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PREFACE

Coding theory and cryptography (in its modern form) were conceived by Claude Shannon

in the late 1940’s [ 238 ,  239 ], enjoying a deep and interconnected history since their conception.

Constructions of both coding-theoretic objects and cryptographic objects are often inspired

by, make explicit use of, or make implicit use of each other. Both fields continue to have a

mutually beneficial relationship. This is particularly true in my various research projects,

which has inspired me to write this dissertation. The goal of this dissertation is to examine

new ways in which coding theory and cryptography compose with each other—both explicitly

and implicitly. Towards this goal, in this dissertation I examine the bulk of my prior research,

listed here [ 13 ,  45 ,  46 ,  48 ,  49 ,  51 ,  52 ]. Many proofs and preliminary sections are taken from

my prior works (more or less) verbatim. However, much of my introductory treatment of these

works has a shifted focus towards their relations with coding theory or cryptography, and,

as such, differ from the original works in these regards. All copyrights for these respective

works belong to their respective publishers.

I would also like to specifically acknowledge the works of [ 48 ,  49 ]. For the work of [  49 ], I

have received permission from fellow co-author and student Hai Nguyen to use this work as

part of my dissertation, and acknowledge that he may use this work as part of his dissertation

as well. For the work of [ 48 ], I have received permission from fellow co-author and student

Minshen Zhu to use this work as part of my dissertation, and acknowledge that he may use

this work as part of his dissertation as well.

5



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

2 GENERAL PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

2.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

2.2 Group and Field Theory Preliminaries . . . . . . . . . . . . . . . . . . . . .  22 

2.3 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.4 Fourier Analysis over Finite Fields . . . . . . . . . . . . . . . . . . . . . . .  26 

2.5 Basic Notions of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

2.6 Small-Bias Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

2.7 General Coding Theory Preliminaries . . . . . . . . . . . . . . . . . . . . . .  29 

2.7.1 Locally Decodable Codes . . . . . . . . . . . . . . . . . . . . . . . . .  31 

I COMPOSING CODING THEORY CONSTRUCTIONS AND
TECHNIQUES WITH CRYPTOGRAPHIC PRIMITIVES  32 

3 CORRELATION EXTRACTORS: CONSTRUCTING NEW ERROR-CORRECTING

CODES FOR CRYPTOGRAPHIC PRIMITIVES . . . . . . . . . . . . . . . . . .  33 

3.1 Correlation Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

3.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.3.1 Constructing our ROLE(F)-to-ROLE(F) Correlation Extractor. . . . .  41 

3.3.2 Obtaining  Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . .  42 

3.3.3 Obtaining  Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3.4 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

6



3.4.1 OT Combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

3.5 Correlation Extractor Preliminaries . . . . . . . . . . . . . . . . . . . . . . .  48 

3.5.1 Non-standard Notation . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

3.5.2 Functionalities and Correlations . . . . . . . . . . . . . . . . . . . . .  48 

3.5.3 Correlation Extractors . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

3.5.4 Distributions over Linear Codes . . . . . . . . . . . . . . . . . . . . .  50 

3.6 Small-bias Distributions of Linear Codes with Erasure Recovery . . . . . . .  51 

3.6.1 Our Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

3.7 Correlation Extractor Constructions . . . . . . . . . . . . . . . . . . . . . . .  52 

3.7.1 ROLE(F)-to-ROLE(F) Correlation Extractor . . . . . . . . . . . . . .  53 

3.7.2 Correlation Extractor for ROLE(F) (  Theorem 3.2.2 ) . . . . . . . . . .  55 

3.7.3 Correlation Extractor for ROT ( Theorem 3.2.1 ) . . . . . . . . . . . .  56 

3.A Correlation Extractors: Deferred Proofs . . . . . . . . . . . . . . . . . . . . .  59 

3.A.1 Proof of  Theorem 3.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.A.2 Proof of  Lemma 3.7.3  . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

4 SUCCINCT (NON-)INTERACTIVE ARGUMENTS OF KNOWLEDGE: USING

CODING THEORY TECHNIQUES TO PROVE SOUNDNESS . . . . . . . . . .  68 

4.1 Succinct (Non-)Interactive Arguments for NP . . . . . . . . . . . . . . . . .  69 

4.1.1 Towards Space Efficiency . . . . . . . . . . . . . . . . . . . . . . . . .  71 

4.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

4.2.1 Streamable Polynomial Commitments from the Discrete-log Assump-

tion in the Random Oracle Model . . . . . . . . . . . . . . . . . . . .  73 

4.2.2 Streamable Polynomial Commitments from the Hidden Order Assumption  74 

4.2.3 From Streamable Polynomial Commitments to Complexity Preserving

Zero-Knowledge Arguments . . . . . . . . . . . . . . . . . . . . . . .  75 

4.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

4.3.1 The Streaming Model for Polynomial Commitments . . . . . . . . . .  76 

4.3.2 Overview of  Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . .  79 

Commitment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

7



Bulletproofs Evaluation Phase . . . . . . . . . . . . . . . . . . . . . .  79 

Obstacles to Space-Efficiency . . . . . . . . . . . . . . . . . . . . . .  81 

Our Evaluation Phase: Even-Odd Folding . . . . . . . . . . . . . . .  85 

Space-Efficiency of Even-Odd Folding . . . . . . . . . . . . . . . . . .  86 

4.3.3 Overview of  Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . .  88 

Commitment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

Evaluation Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

Space-Efficient Implementation . . . . . . . . . . . . . . . . . . . . .  91 

Verifier Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 

4.3.4 Obtaining Space-Efficient Succinct Arguments . . . . . . . . . . . . .  92 

Implicit Use of Coding Theory . . . . . . . . . . . . . . . . . . . . . .  93 

4.4 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

4.4.1 Polynomial Commitments . . . . . . . . . . . . . . . . . . . . . . . .  93 

4.4.2 Privately Verifiable Proofs . . . . . . . . . . . . . . . . . . . . . . . .  94 

4.4.3 Proofs by Recursive Composition . . . . . . . . . . . . . . . . . . . .  94 

4.4.4 Multi-Prover Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

4.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

4.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

4.5.2 Multilinear Polynomials . . . . . . . . . . . . . . . . . . . . . . . . .  95 

Multilinear Polynomial Notation . . . . . . . . . . . . . . . . . . . .  96 

Streaming Model for Multilinear Polynomials . . . . . . . . . . . . .  96 

4.5.3 Assumptions on Groups . . . . . . . . . . . . . . . . . . . . . . . . .  97 

4.6 Streamable Polynomial Commitment Scheme for Multilinear Polynomials from

Discrete-log in the Random Oracle Model . . . . . . . . . . . . . . . . . . .  98 

4.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

Interactive Arguments of Knowledge in the Random Oracle Model . .  98 

Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

Multilinear Polynomial Commitment Scheme in the Random Oracle

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

8



4.6.2 Space-Efficient Commitment for Multilinear Polynomials . . . . . . .  103 

Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

4.6.3 Correctness and Security . . . . . . . . . . . . . . . . . . . . . . . . .  106 

4.6.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

Relating Y (k) with Y (0). . . . . . . . . . . . . . . . . . . . . . . . . .  108 

Relating Z(k) with Z(0). . . . . . . . . . . . . . . . . . . . . . . . . .  108 

Relating g(k) with g(0). . . . . . . . . . . . . . . . . . . . . . . . . . .  109 

Commitment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Evaluating ML(Y, ζ) . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Prover Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Computing γ(k)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Computing C(k)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

Verifier Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

4.7 Streamable Polynomial Commitment Scheme for Multilinear Polynomials from

Groups of Unknown Order . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

4.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Non-standard Notation . . . . . . . . . . . . . . . . . . . . . .  113 

Interactive Games and Proof Systems . . . . . . . . . . . . . . . . . .  113 

Multilinear Polynomial Commitment Scheme . . . . . . . . . . . . . .  115 

4.7.2 Multilinear Polynomial Commitment Scheme in Hidden Order Groups  117 

Encoding Multilinear Polynomials as an Integer . . . . . . . . . . . .  117 

Encoding Bounded Integer Sequences . . . . . . . . . . . . . .  118 

Encoding Y . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

Setup(1λ, p, 1n) . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

Com(pp,Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

Open(pp, C,Y ,Z) . . . . . . . . . . . . . . . . . . . . . . . . .  120 

Eval(pp, C, ζ, γ;Y ,Z) . . . . . . . . . . . . . . . . . . . . . . .  120 

9



4.7.3 Space-Efficient Multilinear Polynomial Commitment Scheme in the

Streaming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

4.7.4 Space-Efficient Implementation Overview . . . . . . . . . . . . . . . .  124 

Space-Efficient Implementation of Com . . . . . . . . . . . . . . . . .  126 

Computing ML(Y , ζ) . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

Space-Efficient Implementation of Eval . . . . . . . . . . . . . . . . .  127 

Efficiency of PoE. . . . . . . . . . . . . . . . . . . . . . . . . .  132 

Computing the Final Committer Message Efficiently. . . . . . . . . .  132 

4.7.5 Receiver Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 

Proof of  Theorem 4.7.7 . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

4.7.6 Proof-of-Exponentiation in Arbitrary Groups . . . . . . . . . . . . . .  134 

Our PoE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

4.8 Obtaining Space-Efficient Arguments for NP . . . . . . . . . . . . . . . . . .  139 

4.8.1 RAMs to Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

4.8.2 Circuits to Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

4.8.3 Polynomial IOP Construction . . . . . . . . . . . . . . . . . . . . . .  143 

Verifier Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

Prover Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

4.8.4 Time- and Space-Efficient Arguments for RAM . . . . . . . . . . . .  146 

4.8.5 Obtaining  Theorems 4.2.3 and  4.2.4 . . . . . . . . . . . . . . . . . . .  150 

Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 

Non-Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

II COMPOSING CRYPTOGRAPHIC PRIMITIVES AND TECH-
NIQUES WITH CODING THEORY CONSTRUCTIONS  152 

5 COMPILING HAMMING LOCALLY DECODABLE CODES TO INSERTION-

DELETION LOCALLY DECODABLE CODES: USING CRYPTOGRAPHIC

THINKING TO SIMPLIFY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . .  153 

10



5.1 Locally Decodable Codes for Insertion-Deletion Errors . . . . . . . . . . . . .  154 

5.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

5.2.1 Extension to Private and Resource-Bounded Locally Decodable Codes  156 

5.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158 

5.3.1 Searching a Nearly Sorted Array . . . . . . . . . . . . . . . . . . . . .  158 

5.3.2 The Encoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  159 

5.3.3 The Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  159 

5.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 

5.3.5 Comparison of Techniques . . . . . . . . . . . . . . . . . . . . . . . .  160 

5.3.6 Extending the Compiler to the Private and Resource-Bounded Setting  161 

5.4 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 

5.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 

5.6 Insertion-Deletion LDCs from Hamming LDCs . . . . . . . . . . . . . . . . .  166 

5.6.1 Encoding and Decoding Algorithms . . . . . . . . . . . . . . . . . . .  167 

The Encoder (Enc) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

The LDC Decoder (Dec) . . . . . . . . . . . . . . . . . . . . . . . . .  168 

5.6.2 Block Decomposition of Corrupted Codewords . . . . . . . . . . . . .  170 

5.6.3 Outer Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

5.6.4 Noisy Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

5.6.5 Block Decode Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  179 

Buff-Find . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 

5.6.6 Parameter Setting and Proof of  Theorem 5.6.1 . . . . . . . . . . . . .  184 

5.7 Private/Resource-Bounded Insertion-Deletion LDCs from Private/Resource-

Bounded Hamming LDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186 

5.7.1 Abstraction of  Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . .  186 

5.7.2 One-Time Private InsDel LDCs . . . . . . . . . . . . . . . . . . . . .  187 

5.7.3 Resource-Bounded InsDel LDCs . . . . . . . . . . . . . . . . . . . . .  189 

5.A Hamming-to-InsDel Locally Decodable Code Compiler . . . . . . . . . . . .  190 

5.B Proof of  Theorem 5.6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190 

11



6 RESOURCE-BOUNDED LOCALLY DECODABLE CODES: USING CRYPTO-

GRAPHIC PUZZLES FOR CONSTRUCTIONS WITHOUT RANDOM ORACLES  196 

6.1 Resource-Bounded Locally Decodable Codes . . . . . . . . . . . . . . . . . .  198 

6.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 

6.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 

6.4 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201 

6.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202 

6.6 Resource-Bounded Locally Decodable Codes from Cryptographic Puzzles . .  205 

6.6.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

6.6.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

7 COMPUTATIONALLY RELAXED LOCALLY DECODABLE CODES FOR EDIT

ERRORS: USING DIGITAL SIGNATURES FOR DIRECT CONSTRUCTIONS .  211 

7.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 

7.1.1 Extension to Insertion-Deletion Errors . . . . . . . . . . . . . . . . .  216 

7.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 

7.2.1 Hamming crLDC Construction . . . . . . . . . . . . . . . . . . . . . .  218 

The Hamming Encoder EncH,λ. . . . . . . . . . . . . . . . . . .  218 

Strawman Decoding Algorithm. . . . . . . . . . . . . . . . . .  219 

The Hamming Decoder DecH,λ. . . . . . . . . . . . . . . . . . .  220 

Hamming crLDC Security Proof Overview . . . . . . . . . . . . . . .  222 

7.2.2 InsDel crLDC Construction . . . . . . . . . . . . . . . . . . . . . . . .  223 

Challenges to Decoding Insertion-Deletion Errors. . . . . . . .  223 

Noisy Binary Search Overview. . . . . . . . . . . . . . . . . . .  223 

The Encoder EncI,λ. . . . . . . . . . . . . . . . . . . . . . . . .  225 

The Decoder DecI,λ. . . . . . . . . . . . . . . . . . . . . . . . .  225 

InsDel crLDC Security Proof Overview . . . . . . . . . . . . . . . . .  227 

7.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229 

7.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 

7.4 Proof of  Theorem 7.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 

12



7.5 Proof of  Theorem 7.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 

13



LIST OF FIGURES

3.1 Leakage model for correlation extractors. . . . . . . . . . . . . . . . . . . . . . .  50 

3.2 Construction of small-biased linear code distributions. . . . . . . . . . . . . . . .  52 

3.3 Leakage model for our ROLE(F)-to-ROLE(F) correlation extractor. . . . . . . . .  53 

3.4 Our ROLE(F)-to-ROLE(F) Correlation Extractor. . . . . . . . . . . . . . . . . .  54 

3.5 Our correlation extractor for ROLE(F). . . . . . . . . . . . . . . . . . . . . . . .  57 

3.6 Perfectly secure protocol for ROLE(F) in ROLEℓ-hybrid. . . . . . . . . . . . . . .  58 

3.7 Our correlation extractor for ROLEn/2. . . . . . . . . . . . . . . . . . . . . . . .  67 

4.1 Example of the recursion tree induced by the Bulletproofs two-move reduction
for n = 3, N = 23, and the polynomial Q ∈ FN . A child node is obtained by
taking a linear combination of the parent nodes. In particular, left edges indicate
multiplication of the parent by α and right edges indicate multiplication of the
parent by α−1, where α is the receiver challenge sent during the current round of
recursion. For example, the value Q′′(0) depends on all nodes of the tree with a
cross-pattern background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

4.2 Example of the recursion tree induced by the Bulletproofs two-move reduction
for n = 3, N = 23, and the generators (g1, . . . , gN). A child node is obtained by
taking a linear combination of the parent nodes. In particular, left edges indicate
exponentiation of the parent by α−1 and right edges indicate exponentiation of
the parent by α, where α is the receiver challenge sent during the current round
of recursion. For example, the value g′′1 depends on all nodes of the tree with a
cross-pattern background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

4.3 Example of the recursion tree induced by our two-move reduction for n = 3,
N = 23, and the polynomial Q ∈ FN . A child node is obtained by taking a linear
combination of the parent nodes. In particular, left edges indicate multiplication
of the parent by α and right edges indicate multiplication of the parent by α−1,
where α is the receiver challenge sent during the current round of recursion. For
example, the value Q′′(0) depends on all nodes of the tree with a cross-pattern
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.4 Eval protocol for the commitment scheme from  Section 4.6.2 . . . . . . . . . . . .  105 

4.5 Algorithms for computing z
(k)
b and g

(k)
b . In both algorithms c ∈ {0, 1}n−k and

α = (α(0), . . . , α(k−1)), where χ(b, ζ) = ∏︁n
i=1 χ(bi, ζi) for b = c◦a, and coeff(α, c) =

α · c+ α−1 · (1− c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109 

4.6 Space-Efficient Prover implementation. . . . . . . . . . . . . . . . . . . . . . . .  111 

4.7 Description of EvalReduce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

4.8 Space-Efficient computation of recursive values γ′0, γ′1. . . . . . . . . . . . . . . .  128 

14



4.9 Space-Efficient computation of recursive values C ′0, C ′1. . . . . . . . . . . . . . .  130 

4.10 Proof-of-Exponentiation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

4.11 Formal description of our polynomial interactive oracle proof for time-T space-S
RAM computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

5.1 Our Noisy Binary Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  176 

5.2 Our Block Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 

5.3 Our Buffer Finding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 

6.1 Definition of priv-LDC-Sec-Game, which defines the security of the a one-time
private Hamming LDC against the class C of algorithms. . . . . . . . . . . . . .  203 

6.2 LDC-Sec-Game defining the interaction between an attacker and an honest party.  204 

7.1 Encoding algorithm EncH,λ(x) for Hamming errors. . . . . . . . . . . . . . . . .  219 

7.2 Decoding algorithm Dec˜︁CH,λ(i) for Hamming errors. . . . . . . . . . . . . . . . . .  221 

7.3 Encoding algorithm EncI,λ(x) for insertion-deletion errors. . . . . . . . . . . . . .  226 

7.4 Decoding algorithm Dec˜︁CI,λ(i) for insertion-deletion errors. . . . . . . . . . . . . .  228 

7.5 Description of the signature forgery experiment Sig-forge. . . . . . . . . . . . . .  233 

15



ABSTRACT

We examine new ways in which coding theory and cryptography continue to be composed

together, and show that the composition of these two fields yield new constructions in the areas

of Secure Computation Protocols, Succinct Interactive Arguments, and Locally Decodable

Codes. This dissertation is a continuation of several decades of research in composing coding

theory and cryptography; examples include secret sharing, encryption schemes, randomness

extraction, pseudo-random number generation, and the PCP theorem, to name a few.

In  Part I  of this dissertation, we examine the composition of coding theory with cryp-

tography, explicitly and implicitly. On the explicit side, we construct a new family of linear

error-correcting codes, based on algebraic geometric codes, and use this family to construct

new correlation extractors (Ishai et al., FOCS 2009). Correlation extractors are two-party

secure computation protocols for distilling samples of a leaky correlation (e.g., pre-processed

secret shares that have been exposed to side-channel attacks) into secure and fresh shares of

another correlation (e.g., shares of oblivious transfer). Our correlation extractors are (nearly)

optimal in all parameters. On the implicit side, we use coding theoretic arguments to show

the security of succinct interactive arguments (Micali, FOCS 1994). Succinct interactive

arguments are a restriction of interactive proofs (Goldwasser, Micali, Rackoff, STOC 1985)

for which security only holds against computationally bounded provers (i.e., probabilistic

polynomial time), and where the proofs are sub-linear in the size of the statement being

proven. Our new succinct interactive arguments are the first public-coin, zero-knowledge

arguments with time and space efficient provers: we give two protocols where any NP state-

ment that is verifiable by a time-T space-S RAM program in is provable time ˜︁O(T ) and

space S · polylog(T ).

In  Part II  of this dissertation, we examine the composition of cryptography with coding

theory, again explicitly and implicitly, focusing specifically on locally decodable codes (Katz

and Trevisan, STOC 2000). Locally decodable codes, or LDCs, are error-correcting codes

with super-efficient probabilistic decoding procedures that allow for decoding individual

symbols of the encoded message, without decoding the entire codeword. On the implicit side,

we utilize cryptographic analysis tools to give a conceptually simpler proof of the so-called
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“Hamming-to-InsDel” compiler (Ostrovsky and Paskin-Cherniavsky, ITS 2015). This compiler

transforms any Hamming LDC (i.e., a code that is resilient to bit-flip errors) to another LDC

that is resilient to the broad class of insertion-deletion errors, approximately preserving the

rate and error-tolerance of the code at the cost of a poly-logarithmic increase in the query

complexity. We further extend this compiler to both the private LDC setting (Ostrovsky,

Pandey, and Sahai, ICALP 2007), where the encoder and decoder are assumed to share

a secret key unknown to the adversarial channel, and the resource-bounded LDC setting

(Blocki, Kulkarni, and Zhou, ITC 2020), where the adversarial channel is assumed to be

resource constrained. On the explicit side, we utilize two cryptographic primitives to give new

constructions of alternative notions of LDCs. First, we use cryptographic puzzles (Bitansky

et al., ITCS 2016) to construct resource-bounded Hamming LDCs in the standard model

without random oracles, answering an open question of Blocki, Kulkarni, and Zhou (ITC

2020); we then naturally extend these LDCs to the InsDel setting via our previously mentioned

compiler. Second, we use digital signature schemes to directly construct computationally

relaxed LDCs (Blocki et al., ITIT 2021) that are resilient to both Hamming errors and

insertion-deletion errors. Computationally relaxed LDCs allow the decoder to output an

extra symbol signifying it does not know the correct output and are only secure against

probabilistic polynomial time adversarial channels. Our construction is conceptually simpler

than the construction of Blocki et al. (ITIT 2021) and does not require a trusted setup for

seeding a collision-resistant hash function.
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1. INTRODUCTION

Coding Theory and Cryptography are two subsets of computer science that seek to understand

different aspects of the fundamental problem of (electronic) communication through various

communication channels. Coding theory seeks to ensure that messages can be encoded in

some manner and later decoded correctly in a variety of scenarios. For example, one goal

is to encode messages such that even if random and/or adversarial errors are introduced,

one can still decode the original message, so long as a bounded number of errors occur (i.e.,

error-correction); another goal is to encode messages as smaller messages for storage and

then expand to the original message as needed (i.e., data compression). Generally speaking,

Hamming errors, or bit-flip errors, are most often considered in the context of error-correction.

In contrast (though not necessarily mutually exclusive from coding theory), cryptography at

its core seeks to ensure that messages are kept private from unwanted parties. For example,

two parties may wish to secretly communicate without any other parties knowing the contents

of their communication (i.e., encryption). Fundamentally, both fields handle the transmission

of data across communication channels where different properties are desirable, such as

worst-case error-tolerance or privacy of the communication.

Both coding theory and cryptography have long and studied histories. Cryptography ar-

guably has existed since the times of the ancient Greeks in the form of simple ciphers—encoding

schemes that, essentially, “shuffle” letters according to some pattern(s) (i.e., according to the

cipher)—with the oldest known recorded cipher, the Caesar Cipher, dating back to 110 CE.

More formal treatment of cryptography can be seen towards the end of the 19th century with

Kerckhoffs [ 171 ,  172 ], and the formal introduction of the one-time pad by Vernam in 1917

[ 253 ] (first described by Miller in 1882 [ 26 ]). Many attribute Claude Shannon as the founder

of both coding theory [ 239 ] and modern cryptography [  238 ]. Both of Shannon’s works have

served as the basis for both coding theory and modern cryptography to this day, introducing

rigorous definitions and problems to both fields. Since their inception, both areas continue

to expand and evolve to tackle new, challenging, and exciting problems beyond what were

originally studied.
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Unsurprisingly, coding theory and cryptography evolved together over the years. Even at

their inception, Shannon, with his introduction of information-theoretic security (i.e., security

in the presence of computationally unbounded adversaries), proved that the one-time pad was

a perfectly secure (one-time) communication method [  238 ,  239 ]. Ever since, coding theory and

cryptography continue to mutually benefit each other through composition, both explicitly and

implicitly. Coding theory explicitly composed in cryptography has an innumerable number

of success stories, including secret-sharing [ 44 ,  198 ,  202 ,  237 ], digital signature schemes [ 18 ,

 19 ,  96 ,  98 ,  113 ,  212 ,  224 ], public-key cryptography [ 201 ,  212 ], succinct (non-)interactive

arguments [ 125 ,  175 ,  206 ], randomness extraction [ 1 ,  147 ,  235 ] and pseudo-random number

generation [ 163 ,  235 ,  240 ,  246 ,  249 ,  250 ], resilient functions [ 38 ,  93 ], and secure multi-party

computation [ 129 ,  174 ,  176 ,  263 ]. Through implicit compositions, coding theoretic arguments

appear in many results that are related to the seminal PCP theorem [  15 ,  16 ,  22 ,  114 ,  216 ]

such as (multi-prover) interactive proofs [ 20 ,  27 ], succinct (non-)interactive arguments [  175 ,

 206 ], and interactive oracle proofs [ 35 ,  226 ], to name a few. The PCP theorem itself can

be viewed as leveraging properties of locally decodable codes, which themselves have strong

cryptographic influences [  21 ,  22 ,  63 ,  128 ,  189 ,  192 ,  236 ,  257 ].

The composition of cryptography in coding theory has many success stories as well.

Locally decodable codes are a prominent example of this strong connection. Such codes have

strong cryptographic motivations and influences, such as hard-core bits [ 128 ], program testing

[ 22 ,  63 ,  189 ], arithmetization [ 21 ,  22 ,  192 ,  236 ], and private information retrieval [ 12 ,  25 ,  92 ,

 127 ,  170 ,  173 ]. For example, the proof of the Goldreich-Levin Theorem [  128 ] immediately

yields a local list decoder for the Walsh-Hadamard code [  17 ]. Various alternative models

for locally decodable codes (and general error-correcting codes) with roots in cryptography

have been studied, such as private-key codes [ 46 ,  214 ], public-key codes [  155 ,  156 ], and codes

secure against computationally bounded adversaries [  60 ,  146 ,  188 ,  207 ,  234 ], all composing

cryptography in coding theory explicitly. Similarly, the implicit use of cryptography is rampant

throughout coding theory (and information theory in general) in the form of cryptographic

(or adversarial) thinking. For example, constructing codes that protect against adversarial

errors versus random errors [ 239 ], and the use of cryptographic thinking in various analyses

[ 46 ,  48 ,  60 ,  146 ,  188 ,  207 ,  214 ,  234 ].
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1.1 Our Contribution

In this dissertation, we examine new ways in which coding theory and cryptography

continue to be composed together, and show that the composition of these two fields yield new

constructions in the areas of Secure Computation Protocols, Succinct Interactive Arguments,

and Locally Decodable Codes. Our examination falls under two categories. The first category

( Part I ) examines the composition coding theory in cryptography, explicitly and implicitly.

On the explicit side, in  Chapter 3 we study how coding theory is explicitly used in the context

of secure two-party computation [ 129 ,  174 ,  176 ]—one of the hardest cases of secure multi-party

computation since there is an absence of any honest majority. Coding theory is often used

to great success in secure multi-party computation, and secure two-party computation is no

exception. On the implicit side, in  Chapter 4 we study how coding theory is used implicitly in

the context of interactive arguments [ 125 ,  175 ,  206 ]—a relaxation of interactive proofs [ 132 ]

where the (adversarial) prover is assumed to be computationally bounded (i.e., probabilistic

polynomial time). Here, it is often the case that the security of the argument is reduced (in

some way) to the PCP theorem, and hence relies implicitly on properties of the underlying

code representing the PCP proof string.

The second category ( Part II ) examines the composition of cryptography in coding theory,

implicitly and explicitly. On the implicit side, in  Chapter 5 we study how cryptographic

thinking simplifies the analysis of a so-called “Hamming-to-InsDel” compiler, which compiles

any (private, resource-bounded) locally decodable code that is secure against Hamming

errors to a locally decodable code secure against insertion-deletion errors; such adversarial

error patterns introduce arbitrary insertions, deletions, and transpositions of symbols in the

encoded message. On the explicit side, we examine two results. In  Chapter 6 , we study

how a cryptographic primitive known as a cryptographic puzzle [ 43 ] is explicitly utilized

to construct the notion of resource-bounded locally decodable codes [ 60 ] under standard

cryptographic assumptions. In  Chapter 7  , we study how digital signature schemes can be

explicitly utilized to construct computationally relaxed locally decodable codes [  57 ] that are

resilient to Hamming errors and resilient to insertion-deletion errors without relying on the

compiler of  Chapter 5 .
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2. GENERAL PRELIMINARIES

We give general preliminaries that are relevant to all aspects of this dissertation. In later

chapters, we introduce additional preliminaries as necessary whenever they are needed.

2.1 General Notation

We let “◦” denote the string concatenation operator and let ϵ denote the empty string

unless otherwise stated. That is, for any string s, we have s ◦ ϵ = ϵ ◦ s = s. We let

N = {0, 1, 2, . . . } denote the set of non-negative integers, Z denote the set of all integers,

and Z+ = {1, 2, 3, . . . } denote the set of positive integers. We also let R denote the set of

all real numbers and R⩾0 denote the set of non-negative real numbers. For positive integer

N ∈ Z+, we let ZN := Z/(NZ) be the set of integers modulo N . We also let Z×N denote

the set elements of ZN with multiplicative inverses modulo N . For any n ∈ Z+, we let

[n] := {1, 2, . . . , n} denote the set of integers from 1 to n. A function ϑ : N → R⩾0 is said

to be negligible if ϑ(n) = o(1/|p(n)|) for any fixed non-zero polynomial p. Unless otherwise

stated, we let log := log2.

For a finite, non-empty set S, we let x $← S denote the process of sampling an element x

uniformly at random from S. We also let US denote the uniform distribution over a set S; in

particular, x← US is identically distributed to x $← S. If S is a distribution or randomized

process, we let x ← S denote the process of sampling x according to the distribution or

randomized process S. For any N ∈ N, we let SN denote the set of all sequences/vectors

{(s1, . . . , sN) : si ∈ S} of length N containing elements of S, and by convention define

S0 := {ϵ}. We also let S∗ denote the set of all sequences of S of any length. As usual, we

define ∑︁k
i=j ai = 0 and ∏︁k

i=j ai = 1 whenever j > k.

For simplicity, unless otherwise stated, we assume that any vector is a row vector; i.e.,

b ∈ {0, 1}n is a row vector for n ∈ N. For n ∈ N, we let 0n and 1n denote the all-zero and

all-one vectors of length n, respectively. For any x ∈ Sn for set S, we borrow from array

notation and let x[i] denote the ith element of x; we also use xi to denote the ith element of

x. For i < j, we let x[i, j] := (xi, xi+1, . . . , xj) and reserve the notation x(i, j) to denote xi,j

whenever x is a matrix.
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For any set S for which addition and multiplication are defined and vectors x, y ∈ Sn

for n ∈ Z+, we let ⟨x, y⟩ := ∑︁
i xi · yi ∈ S denote the inner product of x and y. We also

let x ∗ y ∈ Sn denote the coordinate-wise product of x and y; that is, (x ∗ y)i = xi · yi for

all i. For n ∈ Z+, we let Sn denote the set of all permutations π : [n] → [n] on the set [n].

Furthermore, for any vector x = (x1, . . . , xn), we define π(x) := (xπ(1), . . . , xπ(n)). For any set

S containing the element 0, we let wt(x) denote the number of non-zero entries of x ∈ Sn.

Formally, wt(x) := {i ∈ [n] : xi ̸= 0}.

We write PPT as a shorthand for probabilistic polynomial time. For any (randomized)

algorithm A, we let y ← A(x) denote the process of running A on some input x and storing

the output in y; when A is randomized, then A(x) denotes a distribution and y ← A(x)

denotes sampling y via the distribution A(x). For any two distributions X and Y over

the same finite sample space Ω, we define the statistical distance between X and Y as

SD (X, Y ) := 1
2 ·
∑︁

ω∈Ω |X(ω)− Y (ω)|.

2.2 Group and Field Theory Preliminaries

We borrow much of this section from [ 169 ]. We assume basic knowledge of group and

field theory and state some definitions and theorems here for completeness. We begin with

the definition of a group.

Definition 2.2.1. A group is a set G along with a binary operation ⋄(·, ·), which we denote

as (G, ⋄) or just G when ⋄ is clear from context, for which the following hold:

• (Closure) For all g, h ∈ G, g ⋄ h ∈ G and h ⋄ g ∈ G.

• (Identity) There exists an identity element 1G ∈ G such that for all g ∈ G, we have

1G ⋄ g = g ⋄ 1G = g.

• (Inverses) For all g ∈ G, there exists h ∈ G such that g ⋄ h = h ⋄ g = 1G. Here, h is

called the inverse of g.

• (Associativity) For all g1, g2, g3 ∈ G, we have (g1 ⋄ g2) ⋄ g3 = g1 ⋄ (g2 ⋄ g3).
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When G has a finite number of elements, we say that G is finite and let |G| denote the order

of the group (i.e., the number of elements of G). We say that G is abelian if for all g, h ∈ G,

we have g ⋄ h = h ⋄ g.

Note that (Z,+) and (R,+) are abelian groups of infinite order, where “+” denote standard

addition. Most often, we assume a group G is a finite abelian group with multiplication as

the group operation; e.g., G = Z×N for some positive integer N .

We now define fields.

Definition 2.2.2. A field is a set F along with two binary operations +(·, ·) and ·(·, ·) with

the following properties:

• (F,+) is an abelian group with identity 0.

• (F×, ·) is an abelian group with identity 1, where F× := F \ {0}. We often write ab in

place of a · b.

• For all a, b, c ∈ F, we have a(b+ c) = ab+ ac.

If F has a finite number of elements then we say F is a finite field, and let |F| denote the

order (i.e., number of elements) of F.

Note that (R,+, ·) is a field of infinite order, as well as (C,+, ·), where C here denotes

the set of complex numbers.

Remark 2.2.1. In  Section 2.4 and  Chapter 3 , we let C denote the set of complex numbers.

In  Part II , we let C denote some class of algorithms, and not the set of complex numbers.

It is a well-known and used result from number theory that the order of any finite field is

a power of a prime number.

Theorem 2.2.2. If F is a finite field, then |F| = pa for some prime number p ∈ Z+ and

positive integer a ∈ Z+. Conversely, for every q = pa for some prime number p and positive

integer a, there exists a unique (up to relabeling of elements) finite field of order q.

We most often deal with the binary field F2 = Z2 of integers modulo 2, and let {0, 1}n := Fn
2

denote the n-dimensional vector space over F2. We conclude by defining extension fields.
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Definition 2.2.3. For two fields F and K, we say that K is an extension field of F if F is

a sub-field of K; i.e., there exists a subset S ⊂ K that is isomorphic to F and closed under

addition and multiplication.

It is well-known that for a finite field F of size q, any field K of size qa for a ⩾ 1 is

isomorphic to the polynomial ring F[X] modulo an irreducible polynomial of degree a with

coefficients in F[X].

Corollary 2.2.3. For any finite field F of size q and extension field K of F of size qa, there

exists an irreducible degree a polynomial p(X) over F[X] such that K ∼= F[X]/⟨p(X)⟩.

2.3 Vector Spaces

We borrow much of this section from [ 136 ]. We assume basic knowledge about vector

spaces and state some definitions and theorems here for completeness. We begin by defining

a vector space.

Definition 2.3.1. A vector space V over a finite field F is an abelian group under the

operation “+” with an additional scalar product “·” satisfying the following properties: for all

α, β ∈ F and u, v ∈ V , we have

• α · (β · v) = (α · β) · v;

• (α + β) · v = αv + βv;

• α(u+ v) = αu+ αv; and

• 1 · v = v.

The elements of V are called vectors and the elements of F are called scalars. Moreover, n is

called the dimension of V .

Note that “+” for vector spaces is coordinate-wise addition. As stated at the start of this

chapter, we also consider the coordinate-wise product between vectors, which we denote as

u ∗ v ∈ V for u, v ∈ V . We also define subspaces of a vector space V .

24



Definition 2.3.2. Let V be a vector space over F. A subset W ⊆ V is a subspace of V if W

is closed under both addition and scalar multiplication. That is, for all u, v ∈ W and α ∈ F,

uα ∈ W and u+ v ∈ W .

We next work towards defining the dimension of V . We define the span of a set of vectors.

Definition 2.3.3. Let S = {v1, . . . , vn} ⊂ V . Then the span of S, denoted as span(S), is

defined as

span(S) :=
{︄∑︂

i

αivi : αi ∈ F
}︄
⊂ V.

It is well-known that the span of a set of vectors is a subspace.

Proposition 2.3.1. For any S ⊂ V , span(S) is a subspace of V .

We now define linear (in)dependence.

Definition 2.3.4. Let S = {v1, . . . , vn} ⊂ V . We say that S is linearly dependent if there

exist scalars α1, . . . , αn ∈ F that are all not zero and ∑︁n
i=1 αi · vi = 0V , where 0V ∈ V . If S is

not linearly dependent, we say that S is linearly independent.

The following proposition follows directly from the above definition.

Proposition 2.3.2. A set S = {v1, . . . , vn} ⊂ V of vectors in linearly dependent if and only

if there exists i ∈ [n] and αj ∈ F for all j ̸= i such that vi = ∑︁
j ̸=i αjvj.

We now define a basis and the dimension of V .

Definition 2.3.5. Let S = {v1, . . . , vn} ⊂ V . If span(S) = V and S is linearly independent,

then we say S is a basis for V . Moreover, we say that the dimension of V is n.

Note that F itself is a 1-dimensional vector space over F. While V may have many different

bases, the dimension of V is unique.

Proposition 2.3.3. If {u1, . . . , um} and {v1, . . . , vn} are both bases for V , then m = n.

It is well-known that n-dimensional vector spaces are isomorphic to Fn.
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Theorem 2.3.1. Any n-dimensional vector space V over F is isomorphic to Fn.

We conclude by defining a linear transformation/function over vector spaces.

Definition 2.3.6. Let V,W be vector spaces over F. A function T : V → W is a linear

transformation/function if for all α ∈ F and u, v ∈ V , we have (1) T (u+ v) = T (u) + T (v);

and (2) T (αv) = αT (v).

2.4 Fourier Analysis over Finite Fields

We give some basic Fourier definitions and properties over finite fields. This section is

more or less copied verbatim from [ 49 ] and follows the conventions of [ 225 ].

Let F be a finite field and let n ∈ Z+. We begin by defining the inner product of two

complex-valued functions.

Definition 2.4.1. Let f, g : Fn → C be two functions. Then the inner product of f and g is

defined as

⟨f, g⟩ := E
x

$←Fn

[︂
f(x) · g(x)

]︂
= 1
|F|n
·
∑︂

x∈Fn

f(x) · g(x),

where g(x) is the complex conjugate of g(x).

Given the inner product of complex functions, we can define character functions of both

F and Fn.

Definition 2.4.2. Let ψ : F → C× be a group homomorphism from (F,+) to C× := (C, ·).

Then ψ is a character function of F.

Let χ : Fn × Fn → C× be a function with the following properties:

• (Bilinear) For every X ∈ Fn, χ(X, ·), χ(·, X) : Fn → C× are both group homomorphisms.

• (Non-degenerate) For every X ∈ Fn, both χ(X, ·) ̸= 1 and χ(·, X) ̸= 1 (i.e., they are

not 1 everywhere).

• (Symmetric) For all X, Y ∈ Fn, χ(X, Y ) = χ(Y,X).
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Then for any S ∈ Fn, the function χ(S, ·) := χS(·) is a character function of Fn. In particular,

whenever ψ is non-degenerate, then χ(S, ·) := ψ(⟨S, ·⟩) is a character function of Fn for any

fixed S ∈ Fn.

We can now define the Fourier transformation of a function f : Fn → C.

Definition 2.4.3 (Fourier Transformation). Let f : Fn → C be a function and let χS : Fn →

C× be a character function for S ∈ Fn. Let ˆ︁f : Fn → C be a function defined as ˆ︁f(S)⟨f, χS⟩.

We say that ˆ︁f(S) is the Fourier Coefficient of f at S, and that the linear map f ↦→ ˆ︁f is the

Fourier Transformation of f .

The Fourier Transformation is an invertible linear map, which is characterized by the

following lemma.

Lemma 2.4.1 (Fourier Inversion). For any f : Fn → C, we have f(x) = ∑︁
S∈Fn

ˆ︁f(S) · χS(x).

2.5 Basic Notions of Entropy

Much of this section is more or less copied verbatim from [  49 ]. For a probability distribution

X over a sample space U , the entropy of x ∈ X is defined as HX(x) = − log Pr [X = x]. The

min-entropy of X, represented by H∞(X), is defined to be minx∈Supp(X) HX(x). The binary

entropy function, denoted by h2(x) = −x log(x)− (1− x) log(1− x) for every x ∈ (0, 1). In

general, for any x ∈ (0, 1), we define the q-entropy function as hq(x) := − x logq(x)− (1−

x) logq(1− x).

Given a joint distribution (X, Y ) over sample space U × V , the marginal distribution Y

is a distribution over sample space V such that, for any y ∈ V , the probability assigned to

y is ∑︁x∈U Pr [X = x, Y = y]. The conditional distribution (X|y) represents the distribution

over sample space U such that the probability of x ∈ U is Pr [X = x|Y = y]. The average

min-entropy [ 105 ] is defined as ˜︂H∞(X|Y ) := − log
(︂
Ey∼Y [2−H∞(X|y)]

)︂
. There is a well-known

correspondence between the average min-entropy of a min-entropy distribution with respect

to some arbitrary leakage distribution.

Lemma 2.5.1 ([ 105 ]). If H∞(X) ⩾ k and L is an arbitrary ℓ-bit leakage on X, then˜︂H∞(X|L) ⩾ k − ℓ.
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Finally, if X is min-entropy distribution, then we can bound the sum of squares of Fourier

coefficients by a factor proportional to the min-entropy.

Lemma 2.5.2 (Fourier Coefficients of a Min-Entropy Distribution). Let X : Fη → R be a

min-entropy source such that H∞(X) ⩾ k. Then ∑︁
S |ˆ︂X(S)|2 ⩽ |F|−η · 2−k.

2.6 Small-Bias Sets

Much of this section is again more or less copied verbatim from [ 49 ]. Given the definition

of a Fourier Coefficient and the Fourier Transformation, we can now define the bias of a

distribution. For our purposes, we are only concerned with the bias of distributions defined

over Fn, where F is a finite field and n is some positive integer.

Definition 2.6.1 (Bias of a Distribution). Let X be a distribution over Fn. Then the bias of

X at S ∈ Fn is defined as Bias(X,S) = BiasS(X) := |F|n · |ˆ︂X(S)|.

We can now define a small-biased family of distributions.

Definition 2.6.2 (Small-Bias Distribution Family [ 106 ]). A family of distributions X =

{X1, X2, . . . , Xk} over sample space Fn is said to be a ρ2-biased family if for every non-zero

vector S ∈ Fn we have

E
i

$←[k]
BiasS(Xi)2 ⩽ ρ2.

It is well-known that small-biased families of distributions can be used to extract almost

uniform randomness from randomness sources with high average min-entropy.

Theorem 2.6.1 ([ 3 ,  106 ,  130 ,  210 ]). Let X = {X1, . . . , Xk} be a ρ2-biased family of distri-

butions over Fn. Let (M,L) be a joint distribution such that the marginal distribution M is

over Fn and ˜︂H∞(M |L) ⩾ m. Then, if J is a uniform distribution over the set [k], we have

SD ((FJ ⊕M,L, J), (UFn , L, J)) ⩽ ρ

2 ·
(︄
|F|n

2m

)︄1/2

.
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2.7 General Coding Theory Preliminaries

We state general coding theory definitions here and begin by defining a metric.

Definition 2.7.1. Let Σ be a set and let ∆: Σ∗ × Σ∗ → R⩾0 be a function. Then we say

that ∆ is a metric if the following hold: for all x, y, z ∈ Σ∗, we have

• ∆(x, y) = 0 if and only if x = y;

• ∆(x, y) = ∆(y, x); and

• ∆(x, y) ⩽ ∆(x, z) + ∆(z, y).

When 0 ⩽ ∆(x, y) ⩽ 1 for all x, y ∈ Σ∗, we say that ∆ is a normalized metric.

The two main metrics of interest in this work are the (normalized) Hamming distance and

the (normalized) Edit distance. For a set 

1
 Σ and positive integer K, the normalized Hamming

distance between two strings x, y ∈ ΣK is defined as HAM(x, y) := |{i ∈ [K] : xi ≠ yi}|/K.

For two strings x, y ∈ Σ∗, the normalized Edit distance between x and y is the minimum

number of insertions and deletions needed to transform x into y, normalized by |x| + |y|.

We let ED(x, y) denote the normalized Edit distance. Note that ED may not be a metric;

however, this is not an issue for us as our proofs never use the fact that the non-normalized

edit distance is a metric.

We now define error-correcting codes.

Definition 2.7.2 (Error-Correcting Codes). A coding scheme C[K, k, q1, q2] is defined by a

(possibly randomized) encoding function Enc : Σk
1 → ΣK

2 , where |Σi| = qi ⩾ 2.

For normalized metric ∆ and parameter δ, a C[K, k, q1, q2] coding scheme is a (∆, δ)

error-correcting code if there exists a deterministic decoding function Dec : Σ∗2 → Σk
1 satisfying

the following property: for every x ∈ Σk
1 and any y ∈ Σ∗2 such that ∆(Enc(x), y) ⩽ δ, we have

Dec(y) = x with probability 1. If q1 = q2, we simply write C[K, k, q]. If q2 = 2, we say that

C is a binary code. When clear from context, we omit q, q1, and q2.

The rate of a code C[K, k, q] is defined as R := k/K, the error tolerance of C is δ, and

the minimum distance of C is d := δ · K. Without loss of generality, we assume K ⩾ k.
1

 ↑ Often we call Σ an alphabet.
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When ∆ = HAM we say that C is a Hamming code; when ∆ = ED we say that C is an

insertion-deletion (InsDel) code.

Given a C[K, k, q1, q2] error-correcting code, we often abuse notation and let C ⊆ ΣK
2

denote the set of all codewords; that is, C = Im(Enc) (the image of Enc). We note that

sampling y
$← C is equivalent to the randomized process of first sampling x

$← Σk
1 then

outputting y ← Enc(x).

We are also interested in linear error-correcting codes.

Definition 2.7.3 (Linear Error-Correcting Code). A (∆, δ) code C[K, k, q1, q2] is a linear

code if Σk
1 and ΣK

2 are vector spaces and Enc is a linear transformation. Without loss of

generality, we assume Σ is a finite field and Enc is injective whenever C is a linear code.

By definition, a linear code always has 0K ∈ C. Moreover, the minimum distance d of a

linear code C is given by the minimum weight non-zero codewords.

Lemma 2.7.1. Let C[K, k, q1, q2] be a linear code. Then d = minc∈C{wt(c) > 0}, where

wt(c) denotes the number of non-zero entries of c.

Every linear Hamming code C has a dual/orthogonal code, which is a set of vectors that

are orthogonal to every codeword c ∈ C.

Definition 2.7.4. Let C[K, k, q1, q2] be a linear Hamming code with distance d. Then the

set C⊥ := {u ∈ ΣK
2 : ⟨u, v⟩ = 0 ∀v ∈ C} is called the dual/orthogonal code of C. Moreover,

C⊥ = C⊥[K,K − k, q1, q2] is a linear Hamming code.

The following propositions are two well-studied and used bounds when analyzing and

using linear codes.

Proposition 2.7.1 (Singleton Bound [ 244 ]). Any C[K, k, q] linear Hamming code has distance

d ⩽ K − k+ 1. Furthermore, if d = K − k+ 1, then C is called maximum distance separable

(or MDS).

Proposition 2.7.2 (Gilbert-Varshamov Bound for Linear Codes [ 126 ,  252 ]). For every q ⩾ 2,

every 0 ⩽ δ < 1 − 1/q, and every 0 < ε ⩽ 1 − hq(δ), there exists a linear (HAM, δ) code

C[K, k, q] with rate R ⩾ 1− hq(δ)− ε.
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2.7.1 Locally Decodable Codes

We are also interested in the notion of locally decodable codes.

Definition 2.7.5 (Locally Decodable Codes). A coding scheme C[K, k, q1, q2] = (Enc,Dec)

is an (ℓ, ρ, p, dist)-locally decodable code (LDC) if for all x ∈ Σk
1 and y ∈ Σ∗2 such that

dist(Enc(x), y) ⩽ ρ, the algorithm Dec, with query access to word y, on input index i ∈ [k],

makes at most ℓ queries to y and outputs xi with probability at least p over the randomness

of the decoder. Here, ℓ is the locality of C and p is the success probability.

In later chapters, we augment the above definition with other notions of locally de-

codable codes; e.g., private LDCs ( Definitions 5.5.1 and  6.5.2 ), resource-bounded LDCs

( Definitions 5.5.2 and  6.5.3 ), and computationally relaxed LDCs ( Definition 7.1.1 ).
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3. CORRELATION EXTRACTORS: CONSTRUCTING NEW

ERROR-CORRECTING CODES FOR CRYPTOGRAPHIC

PRIMITIVES

A portion of this chapter appears in The International Association for Cryptologic Research
Cryptology ePrint Archive [ 50 ], available  https://ia.cr/2018/372 . The article [ 50 ] is the full
version of the article which appears in the proceedings of the 2018 Theory of Cryptography
Conference, published by The International Association for Cryptologic Research and Springer-
Verlag [ 49 ], available  https://doi.org/10.1007/978-3-030-03810-6_2 .

Numerous cryptographic primitives used in both theory and practice have constructions

based on error-correcting codes. Such primitives include (threshold) secret-sharing [  44 ,  198 ,

 202 ,  237 ], digital signature schemes [ 18 ,  19 ,  96 ,  98 ,  113 ,  212 ,  224 ], public-key cryptography

[ 201 ,  212 ], succinct (non-)interactive arguments [ 14 ,  125 ,  175 ,  206 ], randomness extraction

[ 1 ,  147 ,  235 ] and pseudo-random number generation [ 163 ,  235 ,  240 ,  246 ,  249 ,  250 ], resilient

functions [ 38 ,  93 ], and secure multi-party computation [ 129 ,  174 ,  176 ,  263 ]. Cryptographic

primitives based on error-correcting codes often have information-theoretic guarantees (i.e.,

protection against computationally unbounded adversaries) given by the underlying coding

theoretic objects. For example, Shamir t out of n secret sharing [ 237 ] is precisely characterized

by Reed-Solomon Codes of block length n and message length t, and such a secret sharing

scheme guarantees that any adversary with only t− 1 shares cannot learn any secret of the

honest parties. Further, any t parties can work together to reconstruct the entire secret, which

is guaranteed by the erasure recovery property of Reed-Solomon codewords (i.e., polynomial

interpolation).

In this dissertation, we examine the composition of coding theory with secure multi-party

computation (MPC) protocols. This composition is not new: various MPC protocols [ 129 ,  263 ]

use coding theoretic primitives such as linear secret sharing [ 44 ,  237 ] to maintain privacy/se-

curity among participants. In a nutshell, a MPC protocol allows mutually distrusting parties

P1, . . . , Pn with respective private inputs x1, . . . , xn to compute f(x1, . . . , xn), where f is

some function. Security of an MPC protocol ensures that any dishonest parties only learn the

output f(x1, . . . , xn) and do not learn any information about the private inputs of the honest

parties. Unfortunately, securely computing most functionalities in the information-theoretic
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plain model is impossible, even in the presence of semi-honest adversaries—parties who follow

the protocol honestly, but want to find additional information about the private input of

other parties [  129 ]. One can overcome this barrier by assuming an honest majority of parties

[ 28 ,  82 ,  99 ,  223 ], assuming the computational power of the parties is bounded (e.g., PPT)

[ 129 ,  160 ], or by using a trusted setup [  77 ,  81 ,  101 ,  134 ,  160 ,  168 ,  209 ] or correlated private

randomness [ 97 ,  177 ,  195 ,  259 ]. While these approaches allow parties to securely compute

functionalities, many come with great computational costs. For example, honest majority

MPC protocols are often (concretely) inefficient [ 167 ], protocols in which the parties have

bounded computational power often make heavy use of (public-key) cryptography [ 100 ,  102 ,

 135 ], and trusted setup assumptions are often undesirable.

3.1 Correlation Extractors

Protocols that utilize correlated private randomness (somewhat) address all of the above

issues. Such protocols were introduced primarily to address the efficiency concerns of MPC

protocols [ 158 ]. In this dissertation, we focus on two-party secure computation (2PC) between

parties Alice and Bob using correlated private randomness. Protocols utilizing correlated

private randomness offload most of the computational and cryptographic complexity to an

offline pre-processing phase, where a trusted dealer samples secret shares (rA, rB) from some

joint distribution (RA, RB), called the correlated private randomness or correlation in short.

Note that this trusted dealer is presented for ease of discussion, and one can easily replace

this dealer with some other method of pre-processing, including another MPC protocol to

generate the secret shares. The dealer then provides share rA to Alice and share rB to Bob.

During an online phase, Alice and Bob use their respective shares in an interactive protocol

to compute some desired function f of their private inputs in a secure way (i.e., the MPC

definition of security). This pre-processing phase is independent of the function computed

in the online phase, and this independence is crucial for both efficiency and security. For

efficiency, secret shares that are independent of the functionality to be computed means that

many shares can be generated via an expensive pre-processing phase once and then parties

can use these shares across many different protocols, amortizing the pre-processing costs.
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For security, the independence of the correlation shares from the functionality to be

computed ensures that Alice and Bob cannot violate the other’s security/privacy by gaining

information on the other party’s private input when using the shares in the online phase; i.e.,

having secret shares that depend on the functionality to be computed can reveal information

about the other party’s inputs. However, there is a caveat: the storage of the secret shares

rA and rB are subject to leakage attacks, where parties can leak information about the secret

shares of the other parties, but otherwise to not tamper with these shares. 

1
 Leakage concerns

stem from real-world incidents of information leakage, such as Rowhammer attacks [ 178 ],

Heartbleed attacks [ 107 ,  247 ], and Meltdown/Spectre attacks [ 181 ,  187 ]. In our security

model, leakage is not restricted to individual bits: it can be arbitrary leakage that encodes

global information, which is stronger than individual bit leakage. For example, rA and rB

could be shares of oblivious transfer [ 176 ,  222 ,  262 ], and receiver Bob can leak the other bit

of Alice that he did not receive, thus violating any security guarantee given by oblivious

transfer.

We model leakage for correlations as the following multi-step process.

1. The trusted dealer samples secret shares (rA, rB)← (RA, RB);

2. the adversarial party sends a bounded leakage function L to the dealer and receives

leakage L(rA, rB); and

3. the dealer then sends rA to Alice and rB to Bob.

Note that for two-party secure computation, there is only a single adversarial party. If

both parties are adversarial, there are no privacy guarantees. For t bit leakage function

L : {0, 1}∗ → {0, 1}t, we represent the above leaky correlation hybrid (i.e., leaky correlation)

as (RA, RB)[t]. Note that t need not be as large as the entire secret, since leaking even a

single bit could render a protocol insecure. Further, t may be bounded for a number of other

reasons, such as bounds on the bandwidth or storage capabilities of the adversary [ 139 ,  199 ].

Correlation extractors were introduced by Ishai et al. [ 158 ] to address these leakage

concerns. Intuitively, correlation extractors are MPC protocols which take leaky correlations
1

 ↑ One may naturally consider a stronger adversary that can tamper with secret shares, but this is beyond
the scope of this dissertation.
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as input and output samples of some (possibly different) correlation. 

2
 The key feature of

these extractors is that the output of the protocol is independent of the leaky inputs, and

leakage on the original shares does not correspond to leakage on the new shares.

It suffices for any correlation extractor to output new shares of the well-known and well-

studied random oblivious transfer correlation, which we denote by ROT. The ROT correlation

is the randomized version of the oblivious transfer functionality, which is complete for MPC:

assuming access to an ideal oblivious transfer functionality, any functionality admits a MPC

protocol [  174 ,  176 ]. For example, given oblivious transfer, one can compute more oblivious

transfers, majority, or any other functionality of interest. More formally, the ROT correlation

uniformly and independently samples three bits x0, x1, b
$←{0, 1} and provides rA = (x0, x1) to

Alice and rB = (b, xb) to Bob. We let ROTm/2 denote the process of independently sampling

m/2 instances of the aforementioned ROT correlation. Notice that Alice does not know Bob’s

bit b, and Bob does not know Alice’s bit x1−b, which is identical to the security definition

of oblivious transfer [ 176 ,  222 ]. As our goal is to produce secret shares which can be used

by parties to compute any functionality, it suffices for correlation extractors to output fresh

shares of the ROT correlation.

Let (RA, RB) be a correlation such that the secret share of each party is n bits. Then we

define a (n,m, t, ε)-correlation extractor for (RA, RB) as a two-party interactive protocol in

the (RA, RB)[t]-hybrid that securely implements the ROTm/2 functionality against information-

theoretic semi-honest 

3
 adversaries with ε-security. Briefly, ε-security states that given t bits

of leakage, a corrupt party cannot (statistically) distinguish between the honest parties

newly generated ROT samples and random bits, except with probability at most ε; see

 Definition 3.5.1 for the formal definition. Here, the parameters of interest are the production

rate m/n (resp., production m), the leakage rate t/n (resp., leakage resilience t), the round

complexity, and the security ε. A round of the protocol corresponds to the process where

Bob sends a message to Alice, then Alice sends a message to Bob.
2

 ↑ It can be the case that the input and output correlations are the same.
3

 ↑ The existence of malicious secure correlation-extractors is an interesting and challenging open question,
but is beyond the scope of this dissertation.
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3.2 Our Results

Our main result is obtaining a correlation extractor for the ROT correlation with asymp-

totically optimal parameters.

Theorem 3.2.1 ([ 49 ]). There exists a 1-round (n,m, t, ε)-correlation extractor for (RA, RB) =

ROTn/2 such that m = Θ(n), t = Θ(n), and ε = 2−Θ(n).

Constructing fresh ROT samples requires both parties to send at least 1 message, hence

1 round is optimal. Note that it is impossible to obtain more than n bits of output when

given n bits of input, else this would reduce the security (i.e., there isn’t enough entropy), so

the production m is (asymptotically) optimal as well. For leakage, there is a known upper

bound on the leakage resilience of any correlation extractor of t = (1/4− g) · n for any gap

g ∈ (0, 1/4] [ 159 ]. In fact, for any gap g ∈ (0, 1/4], we obtain a correlation extractor with

optimal rate, security, and round complexity; we present this result in  Theorem 3.2.3 . Finally,

the security is optimal as the outputs of each party are m = Θ(n) bits, so any adversary can

simply guess the outputs and be correct with 2−Θ(n) probability.

At the core of  Theorem 3.2.1 is another correlation extractor for the random oblivious

linear-function evaluation correlation [  211 ,  259 ]—a generalization of the ROT correlation to

finite fields. For a finite field F, the random oblivious linear-function evaluation correlation,

denoted by ROLE(F), samples a, b, x $←F and defines rA = (a, b) and rB = (x, z := a·x+b). For

F = F2, observe that (x0+x1)·b+x0 = xb, which implies that ROT and ROLE(F2) are identical.

One share of the ROLE(F) correlation has length 2 log(|F|) bits, and thus we normalize the

correlation to output shares of length n bits. That is, ROLE(F)n/(2 log(|F|)) outputs n bit shares

to each party, where each share consists of n/(2 log(|F|)) independent samples of ROLE(F).

Without loss of generality, we choose n appropriately such that n/(2 log(|F|)) is an integer.

We construct a correlation extractor for ROLE(F) over a suitable constant-sized field F with

asymptotically optimal parameters, which we later use to realize  Theorem 3.2.1 .

Theorem 3.2.2 ([ 49 ]). There exists a 1-round (n,m, t, ε)-correlation extractor for (RA, RB) =

ROLE(F)n/2 log |F| such that m = Θ(n), t = Θ(n), and ε = 2−Θ(n).
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 Theorem 3.2.2 is a 2PC protocol that relies on the existence of suitable algebraic geometric

(AG) error-correcting codes [ 121 ,  133 ,  254 ] over constant-sized finite fields such that |F| ⩾ 49

and is an even power of a prime. For simplicity, we use F of characteristic 2. These codes

have several key properties necessary for the construction of  Theorem 3.2.2 , which we discuss

in  Section 3.3 . Again, the parameters of  Theorem 3.2.2 are optimal, and, in fact, we can

achieve optimal parameters for any t = (1/4− g)n for any g ∈ (0, 1/4], albeit at a cost of the

field-size increasing and depending on how small of a gap g is given.

Theorem 3.2.3. For every g ∈ (0, 1/4], there exists a finite field F of characteristic 2

and a 1-round (n,m, t, ε)-correlation extractor for (RA, RB) = ROLE(F)n/(2 log(|F|)) such that

m = Θ(n), t = (1/4− g)n, and ε = 2−Θ(n).

3.3 Technical Overview

The correlation extractor of  Theorem 3.2.2 is built upon a ROLE(F)-to-ROLE(F) correlation

extractor, where both the input and output correlations are the ROLE(F) correlation for

suitable F. In particular, each party starts with t-leaky shares of ROLE(F)n/2 log |F| and the

extractor outputs fresh, independent samples of the ROLE(F)m/2 log |F| correlation.

This ROLE(F)-to-ROLE(F) extractor relies on a suitable family of linear Hamming codes

over F, which we eventually instantiate via a family algebraic geometric codes. For the

remainder of this chapter, we only concern ourselves with Hamming codes and simply refer

to them as codes. We first discuss how to obtain fresh samples of ROLE(F) by utilizing

a linear code C ⊆ Fs, where s ∈ N, and the Schur-product code C ∗ C. Then we analyze

the necessary properties of this linear code C we need for our ROLE(F) extractor to work.

Briefly, for linear codes C1, C2 ⊆ Fs, the Schur-product code C1 ∗ C2 is the linear span of

c ∗ c′ = (c1 · c′1, . . . , cs · c′s) ∈ Fs for all c ∈ C1 and c′ ∈ C2. Suppose that the Schur-product

code C ∗C supports erasure recovery of any s1-coordinates and let s1 + s2 = s. Then we can

construct s1 fresh ROLE(F) samples as follows.

1. Sample (u1, u2), (r1, r2) $← C, where ui, ri ∈ Fsi .

2. Sample (v1, v2) $← C ∗ C, where vi ∈ Fsi .
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3. Compute t2 := (u2 ∗ r2) + v2 ∈ C ∗ C.

4. Perform erasure recovery on t2 to obtain t1 ∈ Fs1 . The corresponding ROLE(F) shares

are rA = (u1, v1) and (r1, t1), and the s1-erasure recovery of C ∗ C ensures that

t1 = (u1 ∗ r1) + v1.

When given s2 (leaky) shares of ROLE(F), we can compose the above methodology with our

leaky shares to construct our ROLE(F)-to-ROLE(F) extractor that outputs s1 fresh ROLE(F)

shares. We present the actual protocol in  Figure 3.3 .

Remark 3.3.1 (Erasures vs. Deletion Errors). Erasures are a type of error pattern where

symbols are erased the indices of erased symbols are known. This is in contrast to deletion

errors in insertion-deletion codes: in these error patterns, the indices of deleted symbols are

unknown. Intuitively, one can view erasures as insertion-deletion errors where a symbol

⊥ ̸∈ Σ is inserted whenever a symbol of the codeword is deleted.

For security purposes, it does not suffice to have a single fixed code C. Instead, we need

a family of codes C = {Cj}j∈J such that any code in the family can be used in the above

process. Given such a family, informally our correlation extractor is given by the following

protocol. Suppose that Alice is the semi-honest party and Bob is the honest party. First

Alice and Bob both receive the initial ROLE(F) correlation samples, and Alice performs t bits

of leakage on Bob’s secret shares. Then, the first step of the protocol is for Bob to sample a

random code from this family and use it with the above methodology (along with his leaky

shares) to construct new ROLE(F) samples.

To see why a single fixed code C does not suffice, let C = {Cj}j∈J a the family of linear

codes of block length s ∈ N that we can use for our correlation extractor. Observing the

above process for constructing fresh ROLE(F) samples, the family C must satisfy the following

properties.

1. Multiplication Friendly Good Codes. For every j ∈ J , the code Cj ⊆ Fs is a good

code; that is, both the rate and error-tolerance of Cj are Θ(1) (i.e., Cj has distance

Θ(s)). Furthermore, each code Cj is multiplication friendly; that is, the Schur-product

code Cj ∗Cj is a linear code with distance Θ(s). Multiplication friendly codes are useful
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in the context of secret sharing: they allow one to perform the multiplication of two

secrets by multiplying their respective secret shares.

2. Small-Bias Family. Informally, a small-bias family defines a pseudo-random distri-

bution for linear tests (i.e., linear functions) [  2 ,  3 ,  106 ,  130 ,  210 ] (see  Definition 2.6.2  

for the formal definitions). For S ∈ Fs, let LS : Fs → F be the linear test defined as

LS(x) := ⟨S, x⟩. Consider the distribution D defined by first sampling j
$← J , then

sampling c $← Cj, then outputting LS(c). Then the family C is a ρ-biased family if D

has statistical distance at most ρ from the distribution LS(u) for u $← Fs. For ease of

presentation, we say that C ρ-fools the linear test LS.

One property of any linear code C ⊆ Fs is that any c $← C can 0-fool every linear test

LS such that S ̸∈ C⊥, the dual code of C. However, if S ∈ C⊥, then LS(c) = 0 for any

c ∈ C, and thus the test is not fooled at all since there exists sets S such that LS(c) is

trivially distinguishable.

This property shows us that one fixed linear code cannot fool all linear tests; however,

by considering an appropriate family of linear codes, then a randomly chosen codeword

from a randomly chosen code in the family can fool every linear test.

We construct the family C by utilizing an appropriate AG code C. Suppose C is an AG

code that is multiplication-friendly [ 84 ,  121 ,  133 ]. Given such a code, we apply random

“twist-then-permute” operations on C to construct the family C. The “twist-then-permute”

operation first requires a “twist” followed by a “permute”. Let α ∈ (F×)s. Then an α-twist of

C is defined as the linear code

Cα := {α ∗ c : c ∈ C}. (3.1)

For permutation π : [s]→ [s], we define a π-permutation of the α-twisted code Cα as

Cπ,α = {(απ(1) · cπ(1), . . . , απ(s) · cπ(s)) : c ∈ C}. (3.2)
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Note that for any π and α, the code Cπ,α enjoys all the same properties of the code C since

Cπ,α is an equivalent code. 

4
 In particular, Cπ,α has the same distance and rate as C, and if

C is a multiplication friendly code, then so is Cπ,α. Defining J = {(π, α)} such that π is a

permutation on the set [s] and α ∈ (F×)s, we define our code family as C := {Cj}j∈J .

Finally, we observe that C is a small-bias family of linear codes. To see this, first consider

the following two distributions. For fixed S, let DS be the following distribution: (1) sample

j
$←J ; (2) sample c $←Cj ; (3) output LS(c). Further, let Dwt(S) be the following distribution:

(1) sample T $←{T ∈ Fs : wt(T ) = wt(S)}; (2) sample c $←C; (3) output LT (c). Arguing that

C is a small-bias family relies on the observation that DS and D′S are identical distributions.

Based on this observation, the bias of C is simply the ratio between the number of codewords

in C⊥ of weight w = wt(S) and the number of elements of Fs of weight w. In more detail,(︂
s
w

)︂
· (q − 1)w elements of Fs of weight w. Let Aw be the number of elements of C⊥ of weight

w. Then C ρ-fools the linear test LS for ρ = Aw/
(︂(︂

s
w

)︂
· (q − 1)w

)︂
. In fact, the quantity

A′w is called the weight enumerator [ 193 ,  254 ] and is an important quantity in the study of

linear codes. To estimate the bias of our codes, we obtain precise asymptotic bounds on Aw

of the dual code C⊥. The precise bounds on Aw correspond to higher production, leakage

resilience, and exponentially low security error for our resulting correlation extractor. The

formal analysis of this weight enumerator is deferred to [ 50 ], the full version of [ 49 ].

3.3.1 Constructing our ROLE(F)-to-ROLE(F) Correlation Extractor.

Given a family of multiplication-friendly, small-biased linear code distributions {Cj}j∈J

defined above, we outline our ROLE(F)-to-ROLE(F) correlation extractor, noting that the

full protocol is presented in  Figure 3.4 and all formal definitions and proofs are given in

 Section 3.7.1 . Suppose that every code Cj ⊆ Fγ+η for positive integers γ, η, and every

Schur-product code Cj ∗Cj supports erasure recovery of any γ coordinates. First, the trusted

dealer samples ((A,B), (X,Z))← ROLE(F)η and gives secret share (A,B) to Alice and secret

share (X,Z) to Bob, where A,B,X $← Fη and Zi := Ai ·Xi +Bi for every i ∈ [η]. Then the
4

 ↑ In the literature there are multiple definitions for the equivalence of two linear codes. In particular, one
such notion (cf., [ 220 ]), states that two codes are equivalent to each other if one can be twisted-and-permuted
into the other code. For clarity, we have chosen to explicitly define the “twist then permute” operation.
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semi-honest corrupt party performs arbitrary t bits of leakage on the honest party’s secret

share. Now Alice and Bob engage in the following protocol.

1. Bob samples j $←J . Then Bob samples codeword (R,R′) $← Cj such that R ∈ Fγ and

R′ ∈ Fη. Bob computes M = X +R′ ∈ Fη and sends (M, j) to Alice.

2. Alice samples (U,U ′) $← Cj and (V, V ′) $← Cj ∗ Cj such that U, V ∈ Fγ and U ′, V ′ ∈ Fη.

Alice computes α = U ′ − A ∈ Fη and β = (A ∗M) + B + V ′ ∈ Fη. Alice sends (α, β)

to Bob.

3. Bob computes W ′ = (α∗R′)+β−Z ∈ Fη. Bob then uses the erasure recovery algorithm

of Cj ∗ Cj to recover W ∈ Fγ such that (W,W ′) ∈ Cj ∗ Cj.

4. Alice outputs share (U, V ) and Bob outputs share (R,W ).

Since the corrupt party is semi-honest, this party follows the protocol honestly after performing

t bits of leakage. By the γ-erasure recovery of Cj ∗ Cj and working out the above algebra we

observe that Wi = Ui · Ri + Vi for every i ∈ [γ], and further that Ui, Ri, Vi
$← Fγ. Thus the

shares output by parties Alice and Bob are a new instance of the ROLE(F) correlation, as

desired.

3.3.2 Obtaining  Theorem 3.2.2 .

To construct our correlation extractor for ROLE(F)n/(2 log(|F|)) which realizes  Theorem 3.2.2 ,

we augment our ROLE(F)-to-ROLE(F) correlation extractor with the ROT-embedding protocol

of Block, Maji, and Nguyen [ 54 ], which is a type of reverse multiplication-friendly embedding

protocol [ 54 ,  55 ,  78 ]. Informally, a reverse multiplication-friendly embedding computes multiple

multiplications over a finite field F by computing a single multiplication over an extension

field K of F. For example, there is a simple embedding that computes 2 multiplications over

F2 using a single multiplication over F8 := F2[X]/(X3 + X + 1). Let (a1, a2), (b1, b2) ∈ F2
2

and suppose we want to compute ai · bi for i ∈ [2] and Define A = a1 + a2 · X ∈ F8 and

B = b1 + b2 ·X ∈ F8, and compute A ·B = a1 · b1 + (a1 · b2 + a2 · b1) ·X + a2 · b2 ·X2 ∈ F8.

Then we can extract out ai · bi by taking the coefficient of the constant term and the X2
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term, respectively for i ∈ [2]. Note that embedding protocols naturally extend to computing

multiple linear equations of the form ai · bi + ci; in the above example, one would define

C = c1 + c2 ·X2, compute A ·B+C, and extract out the same coefficients to obtain ai · bi + ci

for i ∈ [2].

We can re-imagine a reverse multiplication-friendly protocol as a protocol which computes

multiple instances of an oblivious linear function evaluation over a finite field F, which

we denote as OLE(F), by computing a single instance of OLE(K), where K is an finite

extension field of F. Note that OLE(F) is the non-randomized version of ROLE(F). Since

OLE(F) and ROT are equivalent for F = F2, an ROT-embedding protocol is simply a reverse

multiplication-friendly protocol for OLE.

More formally, an ROT-embedding protocol is a protocol between two parties that

implements the ROTm/2 functionality in the OLE(F)-hybrid, where F is a field of characteristic

2. In particular, sender Alice samples a $← {0, 1}m/2 and b
$← {0, 1}m/2 and receiver Bob

sampling x $←{0, 1}m/2. Then Alice embeds a and b into a field elements A ∈ F and B ∈ F,

respectively, while Bob embeds x into X ∈ F. Alice sends A,B to the OLE(F) functionality

and Bob sends X to the OLE(F) functionality and receives Z = A ·X +B. The embedding

specifies a decoding procedure which on input Z allows Bob to obtain zi = (ai + bi) ·xi +ai for

every i ∈ [m/2], thus realizing the ROT correlation. The embedding protocol is used within

our ROLE(F)-to-ROLE(F) protocol so that upon recovering the fresh ROLE(F) samples, the

receiver Bob can then use this decoding procedure to recover multiple instances of the ROT

correlation. We emphasize that this embedding is composed in parallel with our ROLE(F)-to-

ROLE(F) extractor and that the embedding procedure is a 1-round protocol where Bob sends

the first message. Thus composing it in parallel preserves the round complexity.

We compose this embedding protocol with our ROLE(F)-to-ROLE(F) protocol as follows.

Let EmbROT : {0, 1}m/2 → Fγ and ExtROT : Fγ → {0, 1}m/2 be the embedding and extraction

functions of the ROT-embedding. 

5
 Then our protocol realizing  Theorem 3.2.2 is the follow-

ing protocol, where underline the differences with the ROLE-to-ROLE protocol presented

previously.
5

 ↑ Note in our context, we are interested in embedding m/2 bits into γ field elements. We achieve this by
running a single embedding instance γ times.
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1. Bob samples j $←J and samples b̃ $←{0, 1}n/2 random bits. Then Bob samples codeword

(R,R′) $← Cj such that R ∈ Fγ and R′ ∈ Fη and R = EmbROT(b̃). Bob computes

M = X +R′ ∈ Fη and sends (M, j) to Alice.

2. Alice samples x̃0, x̃1
$←{0, 1}n/2 random bits and samples (U,U ′) $← Cj and (V, V ′) $←

Cj ∗Cj such that U, V ∈ Fγ and U ′, V ′ ∈ Fη and U = EmbROT(x̃0) and V = EmbROT(x̃1).

Alice computes α = U ′ − A ∈ Fη and β = (A ∗M) + B + V ′ ∈ Fη. Alice sends (α, β)

to Bob.

3. Bob computes W ′ = (α ∗ R′) + β − Z ∈ Fη. Bob then uses the erasure recovery

algorithm of Cj ∗ Cj to recover W ∈ Fγ such that (W,W ′) ∈ Cj ∗ Cj. Bob computes

x̃ = ExtROT(W ).

4. Alice outputs shares (x̃0, x̃1) and Bob outputs shares (b̃, x̃).

The correctness of the protocol (due to semi-honest security) and the correctness of the

ROT-embedding protocol guarantees that for every i ∈ [m/2], we have x̃i = x̃b̃i,i
, as desired.

See  Section 3.7.2 for more details.

3.3.3 Obtaining  Theorem 3.2.1 .

To realize  Theorem 3.2.1 , we compose the correlation extractor of  Theorem 3.2.2 with a

protocol to efficiently compute multiplications over an extension field using multiplications

over the base field (of the extension). This is known as a multiplication-friendly embedding

protocol [ 80 ,  94 ], and is opposite of reverse multiplication-friendly embedding protocols

discussed above. This is one of several applications of algebraic function fields first discovered

by Chundovsky and Chundovsky [ 94 ]. For example, 6 multiplications over F2 suffice to

perform a single multiplication over F23 , and 15 multiplications over F2 suffice to perform a

single multiplication over F26 (cf., [ 80 , Table 1]).

At a high-level, a multiplication friendly embedding protocol operates as follows. Let F

be a finite field and K be an extension field of F and let A,B,X ∈ K. The protocol then

embeds A into a vector a ∈ Fk, B into a vector b ∈ Fk, and X into a vector x ∈ Fk, for
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some k. Finally, the protocol computes a ∗ x + b ∈ Fk, then extracts the linear function

A ·X +B ∈ K from this vector.

In particular, we can model a multiplication-friendly embedding as a multiplication-

friendly linear code D with encoding algorithm EncD : K → Fk and decoding algorithm

DecD : Fk → K. Recall that D is multiplication friendly if the code D ∗D is a linear code

with distance Θ(k). Given such an embedding, we outline the construction of our correlation

extractor which realizes  Theorem 3.2.1 .

Being slightly more general, suppose D is multiplication-friendly linear code with encoding

algorithm EncD : Fη → {0, 1}n/2 and decoding algorithm DecD : {0, 1}n/2 → Fη such that

F is a field of characteristic 2. Further let EncD(2) ,DecD(2) be the encoder and decoder of

D(2) := D ∗ D, respectively. Let EmbROT : {0, 1}m/2 → Fγ and ExtROT : Fγ → {0, 1}m/2 be

the ROT embedding and extraction functions, respectively, from our ROLE(F) correlation

extractor. Finally, let {Cj}j∈J be the family of linear multiplication-friendly good codes of

block length γ + η. Our correlation extractor is constructed as follows.

1. First the trusted dealer samples ((a, b), (x, z)) $← ROLEn/2 and gives secret share (a, b)

to Alice and secret share (x, z) to Bob. Recall that ROLE := ROLE(F2) and that for

every i ∈ [n/2], we have that ai, bi, xi
$←{0, 1} and zi := ai · xi + bi, and further recall

that ROLE and ROT are functionally equivalent.

2. The semi-honest party performs t bits of leakage on the honest party’s secret share.

3. Bob samples j $←J and b̃ $←{0, 1}m/2. Bob then samples codeword (R,R′) $←Cj such that

R ∈ Fγ , R′ ∈ Fη, and R = EmbROT(b̃). Finally, Bob computes r′ = EncD(R′) ∈ {0, 1}n/2,

computes m = x+ r′ ∈ {0, 1}n/2, and sends (m, j) to Alice.

4. Alice samples x̃0, x̃1
$←{0, 1}n/2, and samples (U,U ′) $←Cj and (V, V ′) $←Cj ∗Cj such that

U, V ∈ Fγ, U ′, V ′ ∈ Fη, and U = EmbROT(x̃0) and V = EmbROT(x̃1). Alice computes

u′ = EncD(U ′) ∈ {0, 1}n/2 and v′ = EncD(2)(V ′) ∈ {0, 1}n/2. Finally, Alice computes

α = u′ − a ∈ {0, 1}n/2 and β = (a ∗m) + b+ v′ ∈ {0, 1}n/2 and sends (α, β) to Bob.
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5. Bob computes w′ = (α ∗ r′) + β − z ∈ {0, 1}n/2. Bob then computes W ′ = DecD(2)(w′)

and uses the erasure recovery algorithm of Cj ∗ Cj to recover W ∈ Fγ such that

(W,W ′) ∈ Cj ∗ Cj. Finally, Bob computes x̃ = ExtROT(W ).

6. Alice outputs shares (x̃0, x̃1) and Bob outputs shares (b̃, x̃).

The correctness of the protocol (due to semi-honest security), the decoding properties of

the code D(2), and the correctness of the ROT-embedding protocol guarantees that for every

i ∈ [m/2], we have x̃i = x̃b̃i,i
, as desired. See  Section 3.7.3 for more details.

3.4 Additional Related Work

As mentioned before, the study of correlation extractors was initiated by Ishai et al. [ 158 ].

The construction gives both parties n/2 samples of the ROT correlation, extracts m/2 = Θ(n)

fresh samples of ROT, is resilient to t = Θ(n) bits of leakage, and has exponentially low

security error ε = 2−Θ(n), but the extractor has message complexity 4. This is due to the fact

that their construction relies on a one-side secure correlation extractor; that is, security of this

extractor would only hold if a single party was corrupt, and not the other party. This one-side

secure extractor is a 2-message protocol, and they construct their extractor by running the

one-side secure extractor twice to handle either party being corrupt, leading to message

complexity 4. Gutpa et al. [ 140 ] constructed two correlation extractors. The first construction

gives both parties n/2 shares of the ROT correlation and outputs m/2 = n/ polylog(n) fresh

samples of ROT. The extractor is resilient to t = (1/4 − g)n bits of leakage for any gap

g ∈ (0, 1/4], has security error 2−gn/m, and is a 2-message protocol. The second correlation

extractor utilized a new correlation introduced by the authors: the inner-product correlation.

Briefly, the inner-product correlation over vector space Fs for finite field F samples uniformly

random vectors U, V $← Fs such that ⟨U, V ⟩ = 0. The second correlation extractor of Gupta

et al. gives both parties a single sample of the inner-product correlation such that each

sample is n-bits, extracts a single new sample of the ROT correlation (i.e., m/2 = 1), is

resilient to t = (1/2− g)n bits of leakage for any g ∈ (0, 1/2], and has security 2−gn. While

this extractor only produced a single new sample of the ROT correlation, it was the first

correlation extractor to achieve higher than fractional leakage resilience 1/4.
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Block, Maji, and Nguyen [  54 ] also constructed a correlation extractor for the inner-

product correlation. The construction gives both parties a single sample of the inner-product

correlation such that each sample is n-bits, extracts m/2 = n1−o(1) fresh samples of the ROT

correlation, is resilient to t = (1/2 − g)n bits of leakage for any g ∈ (0, 1/2], has security

error 2−gn, and is a 2-message protocol. Further, the authors proved that any correlation

extractor for the inner-product correlation has fractional leakage resilience t/n < 1/2, showing

that their their extractor and the extractor of Gupta et al. [ 140 ] is optimal. In a follow-up

work, the same authors in [ 55 ] improve the production rate of this inner-product correlation

to m/2 = Θ(n), giving an optimal correlation extractor for the inner-product correlation

(optimal in terms of production, resilience, security, and message complexity).

All of the above works utilize small-biased families of linear codes with appropriate

properties. Similar to our construction, Ishai et al. [ 158 ] use multiplication-friendly algebraic-

geometric codes to construct their extractor. The extractors of Gutpa et al. [ 140 ] and Block,

Maji, and Nguyen [ 54 ,  55 ] all utilize random linear codes over F which are described by

random Toeplitz matrices, and their dual and parity codes, along with (some form or another)

of reverse multiplication-friendly embedding protocols. The reverse multiplication-friendly

embedding of Block, Maji, and Ngyuen [ 55 ] was introduced independently and concurrently

with the reverse multiplication-friendly embedding of Cascudo et al. [ 78 ] (the name also

comes from Cascudo et al.); both have asymptotically optimal parameters and use similar

ideas from the field of algebraic function theory.

3.4.1 OT Combiners

Oblivious Transfer combiners, or OT combiners in short, are a restriction of correlation

extractors to the setting where an adversary can only leak individual bits of the secret share

of the honest party; that is, the performed leakage cannot be functions of the bits of the

secret share (e.g., cannot be the sum of two bits). OT combiners were first introduced and

studied by Harnik et al. [ 154 ], leaking to many works on several variants and extensions of

OT combiners [ 153 ,  160 ,  203 ,  204 ,  221 ]. Ishai et al. [ 159 ] constructed an OT combiner with

nearly optimal leakage resilience. The additionally proved that any correlation extractor for
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ROT (that is, given ROT as input) has fractional leakage resilience t/n < 1/4. The most

relevant works to our result are the combiners due to Meier, Przydatek, and Wullschleger

[ 204 ] and Przydatek and Wullschleger [ 221 ]. Using Reed-Solomon codes, they construct

two-message error-tolerant combiners to produce fresh samples of ROLE(F) from shares of

ROLE(F), where F is a large field. In particular, the field size increases with n, the size of the

secret shares produced by the preprocessing step, and error-tolerant means that the combiner

is secure even when a few of the correlation samples given as input are erroneous (i.e., not in

the support of the correlation). Note that constructions similar to these can be constructed

over appropriate constant-sized fields using multiplication-friendly secret sharing schemes

based on algebraic geometric codes introduced by Chen and Cramer [ 84 ]. The malicious

setting for OT combinders is examined in the work of Ishai, Prabhakaran, and Sahai [  160 ].

Cascudo et al. [ 79 ] construct a high-resilience OT combiner, but it only produces a single

OT (i.e., m/2 = 1). To date, malicious-secure correlation extractors remains a difficult and

interesting open problem, for both positive and negative directions.

3.5 Correlation Extractor Preliminaries

We present preliminaries specific to correlation extractors.

3.5.1 Non-standard Notation

We use some non-standard notation in our exposition of correlation extractors for the

purpose of clarity. For a positive integer n ∈ Z+, we let [ − n] := {−1,−2, . . . ,−n}. For

positive integers n1, n2 and vector x ∈ Fn1+n2 , we let x[−n1] denote the first n1 elements of x

and x[n2] denote the last n2 elements of x. In other words, x = (x[−n1], x[n2]).

3.5.2 Functionalities and Correlations

Oblivious Transfer. The 2-choose-1-bit oblivious transfer, denoted by OT. is a two-party

functionality which takes input (x0, x1) ∈ {0, 1}2 from Alice and input b ∈ {0, 1} from Bob

and outputs xb to Bob.
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Random Oblivious Transfer Correlation. The random 2-choose-1-bit oblivious transfer,

denoted by ROT, is an inputless two-party correlation that samples x0, x1, xb
$←{0, 1} uniformly

and independently at random. It outputs secret share rA = (x0, x1) to Alice and rB = (b, xb)

to Bob. The joint distribution of Alice and Bob secret shares is called a ROT-correlation.

Oblivious Linear-Function Evaluation. Given a finite field F, the oblivious linear-

function evaluation correlation, denoted by OLE(F), is a two-party functionality that takes

input (a, b) ∈ F from Alice and input x ∈ F from Bob and outputs ax+ b to Bob. Moreover

we let OLE := OLE(F2).

Random Oblivious Linear-Function Evaluation. Given a finite field F, the random

oblivious linear-function evaluation, denoted by ROLE(F), is a two-party correlation that

samples field elements a, b, x $← F uniformly and independently at random. It outputs secret

share rA = (a, b) to Alice and (b, ax+ b) to Bob. Moreover we let ROLE := ROLE(F2).

Fact 3.5.1 ([ 49 ,  54 ]). ROLE and ROT are functionally equivalent.

3.5.3 Correlation Extractors

Definition 3.5.1 (Correlation Extractors [ 49 ,  54 ,  55 ,  140 ,  158 ]). Let (RA, RB) be a correlation

such that the secret share of each party is n-bits. An (n,m, t, ε)-correlation extractor for

(RA, RB) is a two-party interactive protocol between a sender and a receiver in the (RA, RB)[t]-

hybrid that securely implements the ROTm/2 functionality and satisfies the following properties.

1. Correctness. The correctness requirement states that the receiver’s output is correct

in all m/2 instances of ROT.

2. (t, ε)-Security. We define our leakage model for correlation extractors in  Figure 3.1  .

Let (si,0, si,1) and (bi, zi) be the output shares of sender Alice and receiver Bob, respec-

tively, in the ith ROT instance. Then (t, ε)-security states that a corrupt sender (resp.,

receiver) who participates in the corruption and t-bit leakage phase of  Figure 3.1 cannot

disntiguish between {bi}i∈[m/2] (resp., {si,1−bi
}i∈[m/2]) and r $←{0, 1}m/2 with advantage

more than ε.
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Let t ∈ N be a parameter and let (RA, RB) be a correlation such that the secret shares given
to each party are n-bits.

1. Correlation Generation Phase. Sender Alice receives rA and receiver Bob receives
rB for (rA, rB)← (RA, RB).

2. Corruption and t-bit Leakage Phase. An information-theoretic semi-honest ad-
versary corrupts either the sender or the receiver, then sends a leakage function
L : {0, 1}n → {0, 1}t, and receives L(rB) or L(rA), respectively. Note that this leakage
is arbitrary: it is not limited to leakage on individual bits of the shares and can encode
crucial global information.

Figure 3.1. Leakage model for correlation extractors.

We define m to be the production, m/n to be the production rate, t to be the leakage

resilience, and t/n to be the leakage rate.

Through the remainder of this chapter, we fix parameter n ∈ N only consider (RA, RB) =

ROTn/2 or (RA, RB) = ROLE(F)η, where F is a suitable constant-sized field and η is an integer

such that 2η log |F| = n. That is, Alice and Bob each begin with n/2 samples of the ROT

correlation or with η samples of the ROLE(F) correlation.

3.5.4 Distributions over Linear Codes

Throughout the remainder of this chapter, we focus on linear Hamming codes; in particular,

whenever we write “linear code” or “code”, we mean it to be a Hamming code.

We adopt the following non-standard notation. For a (HAM, δ) linear code C[η, κ, q] over

a finite field F = Fq, we write C = C[η, κ, d, d⊥, d(2)] to denote a linear code with generator

matrix G ∈ Fκ×η, message length κ, block length η, and distance d such that C⊥ has distance

d⊥ and C(2) has distance d(2). Here, we let H ∈ Fη−κ×η denote the generator matrix of C⊥,

and C(2) denotes the Schur-product code of C, defined as span c ∗ c′ : c, c′ ∈ C ⊆ Fη. For any

permutation π ∈ Sη, we define Gπ := π(G) as the generator matrix obtained by permuting

the columns of G under π.

We also let C denote the uniform distribution over codewords generated by G; that is,

C = {x ·G : x $← Fκ}, and abuse notation to also let C denote the uniform distribution over

its support, and let C(c) ∈ [0, 1] denote the probability that c $← C for c ∈ Fη.
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3.6 Small-bias Distributions of Linear Codes with Erasure Recovery

The heart of correlation extractor relies on the construction of a family of small-bias

distributions {Cj}j∈J , for some set J , such that (1) Cj is a linear code for every j; and

(2) Cj ∗Cj supports erasure recovery for every j. Formally, the requirements of this family of

distributions is given in  Property 3.6.1 .

Property 3.6.1. A family of linear code distributions C = {Cj}j∈J over Fη satisfy this

property with parameters δ and γ if the following hold.

1. 2−δ/2-biased family of distributions. The code family C is a 2−δ/2-biased family of

distributions (see  Definition 2.6.2 ).

2. γ-erasure recovery in Schur product. For all j ∈ J , the code C(2)
j = Cj ∗ Cj

supports erasure recovery of the first γ coordinates. Moreover, the first γ coordinates of

Cj and C(2)
j are linearly independent.

3.6.1 Our Construction

We present our construction of a family of linear codes which satisfy  Property 3.6.1  in

 Figure 3.2 . At a high level, we obtain our family of linear codes by first fixing a suitable

algebraic geometric code [ 84 ,  121 ,  133 ] C instantiated over a constant-size field F. Moreover,

the code has block length η∗ = γ + η, and the parameters of C are chosen appropriately such

that (1) under the “twist-then-permute” operation, the constructed family is a 2−δ-biased

family of distributions; and (2) the code C ∗ C (and thus any permuted version) supports

erasure recovery of any γ-coordinates. The linear code family of  Figure 3.2  satisfies the

following theorem.

Theorem 3.6.2. The family of linear code distributions {Cπ,λ : π ∈ Sη∗ , λ ∈ (F×)η∗} over

Fη∗ given in  Figure 3.2 satisfies  Property 3.6.1 for any γ < d(2), where d(2) is the distance of

the Schur-product code of C, and

δ =
[︄(︄
d⊥ + η∗

√
q − 1 − 1

)︄
·
(︄

log(q − 1)− h2

(︄
1

q + 1

)︄)︄]︄
−
(︄

η∗
√
q − 1

)︄
· log(q).
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Family of small-bias distributions with erasure recovery in the product distribu-
tion:
Fix a linear code C = [η∗, κ, d, d⊥, d(2)]F with generator matrix G ∈ Fκ×η∗ , where |F| = q
and κ ⩾ d(2), where d(2) is the distance of C ∗ C. Let γ be a fixed natural number such
that C ∗ C supports γ-erasure recovery. We construct the family of small-bias distributions
{Cπ,λ : π ∈ Sη∗ , λ ∈ (F×)η∗} over Fη∗ as follows.

1. Let λ ∈ (F×)η∗ . Define Gλ = [λ1 ·G1, . . . , λη∗ ·Gη∗ ] ∈ Fκ×η∗ , where Gi is the ith column
of G and λi ·Gi is the multiplication of Gi by λi.

2. Let π ∈ Sη∗ . Define Gπ,λ = π (Gλ) ∈ Fκ×η∗ , where π(Gλ) is the permutation of the
columns of Gλ according to permutation π. Then Cπ,λ is the uniform distribution over
the linear code generated by Gπ,λ.

(Enc,Dec) for Cπ,λ: Let (EncC ,DecC) be the Encoder and Decoder for the linear code C.

• Enc(m): Compute c = (c1, . . . , cη∗) = EncC(m). Compute c ∗ λ = (λ1 · c1, . . . , λη∗ · cη∗).
Output π(c ∗ λ).

• Dec(x): Compute c′ = (c′1, . . . , c′η∗) = π−1(x). Compute c′ ∗ λ′ = (λ−1
1 · c′1, . . . , λ−1

η∗ · c′η∗).
Output DecC(c′ ∗ λ′).

(Enc,Dec) for (Cπ,λ ∗ Cπ,λ): Let (EncC(2) ,DecC(2)) be the Encoder and Decoder for the linear
code C(2) = C ∗ C.

• Enc(m): Compute c = (c1, . . . , cη∗) = EncC(2)(m). Compute c ∗ λ ∗ λ = (λ2
1 · c1, . . . , λ

2
η∗ ·

cη∗). Output π(c ∗ λ ∗ λ).

• Dec(x): Compute c′ = (c′1, . . . , c′η∗) = π−1(x). Compute c′∗λ′∗λ′ = (λ−2
1 ·c′1, . . . , λ−2

η∗ ·c′η∗).
Output DecC(2)(c′ ∗ λ′ ∗ λ′).

Figure 3.2. Construction of small-biased linear code distributions.

We prove  Theorem 3.6.2  and give an overview of the (asymptotic) calculation of the

parameters of C in  Section 3.A.1  . Since the precise calculation of these parameters are beyond

the scope of this dissertation, we refer the curious reader to [  50 ] for these details.

3.7 Correlation Extractor Constructions

We first construct our correlation extractor for the ROLE(F) correlation, which realizes

 Theorem 3.2.2 . Then we use this correlation extractor to construct our correlation extractor

for the ROT correlation, realizing  Theorem 3.2.1 .
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Let t ∈ N be a parameter and let ROLE(F)η be the ROLE(F) correlation such that each party
is given η independent samples of ROLE(F).

1. Correlation Generation Phase. Sender Alice receives (ai, bi) and receiver Bob
receives (xi, zi = ai · xi + bi) for ai, bi, xi

$← F for every i ∈ [η]. Let a = (a1, . . . , aη),
b = (b1, . . . , bη), x = (x1, . . . , xη) and z = (z1, . . . , zη).

2. Corruption and t-bit Leakage Phase. An information-theoretic semi-honest ad-
versary corrupts either the sender or the receiver, then sends a leakage function
L : Fη → {0, 1}t, and receives L(x) or L(a), respectively. Note that this leakage is
arbitrary: it is not limited to leakage on individual bits of the shares and can encode
crucial global information.

Figure 3.3. Leakage model for our ROLE(F)-to-ROLE(F) correlation extractor.

3.7.1 ROLE(F)-to-ROLE(F) Correlation Extractor

To prove  Theorem 3.2.2 , we first detour and construct a ROLE(F)-to-ROLE(F) extractor—a

correlation extractor which initially takes leaky ROLE(F) shares and outputs secure ROLE(F)

shares. This special correlation extractor is the technical heart of our correlation extractor

for ROLE(F) satisfying  Theorem 3.2.2 .

Definition 3.7.1 (ROLE(F)-to-ROLE(F) Correlation Extractor). An (η, γ, t, ε)-ROLE(F)-to-

ROLE(F) correlation extractor is a two-party interactive protocol between a sender and a

receiver in the (ROLE(F)η)[t]-hybrid that securely implements the ROLE(F)γ functionality and

satisfies the following properties.

1. Secret Shares. Each party receives η independent shares of the ROLE(F) correlation.

2. Correctness. The receiver’s output is correct in all γ instances of ROLE(F).

3. (t, ε)-Security. We define a simpler leakage model in  Figure 3.3 that is equivalent to

the model of  Figure 3.1 . Let (ui, vi) and (ri, zi) be the output shares of sender Alice and

receiver Bob, respectively, in the ith ROLE(F) instance. Then (t, ε)-security states that

a corrupt sender (resp., receiver) who participates in the corruption and t-bit leakage

phase of  Figure 3.3 cannot distinguish between {ri}i∈[γ] (resp., {ui}i∈[γ]) and s
$← Fγ

with advantage more than ε.
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Let {Cj}j∈J be a family of linear code distributions over Fγ+η satisfying  Property 3.6.1 for
appropriate values of δ and γ.

Hybrid: Client A receives (a, b) for a, b $← Fη and Client B receives (x, z) for x $← Fη such
that zi = ai · xi + bi for every i ∈ [η].

1. Code Generation. Client B samples j $←J .
2. ROLE(F) Extraction Protocol.

(a) Client B samples random codeword (rγ, . . . , r−1, r1, . . . , rη) $← Cj and sets r =
(r1, . . . , rη). Client B computes m = r + x ∈ Fη and sends (m, j) to Client A.

(b) Client A samples random codewords (u−γ, . . . , u−1, u1, . . . , uη) $← Cj and
(v−γ, . . . , v−1, v1, . . . , vη) $← (Cj ∗ Cj). Client A sets u = (u1, . . . , uη) and v =
(v1, . . . , vη) and computes

α = u− a ∈ Fη β = (a ∗m) + b+ v ∈ Fη.

Client A sends (α, β) to Client B.
(c) Client B computes t′ = (α ∗ r′) + β − z ∈ Fη. Client B performs erasure recovery

on t′ for code Cj ∗ Cj and obtains t′′ = (t−γ, . . . , t−1) ∈ Fγ.
(d) Client A outputs {(ui, vi)}i∈{−γ,...,−1} and Client B outputs {(ri, ti)}i∈{−γ,...,−1}.

Figure 3.4. Our ROLE(F)-to-ROLE(F) Correlation Extractor.

We present our ROLE(F)-to-ROLE(F) correlation extractor in  Figure 3.4 , which is inspired

by the Massey secret sharing scheme [ 197 ]. The protocol is message-optimal (i.e., we send 2

messages, one from each party), and uses a family of linear code distributions {Cj}j∈J which

satisfy  Property 3.6.1 for appropriate δ and γ.

We first prove the correctness of  Figure 3.4 , which is characterized by the following lemma.

Lemma 3.7.1. If {Cj}j∈J satisfies  Property 3.6.1  , then for all i ∈ {−γ, . . . ,−1}, it holds

that ti = ui · ri + vi.

Proof. First, we prove the following claim.

Claim 3.7.2. For all i ∈ [η], it holds that t′i = ui · ri + vi.
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This claim follows from the following derivation.

t′i = αiri + βi − zi = (ui − ai)ri + (aimi + bi + vi)− zi

= uiri − airi + ai(ri + xi) + bi + vi

= uiri + aixi + bi + vi − zi = uiri + vi.

From the protocol, we have that (u′, u) ∈ Cj, (r′, r) ∈ Cj, and (v′, v) ∈ C
(2)
j for u′ =

(u−γ, . . . , u−1), r′ = (r−γ, . . . , r−1), and v′ = (v−γ, . . . , v−1). Consider t̃ = (u′, u) ∗ (r′ ∗ r) +

(v′, v) ∈ C(2)
j . Note that t′i = t̃i for all i ∈ [η]. Hence, when client B performs erasure recovery

on t′ for a codeword in C(2)
j , it obtains t′′ = (t̃−γ, . . . , t̃−1). This follows from erasure recovery

guarantee for any γ coordinates by  Property 3.6.1 .

Next we capture the (t, ε)-security of  Theorem 3.2.2 in the following lemma.

Lemma 3.7.3. After the correlation generation and t-bit leakage phase of  Figure 3.3  , the

protocol presented in  Figure 3.4  has simulation error ε ⩽
√︄
|F|γ · 2t

2δ
, where γ and δ are the

parameters for the family {Cj}j∈J satisfying  Property 3.6.1 .

We prove  Lemma 3.7.3 in  Section 3.A.1 . We use  Lemmas 3.7.1 and  3.7.3 to aid in the

proof of  Theorem 3.2.2 , presented next.

3.7.2 Correlation Extractor for ROLE(F) ( Theorem 3.2.2 )

We now construct our ROLE(F) correlation extractor which satisfies  Theorem 3.2.2 ; that

is, given leaky shares of ROLE(F), our correlation extractor outputs fresh samples of ROT. In

particular, we compose the ROLE(F)-to-ROLE(F) correlation extractor of  Figure 3.4 with the

(random) oblivious transfer embedding protocol of Block, Maji, and Nguyen [ 54 ]. We refer to

this embedding protocol as the BMN embedding protocol. This protocol embeds a constant

number of ROT samples into one sample of ROLE(F), where F is a finite field of characteristic

2. The BMN embedding protocol is a two-message perfectly semi-honest secure protocol

that, asymptotically, embeds (s)1−o(1) samples of ROT into one sample of the ROLE(F2s)

correlation. However, for reasonable values of s, say for s ⩽ 250, a recursive embedding
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embeds slog(10)/ log(38) samples of ROT into one sample of the ROLE(F2s) correlation, and this

embedding is more efficient than the asymptotically good one. We argue that this protocol

composes in parallel with our protocol in  Figure 3.4 to give our overall round optimal protocol

for (n,m, t, ε)-correlation extractor for ROLE(F) correlation satisfying  Theorem 3.2.2 .

We note that the BMN embedding protocol satisfies the following additional properties.

(1) The first message is sent by Client B; and (2) this message depends only on the first share

of Client B in ROLE(F) (this refers to ri in  Figure 3.4 ) and does not depend on the second

share (this refers to ti in  Figure 3.4 ). With these properties, the BMN embedding protocol

can be run in parallel with the protocol in  Figure 3.4 , maintaining message complexity 2.

Also, since the BMN protocol satisfies perfect correctness and perfect security, to prove overall

security, it suffices to prove the correctness and security of our protocol in  Figure 3.4 . This

holds because we are in the semi-honest information theoretic setting. Thus by  Lemmas 3.7.1 

and  3.7.3 and the above observation, we have established  Theorem 3.2.2 . We present the

correlation extractor satisfying  Theorem 3.2.2 in  Figure 3.5 .

3.7.3 Correlation Extractor for ROT ( Theorem 3.2.1 )

To obtain a correlation extractor for ROT satisfying  Theorem 3.2.1 , we describe a protocol

which constructs shares of the leaky correlation (ROLE(F)η)[t] from shares of the leaky

correlation (ROLEn)[t]. The leaky shaers of the (ROLE(F)η)[t] correlation are then used in the

correlation extractor of  Theorem 3.2.2 (described in  Section 3.7.2 ). This gives us our final

ROT correlation extractor satisfying  Theorem 3.2.1 since ROLE and ROT are equivalent (see

 Fact 3.5.1 ). Recall that ROLE := ROLE(F2).

This protocol relies on one of many applications of algebraic functions fields pioneered by

the seminal work of Chudnovsky and Chudnovsky [ 94 ]. The application we are interested in

is efficiently computing multiplications over an extension field via multiplications over the

base field. For example, 6 multiplications over F2 suffices to perform a single multiplication

over F23 (cf., Table 1 in [ 80 ] for more examples). This application is crucial for our final

correlation extractor.
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Let {Cj}j∈J be a family of linear code distributions over Fγ+η satisfying  Property 3.6.1 for
appropriate values of δ and γ, where F is a finite field of characteristic 2.
Let EncBMN : {0, 1}ℓ → F and DecBMN : F→ {0, 1}ℓ be the encoding and decoding algorithms
for the BMN Embedding [  54 ] for appropriate ℓ ∈ N.

Hybrid: Client A receives (a, b) for a, b $← Fη and Client B receives (x, z) for x $← Fη such
that zi = ai · xi + bi for every i ∈ [η].

1. Code Generation. Client B samples j $←J .
2. ROLE Extraction Protocol.

(a) Client B samples x(i) $← {0, 1}ℓ and sets ri = EncBMN(x(i)) ∈ F for every i ∈
{−γ, . . . ,−1}. Client B samples random codeword (r−γ, . . . , r−1, r1, . . . , rη) $← Cj

and sets r = (r1, . . . , rη). Client B computes m = r + x ∈ Fη and sends (m, j) to
Client A.

(b) Client A samples a(i) $←{0, 1}ℓ and b(i) $←{0, 1}ℓ and sets ui = EncBMN(a(i)) ∈ F
and vi = EncBMN(b(i)) ∈ F for every i ∈ {−γ, . . . ,−1}. Client A samples random
codewords (u−γ, . . . , u−1, u1, . . . , uη) $←Cj and (v−γ, . . . , v−1, v1, . . . , vη) $←(Cj ∗Cj).
Client A sets u = (u1, . . . , uη) and v = (v1, . . . , vη) and computes

α = u− a ∈ Fη β = (a ∗m) + b+ v ∈ Fη.

Client A sends (α, β) to Client B.
(c) Client B computes t′ = (α ∗ r′) + β − z ∈ Fη. Client B performs erasure recovery

on t′ for code Cj ∗ Cj and obtains t′′ = (t−γ, . . . , t−1) ∈ Fγ.
(d) Client A outputs {(DecBMN(ui),DecBMN(vi))}i∈{−γ,...,−1} and Client B outputs
{(DecBMN(ri),DecBMN(ti))}i∈{−γ,...,−1}.

Figure 3.5. Our correlation extractor for ROLE(F).

The first step of our final correlation extractor will be, as described above, to use

the efficient multiplication algorithms to (perfectly and securly) implement (ROLE(F)η)[t]

using (ROLEn)[t], where here |F| = 2k for some k ∈ N. We start by giving a protocol

for realizing a single ROLE(F) instance using ROLEℓ; i.e., ℓ independent samples of ROLE

with no leakage applied. The protocol is given in  Figure 3.6 . The protocol of  Figure 3.6 

relies on a multiplication friendly code D ⊆ {0, 1}ℓ with message space F; in particular,

D(2) := D ∗ D ⊆ {0, 1}ℓ is also a code with message space F.

The presented protocol of  Figure 3.6  is a perfectly secure implementation of ROLE(F)

in the ROLEℓ-hybrid against a semi-honest adversary; this follows from the fact that D is a
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Let D ⊆ {0, 1}ℓ be a multiplication friendly code with message space F = F2α . Let
(EncD,DecD) (resp., EncD(2) ,DecD(2)) be encoding and decoding procedures for D (resp.,
D(2)).

Hybrid ROLEℓ: Client A receives (a, b) for a, b $← {0, 1}ℓ and Client B receives (x, z) for
x

$←{0, 1}ℓ such that zi = ai · xi + bi for every i ∈ [ℓ].
1. Client B samples x0

$← F and obtains random codeword x̃ = EncD(x0) ∈ {0, 1}ℓ. Client
B sets m = x+ x̃ and sends m to Client A.

2. Client A samples a0, b0
$← F and obtains random codewords ã = EncD(a0) ∈ {0, 1}ℓ and

b = EncD(2)(b0) ∈ {0, 1}ℓ. Client A sets

α = a+ ã β = (a ∗m) + b+ b̃

and sends (α, β) to Client B.
3. Client B computes z̃ = (α ∗ x̃) + β + z. Client B computes z0 = DecD(2)(z̃).
4. Client A outputs (a0, b0) and Client B outputs (x0, z0).

Figure 3.6. Perfectly secure protocol for ROLE(F) in ROLEℓ-hybrid.

multiplication friendly code. To extend this guarantee to the t-leaky setting, we utilize the

following lemma.

Lemma 3.7.4 ([ 158 ]). Let Π be a perfectly secure (resp., ε-statistically secure) implementation

of functionality f in the g-hybrid model, where Π makes a single call to the functionality

g. Then Π is a perfectly secure (resp., ε-statistically secure) implementation of f [t] in the

g[t]-hybrid model.

By  Lemma 3.7.4 , the protocol presented in  Figure 3.6 is a prefect realization of (ROLE(F))[t]

in the (ROLEℓ)[t]-hybrid. Running the protocol of  Figure 3.6 in parallel for η samples of

the ROLE(F) correlation, we obtain a perfectly secure protocol for (ROLE(F)η)[t] in the

(ROLEη·ℓ)[t]-hybrid.

Finally, we establish the message optimality of running the protocol of  Figure 3.6 in parallel

with our correlation extractor of  Figure 3.5 . The full protocol is presented in  Figure 3.7 . This

realizes  Theorem 3.2.1 .
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3.A Correlation Extractors: Deferred Proofs

We present proofs deferred from prior sections.

3.A.1 Proof of  Theorem 3.6.2 

We prove the erasure recovery property followed by the small-bias property.

Erasure recovery of γ indices in the Schur-product code. First we note that permuting

or re-ordering the columns of a generator matrix does not change its distance, the distance of

the Schur-product, or erasure recovery capability (as long as we know the mapping of new

columns vis-à-vis old columns). Let Iγ = {i1, . . . , iγ} be the indices of the erased coordinates

of codeword in C
(2)
π,λ. Hence to show erasure recovery of the coordinates Iγ of a codeword of

C
(2)
π,λ, it suffices to show erasure recovery of the γ erased coordinates Jγ = {j1, . . . , jγ} of a

codeword of C(2)
λ , where Cλ is the uniform codespace generated by Gλ, and π(jk) = ik for

every k ∈ [γ].

Note that since γ < d(2), the code C(2) supports erasure recovery of any γ coordinates.

Thus it suffices to show that this implies that C(2)
λ also supports the erasure recovery of any

γ coordinates. Note that since λ ∈ (F∗)η∗ , multiplication of the columns of G according to λ

does not change its distance or distance of the Schur-product code. Then we do the following

to perform erasure recovery of γ coordinates in C
(2)
λ . Let c(2) ∈ C(2)

λ be a codeword with

erased coordinates Jγ = {j1, . . . , jγ}, and let Jη = {j′1, . . . , j′η} be the coordinates of c(2) that

have not been erased. For every j ∈ Jη, compute cj = (λ−1
j )2 · c(2)

j . Then the vector (cj)j∈Jη

is a codeword of C(2) with coordinates ci erased for i ∈ Jγ . Since C(2) has γ erasure recovery,

we can recover the ci for i ∈ Jγ . Once recovered, for every i ∈ Jγ , compute c(2)
i = λ2

i · ci. This

produces the γ erased coordinates of c(2) in C
(2)
λ . Finally, one can map the c(2)

i for i ∈ Jγ to

the coordinates Iγ using π, recovering the erasures in C
(2)
π,λ.

2−δ-bias family of distributions. Let C,Cλ, Cπ,λ be the uniform distribution over the

linear codes generated by G,Gλ, Gπ,λ, respectively. Recall that d⊥ is the dual distance for C.
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Note that Cλ, Cπ,λ have dual-distance d⊥ as well. Let η∗ = η + γ. Since for every S ∈ Fη∗ we

have BiasS(Cπ,λ) = |F|η∗ | · | ˆ︁Cπ,λ(S)|, it suffices to show that

E
π,λ

[︂ ˆ︁Cπ,λ(S)2
]︂
⩽

1
|F|2η∗ · 2δ

.

To begin, first recall the definition of Cπ,λ:

Cπ,λ := {π(λ1 · c1, . . . , λη∗ · cη∗) | (c1, . . . , cη∗) ∈ C}.

Next, given any S ∈ Fη∗ , define S(S) := {π(λ1S1, . . . , λη∗Sη∗) ∈ Fη∗ | ∀π ∈ Sη∗ ∧ λ ∈

(F×)η∗}. Note that S(S) is equivalently characterized as

S(S) = {T = (T1, . . . , Tη∗) ∈ Fη∗ | wt(T ) = wt(S)}.

Notice that |S(S)| =
(︂

η∗

w0

)︂
· (q − 1)η∗−w0 , where w0 = η∗ − wt(S); i.e., w0 is the number of

zeros in S. We prove the following claim.

Claim 3.A.1. For any S ∈ Fη∗, we have ˆ︁Cπ,λ(S) = ˆ︁C(π−1(S) ∗ λ).

Proof. Notice that by definition for any x ∈ Cπ,λ, we have Cπ,λ(x) = C(c) since x =

π(λ1 · c1, . . . , λη∗ · cη∗) for c ∈ C. This is equivalently stated as Cπ,λ(π(c ∗ λ)) = C(c). For

x = π(λ1 · y1, . . . , λη∗ · yη∗) ∈ Fη∗ and any S ∈ Fη∗ , we have

S · x =
η∗∑︂

i=1
Si · xi =

η∗∑︂
i=1

Si · (λπ(i) · yπ(i)) =
η∗∑︂

i=1
(Sπ−1(i)) · λi · yi = (π−1(S) ∗ λ) · y.

where S·x is the vector dot product. By definition of χS(x), this implies χS(x) = χy(π−1(S)∗λ).

Using these two facts and working directly from the definition of Fourier Transform, we have

ˆ︁Cπ,λ(S) = 1
|F|η∗ ·

∑︂
x∈Fη∗

Cπ,λ(x) · χS(x)

= 1
|F|η∗ ·

∑︂
c∈Fη∗

Cπ,λ(π(λ1c1, . . . , λη∗cη∗)) · χS(π(λ1c1, . . . , λη∗cη∗))

= 1
|F|η∗ ·

∑︂
c∈Fη∗

C(c) · χc(π−1(S) ∗ λ) = ˆ︁C(π−1(S) ∗ λ).
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Notice that wt(π−1(S)∗λ) = wt(S) for any S ∈ Fη∗ and λ ∈ (F×)η∗ . Therefore π−1(S)∗λ =

T ∈ S(S). From this observation and  Claim 3.A.1 , we prove the following claim.

Claim 3.A.2. For any S ∈ Fn, E
π,λ

[︂ ˆ︁Cπ,λ(S)2
]︂

= E
T

$←S(S)

[︂ ˆ︁C(T )2
]︂
.

Proof. Suppose we have codeword x ∈ Cπ,λ such that π(λ1 · c1, . . . , λ
∗
η · c∗η) = x, for some

codeword c ∈ C. Let {i1, . . . , iw0} be the set of indices of 0 in c; that is, cj = 0 for all

j ∈ {i1, . . . , iw0}. Then for any permutation π, the set {π(i0), . . . , π(iw0)} is the set of zero

indices in x. Note also that for any index j ̸∈ {π(i0), . . . , π(iw0)}, we have xj ̸= 0. If this was

not the case, then we have xj = cπ−1(j) ·λπ−1(j) = 0. Since j ̸∈ {π(i0), . . . , π(iw0)}, this implies

π−1(j) ̸∈ {i0, . . . , iw0}, which further implies that cπ−1(j) ̸= 0. This is a contradiction since

λ ∈ (F×)η∗ . Thus any permutation π must map the zeros of S to the zeros of c, and there

are w0! · (η∗ −w0)! such permutations. Notice now that for any ck = 0, λk can take any value

in F×, so we have (q − 1)w0 such choices. Furthermore, if ck ≠ 0 and λk · ck = xπ−1(k) ̸= 0,

then there is exactly one value λk ∈ F× which satisfies this equation. Putting it all together,

we have

E
π,λ

[︂ ˆ︃Cπ,λ(S)2
]︂

= 1
η∗! · (q − 1)η∗ ·

∑︂
π,λ

ˆ︃Cπ,λ(S)2 (3.3)

= 1
η∗! · (q − 1)η∗ ·

∑︂
π,λ

ˆ︁C (︂π−1(S) ∗ λ
)︂2

(3.4)

= (w0! · (η∗ − w0)! · (q − 1)w0)
η∗! · (q − 1)η∗ ·

∑︂
T∈S(S)

ˆ︁C(T )2 (3.5)

= w0! · (η∗ − w0)!
η∗! · (q − 1)η∗−w0

·
∑︂

T∈S(S)

ˆ︁C(T )2 (3.6)

=
(︄(︄

η∗

w0

)︄
· (q − 1)η∗−w0

)︄−1

·
∑︂

T∈S(S)

ˆ︁C(T )2 = E
T

$←S(S)

[︂ ˆ︁C(T )2
]︂
, (3.7)

where  Equation (3.4) follows from  Claim 3.A.1 .

Given  Claim 3.A.2 , we turn to finding δ such that for S ∈ Fη∗ \ {0ηs}, we have

E
T

$←S(S)

[︂ ˆ︁C(T )2
]︂
⩽

1
|F|2η∗ · 2δ

.
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Since C is a linear code, it has non-zero Fourier coefficients only at codewords in the dual

code C⊥.

Fact 3.A.3. For all S ∈ Fη∗, ˆ︁C(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
|F|η∗ S ∈ C⊥

0 otherwise.

Let Aw = |C⊥ ∩ S(S)|, where w = η∗ − w0 = wt(S). Intuitively, Aw is the number of

codewords in C⊥ with weight w. Then from  Fact 3.A.3 , we have

E
T

$←S(S)

[︂ ˆ︁C(T )2
]︂

= |C⊥ ∩ S(S)|
|F|2η∗ ·

(︂
η∗

η∗−w0

)︂
· (q − 1)wt(S)

= Aw

|F|2η∗ ·
(︂

η∗

w

)︂
· (q − 1)w

= Aw

|F|2η∗ · |S(S)| . (3.8)

Now, our goal is to upper bound Aw. Towards this goal, the weight enumerator for the code

C⊥ is defined as the polynomial

WC⊥(x) =
∑︂

c∈C⊥

xη∗−wt(c).

This polynomial can equivalently be written as

WC⊥(x) =
∑︂

w∈[η∗]0
Aw · xη∗−w.

Define a = η∗ − d⊥.

Proposition 3.A.1 (Exercise 1.1.15 from [ 254 ]). We have the following relation

WC⊥(x) = xη∗ +
a∑︂

i=0
B·i(x− 1)i,

where

Bi =
η∗−i∑︂

j=η∗−a

(︄
η∗ − j
i

)︄
· Aj ⩾ 0 Ai =

a∑︂
j=η∗−i

(−1)η∗+i+j

(︄
j

η∗ − i

)︄
·Bj.
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For weight w ∈
{︂
d⊥, . . . , η∗

}︂
, we use the following expression to estimate Aw.

Aw =
(︄
η∗ − w
η∗ − w

)︄
·Bη∗−w −

(︄
η∗ − w + 1
η∗ − w

)︄
·Bη∗−w+1 +· · · ±

(︄
η∗ − d⊥

η∗ − w

)︄
·Bη∗−d⊥

We are interested in the asymptotic behavior of Aw, and observe that asymptotically we

have log(Aw) ∼ log(Γ(w)), where

Γ(w) := max
η∗−w⩽j⩽η∗−d⊥

{︄(︄
j

η∗ − w

)︄
·Bj

}︄
(3.9)

Thus it suffices to compute Γ(w) for every w ∈ {d⊥, . . . , η∗}.

We are interested in computing the maximum bias 2−δ such that

E
T

$←S(S)

[︂ ˆ︁C(T )2
]︂

= Aw

|F|2η∗ · |S(S)| ⩽
1

|F|2η∗ · 2δ
,

where w = wt(S) and the above equation is given by  Equation (3.8) . Recalling that

log(Aw) ∼ log(Γ(w)), by the above equation we are interested in the quantity

δ ⩾ min
d⊥⩽w⩽η∗

log
(︄
|S(w)|
Γ(w)

)︄
. (3.10)

Here we overload notation and let S(w) ⊆ Fη∗ be the set of all vectors of weight w. Note

that for any S ∈ Fη∗ of weight w, we have S(S) = S(w). Computing the minimum value of δ

in  Equation (3.10)  corresponds to an (asymptotic) upper bound on the bias of our family of

linear code distributions. We defer the reader to the full version of [ 49 ] at [  50 ] for complete

details on the final derivation of δ that achieves  Theorem 3.6.2 .

3.A.2 Proof of  Lemma 3.7.3 

Lemma 3.7.3. After the correlation generation and t-bit leakage phase of  Figure 3.3  , the

protocol presented in  Figure 3.4  has simulation error ε ⩽
√︄
|F|γ · 2t

2δ
, where γ and δ are the

parameters for the family {Cj}j∈J satisfying  Property 3.6.1 .

We shall reduce the security of our protocol to the following unpredicatbility lemma.
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Lemma 3.A.4 (Unpredictability Lemma [ 49 ,  54 ]). Let {Cj}j∈J be a 2−δ-biased family of

linear code distributions over Fη∗ for η∗ = γ + η. Consider the following game between an

honest challenger H and an adversary A:

1. H samples m $← Fη.

2. A sends leakage function L : Fη → {0, 1}t to H.

3. H sends L(m) to A.

4. H samples j $←J . H samples (r−γ, . . . , r−1, r1, . . . , rη) $← Cj and lets r = (r1, . . . , rη).

H computes y = r+m ∈ Fη. H samples b $←{0, 1}. If b = 0 then H sets chal = r′ for

r′ = (r−γ, . . . , r−1); else if b = 1 then H sets chal = u
$← Fγ. H sends (y, j, chal) to A.

5. A sends b̃ ∈ {0, 1} to H.

The adversary A wins the game if b = b̃. Any adversary A wins the above game with advantage

ε ⩽ 1
2 ·
√︂
|F|γ ·2t

2δ .

Given  Lemma 3.A.4 , we establish the (t, ε)-security of  Figure 3.4 in the following lemma.

Lemma 3.A.5. The simulation error of our protocol is ε ⩽
√︂
|F|γ2t

2δ after t bits of leakage,

where γ and δ are the parameters for family of distributions C provided by  Property 3.6.1 .

Proof. We proceed by proving the security of Bob followed by the security of Alice. For

the security of Bob, assume that Alice is semi-honest. It suffices to show that Alice cannot

distinguish between Bob’s secret values (r−γ, . . . , r−1) and (ξ1, . . . , ξγ) $← Fγ except with

probability at most ε. Observe that the security of Bob directly reduces to  Lemma 3.A.4  

for the following values. Let X[η] be the random variable of Bob’s initial input x[η]. Then

X[η] ≡ UFη . Before the protocol proceeds, adversary Alice obtains at most t bits of leakage

L = L(X[η]) ∈ {0, 1}∗. Then Bob samples j $← J and r = (r−γ, . . . , r−1, r1, . . . , rη) $← Cj,

and sends m[η] = r[η] + x[η] to Alice. This is identical to the game between a semi-honest

adversary A and an honest challenger H in  Lemma 3.A.4 . This implies that Alice cannot

distinguish between (r−γ, . . . , r−1) and (ξ1, . . . , ξγ) $← Fγ except with probability at most ε.

For the security of Alice, assume that Bob is semi-honest. We again reduce the security to

 Lemma 3.A.4 to show that Bob cannot distinguish between Alice’s secret values (u−γ, . . . , u−1)
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and (ξ1, . . . , ξγ) $←Fγ except with probability ε, however it is slightly more complicated in this

case. Let A[η] be the random variable for Alice’s initial input a[η]. Without loss of generality,

Bob receives at most t bits of leakage L = L(A[η]). Suppose by way of contradiction that Bob

can distinguish between Alice’s secret and the uniform distribution with probability greater

than ε. Let A denote Bob. Then we construct an adversary A′ using A that can win the

game of  Lemma 3.A.4 with probability greater than ε. Let C = {Cj}j∈J be our family of

linear code distributions.

1. H samples a[η]
$← Fη.

2. A′ samples x[η], z[η]
$← Fη and forwards (x[η], z[η]) to A.

3. Upon receiving leakage function L from A, A′ forwards L to H.

4. H sends ℓ = L(a[η]) to A′, and A′ forwards ℓ to A.

5. H samples and sends j $←J to A′, and A′ forwards j to A.

6. A responds with some message m[η] and A′ receives this message but does not forward

it to H.

7. H samples (u[−γ], u[η]) $← Cj, computes α[η] = u[η] − a[η] and sends α[η] to A′.

8. A′ computes r[η] = m[η] − x[η], samples (w[−γ], w[η]) $← C
(2)
j , and computes β[η] =

w[η] − α[η] ∗ r[η] + z[η]. A′ forwards (α[η], β[η]) to A.

9. H samples b $← {0, 1} and y
$← Fγ, and sends chal = b · y + (u−γ) to A′. A′ forwards

chal to A.

10. A replies with bit b̃ ∈ {0, 1} and A′ forwards b̃ to H.

We highlight the differences between the above reduction and the actual protocol. In the

reduction, the index j is sampled by the honest challenger instead of Bob; however, this is

identical because Bob is semi-honest and will sample j honestly. Next, A′ generates the value
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β[η] differently than in the real protocol. However, by the correctness of the protocol we have

that

t[η] = u[η] ∗ r[η] + v[η]

= (α[η] ∗ r[η]) + β[η] − z[η].

This implies that

β[η] = ((u[η] ∗ r[η]) + v[η])− (α[η] ∗ r[η]) + z[η]

= w[η] − (α[η] ∗ r[η]) + z[η],

where (w[−γ], w[η]) $← C
(2)
j . Note that in the real protocol (v[−γ], v[η]) $← C

(2)
j and (u[−γ] ∗

r[−γ], u[η] ∗ r[η]) ∈ C
(2)
j . This implies that β[η] generated in the reduction is identically

distributed to β[η] generated in the real protocol. This implies that A′ correctly predicts b

with probability greater than ε, leading to our contradiction.
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Let {Cj}j∈J be a family of linear code distributions over Fγ+η satisfying  Property 3.6.1 for
appropriate values of δ and γ, where F is a finite field of characteristic 2.
Let EncBMN : {0, 1}m/2 → Fγ and DecBMN : Fγ → {0, 1}m/2 be the encoding and decoding
algorithms for the BMN Embedding [ 54 ] for appropriate ℓ ∈ N.

Let D ⊆ {0, 1}n/2 be a multiplication friendly code with message space Fη. Let (EncD,DecD)
(resp., EncD(2) ,DecD(2)) be encoding and decoding procedures for D (resp., D(2)).

Hybrid: Client A receives (a, b) for a, b $←{0, 1}n/2 and Client B receives (x, z) for x $←{0, 1}n/2

such that zi = ai · xi + bi for every i ∈ [n/2].
1. Code Generation. Client B samples j $←J .
2. ROLE Extraction Protocol.

(a) Client B samples x̃ $←{0, 1}m/2 and sets R = EncBMN(x̃) ∈ Fγ. Client B samples
random codeword (R−γ, . . . , R−1, R1, . . . , Rη) $← Cj such that R = (R−γ, . . . , R−1)
and sets R′ = (R1, . . . , Rη). Client B computes r′ = EncD(R′) ∈ {0, 1}n/2,
computes m = r′ + x ∈ {0, 1}n/2, and sends (m, j) to Client A.

(b) Client A samples ã $← {0, 1}m/2 and b̃
$← {0, 1}m/2 and sets U = EncBMN(ã) ∈

Fγ and V = EncBMN(b̃) ∈ Fγ. Client A samples random codewords
(U−γ, . . . , U−1, U1, . . . , Uη) $← Cj and (V−γ, . . . , V−1, V1, . . . , Vη) $← (Cj ∗ Cj) such
that U = (U−γ, . . . , U−1) and V = (V−γ, . . . , V−1). Client A sets U ′ = (U1, . . . , Uη)
and V ′ = (V1, . . . , Vη), computes u′ = EncD(U ′) ∈ {0, 1}n/2 and v′ = EncD(2)(V ′) ∈
{0, 1}n/2, and computes

α = u′ − a ∈ {0, 1}n/2 β = (a′ ∗m) + b+ v′ ∈ {0, 1}n/2.

Client A sends (α, β) to Client B.
(c) Client B computes t′ = (α ∗ r′) + β − z ∈ {0, 1}n/2. Client B computes T ′ =

DecD(2)(t′) ∈ Fη, then computes T ∈ Fγ via the erasure recovery algorithm of Cj∗Cj

such that (T, T ′) ∈ Cj ∗ Cj. Client B then computes z̃ = DecBMN(T ) ∈ {0, 1}m/2.
(d) Client A outputs (ã, b̃) and Client B outputs (x̃, z̃).

Figure 3.7. Our correlation extractor for ROLEn/2.
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4. SUCCINCT (NON-)INTERACTIVE ARGUMENTS OF

KNOWLEDGE: USING CODING THEORY TECHNIQUES TO

PROVE SOUNDNESS

A portion of this chapter appears in the 2020 Theory of Cryptography Conference, published by
The International Association for Cryptologic Research and Springer-Verlag [ 51 ], available at

 https://doi.org/10.1007/978-3-030-64378-2_7 . A portion of this chapter also appears
in The International Association for Cryptologic Research Cryptology ePrint Archive [ 53 ],
available  https://ia.cr/2021/358 . The article [ 53 ] is the full version of the article which
appears in the proceedings of Advances in Cryptology–CRYPTO 2021, published by The
International Association for Cryptologic Research and Springer-Verlag [ 52 ], available at

 https://doi.org/10.1007/978-3-030-84259-8_5 .

In this chapter, we examine how coding theory has been composed with cryptography

implicitly by examining cryptographic primitives with security guarantees that are provable by

taking a coding theoretic approach to the security analysis. Such primitives are widespread,

but we focus on probabilistically checkable proofs, or PCPs. The seminal PCP theorem [ 15 ,

 16 ,  22 ,  114 ,  216 ] can be viewed (both implicitly and explicitly) as following from coding

theoretic objects known as locally decodable/testable codes. 

1
 A PCP proof string attests

the truth of a mathematical statement such that any verifier making a small number of

queries to the string can be convinced of the truth with probability (arbitrarily close to)

1, and any false statement only convinces a verifier with probability less than half. The

PCP theorem states that NP = PCP[O(log(n)), O(1)]: for every language L ∈ NP and any

x ∈ {0, 1}n, we have that x ∈ L if and only if there exists a poly(n)-length proof string such

that any verifier using O(log(n)) bits of randomness and querying O(1) bits of the proof

accepts with probability 1, and x ̸∈ L if and only if after the above process, a verifier accepts

with probability less than half. Intuitively, PCP proof of a false statement is guaranteed to

contain many errors, a property that is analogous to error-correcting codes when encoding

two distinct messages [ 104 ]. In some sense, a PCP proof string can be viewed as a locally

testable code: an error-correcting code with codewords that can be queried at a few locations

to determine if it is valid codeword.
1

 ↑ In fact, we directly examine locally decodable codes in  Part II .
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The history of the PCP theorem has roots in the area of interactive proofs [ 132 ]. Interactive

proofs are interactive protocols between a computationally unbounded prover P and a

computationally weak (i.e., PPT) verifier V , where the prover P tries to convinces the verifier

V of the truth of a mathematical statement. In the same vein as PCPs, the verifier V accepts

any true statement with probability (arbitrarily close to) 1, and accepts any false statement

with probability less than half. 

2
 The complexity class IP is the class of languages recognizable

by interactive proofs with polynomially many rounds of interaction, and it is well-known that

IP = PSPACE [ 192 ,  236 ]; even here, methods used to prove this result (e.g., arithmetization)

have strong connections to coding theory.

4.1 Succinct (Non-)Interactive Arguments for NP

In this dissertation, we examine succinct (non-)interactive arguments for NP [ 206 ]. Infor-

mally, an interactive argument is an interactive protocol between a computationally bounded

(i.e., polynomial time) prover P and a weak (PPT) verifier V , where P tries to convince V of

the validity of some NP statement. Such protocols are restrictions of interactive proofs [  132 ],

and have been of great interest in recent veins of research for efficiency concerns: naturally,

interactive proofs are useful in many real-world contexts, but it is desirable to construct proofs

using minimal resources (e.g., time and space). Recent results have focused on constructing

arguments for the set of all NP languages that can be verified by a random access machine

(RAM) M . A RAM M has the same semantics as a Turing machine, with the exception that

during any time step of the computation, the machine head can jump to any location of

the work tape with unit cost. 

3
 The machine M runs in time T and space S if on any input,

(1) M runs in at most T steps then terminates; and (2) M uses at most S cells of the work

tape during the entire execution of the machine. In this context, the argument is succinct

if the communication complexity is sub-linear in T . Fixing T and S for the remainder of

the chapter, let LRAM denote the set of all NP languages verifiable by a time-T and space-S

RAM, and let RRAM denote the (NP) relation for LRAM.
2

 ↑ More generally, we can define the probability of accepting a false statement to be some function ε(·).
3

 ↑ This is an informal presentation of RAMs. For more formal presentations on the semantics, see [  64 ,  157 ].
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While there exist many ways to construct arguments for RRAM, the following general

approach has found many success stories [ 31 ,  34 ,  42 ,  51 ,  52 ,  67 ,  72 ,  76 ,  124 ,  137 ,  255 ].

1. Given a RAM M for some input-witness pair (x,w) ∈ RRAM, transform M into

an equivalent arithmetic circuit C : {0, 1}∗ → F, for some finite field F, such that

M(x,w) = 1 if and only if C(x,w) = 1 [  33 ,  64 ]. In particular, C contains addition and

multiplication gates over F, and each gate has fan-in 2.

2. Let s = O(log(|C|)). Then, given C and input (x,w), define the wire transcript

W : {0, 1}s → F. That is, on input gate number b ∈ {0, 1}s, the function W (b) is the

value of the output wire of gate b of circuit C on input (x,w).

3. Given W , define the multi-linear extension ˜︂W : Fs → F of W ; 

4
 that is, ˜︂W is a polynomial

of individual degree at most 1 such that ˜︂W (x) = W (x) for all x ∈ {0, 1}s.

4. Define an auxiliary polynomial F : F3s → F such that F ≡ 0 if and only if W is a

correct wire transcript of C(x,w); i.e., for every gate g ∈ {0, 1}s, the value of W (g) is

the output wire value of gate g in C(x,w).

5. Commit to ˜︂W using a polynomial commitment scheme [ 165 ]. Briefly, a polynomial

commitment scheme is a commitment scheme that allows a sender to commit to a

polynomial P with the additional feature that the receiver can query the polynomial at

a point x, and the sender provides P (x) and an additional proof π which certifies that

P (x) is consistent with the committed polynomial P . In particular, this proof π allows

the sender to open at any point x without revealing the entire polynomial P .

6. Perform a sum-check protocol [ 192 ] over the polynomial F , which induces some claims

about the polynomial ˜︂W , which are answered using the polynomial commitment scheme.

Ignoring the polynomial commitment scheme, the above transformation is used to construct

interactive proofs for NP as well, where the polynomial ˜︂W acts as a PCP proof string that

a verifier can query at random points. In fact, ˜︂W is a low-degree Reed-Muller codeword,
4

 ↑ Many applications define ˜︂W as some low-degree extension. For our purposes, a multi-linear extension
suffices. See  Section 4.5.2 for the formal definition.
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which is crucial to the soundness (i.e., security) of many proof systems using the above

transformation (e.g., see [ 64 ]). The addition of a polynomial commitment scheme yields a

succinct argument with soundness that additionally relies on the cryptographic assumptions

of the polynomial commitment.

Succinct arguments using the above general transformation have been pushed to nearly

optimal parameters. Many schemes exist in which provers run in time ˜︁O(T ) [ 67 ,  72 ,  76 ,  255 ],

verifiers run in time polylog(T ) [  51 ,  52 ,  76 ], and proofs have length O(log(T )) or even O(1) [  67 ,

 72 ,  76 ,  255 ]. 

5
 However, very few results—even outside of this general transformation—have

focused on the space complexity of the prover, with some notable exceptions [ 40 ,  41 ,  64 ,  68 ,

 157 ,  251 ]. In particular, most results require a prover to store the entire circuit C: this circuit

has size size Ω(T ), which is (generally) much larger than the space S used by the underlying

RAM M in applications; e.g., for typical applications we consider S = polylog(T ).

4.1.1 Towards Space Efficiency

As mentioned previously, with the few exceptions of [ 40 ,  41 ,  64 ,  68 ,  157 ,  251 ], space-

efficiency has been largely overlooked; however, space, just like time, is an important resource

to consider in the construction of (non-interactive, zero-knowledge) argument schemes. In

fact, one may argue that it is more important: for example on a real computer, it is easy to

allow a program to run for more time (simply let the program run longer). However, one

cannot obtain more storage space as easily, and the hierarchical nature of computer storage

(e.g., registers, cache, RAM, disk) have real implications on implementations of these schemes.

Thus space-efficiency is well-motivated.

Our goal is to construct complexity preserving arguments [ 41 ]: arguments where the prover

(roughly) runs in time T and space S. Given the above methodology, we identify two key

bottlenecks to achieving a space-efficient prover. The first bottleneck is the transformation

of M to an equivalent circuit C, as this circuit is directly manifested by the prover and

is stored in its entirety. The second bottleneck is using polynomial ˜︂W in the underlying

polynomial commitment scheme. In all prior polynomial commitment schemes, the committer
5

 ↑ In all of the above complexities, poly(λ) factors are omitted, where λ is the security parameter.
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is assumed to have the entire description of the polynomial in memory, and therefore the

space complexity of this committer is proportional to the description size of the polynomial.

The work of Blumberg et al. [ 64 ] overcomes the first bottleneck by giving a complexity

preserving multi-prover interactive proof, or an MIP, where the key technical contribution is

providing a method for computing the RAM to circuit transformation in a streaming way,

modifying the transformation of Ben-Sasson et al. [ 33 ]. By streaming, we mean that a prover

can compute the circuit transcript gate-by-gate without writing down the entire circuit. This

MIP is denoted as the Clover MIP, and an MIP is an interactive proof with multiple colluding

provers with the following property: before the start of the protocol, all provers can interact

with each other. At the start of the protocol, the verifier can interact with individual provers,

and the colluding provers cannot communicate any further.

Let M be a RAM and C be its equivalent circuit. The Clover MIP gives a transformation

that can evaluate C on inputs x and w in a gate-by-gate streaming manner by running the

underlying RAM M . In more detail, this transformation can construct a wire transcript W of

C in lexicographic order as a stream; i.e., first W (0) is generated, followed by W (1), all the

way to W (2s − 1), where we interpret an integer in {0, . . . , 2s − 1} as a binary number in the

natural way. Ignoring the space required to store this wire transcript W for the time being,

the generation of this transcript takes time ˜︁O(T ) and, more importantly, space S ·polylog(T ).

In relation to the transformation presented in  Section 4.1 , the Clover MIP transformation

produces the transcript W in time ˜︁O(T ) and space S · polylog(T ). A restrictive property

of this streaming construction of the wire transcript W is that if W (b) has been computed

for b ∈ {0, 1}s, then we can either continue to compute W (b+ 1) using some small amount

of time and space, or restart the stream. Notably, we cannot compute W (b′) for arbitrary

b′ ∈ {0, 1}s, unless we just computed W (b′− 1), and hence our streaming access is, in a sense,

one-way and read-once (without re-computation). However, even given the above RAM to

circuit transformation, it is not clear how to circumvent the second bottleneck.
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4.2 Our Results

In a series of works, we overcome the second bottleneck by introducing the notion of

a streamable polynomial commitment scheme [ 51 ,  52 ]. Such a polynomial commitment

scheme assumes that a committer has multi-pass streaming access to the description of

the polynomial (rather than hold the description in memory), and that the polynomial is

efficiently computable in small space given this (streaming) description. For example, given a

degree d univariate polynomial f over some finite field F, a description of the polynomial can

be d+ 1 evaluations (f(0), . . . , f(d)) of the polynomial, and the polynomial can be evaluated

at any point via Lagrange Interpolation. We stress that this multi-pass streaming access is the

same type of streaming access given by the Clover MIP: if (f(0), . . . , f(d)) is the description

of the polynomial, then at any time step t we can either advance the stream by 1 (i.e., receive

f(t+ 1)), or restart the stream (i.e., receive f(0)).

We give two different streamable polynomial commitment scheme for multi-linear polyno-

mials, under different assumptions, and construct complexity preserving arguments for NP by

composing their polynomial commitment scheme with the Clover MIP [ 51 ,  52 ]. Both works

assume streaming access to the wire transcript W (given by the Clover MIP) and use this

access to commit to the multi-linear extension ˜︂W (since W uniquely define the extension ˜︂W ;

see  Fact 4.3.1 ). We discuss both polynomial commitment schemes.

4.2.1 Streamable Polynomial Commitments from the Discrete-log Assumption
in the Random Oracle Model

Our first result is constructing a streamable polynomial commitment scheme, in the

random oracle model, assuming hardness of discrete logarithm. This result was the first to

introduce and utilize the new model streamable polynomial commitment scheme, and is the

first space-efficient polynomial commitment scheme. Using it we construct the first complexity

preserving argument (and ZK-SNARK) under standard cryptographic assumptions (see [ 51 ,

 52 ] for complete details).

Theorem 4.2.1 (Informal, see  Theorem 4.6.4 [ 51 ]). Let λ be the security parameter. Assume

the existence of a prime-order group for which the discrete-log assumption holds. Then there
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exists a polynomial commitment scheme for multi-linear polynomials Q : Fn → F over a

prime-order field F (of size |F| ⩽ 2poly(n)), in the random oracle model, with the following

efficiency properties:

1. Commitments and evaluation proofs can be computed with 2n · poly(n) queries to the

random oracle, and in time 2n ·poly(λ, n) and space n·poly(λ) given multi-pass streaming

access to the evaluations of Q on the Boolean hypercube;

2. Verification time and query complexity are 2n · poly(λ, n) and verification space is

n · poly(λ); and

3. The communication complexity is n · poly(λ).

Looking ahead, the polynomial commitment scheme of  Theorem 4.2.1 is a (non-trivial)

modification of the well-known Bulletproofs [  67 ,  72 ] polynomial commitment scheme, which

utilizes Pedersen commitments [ 218 ]. We discuss the main ideas and differences of the above

polynomial commitment scheme in  Section 4.3.2 . We also mention that in  Theorem 4.2.1  ,

the random oracle model is not necessary for security, but rather for our construction we

need the random oracle to maintain space-efficiency. See  Section 4.3.2 for details.

4.2.2 Streamable Polynomial Commitments from the Hidden Order Assumption

Our second result is constructing a streamable polynomial commitment scheme under the

hidden order assumption. Informally, the hidden order assumption for a group G states that

for a random g
$←G, it is computationally infeasible to find (any multiple of) the order of g.

This streamable polynomial commitment scheme builds upon the ideas of  Theorem 4.2.1  ,

but is able to forgo the random oracle and have super-efficient verification (in addition to

space-efficiency).

Theorem 4.2.2 (Informal, see  Theorem 4.7.7 [ 52 ]). Let λ be the security parameter. Assume

the existence of a group for which the hidden order assumption holds. Then there exists a

polynomial commitment scheme for multi-linear polynomials Q : Fn → F over a prime-order

field F (of size |F| ⩽ 2poly(n)) with the following efficiency properties:
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1. Commitments and evaluation proofs can be computed in time 2n · poly(n, λ) and space

n · poly(λ), given multi-pass streaming access to the evaluations of Q on the Boolean

hypercube; and

2. The communication complexity and verification time are both n · poly(λ).

Looking ahead, the polynomial commitment scheme of  Theorem 4.2.2 is based off of the

so-called DARK polynomial commitment scheme due to Bünz, Fisch, and Szepieniec [ 76 ].

Our polynomial commitment scheme is a highly non-trivial variant of the DARK polynomial

commitment scheme and, in fact, circumvents a known gap in the security proof of the DARK

scheme [ 52 ]. 

6
 We discuss the main ideas and differences of the above polynomial commitment

scheme in  Section 4.3.3 .

4.2.3 From Streamable Polynomial Commitments to Complexity Preserving
Zero-Knowledge Arguments

We obtain complexity preserving arguments by compiling the streaming Clover MIP with

both of our streamable polynomial commitment schemes. In the random oracle model and

assuming the hardness of discrete-log, compiling the Clover MIP with  Theorem 4.2.1  yields

the following result.

Theorem 4.2.3 ([ 51 ]). Let λ be the security parameter. Assume the existence of a group

sampler of prime order for which the discrete-log assumption holds. Then there exists a

public-coin zero-knowledge argument system in the random oracle model for any NP relation

verifiable by a time-T space-S random access machine with the following complexity.

1. The protocol has perfect completeness and negligible soundness error;

2. The number of rounds is O(log(T )) and the communication complexity complexity is

poly(λ, log(T ));

3. The prover runs in time T · poly(λ, log(T )) and space S · poly(λ, log(T )); and
6

 ↑ We emphasize that the same gap was independently discovered by the authors of [ 76 ], and that we were
informed of this gap by the authors as well [ 74 ].
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4. The verifier runs in time T · poly(λ, log(T )) and space poly(λ, log(T )).

Second, under the hidden order assumption, compiling the Clover MIP with  Theorem 4.2.2 

yields the following result.

Theorem 4.2.4 ([ 52 ]). Assume the existence of a group sampler for which the hidden order

assumption holds. Then there exists a public-coin zero-knowledge argument-system for any NP

relation verifiable by a time-T space-S random access machine with the following complexity.

1. The protocol has perfect completeness and negligible soundness error;

2. The number of rounds is O(log(T ));

3. The communication complexity is poly(λ, log(T ));

4. The prover runs in time T · poly(λ, log(T )) and space S · poly(λ, log(T )); and

5. The verifier runs in time |x| · poly(λ, log(T )), for a given input x.

In both  Theorems 4.2.3 and  4.2.4 , zero-knowledge is obtained via the standard “commit-

and-prove” techniques due to Ben-Or et al. [ 29 ]. Further, both results are made non-interactive

in the random oracle model via applying the Fiat-Shamir transformation [ 116 ].

4.3 Technical Overview

In this section, we discuss the key technical ideas behind our two streamable polynomial

commitment schemes. We begin by discussing the steaming model for polynomial commitment

schemes, then discuss our first polynomial commitment scheme based on the hardness of

discrete-log, and finally discuss our second polynomial commitment scheme based on the

hidden order assumption.

4.3.1 The Streaming Model for Polynomial Commitments

In prior works on polynomial commitments, a committer is assumed to have explicit

access to the description of the polynomial it is committing to [ 30 ,  36 ,  67 ,  76 ,  166 ,  184 ,

 232 ,  255 ,  266 ]. Here, a description of a polynomial is either a sequence of coefficients or
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evaluations. For example, for a univariate polynomial f ∈ F[X] of degree at most d, the

description of f could either be its d + 1 coefficients or d + 1 evaluations over F. In the

case of n-variate multilinear polynomials Q ∈ F[X1, . . . , Xn], we explicitly consider the

sequence of evaluations (Q(b))b∈{0,1}n , where the sequence is given in lexicographic order.

Prior works also work with polynomials in either the coefficient basis (in the case of univariate

polynomials) or the evaluation basis (in the case of multilinear polynomials). 

7
 In either case,

the space complexity of a committer is at least the amount of space required to store the

description of the polynomial. In a void, this seems like a non-issue; however, when using

polynomial commitments to compile a time-T space-S computation into succinct arguments,

the description size of the polynomial is proportional to the time T of the computation. This

leads to massive committer space overheads, and is undesirable for our goal of complexity

preserving arguments.

Thus, our goal is to construct polynomial commitments where the committer uses space

sub-linear in the description size of the polynomial in consideration. Since this is impossible

when the committer explicitly stores the polynomial, 

8
 we instead consider an alternate access

model for the description of the polynomial. We consider the multi-pass streaming model

[ 51 ]: in this model, a committer is given multi-pass streaming access to the description of the

polynomial in consideration. Focusing on the multilinear polynomial Q and its description

(Q(b))b∈{0,1}n , the multi-pass streaming model has the following properties. The committer

has streaming access to the description (Q(b))b∈{0,1}n in lexicographic order. Initially, the

stream begins at Q(0), and the committer can access the description of Q in lexicographic

order. Then, at any time step b ∈ {0, 1}n, the committer receives Q(b) and can either

1. advance the stream to Q(b+ 1); or

2. restart the stream to Q(0).

In particular, the committer cannot move the stream backwards, and does not have random

access to the description of Q (i.e., querying Q(b) requires time proportional to b, rather than
7

 ↑ We restrict our attention to multilinear polynomials as they suffice for our purposes.
8

 ↑ Of course, in the case of a polynomial which is sufficiently sparse (e.g., 1 + Xd), an arbitrary or random
polynomial need not be sparse (and in fact is highly unlikely to be sparse).
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O(1) time). Further, the committer can restart and traverse the stream as many times as

they wish (i.e., it is multi-pass, not read-once).

While this streaming model is indeed restrictive, it is sufficient for our purposes. Even in

this restrictive model, we can evaluate the multilinear polynomial Q at any point, leveraging

the following fact.

Fact 4.3.1 ([ 51 ,  213 ]). An multilinear polynomial f : Fn → F (over a finite field F) is

uniquely defined by its evaluations over the Boolean hypercube. Moreover, for every ζ ∈ Fn it

holds that

f(ζ) =
∑︂

b∈{0,1}n

f(b) ·
n∏︂

i=1
χ(bi, ζi), (4.1)

where χ(bi, ζi) = bi · ζi + (1− bi) · (1− ζi).

Thus the following streaming algorithm efficiently computes Q(ζ) for any ζ ∈ Fn.

1. Initialize y = 0 ∈ F.

2. For b ∈ {0, 1}n in lexicographic order

(a) Compute χ = ∏︁
i χ(bi, ζi). Note that computing χ takes O(n) field elements of

storage and O(n) field multiplications.

(b) Compute y = y +Q(b) · χ.

(c) Advance the stream by 1.

3. Output y.

Ignoring poly(λ) factors, the above algorithm computes Q(ζ) in time O(2n · n) and, more

importantly, space O(n), which is exponentially smaller than the description size of Q, which

is 2n. As we will see, this streaming access allows us to construct polynomial commitments

space proportional to n.

Remark 4.3.2. Given random access to the description of Q, or even allowing the committer

to traverse the description of Q in either direction (e.g., similar to a Turing machine tape
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head) is a stronger model than what we propose here. However, when eventually compiling

our polynomial commitments with the Clover MIP, the above model captures exactly how the

Clover MIP generates the circuit wire transcript.

4.3.2 Overview of  Theorem 4.2.1 

Our first polynomial commitment scheme is based on the well-known Bulletproofs polyno-

mial commitment scheme (and inner-product argument) [ 67 ,  72 ], which assumes the hardness

of discrete logarithm for a group G. We first give an overview of this scheme. Fix a multi-linear

polynomial Q : Fn → F with evaluations (Q(b))b∈{0,1}n . For convenience, we (equivalently)

write Q ∈ FN as the evaluations (Q(b))b∈{0,1}n .

Commitment Phase

Bulletproofs commits to the polynomial Q using a Pedersen commitment: for N = 2n

group generators g = (gb)b∈{0,1}n ∈ GN , the commitment is computed as

C =
∏︂

b∈{0,1}n

g
Q(b)
b .

The committer computes and sends this commitment C to the receiver. This commitment C

is a binding commitment to Q with respect to the generators g. We note that our commitment

phase is identical to this, and that from the above equation it is easy to see how to construct

a space-efficient streaming algorithm to compute the commitment C; see  Section 4.6.4 for

details.

Bulletproofs Evaluation Phase

Given an evaluation point ζ ∈ Fn specified by the receiver, the committer computes and

sends y = Q(ζ) and defines an auxiliary commitment Cy = C · hy, where h $←G is chosen
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by the receiver. The committer and receiver then engage in an interactive argument (of

knowledge) for the following NP relation:

RBP(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(Cy, ζ, g, h, z, y;Q) :

z,Q ∈ FN , ζ ∈ Fn, g ∈ GN , h ∈ G

∧ y = ⟨Q, z⟩ ∈ F

∧ Cy = hy ·∏︁b g
Q(b)
b ∈ G

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (4.2)

where N = 2n, g ∈ GN , h ∈ G are given as above and z := (χ(b, ζ))b∈{0,1}n and χ(b, ζ) is

defined as in  Fact 4.3.1 . Note that the inner-product ⟨Q, z)⟩ is identical to  Equation (4.1) of

 Fact 4.3.1 . This step allows the committer to prove knowledge of a decommitment Q of the

commitment Cy such that y = ⟨Q, z⟩.

To prove the above inner-product argument, Bulletproofs employs a natural “split-and-fold”

recursive argument. The core step for the above argument is a two-move randomized reduction

step which allows the prover to decompose the size N statement (i.e., the inner-product of

two N -sized vectors) (Cy, z, y) into two size N/2 statements, then using verifier randomness

“fold” these into a single size N/2 statement. For example, consider a univariate polynomial

f(x) = 1 + x + x2 + 2x3 with evaluation point ζ ∈ F, and let y = f(ζ). Ignoring any

commitment, we can prove knowledge of f via the two-move reduction above.

1. The committer computes y = f(ζ). Additionally, the committer defines fL(x) = 1 + x

and fR(x) = 1+2x. Note that fL(x)+x2 ·fR(x) = f(x). The committer then computes

yL = fL(ζ) and yR = fR(ζ) and sends (y, yL, yR) to the receiver.

2. The receiver samples α $← F and sends α to the committer.

3. The committer and receiver then compute y′ = α·yL+yR and the committer additionally

computes f ′(x) = α · fL(x) + fR(x).

The committer and receiver recursively perform the above process until only a constant

polynomial remains, and the committer sends this constant to the receiver, and a final check

is performed (i.e., y ?= f).

Moving back to the relation RBP(n), fix (Cy, g, h, z, y,Q) ∈ RBP(n) and suppose both

the committer and receiver are given (Cy, g, h, z, y) and the committer additionally receives
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the vector Q. Then the two-move reduction of Bulletproofs modifies the above two-move

reduction as follows:

1. The committer computes the cross-product yL = ⟨QL, zR⟩ between the left half of

the vector Q and the right half of the vector z; similarly yR = ⟨QR, zL⟩ is computed.

Furthermore, the committer computes a new commitment to the left vector QL and

right vector QR as

CL = hyL ·
∏︂

b′∈{0,1}n−1

g
QL(b′)
R,b′ CR = hyR ·

∏︂
b′∈{0,1}n−1

g
QR(b′)
L,b′ .

Here, gL and gR are the left and right halves of the vector g, respectively, and both lie

in GN/2. The committer sends (yL, yR, CL, CR) to the receiver.

2. The receiver samples α $← F and sends α to the committer.

3. The committer and receiver both compute the folding

z′ = α−1 · zL + α · zR ∈ FN/2

g′ = (gL)α−1 ∗ (gR)α ∈ GN/2

y′ = α2 · yL + y + α−2 · yR ∈ F

C ′y′ = Cα2
L · Cy · Cα−2

R .

The committer additionally computes a new folded witness Q′ as Q′ = α ·QL +α−1 ·QR.

Leveraging the homomorphic properties of Pedersen commitments, one can show that if Q

is a witness for the tuple (Cy, g, h, z, y), then Q′ is a witness for the tuple (C ′y′ , g′, h, z′, y′).

This forms a recursion tree, and after n = log(N) steps, all the vectors consist of a single

element, and the committer simply sends its (single element) witness to the receiver.

Obstacles to Space-Efficiency

As a reminder, our goal is to leverage the streaming model to obtain a space-efficient

implementation, where space-efficiency here means space usage proportional to n (ignoring
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Q(000) Q(001) Q(010) Q(011) Q(100) Q(101) Q(110) Q(111)

Q′(00) Q′(01) Q′(10) Q′(11)

Q′′(0) Q′′(1)

Q′′′

Figure 4.1. Example of the recursion tree induced by the Bulletproofs two-
move reduction for n = 3, N = 23, and the polynomial Q ∈ FN . A child node
is obtained by taking a linear combination of the parent nodes. In particular,
left edges indicate multiplication of the parent by α and right edges indicate
multiplication of the parent by α−1, where α is the receiver challenge sent
during the current round of recursion. For example, the value Q′′(0) depends
on all nodes of the tree with a cross-pattern background.

poly(λ) factors). Unfortunately, directly applying our streaming model to the above Bul-

letproofs two-move reduction does not yield a space-efficient implementation. To see this,

we examine the recursion tree induced by the above folding and first consider the folding

of the polynomial Q. At any step of the recursion, the polynomial Q ∈ FN is folded into

a polynomial Q′ ∈ FN/2; this folding is performed via a “left-right” folding. Formally, the

polynomial Q′ is defined as

∀b′ ∈ {0, 1}n−1 : Q′(b′) = α ·Q(0 ◦ b′) + α−1 ·Q(1 ◦ b′),

where the folding is performed with respect to the most significant bit. This induces the

recursion tree presented in  Figure 4.1 .

In our streaming model, we are only given multi-pass streaming access to the original

polynomial Q, and not the subsequent recursive polynomials. Thus in order to achieve

space-efficiency, we must compute the subsequent recursive streams (in their entirety) given

only streaming access to the original stream Q. However, with the Bulletproofs two-move

reduction, this is not possible in small-space. Let Q(ℓ) denote the recursive stream at level
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g000 g001 g010 g011 g100 g101 g110 g111

g′00 g′01 g′10 g′11

g′′0 g′′1

g′′′

Figure 4.2. Example of the recursion tree induced by the Bulletproofs two-
move reduction for n = 3, N = 23, and the generators (g1, . . . , gN ). A child node
is obtained by taking a linear combination of the parent nodes. In particular,
left edges indicate exponentiation of the parent by α−1 and right edges indicate
exponentiation of the parent by α, where α is the receiver challenge sent during
the current round of recursion. For example, the value g′′1 depends on all nodes
of the tree with a cross-pattern background.

ℓ ∈ {0, 1, . . . , n} of the recursion (note that Q(0) = Q). Then for any level ℓ ∈ {0, 1, . . . , n}

in the Bulletproofs recursion tree and any b ∈ {0, 1}n−ℓ, the value Q(ℓ)(b) depends on 2ℓ

values of the stream Q(0), and is specified by the following equation (ignoring the randomized

challenges):

Q(ℓ)(b) =
∑︂

c∈{0,1}ℓ

Q(0)(c ◦ b).

In particular, the value Q(ℓ)(b) depends on all values of Q(0) with matching lower-order bits

(i.e., c ◦ b ∈ {0, 1}n). Thus the gap between any values of Q(0) needed to compute Q(ℓ)(b) is

exactly 2n−ℓ; that is, the values of Q(0) needed to compute Q(ℓ)(b) are not contiguous.

We remark that the space-efficiency issue arises in the computation of CL and CR, but not

in computation of yL, yR. 

9
 The issue with the commitments is that each value Q(ℓ)(b) is bound

to a particular generator gb (for the current level of recursion). For example, computing Q′′(0)

in  Figure 4.1 depends on generator g′′1 in  Figure 4.2 . Let g(ℓ)
b denote the bth folded generator

9
 ↑ There is a small-space algorithm to compute yL, yR at any level of recursion that leverages the fact that

polynomial evaluations are a linear function.
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at recursion level ℓ, where ℓ ∈ {0, 1, . . . , n} and b ∈ {0, 1}n−ℓ. Then for any recursion level

ℓ ∈ {0, 1, . . . , n} and any b′ ∈ {0, 1}n−ℓ−1, in the two-move reduction the generator g(ℓ)
1◦b′ is

raised to the power Q(ℓ)(0 ◦ b′), and the generator g(ℓ)
0◦b′ is raised to the power Q(ℓ)(1 ◦ b′).

Let C(ℓ)
L and C(ℓ)

R denote the commitments computed in round ℓ of the recursion in the two-

move reduction. Ignoring the space required to store the folded generators g(ℓ) = (g(ℓ)
b )b∈{0,1}n−ℓ ,

we can compute these values in small-space given streaming access to Q as follows:

1. Initialize values C(ℓ)
L = C

(ℓ)
R = 1G.

2. For b = (b1, . . . , bn) ∈ {0, 1}n:

(a) Let b′ = (b′1, . . . , b′n−ℓ−1) = (bℓ+2, . . . , bn) and c = bℓ+1

(b) If c = 0 then compute C(ℓ)
L = C

(ℓ)
L · (g

(ℓ)
1◦b′)Q(b). Else compute C(ℓ)

R = C
(ℓ)
R · (g

(ℓ)
0◦b′)Q(b).

Notice that the above algorithm uses O(1) group elements to compute the values C(ℓ)
L , C

(ℓ)
R ,

where again we ignore the space required to store the generators (g(ℓ)
b )b∈{0,1}n−ℓ . 

10
 Now

during every round of recursion, the algorithm performs N group exponents, giving a total of

N · log(N) group exponents. This seems like we have our desired algorithm.

However, we now address the elephant in the room: the storage of generators (g(ℓ)
b )b∈{0,1}n−ℓ .

Clearly, storing these generators would violate our space-efficiency requirements, so we must

rethink our access to these generators. Naturally, one might think to access these generators

in a streaming manner, similar to our access to the polynomial Q. However, even given

random access to the generators, a space-efficient implementation of the Bulletproofs two-move

reduction would yield a quadratic-time committer via our methods. 

11
 This can be seen by

examining the recursion tree in  Figure 4.2 : similar to the value Q(ℓ)(b), the generator g(ℓ)(b)

depends on 2ℓ generators at the top level (i.e., (g1, . . . , gN )). Examining the above presented

space-efficient algorithm, any generator g(ℓ)
b needs to be recomputed 2ℓ times in order to

correctly construct the commitments C(ℓ)
L , C

(ℓ)
R . This is due to the streaming access to Q: we

cannot store too many g(ℓ)
b , and each g

(ℓ)
b is raised to the value Q(ℓ)(b), which depends on 2ℓ

values of Q that appear in gaps of 2n−ℓ indices. Re-computation of these generators results
10

 ↑ We also ignore the terms hyL and hyR .
11

 ↑ We do not prove that it is impossible to obtain a space-efficient implementation with a nearly linear
committer (i.e., ˜︁O(N)), but it is not clear how to do so with the Bulletproofs two-move reduction.
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in a committer that runs in time (roughly) N2 per round of recursion, which violates our

desired goal of a nearly linear-time committer. We emphasize that this occurs even given

random access to the initial generators. Thus, we must re-think the two-move reduction.

Our Evaluation Phase: Even-Odd Folding

Our solution is to slightly alter the two-move reduction phase to employ an “even-odd”

folding, rather than the “left-right” folding of the Bulletproofs two-move reduction. In

particular, Bulletproofs folds via the most significant bit, and we choose to fold via the least

significant bit. More formally, again fix (Cy, g, h, z, y,Q) ∈ RBP(n) and suppose (Cy, g, h, z, y)

are given to both the committer and receiver. Additionally, the committer receives Q. We

describe our two-move reduction.

1. The committer computes the cross-product ye = ⟨Qe, zo⟩, whereQe = (Q(b′◦0))b′∈{0,1}n−1

and zo = (zb′◦1)b′∈{0,1}n−1 . That is, Qe consists of elements of Q indexed by even indices,

and zo consists of elements of z indexed by odd indices. Similarly compute yo = ⟨Qo, ze⟩,

where Qo consists of element of Q indexed by odd indices, and ze consists of elements

of z indexed by even indices. Furthermore, the committer computes a new commitment

to the even vector Qe and odd vector Qo as

Ce = hye ·
∏︂

b′∈{0,1}n−1

g
Qe(b′)
o,b′ Co = hyo ·

∏︂
b′∈{0,1}n−1

g
Qo(b′)
e,b′ . (4.3)

Here, ge and go are vectors defined by the even and odd indices of g ∈ GN , respectively,

and both lie in GN/2. The committer sends (ye, yo, Ce, Co).

2. The receiver samples α $← F and sends α to the committer.

3. The committer and receiver both compute the folding

z′ = α−1 · ze + α · zo ∈ FN/2

g′ = (ge)α−1 ∗ (go)α ∈ GN/2

y′ = α2 · ye + y + α−2 · yo ∈ F

C ′y′ = Cα2
e · Cy · Cα−2

o ∈ G.
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Q(000) Q(001) Q(010) Q(011) Q(100) Q(101) Q(110) Q(111)

Q′(00) Q′(01) Q′(10) Q′(11)

Q′′(0) Q′′(1)

Q′′′

Figure 4.3. Example of the recursion tree induced by our two-move reduction
for n = 3, N = 23, and the polynomial Q ∈ FN . A child node is obtained
by taking a linear combination of the parent nodes. In particular, left edges
indicate multiplication of the parent by α and right edges indicate multiplication
of the parent by α−1, where α is the receiver challenge sent during the current
round of recursion. For example, the value Q′′(0) depends on all nodes of the
tree with a cross-pattern background.

The committer additionally computes a new folded witness Q′ = α ·Qe + α−1 ·Qo.

Again leveraging the homomorphic properties of Pedersen commitments, one can again show

that if Q is a witness for (Cy, g, h, z, y) then Q′ is a witness for the tuple (C ′y′ , g′, h, z′, y′). This

forms a new recursion tree which is amenable to streaming. We present the new recursion

tree in  Figure 4.3 .

Space-Efficiency of Even-Odd Folding

As seen in  Figure 4.3  , the even-odd folding gives a recursion tree that is much more

amenable to our streaming model. In particular, again let Q(ℓ) ∈ F2n−ℓ denote the recursive

stream at level ℓ of the recursion. Then, since we fold via the least significant bit, for any

b ∈ {0, 1}n−ℓ we have that (again ignoring the verifier challenges):

Q(ℓ)(b) =
∑︂

c∈{0,1}ℓ

Q(0)(b ◦ c).
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In particular, the value Q(ℓ)(b) depends on all values of Q(0) with matching higher-order bits.

Thus the values of Q(0) necessary for computing Q(ℓ)(b) appear contiguously in our stream of

values. In fact, it is not difficult to see that we can compute the stream Q(ℓ) in lexicographic

order using a single pass over the stream Q(0) and by storing only a constant number of field

elements. The following algorithm achieves such a time and space efficient implementation.

1. For b ∈ {0, 1}n−ℓ:

(a) Initialize value Q(ℓ)(b) = 0 ∈ F.

(b) For c ∈ {0, 1}ℓ:

i. Compute Q(ℓ)(b) = Q(ℓ)(b) +Q(0)(b ◦ c).

(c) Output Q(ℓ)(b) and continue to the next iteration.

Now we are able to overcome the the hurdles to space-efficiency of the Bulletproofs

two-move reduction. By  Equation (4.3) , the commitments C(ℓ)
e , C(ℓ)

o are computed as:

C(ℓ)
e = hye ·

∏︂
b′∈{0,1}n−ℓ

(g(ℓ)
o,b′)Q

(ℓ)
e (b′) C(ℓ)

o = hyo ·
∏︂

b′∈{0,1}n−ℓ

(g(ℓ)
e,b′)Q

(ℓ)
o (b′).

Recall that the obstacle we faced for a time- and space-efficient implementation of the

Bulletproofs two-move reduction was that in order to run in small-space, the prover would

run in quadratic time to compute these commitments. This was due to the fact that the

values that Q(ℓ)
L (b′) and Q

(ℓ)
R (b′) depend on occur in gaps of 2n−ℓ in the stream, and thus we

had to recompute the generators g(ℓ)
L,b′ and g

(ℓ)
R,b′ from scratch every time. However, with our

new even-odd folding, this is not the case: the values of the top-level stream that Q(ℓ)
e (b′) and

Q(ℓ)
o (b′) depend on all occur in a contiguous block. This means that we only need to compute

g
(ℓ)
e,b′ and g

(ℓ)
o,b′ once. The following algorithm highlights this change.

1. Initialize values C(ℓ)
e = C(ℓ)

o = 1G.

2. For b = (b1, . . . , bn−ℓ) ∈ {0, 1}n−ℓ:

(a) Initialize Q(ℓ)(b) = 0 ∈ F.

(b) For c = (c1, . . . , cℓ) ∈ {0, 1}ℓ:
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i. Compute Q(ℓ)(b) = Q(ℓ)(b) +Q(0)(b ◦ c).

(c) Let b′ = (b1, . . . , bn−ℓ−1).

(d) If bn−ℓ = 0 then compute C(ℓ)
e = C(ℓ)

e · (g
(ℓ)
b′◦1)Q(ℓ)(b). Else compute C(ℓ)

o = C(ℓ)
o ·

(g(ℓ)
b′◦0)Q(ℓ)(b).

Since we only need to compute the folded generators once, we can simply compute the

necessary generator, update the current commitment value, then proceed to the next needed

generator. In total, this gives a committer that performs O(N) total operations per round of

recursion, giving a O(N · log(N)) time committer.

We note here that we still need random access to the original generators g ∈ GN ; in

particular, we do not know how to obtain a space-efficient implementation assuming some

from of streaming access to these generators. 

12
 For this reason, we choose to model the group

G as a random oracle. In particular, we assume that for security parameter λ > n we have a

random oracle H : {0, 1}λ → G and define gb = H(b) for b ∈ {0, 1}n, and randomly sample

from group G by randomly sampling r $←{0, 1}λ and querying the oracle at H(r).

This completes the overview of the ideas behind our space-efficient polynomial commitment

satisfying  Theorem 4.2.1 . We discuss the formal details and theorem in  Section 4.6.4 .

4.3.3 Overview of  Theorem 4.2.2 

Our second polynomial commitment scheme is based on the recent so-called DARK

polynomial commitment scheme due to Bünz, Fisch, and Szepieniec [ 76 ]. We directly describe

our modified commitment scheme based on the DARK polynomial commitment. Our scheme

is tailored for multilinear polynomials, and is designed to overcome a gap in the security

proof of the original DARK scheme. We defer the reader to [ 52 ] for details on this gap, as

this is not the focus of this dissertation. Again throughout we fix a multilinear polynomial

Q : Fn → F with evaluations (Q(b))b∈{0,1}n and equivalently write Q ∈ FN for N = 2n.
12

 ↑ Though we conjecture that such an implementation exists, eliminating the need for a random oracle.
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Commitment Phase

Our commitment phase is identical to the DARK commitment phase. In particular,

we commit to the evaluations Q ∈ FN via encoding Q as a large integer. Let F be a

finite field of prime order p. Commitment to Q is computed by first constructing a large

integer Z(Q) such that the base-q digits of Z(Q) correspond to the values of Q (modulo p).

That is, Z(Q) := ∑︁
b∈{0,1}n qb · Q(b), where q ≫ p is a large integer and we interpret qb as

exponentiation by the integer uniquely represented by b in the natural way.

Now committing to Q is simply C = gZ(Q), where g ∈ G is a random element of the

group G for which the hidden order assumption holds, and is additionally specified during

the generation of public parameters. For arbitrary integer Z ∈ Z, we say that Z is consistent

with our polynomial Q if the base-q representation of Z, after reducing each digit modulo p,

results in the original sequence Q ∈ FN . Since q ≫ p, there are many integers Z which are

consistent with Q, including our constructed integer Z(Q). However, the commitment C is a

binding commitment since finding another integer Z ̸= Z(Q) that is consistent with Q and

the commitment C (e.g., gZ(Q) = gZ) reveals (a multiple of) the order of g, which breaks the

hidden order assumption.

Crucial to our evaluation phase is that this commitment is homomorphic in the following

sense. Given two integers Z1, Z2 consistent with two multilinear polynomials Q1, Q2, respec-

tively, that have sufficiently small digits in their base-q representation, it holds that Z1 + Z2

is consistent with the polynomial Q1 +Q2 (modulo p). This homomorphism is similarly true

for multiplications by scalars: if α is a sufficiently small integer, then α ·Z1 is consistent with

the polynomial α ·Q1 (modulo p). In our evaluation proofs, we make extensive use of the

first homomorphic property.

Evaluation Proofs

Similar to the evaluation proof of our previous polynomial commitment scheme, our

evaluation proof is performed again via a two-move reduction, reducing a statement of size

N to a statement of size N/2. Given an evaluation point ζ ∈ Fn specified by the receiver,
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the committer computes and sends y = Q(ζ). The committer and receiver then engage in an

interactive argument (of knowledge) for the following NP relation:

R(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(C, ζ, g, q, Z, y;Q) :

Z ∈ FN , Q ∈ ZN , ζ ∈ Fn, g ∈ G

∧ y = ⟨Q (mod p), Z⟩ ∈ F

∧ C = gZ(Q) ∈ G

∧ Z(Q) = ∑︁
b∈{0,1}n

qb ·Q(b) ∈ Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (4.4)

where N = 2n and g ∈ G are given as above and Z := (χ(b, ζ))b∈{0,1}n for χ(b, ζ) = ∏︁
i χ(bi, ζi).

In  Equation (4.4) , we quantify with respect to integer sequences Q ∈ ZN rather than sequences

over the field F; looking ahead, this is to ensure during our evaluation proofs we are able to

keep commitments consistent.

We again employ a natural “spit-and-fold” recursive argument to construct an argument

system for the above relation. In fact, rather than perform a 1-2-1 split-and-fold reduction,

we employ a λs-2λs-λs, where λs ∈ N is a statistical security parameter. Suppose we have λs

statements (Ci, ζ, g, q, Zi, yi;Qi) ∈ R(n) for i ∈ [λs]. 

13
 Then for each i ∈ [λs], the committer

computes a simple left-right split of the evaluations of Qi on point ζ. That is, the committer

computes

yi,0 =
∑︂

b∈{0,1}n−1

(Qi(0 ◦ b) mod p) ·
n−1∏︂
j=1

χ(bj, ζj)

yi,1 =
∑︂

b∈{0,1}n−1

(Qi(1 ◦ b) mod p) ·
n−1∏︂
j=1

χ(bj, ζj),

where we interpret b ∈ {0, 1}n as b = (bn, bn−1, . . . , b1) and ζ ∈ Fn as ζ = (ζn, ζn−1, . . . , ζ1).

The committer then computes the left-right split of the commitments to each polynomial Qi

as

Ci,0 = gℓi ℓi =
∑︂

b∈{0,1}n−1

qb ·Qi(0 ◦ b)

13
 ↑ We can, in fact, prove λs independent statements (all with the same evaluation point ζ), or prove a single

statement by copying it λs times and performing the same protocol.
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Ci,1 = gri ri =
∑︂

b∈{0,1}n−1

qb ·Qi(1 ◦ b).

Given the values yi,0, yi,1 and Ci,0, Ci1 , we observe that given the original statement

(Ci, ζ, g, q, Zi, yi;Qi), we have that yi = yi,0 · (1 − ζn) + yi,1 · ζn and Ci = Ci,0 · CqN/2

i,1 where

N = 2n. Thus the committer sends the values yi,0, yi,1 and Ci,0, Ci1 to the committer, and the

verifier performs the above checks. Then we perform a binary folding of the 2λs statements,

inspired by LT Codes [ 191 ]. For every i ∈ [λs], the receiver samples vectors ui,0, ui,1
$←{0, 1}λ

and sends these vectors to the committer. Then for every i ∈ [λs], both the committer and

receiver compute new folded values

y′i = ⟨ui,0, (y1,0, . . . , yλs,0)⟩+ ⟨ui,1, (y1,1, . . . , yλs,1)⟩ ∈ F C ′i =
∏︂

j∈[λs]
C

ui,0(j)
j,0 · Cui,1(j)

j,1 ∈ G;

further, the committer additionally computes for every i ∈ [λs] and every b ∈ {0, 1}n−1

Q′i(b) =
∑︂

j∈[λs]
ui,0(j) ·Qj(0 ◦ b) + ui,1(j) ·Qj(1 ◦ b).

The committer defines Q′i := (Q′i(b))b∈{0,1}n−1 . The committer and receiver then recurse on

the λs new statements (C ′i, ζ ′ = ζ \ {ζn}, g, q, Z ′i, y′i;Q′i) where Z ′i = (χ(b′, ζ ′))b′∈{0,1}n−1 . The

recursion continues for n+ 1 steps.

Space-Efficient Implementation

The above evaluation phase admits a straight-forward space-efficient implementation in

the streaming model. This is due to the fact that all values computed by the prover are

simple linear functions; that is, the order in which we compute the values does not matter

since the function being computed is a linear function. During each round of the recursion,

computing yi,0, yi,1 and Ci,0, Ci,1 can be done in a single pass over the initial set of streams

from the 0th level of recursion. We give formal details in  Section 4.7.3 .
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Verifier Efficiency

The verifier in the above protocol does not meet our efficiency target. This is because

the verifier computes qN/2 and performs expensive group exponents. Even with repeated

squaring, this results in a verifier time roughly O(N), which is undesirable; moreover, this is

less efficient than the verifier in the scheme presented in  Theorem 4.6.4 . Thus we offload this

computational complexity of the verifier to the prover via a proof of exponent protocol. We

introduce a statistically secure variant of Pietrzak’s proof of exponent protocol [ 219 ] which is

secure over any group, and use this protocol to achieve greater verifier efficiency with no cost

to the asymptotic complexity of the prover. Moreover, we implement this proof of exponent

in a space-efficient manner, which results in a final verifier complexity of polylog(n) time.

4.3.4 Obtaining Space-Efficient Succinct Arguments

Recall that in  Section 4.1 we gave a general approach to constructing arguments for the

relation RRAM. We adopt that approach to obtain space-efficient succinct arguments for

RRAM by combining either of our polynomial commitment schemes with the Clover MIP. We

discuss this transformation in detail in  Section 4.8 and give a high-level overview here.

Given any time-T and space-S RAM M , we leverage the Clover MIP’s streaming algorithm

to stream the wire transcript W : {0, 1}s → F in lexicographic order. Streaming this transcript

takes time T · polylog(T ) and space S · polylog(T ) [ 51 ,  64 ]. We compose this stream with

either of our streamable polynomial commitments, i.e.,  Theorems 4.2.3 and  4.2.4 to commit to

the wire transcript. Then, we follow the Clover MIP which constructs additional polynomials

to encode wire constraints (i.e., addition and multiplication constraints), which culminates

in some auxiliary polynomial F : F3s → F such that F ≡ 0 if and only if W is correct. The

prover and verifier then engage in the sum-check protocol [ 192 ] for the polynomial F , which

induces O(1) evaluations for the polynomial ˜︂W . Finally, using the evaluation protocols of

the polynomial commitment schemes, the verifier obtains these evaluations of ˜︂W and finishes

off the sum-check protocol, accepting or rejecting appropriately.

92



Implicit Use of Coding Theory

Relating back to our thesis statement, the final time- and space-efficient arguments

obtained by composing the Clover MIP with our polynomial commitments has soundness

which relies on two key components. First is the (knowledge) soundness of the polynomial

commitment schemes, which relies on the particular cryptographic assumptions we make for

these protocols. Second is the soundness of the sum-check protocol and the Clover MIP, which

reduces to performing low-degree tests on Reed-Muller codewords. These low-degree tests rely

on the definition and guarantees of Reed-Muller codewords (i.e., guarantees about polynomials

via theorems like the Schwartz-Zippel Lemma). So the final soundness guarantee reduces to

a coding theoretic argument about correctness of a codeword and distance guarantees given

by Reed-Muller codewords.

4.4 Additional Related Work

4.4.1 Polynomial Commitments

Polynomial commitment schemes were introduced by Kate, Zaverucha, and Goldberg

[ 165 ]. As discussed above, such commitments allow one to commit to a polynomial and later

answer evaluation queries while proving consistency with the commitment without revealing

the entire polynomial.

There are several variants of polynomial commitments include privately verifiable schemes

[ 165 ,  217 ], publicly-verifiable schemes with trusted setup [ 76 ], and zero-knowledge schemes

[ 258 ]. More recently, much focus has been on obtaining publicly-verifiable schemes without a

trusted setup [ 30 ,  36 ,  67 ,  76 ,  166 ,  184 ,  232 ,  255 ,  266 ]. In all prior work, the space complexity

of the committer is proportional to the description size of the polynomial. Recently, [ 68 ]

adapt the polynomial commitment scheme of [ 165 ] to the streaming setting and construct

what they call “Elastic SNAKRs”. Such SNARKs have two modes: a time-optimal mode and

a space-efficient mode, allowing the prover to swap between either mode as necessary.
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Lastly, we mention that classical works on low degree testing (à la [ 228 ]) as well as more

recent works [ 30 ,  32 ,  36 ] can be used to construct polynomial-commitments by Merkle hashing

the entire truth table of the polynomial (and using a self-correction procedure or protocol).

4.4.2 Privately Verifiable Proofs

The question of constructing proof systems in which the prover is efficient both in terms

of time and space was first raised by Bitansky and Chiesa [ 41 ], who constructed a time-

and space-efficient (or in their terminology complexity preserving) interactive argument

for any problem in NP based on fully homomorphic encryption. Holmgren and Rothblum

[ 157 ] constructed non-interactive time- and space-efficient arguments for P based on the

(sub-exponential) learning with errors assumption. The protocols of [ 41 ,  157 ] are privately

verifiable, meaning that only a designated verifier (who knows the randomness used to sampled

the verifier messages) is able to verify the proof.

4.4.3 Proofs by Recursive Composition

An alternative approach to publicly verifiable time- and space-efficient arguments is by

recursively composing SNARKs for NP [ 40 ,  251 ]. Recursive composition requires both the

prover and verifier to make non-black-box usage of an “inner” verifier for a different SNARK,

leading to large computational overhead. Several recent works [ 69 ,  73 ,  91 ] attempt to solve the

inefficiency problems with recursive composition, but at additional expense to the underlying

cryptographic assumptions. These works rely on hash functions that are modeled as random

oracles in the security proof despite being used in a non-black-box way by the honest parties.

Security thus cannot be reduced to a simple computational hardness assumption, even in the

random oracle model. Moreover, the practicality of the schemes crucially requires usage of

a novel hash function (e.g., Rescue [ 11 ]) with algebraic structure designed to maximize the

efficiency of non-black-box operations. Such hash functions have endured far less scrutiny

than standard SHA hash functions, and the algebraic structure could potentially lead to a

security vulnerability (though no such vulnerabilities are known at the time of this writing to

the best of our knowledge). We also mention a recent work of Ephraim et al. [ 110 ] which uses
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recursive composition to address the related question of implementing the prover in small

depth (i.e., parallel time).

4.4.4 Multi-Prover Proofs

Bitansky and Chiesa [ 41 ], as well as Blumberg et al. [ 64 ], construct time- and space-

efficient multi-prover interactive proofs; that is, soundness only holds under the assumption

that the provers do not collude. Justifying this assumption in practice seems difficult and

indeed multi-prover interactive proofs are usually only used as building blocks toward more

complex systems.

4.5 Preliminaries

We state preliminaries which common to both of our polynomial commitment schemes.

Unfortunately, due to the differences in models between our polynomial commitment schemes,

some definitions (e.g., definition of a polynomial commitment scheme) differ. Thus rather

than try to unify the definitions, we simply present appropriate definitions for the scheme

being discussed later in the text. See  Sections 4.6.1 and  4.7.1 .

4.5.1 Notation

We let λ denote the security parameter, let n ∈ N and N = 2n. We let Primes(1λ) denote

the set of all λ-bit primes. For bit string b ∈ {0, 1}n, we write b = (bn, . . . , b1), where bn is the

most significant bit and b1 is the least significant bit. Similarly, for vectors of field elements

ζ ∈ Fn, we write ζ = (ζn, . . . , ζ1).

4.5.2 Multilinear Polynomials

An n-variate polynomial f : Fn → F is multilinear if the individual degree of each variable

in f is at most 1. We recall  Fact 4.3.1 here.

95



Fact 4.3.1 ([ 51 ,  213 ]). An multilinear polynomial f : Fn → F (over a finite field F) is

uniquely defined by its evaluations over the Boolean hypercube. Moreover, for every ζ ∈ Fn it

holds that

f(ζ) =
∑︂

b∈{0,1}n

f(b) ·
n∏︂

i=1
χ(bi, ζi), (4.1)

where χ(bi, ζi) = bi · ζi + (1− bi) · (1− ζi).

For ease of presentation, when |b| = |ζ| = n we let χ(b, ζ) := ∏︁
i χ(bi, ζi).

Multilinear Polynomial Notation

For an n-variate multilinear polynomial f over field F, we represent f as the unique

N -sized sequence Y ∈ FN for N = 2n such that Yb = f(b) for all b ∈ {0, 1}n. Similarly,

for a sequence Y ∈ FN , we denote the evaluation of a multilinear polynomial defined by Y

at a point ζ ∈ Fn as ML(Y, ζ) := ∑︁
b Yb · χ(b, ζ). We also consider evaluating a multilinear

polynomial defined by some integer sequence Z ∈ ZN . For prime p such that |F| = p and any

ζ ∈ Fn, we define ML(Z, ζ) := ∑︁
b(Zb mod p) · χ(b, ζ).

Streaming Model for Multilinear Polynomials

For our commitment scheme, we assume that the committer will have multi-pass streaming

access to the function table Y of f (which defines the multi-linear polynomial) in the

lexicographic ordering. Specifically, the committer will be given access to a read-only tape

that is pre-initialized with the sequence Y =
(︂
Yb = f(b) : b ∈ {0, 1}n

)︂
. At every time-step

the committer is allowed to either move the machine head to the right one position, or to

restart its position to 0.

With the above notation, we can now view ML(Y, ζ ∈ Fn) as an inner-product between

Y and Z = (zb = χ(b, ζ) : b ∈ {0, 1}n) where computing zb requires O(n = log(N)) field

multiplications for fixed ζ ∈ Fn any b ∈ {0, 1}n.
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4.5.3 Assumptions on Groups

Definition 4.5.1 (Group Sampler). A PPT algorithm G is a group sampler if for every

λ ∈ N, on input 1λ the algorithm G samples a group description 

14
 G of a group of size at

most 2λ. As a shorthand, we denote this random process by G← G(1λ), and by g $←G denote

the process of sampling a random group element g from G. Furthermore, we say that G is

public-coin if the output of G (i.e., the group description) is a uniformly random string.

We focus on group samplers G for which either the Discrete-log Assumption or the Hidden

Order Assumption holds. We discuss the discrete-log assumption first. Informally, the

discrete-log assumption states that given a generator of a group g and a random α, it is

computationally difficult to compute α given gα. In the case of discrete-log, the group sampler

additionally outputs a λ-bit prime p (the order of G) and a generator g of G.

Assumption 4.5.1 (Discrete-log Assumption). Let G be a group sampler such that (G, p, g)←

G(1λ), where G is the description of a group of prime order p, p is a λ-bit prime, and g is a

generator of G. The discrete-log assumption holds for G if for every polynomial-sized family

of circuits A = {Aλ}λ∈N, there exists a negligible function µ such that:

Pr

⎡⎢⎣α = α′ :
(G, p, g)← G(1λ);α $← Zp

α′ ← Aλ(G, p, g, gα)

⎤⎥⎦ ⩽ µ(λ).

Since one of our polynomial commitment schemes is based on Pedersen commitments, we

use the following variant of the discrete-log assumption.

Assumption 4.5.2 (Discrete-log Relation Assumption [ 67 ]). The discrete-log relation assump-

tion holds for group sampler G if for every polynomial-sized family of circuits A = {Aλ}λ∈N

and all n ⩾ 2, there exists a negligible function µ such that:

Pr

⎡⎢⎣∃αi ̸= 0 ∧
n∏︂

i=1
gαi

i = 1 :
(G, p, g)← G(1λ); g1, . . . , gn

$←G;

Zn
p ∋ (α1, . . . , αn)← Aλ(G, p, g, {gi}i∈[n])

⎤⎥⎦ ⩽ µ(λ).

14
 ↑ The group description includes a poly(λ) description of the identity element, and poly(λ) size circuits

checking membership in the group, equality, performing the group operation and generating a random element
in the group.
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We say that ∏︁n
i=1 g

αi
i = 1 is a non-trivial discrete-log relation between g1, . . . , gn when not

all αi are zero. Thus  Assumption 4.5.2  says an adversary cannot find non-trivial discrete-log

relations between random group elements.

We now turn to the Hidden Order Assumption. Informally, the hidden order assumption

states that it is computationally hard to find (any multiple of) the order of a random group

element g of G← G(1λ).

Assumption 4.5.3 (Hidden Order Assumption). The hidden order assumption holds for G

if for every polynomial-sized family of circuits A = {Aλ}λ∈N, there exists a negligible function

µ such that:

Pr

⎡⎢⎣ga = 1 ∧ a ̸= 0 :
G← G(1λ), g ← G

a← Aλ(G, g)

⎤⎥⎦ ⩽ µ(λ).

4.6 Streamable Polynomial Commitment Scheme for Multilinear Polynomials
from Discrete-log in the Random Oracle Model

In this section, we give our polynomial commitment scheme which realizes  Theorem 4.2.3 .

 Section 4.6.1 gives relevant preliminaries for this section.  Section 4.6.2 gives the polynomial

commitment scheme.  Section 4.6.3  proves the completeness and security of the scheme.

 Section 4.6.4 proves the efficiency of the scheme.

4.6.1 Preliminaries

Random Oracles

We let U(λ) denote the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle

with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ sampled uniformly at random

from U(λ).

Interactive Arguments of Knowledge in the Random Oracle Model

Definition 4.6.1 (Witness Relation Ensemble). A witness relation ensemble or relation

ensemble is a ternary relation RL that is polynomially bounded, polynomial time recognizable
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and defines a language L = {(pp, x) : ∃w s.t. (pp, x, w) ∈ RL}. We omit pp when considering

languages recognized by binary relations.

Definition 4.6.2 (Interactive Arguments [  132 ]). Let R be some relation ensemble. Let (P, V )

denote a pair of PPT interactive algorithms and Setup denote a non-interactive setup algorithm

that outputs public parameters pp given security parameter 1λ. Let ⟨P (pp, x, w), V (pp, x)⟩

denote the output of V ’s interaction with P on common inputs public parameter pp and

statement x where additionally P has the witness w. The triple (Setup, P, V ) is an argument

for R in the random oracle model (ROM) if

1. Perfect Completeness. For any adversary A

Pr [(x,w) /∈ R or ⟨P ρ(pp, x, w), V ρ(pp, x)⟩ = 1] = 1 ,

where probability is taken over ρ $←U(λ), pp $← Setupρ(1λ), (x,w) $← Aρ(pp).

2. Computational Soundness. For any non-uniform PPT adversary A

Pr [∀w (x,w) /∈ R and ⟨Aρ(pp, x, st), V ρ(pp, x)⟩ = 1] ≤ negl(λ) ,

where probability is taken over ρ $←U(λ), pp $← Setupρ(1λ), (x, st) $← Aρ(pp).

Remark 4.6.1. Usually completeness is required to hold for all (x,w) ∈ R. However, for

the argument systems used in this work, statements x depends on pp output by Setup and the

random oracle ρ. We model this by asking for completeness to hold for statements sampled by

an adversary A, that is, for (x,w) $← A(pp).

For our applications, we will need (Setup, P, V ) to be an argument of knowledge. Informally,

in an argument of knowledge for R, the prover convinces the verifier that it “knows” a witness

w for x such that (x,w) ∈ R. In this paper, knowledge means that the argument has

witness-extended emulation [ 138 ,  186 ].

Definition 4.6.3 (Witness-extended Emulation). Given a public-coin interactive argument

tuple (Setup, P, V ) and some arbitrary prover algorithm P ∗, let Record(P ∗, pp, x, st) denote
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the message transcript between P ∗ and V on shared input x, initial prover state st, and pp

generated by Setup. Furthermore, let ERecord(P ∗,pp,x,st) denote a machine E with a transcript

oracle for this interaction that can be rewound to any round and run again on fresh verifier

randomness. The tuple (Setup, P, V ) has witness-extended emulation if for every deterministic

polynomial-time P ∗ there exists an expected polynomial-time emulator E such that for all

non-uniform polynomial-time adversaries A the following holds:

Pr

⎡⎢⎣Aρ(tr) = 1 :
ρ

$←U(λ), pp $← Setupρ(1λ),

(x, st) $← Aρ(pp), tr $← Recordρ(P ∗, pp, x, st)

⎤⎥⎦ ≈

Pr

⎡⎢⎢⎢⎢⎢⎣
Aρ(tr) = 1 and

tr accepting =⇒ (x,w) ∈ R
:

ρ
$←U(λ), pp $← Setupρ(1λ),

(x, st) $← Aρ(pp),

(tr, w) $←Eρ,Recordρ(P ∗,pp,x,st)(pp, x)

⎤⎥⎥⎥⎥⎥⎦
It was shown in [ 67 ,  76 ] that witness-extended emulation is implied by an extractor that

can extract the witness given a tree of accepting transcripts. For completeness we state

this—dubbed Generalized Forking Lemma—more formally below but refer to [ 67 ,  76 ] for the

proof.

Definition 4.6.4 (Tree of Accepting Transcripts). An (n1, . . . , nr)-tree of accepting transcripts

for an interactive argument on input x is defined as follows: The root of the tree is labeled

with the statement x. The tree has r depth. Each node at depth i < r has ni children, and

each child is labeled with a distinct value for the i-th challenge. An edge from a parent node

to a child node is labeled with a message from P to V . Every path from the root to a leaf

corresponds to an accepting transcript, hence there are ∏︁r
i=1 ni distinct accepting transcripts

overall.

Lemma 4.6.2 (Generalized Forking Lemma [ 67 ,  76 ]). Let (Setup, P, V ) be an r-round public-

coin interactive argument system for a relation R. Let T be a tree-finder algorithm that,

given access to a Record(·) oracle with rewinding capability, runs in polynomial time and

outputs an (n1, . . . , nr)-tree of accepting transcripts with overwhelming probability. Let Ext be

a deterministic polynomial-time extractor algorithm that, given access to T ’s output, outputs
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a witness w for the statement x with overwhelming probability over the coins of T . Then,

(P, V ) has witness-extended emulation.

Definition 4.6.5 (Public-coin). An argument of knowledge is called public-coin if all messages

sent from the verifier to the prover are chosen uniformly at random and independently of the

prover’s messages, i.e., the challenges correspond to the verifier’s randomness ρ.

Zero-Knowledge

We also need our argument of knowledge to be zero-knowledge, that is, to not leak partial

information about w apart from what can be deduced from (x,w) ∈ R.

Definition 4.6.6 (Zero-knowledge Arguments). Let (Setup, P, V ) be an public-coin interactive

argument system for witness relation ensemble R. Then, (Setup, P, V ) has computational

zero-knowledge with respect to an auxiliary input if for every PPT interactive machine V ∗,

there exists a PPT algorithm S, called the simulator, running in time polynomial in the length

of its first input, such that for every (x,w) ∈ R and any z ∈ {0, 1}∗:

View(⟨P (w), V ∗(z)⟩(x)) ≈c S(x, z) ,

where View(⟨P (w), V ∗(z)⟩(x)) denotes the distribution of the transcript of interaction between

P and V ∗, and ≈c denotes that the two quantities are computationally indistinguishable. If

the statistical distance between the two distributions is negligible then the interactive argument

is said to be statistical zero-knowledge. If the simulator is allowed to abort with probability at

most 1/2, but the distribution of its output conditioned on not aborting is identically distributed

to View(⟨P (w), V ∗(z)⟩(x)), then the interactive argument is called perfect zero-knowledge.

Multilinear Polynomial Commitment Scheme in the Random Oracle Model

In defining the syntax of various protocols, we use the following convention for any list of

arguments or returned tuple (a, b, c; d, e): variables listed before semicolon are known both to

the prover and verifier whereas the ones after are only known to the prover; e.g., here a, b, c

are public and d, e are secret. The semicolon is omitted when there is no secret information.
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Definition 4.6.7 (Commitment to Multilinear Polynomials). A polynomial commitment to

multilinear polynomials is a tuple of protocols (Setup,Com,Open,Eval):

1. pp ← Setupρ(1λ, 1N) takes as input the unary representations of security parameter

λ ∈ N and size parameter N = 2n corresponding to n ∈ N, and produces public

parameter pp. We allow pp to contain the description of the field F over which the

multi-linear polynomials will be defined.

2. (C; d)← Comρ(pp, Y ) takes as input public parameter pp and sequence Y = (yb : b ∈

{0, 1}n) ∈ FN that defines the multi-linear polynomial to be committed, and outputs

public commitment C and secret decommitment d.

3. b = Openρ(pp, C, Y, d) takes as input pp, a commitment C, sequence committed Y and

a decommitment d and returns a decision bit b ∈ {0, 1}.

4. Evalρ(pp, C, ζ, γ;Y, d) is a public-coin interactive protocol between a prover P and a

verifier V with common inputs—public parameter pp, commitment C, evaluation point

ζ ∈ Fn and claimed evaluation γ ∈ F, and prover has secret inputs Y and d. The prover

then engages with the verifier in an interactive argument system for the relation

Rmle(pp) = {(C, ζ, γ;Y, d) : Openρ(pp, C, Y, d) = 1 ∧ γ = ML(Y, ζ)} . (4.5)

The output of V is the output of Eval protocol.

Furthermore, we require the following three properties.

1. Computational Binding. For all PPT adversaries A and n ∈ N

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b0 = b1 ̸= 0 ∧ Y0 ̸= Y1 :

ρ
$←U(λ), pp $← Setupρ(1λ, 1N)

(C, Y0, Y1, d0, d1) $← Aρ(pp)

b0 ← Openρ(pp, C, Y0, d0)

b1 ← Openρ(pp, C, Y1, d1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(λ) .
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2. Perfect Correctness. For all n, λ ∈ N and all Y ∈ FN and ζ ∈ Fn,

Pr

⎡⎢⎣1 = Evalρ(pp, C, Z, γ;Y, d) :
ρ

$←U(λ), pp $← Setupρ(1λ, 1N),

(C; d) $← Comρ(pp, Y ), γ = ML(Y, ζ)

⎤⎥⎦ = 1 .

3. Witness-extended Emulation. We say that the polynomial commitment scheme has

witness-extended emulation if Eval has a witness-extended emulation as an interactive

argument for the relation ensemble {Rmle(pp)}pp ( Equation (4.5) ) except with negligible

probability over the choice of ρ and coins of pp $← Setupρ(1λ, 1N).

4.6.2 Space-Efficient Commitment for Multilinear Polynomials

In this section we describe our polynomial commitment scheme for multilinear polynomials,

a high level overview of which was provided in  Section 4.3.2 . We dedicate the remainder of

the section to constructing our polynomial commitment scheme.

Commitment Scheme

We describe our commitment scheme (Setup,Com,Open,Eval) to multilinear polynomials.

1. Setupρ(1λ, 1N ): On inputs security parameter 1λ and size parameter N = 2n and access

to ρ, Setup samples (G, p, h) ← G(1λ), sets F = Fp and returns pp = (G,F, N, p).

Furthermore, it implicitly defines a sequence of generators g = (gb = ρ(b) : b ∈ {0, 1}n).

2. Comρ(pp, Y ) returns C ∈ G as the commitment and Y as the decommitment where

C ←
∏︂

b∈{0,1}n

(gb)yb .

3. Openρ(pp, C, Y ) returns 1 iff C = Comρ(pp, Y ).

4. Evalρ(pp, C, ζ, γ;Y ) is an interactive protocol ⟨P, V ⟩ that begins with V sending a

random h
$← G. Then, both P and V compute the commitment Cγ ← C · hγ to

additionally bind the claimed evaluation γ. Then, P and V engage in an interactive
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protocol EvalReduce on input (Cγ, Z, g, h, γ;Y ) where the prover proves knowledge of

Y such that

Cγ = Com(g, Y ) · hγ ∧ ⟨Y, Z⟩ = γ ,

where Z = (zb = χ̄(b, ζ) : b ∈ {0, 1}n). We define the protocol in  Figure 4.4 .

Remark 4.6.3. In fact, our scheme readily extends to proving any linear relation α ∈ FN

about a committed sequence Y (i.e., the value ⟨α, Y ⟩), as long as each element of α can be

generated in poly-logarithmic time.

The described commitment scheme is characterized by the following theorem.

Theorem 4.6.4. Let G be a generator of obliviously sampleable, 

15
 prime-order groups.

Assuming the hardness of discrete logarithm problem for G, the scheme (Setup,Com,Open,Eval)

defined above is a polynomial commitment scheme to multilinear polynomials with witness-

extended emulation in the random oracle model. Furthermore, for every N ∈ N and sequence

Y ∈ FN , the committer/prover has multi-pass streaming access to Y and

1. Com performs O(N · log(p)) group operations, stores O(1) field and group elements,

requires one pass over Y , makes N queries to the random oracle, and outputs a single

group element. Evaluating ML(Y, ·) requires O(N) field operations, storing O(1) field

elements and requires one pass over Y .

2. Eval is public-coin and has O(log(N)) rounds with O(1) group elements sent in every

round. Furthermore,

• Prover performs O(N · (log2(N)) · log(p)) field and group operations, O(N · log(N))

queries to the random oracle, requires O(log(N)) passes over Y and stores O(logN)

field and group elements.

• Verifier performs O(N · (log(N)) · log(p)) field and group operations, O(N) queries

to the random oracle, and stores O(log(N)) field and group elements.
15

 ↑ By obliviously sampleable we mean that there exist algorithms S and S−1 such that on input random
coins r, the algorithm S samples a uniformly random group element g, whereas on input g, the algorithm
S−1 samples random coins r that are consistent with the choice of g. In other words, if S uses ℓ random bits
then the joint distributions (Uℓ, S(Uℓ)) and (S−1(S(Uℓ)), S(Uℓ)) are identically distributed, where Uℓ denotes
the uniform distribution on ℓ bit strings.
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1 Eval (pp, C, ζ, γ;Y )
Input : Public parameters pp, C ∈ G, ζ ∈ Fn, γ ∈ F, Y ∈ FN

Output : Accept or Reject
2 V samples and sends h $←G to P .
3 P and V define Cγ = C · hγ.
4 P and V define Z = (zb := ∏︁n

i=1 χ(bi, ζi))b∈{0,1}n .
5 P and V engage in EvalReduce(Cγ, Z, γ, g, h;Y ).
6 EvalReduce (Cγ, Z, γ, g, h;Y )

Input :Cγ ∈ G, Z ∈ FN , γ ∈ F, g ∈ GN , h ∈ G, Y ∈ FN

Output : Accept or Reject
7 Set N = |Z|, n = log(N).
8 if N = 1 then
9 Let g = (g′) ∈ G, Z = (z) ∈ F, and Y = (y) ∈ F. P sends y to V .

10 V accepts if and only if Cγ = (g′)y · hy·z.
11 else
12 P computes γ0, γ1 where

γ0 =
∑︂

b∈{0,1}n−1

Y (b ◦ 0) · Z(b ◦ 1) γ1 =
∑︂

b∈{0,1}n−1

Y (b ◦ 1) · Z(b ◦ 0).

13 P computes and sends C0, C1 to V , where

C0 = hγ0 ·
∏︂

b∈{0,1}n−1

(gb◦1)Y (b◦0) C1 = hγ1 ·
∏︂

b∈{0,1}n−1

(gb◦0)Y (b◦1).

14 V samples α $← F and sends α to P .
15 P and V both compute

C ′γ′ = (C0)α2 · Cγ · (C1)α−2

Z ′ = (z′b = α−1 · zb◦0 + α · zb◦1)b∈{0,1}n−1

g′ = ((gb◦0)α−1 · gα
b◦1)b∈{0,1}n−1 .

16 P computes Y ′ = (y′b = α · yb◦0 + α−1 · yb◦1)b∈{0,1}n−1 .
17 return EvalReduce(C ′γ′ , Z ′, γ′, g′, h;Y ′).

Figure 4.4. Eval protocol for the commitment scheme from  Section 4.6.2 .
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4.6.3 Correctness and Security

Lemma 4.6.5. The scheme from  Section 4.6.2 is perfectly correct, computationally binding

and Eval has witness-extended emulation under the hardness of the discrete logarithm problem

for groups sampled by G in the random oracle model.

The perfect correctness of the scheme follows from the correctness of EvalReduce protocol,

which we prove in  Lemma 4.6.6 , computationally binding follows from that of Pedersen

multi-commitments which follows from the hardness of discrete-log (in the random oracle

model). The witness-extended emulation of Eval follows from the witness-extended emulation

of the inner-product protocol in [  72 ]. At a high level, we make two changes to their

inner-product protocol: (1) sample the generators using the random oracle ρ, (2) perform

the 2-move reduction step using the lsb-based folding approach (see  Section 4.3.2  for a

discussion). At a high level, given a witness Y for the inner-product statement (Cγ, g, Z, γ),

one can compute a witness for the permuted statement (Cγ, π(g), π(Z), γ) for any efficiently

computable/invertible public permutation π. Choosing π as the permutation that reverses its

input allows us, in principle, to base the extractability of our scheme (lsb-based folding) to

the original scheme of [ 72 ]. Due to (1) our scheme enjoys security only in the random-oracle

model.

Lemma 4.6.6. Let (Cγ, Z, γ, g, h;Y ) be inputs to EvalReduce and let (C ′γ′ , Z ′, γ′, g′, h;Y ′) be

generated as in  Figure 4.4 . Then,

Cγ = Com(g, Y ) · hγ

∧

⟨Y, Z⟩ = γ

=⇒
C ′γ′ = Com(g′, Y ′) · hγ′

∧

⟨Y ′, Z ′⟩ = γ′

.

Proof. Let N = |Z| and let n = logN . Then,
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1. To show γ′ = ⟨Y ′, Z ′⟩:

⟨Y ′, Z ′⟩ =
∑︂

b∈{0,1}n−1

y′b · z′b,

=
∑︂

b∈{0,1}n−1

(α · yb◦0 + α−1 · yb◦1) · (α−1 · zb◦0 + α · zb◦1),

=
∑︂

b∈{0,1}n−1

yb◦0 · zb◦0 + α2 · yb◦0 · zb◦1 + yb◦1 · zb◦1 + α−2 · yb◦1 · zb◦1,

= γ + α2 · γ0 + α−2 · γ1 = γ′.

2. C ′γ′ = Com(g′, Y ′) · gγ′ :

Com(g′, Y ′) =
∏︂

b∈{0,1}n−1

(g′b)
y′

b ,=
∏︂

b∈{0,1}n−1

(︂
gα−1

b◦0 · gα
b◦1

)︂α·yb◦0+α−1·yb◦1
,

=
∏︂

b∈{0,1}n−1

(︂
gyb◦0

b◦0 · g
α−2·yb◦1
b◦0 · gα2·yb◦0

b◦1 · gyb◦1
b◦1

)︂
,

=
∏︂

b∈{0,1}n−1

(gyb◦1
b◦0 )α−2

· gyb◦0
b◦0 · g

yb◦1
b◦1 · (g

yb◦0
b◦1 )α2

.

Then, above with the definition of γ′ implies that C ′γ′ = Com(g′, Y ′) · hγ′ .

4.6.4 Efficiency

In this section we discuss the efficiency aspects of each of the protocols defined in

 Section 4.6.2 with respect to four complexity measures: (1) queries to the random oracle

ρ, (2) field/group operations performed, (3) field/group elements stored and (4) number of

passes over the stream Y .

For the rest of this section, we fix n,N = 2n, ρ,G,F, ζ ∈ Fn and furthermore fix Y = (yb :

b ∈ {0, 1}n), g = (gb = ρ(b) : b ∈ {0, 1}n) and Z = (zb = χ̄(b, ζ) : b ∈ {0, 1}n). Note given ζ,

any zb can be computed by performing O(n) field operations.

First, consider the prover P of Eval protocol ( Figure 4.4 ). Given the inputs (C,Z, γ, g, h;Y ),

P and V call the recursive protocol EvalReduce on the N sized statement (Cγ, Z, γ, g, h;Y )

where Cγ = C · hγ. The prover’s computation in this call to EvalReduce is dictated by
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computing (a) γ0, γ1 (line 6), (2) C0, C1 (line 7) and (c) inputs for the next recursive call

on EvalReduce with N/2 sized statement (C ′γ′ , Z ′, γ′, g′, h;Y ′) (line 9,11). The rest of its

computation requires O(1) number of operations. The recursion ends on the n-th call with

statement of size 1. For k ∈ {0, . . . , n}, the inputs at the k-th depth of the recursion be

denoted with superscript k, that is, C(k), γ(k), Z(k), g(k), Y (k). For example, Z(0) = Z, Y (0) = Y

denote the initial inputs (at depth 0) where prover computes γ(0)
0 , γ

(0)
1 , C

(0)
0 , C

(0)
1 with verifier

challenge α(0). The sequences Z(k), Y (k) and g(k) are of size 2n−k.

At a high level, we ask prover to never explicitly compute the sequences g(k), Z(k), Y (k)

(item (c) above) but instead compute elements g(k)
b , z

(k)
b , y

(k)
b , of the respective sequences, on

demand, which then can be used to compute γ(k)
0 , γ

(k)
1 , C

(k)
0 , C

(k)
1 in required time and space.

For this, first it will be useful to see how the elements of sequences Z(k), Y (k), g(k) depend on

the initial (i.e., depth-0) sequence Z(0), Y (0), g(0).

Relating Y (k) with Y (0).

First, we consider Y (k) = (y(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}. Let α(i) denote

the verifier’s challenge sent during a prior round i ∈ {0, 1, . . . , k − 1}.

Lemma 4.6.7 (Streaming of Y (k)). For every b ∈ {0, 1}n−k,

y
(k)
b =

∑︂
c∈{0,1}k

⎛⎝ k∏︂
j=1

coeff(α(j−1), cj)
⎞⎠ · yb◦c , (4.6)

where coeff(α, c) = α · (1− c) + α−1 · c.

The proof follows by induction on depth k.  Lemma 4.6.7 allows us to simulate the

stream Y (k) with one pass over the initial sequence Y , additionally performing O(N · k)

multiplications to compute appropriate coeff functions.

Relating Z(k) with Z(0).

Next, consider Z(k) = (z(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}.
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Computez(k, c, ζ, α)
1. z(k)

c = 0 ∈ F
2. for each a ∈ {0, 1}k:

(a) temp = 1 ∈ F
(b) for each j ∈ [k]:

i. temp = temp · coeff(α(j−1), aj)
(c) z(k)

c = z(k)
c + temp · χ̄(c ◦ a, ζ)

3. return z(k)
c

Computegρ(k, c, α)
1. g(k)

c = 1 ∈ G
2. for each a ∈ {0, 1}k:

(a) temp = 1 ∈ F
(b) for each j ∈ [k]:

i. temp = temp · coeff(α(j−1), a)
g(k)

c = g(k)
c · ρ(c ◦ a)temp

3. return g(k)
c

Figure 4.5. Algorithms for computing z
(k)
b and g

(k)
b . In both algorithms

c ∈ {0, 1}n−k and α = (α(0), . . . , α(k−1)), where χ(b, ζ) = ∏︁n
i=1 χ(bi, ζi) for

b = c ◦ a, and coeff(α, c) = α · c+ α−1 · (1− c).

Lemma 4.6.8 (Computing z(k)
b ). For every b ∈ {0, 1}n−k,

z
(k)
b =

∑︂
c∈{0,1}k

⎛⎝ k∏︂
j=1

coeff(α(j−1), cj)
⎞⎠ · zb◦c , (4.7)

where coeff(α, c) = α · c+ α−1 · (1− c). Furthermore, computing z(k)
b requires O(2k · n) field

multiplications and storing O(n) elements (see algorithm Computez in  Figure 4.5 ).

Relating g(k) with g(0).

Finally, consider g(k) = (g(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}.

Lemma 4.6.9 (Computing g(k)
b ). For every b ∈ {0, 1}n−k,

g
(k)
b =

∏︂
c∈{0,1}k

g
coeff(α,c)
b◦c ; coeff(α, c) =

k∏︂
i=1

α(j−1) · cj + (α(j−1))−1 · (1− cj) . (4.8)

Furthermore, computing g(k)
b requires 2k · k field multiplications, 2k queries to ρ, 2k group

multiplications and exponentiations, and storing O(k) elements (see algorithm Computeg in

 Figure 4.5 ).

We now discuss the efficiency of the commitment scheme.
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Commitment Phase

We first note that Comρ on input pp and given streaming access to Y can compute the

commitment C = ∏︁
b(ρ(b))yb for b ∈ {0, 1}n making N queries to ρ, performing N group

exponentiations and a single pass over Y . Furthermore, requires storing only a single group

element. Note that a single group exponentiation hα can be emulated while performing

O(log p) group multiplications while storing O(1) group and field elements. Since, G,F are

of order p, field and group operations can, furthermore, be performed in polylog(p(λ)) time.

Evaluating ML(Y, ζ)

The honest prover (when used in higher level protocols) needs to evaluate ML(Y, ζ) which

requires performing O(N logN) field operations overall and a single pass over stream Y .

Prover Efficiency

For every depth-k of the recursion, it is sufficient to discuss the efficiency of computing

γ
(k)
0 , γ

(k)
1 , C

(k)
0 , and C(k)

1 . We argue the complexity of computing γ(k)
0 and C(k)

0 and the analysis

for the remaining is similar. We give a formal algorithm Prover in  Figure 4.6 .

Computing γ
(k)
0

Recall that γ(k)
0 = ∑︁

b y
(k)
b◦0 · z

(k)
b◦1 for b ∈ {0, 1}n−k−1. To compute γ

(k)
0 we stream the

initial N -sized sequence Y and generate elements of the sequence (y(k)
b◦0 : b ∈ {0, 1}n−k−1)

in a streaming manner. Since each y
(k)
b◦0 depends on a contiguous block of 2k elements in

the initial stream Y , we can compute y(k)
b◦0 by performing 2k · k field operations (lines 2-7 in

 Figure 4.6  ). For every b ∈ {0, 1}n−k−1, after computing y(k)
b◦0, we leverage “random access” to

Z and compute z(k)
b◦1 ( Lemma 4.6.8 ) which requires O(2k · k) field operations. Overall, γ(k)

0

can be computed in O(N · k) field operations and a single pass over Y .
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Proverρ (pp, k, Y, ζ, g, α(0), . . . , α(k−1))
Input : Public parameters pp, integer k ∈ {0, 1, . . . , n}, Y ∈ FN , ζ ∈ Fn, α(i) ∈ F

for i ∈ {0, . . . , k − 1}.
Output : Values γ0, γ1 ∈ F and C0, C1 ∈ G.

1 Set γ0 = γ1 = y(k) = 0 ∈ F, g(k) = C0 = C1 = 1 ∈ G, count = 0.
2 foreach b = (bn, . . . , b1) ∈ {0, 1}n do
3 temp = 1 ∈ F
4 foreach j ∈ [k] do
5 temp = temp · coeff(α(j), bj)
6 y(k) = y(k) + temp · yb

7 count = count+ 1
8 if count = 2k then
9 z(k) = Computez(k, (bn, . . . , bn−k+1, 1− bn−k), ζ, α(0), . . . , α(k−1))

10 g(k) = Computegρ(k, (bn, . . . , bn−k+1, 1− bn−k), α(0), . . . , α(k−1))
11 if bn−k = 0 then
12 γ0 = γ0 + z(k) · y(k)

13 C0 = C0 · (g(k))y(k)

14 else
15 γ1 = γ1 + z(k) · y(k)

16 C1 = C1 · (g(k))y(k)

17 y(k) = 0; g(k) = 1; count = 0

18 C0 = C0 · hγ0 ; C1 = C1 · hγ1

19 return (γ0, γ1, C0, C1)

Figure 4.6. Space-Efficient Prover implementation.

Computing C
(k)
0

The two differences in computing C(k)
0 (see  Figure 4.4 for the definition) is that (a) we

need to compute g(k)
b◦1 instead of computing z(k)

b◦1 and (b) perform group exponentiations, that

is, g(k)
b◦1

y
(k)
b◦0 as opposed to group multiplications as in the computation of γ(k)

0 . Both steps

overall can be implemented in O(N · k · log p) field and group operations and N queries to ρ

( Lemma 4.6.9 ). Overall, at depth k the prover (1) makes O(N) queries to ρ, (2) performs

O(N · k · log(p)) field and group operations and (3) requires a single pass over Y .

Therefore, the entire prover computation (over all calls to EvalReduce) requires O(logN)

passes over Y , makes O(N logN) queries to ρ and performs O(N · log2 N · log p) field/group

operations. Furthermore, this requires storing only O(logN) field and group elements.
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Verifier Efficiency

V only needs to compute folded sequence Z(n) and folded generators g(n) at depth-n of

the recursion. These can computed by invoking Computez and Computeg ( Figure 4.5 ) with

k = n and require O(N · log(N, p)) field and group operations, O(N) queries to ρ and storing

O(logN) field and group elements.

Lemma 4.6.10. The time and space efficiency of each of the phases of the protocols are

listed below:

Computation ρ queries Y passes F/G ops 

16
 G/F elements

Com N 1 O(N) O(1)

ML(Y, ζ) 0 1 O(N logN) O(1)

P (in Eval) O(N logN) O(logN) O(N log2 N) O(logN)

V (in Eval) O(N) 0 O(N logN) O(logN)

Finally,  Theorem 4.6.4 follows directly from  Lemma 4.6.5 and  Lemma 4.6.10 .

4.7 Streamable Polynomial Commitment Scheme for Multilinear Polynomials
from Groups of Unknown Order

In this section, we give our polynomial commitment scheme which realizes  Theorem 4.2.4 .

 Section 4.7.1 gives relevant preliminaries for this section.

4.7.1 Preliminaries

Notation

We let Fp denote a finite field of prime order p, and often use lower-case Greek letters

to denote elements of F, e.g., α ∈ F. For bit strings b ∈ {0, 1}n, we naturally associate

b with integers in the set {0, 1, . . . , 2n − 1}; i.e., b ≡ ∑︁n
i=1 bi · 2i−1. We assume that b =

(bn, . . . , b1), where bn is the most significant bit and b1 is the least significant bit. For bit

string b ∈ {0, 1}n and σ ∈ {0, 1} we let σb (resp., bσ) denote the string (σ ◦ b) ∈ {0, 1}n+1

16
 ↑ log(p) factors are omitted.
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(resp., (b ◦ σ) ∈ {0, 1}n+1). For (αn, . . . , α1) = α ∈ Fn, we refer to αn as the most significant

field element and α1 as the least significant field element. For two equal length vectors u, v,

we let u⊙ v denote the coordinate-wise product of u and v. We let uppercase calligraphic

letters denote sequences and let corresponding lowercase letters to denote its elements, e.g.,

Y = (yb)b∈{0,1}n ∈ FN is a sequence of N elements in F. Often, for b ∈ {0, 1}n, we let Yb

denote the value yb.

We use upper case letters to denote matrices, e.g., M ∈ Zm×n. For a matrix M of

dimension m × n, we let M(i, ∗) and M(∗, j) denote the ith row and jth column of M ,

respectively. For row vector u of length m and column vector v of length n, we let u ·M and

M · v denote the standard matrix-vector product.

Non-standard Notation

We are also interested in matrix-vector “exponents”. Let G be some group, M ∈ Zm×n,

u = (u1, . . . , um) ∈ G1×m, and v = (v1, . . . , vn)⊤ ∈ Gn×1. We let u ⋆ M and M ⋆ v denote a

matrix-vector exponent, defined as

(u ⋆ M)j =
m∏︂

i=1
u

M(i,j)
i (M ⋆ v)i′ =

n∏︂
j′=1

v
M(i′,j′)
j′ ,

for every j ∈ [n] and every i′ ∈ [m]. Note that u ⋆ M ∈ G1×n and M ⋆ v ∈ Gm×1.

For vector x ∈ Zn and group element g ∈ G, we abuse notation and let gx := (gx1 , . . . , gxn).

Finally, for k ∈ Z and vector u ∈ Gn, we let uk denote the vector (uk
1, . . . , u

k
n) ∈ Gn.

Interactive Games and Proof Systems

Definition 4.7.1 (Merlin-Arthur Games). Let r ∈ Z+. A MA[2r] game (or just a MA game 

17
 

if r is unspecified) is a tuple G = (1r, 1ℓ,W ), where ℓ ∈ Z+ and W ⊆ {0, 1}∗ is a set, called

the win predicate, that is represented as a Boolean circuit. The integer r is called the number

of rounds of G and {0, 1}ℓ is called the challenge space.
17

 ↑ MA stands for Merlin-Arthur proofs [ 23 ], differing from Arthur-Merlin proofs in that the prover (Merlin)
sends the first message.
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If G = (1r, 1ℓ,W ) is a MA[2r] game and P : {0, 1}∗ → {0, 1}∗ is a function, then the

value of G with respect to P is denoted and defined as

v[P ](G) := Pr [(α1, β1, . . . , αr, βr) ∈ W ],

where the probability is taken over β1, . . . , βr
$←{0, 1}ℓ and αi := P (β1, . . . , βi−1). The value

of G, denoted by v(G), is defined as supP{v[P ](G)}.

Definition 4.7.2 (Game Transcripts). If G = (1r, 1ℓ,W ) is a MA[2r] game, then a transcript

for G is a tuple τ = (α1, β1, . . . , αr, βr) with each βi ∈ {0, 1}ℓ and αi ∈ {0, 1}∗. If τ ∈ W

then we say it is an accepting transcript for G. If for function P : {0, 1}∗ → {0, 1}∗ we have

αi = P (β1, . . . , βi−1) for every i ∈ [r], then τ is said to be consistent with P . If τ is both an

accepting transcript for G and consistent with P , we say that τ is an accepting transcript for

(P,G).

Definition 4.7.3 (MA Verifiers). For a function r : Z+ → Z+ and a language L, a MA[2r]

verifier for L is a polynomial-time algorithm V such that

1. V maps any string x ∈ {0, 1}∗ to a MA[2r(|x|)] game. 

18
 .

2. The completeness of V is a function c : Z+ → [0, 1], defined as

c(n) := min
x∈L∩{0,1}n

v(V (x)).

3. The soundness error of V is a function s : Z+ → [0, 1], defined as

s(n) := max
x∈{0,1}n\L

v(V (x)).

Definition 4.7.4 (Witness-Extended Emulation (cf., [ 138 ,  186 ])). A MA verifier V has

(statistical) witness-extended ε(·)-emulation with respect to relation R if there exists an

expected polynomial-time oracle algorithm E such that for all P : {0, 1}∗ → {0, 1}∗ and all

x ∈ {0, 1}∗, for sample (τ, w)← EP (x) we have
18

 ↑ This definition implies that there is a polynomial in n that bounds the length of any accepting transcript
for V (x) when x ∈ {0, 1}n.
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1. τ is distributed uniformly at random on the set of all possible transcripts between V (x)

and P ; and

2. with all but ε(|x|) probability, if τ is an accepting transcript for V (x) then (x,w) ∈ R.

Pr [τ is accepting ∧ (x,w) ̸∈ R] ⩽ ε.

A MA verifier V has statistical witness-extended emulation with respect to relation R if

it has statistical witness-extended ε-emulation for some negligible function ε.

Multilinear Polynomial Commitment Scheme

Definition 4.7.5 (Multilinear Polynomial Commitment Scheme). A multilinear polynomial

commitment scheme is a tuple of protocols (Setup,Com,Open,Eval) such that

1. pp← Setup(1λ, p, 1n): takes as input the security parameter λ ∈ N and outputs public

parameter pp that allows to support n-variate multilinear polynomials over F = Fp for

some prime p.

2. (C; d) ← Com(pp,Y): takes as input public parameters pp and a description of a

multilinear polynomial Y = (yb)b∈{0,1}n and outputs a commitment C and a (secret)

decommitment d.

3. b ← Open(pp, C,Y , d): takes as input pp, a commitment C, a description of the

multilinear polynomial Y and a decommitment d, and returns a decision bit b ∈ {0, 1}.

4. Eval(pp, C, ζ, γ;Y , d): is a public-coin interactive proof system (P, V ) for the relation:

Rml =
{︃

(pp, C, ζ, γ;Y , d) : Open(pp, C,Y , d) = 1 ∧ γ = ML(Y , ζ)
}︃
, (4.9)

where V is an MA verifier (as per  Definition 4.7.3 ) where P is the honest strategy for

V .
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Note that the verifier in this proof-system gets as input the public parameters pp,

commitment C, evaluation point ζ ∈ Fn and claimed evaluation γ ∈ F, and the prover

additionally receives the full description of the polynomial Y and the decommitment d.

We require the following three properties from the scheme (Setup,Com,Open,Eval):

1. Perfect Correctness: for all primes p, λ ∈ N, n ∈ N and all Y ∈ F2n

p and ζ ∈ Fn
p ,

Pr

⎡⎢⎣1 = Eval(pp, C,Z, γ;Y , d) :
pp← Setup(1λ, p, 1n),

(C; d)← Com(pp,Y), γ = ML(Y , ζ)

⎤⎥⎦ = 1 .

2. Computational Binding: for every polynomial-sized family of circuits A = {Aλ}λ∈N

the following holds

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(︂
b0 = 1

)︂
∧
(︂
b1 = 1

)︂
∧
(︂
Y0 ̸= Y1

)︂
:

pp← Setup(1λ, p, 1N)

(C,Y0,Y1, d0, d1)← Aλ(pp)

b0 ← Open(pp, C,Y0, d0)

b1 ← Open(pp, C,Y1, d1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(λ) .

3. Witness-Extended Emulation: For Eval = (P, V ), V has (statistical) witness-

extended emulation for the relation Rml (defined in  Equation (4.9) ).

Remark 4.7.1. We note that this definition of polynomial commitment scheme is stronger

than the ones used in the literature (see, e.g., [ 30 ,  36 ,  51 ,  76 ,  166 ,  184 ,  232 ,  255 ,  266 ]), in

that we require Eval to have statistical soundness (rather than computational). As a result we

show soundness for every pair (x, pp).

A key ingredient in our efficient argument-systems is polynomial commitments that can be

generated in a time and space efficient way. We call such polynomial commitments streamable.

Definition 4.7.6 (Streamable Multilinear Polynomial Commitment Scheme). A streamable

multilinear polynomial commitment scheme is a multilinear polynomial commitment scheme

(as per  Definition 4.7.5  ) with the following efficiency properties for n-variate multilinear

polynomials over Fp for some prime p ⩽ 2λ:
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1. The commitment output by Com is of size n ·poly(λ), and assuming multi-pass streaming

access to the description of the polynomial, the commitment can be implemented in time

2n · poly(n, λ) and space poly(n, λ).

2. The communication complexity of the Eval protocol is n · poly(λ) and the receiver of

Eval runs in time poly(n, λ). Assuming multi-pass streaming access to the description

of the polynomial, the committer of Eval can be implemented in time 2n · poly(n, λ) and

space poly(n, λ).

4.7.2 Multilinear Polynomial Commitment Scheme in Hidden Order Groups

We describe our commitment scheme (Setup,Com,Open,Eval) for multilinear polynomials

f : Fn → F over some field F of prime-order p which is specified as an input to Setup.

Throughout the section, we work with the description Y := (f(b))b∈{0,1}n ∈ F2n of the

multilinear polynomial f .

We first describe how to encode Y as an integer. Then we describe our polynomial

commitment scheme.

Encoding Multilinear Polynomials as an Integer

One key portion of our polynomial commitment scheme is encoding the sequence Y,

which defines our multilinear polynomial, as an integer. We do so by using a technique first

introduced by [ 76 ]. Towards this, we first describe an encoding scheme for integer sequences.

For any N = 2n and an odd integer q ∈ N, let Encq : ZN → Z be the function that encodes a

sequence of integers Z ∈ ZN as 

19
 

Encq(Z) :=
∑︂

b∈{0,1}n

qb · Zb,

where qb interprets b (an n-bit string) as the naturally corresponding integer in the set

{0, 1, . . . , N − 1}. To decode an integer v ∈ Z, we output its base-q representation where, for
19

 ↑ This encoding is valid for sequences of arbitrary length, but we restrict to powers of two for convenience.
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convenience, the base-q digits of v are integers in the range [ − q/2, q/2). We refer to the

decoding function as Decq.

Our Encq scheme has two homomorphic properties which we leverage to design our

polynomial commitment. First, Encq(·) is a linear homomorphism over Z; that is, for any

Z,Z ′ ∈ ZN and α, β ∈ Z, it holds that α · Encq(Z) + β · Encq(Z ′) = Encq(α · Z + β · Z ′).

Second, Encq(·) satisfies a restricted form of multiplicative homomorphism; that is, for any

d ∈ N, we have qd · Encq(Z) = Encq((0d,Z)).

Encoding Bounded Integer Sequences

In fact, looking ahead, we are interested in encoding only sequences of bounded integers.

For some B ∈ R⩾1, we let Z(B) := {z ∈ Z : − B ⩽ z < B} be the set of integers whose

absolute value is bounded by B. Then, to encode integer sequences in Z(B)N , we consider

the restriction of Encq to the set Z(B)N . Notice that by definition, for any Z ∈ Z(B)N , we

have that Encq(Z) ∈ Z(B · (qN − 1)/(q− 1)). We remark that while Encq is not injective over

all integer sequences (as integer sequences (1 + q, 0) and (1, 1) both encode to the integer

1 + q), the restriction of Encq to the set Z(q/2)N is injective. We capture this in the following

fact:

Fact 4.7.2 ([ 76 , Fact 1]). Let q be any odd integer and let N ∈ N. For any v ∈ Z(qN/2), there

exists a unique sequence Z ∈ Z(q/2)N such that v = Encq(Z). Furthermore, Z = Decq(v).

Proof. For any sequence Z ∈ Z(q/2)N , by definition of Decq we observe that Decq(Encq(Z)) =

Z. This implies that (restriction of) Encq (to Z(q/2)N) is injective. Furthermore, the

cardinality of sets Z(qN/2) and Z(q/2)N are equal. Therefore, for every v ∈ Z(qN/2), Decq(v)

is the unique sequence in Z(q/2)N that encodes to v.

Similar to Encq, the function Decq also satisfies some homomorphic properties: for integers

z1, z2, we have that Decq(z1 + z2) = Decq(z1) + Decq(z2) as long as z1, z2 encode sequences

whose elements are bounded by q/4. For our security proof, it will be more convenient to use

the following more general statement.
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Claim 4.7.3. Let ℓ, q,N ∈ N such that q is odd, and let B1, B2 ≥ 1 be such that B1 ·B2 ≤

q/(2ℓ). Then, for every α1, . . . , αℓ ∈ Z(B1), and integers z1, . . . , zℓ ∈ Z(qN/2) such that

Decq(zi) ∈ Z(B2)N ,

Decq

(︃∑︂
i∈[ℓ]

αi · zi

)︃
=
∑︂
i∈[ℓ]

αi · Decq(zi). (4.10)

Remark 4.7.4. Looking ahead, the correctness of our extractor (to show security for our

polynomial commitment scheme) relies crucially on  Claim 4.7.3 .The main issue with [ 76 ]’s

extractor is that their extractor relies on a variant of  Claim 4.7.3 (formulated below) which is

false. Lemma 8 in the full version [ 75 ] of [ 76 ] uses the following claim to argue correctness

of the extracted integer decommitments fL and fR.

Claim 4.7.5 (False claim implicit in [ 75 , Lemma 8]). For p, q,N ∈ N such that 2 ≤ p ≤ q

where q is odd. For every α ∈ Z(p) and z ∈ Z(qN/2) such that α | z,

Decq(z/α) = Decq(z)/α . (4.11)

We note that z, z/α ∈ Z(qN/2), by  Fact 4.7.2 Decq(z),Decq(z/α) ∈ Z(q/2)N . But,

Decq(z)/α may not be an integer sequence. Counter-example: for z = 1 + q, α = 2, we have

Decq(z) = (1, 1) but Decq(z)/2 is not an integer sequence even though α | z.

Encoding Y

Given the integer encoding function Encq, we now describe how to encode the sequence of

evaluations Y ∈ FN . Recall that F is a field of prime-order p. To encode Y , we first define a

lifting function J·K : F→ Z(p/2) in the natural way. That is, for any α ∈ F, we define JαK to

be the unique integer in Z(p/2) such that JαK ≡ αmod p. We then define Encq(Y) as

Encq(Y) :=
∑︂

b∈{0,1}n

qb · JYbK. (4.12)

119



Scheme

Our polynomial commitment scheme is parameterized by three components: (a) the

encoding scheme (Encq,Decq) defined in  Section 4.7.2 , (b) A group sampler G for which the

Hidden Order Assumption holds, and (c) a perfectly correct, statistically sound PoE protocol

(we present one such protocol over arbitrary groups in  Section 4.7.6 ). We now present all

algorithms (Setup,Com,Open,Eval) for the polynomial commitment scheme.

Setup(1λ, p, 1n)

On input security parameter 1λ, a prime p, and the number of polynomial variables 1n,

expressed in unary, the algorithm Setup samples group description G ← G(1λ), samples

g ← G, sets q := q(n, p, λ) ∈ N, and outputs public parameters pp = (q, g,G). We require

that q be odd such that q > p · 2n·poly(λ) (see [  52 ] for details on this choice of q).

Com(pp,Y)

On input pp = (q, g,G) output by Setup and sequence Y , the algorithm Com computes a

commitment to the sequence Y as C = gEncq(Y). The output of Com is the commitment C

and secret decommitment Z = (JYbK)b∈{0,1}n ∈ Z(p/2)N .

Open(pp, C,Y ,Z)

On inputs pp = (q, g,G), C output by Com, committed sequence Y ∈ FN and decommit-

ment Z ∈ ZN for N = 2n, the algorithm Open outputs a decision bit. Open outputs 1 if and

only if (1) Z ⊆ Z(q/2)N ; (2) Y ≡ Z mod p; and (3) C = gEncq(Z). Otherwise, Open outputs 0.

Eval(pp, C, ζ, γ;Y ,Z)

On input pp = (q, g,G), C ∈ G, ζ ∈ Fn, γ ∈ F, Y ∈ FN and Z ∈ ZN for N = 2n, the Eval

algorithm is an interactive protocol (P, V ) for the relation,

Rml =
{︃

(pp, C, ζ, γ;Y ,Z) : Open(pp, C,Y ,Z) = 1 ∧ γ = ML(Y , ζ)
}︃
, (4.13)
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EvalReduce (C, k, ζ, γ;Z)
Input :C ∈ Gλ, k ∈ N, ζ ∈ Fn, γ ∈ Fλ, and Z ∈ Zλ×2n−k .
Output : Accept or reject.

1 if k = n then
2 P sends Z ∈ Zλ to V .
3 V outputs accept if and only if

⃦⃦⃦
Z
⃦⃦⃦
∞ ≤ p(2λ)n, γ ≡ Z mod p, and C = gZ .

4 else
5 P computes

γ0 =
∑︂

b∈{0,1}n−k−1

(Z(∗, 0b) mod p) ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1)

γ1 =
∑︂

b∈{0,1}n−k−1

(Z(∗, 1b) mod p) ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1)

6 P computes

C0 = gℓ where ℓ =
∑︂

b∈{0,1}n−k−1

qb · Z(∗, 0b)

C1 = gr where r =
∑︂

b∈{0,1}n−k−1

qb · Z(∗, 1b)

7 P sends (γ0, γ1) and (C0, C1) to V .
8 V checks γ ?= γ0 · (1− ζk+1) + γ1 · ζk+1.
9 P and V run PoE(C1, C/C0, q, n− k − 1, λ) which is a proof showing

C1(i)q2n−k−1
= C(i)/C0(i) for every i ∈ [λ] (see  Section 4.7.6 ). Here, C/C0

denotes coordinate-wise division of the elements of C by the elements of C0.
10 V samples U = [U0∥U1] $←{0, 1}λ×2λ and sends U to P , where U0, U1 ∈ {0, 1}λ×λ.
11 P and V compute

γ′ = U0 · γ0 + U1 · γ1 C ′ = (U0 ⋆ C0)⊙ (U1 ⋆ C1)

12 For Z0, Z1 ∈ {0, 1}λ×2n−k−1
such that Z = [Z0∥Z1], P computes

Z ′ = U0 · Z0 + U1 · Z1.

13 return EvalReduce(C ′, k + 1, ζ, γ′;Z ′)

Figure 4.7. Description of EvalReduce.
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where on common input (pp, C, ζ, γ), P tries to convince V that it knows a committed

sequence Y ∈ FN and an integer sequence Z ∈ ZN such that Open(pp, C,Y ,Z) = 1 and γ is

the evaluation of the multilinear polynomial defined by Y at evaluation point ζ = (ζn, . . . , ζ1);

that is, γ ?= ML(Y , ζ). More specifically, both the committer and receiver in Eval first make

λ many copies of the statement (C, ζ, γ;Z) as (C, ζ, γ;Z), where C = (C, . . . , C) ∈ Gλ,

γ = (γ, . . . , γ) ∈ Fλ, and Z ∈ Zλ×N is a matrix such that Z(i, b) := Zb for every i ∈ [λ] and

b ∈ {0, 1}n. The committer and receiver then run the subroutine EvalReduce, presented in

 Figure 4.7 .

EvalReduce is a recursive protocol which given the statement (C, ζ, γ;Z) proves that

γi = ML(Z(i, ∗), ζ) and Ci = Com(Z(i, ∗)) for every i ∈ [λ], where Z(i, ∗) ∈ Z1×N is the

ith row of Z. This is done via a divide and conquer approach. Let Pi : Fn → F be the

multilinear polynomial defined by row i of matrix Z for every i ∈ [λ]. For presentation, we

focus on the polynomial P1. To prove that γ1 = P1(ζ) and C1 = Com(P1) = gEncq(P1), the

committer first splits P1 into it’s “left” and “right” halves, defined by P1,0(·) = P1(·, 0) and

P1,1(·, 1). Then it computes evaluations of these polynomials at the point ζ ′ = (ζn, . . . , ζ2) to

obtain γ1,0 = P1,0(ζ ′) and γ1,1 = P1,1(ζ ′) ( Line 5 ). Similarly, the committer also computes

commitments C1,0 = gEncq(P1,0) and C1,1 = gEncq(P1,1) ( Line 6 ). The claims (γ1,0, γ1,1) and

(C1,0, C1,1) are then sent to the receiver. If indeed the committer defined P1,0 and P1,1

correctly, then γ1 = γ1,0 · (1 − ζ1) + γ1,1 · ζ1 ( Line 8 ) and C1,0 · CqT

1,1 = C1 for T = 2n−1.

Since checking C1,0 · CqT

1,1 = C1 directly is too costly to the receiver, the committer and

prover run a proof of exponent protocol PoE to prove that equality holds (  Line 9 ). The

committer does simultaneously this for all polynomials Pi. The receiver then specifies random

linear combinations U $← {0, 1}λ×2λ ( Line 10 ). The committer and receiver then obtain a

set of λ new evaluations γ′i = ∑︁
j∈[λ] U(i, j) · γj,0 + U(i, 2j) · γj,1 and λ new commitments

C ′i = ∏︁
j∈[λ](Cj,0)U(i,j) ·(Cj,1)U(i,2j) ( Line 11 ). This also defines new matrix Z ′ = U0 ·Z0 +U1 ·Z1

( Line 12  ) for U = [U0∥U1] and Z = [Z0∥Z1]. If the committer is honest, then the polynomial

P ′1 defined by the row Z ′(1, ∗) satisfies γ′1 = P ′1(ζ ′) and C ′1 = gEncq(P ′
1) (and similarly for all

other polynomials P ′i defined by row Z ′(i, ∗)). The committer and receiver recurse via the

above λ-to-2λ-to-λ reduction until the matrix Z is a single column; at this point, Z is sent to
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the receiver. The receiver checks if the entries of Z are appropriately bounded, if the final

vector γ ≡ Z(mod p), and if C = gZ = (gZ1 , . . . , gZλ) ( Line 3 ).

Remark 4.7.6. For simplicity of presentation, we let the (computational) security parameter

λc given as input to Setup to be equal to the statistical security parameter λs given to Eval.

However, they may be set differently: λc needs to be set so that 2λϵ
c is larger than the running

time of the adversary (generally, λc = 2048 for RSA groups to have security against 280 time

adversaries). However, λs needs to set so that the success probability of the adversary (we

want to tolerate) is upper-bounded by 2−Ω(λs), in fact, even relatively small values of λs would

be sufficient for security, and offer qualitatively more efficient implementations.

We discuss the efficiency of our polynomial commitment scheme in  Section 4.7.3 . We

defer the correctness and security proofs to our paper [  52 ]. Finally, we present our new proof

of exponent protocol in  Section 4.7.6 .

4.7.3 Space-Efficient Multilinear Polynomial Commitment Scheme in the Stream-
ing Model

In this section, we show that given streaming access to the sequence Y ∈ FN of evaluations

of a multilinear polynomial on the Boolean hypercube, our multilinear polynomial commitment

scheme of  Section 4.7.2 is a streamable multilinear polynomial commitment scheme.

Theorem 4.7.7. The multilinear polynomial commitment scheme of  Section 4.7.2 has the

following efficiencies.

• Com outputs a commitment that is a single group element of size poly(λ) bits, runs in

time N · poly(log(N), log(p), λ) and space n+ poly(λ) bits, and uses a single pass over

the sequence of evaluations Y.

• The committer in the Eval protocol runs in time N · poly(log(N), log(p), λ), space

log(N) · poly(log(p), λ) bits, and uses O(log(N)) passes over Y.

• The receiver in the Eval protocol runs in time poly(log(N), log(p), λ) and space log(N) ·

poly(log(p), λ) bits.
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• The communication complexity of Eval is poly(log(N) · log(p), λ) bits and has O(log(N))

rounds of communication.

4.7.4 Space-Efficient Implementation Overview

Our goal is to implement the committer algorithm of our polynomial commitment scheme

in small-space. The committer is assumed to have multi-pass streaming access to the

evaluations Y ∈ FN of a multilinear polynomial over the Boolean hypercube. Given this

streaming access, we need to implement the following computations in small-space: (1)

computation of Com(Y); (2) computation of ML(Y , ζ) for ζ ∈ Fn specified by the receiver;

and (3) computation of all committer messages in the Eval protocol. The main technical

challenge is implementing the committer algorithm of Eval in small-space. Recall that Eval is

an interactive protocol where on common input (C, ζ, γ) the committer tries to convince a

receiver that it knows Y ∈ FN and Z ∈ ZN such that To do so, the committer and receiver

construct the statement (C, ζ, γ) where C = (C, . . . , C) ∈ Gλ, γ = (γ, . . . , γ) ∈ Fλ. The

committer then defines matrix Z ∈ Zλ×N where Z(i, b) = Zb for every i ∈ [λ] and b ∈ {0, 1}n.

The committer and receiver then run the protocol EvalReduce(C, 0, ζ, γ;Z).

EvalReduce is a recursive protocol between the committer and receiver which for input

(C, k, ζ, γ;Z) proves the statement

“γi = ML(Z(i, ∗), ζ) ∧ Ci = Com(Z(i, ∗)) for every i ∈ [λ],” (4.14)

where C ∈ Gλ, ζ ∈ Fn, γ ∈ Fλ, and Z ∈ Zλ×2n . To prove  Equation (4.14) , the protocol

reduces the above λ claims to λ new claims about some matrix Z ′ ∈ Zλ×2n−1 . This reduction

is performed as follows. Let Z = [Z0∥Z1] for Z0, Z1 ∈ Zλ×2n−1 . First the prover constructs

“left-and-right” evaluations γ0, γ1 ∈ Fλ and “left-and-right” commitments C0, C1 ∈ Gλ defined

as

(γ0)i = ML(Z0(i, ∗), (ζn, . . . , ζ2)) (γ1)i = ML(Z1(i, ∗), (ζn, . . . , ζ2)) (4.15)

(C0)i = Com(Z0(i, ∗)) (C1)i = Com(Z1(i, ∗)), (4.16)

124



for every i ∈ [λ]. The verifier then sends challenge matrix U = [U0∥U1] $←{0, 1}λ×2λ, and the

committer and receiver define values γ′ ∈ Fλ and C ′ ∈ Gλ as 

20
 

γ′ = U0 · γ0 + U1 · γ1 C ′ = (U0 ⋆ C0)⊙ (U1 ⋆ C1).

The committer then defines matrix Z ′ = U0 · Z0 + U1 · Z1 ∈ Zλ∈2n−1 , and the committer and

receiver recurse on the statement (C ′, k + 1, ζ, γ′;Z ′). The recursion continues for n rounds:

at the end, the committer sends over the matrix Z, which has been reduced to a single

column of λ integers, and the receiver performs a variety of checks and accepts or rejects.

Fixing notation, for any k ∈ {0, 1, . . . , n}, let (C(k), ζ, γ(k);Z(k)) be the input to the kth

round of EvalReduce, where Z(k) = [Z(k)
0 ∥Z

(k)
1 ] ∈ Zλ×2n−k . Further let γ(k)

0 and γ
(k)
1 denote

the left-and-right evaluations and let C(k)
0 and C

(k)
1 denote the left-and-right commitments

computed by the committer in round k, and let U (k)
0 and U (k)

1 denote the receiver challenges.

Our goal is to compute the left-and-right evaluations and commitments in small-space, for

any round k. Observe that by  Equations (4.15) and  (4.16) the values γ(k)
0 , γ(k)

1 , C(k)
0 , and

C
(k)
1 are linear combinations of the columns of the matrix Z(k).

For space-efficiency, the committer cannot store the matrix Z(k), as this would use Ω(N)

bits (for most k ∈ {0, 1, . . . , n}), so the committer does not have direct access to Z(k). Instead,

the committer has multi-pass streaming access to the integer sequence Z, which implies that it

has the same streaming access to the columns of the matrix Z(0) = Z in lexicographic (i.e., left-

to-right) order. Further by construction we have that Z(k) = U
(k−1)
0 · Z(k−1)

0 + U
(k−1)
1 · Z(k−1)

1

for every k ∈ [n]. This implies that the columns of Z(k) are linear combinations of the

columns of Z(0). Leveraging this observation, we have that the left-and-right evaluations

and commitments are linear combinations of the columns of Z(0), where the weights of these

combinations depend on the receiver challenges U (j)
0 , U

(j)
1 for j ∈ {0, 1, . . . , k − 1} and the

evaluation point ζ. Thus so long as these weights time- and space-efficient to compute, we

can construct streaming algorithms for the committer messages time- and space-efficiently.

The remainder of this section is dedicated to proving  Theorem 4.7.7 . In the next three

sub-sub-sections, we discuss implementing Com in small space, followed by a discussion on
20

 ↑ Recall that for M ∈ Zm×n and vector g ∈ Gn, (M ⋆ g)i =
∏︁

j g
M(i,j)
j . See  Section 4.7.1 .
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the efficiency of computing a multilinear extension in the streaming model, and conclude

by discussing how to implement the committer of Eval ins small space. After that, in

 Section 4.7.5 we discuss the efficiency of the receiver of Eval, and finally in  Section 4.7.5 we

prove  Theorem 4.7.7 .

Space-Efficient Implementation of Com

We begin by showing Com(Y) is computable in small space.

Lemma 4.7.8. The algorithm Com of the polynomial commitment scheme of  Section 4.7.2 

is implementable in time N · (log(q) + log(p)) · poly(λ) and space n+ poly(λ) bits, using a

single pass over the sequence Y.

Proof. Recall that Com(Y) = gEncq(Y), where Encq(Y) = ∑︁
b∈{0,1}n

qb · JYbK. Let v := Encq(Y).

Then

gv = g
∑︁

b
qb·JYbK =

∏︂
b∈{0,1}n

(gqb)JYbK.

We can implement Com(pp,Y) in a streaming manner by iterating through b in lexicographic

order as follows. First, set two values C = 1G and D = g; at the start of the bth iteration,

C will be the value gv′ for v′ = ∑︁
b′<b q

b′ · JYb′K, and D will be the value gqb . Now to update

C and D from their bth values to their (b + 1)th values, we set C = C · DJYbK, followed by

D = Dq. Once iteration over b is complete, we output C.

Note that the above algorithm makes a single pass over the stream Y . In the bth iteration,

observe thatDJYbK = gqb·JYbK. By the homomorphism v ↦→ gv, it holds that C·DJYbK = gv′+qb·JYbK

for v′ = ∑︁
b′<b q

b′ · JYb′K. Further, v′ + qb · JYbK = ∑︁
b′⩽b q

b′ · JYb′K. This implies that the value

C output by the above algorithm satisfies C = gEncq(Y). The described algorithm uses O(1)

group elements of storage, which is poly(λ) bits of storage, and we use an additional n bits

of storage for the counter b. Further, the algorithm is dominated by O(N) group exponents

of size O(q), O(N) exponents of size O(p), and O(N) group multiplications. This gives an

overall runtime of N · (log(q) + log(p)) · poly(λ).
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Computing ML(Y , ζ)

Next we show that ML(Y , ζ) is computable in small space.

Lemma 4.7.9. For ζ ∈ Fn and Y ∈ FN for N = 2n, the value ML(Y , ζ) is computable in

N · log(N) · polylog(p) time and O(log(N) · log(p)) bits of space, using a single pass over Y.

Proof. By definition

ML(Y , ζ) =
∑︂

b∈{0,1}n

Yb · χ(b, ζ),

where χ(b, ζ) = ∏︁n
i=1 χ(bi, ζi). We can compute ML(Y , ζ) in a streaming manner as follows.

First, store an accumulator γ = 0 ∈ F. Then, iterating over b ∈ {0, 1}n in lexicographic

order, compute γ = γ + Yb · χ, and output γ. Thus we compute ML(Y , ζ) using a single

pass over Y. The main complexity of this algorithm is computing χ for every b, which is

computable in O(n) = O(log(N)) field multiplications and thus log(N) · polylog(p) time. So

the overall time complexity of computing ML(Y , ζ) is N · log(N) ·polylog(p). For space, χ(b, ζ)

is computable using O(log(N)) field elements, and the algorithm above uses an additional

O(1) field elements of storage. This gives space complexity O(log(N) · log(p)) bits.

Space-Efficient Implementation of Eval

We begin with a lemma which relates the matrix Z(k) to the matrix Z(0) in EvalReduce.

Lemma 4.7.10. Let k ∈ {0, 1, . . . , n} denote the kth depth of recursion of algorithm

EvalReduce, let Z(k) ∈ Zλ×2n−k be the integer matrix given as input to EvalReduce dur-

ing depth k, and let (U (j)
0 , U

(j)
1 )j∈{0,1,...,k−1} be the receiver challenges in each recursion level

j ∈ {0, 1, . . . , k − 1}. Then for any b ∈ {0, 1}n−k, it holds that

Z(k)(∗, b) =
∑︂

c∈{0,1}k

⎛⎝k−1∏︂
j=0

U
(j)
0 · (1− ck−j) + U

(j)
1 · ck−j

⎞⎠ · Z(0)(∗, c ◦ b), (4.17)
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gammaStreamGen (k, ζ, (U (i))i∈{0,1,...,k−1})
Input : Recurion level k ∈ {0, 1, . . . , n− 1}, evaluation point ζ ∈ Fn, and receiver

challenges U (i) = [U (i)
0 ∥U

(i)
1 ] ∈ {0, 1}λ×2λ for every i ∈ {0, 1, . . . , k − 1}.

Given : Streaming access to the columns of Z(0) in lexicographic order.
Output : A tuple (γ′0, γ′1) ∈ Fλ × Fλ.

1 Set γ′0 = γ′1 = 0λ ∈ Fλ.
2 foreach c ∈ {0, 1}k (in lexicographic order) do
3 Set γ′′0 = γ′′1 = 0λ ∈ Fλ.
4 foreach (a ◦ b) ∈ {0, 1} × {0, 1}n−k−1 (in lexicographic order) do

5 Compute χ =
n−k−1∏︁

j=1
χ(bj, ζj+k+1).

6 Set ĉ = c ◦ a ◦ b ∈ {0, 1}n.
7 if a = 0 then
8 Compute γ′′0 = γ′′0 + (Z(0)(∗, ĉ) mod p) · χ.
9 else

10 Compute γ′′1 = γ′′1 + (Z(0)(∗, ĉ) mod p) · χ.

11 Compute

γ′0 = γ′0 +Mc · γ′′0 γ′1 = γ′1 +Mc · γ′′1 ,

where Mc =
k−1∏︁
i=0

(︂
U

(i)
0 · (1− ck−i) + U

(i)
1 · ck−i

)︂
.

12 return (γ′0, γ′1)

Figure 4.8. Space-Efficient computation of recursive values γ′0, γ′1.

where Z(k)(∗, b) denotes the bth column of the matrix Z(k) and

k−1∏︂
j=0
U

(j)
0 · (1− ck−j) + U

(i)
1 · ck−j =

(U (0)
0 · (1− ck) + U

(0)
1 · ck) · · · (U (k−1)

0 · (1− c1) + U
(k−1)
1 · c1).

The above lemma holds by induction on k, see [ 52 ] for the proof. Given  Lemma 4.7.10 ,

we show that γ(k)
0 and γ

(k)
1 are computable in small space.

Lemma 4.7.11. Let γ(k)
0 , γ

(k)
1 ∈ Fλ

p be the left and right evaluations computed by the com-

mitter in recursion level k ∈ {0, 1, . . . , n− 1}, and let (U (j)
0 , U

(j)
1 )j∈{0,1,...,k−1} be the receiver
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challenges. Then γ
(k)
0 and γ

(k)
1 are computable in time N · poly(log(N), log(p), λ), space

poly(log(N), log(p), λ) bits, and using a single pass over the columns of Z(0).

Sketch. At a high level, we leverage linearity and the additive homomorphism of F to compute

γ
(k)
0 and γ

(k)
1 in small space. Notice that the values γ(k)

0 , γ
(k)
1 are linear combinations of the

stream Z(k), given by

γ
(k)
0 =

∑︂
b∈{0,1}n−k−1

(Z(k)(∗, 0b) mod p) ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1),

γ
(k)
1 =

∑︂
b∈{0,1}n−k−1

(Z(k)(∗, 1b) mod p) ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1).

By  Lemma 4.7.10 , the columns of Z(k) are linear combinations of the columns of Z(0). Thus

both γ
(k)
0 and γ

(k)
1 are linear combinations of the columns of Z(0). Focusing on γ

(k)
0 , we have

γ
(k)
0 =

∑︂
b∈{0,1}n−k−1

⎛⎜⎝ ∑︂
c∈{0,1}k

Mc · Z(0)(∗, c ◦ 0b)

⎞⎟⎠mod p ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1)

=
∑︂

c∈{0,1}k

Mc ·

⎛⎜⎝ ∑︂
b∈{0,1}n−k−1

Z(0)(∗, c ◦ 0b) mod p ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1)

⎞⎟⎠ ,

and by symmetry, for γ(k)
1 we have

γ
(k)
1 =

∑︂
c∈{0,1}k

Mc ·

⎛⎜⎝ ∑︂
b∈{0,1}n−k−1

Z(0)(∗, c ◦ 1b) mod p ·
n−k−1∏︂

j=1
χ(bj, ζj+k+1)

⎞⎟⎠ .

Notice that by iterating over c ∈ {0, 1}k in lexicographic order, then over (a ◦ b) ∈ {0, 1} ×

{0, 1}n−k−1 in lexicographic order per iteration of c, the string ĉ = (c◦a◦ b) ∈ {0, 1}n iterates

over {0, 1}n in lexicographic order. Thus the above equations access the columns of Z(0)

in lexicographic order, and we can compute γ(k)
0 and γ

(k)
1 in a single pass over the columns

of Z(0). The algorithm gammaStreamGen exactly computes γ(k)
0 and γ

(k)
1 as in the above

equations.

Given the above equations, we observe that: (1) computing the product χ = ∏︁
i χ(bj, ζj+k+1)

takes log(N) · polylog(p) time and O(log(N) · log(p)) bits of space; (2) computing the inner
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comStreamGen (k, q, g, (U (i))i∈{0,1,...,k−1})
Input : Recurion level k ∈ {0, 1, . . . , n− 1}, integer q ∈ N, group element g ∈ G,

and receiver challenges U (i) = [U (i)
0 ∥U

(i)
1 ] ∈ {0, 1}λ×2λ for every

i ∈ {0, 1, . . . , k − 1}.
Given : Streaming access to the columns of Z(0) in lexicographic order.
Output : A tuple (C ′0, C ′1) ∈ Gλ ×Gλ.

1 Set C ′0 = C ′1 = 1λ ∈ Gλ.
2 foreach c ∈ {0, 1}k (in lexicographic order) do
3 Set C ′′0 = C ′′1 = 1λ ∈ Gλ.
4 foreach a ∈ {0, 1} (in lexicographic order) do
5 Set C = g.
6 foreach b ∈ {0, 1}n−k−1 (in lexicographic order) do
7 Set ĉ = c ◦ a ◦ b ∈ {0, 1}n.
8 if a = 0 then
9 Compute C ′′0 = C ′′0 ⊙ CZ(0)(∗,ĉ).

10 else
11 Compute C ′′1 = C ′′1 ⊙ CZ(0)(∗,ĉ).
12 Compute C = Cq.

13 Compute

C ′0 = C ′0 ⊙ (Mc ⋆ C
′′
0 ) C ′1 = C ′1 ⊙ (Mc ⋆ C

′′
1 ) ,

where Mc =
k−1∏︁
i=0

(︂
U

(i)
0 · (1− ck−i) + U

(i)
1 · ck−i

)︂
.

14 return (C ′0, C ′1)

Figure 4.9. Space-Efficient computation of recursive values C ′0, C ′1.

summation takes time 2n−k−1 · λ · log(N) · polylog(p) and O(λ · log(N) · log(p)) bits of space;

and (3) computing Mc times the inner summation takes time poly(log(p), λ) and poly(λ)

bits of space. So the overall complexity of the entire summation is N · poly(log(N), log(p), λ)

time and poly(log(N), log(p), λ) bits of space.

Next we show that C(k)
0 , C

(k)
1 are computable in small space.

Lemma 4.7.12. Let C(k)
0 , C

(k)
1 ∈ Gλ be the left and right commitments computed by the

committer in recursion level k ∈ {0, 1, . . . , n−1}, and let (U (j)
0 , U

(j)
1 )j∈{0,1,...,k−1} be the receiver

challenges. Then C
(k)
0 and C

(k)
1 are computable in time N · poly(log(N), log(q), λ), space

poly(log(N), log(q), λ) bits, and using a single pass over the columns of Z(0).
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Sketch. At a high level, we leverage the linear homomorphic properties of the group G to

compute the values of C(k)
0 and C

(k)
1 in small space. The values C(k)

0 and C
(k)
1 are computed

via gℓ(k) and gr(k) , where ℓ(k) and r(k) are linear combinations of the columns of Z(k), given

by the equations

ℓ(k) =
∑︂

b∈{0,1}n−k−1

qb · Z(k)(∗, 0b) r(k) =
∑︂

b∈{0,1}n−k−1

qb · Z(k)(∗, 1b).

By  Lemma 4.7.10 , the columns of Z(k) are linear combinations of the columns of Z(0), so the

powers ℓ(k) and r(k) are linear combinations of the columns of Z(0). Focusing on ℓ(k), we have

ℓ(k) =
∑︂

b∈{0,1}n−k−1

qb
∑︂

c∈{0,1}k

Mc · Z(0)(∗, c ◦ 0b)

=
∑︂

c∈{0,1}k

Mc ·
∑︂

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 0b),

and by symmetry, for r(k) we have

r(k) =
∑︂

c∈{0,1}k

Mc ·
∑︂

b∈{0,1}n−k−1

qb · Z(0)(∗, c ◦ 1b).

Note again that the string ĉ = (c ◦ a ◦ b) ∈ {0, 1}n iterates over {0, 1}n in lexicographic order.

Thus we can compute the powers ℓ(k) and r(k) using a single pass over the stream of columns

of Z(0), which allows us to compute C(k)
0 and C

(k)
1 in a single pass over the columns of Z(0).

The algorithm comStreamGen exactly computes C(k)
0 and C

(k)
1 .

Given comStreamGen, we observe that: (1)  Lines 9  and  11 take time and space poly(λ)

to compute; (2)  Line 12  takes time log(q) · poly(λ) and poly(λ) space to compute; and (3)

 Line 13 takes time and space log(N) · poly(λ) space to compute. Thus the complexity is

N · poly(log(N), log(p), λ) time and poly(log(N), log(q), λ) space.
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Efficiency of PoE.

During any recursive round k ∈ {0, 1, . . . , n−1} of the algorithm EvalReduce, the committer

P and receiver V additionally engage in a proof of exponent protocol PoE, with inputs

(C(k)
1 , C(k)/C

(k)
0 , q, n− k − 1, λ), which is an interactive proof of the statement

∀i ∈ [λ] : (C(k)
1 )q2n−k−1

i = (C(k)/C
(k)
0 )i,

where C(k) ∈ Gλ is the current commitment given as input to EvalReduce.  Section 4.7.6 

discusses the protocol PoE in detail. For the purposes of EvalReduce, we are interested in

the time and space overhead incurred by the committer P during any execution of PoE. By

 Theorem 4.7.15 , setting t = n−k−1 = O(log(N)) and recalling that |G| ⩽ 2λ, we have that the

committer P runs in time N · poly(log(q), loglog(N), λ) and space poly(log(q), loglog(N), λ)

bits during any execution of PoE in any recursive round k ∈ {0, 1, . . . , n− 1} of EvalReduce.

Further, PoE in any recursive round k has round complexity O(logN) and communication

complexity log(N) · poly(λ).

Computing the Final Committer Message Efficiently.

We now show that the final committer message Z(n) is computable in small space.

Lemma 4.7.13. Let (U (j)
0 , U

(j)
1 )j∈{0,1,...,n−1} be all receiver challenges. Then Z(n) ∈ Zλ is

computable in time N · poly(log(N), log(p), λ) and space O(λ2 · log(N) · log(p)) bits using a

single pass over the stream Z(0).

Proof. Let (U (j)
0 , U

(j)
1 )j∈{0,1,...,n−1} be all receiver challenges. By  Eq. (4.17) of  Lemma 4.7.10 ,

we have that

Z(n) =
∑︂

c∈{0,1}n

(︄
n−1∏︂
i=0

U
(i)
0 · (1− ck−i) + U

(i)
1 · ck−i

)︄
· Z(0)(∗, c).

Notice that per iteration of c ∈ {0, 1}n, the column Z(0)(∗, c) is multiplied on the left

by n = log(N) binary matrices. Computing this product is dominated by O(log(N) · λ2)

integer additions, and this product is computed N times. Thus computing Z(n) takes
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N ·poly(log(N), log(p), λ) time. For space, note that
⃦⃦⃦
Z(n)

⃦⃦⃦
∞ = O(N · p ·λn), Z(n) is a vector

of length λ, and that the committer stores all receiver challenges. Thus the space complexity

is O(λ2 · log(N) · log p) bits.

4.7.5 Receiver Efficiency

We have so far only discussed the efficiency of the committer algorithm P . We now argue

that the receiver of Eval is efficient.

Lemma 4.7.14. The receiver of EvalReduce runs in time poly(log(N), log(q), log(p), λ) and

space log(N) · poly(log(q), log(p), λ).

Proof. In the Eval protocol, the receiver only performs computation in the sub-protocol

EvalReduce. First consider round k = n: the receiver checks if a vector Z ∈ Zλ is properly

bounded, checks if γ ≡ Z mod p, and checks if C = gZ . The receiver complexity at this

step is dominated by computing gZ . In an honest execution, Z is a vector such that⃦⃦⃦
Z
⃦⃦⃦
∞ = O(N · p · λn), so computing gZ takes time poly(log(N), log(p), λ).

Now consider any round k ∈ {0, 1, . . . , n− 1} of the EvalReduce protocol. In round k, the

input to EvalReduce includes vectors C(k) ∈ Gλ and γ(k) ∈ Fλ. The receiver receives values

(γ(k)
0 , γ

(k)
1 ) ∈ Fλ×Fλ and (C(k)

0 , C
(k)
1 ) ∈ Gλ×Gλ from the committer. The receiver first checks of

the claimed vector of evaluations γ(k) is equal to γ(k)
0 ·(1−ζk+1)+γ(k)

1 ·ζk+1; this check takes time

λ · polylog(p). Next, the committer P and receiver V run PoE(C1, C/C1, q, n− k − 1, λ). By

 Theorem 4.7.15 , for t = n−k−1 = O(logN), the receiver runs in time log(N) ·poly(log(q), λ).

Finally, the receiver samples U (k)
0 , U

(k)
1

$←{0, 1}λ×λ and computes γ(k+1) = U
(k)
0 ·γ

(k)
0 +U (k)

1 ·γ
(k)
1

and C(k+1) = (U (k)
0 ⋆C

(k)
0 )⊙(U (k)

1 ⋆C
(k)
1 ). Since U (k)

0 , U
(k)
1 are binary matrices, the computation

of γ(k+1) is dominated by O(λ2) field additions and the computation of C(k+1) is dominated

by O(λ2) group multiplications. Thus this step takes poly(log(p), λ) time. Therefore the

receiver in Eval runs in poly(log(N), log(q), log(p), λ) time.

During any recursive round k ∈ {0, 1, . . . , n− 1}, outside of the PoE protocol, the receiver

stores O(λ+ log(N)) field elements, O(λ) group elements, and a single binary matrix with

O(λ2) entries. So outside of the PoE protocol, the receiver stores poly(log(N), log(p), λ) bits.

Within the PoE protocol, the receiver only stores q, O(λ) group elements, and O(λ2) bits for
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its challenge matrices. Thus in the PoE protocol, the receiver stores poly(log(q), λ) bits. In

the final recursion round k = n, in addition to O(λ) field and group elements, the receiver also

obtains the integer vector Z, where
⃦⃦⃦
Z
⃦⃦⃦
∞ = O(N · p ·λn), which uses log(N) ·poly(, log(p), λ)

bits. Finally note that the receiver only stores λ field and group elements between rounds.

Therefore the receiver space complexity is log(N) · poly(log(q), log(p), λ) bits.

Proof of  Theorem 4.7.7 

We first note that to obtain O(log(N)) round complexity, we push all PoE instances to

the final round of EvalReduce and run all instances in parallel. Then by  Section 4.7.2 , for

q = Θ(p · 2log(N)·poly(λ)) we have that  Theorem 4.7.7 follows from  Lemmas 4.7.8 ,  4.7.9 ,  4.7.11 ,

 4.7.12 and  4.7.14 and  Theorem 4.7.15 .

4.7.6 Proof-of-Exponentiation in Arbitrary Groups

For some group G and base q ∈ Z consider the language

LG,q =
{︃

(x, y, t) ∈ G×G× N : xq2t

= y
}︃
. (4.18)

Note that this problem can be solved in time roughly 2t (by repeated squaring), but for some

groups it is conjectured to not be solvable in significantly less time (even when leveraging

parallelization). Indeed, an instantiation of this language using RSA groups underlies the

original time-lock puzzle construction by Rivest, Shamir and Wagner [  227 ]. This problem

has also been used recently for constructing verifiable delay functions (VDFs). We show a

extension of a recent protocol due to Pietrzak [  219 ] that works for general groups.

Theorem 4.7.15. Let G be a group whose elements have O(log(|G|))-bit descriptions, and

whose group operations take time polylog(|G|), and let q ∈ N. There exists a perfectly correct,

statistically sound public-coin interactive-proof for LG,q with the following efficiency properties

for exponent parameter t:

1. The communication complexity is O(tλ2 + tλ log(|G|)) and there are t rounds.
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2. The prover runs in time 2t · poly(log(q), log(|G|), λ) and uses space O(λ · log(|G|)) +

log(t) + log(q) + λ2

3. The verifier runs in time t · poly(log(|G|), log(q), λ).

Pietrzak [ 219 ] gave an elegant interactive protocol for verifying membership in this group

in time roughly t, for groups G where subgroups of small order do not exist (or are hard

to find). When such small order subgroups do not exist, as is the case for RSA groups, 

21
 

his protocol is statistically sound. The main downside of RSA groups is that they require

a trusted setup (i.e., in the terminology of  Definition 4.5.1 they are private-coin). As an

alternative, Pietrzak’s protocol can be instantiated with class groups which are public-coin

but the resulting protocol only achieves computational soundness under the assumption that

small-order subgroups for class groups are computationally hard to find [  65 ]. We mention

that Wesolowski [ 256 ] also presented a computationally sound protocol for class groups which

is concretely efficient at the cost of making very strong assumptions (i.e., the Adaptive Root

Assumption).

We overcome the limitations of both works and give a Proof of Exponentiation (PoE)

proof-system for LG,q which: (1) works for arbitrary groups (without any assumptions) and

(2) achieves statistical soundness. We emphasize that our protocol and the security proof

are oblivious to the structure of the group, and our proof of soundness is (arguably) simpler

than Pietrzak’s. In particular, we only rely on the following elementary fact about random

subset products in groups.

Fact 4.7.16 (Random Subset Product Principle). Let G be a group, let 1G be its identity

element and let g1, . . . , gn ∈ G, so that at least one of them is not the identity element. Then:

Pr
S⊆[n]

[︃∏︂
i∈S

gi = 1G

]︃
⩽ 1/2.

21
 ↑ To be more precise, the group of signed quadratic residues modulo an RSA integer N which is a product

of safe primes (where a prime p is safe if (p− 1)/2 is also a prime).
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Proof. Let i ∈ [n] be such that gi ̸= 1G. Note that:

Pr
S⊆[n]

[︃ ∏︂
j∈S

gj = 1G

]︃
= Pr

b1...,bn∈{0,1}

[︃ ∏︂
j∈[n]

g
bj

j = 1G

]︃

= Pr
b1...,bn∈{0,1}

[︃
gbi

i = g
−bi−1
i−1 · . . . · g−b1

1 · g−bn
n · . . . · g−bi+1

i+1

]︃
(4.19)

Fix b1, . . . , bi−1, bi+1, . . . , bn and let h = g
−bi−1
i−1 · . . . · g−b1

1 · g−bn
n · . . . · g−bi+1

i+1 . Note that

g1
i = gi ≠ 1G = g0

i . Since g1
i and g0

i differ, it holds that gbi is equal to the fixed value h with

probability at most 1/2. Hence, the RHS of  Equation (4.19) is also at most 1/2.

Getting back to our PoE protocol, in order to facilitate the recursive step, we actually

present an interactive-proof for the λ-fold repetition Lλ
G,q of LG,q, where we use the same

exponent q2t across all λ repetitions and where λ is the statistical security parameter. More

specifically, consider the language

Lλ
G,q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(x, y, t) ∈ Gλ ×Gλ × N :

∀i ∈ [λ] we have (xi, yi, t) ∈ LG,q,

where x = (x1, . . . , xλ),

y = (y1, . . . , yλ)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Note that LG,q can be easily reduced to Lλ
G,q with only a poly(λ) overhead in complexity:

to get a proof for (x, y, t) simply invoke the protocol for Lλ
G,q on (x, y, t) where x = (x, . . . , x)

and y = (y, . . . , y). Thus,  Theorem 4.7.15 follows immediately from the following lemma.

Lemma 4.7.17. The language Lλ
G,q has a perfectly correct, statistically sound public-coin

interactive-proof with efficiency parameters that are exactly as stated in  Theorem 4.7.15 .

Our PoE Protocol

Throughout this section, we will be working with λ-sized vectors. Recall that (in

 Section 4.7.1  ), for g = (g1, . . . , gλ) and h = (h1, . . . , hλ) ∈ Gλ, we denoted their co-

ordinate wise product by g ⊙ h = (g1h1, . . . , gλhλ). For g = (g1, . . . , gn) ∈ Gλ and

u = (u1, . . . , un) ∈ {0, 1}λ we denoted by u ⋆ g the subset product of elements in g cor-
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PoE(x, y, q, t, λ) :
Input: x, y ∈ Gλ, q ∈ N, t ∈ N and statistical security parameter λ ∈ N.
Claim: y = xq2t

.
1. If t = 0 then output accept if and only if y = xq.
2. Else

(a) P computes µ = xq2t−1
∈ Gλ and sends µ to V .

(b) V samples U = [U0∥U1] $←{0, 1}λ×2λ for U0, U1 ∈ {0, 1}λ×λ and sends U to P .
(c) P and V compute x′ ∈ Gλ, y′ ∈ Gλ where

x′ = (U0 ⋆ µ)⊙ (U1 ⋆ x)
y′ = (U0 ⋆ y)⊙ (U1 ⋆ µ).

(d) P and V recursively call PoE(x′, y′, q, t− 1, λ).

Figure 4.10. Proof-of-Exponentiation Protocol

responding to u (i.e., u ⋆ g = ∏︁
i∈[λ] g

ui
i ). The PoE protocol establishing  Lemma 4.7.17  is

described in  Figure 4.10 .

The bounds on communication complexity, running times and space usage specified in

 Lemma 4.7.17 follow immediately from the description, noting that the prover can re-use its

space across different rounds. We next show that completeness and soundness hold, which

completes the proof of  Lemma 4.7.17 .

Proposition 4.7.1. The PoE protocol of  Figure 4.10 has perfect completeness.

Proof. We prove by induction on t. The base case t = 0 is immediate. For larger t, suppose

that (x, y, t) ∈ Lλ
G,q). We show that with probability 1 it holds that (x′, y′, t− 1) ∈ Lλ

G,q.

Indeed, using the fact that xq2t

j = yj and µj = xq2t−1

j for every j ∈ [λ], we have that for

every i ∈ [λ]:

(x′i)q2t−1
=
∏︂

j∈[λ]
µ

U0[i,j]·q2t−1

j · xU1[i,j]·q2t−1

j

=
∏︂

j∈[λ]
x

U0[i,j]·q2t

j · xU1[i,j]·q2t−1

j

=
∏︂

j∈[λ]
y

U0[i,j]
j · µU1[i,j]

j
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= y′i.

Proposition 4.7.2. For any (x, y, t) /∈ Lλ
G,q and any (computationally unbounded) malicious

prover P ∗, the probability that the verifier in  Figure 4.10 accepts when interacting with P ∗ is

at most t/2λ.

 Proposition 4.7.2 follows from the following claim and the union bound (over the t rounds).

Claim 4.7.18. For any (x, y, t) /∈ Lλ
G,q and prover message µ, it holds that (x′, y′, t−1) /∈ Lλ

G,q

with all but 2−λ probability (over the choice of verifier message U).

Proof. Fix (x, y, t) /∈ Lλ
G,q where x = (x1, . . . , xλ) ∈ Gλ, y = (y1, . . . , yλ) ∈ Gλ. Let

µ = (µ1, . . . , µλ) ∈ Gλ be the prover message and let the verifier message be U ∈ {0, 1}λ×2λ.

Recall that x′ = (x′1, . . . , x′λ) and y′ = (y′1, . . . , y′λ) are defined as follows:

x′ = (U0 ⋆ µ)⊙ (U1 ⋆ x)

y′ = (U0 ⋆ y)⊙ (U1 ⋆ µ).
(4.20)

To show the claim, we first show that the probability that (x′1)q2t/2 = y′1 is at most 1/2. Since

each (x′i, y′i) is defined using independent randomness, it follows that the probability that

(x′, y′, 2t/2) ∈ Lλ
G,q is at most 2−λ.

Bounding the probability that (x′1)q2t/2 = y′1. For every i ∈ [λ], let ei = xq2t−1

i · µ−1
i

and fi = µq2t−1

i · y−1
i . Since (x, y, t) /∈ Lλ

G,q, there exists some i∗ ∈ [λ] such that either ei∗ ̸= 1

or fi∗ ̸= 1. Thus,

Pr
[︂
(x′1)qT/2 = y′1

]︂
= Pr

u,v

⎡⎣∏︂
i∈[λ]

eui
i f

vi
i = 1

⎤⎦ ⩽ 1/2, (4.21)

where u = (u1, . . . , uλ), v = (v1, . . . , vλ) ∈ {0, 1}λ are sampled uniformly at random, and the

inequality follows from  Fact 4.7.16 .
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4.8 Obtaining Space-Efficient Arguments for NP

We obtain space efficient arguments for any NP relation verifiable by time-T space-S RAM

computations by compiling our polynomial commitment scheme with a suitable space-efficient

polynomial interactive oracle proof (IOP) [  35 ,  76 ,  226 ]. Informally, a polynomial IOP is a

multi-round interactive PCP such that in each round the verifier sends a message to the

prover and the prover responds with a proof oracle that the verifier can query via random

access, with the additional property that the proof oracle is a polynomial.

We begin by giving a detailed overview the construction of our polynomial IOP, after

which we discuss how to use this polynomial IOP with our polynomial commitment schemes

to obtain time- and space-efficient arguments for NP. Towards the first goal, we shall prove

the following theorem.

Theorem 4.8.1. There exists a public-coin polynomial IOP over a channel which encodes

prover messages as multi-linear extensions for NP relations verifiable by a time-T space-S

random access machine M such that if y = M(x;w) then

1. The IOP has perfect completeness and statistical soundness, and has O(log(T )) rounds;

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) (not including the

space required for the oracle) when given input-witness pair (x;w) for M , sends a

single polynomial oracle in the first round, and has polylog(T ) communication in all

subsequent rounds; and

3. The verifier runs in time (|x| + |y|) · polylog(T ), space polylog(T ), and has query

complexity 3.

To begin, formally define Random Access Machines.

Definition 4.8.1 (Random Access Machine). A (non-deterministic) Random Access Machine

(RAM) is a tuple M = ⟨k, r,A,L⟩ where ℓ ∈ N is the register size, r ∈ N is the number of

registers, A ⊆ {f : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ} is the arithmetic unit, and L = (I0, . . . , Im),

where m ∈ [2ℓ] and each Ij is an instruction, is the code. For any input x ∈ {0, 1}n and
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witness w ∈ {0, 1}∗, a RAM M runs in time T (n) and space S(n) if M(x;w) halts after

executing at most T (n) instructions and uses at most S(n) space.

We let RRAM denote the set of all tuples (M,x, y, T, S;w) such that M is a RAM and

M(x;w) outputs y in time T and space S. We define the language LRAM as

LRAM = {(M,x, y, T, S) | ∃w : (M,x, y, T, S;w) ∈ RRAM}.

Our construction is in fact a polynomial IOP for the NP relation RRAM. At a high-level,

our IOP construction reduces checking membership of a RRAM instance to performing the

classical sum-check protocol [ 192 ,  236 ] of some appropriately constructed polynomial. We

proceed in two parts. First we reduce an RRAM instance into a circuit satisfiability instance

for some appropriate circuit. We then reduce the circuit satisfiability instance to a polynomial

statement compatible with the sum-check protocol. Our construction is inspired from previous

approaches [ 33 ,  64 ,  95 ,  131 ,  231 ,  248 ,  255 ] re-imagined in the language of IOPs.

4.8.1 RAMs to Circuits.

Let (M,x, y, T, S;w) ∈ RRAM. The first step in the IOP is for the prover to compile the

RAM M into an appropriate (non-deterministic) arithmetic circuit over some appropriate

finite field F.

For finite field F and arithmetic circuit C : Fn → Fk, we let |C| denote the size of the

circuit.. We assume a canonical ordering on the gates of C (known by both the prover and

verifier), and label every gate in C with unique a ∈ {0, 1}s for s = ⌈log |C|⌉. Without loss of

generality we assume the first n input gates of C correspond to the s-bit representation of

the integers {1, . . . , n}.

Definition 4.8.2 (Circuit Transcript). A transcript for arithmetic circuit C with input x and

output y is an assignment W : {0, 1}s → F of values to the circuit gates, where s = ⌈log |C|⌉.

We say that a transcript W is correct for (C, x, y) if W (a) = xa for all input gates a,

W (a) = yi if a is the i-th output gate, and for every a, b, c ∈ {0, 1}s such that b and c are

parents of a, W (a) = W (b) + W (c) if a is an add gate and W (a) = W (b) ·W (c) if a is a
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multiplication gate. Given a tuple (C, x, y), the problem of determining whether there exists a

correct transcript W for (C, x, y) is referred to as the non-deterministic circuit evaluation

problem.

We use the RAM to circuit transformation of Blumberg et al. [ 64 ].

Lemma 4.8.2 ((Non-Deterministic) RAM to Circuit [ 64 , Lemma 4.2]). For (M,x, y, T, S;w) ∈

RRAM, M can be transformed into an equivalent (non-deterministic) arithmetic circuit CM

over a finite field F of size polylog(T ) with the following properties:

1. CM has size T · polylog(T ).

2. An (input, witness) pair (x;w) such that (M,x, y, T, S;w) ∈ RRAM can be mapped to a

correct transcript W for CM in time T · polylog(T ) and space S · polylog(T ) such that

|W | = 2s for some s = O(log |CM |). Furthermore, w is a substring of the transcript W ,

and any correct W ′ for CM possesses a witness w′ certifying (M,x, y, T, S) ∈ LRAM as

a substring.

3. CM can be evaluated “gate-by-gate” in time T · polylog(T ) and space S · polylog(T ).

4.8.2 Circuits to Polynomials

Consider (M,x, y, T, S;w) ∈ RRAM and let CM be the arithmetic circuit given by

 Lemma 4.8.2 , and let s = ⌈log |CM |⌉. Let W be a correct transcript for (CM , x, y). We reduce

showing W is a correct transcript for (CM , x, y) to showing that a polynomial we construct

over F is the 0-polynomial. In particular, the constructed polynomial is the 0-polynomial if

and only if W is a correct transcript. Let ˜︂W be the multi-linear extension of a transcript W .

We associate three wiring predicates add,mult, io : {0, 1}3s → {0, 1} with CM such that

the following hold. For all a, b, c ∈ {0, 1}s, add(a, b, c) = 1 if and only if a is an addition gate

with parent gates b and c (with mult(a, b, c) being defined analogously), and io(a, b, c) = 1 if

and only b and c are parents of a and a is an output gate or a (non-auxiliary) input gate. We

also define Ix,y : {0, 1}s → F for a ∈ {0, 1}s as Ix,y(a) = xa if a is an input gate, Ix,y(a) = yi

if a is the i-th output gate, and Ix,y(a) = 0 otherwise.
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Let ˜︁Ix,y, io be the multi-linear extensions of Ix,y, io, and let add,mult be some degree-3

extensions of add,mult. Define polynomials ˜︁Gx,y : F3s → F and Fx,y : F3s → F as

˜︁Gx,y(ζ(1), ζ(2), ζ(3)) = io(ζ(1), ζ(2), ζ(3)) · (˜︁Ix,y(ζ(1))− ˜︂W (ζ(1))) (4.22)

+ add(ζ(1), ζ(2), ζ(3)) · (˜︂W (ζ(1))− ˜︂W (ζ(2))− ˜︂W (ζ(3)))

+ mult(ζ(1), ζ(2), ζ(3)) · (˜︂W (ζ(1))− ˜︂W (ζ(2)) · ˜︂W (ζ(3))) ,

and

Fx,y(X) =
∑︂

c∈{0,1}3s

˜︁Gx,y(c) ·
3s∏︂

i=1
β(ci, Xi) =

∑︂
c∈{0,1}3s

˜︁Gx,y(c) · g(c,X) . (4.23)

Lemma 4.8.3. The polynomial Fx,y is the 0-polynomial if and only if ˜︁Gx,y(c) = 0 for all

c ∈ {0, 1}3s if and only if ˜︂W is a multi-linear extension of a correct transcript W of CM .

Further, there exist degree-3 extensions of add and mult such that add and mult can be

evaluated at any point in polylog(T ) time without explicit access to CM .

Proof. We first note that the definition of ˜︁Gx,y immediately gives us that ˜︁Gx,y|{0,1}3s ≡ 0

if and only if ˜︂W is a multi-linear extension of a correct transcript W of CM [ 64 ,  131 ,  231 ,

 255 ]. Next, we note that the polynomial Fx,y is defined as the multi-linear extension of the

sequence ( ˜︁Gx,y(c) : c ∈ {0, 1}3s). In particular, Fx,y(c) = ˜︁Gx,y(c) for all c ∈ {0, 1}3s. This

directly implies that Fx,y is the 0-polynomial if and only if ˜︁Gx,y(c) = 0 for all c ∈ {0, 1}3s. To

finish the proof, we note that existence of degree-3 add and mult with the desired properties

follows directly from [ 64 , Theorem 4.1 and Lemma 4.2].

Finally, for any τ ∈ F3s, we define the polynomial hτ (ζ) := ˜︁Gx,y(ζ) · g(ζ, τ ). By

 Lemma 4.8.3 the satisfiability of the circuit CM is reduced to checking if Fx,y is the 0-

polynomial. In particular by Schwartz-Zippel a verifier is convinced that Fx,y is the 0-

polynomial if Fx,y(τ ) = 0 for τ
$← F3s. However, a verifier would perform O(|CM |3) =
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T 3 · polylog(T ) operations to compute Fx,y(τ ), which gives a non-succinct verifier. Instead,

checking Fx,y(τ ) = 0 is offloaded to a prover via a sum-check protocol for the statement

0 =
∑︂

c∈{0,1}3s

hτ (c) = Fx,y(τ ).

4.8.3 Polynomial IOP Construction

We present our polynomial IOP construction in  Figure 4.11 , which we call PIOP. The

protocol PIOP takes as input (M,x, y, T, S;w) and the prover compiles it into circuit instance

(CM , x, y) via the reduction guaranteed by  Lemma 4.8.2  . The prover next sends an oracle

to the multi-linear extension of the transcript of (CM , x, y). The prover compiles CM into

a suitable polynomial Fx,y given by  Lemma 4.8.3 , receives τ
$← F3s from the verifier, and

engages in a sum-check with the verifier for the statement ∑︁c hτ (c) = Fx,y(τ ) = 0. Finally

the verifier uses the challenges α ∈ F3s given by the sum-check to query the oracle at 3 points

and evaluates polynomial hτ (α) locally and compares it to the value output by the sum-check.

We now argue that PIOP satisfies  Theorem 4.8.1 . Perfect completeness follows directly from

the protocol description, and the round complexity follows since s = O(log |CM |) = polylog(T ).

To finish proving the theorem, we show the efficiency and soundness of the protocol.

Verifier Efficiency

The verifier samples O(log(T )) random field elements τ and αj for j ∈ {1, . . . , 3s}.

During each round of the sum-check the verifier evaluates the polynomial h(j)
τ (Xj) at 3 points

{0, 1, αj} ⊂ F. Since hτ has individual degree at most 6, each univariate h(j)
τ has degree

at most 6, giving O(1) multiplications to evaluate h(j)
τ . This gives that the verifier has

complexity polylog(T ) multiplications and polylog(T ) communication during the sum-check

phase. Next the verifier queries the oracle ˜︂W at 3 points.As a last step, the verifier uses the

3 oracle queries to compute hτ (α), which by  Lemma 4.8.3  takes time (|x|+ |y|) · polylog(T )

and is computable without explicit access to CM .
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PIOP(M,x, T, S;w)
Prover Input : RAM M , RAM input x, time parameter T , space parameter S,

witness w
Verifier Input : RAM M , RAM input x, time parameter T , space parameter S
Output : Accept or Reject

1 P compiles circuit CM and transcript W via the reduction of [ 64 ].
2 P sends W to V as an oracle, which is encoded as ˜︂W by the channel.
3 V samples τ

$← F3s and sends τ to P .
4 P computes polynomial hτ and sets γ ← 0. P sends γ to V .
5 V sets γ′ ← γ.
6 foreach j ∈ [3s] do ; /* sum-check */
7

8 P sends sends h(j)
τ (Xj) to V , where

h(j)
τ (Xj)←

∑︂
c′∈{0,1}3s−j

hτ (α1, . . . , αj−1, Xj, c
′).

9 V checks γ′ ?= h(j)
τ (0) + h(j)

τ (1), rejecting if equality doesn’t hold.
10 V samples αj

$← F and sets γ′ ← h(j)
τ (αj).

11 if j < 3s then
12 V sends αj to P .

13 V queries oracle ˜︂W and obtains γi ← ˜︂W (α(i)) for each i ∈ [3], where
α(i) ← (αi·1, . . . , αi·s).

14 V computes hτ (α) using oracle queries γi and accepts if and only if γ′ = hτ (α).

Figure 4.11. Formal description of our polynomial interactive oracle proof for
time-T space-S RAM computations.

During any round of the sum-check, the verifier storesO(1) field elements for the description

of h(j)
τ and stores all challenges τ ∈ F3s and α ∈ F3s, which is polylog(T ) field elements of

storage. Computing extensions add and mult can be done in polylog(T ) time, so they can

be computed using at most polylog(T ) space. This gives a verifier with space complexity of

polylog(T ).

Prover Efficiency

We examine the complexity of the prover in PIOP after sending the oracle ˜︂W , an oracle to

the multi-linear extension of a correct transcript W for (CM , x, y, T, S;w). The prover receives
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verifier challenge τ and now must run the sum-check with polynomial hτ (ζ) of  Lemma 4.8.3 .

We leverage the following lemma to allow the prover to perform this computation efficiently

in each round.

Lemma 4.8.4 ([ 64 , Theorem 4.1, Lemma 4.2]). Let (M,x, y, T, S;w) ∈ RRAM and let CM

be the equivalent arithmetic circuit given by  Lemma 4.8.2 . Then given (M,x, y, T, S, w), one

can run in time T · polylog(T ) and space S · polylog(T ) to compute sum-check messages for

the polynomial hτ (Y ).

In particular,  Lemma 4.8.4 implies that the prover’s computation of the polynomial h(j)
τ (Xj)

in each round of the sum-check can be done in T · polylog(T ) time and S · polylog(T ) space.

Note also that each polynomial h(j)
τ (Xj) is a degree at most 6 polynomial, and therefore uses

O(1) space. Finally, the prover also stores verifier challenges αj for each j ∈ {1, . . . , 3s− 1},

which requires O(polylog(T )) space. Since s = O(log |CM |) and |CM | = T · polylog(T ), we

have that the total prover time is T · polylog(T ) and total space is S · polylog(T ).

Soundness

The soundness of PIOP follows from the soundness of the sum-check protocol.

Lemma 4.8.5 (Sum-check Soundness [ 192 ,  236 ]). For γ ∈ F, v, d ∈ N, let Lγ,v,d be the lan-

guage of all v-variate polynomials f of individual degree at most d such that γ = ∑︁
c∈{0,1}v f(c).

Then the sum-check protocol is an interactive proof system for Lγ,v,d with perfect completeness

and soundness error εsc ⩽ dv/|F|, where the verifier is given oracle access to the function f .

We now show the soundness of PIOP.

Proposition 4.8.1. Let V be the verifier of PIOP. For every x = (M,x, y, T, S) ̸∈ LRAM

and every P ∗, over the randomness of V we have that ⟨P ∗, V (x)⟩ = 1 with probability at most
36s
|F| .

Proof. Let P ∗ be an arbitrary prover. Let (M,x, y, T, S) ̸∈ LRAM be the input to both verifier

V and P ∗. By assumption, there does not exist a correct transcript W for the circuit CM .

Let W ∗ be the polynomial oracle sent by P ∗.
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By  Lemma 4.8.3  , the polynomial Fx,y is the 0-polynomial if and only if W ∗ is a multi-linear

extension of a correct transcript, so by assumption Fx,y is not the 0-polynomial and has

individual degree at most 6. For a verifier to be convinced that W ∗ is a correct transcript, it

suffices for the verifier to sample τ
$← F3s and check Fx,y(τ ) ?= 0. Since Fx,y is a polynomial

of individual degree at most 6, by Schwartz-Zippel we have

Pr
τ

$←F3s

[Fx,y(τ ) = 0|Fx,y ̸≡ 0] ⩽ 6 · 3s
|F|

.

So after receiving oracle W ∗ the verifier samples and sends τ
$← F3s to P ∗.

Now P ∗ and V engage in a sum-check protocol for the statement

0 =
∑︂

c∈{0,1}3s

hτ (c) = Fx,y(τ ). (4.24)

Conditioning on Fx,y(τ ) ̸= 0, the soundness now reduces to the soundness of the sum-check.

In particular, P ∗ must convinced V that  Equation (4.24) holds, but Fx,y(τ ) ̸= 0. In this case

the probability P ∗ succeeds is at most (3s · 6)/|F| by  Lemma 4.8.5 . Since Fx,y is not the

0-polynomial we have that

Pr [⟨P ∗, V (x)⟩ = 1] ⩽ Pr
τ

[Fx,y(τ ) = 0] + Pr [P ∗ breaks sum-check] ⩽ 36s
|F|

.

4.8.4 Time- and Space-Efficient Arguments for RAM

We obtain space-efficient arguments ⟨Parg, Varg⟩ for NP relations that can be verified by

time-T space-S RAMs by composing the polynomial commitment schemes of  Theorems 4.6.4 

and  4.7.7 and the polynomial IOP of  Figure 4.11 . Specifically, the prover Parg and Varg runs

the prover and the verifier of the underlying PIOP except two changes: (1) Parg ( Line 2 of

 Figure 4.11 ) instead provides Varg with a commitment to the multi-linear extension of the

circuit transcript W using either  Theorem 4.6.4 or  Theorem 4.7.7 . Here Parg crucially relies

on streaming access to W to compute the commitment in small-space using Com. (2) Parg and
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Varg run the appropriate Eval protocol in place of all verifier queries to the oracle ˜︂W ( Line 13 

of  Figure 4.11 ). We state a formal theorem to capture using both polynomial commitment

schemes of  Theorems 4.6.4 and  4.7.7 .

Theorem 4.8.6 (Small-space Arguments for RAMs). In the random oracle model, assuming

the hardness of discrete-log in obliviously sampelable prime-order groups, there exists a

public-coin interactive argument for NP relations verifiable by time-T space-S random access

machines with the following complexity.

1. The protocol has perfect completeness, has O(log(T )) rounds and polylog(T ) communi-

cation, and has witness-extended emulation.

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) given input-witness

pair (x;w) for M ; and

3. The verifier runs in time T · polylog(T ) and space polylog(T ).

Alternatively, assuming the existence of a group for which the hidden order assumption

holds, there exists a public-coin interactive argument for NP relations verifiable by time-T

space-S random access machines with the following complexity.

1. The protocol has perfect completeness, has O(log(T )) rounds and polylog(T ) communi-

cation, and has (statistical) witness-extended emulation.

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) given input-witness

pair (x;w) for M ; and

3. The verifier runs in time and space polylog(T ).

Proof. We compose our commitment schemes of  Theorem 4.6.4 (for the discrete-log setting)

or of  Theorem 4.7.7 (for the hidden order setting) with the Polynomial IOP of  Theorem 4.8.1 .

The algorithm Setup is identical to that of the chosen commitment scheme. The protocol is

identical to the protocol PIOP except for the following changes. First, instead of providing the

verifier with an oracle ˜︂W , the prover instead sends a commitment to ˜︂W using the appropriate
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commitment scheme, noting that W uniquely defines the multi-linear extension ˜︂W . Second,

the 3 verifier queries to the oracle ˜︂W are replaced with 3 invocations of the protocol Evalρ.

By  Lemma 4.8.2  , the transcript W is computable in a streaming manner in time T ·

polylog(T ) and space S · polylog(T ), so computing the commitment requires S · polylog(T )

space for either polynomial commitment scheme. Replacing the oracle queries to ˜︂W with 3

invocations of the Eval protocol requires T · polylog(T ) time (in the discrete-log setting) or

polylog(T ) time (in the hidden order setting) from the verifier, since |W | = T · polylog(T ).

Let P ∗ be a cheating prover for our argument system. The we construct an emulator E

for our scheme which does the following.

1. Runs P ∗ until the first Eval query is generated, yielding partial transcript t1.

2. Run the emulator Eρ
pc of the polynomial commitment scheme, yielding extracted witness

W : {0, 1}s → F and some transcript t2. We note that if Eρ
pc aborts, then E aborts.

3. Finish the interaction with P ∗, yielding transcript t3. Let tr = t1 ◦ t2 ◦ t3.

4. If W is not consistent with (CM , x, y) or t is rejecting, output (tr, 0). If W is consistent

with (CM , x, y), extract witness w from W (since w is a substring of W by  Lemma 4.8.2 ).

If tr is accepting and M(x;w) = y, output (tr, w). Else output ⊥.

Note that E as run above runs in expected polynomial time if Eρ
pc runs in expected polynomial

time. Fix polynomial time adversary A. We need to show that

Pr [tr← ⟨P ∗, V ⟩ : A(tr) = 1] ≈negl(λ) (4.25)

Pr

⎡⎢⎣(tr, w)← E :
A(tr) = 1 ∧

tr is accepting =⇒ M(x;w) = y

⎤⎥⎦ ,

where λ is the security parameter.

If E outputs a pair (tr, w), the transcript tr is a transcript produced by an honest verifier

interacting with P ∗. In this case, the probability that A(tr) = 1 when E does not abort

differs from the probability that A(tr) = 1 for tr output by ⟨P ∗, V ⟩ by at most negl(λ). This
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is due to the negligible error of the emulator Eρ
pc. We now turn to show that the probability

E aborts is negligible.

Let E be the event that E aborts. In particular, E aborts if Eρ
pc fails to extract a witness,

or if Eρ
pc extracts a witness (circuit transcript) W and W is a correct transcript for (CM , x, y)

and tr is an accepting transcript but M(x;w) ̸= y for witness w that is a substring of W . By

the witness-extended emulation property of our polynomial commitment scheme, it holds that

Eρ
pc aborts with negligible probability. Now suppose Eρ

pc does not abort and that it successfully

extracts a witness W . Let E ′ be the event that W is a correct transcript for (CM , x, y) and

tr is accepting but M(x;w) ̸= y, conditioned on Eρ
pc not aborting and successfully extracting

witness W . Suppose Pr [E ′] = ε for some ε ∈ [0, 1]. We now construct an adversary P̂ which

breaks soundness of our IOP with probability at least ε− negl(λ).

We first note the differences between the our argument verifier V and our IOP verifier

VIOP. The IOP verifier VIOP receives a polynomial oracle W ∗ from the prover while V does

not receive an oracle to the multi-linear extension of a transcript and instead receives a

commitment to the the oracle W ∗. Further, VIOP simply queries said oracle to check the final

statement of the sum-chekc, while V interacts with P ∗ to obtain evaluations of this oracle.

We now describe how P̂ breaks the soundness of the IOP. P̂ simulates the interaction

between P ∗ and V until V makes an eval query. P̂ then runs the emulator Eρ
pc to extract out

witness W , rewinding P ∗ and V as necessary. Once a witness W is extracted, P̂ rewinds P ∗

to the point just after the commitment to W was sent. Now P̂ computes the multi-linear

extension of W as ˜︂W and sends this to VIOP. P̂ then forwards all verifier messages to P ∗ and

forwards all messages from P ∗ to VIOP. Finally VIOP outputs accept or reject after querying

the oracle ˜︂W and computing a final check.

We note that Eρ
pc has error probability negl(λ); that is, the emulator may output an

incorrect W with negligible probability. Suppose this is not the case and that W is a correct

transcript for (CM , x, y) but the witness w extracted from W is such that M(x;w) ̸= y. By

assumption, we have that P ∗ convinces V to accept this scenario with probability ε. By our
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construction of P̂ , we also have that in this scenario VIOP accepts with probability ε. So we

have that

Pr
[︂
⟨P̂ , VIOP⟩ = 1

]︂
⩾ ε(1− negl(λ)) ⩾ ε− negl(λ).

Note that by soundness of the IOP we have that

Pr
[︂
⟨P̂ , VIOP⟩ = 1

]︂
⩽

36s
|F|

,

where |F| is exponential in the security parameter and s = O(log T ). Thus we have that

ε ⩽
36s
|F|

+ negl(λ) = negl(λ).

Therefore Pr [E] = ε ⩽ negl(λ) as desired, and the total probability that E aborts is at

most some negligible function of λ. This along with the negligible error of Eρ
pc gives that

 Equation (4.25) holds for some function negl(λ), showing witness-extended emulation.

4.8.5 Obtaining  Theorems 4.2.3 and  4.2.4 

We discuss how to modify our interactive argument of knowledge from  Theorem 4.8.6 to

satisfy zero-knowledge, obtaining  Theorems 4.2.3 and  4.2.4 . We then discuss how to make

the resulting zero-knowledge arguments non-interactive via the Fiat-Shamir transformation,

obtaining time- and space-efficient zk-SNARKs.

Zero-Knowledge

For obtaining zero-knowledge, we employ the standard technique (due to Ben-Or et al.

[ 29 ]) of having the prover commit to its messages and then, at the end, prove that it knows

valid openings. Since this is a small NP statement, we can afford to use basically any zero-

knowledge protocol from the literature. However, since we do not want the round complexity

to grow by a poly(λ) factor, we use the constant-round public-coin zero-knowledge argument

of Barak [ 24 ].
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Lemma 4.8.7. Assume that collision-resistant hash functions exist. Suppose that the relation

R ∈ NP has a public-coin holographic argument-system with a time TV verifier. Then it

also has a zero-knowledge public-coin (holographic) argument-system with only a poly(λ, TV )

multiplicative overhead in prover time, prover space, communication complexity and verifier

time. The round complexity increases additively by O(1).

Proof Sketch. Following [ 29 ] we modify the protocol so that in every round, rather than

having the prover send it’s message in the clear, it commits to it using a cryptographic

commitment scheme (which can be constructed assuming one-way functions). At the end of

the protocol the verifier makes its queries to the input (which, importantly, depend only on

its random coin tosses). At this point all that is left to check is an NP statement of the form:

do there exist openings for the commitment that would make the verifier accept. Note that

this NP statement has instances of size ⩽ TV , witnesses of size ⩽ TV and can be decided in

time poly(TV ). Thus, we can use a generic zero-knowledge argument (of knowledge) for NP

of [  24 ].

Remark 4.8.8. Note that if one is planning to apply the Fiat-Shamir transform on the

resulting protocol, then it suffices to prove honest-verifier zero-knowledge, and so a more basic

approach should suffice.

We further remark, that it is likely that there are far more practical ways to make our

protocol zero-knowledge. For example, by ensuring that the polynomial commitment is hiding.

We leave the exploration of this possibility to future work.

Non-Interactivity

We apply the Fiat-Shamir (FS) transform [ 116 ] to our zero-knowledge argument of

knowledge, thereby obtaining a non-interactive, zero-knowledge argument of knowledge.

However, note that it is folklore that applying FS to a t-round public-coin argument of

knowledge yields a non-interactive argument of knowledge where the extractor runs in time

exponential in t. Since our protocol has O(log T ) rounds our extractor runs in poly(T )-time.
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COMPOSING CRYPTOGRAPHIC
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5. COMPILING HAMMING LOCALLY DECODABLE CODES

TO INSERTION-DELETION LOCALLY DECODABLE CODES:

USING CRYPTOGRAPHIC THINKING TO SIMPLIFY

ANALYSIS

A portion of this chapter appears in the 40th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2020) [ 48 ], available at

 https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16 . A portion of this chapter appears in arXiv
[ 47 ], available at  https://arxiv.org/abs/2103.14122 . The article [ 47 ] is the full version of the
article which appears in the 2021 IEEE International Symposium on Information Theory
[ 46 ], available at  https://doi.org/10.1109/ISIT45174.2021.9518249 .

One of the most widespread ways cryptography has been composed with coding theory

(and theoretical computer science in general) is through the use of cryptographic thinking.

Cryptographic thinking (e.g., adversarial thinking, bounds on computational power) has

influenced many areas of computer science. For example, the seminal work of Goldwasser,

Micali, and Rackoff [ 132 ] introduced the complexity class of languages recognizable by

interactive proofs in polynomial time, or IP, primarily to study the cryptographic tool of

zero-knowledge. The class IP was extensively studied by complexity theorists, leading to the

seminal results of Shamir [  236 ] and Lund et al. [ 192 ] showing that IP = PSPACE.

This impact is plainly on display in the context of locally decodable codes. A (ℓ, δ, p, dist)-

locally decodable code (LDC) (  Definition 2.7.5 ) is a coding scheme C[K, k, q1, q2] such that

the decoder Dec : [k] → Σ1 is a probabilistic oracle algorithm such that: for any message

x ∈ Σk
1, when the decoder is given oracle access to any ỹ ∈ Σ∗2 such that dist(ỹ,Enc(x)) ⩽ δ,

the decoder makes at most ℓ queries to its oracle and outputs xi ∈ Σ1 with probability at

least p. Here ℓ is the locality (also known as the query complexity), δ is the error-tolerance,

p is the success probability, and dist is some normalized distance. In this chapter, we turn

our attention to how cryptographic thinking has inspired the construction of LDCs which

are resilient against insertion-deletion errors: a more powerful corruption model where the

codeword is subject to a bounded number of arbitrary symbol insertions and deletions.
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5.1 Locally Decodable Codes for Insertion-Deletion Errors

For decades, the focus of locally decodable codes (LDCs) was directed towards giving

optimal constructions of LDCs for the Hamming channel. That is, locally decodable codes

which are resilient to (a bounded number of) worst-case bit flips in the codeword. Such codes

have been studied extensively for decades [ 70 ,  85 – 89 ,  142 – 145 ,  148 – 152 ,  179 ,  185 ,  190 ,  241 ],

but even here there are still many fascinating and challenging open problems. For example,

in the 2-query regime, it is known that the Hadamard code is an optimal 2-query Hamming

LDC with exponential block length [ 173 ]. However, recently there has been more focus on the

construction of LDCs which are resilient to insertion-deletion errors. That is, LDCs which

can still decode when given a codeword that has been subjected to a bounded number of

arbitrary insertions and deletions of symbols. Such LDCs, which we call InsDel LDCs, have

been notoriously difficult to construct, with only recent results achieving constructions with

some asymptotically optimal parameters [ 144 ,  148 ,  149 ,  151 ,  190 ].

Of interest to us is a compiler result due to Ostrovsky and Paskin-Cherniavsky [ 215 ].

They construct a so-called “Hamming-to-InsDel” compiler: this compiler takes as in put

any Hamming LDC and outputs an InsDel LDC. This compiler (asymptotically) preserves

the rate and error-tolerance of the code, and increases the locality of the code by only a

poly-logarithmic factor. The construction utilizes a well-known technique in coding theory

known as code concatenation (a.k.a. concatenated codes) [  119 ]. Such codes utilize an outer

code Cout and an inner code Cin and encode a message x first using Encout, obtaining

y = Encout(x). The codeword y is then divided into some number of m blocks y(1), . . . , y(m)

such that y = y(1) ◦ · · · ◦ y(m), and each block y(i) is encoded using the inner code to obtain

Y (i) = Encin(y(i)). The final codeword given as output is Y = Y (1) ◦ · · ·Y (m).

The Hamming-to-InsDel compiler works in much the same way: the compiler takes as

input a Hamming LDC and uses this code as the outer code. The inner code is fixed to be the

well-known Schulman-Zuckerman InsDel code [  230 ], which we refer to as the SZ code. The SZ

code is an asymptotically optimal code for insertions-deletions errors, but it is not a locally

decodable code. Thus the compiler splits the encoded LDC codeword into logarithmic-sized

blocks and encodes these blocks with the SZ code. Intuitively, this is one reason for the
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poly-logarithmic increase in locality since the local decoder needs to decode entire blocks of

SZ codewords, which are of logarithmic size. The remaining increase in locality is due to a

noisy binary search procedure. Informally, this noisy binary search procedure allows one to

search for an element of a sorted list where some constant fraction of the original entries may

be modified arbitrarily (e.g., they are arbitrarily modified, swapped, deleted, inserted, etc.).

This procedure is used to recover corrupt insertion-deletion blocks in order to recover the

original SZ codeword blocks, when then are decoded using the SZ decoder, followed by the

LDC decoder to obtain the desired symbol.

5.2 Our Results

We revisit the compiler result of [ 215 ] and provide an alternative proof using different

combinatorial techniques. Our combinatorial techniques borrow from analysis tools used

widely in the design and analysis of memory-hard functions—important cryptographic primi-

tives that, intuitively, are functions that require a large amount of space to compute [ 4 – 10 ,

 39 ,  59 ,  62 ,  83 ,  117 ].

Theorem 5.2.1 ([ 48 ]). Let C be a q-query LDC with encoding function Enc : Σk → Σn that

can decode from δ-fraction of Hamming errors. Then there exists a binary q · polylog(n)-

query InsDel LDC with codeword length Θ(n · log(|Σ|)) that can decode from Θ(δ)-fraction of

insertion-deletion errors.

In this work we focus on LDCs but note that  Theorem 5.2.1 extends to the setting of

locally correctable codes [ 37 ] as well. These codes are a variant of LDCs where the decoder

is locally corrects every entry of the encoded message, instead of decoding entries of the

message itself. Similar to the results of [ 215 ], our result does not have implications in the

constant-locality regime.

Classical Hamming LDC constructions fall into three locality-complexity regimes: constant

locality, poly-logarithmic (in k) locality, and sub-polynomial (but super logarithmic) locality.

In the constant locality regime, the best known constructions are via matching-vector codes

which have block length exp(exp(
√︂

log(k) · loglog(k))) [  108 ,  109 ,  265 ], while the best known

lower bounds are only quadratic (e.g., K = Ω(k2)) [ 260 ,  261 ]. For poly-logarithmic locality,
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Reed-Muller codes have locality logc(k) for some constant c > 0 and have rate k1/(c−1)+o(1)

[ 264 ]. Finally, in the sub-polynomial, super-logarithmic locality regime, there exists Hamming

LDCs with constant-rate [ 182 ,  183 ].

 Theorem 5.2.1 in conjunction with the above results yield the following (asymptotic)

results.

Corollary 5.2.2 ([ 48 ]). There exist InsDel LDCs of message length k with rate o(k), locality

polylog(k), and constant error-rate.

Corollary 5.2.3 ([ 48 ]). There exist InsDel LDCs of message length k with constant rate,

locality log(k)O(loglog(k)), and constant error-rate.

5.2.1 Extension to Private and Resource-Bounded Locally Decodable Codes

We additionally show that the compiler of  Theorem 5.2.1  extends to both the private

Hamming LDC and resource-bounded Hamming LDC setting. In  Chapter 6 , we discuss both

private and resource-bounded LDCs in more detail, but give an overview here. Ostrovsky,

Pandey, and Sahai [ 214 ] introduce the notion of private locally decodable codes: LDCs which

are secure against computationally bounded channels and equip both the encoding and

decoding algorithm with a shared secret key generated via standard cryptographic techniques

(e.g., one-way functions, pseudo-random generators), or with enough uniform bits (in which

case security holds against information-theoretic adversaries); see  Definition 5.5.1  for the

formal definition.Key to their construction is exactly that the key remains a secret from the

channel. The secret key assumption yields a construction of a private LDC with constant rate

and slightly super-logarithmic query complexity ω(log(λ)), and success probability 1−negl(λ),

where λ is the security parameter. Blocki, Kulkarni, and Zhou [ 60 ] introduce and study

resource-bounded locally decodable codes. In such LDC assumptions, the channel is assumed to

belong to some algorithm class C which is resource-constrained in some way; e.g., the channel

is a low-depth circuit, the channel is PPT, or the channel is memory-constrained. This is a

generalization of Lipton’s computational channel model [ 188 ] and (arguably) captures many

channels encountered in nature. Informally, a code C[K, k, q1, q2] is a (ℓ, δ, p, ε, δ,C)-LDC

against class C if on any input i ∈ [k], the decoder makes at most ℓ queries to its (possibly
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δ-corrupt) codeword oracle and outputs the ith symbol with probability at least p. The

(C, ε)-security property informally states that any adversary cannot produce a δ-corrupt

codeword oracle that causes the decoder to output some symbol xi of the original encoded

message with probability less than p (see  Definition 5.5.2  for formal definition).

We show that compiling a private or resource-bounded Hamming LDC with our compiler

yields a private or resource-bounded InsDel LDC with comparable parameters.

Theorem 5.2.4 ([ 46 ]). Let C[K, k, λ, q1, q2] be a (ℓ, δ, p, ε)-one time private Hamming LDC

for constant δ > 0. Then there exists a binary code Cf [n, k, λ, q1, 2] that is a (ℓf , δf , pf , εf)-one

time private InsDel LDC, where ℓf = ℓ ·O(log4(n)), δf = Θ(δ), pf < p, εf = ε/(1− (pf/p)−

(ϑ1(n)/p)− ϑ2(n)), and n = Θ(K · log(q2)). Here ϑ1, ϑ2 are fixed negligible functions.

Note that Ostrovsky, Pandey, and Sahai [ 214 ] give a construction of a one-time private

Hamming LDC withK = Θ(k), δ = Θ(1), ℓ = log1+ϵ(λ) for any constant ϵ > 0, p = 1−negl(λ),

and ε = negl(λ), where negl are unspecified negligible functions. This gives us the following

corollary.

Corollary 5.2.5. Let ℓf := ℓf(λ, n) = O(log1+ϵ(λ) · log4(n)) for constant ϵ > 0. There

exists a binary code Cf [n, k, λ, q1, 2] that is an (ℓf , δf , pf , εf)-one time private InsDel LDC with

n = Θ(k · log(q1)), δf = Θ(1), pf = Θ(1), and εf ⩽ ς(λ, n) for some fixed negligible function ς.

For the case of resource-bounded InsDel LDCs, if we want the final InsDel LDC to be

secure against an algorithm class C, then the original Hamming LDC needs to be secure

against a larger class C(N) which we call the closure of C with respect to parameter N . See

 Section 5.7.3 for more details.

Theorem 5.2.6 ([ 46 ]). Let C be the class of parallel PPT algorithms running in sequential time

T and space S, and let C[K, k, q1, q2] be a (ℓ, δ, p, ε,C(n))-Hamming LDC for constant ρ, p > 0

and n = O(K · log(q2)). There exists a binary code Cf [n, k, q1, 2] that is a (ℓf , δf , pf , εf ,C)-

InsDel LDC against class C, where ℓf = ℓ · O(log4(n)), δf = Θ(δ), pf < p, and εf =

ε/(1− (pf/p)− (ϑ1(n)/p)− ϑ2(n)). Here ϑ1, ϑ2 are fixed negligible functions.
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5.3 Technical Overview

The main technical hurdle in the Hamming-to-InsDel compiler is the implementation

of the local decoding algorithm. Unlike traditional Hamming concatenation codes, in the

insertion-deletion setting the code blocks of the inner code may be arbitrarily corrupted with

insertions, may be moved to another part of the codeword, or may be deleted all together.

Thus the key challenge is implementing a noisy block decoding algorithm that is successful

with high probability. To build intuition for this decoding procedure, we work with the

simpler problem of searching a nearly sorted array.

5.3.1 Searching a Nearly Sorted Array

We consider the following problem. Suppose we are given a nearly sorted array A of

n distinct elements. By nearly sorted we mean that there is another sorted array A′ such

that A′[i] = A[i] on all but n′ indices. Given an input x we would like to quickly find x in

the original array. In the worst case this would require time at least Ω(n′) so we relax the

requirement that we always find x to say that there are at most cn′ items that we fail to find

x for some constant c > 0.

To design our noisy binary search algorithm that meets these requirement we borrow a

notion of local goodness used in the design and analysis of depth-robust graphs—a combi-

natorial object that has found many applications in cryptography [ 4 ,  7 ,  111 ]. In particular,

fixing A and A′ (sorted) we say that an index j is corrupted if A[j] ̸= A′[j]. We say that an

index i is θ-locally good if for any r ⩾ 0 at most θ fraction of the indices j ∈ [i, . . . , i+ r] are

corrupted and at most θ fraction of the indices in [i− r, i] are corrupted. If at most n′ indices

are corrupted then one can prove that at least n− 2n′/θ indices are θ-locally good [ 111 ].

As long as the constant θ is suitably small we can design an efficient randomize search

procedure which, with high probability, correctly locates x whenever x = A[i], provided that

the unknown index i is θ-locally good. Intuitively, suppose we have already narrowed down

our search to the smaller range I = [i0, i1]. The rank of x = A[i] in A′[i0], . . . , A′[i1] is exactly

i− i0 + 1 since A[i] is uncorrupted and the rank of x in A[i0], . . . , A[i1] can change by at most

±θ(i− i0 + 1) — at most θ(i1 − i0 + 1) indices j′ ∈ [i0, i1] can be corrupted since i ∈ [i0, i1]
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is θ-locally good. Now suppose that we sample t = polylog(n) indices j1, . . . , jt ∈ [i0, i1]

and select the median ymed of A[j1], . . . , A[jt]. With high probability the rank r of ymed

in A[j1], . . . , A[jt] will be close to (i1 − i0 + 1)/2; i.e., |r − (i1 − i0 + 1)/2| ⩽ δ(i1 − i0 + 1)

for some arbitrarily constant δ which may depend on the number of samples t. Thus, for

suitable constants θ and δ whenever x > ymed (resp. x < ymed) we can safely conclude that

i > i0 + (i1 − i0 + 1)/8 (resp. i < i1 − (i1 − i0 + 1)/8) and search in the smaller interval

I ′ = [i0 + (i1 − i0 + 1)/8, i1] (resp. I ′ = [i0, i1 − (i1 − i0 + 1)/8]). In both cases the size of the

search space is reduced by a constant multiplicative factor so the procedure will terminate

after O(log(n)) rounds making O(t · log(n)) queries. At its core our local decoding algorithm

relies on a very similar idea

5.3.2 The Encoding Algorithm

Our encoder builds off of the known techniques of concatenation codes. First, a message

x is encoded via the outer code to obtain some (intermediate) encoding y. We then partition

y into some number k blocks y = y1 ◦ · · · ◦ yk and append each block yi with index i to obtain

yi ◦ i. Each yi ◦ i is then encoded with the inner encoder to obtain some di. Then each di

is prepended and appended with a run of 0s (i.e., buffers), to obtain ci. The encoder then

outputs c = c1 ◦ · · · ◦ ck as the final codeword. For our inner encoder, as mentioned before we

in fact use the Schulman-Zuckerman (SZ) [ 230 ] edit distance code.

5.3.3 The Decoding Algorithm

Given oracle access to some corrupted codeword c′, on input index i, the decoder simulates

the outer decoder and must answer the outer decoder oracle queries. The decoder uses the

inner decoder to answer these queries. However, there are two major challenges: (1) Unlike

the Hamming-type errors, even only a few insertions and deletions make it difficult for the

decoder to know where to probe; and (2) The boundaries between blocks can be ambiguous

in the presence of InsDel errors. We overcome these challenges via a variant of binary search,

which we name NoisyBinarySearch, together with a buffer detection algorithm, and make use

of a block decomposition of the corrupted codeword to facilitate the analysis.
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5.3.4 Analysis

The analysis of the binary search and the buffer detection algorithms are based on the

notion of “good blocks” and “locally good blocks”, which are natural extensions of the notion

of θ-locally good indices discussed above. Recall that our encoder outputs a final codeword

that is a concatenation of k smaller codeword “blocks”; namely Enc(x) = c1 ◦ · · · ◦ ck. Suppose

c′ is the corrupted codeword obtained by corrupting c with δ-fraction of insertion-deletion

errors, and suppose we have a method of partitioning c′ into k blocks c′1 ◦ · · · ◦ c′k. Then we

say that block c′j is a γ-good block if it is within γ-fractional edit distance to the uncorrupted

block cj. Moreover, c′j is (θ, γ)-locally good if at least (1 − θ) fraction of the blocks in

every neighborhood around c′j are γ-good and if the total number of corruptions in every

neighborhood is bounded. Here θ and γ are suitably chosen constants. Both notions of

good and locally good blocks are necessary to the success of our binary search algorithm

NoisyBinarySearch.

The goal of NoisyBinarySearch is to locate a block with a given index j, and the idea is to

decode the corrupted codeword at random positions to get a list of decoded indices (recall

that the index of each block is appended to it). Since a large fraction of blocks are γ-good

blocks, the sampled indices induce a new search interval for the next iteration. In order to

apply this argument recursively, we need that the error density of the search interval does

not increase in each iteration. Locally good blocks provide precisely this property.

5.3.5 Comparison of Techniques

The InsDel LDC construction of [ 215 ] also uses Schulman-Zuckerman (SZ) [  230 ] codes,

except it opens them up and directly uses the inefficient greedy inner codes used for the final

efficient SZ codes themselves. In our case, we observe that the efficiently decodable codes of

[ 230 ] have the additional property described in  Lemma 5.6.2 , which states that small blocks

have large weight. This observation implies a running time that is polynomial in the query

complexity of the final codes, since it helps make the buffer-finding algorithms local. The

analysis of [ 215 ] also uses a binary search component, but our analysis and their analysis

differ significantly.
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5.3.6 Extending the Compiler to the Private and Resource-Bounded Setting

Let the compiler given by  Theorem 5.2.1 be denoted as the BBGKZ compiler. The

BBGKZ compiler at its core consists of two functions: Compile and Recover. The function

Compile takes as input a codeword y ∈ ΣK that is resilient to ρ-fraction of Hamming errors

and outputs a codeword Y ∈ {0, 1}n that is resilient to ρ′-fraction of insertion-deletion errors.

The compiled encoding function operates as follows: it encodes a message x using the given

Hamming LDC to obtain the Hamming codeword y, then it applies the function Compile

to y and outputs the final InsDel codeword Y . The function Recover, when given query

access to some Y ′ ∈ {0, 1}∗, on input i makes polylog(|Y ′|) queries to Y ′ and attempts to

recover yi, the ith bit of the Hamming codeword y. The BBGKZ compiler guarantees that if

ED(Y, Y ′) ⩽ ρ′ then for most indices i ∈ [K], Recover outputs the correct bit yi with high

probability.

The challenge in applying the BBGKZ compiler to a private Hamming LDC or a resource-

bounded LDC is that we cannot assume that decoding will be correct for every corrupted

codeword with small Hamming distance. Instead, we require that the channel cannot

produce a codeword which fools the decoding algorithm except with negligible probability.

In particular, if y is our encoding of a message x then we say that a corrupted codeword y′

fools the decoder if:

1. the (Hamming/Edit) distance between y and y′ is small; and

2. for some index i, the probability that the local decoder, given oracle access to y′, outputs

the correct bit xi is less than p.

The security requirement is that any adversary A produces such a fooling codeword y′ with

probability at most ε. The difficulty here is proving that applying the BBGKZ compiler to a

private code or resource-bounded code preserves the security of the underlying code. Proving

the security of our compiled private/resource-bounded code lies in the algorithm Recover:

given an adversary A against the compiled InsDel code, we construct a new adversary A′

against the original Hamming code which does the following:

1. obtains challenge message x and Hamming codeword y;
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2. obtains InsDel codeword Y = Compile(y);

3. obtains Y ′ ← A(x, Y ); and

4. obtains y′j ← RecoverY ′(j) for all j.

Applying the key property of Recover one can show that the Hamming distance between y

and y′ is suitably small. Furthermore, if Y ′ fools our local InsDel decoder then one can argue

that (w.h.p.) y′ fools our local Hamming decoder. Thus, the compiler transforms secret key

Hamming LDCs into secret key InsDel LDCs and resource bounded Hamming LDCs into

resource bounded InsDel LDCs. For resource bounded channels, there is another subtlety

we must account for. Our Hamming adversary A′ requires slightly more resources than the

original InsDel adversary A; i.e., we need to run Recover for each index j (though this can

be accomplished in parallel to minimize computation depth). Thus, to obtain an InsDel LDC

secure against the channel class C we need to start with a Hamming LDC secure against a

slightly larger class C′ (i.e., the closure of C).

5.4 Additional Related Work

Levenshtein [ 185 ] initiated the study of codes for insertions and deletions. Since this

initiation, there has been a large body of works examining InsDel codes (see excellent surveys

[ 205 ,  208 ,  245 ]). Recently, [ 241 ] constructed k-deletion correcting binary codes with optimal

redundancy, which was extended to systematic binary codes and q-ary codes in [ 242 ,  243 ].

This line of work answered long standing open problems in the construction of k-deletion

correcting codes with optimal redundancy. Random codes with positive information rate

and correcting a large fraction of deletion errors were studied in [ 143 ,  179 ], and efficiently

encodable and decodable codes with constant rate and resilient to a constant fraction of

insertion-deletion errors were studied extensively in [ 70 ,  85 ,  86 ,  88 ,  89 ,  142 – 144 ,  150 ,  151 ,

 230 ]. Recently, there has been interest in extending “list-decoding” to the setting of InsDel

codes. These codes are resilient to a larger fraction of insertion-deletion errors at the cost of

outputting a small list of potential codewords (i.e., the loss of unique decoding) [ 144 ,  152 ,

 190 ]. Another direction due to Haeupler and Shahrasbi [ 151 ] involves constructing explicit
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synchronization strings which can be “locally decoded” in the following sense: each index of

the string can be computed using values located at a small number of other indices. These

explicit and locally decodable synchronization strings are used to imply near linear time

interactive coding schemes for insertion-deletion errors.

Cheng, Li, and Zheng [  90 ] propose the notion of locally decodable codes with randomized

encoding, in both the Hamming and edit distance regimes. They study such codes in various

settings, including where the encoder and decoder share randomness, or the channel is

oblivious to the codeword, and hence adds error patterns non-adaptively. For insertion-

deletion errors they obtain codes with K = O(k) or K = k · log(k) and polylog(k) locality

for message length k.

Blocki, Gandikota, Grigorescu, and Zhou [ 58 ] construct relaxed locally correctable and

locally decodable Hamming codes in computationally bounded channels. Here, local correction

states that a corrupt codeword c′ can be corrected to codeword c by only querying c′ at a

bounded number of locations, and relaxed means that the correcting or decoding algorithm is

allowed to output the value ⊥ for a small fraction of inputs [ 37 ]. Their construction requires

a public parameter setup for a collision-resistant hash function, and they obtain relaxed

binary locally correctable and decodable Hamming codes with constant information rate and

poly-logarithmic locality. Recently, Blocki, Kulkarni, and Zhou [ 60 ] introduced Hamming

LDCs that are secure against resource-bounded adversaries, in the random oracle model.

Here, they construct codes (in the random oracle model) which are resilient to classes of

adversaries C for which there exists a function f that is uncomputable by any A ∈ C. They

obtain explicit Hamming LDCs with constant information rate and polylogarithmic locality

against various classes C of resource-bounded adversaries.

There are various other notions of “noisy search” that have been studied in the literature.

Dhagat, Gács, and Winkler [  103 ] consider a noisy version of the game “Twenty Questions”.

In this problem, an algorithm searches an array for some element x, and a bounded number

of incorrect answers can be given to the algorithm queries, and the goal is to minimize the

number of queries made by an algorithm. Feige et al. [ 115 ] study the depth of noisy decision

trees: decision trees where each node gives the incorrect answer with some constant probability,

and moreover each node success or failure is independent. Karp and Kleinberg [ 164 ] study

163



noisy binary search where direct comparison between elements is not possible; instead, each

element has an associated biased coin. Given n coins with probabilities p1 ⩽ · · · ⩽ pn, target

value τ ∈ [0, 1], and error ε, the goal is to design an algorithm which, with high probability,

finds index i such that the intervals [pi, pi+1] and [τ − ε, τ + ε] intersect. Braverman and

Mossel [  71 ], Klein et al. [ 180 ] and Geissmann et al. [ 123 ] study noisy sorting in the presence

of recurrent random errors: when an element is first queried, it has some (independent)

probability of returning the incorrect answer, and all subsequent queries to this element are

fixed to this answer. We note that each of the above notions of “noisy search” are different

from each other and, in particular, different from our noisy search.

5.5 Preliminaries

We recall the definition of locally decodable codes.

Definition 2.7.5 (Locally Decodable Codes). A coding scheme C[K, k, q1, q2] = (Enc,Dec)

is an (ℓ, ρ, p, dist)-locally decodable code (LDC) if for all x ∈ Σk
1 and y ∈ Σ∗2 such that

dist(Enc(x), y) ⩽ ρ, the algorithm Dec, with query access to word y, on input index i ∈ [k],

makes at most ℓ queries to y and outputs xi with probability at least p over the randomness

of the decoder. Here, ℓ is the locality of C and p is the success probability.

Given the definition of a LDC, we now define a private LDC [ 214 ].

Definition 5.5.1 (One-Time Private Key LDC). Let C[K, k, λ, q1, q2] = (Gen,Enc,Dec) be a

triple of probabilistic algorithms. We say C is a (ℓ, δ, p, ε, dist)-private locally decodable code

(private LDC) if

1. Gen(1λ) is the key generation algorithm that takes as input 1λ and outputs secret key

sk ∈ {0, 1}∗ for security parameter λ;

2. Enc : Σk
1 × {0, 1}

∗ → ΣK
2 is the encoding algorithm that takes as input message x ∈ Σk

1

and secret key sk and outputs a codeword y ∈ ΣK
2 ; and

3. Decy′ : [k]×{0, 1}∗ → Σ1 is the decoding algorithm that takes as input index i ∈ [k] and

secret key sk, is additionally given query access to a corrupted codeword y′ ∈ ΣK′, and

outputs b ∈ Σ1 after making at most ℓ queries to y′.
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We define a predicate Fool(y′, δ, p, sk, x, y) = 1 if and only if

1. dist(y, y′) ⩽ δ; and

2. ∃i ∈ [k] such that Pr [Decy′(i, sk) = xi] < p, where the probability is taken over the

random coins of Dec.

We require that for all adversaries A and all x ∈ Σk
1, it holds that Pr [Fool(A(y), δ, p, sk, x, y) =

1] ⩽ ε, where y ← Enc(x, sk) and the probability is taken over the random coins of A and Gen

and Enc (if encoding is randomized).

For ease of presentation we present  Definition 5.5.1 with respect to all adversaries A; in

this case, it is understood that the generation algorithm Gen outputs a sufficient number of

purely random bits.

Next we present the definition of a resource-bounded LDC [ 60 ].

Definition 5.5.2 (C-Secure LDC). For class of algorithms C, a coding scheme C[K, k, q1, q2]

is an (ℓ, δ, p, ε, dist,C)-locally decodable code if

1. Enc : Σk
1 → ΣK

2 is the encoding algorithm that takes as input message x ∈ {0, 1}k and

outputs a codeword y ∈ {0, 1}K; and

2. Decy′ : [k]→ Σ1 is the decoding algorithm that takes as input index i ∈ [k], is additionally

given query access to a corrupted codeword y′ ∈ {0, 1}K′
, and outputs b ∈ Σ1 after

making at most ℓ queries to y′.

We define predicate Fool(y′, δ, p, x, y) = 1 if and only if

1. dist(y, y′) ⩽ δ; and

2. ∃i ∈ [k] such that Pr [Decy′(i) = x1] < p,

where the probability is taken over the random coins of Dec; otherwise Fool(y′, δ, p, x, y) = 0.

We require that for all adversaries A ∈ C and all x ∈ Σk
1, it holds that Pr [Fool(A(y), δ, p, y) =

1] ⩽ ε, where the probability is taken over the random coins of A and the generation of the

codeword y ← Enc(x).
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5.6 Insertion-Deletion LDCs from Hamming LDCs

We give our main construction of InsDel LDCs from Hamming LDCs. Our construction

can be viewed as a procedure which, given outer codes Cout and binary inner codes Cin

satisfying certain properties, produces binary codes C(Cout, Cin). This is formulated in the

following theorem, which implies  Theorem 5.2.1 .

Theorem 5.6.1. Let Cout and Cin be codes such that

• Cout defined by Encout : Σk → Σm is an a (ℓout, δout, ϵout)-Hamming LDC.

• Cin is family of binary polynomial-time encodable/decodable codes with rate 1/βin capable

of correcting δin fraction of insertion-deletion errors. In addition, there are constants

α1, α2 ∈ (0, 1) such that for any codeword c of Cin, any substring of c with length at

least α1|c| has fractional Hamming weight at least α2.

Then C(Cout, Cin) is a binary
(︂
ℓout ·O(log4(n′)),Ω(δoutδin), ϵ− negl(n′)

)︂
-InsDel LDC. Here

the codewords of C have length n = βm where β = O(βin log(|Σ|)), and n′ denotes the length

of received word.

For the inner code, we make use of the following efficient code constructed by Schulman-

Zuckerman [ 230 ].

Lemma 5.6.2 (SZ-code [ 230 ]). There exist constants βin ≥ 1, δin > 0, such that for large

enough values of t > 0, there exists a code SZ(t) = (Enc,Dec) where Enc : {0, 1}t → {0, 1}βint

and Dec : {0, 1}βint → {0, 1}t ∪ {⊥} capable of correcting δin fraction of InsDel errors, having

the following properties:

1. Enc and Dec run in time poly(t);

2. For all x ∈ {0, 1}t, every interval of length 2 log t of Enc(x) has fractional Hamming

weight at least 2/5.

We formally complete the proof of correctness of  Theorem 5.6.1 in  Section 5.6.3 . We

dedicate the remainder of this section to outlining the construction of the encoding and

decoding algorithms.
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5.6.1 Encoding and Decoding Algorithms

In our construction of C(Cout, Cin), we denote the specific code of  Lemma 5.6.2 as our

inner code Cin = (Encin,Decin). For our purpose, we view a message x ∈ Σm as a pair in

[m]× Σlog(m). The encoding function Encin : [m]× Σlog(m) → {0, 1}βin(1+log(|Σ|)) log(m) maps a

string in Σ of length log(m) appended with an index from set [m] — i.e., a (padded) message

of bit-length (1 + log(|Σ|)) log(m) — to a binary string of length βin (1 + log(|Σ|)) log(m).

The inner decoder Decin on input y′ returns x if ED (y′, y) ≤ δin · 2|y| where y = Encin(x).

The information rate of this code is Rin = 1/βin.

The Encoder (Enc)

Given an input string x ∈ Σk and outer code Cout = (Encout,Decout), our final encoder

Enc does the following:

1. Computes the outer encoding of x as s = Encout(x);

2. For each i ∈ [m/ log(m)], groups logm symbols s[(i − 1) log(m), i log(m) − 1] into a

single block bi ∈ Σlog(m);

3. For each i ∈ [m/ log(m)], computes the ith block of the inner encoding as Y (i) =

Encin(i ◦ bi) — i.e., computes the inner encoding of the ith block concatenated with the

index i;

4. For some constant α ∈ (0, 1) (to be decided), appends a α log(m)-long buffer of zeros

before and after each block; and

5. Outputs the concatenation of the buffered blocks (in indexed order) as the final codeword

c = Enc(x) ∈ {0, 1}n, where

c =
(︄

0α log(m) ◦ Y (1) ◦ 0α log(m)
)︄
◦ · · · ◦

(︄
0α log(m) ◦ Y (m/ log(m)) ◦ 0α log(m)

)︄
. (5.1)
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Denoting β = 2α + βin (1 + log(|Σ|)), the length of c = Enc(x) is

n = (2α logm+ βin (1 + log(|Σ|)) log(m)) · m

log(m) = βm.

The LDC Decoder (Dec)

We start off by describing the high-level overview of our decoder Dec and discuss the

challenges and solutions behind its design. As defined in  Equation (5.1) , our encoder Enc,

on input x ∈ Σk, outputs a codeword c = c1 ◦ · · · ◦ cd ∈ {0, 1}n, where d = m/ log(m). The

decoder setting is as follows: on input i ∈ [k] and query access to the corrupted codeword

c′ ∈ {0, 1}n′
such that ED(c, c′) ⩽ 2nδ, our final decoder Dec needs to output the message

symbol x[i] with high probability. Notice that if Dec had access to the original codeword

s = Encout(x), then Dec could simply run Decout(i) while supplying it with oracle access to

this codeword s. This naturally motivates the following decoding strategy: simulate oracle

access to the codeword s by answering the queries of Decout by decoding the appropriate bits

using Decin. We give a detailed description of this strategy next.

Let Qi = {q1, . . . , qℓout} ⊂ [m] be a set of indices which Decout(i) queries. 

1
 We observe

that if our decoder had oracle access to the uncorrupted codeword c, then answering these

queries would be simple:

1. For each q ∈ Qi, let bj = s[(j − 1) log(m), j log(m) − 1] be the block which contains

s[q]. In particular, q = (j − 1) log(m) + rj for some rj ∈ [0, log(m)− 1],

2. Obtain block cj by querying oracle c and obtain Y (j) by removing the buffers from cj,

3. Obtain j ◦ bj by running Decin(Y (j)), then return s[q] = bj[rj] to Decout.

In fact, it suffices to answer the queries of Decout with symbols consistent with any string

s′ such that HAM(s, s′) ⩽ mδout. Then the correctness of the output would follow from the

correctness of Decout. We carry out the strategy mentioned above, except that now we are

given a corrupted codeword c′.
1

 ↑ Our construction also supports adaptive queries, but we use non-adaptive queries for ease of presentation.
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For the purposes of analysis, we first define the notion of a block decomposition of the

corrupted codeword c′. Informally, a block decomposition is simply a partitioning of c′ into

contiguous blocks. Our first requirement for successful decomposition is that there must

exist a block decomposition c′ = c′1 ◦ · · · ◦ c′d that is “not too different” from the original

decomposition c = c1 ◦ · · · ◦ cd. 

2
 In particular, we require that ∑︁j ED(c′j, cj) ⩽ 2nδ, which is

guaranteed by  Proposition 5.6.1 . Next, we define the notion of γ-good (see  Definition 5.6.3 ).

The idea here is that if a block c′j is γ-good (for appropriate γ), then we can run Decin on c′j
and obtain j ◦ bj. As the total number of errors is bounded, it is easy to see that all but a

small fraction of blocks are γ-good ( Lemma 5.6.3 ). At this point, we are essentially done if

we can decode c′j for any given γ-good block j.

An immediate challenge we are facing is that of locating a specific γ-good block c′j, while

maintaining overall locality. The presence of insertions and deletions may result in uneven

block lengths and misplaced blocks, making the task of locating a specific block non-trivial.

However, γ-good blocks make up the majority of the blocks and enjoy the property that they

are in correct relative order, it is conceivable to perform a binary search style of algorithm

over the blocks of c′ to find block c′j . The idea is to maintain a search interval and iteratively

reduce its size by a constant multiplicative factor. In each iteration, the algorithm samples a

small number of blocks and obtains their (appended) indices. As the vast majority of blocks

are γ-good, these indices guide the binary search algorithm in narrowing down the search

interval. Though there is one problem with this argument: the density of γ-good blocks may

decrease as the search interval becomes smaller. In fact, it is impossible to locally locate a

block c′j surrounded by many bad blocks, even if c′j is γ-good. This is where the notion of

(θ, γ)-locally good (see  Definition 5.6.5 ) helps us: if a block c′j is (θ, γ)-locally good, then

(1−θ)-fraction of blocks in every neighborhood around c′j are γ-good, and every neighborhood

around c′j has a bounded number of errors. Therefore, as long as the search interval contains

a locally good block, we can lower bound the density of γ-good blocks and recover c′j with

high probability.
2

 ↑ We note that we do not need to know this decomposition explicitly, and that its existence is sufficient for
our analysis.
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Our noisy binary search algorithm essentially implements this idea. On input block index

j, the algorithm searches for block j. If block j is (θ, γ)-locally good, then we can guarantee

that our noisy binary search algorithm will find j except with negligible probability (see

 Theorem 5.6.6 ). Thus it is desirable that the number of (θ, γ)-locally good blocks is large; if

this number is large, the noisy binary search is effectively providing oracle access to a string

s′ which is close to s in Hamming distance, and thus the outer decoder is able to decode x[i]

with high probability.  Lemma 5.6.4  exactly guarantees this property.

The discussion above requires knowing the boundaries of each block c′j , which is non-trivial

even in the no corruption case. As the decoder is oblivious to the block decomposition, the

decoder works with approximate boundaries which can be found locally by a buffer search

algorithm, described as follows. Recall that by construction cj consists of Y (j) surrounded by

buffers of (α logm)-length 0-runs. So to find Y (j), it suffices to find the buffers surrounding

Y (j). Our buffer search algorithm can be viewed as a “local variant” of the buffer search

algorithm of Schulman and Zuckerman [ 230 ]. This algorithm is designed to find approximate

buffers surrounding a block c′j if it is γ-good. Then the string in between two buffers is

identified as a corrupted codeword and is decoded to j ◦ bj. The success of the algorithm

depends on γ-goodness of the block being searched and requires that any substring of a

codeword from Cin has “large enough” Hamming weight. In fact, our inner code given by

 Lemma 5.6.2  gives us this exact guarantee. All together, this enables the noisy binary search

algorithm to use the buffer finding algorithm to search for a block c′j.

We formalize the decoder outlined above. On input i ∈ [k], Dec simulates Decout(i)

and answers its queries. Whenever Decout(i) queries an index j ∈ [m], Dec expresses

j = (p−1) logm+rj for p ∈ [m/ logm] and rj ∈ [0, logm−1], and runs NoisyBinarySearch(c′, p)

(which calls the algorithm Buff-Find) to obtain a string b′ ∈ Σlog m (or ⊥). Then it feeds

the rj-th symbol of b′ (or ⊥) to Decout(i). Finally, Dec returns the output of Decout(i).

5.6.2 Block Decomposition of Corrupted Codewords

The analysis of our decoding procedure relies on a so-called buffer finding algorithm and

a noisy binary search algorithm. To analyze these algorithms, we introduce the notion of a
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block decomposition for (corrupted) codewords, as well as what it means for a block to be

(locally) good.

For convenience, we now fix some notation for the remainder of the paper. We fix an

arbitrary message x ∈ Σk. We use s = Encout(x) ∈ Σm for the encoding of x by the outer

encoder. Let τ = log(m) be the length of each block and d = m/ logm be the number of

blocks. For i ∈ [d], we let bi ∈ Στ denote the i-th block s[(i− 1)τ, iτ − 1], and let Y (i) denote

the encoding Encin (i ◦ bi). Recall that ατ is the length of the appended buffers for some

α ∈ (0, 1), and the parameter β = 2α+ βin(1 + log |Σ|). Thus |Y (i)| = (β − 2α)τ . The final

encoding is given by

c = Ỹ
(1) ◦ Ỹ (2) ◦ · · · ◦ Ỹ (d)

,

where Ỹ (j) = 0ατ ◦ Y (j) ◦ 0ατ and |Ỹ (j)| = βτ . The length of c is n = dβτ = βm. We let

c′ ∈ {0, 1}n′ denote a corrupted codeword satisfying ED (c, c′) ≤ 2n · δ.

Definition 5.6.1 (Block Decomposition). A block decomposition of a (corrupted) codeword

c′ is a non-decreasing mapping ϕ : [n′]→ [d] for n′, d ∈ Z+.

We say a set I ⊆ [n′] is an interval if I = ∅ (i.e., an empty interval) or I = {l, l+1, . . . , r−1}

for some 1 ≤ l < r ≤ n′, in which case we write I = [l, r). For an interval I = [l, r), we write

c′[I] for the substring c′[l]c′[l + 1] . . . c′[r − 1]. Finally, c[∅] stands for the empty string.

We remark that for a given block decomposition ϕ, since ϕ is non-decreasing we have that

for every j ∈ [d] the pre-image ϕ−1(j) is an interval. Since ϕ is a total function, it induces a

partition of [n′] into d intervals {ϕ−1(j) : j ∈ [d]}. The following definition plays an important

role in the analysis.

Definition 5.6.2 (Closure Intervals). The closure of an interval I = [l, r) ⊆ [n′] is defined as

∪r−1
i=l ϕ

−1(ϕ(i)). An interval I is a closure interval if the closure of I is itself. Equivalently,

every closure interval has the form I[a, b] := ⋃︁b
j=a ϕ

−1(j) for some a, b ∈ [d].

Proposition 5.6.1. There exists a block decomposition ϕ : [n′]→ [d] such that

∑︂
j∈[d]

ED
(︃
c′[ϕ−1(j)], Ỹ (j)

)︃
≤ δ · 2n.
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Proof. Let ϕ0 : [n]→ [d] be the block decomposition for c satisfying ϕ0(i) = j if i lies in block

Ỹ
(j). Without loss of generality, we assume the adversary performs the following corruption

process:

1. The adversary picks some j ∈ [d];

2. The adversary corrupts Ỹ (j).

Steps (1) and (2) are repeated up to the specified edit distance bound of 2δn. We construct

ϕ : [n′]→ [d] by modifying the decomposition ϕ0 according to the above process. It is clear

that ϕ satisfies the desired property.

We now introduce the notion of good blocks. In the following definitions, we also fix an

arbitrary block decomposition ϕ of c′ enjoying the property guaranteed by  Proposition 5.6.1 .

Definition 5.6.3 (γ-good block). For γ ∈ (0, 1) and j ∈ [d] we say that block j is γ-good if

ED(c′[ϕ−1(j)], ˜︁Y (j)) ⩽ γατ . Otherwise we say that block j is γ-bad.

Definition 5.6.4 ((θ, γ)-good interval). We say a closure interval I[a, b] is (θ, γ)-good if the

following hold:

1. ∑︁b
j=a ED

(︃
c′[ϕ−1(j)], Ỹ (j)

)︃
≤ γ · (b− a+ 1)ατ .

2. There are at least (1 − θ)-fraction of γ-good blocks among those indexed by {a, a +

1, · · · , b}.

Definition 5.6.5 ((θ, γ)-local good block). For θ, γ ∈ (0, 1) we say that block j is (θ, γ)-local

good if for every a, b ∈ [d] such that a ⩽ j ⩽ b the interval I[a, b] is (θ, γ)-good. Otherwise,

block j is (θ, γ)-locally bad.

Note that in  Definition 5.6.5 , if j is (θ, γ)-locally good, then j is also γ-good by taking

a = b = j.

Proposition 5.6.2. The following bounds hold:

1. For any γ-good block j, (β − αγ)τ ⩽ |ϕ−1(j)| ⩽ (β + αγ)τ .
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2. For any (θ, γ)-good interval I[a, b], (b−a+1)(β−αγ)τ ≤ |I[a, b]| ≤ (b−a+1)(β+αγ)τ .

Proof. For item (1) note that an uncorrupted block has length βτ . Since j is γ-good, we

know that ED(c′[ϕ−1(j)], ˜︁Y (j)) ⩽ γατ , which implies that (β − αγ)τ ⩽ |ϕ−1(j)| ⩽ (β + αγ)τ .

For item (2), we first note that |a| − ∆ ≤ |b| ≤ |a| + ∆ where ∆ = ED (a, b). Let

∆j = ED
(︂
c′[ϕ−1(j)], ˜︁Y (j)

)︂
. By definition of (θ, γ)-good interval, we have that ∑︁b

j=a ∆j ⩽

γ(b− a+ 1)ατ . This gives us the following two properties.

|I[a, b]| =
b∑︂

j=a

⃓⃓⃓
ϕ−1(j)

⃓⃓⃓
≤

b∑︂
j=a

βτ + ∆j ≤ (b− a+ 1)(β + αγ)τ,

|I[a, b]| =
b∑︂

j=a

⃓⃓⃓
ϕ−1(j)

⃓⃓⃓
≥

b∑︂
j=a

βτ −∆j ≥ (b− a+ 1)(β − αγ)τ.

The following lemmas upper bound the number of γ-bad and (θ, γ)-locally bad blocks.

Lemma 5.6.3. The total fraction of γ-bad blocks is at most 2βδ/(γα).

Proof. Let ∆j = ED(c′[ϕ−1(j)], ˜︁Yj) for every j ∈ [d]. By our choice of ϕ and  Proposition 5.6.1 

we have that:

d∑︂
j=1

∆j ⩽ 2n · δ.

Let Bad ⊆ [d] be the set of γ-bad blocks. Then we have

δ · 2n ≥
d∑︂

j=1
∆j ⩾

∑︂
i∈Bad

∆i > |Bad| · γατ

where the latter inequality follows by the definition of γ-bad. Thus we obtain |Bad| < δn/γατ .

Recalling that n = βdτ we have that |Bad| /d < 2βδ/(γα) as desired.

Lemma 5.6.4. The total fraction of (θ, γ)-local bad blocks is at most (4/γα)(1 + 1/θ)δβ.

Proof. First we count the number of blocks which violate condition (1) of  Definition 5.6.4 . We

proceed by counting in two steps. Suppose that i1 ∈ [d] is the smallest index such that block

173



i1 violates (1) of  Definition 5.6.4  with witness (i1, b1); that is, ∑︁b1
j=i1 ED(c′[ϕ−1(j)], ˜︁Y (j)]) > γ ·

(b1−i1+1)τ . Continuing inductively, let ik ∈ [d] be the smallest index such that ik > ik−1+bk−1

and ik violates condition (1) of  Definition 5.6.4 with witness (ik, bk). Let {(ik, bk)}t
k=1 for

some t be the result of this procedure. Further let Dk = ∑︁bk
i=ik

ED
(︂
c′[ϕ−1(i)], ˜︁Y (i)

)︂
for every

k ∈ [t]. Let n(1)
γ be the total number of locally bad blocks j of the form (j, b) for some b.

Then we claim that (1) n(1)
γ ⩽

∑︁t
k=1 bk − ik, (2) for all k ∈ [t] we have that Dk > γτ(bk − ik),

and (3) ∑︁t
k=1 Dk ⩽ ED(c, c′). The first equation follows from the fact that any locally bad

block j with witness (j, b) for some b ⩾ j must fall into some interval [ik, bk], else this would

contradict the minimality of the chosen ik. The second equation follows directly by definition

of local good. The third equation follows from the fact that the sum of Dk is at most the

sum of all possible blocks, which is upper bounded by the edit distance. Combining these

equations we see that n(1)
γ ⩽ 2δn/(γατ). Symmetrically, we can consider all bad blocks j

which violate condition (1) of  Definition 5.6.4 and have witnesses of the form (a, j). For this

bound we obtain n(2)
γ ⩽ 2δn/(γατ).

Now we consider the number of bad blocks which violate condition (2) of  Definition 5.6.4 .

By identical analysis and first considering bad blocks j with witnesses of the form (j, b),

we obtain a set of minimally chosen witnesses {(ik, bk)}t
k=1. Let n(1)

θ be the total number

of bad blocks j with witnesses of the form (j, b). Further, let Bk denote the number of

γ-bad blocks in the interval [ik, bk]. Then we have (1) n(1)
θ ⩽

∑︁t
k=1 bk − ik, (2) for all k ∈ [t],

Bk > θ(bk − ik), and (3) ∑︁t
k=1 Bk ⩽ ED(c, c′)/(γατ). Then by these three equations we have

that n(1)
θ ⩽ 2δn/(γθατ). By a symmetric argument, if n(2)

θ is the total number of blocks j

which violate condition (2) of  Definition 5.6.4 with witnesses of the form (a, j) then we have

n
(2)
θ ⩽ 2δn/(θγατ).

Thus the total number of possible bad blocks violating either condition is at most

(4/γατ)(1 + 1/θ)δn. Recalling that n = βdτ , we have that the total fraction of locally bad

blocks is at most (4/γα)(1 + 1/θ)δβ as desired.
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5.6.3 Outer Decoder

At a high level, the our decoding algorithm Dec runs the outer decoder Decout and must

answer all oracle queries of Decout by simulating oracle access to some corrupted string s′.

Recall that Cout, with encoding function Encout : Σk → Σm, is a (ℓout, δout, εout)-LDC for

Hamming errors. Further, Cout has probabilistic decoder Decout such that for any i ∈ [k] and

string s′ ∈ (Σ ∪ {⊥})m such that HAM (s′, s) ≤ m · δout for some codeword s = Encout(x), we

have

Pr
[︂
Decs′

out(i) = x[i]
]︂
≥ 1

2 + εout.

Additionally, Decout makes at most ℓout queries to s′.

In order to run Decout, we need to simulate oracle access to such a string s′. To do so, we

present our noisy binary search algorithm  Figure 5.1 in  Section 5.6.4 . For now, we assume

 Figure 5.1 has the properties stated in the following proposition and theorem.

Proposition 5.6.3.  Figure 5.1 has query complexity O
(︂
log4 n′

)︂
.

Theorem 5.6.5. For j ∈ [d], let bj ∈ Στ ∪ {⊥} be the random variable denoting the output

of  Figure 5.1 on input (c′, 1, n′ + 1, j). We have

Pr
[︄

Pr
j∈[d]

[bj ̸= bj] ≥ δout

]︄
≤ negl(n′),

where the probability is taken over the joint distribution of {bj : j ∈ [d]}.

We note that in  Theorem 5.6.5  , the random variables bj do not need to be independent,

i.e., two runs of  Figure 5.1  can be correlated. For example, we can fix the random coin tosses

of  Figure 5.1 before the first run and reuse them in each call.

5.6.4 Noisy Binary Search

We present  Figure 5.1  in this section. As mentioned in  Section 5.6.3 , the binary search

algorithm discussed in this section can be viewed as providing the outer decoder with oracle
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access to some string s′ ∈ (Σ ∪ {⊥})m. Namely whenever the outer decoder queries an index

j ∈ [m] which lies in block p, we run Noisy-Binary-Search on (c′, 1, n′ + 1, p) and obtain

a string b′p ∈ Σlog m which contains the desired symbol s′[j].

Noisy Binary Search c′(j)
Input : An index j ∈ [d], and oracle access to a codeword c′ ∈ {0, 1}n′ .
Output : A string b ∈ Στ or ⊥.

1 N ← Θ(log2 n′)
2 ρ← min{1

4 ·
β−γ
β+γ

, 1− 3
4 ·

β+γ
β−γ
}

3 C ← 36(β + γ)τ
4 function Noisy-Binary-Search(c′, l, r, j)
5 if r − l ≤ C then
6 s← Interval-Decode(l, r, j)
7 return s

8 m1 ← (1− ρ)l + ρr, m2 ← ρl + (1− ρ)r
9 foreach t ∈ [N ] do

10 Randomly sample i $←{m1,m1 + 1, . . . ,m2 − 1}
11 jt ← Block-Decode(i)

12 j̃ ← median of j1, . . . , jN (ignore jt if jt =⊥)
13 if j ⩽ j̃ then
14 return Noisy-Binary-Search(c′, l,m2, j)
15 else
16 return Noisy-Binary-Search(c′,m1, rj)

Figure 5.1. Our Noisy Binary Search Algorithm

We analyze the query complexity of  Figure 5.1 and prove  Proposition 5.6.3  .

Proposition 5.6.3.  Figure 5.1 has query complexity O
(︂
log4 n′

)︂
.

Proof. The number of iterations T is at most O
(︂
log n′

C

)︂
= O (log n′) as r − l is reduced by

a constant factor 1 − ρ in each iteration until it goes below C. In each iteration (except

for the last iteration), the algorithm makes N = Θ(log2 n′) calls to Block-Decode, which

has query complexity O (log n′). In the last iteration, it calls Interval-Decode which has

query complexity O (log n′). Thus the overall query complexity is O
(︂
log4 n′

)︂
.

The following theorem shows that the set of indices which can be correctly returned by

 Figure 5.1 is captured by the locally good property.
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Theorem 5.6.6. If j ∈ [d] is a (θ, γ)-locally good block, running  Figure 5.1 on input

(c′, 1, n′ + 1, j) outputs bj with probability at least 1− negl(n′).

We defer the proof of  Theorem 5.6.6 to  Section 5.B , as the proof requires many aux-

iliary claims and lemmas. For now, we assume  Theorem 5.6.6 and work towards proving

 Theorem 5.6.5 .

We first observe that the only time  Figure 5.1 interacts with c′ is when it queries Block-

Decode and Interval-Decode. Thus the properties of these two algorithms is essential

to our proof. We briefly describe these two subroutines now.

• Block-Decode: On input index i ∈ [n′], Block-Decode tries to find the block j

that contains i, and attempts to decode the block to j ◦ bj . It returns the index j if the

decoding was successful, and ⊥ otherwise.

• Interval-Decode: On input l, r ∈ [n′] and j ∈ [d], Interval-Decode (roughly) runs

the buffer search algorithm of Schulman and Zuckerman [  230 ] over the substring c′[l, r]

to obtain a set of approximate buffers, and attempts to decode all strings separated by

the approximate buffers. It returns b if any string is decoded to j ◦ b, and ⊥ otherwise.

For convenience, we model Block-Decode as a function φ : [n′]→ [d]∪ {⊥}, and model

Interval-Decode as a function ψ : [n′] → Στ ∪ {⊥}. The functions φ and ψ have the

following properties, which are crucial to the proof of  Theorem 5.6.5 .

Theorem 5.6.7. The functions φ and ψ satisfy the following properties:

1. For any γ-good block j we have

Pr
i∈ϕ−1(j)

[φ(i) ̸= j] ≤ γ.

2. Let [l, r) be an interval with closure I[L,R−1], satisfying that every block j ∈ {L, . . . , R−

1} is γ-good. Then for every block j such that ϕ−1(j) ⊆ [l, r), we have ψ(j, l, r) = bj.

Given  Theorem 5.6.6 and  Theorem 5.6.7 , we recall and prove  Theorem 5.6.5 .
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Theorem 5.6.5. For j ∈ [d], let bj ∈ Στ ∪ {⊥} be the random variable denoting the output

of  Figure 5.1 on input (c′, 1, n′ + 1, j). We have

Pr
[︄

Pr
j∈[d]

[bj ̸= bj] ≥ δout

]︄
≤ negl(n′),

where the probability is taken over the joint distribution of {bj : j ∈ [d]}.

Proof. Let Good ⊆ [d] be the set of (θ, γ)-locally-good blocks, and let Good = [d] \ Good.

 Lemma 5.6.4 implies that

⃓⃓⃓
Good

⃓⃓⃓
≤
(︃

1 + 1
θ

)︃
δdβ

αγ
= δoutd

2 .

For each j ∈ Good, denote by Ej the event {bj ̸= bj}.  Theorem 5.6.6 in conjunction with a

union bound implies that

Pr
⎡⎣ ⋃︂

j∈Good
Ej

⎤⎦ ≤ negl(n′).

Since

Pr
j∈[d]

[bj ̸= bj] ≤ Pr
j∈[d]

[︂
j ∈ Good

]︂
+ Pr

j∈[d]
[bj ̸= bj | j ∈ Good]

≤ δout

2 + Pr
j∈[d]

[bj ̸= bj | j ∈ Good] ,

we have

Pr
[︄

Pr
j∈[d]

[bj ̸= bj] ≥ δout

]︄
≤ Pr

[︄
Pr

j∈[d]
[bj ̸= bj | j ∈ Good] ≥ δout

2

]︄

≤ Pr
⎡⎣ ⋃︂

j∈Good
Ej

⎤⎦ ≤ negl(n′).
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5.6.5 Block Decode Algorithm

A key component of the Noisy Binary Search algorithm is the ability to decode γ-good

blocks in the corrupted codeword c′. In order to do so, our algorithm will take explicit

advantage of the γ-good properties of a block. We present our block decoding algorithm,

named Block-Decode, in  Figure 5.2 .

Block-Decodec′(i)
Input : An index i ∈ [n′] and oracle access to (corrupted) codeword c′ ∈ {0, 1}n′

.
Output : Some string Dec(s) for a substring s of c′, or ⊥.

1 buff ← Buff-Findc′
η (i)

2 if buff = ⊥ then
3 return ⊥
4 else
5 return Decin(c′[b+ 1, a′ − 1])
6 return ⊥

Figure 5.2. Our Block Decoding Algorithm

Buff-Findc′
η (i)

Input : An index i ∈ [n′] and oracle access to (corrupted) codeword c′ ∈ {0, 1}n′ .
Output : Two consecutive δb-approximate buffers (a, b), (a′, b′), or ⊥.

1 js ← max{1, i− ητ}, je ← min{n′ − τ + 1, i+ ητ}
2 buffs← [ ] ; /* i.e., empty buffer */
3 while js ⩽ je do
4 if ED(0τ , c′[js, js + τ − 1]) ⩽ δbατ then
5 buffs.append((js, js + τ − 1))
6 js ← js + 1
7 foreach k ∈ {0, 1, . . . , |buffs| − 2} do
8 (a, b)← buffs[k], (a′, b′)← buffs[k + 1]
9 if b < i < a′ then

10 return (a, b), (a′, b′)

11 return ⊥

Figure 5.3. Our Buffer Finding Algorithm
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Buff-Find

The algorithm Block-Decode makes use of the sub-routine Buff-Find, presented in

 Figure 5.3 . At a high-level, the algorithm Buff-Find on input i and given oracle access

to (corrupted) codeword c′ searches the ball c′[i− ητ, i+ ητ ] for all δb-approximate buffers

in the interval, where η ⩾ 1 is a constant such that if i ∈ ϕ−1(j) for any good block j then

c′[ϕ−1(j)] ⊆ c′[i− ητ, i+ ητ ]. Briefly, for any k ∈ N and δb ∈ (0, 1/2) a string w ∈ {0, 1}k is a

δb-approximate buffer if ED(w, 0k) ⩽ δb ·k. For brevity we refer to approximate buffers simply

as buffers. Once all buffers are found, the algorithm attempts to find a pair of consecutive

buffers such that the index i is between these two buffers. If two such buffers are found, then

the algorithm returns these two consecutive buffers. For notational convenience, for integers

a < b we let the tuple (a, b) denote a (approximate) buffer.

Lemma 5.6.8. Let i ∈ [n′] and j ∈ [d]. There exist constants γ < δb ∈ (0, 1/2) such that if

i ∈ ϕ−1(j) then Buff-Find finds buffers (a1, b1) and (a2, b2) such that Decin(c′[b1+1, a2−1]) =

j ◦ bj. Further, if b1 < i < a2 then Block-Decode outputs j ◦ bj.

Proof. We first examine an uncorrupted block which has the form B = 0ατ ◦ Y ◦ 0ατ for some

Y ∈ Cin. Let s = |B| = βτ and note that τ = logm and |Y | = (β − 2α)τ . Note also that

B[1, ατ ] = B[s, s− ατ + 1] = 0ατ and B[ατ + 1, s− ατ ] = Y . We observe that approximate

buffers (a, b) exist such that b > ατ or a < s− ατ + 1; that is, an approximate buffer can cut

into the codeword Y . We are interested in bounding how large this “cut” can be in a γ-good

block and first examine how large this “cut” can be in an uncorrupted block.

Our inner code has the property that any interval of length 2 log(ατ ) has at least fractional

weight ⩾ 2/5. That is, an interval of length 2 log(ατ ) in Y has at least (4/5) log(ατ ) number

of 1’s. Also any approximate buffer has weight at most (δb/2)ατ . Let ℓ = c0τ for some

constant c0. We count the number of 1’s in any c0τ interval of Y . Note that in such an interval

there are at most c0τ/(2 log(ατ)) disjoint intervals of length 2 log(ατ). Since the weight of

each of these 2 log(ατ ) intervals is at least (4/5) log(ατ ) and the intervals are disjoint, we have

that the weight of the interval c0τ in Y is at least c0τ/(2 log(ατ)) · (4/5) log(ατ) = (2/5)c0τ .

We pick c0 such that (2/5)c0τ ⩾ (δb/2)ατ + 1; i.e., c0 = (5/4)δbα + 1 ⩾ (5/4)αδb + 5/(2τ)
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(for large enough m since τ is an increasing function of m). On the other hand, we can have

that an interval of length (δb/2)ατ + 1 in Y has (δb/2)ατ + 1 number of 1’s.

The above derivation implies that largest “cut” an approximate buffer can make into the

codeword Y from the start (i.e., indices after ατ) (and symmetrically the end; i.e., indices

before s−ατ + 1) has size in the range [(1 + δb/2)ατ, (1 + 5δb/2)ατ ]. This implies that there

exists b1, a2 ∈ N such that (1 + δb/2)ατ ⩽ b1 ⩽ (1 + 5δb/2)ατ and (β−α(1 + 5δb/2))τ ⩽ a2 ⩽

(β − α(1 + δb/2))τ . Further b1 and a2 have the following properties: (1) B[b1 − τ + 1, b1] and

B[a2, a2 +τ−1] are approximate buffers; and (2) for every i ∈ {b1−τ+2, b1−τ+3, . . . , a2−1},

the window B[i, i+ τ − 1] is not an approximate buffer. These properties follow by our choice

of c0 and by the density property we have for our inner code Cin.

We obtained the above bounds on b1, a2 by analyzing an uncorrupted block B. We use

this as a starting point for analyzing a γ-good block B̃ (i.e., ED(B, B̃) ⩽ γατ . Let s′ = |B̃|.

Then by γ-good we have that (1− αγ)s ⩽ s′ ⩽ (1 + αγ)s. Now by γ-good, we have that the

bounds obtained on b1 and a2 are perturbed by at most αγτ . That is, we have in block B̃

(1 + δb/2− γ)ατ ⩽ b1 ⩽ (1 + 5δb/2 + γ)ατ

(β − α(1 + 5δb/2 + γ))τ ⩽ a2 ⩽ (β − α(1 + δb/2− γ))τ.

This gives us

a2 − b1 ⩽ (β − α(1 + δb/2− γ))τ − (1 + δb/2− γ)ατ

= (β − 2α(1 + δb/2− γ))τ

a2 − b1 ⩾ (β − α(1 + 5δb/2 + γ))τ − (1 + 5δb/2 + γ)ατ

= (β − 2α(1 + 5δb/2 + γ))τ.

Now we want to ensure decoding is possible on c′[b1 + 1, a2− 1]. We observe that (β− 2α)τ −

(a2 − b1) is the number of insertion-deletion errors that are introduced because of the buffer

finding algorithm. This quantity can be written as

(δb − 2γ)ατ ⩽ (β − 2α)τ − (a2 − b1) ⩽ (5δb + 2γ)ατ.
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Note that since |(δb − 2γ)ατ | ⩽ |(5δb + 2γ)ατ |, we can correctly decode if γ and δb are chosen

such that

(5δb + 2γ)ατ + γατ ⩽ δin(β − 2α)τ
(5δb + 3γ)α
β − 2α ⩽ δin.

To finish, we note that the constant η is chosen so that if i ∈ ϕ−1(j) for any good block j

then we have that c′[ϕ−1(j)] ⊂ c′[i− ητ, i+ ητ ]. Since the algorithm Buff-Find finds every

δb-approximate buffer in the interval c′[i− κτ, i+ κτ ] and since this interval contains γ-good

block j, we have that the algorithm indeed Buff-Find returns approximate buffers (a1, b1)

and (a2, b2) such that Decin(c′[b1 + 1, a2 − 1]) = j ◦ Y (j)) if b1 < i < a2, thus proving the

lemma.

We now recall and prove  Theorem 5.6.7 .

Theorem 5.6.7. The functions φ and ψ satisfy the following properties:

1. For any γ-good block j we have

Pr
i∈ϕ−1(j)

[φ(i) ̸= j] ≤ γ.

2. Let [l, r) be an interval with closure I[L,R−1], satisfying that every block j ∈ {L, . . . , R−

1} is γ-good. Then for every block j such that ϕ−1(j) ⊆ [l, r), we have ψ(j, l, r) = bj.

Proof. First we analyze the probability Pri∈ϕ−1(j) [φ(i) ̸= j]. By  Lemma 5.6.8 the algorithm

Block-Decode on input i correctly outputs the block Y (j) ◦ j if i ∈ [b1 + 1, a2− 1] ⊂ ϕ−1(j).

Since j is γ-good and by  Proposition 5.6.2  we have that |ϕ−1(j)| ⩽ (β + αγ)τ . Finally, by

correctness of the decoder Decin,  Lemma 5.6.8 gives us a lower bound on the distance a2− b1.

In particular,

a2 − b1 ⩾ (β − 2α(1 + 5δb/2 + γ))τ.
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Thus we have that

Pr
i∈ϕ−1(j)

[φ(i) ̸= j] = 1− Pr
i∈ϕ−1(j)

[φ(i) = j] = 1− a2 − b1

|ϕ−1(j)| ⩽ 1− a2 − b1

(β + αγ)τ

⩽ 1− (β − 2α(1 + 5δb/2 + γ))τ
(β + αγ)τ = 1− β − 2α(1 + 5δb/2 + γ)

(β + αγ)

⩽
αγ + 6α
β + αγ

⩽
(γ + 6)α

2 ≤ γ,

where we assumed that that δb < 1/2, γ = 1/12 and α ≤ 2γ/(γ + 6). More generally, there

exists constants δb, γ, and α such that the above inequalities hold with α ⩽ 2γ/(γ + 6).

For the second statement of  Theorem 5.6.7 , we analyze the algorithm Interval-Decode.

Note we are only concerned with γ-good blocks which are wholly contained in the interval

[l, r). Let I[L,R − 1] be the closure of [l, r). We note that ϕ restricted to I[L,R − 1]

is a sub-decomposition which captures the errors introduced to blocks L, . . . , R − 1. The

algorithm Interval-Decode is similar to the global buffer-finding algorithm of SZ codes

applied to the interval [l, r): it searches intervals of length ατ in {l, l+ 1, . . . , r− 1} from left

to right until an approximate buffer c′[i, i+ ατ − 1] is found. Then the algorithm marks it

and continue scanning for approximate buffers, starting with left endpoint of the first new

interval at the right endpoint of the presumed buffer. Then once the whole interval has been

scanned, the algorithm finds pairs of consecutive buffers which are far apart and attempts to

decode the section of the block that falls between these two buffers.

According to the analysis of the SZ buffer finding algorithm, as long as block j and j+1 are

γ-good (for small enough constant γ), the buffers surrounding block j + 1 should be located

approximately correctly, and block j will appear close to a codeword. Since every block in

the closure of [l, r) is γ-good, all the buffers in this interval should be located approximately

correctly, and every block j such that ϕ−1(j) ⊆ [l, r) should be decoded properly. Therefore

there will be exactly one block decoded to (j, b) and it must hold that b = bj.

There is one minor issue with the above argument. The searching process starts from an

index l which does not necessarily align with the left boundary of I[L,R− 1]. However, we

note that this only affects the location of the first approximate buffer, and all subsequent

buffers are going to be consistent with what the algorithm would have found if it started
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from the left boundary of I[L,R− 1]. In order to decode the first block, Interval-Decode

performs another SZ buffer finding algorithm, but from right to left, and decodes the leftmost

block.

5.6.6 Parameter Setting and Proof of  Theorem 5.6.1 

In this section we list a set of constraints which our setting of parameters must satisfy,

and then complete the proof of  Theorem 5.6.1 . These constraints are required by different

parts of the analysis. Recall that δout, δin ∈ (0, 1) and βin ≥ 1 are given as parameters of the

outer code and the inner code, and that β = 2α+ βin (1 + log |Σ|). We have that β ≥ 2 for

any non-negative α.

Proposition 5.6.4. There exists constants γ, θ ∈ (0, 1) and α = Ω(δin) such that the following

constraints hold:

1. γ ≤ 1/12 and θ < 1/50;

2. (β + γ)/(β − γ) < 4/3;

3. α ≤ 2γ/(γ + 6);

4. α(1 + 3γ)/(β − 2α) < δin.

Proof. For convenience of the reader and simplicity of the presentation we work with explicit

values and verify that they satisfy the constraints in  Proposition 5.6.4 . Let γ = 1/12 and

θ = 1/51, which satisfies constraint (1). Note that γ < 2/7 ≤ β/7, hence

β + γ

β − γ
<

4
3

and constraint (2) is satisfied. We take α = 2γδin/(γ + 6) so that α = Ω(δin) and constraint

(3) is satisfied. Note also that β − 2α = βin(1 + log |Σ|) ≥ 2 which implies

α(1 + 3γ)
β − 2α ≤ α(1 + 3γ)

2 = α(γ + 3γ2)
2γ <

α(γ + 6)
2γ = δin.

Therefore, constraint (4) is also satisfied.
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We let

δ = δoutαγ

2β(1 + 1/θ) = Ω (δinδout) .

We now recall and prove  Theorem 5.6.1 , which shows  Theorem 5.2.1 .

Theorem 5.6.1. Let Cout and Cin be codes such that

• Cout defined by Encout : Σk → Σm is an a (ℓout, δout, ϵout)-Hamming LDC.

• Cin is family of binary polynomial-time encodable/decodable codes with rate 1/βin capable

of correcting δin fraction of insertion-deletion errors. In addition, there are constants

α1, α2 ∈ (0, 1) such that for any codeword c of Cin, any substring of c with length at

least α1|c| has fractional Hamming weight at least α2.

Then C(Cout, Cin) is a binary
(︂
ℓout ·O(log4(n′)),Ω(δoutδin), ϵ− negl(n′)

)︂
-InsDel LDC. Here

the codewords of C have length n = βm where β = O(βin log(|Σ|)), and n′ denotes the length

of received word.

Proof. Recall that the decoder Dec works as follows. Given input index i ∈ [k] and oracle

access to c′ ∈ {0, 1}n′ , Decc′(i) simulates Decs′

out(i). Whenever Decs′

out(i) queries an index

j ∈ [m], the decoder expresses j = (p−1)τ+rj for p ∈ [d] and 0 ≤ rj < τ , and runs  Figure 5.1  

on input (c′, 1, n′ + 1, p) to obtain a τ -long string b′p. Then it feeds the (rj + 1)-th symbol of

b′p to Decs′

out(i). At the end of the simulation, Decc′(i) returns the output of Decs′

out(i).

For p ∈ [d], let b′p ∈ Στ ∪ {⊥} be a random variable that has the same distribution as the

output of  Figure 5.1 on input (c′, 1, n′ + 1, p). Define a random string s′ ∈ (Σ ∪ {⊥})m as

follows. For every i ∈ [m] such that i = (p− 1)τ + r for p ∈ [d] and 0 ≤ r < τ ,

s′[i] =

⎧⎪⎪⎨⎪⎪⎩
b′p[r] if b′p ̸=⊥,

⊥ if b′p =⊥.

Since b′p = bp implies s′[(p − 1)τ + r] = s[(p − 1)τ + r] for all 0 ≤ r < τ , the event

Es := {Prj∈[m] [s′[j] ̸= s[j]] ≤ δout} is implied by the event Eb := {Prj∈[d]
[︂
b′j ̸= bj

]︂
≤ δout}.

 Theorem 5.6.5 implies that Pr [Es] ≥ Pr [Eb] ≥ 1− negl(n′). According to the construction
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of Dec, from the perspective of the outer decoder, the string s′ is precisely the string it is

interacting with. Hence by properties of Decout we have that

∀i ∈ [k], Pr
[︂
Decs′

out(i) = x[i]
⃓⃓⃓
Es

]︂
≥ 1

2 + εout.

Therefore by construction of Dec we have

∀i ∈ [k], Pr
[︂
Decc′(i) = x[i]

]︂
≥ Pr [Es] · Pr

[︂
Decs′

out(i) = x[i]
⃓⃓⃓
Es

]︂
≥ (1− negl(n′)) ·

(︃1
2 + εout

)︃
≥ 1

2 + εout − negl(n′).

The query complexity of Dec is ℓout ·O
(︂
log4 n′

)︂
since it makes ℓout calls to  Figure 5.1 , which

by  Proposition 5.6.3  has query complexity O
(︂
log4 n′

)︂
.

5.7 Private/Resource-Bounded Insertion-Deletion LDCs from Private/Resource-
Bounded Hamming LDCs

We show that our compiler extends to both the private and resource-bounded LDC

settings, yielding private and resource-bounded LDCs for insertion-deletions errors. To the

best of our knowledge, this is the first such result constructing LDCs for insertion-deletion

errors in this setting.

5.7.1 Abstraction of  Theorem 5.2.1 

We present the following abstraction of  Theorem 5.6.1 that describes the key properties

of the compiler.

Lemma 5.7.1. There exist functions Compile and Recover such that for any constant δ > 0

and any Hamming LDC C[K, k, q1, q2] = (Enc,Dec) with locality ℓ, there exists δf = Θ(δ)

such that for any message x and any c′ with ED(c′, y) ⩽ δf for y = Compile(Enc(x)) ∈ {0, 1}∗:

1. Decf has locality ℓ ·O(log4(K · log(q2))) and |y| = Θ(K · log(q2));

2. For c′′ = RecoverY ′(1) ◦ · · · ◦ RecoverY ′(K · log(q2)), we have Pr [Decc′

f (i) = xi] ⩾

Pr [Decc′′(i) = xi]− ϑ1(K · log(q2)); and
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3. If ED(c′,Encf(x)) ⩽ δf then HAM(c′′,Enc(x)) ⩽ δ except with probability ϑ2(K · log(q2)).

Here, ϑ1 and ϑ2 are fixed negligible functions, Compile is computable in parallel time polylog(K),

and c′′ is computable in parallel time polylog(K).

5.7.2 One-Time Private InsDel LDCs

We prove  Theorem 5.2.4 . We restate the theorem for completeness.

Theorem 5.2.4 ([ 46 ]). Let C[K, k, λ, q1, q2] be a (ℓ, δ, p, ε)-one time private Hamming LDC

for constant δ > 0. Then there exists a binary code Cf [n, k, λ, q1, 2] that is a (ℓf , δf , pf , εf)-one

time private InsDel LDC, where ℓf = ℓ ·O(log4(n)), δf = Θ(δ), pf < p, εf = ε/(1− (pf/p)−

(ϑ1(n)/p)− ϑ2(n)), and n = Θ(K · log(q2)). Here ϑ1, ϑ2 are fixed negligible functions.

Proof. Let C[K, k, q1, q2, λ] = (Gen,Enc,Dec) be a (ℓ, ρ, p, ε,HAM)-one time private Hamming

LDC. We define Genf(1λ) := Gen(1λ). Then for any message x and secret key sk we define

Encf(x, sk) := Compile(Enc(x, sk)). Fixing the secret key sk and applying  Lemma 5.7.1 to the

encoding scheme, we see that Decf has locality ℓ ·O(log4(n)) and the output length of Encf is

n = Θ(K log q2) bits. Next, we obtain Encf : Σk
1 × {0, 1}

∗ → {0, 1}n and Decf : {0, 1}log k ×

{0, 1}∗ → Σ1 by applying  Lemma 5.7.1 to the code C, with the modification that both the

encoder Encf and Decf additionally receive a secret key sk← Genf(1λ) as input. The main

challenge is proving the security. Suppose towards contradiction that there exists an adversary

Af such that Pr [Fool(Af(Y ), δf , pf , sk, x, Y ) = 1] > εf for Y ← Encf(x, sk). Then we construct

an adversary A such that Pr [Fool(A(y), ρ, p, sk, x, y) = 1] > ε for y ← Enc(x, sk). Adversary

A works as follows:

1. A obtains as input x, y, λ, ρ, p, k, and K, where y = Enc(x, sk);

2. A then obtains Y = Compile(y); and

3. A then obtains Y ′ ← Af(x, Y, λ, δf , pf , k, n).

By assumption ED(Y, Y ′) ⩽ δf and with probability at least εf there exists i ∈ [k] such that

Pr [DecY ′

f (i, sk) = xi] < pf .

187



A then outputs word

y′ = RecoverY ′(1) ◦ · · · ◦ RecoverY ′(K · log(q2)).

Suppose that Fool(Y ′, δf , pf , sk, x, Y ) = 1. Then we have that ED(Y, Y ′) ⩽ δf and there

exists i ∈ [k] such that

Pr [DecY ′

f (i, sk) = xi] < pf .

By  Lemma 5.7.1 , we have that HAM(y, y′) ⩽ ρ with probability at least 1 − ϑ2(n). By

definition of Decf and  Lemma 5.7.1 , we have that

pf > Pr [DecY ′

f (i, sk) = xi] ⩾ Pr [Decy′(i, sk) = xi]− ϑ1(n),

where the randomness of the second term is taken over the coins of Dec and the coins used by

Recover to generate y′, and the randomness of the first term is taken only over the coins of

Decf . Define the predicate Bp(y′) = 1 if and only if Pr [Decy′(i, sk) = xi] < p, and Bp(y′) = 0

otherwise, where the probability is taken over Dec’s coins. Let α = Pr [Bp(y′)], where the

probability is taken over the random coins used to generate y′ from Y ′. Then we have that

Pr [Decy′(i, sk) = xi] ⩾ p(1− α).

This implies that α > 1− (pf/p)− (ϑ1(n)/p). Now consider two events

FHAM = Fool(y′, ρ, p, sk, x, y)

FED = Fool(Y ′, δf , pf , sk, x, Y ).

Then

Pr [FHAM = 1] ⩾ Pr [FED = 1] · Pr [FHAM = 1|FED = 1].
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By assumption we have that Pr [FED = 1] > εf . Further, by  Definition 5.5.1 , FHAM = 1 if

and only if HAM(y, y′) ⩽ ρ and there exists i ∈ [k] such that Pr [Decy′(i, sk) = xi] < p. Since

FED = 1, we have that ED(Y, Y ′) ⩽ δf , and thus by  Lemma 5.7.1 we have that HAM(y, y′) ⩽ ρ

with probability at least 1− ϑ2(n). Thus

Pr [FHAM = 1|FED = 1] ⩾ 1− ϑ2(n)− (1− α)

and α > 1− (pf/p)− (ϑ1(n)/p). Therefore we have that

Pr [FHAM = 1] > εf · (1− (pf/p)− (ϑ1(n)/p)− ϑ2(n)),

which is a contradiction since the right hand side of the above equation is equal to ε.

5.7.3 Resource-Bounded InsDel LDCs

To construct LDCs for resource-bounded InsDel channels, we first need to introduce the

notion of closure between algorithms classes. Let C be a class of parallel algorithms running

in at most sequential time T and maximum space usage S. For any A ∈ C, let B = reduce(A)

be a reduction from algorithm A to B. We say the class of algorithms C′ is the closure of C

with respect to reduce if C′ is the minimum class of algorithms such that reduce(A) ∈ C′ for

all A ∈ C.

In our context, for parameter N we define reduceN as a sequential time N · polylog(N)

reduction that can be executed in parallel for sequential time polylog(N). Parallel execution

incurs an additional N · polylog(N) space overhead, and sequential execution incurs an

additional polylog(N) space overhead. Thus, if C is the class of all parallel PPT algorithms

running in sequential time T , then C(N) is some class of parallel PPT algorithms running in

time T + polylog(N).

We now recall and prove  Theorem 5.2.6 .

Theorem 5.2.6 ([ 46 ]). Let C be the class of parallel PPT algorithms running in sequential time

T and space S, and let C[K, k, q1, q2] be a (ℓ, δ, p, ε,C(n))-Hamming LDC for constant ρ, p > 0

and n = O(K · log(q2)). There exists a binary code Cf [n, k, q1, 2] that is a (ℓf , δf , pf , εf ,C)-
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InsDel LDC against class C, where ℓf = ℓ · O(log4(n)), δf = Θ(δ), pf < p, and εf =

ε/(1− (pf/p)− (ϑ1(n)/p)− ϑ2(n)). Here ϑ1, ϑ2 are fixed negligible functions.

Proof. The proof follows nearly identically to the proof of  Theorem 5.2.4 ; namely, we

obtain Cf in an identical manner by using the compiler of  Lemma 5.7.1  with the code C

defined above. The main challenge again is the security proof: given adversary Af ∈ C

such that Pr [Fool(A(Y ), δf , pf , x, Y ) = 1] > εf for Y ← Encf(x), we construct an adversary

A ∈ C(n) such that Pr [Fool(A(y), ρ, p, x, y) = 1] > ε for y ← Enc(x). Adversary A

is constructed identically as in the proof of  Theorem 5.2.4 , except now the constructed

adversary only yields a contradiction if we can show that A ∈ C(n). By  Lemma 5.7.1 ,

we have that Compile is a polylog(K) = polylog(n) parallel time algorithm, and y′ =

RecoverY ′(1) ◦ · · · ◦ RecoverY ′(K log(q2)) is computable in polylog(n) parallel time. Finally,

Compile and Recover are run independent of the adversary Af , we have that the total parallel

time of A is T + polylog(n), which implies A ∈ C(n), yielding our contradiction.

5.A Hamming-to-InsDel Locally Decodable Code Compiler

5.B Proof of  Theorem 5.6.6 

We first recall  Theorem 5.6.6 .

Theorem 5.6.6. If j ∈ [d] is a (θ, γ)-locally good block, running  Figure 5.1 on input

(c′, 1, n′ + 1, j) outputs bj with probability at least 1− negl(n′).

We emphasize that the exact boundaries of any block ϕ−1(j) or interval I[L,R] are not

known to the binary search algorithm, so it cannot do uniform sampling within the exact

boundaries. Instead, as we can see in  Figure 5.1 , in each iteration it picks two indices

m1,m2 and calls Block-Decode on uniformly sampled indices in {m1,m1 + 1, · · · ,m2− 1}.

Depending on the results returned by Block-Decode, it either sets l = m1 or r = m2 and

recursively search in the smaller interval [l, r).

The following lemma shows that as long as the closure of an interval [l, r) is (θ, γ)-good,

uniform samples from [l, r) does now perform much worse than uniform samples from a good

block in terms of estimating ϕ.
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Lemma 5.B.1. Let [l, r) be an interval with closure I[L,R− 1]. Suppose I[L,R− 1] is a

(θ, γ)-good interval. We have

Pr
i∈[l,r)

[φ(i) ̸= ϕ(i)] ≤ γ + θ + γ

β
.

Proof. Let Good ⊆ {L+1, . . . R−2} be the set of γ-good blocks among {L+1, . . . , R−2}, and

let Good = {L+1, . . . , R−2}\Good. By definition of (θ, γ)-goodness we have Good ≤ θ(R−L).

Since for each j ∈ Good, ϕ−1(j) ⊆ [l, r). We can apply item (1) of  Theorem 5.6.7 and get

Pr
i∈[l,r)

[φ(i) ̸= ϕ(i) | ϕ(i) ∈ Good] ≤ γ.

Now we have the bound

Pr
i∈[l,r)

[φ(i) ̸= ϕ(i)] ≤ Pr
i∈[l,r)

[φ(i) ̸= ϕ(i) | ϕ(i) ∈ Good] + Pr
i∈[l,r)

[ϕ(i) /∈ Good]

≤ γ + Pr
i∈[l,r)

[ϕ(i) /∈ Good] ,

so it suffices to upper bound Pri∈[l,r) [ϕ(i) /∈ Good]. Denote ∆j = |ϕ−1(j)| − βτ . It holds that∑︁R−1
j=L |∆j| ≤ γ(R−L)τ . In particular ∑︁j∈Good ∆j ≥ −γ(R−L)τ and ∑︁j∈Good ∆j ≤ γ(R−L)τ .

We have

Pr
i∈[l,r)

[ϕ(i) /∈ Good] ≤
∑︁

j /∈Good |ϕ−1(j)|
r − l

≤
θ(R− L)βτ +∑︁

j /∈Good ∆j

(R− L)βτ +∑︁
j∈Good ∆j +∑︁

j /∈Good ∆j

≤ θ(R− L)βτ + γ(R− L)τ
(R− L)βτ = θ + γ

β
.

Hence the lemma follows.

In the following, we set ρ = min{1
4 ·

β−γ
β+γ

, 1− 3
4 ·

β+γ
β−γ
} as in  Figure 5.1 . Note that by item

(2) of  Proposition 5.6.4  we have ρ > 0.

The following lemma states that any interval not too far from a locally good block is also

good.
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Lemma 5.B.2. Let l, r ∈ [n′] be such that r− l ≥ 18(β + γ)τ . Let I[L,R− 1] be the closure

of [l, r). Set m1 = (1− ρ)l + ρr and m2 = ρl + (1− ρ)r and let I[M1,M2 − 1] be the closure

of [m1,m2). Suppose for some L ≤ x ≤M1 block x is (θ, γ)-locally-good. Then we have

1. M1 ≤ L+ (R− L)/3, M2 ≥ L+ 2(R− L)/3.

2. I[M1,M2 − 1] is a (2θ, 2γ)-good interval.

Proof. Since L ≤ x ≤ R− 1 and block x is (θ, γ)-locally good, by definition I[L,R− 1] is a

(θ, γ)-good interval. From the inclusion [l, r) ⊆ I[L,R− 1] we know that

(R− L)(β + αγ)τ ≥ |I(L,R− 1)| ≥ r − l ≥ 18(β + αγ)τ,

which implies R− L ≥ 18.

We begin by proving item (1).

Claim 5.B.3. M1 ≤ L+ (R− L)/3.

Proof. Suppose M1 > L+ (R−L)/3. From the inclusion I[L+ 1,M1 − 1] ⊆ [l,m1), we have

ρ(r − l) = m1 − l ≥ |I[L+ 1,M1 − 1]| ≥ (M1 − L− 1)(β − αγ)τ

>
1
4 (R− L) · (β − αγ)τ.

The last inequality holds as long as R − L ≥ 12. Similarly, from the inclusion [l, r) ⊆

I[L,R− 1], we have that

r − l ≤ |I[L,R− 1]| ≤ (R− L)(β + αγ)τ.

This implies ρ > 1
4 ·

β−γ
β+γ

which is a contradiction.

Claim 5.B.4. M2 ≥ L+ 2(R− L)/3.

Proof. Suppose M2 < L+ 2(R− L)/3. From the inclusion [l,m2) ⊆ I[L,M2 − 1], we have

(1− ρ)(r − l) = m2 − l ≤ |I[L,M2 − 1]| ≤ (M2 − L)(β + αγ)τ
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<
3
4 (R− L− 2) · (β + αγ)τ.

The last inequality holds as long as R−L ≥ 18. Similarly, from the inclusion I[L+ 1, R−

2] ⊆ [l, r), we have that

r − l ≥ |I[L+ 1, R− 2]| ≥ (R− L− 2)(β − αγ)τ.

This implies 1− ρ < 3
4 ·

β+γ
β−γ

which is a contradiction.

An immediate consequence of item (1) is that M2 − L ≤ 2(M2 −M1). Therefore, by

(θ, γ)-locally-goodness of x, we have

M2−1∑︂
j=M1

ED
(︃
c′[ϕ−1(j)], Ỹ (j)

)︃
≤

M2−1∑︂
j=x

ED
(︃
c′[ϕ−1(j)], Ỹ (j)

)︃

≤ γ · (M2 − L)τ

≤ 2γ · (M2 −M1)τ.

Similarly, the number of 2γ-bad blocks among {M1, · · · ,M2 − 1} is at most the number of

γ-bad blocks among {L, · · · ,M2− 1}, which is upper bounded by θ(M2−L) ≤ 2θ(M2−M1).

Therefore the interval I[M1,M2 − 1] is (2θ, 2γ)-good.

The following is the main lemma we use to prove  Theorem 5.6.6 .

Lemma 5.B.5. Assume j ∈ [d] is a (θ, γ)-locally-good block. Denote by l(t) , r(t) the values

of l, r at beginning of the t-th iteration when running  Figure 5.1 on input (c′, 1, n′ + 1, j).

Suppose r(t) − l(t) ≥ 36(β + γ)τ . Then we have

Pr
[︂
ϕ−1(j) ⊆

[︂
l(t+1), r(t+1)

)︂ ⃓⃓⃓
ϕ−1(j) ⊆

[︂
l(t), r(t)

)︂]︂
≥ 1− negl(n′),

where the probability is taken over the randomness of the algorithm.

Proof. Let m1 and m2 be defined as in  Figure 5.1 . Let I[L,R− 1] be closure of [l(t), r(t)], and

let I[M1,M2 − 1] be the closure of [m1,m2). Since we always have [m1,m2) ⊆ [l(t+1), r(t+1)),
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ϕ−1(j) ⊆ [m1,m2) would immediately imply ϕ−1(j) ⊆ [l(t+1), r(t+1)). In the rest of the proof,

we assume ϕ−1(j) ̸⊆ [m1,m2), which means L ≤ j ≤M1 or M2 − 1 ≤ j ≤ R.

We may assume that L ≤ j ≤ M1 since the other case M2 − 1 ≤ j ≤ R is completely

symmetric. The condition r(t) − l(t) ≥ 36(β + γ)τ implies that R − L ≥ 36, and that

m2−m1 ≥
(︂
r(t) − l(t)

)︂
/2 ≥ 18(β+γ)τ . Therefore we can apply  Lemma 5.B.2 to m1, m2 and

get that (1) M2 −M1 ≥ (R− L) /3 ≥ 12, and (2) I[M1,M2 − 1] is a (2θ, 2γ)-good interval.

Since I[M1,M2 − 1] is the closure of [m1,m2),  Lemma 5.B.1  gives

Pr
i∈[m1,m2)

[φ(i) ̸= ϕ(i)] ≤ 2γ + 2θ + 2γ
β
<

1
4 + 1

25 <
1
3 ,

where the second last inequality is because θ < 1/50, γ ≤ 1/12 (i.e., item (1) of  Proposition 5.6.4 )

and β ≥ 2.

Let i1, i2, · · · , iN be the samples drawn by  Figure 5.1 , which are independent and uniform

samples from [m1,m2). Define Xj to be the indicator random variable of the event {φ(ij) =⊥

}∪{φ(ij) < x}, and define Yj to be the indicator random variable of the event {φ(ij) ̸= ϕ(ij)}.

It follows that E [Yj] < 1/3, and ϕ−1(x) ̸⊆
[︂
l(t+1), r(t+1)

)︂
if and only if ∑︁N

j=1 Xj ≥ N/2.

Therefore it suffices to upper bound the probability of the latter event.

We observe that if i ∈ [m1,m2) ⊆ I[M1,M2], then ϕ(i) ≥M1 ≥ j. Therefore φ(i) = ϕ(i)

implies φ(i) ≥ j, or in other words Xj ≤ Yj. An application of Chernoff bound gives

Pr
⎡⎣ N∑︂

j=1
Xj ≥

N

2

⎤⎦ ≤ Pr
⎡⎣ N∑︂

j=1
Yj ≥

N

2

⎤⎦ ≤ Pr
⎡⎣ N∑︂

j=1
Yj ≥

(︃
1 + 1

2

)︃ N∑︂
j=1

E [Yj]
⎤⎦

≤ exp
(︃
−N36

)︃
.

Taking N = Θ(log2 n′) gives Pr
[︂∑︁N

j=1 Xj ≥ N
2

]︂
≤ exp

(︂
−Θ

(︂
log2 n′

)︂)︂
= negl(n′).

We are now ready to prove  Theorem 5.6.6 .

Proof of  Theorem 5.6.6 . Let C = 36(β + γ)τ be defined as in  Figure 5.1 , and T = O(log n′)

be the number of iterations until r− l ≤ C. Denote by l(t) , r(t) the values of l, r at beginning
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of the t-th iteration. Let b be the random variable denoting the output of  Figure 5.1 . We

have

Pr [b = bj] ≥ Pr
[︂
ϕ−1(j) ⊆ [l(T ), r(T ))

]︂
· Pr

[︂
b = bj

⃓⃓⃓
ϕ−1(j) ⊆ [l(T ), r(T ))

]︂
. (5.2)

We are going to lower bound both probabilities in the right-hand-side of ( Equation (5.2) ).

According to the algorithm, we have the following inclusion chain

[l(T ), r(T )) ⊆ [l(T−1), r(T−1)) ⊆ · · · ⊆ [l(1), r(1)),

where l(1) = 1 and r(1) = n′ + 1. By  Lemma 5.B.5 , it holds that

Pr
[︂
ϕ−1(j) ⊆ [l(T ), r(T ))

]︂
=

T−1∏︂
t=1

Pr
[︂
ϕ−1(j) ⊆

[︂
l(t+1), r(t+1)

)︂ ⃓⃓⃓
ϕ−1(j) ⊆

[︂
l(t), r(t)

)︂]︂
≥ (1− negl(n′))T ≥ 1− T · negl(n′) = 1− negl(n′).

For the second term in  Equation (5.2) , let I[L,R− 1] be the closure of [l(T ), r(T )). Then

R− L ≤ 2 + 36(β + γ)/(β − γ) ≤ 50. Conditioned on ϕ−1(j) ⊆ [l(T ), r(T )) ⊆ I[L,R− 1], the

interval I[L,R− 1] is (θ, γ)-good. Therefore every block in I[L,R− 1] is γ-good since the

number of γ-bad blocks is bounded by (R−L)θ ≤ 50θ < 1. Due to item (2) of  Theorem 5.6.7  ,

we have

Pr
[︂
b = bj

⃓⃓⃓
ϕ−1(j) ⊆ [l(T ), r(T ))

]︂
= 1.

Hence the theorem follows.
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6. RESOURCE-BOUNDED LOCALLY DECODABLE CODES:

USING CRYPTOGRAPHIC PUZZLES FOR CONSTRUCTIONS

WITHOUT RANDOM ORACLES

A portion of this chapter appears in The International Association for Cryptologic Research
Cryptology ePrint Archive [ 13 ], available  https://ia.cr/2021/801 . A portion of this chapter is
to appear in the 13th Conference on Security and Cryptography for Networks – SCN 2022

 https://scn.unisa.it/scn22/ .

In this chapter, we turn to one explicit use of cryptographic primitives in the construction

of new alternative notions of locally decodable codes. Recall that a (ℓ, δ, p, dist)-locally

decodable code (LDC) ( Definition 2.7.5 ) is a coding scheme C[K, k, q1, q2] such that the

decoder Dec : [k] → Σ1 is a probabilistic oracle algorithm with the following properties.

For any message x ∈ Σk
1, when the decoder is given oracle access to any ỹ ∈ Σ∗2 such

that dist(ỹ,Enc(x)) ⩽ δ, the decoder makes at most ℓ queries to its oracle and outputs

xi ∈ Σ1 with probability at least p. Here ℓ is the locality (also known as query complexity),

δ is the error-tolerance, p is the success probability, and dist is some fractional distance

(e.g., fractional Hamming distance). Informally, locally decodable codes are codes which

allow for super-efficient decoding of individual bits (or symbols) of the original encoded

message, without decoding the entire message. In particular, the decoder for such codes

makes a bounded number of queries to the code word (given as an oracle to the decoder),

and outputs the desired symbol with good probability. Locally decodable codes have strong

cryptographic motivations and influences, such as hard-core bits [  128 ], program testing [ 22 ,

 63 ,  189 ], arithmetization [ 21 ,  22 ,  192 ,  236 ], and private information retrieval schemes [ 12 ,  25 ,

 92 ,  127 ,  170 ,  173 ]. For example, the proof of the Goldreich-Levin Theorem [ 128 ] immediately

yields a local list decoder for the Walsh-Hadamard code [ 17 ].

We turn our focus to LDCs which are resilient against Hamming errors; i.e., dist is

the fractional Hamming distance. Classical Hamming LDC constructions fall into three

locality-complexity regimes: constant locality, poly-logarithmic (in K) locality, and sub-

polynomial (but super logarithmic) locality. For the constant locality regime, the gap between

the best constructions and lower bounds is large. The best known constructions are via

matching-vector codes which have block length K = exp(exp(
√︂

log(k) · loglog(k))) [ 108 ,
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 109 ,  265 ], while the best known lower bounds are slightly sub-quadratic with block length

K = Ω(k1−2/ℓ−1)/ log(k) for locality ℓ ⩾ 3 [ 260 ,  261 ]. In the poly-logarithmic locality regime,

Reed-Muller codes are Hamming LDCs with locality logc(k) for some constant c > 1 and have

block length K = O(k1/(c−1)+o(1)) [  264 ]. Finally, in the sub-polynomial, super-logarithmic

locality regime, there exists Hamming LDCs with constant rate (i.e., block length K = O(k))

[ 182 ,  183 ].

While classical Hamming LDCs exhibit large gaps within and between locality regimes,

some research has been directed towards some alternative models for LDCs in order to

circumvent the above limitations. For example, Ben-Sasson et al. [ 37 ] introduce and define

relaxed LDCs, or rLDCs in short. An rLDC allows the decoding algorithm to output ⊥ on a

small (constant) fraction of indices i ∈ [k]. This simple relaxation yields rLDC constructions

with constant locality and block length nearly linear at K = k1+ε for small positive constant

ε > 0 [  37 ]. Recently, Blocki et al. [ 57 ] study rLDCs in the context of computationally bounded

channels (or PPT channels) [ 188 ]. Again, as in the case of rLDCs, this further relaxation

allows for constructions that achieve better rate-locality tradeoffs than classical Hamming

LDCs [ 57 ]. Relaxed LDCs targeting computationally bounded channels are also heavily

motivated by both modern cryptography, where adversaries are assumed to be PPT, and the

real world where Lipton [ 188 ] argues that all channels can be reasonably modeled as PPT.

Turing back to explicit use of cryptographic primitives in LDCs, we examine the work of

Ostrovsky, Pandey, and Sahai [ 214 ]. They introduce the notion of private locally decodable

codes, or private LDCs. These LDCs are secure against computationally bounded channels

and equip both the encoding and decoding algorithm with a shared secret key generated via

standard cryptographic techniques (e.g., one-way functions, pseudo-random generators). 

1
 

Key to their construction is that the key shared by the encoder and decoder remains a

secret from the channel. The secret key assumption yields a construction of a private LDC

with constant rate and slightly super-logarithmic query complexity ω(log(λ)), and success

probability 1− negl(λ), where λ is the security parameter. Follow-up works of Hemenway

and Ostrovsky [ 155 ] and Hemenway et al. [ 156 ] use public-key cryptographic assumptions to
1

 ↑ If the secret key is generated uniformly at random, then these codes are secure against computationally
unbounded channels; i.e., the classical channel model for codes.
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construct public-key LDCs; here, the decoding algorithm has the secret key and the encoding

algorithm uses the public key when generating codewords. These LDCs also achieve better

rate-locality tradeoffs than classical Hamming LDCs at the cost of public-key cryptographic

assumptions.

6.1 Resource-Bounded Locally Decodable Codes

Recently, Blocki, Kulkarni, and Zhou [ 60 ] introduce and study resource-bounded locally

decodable codes. For these LDCs, the channel is assumed to belong to some algorithm class

C which is resource-constrained in some way; e.g., the channel is a low-depth circuit, the

channel is PPT, or the channel is memory-constrained. This is a generalization of Lipton’s

computational channel model [  188 ] and (arguably) captures many channels encountered in

nature (i.e., the real world). Informally, a code C[K, k, q1, q2] is a (ℓ, δ, p, ε, δ,C)-LDC against

class C if on any input i ∈ [k], the decoder makes at most ℓ queries to its (possibly δ-corrupt)

codeword oracle and outputs the ith symbol with probability at least p. The (C, ε)-security

property informally states that any adversary cannot produce a δ-corrupt codeword oracle

that causes the decoder to output some symbol xi of the original encoded message with

probability less than p (see  Definition 6.5.3  for formal definition).

Blocki, Kulkarni, and Zhou construct a resource-bounded LDC, in the random oracle

model, with constant rate, locality polylog(λ), and success probability 1− negl(λ) for security

parameter λ. Their construction is provably secure for any channel class C admitting a

safe function. A function f is ρ-safe against class C of algorithms if for all A ∈ C we

have Pr [A(x) = f(x)] ⩽ ρ, where the probability is taken over the random coins of A and

x
$←{0, 1}∗. They prove that, in the random oracle model, there exists a safe-function against

the class C of parallel random access machines, and thus are able to construct provably

secure resource-bounded LDCs against the class C. However, they conjecture that such

constructions exist under standard cryptographic assumptions without the random oracles.
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6.2 Our Results

We resolve the open problem of Blocki, Kulkarni, and Zhou [ 60 ]. We construct resource-

bounded LDCs against any class C for which there exists a cryptographic puzzle secure

against the class C. Informally, a cryptographic puzzle [ 43 ] consists of two algorithms

(Puz.Gen,Puz.Sol), and has the properties that Puz.Gen should be “easy” to compute and

Puz.Sol should be “hard” to compute, capturing the intuition that puzzles should be “easy”

to generate and “difficult” to solve. A C-hard puzzle informally states that any adversary

A ∈ C cannot solve a randomly generated puzzle. Given such puzzles, we can construct

Hamming LDCs secure against the class C.

Theorem 6.2.1 (Informal, see  Theorem 6.6.2 [ 13 ]). Let C be a class of algorithms such that

there exists a C-hard puzzle. Then there exists a construction of a locally decodable code code

for Hamming errors that is secure against the class C.

Our LDC can be instantiated with any (concretely secure) cryptographic puzzle. In

particular, the (concretely secure versions of) time-lock puzzles of Bitansky et al. [ 43 ] directly

give us LDCs which are secure against small-depth channels. Informally, a time-lock puzzle

is a cryptographic puzzle that any adversary represented by a low-depth circuit cannot solve

a randomly generated puzzle. Additionally, in [ 13 ] we introduce the notion of memory-hard

puzzles: cryptographic puzzles where any parallel adversary with “small memory” cannot

solve a randomly generated puzzle. 

2
 We also construct such puzzles assuming the existence of

succinct randomized encodings and the additional minimal assumption that a memory-hard

language exists. In this report, we do not focus on memory-hard puzzles, but mention

them here as an example of the types of resource-bounded LDCs we can construct using

 Theorem 6.6.2 . See [ 13 ] for details.

6.3 Technical Overview

For sake of presentation, we formally define (C, ε)-hard puzzles.

2
 ↑ This is a very large oversimplification. See [ 13 ] for details.
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Definition 6.3.1 ((C, ε)-hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol) is a (C, ε)-hard

puzzle for algorithm class C there exists a polynomial t′ such that for all polynomials t > t′

and every algorithm A ∈ C, there exists λ0 such that for all λ > λ0 and every s0, s1 ∈ {0, 1}λ

we have

⃓⃓⃓⃓
Pr [A(Zb, Z1−b, s0, s1)]−

1
2

⃓⃓⃓⃓
⩽ ε(λ),

where the probability is taken over b $←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}.

Intuitively, the definition states that any adversary in the class C cannot distinguish between

two randomly generated puzzles, even when given the respective solutions to those puzzles.

With the definition of (C, ε)-hard puzzles in hand, recall that a resource-bounded LDC is

a locally decodable code that is secure against some class C of adversaries, assumed to have

some resource constraint. For example, C can be a class of adversaries that are represented by

low-depth circuits, or have small (amortized) area-time complexity. In more detail, security

of resource-bounded LDCs requires that any adversary in the class C cannot corrupt an

encoding y = Enc(x) to some ỹ such that (1) The distance between y and ỹ is small; and

(2) There exists an index i such that the decoder, when given ỹ as its oracle, outputs xi with

probability less than p.

We construct our resource-bounded LDC by modifying the construction of [ 60 ] to use

cryptographic puzzles in place of random oracles. In particular, for algorithm class C, if

there exists a cryptographic puzzle that is unsolvable by any algorithm in C, then we use

this puzzle to construct a LDC secure against C. Our construction, mirroring [ 60 ], relies on

another relaxed LDC: a private LDC [ 214 ]. Private LDCs are LDCs that are additionally

parameterized by a key generation algorithm that on input 1λ for security parameter λ

outputs a shared secret key sk to both the encoding and decoding algorithm. Crucially, this

secret key is hidden from the adversarial channel.

We construct our Hamming LDC as follows. Let (Gen,Encp,Decp) be a private Hamming

LDC. The encoder, on input message x, samples random coins s ∈ {0, 1}λ then generates

cryptographic puzzle Z with solution s. The encoder then samples a secret key sk← Gen(1λ; s)

using the OPS key generation algorithm, where Gen uses random coins s, and encodes the
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message x as Y1 = Encp(x; sk). The puzzle Z is then encoded as Y2 via some repetition code.

The encoder then outputs Y = Y1 ◦ Y2. This codeword is corrupted to some ˜︁Y , which can

be parsed as ˜︁Y = ˜︁Y1 ◦ ˜︁Y2. The local decoder, on input index i and given oracle access to ˜︁Y ,

first recovers puzzle Z by querying ˜︁Y2 (e.g., via random sampling with majority vote). The

decoder then solves puzzle Z and recovers solution s. Given s, the local decoder is able to

generate the same secret key sk← Gen(1λ; s) and now runs the local decoder Decp(i; sk). All

queries made by Decp(i; sk) are answered by querying ˜︁Y1, and the decoder outputs Decp(i; sk).

The construction is secure against any class C for which there exist cryptographic puzzles

that are secure against this class.

Security is established via a reduction to the cryptographic puzzle. In particular, if there

exists an adversary A in the class C which can violate the security of our construction, then we

construct another adversary in the class C which can break the security of the cryptographic

puzzle. In particular, the reduction relies on a two-phase hybrid distinguishing argument [ 60 ].

Let Enc and Dec be the encoder and local decoder constructed above. Define Enc0 := Enc

and define Enc1 identically as Enc0, except additionally Enc1 takes as input a secret key sk1

(whereas Enc0 samples a secret key sk0) that is given to the encoder Encp(·; sk1) (whereas Enc0

gives secret key sk0). Phase one of the argument samples b $←{0, 1} uniformly at random to

encode a message x with skb, and obtains corrupted codeword ˜︁Yb ← A(x,Encb(x; skb)). Let˜︁Yb = ˜︁Y0,b ◦ ˜︁Y1,b where ˜︁Y0,b = Encp(x; skb). Phase two of the argument consists of constructing

a distinguisher D which is given message x, secret key skb, and ˜︁Y0,b; more importantly, D is

not given access to the cryptographic puzzle, or the encoding of the cryptographic puzzle.

The distinguisher then must output the choice bit b. Given this distinguisher, we construct

an adversary B ∈ C such that B on input (Zb, Z1−b, s0, s1) for uniformly random bit b, where

Zi is a puzzle with solution si, outputs b with probability proportional to the distinguisher,

breaking the cryptographic puzzle assumption.

6.4 Additional Related Work

Cryptographic puzzles are functions which require some specified amount of resources

(e.g., time or space) to compute. Time-lock puzzles, introduced by Rivest, Shamir, and
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Wagner [ 227 ] extending the study of timed-released cryptography of May [ 200 ], are puzzles

which require large sequential time to solve: any circuit solving the puzzle has large depth.

[ 227 ] proposed a candidate time-lock puzzle based on the conjectured sequential hardness

of exponentiation in RSA groups, and the proposed schemes of [ 66 ,  120 ] are variants of

this scheme. Mahmoody, Moran, and Vadhan [ 194 ] give a construction of weak time-lock

puzzles in the random oracle model, where “weak” says that both a puzzle generator and

puzzle solver require (roughly) the same amount of computation, whereas the standard

definition of puzzles requires the puzzle generation algorithm to be much more efficient than

the solving algorithm. Closer to our work, Bitansky et al. [ 43 ] construct time-lock puzzles

using succinct randomized encodings, which can be instantiated from one-way functions,

indistinguishability obfuscation, and other assumptions [ 122 ]. Recently, Malavolta and

Thyagarajan [ 196 ] introduce and construct homomorphic time-lock puzzles: puzzles where

one can compute functions over puzzle solutions without solving them. Continued exploration

of indistinguishability obfuscation has pushed it closer and closer to being instantiated from

well-founded cryptographic assumptions such as learning with errors [ 161 ].

We also mention that in [ 13 ], we construct a new notion of cryptographic puzzles known

as memory-hard puzzles. Such puzzles are cryptographic puzzles which, intuitively, cannot

be solved by algorithms with insufficient space-time complexity. We use these memory-hard

puzzles to give the first construction of a (one-time secure) memory-hard function in the

standard model, without relying on idealized assumptions such as random oracles.

6.5 Preliminaries

Our construction utilizes a number of alternative Hamming locally decodable codes

(LDCs), such as the private LDCs of Ostrovsky, Pandey, and Sahai [ 214 ] and a relaxed

notion called a LDC∗ [ 60 ]. A LDC∗ is a LDC that is required to decode the entire original

message while making as few queries as possible to its provided oracle. We formally give the

definitions of these codes along with the formal definition of a C-secure LDC. We also recall

the definition of a (C, ε)-hard puzzle from  Section 6.3 .
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priv-LDC-Sec-Game(A, x, λ, δ, p) :
1. The challenger generates a secret key sk ← Gen(1λ), computes the codeword y ←

Encsk(x, λ) for the message x and sends the codeword y to the attacker.
2. The attacker outputs a corrupted codeword y′ ← A (x, y, λ, δ, p, k,K) where y′ ∈ ΣK

2
should have fractional Hamming distance at most δ from y.

3. The output of the experiment is determined as follows:

priv-LDC-Sec-Game(A, x, λ, δ, p) =
⎧⎨⎩1 if HAM(y, y′) ⩽ δK and ∃i ∈ [k] s.t. Pr [Decy′

sk(i, λ) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the attacker A is said to win (resp. lose)
against C.

Figure 6.1. Definition of priv-LDC-Sec-Game, which defines the security of
the a one-time private Hamming LDC against the class C of algorithms.

Definition 6.5.1 ([ 60 ]). A coding scheme C[K, k, q1, q2] = (Enc,Dec) is an (ℓ, δ, p)-LDC∗ if

Dec, with oracle access to a word y′ such that HAM(Enc(x), y′) ⩽ δ, makes at most ℓ queries

to y′ and outputs x with probability at least p.

We given an equivalent definition of one-time private LDCs which are secure with respect

to a particular class of algorithms C.

Definition 6.5.2 (One-Time Private Key LDC). Let C[K, k, λ, q1, q2] = (Gen,Enc,Dec) be

a triple of probabilistic algorithms. We say C is a (ℓ, δ, p, ε,C)-private Hamming locally

decodable code (private LDC) against the class of algorithms C if

1. Gen(1λ) is the key generation algorithm that takes as input 1λ and outputs secret key

sk ∈ {0, 1}∗ for security parameter λ;

2. Enc : Σk
1 × {0, 1}

∗ → ΣK
2 is the encoding algorithm that takes as input message x ∈ Σk

1

and secret key sk and outputs a codeword y ∈ ΣK
2 ;

3. Decy′ : [k]×{0, 1}∗ → Σ1 is the decoding algorithm that takes as input index i ∈ [k] and

secret key sk, is additionally given query access to a corrupted codeword y′ ∈ ΣK′, and

outputs b ∈ Σ1 after making at most ℓ queries to y′; and
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LDC-Sec-Game(A, x, λ, δ, p) :
1. The challenger computes Y ← Enc(x, λ) encoding the message x and sends Y ∈ ΣK

2 to
the attacker.

2. The channel A outputs a corrupted codeword Y ′ ← A (x, Y, λ, δ, p, k,K) where Y ′ ∈ ΣK
2

has Hamming distance at most δK from Y .
3. The output of the experiment is determined as follows:

LDC-Sec-Game(A, x, λ, δ, p) =
⎧⎨⎩1 if HAM(Y, Y ′) ⩽ δK and ∃i ⩽ k s.t. Pr [DecY ′(i, λ) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the channel is said to win (resp. lose).

Figure 6.2. LDC-Sec-Game defining the interaction between an attacker and
an honest party.

4. For all algorithms A ∈ C and all messages x ∈ Σk
1 we have Pr [priv-LDC-Sec-Game(A, x, λ, δ, p) =

1] ⩽ ε, where the probability is taken over the random coins of A, Gen, and priv-LDC-Sec-Game

defined in  Figure 6.1 .

Note that setting C to be the class of computationally unbounded adversaries and assuming

that Gen outputs long enough random strings,  Definition 6.5.2 is equivalent to the definition

given in  Definition 5.5.1 .

We give another equivalent definition of C-secure LDCs, noting that it is equivalent to

 Definition 5.5.2 .

Definition 6.5.3 (C-Secure LDC). Let C be a class of algorithms. A coding scheme

C[K, k, q1, q2] is an (ℓ, δ, p, ε,C)-locally decodable code if

1. Enc : Σk
1 → ΣK

2 is the encoding algorithm that takes as input message x ∈ {0, 1}k and

outputs a codeword y ∈ {0, 1}K;

2. Decy′ : [k]→ Σ1 is the decoding algorithm that takes as input index i ∈ [k], is additionally

given query access to a corrupted codeword y′ ∈ {0, 1}K′
, and outputs b ∈ Σ1 after

making at most ℓ queries to y′; and
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3. For all algorithms A ∈ C and all messages x ∈ {0, 1}k we have

Pr [LDC-Sec-Game(A, x, λ, δ, p) = 1] ⩽ ε,

where the probability is taken over the random coins of A and LDC-Sec-Game, defined in

 Figure 6.2 .

We conclude by recalling the definition of a C-hard puzzle from  Section 6.1 .

Definition 6.3.1 ((C, ε)-hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol) is a (C, ε)-hard

puzzle for algorithm class C there exists a polynomial t′ such that for all polynomials t > t′

and every algorithm A ∈ C, there exists λ0 such that for all λ > λ0 and every s0, s1 ∈ {0, 1}λ

we have

⃓⃓⃓⃓
Pr [A(Zb, Z1−b, s0, s1)]−

1
2

⃓⃓⃓⃓
⩽ ε(λ),

where the probability is taken over b $←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}.

6.6 Resource-Bounded Locally Decodable Codes from Cryptographic Puzzles

We present the construction of our resource-bounded LDCs from (C, ε)-hard puzzles.

Construction 6.6.1. Let Cp[Kp, kp, λ, q1, q2] = (Gen,Encp,Decp) be a private Hamming LDC,

let C∗[K∗, k∗, 2, q2] = (Enc∗,Dec∗) be a Hamming LDC∗, and let Puz = (Puz.Gen,Puz.Sol) be a

(C, ε′)-hard puzzle. Let t′ be the polynomial guaranteed by  Definition 6.3.1 . Then we construct

C[K, k, q1, q2] = (Enc,Dec) as follows.
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Enc(x, λ)[Cp, C∗,Puz] : DecY ′
p ◦Y ′

∗(i, λ)[Cp, C∗,Puz] :
1. Sample random seed s $←{0, 1}λ.

2. Choose polynomial t > t′ and compute

Z ← Puz.Gen(1λ, t(λ), s), where Z ∈

{0, 1}k∗.

3. Set Y∗ ← Enc∗(Z).

4. Set sk← Genp(1λ; s).

5. Set Yp ← Encp(x, λ; sk).

6. Output Yp ◦ Y∗.

1. Decode Z ← DecY∗
∗ .

2. Compute s← Puz.Sol(Z).

3. Compute sk← Genp(1λ; s).

4. Output DecY ′
p

p (i; sk).

We prove that if there exists a C-hard puzzle, then  Construction 6.6.1 is a C-secure

Hamming LDC.

Theorem 6.6.2 ([ 13 ]). Let C be a class of algorithms. Let Cp[Kp, kp, λ] be a (ℓp, δp, pp, εp)-

private Hamming LDC and let C∗[K∗, k∗] be a (ℓ∗, δ∗, p∗)-LDC∗. Further assume that Encp,

Decp, and Enc∗ are contained in C. If there exists a (C, ε′)-hard puzzle, then  Construction 6.6.1 

is a (ℓ, δ, p, ε,C)-locally decodable code C[K, k] = (Enc,Dec) with k = kp, K = Kp + K∗,

ℓ = ℓp+ℓ∗, δ = (1/K)·min{δ∗ ·K∗, δp ·Kp}, p ⩾ 1−kp(2−pp−p∗), and ε = (εp ·p+2ε′)/(1−p).

Ostrovsky, Pandey, and Sahai [ 214 ] give a construction of a one-time private Hamming

LDC with linear block length Kp = θ(kp), constant error-tolerance δp = Θ(1), locality log1+ϵ(λ)

for any constant ϵ > 0, success probability pp = 1 − ϑ1(λ), and security ε = ϑ2(λ), where

λ is the security parameter and ϑ1, ϑ2 are fixed negligible functions. Blocki, Kulkarni, and

Zhou [ 60 ] give a construction of a LDC∗ via a repetition code using Justesen codes [  162 ] with

the following parameters: the LDC∗ has constant rate, constant error tolerance δ∗ = Θ(1),

constant success probability p∗ = Θ(1), and locality ℓ∗ = Θ(k∗). By suitably choosing

parameters of the above constructions, we have the following corollary.

Corollary 6.6.3. Let C be a class of algorithms, let Cp[Kp, kp, λ] be the one-time private

Hamming LDC of [ 214 ], and let C∗[K∗, k∗] be the LDC∗ of [ 60 ]. Assume that Encp, Decp, and

Enc∗ are contained in C. Then if there exists a (C, ε′)-hard puzzle, then for security parameter

206



λ and every k = poly(λ),  Construction 6.6.1 is a (ℓ, δ, p, ε,C)-LDC C[K, k] = (Enc,Dec)

with constant rate K = Θ(k), ℓ = Θ(log1+ϵ(λ)), success probability p = Θ(1), error-tolerance

δ = Θ(1), and security ε = negl(λ), where negl is an unspecified negligible function.

6.6.1 Efficiency

The efficiency of the scheme is directly given by the efficiency of Cp, C∗, and puz. In

particular, if all of the algorithms defined by Cp, C∗,Puz are polynomial time, then Enc and

Dec both run in polynomial time. We also remark that our LDC encoder Enc can be resource

bounded: the encoder Enc only needs to be able to compute Puz.Gen, Encp, Enc∗, and Genp.

Crucially, the encoder does not need to compute Puz.Sol. This is in contrast with Blocki,

Kulkarni, and Zhou [ 60 ], where their encoding function could not be resource-bounded.

6.6.2 Security

We begin with a high-level overview of the security proof. In the same vein as Blocki,

Kulkarni, and Zhou [ 60 ], we employ the use of a two-phased hybrid distinguisher. This

distinguishing argument proceeds as follows. In phase one, we consider two encoders Enc0

and Enc1. The encoder Enc0 is exactly the encoder for our LDC in  Construction 6.6.1  . The

encoder Enc1 is the hybrid encoder and differs as follows: (1) Enc1 is given additionally

as input a secret key sk to be used with the private LDC Cp, rather than generating this

key; and (2) the part of the codeword Y∗ is constructed by sampling some s′ independently

and uncorrelated with sk, and then encoding Enc∗(Puz.Gen(s′)). Phase one takes as input a

message x, flips a bit b $←{0, 1}, obtains codeword Yb ← Encb(x), and then obtains corrupted

codeword Y ′b ← A(Yb), where A ∈ C.

In the second phase, an algorithm D is given the original message x, the secret key skb

used in Encb, and the corrupted codeword Y ′p,b. We note that Y ′p,b is a substring of Y ′b that

corresponds to the corruption of the codeword Yp,b ← Encp(x, skb). Further, the algorithm D

is not given access to the puzzle Puz.Sol. The algorithm D is asked to output bit b′, and wins

this game if b′ = b.
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Now if the adversary A is able to break LDC-Sec-Game with probability at least ε, we

want to construct an algorithm B ∈ C that uses this distinguishing argument to break the

security of Puz. This is done as follows. Suppose B is given as input (Zb, Z1−b, s0, s1) for

some b $←{0, 1} that is unknown to B and where s0, s1 are uniformly random. Then B uses s0

to generate sk, encodes Y∗ ← Enc∗(Zb), and encodes Yp ← Encp(x, sk) for some fixed message

x. We observe that if b = 0, then s0 is the solution to Z0 = Zb, and thus Y∗ is correlated

with the secret key sk. Further, if b = 1, then s0 is uncorrelated with Zb = Z1. Corrupted

codeword Y ′ ← A(Yp ◦ Y∗) is then obtained. Next, given x, secret key sk, and substring Y ′p ,

the algorithm simulates Decp using sk and attempts to decode xi for some arbitrary i ∈ [|x|],

obtaining x′i. If x′i ̸= xi, then B outputs b′ = 0; otherwise it outputs b′ = 1.

Now B is able to break the security of Puz as follows. If b = 0, then sk is correlated with

Y∗. This implies that A is able to win LDC-Sec-Game with probability at least ε by assumption;

in particular, it forces Decp to output an incorrect bit for some index i with probability at

least (1 − p). In this case, b′ = 0 with probability at least ε · (1 − p). If b = 1, then sk is

completely uncorrelated with Y∗, so information theoretically A cannot win LDC-Sec-Game

except with probability at most εp. This implies that with probability at most εp · p the

decoder fails to output correctly on some index i, which implies that with probability at least

1− εp · p the decoder outputs correctly on every bit. In this case, b′ = 1 with probability at

least 1− εp · p. This allows B ∈ C to distinguish (Zb, Z1−b, s0, s1) with noticeable advantage

Ω(ε · (1− p)− εp · p) thus breaking the security of the puzzle.

Proof of  Theorem 6.6.2 . We first remark that definitions of k, K, ℓ, δ, and p follow directly

by construction. We now turn to arguing the security of our scheme under the game

LDC-Sec-Game, defined in  Figure 6.2 . To prove security, we assume that if there exists an

adversary A ∈ C that, given the puzzle Puz, can win LDC-Sec-Game with probability at least

ε, then we can construct an adversary B ∈ C which breaks the (C, ε′)-hard puzzle.

To prove this, we employ a two-phase hybrid distinguishing argument. In the two-phase

distinguishing argument, the first phase defines two encoders: Enc0 and Enc1. The encoder

Enc0 is exactly identical to the encoding function of  Construction 6.6.1 , which we denote as

Enc. The encoder Enc1 is our hybrid encoder, and is defined as follows.
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Enc1(x, λ, sk) :

1. Sample s′ $←{0, 1}kp .

2. Choose polynomial t > t′ and compute Z ′ ← Puz.Gen(1λ, t(λ), s′).

3. Set Y∗ ← Enc∗(Z ′).

4. Set Yp ← Encp(x, λ; sk).

5. Output Yp ◦ Y∗.

Phase one of the argument then consists of randomly selecting Encb for b $←{0, 1}, encoding

a message Yb ← Encb(x, λ, skb), and obtaining Y ′b ← A(x, Yb, λ, δ, p).

Phase two of the argument consists of constructing a distinguisher D which is given the

original message x, skb, and the codeword Y ′p,b which is the corrupted substring of Y ′b that

corresponds to corrupting the string Yp,b. Further, the distinguisher D is not given access to

the puzzle Puz. The distinguisher is then supposed to output bit b.

We formally give our two-phase distinguisher which breaks the (C, ε′)-hard puzzle if there

exists a channel A ∈ C which wins LDC-Sec-Game with probability at least ε. Suppose such

an adversary A exists. For puzzle solutions s0, s1 (viewed as independent random strings), we

want to construct an adversary B ∈ C which distinguishes (Zb, Z1−b, s0, s1) with probability

at least ε′ for b $← {0, 1}. Fix a message x and security parameter λ. Our adversary B

is constructed as follows: suppose B is given as input (Zb, Z1−b, s0, s1) for some b $← {0, 1}

unknown to B.

1. Fix message x.

2. Encode the message x as follows:

(a) Obtain sk← Genp(1λ; s0).

(b) Set Y∗ ← Enc∗(Zb).

(c) Set Yp ← Encp(x, λ; sk).

(d) Set Y = Yp ◦ Y∗.

3. Obtain Y ′ ← A(x, Y, λ, δ, p, k,K).
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4. Set Y ′p to be the substring of Y ′ that corresponds to the corruption of Yp above.

5. Simulate x′i ← DecY ′
p

p (i; sk) for some i ∈ [|x|].

6. If xi ̸= x′i output b′ = 0. Else output b′ = 1.

Notice that by assumption, B ∈ C since A,Encp,Decp,Enc∗ ∈ C. Now we argue that

our adversary distinguishes (Zb, Z1−b, s0, s1) with noticeable probability. Observe that sk is

always generated as Genp(1λ, s0). Notice that for b = 1 the puzzle Z1 is encoded as Y∗, and

the secret key sk is unrelated to the solution s1 of puzzle Z1. In this case, the adversary

A wins the LDC-Sec-Game with probability at most εp; this holds information theoretically

since sk and Y∗ are completely unrelated and uncorrelated. With probability at most εp, A

introduces an error pattern such that HAM(Y, Y ′) ⩽ δ and there exists i ⩽ k such that the

decoder outputs xi with probability less than p. For the case b = 0, puzzle Z0 is encoded as

Y∗ and has solution s0, which is used to generate sk. Thus in this case, the probability that

the decoder outputs an incorrect xi for some i ⩽ k with at most probability p is at least ε

since we assume A wins LDC-Sec-Game with probability at least ε.

We analyze the probability B outputs bit b′. First consider the case where b = 0. Then

the probability that b′ = 0 is at least ε · (1 − p) by the argument above. Now for b = 1,

the probability that b′ = 0 is at most εp · p, which implies that b′ = 1 is at least 1− εp · p.

Therefore

Pr
b

$←{0,1}
[B(Zb, Z1−b, s0, s1) = b] ⩾ 1

2(ε · (1− p) + 1− εp · p)

which implies that

Pr
b

$←{0,1}
[B(Zb, Z1−b, s0, s1) = b]− 1

2 ⩾
ε · (1− p)− εp · p

2 = ε′.

Thus B breaks Puz with probability at least ε′, which contradicts the hardness of Puz.
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7. COMPUTATIONALLY RELAXED LOCALLY DECODABLE

CODES FOR EDIT ERRORS: USING DIGITAL SIGNATURES

FOR DIRECT CONSTRUCTIONS

In the final chapter of this dissertation, we examine another alternative notion of locally

decodable code, namely that of relaxed locally decodable codes. A relaxed LDC, or rLDC

in short, mirrors the definition of a LDC ( Definition 2.7.5  ), with the following change: the

decoding algorithm is additionally allowed to output a symbol ⊥ ̸∈ Σ indicating that the

decoder “does not know” the correct symbol. Additionally, it is required that the decoder

output either the correct symbol or ⊥ with probability at least p, the decoder always output

the correct symbol if its oracle is a correct codeword, and in some cases it is required that

given any corrupt codeword a large fraction of the original message can still be recovered

correctly (i.e., ⊥ is not output too often).

Relaxed LDCs were originally introduced by Ben-Sasson et al. [ 37 ] and have proved to

be a powerful variation of LDCs with constructions achieving constant locality, constant

error-tolerance, and block length K = k1+ε for any small constant ε > 0 [  37 ]. Further relaxing

rLDCs, Blocki et al. [ 57 ] consider computationally relaxed LDCs, or crLDCs. These rLDCs are

only resilient to errors introduced by adversarial channels that are computationally bounded

(i.e., PPT). Similar to resource-bounded LDCs, this relaxation is inspired by the work of

Lipton [ 188 ] which considers Hamming codes in the context of PPT adversarial channels

instead of the classical unbounded adversarial channel. Assuming the existence of collision-

resistant hash functions, Blocki et al. [ 57 ] construct crLDCs with constant error-tolerance,

constant rate, and locality that is poly-logarithmic in the block length.

7.1 Our Results

In this work, we revisit the notion of computationally relaxed locally decodable codes, or

crLDCs, with respect to both Hamming and insertion-deletion (InsDel) errors. To begin, a

relaxed locally decodable code (rLDC) is defined analogously to a standard LDC (as given in

 Section 2.7.1 ), but the decoder is additionally allowed to output the symbol ⊥ ̸∈ Σ which
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signifies that the decoder does not know the correct answer. It is also required that the

decoder does not output ⊥ “too often”. Computationally relaxed locally decodable codes

are rLDCs with the additional property that the adversarial channel introducing errors into

codewords is assumed to be some probabilistic polynomial time (PPT) algorithm, rather

than a computationally unbounded algorithm (as in the definitions of rLDCs and LDCs). We

formally define crLDCs in the definition below.

Definition 7.1.1 (Computationally Relaxed Locally Decodable Codes). Let C be a family

of coding schemes {Cλ[K, k, q1, q2]}λ∈N for k := k(λ) with (randomized) encoding algorithms

{Encλ : Σk
1 → ΣK

2 }λ∈N where |Σi| = qi. We say C is a (ℓ, ρ, p, δ, dist)-computationally relaxed

locally decodable code (crLDC) if there exists a family of randomized oracle decoding algorithms

{Decλ : {1, . . . , k} → Σ1}λ∈N satisfying the following properties.

1. For all λ ∈ N and any word ˜︁y ∈ Σ∗2, the algorithm Dec˜︁yλ(i) makes at most ℓ queries to
˜︁y for any i ∈ [k];

2. For all λ ∈ N and any message x ∈ Σk
1, we have that Pr [DecEncλ(x)

λ (i) = xi] = 1 for all

i ∈ [k];

3. Define binary predicate Fool(y′, ρ, p, x, y, λ) = 1 if and only if (1) dist(y, y′) ⩽ ρ; and

(2) ∃i ∈ [k] such that Pr [Decy′

λ (i) ∈ {xi,⊥}] < p, where the probability is taken over

the random coins of Decλ; otherwise Fool(y′, ρ, p, x, y) = 0. We require that for all

probabilistic polynomial time (PPT) adversaries A there exists a negligible function

εF(·) such that for all λ ∈ N and all x ∈ Σk
1, we have

Pr [Fool(A(y), ρ, p, x, y, λ) = 1] ⩽ εF(λ),

where the probability is taken over the random coins of A and y = Encλ(x).

4. Define binary predicate Limit(y′, ρ, δ, x, y, λ) = 1 if and only if the following hold:

(1) dist(y, y′) ⩽ ρ; and (2) for set Good(y′) := {i ∈ [k] : Pr [Decy′

λ (i) = xi] > 2/3}, we

have|Good(y′)| < δ · k, where the probability is taken over the random coins of Decλ;
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otherwise Limit(y′, ρ, δ, x, y, λ) = 0. We require that for all PPT adversaries A there

exists a negligible function εL(·) such that for all λ ∈ N and all x ∈ Σk
1, we have

Pr [Limit(A(y), ρ, δ, x, y, λ) = 1] ⩽ εL(λ),

where the probability is taken over the random coins of A and y = Encλ(x).

If dist is the normalized Hamming distance HAM, we say the code is a Hamming crLDC; if

dist is the normalized edit distance ED, we say the code is a InsDel crLDC. Here, ℓ is the

locality of C, ρ is the error-tolerance of C, and k/K is the rate of C. If q2 = 2, we say that C

is a family of binary crLDCs. For convenience, if q1 = q2, we simply write Cλ[K, k, q1].

Note that if we require  Definition 7.1.1 to hold with respect to p = 2/3, εF(λ) = εL(λ) = 0

for all λ, for all computationally unbounded adversaries, and for dist = HAM, we recover the

original definition of a relaxed locally decodable code [ 37 ]. Our definition captures the notion

of asymptotic security when interacting with arbitrary PPT adversarial channels; this differs

from the standard definition of (relaxed) locally decodable codes, as we are concerned with

worst-case errors with respect to these restricted channels.  Definition 7.1.1 closely follows the

definition of Blocki et al. [ 57 ] with a few modifications. First, the constructions of [ 57 ] utilize

a public random seed for a collision-resistant hash function, so the crLDC definition of [ 57 ] is

quantified over the randomness of the seed generation algorithm Gen. Since our constructions

do not require a public random seed, we omit Gen from our definition and instead define

crLDCs over a family of codes C = {Cλ}λ∈N. We note that the definition of crLDC of [ 57 ]

requires the public random seed to be generated in an honest (i.e., trusted) way, and our

definitions and constructions circumvent this requirement. Second, we slightly strengthen the

security definition by tweaking the predicate Fool: in our definition, the adversary wins if

there exists an index i such that the probability the decoder outputs correctly on input i is

less than p. In contrast, the security definition of [ 57 ] requires the adversary to output corrupt

codeword y′ and a target index i such that the probability the decoder outputs correctly on

index i is less than p.
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Our first contribution is the construction of a family of binary Hamming crLDCs CHAM =

{Cλ[K, k, 2]} satisfying  Definition 7.1.1  . Our construction is conceptually simpler than

the Hamming crLDC of Blocki et al. [ 57 ], does not require a trusted setup, and achieves

(asymptotically) the same rate, error-tolerance, and locality. Our construction borrows from

the idea of concatenation codes [ 118 ]. Briefly, code concatenation techniques utilize an outer

code Cout = (Encout,Decout) and an inner code Cin = (Encin,Decin) and encode a message x

via the following process: (1) encode x as y = Encout(x); (2) partition y into some number d

of blocks y(1) ◦ . . . ◦ y(d); (3) compute Y (i) = Encin(y(i)) for all i ∈ {1, . . . , d}; and (4) output

codeword Y = Y (1) ◦ . . . ◦ Y (d). In place of an outer code Cout, we utilize a suitable digital

signature scheme in conjunction with a classical Hamming code as our inner code Cin to

obtain our final construction. We discuss the details of our construction in  Section 7.2.1 .

Briefly, a digital signature scheme with signatures of length r(·) is a tuple of PPT algorithms

Π = (Gen, Sign,Verify) that satisfy the following properties. (1) The algorithm Gen takes as

input security parameter λ ∈ N (in unary) and outputs a pair of keys (pk, sk), where pk is

the public key or verification key and sk is the private key or signing key; (2) The algorithm

Sign takes as input a message m of arbitrary length and the signing key sk and outputs a

signature σ of message m. (3) The algorithm Verify is a deterministic algorithm that takes

as input a message m, some signature σ, and a verification key pk decides if σ is a valid

signature of message m. A signature scheme Π is said to be secure if for all PPT adversaries

A, for (pk, sk)← Gen(1λ), if A is given pk as input and given oracle access to the function

Signsk(·), then except with negligible probability in the security parameter A cannot output

a pair (˜︂m, ˜︁σ) such that Verifypk(˜︂m, ˜︁σ) accepts and A never queried its oracle at input ˜︂m.

Given a digital signature scheme and any binary Hamming code, we obtain our first main

result.

Theorem 7.1.1. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r := r(λ). Let Cin = (Encin,Decin) be a Hamming code with rate βin and

error-tolerance ρin. Then for every positive polynomial k(·) and positive constant c < 1/2,

there exists code family CHAM := {CH,λ[n, k(λ), 2] = (EncH,λ,DecH,λ)}λ∈N such that for all ε > 0

the family CHAM is a (ℓ, ρ, p, δ)-Hamming crLDC with block length n = O((1/βin) max{k(1 +
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log(k)/r), r}), error-tolerance ρ = c · ρin, locality ℓ = O((log1+ε(λ)/βin) · (r+ log(k))), success

probability p = 1 − negl(λ) > 2/3, and δ = 1/2, where k := k(λ) and negl(·) is a negligible

function.

Our code family CHAM is constant rate whenever βin = Θ(1) and r(λ) = Ω(log(k(λ))) and

r(λ) ⩽ k(λ). Our construction allows for r(λ) > k(λ), but this results in locality ℓ ⩾ n,

which is counter to the goal of LDCs; moreover, in this case, it is simply more efficient to use

a standard optimal Hamming code.

We can instantiate  Theorem 7.1.1 using a constant rate, constant error-tolerance Hamming

code Cin (e.g., [  162 ]) and an appropriate digital signature scheme to achieve a constant rate

construction with poly-logarithmic locality. While there are many signature scheme to choose

from, our construction shines when r(λ) = polylog(λ). Under standard idealized models,

there exist secure digital signature schemes with signature lengths as small as Θ(log1+ϵ(λ)) for

small constant ϵ > 0 [ 61 ,  229 ] under the assumption that these schemes satisfy the following

notion of concrete security: for security parameter λ, any adversary running in time 2λ/2

can violate the security (i.e., unforgability) of the scheme with probability at most 2−λ/2

for signatures of length r(λ) = λ. Plugging in λ′ = Θ(log1+ϵ(λ)), the above schemes are

secure against super-polynomial time adversaries with negligible security in λ, which implies

they are asymptotically secure against PPT adversaries. Using such schemes in conjunction

with ε = ϵ and a constant rate, constant error-tolerance code Cin, we obtain the following

corollary.

Corollary 7.1.2. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r(λ) = Θ(log1+ϵ(λ)) for small constant ϵ > 0. Then for all positive

polynomials k(·), there exists a code family CHAM = {CH,λ[n, k(λ), 2]}λ∈N that is a (ℓ, ρ, p, δ)-

Hamming crLDC with parameters n = O(k), ρ = Θ(1), ℓ = O(log2(1+ϵ)(λ)), p = 1− negl(λ) >

2/3, and δ = 1/2, where k := k(λ) and negl(·) is a negligible function.

The parameters of our construction in  Corollary 7.1.2 are comparable to the construction

of Blocki et al. [ 57 ]. Blocki et al. construct a Hamming crLDC using local expander graphs

and assuming the existence of a collision-resistant hash function family. This Hamming
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crLDC achieves constant rate k/n, constant error-rate ρ, locality ℓ = polylog(n), constant

δ = Θ(1), and p = 1− negl(λ).

7.1.1 Extension to Insertion-Deletion Errors

Our second contribution is extending the construction of  Theorem 7.1.1 to handle insertion-

deletion errors. Prior constructions of insertion-deletion LDCs, or InsDel LDCs, utilized a

so-called “Hamming-to-InsDel” compiler [ 48 ,  215 ]. This compiler also borrows from the

notion of concatenation codes, using a suitable Hamming LDC as the outer code Cout and

a suitable InsDel code as the inner code (i.e., a non-local code). This new InsDel LDC has

asymptotically the same rate and error-tolerance as the underlying Hamming LDC at the

cost of a poly-logarithmic blow-up in the locality. Key to this compiler is the usage of a

noisy binary search algorithm, which intuitively allows one to search an almost sorted list of

integers and find most entries with high probability. 

1
 

We use the noisy binary search tools of Block et al. [ 48 ] in their “Hamming-to-InsDel”

compiler to extend the construction of  Theorem 7.1.1 to the insertion-deletion setting. We

additionally modify the family CHAM to make use of a suitable inner code Cin that is resilient to

insertion-deletion errors. For our purposes, we let Cin be the well-known Schulman-Zuckerman

insertion-deletion code [  230 ]. This code has both constant rate and constant error-tolerance,

and additionally has properties that are required by the noisy binary search algorithm of [ 48 ].

Given this noisy binary search algorithm, the Schulman-Zuckerman insertion-deletion

code, and a digital signature scheme, we obtain our second main result.

Theorem 7.1.3. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r := r(λ). For every positive polynomial k(·) and positive constant

ρ∗ < 1/3, there exists a code family CIns := {Cλ[n, k(λ), 2] = (EncI,λ,DecI,λ)}λ∈N such that for

all ε > 0, the family CIns is a (ℓ, ρ, p, δ)-InsDel crLDC with block length n = O(max{k(1 +

log(k)/r), r}), error-tolerance ρ = Θ(1), locality ℓ = O(log3+ε(λ) · (r + log(k))), success

probability p = 1− ρ∗ − negl(λ) > 2/3, and δ = 1−Θ(ρ), where k := k(λ) and negl(·) is a

negligible function.
1

 ↑ Looking ahead, noisy binary search is used to find blocks of codewords that are “not too corrupt”; see
 Sections 7.2 and  7.5 for more discussion.
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Like with  Theorem 7.1.1  , our family CIns is constant rate whenever r(λ) = Ω(log(k(λ))) and

r(λ) ⩽ k(λ), and additionally has the same downside whenever r(λ) > k(λ), in which case it

is more efficient to directly encode with an (asymptotically) optimal insertion-deletion code.

Moreover, under the same set of assumptions on the underlying digital signature scheme as

with our Hamming crLDC [ 61 ,  229 ], given any sufficiently large polynomial and setting ε = ϵ

for small constant ϵ > 0, we obtain the following corollary.

Corollary 7.1.4. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r(λ) = Θ(log1+ϵ(λ)) for small constant ϵ > 0. Then for every positive

polynomial k(·) there exists a code family CIns := {CI,λ[n, k(λ), 2]}λ∈N = {(Encλ,Decλ)} that

is a (ℓ, ρ, p, δ)-computationally relaxed locally decodable code with parameters n = O(k),

ℓ = O(log4+2ϵ(λ)), ρ = Θ(1), p = 1− negl(λ), and δ = 1−Θ(ρ), where k := k(λ) and negl(·)

is a negligible function.

To the best of our knowledge, our InsDel crLDCs are the first of their kind. Our con-

structions compare favorably to the prior InsDel LDCs (i.e., non-relaxed and computationally

unbounded errors) of Block et al. [ 48 ]. In the poly-logarithmic locality regime, we achieve

constant rate and constant error-tolerance, while Block et al. achieve slightly sub-linear rate

(i.e., n/k = o(k)). Moreover, the construction of Block et al. has locality log(k)O(loglog(k)) with

constant rate and constant error-tolerance.

7.2 Technical Overview

The main technical ingredients for both our Hamming crLDC and InsDel crLDC construc-

tions is the use of a r-length digital signature scheme Π = (Gen, Sign,Verify) along with a

suitable inner code Cin. The encoding algorithms for both of our codes are nearly identical,

with the main difference being the choice of the inner code Cin (i.e., Hamming vs. InsDel).

The decoding algorithms are also similar; in particular, as we will see, the InsDel decoder is

a modification of the Hamming decoder to handle insertion-deletion error patterns. We begin

by discussing our Hamming construction followed by our InsDel construction.
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7.2.1 Hamming crLDC Construction

In this section, let Cin be an appropriate Hamming code (i.e., non-local), and let Π =

(Gen, Sign,Verify) be an r-length digital signature scheme. Our encoding algorithm borrows

from the notion of concatenation codes [ 118 ]. Concatenation codes consist of an outer code

and an inner code, and (roughly) operate as follows: first, encode a message with the outer

encoder; second, partition the outer code word in some way; third, encode each partition

with the inner encoder; finally, output the concatenation each inner codeword. In place of an

outer code, we utilize the digital signature scheme Π, and we use Cin as our inner code. We

give an overview of both our Hamming and InsDel code constructions.

The Hamming Encoder EncH,λ.

We present our formal Hamming encoding algorithm in  Figure 7.1 and present an overview

here. Let λ ∈ N be the security parameter. For any message x ∈ {0, 1}k, our encoder partitions

x into d = ⌈k/r(λ)⌉ blocks x(1), . . . , x(d) such that x(1) ◦ · · · ◦ x(d) = x; here “◦” is string

concatenation and x(i) ∈ {0, 1}r(λ) for every i ∈ {1, . . . , d}. 

2
 Now in place of using an outer

code to encode each block x(i), we utilize our digital signature scheme. The encoder first

generates a key pair (pk, sk)← Gen(1λ) then signs the message x(i) ◦ i as σ(i) ← Signsk(x(i) ◦ i)

using the generated secret key. The encoder then computes the encoding of x(i) ◦ σ(i) ◦ pk ◦ i

using the code Cin to obtain codeword c(i), where pk is the public verification key generated

by the encoder. The encoder then outputs a final codeword C = c(1) ◦ · · · ◦ c(d) ∈ {0, 1}n.

Note that whenever r(λ) ⩾ k, we sign and encode a single block. Moreover, the locality

of the decoder will be larger than the final codeword length n since there is only a single

block to decode. At that point, it is more efficient to either choose a larger k or simply use

a classical Hamming code with similar rate and error-tolerance (i.e., just use Cin without

signing anything).

2
 ↑ For simplicity in this overview, assume k/r(λ) is an integer.
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Input : A message x ∈ {0, 1}k.
Output : A codeword C ∈ {0, 1}n.
Hardcoded : An inner Hamming code Cin = (Encin,Decin); r(·)-length signature

scheme (Gen, Sign,Verify); and security parameter λ ∈ N in unary.
1 Sample (pk, sk)← Gen(1λ).
2 Set d = ⌈k/r(λ)⌉.
3 Partition x into blocks x(1) ◦ · · · ◦ x(d) where x(j) ∈ {0, 1}r(λ) for every j ∈ {1, . . . , d}

(padding the last block as necessary).
4 foreach j ∈ {1, . . . , d} do
5 Compute the following values:

σ(j) ← Signsk(x(j) ◦ j) (7.1)
C(j) = Encin(x(j) ◦ σ(j) ◦ pk ◦ j) (7.2)

6 Define C := C(1) ◦ · · · ◦ C(d) ∈ {0, 1}n.
7 return C.

Figure 7.1. Encoding algorithm EncH,λ(x) for Hamming errors.

Strawman Decoding Algorithm.

Given EncH,λ in  Figure 7.1 , there is a natural (but insecure) decoding algorithm one may

use. However, as we will see, this natural decoder cannot hope to satisfy our definition

of crLDCs ( Definition 7.1.1 ). The strawman decoder proceeds as follows. Let x ∈ {0, 1}k,

C = EncH,λ(x) ∈ {0, 1}n, and let ˜︁C ∈ {0, 1}n such that HAM( ˜︁C,C) ⩽ ρ. Let i ∈ {1, . . . , k}

be the input given to the strawman decoder and let ˜︁C be its oracle. Since the goal is to

recover bit xi from string ˜︁C, the strawman decoder first calculates index j ∈ {1, . . . , d} such

that bit xi resides in block x(j). Now since we are in the Hamming error setting, the strawman

decoder views its oracle ˜︁C as blocks ˜︁C(1) ◦ · · · ◦ ˜︁C(d) and recovers block ˜︁C(j). The strawman

decoder then runs the decoder of Cin with input ˜︁C(j) to obtain some string ˜︂m(j) which can

be viewed as some (potentially corrupt) string ˜︁x(j) ◦ ˜︁σ(j) ◦ ˜︂pk ◦ ˜︁j. The strawman decoder then

proceeds to use the digital signature scheme to verify the contents of this decoded message

by checking if Verify ˜︁pk(˜︁x(j) ◦ j, ˜︁σ(j)) ?= 1. If verification fails, then the decoder outputs ⊥;

otherwise, the decoder outputs ˜︁x(j)
i∗ , where i∗ is the index of x(j) that corresponds to bit xi.
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Notice that if ˜︁C = C, then this strawman decoder outputs the correct bit xi with

probability 1, satisfying  Item 2 of  Definition 7.1.1 . However, this strawman decoder can

never satisfy  Item 3  if we desire error-tolerance ρ = Θ(1). Consider the following simple

attack. Let A be a PPT adversary that operates as follows: (1) Given codeword C, the

adversary A decodes block C(1) to obtain x(1) ◦ σ(1) ◦ pk ◦ 1. (2) A then generates its own

key pair (pk′, sk′), a message x′ = 1 − x(1), and computes σ′ = Signsk′(x′ ◦ 1). (3) A then

computes C ′ = Encin(x′ ◦ σ′ ◦ pk′ ◦ 1) and outputs ˜︁C = C ′ ◦ C(2) ◦ · · · ◦ C(d). Intuitively, this

attack succeeds for two reasons. The first reason is that corruption of C(1) to C ′ is a small

fraction of the total amount of corruptions allotted to transform C to ˜︁C. The second reason

is that the strawman decoder relies on the public key pk′/˜︂pk to perform verification. The

key to preventing this attack is addressing the second reason: the recovery of the public key.

Notice that if the decoder recovered the true public key pk used by EncH,λ, then this attack

fails since the verification procedure fails and the decoder outputs bot. Thus we modify the

strawman decoder to recover the true public key to obtain our final Hamming decoder.

The Hamming Decoder DecH,λ.

We present our formal Hamming decoding algorithm in  Figure 7.2 and present an overview

here. Recall that our goal is to recover the public key used by EncH,λ. While we cannot

recover this key with probability 1, we can recover pk with sufficiently high probability. To

do so, we utilize random sampling and with majority vote. Let µ ∈ N be a parameter of

our choice, let x ∈ {0, 1}k, and C = EncH,λ(x). Let ˜︁C ∈ {0, 1}n be a corrupt codeword such

that HAM(C, ˜︁C) ⩽ ρ. Then on input i ∈ {1, . . . , k} and given oracle access to ˜︁C, the decoder

DecH,λ attempts to recover bit xi. It proceeds in two steps. In step 1, DecH,λ attempts to

recover the true public key pk. Given parameter µ, DecH,λ uniformly samples block indexes

j1, . . . , jµ
$← {1, . . . , d}. Parsing ˜︁C as ˜︁C(1) ◦ · · · ◦ ˜︁C(d), for each κ ∈ {1, . . . , µ}, the decoder

DecH,λ: (1) recovers some string ˜︂m(jκ) ← Decin( ˜︁C(jκ)); (2) parses ˜︂m(jκ) as ˜︁x(jκ)◦ ˜︁σ(jκ)◦˜︂pk
(jκ)
◦˜︁j;

and (3) recovers key ˜︂pk
(jκ). The decoder then sets pk∗ = majority(˜︂pk

(j1)
, . . . ,˜︂pk

(jµ)). In step

2, DecH,λ now proceeds identically to the strawman decoder, except it will use pk∗ for

verification. In more details, DecH,λ computes block index j such that xi resides in x(j).
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Input : An index i ∈ {1, . . . , k}.
Oracle : Bitstring ˜︁C ∈ {0, 1}n.
Output : A symbol ˜︁x ∈ {0, 1} or ⊥.
Hardcoded : An inner Hamming code Cin = (Encin,Decin); r(·)-length signature

scheme (Gen, Sign,Verify); security parameter λ ∈ N in unary; and
parameter µ ∈ N (to be determined later).

1 Set d = ⌈k/r(λ)⌉ and bl = n/d. /* Compute number of blocks d and block
length bl. */

2 Sample j1, . . . , jµ
$←{1, . . . , d} uniformly at random.

3 Initialize pk∗, pk1, . . . , pkµ = 0.
4 foreach κ ∈ {1, . . . , µ} do /* Public key pk recovery through majority

sampling. */
5 Obtain string ˜︂m(jκ) ← Decin

(︂ ˜︁C[(jκ − 1) · bl + 1, jκ · bl]
)︂
.

6 Parse ˜︂m(jκ) as ˜︁x(jκ) ◦ ˜︁σ(jκ) ◦ ˜︂pk
(jκ)
◦ ˜︁j.

7 Set pkκ = ˜︂pk
(jκ).

8 Set pk∗ = majority(pk1, . . . , pkµ).
9 Compute j ∈ {1, . . . , d} such that (j − 1) · r(λ) < i ⩽ j · r(λ).

10 Obtain string ˜︂m(j) ← Decin

(︂ ˜︁C[(j − 1) · bl + 1, j · bl]
)︂
. /* Recover block where xi

should reside. */

11 Parse ˜︂m(j) as ˜︁x(j) ◦ ˜︁σ(j) ◦ ˜︂pk
(j)
◦ ˜︁j.

12 if Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 then
13 return ⊥.
14 return ˜︁x(j)

i∗ for i∗ = i− (j − 1) · r(λ).

Figure 7.2. Decoding algorithm Dec˜︁CH,λ(i) for Hamming errors.

Then the decoder obtains ˜︂m(j) ← Decin( ˜︁C(j)), parses this string as ˜︁x(j) ◦ ˜︁σ(j) ◦ ˜︂pk
(j)
◦ ˜︁j, then

checks if Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) ?= 1. If verification fails, DecH,λ outputs ⊥; else it outputs bit
˜︁x(j)

i∗ , where i∗ is the index of x(j) that corresponds to bit xi. Note that DecH,λ using its own

computed value j here is crucial, otherwise it is possible for an adversary to simply swap two

blocks C(j1) and C(j2) such that x(j1) ̸= x(j2), which would violate  Item 3  of  Definition 7.1.1 .
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Hamming crLDC Security Proof Overview

The main technical challenge of proving  Theorem 7.1.1 is showing that (EncH,λ,DecH,λ)

satisfies  Items 3 and  4 of  Definition 7.1.1 . We give a high level overview of the proof here

and present the formal proof in  Section 7.4 .

Towards  Item 3 , we begin by analyzing the probability that Dec˜︁CH,λ(i) ∈ {xi,⊥} for

any i ∈ {1, . . . , k} and ˜︁C ∈ {0, 1}n such that HAM( ˜︁C,C) ⩽ ρ. If Dec˜︁CH,λ(i) = xi, then

Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1 and ˜︁x(j)
i∗ = xi. Conditioning on (˜︁x(j), ˜︁σ(j)) not being a signature

forgery, then the verification succeeding implies that ˜︁x(j) = x(j) and ˜︁σ(j) = σ(j). Now, the

verification succeeds whenever pk∗ = pk. By Chernoff, we can ensure that pk∗ = pk with

high probability (depending on µ) as long as more than half of the (possibly corrupt) blocks˜︁C(1), . . . , ˜︁C(d) have less than ρin-fraction of Hamming errors. Setting ρ = c·ρin for any positive

constant c < 1/2 ensure this is the case. Here we conditioned on the fact that ˜︁σ(i) was not a

forgery for ˜︁x(j) ◦ j. Appealing to the security of the digital signature scheme, the probability

that ˜︁σ(i) is not a signature is at least 1− εΠ(λ), where εΠ(λ) is a negligible function for the

security of the digital signature scheme Π. As index i was arbitrary here, by union bound over

each index i, we establish  Item 3 of  Definition 7.1.1 for p = 1− exp(−µ(1/2− c)2
/︂

2(1− c))

and εF(λ) = k · εΠ(λ), noting that εF(λ) is negligible in λ since k is a polynomial in λ.

Towards  Item 4 , by setting ρ = c · ρin for positive constant c < 1/2, we ensure that the

number of corrupt blocks ˜︁C(1), . . . , ˜︁C(d) with less than ρin-fraction of corruptions is more

than half. Let J = {j : HAM( ˜︁C(j), C(j)) ⩽ ρin}. Then we have |J | ⩾ d/2. Moreover, for any

j ∈ J , we have that Decin( ˜︁C(j)) = x(j)◦σ(j)◦pk◦j; i.e., we can recover the uncorrupt message,

signature, public key, and index. Now for any i ∈ {1, . . . , k}, if bit xi lies in x(j) for some

j ∈ J , the probability DecH,λ outputs xi depends on the probability that DecH,λ correctly

recovers pk∗ = pk. We can suitably choose parameter µ to ensure that Pr [pk∗ = pk] > 2/3.

This along with |J | ⩾ d/2 implies that |Good( ˜︁C)| ⩾ (1/2) · k, and thus we can set δ = 1/2.

Notice here that |J | ⩾ d/2 holds for any corrupt ˜︁C by our choice of ρ. This implies that

|Good( ˜︁C)| ⩾ (1/2) · k holds for any corrupt ˜︁C, not just ones produced by a PPT adversary

A. Thus  Item 4  holds with δ = 1/2 and εL(λ) := 0.
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7.2.2 InsDel crLDC Construction

Like our Hamming code construction for  Theorem 7.1.1 , the main technical ingredients

of  Theorem 7.1.3 are a digital signature scheme and a suitable inner code. In our case, we

choose the Schulman-Zuckerman InsDel code, or SZ code, as our inner code. Our construction

additionally requires the use of the noisy binary search algorithm due to Block et al. [ 48 ]. In

particular, simply replacing Cin in EncH,λ of  Figure 7.1 with the SZ code and using DecH,λ

does not yield an interesting InsDel crLDC.

Challenges to Decoding Insertion-Deletion Errors.

While Hamming errors correspond to bit flips in the final codeword, insertion-deletion

errors allow an adversary to insert symbols into and delete symbols from any codeword given

to it. Given C = Enc′H,λ(x), where Enc′H,λ is identical to EncH,λ except we use the SZ code as

the code Cin, there is a simple attack to ensure that DecH,λ always outputs ⊥. The adversary

simply transforms C = C(1) ◦ . . .◦C(d) to corrupt codeword ˜︁C = C
(d)
1 ◦C(1) ◦ · · · ◦C(d−1) ◦C(d)

0 ,

where C(d)
0 is the first half of C(d) and C

(d)
1 is the second half of C(d). Now recovery of any

block j and the public key pk is impossible. Note that this implies that (EncH,λ,DecH,λ) is an

InsDel crLDC with δ = 0; however, we can achieve larger δ by leveraging noisy binary search.

Noisy Binary Search Overview.

We leverage the noisy binary search algorithm of Block et al. [ 48 ] to overcome the above

challenges. To begin, our insertion-deletion encoder is nearly identical to EncH,λ with the

following changes: (1) we use the SZ code as our inner code Cin; and (2) we additionally

pad each block encoded by the SZ code with a suitable number of 0s before and after

each codeword, before concatenating all of them together to yield the final codeword. To

differentiate from EncH,λ, we let c(j) = SZ.Enc(x(j) ◦ σ(j) ◦ pk ◦ j) denote the encoded signed

message block and let C(j) denote c(j) padded with an appropriate number of 0s before and

after the codeword. This padding is necessary for the noisy binary search algorithm.
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Now given some (possibly corrupt) codeword ˜︁C and for any desired index i ∈ {1, . . . , k},

our decoding algorithm leverages the noisy binary search algorithm to search C ′ for some

(possibly corrupt) block ˜︁c(j) which contains the desired bit xi. So long as both ˜︁C and ˜︁c(j) are

“not too corrupt”, then the noisy binary search algorithm outputs ˜︁c(j) with high probability.

Then we can decode the string ˜︁c(j) as ˜︁x(j)◦ ˜︁σ(j)◦˜︂pk◦˜︁j and use the signature scheme verification

algorithm to ensure that ˜︁x(j) is correct.

To understand the noisy binary search (NBS) algorithm and its guarantees, we require the

notion of γ-goodness. For two bit strings x, y ∈ {0, 1}∗, we say that y is γ-good with respect to

x if ED(x, y) ⩽ γ, where ED is the normalized edit distance. The notion of γ-goodness—albeit

under different formal definitions—has been useful in the design and analysis of depth-robust

graphs, which are a combinatorial object used extensively in the study of so-called memory-

hard functions [  4 ,  7 ,  112 ], and it is essential to the success of the NBS algorithm. Intuitively,

for a fixed “correct” ordered list of strings A = (a1, . . . , an) and some other list of strings

B = (b1, . . . , bn′), the NBS algorithm finds any string bj that is γ-good with respect to the

string aj for j ∈ {1, . . . , n}, except with negligible probability. In our context, these bit

strings bj correspond to (possibly corrupt) blocks in the (possibly corrupt) codeword. Given

a tolerance parameter ρ∗ ∈ (0, 1/2), the NBS algorithm on input j ∈ {1, . . . , n} outputs

the string bj for at least (1− ρ∗) · n fraction of the γ-good indices j, except with negligible

probability. Moreover, the algorithm runs in time that is poly-logarithmic in n′; note that this

is only possible by allowing NBS to fail on some small fraction of γ-good indices, otherwise the

algorithm requires Ω(n′) time. When translating NBS to operate encodings ˜︁c(j) rather than

arbitrary bit strings, the algorithm utilizes a so-called block decoding algorithm BlockDecode

to find the string ˜︁c(j) within the larger string ˜︁C. The algorithm BlockDecode takes as input

an index i ∈ {1, . . . , | ˜︁C|}, and as long as ˜︁c(j) is a γ-good block and the index i falls within a

ball around ˜︁C(j) in ˜︁C, then BlockDecode outputs the block ˜︁c(j), except with probability at

most γ. Our construction leverages both the BlockDecode and NBS algorithms along with a

suitable digital signature scheme Π. We now formally present our encoding and decoding

algorithms.
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The Encoder EncI,λ.

We present our formal encoding algorithm EncI,λ in  Figure 7.3  . As our insertion-deletion

encoder is a modification of our Hamming encoder, we highlight the differences in blue text

and with comments in  Figure 7.3 . On input message x ∈ {0, 1}k and given security parameter

λ ∈ N (in unary) along with a constant α (specified by the NBS and BlockDecode algorithms),

the encoder EncI,λ first samples a public/private key pair (pk, sk) ← Gen(1λ). Next, the

message x is partitioned into d = ⌈k/r(λ)⌉ blocks x(1) ◦ · · · ◦ x(d), each of size r(λ) bits. For

every block j ∈ {1, . . . , d}, the signature σ(j) ← Signsk(x(j) ◦ j) is computed, and a new block

m(j) := x(j) ◦ σ(j) ◦ pk ◦ j is formed. This block is then encoded as c(j) = SZ.Encλ(m(j)), and

computes a zero-buffered block C(j) = (0α·r(λ) ◦ c(j) ◦ 0α·r(λ)), where α is a suitably chosen

constant given by [ 48 ] (see  Lemma 7.5.3 ). The final codeword C is the concatenation of all

buffered blocks; i.e., C := C(1) ◦ · · · ◦C(d). As with our Hamming encoder, whenever r(λ) ⩾ k,

it is efficient to encode x with the SZ code, as we lose all locality benefits.

The Decoder DecI,λ.

We present the formal decoding algorithm DecI,λ in  Figure 7.4 and give a high-level

overview here. As our insertion-deletion decoder is a modification of our Hamming decoder,

we highlight the differences in blue text and with comments in  Figure 7.4  . Let x ∈ {0, 1}k and

C = EncI,λ(x), and suppose that ˜︁C ∈ {0, 1}n′
is a corrupt codeword such that ED(C, ˜︁C) ⩽ ρ

for some n′. Given oracle access to ˜︁C and an index i ∈ {1, . . . , k} as input, the decoder

attempts to recover bit xi of the original message x. Calling back to the encoding algorithm,

bit xi resides in block x(j) for j satisfying (j − 1) · r(λ) < i ⩽ j · r(λ) ( Line 3 of  Figure 7.3 ).

Thus recovering xi is done by recovering block x(j) from corrupt codeword ˜︁C. Assuming DecI,λ

can recover x(j), the decoder simply outputs xi = x
(j)
i∗ for i∗ = i− (j − 1) · r(λ); otherwise,

our goal will be for DecI,λ to output ⊥.

Same line as the Hamming decoder, our insertion-deletion decoder proceeds in two steps:

first, the decoder attempts to recover the public key pk used to encode message x as C by
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Input : A message x ∈ {0, 1}k.
Output : A codeword C ∈ {0, 1}n.
Hardcoded : The SZ InsDel code (SZ.Enc, SZ.Dec); r(·)-length signature scheme

(Gen, Sign,Verify); constant α ∈ N; and security parameter λ ∈ N in
unary.

1 Sample (pk, sk)← Gen(1λ).
2 Set d = ⌈k/r(λ)⌉.
3 Partition x into blocks x(1) ◦ · · · ◦ x(d)) where x(j) ∈ {0, 1}r(λ) for every j ∈ {1, . . . , d}

(padding the last block as necessary).
4 foreach j ∈ {1, . . . , d} do
5 Compute the following values: /* Differs from EncH,λ. */
6

σ(j) ← Signsk(x(j) ◦ j) (7.3)
c(j) = SZ.Enc(x(j) ◦ σ(j) ◦ pk ◦ j) (7.4)
C(j) = (0α·ml ◦ c(j) ◦ 0α·ml), (7.5)

where ml = |x(j) ◦ σ(j) ◦ pk ◦ j|. /* ml is the same for every j. */

7 Define C := C(1) ◦ · · · ◦ C(d) ∈ {0, 1}n.
8 return C

Figure 7.3. Encoding algorithm EncI,λ(x) for insertion-deletion errors.

running EncI,λ; and second, the decoder attempts to recover some (possibly corrupt) block
˜︂m = (˜︁x ◦ ˜︁σ ◦ ˜︂pk ◦ ˜︁j). The block ˜︂m can then be parsed and verified using Verifypk; that is,

the decoder runs Verifypk(˜︁x ◦ j, ˜︁σ) and outputs ˜︁xi∗ if Verifypk(˜︁x ◦ j, ˜︁σ) = 1 and outputs ⊥

otherwise. Note here that (1) the public key pk recovered in the first step is not necessarily

equal to string ˜︂pk parsed from ˜︂m in the second step; and (2) pk and desired block index j

are used to verify the string ˜︁x rather than the parsed public key ˜︂pk and parsed index ˜︁j.
Towards the first goal of recovering the public key pk, let µ ∈ N be a parameter (to be

determined later). The decoder attempts to recover µ number of public keys, then take the

majority of these recovered keys as the “true” public key pk. To do so, the decoder leverages

the algorithm BlockDecode. On input j ∈ [n], the algorithm BlockDecode queries the received

word ˜︁C in a large ball round index j for a block to decode. For example, if ˜︁C = C = EncI,λ(x),

then BlockDecode(1) would return c(1) (as defined in  Equation (7.4) of  Figure 7.3 ). However,

the algorithm BlockDecode is only guaranteed to return a correct block so long as the portion
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of ˜︁C it begins searching in is “not too corrupt”. This intuition is captured by the notion of a

γ-good block, which informally states that the edit distance between the uncorrupt block and

the corrupt block is at most γ. Then, so long as the number of γ-good blocks is large (for

some constant γ), the BlockDecode algorithm will succeed most of the time. We formalize the

notion of γ-good blocks in  Definition 7.5.2 and the guarantees of BlockDecode in  Lemma 7.5.4 .

This guarantees that with good probability (which depends on γ and the value µ), the public

key recovered by the decoding algorithm ( Line 11 ) is the correct public key used by the

encoder; in particular, we can suitably choose µ such that pk∗ = pk with high probability via

a Chernoff bound so long as the number of γ-good blocks is greater than d/2.

Conditioned on the decoder obtaining some public key pk∗ in  Line 11 of  Figure 7.4 , the

decoder proceeds in the next task of recovering the desired block ˜︂m(j). For this task, the

decoder leverages the noisy binary search algorithm NBS. After running NBS on input j

and obtaining some ˜︂m(j), assuming that ˜︂m(j) ̸= ⊥, the decoder parses ˜︂m(j) as the string

(˜︁x(j) ◦ ˜︁σ(j) ◦ ˜︂pk
(j)
◦ ˜︁j). Then, as mentioned before, the decoder proceeds to verify that the

signature ˜︁σ(j) is a valid signature for the string ˜︁x(j) ◦ j using Verify and the recovered public

key pk∗. It is important to again note that the index j used in the verification may not be

the same as ˜︁j, and that pk∗ may not be the same as ˜︂pk
(j). One could alternatively choose for

the decoder to output ⊥ if either j ̸= ˜︁j or pk∗ ̸= ˜︂pk
(j); however, this would give the attacker

an easy way to force the decoder to output ⊥ on a large fraction of indices, something we

want to avoid all together. Finally, if the verification succeeds, the decoder outputs bit ˜︁x(j)
i∗

for i∗ = i− (j − 1) · r(λ).

InsDel crLDC Security Proof Overview

The main technical challenge of our construction is showing our construction satisfies

 Items 3 and  4 of  Definition 7.1.1 . We present the formal proof of security in  Section 7.5 and

give a high level overview in the remainder of this section.

Towards analyzing  Item 3 , our analysis proceeds in much the same way as for our Hamming

crLDC. We directly analyze the probability that Dec˜︁CI,λ(i) ∈ {xi,⊥} for any i ∈ {1, . . . , k}
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Input : An index i ∈ [k].
Oracle : Bitstring ˜︁C ∈ {0, 1}n′

for some n′.
Output : A symbol ˜︁x ∈ {0, 1} or ⊥.
Hardcoded : The algorithms BlockDecode and NBS; r(·)-length signature scheme

(Gen, Sign,Verify); block length n; security parameter λ ∈ N in unary;
and parameter µ ∈ N (to be determined later).

1 Set d = ⌈k/r(λ)⌉.
2 Uniformly at random sample i1, . . . , iµ $← [n]. /* Differs from DecH,λ. */
3 Initialize pk∗, pk1, . . . , pkµ = 0.
4 foreach κ ∈ {1, . . . , µ} do
5 Obtain string ˜︂m(iκ) ← BlockDecode˜︁C(iκ). /* Differs from DecH,λ. */
6 if ˜︂m(iκ) = ⊥ then /* Differs from DecH,λ. */
7 Set pkκ = ⊥.
8 continue

9 Parse ˜︂m(iκ) as (˜︁x(iκ) ◦ ˜︁σ(iκ) ◦ ˜︂pk
(iκ)
◦ ˜︁i).

10 Set pkκ = ˜︂pk
(iκ).

11 Set pk∗ = majority(pk1, . . . , pkµ).
12 Compute j ∈ {1, . . . , d} such that (j − 1) · r(λ) < i ⩽ j · r(λ).
13 Obtain string ˜︂m(j) ← NBSC′(j). /* Differs from DecH,λ. */
14 if ˜︂m(j) = ⊥ or pk∗ = ⊥ then /* Differs from DecH,λ. */
15 return ⊥.

16 Parse ˜︂m(j) as (˜︁x(j) ◦ ˜︁σ(j) ◦ ˜︂pk
(j)
◦ ˜︁j).

17 if Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 then
18 return ⊥

19 return ˜︁x(j)
i∗ for i∗ = i− (j − 1) · r(λ).

Figure 7.4. Decoding algorithm Dec˜︁CI,λ(i) for insertion-deletion errors.

and ˜︁C ∈ {0, 1}n′
such that ED( ˜︁C,C) ⩽ ρ for C = EncI,λ(x). The proof proceeds identically

to the Hamming crLDC with the following key changes. First, when recovering the public

key, we additionally must consider the success probability of the algorithm BlockDecode to

recover our corrupt codeword blocks. The success probability directly affects the parameters

of our construction that are needed to apply a Chernoff bound to ensure that we recover

pk∗ = pk with high probability. Second, when recovering block j where index i resides, we

must use the noisy binary search algorithm to recover this block. Thus we additionally take

into consideration the probability of success of our noisy binary search algorithm. As we
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show in  Section 7.5 , the guarantees of both BlockDecode and NBS allow us to ensure that

 Item 3  is satisfied via careful selection of parameters.

Towards  Item 4 , the proof proceeds again nearly identically to the Hamming crLDC case,

except again we must take into consideration the recovery of the public key pk∗ = pk via

the algorithm BlockDecode, and the correct recovery of a block j with the algorithm NBS.

Note that except with negligible probability, the noisy binary search algorithm will correctly

recover any block that is γ-good with probability greater than 2/3 (under suitable parameter

choices). This then directly translates to the fraction δ of indices we are able to decode from

for  Item 4  .

7.2.3 Related Work

Classical insertion-deletion codes were initially studied by Levenstein [ 185 ], and since

then there has been extensive study into the construction of insertion-deletion codes; see

the surveys of [  205 ,  208 ,  245 ]. A recent line of work answered a long standing open in the

construction of k-deletion correcting codes with optimal redundancy [  241 – 243 ]. There has

also been a line of work studying the random codes with positive information rate that

are able to correct a large fraction of deletions [ 143 ,  179 ], and constant rate codes that are

resilient to a constant fraction of insertion-deletion errors with efficient encoding and decoding

(i.e., polynomial time) were studied extensively in [ 70 ,  85 ,  86 ,  88 ,  89 ,  142 – 144 ,  150 ,  151 ,

 230 ]. Another direction in the study of insertion-deletion codes is extending the ideas of list

decoding to this context. List decodable codes are error-correcting codes that are resilient

to a larger fraction of errors at the cost of outputting a small list of potential codewords

[ 144 ,  152 ,  190 ]. Haeupler and Shahrasbi [ 151 ] study constructions of explicit synchronization

strings which can be “locally decoded” in the following sense. Each index of this string is

computable using values which are located at a small number of other indices in the string.

These explicit and locally decodable synchronization strings are used to imply near linear

time interactive coding schemes for InsDel errors.

Lipton [ 188 ] initiated the study of codes which are resilient to errors introduced by

computationally bounded channels; several follow-up works adopt this channel model which
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allows for the construction of Hamming codes with better parameters than their classical

counterparts [ 146 ,  188 ,  207 ,  233 ]. It has been argued that any real-world communication

channel can be reasonably modeled as a computationally bounded channel [  60 ,  188 ], and

this notion is well-motivated by channels in the real-world, all of which have some sort of

limitations on their computation. One can reasonably expect error patterns encountered in

nature to be modeled by some (possibly unknown) probabilistic polynomial time algorithm.

This channel model has also been extended to the locally decodable setting for both Hamming

errors [  57 ,  60 ,  155 ,  156 ,  214 ] and, more recently, the insertion-deletion setting [ 46 ].

Ben-Sasson et al. [ 37 ] introduced the notion of a relaxed locally decodable code. These

codes admit local decoding algorithms with the additional property that the decoder is

allowed to output a symbol ⊥ which represents that the decoder does not know the correct

value. This relaxation allows [ 37 ] to construct locally decodable codes with much better

parameters than their classical counterparts; in particular, they achieve codes which are

resilient to a constant fraction of Hamming errors, have constant locality, and have encoding

length k1ϵ for small ϵ. In a follow-up work, Gur, Ramnarayan, and Rothblum [ 141 ] introduce

and construct relaxed locally correctable codes (rLCC) for Hamming errors. These codes

admit local correction algorithms which can correct corrupt symbols of an encoded message

via querying a few locations into the received word. Their construction achieves significantly

better parameters than classical Hamming LCC s: they achieve constant locality, constant

error-tolerance, and polynomial encoding length. Furthermore, their rLCC is also a a rLDC

since their encoding is systematic (i.e., the message is a substring of the codeword). Blocki,

Gandikota, Grigorescu, and Zhou [  57 ] study Hamming rLDCs and rLCC s in the context

of computationally bounded channels (crLDC and crLCC). In particular, our work directly

adapts their computation model but for insertion-deletion errors. The dual assumption of

both a computationally bounded channel and a relaxed LDC allows [ 57 ] to construct crLCC

s and crLDCs which achieve constant rate, constant error-tolerance, and poly-logarithmic

locality, further improving on the results of Ben-Sasson et al. and Gur, Ramnarayan, and

Rothblum [ 37 ,  141 ].

The study of insertion-deletion LDCs is scarce. To the best of our knowledge, all prior

InsDel LDC results rely on the so-called “Hamming-to-InsDel” compiler of Ostrovsky and
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Paskin-Cherniavsky [ 215 ]. This compiler transforms any Hamming LDC into an InsDel LDC

in a manner that (approximately) preserves the rate and error-tolerance of the underlying

Hamming LDC at the cost of a poly-logarithmic increase in the locality. Block et al. [ 48 ]

reprove the result of [ 215 ] and give a conceptually simpler analysis using techniques borrowed

from the study of a cryptographic object known as memory-hard functions [ 4 – 10 ,  39 ,  59 ,

 62 ,  83 ,  117 ]. Cheng, Li and Zheng [ 90 ] propose the notion of locally decodable codes with

randomized encoding, in both the Hamming and edit distance regimes. They study such

codes in various settings, including where the encoder and decoder share randomness, or the

channel is oblivious to the codeword, and hence adds error patterns non-adaptively. In the

construction of their insertion-deletion codes, they directly invoke the compiler of [ 215 ] and

obtain with block length O(k) or O(k · log(k)) and polylog(k) locality for message length

k. Recently, Block and Blocki [ 46 ] extend this compiler to the private-key setting of [ 214 ]

where the encoder and decoder are assumed to share a secret key unknown to the channel,

and to the resource-bounded setting of [ 60 ] where the channel is assumed to be resource

constrained in some way (e.g., the channel is a low-depth circuit). We remark that it is likely

that applying the “Hamming-to-InsDel” compiler to the crLDC of Blocki et al. [ 57 ] would

yield an InsDel crLDC, though this has not been formally claimed or proven in prior work.

Finally, there has been recent progress in deriving lower bounds for insertion-deletion

LDCs. Blocki et al. [ 56 ] proved that InsDel LDCs with constant locality require exponential

block length, also showing that linear 2-query InsDel LDCs do not exist. This makes it all the

more surprising that one can achieve a constant rate InsDel crLDC in the poly-logarithmic

locality regime.

7.3 Preliminaries

We let λ ∈ N denote the security parameter. For any n ∈ Z+ we let [n] := {1, . . . , n}.

A function µ : N→ R⩾0 is said to be negligible if µ(n) = o(1/|p(n)|) for any fixed non-zero

polynomial p. We write PPT to denote probabilistic polynomial time. For any randomized

algorithm A, we let y ← A(x) denote the process of obtaining output y from algorithm A
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on input x. For a finite set S, we let s $← S denote the process of sampling elements of S

uniformly at random.

We use “◦” to denote the string concatenation operation. For bitstring x ∈ {0, 1}∗, we

use subscripts to denote individual bits of x; e.g., xi ∈ {0, 1} is the i-th bit of x. Additionally,

we often partition a bitstring x ∈ {0, 1}k into some number of blocks d of equal length; e.g.,

x = (x(1) ◦ · · · ◦ x(d)) where x(j) ∈ {0, 1}k/d for all j ∈ [d]. We also utilize array notation

when convenient: e.g., for bitstring x ∈ {0, 1}k and indices a, b ∈ [k] such that a ⩽ b, we let

x[a, b] := (xa ◦ xa+1 ◦ · · · ◦ xb). For two strings x ∈ {0, 1}k and y ∈ {0, 1}∗, we define ED(x, y)

as the minimum number of insertions and deletions required to transform x into y (or vice

versa), normalized by 2k.

In this work, we utilize digital signatures and give the formal definition below.

Definition 7.3.1 (Digital Signature Scheme). A digital signature scheme with signatures

of length r(·) is a tuple of PPT algorithms Π = (Gen, Sign,Verify) satisfying the following

properties:

1. Gen is the key generation algorithm and takes as input a security parameter 1λ and

outputs a pair of keys (pk, sk) ∈ {0, 1}∗ × {0, 1}∗, where pk is the public key and sk is

the secret/private key. It is assumed that |pk|, |sk| ⩾ λ are polynomial in λ, and that λ

can be efficiently determined from pk or sk. Without loss of generality, we assume that

|pk| = r(λ).

2. Sign is the signing algorithm and takes as input secret key sk and message m ∈ {0, 1}∗

of arbitrary length and outputs a signature σ ← Signsk(m) ∈ {0, 1}r(λ), where Sign runs

in time poly(|sk|, |m|).

3. Verify is the deterministic verification algorithm that takes as input public key pk,

message m, and signature σ, and outputs a bit b = Verifypk(m,σ) ∈ {0, 1}. Moreover

Verify run in time poly(r(λ), |m|).

Additionally, we require the following two properties:
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Signature experiment Sig-forgeΠ,A(λ)

1. Obtain (pk, sk)← Gen(1λ).

2. Adversary A is given pk as input and given oracle access to the algorithm Signsk(·). We
denote this as ASignsk(·)(pk). Let Q denote the set of all queries made by A to its oracle.
The adversary outputs pair (m,σ).

3. The adversary A wins if and only if (a) Verifypk(m,σ) = 1; and (b) m ̸∈ Q. If A wins,
we define Sig-forgeΠ,A(λ) := 1; otherwise we define Sig-forgeΠ,A(λ) := 0.

Figure 7.5. Description of the signature forgery experiment Sig-forge.

1. Completeness: For all messages m ∈ {0, 1}∗ and all (pk, sk) ∈ supp(Gen(1λ)), we

have 

3
 

Verifypk(m, Signsk(m)) = 1.

2. Security: For all PPT adversaries A, there exists a negligible function εΠ(·) such that

for all λ ∈ N we have

Pr [Sig-forgeΠ,A(λ) = 1] ⩽ εΠ(λ),

where the experiment Sig-forge is defined in  Figure 7.5 .

For completeness, we also include the classical definition of an error-correcting code.

Definition 7.3.2. A coding scheme C[K, k, q1, q2] = (Enc,Dec) is a pair of encoding and

decoding algorithms Enc : Σk
1 → ΣK

2 and Dec : Σ∗2 → Σk
1, where |Σi| = qi. A code C[K, k, q1, q2]

is a (ρ, dist) error-correcting code for ρ ∈ [0, 1] and fractional distance dist if for all x ∈ Σk
1

and y ∈ Σ∗2 such that dist(Enc(x), y) ⩽ ρ, we have that Dec(y) = x. Here, ρ is the error rate

of C. If q1 = q2, we simply denote this by C[K, k, q1]. If dist = HAM, then C is a Hamming

code; if dist = ED, then C is an insertion-deletion code (InsDel code).
3

 ↑ Other definitions (e.g., [ 169 ]) require this condition to hold except with negligible probability over (pk, sk)←
Gen(1λ).
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Key to our construction is the so-called “SZ-code”, which is an insertion-deletion error-

correcting code with constant rate and constant error-tolerance.

Lemma 7.3.1 (SZ-code [ 230 ]). There exists positive constants βsz ⩽ 1 and ρsz > 0 such

that for large enough values of t ∈ Z+, there exists a (ρsz,ED) code SZ(t) = (SZ.Enc, SZ.Dec)

where SZ.Enc : {0, 1}t → {0, 1}(1/βsz)·t and SZ.Dec : {0, 1}∗ → {0, 1}t ∪ {⊥} with the following

properties:

1. SZ.Enc and SZ.Dec run in time poly(t); and

2. For all x ∈ {0, 1}t, every interval of length 2 log(t) in Enc(x) has fractional Hamming

weight ⩾ 2/5.

We omit the parameter t when it is clear from context.

7.4 Proof of  Theorem 7.1.1 

We dedicate this section to showing that CHAM,λ = {(EncH,λ,DecH,λ)}λ∈N satisfies  Theorem 7.1.1 ,

where EncH,λ and DecH,λ are defined in  Figures 7.1 and  7.2 , respectively. We recall the theorem

below.

Theorem 7.1.1. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r := r(λ). Let Cin = (Encin,Decin) be a Hamming code with rate βin and

error-tolerance ρin. Then for every positive polynomial k(·) and positive constant c < 1/2,

there exists code family CHAM := {CH,λ[n, k(λ), 2] = (EncH,λ,DecH,λ)}λ∈N such that for all ε > 0

the family CHAM is a (ℓ, ρ, p, δ)-Hamming crLDC with block length n = O((1/βin) max{k(1 +

log(k)/r), r}), error-tolerance ρ = c · ρin, locality ℓ = O((log1+ε(λ)/βin) · (r+ log(k))), success

probability p = 1 − negl(λ) > 2/3, and δ = 1/2, where k := k(λ) and negl(·) is a negligible

function.

Proof. For the block length n, note that x(j), σ(j) ∈ {0, 1}r(λ), and j ∈ {0, 1}log(d). Fur-

thermore, without loss of generality we assume that pk ∈ {0, 1}λ and r(λ) ⩾ λ. Note that

log(d) = O(log(k)). If rate of Cin is βin, then block length of our code is d ·(1/βin) ·(2r(λ)+λ+

log(d)) = (⌈k/r(λ)⌉) ·(1/βin) ·(2r(λ)+λ+log(⌈k/r(λ)⌉)) = O((1/βin) ·k ·(3+log(k)/r(λ))) =
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O((1/βin) · k(1 + log(k)/r(λ))) whenever k ⩾ r(λ). When r(λ) > k, then we pad the input

message x with k − r(λ) number of 0’s at the end to get a string of length r(λ), which gives

a single codeword block of length (1/βin) · (2r(λ) + λ+ 1) = O((1/βin) · r(λ)). Thus we have

our block length as O((1/βin) ·max{k · (1 + log(k)/r(λ)), r(λ)}). For the locality ℓ, we know

that any block j has length (1/βin) · (2r(λ) + λ+ log(d)) = (1/βin) · (2r(λ) + λ+ log(k)−

log(r(λ))) = O((1/βin) · (r(λ) + log(k))). Since we decode µ+ 1 blocks, our overall locality is

ℓ = O((µ/βin) · (r(λ) + log(k))). Moreover, DecH,λ makes O((µ/βin) · (r(λ) + log(k))) queries

to its oracle on any input i, satisfying  Item 1  of  Definition 7.1.1 .

For item  Item 2 , assume that DecH,λ is given oracle access to ˜︁C = C for some C = EncH,λ(x)

and x ∈ {0, 1}k. We then analyze the probability that DecC
H,λ(i) = xi for any i ∈ [k]. First,

since C is a correct codeword, recovery of the public key succeeds with probability 1. That

is, for every κ ∈ [µ], the string ˜︂m(jκ) ← Decin (C[(jκ − 1) · bl + 1, jκ · bl]) recovered in  Line 5 

is equal to x(jκ) ◦ σ(jκ) ◦ pk ◦ jκ (i.e., everything is correct). Here, bl = n/d is the length of

each block C(j) in C = C(1) ◦ · · · ◦C(d). Thus pk∗ = pk with probability 1. Now fixing j ∈ [d]

to be the block such that bit xi resides in x(j), by the above discussion we know that ˜︂m(j)

recovered in  Line 10 is correct and is parsed as x(j) ◦ σ(j) ◦ pk ◦ j. This along with the fact

that pk∗ = pk implies that  Line 12 is true with probability 0 (i.e., Verifypk∗(x(j) ◦ j, σ(j)) = 1

with probability 1). This implies that DecC
H,λ(i) = xi with probability 1, as desired.

For error-tolerance, let ρin ∈ (0, 1) be the error-tolerance of Cin. Intuitively, we want to

set our final error-tolerance ρ such that for any ρ-fraction of corruptions, less than half of

the d blocks contain more than ρin faction of errors each. Equivalently, more than half of

the d blocks contain at most ρin fraction of errors. Let K be the bitlength of each block. To

corrupt a single block j ∈ [d] such that decoding is incorrect, the block j must contain at

least ρin ·K + 1 errors (bitflips). Let ˜︁J ⊂ [d] be the set of indices such that block j ∈ ˜︁J has

at least ρin ·K + 1 Hamming errors. Then we have

| ˜︁J | · (ρin ·K + 1) ⩽ ρ ·K · d

| ˜︁J | ⩽ ρ ·K · d
(ρin ·K + 1) <

ρ ·K · d
ρin ·K

| ˜︁J | < ρ

ρin

· d.
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We want | ˜︁J | < (1/2) · d to ensure that more than half of the blocks contain at most ρin ·K

errors. Therefore we have

ρ

ρin

· d < 1
2 · d =⇒ ρ <

ρin

2 .

Thus we set ρ = c · ρin = Θ(ρin) for any positive constant c < 1/2.

Next we turn to analyzing the success probability p and  Item 3 of  Definition 7.1.1 .

For the predicate Fool, fix message x and let C = EncH,λ(x). Let ˜︁C ∈ {0, 1}n such that

HAM(C, ˜︁C) ⩽ ρ. We want to show that for all PPT A there exists a negligible function

εF such that for all λ and x ∈ {0, 1}k we have Pr [Fool(A(C), ρ, p, x, C, λ) = 1] ⩽ εF(λ) for

C = EncH,λ(x). Equivalently, we want to show that

Pr [∃i ∈ [k] : Pr [Dec˜︁CH,λ(i) ∈ {xi,⊥}] < p] ⩽ εF(λ),

where HAM(C, ˜︁C) ⩽ ρ. Restated again, we want to show that

Pr [∀i ∈ [k] : Pr [Dec˜︁CH,λ(i) ∈ {xi,⊥}] ⩾ p] ⩾ 1− εF(λ).

We begin by analyzing the probability that Dec˜︁CH,λ(i) ∈ {xi,⊥}, and let Ei denote this

event, and also let Forgei denote the event that A produces a signature forgery (˜︁x(j) ◦ j, ˜︁σ(j)),

where j ∈ [d] such that (j − 1) · r(λ) < i ⩽ j · r(λ) and ˜︁x(j) and ˜︁σ(j) are recovered in  Line 10 

of  Figure 7.2 . Then we have that

Pr [Ei] = Pr [Ei | Forgei].

Note that the decoder can never output ⊥ and xi simultaneously. Letting Ei(x) be the event

that Dec˜︁CH,λ(i) = x for symbol x, we have that

Pr [Ei | Forgei] = Pr [Ei(xi) | Forgei] + Pr [Ei(⊥) | Forgei].
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We analyze the first probability Pr [Ei(xi) | Forgei]. For this case, since we assume that

(˜︁x(j) ◦ j, ˜︁σ(j)) is not a forgery, it must be the case that (1) ˜︁x(j) = x(j) and ˜︁σ(j) = σ(j); and

(2) Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1. Now the verification in this case only succeeds if pk∗ = pk.

This implies

Pr [Ei(xi) | Forgei] = Pr [pk∗ = pk].

Next we analyze the probability Pr [Ei(⊥) | Forgei]. Note that DecH,λ only outputs ⊥ if

the verification procedure of  Line 12 fails. We can then lower bound this probability as

Pr [Ei(⊥) | Forgei] ⩾

Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 | Forgei ∧ (˜︁x(j) ̸= x(j) ∨ ˜︁σ(j) ̸= σ(j)) ∧ pk∗ = pk] · Pr [pk∗ = pk].

Since we assume Forgei is true, we know that Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 | Forgei ∧ (˜︁x(j) ̸=

x(j) ∨ ˜︁σ(j) ̸= σ(j)) ∧ pk∗ = pk] = 1. This implies that

Pr [Ei(⊥) | Forgei] ⩾ Pr [pk∗ = pk],

which in turn implies

Pr [Ei | Forgei] ⩾ 2 · Pr [pk∗ = pk] ⩾ Pr [pk∗ = pk].

We turn to analyzing the probability that pk∗ = pk. For completeness, let pk be the public

key sampled by EncH,λ(x) to generate y. Then by our parameter choice c ∈ (0, 1/2), at least

(1− c) · d > (1/2)d blocks of y′ contain at most ρin-fraction of Hamming errors. Let bl = n/d

denote the length of any codeword block and let JGood denote the set of blocks with at most

ρin-fraction of Hamming errors. This implies that x(j)◦σ(j)◦pk◦j = Decin( ˜︁C[(j−1)·bl+1, j ·bl])
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for any j ∈ JGood; i.e., it is a correct decoding since ˜︁C(j) = ˜︁C[(j − 1) · bl + 1, j · bl] is within

the unique decoding radius of Cin. Define random variable Xκ for κ ∈ [µ] as

Xκ :=

⎧⎪⎪⎨⎪⎪⎩
1 x(j) ◦ σ(j) ◦ pk ◦ j = Decin( ˜︁C[(j − 1) · bl + 1, j · bl])

0 otherwise
.

We know that

Pr [Xκ = 1] = Pr [x(j) ◦ σ(j) ◦ pk ◦ j = Decin( ˜︁C[(j − 1) · bl + 1, j · bl])]

= Pr [jκ ∈ JGood]

⩾ (1− c) > 1/2.

Let q = (1− c) > 1/2. Then by a Chernoff bound we have that

Pr
⎡⎣∑︂

κ∈[µ]
Xκ >

µ

2

⎤⎦ ⩾ 1− exp(−µ · (q − 1/2)2/(2q)).

This implies that with probability at least p := 1−exp(−µ ·(q−1/2)2/(2q)), we have pk∗ = pk.

Thus we have

Pr [Ei | Forgei] ⩾ p.

Throughout the above analysis, we only assumed that no forgery occurred. For any

arbitrary i, the probability that Forgei occurs is at least 1− εΠ(λ), where εΠ(·) is a negligible

function that depends on the security of the digital signature scheme Π. Thus by union

bound, we have that

Pr [∃i ∈ [k] : Pr [Dec˜︁CH,λ(i) ∈ {xi,⊥}] < p] ⩾ k · εΠ(λ).

Setting εF(λ) := k · εΠ(λ), we have that εF(λ) is negligible in λ since k(λ) is a polynomial.

Finally, we turn to analyzing the parameter δ and  Item 4 of  Definition 7.1.1 . By our

choice of ρ = c · ρin for positive constant c < 1/2, we know that for any ˜︁C ∈ {0, 1}n such that
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HAM( ˜︁C,C) ⩽ ρ, at least (1−c) ·d blocks of ˜︁C contain at most ρin-fraction of Hamming errors.

Again letting JGood ⊂ [d] denote the indices of these blocks, we have |JGood| > d/2. For

bl = n/d, this again implies that x(j)◦σ(j)◦pk◦j = Decin( ˜︁C[(j−1)·bl+1, j·bl]) for any j ∈ JGood.

This in turn implies that for any j ∈ JGood, we have that Pr [Dec˜︁CH,λ(i) = xi|pk∗ = pk] = 1

whenever (j − 1) · r(λ) < i ⩽ j · r(λ). Thus for any j ∈ JGood and i ∈ [k] such that

(j − 1) · r(λ) < i ⩽ j · r(λ), we have that

Pr [Dec˜︁CH,λ(i) = xi] = Pr [pk∗ = pk] ⩾ 1− exp(−µ · (1/2− c)2
/︂

2(1− c)).

By appropriately choosing µ(λ) := Θ(log1+ε(λ)) for ε > 0, we can ensure that 1− exp(−µ ·

(1/2 − c)2
/︂

2(1 − c)) = 1 − negl(λ) > 2/3; this also gives our claimed locality ℓ. Finally,

we note that the set IGood := {i ∈ [k] : j ∈ JGood ∧ (j − 1) · r(λ) < i ⩽ j · r(λ)} has size

|IGood| > k/2. Thus we can set δ = 1/2.

Here we have shown that for any ˜︁C ∈ {0, 1}n such that HAM( ˜︁C,C) ⩽ ρ, there exists a set

Good( ˜︁C) := IGood such that |IGood| ⩾ δ · k. This is for any ˜︁C, and in particular, any corrupt

codeword that a PPT adversary could produce. Thus we have that for any PPT adversary

A, any x ∈ {0, 1}k, and C = EncH,λ(x):

Pr [Limit(A(C), ρ, δ, x, C, λ) = 1] = 0.

7.5 Proof of  Theorem 7.1.3 

We dedicate this section to proving  Theorem 7.1.3 . We recall the theorem here.

Theorem 7.1.3. Suppose that Π = (Gen, Sign,Verify) is a digital signature scheme with

signatures of length r := r(λ). For every positive polynomial k(·) and positive constant

ρ∗ < 1/3, there exists a code family CIns := {Cλ[n, k(λ), 2] = (EncI,λ,DecI,λ)}λ∈N such that for

all ε > 0, the family CIns is a (ℓ, ρ, p, δ)-InsDel crLDC with block length n = O(max{k(1 +

log(k)/r), r}), error-tolerance ρ = Θ(1), locality ℓ = O(log3+ε(λ) · (r + log(k))), success
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probability p = 1− ρ∗ − negl(λ) > 2/3, and δ = 1−Θ(ρ), where k := k(λ) and negl(·) is a

negligible function.

Proof. To begin fix x ∈ {0, 1}k and let C = EncI,λ(x). In the definition of Encλ, we know

that C = C(1) ◦ · · · ◦ C(d), where d = ⌈k/r(λ)⌉. First assume that k ⩾ r(λ). For each C(j),

note that it is the SZ encoding of x(j) ◦ σ(j) ◦ pk ◦ j, appended at the front and back with

zero-buffers. Note that the bit-length of j is log(d) = log(k) − log(r(λ)). For simplicity,

assume that index j ∈ {0, 1}log(k) (we can pad to length log(k) otherwise). Then we have

τ := |x(j) ◦ σ(j) ◦ pk ◦ j| = 3 · r(λ) + log(k). This gives us that |c(j)| = (1/βsz) · τ , and that

|C(j)| = 2ατ + (1/βsz) · τ = (2α + (1/βsz))τ . Finally, this gives

n = |C| = d · (2α + (1/βsz)) · τ

=
(︄

k

r(λ)

)︄
· (2α + (1/βsz)) · (3 · r(λ) + log(k))

= O

(︄
k ·
(︄

1 + log(k)
r(λ)

)︄)︄
,

where the last equality holds since α, βsz are constants. Note here that k is sufficiently large

whenever SZ(t) exists for all t ⩾ log(k). Now whenever r(λ) > k, we have that d = 1 and

we simply sign and encode a single block of length τ , which yields a single block of length

(2α + (1/βsz))τ = (2α + (1/βsz)) · (3r(λ) + log(k)) = Θ(r(λ)) since r(λ) > k and α, βsz are

constants. Thus we have established n = O(max{k(1 + log(k)/r(λ)), r(λ)}).

For the remainder of this section, let β := (2α+ (1/βsz)). Next let ˜︁C ∈ {0, 1}n′
be some

string such that ED(C, ˜︁C) ⩽ ρ. We introduce some preliminary definitions and lemmas before

continuing with the proof of  Theorem 7.1.3 . These definitions and lemmas come from the

results of Block et al. [ 48 ]. First we define the notion of a block decomposition.

Definition 7.5.1 (Block Decomposition [ 48 ]). A block decomposition of a (corrupt) codeword˜︁C ∈ {0, 1}n′
is a non-decreasing map ϕ : [n′]→ [d] for n′, d ∈ N.

For any block decomposition ϕ, since ϕ is a non-decreasing map we have that ϕ−1(j) for any

j ∈ [d] is an interval. That is, ϕ−1(j) = {lj, lj + 1, . . . , rj} for integers lj, rj ∈ [n′] and lj ⩽ rj .

Thus ϕ induces a partition of [n′] into d intervals of the form {ϕ−1(j) : j ∈ [d]}.
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Recall that C = Encλ(x) is of the form C(1) ◦ · · · ◦ C(d). Then the following holds.

Lemma 7.5.1 ([ 48 ]). There exists a block decomposition ϕ0 : [n′]→ [d] such that

∑︂
j∈[d]

ED
(︂ ˜︁C[ϕ−1

0 (j)], C(j)
)︂
⩽ ρ . (7.6)

Intuitively,  Lemma 7.5.1  says there exists a block decomposition such that the total edit

distance between C ′ and C ′ is exactly given by the sum of edit distances between the (possibly

corrupt) blocks ˜︁C[ϕ−1
0 (j)] and blocks C(j).

Next we define the notion of a γ-good block.

Definition 7.5.2 (γ-good block [ 48 ]). For γ ∈ (0, 1) and j ∈ [d], we say that block j is

γ-good with respect to a block decomposition ϕ if ED( ˜︁C[ϕ−1(j)], C(j)) ⩽ γ. Otherwise, we say

that block j is γ-bad.

With respect to block decomposition ϕ0, the number of γ-bad blocks is bounded, and the

length of the intervals ϕ−1
0 (j) is bounded for every γ-good block j.

Lemma 7.5.2 ([ 48 ]). Let α be the constant given by  Lemma 7.5.3  , let βsz be the constant

given by  Lemma 7.3.1 , and let β = (2α + (1/βsz)). Then the block decomposition ϕ0 satisfies

the following properties.

1. The total fraction of γ-bad blocks in ˜︁C is at most 2 · β · ρ/(γ · α).

2. For any γ-good block j, we have that (β − αγ) · τ ⩽ |ϕ−1
0 (j)| ⩽ (β + αγ) · τ , where

τ = |x(j) ◦ σ(j) ◦ pk ◦ j|.

Given the notion of γ-good, we can now formally introduce the algorithms NBS and

BlockDecode along with their guarantees.

Lemma 7.5.3 (Noisy-Binary Search [ 48 ]). Let ρsz be the constant given by  Lemma 7.3.1 .

There exists constant α = Ω(ρsz) and a randomized oracle algorithm NBS with the following

property. Let ρ∗ ∈ (0, 1/2) be a fixed constant, let t be sufficiently large, d be a parameter,

let b = (b(1), . . . , b(d)) ∈ {0, 1}t be any string where b(i) ∈ {0, 1}t/d for all i ∈ [d], and let

c = (c(1), . . . , c(d)) for c(i) = 0α(t/d) ◦ SZ.Enc(b(i) ◦ i) ◦ 0α(t/d) for all i ∈ [d]. Then there exists
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a negligible function ϑ(·) such that for any c′ ∈ {0, 1}n′
satisfying ED(c, c′) ⩽ ρ = Θ(ρ∗ · ρsz),

we have that

Pr
⎡⎣ Pr

j
$←[d]

[︂
NBSc′(j) ̸= b(j) | j is γ-good

]︂
⩾ ρ∗

⎤⎦ ⩽ ϑ(n′), (7.7)

where the probability is taken over the random coins of NBS. Furthermore, the algorithm

NBS makes O(log3(n′) · (t/d+ log(d))) oracle queries for any input j ∈ [d], and if c = c′ then

the above probability is equal to 0.

Lemma 7.5.4 ([ 48 ]). Let ρsz be the constant given by  Lemma 7.3.1 . There exists constant

α = Ω(ρsz) and randomized oracle algorithm BlockDecode with the following properties.

Let ρ∗ ∈ (0, 1/2) be a fixed constant, let t be sufficiently large, let d be a parameter, let

b = (b(1), . . . , b(d)) ∈ {0, 1}t be any string where b(i) ∈ {0, 1}t/d for all i ∈ [d], and let

c = (c(1), . . . , c(d)) for c(i) = 0α(t/d) ◦ SZ.Enc(b(i) ◦ i) ◦ 0α(t/d) for all i ∈ [d]. Then for any

c′ ∈ {0, 1}n′
satisfying ED(c, c′) ⩽ ρ = Θ(ρ∗ · ρsz), we have that

1. For any γ-good block j ∈ [d],

Pr
i∈ϕ−1

0 (j)

[︂
BlockDecodec′(i) ̸= b(j)

]︂
⩽ γ . (7.8)

Furthermore, if c′ = c, then the probability above is equal to zero.

2. BlockDecode has query complexity O(t/d+ log(d)).

We now have the necessary components to prove  Theorem 7.1.3 . We begin by first showing

 Item 2 of  Definition 7.1.1 . Let x ∈ {0, 1}k, C = EncI,λ(x), and let (pk, sk) be the public and

private key pair sampled by EncI,λ during the encoding of x as C. Suppose that ˜︁C = C and

let i ∈ [k] be any index. We want to argue that Pr [Dec˜︁CI,λ(i) = xi] = 1. To see this, first

observe that for (j − 1)r(λ) < i ⩽ jr(λ), we have

Pr [Dec˜︁CI,λ(i) = xi] = Pr [pk∗ = pk] · Pr [˜︁x(j) = x(j)] · Pr [˜︁σ(j) = σ(j)], (7.9)

242



where x(j) is the j-th block of x ( Line 3 ), σ(j) is computed as in  Equation (7.3)  of  Figure 7.3 ,

pk∗ is computed as in  Line 11 of  Figure 7.4 , and ˜︁x(j), ˜︁σ(j) are obtained from  Line 16 of

 Figure 7.4 . First notice that since ˜︁C = C, every block j ∈ [d] of ˜︁C is 0-good with respect to

C. By  Lemma 7.5.4  , for every j ∈ [d] we have that

Pr
i∈ϕ0(j)

[︃
BlockDecode˜︁C(i) = C(j)

]︃
= 1.

This implies that for every κ ∈ [µ], it holds that pk(iκ) = pk ( Line 10 ) with probability 1,

which implies that pk∗ = pk with probability 1. Next, by  Lemma 7.5.3  because ˜︁C = C, we

have that for ˜︂m(j) ← NBS˜︁C(j), it holds that ˜︂m(j) = (x(j) ◦ σ(j) ◦ pk ◦ j) with probability 1.

This implies that Verifypk∗(x(j) ◦ j, σ(j)) = 1 with probability 1, and thus Dec˜︁CI,λ(i) = xi with

probability 1 as desired.

We now work towards proving  Items 3 and  4 of  Definition 7.1.1 . Let A be a PPT adversary

and let ˜︁C = A(C) such that ˜︁C ∈ {0, 1}n′
for some n′ and ED( ˜︁C,C) ⩽ ρ. We begin with

 Item 3 . Let Di := Dec˜︁CI,λ(i) denote the random variable of running the decoder with input i

and oracle ˜︁C. Our goal is to show that

Pr [∃i ∈ [k] : Pr [Di ∈ {xi,⊥}] < p] ⩽ εF(λ),

where εF(λ) is some negligible function. Equivalently stated:

Pr [∀i ∈ [k] : Pr [Di ∈ {xi,⊥}] ⩾ p] ⩾ 1− εF(λ).

We directly analyze Pr [Di ∈ {xi,⊥}]. The analysis here is almost identical to the analysis

of  Theorem 7.1.1 , except now we must take into consideration the algorithms BlockDecode

and NBS. Let Forgei denote the event that A produces a signature forgery (˜︁x(j) ◦ j, ˜︁σ(j)) for

j ∈ [d] satisfying (j − 1) · r(λ) < i ⩽ j · r(λ) and ˜︁x(j) and ˜︁σ(j) are recovered in  Line 16 of

 Figure 7.4 . Then we have that

Pr [Di ∈ {xi,⊥}] = Pr [Di ∈ {xi,⊥} | Forgei].
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Since the decoder can never output ⊥ and xi simultaneously, we have that

Pr [Di ∈ {xi,⊥} | Forgei] = Pr [Di = xi | Forgei] + Pr [Di = ⊥ | Forgei].

We analyze Pr [Di = xi | Forgei]. First notice that in this case, we have (1) pk∗ ̸= ⊥ and
˜︂m(j) ̸= ⊥; and (2) Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1. Since we assume that (˜︁x(j) ◦ j, ˜︁σ(j)) is not

a forgery, given the above it must be the case that (1) ˜︁x(j) = x(j) and ˜︁σ(j) = σ(j); and

(2) pk∗ = pk. Noting that NBS and BlockDecode are run independently, this implies that

Pr [Di = xi | Forgei] = Pr [pk∗ = pk ∧ ˜︂m(j) ̸= ⊥] = Pr [pk∗ = pk] · Pr [˜︂m(j) ̸= ⊥].

Next we analyze Pr [Di = ⊥ | Forgei]. The decoder outputs bot if pk∗ = ⊥ or ˜︂m(j) = ⊥

or Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0, noting that the final verification is only checked conditioned on

pk∗ ̸= ⊥ and ˜︂m(j) ̸= ⊥. Thus we have

Pr [Di = ⊥ | Forgei] = Pr [pk∗ = ⊥] + Pr [˜︂m(j) = ⊥]− Pr [pk∗ = ⊥ ∧ ˜︂m(j) = ⊥]

+ Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 | pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥ ∧ Forgei] · Pr [pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥].

Since we are assuming no forgery has occurred, the last probability can be lower bounded as

Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 | pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥ ∧ Forgei] · Pr [pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥]

⩾ Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 0 | Forgei ∧ (˜︁x(j) ̸= x(j) ∨ ˜︁σ(j) ̸= σ(j)) ∧ pk∗ = pk]

· Pr [˜︂m(j) ̸= ⊥ ∧ pk∗ = pk]

= Pr [˜︂m(j) ̸= ⊥ ∧ pk∗ = pk],

where for the lower bound we ignore the case that pk∗ ̸= pk ∧ pk∗ ̸= ⊥. Thus we have that

Pr [Di ∈ {xi,⊥} | Forgei] ⩾ Pr [pk∗ = ⊥] + Pr [˜︂m(j) = ⊥]− Pr [pk∗ = ⊥] · Pr [˜︂m(j) = ⊥]

+ Pr [˜︂m(j) ̸= ⊥] · Pr [pk∗ = pk]

where the inequality holds since NBS and BlockDecode are run independently of each other.
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With the above lower bound established, we turn to analyzing the probability that

pk∗ = pk. Let pk be the public key sampled by EncI,λ(x) to generate codeword C. Our

recovery of pk is performed by sampling µ indices of ˜︁C independently and uniformly at

random, running BlockDecode on these indices, and taking the majority of the public keys

we recover. Intuitively, we want to recover pk∗ with high probability via a Chernoff bound.

Define random variable Xκ for κ ∈ [µ] as

Xκ :=

⎧⎪⎪⎨⎪⎪⎩
1 x(j) ◦ σ(j) ◦ pk ◦ j = BlockDecode(iκ) for some j ∈ [d]

0 otherwise
.

Thus we need to ensure that Pr [Xκ = 1] > 1/2. By  Lemma 7.5.4 , we know that as long as

the index iκ lies within the bounds of some γ-good block j, then Xκ = 1 with probability at

least 1− γ. Let JGood ⊂ [d] be the indices of the γ-good blocks in ˜︁C. Then we have

Pr [Xκ = 1] ⩾ Pr [iκ ∈ ϕ−1
0 (j) | j ∈ JGood] · (1− γ)

By  Lemma 7.5.2 , we know that there are at least 1− 2 · β · ρ/(γ · α)-fraction of blocks which

are γ-good, which implies |JGood| ⩾ d · (1− 2 · β · ρ/(γ ·α)). Since we want Pr [Xκ = 1] > 1/2,

by  Lemma 7.5.1 we have

1
n
· d ·

(︄
1− 2 · β · ρ

γ · α

)︄
· (β − α · γ) · τ · (1− γ) > 1

2
(β − α · γ) · τ

β · τ
·
(︄

1− 2 · β · ρ
γ · α

)︄
>

1
2 · (1− γ)(︄

1− 2 · β · ρ
γ · α

)︄
>

β

2 · (1− γ) · (β − α · γ)
2 · β · ρ
γ · α

< 1− β

2 · (1− γ) · (β − α · γ)

ρ <
γ · α
2 · β ·

(︄
1− β

2 · (1− γ) · (β − α · γ)

)︄
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Borrowing the parameters of Block et al. [ 48 , Proposition 22], we set γ = 1/12 and α =

2γρin/(γ + 6). Recall also that β = 2α + (1/βsz). Then we have

α = (2/73) · ρin

β = (4/73) · ρin + (1/βsz)
γ · α
2 · β = (1/12) · (2/73) · ρin

2 · (4/73) · ρin +R
< 1

β

2 · (1− γ) · (β − α · γ) = (4/73) · ρin + (1/βsz)
(11/6) · ((23/438) · ρin + (1/βsz))

< 1.

Given the above parameters, note that since ρin < 1, we have that

γ · α
2 · β ⩾

(2/876) · ρin

(8/73) +R
.

Thus setting

ρ := (2/876) · ρin

(8/73) +R
·
(︄

1− (4/73) · ρin + (1/βsz)
(11/6) · ((23/438) · ρin + (1/βsz))

)︄
= Θ(1)

ensure that Pr [Xκ = 1] > 1/2. Now let q := Pr [Xκ = 1] > 1/2. By a Chernoff bound we

have that

Pr
⎡⎣∑︂

κ∈[µ]
Xκ >

µ

2

⎤⎦ ⩾ 1− exp(−µ · (q − 1/2)2/(2q)).

This implies that with probability at least 1−exp(−µ ·(q−1/2)2/(2q)), we have that pk∗ = pk.

Note this implies that Pr [pk∗ = ⊥] ⩽ exp(−µ · (q − 1/2)2/(2q)).

Now given that we recover pk∗ = pk with probability at least 1− exp(−µ · (q−1/2)2/(2q)),

we analyze the probability that ˜︂m(j) ̸= ⊥. Note that by our noisy binary search algorithm in

 Lemma 7.5.3 , if block j is γ-good, then we recover the correct block x(j) ◦ σ(j) ◦ pk ◦ j with

probability at least (1− ρ∗), except with probability ϑ(n′), where ρ∗ is some constant and ϑ
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is a negligible function. Conditioning on the case where we recover any γ-good block with

probability at least (1− ρ∗), we have

Pr [˜︂m(j) ̸= ⊥ | j is γ-good] ⩾ (1− ρ∗).

This implies

Pr [˜︂m(j) = ⊥ | j is γ-good] ⩽ ρ∗.

Putting it all together we have that

Pr [Di ∈ {xi,⊥} | Forgei] ⩾ (1− ρ∗) · (1− exp(−µ · (q − 1/2)2/(2q)))− ρ∗ · exp(−µ · (q − 1/2)2/(2q))

= 1− ρ∗ − exp(−µ · (q − 1/2)2/(2q)),

where ρ∗ ∈ (0, 1/2) is a fixed constant we are free to choose. In particular, we choose arbitrary

positive constant ρ∗ < 1/3.

Now note that for the above probability, we conditioned on Forgei, as well as our noisy

binary search algorithm succeeding. By the security of the digital signature scheme, Forgei

happens with probability at least 1 − εΠ(λ), where εΠ(λ) is a negligible function for the

security of the digital signature scheme. By  Lemma 7.5.3  , with probability at least 1− ϑ(n′)

the noisy binary search algorithm gives us the guarantees we need. Finally, by Union bound

over i ∈ [k], we set εF(λ, n) := k · εΠ(λ) · ϑ(n), which is negligible in λ for any fixed k (note

when k is fixed then n is a function of λ).

Next we work towards proving  Item 4 of  Definition 7.1.1 . Again let ˜︁C = A(C) for a PPT

adversary A. Our goal is to show that there exists a negligible function εL(·) such that for all

λ ∈ N and all x ∈ {0, 1}k, we have

Pr [Limit(A(y), ρ, δ, x, y) = 1] ⩽ εL(λ).

To do so, we directly analyze the size of the set Good( ˜︁C). As before, let Di be the random

variable denoting the output of Dec˜︁Cλ (i). Then we are interested in lower bounding the
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probability Pr [Di = xi] for a fixed i ∈ [k]. By definition of Decλ, the decoder only outputs a

bit if (1) pk∗ ̸= ⊥; (2) ˜︂m(j) ̸= ⊥; and (3) Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1. Thus we have

Pr [Di = xi] (7.10)

= Pr [pk∗ ̸= ⊥] · Pr [˜︂m(j) ̸= ⊥ | pk∗ ̸= ⊥] · Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1 | pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥]

(7.11)

= Pr [pk∗ ̸= ⊥] · Pr [˜︂m(j) ̸= ⊥] · Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1 | pk∗ ̸= ⊥ ∧ ˜︂m(j) ̸= ⊥]

(7.12)

⩾ Pr [pk∗ = pk] · Pr [˜︂m(j) = m(j)] · Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1 | pk∗ = pk ∧ ˜︂m(j) = m(j)].

(7.13)

Here, m(j) := (x(j) ◦ σ(j) ◦ pk ◦ j),  Equation (7.12) follows since pk∗ and ˜︂m(j) are generated

independently, and  Equation (7.13) follows since these events are a subset of the events

in  Equation (7.12) . Now we analyze each of the terms of  Equation (7.13) . First note

that the final term Pr [Verifypk∗(˜︁x(j) ◦ j, ˜︁σ(j)) = 1 | pk∗ = pk ∧ ˜︂m(j) = m(j)] = 1 by

definition. Thus we analyze the other two probability terms. By our prior work, we know

that Pr [pk∗ = pk] ⩾ 1− exp(−µ · (q − 1/2)2/(2q)).

Next we lower bound Pr [˜︂m(j) = m(j)]. Recall that ˜︂m(j) = NBS˜︁C(j). By  Lemma 7.5.3  we

have that

Pr
⎡⎣ Pr

j
$←[d]

[︂˜︂m(j) ̸= C(j) | j is γ-good
]︂
⩾ ρ∗

⎤⎦ ⩽ ϑ(n′)

Fix j to be a γ-good block. Then we have

Pr
[︂
Pr [˜︂m(j) ̸= C(j)] ⩾ ρ∗

]︂
⩽ ϑ(n′).

Or equivalently

Pr
[︂
Pr [˜︂m(j) = C(j)] ⩽ 1− ρ∗

]︂
⩽ ϑ(n′).
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This implies

Pr
[︂
Pr [˜︂m(j) = C(j)] ⩾ 1− ρ∗

]︂
⩾ 1− ϑ(n′).

Thus with overwhelming probability 1− ϑ(n′), where ϑ(·) is a negligible function, we have

that ˜︂m(j) = C(j) with probability at least 1− ρ∗. Now by  Lemma 7.5.2 , we know that the

total fraction of γ-good blocks in ˜︁C is at most 1− (2 · β · ρ)/(γ · α). Note that every index

i ∈ [k] is uniquely associated with block j ∈ [d] satisfying (j − 1) · r(λ) < i ⩽ j · r(λ). Then

if G := {i ∈ [k] : i is in a γ-good block}, we have

|G| ⩾ r(λ) ·
(︄

1− 2βρ
γα

)︄
· d

=
(︄

1− 2βρ
γα

)︄
· k.

Therefore at least 1− (2 · β · ρ)/(γ · α)-fraction of indices i ∈ [k] lie within a γ-good block.

Putting it all together, for any γ-good block we have that with probability at least

1− ϑ(n′):

Pr [Di = xi] ⩾ (1− exp(−µ · (q − 1/2)2/(2q))) · (1− ρ∗).

Choosing µ and ρ∗ ∈ (0, 1/2) appropriately such that (1− η) · (1− ρ∗) > 2/3, along with the

fact that at least 1− (2 · β · ρ)/(γ · α)-fraction of indices i ∈ [k] lie within a γ-good block, we

have that with probability at least 1− ϑ(n′)

|Good( ˜︁C)| ⩾
(︄

1− 2 · β · ρ
γ · α

)︄
· k.

In other words, for δ = 1− (2 · β · ρ)/(γ · α), we have that

Pr [Limit( ˜︁C, ρ, δ, x, C) = 1] ⩽ ϑ(n′).
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[80] M. Cenk and F. Özbudak, “On multiplication in finite fields,” J. Complex., vol. 26, no. 2,
pp. 172–186, Apr. 2010, issn: 0885-064X. doi:  10.1016/j.jco.2009.11.002 . [Online]. Available:

 https://doi.org/10.1016/j.jco.2009.11.002 .

[81] N. Chandran, V. Goyal, and A. Sahai, “New constructions for uc secure computation using
tamper-proof hardware,” in Advances in Cryptology – EUROCRYPT 2008, N. Smart, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 545–562, isbn: 978-3-540-78967-3.
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