
EFFICIENT BUILDING BLOCKS FOR SECURE
MULTIPARTY COMPUTATION AND THEIR APPLICATIONS

by

Donghang Lu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2022

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Aniket Kate, Chair

School of Computer Science

Dr. Mikhail Atallah

School of Computer Science

Dr. Hemanta K. Maji

School of Computer Science

Dr. Yexiang Xue

School of Computer Science

Approved by:

Dr. Kihong Park

2

I dedicate this dissertation to my loving parents, who provide significant support to make

everything possible, and to my friends, who helped me go through all the ups and downs.

3

ACKNOWLEDGMENTS

It is my great honor to express my gratitude to a large number of people who contribute

to my Ph.D. journey.

My most sincere gratitude goes to my advisor, Professor Aniket Kate, for his support

and guidance all the time. It means everything to me to become a better researcher, and

to become a better person. The discussion with him always comes with creative ideas and

enlightenment, and many works in this Dissertation are impossible without him.

I also want to express my thanks to my parents, they are the strongest support during

my whole Ph.D. journey, actually my whole life, and provide the most significant emotional

support.

Heartful thanks to my committee members Professor Aniket Kate, Professor Hemanta K.

Maji, Professor Mikhail Atallah, and Professor Yexiang Xue for their valuable advice and

guidance.

I’m grateful to have spent time with all my lab-mates and friends, they give me endless

happiness and motivation to move forward. I would like to thank Jiayi Meng, Pedro Moreno

Sanchez, Duc Le, Mohsen Minaei, Easwar Mangipudi, Debajyoti Das, Adithya Bhat, Tiantian

Gong, Albert Yu, Zhongtang Luo, Mohammad Hassan Ameri, Sihao Yin, Shivam Bajpayi,

Zifu Wei, Xinghai Hong, Ke Quan, Cheng Zhang, Sikai Chen, Yue Leng.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 12

ABSTRACT . 14

1 INTRODUCTION . 16

1.1 Our Contribution . 16

1.1.1 Secure Mixing Protocols . 16

1.1.2 Secure Random Permutation . 17

1.1.3 Secure Polynomial Evaluation . 18

1.1.4 Secure Comparison . 19

1.1.5 Secure Matrix Operation . 19

1.2 Thesis Structure . 20

2 ASYNCHROMIX: ANONYMOUS COMMUNICATION WITH ROBUSTNESS . 21

2.1 The Motivation and the Background . 21

2.1.1 MPC Based on Shamir Secret Sharing 21

Shamir Secret Sharing and Reconstruction 21

Notation . 21

Robust interpolation of polynomials 21

2.1.2 SSS-Based MPC . 22

2.1.3 Anonymous Communication from MPC 23

2.1.4 The Need for Robustness . 24

2.2 System Setting . 25

2.2.1 Adversary Setting . 27

2.3 Anonymous Communication Protocol I: Switching Network 27

2.4 Anonymous Communication Protocol II: PowerMixing 27

2.4.1 Computing powers with constant communication 28

2.4.2 Solving Newton’s Identity . 29

5

2.5 AsynchroMix Offline Phase Requirements 31

2.6 Supporting Larger Messages . 32

2.7 Comparing AsynchroMix with Other Strong Anonymity Solutions 33

2.8 Security Analysis . 34

2.9 Robustness in MPC: HoneybadgerMPC . 34

2.10 Implementation and Evaluation . 35

2.10.1 Implementation . 35

2.10.2 Performance Evaluation . 35

Online Phase for PowerMix . 36

Online Phase for Switching Network 36

Overall cost for AsynchroMix . 38

2.11 Concluding Remarks . 39

3 RPM: SECURE MIXING THROUGH PERMUTATION MATRIX 41

3.1 Motivation and Introduction of RPM . 41

3.2 Related Works . 43

3.3 Preliminary . 45

3.3.1 System Model . 45

3.3.2 Goals and Non-Goals . 47

3.3.3 Robust Secret Sharing Reconstruction 48

3.3.4 Notations . 49

3.4 Using Permutation Matrices for Anonymous Communication 49

3.4.1 Overview of the Variants . 49

3.4.2 Collecting Client Messages . 50

3.4.3 Supporting Messages with Large Size 50

3.4.4 Malicious Security . 50

3.4.5 The First Variant . 51

Offline Phase . 51

Online Phase . 52

3.4.6 The Second Variant . 53

6

Offline Phase . 53

Online Phase . 54

3.4.7 The Third Variant . 55

3.4.8 Cost Analysis and Comparisons with Related Works 56

3.4.9 Security Analysis . 57

3.5 Applications of RPM . 60

3.5.1 Two Way Communication . 60

3.5.2 Secure Sorting . 62

3.6 Implementation and Evaluation . 62

3.6.1 Implementation . 62

3.6.2 Online Phase Evaluation . 63

Variant 1 . 64

Variant 2 . 64

Variant 3 . 65

Performance with More Servers . 65

3.6.3 Offline Phase Benchmark . 66

3.6.4 Towards Robustness . 67

Protocol Consturction . 67

Evaluation of the Robust Variant 3 68

3.6.5 Performance Comparison . 68

4 Polymath: LOW-LATENCY MPC VIA SECURE POLYNOMIAL EVALUATION 70

4.1 Motivation and Introduction of Polymath 70

4.1.1 Our Contribution . 71

(a) Secure Evaluation of Polynomial over Finite Fields 71

(b) Secure Evaluation of Polynomials over Matrices 72

Application I: Privacy-Preserving Decision Tree Evaluation . . 72

Application II: Secure Credit Risk Analysis through a Markov

Process . 72

4.2 Problem Setting . 73

7

4.3 Secure Computations of Polynomial Evaluation 74

4.3.1 Secure Computation for Univariate Polynomials 74

4.3.2 How to calculate multi-variable polynomials 74

Efficient Way to Calculate [xyz] . 74

Efficient Way to Calculate Multi-variable Multiplication 76

Efficient Way to Calculate xe1
1 xe2

2 . . . xen
n 77

4.3.3 Offline Phase . 77

4.4 Secure Computation of Polynomials of Matrices 78

4.4.1 Multiplying an arbitrary number of matrices 78

4.4.2 Calculating powers of a square matrix 79

4.4.3 Offline Phase . 80

4.4.4 Security Against Malicious Adversary 81

4.5 Application:Privacy Preserving Decision Tree Evaluation 82

4.5.1 System Model . 82

4.5.2 Technical Overview . 82

4.5.3 Decision Tree Representation . 83

Decision tree representation with polynomials 83

Fixed-point numbers representation 84

4.5.4 Secure Comparison over fixed-point Numbers 85

4.5.5 Secure Polynomial Evaluation . 85

4.5.6 Prototype Implementation . 86

4.5.7 Experimental Analysis . 86

Introducing Higher Network Latency 87

Offline Phase Benchmark . 87

Analysis with Another Dataset 88

4.6 Application: Secure Markov Process Evaluation 88

4.6.1 Markov Chain Introduction . 89

4.6.2 The Markov Chain Application: Credit Risk Analysis 89

4.6.3 System Model . 90

4.6.4 Secure Evaluation of Markov Process 90

8

4.6.5 Experiments for Evaluation of Markov Process 91

Offline phase cost . 92

4.6.6 Experiments for Multiplying an Arbitrary Number of Matrices 92

4.7 Related works and future directions . 93

5 IMPROVED SECURE COMPARISON PROTOCOL USING FUNCTION TABLES 95

5.1 MPC with Pre-computed Function Table . 95

5.2 Protocol Overview . 95

5.3 An Illustrative Example of Our Approach 96

5.4 Building Blocks . 96

5.5 Protocol Details . 99

5.5.1 Online Phase . 99

5.5.2 Offline Phase . 100

5.6 High Level Application: Privacy-preserving Neural Network Training/Inference 100

5.6.1 Implementation details . 101

5.6.2 Evaluation Results . 102

6 CONCLUSION AND FUTURE WORKS . 104

REFERENCES . 105

9

LIST OF TABLES

2.1 Summary of Robustness in Active Secure MPC Protocols and Toolkits 25

2.2 Summary of Online Phase computation and communication cost overhead (per
client input) for Iterated Butterfly and PowerMix MPC programs 29

2.3 Offline phase requirements to run AsynchroMix t + 1 times 32

3.1 Comparison of the Online Phase Performance For Recent Anonymous Communi-
cation Protocols (n is the number of servers, where t of them can be corrupted. k
is the number of client messages. q is the depth of the square network, which is
a small constant. The server-server communication is measured by the number
of secret sharing reconstructions required. The client-server communication is
measured by the number of messages sent by a client to a single server.) 58

3.2 Performance of the online phase of Variant 1 in three party setting. (k refers to
the number of clients. We assume each client sends a 16 byte field element as the
message in each execution. Communication is measured by total MB sent per party) 64

3.3 Performance of the online phase of Variant 2 in three party setting. (k refers to
the number of clients. message size is 16 bytes. Communication is measured by
total MB sent by all parties) . 65

3.4 Performance of the online phase of Variant 3 in three party setting. (k refers to
the number of clients. We assume each client sends a 16 byte field element as the
message in each execution. Communication is measured by total MB sent per party) 65

3.5 Online Performance of Variant 3 with more servers (k = 10000 for all experiments,
the hardware settings are the same as the experiments above.) 66

3.6 Performance of the offline phase of Variant 1 in three party setting. (k refers to
the number of clients. Communication is measured by total MB sent per party) 66

3.7 Offline phase benchmark for Variant 3. (k is the number of clients, communication
is measured by total MB sent per server) . 67

3.8 Online phase performance of the robust Variant 3 in (n = 4, t = 1) setting. For
data in this table, We trigger the malicious behavior by always forcing one party
to send wrong shares to simulate the worst case. 68

4.1 Decision tree evaluation benchmark using Nursery dataset over 4 parties. 87

4.2 Offline cost of decision tree solution . 88

4.3 Decision tree evaluation benchmark using Nursery dataset over 7 parties with (7,
2) secret sharing. 89

4.4 Offline cost of Matrix powering . 92

4.5 Benchmark result for proposed Matrix Powering protocol under 4 parties 92

10

4.6 Benchmark comparison for multiplying multiple matrices between the method of
Bar-Ilan and Beaver [121] and Beaver Matrix Multiplication. The experiments
is under 4-party setting. k represents the number of matrices to be multiplied.
Bandwidth is measured through total megabytes sent out per party. 93

5.1 Online Phase Benchmark: privacy-preserving neural network training/inference
with our LTZ vs Falcon’s LTZ. The experiments are run using AWS t3.2xlarge
instances with 130ms ping. Communication is measured by total MB sent per
party. parameter setting: n = 32, k = 4, ` = 8. 101

5.2 Offline Phase Benchmark for n = 32, k = 4, ` = 8. (Assuming inputs are n-bit
ring elements, and are divided into k blocks with each block being ` bits in our
protocol.) . 102

11

LIST OF FIGURES

2.1 Robust Polynomial Interpolation . 22

2.2 Overview of the AsynchroMix protocol [15] . 26

2.3 Permutation based on a switching network . 28

2.4 Algorithm for calculating k powers of input [m] using preprocessing in the Power-
mix online phase . 30

2.5 Power-mixing protocol for shuffling and open secret shared values [m1], . . . , [mk] 31

2.6 Online phase latency for varying number of client inputs, using PowerMix or
Switching Network. 37

2.7 Communication cost (per node) of PowerMix in distributed experiment. Dashed
line indicates the predicted limit as 2n

t+1 approaches 6. 37

2.8 Communication cost (per node) of switching network in distributed experiment.
Dashed line indicates the predicted limit as 2N

t+1 approaches 6. 38

2.9 Estimated combined cost (computation and bandwidth) for AsyncMix with
Switching Network. The cost includes offline phase cost(dark colored), online
cost(light colored), and client input cost(top). Bandwidth cost is marked as ”//”. 39

2.10 Estimated combined cost (computation and bandwidth) for AsyncMix with
PowerMix. The cost includes offline phase cost(dark colored), online cost(light
colored), and client input cost(top). Bandwidth cost is marked as ”//”. 40

3.1 System Model of RPM . 46

3.2 An illustrative example of a square network with k = 9. The network consists
of q = 4 layers, where each layer has

√
k = 3 permutation nodes, represented by

square blocks. Each permutation node takes
√

k = 3 messages as inputs, randomly
permute and output them. In Variant 3, we can initialize each permutation node
using either Variant 1 or Variant 2. All permutation nodes in the same layer can
be executed in parallel. 55

3.3 An example of two-way communication. The example includes five participating
clients, and we mark the protocol flow for the first sender (denoted as sender 1) in
red. Sender 1 and the corresponding receiver agree with a tag (tag1 in the figure)
before the protocol. 61

12

5.1 An example of problem size reduction where λ = 6, k = 3, ` = 2. The left hand
side is the overall function table before problem size reduction. The right hand
side is the function table structure used in our protocol. ”U” means Undetermined,
”P” means Positive, and ”N” means negative. The red lines in original function
tables indicates the gaps when numbers change the sign bit. If any row in function
tables includes the gaps, its result is “Undetermined”. A significant observation is
that there could be at most 2 such gaps, which is the reason why we only need
two tables for all the blocks except the first block. 97

13

ABSTRACT

Secure multi-party computation (MPC) enables mutually distrusting parties to compute

securely over their private data. It is a natural approach for building distributed applications

with strong privacy guarantees, and it has been used in more and more real-world privacy-

preserving solutions such as privacy-preserving machine learning, secure financial analysis,

and secure auctions.

The typical method of MPC is to represent the function with arithmetic circuits or binary

circuits, then MPC can be applied to compute each gate privately. The practicality of secure

multi-party computation (MPC) has been extensively analyzed and improved over the past

decade, however, we are hitting the limits of efficiency with the traditional approaches as the

circuits become more complicated. Therefore, we follow the design principle of identifying and

constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic

abstractions; thus, improving the efficiency of all applications relying on them.

To begin with, we construct an MPC protocol to efficiently evaluate the powers of a

secret value. Then we use it as a building block to form a secure mixing protocol, which

can be directly used for anonymous broadcast communication. We propose two different

protocols to achieve secure mixing offering different tradeoffs between local computation and

communication. Meanwhile, we study the necessity of robustness and fairness in many use

cases, and provide these properties to general MPC protocols. As a follow-up work in this

direction, we design more efficient MPC protocols for anonymous communication through the

use of permutation matrices. We provide three variants targeting different MPC frameworks

and input volumes. Besides, as the core of our protocols is a secure random permutation, our

protocol is of independent interest to more applications such as secure sorting and secure

two-way communication.

Meanwhile, we propose the solution and analysis for another useful arithmetic operation:

secure multi-variable high-degree polynomial evaluation over both scalar and matrices. Secure

polynomial evaluation is a basic operation in many applications including (but not limited

to) privacy-preserving machine learning, secure Markov process evaluation, and non-linear

function approximation. In this work, we illustrate how our protocol can be used to efficiently

14

evaluate decision tree models, with both the client input and the tree models being private.

We implement the prototypes of this idea and the benchmark shows that the polynomial

evaluation becomes significantly faster and this makes the secure comparison the only

bottleneck. Therefore, as a follow-up work, we design novel protocols to evaluate secure

comparison efficiently with the help of pre-computed function tables. We implement and test

this idea using Falcon, a state-of-the-art privacy-preserving machine learning framework and

the benchmark results illustrate that we get significant performance improvement by simply

replacing their secure comparison protocol with ours.

15

1. INTRODUCTION

Secure multi-party computation (MPC) allows mutually distrusting parties to securely

compute some functions, with their private input remaining hidden from other parties.

Informally, in a system of n > 1 mutually distrusting parties, an MPC protocol allows them

to “securely” evaluate any agreed-on function f of their private inputs, in the presence of a

centralized adversary controlling at most any t < n parties

1
 . In recent years, MPC has made

great strides toward practical implementation and real-world deployment. Consequently, it

becomes a natural approach to build distributed applications with strong privacy guarantees.

MPC has been applied to various applications such as privacy-preserving machine learning

(PPML), online auctions, and online elections.

Theoretically, any computation/function can be represented as a Boolean or arithmetic

circuit, and a secure MPC protocol can proceed by inductively composing the secure protocols

for the atomic elementary Boolean/arithmetic gates. Although this approach is complete, it

introduces significant overheads. Therefore, to make MPC more practical, we design MPC

protocols for high-level building blocks, instead of only elementary gates.

In this thesis, we follow two directions to make MPC more efficient and practical:

(1) Design fast and provably-secure MPC protocols to evaluate useful high-level algebraic

abstractions. (2) Build up applications that get significant performance gain by using the

MPC protocols we design. We focus on two prominent applications: anonymous broadcast

and privacy-preserving machine learning. Multiple highly-efficient MPC building blocks are

designed to improve the performance of these two applications. What’s more, the building

blocks we build can also be extended and used in more applications.

1.1 Our Contribution

1.1.1 Secure Mixing Protocols

Millions of users employ the Tor [1] network to protect the anonymity of their communi-

cation over the Internet today. However, Tor can only provide a weak form of anonymity

against traffic analysis [2] and has been successfully attacked using strong adversaries [3], [4].
1

 ↑ For different system adversary settings, MPC may have stricter requirements such as t < n
2 or t < n

3 .

16

In this thesis, we make use of MPC to achieve anonymous communication through a secure

mixing protocol. We design and implement secure mixing protocols in the setting of MPC

system-as-a-service (MPSaaS), where a network of servers continuously processes encrypted

inputs submitted by clients.

In [5], we propose two protocols for the purpose of mixing. The first protocol is switching

network, which has O(log2(k)) round complexity for mixing k client input with cheap local

computation. The second protocol is Powermixing, which has constant round complexity

but with high local computation. These two protocols provide different trade-offs and their

performance varies in different server settings and network settings.

The core part of the Powering protocol is a high-level arithmetic operation: Given secret

shared value [x], compute all its powers [x2], [x3], . . . , [xk]. This building block may be of

independent interest and can be used in other applications.

When building up mixing protocols, we also focus on robustness and fairness. In the

context of anonymous communication, unfair MPC could be catastrophic since an adversary

could link the messages of clients who retry to send their message in a new or restarted

instance. Thus the primary goal of our work is to fill this gap by advancing robustness in

practical MPC implementations and demonstrating the result through a novel robust message

mixing service.

1.1.2 Secure Random Permutation

The evaluation results illustrate that Powermixing achieves fabulous performance when

dealing with a small number of inputs. However, when the number of inputs increases, the

performance drops fast due to the O(k3) online computation complexity. Therefore, we

conduct further researches to design mixing protocols that are more scalable for a large

number of inputs. As a follow-up work of [5], we design RPM, a new MPC primitive to

achieve secure random permutation. Anonymous broadcast can be achieved by applying an

unknown random permutation to the input messages. The core idea is that the permutation

can be represented using permutation matrices. Therefore, as long as servers prepare the

17

permutation matrices properly in the offline phase, the online phase protocol can be simply

some inner products.

We provide three variants of our protocols, such that different variants suit different MPC

frameworks and input volumes. Our protocols can be implemented on almost all existing

MPC frameworks due to the modular design. For MPC frameworks with efficient inner

product protocol implemented, the first variant of our protocols can provide a blazing-fast

online phase. If the underlying MPC framework does not have an efficient inner product

protocol, the second variant becomes the better choice. When dealing with a large volume of

inputs, the first two variants suffer from a slow offline phase, therefore we design the third

variant which can handle large input volume efficiently in both the online phase and the

offline phase.

1.1.3 Secure Polynomial Evaluation

We design 2-round protocols for evaluating multivariate polynomials [6], and the com-

munication complexity (i.e., the number of communicated bits) only increases linearly with

the number of variables and is independent of polynomial degree. Our highly parallelizable

protocols employ specially crafted pre-computations and offer significant improvements over

the state-of-the-art techniques that require communication rounds logarithmic in the number

of variables. We also present 2-round protocols for evaluating univariate polynomials, which

extends a secure exponentiation protocol by Damgård et al. [7].

To illustrate how our protocols can be used to solve real-world problems, We present a

solution for privacy-preserving decision tree evaluation as an application, and it shows that

we can achieve high-depth decision tree evaluation within a reasonable time. To the best of

our knowledge, our solution is the first to support general n-party setting and high-depth

tree evaluations simultaneously.

We implement our protocols using the HoneyBadgerMPC library [5] for robust execution

in the asynchronous setting. For a depth 8 complete decision tree model, we can evaluate it

with 12 seconds under 4-party setting or 13 seconds under 7-party setting.

18

1.1.4 Secure Comparison

In [6], we find out that the secure comparison protocol becomes the bottleneck of our

secure decision tree evaluation. What’s more, an efficient secure comparison solution has

the potential for significant real-world impact through its broad applications. Therefore, we

present a secure comparison protocol with blazing-fast online phase performance by leveraging

function tables in a creative way. The general idea is that we construct the function table of

secure comparison functionality in the offline phase, such that the online phase is as simple

as a table lookup. We design efficient map-reduce solutions such that the size of the function

table is reasonable and practical.

We choose secure neural network training and inference as the high-level application and

implement our secure comparison protocol on the Falcon [8] framework. The benchmark

shows that our secure comparison protocol is 2× faster than Falcon’s secure comparison with

4× cheaper communication. Therefore, we obtain around 1.3× performance improvement on

neural network training/inference by just replacing their secure comparison protocol with

ours.

1.1.5 Secure Matrix Operation

We present a 4-round protocol in [6] for secure matrix powering/exponentiation and

make use of it to evaluate univariate polynomials over matrices securely. Our protocol is

not only highly parallelizable but also with a communication complexity independent of

the exponent. For multivariate polynomials over matrices, we evaluate two alternatives

for securely multiplying an arbitrary number of matrices. Using these protocols, we can

securely evaluate the terms of a matrix polynomial in parallel offering a trade-off in terms of

communication complexity and round complexity.

Despite the conceptual similarity, our protocols for secure polynomial evaluation for

scalars over finite fields and those over matrices are inherently different as the multiplication

of finite field elements is commutative, while matrix multiplication is not commutative in

general.

19

We use our matrix powering protocol to solve the evaluation of a Markov process.

Furthermore, we show how one can use this computation to perform credit risk analysis in

financial domains. The benchmark shows that in the 4-party setting, we can evaluate the

power of 10 × 10 transition matrices (with the exponent being 1024) in (roughly) half a

second.

1.2 Thesis Structure

The rest of the thesis is organized as follows: In Chapter 2 , we introduce our first research

work for anonymous communication: Asynchromix. Then in Chapter 3 , we keep the same

direction and present the follow-up work RPM. In Chapter 4 , we talk about our research works

in another research direction: Polymath, which provides efficient MPC polynomial evaluation

protocols. Then we talk about our follow-up work to speed up the secure comparison protocols

in Chapter 5 . Finally, in Chapter 6 , we conclude the research works so far and describes

some future works and directions.

20

2. ASYNCHROMIX: ANONYMOUS COMMUNICATION

WITH ROBUSTNESS

2.1 The Motivation and the Background

2.1.1 MPC Based on Shamir Secret Sharing

Our standard MPC setting involves n parties {P1, . . . , Pn}, where up to t < n/3 of those

can be compromised by a Byzantine adversary. HoneyBadgerMPC relies on many standard

components for MPC [9]–[12] based on Shamir secret-sharing [13]. Here, we detail the most

relevant techniques and notation.

Shamir Secret Sharing and Reconstruction

Notation

For prime p and a secret s ∈ Fp, [s]t denotes Shamir secret sharing (SSS) with threshold

t (i.e., a t-sharing). Specifically, a degree-t polynomial φ : Fp → Fp is sampled such that

φ(0) = s. The share [s](i)t is the evaluation φ(i). The superscript and/or subscript of a share

may be omitted when clear from the context.

Robust interpolation of polynomials

Reconstructing a secret s from [s] (denoted as Open()) requires interpolating the polyno-

mial φ from shares received from other parties. Since we want to achieve security against

an active (Byzantine) attacker, up to t of the shares may be erroneous. Furthermore, in an

asynchronous network, we cannot distinguish a crash fault from an intentional withholding of

data and can consequently only expect to receive shares from n− t parties in the worst case.

 Figure 2.1 outlines the standard approach [9], [11], [12], [14] for robust decoding in

this setting, Robust-Interpolate. First, we optimistically attempt to interpolate a degree-t

polynomial φ after receiving any t + 1 shares. If the resulting φ coincides with the first 2t + 1

shares received, then we know it is correct. If the optimistic case fails, we wait to receive

more shares to attempt to correct errors. In the worst case, we receive t incorrect shares

21

and need to wait for 3t + 1 total shares before we can correct t errors and find a degree-t

polynomial that coincides with all 2t + 1 honest shares. We refer readers to [15] for more

details about RSDecode.

Algorithm Robust-Interpolate

• Input: y0, ..., yn−1 symbols, up to t erasures (yi ∈ Fp ∪ {⊥})

• Output: a0, ..., at, coefficients of a degree-t polynomial φ, such that yi = φ(αi) for
i ∈ I where I ⊂ [1..n] and I = 2t + 1, or else ⊥

• Procedure (case of t erasures):

1. Interpolate a polynomial φ from any t + 1 points (yi, αi)
2. Output φ if it coincides with all 2t + 1 points, otherwise output ⊥

• Procedure (case of t− e erasures):

1. Run RSDecode decoding to correct up to e errors

Figure 2.1. Robust Polynomial Interpolation

2.1.2 SSS-Based MPC

Linear combinations of SSS-shared secrets can be computed locally, preserving the degree

of secret sharing without any necessary interaction between parties. However, in order to

be able to realize an arbitrary arithmetic circuit using MPC, we need a way to multiply

secrets together. In this work, we use Beaver’s trick to multiply two t-sharings [x]t and [y]t
by consuming a preprocessed Beaver triple. Beaver triples are correlated t-sharings of the

form [a]t, [b]t, [ab]t, for random a, b ∈ Fp which can be used to find [xy]t by using the following

identity:

[ab]t = (a− x)(b− y) + (a− x)[y]t + (b− y)[x]t + [xy]t.

If a and b are random and independent of x and y, then Open([a− x]) and Open([b− y])

do not reveal any information about x or y. Each multiplication then requires the public

opening of (a− x) and (b− y) and the spending of a Beaver triple.

22

We follow the standard online/offline MPC paradigm, where the online phase assumes it

can make use of a buffer of preprocessed values that were created during the offline phase.

By utilizing precomputed triples and opening (a− x) and (b− y) for many multiplication

gates at once, we can process many gates at the same circuit depth simultaneously.

2.1.3 Anonymous Communication from MPC

Secure multi-party computation (MPC) is a natural approach for building distributed

applications with strong privacy guarantees. MPC has recently made great strides towards

practical implementation and real-world deployment and consequently, several general-purpose

compilers (or front-ends [16]) and implementations are now available supporting a range of

performance and security tradeoffs [17]–[24]. Recent implementation efforts [23]–[25] have

bolstered their security guarantees by focusing on the malicious rather than semi-honest

setting (i.e., they tolerate Byzantine faults), and can scale to larger networks (e.g., more

than 100 servers) while tolerating an appreciable number of faults. Further, in contrast to

early MPC realizations centered around one-off ceremonies [26], [27], there has been increased

interest in the MPC system-as-a-service (MPSaaS) [23], [28]–[30] setting, where a network

of servers continuously processes encrypted inputs submitted by clients. As scalable and

maliciously secure MPSaaS becomes increasingly practical, there’s an increasingly more

convincing argument that it can be successfully used for highly desirable internet services

such as anonymous communication.

AsynchroMix is an application of the MPC-System-as-a-Service (MPSaaS) [23] approach

to the problem of anonymous broadcast communication. We consider a typical client-server

setting for anonymous communication networks [1], [31], [32], where clients send their

confidential messages to server nodes and server nodes mix clients’ messages before making

them public. We model an asynchronous communication network such that we must not

make use of timeouts and do not rely on time-bound parameters to be correctly configured.

The communication network is assumed to be under the adversary’s control such that the

adversary may arbitrarily delay messages, duplicate them, or deliver them out of order. For

system liveness, we assume that the adversary cannot drop messages between two honest

23

parties. The goals of AsynchroMix include Safety (anonymity properties) as well as liveness -

the system continues to work. The strong threat model includes a fraction being maliciously

corrupted and does not rely on timing assumptions.

2.1.4 The Need for Robustness

In practice, distributed computing protocols should successfully protect against not

just benign failures like system churn, but also network partitions and denial of service

attacks. Distributed consensus protocols and systems employed in practice (e.g., [33]–[35])

put significant emphasis on achieving this robustness property, and the same also holds

for prominent blockchain systems [36], [37]. Various notions of robustness have also been

explored in the context of MPC, although we observe that the practical MPC tool-kits [17],

[19], [23], [38] available today have not made a similar effort to incorporate this robustness.

In this section, we evaluate the robustness of existing MPC implementations and protocols

(summarized in Table 2.1), and use this evaluation to inform the design of HoneyBadgerMPC

and AsynchroMix. We focus mainly on three forms of robustness: fairness, guaranteed

output, and safety in asynchronous communication setting. In our work, we focus on the

MPC-System-as-a-Service model [23], [28]–[30], where clients submit secret inputs to servers

for processing. However, in the usual MPC setting, the servers themselves are the clients.

Thus for the sake of comparison, in this section, we assume n = k (where n is the number

of servers and k is the number of clients). In this evaluation, we leave implicit the need to

agree on which inputs to include. In a synchronous network, MPC typically ensures that

every honest party’s inputs are included [39], while in an asynchronous network it is inherent

that up to t honest parties may be left out [11]; to accommodate asynchronous protocols we

assume the weaker definition. We also elide discussion of protocols and implementations that

offer only semi-honest security, such as PICCO [40] or Fairplay [41], or that rely on trusted

hardware [42].

24

Table 2.1. Summary of Robustness in Active Secure MPC Protocols and Toolkits
t < Fairness Guaranteed Output Asynchronous Complexity Communication

Protocol Designs Online Offline Safe Live Assumption Overhead
BGW [39], [43] n/3 � � 7 7 quadratic

HN06 [44] n/2 � � 7 7 SHE linear
BH08 [9],DN07 [10] n/3 � � � 7 7 linear

DN07 [10] n/2 � � � 7 7 Dlog linear
DIK+08 [45], [46]

1
 n/8 � � � 7 7 linear

COPS15 [47] n/2 � � � � 7 HE quadratic
CHP13[11],CP17[12] n/4 � � � � � linear

CP15 [14] n/3 � � � � � SHE linear
MPC Toolkits

Viff [38] n/3 7 7 7 � 7 quadratic
SPDZ [17], [18], [20] n 7 7 7 � 7 SHE or OT linear

EMP [21] n 7 7 7 � 7 OT quadratic
SCALE-MAMBA [19] n/2 7 7 7 � 7 quadratic

HyperMPC [23] n/3 7 7 7 � 7 linear
CGH+18 [24] n/2 7 7 7 � 7 linear

This work
HoneybadgerMPC [15] n/3 � � 7 � � linear

2.2 System Setting

Assume a set of clients C = {Cj}j=1...kpop with input messages mj, who communicate to

a set of n servers, {Pi}i=1...n. All servers are connected to each other over asynchronous

channels, and every client is connected to all servers over asynchronous channels. The

messages themselves are fixed sizes of m bits (or field elements, depending on context).

AsynchroMix proceeds in sequential mixing epochs, where in each epoch we mix input

messages provided by k ≤ kpop clients. Fig. 2.2 offers a high-level overview of the process.

The protocol satisfies the following security properties:

• Anonymity (Safety): During every mixing epoch, even when all but 2 selected clients

are compromised, the adversary cannot link an included message mj to its honest client

Cj except with probability negligibly better than 1/2.

Specifically, for input vector m1, ..., mk from k clients, the output is a permutation

π(m1, ..., mk) such that the output permutation is at least almost independent of the

input permutation.

25

(2) CommonSubset to agree
on the inputs to include in
each mixing epoch

k=4096 clients

(1) ReliableBroadcast
of masked inputs m

(3) Robust MPC Online
phase (power-mix or
switching-network) to
permute and open inputs
n=100 servers

(4) Continuously
running offline phase

 Input: [m1], …, [mk]
Output: π(m1, …, mk)

Figure 2.2. Overview of the AsynchroMix protocol [15]

• Availability (Liveness): Every honest client’s input is eventually included in a mixing

epoch, and every mixing epoch eventually terminates.

AsynchroMix is built upon a new MPC prototype, called HoneyBadgerMPC, which realizes

secure computation through the use of asynchronous and maliciously-secure primitives. In

particular, HoneyBadgerMPC makes use of asynchronous reliable broadcast to receive secret

shared inputs from untrusted clients, and asynchronous common subset to reach agreement

on the subset of clients whose inputs are ready and should be mixed in the next epoch. Each

mixing epoch involves a standard robust MPC online phase based on Beaver triples and

batched public reconstruction [9]. The offline phase [9], [23] runs continuously to replenish a

buffer of preprocessing elements used by the online phase. The offline phase is optimistic in

the sense that all server nodes must be online and functioning to replenish the buffer. These

components are described in more detail below and illustrated overall in Figure 2.2 .

26

2.2.1 Adversary Setting

We assume that at most t < n/3 of the servers are Byzantine corrupted by a global

adversary, and similarly, any number of clients are corrupted as well.

2.3 Anonymous Communication Protocol I: Switching Network

Our first approach is to use an MPC program to randomly permute a set of k secret

shared values using a switching network.

Switching networks are implemented in layers, where each layer applies a permutation

to the inputs by conditionally swapping each pair. However, the resulting permutations are

biased [48], [49]. For example, while a random Benes network can express every possible

permutation, some permutations are more likely than others. Czumaj and Vöcking showed

that O(log k) iterations of random butterfly networks (each of which consists of O(log k) layers)

provide adequate shuffling [50] in the sense that the combined permutation is nearly uniform.

The round complexity of the switching network is O(log2 k), and the overall communication

cost is O(k log2 kn) considering there are O(log2 k) layers in total and O(k) multiplications

are needed in each layer. Computation cost is O(k log2 kn) since O(k log2 kn) multiplications

are needed in total. (See Figure 2.3 for a secure switching network instantiation with standard

MPC operations.)

2.4 Anonymous Communication Protocol II: PowerMixing

In contrast with the switching network, we propose a novel protocol PowerMix, which

results in reduced communication at the cost of computation. Our approach follows two

steps. First, we compute the k powers of each shared secret, [m2], . . . , [mk] from just [m].

Surprisingly, we show how to achieve this using only O(1) communication per shared secret,

our protocol for computing powers may be of independent interest. The second step, inspired

by Ruffing et al. [51], is to to use Newton’s Identities [52] to solve a system of equations of

the form Si = mi
1 + ... + mi

k.

27

MPC Program switch

• Input : [i1], [i2]

• Output:[o1], [o2] which are i1 and i2 swapped with 1/2 probability

• Preprocessing: random bit [b], b ∈ {−1, 1}

• Procedure:

[c] := [b] · ([i1]− [i2])

[o1] := 2−1([i1] + [i2]− [c])

[o2] := 2−1([i1] + [i2] + [c])

MPC Program switching-network

• Input : [m1], . . . , [mk]

• Output:π(m1, . . . , mk) where π← D

• Procedure:

– for each of log2 k iterations, evaluate a switch layer, that uses k calls to switch
to randomly permute all k/2 pairs of inputs, where the arrangement of pairs is
laid out as log k iterations of a butterfly permutation

– finally, reconstruct the output of the final layer, Open(π([m1], . . . , [mk]))

Figure 2.3. Permutation based on a switching network

The servers can obtain Si by computing locally [Si] and publicly reconstructing. Then we

solve the system of equations to obtain {m′
i} in canonical ordering. We next describe this

approach in more detail.

2.4.1 Computing powers with constant communication

For each secret share [m] sent by clients, we need to compute [m2], [m3], . . . , [mk]. The

naïve way is to directly use Beaver triples k−1 times. If we care only about round complexity,

we could also use the constant-round unbounded fan-in multiplication [53], though it adds a

3x factor of additional work. In either case, we’d need to reconstruct O(k) elements in total.

28

We instead make use of a preprocessing step to compute all of [m2], [m3], . . . , [mk] by

publicly reconstructing only a single element. Our approach makes use of precomputed

powers of a random element, [r], [r2], ..., [rk] obtained from the preprocessing phase. We start

with the standard factoring rule

mk − rk = (m− r)
(

k−1∑
`=0

mk−1−`r`

)
.

Taking C = (m− r), and annotating with secret share brackets, we can obtain an expression

for any term [mirj] as a sum of monomials of smaller degree,

[mirj] = [ri+j] + C

(i−1∑
`=0

[mi−1−`rj+`]
)

. (2.1)

Based on Equation (2.1), in Figure 2.4 , we give pseudocode for an efficient algorithm to

output all the powers [m2], ..., [mk] by memoizing the terms [mirj]. The algorithm requires

a total of k2/2 multiplications and k2 additions in the field. The memory requirement for

the table can be reduced to O(k) by noticing that when we compute [mirj], we only need

monomials of degree i+ j−1, so we can forget the terms of lower degree. Table 2.2 summarizes

the asymptotic communication and computation costs of each approach.

Table 2.2. Summary of Online Phase computation and communication cost
overhead (per client input) for Iterated Butterfly and PowerMix MPC programs

Protocol Rounds Comm. complexity Compute
PowerMix 2 O(n) O(n + k2)

Switching Network log2 k O(n log2 k) O(n log2 k)

2.4.2 Solving Newton’s Identity

We now discuss how to reconstruct the shuffled values from the power sums. We have

Sj = ∑k
i=1 mj

i where mi is the message provided by client Ci. So we require an algorithm to

extract the message mi from Si.

29

MPC Program compute-powers

• Input: [m]

• Output:[m2], [m3] . . . [mk]

• Precompute: k powers of random b, [b], [b2], [b3] . . . [bk]

• Procedure:

Initialize Array[k + 1][k + 1]

for i from 1 to k: Array[0][i] := [bi]

C := Open([m]− [b])

for ` from 1 to k: // compute all Array[i][j] where ` = i + j

sum := 0
for i from 1 to (`− 1), j = `− i:

sum += Array[i− 1][j]
// Invariant: sum = ∑

k<i [mi−1−kbj+k]
Array[i][j] = [bi+j] + C · sum
// Invariant: Array[i][j] will store [mibj] by (2.1)

for i from 2 to k output [mi] := Array[i][0]

Figure 2.4. Algorithm for calculating k powers of input [m] using preprocess-
ing in the Powermix online phase

Assuming that our goal is to mix k messages m1, m2, m3, . . . , mk, the servers first run

Algorithm 2.4 to compute the appropriate powers. Then all servers calculate [Sj] = ∑k
i=1 [mj

i]

locally and then publicly reconstruct each Sj.

Let f(x) = akxk + ak−1x
k−1 + . . . + a1x + a0 be a polynomial such that f(x) = 0 has roots

m1, m2, m3, . . . , mk. And we have ak = 1 given that it is the coefficient of xk resulting from

the product of (x−m1)(x−m2) . . . (x−mk). According to Newton’s identities [51], we can

calculate all coefficients of f(x) by:

S1 + ak−1 = 0

S2 + ak−1S1 + 2ak−2 = 0

30

MPC Program power-mix

• Input: [m1], [m2], . . . , [mk],

• Output: a shuffling of (m1, m2, . . . , mk)

• Precompute: k sets of precomputed powers, for k instances of compute-powers
(i.e., [bji] for i ∈ [1..k], j ∈ [1..k],
k beaver triples

• Procedure:

- (Step 1) for i from 1 to k:

Run compute-powers (Algorithm 2.4) on [mi] to obtain [m2
i], [m3

i], . . . , [mk
i]

- (Step 2) for j from 1 to k:

Locally compute [Sj] := ∑k
i=1 [mj

i]
Si := Open([Sj])

- (Step 3) Apply Newton’s identities to solve (S1, S2, . . . , Sk), recovering a shuffling of
(m1, m2, . . . , mk).

Figure 2.5. Power-mixing protocol for shuffling and open secret shared values
[m1], . . . , [mk]

S3 + ak−1S2 + ak−2S1 + 3ak−3 = 0

. . .

Knowing Si we can recover all ai by solving these equations one by one. Once we know the

coefficients of f(x) we can then find k roots of f(x) = 0 with O(k2) computation complexity

in our implementation [54]. Then we recover all mi. Our final mixing set consists of these k

messages.

To conclude, Figure 2.5 shows the overall protocol of PowerMixing.

2.5 AsynchroMix Offline Phase Requirements

The offline phase supporting AsynchroMix needs to generate the requisite preprocessing

elements for both converting client inputs into secret sharings and for realizing either mixing

31

program. Of these, handling client inputs is the most straightforward as it only requires

generating a t-shared random value for each input. For simplicity, we note that the randomness

extraction protocol is just RanDouSha, but with only one matrix operation performed and

with half the number of inputs and outputs. We, therefore, write randomness extraction

as simply half of a call to RanDouSha. The details about the algorithm RanDouSha and

BatchRecPub can be found in [23].

Running our mixing programs requires additional preprocessing inputs. The Switching-

Network program requires the generation of random selector bits as well as the Beaver triples

needed to use them. Meanwhile, our PowerMix program needs k secret-shared powers of the

same random value. These preprocessing costs are given in terms of invocations of RanDouSha

and BatchRecPub in Table 2.3 .

Table 2.3. Offline phase requirements to run AsynchroMix t + 1 times
Preprocess Task RanDouSha BatchRecPub Needed for
Client input:

random [r] 0.5 1 each input
Switch Network:

beaver triple 2 1 each switch
random bit [b] 1.5 1 each switch

Total: 1.75k log2 k k log2 k each epoch
PowerMix:

k-powers k k each input
Total: k2 k2 each epoch

2.6 Supporting Larger Messages

We have so far assumed that each client message consists of a single field element (32 bytes

in our concrete implementation), but AsynchroMix can easily be adapted to support larger

(fixed-size) messages of multiple field elements each. Since the switching network choices

depend only on the preprocessed selection bits, we can simply apply the same selection bits to

each portion of input (i.e., the 1st element of clients’ messages are permuted in the same way

as the 2nd element, and so on). For PowerMix, we could reserve a portion of each message

element (e.g., κ = 40 bits) to use as a tag which would be used to link parts of a message

32

together. Since no information about mixing inputs is leaked until the mix is opened, tags

will not collide except for with 2−κ probability.

2.7 Comparing AsynchroMix with Other Strong Anonymity Solutions

By the time this work is published, we observe that most anonymous communication

systems do not focus on robustness and thus cannot achieve strong availability guarantees in

the presence of faults. For example, in protocols following mix-nets strategies such as [31],

[32], [55]–[57], nodes encrypt/decrypt layers of encryptions of user/cover traffic or re-encrypt

batches of messages, and many failures have to result in users resending their messages.

Similarly, in protocols following DC-net strategies such as [51], [58], nodes collaborate to

randomly permute a set of messages while decrypting those, and any participating node

may abort the execution and force re-execution. For these protocols to handle failures, it is

necessary to rely on synchronous network assumptions to timeout a node, potentially restarting

a computation or requiring users to resend messages. This introduces many potential issues.

The first is that compromised nodes may attempt to degrade performance, such as by stalling

until the last moment before being timed out. Attempting to optimize the protocol for

speed by reducing the timeouts would only make it more likely that honest participants

who experience a fault would be removed, thus degrading security. More importantly, by

DoSing some honest nodes during re-running, it is also possible to launch inference attacks

leading to deanonymization [51], [59], [60]. On the other hand, most of these schemes can

indeed maintain anonymity/privacy against much larger collusion among the nodes, while

liveness requirements of AsynchroMix in the asynchronous setting mandate us to restrict the

adversarial collusions to t < n/3 nodes.

Our approach to MPC mixing is closely related to MCMix [29], which implements an

anonymous messaging system based on MPC. Instead of a switching network, they associate

each message with a random tag and obliviously sort the tags using MPC comparison

operations.

33

There are also plenty of related works after AsynchroMix is published. Works such as

Blinder [61], Clarion [62], and RPM achieved better performances through different methods,

and we will cover them in the following chapters.

2.8 Security Analysis

Theorem 2.8.1. Assuming that sufficient preprocessing elements are available from a

previously-completed offline phase, then the AsynchroMix protocol satisfies the anonymity

and availability properties defined earlier.

Proof. For anonymity, it is clear that each mixing epoch only proceeds with k inputs from

different clients. The use of preprocessed random sharings ensures that the secret shared

inputs depend only on broadcast values from clients, and hence are valid sharings. The

PowerMix program, thanks to perfect symmetry in its equation format, outputs the k values

in a canonical ordering that depends only on their values, not their input permutation order.

The Switching-Network induces a random permutation, which is sampled from a nearly

uniform distribution.

For availability, we need to show that a) each honest client’s input is eventually included

in a mixing epoch, and that b) each mixing epoch completes robustly. For a), notice that

once a broadcast mj from client Cj is received by every honest server, then the corresponding

bits bi,j in the next epoch will be set for every honest server. Therefore mj is guaranteed

to be included in the next mixing epoch. For b), notice that if at least t + 1 of the bits b·,j

are set for Cj, then we know at least one honest server has received the client’s broadcast,

and hence by the agreement property of ReliableBroadcast we can rely on this input to be

available to every honest server.

2.9 Robustness in MPC: HoneybadgerMPC

AsynchroMix is built upon a new MPC prototype, called HoneyBadgerMPC, which realizes

secure computation through the use of asynchronous and maliciously-secure primitives. In

particular, HoneyBadgerMPC makes use of asynchronous reliable broadcast to receive secret

shared inputs from untrusted clients, and asynchronous common subset to reach agreement

34

on the subset of clients whose inputs are ready and should be mixed in the next epoch. Each

mixing epoch involves a standard robust MPC online phase based on Beaver triples and

batched public reconstruction [9]. The offline phase [9], [23] runs continuously to replenish a

buffer of preprocessing elements used by the online phase. The offline phase is optimistic in

the sense that all server nodes must be online and functioning to replenish the buffer.

2.10 Implementation and Evaluation

2.10.1 Implementation

We have developed a prototype implementation that includes all of the protocols needed to

realize both the offline and online phases of AsynchroMix. Our prototype is written primarily

in Python 3, although with computation modules written in C++ (to use NTL [63]).

2
 For

batch computations on secret sharings, both the FFT-based and matrix-based algorithms are

implemented in C++ using the NTL library. We carried out a distributed benchmarking

experiment with several aims: to validate our analysis, to demonstrate the practicality of our

approach, and to identify bottlenecks to guide future improvement. We are mainly concerned

with two performance characteristics: cost and latency. Latency is the user-facing cost, the

time from when the user initiates a message to when the message is published. Computation

and bandwidth costs are a complementary metric since we can improve latency by adding

more resources, up to the extent that sequential computations and communication round

trips are unavoidable. We are mainly interested in configurations with varying the mix size k,

as well as the number of servers n (and assuming n ≈ 3t + 1). We evaluated not only the

online phase of the MPC protocols, but also the offline phase which generates precomputed

Beaver triples, powers, and bits.

2.10.2 Performance Evaluation

To evaluate the performance of AsynchroMix and identify the tradeoffs and bottlenecks

involved in our two mixing approaches, we deployed our prototype on clusters of AWS

t2.medium instances (2 cores and 4GB RAM) in 10 regions across 5 continents. We conducted
2

 ↑ https://github.com/initc3/HoneyBadgerMPC

35

https://github.com/initc3/HoneyBadgerMPC

baseline tests for bandwidth and latency between instances in different regions. For each

experiment, we ran three trials for each configuration of n and k, and recorded the bandwidth,

and running times.

Online Phase for PowerMix

Figure 2.6 (solid lines) shows the running time for PowerMix to mix and open from

k = 64 to k = 1024 messages on up to n = 100 server nodes. It takes around 5 seconds to

mix k = 256 messages on n = 100 servers and around 130 seconds to mix k = 1024 messages.

We can see that PowerMix is mostly insensitive to the size of n, since the bottleneck is the

computational costs, which depend mostly on k. Besides the computation steps could be

parallelized to make use of more computation resources.

Figure 2.7 shows the communication cost of PowerMix, measured as outgoing bytes

sent by each server, amortized per each client input. Since PowerMix requires two batch

reconstructions of k shares each, and BatchRecPub has a linear asymptotic communication

overhead to open a linear number of shares, we expect the per-server per-share cost to reach

a constant for large enough n and k. We estimate this constant (the dashed line in the

figure) as 2 · 6 · 1.06 ≈ 12×, where the 2 is for the two batch reconstruction instances used in

PowerMix, and the 6 is the overhead for each batch reconstruction (the limit approached by
2n

t+1), and 1.06 is the observed overhead of Python pickle serialization in our implementation.

As n grows larger, since there is an additive overhead quadratic in n, larger values of k are

necessary for the amortization to have an effect. However, even at n = 100, only around 400

bytes are needed to mix each 32-byte message with k = 512 or higher.

Online Phase for Switching Network

Figure 2.6 (dashed lines) shows the running time for Switching Network to mix from

k = 64 to 4096 messages. We can shuffle k = 4096 messages on n = 100 servers in around 2

minutes. Since the number of batch reconstruction rounds grows with log2 k, the sensitivity

to n also increases as k increases.

36

Figure 2.6. Online phase latency for varying number of client inputs, using
PowerMix or Switching Network.

Figure 2.7. Communication cost (per node) of PowerMix in distributed
experiment. Dashed line indicates the predicted limit as 2n

t+1 approaches 6.

Based on the microbenchmarks, at k = 4096 and n = 100, the inherent computation

time should account for only about 3 seconds out of the total 120 seconds observed. The

rest is due to a combination of serialization and Python overhead as well as communication.

37

Figure 2.8. Communication cost (per node) of switching network in distributed
experiment. Dashed line indicates the predicted limit as 2N

t+1 approaches 6.

Fig 2.8 shows the overall communication cost of the Switching network. For k = 4096

client inputs with n = 100 servers, each input requires each server to transmit nearly 30

kilobytes. The dashed line here is y = 32 · 6 · log2 k where 6 is reconstruction overhead and

log2 k corresponds to the number of total rounds. From our baseline experiment, the worst

per-instance bandwidth is 221Mbps (São Paolo) and the longest round trip latency is 328ms

(São Paolo to Mumbai), hence up to 50 seconds can be explained by transmission time and

latency. Hence in this setting, computation, and communication contribute about equally

(neither is the sole bottleneck), although there appears to a considerable room to eliminate

overhead due to serialization and Python function calls in our implementation.

Overall cost for AsynchroMix

Figures 2.9 and 2.10 show the estimated overall cost, per server and per client input,

combining both computation ($0.05 per core hour for an EC2 node) and bandwidth ($0.02

per gigabyte transferred out) costs based on AWS prices. The stacked bar charts show the

costs broken down by phases (offline, online, and client input). The offline phase contributions

are based on a distributed experiment for the RanDouSha algorithm, multiplied out by the

necessary number of preprocessing ingredients of each type. The offline cost of PowerMix

38

Figure 2.9. Estimated combined cost (computation and bandwidth) for
AsyncMix with Switching Network. The cost includes offline phase cost(dark
colored), online cost(light colored), and client input cost(top). Bandwidth cost
is marked as ”//”.

is always more expensive than Switching Network at the same setting, and the difference

increases with more clients (k versus log2 k). Using Switching Network, at n = 100 and

k = 4096, the overall cost (including all 100 servers) is 0.08 cents per message

using geographically distributed t2.medium instances.

2.11 Concluding Remarks

Emerging Internet-scale applications such as blockchains and cryptocurrencies demand

a robust anonymous communication service offering strong security guarantees. Along the

way towards building a robust anonymous communication service on top of MPC, we have

highlighted robustness as a first-class concern for practical MPC implementations. Using an

existing MPC implementation means accepting an unfair computation, which can enable

intersection attacks when used for asynchronous communication. Furthermore, even a single

faulty node could disrupt the service. Fortunately, we have shown through our AsynchroMix

39

Figure 2.10. Estimated combined cost (computation and bandwidth) for
AsyncMix with PowerMix. The cost includes offline phase cost(dark colored),
online cost(light colored), and client input cost(top). Bandwidth cost is marked
as ”//”.

application case study that robust MPC can be practical. Whereas related work explicitly

foregoes robustness, we show that it is an achievable goal that is worth paying for.

AsynchroMix features a novel MPC program for anonymous broadcast that trades off local

computation for reduced communication latency, allowing for low-latency message mixing in

varying settings. Through an extensive experimental evaluation, we demonstrate that our

approach not only leverages the computation and communication infrastructure available for

MPC but also offers directions towards further reducing the latency overhead.

40

3. RPM: SECURE MIXING THROUGH PERMUTATION

MATRIX

This work is a follow-up work of AsynchroMix [15]. As shown in the benchmark of Asyn-

chroMix, the online performance of anonymous communication decreases significantly when

the number of input messages increases. The main reason is that the computation complexity

of the online phase of the PowerMix protocol is O(k3) for mixing k input messages. Therefore,

the goal of this follow-up work is to design an MPC solution that is more scalable and efficient.

In this chapter, we introduce RPM, an efficient MPC anonymous communication solution

based on random permutation matrices.

3.1 Motivation and Introduction of RPM

There are by now millions of users using the Tor network [64], [65] to break the link

between their identities and their messages/packets. As the solutions like Tor network suffer

from attacks such as traffic analysis [66]–[68], anonymous communication becomes an active

research area and many works [15], [31], [57], [61], [62], [69]–[71] aim at providing anonymous

communication services efficiently. In this work, we explore the solutions of anonymous

communication with the help of secure multi-party computation (MPC). MPC allows multiple

distrusting parties to compute some functions collaboratively with their private input, thus

it is a natural approach to building applications with robust privacy guarantees [15], [61].

This work proposes RPM

1
 as a solution for anonymous communication in a client-server

setting, where clients send their messages to the servers in a secret-shared manner, the servers

randomly shuffle the messages and then output them to designated parties. Compared with

existing works, the highlight of our protocols is that the clients only need the minimum cost

to send the messages, meanwhile, the servers can perform the random shuffle very efficiently

in terms of time and communication. It makes our protocol a preferred choice for real-time

anonymous communication applications such as front-running-resistant market maker [72],

[73]. Meanwhile, clients with limited computation power can benefit from our protocol

significantly.
1

 ↑ RPM stands for Random permutation matrix.

41

RPM makes use of the standard offline/online model of MPC [6], [15], [23], [74], [75],

where the offline phase is used to prepare input-independent data, such that they can be

consumed to accelerate the input-dependent online phase. The overall idea is that anonymous

communication can be achieved by performing a random permutation to the input messages.

Recall that for any k-input permutation π, there exists a zero-one matrix Mπ such that

π(x) = Mπx. Therefore, if we obtain a permutation matrix such that anyone including the

adversary has no knowledge about the underlying permutation, anonymous communication

could be achieved by simply multiplying the matrix with the input vector, and it is equivalent

to doing k inner product in parallel. In the offline/online model, we can generate a permutation

matrix in the offline phase as it is input-independent, then achieve random permutation in

the online phase through multiplications. This core idea is simple and fast, which are two

great properties proven to be significantly useful in an anonymous broadcast scheme.

We provide three variants of the protocols, targeting different MPC frameworks and

applications. The first variant leverages efficient inner product protocols to achieve a fast and

cheap online phase. It only requires one communication round and k share reconstructions

for mixing k messages. Then we present the second variant for MPC frameworks where an

inner product protocol with constant communication complexity is not available. It requires

2 rounds and 2k reconstructions as a trade-off. Finally, we provide the third variant to

handle a larger number of inputs more efficiently with cheaper offline phase cost and online

computation complexity. As a result, all existing secret-sharing-based MPC frameworks can

use our protocols for their own purposes. Besides, we show how to generalize our protocols

to support more functionalities (e.g. two-way communication and anonymous messaging)

and security properties (e.g. robustness, meaning that the protocols will make progress and

finish with correct output even with the existence of malicious behaviors). What’s more, as

the core part of our protocols is the secure random permutation, it is of independent interest

to more applications such as oblivious sorting and some graph-based algorithms.

We implement our protocols using MP-SPDZ framework [76], and benchmark both the

online phases and the offline phases of all three variants of our protocols. These variants are

implemented using different MPC back-ends provided by MP-SPDZ, which shows that our

protocols can be used in most of the existing MPC frameworks. The results illustrate that

42

the first two variants of our protocol have great online&offline performances when dealing

with a small number of messages (e.g. less than 10000). We can mix k = 10000 messages

in around 0.58 seconds with 1.9MB communication. When dealing with a large volume of

messages, our last variant achieves the best performance, which mixes k = 160000 messages

in around 27 seconds with 88MB communication. The benchmark shows the offline phase is

practical for real-world applications as well. Therefore, our protocol suits can handle different

MPC frameworks and input volumes flexibly.

Finally, we modify the malicious secure back-end of MP-SPDZ to improve it from a

secure-with-abort version to a robust version, which can be of independent interest for MPC

applications. We test the performance of our protocols with a robustness guarantee, the

benchmark shows that our protocols achieve robustness with no additional cost in the best

cases, and around 2× more time in the worst cases.

3.2 Related Works

The Tor network is a popular tool for anonymous communication; however, the current

low-latency Tor design is significantly vulnerable to traffic analysis asymptotically [77] as

well as empirically [66]–[68].

Mixing networks (mixnets) [78] improve the protection against traffic analysis through

increased latency overhead in the form of communication over several hops (i.e., indirection)

and mixing messages at one or more honest hops. Over the last four decades, numerous

mix-net inspired protocols [31], [57], [70], [71], [79]–[82] have been proposed that can deter

traffic analysis attacks; however, their high latency overheads of several seconds (at least) is

unacceptable for many applications including browsing, messaging, or video calls. Moreover,

mixnets are inherently non-robust as even a single node failure/crash can result in messages

getting dropped.

For a high level of traffic analysis resistance while maintaining low latency, dining-

cryptographers network (DC-net) [83] and its successors [84]–[90] are much better suited.

Using a cryptographic setup/coordination among clients, these schemes offer provably strong

43

anonymity in a constant number of rounds [91]. However, as the number of clients grows

client coordination can become an Achilles’ heel for these DC-net-based solutions.

It is easy to observe that these DC-net systems are just types of MPC among the clients.

Towards avoiding client coordination and expensive computation at the client-side, the idea

of employing some MPC servers is getting popular [15], [61], [69], [92], [93]: here, similar to

mixnets, every client is unaware of other clients and only communicates with the MPC servers.

MPC servers perform some MPC protocols towards making clients’ messages unlinkable to

their identities. Among these MPC-based solutions, we find the works of AsynchroMix [15],

Blinder [61], and Clarion [62] to be the closest to our work.

AsynchroMix [15] proposes two MPC solutions for anonymous broadcast. One method

is based on the switching network, where the MPC performs log(k) iterations of switching

networks to simulate an almost-random permutation for k input messages. The round

complexity of this method is O(log2(k)) and the communication complexity is O(klog2(k)).

In their second method (so-called PowerMix), the messages are encoded into a symmetric

equation system, then the anonymous broadcast can be achieved by solving it. The challenge

for this method is that for any input secret-shared message, its powers are required by

the equation system, and this leads to O(k3) computation complexity in the online phase.

Although the computation is usually not considered as the bottleneck of an MPC protocol, the

benchmark shows that the computation time actually dominates when k is large. Compared

with PowerMix, our method reduces the computation complexity of the online phase to be at

most O(k2), making it a better choice for a large volume of inputs.

Blinder [61] achieves anonymous broadcast by accumulating client messages in a large

matrix. To achieve that, each client secret shares a matrix to the servers where all elements

are zero but one position. The non-zero position is used to store the secret-shared message.

The servers add up all the matrices from the clients and reconstruct the sum matrix to

recover the messages. Several optimizations are applied to reduce the communication cost

and to deal with the collisions when multiple clients choose the same position. In some sense,

they achieve a scalable and efficient online phase by pushing some of the computation to

the client side. Compared with blinder, the communication and computation cost of the

client is cheaper in our protocol by an order of O(
√

k). Therefore, our protocol fits better

44

when clients have limited computation powers. Besides Blinder, Riposte [92] uses similar

approaches of offloading part of the computation to the client-side. It uses discrete point

functions to help reduce the client communication costs and achieves the same client-side

complexity as Blinder.

Eskandarian and Boneh propose a protocol called Clarion [62], which is communication-

efficient to do anonymous broadcast. They propose constructions for both the three-server

setting and n-server setting, and the communication cost of their protocol is O(k`) where

k is the number of messages and ` is the size of the message. Their protocol has O(n)

round complexity in the n-server setting as it is made up of pairwise share translation. Our

protocols and Clarion provide different trade-offs and fit different scenarios. Theoretically,

our protocol has better round complexity and Clarion has better computation complexity.

Therefore, there are settings where our protocols perform better and vice versa. Besides,

due to the modular design, our protocols can inherently support stronger security properties

(e.g. censorship-resistance, robustness, and fairness) if built with robust MPC libraries. For

instance, if we build our protocols using HoneybadgerMPC[15], we will get exactly the same

security properties as Asynchromix. However, it is impossible to do so for Clarion.

There are also works focusing on specialized applications. Spectrum [94] is designed for

a broadcasting system where broadcasters share files anonymously with many subscribers.

Subscribers send dummy files to form cover traffics. The evaluation results illustrate that Spec-

trum achieves better performance for scenarios with small broadcasters and many subscribers.

Compared with their settings, all clients in our protocols are treated as ”broadcasters” who

can send messages anonymously.

3.3 Preliminary

3.3.1 System Model

We consider a standard client-server MPC setting with a set of n servers P1, P2, . . . , Pn

and a set of k clients c1, c2, . . . , ck (k ≥ 2). We assume that the servers already have key

pairs established to build private, authenticated channels between each other. Besides, we

assume clients connect to all the servers via TLS.

45

The whole protocol is divided into three phases as shown in Figure 3.1 : (1) clients send

their messages to servers in a private manner (via secret sharing). (2) Servers perform MPC

protocols to randomly permute the inputs. (3) Servers reconstruct the permuted inputs

to be the output of the protocol. We assume the client messages are the field elements

with the same length, which can be achieved through padding. Fixed-length messages are

essential since otherwise the message can be easily linked to its sender through the message

size. Similar to existing works [15], [61], we assume servers have agreed on the set of client

messages included in each protocol round, which can be achieved through any Byzantine

agreement protocol.

1. Clients secret-share their
messages to servers.

2. Servers perform MPC
protocols to randomly shuffle

messages.

3. Servers reconstruct the
shuffled messages and

publish them to the Internet.

Internet

Figure 3.1. System Model of RPM

Since our protocol works across different communication settings, we do not put specific

network assumptions such as partial-synchrony, bounded-synchrony, or asynchrony. Besides,

the design goal of our protocol does not include protection against network-level attacks (e.g.

DoS attacks).

46

The first variant of our protocol requires the usage of the Shamir secret sharing scheme or

similar error-correcting code base secret sharing schemes. The second variant of our protocol

gets rid of this restraint and can be applied to any secret-sharing-based MPC framework.

As for the adversary model, we assume there exists a static adversary that can corrupt

at most t servers and at most k − 2 clients. Our protocols are secure against a malicious

adversary with n ≥ 2t + 1. In practice, our protocols can be implemented in any secret-

sharing-based MPC framework, and the security of our protocols depends on the malicious

secure building blocks of the underlying MPC frameworks. Besides, We propose verification

checks to guarantee the malicious security of the offline phase. What’s more, if the underlying

MPC framework supports security properties such as guaranteed output delivery, our protocol

should obtain those properties inherently.

3.3.2 Goals and Non-Goals

Below we list the goals that our protocols achieve:

Sender Anonymity: We want our protocol to achieve sender anonymity for the client

message i.e., the ability of the adversary to figure out which client has sent a specific output

message is no better than random guessing, even if all but two clients and any minority of

servers are compromised.

Fast online phase: Our protocols lead to very efficient online phases in terms of communi-

cation, computation, and communication rounds, thus being good options for low-latency

applications.

Light-weighted clients friendly: Our protocols require small communication and compu-

tation from the client-side.

Scalability: Our protocols can handle a medium volume of inputs within a short amount of

time.

Then we list the non-goals below:

47

Confidentiality: Our protocols do not protect the confidentiality of the message content.

Therefore, our protocols should be combined with other methods (e.g. encryption) to achieve

confidentiality if it is required.

Network-layer Attacks: Similar to most existing works, our protocols are not designed to

be resilient to network-layer attacks (e.g. DoS attacks).

Hiding Message Volume: Our protocols do not hide the global volumes of the messages.

3.3.3 Robust Secret Sharing Reconstruction

The reconstruction of Shamir Secret sharing could achieve robustness if robust polynomial

interpolation is used. In this work, we use the idea of [15] to provide robust share reconstruction

when it is required. The robust reconstruction requires n ≥ 3t + 1 in a synchronous setting.

We briefly introduce the construction below:

To reconstruct a secret robustly, the parties use the first t + 1 shares to reconstruct

a polynomial φ, and use the rest t points to confirm all points correspond to the same

polynomial. If any inconsistency occurs, the parties run the robust Reed-Solomon decoding

with 3t + 1 shares as the inputs. (If any share is missing, parties can use random values as

the share and it will be treated as wrong shares and automatically corrected by the robust

decoding algorithm). The procedure is described in Algorithm 1 .

Algorithm 1: Robust Shamir share reconstruction
Input : [S] = {[s1], . . . , [sn]}
Output : s

1 Interpolate a polynomial φ using any t + 1 shares.
2 Use another t share to check if they are generated using the same polynomial.
3 If it is true, output s = φ(0).
4 Else, run Reed-Solomon decoding with all the input shares to reconstruct φ‘, and

output s = φ‘(0).

The reason that the algorithm starts with a non-robust interpolation is that the non-

robust interpolation is much cheaper compared with the robust version. If the non-robust

interpolation succeeds, there is no need to run the expensive robust version. With this design,

48

if there are no malicious behaviors, the performance of the robust share reconstruction is the

same as the non-robust version.

3.3.4 Notations

We summarize notations specific to RPM here. We denote [s] as a secret sharing of

the secret field element s. Besides, we use capital letters to represent matrices or vectors

(S and [S]). We denote Open([s]) as the reconstruction of the secret share, and we use

Mul([x], [y]) to represent the Beaver Multiplication of two secret shares [x] and [y] or two

secret-shared matrices/vectors [X] and [Y]. We use Inner-prodcut-and reconstruct([X],

[Y]) to represent an algorithm that computes the dot product of two input vectors X and Y

and reconstructs the results.

3.4 Using Permutation Matrices for Anonymous Communication

3.4.1 Overview of the Variants

We present three variants of our protocol targeting different MPC frameworks and

applications. The first variant is designed for MPC frameworks with an efficient secure inner

product protocol implemented [40], [95], [96] (i.e. each inner product can be evaluated with a

constant number of reconstructions independent of the vector size). The second variant gets

rid of the secure inner product in the online phase, with a cost of a little more expensive

offline phase and one more round in the online phase. Therefore, the second variant fits better

with MPC frameworks that do not support efficient secure inner product evaluations. The

third variant is designed for a large number of inputs (e.g. k > 10000), as the offline phases of

the first two variants take a long time when k is large. Besides, Variant 3 has cheaper online

computation complexity, which we find is the bottleneck of the protocols for large k. As a

trade-off, the third variant takes more online communication and rounds.

49

3.4.2 Collecting Client Messages

As the clients can be corrupted by a malicious adversary, the messages they share to

the servers may not be a valid (n, t) secret sharing. To solve this problem, we use a similar

method used in [15]: servers can prepare a random share [r] for each input client message

m. During the input phase, all servers send their shares of r to the client, such that the

client can reconstruct r, and broadcast m + r to servers, each server then compute their

share of the message [m] = m + r − [r]. Since [r] is guaranteed to be a valid (n, t) secret

sharing, the share of the client input is guaranteed to be well-formed. The computation and

communication required by clients are both O(n).

3.4.3 Supporting Messages with Large Size

Our protocols can be easily adapted to handle large messages. If the message is too large

to fit in one single field element, clients can divide the large messages into pieces with the

same length and represent them using multiple field elements (padding may be required for

the last block). In the online phase, the servers can use the same permutation matrix P to

permute all the message pieces, such that the same permutation is performed on all client

messages.

3.4.4 Malicious Security

To achieve malicious security, our protocols should be built on several malicious secure

building blocks. More concretely, we require a malicious-secure secret sharing scheme [15],

[20], [97], [98] to guarantee the correctness of the secret sharing reconstruction. We also

require malicious-secure share multiplication to guarantee the correctness of matrix operations

and vector operations. A malicious secure inner product protocol [23], [98] is required in

one of our variants. We follow a modular design such that any building blocks achieving

malicious security can fit our protocols. Besides, our protocol can also benefit from future

building blocks with better efficiency in a plug-and-play manner.

50

3.4.5 The First Variant

Offline Phase

The goal of the offline phase is to generate a random permutation matrix such that the

adversary has no information about the permutation. To achieve that, we ask t + 1 servers

to generate a random permutation matrix each, and secret-share them to all parties. Then

all parties multiply these shared matrices together to get the final permutation matrix. Since

there is at least one matrix provided by the honest server, the adversary has no knowledge

about the final combined permutation. Note that this step requires the multiplication of

t + 1 matrices, so our offline phase is more suitable for the settings where the number of

servers is small. Besides, for small k, we can use existing methods to efficiently evaluate the

multiplication of multiple matrices such as [6].

In the malicious setting, we also need to guarantee that the matrices shared by servers are

indeed the permutation matrices. Therefore, the following two checks have to be performed:

(1) the elements of the matrix are either zero or one. (2) The weight of each row and each

column is exactly one (i.e. Each row only has one position to be one, and all other positions

are zero.). To finish these checks, we can use a linear sketch for the language of vectors

of hamming weight one [61], [99], [100]. To verify a vector w = (w1, . . . , wk), the sketch is

represent by (∑k
i=1 wi · ri)2 −m(∑k

i=1 wir
2
i) where ri are public random values and m is the

value in the single non-zero entry (in our case m = 1). If the vector w has a hamming weight

greater than one, then the sketch outputs a non-zero value with probability 1
‖F ‖ , where ‖F‖

is the size of the ring or field.

We can apply this sketch to the final combined permutation matrix and both properties

can be properly verified. The cost of this check is cheap since each sketch only includes one

secret sharing multiplication. Therefore, the overall communication complexity is O(k) and

the round complexity is one. The offline phase is summarized in Algorithm 2 .

51

Algorithm 2: The offline phase of Variant 1
1 for i← 1 to t + 1 do
2 Server Pi generates a k-by-k permutation matrix Mi and secret-share it to all

servers
3 All Servers multiply and compute [P] = [M1][M2] . . . [Mt+1]
4 for i← 1 to k do
5 All servers perform sketch checks mentioned in Section 3.4.5 on the i-th row and

i-th column of [P].
6 If any check fails, abort.
7 Otherwise, output [P].

Online Phase

In the online phase, we can achieve permutation by simply multiplying the permutation

matrix M and the input vector X. Considering X is a vector, this is essentially k dot products

and they can be computed in parallel. The protocol is summarized in Algorithm 3 .

There are existing works [23], [40], [96] showing how to do dot product efficiently. As an

example, we show how degree-2t polynomial interpolation can be used to efficiently compute

and reconstruct the inner product of two secret shared vectors X = {x1, x2, . . . , xk} and

Y = {y1, y2, . . . , yk}:

In the online phase, parties locally compute [xiyi]2t = [xi]t · [yi]t for all i, then they

compute and reconstruct the inner product result Z = ∑k
i=1 [xiyi]2t by reconstructing a

degree-2t polynomial.

If we use the protocol above to compute all the inner products in parallel, the round

complexity of our online phase is only one. The communication complexity is O(k) as there

are k reconstructions needed in total.

However, the inner product protocol introduced above has some constraints, therefore

not all MPC frameworks support it naturally. For instance, this protocol only works with

Shamir-secret sharing (or similar error-correcting-code-based secret sharing schemes), and

does not work on schemes such as additive secret sharing or replicated secret sharing. Besides,

as degree-2t polynomial reconstruction is required, the protocol may need more portion of

52

parties to be honest (e.g. n > 3t + 1). To mitigate this problem, we design another variant of

our protocol Variant 2, where the secure inner product is not required in the online phase.

Algorithm 3: The online phase of Variant 1 (P [i] denotes the i-th row of the matrix
P)

Input : [X] = {[x1], . . . , [xk]}
Output : Y
Pre-computation : Permutation matrix [P]

1 Y = {}
2 for i← 1 to k do
3 Y[i] = Inner-product-and-reconstruct([P [i]], [X])
4 Output Y .

3.4.6 The Second Variant

The design goal of this variant of our protocol is to get rid of the inner product in the

online phase. To achieve that, we add an additional step in the offline phase such that the

inner product computation is shifted into the offline phase. What’s left for the online phase is

simply some secret share reconstructions. The key observation of this protocol is an equation

PX = P (X + R)− PR, where P is the permutation matrix, X is the input message vector,

and R is a vector of random shares. We leverage R as a mask vector such that we can safely

reconstruct X + R in the online phase, and PR can be prepared in the offline phase as it is

independent of the input X. Finally, the permutation result PX can be written as a linear

combination of the secret shares above.

Offline Phase

The first part of the offline phase is still to generate a shared permutation matrix, and

the steps are the same as Variant 1. After that, all parties collaboratively generate k random

shares [R] = {[r1], . . . , [rk]}, then they compute [Y] = [P][R] through k inner products. Note

that a more expensive inner product can be used here as it happens in the offline phase, and

an inner product protocol with O(k) reconstructions per random r is perfectly fine because it

will not explode the complexity of the offline phase anyway, the offline phase complexity is

53

still bounded by the generation of the permutation matrix. We can think of this approach as

shifting the inner product computation from the online phase to the offline phase with the

help of some randomness R. Finally, all parties take [P], [R], and [PR] as the output of the

offline phase. The protocol is summarized in Algorithm 4 .

Algorithm 4: The offline phase of Variant 2
1 for i← 1 to t + 1 do
2 Server Pi generates a k-by-k permutation matrix Mi and secret-share it to all

servers
3 All Servers multiply and compute [P] = [M1][M2] . . . [Mt+1]
4 for i← 1 to k do
5 All servers perform sketch checks on the i-th row and i-th column of [P]
6 If any check fails, abort.
7 All servers generate k random shares [R] = {[r1], [r2], . . . , [rk]}.
8 All servers compute [PR] = Mul([P], [R]).
9 Output [P], [PR], [R].

Online Phase

Given the input messages vector X = {x1, . . . , xk} and the offline phase output, all parties

compute and reconstruct X + R in the first round. Then they can locally compute the share

of the output as [PX] = [P](X + R)− [PR], and reconstruct PX in the second round. As

we mentioned, the secure inner product is no longer needed in this variant, and the cost is k

more reconstructions and one more round. The protocol is summarized in Algorithm 5 .

Algorithm 5: The online phase of Variant 2
Input : [X] = {[x1], . . . , [xk]}
Output : Y
Pre-computation : [P], [R], [PR]

1 [X + R] = [X] + [R]
2 X + R = Open([X + R])
3 [Y] = [P] · (X + R)− [PR]
4 Y = Open([Y])

54

3.4.7 The Third Variant

The first two variants illustrate great performance when dealing with a small volume

of inputs. However, the offline phase of the first two variants requires preparing k-by-k

permutation matrices, thus the size of the matrices increases quadratically with k, and it

becomes too huge to be used in practice for large k.

To solve this problem, we propose our third variant that performs much faster for larger

k in both the online phase and the offline phase. The idea is based on the permutation

network[69], [101]. In [101], Hastad analyzed the efficiency of random permutation using a

square network. A square network for k inputs consists of q layers, where each layer consists of
√

k of permutation nodes. Each permutation node takes
√

k inputs and randomly permutes

them, then sends the outputs to the next layers in a butterfly network fashion. We present

an example of a square network in Fig. 3.2 . The study of Hastad illustrates that this network

can achieve a nearly random permutation after only q ∈ O(1) iterations. (e.g. the result

shows that after q = 15 layers, the outputs are close to a random permutation of inputs)

Figure 3.2. An illustrative example of a square network with k = 9. The
network consists of q = 4 layers, where each layer has

√
k = 3 permutation

nodes, represented by square blocks. Each permutation node takes
√

k = 3
messages as inputs, randomly permute and output them. In Variant 3, we
can initialize each permutation node using either Variant 1 or Variant 2. All
permutation nodes in the same layer can be executed in parallel.

55

Variant 3 implements a square network by realizing each permutation node with either

Variant 1 or Variant 2. This significantly reduces the computation cost of the offline phase. In

Variant 1 and Variant 2, the offline phase has to prepare a k-by-k permutation matrix. In

Variant 3, the offline phase generates q
√

k matrices of size
√

k-by-
√

k. Considering the matrix

multiplication is required in the offline phase, this reduces the computation complexity of the

offline phase from O(k3) to O(q
√

k · t
√

k
3) = O(k2). Besides, the computation complexity of

the online phase is also reduced by a factor of
√

k because the vector size of each dot product

is significantly reduced.

As a trade-off, the online phase requires higher but still constant rounds to finish. The

parameter q is flexible and can be changed based on the time available for the offline phase

and the anonymity strength. We pick q = 15 in our experiments for a strong anonymity

guarantee.

3.4.8 Cost Analysis and Comparisons with Related Works

For Variant 1, the offline phase requires t+1 servers to each generate a k-by-k permutation

matrix, and multiply them together. This requires O(nk3) local computation, O(log n) rounds

and O(nk2) communication. The verification check for the malicious security takes one round

and O(k) communication. As for the online phase, since it is k dot products in parallel, the

overall communication is O(k) and the round complexity is one.

For Variant 2, the offline phase cost is the sum of the first variant offline phase cost

and k dot product protocol. Consider a dot product protocol where parties simply use

beaver triples to compute inner products, the communication complexity for k dot product

of length-k vectors is O(k2). Therefore, the overall offline phase communication cost is

O(nk2 + k2) = O(nk2). The online phase only consists of two rounds, where each round

reconstructs k secrets.

For Variant 3, the offline phase requires O(nk2) local computation, O(log n) rounds and

O(nk1.5) communication. We then explain why the online phase is also the most efficient for

large k: Our benchmark illustrates that the online phase is heavily bottlenecked by the local

computation when k is large, which takes more than 95% of the overall running time. For the

56

first two variants, the computation complexity is O(k2) because both variants require k dot

products between size-k vectors. For Variant 3, each layer includes
√

k permutation nodes,

with each node doing
√

k dot products between size-
√

k vectors. Since we have a constant

number of layers, the overall computation complexity is O(k1.5). Therefore, Variant 3 achieves

the best performance on the main bottleneck when k is large. We highlight that when k is

small, the first two variants could be better choices since the online phase is bottlenecked by

the communication and rounds in those cases.

We summarize the theoretical online complexity of our work and related works in Table 3.1 ,

the comparison shows that our protocol achieves the best server-server performance in the

online phase, meanwhile keeping the client-server cost minimum. As for the offline phase cost,

we do not provide a similar table as some protocols are unclear about their offline phase costs.

Here we just compare the offline phase cost between our protocols and the PowerMix [15],

which has the closest online phase communication and rounds. The communication cost of

Powermix offline phase is O(k2) and the round complexity is O(log k). Meanwhile, our first

two variants have offline communication cost O(nk2) in O(log n) rounds. Variant 3 has the

cheapest offline phase computation cost by a factor of O(
√

k). We can observe the trade-off

here: we achieve a better online performance than Powermix by pushing more computations

to the offline phase. What’s more, when the number of servers n is small such that it can be

treated as a small constant, the offline cost of our protocol is in the same order of magnitude

as PowerMix. In real-world applications (especially in MPC-as-a-service settings), a small

number of servers are usually preferred considering the cost of setting up these expensive

high-end machines.

3.4.9 Security Analysis

In what follows, we informally define the security properties we expect from our protocols:

Correctness: At the end of a successful run our protocol, all servers output a set of

plaintext messages, which is a random permutation of all the input client messages.

57

Table 3.1. Comparison of the Online Phase Performance For Recent Anony-
mous Communication Protocols (n is the number of servers, where t of them
can be corrupted. k is the number of client messages. q is the depth of the
square network, which is a small constant. The server-server communication
is measured by the number of secret sharing reconstructions required. The
client-server communication is measured by the number of messages sent by a
client to a single server.)

Client-
server
commu-
nica-
tion

Client
Compu-
tation

Server-
server
Communi-
cation

Server
Compu-
tation

Server
Rounds

Resilience Robust-
ness
Capabil-
ity

McMix [69] O(1) O(1) O(αk log k)∗O(αk log k)∗O(log k) n = 3, t =
1

7

Switching
Network [15]

O(1) O(n) O(k log2 k) O(k log2 k) log2 k n ≥ 3t + 1 3

PowerMix [15] O(1) O(n) O(k) O(k3) 2 n ≥ 3t + 1 3

Blinder [61] O(
√

k) O(n ·√
k)

O(k) O(k2) O(1) n ≥ 4t + 1 3

Clarion [62] O(1) O(n) O(k) O(k) O(n) n > t 7

Variant 1 O(1) O(n) k O(k2) 1 n ≥ 2t +
1∗

3

Variant 2 O(1) O(n) 2k O(k2) 2 n ≥ 2t +
1∗

3

Variant 3 O(1) O(n) O(k) O(k1.5) q n ≥ 2t +
1∗

3

* n ≥ 2t + 1 is the default model setting for our malicious secure protocols (especially for
Variant 1). Variant 2 can support n > t if built in dishonest-majority MPC frameworks.
Meanwhile, more restriction might be needed to support more security properties (e.g.,
n ≥ 3t + 1 for robustness).

* In McMix [69], α refers to the number of reconstructions needed for a single secure
comparison protocol. McMix requires O(k log k) secure comparisons evaluated in O(log k)
rounds.

Sender Anonymity: The ability of the adversary to figure out which client has sent a

specific output message is no better than random guessing, even if all but two clients and

any minority of servers are compromised.

58

The correctness of the protocol is trivial from the use of the permutation matrix. As

long as the permutation matrix P is valid, the computation result is guaranteed to be a

permutation of input vectors. The validity of the permutation matrix is verified in our offline

phase through linear sketch checks in the malicious setting.

For sender anonymity, we can prove that the transcript of the adversary only includes

unrelated random values, therefore it cannot differentiate any input messages.

We provide the general idea here and the intuition is that the transcript of our protocol

includes the offline data, the reconstructed X + R in Variant 2, and the final output. The

offline data are all in the form of secret shares, and they are independent of the client inputs,

thus the adversary has no information about either the plaintext offline data or the client

inputs. The reconstructed X +R is also random because R contains elements picked uniformly

random from the field. What’s more, the randomness of offline phase and the randomness of

X + R are independent of each other. To conclude, the transcript of our online protocol only

contains unrelated random elements, therefore they are indistinguishable among one another.

For Variant 3, the protocol only invokes our first two variants multiple times, and the

values outside of permutation nodes are all secret-shared. Therefore, the privacy of the third

variant is reduced to the privacy of the first two variants.

We then discuss the security against a malicious adversary. In the offline phase, the

adversary can submit an arbitrary matrix as permutation matrices, however, this will be

captured by the sketch check. The adversary has no information about the combined

permutation matrix because at least one random permutation is provided by an honest

party. Therefore, the adversary cannot alter the protocols in the offline phase without being

captured. In the online phase, our protocol simply invokes malicious secure building blocks,

thus the security is reduced to the security of those building blocks. In Variant 1, the online

phase only includes k malicious-secure inner product. In Variant 2, the online phase includes

2k malicious-secure share reconstruction.

59

3.5 Applications of RPM

We so far focused on using RPM to achieve anonymous broadcast. Below we show some

higher-level applications with RPM as building blocks.

3.5.1 Two Way Communication

First, we show how to extend our protocols to support two-way communication, which

allows the receivers to reply to the sender’s messages anonymously. We notice that this

feature is similar to anonymous messaging [61], [62], [69], where senders and receivers conduct

private conversations such that the adversary has no information about their identities.

Two-way communication is split into two parts: In the first part, the sender sends its

message anonymously. In the second part, the receiver recognizes the message from the sender

and sends the reply message back to the sender. We can achieve the first part using any

variant of our protocols, such that the output messages Y = π(X) is a random permutation π

of the input messages X. To help the receivers recognize the messages, senders and receivers

agree on some tags offline, such that these tags can be prefixed to the sender messages, and

the receivers can recognize the messages through the tags. As for the second part, the key

observation is that the permutation we perform in the first part can be reversed through

the inverse permutation π−1, which is available by computing the inverse of the permutation

matrix. Therefore, the receivers can put their reply messages in the same position as the

sender message, then the servers do a second round of mixing protocols using the inverse of

the permutation matrix π. Instead of reconstructing the permutation outputs publicly, the

servers send their shares to the designated senders such that the senders can reconstruct the

reply messages privately. In this way, the adversary has no information about the output of

the second round of mixing, therefore cannot build any link between the sender messages and

the reply messages. As for the computation of the inverse of a permutation matrix, we notice

that it can be achieved by simply computing the transpose because it is an orthogonal matrix.

The computation of the transpose is just a relocation of matrix elements and therefore is a

local computation. An example of two-way communication is shown in Figure 3.3 .

60

RPM

with permutation matrix M

message 1tag1

message 2tag2

message 5tag5

message 3tag3

message 4tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

First Epoch Second Epoch

RPM

with permutation matrix M-1

messagetag3

messagetag5

message tag2

message tag1

message tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

(1) Sender 1's message is prefixed with tag 1, and the message
becomes the third message after the permutation.

(2) Receiver 1 realize the third message comes from sender 1 by checking

tags, thus put the reply message as the third input message of the second

round of RandP, which inverse the permutation of the first epoch

(3) Servers will send shares of the first output of RPM to sender 1, such that

sender 1 can reconstruct the reply message from receiver 1.

Figure 3.3. An example of two-way communication. The example includes
five participating clients, and we mark the protocol flow for the first sender
(denoted as sender 1) in red. Sender 1 and the corresponding receiver agree
with a tag (tag1 in the figure) before the protocol.

If the application also requires hiding the content of the sender messages, some extra

steps should be deployed on the sender side (e.g., senders can encrypt their messages except

the tags using symmetric key encryption, share the key with the receiver offline, then send

the encrypted messages to our protocols). In this case, our protocol achieves the same

functionality as anonymous messaging [61], [69].

Since the design is simply two runs of our secure mixing protocols, it is secure against

malicious servers naturally. As for the malicious clients, the worst case is that he/she can

reply to a message not belonging to him/her. To avoid it, we require the sender and the

receiver also agree on some randomness offline (e.g., a common string), such that the sender

could hash the randomness, and put the hash of the randomness as the tag. The servers

allow a receiver to reply to the message only if he/she can provide the common randomness

that matches the hash value.

We observe that our protocol leaks the number of messages that receive replies. However,

this information is not required to be hidden in most applications.

61

3.5.2 Secure Sorting

The secure sorting takes private inputs from k clients, and outputs the sorted inputs

without revealing their ownership. There are in general two types of sorting algorithms.

The first kind is data-dependent sorting, where the input decides the execution path of

the algorithm. A good example is the quicksort, where the choice of pivot decides the

number of recursions. Therefore, the execution path (e.g. execution time) leaks information

about the input, and most existing works choose to implement the second type of sorting

algorithm so-called oblivious sorting [102]–[104]. However, to the best of our knowledge,

the most practical oblivious sorting is achieved by sorting networks [104] with O(k log2 k)

communication in O(log2 k) rounds.

Recently, Hamada et, al [105] propose to use data-dependent algorithms in an oblivious

fashion to solve the sorting problem. The idea is that parties can perform secure random

shuffle to the input, reconstruct the inputs, then compute data-dependent algorithms locally

with reconstructed input. With this idea, the secure sorting problem is reduced to secure

random shuffle, which can be achieved through our random permutation protocol. By applying

our protocol there, secure sorting can be achieved by only O(k) communication in one or two

rounds.

Secure sorting itself is a vital build block of various high-level applications such as secure

auctions [106], [107], combinatorial graph problems [108], and network flow problems [109].

Therefore, our protocols can be beneficial to much more applications than just anonymous

communication.

3.6 Implementation and Evaluation

3.6.1 Implementation

There are currently many MPC libraries [15], [40], [76], [95] available with different

trade-offs. Among them, we choose to use MP-SPDZ [76] to implement all three variants of

our protocols, because MP-SPDZ is a collection of multiple MPC back-ends, and it allows

us to pick proper back-ends for different variants to get the best performances. Besides, it

62

helps us to illustrate that our protocols can suit almost all the MPC back-end because of

the fact that only the basic building blocks are needed. The code is for now available in an

anonymous link

2
 , and will be open-sourced in the full version of this paper.

As Variant 1 requires a fast malicious secure dot product protocol, the number of the

back-ends satisfying the requirements is limited. Among them, we find the SY-SPDZ back-end

to be the one with the best performance, thus choosing it for the benchmark. For Variant 2,

the back-end we use is malicious-shamir-party of MP-SPDZ, as an efficient inner product is

not required. For Variant 3, we built up each permutation node using Variant 2, thus using

the same back-end. In general, we are interested to answer how fast our online protocol can

be, as the protocols target real-time applications where the latency is the most significant.

Therefore, in the experiments we mainly report the online running time and the online

communication time. To simulate the real-world use cases, we run the experiment using

Amazon AWS. Besides, we also conduct experiments to measure the cost of the offline phase

to confirm it is practical.

The code is written in MP-SPDZ customized language. Variant 1 directly invokes the

inner product protocols k times in parallel, then the results are reconstructed in the second

round. Note that in our original protocol, the inner product and the reconstruction could

be compressed into one single round, however, our implementation requires two rounds to

fit the framework more easily. Variant 2 invokes the reconstruction protocols in two rounds,

where each round reconstructs k secret shares. We notice that because of the limitation of

the framework, it actually takes more than 2 rounds to finish the reconstruction when k is

large. Besides, multi-threading is used with up to 32 threads when applicable to speed up

the local computation.

3.6.2 Online Phase Evaluation

We run the benchmark on AWS EC2 clusters in a three-party malicious-secure setting.

The AWS instance we use is c5.9xlarge with 32 cores and 72GB RAM. All three machines

are in the same region (US.East).
2

 ↑ the anonymous link: https://anonymous.4open.science/r/MP-SPDZ-811B/

63

Variant 1

First, we present the benchmark result of Variant 1. The result is available in Table 3.2 .

It shows that our protocol can mix k = 10000 messages in around 1.5 seconds and 1.483MB

communication. The communication cost increases linearly with the number of clients, which

is consistent with our theoretical complexity. We are also interested in the bottleneck of

this protocol, so we also implemented the non-multi-threading version of the protocol, its

benchmark shows the local computation dominates over 95% of the overall running time.

Therefore, the multi-threading significantly improves the performance of our protocols as we

confirm local computation is the bottleneck especially when k is large.

Table 3.2. Performance of the online phase of Variant 1 in three party setting.
(k refers to the number of clients. We assume each client sends a 16 byte field
element as the message in each execution. Communication is measured by total
MB sent per party)

k Online Time (s) Online Communication(MB)
1000 0.05 0.961
3000 0.132 1.077
5000 0.360 1.193
7000 0.689 1.309
10000 1.485 1.483

Variant 2

The benchmark numbers of Variant 2 is available in Table 3.3 . Interestingly, the perfor-

mance of Variant 2 is better than Variant 1, although theoretically Variant 1 should perform

better. We think the reason is that the MPC back-end of Variant 2 is faster than Variant 1,

although it does not support fast inner product. As a result, we also use Variant 2 as the

building blocks to conduct the benchmark of Variant 3.

64

Table 3.3. Performance of the online phase of Variant 2 in three party setting.
(k refers to the number of clients. message size is 16 bytes. Communication is
measured by total MB sent by all parties)

k Online Time (s) Online Communication(MB)
1000 0.02 0.193
3000 0.066 0.577
5000 0.155 0.960
7000 0.288 1.345
10000 0.580 1.921

Variant 3

For Variant 3, we implement the square network with q = 15 layers and each permutation

node is initialized by Variant 2. The benchmark is available in Table 3.4 . The result shows

that we can permute k = 90000 messages in around 12 seconds with 46MB communication.

Table 3.4. Performance of the online phase of Variant 3 in three party setting.
(k refers to the number of clients. We assume each client sends a 16 byte field
element as the message in each execution. Communication is measured by total
MB sent per party)

k Online Time (s) Online Communication(MB)
10000 0.56 5.12
40000 3.97 20.48
90000 12.68 46.08
160000 27.69 87.92

Performance with More Servers

We take Variant 3 as an example and run it with k = 10000 for a different number

of servers. The results are available in Table 3.5 . We only see a slight increase in online

running time when increasing the number of servers. The reason is that our protocols are

mostly bottlenecked by the local computation (the local inner product computation), which

is independent of the number of servers.

65

Table 3.5. Online Performance of Variant 3 with more servers (k = 10000 for
all experiments, the hardware settings are the same as the experiments above.)

n Online Time (s) Online Communication(MB)
3 0.56 5.12
5 0.58 10.2
7 0.64 15.3

3.6.3 Offline Phase Benchmark

To illustrate the offline phase are practical, we run the offline phases of all three variants

and record their performance in this section. For the first two variants, the offline phase is

bottleneck by an k-by-k matrix operation. The result shows that we can run the offline phase

of Variant 1 for k = 1000 in 3.9 seconds with 32MB communication. With the increase of k,

the offline time increases significantly, therefore we recommend the users to use Variant 3 for

large k. The offline phase of Variant 2 has almost the same time and communication cost

because they are both computational-bounded by the generation of the permutation matrix.

Table 3.6. Performance of the offline phase of Variant 1 in three party setting.
(k refers to the number of clients. Communication is measured by total MB
sent per party)

k Offline Time (s) Online Communication(MB)
1000 3.99 32
3000 120 288
5000 598 800
7000 1804 1568
10000 5731 3200

For Variant 3, the offline phase is responsible to do q
√

k matrix multiplications, with

matrix size
√

k-by-
√

k. We use multi-threading to perform multiple matrix multiplications

simultaneously, but each matrix multiplication itself is not optimized by parallelism. we

record the offline phase performance in Table 3.7 . The benchmark shows that the offline

phase of k = 90000 only takes about 7 minutes. As for the bottleneck, we observe that at

least for k up to 90000, the communication and the computation both take a significant

66

portion of the time so they are both the bottleneck. We note that the communication cost of

this offline phase is large compared with the first two variants.

Table 3.7. Offline phase benchmark for Variant 3. (k is the number of clients,
communication is measured by total MB sent per server)

k Offline Time (s) Offline Communication(MB)
10000 5.741 480
40000 89.08 3840
90000 448.82 12960

3.6.4 Towards Robustness

Our proposed protocols can support more security properties if built in proper MPC

building blocks. As an illustrative example, we show how to achieve a robust online phase for

our protocols in a synchronous setting.

Protocol Consturction

As mentioned, the online phase of Variant 2 and Variant 3 only requires secure secret

sharing reconstruction as the MPC building block. Therefore, we follow the ideas of [15] and

construct a robust Shamir secret-sharing reconstruction using Reed-Solomon decoding [110].

We require n ≥ 3t + 1 to guarantee that a sufficient number of shares are available as the

input of the robust decoding algorithm. Any wrong shares sent by the malicious parties will

be corrected by the robust decoding. In a synchronous setting, if malicious parties refuse to

send shares, they will be caught by the honest online parties, and honest online parties can

use arbitrary shares as malicious parties’ shares, and treat them as the ”wrong shares”.

We implement this idea using MP-SPDZ with the ”malicious-shamir-party” back-end. The

original back-end achieves secure-with-abort sharing reconstruction in a n ≥ 2t + 1 setting.

The party will use the first t + 1 shares to reconstruct a polynomial and use the rest t points

to confirm all points correspond to the same polynomial. If any inconsistency occurs, the

protocol will abort. To achieve robustness, we change the model to be n ≥ 3t + 1 and replace

its share reconstruction with a robust one. The Reed-Solomon decoding algorithm we choose

67

is from [110]. With this design, the share reconstruction will have the same performance as

the non-robust version if there are no malicious behaviors. In most scenarios, the probability

that the malicious behaviors happen is low, therefore this design is beneficial to the overall

performance.

Evaluation of the Robust Variant 3

We test the performance of the robust versions of our protocols in the AWS cluster,

the hardware and network setting are the same as in the rest of the experiments. The

only difference is that we use n = 4, t = 1 to fulfill the requirement of robust MPC. In

best cases, the performance is the same as the non-robust version. To illustrate the worst

case, we conduct an experiment where we trigger the malicious behaviors in every share

reconstruction by forcing one party to send 0 all the time as its shares. We build up the robust

implementation of Variant 3 by using Variant 2 as the building block, and the benchmark

result is available in Table 3.8 . In worst cases, the performance is approximately 2× more

than the non-robust version.

Table 3.8. Online phase performance of the robust Variant 3 in (n = 4, t = 1)
setting. For data in this table, We trigger the malicious behavior by always
forcing one party to send wrong shares to simulate the worst case.

k Online Time (s)
10000 1.75
40000 8.62
90000 24.05
160000 48.14

3.6.5 Performance Comparison

We present a comparison to PowerMix [15] and Blinder [61] as they share the closest

theoretical complexity with ours.

Compared with our work, PowerMix shares the same online communication complexity

and online rounds. Besides, the client computation cost and communication cost are exactly

the same between the two protocols. In Powermix, it takes around 140 seconds to mix

68

k = 1000 messages, while our protocol (Variant 2) takes around 0.02 seconds. The main

reason that we outperform Powermix is the online computation complexity (O(k3) vs O(k2)),

and we also confirm the online computation is the main bottleneck of the whole protocol.

For Blinder, our protocol and the Blinder protocol share the same online communication

complexity and online rounds. The first two variants of our protocol share the same online

computation complexity with blinder, while Variant 3 has a better online computation

complexity by a factor of O(
√

k). Blinder’s benchmark is based on five MPC parties as

they require N ≥ 4t + 1, and the closest test case we can find is k = 100000, with message

size being 160B. Our case is k = 100000 and the message size is 16B, ten times smaller

than Blinder’s test case. Blinder’s non-robust test case takes around 8 minutes to finish in

their CPU version and around 40 seconds in GPU version. Our protocol only implements

CPU version and it takes around 14 seconds to finish. As mentioned earlier, we can support

larger messages by re-running the protocol for all message pieces using the same permutation

matrices, so we can simply multiply our performance numbers with 10 for a fair comparison.

With the 10× factor incorporated, we outperform the blinder CPU version protocol by around

3.5×, and their GPU version is better than ours. We expect a similar performance gain if our

protocol can be implemented in GPU version as most of the local computation can be done

in parallel. We will take it as one of the future works. The comparison above is based on the

non-robust versions of both works. If we take the robustness into the picture, our protocols

outperform blinder by a factor of 1.7× to 3.5×, depending on the frequency of malicious

behaviors.

What’s more, the main difference between our protocol and blinder protocol is the client

cost, the computation and communication cost of our protocol is O(1) while the blinder’s

client cost is O(
√

k). Therefore, when k = 100000, the client cost of our protocol is 316x

cheaper than blinder in terms of both the communication cost and the computation cost.

This performance difference makes our protocols preferred choices for clients with limited

hardware resources.

For Clarion [62], we realize that it outperforms our protocols when it comes to a large

volume of inputs (e.g. k ≥ 105). However, Clarion cannot support security properties like

robustness. Therefore both works have their own advantages and use cases.

69

4. Polymath: LOW-LATENCY MPC VIA SECURE

POLYNOMIAL EVALUATION

So far, we focus on anonymous communication and design multiple protocols to make

anonymous communication efficient, scalable� and robust. Starting from this chapter, we

will move forward to another prominent application: Privacy-preserving machine learning

(PPML). To improve the performance, we design efficient MPC building blocks that are core

parts of PPML. These building blocks can also be used in more applications to be widely

beneficial. In this chapter, we present Polymath, an MPC toolkit for polynomial operations.

4.1 Motivation and Introduction of Polymath

Typically, in MPC protocols, general-purpose compilers represent any computation/func-

tionality (over private inputs) as a Boolean or an arithmetic circuit. The secure compu-

tation proceeds by inductively composing the secure protocols for the atomic elementary

Boolean/arithmetic gates [111]–[114]. Although this natural approach is complete, it tends

to introduce significant overheads. The privacy-preserving computations are at least a few

orders of magnitude slower than their non-private counterparts. Moreover, the overhead

increases as we add more parties or consider a more powerful adversary. While the grow-

ing demand for privacy, in the form of privacy regulations (for example, GDPR [115] and

CPRA/CCPA [116]) and user expectations, is here to drive the use of MPC in a broad

spectrum of online applications, the slowdowns among most of the current privacy solutions

are far from acceptable.

There are opportunities to significantly improve the efficiency of these secure computation

protocols by identifying optimizations within specific computation tasks. However, carefully

handcrafting provably-secure MPC solutions for every interesting application is not scalable.

Ad hoc protocol design, on the other hand, has historically been riddled with latent security

vulnerabilities. Consequently, the time-tested approach is to strike a natural balance between

these two extreme techniques by identifying shared algorithmic components underlying several

classes of computations of high societal impact. After that, one designs optimized secure

70

computation solutions for these individual components, thus, permeating the efficiency gains

to all application domains relying on them.

This work follows the design principle of identifying and constructing fast and provably

secure MPC protocols to evaluate useful high-level algebraic abstractions. We consider secure

multi-party polynomial evaluations of scalars and matrices, and present constant-round MPC

solutions for them. This class of high-level algebraic primitive finds widespread applications

ranging from approximating non-linear functions (e.g. the Sigmoid function) to evaluating

decision trees [117].

4.1.1 Our Contribution

We propose Polymath, a versatile, constant-round protocol suite focusing on improving

MPC performance of polynomial evaluation over both scalars and matrices. Our protocol

suite applies to any arithmetic-circuit-based MPC computation, and the numbers of required

communication rounds are independent of the number of participating parties, the degree of

the evaluated polynomial as well as the matrix dimensions.

Specifically, we focus on the following two functionalities:

(a) Secure Evaluation of Polynomial over Finite Fields

We design 2-round protocols for evaluating multivariate polynomials, and the commu-

nication complexity (i.e., the number of communicated bits) only increases linearly with

the number of variables and is independent of polynomial degree. Our highly parallelizable

protocols employ specially crafted pre-computations and offer significant improvements over

the state-of-the-art techniques that require communication rounds logarithmic in the number

of variables. We also present 2-round protocols for evaluating univariate polynomials, which

extends a secure exponentiation protocol by Damgård et al. [7].

71

(b) Secure Evaluation of Polynomials over Matrices

We present a 4-round protocol for secure matrix powering/exponentiation and make use

of it to evaluate univariate polynomials over matrices securely. Our protocol is not only

highly parallelizable but also with a communication complexity independent of the exponent.

Despite the conceptual similarity, our protocols for secure polynomial evaluation for

scalars over finite fields and those over matrices are inherently different as the multiplication

of finite field elements is commutative, while matrix multiplication is not commutative in

general.

Polymath is not only theoretically interesting, but we find it to be practically relevant to

any computation that can be represented as a polynomial. We demonstrate this practical

relevance using two representative applications.

Application I: Privacy-Preserving Decision Tree Evaluation

We present a solution for privacy-preserving decision tree evaluation as an application of

Polymath, and it illustrates that we can achieve high-depth decision tree evaluation within a

reasonable time. To the best of our knowledge, our solution is the first to support general

n-party setting and high-depth tree evaluations simultaneously.

Polymath can be employed with any arithmetic-circuit MPC library such as SPDZ [118], or

SCALE-MAMBA [119]. We implement our protocols using the HoneyBadgerMPC library [5]

for robust execution in the asynchronous setting. For a depth 8 complete decision tree model,

we can evaluate it with 12 seconds under 4-party setting or 13 seconds under 7-party setting.

Application II: Secure Credit Risk Analysis through a Markov Process

We use our matrix powering protocol to solve the evaluation of a Markov process.

Furthermore, we show how one can use this computation to perform credit risk analysis in

financial domains. The benchmark shows that in the 4-party setting, we can evaluate the

power of 10 × 10 transition matrices (with the exponent being 1024) in (roughly) half a

72

second. Furthermore, we can evaluate the power of 1024 for 320× 320 transition matrices in

around 20 seconds.

4.2 Problem Setting

We consider a standard MPC setting with a set of parties P1, P2, . . . Pn for n ≥ 2, where

the parties are connected via authenticated and secure point-to-point channels, where everyone

can send messages to each other at the same time. In this setting, MPC has three distinct

phases: parties share their input in phase 1, they participate in multi-party computation

over the shared input in phase 2, and finally reconstruct output by combining their shares in

phase 3.

The proposed Polymath techniques work across different communication settings and,

thus, we do not make any assumptions regarding the bounded-synchrony, partial-synchrony,

or asynchrony of the underlying MPC setting; however, we measure our protocols’ efficiency

in terms of the number of rounds (or the round complexity) and we specify it below for

different communication settings.

MPC protocols for the bounded-synchronous communication setting assume that parties

proceed in rounds such that the messages sent by any honest party in any given round are

delivered to every recipient in the same round. All parties here are assumed to be somewhat

synchronized and to be in the same round at all times; thus, the number of rounds is evident

from the protocol steps.

For the definition of rounds in the partially-synchronous and asynchronous settings, we

follow [120]. Intuitively, when two messages m and m′ sent by party Pi in an asynchronous

MPC are considered to be sent in rounds r and r′, r′ > r, if m′ can be computed only after

Pi has sent m. Here, the number of asynchronous protocol rounds is the maximum (over all

honest parties) number of rounds that an honest party uses in the protocol execution.

Polymath is also agnostic to the underlying adversary model, and we leave the adversary

model as well as communication setting discussion to the individual application setting.

73

4.3 Secure Computations of Polynomial Evaluation

4.3.1 Secure Computation for Univariate Polynomials

Univariate polynomials can be written in a standard form: P (x) = ∑n
i=0 aix

i ∈ Fp[x]

where ai ∈ Fp are plaintext coefficients. As a result, the problem of evaluating univariate

polynomials reduces to computing the power of the secret share [x].

With the protocol proposed by Damgård et al. [7]� we can compute all required [xi] in

parallel, then multiply them with corresponding plaintext coefficients. The whole process

takes two rounds since the second part is local computation. See Algorithm 6 .

Algorithm 6: Univariate Polynomial Evaluation based on [7]
Input : [x], a polynomial P (x) = ∑n

i=0 aix
i

Output : P ([x])
Pre-computation : [r1], . . . , [rn] and [r−1

1], . . . , [r−n
n] where ris are random values.

1 for i← 1 to n do
2 [xi] = Pow([x], i) // Round 1 & 2

3 for i← 0 to n do
4 Pi([xi]) = [xi] · ai

5 return P ([x]) = ∑
Pi([xi])

4.3.2 How to calculate multi-variable polynomials

We start with some basic protocols to compute simple multi-variable terms, then we extend

the protocol step-by-step. Finally, we show how we achieve the evaluation of high-degree

multi-variable polynomials.

Efficient Way to Calculate [xyz]

Beaver triple technique illustrates how to multiply 2 variables with pre-computed triples.

We extend this idea and explore how to calculate multiplication of 3 variables [x], [y], and [z]

in one round. The precomputation required by our protocol is the following: [a], [b], [c], and

[abc] where a, b, c are random elements. Similar to Beaver’s idea, [a], [b], and [c] are used to

blind [x], [y], and [z]. The computation is based on the following formula:

74

[(x− a)(y − b)(z − c)] = [xyz]− [xyc]− [xbz] + [xbc]

−[ayz] + [ayc] + [abz] + [abc]
We first open the values (x − a), (y − b), and (z − c). Then we can get the following

formula by taking the opened values as constants and combining terms with the same prefix:
(x− a)(y − b)(z − c) = [xyz]− [xc](y − b)

−[bz](x− a)− [ay](z − c)− [abc]

Algorithm 7: Tri-variate Term Evaluation
Input : [x], [y], [z]
Output : [xyz]
Pre-computation : [a], [b], [c] and [abc] where a, b, c are random values. Three

Beaver triples.
1 [x− a] = [x]− [a]
2 [y − b] = [y]− [b]
3 [z − c] = [z]− [c]
4 (x− a) = Open([x− a]) // Round 1

5 (y − b) = Open([y − b]) // Round 1

6 (z − c) = Open([z − c]) // Round 1

7 [xc] = Mul([x],[c]) // Round 1

8 [bz] = Mul([b],[z]) // Round 1

9 [ay] = Mul([a],[y]) // Round 1

10 return (x− a)(y − b)(z − c) + [xc](y − b) + [bz](x− a) + [ay](z − c)− [abc]

This formula illustrates that the multiplication of three variables reduces to three multi-

plication of two variables by the help of [a], [b], [c], and [abc]. Three normal Beaver triples

are required for solving 3 two-variable multiplications.

The protocol is formally described in Algorithm 7 . The round complexity is 1 since

the opening of (x− a), (y − b), and (z − c) could be done simultaneously with two-variable

multiplications. The required invocation of broadcasts is 9 where 3 broadcasts are used to

open (x − a), (y − b), and (z − c) and 6 broadcasts deal with two-variable multiplications.

As a trade-off, the computation overhead is higher than simply using Beaver multiplications

twice. So our method provides an alternative that achieves better performance in high-latency

networks.

The proposed method implies that the idea of Beaver multiplication could be extended to

more variables. However, the computation and the offline cost increase exponentially with

75

the number of variables. As a result, we need a better technique to deal with the general

multi-variable multiplication. Although we did not include this protocol in our final solution,

it could potentially be useful and the same idea could be extended to other fields (e.g. it can

be naturally extended to matrix multiplication).

Efficient Way to Calculate Multi-variable Multiplication

Here we take one step further and introduce a method to solve multi-variable multiplication.

Suppose we want to calculate the product of [x1], [x2], . . ., [xn], our protocol requires pre-

computed values in the form of [a1], [a2], . . ., [an], [(a1a2 . . . an)−1] where a1, a2, . . . , an are

random values.

The protocol proceeds as follows: First, we use Beaver multiplications to multiply

[xi] and [ai]. Then we open all the multiplication results xiai. Finally, we get the re-

sult by multiplying all the opened values together with pre-computed value as follows:

x1a1x2a2 . . . xnan[(a1a2 . . . an)−1].

The round complexity of the protocol is 2. And the communication complexity increases

linearly with the number of variables. Compared with the method in the previous section,

this protocol has advantages both in the round complexity and offline costs. The protocol is

formally described in Algorithm 8 .

Algorithm 8: Evaluation of degree-1 arbitrary-variate term
Input : [x1], [x2], . . . , [xn]
Output : [x1x2 . . . xn]
Pre-computation : [r1], [r2], . . . , [rn] and [(r1r2 . . . rn)−1] where ris are random

values. n Beaver triples.
1 for i← 1 to n do
2 [xiri] = Mul([xi], [ri]) // Round 1

3 for i← 1 to n do
4 xiri = Open([xiri]) // Round 2

5 return x1r1x2r2 . . . xnrn · [(r1r2 . . . rn)−1]

76

Efficient Way to Calculate xe1
1 xe2

2 . . . xen
n

To solve the problem of polynomial evaluation, we need to deal with terms with the

most generalized form: xe1
1 xe2

2 . . . xen
n . We extend the ideas in previous sections to solve this

problem. In our protocol we require the pre-computed values in the form of [r1], [r2], . . ., [rn],

and [(re1
1 re2

2 . . . ren
n)−1]. The protocol proceeds as follows:

First we multiply [xi] with [ri] for i from 1 to n. Then we open all these products to get

all xiri. After that, the result could be written as (x1r1)e1 . . . (xnrn)en [(re1
1 re2

2 . . . ren
n)−1].

The protocol is formally described in Algorithm 9 . The round complexity is always 2 and

the communication complexity is linear with the number of variables. Given a polynomial,

we can apply this protocol to each term in parallel and as a result, any polynomial with

arbitrary degrees can be evaluated in two rounds.

Algorithm 9: Evaluation of multi-variate polynomial term
Input : [x1], [x2] . . . [xn] and e1, e2, . . . , en

Output : [xe1
1 xe2

2 . . . xen
n]

Pre-computation : [r1], [r2], . . . [rn] and [(r−e1
1 r−e2

2 . . . r−en
n] where ris are random

values. n Beaver triples..
1 for i← 1 to n do
2 [xiri] = Mul([xi],[ri]) // Round 1

3 for i← 1 to n do
4 xiri = Open([xiri]) // Round 2

5 for i← 1 to n do
6 yi = (xiri)ei // local computation

7 return y1y2 . . . yn · [(r−e1
1 r−e2

2 . . . r−en
n]

4.3.3 Offline Phase

For each polynomial term xe1
1 xe2

2 . . . xen
n , the required pre-computed values are [r1], . . . , [rn],

and [r−e1
1 r−e2

2 . . . r−en
n]. The straightforward way to generate these values is to calculate

powers first and then multiply all random terms together. Given a random share [r], it

requires approximately log(e) multiplications to compute [re] by running Beaver multiplication

repeatedly.

77

As a result, the offline phase of Algorithm 9 requires the generation of 2n random elements,

n +∑
log(ei) MPC multiplication and n reconstruction, where n is the number of variables.

The communication complexity of each of the above operations could be linear with the

number of parties if we pick proper sub-protocols (e.g. [23]). The overall round complexity is

O(log(max(ei)) + log(n)) considering both the computation of [rei] and the multiplication

of all [rei
i] can be parallelized. Unlike the online phase, the complexity of the offline phase

depends on the degrees of the polynomial.

4.4 Secure Computation of Polynomials of Matrices

In this section, we discuss polynomial evaluation over matrices where each matrix entry is

a finite field element. Although it is conceptually similar to the scalar polynomial evaluation,

the protocols for matrices are inherently different because matrix multiplication is not

commutative in general.

4.4.1 Multiplying an arbitrary number of matrices

To solve polynomials over matrices, we need to evaluate the terms that consist of the

product of multiple matrices. Bar-Ilan and Beaver [121] propose a constant-round protocol

to achieve it. To multiply n matrices X1, X2,Xn (for simplicity of description, we assume

all of them are k by k square matrices, while this solution also works for matrices with

arbitrary dimensions), it requires n + 1 random matrices R0, R1, R2,Rn, which have the

same dimensions as Xis and contain random values, and their corresponding inverse matrices

R−1
0 , R−1

1 , R−1
2 ,R−1

n .

The protocol is illustrated in Algorithm 10 . The round complexity of the protocol is four.

The first two rounds are used to do multiplications for all Xis and the third round is to open

them. The final round is used to multiply [R0], R−1
0 X1X2 . . . XnRn, and [R−1

n]. The protocol

also works well when Xis are not square matrices and have different dimensions. Parties only

need to generate the precomputed random matrices Ri accordingly so that the dimensions of

matrices match each other.

78

Algorithm 10: Multiply an arbitrary number of matrices in [121]
Input : [X1], [X2], . . . , [Xn]
Output : [X1X2 . . . Xn]
Pre-computation : [R0], . . . , [Rn] and [R−1

0], . . . , [R−1
n]

1 for i← 1 to n do
2 [Ri−1Xi] = Mul([Ri−1],[Xi])
3 [Ri−1XiR

−1
i] = Mul([Ri−1Xi],[R−1

i])
4 for i← 1 to n do
5 Ri−1XiR

−1
i = Open([Ri−1XiR

−1
i])

6 R0X1 . . . XnR−1
n = ∏n

i=1 Ri−1XiR
−1
i

7 return Mul([R−1
0] ·R0X1 . . . XnR−1

n , [Rn])

The other alternative is to apply Beaver matrix multiplication for log n rounds. In the

first round, we multiply every two matrices together so that the number of resulting matrices

is reduced by half. We keep doing it iteratively, and after log n rounds, there is only one

matrix left which is the result. Compared with this idea, the protocol in [121] has constant

round complexity but as a trade-off, it requires more local computation and communication.

We implement both of them in HoneybadgerMPC to compare the performance of these

two protocols. the implementation detail and the benchmark result are elaborated later in

Benchmark Section. The result demonstrates that the second method outperforms the first

in almost all test cases. The reason is due to the nature of matrix multiplication: the local

computation and communication become the bottleneck quickly with the increase of the

dimensions. And the local computation can easily be measured in terms of seconds, thus

canceling the benefits gained by constant round complexity which is usually several hundred

milliseconds.

However, we find out that by extending the protocol in [121], we can achieve a very

efficient protocol for matrix powering.

4.4.2 Calculating powers of a square matrix

The power of square matrices is a special case of matrix multiplication. In this section,

we propose a method to calculate the powers of a square matrix, which saves significant

79

Algorithm 11: Matrix Powering
Input : matrix in secret shared form with demension k by k: [X] and

the exponent e
Output : [Xe]
Pre-computation : [R] and [R−1] where R consists of k by k random values

1 [RX] = Mul([R], [X]) // Round 1

2 [Y] = Mul([RX], [R−1]) // Round 2

3 Y = Open([Y]) // Round 3

4 return Mul([R−1] · Y e, [R]) // Round 4

precomputation and communication, especially when computing a large power. However, this

method only achieves a lower level of privacy since some information about the input matrix

is leaked (for example, the rank of the input matrix). We find this method meaningful as in

many use cases it is acceptable to leak that information to save significant computation.

The protocol is described in Algorithm 11 . The observation is that we only need one

random matrix R in the case of matrix powering, and we only need to calculate and open

[RXR−1] one time. It means the round complexity and communication complexity are

independent of the power that we want to compute.

The state-of-the-art solution for matrix powering that we know so far is to use Beaver

matrix multiplication for roughly log e times to get [Xe]

1
 . As a result, it requires log(e)

rounds involving opening 2 · log(e) matrices. Compared with it, our protocol requires 4 rounds

and the communication cost is opening 7 matrices. As for the computation complexity. Each

Beaver matrix multiplication takes 3 local matrix multiplications and 6 additions. Therefore,

our protocol requires 9 + log(e) local matrix multiplications and 18 additions. Meanwhile,

the state-of-the-art protocol needs O(log(e)) number of multiplications.

4.4.3 Offline Phase

For matrix powering protocol, the required precomputation is in the form of A, A−1,

namely a matrix with random elements and its inverse matrix. Here we provide an efficient
1

 ↑ If e is not a power of two, we can represent e with its binary representation, then apply similar techniques
to compute each binary term.

80

2-round protocol to compute the inverse matrix given a secret shared matrix. The protocol is

summarized in Algorithm 12 .

Algorithm 12: Precomputation for Matrix Powering
Input : secret shared matrix [X]
Output : [X−1]
Pre-computation : [R], matrix R share the same dimension with X and contain

random values.
1 [XR] = Mul([X], [R]) // Round 1

2 XR = Open([XR]) // Round 2

3 R−1X−1 = (XR)−1

4 return [R]R−1X−1

The cost of this protocol includes generating k2 random shares, one matrix multiplication,

and one matrix reconstruction, all of which have communication complexity of O(k2) for k

by k matrices. Thus the cost of the offline phase is of the same order of magnitude as the

online phase.

The above protocol is efficient but there is a very small probability of failure since XR

may not have an inverse. The probability of a random matrix being not invertible is less

than 1
p

+ 1
p2 where p is the size of the field, and it is small enough for us to use in practice.

4.4.4 Security Against Malicious Adversary

We claim our protocols’ security in both semi-honest and malicious settings and elaborate

our claim here. Our protocols utilize other protocols as building blocks (such as secret sharing

schemes). Beyond that, our protocol does not reveal any additional information (with the

exception of the protocol Matrix Powering, which reveals nothing beyond the conjugacy class).

Therefore, to make our protocol secure against malicious adversaries, we only need to make

sure we use linear secret sharing-based MPC that is secure against malicious adversaries. In

general, the malicious security of our protocols can be derived from the malicious security of

the underlying linear secret sharing-based MPC library.

81

4.5 Application:Privacy Preserving Decision Tree Evaluation

In recent years, privacy-preserving machine learning becomes more and more prominent

and many works [114], [117], [122], [123] are deployed to achieve secure model training or

secure inferences. In this work, we focus our efforts on decision trees, one of the common

classifiers used in many fields such as medical treatment and finance. To the best of our

knowledge, our work provides the first solution for privacy-preserving decision tree evaluation

that can be applied to a general multi-party setting with the capability of evaluating high-

depth models. We implement our protocols and show that our protocol can achieve very

high-precision prediction for decision tree models within a reasonable time.

4.5.1 System Model

We consider three kinds of parties in our system model: model holders, service providers,

and clients. We assume model holders are parties that hold the trained model and would like

to outsource the models to service providers in a secure fashion. Clients have secret input

data and expect the prediction value by the trained model. The data flow is as follows in a

secret sharing based setting: model holders secret-share their models to service providers,

and clients also secret-share the private input to service providers. The service providers run

MPC protocols to achieve decision tree evaluation with the private tree model and private

user input.

4.5.2 Technical Overview

To give a general view of our protocol, we represent the trained decision tree models as

two kinds of nodes: leaf nodes and non-leaf nodes. The non-leaf node contains a comparison

operation so that different branches will be chosen based on the comparison. The leaf nodes

store the result of predictions and inspired by [117], we leverage polynomials to represent

the leaf node where the degree of the polynomial equals the length of the path between the

leaf node and the root. In previous works, evaluating high-degree polynomials is treated as a

hard problem so most works only focus on decision trees with low depth(e.g. [117] chose the

82

max depth to be 8). However, with our protocols we are able to solve high-degree polynomial

evaluation more efficiently, thus giving us the advantage that we can evaluate higher-depth

trees to get better accuracy.

As a result, we need to solve two problems in a privacy-preserving manner: secure

comparison and secure polynomial evaluation. For secure comparison, we can use any

existing secure comparison protocols. For secure polynomial evaluation, we use our protocols

introduced in Section 4.3 .

Secure decision tree forest evaluation can also be achieved by combining our solution with

secure multi-party aggregation protocols [124].

4.5.3 Decision Tree Representation

Decision tree representation with polynomials

Giacomelli et al. [117] describe how a tree can be represented by polynomials. That

representation is a perfect match with our protocols described in Section 4.3 so we choose

to use it in our solution. We give a brief introduction here and we refer readers to [117] for

more details.

In general, a decision tree T can be represented by two types of nodes: non-leaf nodes

and leaf nodes. We can always take T as a binary tree since all trees can be transformed

into a binary fashion. Also to hide the topology of the decision tree, we simply transform

the decision tree to be a complete tree by adding dummy nodes. The input to the tree is a

vector X = (X[1], X[2], . . . , X[n]) where we call X[i] features and the output is the prediction

value y. In each non-leaf node, a comparison operation is defined by a pair (ji, ti) where ji
ranges from 1 to n and ti is a threshold value. This means at this node, we will choose the

left branch if X[ji] < ti, otherwise we choose the right branch. Given the input x, we follow

this rule to traverse the tree starting from the root and finally reach a leaf node where the

prediction value y is stored.

Assume the result of comparison in each non-leaf node Ni to be xi = (X[ji] < ti)?− 1 : 1.

Then for each leaf node, we represent it with the product of d terms of the form (xi − 1) and

(xi + 1) as follows: starting from the root node, (xi− 1) is chosen if the root-leaf path chooses

83

the left branch at node Ni, otherwise (xi + 1) is chosen. Since we consider a complete binary

tree. So each leaf node Li can be represented as a polynomial Pi of degree d containing d

factors of (xi − 1) or (xi + 1). Now given an input x, it can be observed that there is only

one Pi that the evaluation of Pi is non-zero. And it means the value stored in the leaf-node

Li is the prediction y of the input x.

As a result, we can solve the decision tree evaluation with many comparisons and one

single polynomial T (x) = ∑
P (i) · invi · yi where P (i) is the polynomial representing the leaf

node Li, invi is the inverse value of P (i) when P (i) is non-zero (the value of P (i) is 2d if there

is even number of (xi − 1), or −2d otherwise), and yi is the prediction stored on the leaf node

Li. Given an input x, only one leaf node Li is reached in the end and so that P (i) · invi = 1

and P (j) · invj = 0 for all j 6= i, therefore T (x) = yi.

Fixed-point numbers representation

Considering the feature space is typically R, we use fixed-point numbers as data format.

Therefore we require fixed-point number algebra in a secure computation scenario. For data

representation, we follow the standard proposed in [125], [126] and consider a multi-party

computation framework based on Shamir secret sharing over a prime field Zq. The data

type that we consider are signed integers and signed fixed-point numbers. We encode a

k-bit integer x ∈ Z<k> = {−2k < x ≤ 2k − 1} to field element x′ in Zq through a simple

mod operation f : x′ = f(x) = x mod q. As a result, for any two integers x and y and the

operations } ∈ {+,−, ·}, we have x } y = f−1(f(x) } f(y)). We require q > 2k+1 since

we have 2k non-negative numbers and 2k negative numbers in total. For multiplication, we

require q > 22(k+1) to avoid multiplication overflow[125], [126].

As for fixed-point numbers, we encode them as follows: for a signed fixed-point number

x ∈ Q<k,f> = {x = x̄ · 2−f , x̄ ∈ Z<k>}, we represent it using the corresponding integer

x̄ = x · 2f . Therefore, the addition, subtraction and multiplication of fixed-point numbers

could be achieved by directly doing computations over their integer representation. The

multiplication requires more attention since a f -bit truncation on the result is needed to

84

maintain the precision of the multiplication result. We directly use the truncation protocol

introduced in [126] to achieve the goal.

4.5.4 Secure Comparison over fixed-point Numbers

All non-leaf nodes in the decision tree are represented as secure comparisons. Therefore,

we require a general n-party secure comparison protocol for this task. In our solution, the

secure comparison protocol can be treated as a plug-and-play module, and many protocols in

the literature [123], [125]–[127] can be applied here.

We choose to implement the secure comparison protocol in [126] to make our decision

tree solution complete. This secure comparison protocol is designed for the general n-party

setting. It is a good match to our solution as we derive the fix-point number representation

from the same work. Besides, it can be applied against both semi-honest and malicious

adversaries. As mentioned in [126], security against a malicious adversary can be achieved

through using malicious secure building blocks such as verifiable secret sharing(VSS)

2
 . We

refer readers to [126] for more details of the protocol.

The benchmark illustrates that the secure comparison protocol becomes the bottleneck as

our polynomial evaluation protocol is significantly faster. Indeed, the overall performance

could improve significantly once a more efficient secure comparison protocol is available in

the future. The goal of this work is to provide highly efficient building blocks for secure

polynomial evaluation.

4.5.5 Secure Polynomial Evaluation

Recall that we can solve the decision tree evaluation by solving the polynomial T (x) =∑
P (i) · invi · yi. We apply our polynomial evaluation protocol to each term of polynomials

and then sum them up to form the final T (x). For a complete binary decision tree with

depth d, P (i) · invi · yi can be treated as a degree d + 1 polynomial where invi is a constant

coefficient, P (i) contains d variables in secret sharing form as results of comparisons, and yi

is the secret shared prediction for the corresponding leaf node. The degrees of all variables
2

 ↑ In our implementation, such malicious secure building blocks are provided by HoneybadgerMPC [5].

85

above are 1, so we only need to use the protocol introduced in Algorithm 8 and all the terms

can be computed in parallel in two rounds. Note that since the input values are either −1 or

1, they satisfy the non-zero input requirement of Algorithm 8 . After that, we locally sum the

terms up to get the final T (x).

4.5.6 Prototype Implementation

We developed prototypes for our decision tree evaluation protocols. We choose the Nursery

dataset from the UCI Machine Learning Repository [128] as the data source. Nursery dataset

has 12960 number of instances, each of which has 8 features. The original dataset consists of

only string data so we mapped them to fixed-point numbers. We used sk-learn library to

achieve decision tree training. We directly use the trained model and imported it into the

MPC codes.

The MPC protocols are implemented in HoneybadgerMPC [5], a secret sharing based MPC

framework that supports malicious security. The implementations are written in Python3,

parts of the fixed-point algebra codes are from HoneybadgerMPC itself and we extend its

code to support the comparison protocol and secure polynomial evaluation protocol. As for

the test environment, we deploy our codes in 4 machines with Intel Xeon E5-263040(40 cores)

and 384 GB RAM. These machines are connected through LAN and the latency among each

other is around 0.1 ms.

Prime q is a 160-bit integer and thus, the field can support the multiplication of 64-bit

integers and 32-bit statistical security for fixed-point algebra [125]. While we do not instantiate

malicious behaviors in our experiments, our protocol implementations are malicious secure,

and the current benchmark includes the verification overhead. We directly use the malicious

secure building blocks provided by the HoneybadgerMPC library.

4.5.7 Experimental Analysis

The original trained model has 385 nodes and achieves 99.6% accuracy. Through tuning

the parameters, we are able to get models with different depths, and we extend them to be

complete trees to hide the decision tree topology. The experiment result is shown in Table 4.1 .

86

In general, it takes around 12 seconds to finish a depth-8 tree evaluation. And it takes around

100 seconds to evaluate a depth-11 tree. As we can see, the performance of our polynomial

evaluation protocol takes only around 10% of the whole time, and the secure comparison

protocol is the bottleneck. Overall, the performance of the proposed approach can improve

significantly when a more efficient comparison protocol is available. As secure comparison

protocol is not the main goal of this work, we omit further discovery for it.

Table 4.1. Decision tree evaluation benchmark using Nursery dataset over 4 parties.
Tree Depth Time for

Comparison
(s)

Time for
Polynomial
(s)

Total Time
(s)

Total
Bandwidth
(MB)

8 11.16 1.20 12.46 3.73
9 22.02 2.72 24.99 7.55
10 44.30 5.69 50.53 15.3
11 87.37 12.67 101.32 30.9

To the best of our knowledge, our protocol is the first to support decision tree evaluation

in a general n-party setting.

Introducing Higher Network Latency

Since we run the benchmark on 4 machines in a LAN where the network latency is

below one millisecond, We launch another test where we change the communication layer of

HoneybadgerMPC and add 100ms latency to simulate real-world settings

3
 . The benchmark

result demonstrates that the total online time increases by around 200− 300ms as expected.

Offline Phase Benchmark

We benchmark the offline phase of our protocol using the same environment as the online

phase experiment. The result is shown in Table 4.2 . For the offline phase of polynomial

evaluation, we get benchmark data by directly running the offline phase code. And for the
3

 ↑ Note that our protocol requires communication of a few MB of data. Nevertheless, the considered MPC-as-
a-service setting often runs in networks with sufficient bandwidth (e.g. AWS EC2 [129]) and bandwidth is
not counted as the bottleneck of the protocol. As a result, we only study the influence of network latency in
the experiments.

87

Table 4.2. Offline cost of decision tree solution
Tree depth Time

(secure
comparison)
(s)

Time (poly-
nomial eval-
uation)

Bandwidth
(secure com-
parison)

Bandwidth
(polynomial
evaluation)

8 62.43 3.69 16.9 1.53
9 124.9 7.09 33.8 3.42
10 249.7 14.93 67.6 7.57
11 499.5 31.91 135.2 16.54
* The experiment is run under a 4-party setting with (4,1) Shamir secret

sharing.
* The unit of time is second, and the unit of bandwidth is MB.

offline phase of the secure comparison protocol, we count the number of randomness required

by the online protocol, then run HoneybadgerMPC offline phase codes to generate the same

amount of randomness, and record the execution time and bandwidth as the offline phase

benchmark. The result shows that the cost of the offline phase is acceptable. To give an

illustrative example, for the evaluation of a depth-8 decision tree model, the offline phase

cost takes around 84% of the total time cost and 83% of the total bandwidth cost.

Analysis with Another Dataset

To test if the performance is sensitive to the training dataset or resulting models. We test

our protocols again using the Boston housing dataset, which is the largest dataset measured

in the work of Kiss et al. [130].

The result illustrates that the general performance looks almost the same as the nursery

dataset. The reason is that the performance is theoretically independent of the training

dataset. Instead, it depends only on the depth of the tree. For a model with depth d, the

number of comparisons required is always 2d − 1 (the internal nodes) and the number of

polynomial evaluation calls is 2d (leaf nodes).

4.6 Application: Secure Markov Process Evaluation

In this section, we demonstrate how the matrix powering protocol can be used to solve

secure Markov process evaluation and we provide a concrete example: credit risk analysis.

88

Table 4.3. Decision tree evaluation benchmark using Nursery dataset over 7
parties with (7, 2) secret sharing.

Tree Depth Time for
Comparison
(s)

Time for
Polynomial
(s)

Total Time
(s)

Total
Bandwidth
(MB)

8 11.75 1.30 13.16 4.98
9 23.71 2.81 26.76 10.08
10 45.41 6.17 52.11 20.42
11 89.94 13.32 104.51 41.3

4.6.1 Markov Chain Introduction

Markov chain is a common-used model to describe a process with multiple states where

the future state only depends on the current state and not on the past. It is used in many

applications to model randomness, ranging from biology to economics. We include all possible

states into a state space S = {s1, s2, . . . , sk}. We say a process satisfies Markov property if

the probability Pij of state transitions from si to sj only depends only on the current state si.

We denote xi to be the state of the process in the time point i, then the Markov property

can be described by the following equation:

P (xt+1x_1, x_2, \ldots x_{t}) = P(x_{t+1}xt)
In this work, we focus on the first-order stationary Markov processes where all probabilities

Pij are constant numbers and do not change with time. As a result, we can represent the

probabilities with a k-by-k square matrix P , then we can compute xi = x0 · P i. This is the

equation that we need to solve for the Markov process evaluation at the time point i.

4.6.2 The Markov Chain Application: Credit Risk Analysis

Credit risk analysis is a significant task for banks since the profits and risks of banks are

directly linked with the credit quality of their customers, and the credit quality of customers

is modeled through the Markov process in many economy works [131], [132]. In these works, a

transition matrix is used to explain the transition of creditor quality, and many methods are

introduced to generate proper transition matrices given the data of creditors. The transition

matrix is valuable in the sense that it can be used to predict the credit quality migration for

89

new customer who shares similar financial backgrounds. However, there is almost no research

on privacy of credit risk analysis.

We observe that privacy can fit the problem of credit risk analysis quite well due to the

following reasons: transition matrices are valuable assets since it is trained on sensitive data

of creditors and can be used for predictions of new customers. As a result, it is a perfect

match that multi-party computation can be applied here so that one bank can train transition

matrices, sell matrices to other banks by providing prediction services, and meanwhile keep

the transition matrices hidden. And this pattern can be applied to many Markov chain

models in fields beyond finance.

4.6.3 System Model

We abstract the scenarios into an MPC-as-a-service model. There are three types of

parties: model holders who own the transition matrices, servers who collaborate to provide

MPC services, and clients who want to get the prediction value given the Markov model.

Both the transition matrices and the input of clients are considered private data and should

keep hidden from other parties. The data flow is as follows: the model holders (e.g. banks)

outsource their transition matrices to the servers through secret sharing, the clients also

secret-share their private input to servers so that servers can run MPC protocols to finish

the evaluation. We assume servers are fully connected with each other and keep online to

provide MPC service. Model holders only need to upload their models to servers then they

are not required to be online.

The adversary model is the same as our general setting: we support both semi-honest

adversary and malicious adversary by picking different sub-protocols such as Shamir secret

sharing and verifiable secret sharing.

4.6.4 Secure Evaluation of Markov Process

As mentioned, the equation that we need to solve is as follows: xi = x0 · P i where x0 is

the private input from clients in the form of a vector, and P is the trained transition matrix.

The core part of the solution is how to efficiently compute matrix powers and we can use our

90

protocol to achieve it. Recall that we can finish the matrix power computation in four rounds

with less communication and computation compared to previous works. As a result, we can

achieve the evaluation for the Markov process in five rounds, where the first four rounds are

used to compute the power of the transition matrix and the last round is used to multiply P i

and x0.

4.6.5 Experiments for Evaluation of Markov Process

We build up the prototype using HoneybadgerMPC [5] as the MPC framework. The

implementation of matrix multiplication and powering are implemented with both Python

and C++. The Python codes are mainly responsible for the operations where communication

is required. Batch structures are also applied to guarantee the correct round complexity of

the protocol. Due to the heavy local computation included in the protocol, mainly matrix

multiplications, We implemented C++ code using NTL library to implement them and used

file IO as the connection between Python code and C++ code. This file IO caused some

overhead that is only because we used a Python framework for MPC, and this overhead can

be eliminated when a C/C++ framework is used, which means the performance could have

been better. The test environment is 4 cluster machines, each with Intel Xeon E5-263040

(40 cores) cores and 384GB RAM. The latency between these machines is around 0.1ms.

The benchmark result for matrix powering is demonstrated in Table 4.5 . In the use case of

credit risk analysis, the transfer matrix is often small, (e.g. a 9× 9 matrix is used in [132])

and our benchmark shows that we can solve 10 × 10 matrix powering within one second.

Besides, we observe that the bottleneck of the protocol is the communication time, and the

communication time is independent of the power. Thus our performance almost remains

unchanged when we compute higher powers. This observation remains true for small matrices.

To make a comparison, we also implement the typical protocol to compute matrix powering

where Beaver matrix multiplication is applied log p times. The benchmark of the typical

protocol is done using the same hardware and it turns out that our protocol outperforms the

typical protocol by around 3x when e is small (less than 1024). When e is larger our protocol

outperforms the typical protocols more as our communication is independent of the power.

91

Table 4.4. Offline cost of Matrix powering
Matrix
dimension

Time for
random
generation
(s)

Time for ac-
tual offline
phase (s)

Total (s) Bandwidth
(MB)

10 ∗ 10 0.21 0.53 0.74 0.071
40 ∗ 40 3.40 1.51 4.91 1.29
80 ∗ 80 12.79 5.78 18.57 5.28
* The experiment is run under a 4-party setting with (4,1) Shamir secret

sharing.

Offline phase cost

We benchmark the offline phase of our protocol and the result is shown in Table 4.4 . The

result shows that the cost of the offline phase is acceptable.

Table 4.5. Benchmark result for proposed Matrix Powering protocol under 4 parties
Dimension Power Online

time(s)
Bandwidth

10× 10 16 0.12 0.04
10× 10 1024 0.147 0.04
40× 40 16 0.465 0.9
40× 40 1024 0.532 0.9
320× 320 16 18.552 64.1
320× 320 1024 19.367 64.1
320× 320 8192 20.848 64.1
* The experiment is run under a 4-party setting with (4,1)

Shamir secret sharing.
* Bandwidth is measured through total megabytes(MB)

sent per party.

4.6.6 Experiments for Multiplying an Arbitrary Number of Matrices

As mentioned in Section 4.4.1 , we implement both protocols for multiplying an arbitrary

number of matrices. The test environment is the same as the experiment for Markov process.

The protocols are instantiated on 4 parties with (4,1) Shamir secret sharing. The detailed

benchmark result is shown in Table 4.6 . We observe that Beaver matrix multiplication

92

Table 4.6. Benchmark comparison for multiplying multiple matrices between
the method of Bar-Ilan and Beaver [121] and Beaver Matrix Multiplication.
The experiments is under 4-party setting. k represents the number of matrices
to be multiplied. Bandwidth is measured through total megabytes sent out per
party.

Dimension k
Bar-Ilan and Beaver [121] Beaver Matrix Multiplication

Compu-
tation
time(s)

Commu-
nication
time(s)

Bandwidth
(MB)

Compu-
tation
time(s)

Commu-
nication
time(s)

Bandwidth
(MB)

10× 10 16 0.07s 0.3 0.5 0.03 0.173 0.17
10× 10 64 0.16s 0.86 2.1 0.12 0.71 0.7
20× 20 16 0.2s 1.1 2.32 0.07 0.51 0.72
20× 20 64 0.82s 2.82 9.07 0.31 0.95 2.99
80× 80 16 3.23s 9.07 43.3 0.89 3.06 11.67
80× 80 64 20.883s 35.71 169.5 5.82 14.65 49.3

outperforms the protocol of Bar-Ilan and Beaver [121] in all test cases, which confirms our

analysis in Section 4.4.1 .

4.7 Related works and future directions

To the best of our knowledge, our work is the first to achieve efficient high-degree

polynomials evaluation with arbitrary numbers of variables. In [133], Ishai and Kushilevitz

try to solve the same problem as we do. The method they chose is to represent the high-

degree polynomials into multiple low-degree polynomials with randomness, then solve many

low-degree polynomials. Regarding polynomial algebra, Mohassel and Franklin [134] work

in the setting of directly performing operations on the polynomials, such as polynomial

multiplication, division with remainder, polynomial interpolation, polynomial GCD, etc,

while our work is primarily focused on evaluating the polynomials. Dachman-Soled et al. [135]

work in the setting of evaluating multivariate polynomials where each party holds different

variables as private inputs. In our setting, all the variables are shared among all the parties.

Cramer and Damgård [136] also focus on operations of linear algebra, and their work aims at

solving the computation of determinant, characteristic polynomial, rank, and the solution

space of linear systems of equations, which is a different set of operations than this work.

93

Privacy-preserving decision tree evaluation was firstly proposed in [137]. Kiss et al. [130]

systematize the recent privacy-preserving decision tree training/evaluation solutions and in

general, these solutions can be divided into two types. The first type relies on homomorphic

encryption. For example, Wu et al. [114], Joye and Salehi [138] use additive homomorphic

encryption combined with different private comparison protocols to achieve decision tree

evaluation. The second type makes use of garbled circuits with efficient private comparison.

For example, Tueno et al. [139] represent the decision tree as an array and achieve privacy-

preserving evaluation through garbled circuits or oblivious RAM. Due to the nature of

homomorphic encryption and garbled circuits, the above protocols focus only on a two-party

setting, where the server has private decision tree models and the client holds the private

testing input. Another alternative solution is mentioned in [140], which is also based on

secret sharing as we do. It requires full-threshold secret sharing and the comparison protocol

is designed for 2 parties, therefore this solution is also limited to 2-party setting. Compared

with these works, our work is built on secret sharing and inherently supports the general

n-party setting.

94

5. IMPROVED SECURE COMPARISON PROTOCOL USING

FUNCTION TABLES

As mentioned in Chapter 4 , the main bottleneck of the secure decision tree evaluation

becomes the secure comparison protocol. Therefore, in this chapter, we focus on improving

the performance of the secure comparison protocol.

5.1 MPC with Pre-computed Function Table

For our secure comparison construction, we follow the standard offline-online model of

MPC, where the computation is separated into an (input independent) offline phase and an

online phase. In the offline phase, input-independent correlated secret sharings are generated

that are consumed during the online phase.

As the communication and round complexity of the online phase are critical for the

performance of an MPC protocol, our goal is to optimize the online phase and try to push

more cryptographically expensive operations to the offline phase. In particular, we build

upon the secure precomputed function (SPF) table approach introduced by Ishai et al. [141],

which offers a very efficient online MPC phase for computing any function.

The intuition behind the SPF protocol is to precompute the function output for all

possible inputs to generate function tables in the offline phase, which allows the online phase

to be simple function lookups (which is highly efficient).

This approach manages the small input domains well; however, the size of the SPF table

increases exponentially with the input size, and it is not practical to use for applications

using moderate-sized input domains. While our construction uses SPF tables to achieve a

highly efficient online phase, as a key novelty, we significantly reduce the function table size.

5.2 Protocol Overview

The goal of the protocol is to compute the fLT Z(·) for a secret-shared [x] ∈ Z2n . First,

both online parties compute [x + r] and open it, where r is a random mask generated during

the offline phase. Second, they divide the binary representation of x + r into k blocks, where

95

each block has ` bits such that k ·` = n.

1
 Third, the online parties perform membership testing

functions for all the blocks, and get the intermediate outputs, labeled a1, a2, . . . ak. The

intermediate outputs can either be Positive(P), Negative(N), or Undetermined(U)

2
 . As the

membership testing function has small input domains, the offline party can precompute the

function tables for it such that the online phase of the block membership testing is extremely

fast. Finally, the parties open the intermediate outputs, and use the intermediate outputs as

inputs to the recombination function table to produce the final output.

In the offline phase, P3 generates the precomputation and function tables needed for the

protocol, and secret shares them to P1 and P2. We have designed multiple sub-functionalities

to collaboratively achieve fLT Z(·), and they are explained in detail below.

5.3 An Illustrative Example of Our Approach

In Figure 5.1 , we show an concrete example of how we do problem size reduction. It can

be clearly seen that there are at most 2 Undetermined rows in the first block, and for all the

following blocks, there is at most one Undetermined row. Therefore, we need exactly two

function tables for all the blocks except the first block, such that each table is responsible for

one ”Undetermined”.

5.4 Building Blocks

We start by introducing the building blocks used in our protocol. Then we explain how

to use these functions to construct a full protocol.

We use superscripts to denote public parameters of functions, while subscripts denote

secret parameters that need to be kept hidden from the online parties. The secret parameters

set during the offline phase are r ∈ Z2n , r1, r2, . . . , rk ∈ F3, and β ∈ {0, 1}. r is used to

mask the input x, ri is used to mask the i-th intermediate result, and β is used to mask the

selection bit.
1

 ↑ If n is not a multiple of k, then one chooses the k block-lengths such that any two block-lengths are
either identical or differ by one. For example, if n = 8 and k = 3 then block-lengths are 3, 3, and 2. For
the simplicity of the presentation, this minor detail is omitted; however, our implementation addresses this
subtlety while creating the partitions.
2

 ↑ The reconstructed intermediate values are randomly masked such that the actual values are kept secret.

96

Figure 5.1. An example of problem size reduction where λ = 6, k = 3, ` = 2.
The left hand side is the overall function table before problem size reduction.
The right hand side is the function table structure used in our protocol. ”U”
means Undetermined, ”P” means Positive, and ”N” means negative. The red
lines in original function tables indicates the gaps when numbers change the sign
bit. If any row in function tables includes the gaps, its result is “Undetermined”.
A significant observation is that there could be at most 2 such gaps, which is
the reason why we only need two tables for all the blocks except the first block.

The functions SLTZ i
ri,r,β are the coarse-grained membership testing functions that test if

a block of input can directly tell us the overall output. SLTZ i
ri,r,β takes public parameter

i ∈ {1, 2, . . . , k}, which represents which of the k block this function is for, and it is defined

as a family of functions over the secret parameters r, ri, and β.

We start from the first block, the block result is positive if all values that depend on this

block (has this block input as prefix) are positive. It is negative if all values that depend

on this block are negative, and it is undetermined if some values are positive and some are

negative. When the block result of the first block is undetermined, we take the first two

blocks as the prefix and check the second block. Since revealing this intermediate result could

reveal information on the input, we mask them using the secret parameter ri.

97

Formally, we define a function SLTZ i
ri,r,β(y1y2 . . . y`, b̃) : {0, 1}` × {0, 1} → F3 such that

SLTZ i
ri,r,β(y1y2 . . . y`, b̃) =



0 + ri, if z0 /∈ N + r, z1 /∈ N + r

1 + ri, if z0 ∈ N + r, z1 ∈ N + r

2 + ri, otherwise.

where #„z0 = prefixi,r,β⊕b̃
‖y1y2 . . . y`‖00 . . . 0︸ ︷︷ ︸

n-bits

and #„z1 = prefixi,r,β⊕b̃
‖y1y2 . . . y`‖11 . . . 1︸ ︷︷ ︸

n-bits

, and

prefixi,r,β,̃b
∈ {0, 1}`·(i−1).

Additionally, if z0 ∈ N + r and z1 /∈ N + r, then prefixi+1,r,0 = prefixi,r,0‖y1y2 . . . y`. If

z0 /∈ N + r and z1 ∈ N + r, then prefixi+1,r,1 = prefixi,r,1‖y1y2 . . . y`. Besides, we use the value

0 in the output above to indicate ”Positive”, 1 as ”Negative”, and 2 as ”Undetermined”.

Next, we explain the function BLTZr,β, and the use of the selection bit b̃ in SLTZ i
ri,r,β(y1y2 . . . y`, b̃).

We note that the result of Undetermined can only appear in at most two rows of the function

table of the first block. The reason is that the block result is Undetermined if and only if the

numbers represented by that row contain both positive numbers and negative numbers. As

the numbers in the function table are consecutive and in ascending order, we only have two

such cases: When a block contains both 0 and −1, and when a block contains both 2n−1 − 1

and −2n−1.

Since there are at most two uncertain rows in the first block, we build two function tables

for the second block (and all the following blocks), one table for each uncertain row in the

first block. The input b̃ of SLTZ i
ri,r,β(y1y2 . . . y`, b̃) is used to indicate if the first group of the

tables are used or the second. The goal of BLTZr,β is to determine b̃ given the first block

of the input, such that b can be available for following SLTZ i
ri,r,β executions. We use b̃ to

represent the randomly masked version of b, and b̃ will be reconstructed during the online

phase.

Formally, we define a function BLTZr,β(y1y2 . . . y`) : {0, 1}` → {0, 1} such that

BLTZr,β(y1y2 . . . y`) =


0⊕ β, if z0 ∈ N + r, z1 /∈ N + r

1⊕ β, otherwise.

98

Algorithm 13: Less Than Zero LTZ([x])
Input : [x]
Output : [s]
Pre-computation : , [r], PBLT Zr,β

,
{

PSLT Zi
ri,r,β

}
i∈{1,2,...,k}

, PRECOMB
r1,r2,...rk,̃b

1 [y] = [x] + [r]
2 y = Open([y]) // Round 1

3 [b̃] = ΠBLT Zr,β
(#„y 1,`)

4 b̃ = Open([b̃]) // Round 2

5 for i← 1 to k do
6 [ãi] = ΠSLT Zi

r,β,ri

(
#„y (i−1)·`+1 , i·`, b̃

)
7 (ã1, ã2, . . . ãk) = Open([ã1], [ã2], . . . [ãk]) // Round 3

8 [s] = ΠRECOMBr1,r2,...rk
(ã1, ã2, . . . ãk)

9 return [s]

Where #„z0 = y1y2 . . . y`‖00 . . . 0︸ ︷︷ ︸
n-bits

and #„z1 = y1y2 . . . y`‖11 . . . 1︸ ︷︷ ︸
n-bits

.

The RECOMBr1,r2,...rk
function takes the intermediate outputs produced by SLTZ i,̃b

ri,r,β

and combines them to produce the final output. Intuitively, RECOMBr1,r2,...rk
outputs the

first intermediate output that is not undetermined.

Formally, function RECOMBr1,r2,...rk
(ã1, ã2, . . . ãk) : F k

3 → {0, 1} offers

RECOMBr1,r2,...rk
(ã1, ã2, . . . ãk) =



0, if ∃i such that

∀j < i, (ãj − rj) = 2

and (ãi − ri) = 0

1, otherwise.

5.5 Protocol Details

5.5.1 Online Phase

 Algorithm 13 describes the online phase of the protocol. During the online phase, our

protocol proceeds in three rounds. In the first round, the online parties P1 and P2 compute

and open y = x + r. Next, online parties divide the binary representation of y into k pieces

99

of ` bits each. Parties use the first ` bits of y as input to evaluate ΠBLT Zr,β
and get the result

[b̃]. In the second round, the parties open [b̃]. Then the parties use b̃ and the ith blocks of y

as inputs to evaluate ΠSLT Zi
r,β,ri

for all i ∈ {1, 2, . . . , k} and receive share of the k outputs

ã1, ã2, . . . , ãk. In the third round, the parties open all the intermediate results [ãi]. Using

them as inputs, the parties run the online phase ΠRECOMBr1,r2,...,rk
to receive secret shares of

the final output [s].

5.5.2 Offline Phase

During the offline phase, P3 generates independent and uniformly random values r ∈ Z2n ,

β ∈ {0, 1}, and ri for i ∈ {1, 2, . . . , k}. Using those values, P3 selects the corresponding

functions from the family of functions. Specifically, P3 selects BLTZr,β, SLTZ i
ri,r

for i ∈

{1, 2, . . . , n}, and RECOMBr1,r2,...rk
. P3 then acts as our variant of SPF compiler with those

functions as inputs, and generates the offline correlated randomness specified by the compiler.

P3 then sends the offline correlated randomness to P1 and P2, as well as generate secret

shares of r to send to P1 and P2. Specifically, the offline correlated randomness are PBLT Zr,β
,

PSLT Zi
ri,r

for i ∈ {1, 2, . . . , k}, and PRECOMBr1,r2,...rk
.

5.6 High Level Application: Privacy-preserving Neural Network Training/In-
ference

To illustrate the performance of our protocols, we develop prototypes for our secure

comparison protocols. Additionally, to demonstrate the effect of our protocol in a real-world

application, we choose to implement our protocol for the privacy-preserving neural network

training/inference application.

The state-of-the-art works in this area are Falcon [8] and SecureNN [142]. We observe

that the main bottleneck is the evaluation of the ReLU activation function, where the secure

comparison protocol is the core building block. In addition to ReLU, the Division and

Maxpool functions have high costs, and the secure comparison is also the main reason.

Therefore, we think the secure comparison is one of the main bottlenecks, meaning that the

use of our protocol should provide a significant performance improvement. We choose to

100

implement our protocol in C++ and embed it into the Falcon [8] framework by replacing the

derivative of ReLU (Falcon’s secure comparison implementation) with our protocol.

Table 5.1. Online Phase Benchmark: privacy-preserving neural network
training/inference with our LTZ vs Falcon’s LTZ. The experiments are run
using AWS t3.2xlarge instances with 130ms ping. Communication is measured
by total MB sent per party. parameter setting: n = 32, k = 4, ` = 8.

Network Mode Online time(s) Communication (MB)
This work Falcon This work Falcon

Network A training 6.21s 10.14s 22.61MB 33.98MB
inference 1.83s 3.16s 0.65MB 1.57MB

Network C training 22.45s 38.94s 584.21MB 1123.35MB
inference 11.45s 22.39s 79.392MB 199.949MB

5.6.1 Implementation details

As our protocol has two online parties whereas Falcon has three online parties, we need

to properly embed our protocol into the Falcon framework. To begin with, Falcon uses

replicated secret sharing. If we only consider the first two parties P1 and P2, they actually

hold a two-party additive secret sharing of the input. Therefore, we can run our secure

comparison on P1 and P2 without any other changes. However, we still need to make sure

the final output s is a three-party replicated share (e.g. s = s1 ⊕ s2 ⊕ s3, and each party Pi

holds si and si+1). To achieve this, we allow the offline party P3 to generate s3 and s1 in

advance and take them as the final shares of P3. In the offline phase, P3 sends s1 to P1 and

s3 to P2. In the final recombination table, the shares of s2 are stored instead of the shares of

the final output in our original protocol. Therefore, P1 and P2 needs an additional round to

reconstruct s2 using the shares.

We can think of the LTZ as a black box, Falcon provides 3-party replicated secret sharings

as the input to LTZ. Inside the box, LTZ operates with 2-party additive secret sharing,

and the output of LTZ is a 3-party replicated secret sharing again. The security of this

construction is straightforward in a semi-honest setting. We leave the malicious setting

construction as one of the future works.

101

Table 5.2. Offline Phase Benchmark for n = 32, k = 4, ` = 8. (Assuming
inputs are n-bit ring elements, and are divided into k blocks with each block
being ` bits in our protocol.)

Network Mode #Compari-
sons

Execution
Time

Commu-
nication

Network A training 606720 780s 488 MB
inference 34048 44s 28 MB

Network C training 19968000 7.16 hr 16.1 GB
inference 1324800 1688s 1.1 GB

* The benchmark is executed in AWS clusters with t3.2xlarge instances.

5.6.2 Evaluation Results

To compare our protocol against the secure comparison used by Falcon, we choose to

evaluate the performances on Network A and Network C from Falcon. Network A is a 3 layer

fully connected network with the ReLU activation function after each layer. Network C is a

4 layer network with 2 convolutional and 2 fully-connected layers. This network also uses

both Max Pooling and ReLU.

To begin with, we run the micro-benchmark that only considers the performance of the

secure comparison. The micro-benchmark is launched in AWS clusters using three t3.2xlarge

instances (8 cores and 32GB RAM). The three instances are located in different regions and

have an average round trip time of around 130ms. We call this testing environment the

distributed setting” for the rest of the thesis. The experiments show that our LTZ takes 0.008

seconds and 0.163MB data transmission per party to do 128 secure comparison. Meanwhile,

falcon’s secure comparison takes 0.017 seconds and 0.606MB bandwidth. So we can expect a

2× efficiency improvement on running time and 4× improvements on communication here.

Then we run some neural network tests in the distributed setting. We tested two versions

of the codebase: the first one is the original Falcon codebase, and the other is the Falcon

codebase only with the LTZ function replaced by our protocol. Therefore all the performance

difference is caused by the replacement of the LTZ function. For the neural network training,

we run 15 forward-backward pass iterations just to show the performance difference. The

benchmark result is available in Table 5.1 . In general, the neural network training time with

102

our LTZ is around 30% more efficient. For the inference, the running time is improved by

around 1.4×. The communication of our protocol is also significantly cheaper than Falcon.

We also provide the execution time and communication of the offline phase in Table 5.2 .

The result shows that the cost is acceptable for neural network use cases.

103

6. CONCLUSION AND FUTURE WORKS

To conclude, we aim at designing efficient MPC building blocks in these years and the research

works are in general divided into two categories: building blocks for secure mixing protocols

and building blocks for privacy-preserving data analysis. To construct efficient secure mixing

protocols, we propose four approaches, each with different trade-offs. And the corresponding

building blocks are of independent interest as they can be widely used in more applications.

For privacy-preserving machine learning, we start with the privacy-preserving decision tree

evaluation, and construct two efficient building blocks for it: secure polynomial evaluation

and secure comparison.

In general, we design high-efficient online phase protocols by trying to push as much

computation as possible into the offline phase, meanwhile guaranteeing the offline phase is

still practical. By this approach, we succeed in reducing the communication and the round

complexity of many state-of-the-art MPC building blocks.

As for future works, there are two directions that I think are promising and meaningful.

The first one is the combination of MPC and parallel computing. In our previous works, we

try to push as much computation as possible into one single round to improve the round

complexity. It means that these computations do not depend on each other, and can be

executed in parallel. Therefore, most of our works will see a significant performance gain if

combined with parallel computing. Besides, if GPU [143] can be utilized properly, the overall

performance of our protocols can also be expected to improve. The second direction is to

keep researching the same MPC protocols that we worked on, however, we would like to

increase the input size (e.g. what if the input volume is larger, what if we work on larger

fields). As we live in an era of big data, scalability will be a challenge sooner or later.

104

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” in USENIX Security Symposium, 2004.

[2] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma: Strong anonymity,
low bandwidth overhead, low latency - choose two,” in IEEE Symposium on Security and
Privacy (SP), 2018, pp. 108–126.

[3] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and P. Mittal,
“RAPTOR: routing attacks on privacy in tor,” in USENIX Security Symposium, 2015,
pp. 271–286.

[4] T. T. Blog, One cell is enough to break tor’s anonymity, https://blog.torproject.org/
blog/one-cell-enough , Accessed Nov 2018.

[5] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller, “Honeybad-
germpc and asynchromix: Practical asynchronous mpc and its application to anonymous
communication,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19, New York, NY, USA: Association for Computing
Machinery, 2019, pp. 887–903, isbn: 9781450367479.

[6] D. Lu, A. Yu, A. Kate, and H. Maji, “Polymath: Low-latency mpc via secure polynomial
evaluations and its applications,” Proceedings on Privacy Enhancing Technologies, vol. 2022,
no. 1, pp. 396–416, 2022. doi: doi:10.2478/popets-2022-0020 . [Online]. Available: https:
//doi.org/10.2478/popets-2022-0020 .

[7] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and exponentiation,”
in Theory of Cryptography, S. Halevi and T. Rabin, Eds., 2006, pp. 285–304.

[8] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin, “FAL-
CON: honest-majority maliciously secure framework for private deep learning,” CoRR,
vol. abs/2004.02229, 2020. arXiv: 2004.02229 . [Online]. Available: https://arxiv.org/abs/2004.
02229 .

[9] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-secure mpc with linear communication
complexity,” in Theory of Cryptography Conference, 2008, pp. 213–230.

[10] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure multiparty computa-
tion,” in Advances in Cryptology—CRYPTO, 2007, pp. 572–590.

[11] A. Choudhury, M. Hirt, and A. Patra, “Asynchronous multiparty computation with
linear communication complexity,” in DISC, 2013, pp. 388–402.

105

https://blog.torproject.org/blog/one-cell-enough
https://blog.torproject.org/blog/one-cell-enough
https://doi.org/doi:10.2478/popets-2022-0020
https://doi.org/10.2478/popets-2022-0020
https://doi.org/10.2478/popets-2022-0020
https://arxiv.org/abs/2004.02229
https://arxiv.org/abs/2004.02229
https://arxiv.org/abs/2004.02229

[12] A. Choudhury and A. Patra, “An efficient framework for unconditionally secure multiparty
computation,” IEEE Transactions on Information Theory, pp. 428–468, 2017.

[13] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[14] A. Choudhury and A. Patra, “Optimally resilient asynchronous mpc with linear commu-
nication complexity,” in ICDCN, 2015, p. 5.

[15] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller, “Honeybad-
germpc and asynchromix: Practical asynchronous mpc and its application to anonymous
communication,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19, New York, NY, USA: Association for Computing
Machinery, 2019, pp. 887–903, isbn: 9781450367479.

[16] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General purpose compilers
for secure multi-party computation,” in IEEE Symposium on Security and Privacy (SP),
2019.

[17] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: Breaking the spdz limits,” in European
Symposium on Research in Computer Security, 2013, pp. 1–18.

[18] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making spdz great again,” in Adanvance
in Cryptology—EUROCRYPT, 2018, pp. 158–189.

[19] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. Smart, and T. Wood, “Scale–mamba
v1. 3: Documentation,” Tech. Rep., 2019.

[20] M. Keller, E. Orsini, and P. Scholl, “Mascot: Faster malicious arithmetic secure compu-
tation with oblivious transfer,” in ACM CCS, 2016, pp. 830–842.

[21] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty computation,” in
ACM CCS, 2017, pp. 39–56.

[22] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-
preserving computations,” in European Symposium on Research in Computer Security, 2008,
pp. 192–206.

[23] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system for large scale
p2p mpc-as-a-service and low-bandwidth mpc for weak participants,” in ACM CCS, 2018,
pp. 695–712.

106

[24] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof,
“Fast large-scale honest-majority mpc for malicious adversaries,” in Advances in Cryptology –
Crypto, 2018, pp. 34–64.

[25] N. P. Smart and T. Wood, “Error detection in monotone span programs with application
to communication-efficient multi-party computation,” in CT-RSA, 2019, pp. 210–229.

[26] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, et al., “Secure multiparty computation
goes live,” in International Conference on Financial Cryptography and Data Security, 2009,
pp. 325–343.

[27] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-party computation
for financial data analysis,” in International Conference on Financial Cryptography and Data
Security, 2012, pp. 57–64.

[28] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams, “Futuresmex: Secure,
distributed futures market exchange,” in IEEE Symposium on Security and Privacy (SP),
2018, pp. 335–353.

[29] N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias, “Mcmix: Anonymous messaging
via secure multiparty computation,” in USENIX Security Symposium, 2017, pp. 1217–1234.

[30] F. Eigner, M. Maffei, I. Pryvalov, F. Pampaloni, and A. Kate, “Differentially private
data aggregation with optimal utility,” in ACSAC, 2014, pp. 316–325.

[31] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom: Horizontally scaling
strong anonymity,” in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 406–422.

[32] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich, “Stadium: A distributed
metadata-private messaging system,” in 26th SOSP, 2017, pp. 423–440.

[33] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems
(TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[34] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems.,” in USENIX annual technical conference, vol. 8, 2010.

[35] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99, 1999,
pp. 173–186.

[36] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of blockchains,” Ph.D.
dissertation, 2016.

107

[37] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in ACM EuroSys, 2018.

[38] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, Asynchronous multiparty
computation: Theory and implementation, Cryptology ePrint Archive, https://eprint.iacr.
org/2008/415 , 2008.

[39] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic
fault-tolerant distributed computation,” in ACM STOC, 1988, pp. 1–10.

[40] Y. Zhang, A. Steele, and M. Blanton, “Picco: A general-purpose compiler for private
distributed computation,” in ACM CCS, 2013, pp. 813–826.

[41] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al., “Fairplay-secure two-party computation
system.,” in USENIX Security Symposium, 2004.

[42] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers, “Fairness in an unfair
world: Fair multiparty computation from public bulletin boards,” in ACM CCS, 2017, pp. 719–
728.

[43] G. Asharov and Y. Lindell, “A full proof of the bgw protocol for perfectly secure
multiparty computation,” Journal of Cryptology, pp. 58–151, 2017.

[44] M. Hirt and J. B. Nielsen, “Robust multiparty computation with linear communication
complexity,” in Advances in Cryptology—CRYPTO, 2006, pp. 463–482.

[45] I. Damgård, Y. Ishai, and M. Krøigaard, “Perfectly secure multiparty computation and
the computational overhead of cryptography,” in Advances in Cryptology—EUROCRYPT,
2010, pp. 445–465.

[46] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith, “Scalable multiparty
computation with nearly optimal work and resilience,” in Annual International Cryptology
Conference, 2008, pp. 241–261.

[47] A. Choudhury, E. Orsini, A. Patra, and N. P. Smart, “Linear overhead optimally-resilient
robust mpc using preprocessing,” in SCN, 2016, pp. 147–168.

[48] M. Abe and F. Hoshino, “Remarks on mix-network based on permutation networks,” in
International Workshop on Public Key Cryptography (PKC), 2001, pp. 317–324.

[49] U. Parampalli, K. Ramchen, and V. Teague, “Efficiently shuffling in public,” in Interna-
tional Workshop on Public Key Cryptography, 2012, pp. 431–448.

108

https://eprint.iacr.org/2008/415
https://eprint.iacr.org/2008/415

[50] A. Czumaj and B. Vöcking, “Thorp shuffling, butterflies, and non-markovian couplings,”
in International Colloquium on Automata, Languages, and Programming, 2014, pp. 344–355.

[51] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P mixing and unlinkable bitcoin
transactions,” in NDSS, 2017.

[52] J. D. Lipson, “Newton’s method: A great algebraic algorithm,” in 3rd ACM Symposium
on Symbolic and Algebraic Computation, 1976, pp. 260–270.

[53] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and exponentiation,”
in Theory of Cryptography Conference, 2006, pp. 285–304.

[54] A. Bostan, L. Gonzalez-Vega, H. Perdry, and E. Schost, Complexity issues on newton
sums of polynomials.

[55] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle,” Privacy Enhancing Technologies,
pp. 115–134, 2016.

[56] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The loopix anonymity
system,” in USENIX Security Symposium, 2017, pp. 16–18.

[57] D. Lazar, Y. Gilad, and N. Zeldovich, “Karaoke: Distributed private messaging immune
to passive traffic analysis,” in 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, 2018, pp. 711–725.

[58] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous group messaging,” in
ACM CCS, 2010, pp. 340–350.

[59] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service or denial of security?”
In ACM CCS, 2007, pp. 92–102.

[60] D. I. Wolinsky, E. Syta, and B. Ford, “Hang with your buddies to resist intersection
attacks,” in ACM CCS, 2013, pp. 1153–1166.

[61] I. Abraham, B. Pinkas, and A. Yanai, “Blinder–scalable, robust anonymous commit-
ted broadcast,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1233–1252.

[62] S. Eskandarian and D. Boneh, “Clarion: Anonymous communication from multiparty
shuffling protocols,” Cryptology ePrint Archive, 2021.

[63] V. Shoup et al., Ntl, a library for doing number theory, 2005.

109

[64] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” in Proceedings of the 13th USENIX Security Symposium, 2004, p. 21.

[65] R. Dingledine and N. Mathewson, Tor Protocol Specification, https://gitweb.torproject.
org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt , Accessed Feb 2022.

[66] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get routed: Traffic
correlation on tor by realistic adversaries,” in Proc. ACM SIGSAC conference on Computer
& communications security 2013, 2013, pp. 337–348.

[67] N. S. Evans, R. Dingledine, and C. Grothoff, “A Practical Congestion Attack on Tor
Using Long Paths,” 2009, pp. 33–50.

[68] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker, “Low-resource routing
attacks against tor,” 2007, pp. 11–20.

[69] N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias, “MCMix: Anonymous messag-
ing via secure multiparty computation,” in 26th USENIX Security Symposium (USENIX Secu-
rity 17), Vancouver, BC: USENIX Association, Aug. 2017, pp. 1217–1234, isbn: 978-1-931971-
40-9. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/alexopoulos .

[70] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela: Scalable private
messaging resistant to traffic analysis,” in Proceedings of the 25th Symposium on Operating
Systems Principles, 2015, pp. 137–152.

[71] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich, “Stadium: A distributed
metadata-private messaging system,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 423–440.

[72] M. Ciampi, M. Ishaq, M. Magdon-Ismail, R. Ostrovsky, and V. Zikas, “Fairmm: A fast
and frontrunning-resistant crypto market-maker,” Cryptology ePrint Archive, 2021.

[73] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A.
Juels, “Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in
decentralized exchanges,” arXiv preprint arXiv:1904.05234, 2019.

[74] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: Breaking the spdz limits,” in European
Symposium on Research in Computer Security, Springer, 2013, pp. 1–18.

[75] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky, “On
the power of correlated randomness in secure computation,” in Theory of Cryptography
Conference, Springer, 2013, pp. 600–620.

110

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/alexopoulos

[76] M. Keller, “Mp-spdz: A versatile framework for multi-party computation,” in Proceedings
of the 2020 ACM SIGSAC conference on computer and communications security, 2020,
pp. 1575–1590.

[77] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma: Strong anonymity,
low bandwidth overhead, low latency-choose two,” in 2018 IEEE Symposium on Security and
Privacy (SP), IEEE, 2018, pp. 108–126.

[78] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”
Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[79] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and P. Francis, “Towards
Efficient Traffic-analysis Resistant Anonymity Networks,” in Proc. ACM SIGCOMM 2013,
2013, pp. 303–314.

[80] D. Chaum, D. Das, F. Javani, A. Kate, A. Krasnova, J. de Ruiter, and A. T. Sherman,
“Cmix: Mixing with minimal real-time asymmetric cryptographic operations,” in ACNS, 2017.

[81] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a type iii anony-
mous remailer protocol,” in 2003 Symposium on Security and Privacy, 2003., 2003, pp. 2–
15.

[82] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt, “Herd: A Scalable,
Traffic Analysis Resistant Anonymity Network for VoIP Systems,” in Proc. ACM SIGCOMM
2015, 2015, pp. 639–652.

[83] D. Chaum, “The dining cryptographers problem: Unconditional sender and recipient
untraceability,” Journal of cryptology, vol. 1, no. 1, pp. 65–75, 1988.

[84] M. Waidner and B. Pfitzmann, “The dining cryptographers in the disco: Unconditional
sender and recipient untraceability with computationally secure serviceability,” in Advances
in Cryptology — EUROCRYPT ’89, 1990, pp. 690–690.

[85] J. Bos and B. den Boer, “Detection of disrupters in the dc protocol,” in Advances in
Cryptology — EUROCRYPT ’89, J.-J. Quisquater and J. Vandewalle, Eds., 1990, pp. 320–327.

[86] L. von Ahn, A. Bortz, and N. J. Hopper, “K-anonymous message transmission,” in
Proceedings of the 10th ACM SIGSAC CCS, 2003, pp. 122–130.

[87] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proc. of Eurocrypt 2004,
2004.

[88] M. Waidner, “Unconditional sender and recipient untraceability in spite of active attacks,”
in Advances in Cryptology — EUROCRYPT ’89, 1990, pp. 302–319.

111

[89] A. Krasnova, M. Neikes, and P. Schwabe, “Footprint scheduling for dining-cryptographer
networks,” in FC, J. Grossklags and B. Preneel, Eds., 2016, pp. 385–402.

[90] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent in numbers:
Making strong anonymity scale,” in 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), 2012, pp. 179–182.

[91] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Comprehensive anonymity trilemma:
User coordination is not enough,” Proceedings on Privacy Enhancing Technologies, vol. 2020,
pp. 356–383, 2020.

[92] H. Corrigan-Gibbs, D. Boneh, and D. Mazieres, “Riposte: An anonymous messaging
system handling millions of users,” 2015 IEEE Symposium on Security and Privacy, May
2015. doi: 10.1109/sp.2015.27 . [Online]. Available: http://dx.doi.org/10.1109/SP.2015.27 .

[93] L. Barman, M. Zamani, I. Dacosta, J. Feigenbaum, B. Ford, J.-P. Hubaux, and D.
Wolinsky, “Prifi: A low-latency and tracking-resistant protocol for local-area anonymous
communication,” in Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic
Society, 2016, pp. 181–184.

[94] Z. Newman, S. Servan-Schreiber, and S. Devadas, “Spectrum: High-bandwidth anonymous
broadcast,” in 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), Renton, WA: USENIX Association, Apr. 2022, pp. 229–248, isbn: 978-1-939133-
27-4. [Online]. Available: https://www.usenix.org/conference/nsdi22/presentation/newman .

[95] V. Goyal, H. Li, R. Ostrovsky, A. Polychroniadou, and Y. Song, “Atlas: Efficient and
scalable mpc in the honest majority setting,” in Annual International Cryptology Conference,
Springer, 2021, pp. 244–274.

[96] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof,
“Fast large-scale honest-majority mpc for malicious adversaries,” in Annual International
Cryptology Conference, Springer, 2018, pp. 34–64.

[97] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols with honest
majority,” in Proceedings of the twenty-first annual ACM symposium on Theory of computing,
1989, pp. 73–85.

[98] M. Abspoel, A. Dalskov, D. Escudero, and A. Nof, “An efficient passive-to-active compiler
for honest-majority mpc over rings,” in International Conference on Applied Cryptography
and Network Security, Springer, 2021, pp. 122–152.

[99] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing: Improvements and extensions,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 1292–1303.

112

https://doi.org/10.1109/sp.2015.27
http://dx.doi.org/10.1109/SP.2015.27
https://www.usenix.org/conference/nsdi22/presentation/newman

[100] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh, “Express: Lowering
the cost of metadata-hiding communication with cryptographic privacy,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 1775–1792.

[101] J. Håstad, “The square lattice shuffle,” Random Structures and Algorithms, vol. 29, no. 4,
pp. 466–474, 2006.

[102] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30–May 2, 1968, spring joint computer conference, 1968, pp. 307–314.

[103] D. L. Shell, “A high-speed sorting procedure,” Communications of the ACM, vol. 2,
no. 7, pp. 30–32, 1959.

[104] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30–May 2, 1968, spring joint computer conference, 1968, pp. 307–314.

[105] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi, “Practically efficient
multi-party sorting protocols from comparison sort algorithms,” in Information Security
and Cryptology – ICISC 2012, T. Kwon, M.-K. Lee, and D. Kwon, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 202–216.

[106] A. Aly and S. Cleemput, “An improved protocol for securely solving the shortest path
problem and its application to combinatorial auctions,” Cryptology ePrint Archive, 2017.

[107] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, et al., “Secure multiparty computation goes
live,” in International Conference on Financial Cryptography and Data Security, Springer,
2009, pp. 325–343.

[108] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. V. Vyve, “Securely solving simple
combinatorial graph problems,” in International Conference on Financial Cryptography and
Data Security, Springer, 2013, pp. 239–257.

[109] A. Aly, “Network flow problems with secure multiparty computation.,” Ph.D. dissertation,
Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2015.

[110] S. Gao, “A new algorithm for decoding reed-solomon codes,” in Communications, infor-
mation and network security, Springer, 2003, pp. 55–68.

[111] B. Kuykendall, H. Krawczyk, and T. Rabin, “Cryptography for #metoo,” Proceedings
on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 409–429, 2019. doi: https://doi.org/
10.2478/popets-2019-0054 . [Online]. Available: https://content.sciendo.com/view/journals/
popets/2019/3/article-p409.xml .

113

https://doi.org/https://doi.org/10.2478/popets-2019-0054
https://doi.org/https://doi.org/10.2478/popets-2019-0054
https://content.sciendo.com/view/journals/popets/2019/3/article-p409.xml
https://content.sciendo.com/view/journals/popets/2019/3/article-p409.xml

[112] P. Mohassel and Y. Zhang, “SecureML: a system for scalable privacy-preserving machine
learning,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 19–38.

[113] J. Cartlidge, N. P. Smart, and Y. T. Alaoui, Mpc joins the dark side, Cryptology ePrint
Archive, Report 2018/1045, https://eprint.iacr.org/2018/1045 , 2018.

[114] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately evaluating decision trees and
random forests,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 4, 2016.

[115] E. Commission, 2018 reform of eu data protection rules, May 25, 2018. [Online]. Available:
 https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-
changes_en.pdf .

[116] E. Goldman, “An introduction to the california consumer privacy act (ccpa),” Santa
Clara Univ. Legal Studies Research Paper, 2020.

[117] I. Giacomelli, S. Jha, R. Kleiman, D. Page, and K. Yoon, “Privacy-preserving collaborative
prediction using random forests,” CoRR, vol. abs/1811.08695, 2018. [Online]. Available: http:
//arxiv.org/abs/1811.08695 .

[118] M. Keller, MP-SPDZ: A versatile framework for multi-party computation, Cryptology
ePrint Archive, Report 2020/521, https://eprint.iacr.org/2020/521 , 2020.

[119] I. Damgard, V. Pastro, N. Smart, and S. Zakarias, Multiparty computation from somewhat
homomorphic encryption, Cryptology ePrint Archive, Report 2011/535, https://eprint.iacr.
org/2011/535 , 2011.

[120] S. Coretti, J. Garay, M. Hirt, and V. Zikas, “Constant-round asynchronous multi-party
computation based on one-way functions,” in Advances in Cryptology — ASIACRYPT 2016,
2016, pp. 998–1021.

[121] J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction,” in Proceedings of the Eighth Annual ACM Symposium on
Principles of Distributed Computing, ser. PODC ’89, 1989, pp. 201–209.

[122] A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald, Privacy-
preserving decision tree training and prediction against malicious server, Cryptology ePrint
Archive, Report 2019/1282, https://eprint.iacr.org/2019/1282 , 2019.

[123] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure computation for neural
network training,” Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 26–49,
2019.

114

https://eprint.iacr.org/2018/1045
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
http://arxiv.org/abs/1811.08695
http://arxiv.org/abs/1811.08695
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2019/1282

[124] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1175–1191.

[125] O. Catrina and A. Saxena, “Secure computation with fixed-point numbers,” in Financial
Cryptography and Data Security, R. Sion, Ed., 2010, pp. 35–50.

[126] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty integer com-
putation,” in Security and Cryptography for Networks, J. A. Garay and R. De Prisco, Eds.,
2010, pp. 182–199.

[127] T. Nishide and K. Ohta, “Multiparty computation for interval, equality, and comparison
without bit-decomposition protocol,” in Public Key Cryptography – PKC 2007, T. Okamoto
and X. Wang, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 343–360, isbn:
978-3-540-71677-8.

[128] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http:
//archive.ics.uci.edu/ml .

[129] Amazon ec2 instance network bandwidth, https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-instance-network-bandwidth.html .

[130] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, “Sok: Modular and efficient
private decision tree evaluation,” Proceedings on Privacy Enhancing Technologies, vol. 2019,
no. 2, pp. 187–208, 2019. doi: https://doi.org/10.2478/popets-2019-0026 . [Online]. Available:

 https://content.sciendo.com/view/journals/popets/2019/2/article-p187.xml .

[131] M. Jones, “Estimating markov transition matrices using proportions data: An application
to credit risk,” IMF Working Papers, vol. 05, Jan. 2006.

[132] H. Muliaman, W. Santoso, B. Santoso, D. Besar, and I. Rulina, “Rating migration
matrices: Empirical evidence in indonesia,” IFC Bulletin, Jan. 2009.

[133] Y. Ishai and E. Kushilevitz, “Randomizing polynomials: A new representation with
applications to round-efficient secure computation.,” Jan. 2000, pp. 294–304. doi: 10.1109/
SFCS.2000.892118 .

[134] P. Mohassel and M. Franklin, “Efficient polynomial operations in the shared-coefficients
setting,” 2006, pp. 44–57. doi: 10.1007/11745853_4 .

[135] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung, “Secure efficient multiparty
computing of multivariate polynomials and applications,” 2011, pp. 130–146. doi: 10.1007/978-
3-642-21554-4_8 .

115

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://doi.org/https://doi.org/10.2478/popets-2019-0026
https://content.sciendo.com/view/journals/popets/2019/2/article-p187.xml
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1007/11745853_4
https://doi.org/10.1007/978-3-642-21554-4_8
https://doi.org/10.1007/978-3-642-21554-4_8

[136] R. Cramer and I. Damgård, “Secure distributed linear algebra in a constant number of
rounds,” in CRYPTO, 2001, pp. 119–136. doi: 10.1007/3-540-44647-8_7 .

[137] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-preserving remote
diagnostics,” in Proceedings of the 14th ACM conference on Computer and communications
security, 2007, pp. 498–507.

[138] M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,” in IFIP Annual
Conference on Data and Applications Security and Privacy, Springer, 2018, pp. 243–259.

[139] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private evaluation of decision trees
using sublinear cost,” Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 1,
pp. 266–286, 2019.

[140] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev,
“New primitives for actively-secure mpc over rings with applications to private machine
learning,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1102–1120. doi:

 10.1109/SP.2019.00078 .

[141] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky, “On the
power of correlated randomness in secure computation,” 2013, pp. 600–620. doi: 10.1007/978-
3-642-36594-2_34 .

[142] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure computation for
neural network training,” Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3,
pp. 26–49, Jul. 2019. doi: 10.2478/popets-2019-0035 .

[143] J.-L. Watson, S. Wagh, and R. A. Popa, Piranha: A gpu platform for secure computation,
Cryptology ePrint Archive, Paper 2022/892, https://eprint.iacr.org/2022/892 , 2022. [Online].
Available: https://eprint.iacr.org/2022/892 .

116

https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.2478/popets-2019-0035
https://eprint.iacr.org/2022/892
https://eprint.iacr.org/2022/892

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Our Contribution
	Secure Mixing Protocols
	Secure Random Permutation
	Secure Polynomial Evaluation
	Secure Comparison
	Secure Matrix Operation

	Thesis Structure

	ASYNCHROMIX: ANONYMOUS COMMUNICATION WITH ROBUSTNESS
	The Motivation and the Background
	MPC Based on Shamir Secret Sharing
	Shamir Secret Sharing and Reconstruction
	Notation
	Robust interpolation of polynomials

	SSS-Based MPC
	Anonymous Communication from MPC
	The Need for Robustness

	System Setting
	Adversary Setting

	Anonymous Communication Protocol I: Switching Network
	Anonymous Communication Protocol II: PowerMixing
	Computing powers with constant communication
	Solving Newton's Identity

	AsynchroMix Offline Phase Requirements
	Supporting Larger Messages
	Comparing AsynchroMix with Other Strong Anonymity Solutions
	Security Analysis
	Robustness in MPC: HoneybadgerMPC
	Implementation and Evaluation
	Implementation
	Performance Evaluation
	Online Phase for PowerMix
	Online Phase for Switching Network
	Overall cost for AsynchroMix

	Concluding Remarks

	RPM: SECURE MIXING THROUGH PERMUTATION MATRIX
	Motivation and Introduction of RPM
	Related Works
	Preliminary
	System Model
	Goals and Non-Goals
	Robust Secret Sharing Reconstruction
	Notations

	Using Permutation Matrices for Anonymous Communication
	Overview of the Variants
	Collecting Client Messages
	Supporting Messages with Large Size
	Malicious Security
	The First Variant
	Offline Phase
	Online Phase

	The Second Variant
	Offline Phase
	Online Phase

	The Third Variant
	Cost Analysis and Comparisons with Related Works
	Security Analysis

	Applications of RPM
	Two Way Communication
	Secure Sorting

	Implementation and Evaluation
	Implementation
	Online Phase Evaluation
	Variant 1
	Variant 2
	Variant 3
	Performance with More Servers

	Offline Phase Benchmark
	Towards Robustness
	Protocol Consturction
	Evaluation of the Robust Variant 3

	Performance Comparison

	Polymath: LOW-LATENCY MPC VIA SECURE POLYNOMIAL EVALUATION
	Motivation and Introduction of Polymath
	Our Contribution
	(a) Secure Evaluation of Polynomial over Finite Fields
	(b) Secure Evaluation of Polynomials over Matrices
	Application I: Privacy-Preserving Decision Tree Evaluation
	Application II: Secure Credit Risk Analysis through a Markov Process

	Problem Setting
	Secure Computations of Polynomial Evaluation
	Secure Computation for Univariate Polynomials
	How to calculate multi-variable polynomials
	Efficient Way to Calculate [xyz]
	Efficient Way to Calculate Multi-variable Multiplication
	Efficient Way to Calculate x1e1x2e2 …xnen

	Offline Phase

	Secure Computation of Polynomials of Matrices
	Multiplying an arbitrary number of matrices
	Calculating powers of a square matrix
	Offline Phase
	Security Against Malicious Adversary

	Application:Privacy Preserving Decision Tree Evaluation
	System Model
	Technical Overview
	Decision Tree Representation
	Decision tree representation with polynomials
	Fixed-point numbers representation

	Secure Comparison over fixed-point Numbers
	Secure Polynomial Evaluation
	Prototype Implementation
	Experimental Analysis
	Introducing Higher Network Latency
	Offline Phase Benchmark
	Analysis with Another Dataset

	Application: Secure Markov Process Evaluation
	Markov Chain Introduction
	The Markov Chain Application: Credit Risk Analysis
	System Model
	Secure Evaluation of Markov Process
	Experiments for Evaluation of Markov Process
	Offline phase cost

	Experiments for Multiplying an Arbitrary Number of Matrices

	Related works and future directions

	IMPROVED SECURE COMPARISON PROTOCOL USING FUNCTION TABLES
	MPC with Pre-computed Function Table
	Protocol Overview
	An Illustrative Example of Our Approach
	Building Blocks
	Protocol Details
	Online Phase
	Offline Phase

	High Level Application: Privacy-preserving Neural Network Training/Inference
	Implementation details
	Evaluation Results

	CONCLUSION AND FUTURE WORKS
	REFERENCES
	INDEX

