’s manual does not specify them, our compiler can adapt the

typical leakage current and capacitance model [118].

66

The key insight of PFI is that, to guarantee the forward progress, the available energy input

obtained by Eq. 4.2 should be always greater than the energy consumption of the underlying MCU

given by Eq. 4.3 . In light of this, ROCKCLIMB obtains the SAT by calculating a threshold time t

in the following formula (Eq. 4.4).

1
2

Cbu f ∗ (V 2
max−V 2

min)>Voe−t/CR(Ileak)t + Cmsp(Voe−t/CR)2 (4.4)

In particular, SAT should also cover the system recovery cost to safely restore the checkpointed

registers at the system reboot time in the wake of power failure. We use the simple energy profil-

ing model—which can be further improved by using a recent advanced model [130], [131]. For

simplicity, our PFI compiler conservatively updates SAT (Eq. 4.2) as SAT = SAT −Recovery Cost

by assuming all registers are restored upon recovery as with prior work [4].

4.4.2 WCET Analysis

First of all, our WCET calculation is straightforward for two reasons: (1) the energy-harvesting

MCU architecture is simple, i.e., a cache-free single in-order core, unlike multi-core systems

backed with out-of-order execution and deep cache hierarchy [132], [133], and (2) unlike tradi-

tional WCET calculation [134], [135], ours does not require whole program analysis.

To analyze WCET for each initial region shown in Figure 4.1 (a), our PFI compiler navigates all

possible paths in region-based control flow subgraph; while whole-program-analysis based WCET

calculation is challenging, our region-based (intra-region) analysis makes it possible to run the

WCET analysis for all the benchmarks we tested.

Also, our compiler identifies a basic block that has initial region boundaries in the middle of

it, and splits it into different basic blocks. This allows that region boundaries always start at the

beginning of basic blocks, thus facilitating the next SAT-driven region partitioning.

For instruction-level WCET calculation, we build a cost model by referring to the MCU manual

which gives the execution cycles of each instruction [136]

3
 ; if executing some instructions takes

a range of cycles, our compiler takes the worst latency. Since the worst-case execution cycles of

3
 ↑ For example, a simple register update instruction takes 1 cycle while a load instruction takes 5 cycles at least.

67

instructions are fixed, the timing cost model is simple and safe unlike the profile-based energy

consumption model [13] that can be inaccurate in different execution environments.

4.4.3 SAT-Driven Region Formation

Once the SAT is obtained, our PFI compiler statically converts it to the MCU cycles and splits

those initial regions, that are SAT-unsafe, into SAT-safe regions. As shown in Figure 4.3 (a), the

compiler keeps accumulating the execution time (cycles) of instructions on every path in a given

initial region, i.e., the accumulated sum is the WCET of the path between the region entry and the

current instruction just visited there.

During the instruction time accumulation on each path, if the sum becomes greater than or

equal to the SAT (i.e., the current instruction and its successors are susceptible to power failure),

then the compiler cuts the susceptible path by placing a new region boundary before the current

instruction with zeroing the sum for a further partitioning.

4
 This happens recursively until the last

instruction of the path is reached. Figure 4.3 (b) shows the final shape after partitioning the original

region with SAT of 200 cycles.

Algorithm 1 Region Formation Algorithm
for each basic block bbi in CFG do

Cyclebbi ←Cycle oribbi +CkptCyclesbbi
IncomeCyclebbi ← 0

end
for each basic block bbi in program topological order do

if bbi starts with region boundary then
accum cycle←Cyclebbi

else
accum cycle←Cyclebbi + IncomeCyclebbi

end
while accum cycle > thresholdtime do

place boundary and split bbi into bbi
′ and bbi

recalculate Cycle oribbi and CkptCyclesbbi
accum cycle←Cycle oribbi+ CkptCyclesbbi

end
end

4
 ↑ Technically, the region boundary instruction is a checkpoint store for saving a program counter so that it serves as a

recovery point in case the following region is power-interrupted.

68

Rg0 -

80

100

400
100

70

BB0

BB1

BB2

BB3

BB4

80

100

100

20

BB0

BB1

BB2

BB4

50 BB2’

120

200

BB3’

BB3”

80 BB3

Rg1- - - - - - - - - - - - -

Rg2- - - - - - - - - - - -

(a) (b)

(# of cycles)

Rg0 -

Rg3- - - - - - - - - - - -

Figure 4.3. Region partitioning with the SAT threshold of 200; the number in each
basic block (box) represents its total execution cycles, and dashed lines represent
region boundaries.

Algorithm 1 details the overall region formation process highlighting how to cut and reform

SAT-unsafe regions. In a given initial region, the PFI compiler traverses the CFG in a topological

order. During the path traversal, it updates the sum of current and incoming basic blocks’ cycles

by using the instruction-level cost model from the beginning of the latest region boundary along

the path (line 5∼16). If the sum becomes greater than SAT before the next region boundary is

reached, the compiler places a cut (line 11∼15). After re-partitioning, the compiler inserts register

checkpoints with distributed checkpointing (Section 4.5.2).

Loops: To handle loops, our PFI compiler inserts a region boundary in the loop header. The

compiler splits the loop body if its WCET is greater than SAT. Otherwise, the compiler tries to

extend such a short loop body since it can cause more live-out registers and checkpoint stores

across the region boundary in the loop header. That is, to address this issue, our compiler repeatedly

unrolls such a loop as long as the WCET of the loop body is smaller than SAT. By maximizing

the loop body in this way, the compiler can minimize the number of live-out registers in the loop,

thereby reducing the number of checkpoint stores to be inserted. Currently, for those loops whose

69

iteration count is statically unknown, the compiler just inserts a region boundary in the loop header

without performing the unrolling.

IO Operation: Our PFI compiler treats an IO operation as a separate region. Since ROCKCLIMB

always secures the full capacitance before starting a region, the IO becomes failure-atomic opera-

tion. This is exactly what IO operations pursue to ensure the freshness of the IO results. However,

it is the IO designer’s responsibility to ensure the operation can be completed in one capacitor

charge cycle, i.e., the fully charged energy should afford to finish the IO operation.

Although individual IO operations are failure-atomic, their combination can violate the PFI

constraint (Eq. 4.1), provided they are performed in parallel. To address the issue, we should con-

servatively estimate the SAT by covering the total current consumption of the IO operations. For

this purpose, our compiler updates the resistance (R) of Eq. 4.4 with the sum of each IO’s maximum

current, i.e., R = V
IMCU+IIO1+IIO2+...+IIOn

; we assume that the required values can be found from the

IO manuals.

4.4.4 Discussion

As discussed in Section 4.4.2 , to meet the PFI enforcement constraint (Eq. 4.1) for region

formation, our compiler simply adds up the worst-case instruction latencies and places a region

boundary at the point where the accumulated sum becomes greater than the SAT—without consid-

ering the instruction pipeline. Thus, such a conservative WCET analysis tends to generate smaller

regions than traditional WCET analysis. The rationale behind is that the smaller region leaves

residual energy in the capacitor when the region ends. In particular, the residual energy can serve

as a safe margin

5
 to guarantee the soundness of PFI-enforcement even when the full capacitance

is not secured due to reliability issues. For example, even if a capacitor malfunctions holding a

smaller amount of energy than normal due to its physical properties, e.g., abnormal leakage or

aging-induced damage, PFI-enforced regions do not exceed the SAT.

5
 ↑ The safe margin does not harm the performance because the residual energy is going to be picked up by

ROCKCLIMB, i.e., the charging time before executing the next region becomes shorter.

70

4.5 Optimization

4.5.1 Securing Full Capacitance for Rollback-Free Computation

At each region boundary of SAT-safe regions that satisfy the PFI constraint Eq. 4.1 , our com-

piler enables ROCKCLIMB that dynamically checks if the full capacitance is secured, which would

otherwise wait for the energy buffer to be fully charged, before starting the next region. For this

purpose, ROCKCLIMB leverages a voltage emergency interrupt of commodity energy harvesting

systems, e,g., TI-MSP430 [38], which can compare a current voltage level to a certain voltage

threshold that can be controllable by software. That is, at each region boundary, ROCKCLIMB

enables the voltage interrupt by controlling the interrupt vector and immediately starts the next re-

gion unless the interrupt is generated; otherwise, ROCKCLIMB puts the microcontroller (MCU) to

a power-down mode so that it can be rebooted when the buffer is fully charged [130]. The implica-

tion is two-fold. First, no-interruption here means that the MCU is directly powered by the energy

harvesting source with the energy buffer fully charged, and therefore the next region is guaranteed

to finish without power failure. Second, the voltage interrupt should be disabled before executing

any instruction of the next region. That is, at the beginning of a region, the compiler inserts the

code that disables the interrupt.

4.5.2 Compiler Optimization: Distributed Checkpointing

Unlike centralized checkpointing, our compiler does not checkpoint all live-in registers at each

region boundary. Instead, it spreads the checkpoints (store instructions saving registers in NVM)

out where each register is defined; they are often distributed to many regions, thus being called

distributed checkpointing. More precisely, the compiler checkpoints the updated register of each

region, which is used in following regions and therefore called live-out [65], right after the register

update. In data flow terms, we define the output of region r as the live-out registers defined in the

region—the values that are written and downward-exposed [65]: ckptr = De fr ∩LiveOutr, where

De fr is the set of registers defined in r and LiveOutr is the set of live-out registers of r. For each

region r, the compiler checkpoints only the registers belonging to ckptr as soon as they are defined

in the region.

71

The distributed checkpointing has several implications. First, if the register is defined multiple

times in a region, the compiler only checkpoints the last-updated value used by later regions, i.e.,

the live-out value. Second, since the compiler checkpoints such a live-out register right after its

update, each checkpoint shares the same register and the value with the preceding instruction that

updates the register. Here, the benefit is two-fold: (1) minimal dynamic switching activity in

the circuit; in contrast, two consecutive instructions with different operands/values increase the

power consumption by 20% due to the switching activity [137], and (2) rare chance to increase

the peak power consumption—typically made by consecutive checkpoints (NVM stores)—since

no two checkpoints are consecutively placed in our distributed checkpointing; even if registers are

updated in a row, their checkpoints are interleaved with the instructions that update the registers,

i.e., checkpoints are always separated. Third, at the beginning of each region, all input registers to

the region are already sure to have been checkpointed; thus, no action is required when each region

entry is reached—unlike traditional JIT checkpointing that must save all registers before impending

power failure [3], [7], [17], [125]. Fourth, once a register is checkpointed, no further checkpoint

is necessary across regions unless the register is redefined and becomes live-out again. That is,

unlike centralized checkpointing, the live-in registers of each region which are not written in the

region, do not have to be checkpointed; again they are known to have already been checkpointed

somewhere before the region entry. Finally, the compiler can minimize the number of necessary

checkpoints.

Figure 4.4 shows how the compiler removes a majority of the checkpoints introduced by the

centralized checkpointing of prior works [2], [4], [11], [12]. Here, r1 is defined on the top re-

gion (box) and used in other regions. In particular, r1 is live at the entry of all regions except

for the top one. In Figure 4.4 (a), the centralized checkpointing inserts five checkpoints, each of

which saves the live register r1 (and other live-ins if exist) at the entry of the bottom five regions.

Note that checkpointing r1 at the entry of the 2nd region on the left branch is redundant since

the predecessor region has already checkpointed r1. Even worse, in the 2nd region on the right

branch, the centralized checkpointing stores r1 though it is not even used there. In contrast, our

distributed checkpointing stores r1 only once right after it is defined on the top region as shown in

Figure 4.4 (b). Here, our SAT-driven region formation is aware of the additional code for both volt-

72

r1 = 3

ckpt r1,…
a = r1

…

ckpt r1,…
…

ckpt r1,…
b = r1

ckpt r1,…
a = r1

…

ckpt r1,…
c = r1

…

Live in: r1,… Live in: r1,…

Live in: r1,… Live in: r1,…

Live in: r1,…

r1 = 3
ckpt r1

a = r1
…

…

b = r1

a = r1
…

c = r1
…

Live in: r1,… Live in: r1,…

Live in: r1,… Live in: r1,…

Live in: r1,…

of ckpt = 5 # of ckpt = 1

(a) (b)

Figure 4.4. Checkpoint reduction by distributed checkpointing: (a) centralized
checkpointing and (b) distributed checkpointing. Each box represents a program
region.

age interrupt controlling and distributed checking already. Thus, the compiler strictly maintains

the PFI-enforcement for all regions.

4.6 Evaluation

4.6.1 Experimental Setting

We implemented novel compiler techniques described in Section 4.4 in the LLVM compiler

infrastructure [120] and conducted experiments by running compute-intensive 11 benchmarks that

are used in prior works [3], [25], [122], [123]; sensing applications are ruled out on purpose,

because they mostly consist of I/O or sensor tasks that must be power-failure-atomic. This implies

that the tasks must be formed that way by the system designer in the first place; once they are

formed, it is technically impossible to partition them[11].

To evaluate the effectiveness of PFI+ROCKCLIMB in preventing stagnation, we conducted ex-

periments using TI’s MSP430FR5994 [138] evaluation board with Powercast P2110-EVB RF en-

ergy harvester [139] as our energy harvesting system testbed, following the same convention used

by prior works [2], [6], [7], [12], [140]–[142]; we equipped the board with a 10µF capacitor

which is used as energy storage of commodity systems such as WISP [129]. To power the energy

73

harvesting system, we used Powercast TX91501-3W transmitter emitting RF signal at 915 MHz

center frequency to the system supplying 6.1 dBi patch antenna. We placed the RF transmitter as

real energy source 50cm away from the energy harvesting system by default; we also varied the

harvesting condition for sensitivity analysis (Section 4.6.3).

4.6.2 Stagnation Analysis

To analyze the stagnation problem, we conducted experiments by running the benchmark ap-

plications with 4 different schemes as shown in Figure 4.5 : (1) Ratchet [4], (2) Chinchilla [12]

the state-of-the-art software solution for stagnation freedom, (3) PFI-only scheme that partitions

program to SAT-safe regions but leave memory logs and checkpoints therein for recovery, and (4)

PFI+ROCKCLIMB as shown in the figure. Here, we assumed that the stagnation occurred if pro-

gram had not finished within an hour; all benchmarks should have been finished within a couple of

minutes. We avoid testing auto-tuning [11] since it requires too much tuning cost in real harvesting

situation.

♾

Figure 4.5. Performance results in real energy harvesting situation. We compare
PFI+ROCKCLIMB with Ratchet and Chinchilla. Y-axis shows the normalized exe-
cution time to PFI+ROCKCLIMB. ∞ represents the stagnation problem.

74

b
a
si

cm
a
th

b
lin

ke
r

b
it

cn
t

cr
c1

6

cr
c3

2

d
ijk

st
ra ff
t

fi
r

d
h
ry

st
o
n
e

st
ri

n
g
se

a
rc

h

q
so

rt

g
m

e
a
n
(T

o
ta

l)0
20
40
60
80

100
P
e
rf

o
rm

a
n
ce

 B
re

a
kd

o
w

n
[%

] exec. log. ckpt.

Figure 4.6. Performance Breakdown of PFI-only.

DoS vulnerlable size

Figure 4.7. Region Size Comparison of Ratchet/Chinchilla/PFI.

Ratchet turned out to be the worst among the tested schemes; there was one stagnating applica-

tion, i.e., dhrystone. Ratchet has many short idempotent regions generating a number of checkpoint

stores; the more regions, the more their inputs in total. Thus, Ratchet causes relatively higher exe-

cution time overhead than others; the region size analysis is discussed in the next section.

75

On the other hand, Chinchilla, PFI-only, and PFI+ROCKCLIMB completed all applications.

However, PFI-only and Chinchilla are 2x and 1.85x slower than PFI+ROCKCLIMB on average,

respectively; Ratchet is 2.2x slower than PFI+ROCKCLIMB on average. This is mainly because

they cause the overheads of re-execution, logging, and checkpointing—though Chinchilla was

faster than PFI-only thanks to its adaptive execution that can skip checkpointing sometimes by

considering energy source condition. Overall, PFI+ROCKCLIMB outperforms Ratchet, PFI-only,

and Chinchilla thanks to the re-execution-free and memory-log-free nature.

In particular, when ROCKCLIMB is enabled for PFI-only, it becomes 2x faster. That is be-

cause ROCKCLIMB eliminates the logging (and their restoration) overhead. To see the benefit

of ROCKCLIMB in more detail, we analyzed the performance breakdown of PFI-only into three

parts: execution, checkpointing, and logging. As shown in Figure 4.6 , the logging overhead is

more than 40% on average, i.e., ROCKCLIMB can avoid the expensive cost and make a further

forward progress.

Region Size Characteristics: To figure out the reason for the stagnation and characterize the

regions of different schemes, we measured the region size of each application for Ratchet, Chin-

chilla, and PFI. Here, we counted the number of instructions executed during the execution of each

region. As shown in Figure 4.7 , there are two outliers, i.e., excessively long regions, in dhrystone

for Ratchet, leading to stagnation. For other applications, Ratchet forms shorter regions than PFI

on average. This is because Ratchet requires each region to be idempotent by cutting all antide-

pendent store-load pairs, which makes the region size small [34], [35].

Unlike Ratchet, two schemes Chinchilla and PFI do not generate stagnating regions. In partic-

ular, PFI forms relatively longer regions than others on average; this trend demonstrates that PFI

can aggressively increase the region size as long as it does not violate the constraint Eq. 4.1 . On

the other hand, Chinchilla generates very short regions because it considers each basic block as a

region, the entry of which—if not skipped by the adaptive execution—checkpoints all registers, to

address the stagnation problem. Although the region size is short, Chinchilla outperforms Ratchet.

That is because Chinchilla’s adaptive execution can skip the register checkpointing according to

the underlying power outage behavior.

Performance Modeling and Analysis: To analyze the performance benefit of ROCKCLIMB,

we set the cost model of PFI+ROCKCLIMB and PFI-only schemes as following: PFI only =

76

orig.exec+ checkpoint + logging+ reexecution+∑
m
0 Trecharging, PFI +RockClimb = orig.exec+

checkpoint +∑
n
0 Twait . That is, PFI-only execution time (PFI only) consists of original execu-

tion time (orig.exec), checkpoint time (checkpoint), logging time (logging), reexecution time

(reexecution), and the sum of recharging time across the m number of power outages (∑m
0 Trecharging).

On the other hand, PFI+ROCKCLIMB execution time (PFI +RockClimb) is comprised of origi-

nal execution time, checkpoint time, and the sum of waiting time across the n number of waits at

region boundaries (∑n
0 Twait).

This implies that PFI+ROCKCLIMB can be technically slower than PFI-only when the total

waiting time is higher than the sum of logging, reexecution, and total recharging time across the

”m” number of power outages, i.e., ∑
n
0 Twait > logging+ reexecution+∑

m
0 Trecharging. However,

this is not practically impossible to happen because each waiting time is less than the recharging

time, i.e., Twait < Trecharging.

Moreover, even if the number of waits n could be greater than the recharging count m (i.e.,

the number of power outages), the total waiting time can be easily paid off by avoiding log-

ging and reexecution time overheads. This is confirmed by our experiments; it turns out that

PFI+ROCKCLIMB waited 10∼15 times while PFI-only had 3∼5 power outages on average, but

PFI+ROCKCLIMB is almost 1.7x faster than PFI-only as shown in Figure 4.5 . The results with

various energy harvesting settings show the same trend (Section 4.6.3).

Distributed Checkpointing: To analyze the impact of distributed checkpointing, we measured

the number of checkpoint stores of PFI at compile time and run time for both centralized and

distributed checkpointing schemes. Figure 4.8 shows that when the distributed checkpointing is

enabled, it can reduce the number of checkpoint stores of the variant of PFI—which uses cen-

tralized checkpointing on purpose— by 42% and 21% on average at compile time and run time,

respectively.

To see the correlation between the checkpoint reduction and performance benefit, we also mea-

sured the performance of PFI+ROCKCLIMB without enabling the distributed checkpointing. When

it is optimized with distributed checkpointing, PFI+ROCKCLIMB managed to improve the perfor-

mance, achieving 1.16x speedup on average and up to 1.92x for bitcnt. Note that we refer to

ROCKCLIMB as the optimized version that enables the distributed checkpointing by default.

77

b
a
si

cm
a
th

b
lin

ke
r

b
it

cn
t

cr
c1

6

cr
c3

2

d
ijk

st
ra ff
t

fi
r

d
h
ry

st
o
n
e

st
ri

n
g
se

a
rc

h

q
so

rt

g
m

e
a
n
(T

o
ta

l)0
20
40
60
80

100
C

h
e
ck

p
o
in

t
 R

e
d
u
ct

io
n
 (

%
)

Static Dynamic

1.0

1.2

1.4

1.6

1.8

P
e
rf

o
rm

a
n
ce

S
p
e
e
d
u
p
 (

X
)

Figure 4.8. Checkpoint reduction by distributed checkpointing.

4.6.3 Sensitivity Analysis

Experimental Setting: Rather than placing the RF transmitter in the same position (50cm away

from the system), which is conducted by prior works [2], [6], [7], [12], [140]–[142] but con-

sidered to be unrealistic, we performed additional experiments to analyze the performance of

PFI+ROCKCLIMB compared to PFI-only and Chinchilla with the same 11 benchmarks in various

energy harvesting situations including an outage-free case and many other unpredictable power

failure cases as shown in Figure 4.9 . Each power trace in the table causes a different power outage

pattern. We found that the trace 10 caused only one power outage while the trace 12 incurred 12

power outages in one second as shown in Table 4.3 . With these different power failure patterns, we

will discuss how much performance improvement PFI+ROCKCLIMB can achieve by comparing it

to prior works for each pattern.

Table 4.3. The number of power failures per second in traces.
Trace 1 2 3 4 5 6 7 8 9 10 11 12

of P.F (s) 2 3 2 4 5 4 8 4 3 1 9 12

For realistic experiments, we developed a power generator board with MSP430FR5969 to gen-

erate various power inputs with the power traces collected by prior works [25], [95] in real energy

78

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5
V

o
lt

a
g
e
 (

V
)

(a) Power trace 1

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(b) Power trace 2

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(c) Power trace 3

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(d) Power trace 4

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(e) Power trace 5

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(f) Power trace 6

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(g) Power trace 7

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(h) Power trace 8

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(i) Power trace 9

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(j) Power trace 10

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(k) Power trace 11

0 5000 10000 15000 20000
time (10us)

0

1

2

3

4

5

V
o
lt

a
g
e
 (

V
)

(l) Power trace 12

Figure 4.9. Energy harvesting trace; the plots in this table show voltage input
fluctuations to MCU during 12 different movements from an RF energy harvest-
ing reader [25], [95]

harvesting settings; the power generator provides supply voltage to our target energy harvesting

system board through GPIO pins according to the traces.

Overall Performance Trend: Figure 4.10 shows the performance results on average in all dif-

ferent situations, e.g., no power failure, and various power patterns from trace 1 to 12 shown in

Figure 4.9 , including the Powercast RF transmitter (discussed in Section 4.6.1). The Y-axis is the

normalized execution time to PFI+ROCKCLIMB as a baseline. In summary, PFI+ROCKCLIMB is

always faster than others, achieving 1.9x and 2.7x average speedups over Chinchilla and PFI-only,

respectively. PFI-only shows the worst performance across all traces. Due to the logging and re-

execution overheads, it ends up with lower performance compared to others. Overall, Chinchilla

shows relatively better performance overhead than PFI-only, since Chinchilla can skip checkpoint-

ing at some points depending on energy source condition.

79

n
o
 o

u
ta

g
e

tr
a
ce

 1

tr
a
ce

 2

tr
a
ce

 3

tr
a
ce

 4

tr
a
ce

 5

tr
a
ce

 6

tr
a
ce

 7

tr
a
ce

 8

tr
a
ce

 9

tr
a
ce

 1
0

tr
a
ce

 1
1

tr
a
ce

 1
2

P
o
w

e
rc

a
st

g
m

e
a
n0

1
2
3
4
5
6
7
8

N
o
rm

a
liz

e
d

E
x
e
c.

 T
im

e
 O

v
e
rh

e
a
d Chinchilla PFI-only PFI+RockClimb

Figure 4.10. Performance results in various situations; Y-axis shows the normalized
execution time to the baseline.

No Power Failure: When there is no power failure, Chinchilla and PFI-only cause about 1.5x

and 1.9x slowdowns, respectively, compared to PFI+ROCKCLIMB as shown in Figure 4.10 . Here,

Chinchilla recognizes that energy source condition is good, and thus it skips most of checkpoint

stores. Nevertheless, since it cannot avoid memory logging overhead, it should check log entries

at every memory update and flush the logged data at some points, which causes a significant per-

formance overhead. This is why Chinchilla underperforms PFI+ROCKCLIMB even in the power-

failure-free case.

Various Power Failure Patterns: When there is frequent power failure, both Chinchilla and PFI-

only cause memory logging and re-execution overheads unlike PFI+ROCKCLIMB. In particular,

with trace 12, Chinchilla and PFI-only show 5.7x and 7.7x slowdowns, respectively, compared to

PFI+ROCKCLIMB. The reason is that the trace causes the most frequent power outages among

all traces, i.e., generating 15x more outages than trace 10. This implies that when there are fre-

quent power outages, the both prior schemes likely cause a much higher performance overhead.

Here, Chinchilla cannot skip register checkpointing due to the frequent power outages—since it

recognizes that the harvesting condition is poor. On the other hand, for trace 10, Chinchilla is

comparable to PFI+ROCKCLIMB. That is because the trace causes the smallest number of power

outages and happens to cause power failure at a right time, i.e., right after register checkpointing,

80

minimizing the waste of Chinchilla’s rollback recovery, Thus, PFI+ROCKCLIMB is only 5% faster

than Chinchilla for trace 10.

4.7 Summary

We introduce power failure immunity (PFI) that ensures each code region can fail at most

once, thus minimizing the re-executions of power-interrupted regions. In the virtue of PFI, this

work presents ROCKCLIMB, a rollback-free intermittent computation scheme, ensuring that PFI-

enforced regions never fail. To improve the performance further, this work proposes distributed

checkpointing, a new compiler optimization that eliminates unnecessary register checkpoints with-

out compromising the recoverability. Consequently, PFI+ROCKCLIMB achieves high-performance

intermittent computation.

81

5. COSPEC: COMPILER-DIRECTED SPECULATIVE INTERMITTENT

COMPUTATION

Researchers introduce hardware-based recovery solutions for EHS devices. However, the hardware-

based solutions require non-trivial hardware modifications, e.g., a voltage monitor, nonvolatile

flip-flops/scratchpad, dependence tracking modules, etc., thereby causing significant area/power/-

manufacturing costs (PS2). For low-cost yet high-performance intermittent computation, in this

chapter, we introduce CoSpec, a new architecture/compiler co-design scheme that works for com-

modity processors used in energy-harvesting systems (TS2). Our experiments on a set of real

energy harvesting traces with frequent outages demonstrate that CoSpec outperforms the state-of-

the-art scheme by 1.8∼3X on average.

5.1 Introduction

Energy harvesting systems continue to grow at a rapid pace due to their batteryless nature.

However, since ambient energy source is unreliable, the systems suffer frequent power failure. To

address the challenge, they use a small capacitor as an energy buffer and intermittently compute

only when sufficient energy is secured in the capacitor; when it is depleted, the systems die. This

is so-called intermittent computation. With the intermittent nature in mind, researchers adopt a

low-power in-order processor with byte-addressable nonvolatile memory (NVM) as main memory

and offer a crash consistency mechanism to checkpoint necessary data and restore them across

power outages.

For the crash consistency, prior works introduce a nonvolatile processor (NVP) [21] that check-

points volatile registers to nonvolatile flip-flops (NVFFs)—when it is about to be interrupted by

power failure—and restores the checkpointed registers from NVFFs in the wake of power failure.

Since the NVP restarts exactly at the power interruption point, program states in both NVM and

NVFF remain the same across power failure, thereby achieving crash consistency.

Unfortunately, the NVP requires non-trivial hardware modifications. To checkpoint the entire

register file right before power failure, they require not only the NVFFs but also a voltage moni-

tor, checkpoint/controller logic, and additional capacitors for the monitor itself. Even worse, the

82

voltage monitor has stability issues such as excessive leakage or capacitor aging effects leading

to reduced capacitance and voltage detection delay with unexpected cold-start glitch. To mitigate

the issues, the prior NVP works aggressively increase the voltage threshold of the system wake-

up/backup, which is energy-inefficient due to the inability to make forward progress unless such a

high voltage is secured to wake up the system.

With that in mind, we propose CoSpec, an architecture/compiler co-design scheme that can

realize low-cost yet performant intermittent computation for commodity in-order processors used

in energy harvesting systems. To realize crash consistency without the voltage monitor based

checkpointing, CoSpec leverages speculation assuming that power failure would not occur and

thus hold all committed stores in a store buffer (SB)—as if they were speculative—in case of

mispeculation; we call this power failure speculation. CoSpec compiler first partitions a given

program into a series of recoverable regions with the SB size in mind, so that no region overflows

the SB during the region execution. When the program control reaches the end of each region,

the speculation turns out to be successful; therefore, CoSpec releases all the stores of the region,

which have been buffered in the SB, to NVM.

If power failure occurs during the execution of a region, all its stores buffered in the SB dis-

appear because it is volatile. The implication is that such mispeculated stores—left behind power

failure—cannot affect any program state in NVM at all. Consequently, the interrupted region can

be restarted with consistent program states in the wake of power failure.

While CoSpec provides crash consistency, the region-based speculation window causes pipeline

stalls at the end of each region due to the SB release. Since it consists of NVM writes that are the

most time-consuming instruction, the stalls are rather long leading to a significant performance

overhead. To hide the long NVM write latency of the SB release, CoSpec overlaps the SB release

of the current region with the speculative execution of the next region. Such instruction level paral-

lelism (ILP) gives an illusion of out-of-order execution on top of the in-order processor, achieving

high-performance intermittent computation.

Our contributions can be summarized as follows:

83

• Unlike prior works, CoSpec does not require any expensive hardware modifications. CoSpec’s

intelligent compiler-architecture interaction provides commodity microarchitecture with crash

consistency, achieving truly recoverable intermittent computation at a low cost.

• CoSpec achieves high performance intermittent computation. The proposed ILP techniques

allows CoSpec to effectively hide the long latency of NVM writes in a program. Overall,

CoSpec outperforms the state-of-the-art nonvolatile processor by 11% on average and up to

26% when there is no power outage.

• In the context of voltage-monitor-free energy harvesting systems, CoSpec can decrease the

wake-up voltage by 1.5∼3X compared to the state-of-the-art work [21], [143], which leads to

a much higher energy efficiency. The experimentation with frequent power outages demon-

strates that CoSpec consumes 2∼3X less energy than the state-of-the-art work.

5.2 Background and Challenges

For the crash consistency, prior works including nonvolatile processors (NVP) approaches rely

on voltage monitor based checkpoint schemes [3], [14]–[18], [144]. They checkpoint volatile

registers—when the voltage monitoring system detects the voltage drop below a defined threshold—

by using the buffered energy in the capacitor. In addition to the voltage monitor, the schemes re-

quire non-trivial hardware modifications such as nonvolatile flip-flops, that must be laid out next

to volatile flip-flops for fast backup/restoration, special hardware checkpoint/controller logic, and

additional capacitors for the voltage monitor.

Even worse, the voltage monitor may cause stability issues such as excessive leakage or crack

of the capacitors leading not only to reduced capacitance [19], [20] but also to voltage detection

delay with unexpected cold-start glitch [21]. To mitigate the issues, existing works aggressively

increase the voltage threshold of the system wake-up/backup

1
 . Consequently, they waste hard-

won energy with making no forward progress until such a high voltage is secured to wake up the

system for sure.

1
 ↑ Without the voltage monitor, the wake-up voltage can be set between 1∼1.8V [14], [15], [138], which is about

1.5∼3X lower than that of the state-of-the-art work [21], [145].

84

With that in mind, Hicks [5] proposes a voltage monitor free crash consistency scheme called

Clank by implementing idempotent processing [4] in hardware. In detail, Clank monitors all mem-

ory accesses (load/store) at run time with several memory buffers such as write-back, read-first,

write-first, and address prefix buffers. By sweeping read-first and write-first buffers, Clank keeps

track of antidependent load-store pairs that make it impossible to perform idempotent processing

and thus lead to memory inconsistency in the wake of power failure.

In particular, once an antidependent store is detected, Clank holds it in the write-back buffer;

non-antidependent stores are directly merged into NVM. If any of the buffers is about to overflow

and unable to accommodate any further memory instruction (address), Clank alerts the processor

to checkpoint all its registers, flushes the write-back buffer to nonvolatile scratchpad emptying out

other buffers as well, and copies the flushed data eventually to nonvolatile main memory. Note that

since it holds the antidependent store in the write-back buffer, Clank requires every load to check

the write-back buffer first in case of the store-to-load forwarding.

Unfortunately, Clank suffers from two significant problems that prohibit its adoption. First,

although Clank takes advantage of nonvolatile scratchpad—much faster than NVM—for perfor-

mance reason, there is no current technology to realize nonvolatile yet fast SRAM in reality. Clank

may leverage NVSRAM, a 3D stacking based hybrid design of SRAM and NVM [146], which

copies SRAM data to the slow nonvolatile part right before power failure. However, NVSRAM

also requires the voltage monitor and the necessary checkpointing/controller logics, rendering

Clank vulnerable to the same voltage monitor issues. Second, Clank may involve frequent check-

points due to overflows in its memory buffers, thus degrading the performance significantly.

While Clank proposes to increase the size of the buffers for less overflows, it presents another—

potentially more serious—problem in terms of the resulting hardware and energy costs. To a large

extent, enlarging the buffers puts significant pressure on the design of CAM (content addressable

memory) structure for Clank’s associative searches of the buffers; in fact, the size of load/store

queues has scarcely increased at all in the last decade for the same reason. Apart from the addi-

tional power consumption on the larger buffers, their wire delays might lead to significant energy

consumption, possibly making Clank inappropriate for energy-harvesting systems.

With the reasonable size of the buffers, the performance overhead of Clank can be more than

20% even with the unrealistic assumption of the nonvolatile scratchpad [5]. With the deficiencies

85

of all above prior works in mind, we seek to develop a practical crash consistency solution that

works for commodity processors without a significant run-time overhead.

5.3 Overview

CoSpec is a low-cost architecture/compiler co-design scheme that enables reliable crash con-

sistency without significant energy and performance overheads. This section first presents the

basic design of CoSpec: (1) hardware design, (2) compiler support, and (3) architecture/compiler

co-design. The optimization techniques of CoSpec are deferred to Section 5.4 .

5.3.1 CoSpec Hardware Design

The design philosophy of CoSpec is to leave the commodity microcontroller (MCU) architec-

ture [38], [147], [148]—used in energy harvesting systems—almost as is and enable high perfor-

mance intermittent computation without expensive hardware modifications.

Store Buffer for Power Failure Speculation: Store buffer has been adopted for other commodity

in-order MCUs [147], e.g., ARMv8-A core implementations [148], mainly to handle mispeculation

such as branch misprediction

2
 . To achieve lightweight crash consistency, CoSpec proposes to

exploit such a store buffer (SB) for a different type of speculation.

The difference is that CoSpec uses a region-level speculation window, guessing whether each

region is likely to finish without interruption due to power failure. In other words, CoSpec lever-

ages the store buffer (SB) to hold committed stores of each recoverable code region during its

execution—since they are treated as speculative—until the program control reaches the end of the

region (i.e., the region boundary) where the speculation turns out to be successful and thus all the

buffered stores are released.

Note that this speculation approach never allows the stores of any regions being interrupted by

power failure to be written to primary main memory (NVM). If power failure occurs, all buffered

stores in the SB disappear because it is volatile. It is therefore impossible for the mis-speculated

stores to affect NVM. Consequently, the interrupted region can be restarted with consistent pro-

2
 ↑ Currently, the processors used in energy-harvesting systems have no branch predictor as in MSP430 MCUs, NVPs

(nonvolatile processors), Clank, and CoSpec.

86

gram states in the wake of power failure. The takeaway is that speculative stores cannot be released

to NVM until they become non-speculative, i.e., their region finishes without power failure. As a

result, CoSpec can completely eliminate memory inconsistency without adding multiple non-trivial

microarchitectural components required by nonvolatile processors and Clank.

It is important to note that CoSpec splits the store buffer into two parts to enable instruction

level parallelism as will be shown in Section 5.4.1 . During the program execution, any two con-

secutive recoverable code regions exclusively occupy one of the two parts in the SB. That is, each

statically partitioned code region commits its stores to a different part of the SB at run time. When

the program control reaches each region boundary, CoSpec drains to NVM only the stores in the

part of the SB which is used by the region being finished.

As the major challenge in achieving correct crash consistency, CoSpec should maintain failure

atomicity of the SB draining; otherwise, any partial draining may result in the memory inconsis-

tency problem [4], [5], [21]. To overcome the challenge, CoSpec leverages a 2-phase SB release

mechanism; CoSpec first drains the committed stores from the SB to a proxy buffer in NVM, and

then copies the drained results from the buffer to the primary main memory area in NVM. With

the help of the 2-phase SB release, either the buffer or the main memory can always remain intact

no matter when power is cut off. This will be discussed in Section for more details 5.3.3 .

5.3.2 CoSpec Compiler

To partition the program into such regions, CoSpec compiler first counts the number of stores

while traversing the control flow graph (CFG) of the program. When the number of stores hits

a threshold, i.e., a half the SB size, CoSpec compiler cuts the current basic block—where the

last store is counted—by placing a region boundary. Then, the compiler analyzes the live-out

registers of the resulting region and inserts a checkpoint instruction to save them into a designated

register file (RF) checkpoint storage in NVM. In particular, a PC register is saved at the end of each

region—which serves as a recovery point in the wake of power failure—so that the forthcoming

power failure will be recovered by restarting the next region.

Note that all inserted checkpoint instructions are normal store instructions. Thus, according

to CoSpec’s power failure speculation, they are first committed to the SB and then drained to

87

NVM provided the speculation turns out to be successful. Indeed, the region formation is a tricky

problem due to the circular dependence during the partitioning process. That is, the live-out register

checkpointing essentially adds store instructions to a region, and of course the number of (added)

stores determines the region boundary, which in turn affects the live-out registers provided the

region boundary changes.

Region Formation: To conduct the region formation, we leverage the algorithm used in our own

prior work [92]. In the following, we describe the high-level idea; for more details, readers are

referred to the work [92].

CoSpec first partitions an input program into common program structures such as calls and

loops. For this purpose, CoSpec places a region boundary at all the entry and exit points of func-

tions. Likewise, a boundary is placed at the beginning of each loop header. Next, CoSpec identifies

the basic block that has region boundaries in the middle of it, and splits it into separate basic blocks.

This allows the region boundaries to always start at the beginning of basic blocks, which helps the

next step to compute the initial checkpoint instructions. After finishing the initial region formation,

CoSpec analyzes the regions to place live-out register checkpoints (i.e., store instructions).

Then, CoSpec compiler traverses the CFG in a topological order trying to combine those initial

regions into larger regions as much as possible. The region combining can eliminate many check-

points because the live-out registers of preceding region(s) are often no longer live after being

combined with following regions. During the traversal of each control flow path, CoSpec updates

the sum of current and incoming basic blocks’ stores from the beginning of the latest region bound-

ary along the path. If the sum becomes greater than a half of SB size (threshold) before the next

region boundary is reached, CoSpec places a boundary to cut the region. After that, CoSpec com-

piler analyzes the re-partitioned regions again to insert live-out checkpoints and possibly repeats

the re-partitioning process as long as there is a region that has more stores than the threshold.

In this way, it is guaranteed that the each partitioned region has at most as many stores as a

half of the SB size, i.e., the threshold. It would be a mistake to take this to mean that all regions

have exactly the threshold number of stores; rather many regions could have less stores than the

threshold due to the re-partitioning process.

I/O Operations: To the best of our knowledge, to support non-recoverable operation such as I/O

operation has remained as the open problem. That being said, since CoSpec compiler places a

88

region boundary at function calls, the function that implements I/O operations is treated as a sep-

arate region—though it cannot be recovered due to the I/O operation. We believe that CoSpec can

deal with I/O operations by simply checkpointing necessary status—just before each I/O operation

starts—so that the interrupted I/O operation can be restarted in the wake of power failure.

1 2 3

CPU

Drain

Final CopyTrigger

Region Boundary

Program Execution

Phase.1 Phase.2

SB
SB

1 2 3

RF checkpoint storage

(a) Region-based Checkpoint (normal case)

1

3

Timer
checkpoint

4

Register
Checkpoint

Drain

Final Copy

Trigger

Program Execution

CPU

SB
SB

2

1 32 4

Phase.1 Phase.2RF checkpoint storage

(b) Timer-based Checkpoint (exceptional case)

Figure 5.1. CoSpec’s checkpoint protocol for a normal case (a) and an exceptional
case such as stagnation (b)

5.3.3 Architecture/Compiler Co-design

2-Phase Store Buffer Release Protocol: To achieve failure-atomic store buffer (SB) release,

which is required for safe power failure recovery without memory inconsistency, CoSpec drains

SB to NVM using a 2-phase mechanism. When each region is ended, i.e., program control reaches

the end of each region boundary, CoSpec first drains the committed stores to a proxy buffer allo-

cated in NVM and in turn moves the drained data from the buffer to the primary main memory

in NVM. Figure 5.1 describes how the 2-phase SB release protocol works for (a) a normal case

(region based) and (b) an exceptional (watchdog timer based) case. First, in the normal checkpoint

case, the system (¶) triggers the SB release when each region boundary is reached during the pro-

gram execution. Then, CoSpec (·) drains one part of SB—which corresponds to the region being

finished—to the proxy buffer in NVM. As soon as the draining is completed, CoSpec (¸) copies

all the buffered data to primary main memory locations.

Second, CoSpec also supports an exceptional (watchdog timer based) case. In particular, if

a compiler-partitioned region is excessively long, the system might be unable to make forward

execution progress because of re-executing the interrupted region again and again across power

outages, i.e., stagnation. To avoid the stagnation, CoSpec dynamically checkpoints registers to SB

89

at the expiration of a watchdog timer—which can be adjusted at run time taking into account the

dynamic power failure behaviors as will be shown in Section 5.4.2 . Figure 5.1 (b) shows how the

dynamic checkpointing works with the 2-phase SB release. When the watchdog timer (¶) expires,

CoSpec (·) immediately checkpoints (stores) all registers and commits them to the idle part of

SB–not used by the current region. CoSpec (¸) then drains full SB to the proxy buffer in NVM.

When two parts of SB are completely drained, CoSpec (¹) makes the buffered data moved to the

primary NVM locations in the same way as a normal case; note that, the watchdog timer is disabled

during the 2-phase SB release process.

The 2-phase SB release mechanism protects both proxy buffer and the primary data in NVM—

by managing a check bit for each—against the partial SB draining that may fail to recover from

power failure. The first bit isDrain is devised for ‘Phase 1’ release, and it is set when the part of SB,

which corresponds to the region being ended, is completely drained into the proxy buffer in NVM;

in the exceptional case shown in Figure 5.1 (b), the bit is set when both parts of SB are drained

completely. The second bit isComplete—devised for ‘Phase 2’ release—is set when all the data

in the proxy buffer are completely moved to primary main memory locations in NVM. These two

check bits help CoSpec to restore correct data in the wake of power failure, and the next section

discusses more details about the recovery protocol.

Recovery Protocol: CoSpec provides a safe recovery protocol to address potential memory

inconsistency problem across power failures. There are three possible cases of power failure that

differ in terms of their failure point in the timeline. First, a power failure can occur during SB

draining (Phase 1 release), i.e., isDrain bit is not set. In this case, CoSpec simply ignores the SB

data drained to the proxy buffer in NVM; the SB contents all disappear due to the volatility of the

SB. To resume the interrupted region in the wake of the power failure, CoSpec first restores the

saved register values including the recovery PC from the RF checkpoint storage in NVM and jumps

to the PC. Note that it points to the beginning of the interrupted region at the moment. Although

at the end of the region, a compiler-inserted checkpoint successfully saved a new recovery PC that

points to the beginning of the next region, it was not written to neither the proxy buffer nor the RF

checkpoint storage in NVM because of the power failure occurred during the ’Phase 1’ release.

Second, a power failure can occur during the copy from the proxy buffer to the primary main

memory in NVM (Phase 2 release). In this case, since the isDrain bit has been set, i.e., the recovery

90

Str&[1]

time

isDrain

Add

Str&[2]

Inst. 1

Inst. 2

Inst. 3

Inst. 4

Inst. 5

Inst. 6

Inst. 7

Inst. 8

Inst. 9

Inst. 10

Region#1
isCom
plete

Add

Sub

Str&[1]

Str&[2]

Ld&[0]
Wait until SB release completes!

…
…

…
…

Region#0 (SB release)

Phase.1 Phase.2

(a) CoSpec without ILP

Str&[1]

time

isDrain

Add

Str&[2]

Inst. 1

Inst. 2

Inst. 3

Inst. 4

Inst. 5

Inst. 6

Inst. 7

Inst. 8

Inst. 9

Inst. 10

isCom
plete

Add

Sub

Str&[1]

Str&[2]

Ld&[0]

Inst. 20

ckpt str r5 Region#1 backup

…
…

Sub

Def r5

……
str PC

Inst. 11

Inst. 12

Wait until
SB release
completes

isDrain and isComplete:
1 bit writes

isDrain is set when SB is
completely drained into the
proxy buffer in NVM

isComplete is set when the
data in the proxy buffer
are completely moved to
primary main memory
locations in NVM.

Region#1

Phase.1 Phase.2

Region#0 (SB release)

(b) CoSpec with ILP

Figure 5.2. Performance benefit thanks to ILP. DMA is not enabled here, though it
can accelerate the 2nd phase of the SB release.

PC checkpoint at the end of the current region was successfully written to the proxy buffer, CoSpec

does not rollback to the beginning of the current region. Instead, CoSpec does redo the Phase 2

release, i.e., moving the proxy data to the primary main memory in NVM. Then, as usual, CoSpec

restores the saved register values including the recovery PC from the RF checkpoint storage in

NVM and jumps to the PC for recovery.

Third, a power failure can occur outside of the 2-phase release, i.e., in the middle of a region,

CoSpec recognizes such a case by checking the both bits, i.e., isDrain and isComplete are set.

Here, the recovery process is simpler compared to the above two cases. CoSpec just restores the

saved register values including the recovery PC from the RF checkpoint storage in NVM and jumps

to the PC that should point to the beginning of the region interrupted by the power failure. The

takeaway is that according to the status of the two check bits, CoSpec takes appropriate actions

for correct recovery, thereby ensuring truly-recoverable intermittent computation no matter when

power is lost and how often it occurs

3
 .

91

5.4 Implementation

To avoid potential memory inconsistency, the 2-phase SB release mechanism requires double

persistent writes for all stores. Unfortunately, this incurs significant performance overhead con-

suming hard-won energy—for such expensive NVM writes—that would otherwise could be used

for making further forward execution progress. To address the overhead problem, CoSpec opti-

mizes the 2-phase SB release by enabling instruction level parallelism (ILP). That is, CoSpec does

not wait until its 2-level SB release is finished; rather it speculatively executes the next region’s

instructions while the SB release is pending. This section describes the implementation details of

such an optimization: (1) how to reliably enable the ILP execution on an in-order processor with-

out memory inconsistency and (2) how to adapt the ILP for the intermittent computation where the

frequency of power outages varies.

5.4.1 Instruction Level Parallelism

Enabling ILP execution: CoSpec enables instruction level parallelism to hide long NVM write

latency by overlapping them with the next code region execution. Figure 5.2 shows how the instruc-

tion level parallelism (ILP) works when two consecutive regions (i.e., Region#0 and Region#1) are

executed. Figure 5.2 (a) describes a non-ILP case; when SB starts its draining to NVM using the

2-phase release mechanism, the system needs to wait until the both phases finish to ensure the SB

data is safely written to the primary memory. Since partial SB release can cause memory incon-

sistency, the power failure recovery might fail. Figure 5.2 (b) shows how CoSpec hides such a long

latency of NVM writes. By overlapping the NVM writes during entire 2-phase SB release with the

speculative execution of the next code region, CoSpec is able to execute more instructions within

a given time; as shown in Figure 5.2 (b), the ILP approaches executes 13 more instructions than

the non-ILP approach that encounters stalls at the instruction #6 due to the 2-phase SB release

4
 .

3
 ↑ The recovery protocol can be further optimized by using only one bit. For safe recovery, the check bit is set to 1

when the ‘Phase 1 release’ is finished, and it is reset to 0 when the ‘Phase 2 release’ is finished. This implies that the
bit is always zero when a new region starts. In the wake of power failure, if the bit is 0, CoSpec simply restarts the
interrupted region by restoring registers and jumping to the recovery PC; otherwise, CoSpec first redoes the ’Phase 2
release’ and then restarts the region as usual.
4

 ↑ Similarly, TSO ATOMICTY [149] leverages the overlapped region execution for atomic-region based dynamic
optimizations. However, that is devised for multi-core out-of-order processors to achieve more thread interleaving.
Also the store queue design and the region formation algorithm are different from those of CoSpec.

92

Note that once the speculative execution of Region#1 is completed, CoSpec should wait until the

SB release of the Region#0 is finished rather than executing the next region (Region#2 not shown

in the figure). This is necessary for achieving correct crash consistency. The next section shows

how CoSpec solve this problem.

Achieving ILP without Breaking Correctness: There are a few challenges CoSpec must over-

come to achieve the ILP optimization for correct recovery. First, CoSpec should avoid inserting a

store to the SB during its draining; otherwise, it may incur the data hazard or race condition on the

store buffer. To address this challenge, CoSpec lets each code region alternatively use a different

part of SB. Recall that CoSpec splits the SB to two parts for exclusive use of any two neighboring

code regions. For example, if a current region inserts its stores to one part of SB, then the next

region inserts its stores to the other part of SB. That is, any two consecutive regions exclusively

use a different part of SB all the time. However, it is still possible to insert a store to the same part

of SB. For example, if the speculative region execution finishes too fast even before the 2-phase

SB release of the previous region is completed, then executing the following region may overwrite

data in the part of SB which is pending (being drained) for its 2-phase release. To avoid this prob-

lem, CoSpec conservatively waits at the end of the speculative region while the previous region’s

SB release is pending.

Second, load instructions should read the up-to-date data for correct execution. Suppose that a

current load instruction needs to read data, but the required data is placed in the part of SB which is

being drained. In this case, the load instruction should be stalled for correctness purpose. To avoid

such a delay, both parts of SB must be available for correct execution. With that in mind, CoSpec

does not invalidate the SB entries being drained until the program control reaches the end of the

speculative region, i.e., the one following the prior region whose 2-phase SB release is pending.

That way, the load of the speculative region can read any written data of the prior region from its

part of the SB—which is being drained—without any stall. Of course, when the load in a region is

to read the data written by the same region, its load can be served as usual using the conventional

store-to-load forwarding through its own SB.

Discussion: One might argue that adding a SB in a simple in-order pipeline could reduce the

core clock frequency as with modern processors where their SB must provide a dependent load

with data within L1 hit time to avoid complicating their scheduling logic. However, we believe

93

that CoSpec is free from this concern thanks to its architecture characteristics. Apart from the use

of in-order pipeline and low clock frequency (∼25MHz) in energy harvesting systems, CoSpec

does not have a cache (Section 2.1). The implication is that the SB search has only to finish

within NVM (i.e., FRAM) access time. Note that this is always doable because each SB entry

access is orders-of-magnitude faster than FRAM access latency. Consequently, CoSpec causes

neither clock frequency reduction nor scheduling logic complication

5
 . In addition, CoSpec can

bypass SB searches for the majority of following loads; Section 5.4.3 details the SB bypassing and

necessary compiler analysis.

5.4.2 Stagnation-Free Intermittent Computation

CoSpec should address the stagnation problem (Section 5.3.3), which would otherwise waste

the harvesting energy in vain without making forward execution progress. To ensure the forward

progress in the presence of frequent power outages, CoSpec proposes adaptive execution tech-

niques [8], [101], [102] that take into account dynamic power failure behaviors.

The use of ILP optimization and the region-level speculation window may increase power

consumption compared to non-modified design, possibly causing more power failures during in-

termittent computation. In light of this, CoSpec adaptively turns on/off the ILP and adjusts the

speculation window according to the power failure patterns in a reactive manner.

When the system suffers from power failures, CoSpec first turns off the ILP execution. Then, if

the power failure happens in the same region more than twice, which might be a sign of stagnation,

CoSpec turns on the watchdog timer checkpoint. Once the timer is expired, CoSpec checkpoints

registers to the store buffer (SB) and performs the 2-phase SB release as shown in Figure 5.1 (b).

Since the timer is set for it to be expired in the middle of the stagnating region, CoSpec can

resume from the timer expiration point in the wake of power failure—rather than jumping back to

the beginning of such a long region. If the region still encounter another power failure, CoSpec

decreases the watchdog timer to a half of the previous value. This in effect doubles the frequency

of the register checkpointing (and the 2-phase SB release) and can be repeated to get out of any

long stagnating region across power outages.

5
 ↑ Technically, accessing 40 SB entries takes less than 1 cycle [25], [150]

94

On the other hand, if the system continues to make progress without a power outage in which

case CoSpec assumes the system is under a good energy harvesting condition, then it enables ILP

and disables the watchdog timer approach. With this simple adaptive execution heuristic, CoSpec

can address the stagnation problem and improve the performance by spending more harvested

energy for forward execution progress rather than wasting it for the re-executions of stagnating

regions.

5.4.3 Energy-Efficient Store Buffer Search

In case of store-to-load forwarding, every load should consult the store buffer (SB). However,

this involves expensive CAM (content addressable memory) based associative search in the SB. To

address this issue, CoSpec (1) bypasses unnecessary SB searches and (2) designs a cost effective

SB search logic.

First, CoSpec compiler statically checks if each load can be may- or must-aliased to stores in

the current and previous regions by leveraging alias analysis [120], [151]–[153]. When no alias

is found, CoSpec compiler marks the load instruction so that it can bypass the SB. During the

program execution, if the processor detects such a special load instruction, it avoids the SB search

and directly accesses to primary main memory.

To see the impact of this compiler-directed SB bypass scheme, we conducted measured how

many load instructions could avoid SB searches at both compile time and run time. The experi-

mental result demonstrates that a significant number of loads is able to bypass the SB search. As

shown in Figure 5.3 , at compile time, more than 80% of total load instructions can be marked to

bypass the SB search on average by using both basic alias analysis (BasicAA) [120] and advanced

alias analysis called SVF (static value-flow analysis [153]

6
). At run time, 98∼99% of dynamic

loads turn out to be from the SB search. That is mainly because many non-aliased loads are found

in hot loops whereas aliased loads are not.

In particular, the promising results of high SB bypass rates motivate the different design of the

SB search mechanism. In other words, CoSpec can afford a sequential search logic rather than the

6
 ↑ CoSpec compiler could run SVF—which is field- and flow-sensitive—successfully on top of program’s region-

based control flow sub-graph; while such an advanced analysis is very expensive for whole program analysis, our
region-based (per-region) analysis makes it possible to run the SVF for all the benchmarks we tested.

95

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

0

20

40

60

80

100
SB

 B
yp

as
s R

at
e

(%
)

BasicAA(static) SVF(static) Miss(static) Bypass(dynamic)

Figure 5.3. Store buffer bypass rates at compile time and run time. Both BasicAA
and SVF are static alias analysis.

expensive CAM-based associative search. This gives a freedom to use the SB for energy harvesting

system without worrying about the high power consumption required for the CAM search.

SB(20) SB(30) SB(40)
0

25
50
75

100

En
er

gy
 p

er
Lo

ad
 A

cc
es

s (
pJ

)

CAM
select
RAM

CAM
select
RAM

Figure 5.4. Energy consumption breakdown of different SB search schemes. For
each SB configuration on x-axis, the first and second bars represent conventional
CAM search and CoSpec’s sequential search, respectively.

To this end, we estimated the energy consumption and performance of both conventional CAM-

based associative search and sequential search by using CACTI [154] with 90nm technology [155]

96

in the same way as prior work [150]. While the conventional associative SB search is comprised

of three components, i.e., CAM, select logic, and RAM (buffer), CoSpec can remove the CAM

part thanks to the sequential search. Figure 5.4 describes the energy consumption breakdowns

of the CAM-based associative search and the sequential search. When the SB is 40, the energy

consumption of the associative SB search is about 2X greater than the sequential search.

20 30 40
Store Buffer Size

0.00

0.25

0.50

0.75

1.00

En
er

gy
 O

ve
rh

ea
d

1.2

1.4

1.6

1.8

2.0

La
te

nc
y

Ov
er

he
ad

Energy Latency

Figure 5.5. Normalized energy/latency overheads of the sequential SB search com-
pared to the CAM based associative search

We also analyzed the latency overhead of CoSpec’s sequential search compared to the CAM

search. Figure 5.5 shows both the normalized access latency and the energy consumption overhead.

The latency overhead is about 1.5∼1.8X when the store buffer size is 20∼40, while the energy

consumption reduction is 40∼70%. Section 5.5 evaluates the impact of the both SB search schemes

for various benchmark applications.

5.4.4 Direct Memory Access (DMA)

Although ILP execution can hide the long latency of the 2-phase SB release, it does not re-

duce the latency. To accelerate the SB release, CoSpec can opt for DMA processing available in

commodity energy harvesting microcontrollers (MCUs), e.g., MSP430 series. In fact, the DMA

engine of MSP430 MCUs [38] can speed up NVM data transfer, i.e., memory-to-memory copy, by

≈4X faster then normal read-write based copy [117]. In light of this, CoSpec can use the DMA to

accelerate the second phase (i.e., Phase 2 data copy shown in Figure 5.1) of the 2-phase SB release.

97

However, care must be taken to perform the DMA processing because every data in the proxy

NVM buffer needs to be copied to the corresponding primary main memory locations in a precise

manner. Currently, CoSpec uses a single DMA channel multiple times in a row. That is, the number

of DMA operations is the same as the number of the proxy buffer entries to be copied. Although

a series of DMA copies seem to be not optimized, the DMA processing is still helpful thanks to

its 4X faster NVM copy. It is important to note that due to the DMA processing can improve the

ILP efficiency as will be shown in Section 5.5.2 . That is because the prevention of the SB race

condition lets the ILP mechanism conservatively wait at the end of the speculative region for the

previous region to complete its 2-phase release (See Section 5.4.1).

5.5 Evaluation

We implemented CoSpec compiler techniques described in Section 5.3.2 using the LLVM com-

piler infrastructure [120]. All the experiments were performed on the gem5 simulator [156] with

ARM ISA, modeling as in NVP simulator [25]. We compared CoSpec to nonvolatile processor

(NVP) [21], i.e., the state-of-the-art NVFF based checkpoint scheme, using the mixture of Medi-

abench and MiBench applications [122], [123], [157]. They were all compiled with standard -O3

optimization. As a default configuration, CoSpec uses the SB size of 40 entries with the sequential

search logic (Section 5.4.3)

7
 . Table 5.1 describes the hardware specifications of the baseline NVP

and CoSpec.

To evaluate CoSpec for harsh environment with frequent power outages, we used two power

traces of the NVP simulator which were collected from real RF energy-harvesting systems [25].

Figure 5.6 describes the shape of the two power traces: (a) home and (b) office. In the following,

we provide the detailed analyses of CoSpec on (1) hardware cost, (2) execution time with and

without power failure, and (3) energy consumption breakdown.

98

Table 5.1. Simulation configuration
NVP CoSpec

Capacitor 100nF 100nF/No
Computing Power 100uW/MHz 100uW/MHz
Voltage Monitor(VM) 18uA No
Store Buffer No Yes (Section 5.4.3)
DMA No Optional
Von/Voff 3.3/2.8 1.8/1.8
Ckpt/Restore V 3.1/2.9 No/1.8
Write/Read (latency)

8
 120ns/20ns 120ns/20ns

Write/Read (power) 2mW 2mW
Sleep/Wakeup T 46/14us 212/310us[14]
Recovery Point VM hit Boundary
ILP No Yes

0 500000 1000000 1500000 2000000 2500000 3000000
Time (10us)

0

5

10

15

20

25

Vo
lta

ge
 (V

)

(a) Power trace#1 (Home)

0 500000 1000000 1500000 2000000 2500000 3000000
Time (10us)

0

10

20

30

40

50
Vo

lta
ge

 (V
)

(b) Power trace#2 (Office)

Figure 5.6. Energy harvesting voltage traces. Trace#1 and#2 incur ≈20 and ≈400
power outages in every 30 seconds, respectively.

5.5.1 Hardware Cost Analysis

This section analyzes the hardware cost of prior works [5], [21], [159] and highlights the low

cost of CoSpec. Table 5.2 provides the major hardware cost comparison. First, NVP [21] requires

the voltage monitor, NVFF, and extra energy buffer. The voltage monitor consumes a signifi-

7
 ↑ Since the target microcontroller [119] has 16 registers, the SB size must be at least two times bigger than the register

file size (16) to safely enable the watchdog timer based checkpoint scheme shown in Figure 5.1 (b).
8We configured the NVM write/read latency based on the commodity design [119] and the state-of-the-art works [25],
[158]

99

Table 5.2. Hardware cost comparison: In the first column, the entries in bold
are non-commodity hardware components, i.e., the bold marks represent expensive
hardware modifications. Others have already been adopted to commodity hardware
designs.

Schemes NVP [21] Clank [5] TCCP [159] CoSpec
Buffers No 4 buffers SB SB
DMA No No No Optional

ISA Change No Yes Yes Optional
Double Backup No Yes No Yes

Counter(s) No No Yes (2) No
NV Scratchpad No Yes No No

NVFF Yes No Yes (+NVSB) No
Extra Energy Buffer Yes No Yes No

Voltage Monitor Yes No Yes No
Total Cost High High High Low

cant amount of energy and occupies a nontrivial portion of die size [5]

9
 . Also, integrating the

NVFF (nonvolatile flip-flops), that must be laid out in close proximity to the volatile flip-flops,

in the core microarchitecture is complex and expensive due to the manufacturing cost. Overall,

the hardware cost of NVP is high. Second, Clank [5] introduces new hardware components such

as nonvolatile scratchpad and idempotence violation (i.e., antidependence) detector with several

memory buffers. Since the dependence tracking has to monitor every single load/store and sweep

the buffers for CAM based associative searches, it is fair to say that the total cost of Clank is

high. Third, TCCP [159], a variant of NVP, builds up an out-of-order processor. As with NVP,

TCCP requires the voltage monitor, extra energy buffer, and NVFF. In addition, TCCP introduces

a nonvolatile store buffer (NVSB) as well as two threshold counters and their controller logic for

varying the checkpoint interval. Given all this, TCCP is another high cost approach.

Finally, CoSpec re-purposes the existing SB and introduces its 2-phase release logic. Other than

that, CoSpec does not modify core microarchitecture unlike above prior works. Although CoSpec

currently assumes a special load instruction for bypassing the SB, this can be done without ISA

change. The idea is to (1) set the least significant bit of the aliased load address operand—which

must be zero due to the word granularity—and (2) let the pipeline architecture check the bit to

reset it and enable the SB bypassing. Although the bit setting instruction must be inserted at

9
 ↑ The die area occupied by the commodity voltage monitor is about 0.3mm2 [21].

100

compile time, the overhead will not be significant thanks to the small portion of aliased loads as

shown in Figure 5.3 . Although CoSpec can opt for a DMA engine, it has already been adopted

by commodity in-order processors such as MSP430 series MCUs. Overall, the hardware cost of

CoSpec is significantly lower than that of the prior works.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

103
104
105
106
107
108
109

1010
1011

Co
m

pl
et

io
n

Ti
m

e
(n

s)

Off-time
On-time
Off-time
On-time

(a) Power trace#1 (Home)

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

103
104
105
106
107
108
109

1010
1011

Co
m

pl
et

io
n

Ti
m

e
(n

s)

Off-time
On-time
Off-time
On-time

(b) Power trace#2 (Office)

Figure 5.7. Completion time comparison. The 1st/2nd bars of each application
represent the times of NVP and CoSpec, respectively.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

pe
gw

itd
ec

ry
pt

pe
gw

ite
nc

ry
pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es

gm
ea

n(
M

ed
ia

)

ba
sic

m
at

h

bi
tc

ou
nt

rij
nd

ae
l_e

pa
tri

cia

st
rin

gs
ea

rc
h

qs
or

t

cr
c3

2

FF
T

FF
T_

i

gm
ea

n(
M

i)

gm
ea

n(
To

ta
l)

0.50
0.75
1.00
1.25
1.50
1.75

No
rm

al
ize

d
Ex

ec
. T

im
e

NoAA AA AA+DMA AA+ILP AA+ILP+CAM AA+ILP+DMA

Figure 5.8. Normalized execution time of CoSpec compared to NVP [21]. As a
default, CoSpec enables SB bypass, ILP, and DMA support for all other experiments.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

pe
gw

itd
ec

ry
pt

pe
gw

ite
nc

ry
pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es

gm
ea

n(
M

ed
ia

)

ba
sic

m
at

h

bi
tc

ou
nt

rij
nd

ae
l_e

pa
tri

cia

st
rin

gs
ea

rc
h

qs
or

t

cr
c3

2

FF
T

FF
T_

i

gm
ea

n(
M

i)

gm
ea

n(
To

ta
l)

0.50
0.75
1.00
1.25
1.50

No
rm

al
ize

d
Ex

ec
. T

im
e

DMA(2X) DMA(3X) DMA(4X) DMA(5X)

Figure 5.9. Normalized execution time of CoSpec compared to NVP [21] varying
DMA speed. DMA(4X) is the default configuration for all other experiments.

101

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

pe
gw

itd
ec

ry
pt

pe
gw

ite
nc

ry
pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es

gm
ea

n(
M

ed
ia

)

ba
sic

m
at

h

bi
tc

ou
nt

rij
nd

ae
l_e

pa
tri

cia

st
rin

gs
ea

rc
h

qs
or

t

cr
c3

2

FF
T

FF
T_

i

gm
ea

n(
M

i)

gm
ea

n(
To

ta
l)

40
60
80

100

IL
P

Ef
fic

ie
nc

y
(%

)

noDMA DMA(2X) DMA(3X) DMA(4X) DMA(5X)

Figure 5.10. ILP Efficiency comparison varying DMA speed. DMA(4X) is the
default configuration for all other experiments

5.5.2 Execution Time Analysis with No Outage

To analyze the execution time of CoSpec, we first set the baseline to the state-of-the-art NVP [21]

with uninstrumented binaries. We measured the execution time of CoSpec for 24 benchmark ap-

plications with 6 configurations.

First, we analyzed the performance impact of the alias analysis based SB bypass by turning it

off (NoAA) and on (AA). As shown in Figure 5.8 , without the SB bypass (NoAA), i.e., the first

bar in the figure, CoSpec incurs about 24% execution time overhead due to the region-based power

failure speculation overheads such as the 2-phase SB release and the inserted register checkpoints.

When the SB bypass is enabled (AA), i.e., the second bar in the figure, the resulting execution time

reduction is only marginal. This implies that the SB search is not the main source of the execution

time overhead.

Second, we also analyzed the impact of DMA and ILP on the execution time of applications.

Recall that DMA is used for fast memory-to-memory copy, and therefore it can only speed up the

second phase of the SB release. When both SB bypass and DMA are enabled (AA+DMA), i.e.,

the third bar in Figure 5.8 , CoSpec causes about 10% execution time overhead; as with MSP430

microcontrollers, we set the DMA speed to 4X faster then normal memory copy as default. When

both SB bypass and ILP are enabled (AA+ILP), i.e., the fourth bar in the figure, the resulting

execution time overhead is only 4∼5% though DMA is not enabled. This confirms that ILP is the

main reason for CoSpec’s high performance.

Finally, we enabled all the optimizations to see the performance bound of CoSpec. When the

best configuration is set (AA+ILP+DMA), i.e., the sixth bar in the figure, CoSpec rather outper-

102

forms the state-of-the-art NVP by 11% on average. As the next section shows, the use of DMA

is able to improve the ILP efficiency. In this way, CoSpec can effectively hide the long latency of

NVM writes involved in the 2-phase SB release.

Interestingly, Figure 5.8 shows that CAM search does not make a huge impact on the execution

time on average. When the CAM search is enabled with both SB bypass and ILP (AA+ILP+CAM),

i.e., the fifth bar in the figure, there is only marginal difference compared to the sequential search

with SB bypass and ILP (AA+ILP). That is because 1∼2% of total loads access to the store

buffer—as shown in Figure 5.3 —thanks to the precise alias analysis of CoSpec’s compiler. That

is, only a few loads could get the CAM search benefit. Note that all the other bars except for

AA+ILP+CAM in Figure 5.8 use the sequential SB search logic.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

pe
gw

itd
ec

ry
pt

pe
gw

ite
nc

ry
pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es

gm
ea

n(
M

ed
ia

)

ba
sic

m
at

h

bi
tc

ou
nt

rij
nd

ae
l_e

pa
tri

cia

st
rin

gs
ea

rc
h

qs
or

t

cr
c3

2

FF
T

FF
T_

i

gm
ea

n(
M

i)

gm
ea

n(
To

ta
l)

0.50
0.75
1.00
1.25

No
rm

al
ize

d
Ex

ec
. T

im
e

W-R(1:1) W-R(2:1) W-R(3:1)

Figure 5.11. Normalized execution time of CoSpec compared to NVP [21] varying
the write-to-read ratio of NVM. The ratio, 6:1, is the default configuration for all
other experiments.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

103
104
105
106
107
108
109

1010
1011

Co
m

pl
et

io
n

Ti
m

e
(n

s)

Off-time
On-time
Off-time
On-time

(a) Power trace#1 (Home)

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

103
104
105
106
107
108
109

1010
1011

Co
m

pl
et

io
n

Ti
m

e
(n

s)

Off-time
On-time
Off-time
On-time

(b) Power trace#2 (Office)

Figure 5.12. Completion time comparison. The 1st/2nd bars of each application
represent the times of NVP and CoSpec, respectively.

Sensitivity Analysis: We explored the performance impact of the DMA and NVM technology

with the highly optimized CoSpec (AA+ILP+DMA). First, we varied the DMA speed of data

103

transfer in NVM, i.e., 2X, 3X, and 5X faster than a normal NVM copy—and then measured the

resulting execution times of NVP and CoSpec for the same set of benchmark applications.

Figure 5.9 shows the normalized execution time of CoSpec compared to NVP which is the

same baseline used in the prior experiment. To a large extent, CoSpec becomes faster as the DMA

speed is increased. When the DMA speed is 5X, CoSpec can achieve ∼6% speedup than the

default speed of 4X.

To further analyze the correlation between the DMA speed and ILP execution, we measured

the ILP efficiency varying the DMA speed. The ILP efficiency is defined as how much the time

taken for the 2-phase SB release of a code region is overlapped with the execution time of the

next region. For example, if the SB release time is completely overlapped with the next region

execution, the ILP efficiency is 100%. Note that the perfect efficiency is achieved when the region

execution time is greater than or equal to the SB release time; either way, the SB release time is

fully hidden, the ILP efficiency is 100%. On the other hand, if the next region finishes while the

SB release is still pending, the ILP efficiency is decreased. That is because CoSpec must wait—at

the end of the next region—for the SB release to finish. As shown in Figure 5.10 , 70∼82% of

the 2-phase SB release can be overlapped with the next region execution when the DMA speed is

2X∼5X.

Table 5.3. Write-to-read ratios of different NVM technologies.
Memory FRAM [38] NVsim [160] PCM [161], [162] Re-RAM [158]
Ratio 1:1 2:1 3:1 6:1

Second, we varied the NVM write/read latency ratio, i.e., 1:1, 2:1, and 3:1, assuming differ-

ent NVM technologies[158], [160]–[162] shown in Table 5.3 . Figure 5.11 shows the normalized

execution times of CoSpec compared to the same baseline NVP again. On average, CoSpec out-

performs the NVP by about 13∼16% when the NVM write/read ratio becomes 3∼1:1.

5.5.3 Execution Time Analysis with Outages

To test the ability to make forward execution progress in the presence of a myriad of power

outages, we measured the completion time of benchmark applications using two voltage traces

104

shown in Figure 5.6 ; they are collected from a real RF-based energy harvesting system when it is

deployed in home (a) and office (a). Figure 5.12 shows the completion time of the baseline NVP

(the first bar) and CoSpec (the second bar) with breaking down the time to 2 parts, i.e., power-off-

time and power-on-time. As shown in the figure, the system off-time dominates the completion

time of both NVP and CoSpec. However, NVP is designed to wake up at 1.5∼3X higher voltage

level than the minimum supply voltage of MCUs, due to voltage monitor issues (see Section 5.2).

This implies that NVP should stay in a sleep mode for a substantial amount of time without making

forward progress. Unlike the NVP, CoSpec can start to operate once the minimum supply voltage

is secured, thus achieving further forward progress. Figure 5.12 (a) and (b) highlights that CoSpec

outperforms the NVP by 3.0X and 1.8X in the trace#1 (a) and trace#2 (a), respectively.

Interestingly, the NVP makes further forward execution progress in trace#1 than trace#2. As

shown in Figure 5.12 (b), NVP’s completion time using trace#1 is only 60% of that of using

trace#1. Given that trace#2 has relatively less power outages than trace#1, NVP tends to prefer

more reliable voltage trace. With that in mind, we expect that CoSpec can outperform the NVP

more significantly when the energy source is more unreliable.

5.5.4 Energy Breakdown with Outages

Finally, we analyzed the average energy consumption breakdown across power outages

10
 . The

total energy consumption can be divided into two parts: one under ILP execution and the other

under non-ILP execution. The ILP part is further broken down to successful- and mis-speculation,

each of which is comprised of 3 parts: the Phase1/Phase2 of the SB release and the computation.

On the other hand, the non-ILP part is two-fold: NoILP and re-execution. NoILP is simply the

energy consumption of CoSpec when it executes without ILP excluding that of re-executing any

interrupted regions.

Figure 5.13 indicates that the overhead of CoSpec mostly comes from the re-execution cost—

i.e., Re-exec in the figure. Although CoSpec enables the ILP and the watchdog-timer-based check-

point in an adaptive manner according to a dynamic power failure pattern, the adaptation may not

help for the first time to make progress (see Section 5.4.2). For example, to avoid stagnation,

10
 ↑ CoSpec shows similar energy consumption trends in both power traces. On average, the total energy consumption

of CoSpec in the presence of power failures using two traces is 2∼3X less than the NVP’s.

105

CoSpec might need to perform multiple times of the adaptation in a reactive manner (involving the

sequence of ILP off −> watchdog timer on −> timer halving). Thus, the re-execution consumes

the harvested energy without making actual progress until CoSpec finally gets out of the stagnating

region after the multiple adaptations. As shown in Figure 5.13 , the re-execution consumes 40% of

the total energy on average.

ad
pc

m
de

co
de

ad
pc

m
en

co
de ep
ic

un
ep

ic
g7

21
de

co
de

g7
21

en
co

de
gs

m
de

co
de

gs
m

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
pe

gw
itd

ec
ry

pt
pe

gw
ite

nc
ry

pt sh
a

su
sa

nc
or

ne
rs

su
sa

ne
dg

es
gm

ea
n(

M
ed

ia
)

ba
sic

m
at

h
bi

tc
ou

nt
rij

nd
ae

l_e
pa

tri
cia

st
rin

gs
ea

rc
h

qs
or

t
cr

c3
2

FF
T

FF
T_

i
gm

ea
n(

M
i)

gm
ea

n(
To

ta
l)

0

20

40

60

80

100

En
er

gy
 C

on
s.

Br
ea

k.
[%

]

Succ(Phase1)
Succ(Phase2)

Succ(Comp.)
Mis(Phase1)

Mis(Phase2)
Mis(Comp.)

NoILP
Re-exec

Figure 5.13. Energy consumption breakdown of CoSpec

On average, CoSpec consumes about 40% of its total harvested energy for ILP executions while

it does the rest of the energy for non-ILP executions. NoILP consumes 20% of total energy on

average due to the adaptation of CoSpec which throttles down its execution to escape (potentially)

stagnating regions. In particular, extra NVM writes (i.e., the Phase2 of the SB release during

successful- and mis-speculation) account for 18% of the total energy consumption on average.

Also, it turns out that the wasted energy of mis-speculated execution (i.e., computation during

mis-speculation) is negligible thanks to CoSpec’s adaptive execution.

106

5.6 Summary

We present CoSpec, an architecture/compiler co-designed scheme, that can work for commod-

ity in-order processors, to achieve low-cost yet performant intermittent computation. CoSpec takes

advantage of power failure speculation to enable crash consistency without significant hardware

and performance overheads. In particular, CoSpec realizes instruction level parallelism on top

of the in-order processor pipeline to hide the long latency of nonvolatile memory writes, thereby

improving the performance significantly. Our experiments on a real energy harvesting trace with

frequent power outages demonstrate that CoSpec outperforms the state-of-the-art nonvolatile pro-

cessor across a variety of benchmark applications by 3X on average.

107

6. WRITE-LIGHT CACHE: LIGHTWEIGHT CRASH CONSISTENT

CACHE FOR ENERGY HARVESTING SYSTEMS

Energy harvesting system has huge potential to enable battery-less Internet of Things (IoT) ser-

vices. However, it has been designed without a cache due to the difficulty of crash consistency

guarantee, limiting its performance. We introduce Write-Light Cache (WLCache), a specialized

cache architecture with a new write policy for energy harvesting systems, that can reduce hard-

ware cost yet improve performance significantly (TS2). WLCache combines benefits of a write-

back cache and a write-through cache while avoiding their downsides. Unlike a write-through

cache, WLCache does not access a non-volatile main memory (NVM) at every store but it holds

dirty cache lines in a cache to exploit locality, saving energy and improving performance. Un-

like a write-back cache, WLCache limits the number of dirty lines in a cache. When power is

about to be cut off, WLCache flushes the bounded set of dirty lines to NVM in a failure-atomic

manner by leveraging a just-in-time (JIT) checkpointing mechanism to achieve crash consistency

across power failure. Our experiments demonstrate that WLCache provides significant speedup

compared to a non-volatile cache baseline. With no power outage, WLCache achieves about 3.1x

speedup. With frequent power outages, WLCache leads to about 2.9x speedup, which is 1.4x faster

than the state-of-the-art volatile cache design with non-volatile backup.

6.1 Introduction

Energy harvesting systems [163] offer battery-less computing that is deemed to be the next

step in the evolution of IoT. Without a battery, energy harvesting systems can self-power their

devices by collecting ambient energy from external sources (e.g., solar power, thermal energy,

etc.). They enable various applications such as wearables, sensors, and implantable medical de-

vices [164]–[167] in which a battery-equipped design could be bulky, environment-unfriendly, and

cost-inefficient—apart from regular battery replacements.

However, due to unreliable nature of ambient energy sources, energy harvesting systems suffer

from frequent power failures. To mitigate the problem, existing energy harvesting systems leverage

a small capacitor as an energy buffer and employ a non-volatile processor (NVP) that can instantly

108

checkpoint/restore all on-chip data, i.e., volatile registers to/from neighboring non-volatile flip-

flops at a power failure/recovery point [14]. In addition, the systems use non-volatile memory

(NVM), not Flash, as main memory to persist all off-chip data across power failure.

1
 Notably, they

do not make use of (volatile) cache since its states are lost across power failure causing a crash

consistency problem [168]. That is, without a cache, they directly persist data on NVM at the cost

of long NVM access latency for every memory operation, resulting in poor performance.

A cache has high potential to significantly improve performance for energy harvesting systems.

Given an energy budget, they can make a further forward execution progress by avoiding NVM

accesses on cache hits. Unfortunately, leveraging a cache in energy harvesting systems remains

a challenge due to the difficulty of crash consistency guarantee. Different cache write policies

(i.e., write-though or write-back) have different implications on the crash consistency. A (volatile)

write-through cache directly achieves crash consistency as it has no concern about losing volatile

cache states across power failures. However, it requires updating both the cache and NVM on each

memory store and thus consumes more power, offsetting the caching benefits.

In contrast, a write-back cache does not update NVM until dirty cachelines are evicted to NVM,

i.e., write hits do not involve NVM access at all. However, to ensure crash consistency, it requires

additional hardware support that can flush all the updated (dirty) cachelines to NVM before im-

pending power failure. For example, prior works introduce a write-back NVSRAM cache [14],

[24], [25] that uses a volatile SRAM cache backed with the same size non-volatile (NV) cache

counterpart. When power is about to be cut off, the NVSRAM cache triggers just-in-time (JIT)

checkpointing that can failure-atomically flush the entire cache [14], [24] or dirty lines [25] to the

neighboring NV counterpart. This approach has two downsides: (1) its hardware modification cost

is high—no such fabrication has been adopted for production yet; and (2) it requires reserving a

large amount of extra energy enough to backup all cache lines (in the worst case all may be dirty).

The reserved energy cannot be used for computation, significantly limiting the forward progress

and the energy efficiency.

1
 ↑ Flash memory requires (9x) higher voltage and incurs orders-of-magnitude slower write latency (1000x) than byte-

addressable NVM such as FRAM [3], [117].

109

We present Write-Light

2
 Cache (WLCache), specialized cache architecture with a new write

policy for energy harvesting systems. In particular, WLCache builds upon traditional SRAM cache

design without requiring non-volatile cache counterpart and combines the benefits of a write-

through cache and a write-back cache while avoiding their downsides. Unlike a write-through

cache, WLCache does not update data in NVM main memory at every store, but it holds dirty

lines in a cache to take advantage of locality, saving energy and improving performance. Unlike

a write-back cache, WLCache permits only a limited number of dirty lines in a cache. That way

WLCache has only to secure the a small amount of energy—so that the bounded number of dirty

lines can be JIT-checkpointed into NVM—without expensive backup/restoration costs.

To achieve this, WLCache tracks a set of dirty cache lines in a separate small hardware queue,

called DirtyQueue. Then, WLCache uses two reconfigurable thresholds, named maxline and

waterline. On the other hand, the maxline threshold (≤DirtyQueue) defines the maximum number

of dirty cache lines in WLCache. When the number of dirty cache lines reaches maxline, WLCache

stalls a store instruction until a free slot in DirtyQueue becomes available. Importantly, maxline

determines and bounds the amount of energy WLCache needs to reserve to failure-atomically

checkpoint dirty cache lines—which is much lower than that of the NVSRAM cache—when power

failure is impending.

The waterline threshold (≤ maxline) determines when WLCache writes back dirty cache lines

to NVM. When the number of dirty lines exceed waterline, WLCache picks one of dirty lines

and asynchronously writes it back to NVM. The persisted cache line remains in the cache with

a “clean” state for future references. The asynchronous write-back operation overlaps with the

execution of following instructions, realizing instruction-level parallelism (ILP). The gap between

maxline and waterline defines the potential ILP opportunity, not available in a write-through cache.

For optimization, WLCache interacts with a run-time system that adaptively adjusts the two

thresholds depending on the energy harvesting quality. The run-time system measures a power-

on period across power outages and estimates the quality of energy source at each reboot time.

When the power-on time increases (i.e., the energy source condition is seemingly good), the run-

time raises the waterline/maxline and the JIT checkpointing threshold (Vbackup) accordingly to hold

2
 ↑ As light can behave simultaneously as a particle and a wave, WLCache takes advantages of both write-through and

write-back writing policies; and WLCache is “light”weight.

110

more dirty cache lines in WLCache at each reboot time, making it behave more like a write-back

cache. On the contrary, when the power-on time decreases (i.e., possible sign of poor energy

harvesting), the runtime lowers the waterline/maxline and the Vbackup threshold to hold a smaller

number of dirty lines. That way WLCache starts to act more like a write-through cache and can

use hard-won energy more for forward progress—rather than lavishing it on recurring JIT check-

pointing of many lines across frequent outages.

Our experiments with 23 applications from Mibench [122] and Mediabench [157] benchmarks

highlight that WLCache provides significant speedup compared to the non-volatile cache baseline.

With no power outage, WLCache achieves about 3.1x speedup. With frequent power outages, WL-

Cache attains about 2.9x speedup, which is 1.4x faster than the ideal state-of-the-art NVSRAM-

based cache design.

This work makes the following contributions:

• We present WLCache, a new energy-efficient and crash-consistent cache design for energy

harvesting systems.

• WLCache introduces a new cache write policy that takes advantages of both write-back’s

efficiency and write-through’s persistence. Like a write-back cache, it cheaply serves subse-

quent write hits and reduces write traffic to NVM. As a write-through cache, it ensures crash

consistency without having an non-volatile counterpart for a volatile cache.

• WLCache adaptively behaves as a write-through or a write-back cache by changing its char-

acteristic back and forth with the quality of energy source in mind.

6.2 Background and Challenges

6.2.1 Cache and Write Policy

A cache allows a system to exploit temporal and spatial locality and thus improves overall per-

formance. Conventional caches employ either write-through or write-back policies, which affect

the crash consistency design discussed in the next section. A write-through cache updates both the

cache and the main memory at every store. A write-back cache updates only the cache and keeps

track of dirty cache lines. It coalesces subsequent write hits on the cache and reduces the write

111

NVM

NVM NVMNVM

Reg. NVFF

cache NVM

core core

NVCache

NVM

core

WTCache

NVM

Reg.

core

z

NVFFReg. NVFFReg. NVFF

$$

dirty

Reg. NVFF

core

(a) NVP without cache
volatile registers are
checkpointed to NVFF in a
core at a power failure point.

(b) NVP with WTCache, a
write-though volatile cache.
A processor updates data in
both cache and NVM.

(c) NVP with NVCache, a
write-back non-volatile
cache. A processor updates
data in cache, but it is slow.

(d) NVP with NVSRAMCache.
Registers and cache data are
checkpointed to NVFF and
NVM.

(e) WL-Cache. A processor
holds a few dirty lines in the
cache and flushes them at a
power outage.

dirty

NVCacheSRAM WL-Cache
Xdirty

①

②

Figure 6.1. Design comparison of cache architectures in NVP. Gray boxes are non-
volatile while white boxes are volatile. Red arrows represent JIT checkpointing.

traffic to the main memory, achieving higher performance than the write-through design in many

cases.

6.2.2 Crash Consistency with a Cache

A cache has a high potential to improve performance for energy harvesting systems. However,

all dirty cache lines are lost upon a power failure so the NVM state upon power failure could be

inconsistent, causing incorrect program behavior when the program resumed. We now discuss

the limitations of existing cache solutions that ensures crash consistency, motivating the proposed

approach WLCache.

Volatile Write-through Cache: A traditional SRAM-based write-through cache can be used in

energy harvesting systems without modification (Figure 6.1 (b)). The write-through policy natu-

rally supports crash consistency by persisting data at every store in a synchronous manner while

updating the same data in the cache. However, the requirement of synchronous writes prevents

store buffer optimization. The system should pay the long store latency as in the case without a

cache. Table 6.1 (second row) summarizes the pros and cons of write-through cache (WTCache).

It does not require extra energy for JIT checkpointing, nor additional hardware (beyond a tradi-

tional write-through cache). However, as discussed earlier, all stores have to travel to NVM, so its

performance improvement is limited.

Non-volatile Write-back Cache: A write-back cache addresses the performance issue of a write-

through cache by holding dirty lines in the cache without having synchronous writes. However,

it raises the crash consistency problem since the main memory could be outdated upon power

112

Table 6.1. Hardware complexity and performance comparison in prior cache
schemes for energy harvesting systems.

HW
cost

Energy Buf.
Requirement

NVM Cache
Req.(size)

Perf.
Improve.

WTCache None No No Low
NVCache [22], [23] Low No Yes (Large) Low
NVSRAM(full) [24] High Large Yes (Large) High
NVSRAM(ideal) [25] High+ Large Yes (Large) High
NVSRAM(practical) [26], [27] Medium Medium Yes (Medium) Medium
ReplayCache [54] None Small No Medium
WLCache Low Small No High

outage. For crash consistency, NVCache [22], [23] is designed as a full non-volatile cache, instead

of a traditional SRAM-based volatile one, as illustrated in Figure 6.1 (c). However, NVCache is

inevitably slower and requires more energy than a traditional SRAM-based cache. As summarized

in Table 6.1 (third row), NVCache does not need to reserve extra energy for JIT checkpointing,

but it requires a full non-volatile cache design. The performance impact is limited due to long

latency and additional energy consumption. Later we use NVCache as baseline for comparison.

NVSRAMCache: NVSRAMCache [24]–[27] couples a traditional write-back SRAM cache with

an NVM counterpart (e.g., ReRAM) as shown in Figure 6.1 (d). It achieves crash consistency via

JIT checkpointing; it monitors a remaining energy in a capacitor (energy buffer) and copies the

SRAM cache states to the NVM counterpart right before a power loss. As listed in Table 6.1 ,

NVSRAMCache can achieve higher performance improvement as it uses write-back policy and

absorb write hits (unlike WTCache) and it uses a SRAM-based cache at runtime (unlike NVCache).

Additionally, NVSRAMCache can resume from a warm cache (as in NVCache). Three versions

(full, ideal, and practical) of NVSRAMCache designs have been proposed and they differ in how

to achieve crash consistency and associated hardware complexity.

The original NVSRAMCache (full) [24] checkpoints the “entire” SRAM cache to the NVM

counterpart, while the optimized NVSRAMCache (ideal) [25] reduces checkpointing overhead

by magically copying “dirty” SRAM cache states only without requiring any additional support.

However, note that because all cache lines could be dirty in the worst case, NVSRAMCache (ideal)

still needs to reserve the same amount of large energy, enough to JIT checkpoint the entire cache.

113

NVM

DQ

MOV #1 0x10000
MOV #2 0x20000
ADD R1 R2
SUB R2 R4
MOV #4 0x30000

Cache
0x1 1 0x10000

NVM

DQCache

M
W

NVM

DQCache
1 0x1 11

0x2 21
0x1 10
0x2 21

DQCache

NVM

DQCache

DQ: DirtyQueue

M: Maxline
W: Waterline

Dirty Tag Data

(a) (b) (c) (d) (e)

Address

0x10000
0x20000

0x10000
0x20000

0x10
0x2

0x10000
0x200001

1
2

0x20000
0x30000

0x3 4
1 0x2
1

2
0x1 10

Dirty Tag Data Address Dirty Tag Data Address Dirty Tag Data Dirty Tag Data

MOV #1 0x10000
MOV #2 0x20000
ADD R1 R2
SUB R2 R4
MOV #4 0x30000

MOV #1 0x10000
MOV #2 0x20000
ADD R1 R2
SUB R2 R4
MOV #4 0x30000

MOV #1 0x10000
MOV #2 0x20000
ADD R1 R2
SUB R2 R4
MOV #4 0x30000

MOV #1 0x10000
MOV #2 0x20000
ADD R1 R2
SUB R2 R4
MOV #4 0x30000

M
W

ACK

M
W

M
W

NVM

M
W

write
back

Figure 6.2. Running example of WLCache. WLCache holds dirty cache lines and
keeps track of their memory addresses in DirtyQueue (DQ). When the number of
dirty lines exceeds waterline (blue dashed line), WLCache asynchronously writes
back a dirty line to NVM while a processor executes the next instructions. When the
number of dirty lines reaches maxline (red dashed line), WLCache stalls the store
instruction, bounding the total number of dirty lines in WLCache.

Moreover, the NVM part is unnecessarily large and mostly wasted because it is used only for

checkpointing; therefore, these two versions are impractical. Table 6.1 list the high energy buffer

requirement and the HW cost as their main downside.

NVSRAMCache (practical) [26], [27] integrates SRAM and NVM cache designs by maintain-

ing SRAM cache lines and NV cache lines in the same cache set. At runtime, it migrates SRAM

cache line to NV lines (if available). Upon power failure, NVSRAMCache (practical) uses JIT

checkpointing to move the (remaining) dirty SRAM lines to NV lines, i.e., it should ensure that

there are enough available NV lines for JIT checkpointing at all times. Therefore, it writes-back

dirty NV lines to NVM main memory at runtime, introducing additional traffic to NVM main

memory. Besides, in NVSRAMCache (practical), a data may reside in NV lines, yet accessing NV

cache lines are slower and consumes more energy than accessing SRAM lines (as in NVCache).

Consequently, the performance improvement of NVSRAMCache (practical) is smaller than that

the other designs (Table 6.1).

Though NVSRAMCache (practical) is claimed to be more practical, NVSRAMCache (ideal)

can achieve better performance, so we later compare our proposed scheme with NVSRAMCache

(ideal). We omit “(ideal)” from now on.

114

6.3 Design

6.3.1 Overview

The goal of WLCache is to achieve efficient and crash consistent cache design for energy har-

vesting systems. For performance, WLCache is designed on top of a traditional SRAM-based

cache with a write-back policy that holds dirty cache lines and avoids NV main memory accesses

on every store. However, unlike a traditional write-back cache, WLCache limits the possible num-

ber of dirty lines at a moment, so that it can failure-atomically flush the bounded number of dirty

lines to NVM before power failure by leveraging the JIT checkpoiting with a small energy reser-

voir. For instance, Figure 6.1 (e) shows the case in which WLCache allows up to two dirty lines in

a cache. By bounding the maximum number of dirty lines, WLCache achieves crash consistency

without requiring expensive hardware support such as a large energy buffer or an NVM cache

counterpart.

WLCache tracks dirty cache lines with a small hardware component, called DirtyQueue. When

a cache line becomes dirty, WLCache inserts its memory address in DirtyQueue. The data remains

in the cache (as dirty) and does not become immediately persisted in NVM. When DirtyQueue

is about to be full, WLCache selects one of the dirty lines and asynchronously writes it back to

NVM—though it may not be in the LRU position

3
 . WLCache does not evict the line but leave

the data in the cache as clean. When the asynchronous write-back finishes, WLCache removes the

entry from DirtyQueue to serve later stores.

To manage DirtyQueue, WLCache employs two configurable thresholds: maxline and waterline.

The maxline threshold (≤ DirtyQueue) defines the maximum number of dirty cache lines in WL-

Cache. When the number of dirty cache lines reaches the maxline, WLCache stalls a store instruc-

tion until a free slot becomes available. In other words, the maxline determines and bounds the

amount of energy that WLCache needs to secure for checkpointing dirty cache lines to NVM upon

a power failure. WLCache is more energy-efficient than an alternative NVSRAMCache (ideal)

that should reserve a larger amount of energy enough to flush all dirty cache states, e.g., for the

3
 ↑ Such an eager write-back has originally been devised by Lee et al [169] for opportunistically flushing lines when

memory bus is idle. However, the prior work was designed for performance so it did not consider either energy
efficiency and crash consistency that are essential for energy harvesting systems.

115

worst case that every line is dirty. Initially, the maxline is set to be some reasonable number (e.g.,

maxline = 4) while considering the energy availability of a given energy buffer.

The waterline threshold (≤ maxline) determines when WLCache starts writing back a dirty

cache line to NVM during a program execution. When the number of dirty lines exceeds waterline,

WLCache picks a dirty cache line, based on the DirtyQueue replacement policy (Section 6.5.3),

and asynchronously writes it back to NVM. Note that WLCache does not evict a dirty line from the

cache (which is separately done by a conventional cache replacement policy). Instead, the persisted

(written-back) cache line remains in the cache in a “clean” state for future references; the address

of the clean cache line is just removed from DirtyQueue only. WLCache exploits instruction level

parallelism (ILP) by overlapping the asynchronous write-back operations with the executions of

the following instructions.

The gap between maxline and waterline defines the potential ILP opportunity. A high waterline

would keep more dirty cachelines in a cache, and should allow WLCache to serve more subsequent

write hits without traveling to NVM, saving energy and improving performance. However, at the

same time, a higher waterline has a risk to stall the following store instructions in case where

WLCache cannot effectively hide the write-back latency (e.g., a code region with frequent/dense

stores). By default, waterline is set to be maxline− 1. So WLCache cleans (persists) one cache

line at a time. The default setting attempts to make DirtyQueue at least one slot available so that a

new dirty line can be added in DirtyQueue with no stall.

Conceptually, one can view WLCache with a cache-size maxline (waterline) as a traditional

write-back cache; WLCache with a zero maxline (waterline) as a write-through cache. WLCache

interacts with the runtime system that reconfigures the maxline and waterline threshold and thus

simultaneously behave as a write-back, write-through, and somewhere between them, depending

on the quality/stability of power sources. WLCache in effect provides a tuning knob to make the

best of two worlds; this will be discussed in Section 6.4 .

Figure 6.2 illustrates a running example of WLCache. Supposedly, DirtyQueue’s maxline is

2 and waterline is 1 in this example. Assumes that the system has enough energy to execute a

given program on the top that consists of three store instructions and two arithmetic instructions in

between. The first two store instructions introduces two new dirty cache lines and their addresses

(0x10000 and 0x20000) are maintained in DirtyQueue as shown in Figure 6.2 (a) and (b). After

116

the second store, the number of dirty lines exceeds waterline. In response, WLCache picks one

of dirty cache lines and asynchronously makes it persisted and clean (without eviction). If WL-

Cache relies on FIFO-based DirtyQueue replacement policy, WLCache writes back the oldest line

(0x10000) in DirtyQueue which is mapped to 0x1 tag address in a cache (Figure 6.2 (c)). In the

meantime, a program can make a progress and execute the next ADD and SUB instructions, ex-

ploiting ILP. When the asynchronous write-back operation is completed (with the ACK message),

WLCache removes the corresponding entry from DirtyQueue (Figure 6.2 (d)). With an empty slot

in DirtyQueue, the third store instruction can be served without a stall. If the number of dirty lines

reaches maxline (which did not happen in this example), WLCache stalls the store instruction and

bounds the total number of dirty lines.

6.3.2 Crash Consistency with WLCache

WLCache ensures crash consistency using the following checkpointing and recovery protocols.

When a voltage drops below the threshold Vbackup, the voltage monitor signals the processor to

checkpoint volatile registers (as in NVP) and volatile dirty cache lines (in DirtyQueue) to the

NVM space. WLCache sets the JIT checkpointing voltage threshold (Vbackup) high enough to

persist the maxline number of cache lines. Compared to NVP (without a volatile cache), WLCache

needs to reserve more energy for dirty cache line checkpointing, but WLCache’s caching benefits

are expected to be much higher (as will be shown in our evaluation (Section 6.6)). During JIT

checkpointing, WLCache identifies the dirty cache lines based on the memory addresses stored in

DirtyQueue using the existing cache lookup control/data path. Then, WLCache writes them back

to the NVM using the existing cache-memory data path; note that the JIT checkpointing is always

failure-atomic, thanks to the residue energy at Vbackup set to be high enough for the completion of

the checkpointing.

The recovery protocol after power becomes available again remains simple and the same as

that of existing energy harvesting systems. When the capacitor becomes full, energy harvesting

systems restore the register states (including instruction pointer) from NVFF for NVP (or from

NVM for QuickRecall [3]). A program can safely resume from the exact program point where a

power failure occurred.

117

6.3.3 Discussion

We found that a WTCache with a large write-back buffer can also behave like WLCache.

However, the alternative design would be inferior to WL-Cache. for three issues First, the de-

sign increases HW cost since the large write-back buffer must be backed with content-addressable

memory (CAM) search; one might think of a small buffer to reduce CAM search cost, but it would

lead to a worse problem, i.e., frequent NVM writes and pipeline stalls. Second, the design is

energy-inefficient since the large buffer requires a significant amount of energy to be secured for

crash consistency (failure-atomic write-back before outages). Third, the proposal would suffer per-

formance degradation by extending the critical path of memory access since the write-back buffer

must be consulted before accessing memory, i.e., cache miss latency is lengthened.

The key architectural innovation of WLCache is that it decouples the metadata (which cache-

lines are dirty) from the actual cacheline data. That way WLCache does not increase the critical

path of memory access thanks to the lack of metadata (DirtyQueue) lookup, e.g., load miss latency

remains the same. This enables WLCache to achieve a lightweight cache along with its adaptation

to varying energy harvesting conditions. Not only that, the decoupled design makes it possible for

WLCache to realize the DirtyQueue as a volatile structure without compromising the crash con-

sistency guarantee. Thus, WLCache outperforms the write-back buffer proposal in terms of all 3

(cost/energy/performance) aspects.

V_off

V_on

Ca
pa

ci
to

r
Ch

ar
ge

V_backup

DQ
JIT ckpt.

NVM

M
W

0x10000
0x200001 0x2 2

0x1 11

Dirty Tag Data Address

DQCache

JIT ckpt.

② reconfigure NVM
M
W

0x50000
0x600001 0x6 2

0x5 11

Dirty Tag Data Address

0x700001 0x7 3

DQ

NVM

M
W

0x30000
0x400001 0x4 4

0x3 31

Dirty Tag Data Address

DQCache
JIT ckpt. JIT ckpt.

DQCache

① checkpoint

First boot
Condition
change?

Similar
Condition?

2
3

T1 T2 T3

2
3

3
4

3
4

Config.
Regs

Config.
Regs

Config.
Regs

Figure 6.3. An example execution with adaptive maxline, waterline, and Vbackup.
The red and white intervals represents power-off and power-on periods, respec-
tively. The system boots and runs when the charge reaches Von, and starts JIT-
checkpointing (gray interval) when it becomes below Vbackup. Tn represents the
power-on time of n-th interval.

118

6.4 Adaptive Management

To make the best use of write-through and write-back policies while considering the quality of

the energy harvesting source, WLCache interacts with a runtime system (a system software) that

reconfigures maxline and waterline in DirtyQueue. Energy harvesting systems stores energy in the

capacitor so the recharging time (power-off time) directly depends on the quality of energy source.

However, the power-off time is hard to measure. Instead, the WLCache runtime system measures

a “power-on time” using a watch-dog timer to estimate the quality of energy source. Note that

energy harvesting systems continuously collect energy as they execute (during power-on as well).

Though every on-interval starts from the same level of energy (at the same Von voltage level of the

capacitor), when the harvesting condition is good, the system may run longer.

Based on the observation, WLCache runtime system estimates the energy source quality from

the past power-on times, and adjusts the maxline and waterline thresholds at each boot time. Once

set, they remain the same during execution (until energy drains). Changing the thresholds while

running could be dangerous as energy harvesting systems may not be able to guarantee JIT check-

pointing. Adjusting the thresholds before a power failure (for the next run) is also not a good idea

as it requires reserving more energy to handle the adaptive logic (in addition to JIT checkpointing).

Algorithm 2 details the default adaptive algorithm that compares the power-on times of the

last two intervals (Tn−2 and Tn−1) to determine the maxline and waterline thresholds of the next

interval (maxlinen and waterlinen). If the measured power-on time increases significantly (Line

3), it implies that the energy source quality is good, and thus the system adaptively raises maxline

and waterline. With higher maxline, WLCache attempts to take more advantage of locality like

a write-back cache. In contrast, if the power-on time decreases (Line 8), implying a poor energy

source condition, the system lowers maxline and waterline because it is better to avoid a large

voltage margin. Otherwise, the two thresholds remain the same. Once the maxline is determined,

the runtime system also need to adjust the voltage margin Vbackup large enough to JIT-checkpoint

the maxline number of dirty cache lines at boot time.

Figure 6.3 demonstrates an example execution in which the maxline and waterline are re-

configured. Supposedly, at the beginning of a program execution, the maxline and waterline in

DirtyQueue are 3 and 2, respectively. When the capacitor voltage level reaches Von, the system

119

Algorithm 2 Adaptive maxline and waterline algorithm.
Input: Tn−2 and Tn−1: The power-on times of the last two n-2-th and n-1-th intervals.
Output: maxlinen and waterlinen: The maxline and waterline threshold for the n-th interval.
Function Adaptive (Tn−2, Tn−1) :

// if the power-on time increases significantly
if Tn−2 ∗2 < Tn−1 then

maxlinen = maxlinen−1 +1
waterlinen = waterlinen−1 +1

end
// if the power-on time decreases significantly

else if Tn−2 ∗1/2 > Tn−1 then
maxlinen = maxlinen−1−1

waterlinen = waterlinen−1−1

end
// otherwise, the thresholds remain the same

end

boots on (the first boot) and runs. When the voltage level becomes below Vbackup, the system initi-

ates JIT checkpointing of volatile registers and (maxline) dirty cache lines. The system also stores

its power-on time for the first interval (T1). Suppose now the energy source condition becomes

much better. The system recharges energy quickly and it makes more forward progress. Upon the

third boot, the system detects that the power-on time of the second interval (T2) becomes much

longer than that of the first interval (T1). It increases the maxline and waterline thresholds (4 and

3, respectively) as well as the voltage margin Vbackup accordingly. The reconfiguration allows the

system to hold more dirty cache lines during the execution of the third interval, providing more

opportunity to exploit locality. There is no big change in the power-on times of the second and

third intervals (T2 and T3), so the thresholds remain the same. When the power-on time drops later,

the system may adaptively decrease the thresholds accordingly.

6.5 Hardware and Protocols

Figure 6.4 illustrates WLCache hardware architecture, integrated in NVP. Based on a traditional

SRAM-based (volatile) cache, WLCache introduces DirtyQueue and supplementary storages to

hold maxline, waterline, and power-on times.

120

DQCache Config. Regs.

M

NVM

NVFFVolatile registersCore

T

W

Figure 6.4. Non-Volatile Processor (NVP) with WLCache. Gray boxes represent
non-volatile counterparts. Yellow boxes represent WLCache as newly introduced
hardware support. Alongside DirtyQueue, WLCache has configuration registers
such as waterline (W), maxline (M), and timer (T).

6.5.1 DirtyQueue Insertion Protocol

When a cache line becomes dirty upon a store instruction, WLCache first checks if there is

an empty space in DirtyQueue by comparing the maxline and the number of dirty lines (a tail

of the circular queue). If available, the corresponding store address is appended in DirtyQueue.

Otherwise, the store instruction stalls until an empty slot becomes available. The subsequent store

instructions to the same dirty line (i.e., no dirty state change) does not trigger an interaction be-

tween a cache and DirtyQueue. Note that, thanks to the waterline constraint, WLCache leaves an

at least one space empty (Section 6.4); therefore, the stall rarely occurs.

6.5.2 DirtyQueue Replacement Policy

When the number of total dirty cache lines exceeds the waterline, WLCache selects a dirty line

to write back in NVM. We refer to the decision process as a “DirtyQueue replacement policy” to

differentiate it from a traditional cache replacement policy since WLCache does not evict it but

cleans it. WLCache supports following two policies:

121

• FIFO: The FIFO replacement policy persists (writes back) the oldest dirty cache line. The

FIFO policy causes no additional hardware cost except for DirtyQueue that is designed as a

circular queue hardware.

• LRU: The LRU replacement policy persists the least recently used (LRU) dirty cache line

first. This policy requires additional hardware logic to look up the LRU position of a cache

line given a store address in DirtyQueue. If there are multiple same LRU-position cache

lines (from different cache sets), then the policy chooses the oldest LRU cache line (as in

FIFO).

6.5.3 DirtyQueue Replacement Protocol

After a dirty line is selected according to the above DirtyQueue replacement policy, WLCache

asynchronously write-backs the dirty cache line using the following four steps.

1. WLCache marks the cache line clean without eviction.

2. WLCache sends an asynchronous write-back request.

3. WLCache waits for the delivery of an ACK message (acknowledging the completion of the

write-back operation). In the meantime, a process executes the subsequent instructions.

4. Upon ACK, WLCache removes the associated slot from DirtyQueue. For FIFO policy, it

will be always the head. The LRU-based scheme requires search.

Figure 6.2 (c) illustrates the first and the second steps in which the cache line of Tag 0x1

(Address 0x10000) becomes clean then persisted in NVM. At the moment, the processor executes

ADD instruction (exploiting ILP). Figure 6.2 (d) shows the next two steps where the ACK message

is delivered and the DQ entry (head, Address 0x10000) is removed.

Removing the associated entry in DirtyQueue last (Step 4) ensures that if a power fails any

step before Step 4, WLCache can still safely find the entry in DirtyQueue and perform JIT-

checkpointing of the dirty cache line, regardless of whether the write-back request (Step 2) has

been fulfilled or not. If completed, WLCache may (redundantly) write back the cache line again,

yet there is no correctness issue. If write-back is not done, WLCache will persist the cache line,

making the NVM state consistent across a power failure.

122

Marking the cache line clean first (Step 1) ensures the correctness even when the store in-

struction to the same cache line is executed while the cache line is being written back asyn-

chronously (Step 3). Suppose we have two stores to the same memory location X , say W (X) = 1

and W (X) = 2, and some other instructions in between. The first store W (X) = 1 makes the cache

line X = 1 and dirty. Let’s say DirtyQueue becomes full (by other store instructions) and the cache

line X is selected to be cleaned. The protocol first marks the cache line clean (Step 1) and then

start a write-back operation (Step 2). Suppose at the moment, the second store W (X) = 2 performs.

Now we demonstrate what could go wrong if the cache line is not marked clean (not doing Step 1

first).

If the cache line remains dirty, then the second store will not find a state transition to dirty so it

will not update DirtyQueue. The second store will make the cache line X = 2 and dirty. Suppose

the write-back operation of the first store finishes (NVM now has X = 1) and the address X is

removed from DirtyQueue (Step 3 and 4). Then, the power is out while the cache has X = 2. This

is problematic as the cache has X = 2 but NVM has X = 1 (inconsistent) and DirtyQueue does

not have the recent X , losing the cache state X = 2. To avoid the problem, WLCache marks the

cache line clean first (Step 1), so that the second store will also add the address X in DirtyQueue.

As this may happen very rarely, WLCache allows DirtyQueue to temporarily hold redundant X

(wasting the slots in DirtyQueue), instead of actively searching the redundant entry in DirtyQueue

with additional hardware logic. A redundant entry in DirtyQueue does not affect the correctness

as it may only cause redundant write-back operations.

6.5.4 Cache Replacement Policy

WLCache can rely on a traditional LRU cache placement policy that determines which cache

line to evict on a cache miss. Yet, the cache replacement policy may conflict with the DirtyQueue

replacement policy. When the cache replacement policy decides to evict a dirty cache line whose

address is in DirtyQueue, the cache line becomes invalid after a write-back operation (i.e., after it

becomes persisted). Thus, it would be ideal to remove the associated entry in DirtyQueue upon

an eviction so that DirtyQueue can become more available to other stores. However, this eager

cleanup requires searching DirtyQueue to find the entry on each eviction, increasing the latency

123

and hardware complexity. To avoid search, WLCache instead chooses not to remove it eagerly and

allows an outdated slot to reside in DirtyQueue temporarily. When an DirtyQueue entry is selected

for replacement or JIT-checkpoining, WLCache can find the cache line invalid (or does not exist)

and safely ignore it. Moreover, we empirically found that the traditional LRU cache replacement

policy is energy-inefficient for energy harvesting systems. Since it tracks LRU/MRU list at every

memory access, it consumes more power and increases more latency than FIFO cache replacement

policy; this will be discussed in Section 6.6.6 .

6.5.5 DirtyQueue Threshold Management

WLCache introduces a small hardware space (1 byte each) to hold the maxline and waterline

thresholds of DirtyQueue. As they have to be alive across a power failure, WLCache introduces

NVFF-based backup and performs JIT checkpointing (similar to volatile registers). For adaptive

threshold management (Section 6.4), WLCache adds a watchdog timer and two NVFF-based non-

volatile storage (2 bytes each) to keep the last two past power-on times. When the power backs on,

all these values are restored from NVFF. Figure 6.4 illustrates these additional storages and NVFF

backups.

At boot time, given maxline, WLCache also needs to adjust the voltage margin Vbackup to

ensure the failure-atomic JIT checkpoining of (1) registers, (2) (up to maxline) dirty cache lines,

and (3) maxline, waterline, and power-on timer values. To reconfigure Vbackup, WLCache assumes

existing hardware support in current commodity microcontroller such as TI-MSP430 [38] that

already support different voltage selections. WLCache sets Vbackup by choosing an associated

voltage divider with a reference voltage.

6.6 Evaluation

6.6.1 Experimental Settings

We implemented WLCache on gem5 simulator [156] with ARM ISA, modeling a single core

in-order processor. For power failure simulation, we used NVPsim [25] with the same core

model. We compared WLCache to (1) non-volatile write-back cache (NVCache-WB) [22], [23],

(2) volatile write-through SRAM-based cache (VCache-WT), (3) VCache-WB with ReplayCache

124

Table 6.2. Simulation configuration.
Processor (1.0GHz, 1 core)

L1 I/D Cache 8kB, 2-way, 64B block
Cache Latencies (hit/miss) NVRAM(1.6ns/1.5ns), SRAM(0.3ns/0.1ns)

NVM (ReRAM) Latency (ns)
0.94/7.5/18/15/7.5/150/30

(tCK/tBURST/tRCD/tCL/tWTR/tWR/tXAW)
Energy buffer (capacitor) 1uF

Vbackup/restore
NV(2.9/3.3), NVSRAM(3.2/3.5),

WL(2.95∼3.1/3.3∼3.5)

Vmin/max
NV(2.8/3.5), NVSRAM(2.8/3.5),

WL(2.8/3.5)

compiler (ReplayCache) [54], and (4) the state-of-the-art NVSRAM cache that uses ReRAM as

the SRAM cache backup storage, with a write-back policy (NVSRAM-WB) [21]; we set this as an

ideal design that can checkpoint only dirty lines from SRAM to ReRAM at power-off point. We

used Mediabench [157] and MiBench [122] compiled with standard -O3 optimization.

As a default configuration, we use volatile L1 instruction and data caches, and their size is 8KB

each as with the prior work [24], [54] (see Table 6.2 for details). For WLCache, we use the FIFO

for DirtyQueue replacement policy and LRU for cache replacement policy as default—though we

varied the policies for sensitivity analysis (Section 6.6.5). Also, we set the DirtyQueue size to

8 and the maxline to 6 as default (i.e., the waterline is 5), then we enable the adaptive threshold

management (Section 6.4) to reconfigure maxline and waterline.

To evaluate WLCache in realistic energy harvesting situations, we used the same two power

traces, i.e., Trace 1 and Trace 2, of the NVPsim which were collected from real RF sources [25],

[54]; Trace 1 and 2 are from home and office, respectively. Trace 2 is relatively less stable than

Trace 1.

6.6.2 Hardware Cost

We analyzed the hardware cost of WLCache by using CACTI [154] with 90 nm technology.

WLCache requires at most 0.005 mm2 area and 0.0008 nJ (dynamic access). Furthermore, the

total leakage power of WLCache (DirtyQueue with a logic) causes only 0.1mW in total, which is

only 9% of NV cache leakage [25], [27], [54].

125

a
d
p
cm

d
e
co

d
e

(6
m

s)

a
d
p
cm

e
n
co

d
e

(6
m

s) e
p
ic

(1
m

s)

g
7

2
1

d
e
co

d
e

(8
m

s)

g
7

2
1

e
n
co

d
e

(8
m

s)

g
sm

d
e
co

d
e

(1
1

m
s)

g
sm

e
n
co

d
e

(4
8

m
s)

jp
e
g
d
e
co

d
e

(1
1

m
s)

jp
e
g
e
n
co

d
e

(4
4

m
s)

m
p
e
g
2

d
e
co

d
e

(6
m

s)

m
p
e
g
2

e
n
co

d
e

(7
m

s)

p
e
g
w

it
d
e
cr

y
p
t

(7
m

s)

sh
a

(7
m

s)

su
sa

n
co

rn
e
rs

(4
m

s)

su
sa

n
e
d
g
e
s

(4
8

m
s)

g
m

e
a
n
(M

e
d
ia

)
(2

.4
m

s)

b
a
si

cm
a
th

(0
.9

m
s)

q
so

rt
(1

m
s)

d
ijk

st
ra

(1
m

s)

F
F
T

(1
m

s)

F
F
T
_i

(1
.9

m
s)

p
a
tr

ic
ia

(1
.2

m
s)

ri
jn

d
a
e
l_

d
(0

.7
m

s)

ri
jn

d
a
e
l_

e
(0

.7
m

s)

g
m

e
a
n
(M

i)
(1

.6
m

s)

g
m

e
a
n
(T

o
ta

l)
(2

.1
m

s)

1
2
3
4
5

N
o
rm

a
liz

e
d

 S
p
e
e
d
u
p
 (

X
) VCache-WT ReplayCache NVSRAM-WB WL-Cache () NVCache-WB

Figure 6.5. Normalized speedup of each cache design compared to NVCache with
no power failure. WLCache is 3.1x, 2.18x, and 1.2x faster than NVCache-WB,
VCache-WT, and ReplayCache, respectively; NVSRAM-WB is 4% faster than WL-
Cache.

a
d
p
cm

d
e
co

d
e

(7
.8

s)

a
d
p
cm

e
n
co

d
e

(8
.6

s) e
p
ic

(1
.9

s)

g
7

2
1

d
e
co

d
e

(1
.4

s)

g
7

2
1

e
n
co

d
e

(1
.4

s)

g
sm

d
e
co

d
e

(1
.8

s)

g
sm

e
n
co

d
e

(4
5

.3
s)

jp
e
g
d
e
co

d
e

(1
.8

1
s)

jp
e
g
e
n
co

d
e

(5
.1

s)

m
p
e
g
2

d
e
co

d
e

(1
.2

s)

m
p
e
g
2

e
n
co

d
e

(1
.2

s)

p
e
g
w

it
d
e
cr

y
p
t

(1
.2

6
s) sh

a
(1

.2
5

s)

su
sa

n
co

rn
e
rs

(5
.8

s)

su
sa

n
e
d
g
e
s

(5
.8

s)

g
m

e
a
n
(M

e
d
ia

)
(3

s)

b
a
si

cm
a
th

(1
.6

s)

q
so

rt
(2

.3
s)

d
ijk

st
ra

(2
.5

s)

F
F
T

(2
.5

3
s)

F
F
T
_i

(2
.7

1
s)

p
a
tr

ic
ia

(1
.8

s)

ri
jn

d
a
e
l_

d
(1

.4
s)

ri
jn

d
a
e
l_

e
(1

.4
4

s)

g
m

e
a
n
(M

i)
(1

.9
9

s)

g
m

e
a
n
(T

o
ta

l)
(2

.6
s)

1
2
3
4
5

N
o
rm

a
liz

e
d

 S
p
e
e
d
u
p
 (

X
) VCache-WT ReplayCache NVSRAM-WB(ideal) WL-Cache () NVCache-WB

Figure 6.6. Normalized speedup of each cache design compared to NVCache in
Power Trace 1. WLCache is 2.25x, 1.71x, 1.32x, and 1.09x faster than NVCache-
WB, VCache-WT, ReplayCache, and NVSRAM-WB, respectively.

a
d
p
cm

d
e
co

d
e

(1
1

s)

a
d
p
cm

e
n
co

d
e

(1
1

.9
s) e

p
ic

(2
.4

s)

g
7

2
1

d
e
co

d
e

(1
.8

s)

g
7

2
1

e
n
co

d
e

(1
.7

8
s)

g
sm

d
e
co

d
e

(2
.2

s)

g
sm

e
n
co

d
e

(5
5

.1
s)

jp
e
g
d
e
co

d
e

(2
.2

s)

jp
e
g
e
n
co

d
e

(6
.5

s)

m
p
e
g
2

d
e
co

d
e

(1
.5

s)

m
p
e
g
2

e
n
co

d
e

(1
.5

8
s)

p
e
g
w

it
d
e
cr

y
p
t

(1
.5

s)

sh
a

(1
.5

s)

su
sa

n
co

rn
e
rs

(7
.7

s)

su
sa

n
e
d
g
e
s

(7
.7

1
s)

g
m

e
a
n
(M

e
d
ia

)
(3

.8
7

s)

b
a
si

cm
a
th

(2
s) q
so

rt
(2

.8
s)

d
ijk

st
ra

(3
s)

F
F
T

(2
.8

2
s)

F
F
T
_i

(3
.2

3
s)

p
a
tr

ic
ia

(2
.2

1
s)

ri
jn

d
a
e
l_

d
(1

.7
9

s)

ri
jn

d
a
e
l_

e
(1

.7
s)

g
m

e
a
n
(M

i)
(2

.4
s)

g
m

e
a
n
(T

o
ta

l)
(3

.2
8

s)

1
2
3
4
5

N
o
rm

a
liz

e
d

 S
p
e
e
d
u
p
 (

X
) VCache-WT ReplayCache NVSRAM-WB(ideal) WL-Cache () NVCache-WB

Figure 6.7. Normalized speedup of each cache design compared to NVCache in
Power Trace 2. WLCache is 1.98x, 1.55x, 1.3x, and 1.12x faster than NVCache-
WB, VCache-WT, ReplayCache, and NVSRAM-WB, respectively.

6.6.3 Performance Analysis

Performance Analysis without Power Outages: To analyze the performance impact of WL-

Cache, we set the baseline to be NVCache-WB [22], [23] and compared with VCache-WT, Re-

playCache with VCache-WB [54], NVSRAM-WB [21], and WLCache. Figure 6.5 shows the

speedup over the baseline (NVCache-WB) when there is no power failure. Overall, WLCache

126

shows a similar speedup to NVSRAM-WB for all tested applications, achieving a 3.1x speedup on

average.

The baseline NVCache-WB is the slowest as it has to pay long latency for every nonvolatile

cache access. VCache-WT could take advantage of (SRAM-based) fast cache hits. ReplayCache

improves the performance since it overlaps the next instruction execution with NVM stores of

the same program region without waiting the corresponded ACK like ILP; it persists all stores at

region-level granularity. Thanks to the region-level persistence with ILP execution, it can achieve

almost 60% speedup compared to VCache-WT. On the other hand, NVSRAM-WB shows the best

performance among all designs, demonstrating the benefit of write-back.

WLCache was slower than NVSRAM-WB, implying that WLCache could hold enough dirty

cache lines. With waterline-based write-back, WLCache did not suffer much from potential stalls.

WLCache also effectively hide the cost of asynchronous write-back operation, exploiting ILP.

Performance Analysis with Power Outages: Figures 6.6 and 6.7 show the speedup of each

cache design using Power Trace 1 and 2, respectively. We took into account both power-on and

power-off periods in this experiment.

For all applications, WLCache shows the best performance among all designs. WLCache

achieves on average about 2.25x and 1.98x speedup compared to the baseline in Trace 1 and 2,

respectively. WLCache is 71% and 55% faster than VCache-WT, and 32% and 30% faster than

ReplayCache in Trace 1 and 2, respectively, demonstrating the benefits of holding dirty cache

lines and exploiting cache locality. For the case with power failures, WLCache turns out to be

faster than NVSRAM-WB by roughly 9% and 12% on average in Trace 1 and 2, respectively.

Upon a power failure, WLCache needs to persist a bounded number of dirty cache lines, whereas

NVCache-WB should reserve more energy to support cache backup. With less energy reserved

for JIT checkpointing, WLCache could efficiently use the energy to compute and make a further

forward progress.

Write Traffic with Power Outages: Figure 6.8 shows the write traffic overhead of WLCache

compared to NVSRAM-WB cache using Trace 1. The result demonstrates that WLCache slightly

increases the write traffic; however, it can be paid off by enabling asynchronous write back and

adaptive execution as proven in Figure 6.6 .

127

a
d
p
cm

d
e
co

d
e

a
d
p
cm

e
n
co

d
e

e
p
ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n
co

d
e

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

jp
e
g
d
e
co

d
e

jp
e
g
e
n
co

d
e

m
p
e
g
2

d
e
co

d
e

m
p
e
g
2

e
n
co

d
e

p
e
g
w

it
d
e
cr

y
p
t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d
g
e
s

g
m

e
a
n
(M

e
d
ia

)

b
a
si

cm
a
th

q
so

rt
d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d
ri

jn
d
a
e
l_

e
g
m

e
a
n
(M

i)

g
m

e
a
n
(T

o
ta

l)1.00
1.02
1.04
1.06
1.08
1.10

N
o
rm

a
liz

e
d

 W
ri

te
 T

ra
ff

ic
 I
n
cr

e
a
se

Figure 6.8. Normalized write traffic increase compared to NVSRAMCache in Power Trace 1.

no failure trace 1 trace 2
0
1
2
3

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p
 (

X
) DQ-FIFO DQ-LRU

(a) DirtyQueue replacement

no failure trace 1 trace 2
0
1
2
3

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p
 (

X
)

D-Map. 2-Way 4-Way

(b) Cache set associativity

Figure 6.9. Normalized speedup of WLCache with different DirtyQueue replace-
ment and different cache set associativity compared to NVCache-WB on average.

6.6.4 DirtyQueue Replacement Policy

We measured performance of WLCache by varying the DirtyQueue replacement policies dis-

cussed in Section 6.5.3 . WLCache with DirtyQueue-FIFO (DQ-FIFO) shows slightly higher per-

formance than WLCache with DirtyQueue-LRU under power failures as shown in Fig. 6.9 (a).

Because WLCache does not evict the cache line and keeps it in the cache as clean regardless of

DirtyQueue replacement policy, most subsequent memory references would show similar cache

hit/miss trends. In general, LRU is known to be better than FIFO but it turns out that the additional

power consumption for the LRU lookup logic often offsets the potential benefits of LRU, and the

cache is often not warm enough to see the visible merits of LRU in energy harvesting systems.

WLCache uses the FIFO-based DirtyQueue replacement policy by default.

128

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(a) adpcmdecode

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(b) adpcmencode

2 4 6 8
Maxline

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(c) epic

2 4 6 8
Maxline

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(d) g721dec

2 4 6 8
Maxline

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(e) g721enc

2 4 6 8
Maxline

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(f) gsmdec

2 4 6 8
Maxline

2.5

3.0

3.5

4.0

4.5

5.0

5.5

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(g) gsmenc

2 4 6 8
Maxline

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(h) jpegdec

2 4 6 8
Maxline

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(i) jpegenc

2 4 6 8
Maxline

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(j) mpeg2dec

2 4 6 8
Maxline

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(k) mpeg2enc

2 4 6 8
Maxline

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(l) pegwitdec

2 4 6 8
Maxline

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(m) sha

2 4 6 8
Maxline

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(n) susancorners

2 4 6 8
Maxline

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(o) susanedges

2 4 6 8
Maxline

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(p) basicmath

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(q) qsort

2 4 6 8
Maxline

1.0

1.2

1.4

1.6

1.8

2.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(r) dijkstra

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(s) fft

2 4 6 8
Maxline

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(t) ifft

2 4 6 8
Maxline

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(u) patracia

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0
N

o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(v) rijndec

2 4 6 8
Maxline

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(w) rijnenc

2 4 6 8
Maxline

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p
 (

X
)

FIFO LRU NVSRAM(ideal)

(x) avg(gmean)

Figure 6.10. Sensitivity analysis on applications varying maxline sizes and cache
replacement policies.

6.6.5 Sensitivity Analysis

We conducted sensitivity analysis on WLCache by varying the maxline size, cache replacement

policy (LRU and FIFO), set associativity, cache size, and capacitor size. Notably, we explore

cache replacement policy in this section (with FIFO-based DirtyQueue replacement policy). For

analysis, we used NVCache-WB as baseline and measured the performance of each cache design

using Trace 1. Fig. 6.10 shows the results.

Maxline Variation: We investigate how its performance varies when the maxline changes from 2

to 8 along with different replacement policies whose results will be discussed in the next section.

WLCache shows good performance with maxline 4 or 6. The performance differences between

maxline 4 and 6 are not significant. With too large maxline (e.g., 8), performance degrades as

WLCache has to reserve more energy for JIT checkpointing. With too small maxline (e.g., 2),

performance also degrades as WLCache does not take advantage of dirty cache lines and locality.

129

128 256 512 102420484096

Cache Size (B)

0.5
1.0
1.5
2.0
2.5
3.0

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p
 (

X
)

VCache-WT

NVSRAM-WB(ideal)

WL-Cache

(a) Cache size variation

100nF 1uF 10uF 100uF 1mF

Cache Size (B)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p
 (

X
)

VCache-WT

NVSRAM-WB(ideal)

WL-Cache

(b) Capacitor size variation

Figure 6.11. Normalized speedup of each cache design compared to NVCache in
Power Trace 1 varying (a) each cache size and (b) capacitor size on average.

a
d
p
cm

d
e
co

d
e

a
d
p
cm

e
n
co

d
e

e
p
ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n
co

d
e

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

jp
e
g
d
e
co

d
e

jp
e
g
e
n
co

d
e

m
p
e
g
2

d
e
co

d
e

m
p
e
g
2

e
n
co

d
e

p
e
g
w

it
d
e
cr

y
p
t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d
g
e
s

g
m

e
a
n
(M

e
d
ia

)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n
(M

i)

g
m

e
a
n
(T

o
ta

l)1
2
3
4
5
6
7

N
o
rm

a
liz

e
d

 S
p
e
e
d
u
p
 (

X
) LRU(Best) LRU(Adap) FIFO(Best) FIFO(Adap)

Figure 6.12. Normalized speedup of WLCache with adaptive management com-
pared to NVCache in Power Trace 1. WLCache is 2.8x, 2.12x, 1.63x, and 1.35x
faster than NVCache-WB, VCache-WT, ReplayCache, and NVSRAM-WB, respec-
tively.

a
d
p
cm

d
e
co

d
e

a
d
p
cm

e
n
co

d
e

e
p
ic

g
7

2
1

d
e
co

d
e

g
7

2
1

e
n
co

d
e

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

jp
e
g
d
e
co

d
e

jp
e
g
e
n
co

d
e

m
p
e
g
2

d
e
co

d
e

m
p
e
g
2

e
n
co

d
e

p
e
g
w

it
d
e
cr

y
p
t

sh
a

su
sa

n
co

rn
e
rs

su
sa

n
e
d
g
e
s

g
m

e
a
n
(M

e
d
ia

)

b
a
si

cm
a
th

q
so

rt

d
ijk

st
ra

F
F
T

F
F
T
_i

p
a
tr

ic
ia

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

g
m

e
a
n
(M

i)

g
m

e
a
n
(T

o
ta

l)1
2
3
4
5
6
7

N
o
rm

a
liz

e
d

 S
p
e
e
d
u
p
 (

X
) LRU(Best) LRU(Adap) FIFO(Best) FIFO(Adap)

Figure 6.13. Normalized speedup of WLCache with adaptive management com-
pared to NVCache in Power Trace 2. WLCache is 2.49x, 1.93x, 1.64x, and 1.48x
faster than NVCache-WB, VCache-WT, ReplayCache, and NVSRAM-WB, respec-
tively.

Cache Replacement Variation: Fig. 6.10 shows that FIFO-based WLCache (black line) outper-

forms LRU-based WLCache (blue dotted line) for cache replacement policies. When compared to

NVSRAM-WB (red dotted line), FIFO-based WLCache performs better for almost all applications

in all the maxline settings. For general purpose systems, LRU normally performs better compared

130

to FIFO. However, for energy harvesting systems with frequent power outages, we found FIFO is

always faster than LRU. Further investigation reveals two main reasons for this surprising result.

First, the impact of cache replacement policy on cache miss rate is very limited in energy

harvesting systems. We found that both policies cause almost the same cache miss rates. Energy

harvesting systems experience frequent power failures, and they wake up with a “cold” cache—

that has no data—across power failure. Therefore, WLCache is likely to cause compulsory (cold)

misses across power failure regardless of the replacement policy. Furthermore, the systems run

applications for a short amount of time. Within the limited time, the room for a smart cache

replacement policy to address other conflict misses is simply small.

Second, the FIFO policy is energy-efficient without requiring additional cost to track LRU/MRU

list at every memory access unlike LRU, that takes more latency and consumes more power possi-

bly causing more power outages; we found LRU caused more power outages for most of applica-

tions.

Cache Size Variation: Fig. 6.11 (a) illustrates that the normalized performance speedup of al-

ternative cache schemes with a different cache size from 128B to 4KB using Power Trace 1. The

results indicate that the performance gap between WLCache and NVSRAM-WB is decreased when

the cache size is decreased, and vice versa; the speedup is also increased as the cache size increases.

Capacitor Size Variation: For capacitor size sensitivity analysis, we used NVCache-WB with 1uF

as baseline, and measured the performance of alternative cache design with a different capacitor

size from 100nF to 1mF using Power Trace 1. Fig. 6.11 (b) describes the normalized performance

speedup of alternative cache schemes. Overall, WLCache is always faster than other schemes.

In particular, all schemes show their best performance when the capacitor size is 1uF. However,

when the capacitor size is increased more than 1uF, their performance is decreased. This is mainly

because their charging time is increased when the capacitor size is increased. On the other hand,

the performance gap between WLCache and NVSRAM-WB is decreased when the capacitor size

is increased, and NVSRAM-WB is eventually faster than WLCache when the capacitor size is

1mF.

131

6.6.6 Adaptive Maxline/Waterline Threshold Management

The above sensitivity studies motivate WLCache’s adaptive maxline (and waterline) manage-

ment optimization (Section 6.4). The performance of WLCache significantly varies by the maxline

size, and thus the adaptive WLCache scheme (based on the estimated quality of power sources) has

a potential to improve the performance further compared to the fixed size settings. For compari-

son, we measured the performance gain of “adaptive” WLCache with FIFO and LRU replacement

policies and compared them with “static” WLCache. For the fixed settings, we picked the best

performing maxline size for each application as we found in Fig. 6.10 .

Figures 6.12 and 6.13 show the experimental results for Trace 1 and 2, respectively. We observe

the similar performance trend for both power traces; Adaptive WLCache outperforms static-Best

WLCache for both FIFO- and LRU- cache replacement schemes. Overall, for Trace 1, FIFO

(Adap) and LRU (Adap) achieve 2.8x and 2.44x speedups, respectively, while FIFO (Best) and

LRU (Best) get 2.6x and 2.25x speedups, respectively, For power trace 2, FIFO (Adap/Best) and

LRU (Adap/Best) show speedups of 2.49x/2.24x and 2.14x/1.98x respectively. With FIFO(Adap),

WLCache is 2.8x and 2.49x faster than NVSRAM-WB in Trace 1 and 2, respectively.

On average, WLCache reconfigures the maxline (and waterline) thresholds 11 and 12 times

on trace 1 and 2, respectively. The minimum and maximum values of maxline are 2 and 6 for

both traces. The energy source prediction accuracy is more than 98%, and thus the performance

impact of mis-prediction is minimal in both traces. With adaptive threshold management, we also

measured the number of dirty lines and the number of write-backs during each power-on period on

average, which are 6/3 and 6/2 (dirty-lines/write-backs) in trace 1 and 2, respectively. In addition,

the pipeline stall causes a trivial amount of time delay, less than 1% of total execution time on

average in both traces.

6.6.7 Energy Consumption Analysis

We measured energy consumption of WLCache and compared it to other cache designs with

power outages for each part of the system: core (computation), cache, and main memory (NVM).

For analysis, we set WLCache with FIFO replacement policy and adaptive maxline management

optimization. Figure 6.14 shows the breakdown, normalized to the same NVCache-WB baseline

132

NVCache NVSRAM-WB WT-VCache WL-Cache
0

20
40
60
80

100
E
n
e
rg

y
 C

o
n
s.

 B
re

a
k.

[%
]

Cache Main Memory Compute

Figure 6.14. Normalized energy consumption breakdown in different cache designs.

on average, using Trace 1. Overall, WLCache reduces the total energy consumption by almost 50%

compared to the baseline. In particular, WLCache significantly reduces the energy consumption

from a cache part, which is less than the other designs. Though WLCache may access the NVM

more frequently than NVSRAM-WB due to the maxline constraint, WLCache runs faster.

6.7 Summary

We introduce a new cache organization with a new write policy for energy harvesting systems,

called WLCache. WLCache combines the benefits of write-back caches (efficiency) and write-

through caches (persistence) without causing their downsides. Our evaluation demonstrates that

WLCache significantly improves the performance and performs the best among all existing cache

designs.

133

7. CAPOS: CAPACITOR ERROR RESILIENCE FOR ENERGY

HARVESTING SYSTEMS

So far we have discussed how to improve performance for power failure recovery solutions. In

this chapter, we focus on a reliability problem (i.e., capacitor error) in EHS devices and introduce

CapOS, an OS-driven capacitor error resilience solution. However, it is particularly challenging

to address the capacitor error problem. If we detect the problem proactively, it may cause false-

positive errors causing performance degradation. If we detect the problem reactively, it may cause

false-negative errors leading to a wrong recovery problem.

7.1 Introduction

Energy harvesting systems are an attractive alternative to battery-operated IoT. Thanks to the

batteryless nature, energy harvesting systems cover a wide range of batteryless IoT applications [7],

[33], [72], [78]–[83], [170]–[174]. However, due to the unreliable nature of ambient energy

sources, energy harvesting systems suffer frequent and unpredictable power failure on which all

volatile data are lost breaking program correctness. To address the problem, they use NVM as

main memory with no cache—due to its power demand—and have some form of recovery support

to backup and restore volatile data, i.e., registers, across the power failure [4], [8], [14].

For the recovery, energy harvesting systems leverage a capacitor-backed just-in-time (JIT)

checkpoint mechanism [3], [6], [14], [171], [174]. At a high level, they keep gauging the level

of the buffered energy in the capacitor with a voltage monitor and checkpoint volatile data (reg-

isters) into NVM when a power outage is about to occur. Then, in the wake of the outage, they

restore the checkpointed registers from NVM and resume the program from the power-interrupted

point with no rollback—thus being called roll-forward recovery. In this way, the JIT checkpoint-

ing ensures correct recovery, giving energy harvesting systems an illusion that the volatile data are

persistent across power failure.

Unfortunately, we discover that the capacitor-backed JIT checkpointing can be inoperative due

to capacitor degradation in real energy harvesting settings. Since ambient energy sources are un-

stable causing frequent power failure, the capacitor is repeatedly charged and discharged, which

134

is a stressful condition expediting the capacitor degradation [19], [28]–[30]. Furthermore, since

energy harvesting systems are used as IoT devices in various environments, their capacitors are

often exposed to other stressful conditions, e.g., high humidity/temperature [28], [31]. Under the

circumstances, the capacitor is seriously degraded over time and finally unable to buffer enough

energy for JIT checkpointing. Due to the insufficient amount of buffered energy in the degraded

capacitor, the systems fail the checkpointing, thereby corrupting/losing volatile data (without pro-

viding any further service) across power failure; we refer to the problem as a capacitor error.

To deal with the capacitor error, we introduce CapOS, a lightweight operating system (OS)-

driven capacitor error resilience solution. CapOS runs in either (1) normal mode or (2) safe mode

depending on the capacitor condition. When the capacitor is not degraded, CapOS runs in the nor-

mal mode where JIT checkpointing is used as a roll-forward recovery mechanism. Upon capacitor

error detection, CapOS enters the safe mode that conducts a rollback recovery with the JIT check-

pointing disabled; while the degraded capacitor is idle, it restores the original capacitance on its

own thanks to capacitor’s resilient nature [29], [175]. Later, when the capacitor is fully recovered,

CapOS gets back to the normal mode. Thus, CapOS switches between the two modes to recover

from any capacitor error detected.

In particular, CapOS dynamically detects the capacitor error in a reactive yet safe manner. It

opts for reactive error detection mainly due to accuracy and performance benefits over proactive

detection that suffers false positives leading to unnecessary mode switches and the resulting per-

formance penalty. However, since reactive error detection condones the JIT checkpointg failure

corrupting the data, care must be taken to keep all the registers being checkpointed safe. For

this purpose, CapOS leverages an acknowledgment (ACK) as a barrier of the JIT checkpointing,

i.e., CapOS persists the ACK after checkpointing all registers in NVM. The key insight here is

that a capacitor does not become faulty all of a sudden, but instead it is gradually degraded over

time [28]–[31], [36]. That is, when the capacitor is first degraded, the JIT checkpointing only fails

to write the last data, i.e., ACK, to NVM yet succeeds in persisting all registers. Consequently, if

the capacitor error occurs, CapOS can detect it by checking the ACK in the wake of power failure.

Once the ACK corruption is detected, CapOS switches its execution mode from normal to safe.

In safe mode, CapOS disables the JIT checkpoint mechanism since the registers can eventually be

corrupted as the faulty capacitor is further degraded. Then, CapOS electrically isolates the faulty

135

capacitor to restore its original capacitance via the self-recovery nature of a supercapacitor which

can restore its original capacitance while it rests [29]

1
 . To recover from power failure without JIT

checkpointing (roll-forward recovery), the safe mode needs another type of power failure recovery

solution, i.e., rollback recovery [12], [32], [33].

However, it is daunting challenging to dynamically switch from the roll-forward to the rollback

and vice versa. This is because, unlike the roll-forward recovery, the program should be partitioned

to a series of recoverable regions, the boundary of which serves as a rollback recovery point in

case the following region is interrupted by power failure [12], [32], [33]. The problem is the mode

change can happen at arbitrary time. When the rollback recovery solution is enabled not necessarily

at the region boundary, it may not restore required data (e.g., memory logs or checkpoints) across

power failure, thereby causing the wrong recovery problem.

To correctly enter the safe mode, CapOS leverages a timer-based checkpointing and copy-on-

write (CoW) with a memory protection unit (MPU) as a boundary-free recovery scheme. Instead

of using the boundaries, CapOS sets a recovery point at each timer expiration. Within the timer

interval, CapOS tracks every memory update by leveraging the MPU, and logs the original pages

as the CoW. When a new interval starts, CapOS clears the page information logged in the previous

interval to track its own memory updates and checkpoints all registers as a recovery point. Thanks

to the boundary-free nature, CapOS can seamlessly switch the execution mode and ensure correct

recovery.

Once the capacitor becomes reliable, CapOS returns to the normal mode. To figure out when

to return, CapOS leverages a capacitor recovery model and dummy JIT checkpointing. CapOS

dynamically measures the capacitor isolation period and compares it to the capacitor recovery

model [28], [29]. If the total isolation time exceeds the model, CapOS examines the capacitor by

enabling the JIT checkpointing with dummy data. Once the dummy JIT checkpointing succeeds,

CapOS assumes the capacitor becomes reliable and switches back to the normal mode. Conse-

quently, CapOS switches back and forth between the rollback and roll-forward recovery solutions.

Our contributions can be summarized as follows:
1

 ↑ A supercapacitor is used as energy buffer for many prior works such as ECO, Capybara, and so on [7], [33], [72],
[78]–[83].

136

• We discover a capacitor error where energy harvesting systems corrupt/lose their data or fail

to provide any service when their energy buffer (i.e., capacitor) is degraded.

• We introduce an operating system driven capacitor error resilience solution called CapOS,

that can preserve volatile data against capacitor errors and recover the degraded capacitor by

leveraging its self-recovery nature.

• Our experiments demonstrate that CapOS causes less than 1% performance overhead on av-

erage compared to a (unprotected) roll-forward recovery when there is no capacitor error. In

the presence of capacitor errors, CapOS incurs only 15% performance overhead on average.

7.2 Background and Challenges

To address the capacitor errors, one might suggests rollback recovery solutions since they al-

ways preserve volatile data in safe across power outages (Section 7.2.1). Also, a prior work can

periodically isolates a capacitor to restore its capacitance by leveraging the self-recovery nature

(Section 7.2.2), which might prevent from the capacitor errors. Furthermore, another prior works

can ensure a voltage margin to achieve safe JIT checkpointing with a degraded capacitor [3], [6],

[7], [14](Section 7.2.3).

7.2.1 Rollback Solutions

The rollback recovery solutions form a series of recoverable program tasks in case of power

failure [4], [12], [13], [68]. In detail, to achieve correct recovery across power failure, they insert

logs and checkpoint stores within each program task. If power failure occurred, they roll back to

the beginning of the interrupted task by restoring the checkpointed data and logs in the wake of

power failure without causing the memory inconsistency problem.

However, if there is a task whose execution time is greater than the power failure period, the

program ends up rolling back to the beginning of the same task indefinitely (i.e., stagnation prob-

lem as discussed in Section 2.2.2). To address the problem, a prior work called Chinchilla statically

form the task by considering the capacitor size [12] so that it can complete at least one task across

any power outage case including the worst case scenario.

137

Not a Solution: Unfortunately, Chinchilla ends up generating short tasks and causing additional

checkpoint stores; hence, it causes 50∼400% run-time overhead [6]. Since the considerable over-

head is impractical for power-hungry energy harvesting systems, it leads to JIT checkpointing

roll-forward recovery solutions (Section 2.3). More importantly, since the rollback solution stat-

ically forms a series of program tasks by considering the capacitor size, its task can be stagnated

when the capacitor is degraded as shown in Table 2.1 . Due to the stagnation vulnerability, the

rollback recovery solutions cannot address the capacitor errors.

7.2.2 Periodic Capacitor Isolation

With the self-recovery nature of capacitors in mind (Section 2.4.2), a prior work [29] suggests

to periodically leave the degraded capacitor in idle for capacitor aging deceleration. For exam-

ple, in every thousands of charge/discharge cycles, they give the capacitor a rest period, e.g., the

systems stop their operation disconnecting the capacitor at an interval of thousands charge cycles.

Thanks to the isolation, they found that the capacitor degradation rate could be decreased as shown

in Fig. 7.1 ; the lifespan is exponentially increased when it is isolated at lower stop intervals.

1000 2000 5000 10000 20000 50000

Stop Interval

0
100
200
300
400
500
600
700
800

Li
fe

sp
a
n
(h

o
u
rs

)

lifespan throughput

50000
100000
150000
200000
250000
300000

T
h
ro

u
g
h
p
u
t

 (
#

 o
f

co
m

p
le

ti
o
n
s/

d
a
y
)

Figure 7.1. Capacitor degradation deceleration and its side-effect analysis in energy
harvesting systems

However, the periodic capacitor isolation is impractical for energy harvesting systems. In fact,

since energy harvesting situation is unstable and unpredictable, the capacitor may or may not

suffer from the stressful charge/discharge condition. In other words, the solution can unnecessarily

138

isolate a capacitor although it has not been degraded. In addition, while the capacitor is being

isolated, energy harvesting systems provide poor performance as a side-effect. This is because the

systems cannot enable the JIT checkpoint mechanism without using a capacitor, and thus inevitably

stop their operation; otherwise, they can cause the wrong recovery problem overwriting or losing

important data in NVM.

Poor Performance: To analyze the performance overhead of the prior work, we measured the

quality of service running benchmark applications; we estimated throughput by counting the num-

ber of task completion times during a day with various the capacitor isolation interval, i.e., we

stopped its program execution for capacitor isolation at every certain number of power failures.

From our experiments, we found out that the more frequently the capacitor is isolated (less

stop cycles), the more performance overhead it causes. On the other hand, the capacitor lifespan

is inversely proportional to the performance overhead. Fig. 7.1 shows the trends as an example;

it covers one of benchmark applications, bitcount, that is used for performance analysis in prior

works [6]–[8]. As shown in the figure, while the throughput is increased as the stop interval is

increased, the capacitor lifespan is decreased. The takeaway is that, to ensure long lifespan, the

prior work must frequently stop its operation; however, it results in low throughput, i.e., poor

quality of service.

Not a Solution: More importantly, although the periodic capacitor isolation can lengthen the lifes-

pan of capacitors decelerating the capacitor degradation rate, it is still susceptible to the capacitor

error. This is because the capacitor can be degraded between adjacent rest intervals, and thus the

systems can eventually fail to make a checkpoint when the capacitor is being used for JIT check-

point.

7.2.3 Voltage Margin Solution

To ensure safe JIT checkpointing, prior works ensure 10% checkpoint voltage margin [3], [6],

[7], [14]; they reserve a small amount of energy to achieve safe checkpointing in case of unexpected

errors as Vbackup >Vo f f . In this way, they can increase a checkpoint voltage threshold (Vbackup) and

a start-up voltage level (Von) to buffer more energy for safe checkpointing when the capacitor is

degraded.

139

Poor Performance: However, the large safe margin causes performance overhead. This is mainly

because the increased voltage/energy can only be used for checkpointing purposes, not for com-

putation/progress. Also, such a large safe margin can further increase the start-up voltage level,

which can take a lot longer reboot/recharge time than the lower start-up voltage to secure the high

energy enough across power failure. That is why none of the prior works uses such a large safe

margin.

Not a Solution: Although they have such a large safe margin, the prior works are still not free

from the capacitor error problem. This is because the capacitor is eventually degraded as discussed

in Section 2.4.1 , i.e., a capacitor can be degraded by 50% within a year in real energy harvesting

situation, thereby causing the checkpoint failure and losing data in NVM.

7.3 Design

CapOS is a lightweight capacitor error resilience solution for energy harvesting systems, which

can detect the capacitor error and ensure safe recovery. At a high level, CapOS runs in either normal

mode (Section 7.3.1) or safe mode (Section 7.3.2). In the normal mode, CapOS runs with a JIT

checkpoint mechanism as a roll-forward recovery solution and diagnoses a capacitor in a reactive

manner at each reboot time. In the safe mode, CapOS runs with a rollback recovery mechanism to

prevent from data loss (or checkpoint failure) and stagnation.

However, it is challenging to switch the recovery solution. This is because typical rollback

recovery solutions [12], [32], [33] partition program into a series of recoverable code regions—

whose boundary serves as a rollback recovery point—by leveraging new programming model,

compiler, or runtime system support. Since the mode change can happen at arbitrary locations, the

rollback recovery solution can be enabled in the middle of program region without having required

data (e.g., memory logs or checkpoint stores) for correct recovery, thereby causing wrong outputs.

As an alternative solution, CapOS may hold multiple versions of program and dynamically keep

them all in sync in case of mode change; however, it is technically complicated and impractical. To

address the issue, CapOS leverages OS modules such as a timer-based checkpointing and a CoW

mechanism with a MPU as a boundary-free recovery scheme.

140

Figure 7.2. CapOS workflow: CapOS diagnoses a capacitor at each reboot time. If
the capacitor error is detected, CapOS disables the JIT checkpointing and switches
its execution mode from normal (blue shaded box) to safe (yellow shaded box). If
a capacitor can be recovered in the safe mode, CapOS would switch its execution
mode back to normal.

V_off

V_on

Ca
pa

ci
to

r
Ch

ar
ge V_backup …

degrade

CapOS

Capacitor recovery period

safe
mode

JIT ckpt.

Degraded
cap.

Recovered
cap.

JIT ckpt.

failure

Error
detected

No
error

No
error

JIT ckpt.

CapOS CapOS CapOS

✓turn off a capacitor
✓disable JIT ckpt.
✓enable CoW and timer ckpt.

No
error

normal
mode

Fig. 7.2 describes the overall workflow of CapOS. For the first and second capacitor charge

cycles in the figure, CapOS runs in the normal mode. It diagnoses a capacitor at reboot time,

and runs with the JIT checkpoint mechanism as long as the capacitor is not degraded. When the

capacitor is degraded as shown in the second capacitor charge cycle, CapOS fails to checkpoint data

in NVM when a power outage occurs. Across the second outage, CapOS detects the checkpoint

failure at the third reboot time and starts to run in safe mode. In this mode, CapOS enables the

CoW with a MPU and switches off the power line connected to the capacitor for its self-recovery.

Then, when the capacitor is recovered, CapOS turns back to the normal mode, disabling the CoW

and reconnecting the capacitor; this will be discussed in Section 7.3.3 .

7.3.1 CapOS in Normal Mode

A capacitor does not become faulty all of sudden, but it is gradually degraded over time as

discussed in Section 2.4.1 [28]–[31], [36]. Due to the gradual degradation, the JIT checkpointing

fails to persist the last 2-byte of volatile data when a capacitor is degraded; the JIT checkpointing

sequentially stores volatile data (e.g., registers) to a designated space in NVM at power-off time by

spending the rest of buffered energy in a capacitor. Note that, since the current energy harvesting

system platform guarantees failure-atomic NVM writes at word size granularity (i.e., 2-byte) [32],

the last volatile register (e.g., R15) is lost for the first when the capacitor error occurs.

141

power
failure

Regs

NVM

power
on

Regs

NVM

power
failure

Regs

NVM

power
on

Regs

NVM

PC=100

normal execution power-off error detection and recovery double buffer in NVMNVMNVM

PC,R1,…R15, dup.PC

PC=100

PC,R1,…R15,dup.PC PC,R1,…R15,dup.PC

PC=100 PC=100

PC,R1,…R15, dup.PC

(a) Successful JIT checkpoint

power
failure

Regs

NVM

power
on

Regs

NVM

power
failure

Regs

NVM

power
on

Regs

NVM

PC=100

normal execution power-off error detection and recovery double buffer in NVMNVMNVM

PC,R1,…R15, dup.PC

PC=100

PC,R1,…R15,dup.PC PC,R1,…R15,dup.PC

PC=100 PC=100

PC,R1,…R15, dup.PC

(b) Unsuccessful JIT checkpoint

Figure 7.3. JIT checkpoint failure (capacitor error) detection mechanism with a duplicated PC

With this in mind, CapOS stores a duplicated PC register as an ACK in NVM for the last part

of the JIT checkpointing protocol. Fig. 7.3 describes the checkpoint failure detection mechanism.

CapOS stores a duplicated PC at the end of the JIT checkpointing when a power outage occurs. In

(a), CapOS stores the duplicated PC value, i.e., 100, at power failure point. Then, in the wake of

power failure, CapOS restores the duplicated PC and the original PC from NVM. In this case, since

the duplicated PC is the same as the original PC, CapOS considers the capacitor is reliable. On the

other hand, in (b), CapOS fails to store the duplicated PC to NVM. In this case, CapOS detects the

capacitor error by comparing the original PC and the corrupted PC across power failure.

Notably, the ACK-based checkpoint failure detection mechanism protects registers from being

lost. As shown in the figure, the registers can be persisted while losing the ACK, and thus CapOS

can achieve correct recovery across a power outage; the registers can be lost when the capacitor

continues to degrade more than 2 hours after the ACK failure. With the help of correct recovery,

CapOS can disable the JIT checkpointing and switch the execution mode at the next reboot time

(i.e., when it detects the capacitor error).

7.3.2 CapOS in Safe Mode

Once CapOS detects the JIT checkpoint failure, CapOS switches its execution mode from the

normal to the safe mode in a seamless manner by leveraging OS modules such as timer interrupt

and CoW with a MPU.

Timer-based checkpoint: The timer-based checkpoint mechanism flexibly sets a recovery point

by considering the energy source condition without requiring statically-defined task boundaries [8].

142

timeOff On

p.g #4

Ckpt.

page #4?

p.g #8
p.g #4

Original
memory
Backup
memory p.g #8

p.g #4

validate

p.g #12

restoration

p.g #4

mov r1 -> mem[10]
…
mov r5 -> mem[20]
…
mov r8 -> mem[30]
…

mov r1 -> mem[10]
…
mov r5 -> mem[20]
…
mov r8 -> mem[30]
…

mov r1 -> mem[10]
…
mov r5 -> mem[20]
…
mov r8 -> mem[30]
…

page #8? page #12?

mov r1 -> mem[10]
…
mov r5 -> mem[20]
…
mov r8 -> mem[30]
…

Resume

mov r1 -> mem[10]
…
mov r5 -> mem[20]
…
mov r8 -> mem[30]
…

page #12?

p.g #12

4 4 8 12 12 12Pg. table

Copy-on-write
mov
mov Not executed

Executed

Figure 7.4. CapOS marks the populated pages in a page table during a check-
point interval. Across power failure, CapOS restores checkpointed registers and the
marked page(s) to resume the interrupted program.

For example, when the energy source condition is good, it can increase the timer interval to avoid

frequent checkpointing. On the other hand, when the energy source condition is weak, it can

decrease the timer interval to make a checkpoint at least once during the power-on period by

considering the power failure frequency. In particular, when the capacitor is degraded holding a

less amount of energy, CapOS can further decrease the timer interval to checkpoint at least once,

thereby achieving the forward progress execution with a degraded capacitor.

2
 However, since the

timer-based checkpoint persists only register data, it should also preserve other data in NVM across

power failures for crash consistency. To address this issue, CapOS leverages the CoW with a MPU.

Copy-on-Write: CapOS checks each store operation if it has a write permission of the target page

by looking over a page table. Fig. 7.4 describes that CapOS can track every memory access on a

per-page. For example, at each store operation (e.g., mov r1→mem[10]), CapOS checks if it has a

write permission of the target page by looking over a page table, which is managed in NVM. If it

does not have a write permission, CapOS makes a copy of the target page in a designated backup

memory space in NVM. Once the page copy is completed, CapOS marks the write permission for

the page in the page table to grant it a write permission. Finally, when CapOS finishes the memory

backup, it can execute the store instruction.

On the other hand, if CapOS has a write permission of the target page, both the page copy

and the table mark steps are unnecessary. That is, for a store instruction that accesses to writable

2
 ↑ It keeps copies of checkpointed data as double buffering [4], [8] in case of power failure during checkpointing.

143

pages, CapOS checks only the page table. Then, CapOS can execute the memory write. By follow-

ing these steps, no matter when power failure occurs, CapOS does not cause a crash consistency

problem.

Memory Protection Unit: CapOS runs an uninstrumented binary and dynamically tracks memory

updates by leveraging the MPU—that has been already equipped with the low-power MCU such

as MSP430 series [176], [177]. In detail, CapOS partitions a memory into three segments, code,

original data, and designated backup memory space (shadow memory) as shown in Fig. 7.5 . The

code section contains OS code, binaries, interrupt, and so on. The original data space contains

heap, stack, and data. And, the shadow memory space is for backup, i.e., one-to-one mapped with

original data space. Second, CapOS sets read, write, and execute permissions to each segment. In

particular, CapOS sets the original data space to be not writeable. This is because CapOS needs to

track memory updates in the data segment for CoW.

In this design, when the system tries to write data into the memory, the MPU À checks the

target memory address. If the address is in the original data section, the MPU Á sends a violation

signal to CapOS with the address. Then, CapOS translates the address to a page ID and looks

over a page table [8] then figures whether the target memory page has been already populated. If

it has not, CapOS triggers the CoW backing up an original page to the shadow memory space.

Note that CapOS manages the page table in the shadow memory segment; therefore, it is free to

write/delete the entry without requiring the write permission. Note that, thanks to the MPU, CapOS

can enable the CoW in a seamless manner without requiring compiler-assisted program [8]; the

MPU permission checking takes only 1∼2 cycles.

Correct Power Failure Recovery: For correct recovery, CapOS sets a recovery point when the

timer expires by checkpointing registers and clearing the page table. In other words, when the timer

restarts, the page table is clear, i.e., no page has write permission. In the new timer interval, CapOS

can newly track memory writes for crash consistency. If power failure occurs during the program

execution, CapOS restores all the backed-up pages by looking over the page table in the wake of

power failure. Then, it goes back to the recovery point where the checkpoint was made. In this

way, CapOS can achieve crash consistency across power failure. Note that when the timer expires,

CapOS must checkpoint register first then clear the page table; otherwise, CapOS can cause wrong

144

MPU

Addr Code

Original
Data

Shadow

R W E

CapOS

Interrupts

CoW

1

2

3

NVM
metadata

Figure 7.5. Copy-on-Write with memory protection unit (MPU). Dashed lines rep-
resent no permission while solid lines mean the system has a permission.

recovery. For example, if CapOS cleared the page table first, and power failure occurred during

register checkpointing, the system would not be able to restore required pages across power failure.

Capacitor Recovery: CapOS restores a degraded capacitor in the safe mode by (electrically) iso-

lating it; when the capacitor is isolated, the degraded capacitance can be recovered as its ESR de-

creases [29]. To isolate the capacitor, CapOS disconnects it from systems by using a programmable

power gate [33]. In detail, CapOS leverages a controllable state-retaining switch by connecting it

to MCU through GPIO pins. In this way, CapOS turns on/off the capacitor at a software level.

Then, the input power from the ambient energy source can bypass the capacitor as storage-less

systems.

7.3.3 CapOS Mode Change

CapOS switches back from the safe to the normal mode when the degraded capacitor is re-

covered. To ensure the capacitor is recovered enough, CapOS checks the capacitor condition by

leveraging a two-step mechanism. The first step is to leverage a recovery model of a capacitor [29]

defined as: Crecovery(t,T,Vend)= a∗exp(− t
τ1

)+b∗exp(− t
−τ2

), where a and b characterize the capac-

itor state, and τ1 and τ2 are the time constants governing the recovery rate of the capacitor; CapOS

must be aware of these parameters from the device manual [29]. With this model, CapOS stati-

145

cally defines a recovery period. Then, CapOS dynamically measures the time taken for a degraded

capacitor to get recovered and compares the time to the recovery period.

In detail, CapOS measures the accumulated power-on time across power outages by using the

timer. CapOS checks whether the accumulated time is greater than the recovery period—defined

by the recovery model—along the way. Once the measured time is greater than the recovery period,

CapOS moves on the second step connecting the isolated capacitor back to the system.

The second step is to examine the JIT checkpointing. While it runs with the rollback recovery

solution in the safe mode, CapOS also enables the JIT checkpointing, not for registers, but for

dummy data, i.e., CapOS checkpoints dummy data at the power failure point. Then, at the next

reboot time, CapOS checks whether the dummy JIT checkpointing has been safely finished or not.

If the JIT checkpointing succeeded with the re-connected capacitor, CapOS switches back to the

normal mode disabling the rollback recovery solution.

Discussion: It is possible that CapOS can switch back to the normal mode with a not-fully-

recovered capacitor; however, the two-step mechanism ensures that the capacitor is at least recov-

ered enough to buffer a sufficient amount of energy for safe JIT checkpointing. This is because

CapOS conservatively measures the accumulated power-on time excluding the power-off time, i.e.,

the capacitor must be recovered longer than the recovery time. Also, CapOS ensures the safe JIT

checkpointing with the dummy data.

Generality: CapOS can also be applied for energy harvesting systems that have another type of

capacitors such as ceramic or electrolytic. Since those capacitors do not have such a self-recovery

nature, CapOS does not have to isolate them for capacitance restoration when they are degraded.

Instead, CapOS triggers the safe mode when the JIT checkpoint failure occurs, and continues to

run in the safe mode without switching back to the normal mode. In this way, CapOS can always

ensure correct recovery regardless of the capacitor type.

7.4 Implementation

7.4.1 JIT checkpoint with Duplicated PC

CapOS runs an uninstrumented binary and stores a duplicated PC as an ACK along with the

JIT checkpointing at the power failure point (Section 7.3.1). Then, in the wake of power failure,

146

CapOS compares the original PC to the duplicated PC whether they are equal to each other. This

causes only one more checkpoint store at power failure point, which requires about at most 6%

more energy than the naive JIT checkpointing; we assume the systems at least 10% energy margin

for JIT checkpointing as discussed in Section 7.2.3 .

7.4.2 Timer handler

CapOS uses the timer not in normal mode, but in safe mode. In safe mode, CapOS enables

the timer interrupt to (1) checkpoint (2) and measure recovery time. First, CapOS checkpoints

when the timer expires and reconfigures the timer interval underline power failure behavior (Sec-

tion 7.3.2).

Second, CapOS measures the total recovery time with the timer interrupt (Section 7.3.2) to

switch back from safe to normal mode when a capacitor is recovered. CapOS conservatively ac-

cumulates power-on time across power outages as following: Nexpiration×Tperiod , where Nexpiration

and Tperiod represent the number of timer expiration and the timer interval, respectively.

3
 Then, Ca-

pOS compares the accumulated time to the predefined recovery period (Section 7.3.3). When the

time is greater than the threshold, CapOS turns on the capacitor switch and enables the JIT check-

pointing for dummy data to make sure whether the capacitor is fully recovered; this can be done by

one store instruction in a failure-atomic manner. Note that, after enabling the JIT checkpointing,

CapOS shuts down the system to run with a fully charged capacitor across a power outage–though

the system can immediately suffer a power outage when the isolated capacitor is re-coupled be-

cause the harvested power must be buffered first then supply the sufficient power to the end-device.

In other words, CapOS intentionally reboots the system for full capacitor diagnosis.

Once the capacitor turns out to be fully recovered, CapOS switches back from safe to normal

mode; CapOS disables the rollback recovery but enables the roll-forward recovery. However, if the

capacitor turns out to be not recovered failing to checkpoint the dummy data, CapOS disables the

dummy JIT checkpointing and continues to run in safe mode waiting for another recovery period.

Persistent Timer: To measure not only the power-on period but also the power-off period, CapOS

can leverage a persistent timer [141], [178], that can be achieved by using Static Random-Access

3
 ↑ CapOS must be able to reconfigure the Tperiod accordingly when the clock frequency changes.

147

Table 7.1. Lifespan analysis varying applications
Scheme Capacitor Application Error Type Location Lifespan

Chinchilla [12] 100uF Elec.
dhrystone Stagnation Pro0() task 7 days

fft Stagnation msp cmplx fft fixed q15() task 10 days
basicmath, crc32, dijkstra,

stringsearch, blinker, bitcnt,
crc16, fir, qsort

Stagnation main() task ≈ 1 year

Samoyed [6] 1mF Super.
basicmath, blinker, bitcnt, crc16,

crc32, dijkstra, fft, fir,
dhrystone, stringsearch, qsort

Register loss Random 10 days

CapOS 1mF Super.
basicmath, blinker, bitcnt, crc16,

crc32, dijkstra, fft, fir,
dhrystone, stringsearch, qsort

No damage - 72 years [42]

Memory (SRAM) scratchpad and capacitor-backed timer. First, the SRAM-based solution [178]

can estimate the power-off period by measuring the percentage of decayed SRAM cells across

power failure. However, when the power-off period is too long, all SRAM data disappear, i.e.,

the timer cannot measure the power-off period accurately. Second, the capacitor-backed persistent

timer [141] measures the power-off time by using separated buffered energy in an additional capac-

itor. However, since the capacitor is vulnerable to the reliability issue, the timer cannot measure

the power-off time eventually. Overall, since the persistent timer requires architectural support,

e.g., SRAM scratchpad or additional capacitor, we leave it as our future work.

7.4.3 Reboot process

CapOS reboot process runs in either the normal mode or the safe mode. In the normal mode,

CapOS diagnoses a capacitor by examining the checkpointed ACK (Section 7.3.1). If the ACK is

not corrupted, i.e., JIT checkpointing succeeded at the recent power failure point, CapOS continues

to run in the normal mode. On the other hand, if the ACK is corrupted, CapOS switches its exe-

cution mode from the normal to the safe mode disabling the JIT checkpointing and disconnecting

the degraded capacitor (i.e., disabling the roll-forward recovery); these can be done with a 2-byte

store operation in a failure-atomic manner. After that, CapOS directly runs in the safe mode.

In the safe mode, CapOS enables CoW with a MPU. Then, CapOS looks over the page table

and restores the required data. CapOS further calculates the accumulated safe mode period. If

the accumulated period in the safe mode is greater the predefined threshold, CapOS turns on the

148

capacitor switch and enables the dummy JIT checkpointing (Section 7.3.3); this can also be done

with a 2-byte store operation in a failure-atomic manner. If the capacitor is fully recovered, CapOS

switches back to the normal mode. Here, to run with a fully charged capacitor, CapOS also shuts

down the system (Section 7.4.2).

7.5 Evaluation

7.5.1 Experimental Setting

In the same environment for Section 2.4.1 , we measured the performance and lifespan of prior

works [6], [12] and CapOS running 11 benchmark applications [3], [8], [25] with a real power

trace (trace 12 in Table 7.2) that is collected from a real RF energy harvester [25]; we will vary

the power trace and conduct the sensitivity analysis in Section 7.5.4 .

4
 For lifespan analysis, we

repeatedly ran the applications until they suffered the stagnation or data loss problem; we consider

the systems as dead when the problem occurs.

We consider Chinchilla [12] and Samoyed [6] as a basis/representative of rollback and roll-

forward recovery scheme, respectively. In particular, the roll-forward recovery scheme called

Samoyed forms the I/O operations to be safely recoverable across power failure since the JIT

checkpointing is unavailable during the I/O operations [6].

7.5.2 Energy Harvesting System Lifespan Analysis

As shown in Table 7.1 , we found that the lifespan of prior works are about 10 days. On the

other hand, CapOS continues to run safely without causing the stagnation or data loss even when

the capacitor is degraded; hence, we assume the lifespan of CapOS is 72 years as the same as the

lifespan of MCU [42].

In particular, we found that Chinchilla [12], the state-of-the-art rollback recovery solution (Sec-

tion 7.2.1), is more reliable than other prior works for some applications; it continues to make a

forward progress with a degraded capacitor. This is possible because Chinchilla statically inserts

a region boundary at each basic block, the entry of which checkpoints all registers, rendering the

4
 ↑ We used the power traces to scale to the various experimental settings for our benchmark suite with multiple sensi-

tivity analysis. If the real devices are used, the transmitter and harvester should move back and forth very fast with a
large distance; otherwise, the power failure frequency is fixed like prior works [6], [32].

149

regions very short. Since the short regions require a small amount of energy to be completed, Chin-

chilla can finish them across power failure even if the capacitor is degraded—though 50% capaci-

tance degradation eventually causes the stagnation problem; we assume the lifespan of Chinchilla

is about a year since a capacitor is degraded by 50% within≈ 1 year. However, Chinchilla can also

generate long regions if applications have long basic blocks (e.g., dhrystone and fft). In this case,

the long regions can cause the stagnation problem easily when a capacitor is degraded by more

than 10% (Table 7.1).

7.5.3 Performance Analysis

To analyze the performance overhead of CapOS, we conducted experiments in the same set-

ting for Section 7.5.2 . We measured the throughput of Chinchilla, Samoyed, and CapOS for 11

benchmark applications (1) when the capacitor is not degraded and (2) when the capacitor is de-

graded. For throughput, we counted the number of application completion time during one day,

i.e., #.o f .comp
24hours . We set the naive roll-forward recovery solution without capacitor protection, i.e.,

Samoyed, as a baseline. For peripheral (I/O) tasks in applications such as blinker and fft, we design

them to be power-failure-atomic assuming that is required by system administrators [6].

b
a
si

cm
a
th

b
lin

ke
r

b
it

cn
t

cr
c1

6

cr
c3

2

d
ijk

st
ra ff
t

fi
r

d
h
ry

st
o
n
e

st
ri

n
g
se

a
rc

h

q
so

rt

g
m

e
a
n
(T

o
ta

l)0
10
20
30
40
50
60
70
80
90

100

T
h
ro

u
g
h
p
u
t

(%
)

Chinchilla CapOS Samoyed

Figure 7.6. Normalized throughput of each recovery scheme compared to Samoyed
without a degraded capacitor.

Performance Analysis Without a Degraded Capacitor: Fig. 7.6 describes the performance

overhead of each recovery scheme. Without a degraded capacitor, Chinchilla causes 51% through-

put on average compared to the baseline. Unlike the prior work, CapOS achieves almost the same

150

b
a
si

cm
a
th

b
lin

ke
r

b
it

cn
t

cr
c1

6

cr
c3

2

d
ijk

st
ra ff
t

fi
r

d
h
ry

st
o
n
e

st
ri

n
g
se

a
rc

h

q
so

rt

g
m

e
a
n
(T

o
ta

l)0
10
20
30
40
50
60
70
80
90

100

T
h
ro

u
g
h
p
u
t

(%
)

x xx x x x x x x x x x x x

Chinchilla CapOS Samoyed

Figure 7.7. Normalized throughput of each recovery scheme compared to Samoyed
with a degraded capacitor.

throughput, 99%. This is because, when CapOS runs in normal mode, it does not track memory

updates with a MPU but just checkpoint the duplicated PC as an ACK (Section 7.3.1).

Performance Analysis With a Degraded Capacitor: We continued to conduct our experiments

(Section 7.5.3) until the capacitor error occurs. We found that CapOS could make a forward

progress while Samoyed failed due to the JIT checkpoint failure within 10 days. Chinchilla also

failed to run some applications (i.e., dhrystone and fft) due to the capacitor error as shown in

Fig. 7.7 , since they consisted of long regions—that are vulnerable to the stagnation problem—as

we discussed in Section 7.5.2 ; Chinchilla could run other applications without causing the problem.

Once we detected the capacitor error, we measured the throughput of each scheme in the same

way of Section 7.5.3 , i.e., #.o f .comp
24hours . Overall, CapOS and Chinchilla shows 88% and 51% through-

put on average compared to the same baseline (Section 7.5.3). In particular, CapOS shows the best

performance. This is because CapOS switches back to normal mode once the degraded capacitor is

recovered. To analyze the performance benefit of mode change, we also measured the throughput

of CapOS in safe mode. It turned out that CapOS caused about 38% throughput on average in

safe mode, i.e., CapOS may cause poor performance when the capacitor is not used in the first

place. However, CapOS ran in safe mode for about 2∼3 hours of a day, i.e., less than 16% of a

day, and turned back to normal mode. Furthermore, we found that the capacitor is not degraded

again quickly (this will be discussed in Section 7.5.4 more detail). Thanks to the short safe mode,

CapOS could achieve a high throughput on average.

151

Two-step Capacitor Diagnosis: For mode change, CapOS first waits for the recovery period and

then checks the capacitor condition with the dummy JIT checkpointing (i.e., two-step mechanism

as discussed in Section 7.3.3). We measured the accuracy of the mechanism by counting the num-

ber of dummy JIT checkpointing and the number of mode change from safe to normal. We found

that CapOS could always switch back from safe to normal whenever it examined the capacitor with

the dummy JIT checkpointing. This is because CapOS isolated the capacitor for a longer time than

the recovery period thanks to the conservative recovery time measurement (Section 7.4.2).

Operation
(program

execution)

① Calculate voltage
changes according to
input power during
program execution

0 2000 4000 6000 8000 10000
Time (10uV)

0
1
2
3
4
5
6

V
o
lt

a
g

e
 (

V
)

② Calculate capacitor
degradation by using a
degradation/recovery model

Charging/discharging

Input power

0 50 100 150 200 250
Hours

−7
−6
−5
−4
−3
−2
−1

0

3
H
rc

H
n

t.
 D

H
cr

H
D
sH

 i
n

 C
D
p

D
ci

tD
n

cH

CDpDcitDncH

Capacitor degradation

Degradation model
Recovery model

Capacitor

Figure 7.8. Overview of Capacitor Aging Simulator (CapSim)

7.5.4 Sensitivity Analysis

For sensitivity analysis, we varied the power failure patterns by using various power traces and

estimated the performance of CapOS comparing to possible solutions such as (1) Samoyed with

a proactive capacitor isolation (Section 7.2.2) and (2) Samoyed with Chinchilla. First, to analyze

the impact of proactive capacitor isolation, we enabled the periodic isolation on top of Samoyed,

i.e., Samoyed periodically isolates a capacitor for capacitor restoration. Second, to explore another

alternative solution, we implemented Samoyed with Chinchilla; the solution runs the Chinchilla-

assisted binaries but enables JIT checkpointing as long as the capacitor is not degraded. If the

capacitor is degraded, the solution disables the JIT checkpointing in the same way of CapOS.

To conduct the sensitivity analysis, we implemented a capacitor aging simulator (called Cap-

Sim) on top of energy harvesting system simulator, NVPsim [25], modeling a single core in-order

152

processor with ARM ISA. For evaluation, we equipped the CapSim with a 1mF capacitor as energy

buffer and disabled a cache in its memory hierarchy (Section 2.1). Then, we ran each scheme (i.e.,

Samoyed, Samoyed with a proactive capacitor isolation, Samoyed with Chinchilla, and CapOS)

with the simulator to analyze its lifespan and throughput.

Capacitor Aging Simulator (CapSim): CapSim measures the lifespan of the system in a two

step manner as shown in Fig. 7.8 . First, CapSim takes a power trace as an input power source and

runs a program charging/discharging a capacitor in NVPsim (gray dashed line box). In this step,

CapSim dynamically updates capacitor condition according to input power during program execu-

tion. Second, as the condition of capacitor changes, CapSim measures the capacitor degradation

by considering both the capacitor degradation model and recovery model.

Realistic Environment: For realistic evaluation, we used 12 different power traces (as shown in

Table 7.2) collected from a real RF energy harvester; 10 traces from Mementos [95] and 2 traces

from NVPSim [25]. Each power trace causes a different power failure pattern that affects the

capacitor condition and degradation rate. In different power failure traces, CapSim measures the

capacitor degradation. And, when the capacitor is 20% degraded, CapSim reports that the system

is unavailable and considered as dead.

Table 7.2. The number of power failures per second in traces
Trace 1 2 3 4 5 6 7 8 9 10 11 12

of P.F (s) 2 3 2 4 5 4 8 4 3 1 9 12

Table 7.3. Lifespan analysis (days) for energy harvesting systems varying power traces
scheme/trace 1 2 3 4 5 6 7 8 9 10 11 12

S 34 23 34 17 13 17 8 17 23 69 7 5
S+P(5000) 104 69 104 52 41 52 26 52 69 208 23 17
S+P(1000) 530 352 530 265 209 265 133 265 352 1061 117 87

CapOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Proactive Capacitor Recovery Solution Analysis: We measured the lifespan of the original

Samoyed (S), Samoyed with proactive capacitor isolation (S+P), and CapOS; we set the original

Samoyed as the baseline. For the proactive isolation, we also varied the isolation cycle as 1000

153

1 5 101520253035404550

Time (days)

0
20
40
60
80

100
T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(a) Trace 1

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(b) Trace 2

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(c) Trace 3

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(d) Trace 4

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(e) Trace 5

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(f) Trace 6

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(g) Trace 7

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(h) Trace 8

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(i) Trace 9

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(j) Trace 10

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(k) Trace 11

1 5 101520253035404550

Time (days)

0
20
40
60
80

100

T
h
ro

u
g
h
p
u
t(

%
) S S+Chin. CapOS.

(l) Trace 12

Figure 7.9. Sensitivity analysis varying power failure patterns and recovery solutions

and 5000 cycles, e.g., Samoyed stops program execution for capacitor recovery by considering the

recovery model at every 1000 or 5000 running cycles.

Table 7.3 summarizes results of the evaluation. We discover that original Samoyed becomes

unavailable within at least 35 days in all power traces except for trace 10. Also, we observe that the

proactive capacitor isolation mechanism with Samoyed can increase the lifespan by more than 10x

compared to the baseline. However, although the proactive mechanism could increase the lifespan

by having a short isolation interval, e.g., 1000 capacitor charge cycles, the capacitor is eventually

degraded, implying that the system can be corrupted causing a wrong recovery problem within 3

years.

Reactive Capacitor Recovery Solution Analysis: Unlike the proactive mechanism, the reactive

mechanism can ultimately achieve an infinite lifespan without causing the data loss or stagnation

problem regardless of the capacitor condition. To analyze the performance of alternative solutions,

we measured the throughput of Samoyed (S), Samoyed with Chinchilla (S+Chin.), and CapOS in

the same environment; we set the original Samoyed throughput without a degraded capacitor as

the baseline.

154

Fig. 7.9 shows the overall performance overhead of each solution in different power traces on

average. In most of power traces, while Samoyed (S) is unavailable after the capacitor is degraded,

the reactive solutions such as S+Chin., and CapOS can continue to make a forward progress. How-

ever, we found that Samoyed could continue to provide a service for a while without any problem in

trace 10—though Samoyed with Chinchilla unnecessarily cause significant performance overhead

in trace 10.

Although the reactive solutions can make a forward progress protecting the capacitor, their

performance can be varied depending on which solution is selected. As shown in the figure, the

performance gap between CapOS and Chinchilla is significant. In particular, when the capacitor

is in idle for recovery (that is the moment where the naive Samoyed can be corrupted), Samoyed

with Chinchilla causes less than 10% throughput on average. Unlike the prior works, CapOS shows

about 40% throughput on average, i.e., 4x improvement.

7.6 Summary

We observe that current energy harvesting systems can lose their volatile data due to capacitor

errors. To address the problem, we introduce an OS-driven solution called CapOS. By leveraging

the unique properties and operating characteristics of a capacitor in energy harvesting systems,

CapOS can detect the capacitor errors and safely restore it. Our experiments demonstrate that

CapOS can successfully address the capacitor fault causing almost 0% performance overhead.

155

8. CONCLUSION

Energy harvesting systems have emerged as an alternative to battery-operated embedded devices.

Due to the intermittent nature of energy harvesting, researchers propose power failure recovery

solutions that can ensure correct output across frequent power failure. However, many solutions

are impractical, limiting the wide adoption. In this thesis, we study and address common problems

of power failure recovery solutions, helping designers improve service quality.

First, we study software recovery solutions and address their run-time overhead problem (PS1).

To reduce run-time overhead, we leverage compiler support with hardware available in commodity

hardware (TS1). We study the limitation of software recovery solutions, such as statically-defined

region boundaries that entails energy-consuming checkpoint stores. To address the limitation, we

design Elastin, a boundary-free recovery solution with the full potential of checkpoint adaptation.

The experimental results show that Elastin improves the performance by about 3.5X compared to

the state-of-the-art software recovery solution. We also study another limitation of software recov-

ery solutions: they must roll back to a recovery point and re-execute the exact instructions across

power failure. Considering the limitation, we design RockClimb, a rollback-free and memory-

log-free intermittent computation scheme, by leveraging compiler, run-time system, and hardware

support. Our evaluation shows that RockClimb can outperform the state-of-the-art by 8X on aver-

age without requiring hardware modification costs.

Second, we study hardware-based recovery solutions and address their energy efficiency and

expensive modification cost problem (PS2). To address the problem, we propose to reuse existing

hardware components such as store buffer (TS2), reducing hardware cost yet improving perfor-

mance. We present an architecture/compiler co-design recovery solution called CoSpec, enabling

new speculative execution (power failure speculation) and ILP execution on top of the in-order pro-

cessor for performance improvement. The evaluation shows that CoSpec achieves 2∼3X speed-

up compared to the state-of-the-art hardware-based recovery solution without requiring hardware

modification. Furthermore, we present a new cache architecture called WLCache. With the help of

run-time system support, WLCache can benefit from write-through and write-back policies while

avoiding their downsides. Our evaluation tells that WLCache can improve performance by 4X on

average while reducing hardware cost by 90% compared to the state-of-the-art design.

156

Finally, we study a reliability problem in EHS devices (PS3), i.e., the capacitor error. We

discover the capacitor error where energy harvesting systems corrupt/lose their data or fail to pro-

vide any service when their energy buffer (i.e., capacitor) is degraded. To address the error, we

propose an OS-driven capacitor error resilience solution called CapOS that can preserve volatile

data against capacitor errors and recover the degraded capacitor by leveraging its self-recovery

nature. Our experiments demonstrate that CapOS causes less than 1% performance overhead on

average compared to an (unprotected) roll-forward recovery when there is no capacitor error. In

the presence of capacitor errors, CapOS incurs only 15% performance overhead on average.

157

REFERENCES

[1] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable intermittent programs,” ACM
SIGPLAN Notices, vol. 51, no. 10, pp. 514–530, 2016.

[2] K. MAENG, A. COLIN, and B. LUCIA, “Alpaca: Intermittent execution without check-
points,” in Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ACM, 2017.

[3] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in transiently powered computers,” in 2014 27th
International Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems, IEEE, 2014, pp. 330–335.

[4] J. V. D. Woude and M. Hicks, “Intermittent computation without hardware support or pro-
grammer intervention,” in 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16), Savannah, GA: USENIX Association, 2016, pp. 17–32, ISBN: 978-1-931971-33-
1. [Online]. Available: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
vanderwoude .

[5] M. Hicks, “Clank: Architectural support for intermittent computation,” in In Proceedings of
ISCA ’17, ACM, 2017.

[6] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems with just-in-time
checkpoints,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 2019, pp. 1101–1116.

[7] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic and reactive in-
termittent execution,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 1005–1021.

[8] J. Choi, H. Joe, Y. Kim, and C. Jung, “Achieving stagnation-free intermittent computation
with boundary-free adaptive execution,” in 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2019, pp. 331–344.

[9] J. Choi, Q. Liu, and C. Jung, “Cospec: Compiler directed speculative intermittent computa-
tion,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, ACM, 2019, pp. 399–412.

[10] M. A. de Kruijf, K. Sankaralingam, and S. Jha, “Static analysis and compiler design for idem-
potent processing,” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI ’12, Beijing, China: ACM, 2012, pp. 475–486, ISBN:
978-1-4503-1205-9. DOI: 10.1145/2254064.2254120 . [Online]. Available: http://doi.acm.org/10.
1145/2254064.2254120 .

158

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://doi.org/10.1145/2254064.2254120
http://doi.acm.org/10.1145/2254064.2254120
http://doi.acm.org/10.1145/2254064.2254120

[11] S. S. Baghsorkhi and C. Margiolas, “Automating efficient variable-grained resiliency for low-
power iot systems,” in Proceedings of the 2018 International Symposium on Code Generation and
Optimization, ACM, 2018, pp. 38–49.

[12] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe efficient intermittent com-
puting,” in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), Carlsbad, CA: USENIX Association, 2018, pp. 129–144, ISBN: 978-1-931971-47-8. [Online].
Available: https://www.usenix.org/conference/osdi18/presentation/maeng .

[13] A. Colin and B. Lucia, “Termination checking and task decomposition for task-based inter-
mittent programs,” in Proceedings of the 27th International Conference on Compiler Construction,
ACM, 2018.

[14] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang, “A
3us wake-up time nonvolatile processor based on ferroelectric flip-flops,” in ESSCIRC (ESSCIRC),
2012 Proceedings of the, IEEE, 2012, pp. 149–152.

[15] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, et al.,
“Ambient energy harvesting nonvolatile processors: From circuit to system,” in Proceedings of the
52nd Annual Design Automation Conference, ACM, 2015, p. 150.

[16] Y. Lui, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, J. Sampson, Y. Xie, J.
Shu, and H. Yang, “Ambient energy harvesting nonvolatile processors: From circuit to system,”
in Proceedings of the 52nd Annual Design Automation Conference, ser. DAC ’15, San Francisco,
CA: ACM, 2015, ISBN: 978-1-4503-3520-1.

[17] K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and V. Narayanan, “Inci-
dental computing on iot nonvolatile processors,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ACM, 2017, pp. 204–218.

[18] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L. Benini, “Hi-
bernus: Sustaining computation during intermittent supply for energy-harvesting systems,” IEEE
Embedded Systems Letters, vol. 7, no. 1, pp. 15–18, 2014.

[19] A. Teverovsky, “Insulation resistance and leakage currents in low-voltage ceramic capacitors
with cracks,” IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014.

[20] R. Shigeta, T. Sasaki, D. M. Quan, Y. Kawahara, R. J. Vyas, M. M. Tentzeris, and T. Asami,
“Ambient rf energy harvesting sensor device with capacitor-leakage-aware duty cycle control,” 8,
vol. 13, IEEE, 2013, pp. 2973–2983.

[21] F. Su, Y. Liu, Y. Wang, and H. Yang, “A ferroelectric nonvolatile processor with 46µ s system-
level wake-up time and 14µ s sleep time for energy harvesting applications,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 596–607, 2017.

159

https://www.usenix.org/conference/osdi18/presentation/maeng

[22] C. E. Herdt and C. P. de Araujo, “Analysis, measurement, and simulation of dynamic write
inhibit in an nvsram cell,” IEEE transactions on electron devices, vol. 39, no. 5, pp. 1191–1196,
1992.

[23] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer, “Non-volatile memory for fast,
reliable file systems,” ACM SIGPLAN Notices, vol. 27, no. 9, pp. 10–22, 1992.

[24] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, et al.,
“Ambient energy harvesting nonvolatile processors: From circuit to system,” in Proceedings of the
52nd Annual Design Automation Conference, 2015, pp. 1–6.

[25] Y. Gu, Y. Liu, Y. Wang, H. Li, and H. Yang, “Nvpsim: A simulator for architecture explo-
rations of nonvolatile processors,” in 2016 21st Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), IEEE, 2016, pp. 147–152.

[26] M. Xie, C. Pan, Y. Zhang, J. Hu, Y. Liu, and C. J. Xue, “A novel stt-ram-based hybrid cache
for intermittently powered processors in iot devices,” IEEE Micro, vol. 39, no. 1, pp. 24–32, 2018.

[27] M. Xie, M. Zhao, C. Pan, H. Li, Y. Liu, Y. Zhang, C. J. Xue, and J. Hu, “Checkpoint aware
hybrid cache architecture for nv processor in energy harvesting powered systems,” in 2016 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), IEEE,
2016, pp. 1–10.

[28] A. Gupta, O. P. Yadav, D. DeVoto, and J. Major, “A review of degradation behavior and mod-
eling of capacitors,” in ASME 2018 International Technical Conference and Exhibition on Pack-
aging and Integration of Electronic and Photonic Microsystems, American Society of Mechanical
Engineers Digital Collection, 2018.

[29] R. Chaari, O. Briat, and J.-M. Vinassa, “Capacitance recovery analysis and modelling of su-
percapacitors during cycling ageing tests,” Energy conversion and management, vol. 82, pp. 37–
45, 2014.

[30] C. Kulkarni, G. Biswas, J. Celaya, K. Goebel, and N. SGT, “Prognostic techniques for capac-
itor degradation and health monitoring,” in The Maintenance& Reliability Conference, MARCON,
2011.

[31] C. S. Kulkarni, A physics-based degradation modeling framework for diagnostic and prog-
nostic studies in electrolytic capacitors. Vanderbilt University, 2013.

[32] E. Ruppel and B. Lucia, “Transactional concurrency control for intermittent, energy-harvesting
computing systems,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2019, pp. 1085–1100.

160

[33] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage architecture for energy-
harvesting devices,” in Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, 2018.

[34] M. de Kruijf and K. Sankaralingam, “Idempotent code generation: Implementation, analysis,
and evaluation,” in Code Generation and Optimization (CGO), 2013 IEEE/ACM International
Symposium on, IEEE, 2013, pp. 1–12.

[35] M. de Kruijf and K. Sankaralingam, “Idempotent processor architecture,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture, ACM, 2011, pp. 140–
151.

[36] A. M. Imam, D. M. Divan, R. G. Harley, and T. G. Habetler, “Electrolytic capacitor failure
mechanism due to inrush current,” in 2007 IEEE Industry Applications Annual Meeting, IEEE,
2007, pp. 730–736.

[37] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-performance intermittent
computation with power failure immunity,” in 2022 IEEE 28th Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), IEEE, 2022, pp. 40–54.

[38] Msp430fr5994launchpad development kit (mspexp430fr5994), Mar. 2016. [Online]. Avail-
able: http://www.ti.com/lit/ug/slau678a/slau678a.pdf .

[39] K. Ma, X. Li, S. R. Srinivasa, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan, “Spendthrift:
Machine learning based resource and frequency scaling for ambient energy harvesting nonvolatile
processors,” in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific,
IEEE, 2017, pp. 678–683.

[40] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan,
“Architecture exploration for ambient energy harvesting nonvolatile processors,” in High Perfor-
mance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on, IEEE, 2015,
pp. 526–537.

[41] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent computing: Challenges
and opportunities,” in LIPIcs-Leibniz International Proceedings in Informatics, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, vol. 71, 2017.

[42] P. Thanigai and W. Goh, “Msp430 fram quality and reliability,” Texas Instruments, SLAA526A,
2014.

[43] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. Xue, “Fixing the broken time machine:
Consistency-aware checkpointing for energy harvesting powered non-volatile processor,” in Pro-
ceedings of The 52nd IEEE/ACM Design Automation Conference (DAC 2015), ser. DAC ’15, San
Francisco, CA: ACM, 2015.

161

http://www.ti.com/lit/ug/slau678a/slau678a.pdf

[44] W. Zhang, S. Liu, M. Lv, Q. Chen, and N. Guan, “Intermittent computing with efficient state
backup by asynchronous dma,” in 2021 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), IEEE, 2021, pp. 543–548.

[45] J. Jeong and C. Jung, “Pmem-spec: Persistent memory speculation (strict persistency can
trump relaxed persistency),” in Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2021, pp. 517–529.

[46] J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded hardware transactional
memory for a hybrid dram/nvm memory system,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), IEEE, 2020, pp. 525–538.

[47] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error resilience for in-order
cores,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 654–666.

[48] S. Liu, W. Zhang, M. Lv, Q. Chen, and N. Guan, “Latics: A low-overhead adaptive task-based
intermittent computing system,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 39, no. 11, pp. 3711–3723, 2020.

[49] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed soft error detection and recovery
to avoid due and sdc via tail-dmr,” 2, vol. 16, ACM, 2016, p. 32.

[50] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed lightweight soft error
resilience,” in Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems 2015 CD-ROM, ser. LCTES’15, Portland, OR, USA: ACM,
2015, 2:1–2:10, ISBN: 978-1-4503-3257-6. DOI: 10.1145/2670529.2754959 . [Online]. Available:

 http://doi.acm.org/10.1145/2670529.2754959 .

[51] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed lightweight checkpointing for fine-
grained guaranteed soft error recovery,” in High Performance Computing, Networking, Storage and
Analysis, SC16: International Conference for, IEEE, 2016, pp. 228–239.

[52] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Low-cost soft error resilience with unified data
verification and fine-grained recovery for acoustic sensor based detection,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–12.

[53] Q. Liu and C. Jung, “Lightweight hardware support for transparent consistency-aware check-
pointing in intermittent energy-harvesting systems,” in 2016 5th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), IEEE, 2016, pp. 1–6.

[54] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung, “Replaycache: En-
abling volatile cachesfor energy harvesting systems,” in MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, 2021, pp. 170–182.

162

https://doi.org/10.1145/2670529.2754959
http://doi.acm.org/10.1145/2670529.2754959

[55] H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung, “Compiler-directed soft error
resilience for lightweight gpu register file protection,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2020, pp. 989–1004.

[56] H. Song, S. Kim, J. H. Kim, E. J. Park, and S. H. Noh, “First responder: Persistent memory
simultaneously as high performance buffer cache and storage,” in 2021 USENIX Annual Technical
Conference (USENIX ATC’21), 2021, pp. 839–853.

[57] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-r. Choi, “Slm-db: Single-level key-value
store with persistent memory,” in 17th USENIX Conference on File and Storage Technologies
FAST’19), 2019, pp. 191–205.

[58] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung, “Ido: Compiler-directed
failure atomicity for nonvolatile memory,” in 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), IEEE, 2018, pp. 258–270.

[59] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and journaling layers with
non-volatile memory,” in 11th USENIX Conference on File and Storage Technologies (FAST13),
2013, pp. 73–80.

[60] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching less for better performance: Balancing cache
size and update cost of flash memory cache in hybrid storage systems.,” in FAST, vol. 12, 2012.

[61] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-atomic slotted paging for
persistent memory,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1, pp. 91–104,
2017.

[62] E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, “Reducing write amplification of flash storage
through cooperative data management with nvm,” ACM Transactions on Storage (TOS), vol. 13,
no. 2, pp. 1–13, 2017.

[63] H. R. Mendis, C.-K. Kang, and P.-c. Hsiu, “Intermittent-aware neural architecture search,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1–27, 2021.

[64] N. A. Bhatti and L. Mottola, “Harvos: Efficient code instrumentation for transiently-powered
embedded sensing,” in 2017 16th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), IEEE, 2017, pp. 209–220.

[65] S. Muchnick, Advanced Compiler Design Implementation. Morgan Kaufmann Publishers,
1997.

[66] A. Colin, G. Harvey, A. P. Sample, and B. Lucia, “An energy-aware debugger for intermit-
tently powered systems,” IEEE Micro, vol. 37, no. 3, pp. 116–125, 2017.

163

[67] A. Colin, G. Harvey, B. Lucia, and A. P. Sample, “An energy-interference-free hardware-
software debugger for intermittent energy-harvesting systems,” ACM SIGOPS Operating Systems
Review, vol. 50, no. 2, pp. 577–589, 2016.

[68] B. Islam and S. Nirjon, “Scheduling computational and energy harvesting tasks in deadline-
aware intermittent systems,” in 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2020, pp. 95–109.

[69] W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu, “Enabling failure-resilient intermittent systems with-
out runtime checkpointing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4399–4412, 2020.

[70] W.-M. Chen, P.-C. Hsiu, and T.-W. Kuo, “Enabling failure-resilient intermittently-powered
systems without runtime checkpointing,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC), IEEE, 2019, pp. 1–6.

[71] W.-M. Chen, Y.-T. Chen, P.-C. Hsiu, and T.-W. Kuo, “Multiversion concurrency control on
intermittent systems.,” in ICCAD, 2019, pp. 1–8.

[72] S. Lee, B. Islam, Y. Luo, and S. Nirjon, “Intermittent learning: On-device machine learning
on intermittently powered system,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 3, no. 4, pp. 1–30, 2019.

[73] P. Cronin, C. Yang, and Y. Liu, “Reliability and security in non-volatile processors, two sides
of the same coin,” in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), IEEE,
2018, pp. 112–117.

[74] C. S. Kulkarni, J. R. Celaya, G. Biswas, and K. Goebel, “Accelerated aging experiments for
capacitor health monitoring and prognostics,” in 2012 IEEE AUTOTESTCON Proceedings, IEEE,
2012, pp. 356–361.

[75] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Sytare: A lightweight kernel
for nvram-based transiently-powered systems,” IEEE Transactions on Computers, vol. 68, no. 9,
pp. 1390–1403, 2018.

[76] L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, “A review of supercapacitor model-
ing, estimation, and applications: A control/management perspective,” Renewable and Sustainable
Energy Reviews, vol. 81, pp. 1868–1878, 2018.

[77] W. Chen, Y. Wang, J. Dai, S. Lu, X. Wang, P. Lee, H. Chan, and C. Choy, “Spontaneous
recovery of hydrogen-degraded tio 2 ceramic capacitors,” Applied physics letters, vol. 84, no. 1,
pp. 103–105, 2004.

164

[78] M. Rottleuthner, T. C. Schmidt, and M. Wählisch, “Sense your power: The eco approach to
energy awareness for iot devices,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 20, no. 3, pp. 1–25, 2021.

[79] J. De Winkel, V. Kortbeek, J. Hester, and P. Pawełczak, “Battery-free game boy,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 3, pp. 1–34,
2020.

[80] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constellations as a new class
of computer system,” in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp. 939–954.

[81] H. R. Mendis and P.-C. Hsiu, “Accumulative display updating for intermittent systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[82] F. Yang, A. S. Thangarajan, S. Michiels, W. Joosen, and D. Hughes, “Morphy: Software
defined charge storage for the iot,” in Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, 2021, pp. 248–260.

[83] M. Katanbaf, A. Saffari, and J. R. Smith, “Multiscatter: Multistatic backscatter networking
for battery-free sensors,” in Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, 2021.

[84] E. C. Lab, Wearable technology and the internet of things, 2016.

[85] C. Perera, C. H. Liu, and S. Jayawardena, “The emerging internet of things marketplace from
an industrial perspective: A survey,” IEEE Transactions on Emerging Topics in Computing, vol. 3,
no. 4, pp. 585–598, 2015.

[86] S. Mauilk, Wearables and internet of things 2015, 2015.

[87] M. S. Reserach, Wearable devices: The internet of things becomes personal, 2014.

[88] B. Lucia and B. Ransford, “A simpler, safer programming and execution model for intermit-
tent systems,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 2015, pp. 575–585.

[89] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable intermittent programs.,” in In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), ACM, 2015, pp. 514–530.

[90] A. C. Kiwan Maeng and B. Lucia, “Alpaca: Intermittent execution without checkpoints,” in
Proc. ACM Program. Lang.1, OOPSLA, Article 96, Oct. 2017.

165

[91] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August, “Encore: Low-cost, fine-grained
transient fault recovery,” in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, ACM, 2011, pp. 398–409.

[92] Q. Liu, C. Jung, D. Lee, and D. Tiwarit, “Low-cost soft error resilience with unified data
verification and fine-grained recovery for acoustic sensor based detection,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, IEEE, 2016, pp. 1–12.

[93] M. Xie, C. Pan, J. Hu, C. Yang, and Y. Chen, “Checkpoint-aware instruction scheduling for
nonvolatile processor with multiple functional units,” in Design Automation Conference (ASP-
DAC), 2015 20th Asia and South Pacific, IEEE, 2015, pp. 316–321.

[94] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue, “Fixing the broken time machine:
Consistency-aware checkpointing for energy harvesting powered non-volatile processor,” in Pro-
ceedings of the 52nd Annual Design Automation Conference, ACM, 2015, p. 184.

[95] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-running computation
on rfid-scale devices,” Acm Sigplan Notices, vol. 47, no. 4, pp. 159–170, 2012.

[96] Q. Li, M. Zhao, J. Hu, Y. Liu, Y. He, and C. J. Xue, “Compiler directed automatic stack trim-
ming for efficient non-volatile processors,” in Proceedings of the 52nd Annual Design Automation
Conference, ACM, 2015, p. 183.

[97] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang, “A 3us
wake-up time nonvolatile processor based on ferroelectric flip-flops,” in 2012 Proceedings of the
ESSCIRC, ser. ESSCIRC ’12, Bourdeaux, France: IEEE Press, 2012, pp. 149–152.

[98] B. Lucia and B. Ransford, “A simpler, safer programming and execution model for intermit-
tent systems,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’15, Porland, OR: ACM, 2015, pp. 575–585.

[99] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s Perspective Plus
MasteringEngineering with Pearson eText – Access Card Package, 3rd. Pearson, 2015, ISBN:
0134123832, 9780134123837.

[100] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” ACM SIGPLAN Notices, vol. 39,
no. 11, pp. 165–176, 2004.

[101] C. Jung, D. Lim, J. Lee, and S. Han, “Adaptive execution techniques for smt multiprocessor
architectures,” in Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, ACM, 2005, pp. 236–246.

166

[102] J. Lee, J.-H. Park, H. Kim, C. Jung, D. Lim, and S. Han, “Adaptive execution techniques of
parallel programs for multiprocessors,” J. Parallel Distrib. Comput., vol. 70, no. 5, pp. 467–480,
May 2010, ISSN: 0743-7315.

[103] M. Chen, K. K. Afridi, and D. J. Perreault, “Stacked switched capacitor energy buffer archi-
tecture,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5183–5195, 2013.

[104] X. Wang, D. M. Vilathgamuwa, and S. S. Choi, “Determination of battery storage capacity in
energy buffer for wind farm,” IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 868–
878, 2008.

[105] Wisp5 wiki, https://wisp5.wikispaces.com/WISP+Home, 2017.

[106] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung, “Ido: Compiler-directed
failure atomicity for nonvolatile memory,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018, 2018, pp. 258–270. DOI:

 10.1109/MICRO.2018.00029 . [Online]. Available: https://doi.org/10.1109/MICRO.2018.00029 .

[107] C. Pan, M. Xie, J. Hu, Y. Chen, and C. Yang, “3m-pcm: Exploiting multiple write modes
mlc phase change main memory in embedded systems,” in Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis, ACM, 2014, p. 33.

[108] H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi, “Prolonging pcm lifetime through
energy-efficient, segment-aware, and wear-resistant page allocation,” in Proceedings of the 2014
international symposium on Low power electronics and design, ACM, 2014, pp. 327–330.

[109] T. Wang, D. Liu, Z. Shao, and C. Yang, “Write-activity-aware page table management for
pcm-based embedded systems,” in Design Automation Conference (ASP-DAC), 2012 17th Asia
and South Pacific, IEEE, 2012, pp. 317–322.

[110] H. A. Khouzani, C. Yang, and J. Hu, “Improving performance and lifetime of dram-pcm hy-
brid main memory through a proactive page allocation strategy,” in Design Automation Conference
(ASP-DAC), 2015 20th Asia and South Pacific, IEEE, 2015, pp. 508–513.

[111] M. Zhao, Y. Xue, C. Yang, and C. J. Xue, “Minimizing mlc pcm write energy for free through
profiling-based state remapping,” in Design Automation Conference (ASP-DAC), 2015 20th Asia
and South Pacific, IEEE, 2015, pp. 502–507.

[112] C. Liu and C. Yang, “Improving multilevel pcm reliability through age-aware reading and
writing strategies,” in Computer Design (ICCD), 2014 32nd IEEE International Conference on,
IEEE, 2014, pp. 264–269.

167

https://doi.org/10.1109/MICRO.2018.00029
https://doi.org/10.1109/MICRO.2018.00029

[113] M. Zhao, L. Shi, C. Yang, and C. J. Xue, “Leveling to the last mile: Near-zero-cost bit level
wear leveling for pcm-based main memory,” in Computer Design (ICCD), 2014 32nd IEEE Inter-
national Conference on, IEEE, 2014, pp. 16–21.

[114] C. Wang and S. Chattopadhyay, “Lawn: Boosting the performance of nvmm file system
through reducing write amplification,” in 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), IEEE, 2018, pp. 1–6.

[115] C.-C. Ho, Y.-M. Chang, Y.-H. Chang, H.-C. Chen, and T.-W. Kuo, “Write-aware memory
management for hybrid slc-mlc pcm memory systems,” ACM SIGAPP Applied Computing Review,
vol. 17, no. 2, pp. 16–26, 2017.

[116] T.-Y. Chen, Y.-H. Chang, S.-H. Chen, C.-C. Kuo, M.-C. Yang, H.-W. Wei, and W.-K. Shih,
“Wrjfs: A write-reduction journaling file system for byte-addressable nvram,” IEEE Transactions
on Computers, 2018.

[117] Maximizing write speed on the msp430™ fram, Accessed: 2018-10-14, Feb. 2015. [Online].
Available: http://www.ti.com/mcu/docs/ .

[118] A. Sinha and A. P. Chandrakasan, “Jouletrack-a web based tool for software energy profiling,”
in In Proceedings of the 38nd Annual Design Automation Conference, ser. DAC ’01, 2001.

[119] Msp430fr59xx mixed-signal microcontrollers (rev. f), Mar. 2017. [Online]. Available: http :
//www.ti.com/lit/ds/symlink/msp430fr5969.pdf .

[120] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &
transformation,” in Proceedings of the International Symposium on Code Generation and Opti-
mization, ser. CGO ’04, Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.

[121] M. Hicks, Thumbulator: Cycle accurate armv6-m instruction set simulator, 2016.

[122] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in Workload Charac-
terization, 2001. WWC-4. 2001 IEEE International Workshop on, IEEE, 2001, pp. 3–14.

[123] Q. Liu, X. Wu, L. Kittinger, M. Levy, and C. Jung, “Benchprime: Effective building of a
hybrid benchmark suite,” ACM Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, p. 179, 2017.

[124] P. Cronin, C. Yang, D. Zhou, K. Qiu, X. Shi, and Y. Liu, “’the danger of sleeping’, an explo-
ration of security in non-volatile processors,” in Hardware Oriented Security and Trust Symposium
(AsianHOST), 2017 Asian, IEEE, 2017, pp. 121–126.

168

http://www.ti.com/mcu/docs/
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf

[125] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan,
“Architecture exploration for ambient energy harvesting nonvolatile processors,” in Proceedings of
2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA),
ser. HPCA ’15, Burlingame, CA: IEEE Press, 2015, pp. 526–537.

[126] X. Zhang, C. Patterson, Y. Liu, C. Yang, C. J. Xue, and J. Hu, “Low overhead online check-
point for intermittently powered non-volatile fpgas,” in 2018 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), IEEE, 2018, pp. 238–244.

[127] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola, “Fast and energy-
efficient state checkpointing for intermittent computing,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 19, no. 6, pp. 1–27, 2020.

[128] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer Science
& Business Media, 2004.

[129] J. R. Smith, Wirelessly Powered Sensor Networks and Computational RFID. New York, NY,
USA: Springer, 2013.

[130] M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, “Real-time task scheduling on intermittently-
powered batteryless devices,” IEEE Internet of Things Journal, 2021.

[131] J. San Miguel, K. Ganesan, M. Badr, and N. E. Jerger, “The eh model: Analytical exploration
of energy-harvesting architectures,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 76–79,
2018.

[132] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk,
“A unified wcet analysis framework for multicore platforms,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 13, no. 4s, p. 124, 2014.

[133] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Precise micro-architectural model-
ing for wcet analysis via ai+ sat,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2013, pp. 87–96.

[134] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser, “Timing analysis
of a protected operating system kernel,” in 2011 IEEE 32nd Real-Time Systems Symposium, IEEE,
2011, pp. 339–348.

[135] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C.
Ferdinand, R. Heckmann, T. Mitra, et al., “The worst-case execution-time problem—overview of
methods and survey of tools,” ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, p. 36, 2008.

[136] T. Instruments, Msp430 family instruction set summary, 2006.

169

[137] J.-M. Chang and M. Pedram, “Register allocation and binding for low power,” in Proceedings
of the 32nd annual ACM/IEEE Design Automation Conference, ACM, 1995, pp. 29–35.

[138] T. Instruments, Msp430fr family of ultra low-power microcontrollers, 2015.

[139] Powercast hardware. [Online]. Available: http://www.powercastco.com. .

[140] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester, “Ink: Reac-
tive kernel for tiny batteryless sensors,” in Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, 2018, pp. 41–53.

[141] J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawełczak, and J. Hester, “Reliable time-
keeping for intermittent computing,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, 2020, pp. 53–67.

[142] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and P. Pawełczak, “Time-sensitive
intermittent computing meets legacy software,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems, 2020,
pp. 85–99.

[143] H. G. Lee and N. Chang, “Powering the iot: Storage-less and converter-less energy harvest-
ing,” in Design Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific, IEEE, 2015,
pp. 124–129.

[144] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi, G. V. Mer-
rett, and L. Benini, “Hibernus++: A self-calibrating and adaptive system for transiently-powered
embedded devices,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 35, no. 12, pp. 1968–1980, 2016.

[145] Y. Wang, Y. Liu, C. Wang, Z. Li, X. Sheng, H. G. Lee, N. Chang, and H. Yang, “Storage-less
and converter-less photovoltaic energy harvesting with maximum power point tracking for inter-
net of things,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 2, pp. 173–186, 2016.

[146] Y. Xie, EMERGING MEMORY TECHNOLOGIES. Springer, 2016.

[147] S. Mehta and J. Torrellas, “Wearcore: A core for wearable workloads?” In Parallel Architec-
ture and Compilation Techniques (PACT), 2016 International Conference on, IEEE, 2016, pp. 153–
164.

[148] Arm research starter kit: System modeling using gem5, Accessed: 2018-11-18, Jul. 2017.

[149] C. Wang and Y. Wu, “Tso atomicity: Efficient hardware primitive for tso-preserving region
optimizations,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 509–520, 2013.

170

http://www.powercastco.com.

[150] E. Gunadi and M. H. Lipasti, “A position-insensitive finished store buffer,” in Computer De-
sign, 2007. ICCD 2007. 25th International Conference on, IEEE, 2007, pp. 105–112.

[151] L. O. Andersen, “Program analysis and specialization for the c programming language,” Ph.D.
dissertation, University of Cophenhagen, 1994.

[152] N. Vedula, A. Shriraman, S. Kumar, and W. N. Sumner, “Nachos: Software-driven hardware-
assisted memory disambiguation for accelerators,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2018, pp. 710–723.

[153] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in llvm,” in Proceedings of
the 25th International Conference on Compiler Construction, ACM, 2016, pp. 265–266.

[154] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and area
model,” 2001.

[155] T. Instruments, Msp430fr59xx mixed-signal microcontrollers, 2017.

[156] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, Aug. 2011.

[157] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for evaluating and
synthesizing multimedia and communicatons systems,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO 30, Research Triangle Park, North
Carolina, USA: IEEE Computer Society, 1997, pp. 330–335, ISBN: 0-8186-7977-8. [Online].
Available: http://dl.acm.org/citation.cfm?id=266800.266832 .

[158] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y. Xie, “Over-
coming the challenges of crossbar resistive memory architectures,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), IEEE, 2015, pp. 476–488.

[159] Q. Liu and C. Jung, “Lightweight hardware support for transparent consistency-aware check-
pointing in intermittent energy-harvesting systems,” in Non-Volatile Memory Systems and Appli-
cations Symposium (NVMSA), 2016 5th, IEEE, 2016, pp. 1–6.

[160] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient checkpointing of loop-based
codes for non-volatile main memory,” in 2017 26th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), IEEE, 2017, pp. 318–329.

[161] P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi, “Reducing read latency of phase change
memory via early read and turbo read,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2015, pp. 309–319.

171

http://dl.acm.org/citation.cfm?id=266800.266832

[162] X. Hu, M. Ogleari, J. Zhao, S. Li, A. Basak, and Y. Xie, “Persistence parallelism optimiza-
tion: A holistic approach from memory bus to rdma network,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018.

[163] S. Priya and D. J. Inman, Energy harvesting technologies. Springer, 2009, vol. 21.

[164] J. Hester, K. Storer, L. Sitanayah, and J. Sorber, “Towards a language and runtime for intermittently-
powered devices,” sleep, vol. 9, p. 10, 2016.

[165] E. Nwafor, A. Campbell, D. Hill, and G. Bloom, “Towards a provenance collection framework
for internet of things devices,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Comput-
ing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CB-
DCom/IOP/SCI), IEEE, 2017, pp. 1–6.

[166] S. Nirjon, “Lifelong learning on harvested energy,” in Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, ACM, 2018, pp. 500–501.

[167] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial internet of things:
Challenges, opportunities, and directions,” IEEE Transactions on Industrial Informatics, 2018.

[168] M. A. De Kruijf, “Compiler construction of idempotent regions and applications in architec-
ture design,” Ph.D. dissertation, Madison, WI, USA, 2012.

[169] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback-a technique for improving
bandwidth utilization,” in Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, 2000, pp. 11–21.

[170] M. Afanasov, N. A. Bhatti, D. Campagna, G. Caslini, F. M. Centonze, K. Dolui, A. Maioli, E.
Barone, M. H. Alizai, J. H. Siddiqui, et al., “Battery-less zero-maintenance embedded sensing at
the mithræum of circus maximus,” in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020, pp. 368–381.

[171] C.-K. Kang, C.-H. Lin, P.-C. Hsiu, and M.-S. Chen, “Homerun: Hw/sw co-design for program
atomicity on self-powered intermittent systems,” in Proceedings of the International Symposium
on Low Power Electronics and Design, 2018, pp. 1–6.

[172] M. Rottleuthner, T. C. Schmidt, and M. Wählisch, “Eco: A hardware-software co-design for in
situ power measurement on low-end iot systems,” in Proceedings of the 7th International Workshop
on Energy Harvesting & Energy-Neutral Sensing Systems, 2019, pp. 22–28.

[173] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele, “Measurement and
validation of energy harvesting iot devices,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, IEEE, 2017, pp. 1159–1164.

172

[174] W.-M. Chen, T.-S. Cheng, P.-C. Hsiu, and T.-W. Kuo, “Value-based task scheduling for non-
volatile processor-based embedded devices,” in 2016 IEEE Real-Time Systems Symposium (RTSS),
IEEE, 2016, pp. 247–256.

[175] D. B. Murray and J. G. Hayes, “Cycle testing of supercapacitors for long-life robust applica-
tions,” IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2505–2516, 2014.

[176] T. Hardin, R. Scott, P. Proctor, J. Hester, J. Sorber, and D. Kotz, “Application memory isola-
tion on {ultra-low-power}{mcus},” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018.

[177] G. Berthou, K. Marquet, T. Risset, and G. Salagnac, “Mpu-based incremental checkpointing
for transiently-powered systems,” in 2020 23rd Euromicro Conference on Digital System Design
(DSD), IEEE, 2020, pp. 89–96.

[178] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson, and K. Fu, “{tardis}:
Time and remanence decay in {sram} to implement secure protocols on embedded devices without
clocks,” in Presented as part of the 21st {USENIX} Security Symposium ({USENIX} Security 12),
2012, pp. 221–236.

173

VITA

Jongouk Choi received his Master of Science (MS) and Bachelor of Science (BS) in Com-

puter Science from Kentucky State University. His primary interests are computer architecture and

compiler.

174

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Challenges of Energy Harvesting Systems
	Run-time Overhead of Recovery Solutions
	Reliability Issue of Recovery Solutions

	Thesis Statement
	Contributions
	Organization

	BACKGROUND AND RELATED WORK
	Energy Harvesting System Platform
	Software-based Approaches for Power Failure Recovery
	Rollback Recovery
	Challenge in Software-based Recovery Solutions

	Hardware-based Approaches for Power Failure Recovery
	Roll-forward Recovery
	Challenge in Hardware-based Recovery Solutions

	Reliability Problem
	Capacitor Error Experiments
	Capacitor Recovery

	ELASTIN: ACHIEVING STAGNATION-FREE INTERMITTENT COMPUTATION WITH BOUNDARY-FREE WITH BOUNDARY-FREE ADAPTIVE EXECUTION
	Introduction
	Background and Challenges
	Curse of Stagnation
	Lack of Checkpoint Adaptation

	Design
	Watchdog Timer Based Checkpointing of Volatile Registers
	Page Protection Based Backup of Nonvolatile Memory
	Adaptive Execution
	Challenges in Forward Progress Guarantee
	Stagnation-free Adaptation Solution

	Implementation
	Register Checkpointing, Permission Clearing Protocol
	Memory Organization
	Invariant Checking for Capacitor Malfunction Detection
	DMA-Based Fast Page Copy
	Page Size Adaptation Range
	Worst Case Power Consuming Time

	Evaluation
	Intermittent Computing Platform
	Execution Time Overhead Analysis with No Power Failure
	Execution Time Overhead Analysis with Power Outages
	Energy Consumption Breakdown across Power Outages
	Exception Handling for Capacitor Malfunction

	Summary

	ROCKCLIMB: COMPILER-DIRECTED HIGH-PERFORMANCE INTERMITTENT COMPUTATION WITH POWER FAILURE IMMUNITY
	Introduction
	Background and Challenges
	Expensive Centralized Checkpointing

	Design
	PFI: Power Failure Immunity
	RockClimb: Never Fail Whatsoever!

	Implementation
	SAT Calculation
	WCET Analysis
	SAT-Driven Region Formation
	Discussion

	Optimization
	Securing Full Capacitance for Rollback-Free Computation
	Compiler Optimization: Distributed Checkpointing

	Evaluation
	Experimental Setting
	Stagnation Analysis
	Sensitivity Analysis

	Summary

	COSPEC: COMPILER-DIRECTED SPECULATIVE INTERMITTENT COMPUTATION
	Introduction
	Background and Challenges
	Overview
	CoSpec Hardware Design
	CoSpec Compiler
	Architecture/Compiler Co-design

	Implementation
	Instruction Level Parallelism
	Stagnation-Free Intermittent Computation
	Energy-Efficient Store Buffer Search
	Direct Memory Access (DMA)

	Evaluation
	Hardware Cost Analysis
	Execution Time Analysis with No Outage
	Execution Time Analysis with Outages
	Energy Breakdown with Outages

	Summary

	WRITE-LIGHT CACHE: LIGHTWEIGHT CRASH CONSISTENT CACHE FOR ENERGY HARVESTING SYSTEMS
	Introduction
	Background and Challenges
	Cache and Write Policy
	Crash Consistency with a Cache

	Design
	Overview
	Crash Consistency with WLCache
	Discussion

	Adaptive Management
	Hardware and Protocols
	DirtyQueue Insertion Protocol
	DirtyQueue Replacement Policy
	DirtyQueue Replacement Protocol
	Cache Replacement Policy
	DirtyQueue Threshold Management

	Evaluation
	Experimental Settings
	Hardware Cost
	Performance Analysis
	DirtyQueue Replacement Policy
	Sensitivity Analysis
	Adaptive Maxline/Waterline Threshold Management
	Energy Consumption Analysis

	Summary

	CAPOS: CAPACITOR ERROR RESILIENCE FOR ENERGY HARVESTING SYSTEMS
	Introduction
	Background and Challenges
	Rollback Solutions
	Periodic Capacitor Isolation
	Voltage Margin Solution

	Design
	CapOS in Normal Mode
	CapOS in Safe Mode
	CapOS Mode Change

	Implementation
	JIT checkpoint with Duplicated PC
	Timer handler
	Reboot process

	Evaluation
	Experimental Setting
	Energy Harvesting System Lifespan Analysis
	Performance Analysis
	Sensitivity Analysis

	Summary

	CONCLUSION
	REFERENCES
	VITA

