
GENERIC DISTRACTIONS AND STRATA OF HILBERT
SCHEMES DEFINED BY THE CASTELNUOVO-MUMFORD

REGULARITY
by

Anna-Rose Wolff

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

August 2022



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Giulio Caviglia, Chair

Department of Mathematics

Dr. William Heinzer

Department of Mathematics

Dr. Linquan Ma

Department of Mathematics

Dr. Bernd Ulrich

Department of Mathematics

Approved by:

Dr. Plamen Stefanov

2



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2.1 Graded Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2.2 Invariants of Graded Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

2.2.1 Projective Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

2.2.2 Betti Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

2.2.3 Local Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

2.2.4 Castelnuovo-Mumford Regularity . . . . . . . . . . . . . . . . . . . .  13 

2.2.5 Hilbert Functions and Polynomials . . . . . . . . . . . . . . . . . . .  14 

2.3 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

2.4 Invariants and Initial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

2.5 Generic Initial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

2.6 Distractions and Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

3 DISTRACTION-GENERIC INITIAL IDEALS . . . . . . . . . . . . . . . . . . . .  24 

3.1 General and Generic Distractions . . . . . . . . . . . . . . . . . . . . . . . .  24 

3.2 The Distraction-Generic Initial Ideal . . . . . . . . . . . . . . . . . . . . . .  31 

3.2.1 Homological Invariants and the Distraction-Generic Initial Ideal . . .  33 

3.2.2 Saturation and the Distraction-Generic Initial Ideal . . . . . . . . . .  37 

4 THE MALL IDEAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

4.1 Hilbert Strata and the Mall Ideal . . . . . . . . . . . . . . . . . . . . . . . .  41 

4.1.1 Decomposing Strongly Stable Ideals . . . . . . . . . . . . . . . . . .  41 

4.1.2 Building the Mall Ideal . . . . . . . . . . . . . . . . . . . . . . . . .  43 

4.2 The Results of Mall Over Fields of Any Characteristic . . . . . . . . . . . .  50 

4.3 Green’s Hyperplane Section Theorem . . . . . . . . . . . . . . . . . . . . . .  52 

3



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

4



ABSTRACT

Consider the standard graded polynomial ring in n variables over a field k and fix the

Hilbert function of a homogeneous ideal. In the nineties Bigatti, Hulett, and Pardue showed

that the Hilbert scheme consisting of all the homogeneous ideals with such a Hilbert function

contains an extremal point which simultaneously maximizes all the graded Betti numbers.

Such a point is the unique lexsegment ideal associated to the fixed Hilbert function.

For such a scheme, we consider the individual strata defined by all ideals with

Castelnuovo-Mumford regularity bounded above by m. In 1997 Mall showed that when k

is of characteristic 0 there exists an ideal in each nonempty strata with maximal possible

Betti numbers among the ideals of the strata. In chapter 4 of this thesis we provide a new

construction of Mall’s ideal, extend the result to fields of any characteristic, and show that

these ideals have other extremal properties. For example, Mall’s ideals satisfy an equation

similar to Green’s hyperplane section theorem.

The key technical component needed to extend the results of Mall is discussed in Chapter

3. This component is the construction of a new invariant called the distraction-generic ini-

tial ideal. Given a homogeneous ideal I ⊂ S we construct the associated distraction-generic

initial ideal, D-gin<(I), by iteratively computing initial ideals and general distractions. The

result is a monomial ideal that is strongly stable in any characteristic and which has many

properties analogous to the generic initial ideal of I.
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1. INTRODUCTION

Throughout this thesis S will refer to the standard graded polynomial ring S = k[x1, . . . , xn]

over a field k. For a fixed Hilbert function H the Hilbert scheme consisting of all the

homogeneous ideals of S with Hilbert function H will be denoted Hilb(H). Within the above

Hilbert scheme one can consider the individual strata which are defined by the subsets of

Hilb(H) whose elements have Castelnuovo-Mumford regularity bounded above by m. Such

strata will be denoted Hilb(H, m). One can also consider the Hilbert scheme and associated

strata where ever element is saturated. Such schemes and strata will be denoted Hilbsat(H)

and Hilbsat(H, m), respectively. One of the motivations behind this work was to extend

results of Mall proven in the early nineties. Mall showed that over fields of characteristic

0 when Hilb(H, m) (respectively Hilbsat(H)) is nonempty it contain an ideal with maximal

possible Betti numbers among the ideals of the strata. In this thesis these results are extended

to fields of any characteristic.

The organization of this thesis is as follows. Chapter 2 discusses preliminary information,

such as Betti numbers, Hilbert functions and series, generic initial ideals, and distractions

of monomial ideals. One of the key results recalled in this section is the following theorem

of Bayer and Stillman with regards to the generic initial ideal.

Theorem 1.0.1 (Bayer-Stillman [ 1 ]). Let I ⊂ S be a graded ideal and < the graded reverse

lexicographical order. Then I and gin<(I) have the same depth, regularity, and projective

dimension.

Next, the first part of Chapter 3 discusses the interactions between the distractions of

monomial ideals and initial ideals. The following is shown for a fixed monomial ideal I and

a fixed upper triangular distraction matrix T

Theorem 1.0.2. Let I ⊂ S be a fixed monomial ideal and T the fixed upper triangular

distraction matrix. Then I and inrevlex(DT (Ī)) have the same extremal Betti numbers,

regularity, and projective dimension.

The next portion of Chapter 3 uses the results on distractions to build the distraction-

generic initial ideal. This distraction-generic initial ideal associates to a given homoge-
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neous ideal I a monomial ideal, denoted D-gin<(I), that is strongly stable in any character-

istic and has many properties similar to that of the generic initial ideal. The following is the

main result of this chapter. It is an analogue of the theorem of Bayer-Stillman mentioned

early.

Theorem 1.0.3. Let I be a homogeneous ideal of S. Then I and D-gin<(I) have the

same Hilbert function, the Betti numbers of D-gin<(I) are greater than or equal to the Betti

numbers of I, and when using the graded reverse lexicographical order the depth, regularity,

projective dimension, and extremal Betti numbers of I and D-gin<(I) are equal.

Note that the contents of Chapter 3 are based on joint work with Giulio Caviglia.

Lastly Chapter 4 focuses on proving that the results of Mall hold in any characteristic. The

main result of Mall is the following

Theorem 1.0.4 (Mall [ 2 ]). Assume k is a field of characteristic 0 and H a fixed Hilbert

function. For all m, provided Hilb(H, m) 6= ∅, there exists an ideal J ∈ Hilb(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilb(H, m).

Mall also has an analogous result for Hilbsat(H, m).

Theorem 1.0.5 (Mall [ 2 ]). Assume k is a field of characteristic 0 and H a fixed Hilbert

function. For all m, provided Hilbsat(H, m) 6= ∅, then there exists an ideal J ∈ Hilbsat(H, m)

such that βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilbsat(H, m).

In the first part of Chapter 4 an explicit construction of the Mall ideal is defined starting

from a strongly stable ideal I. This construction, M(I, m), is shown to be a strongly stable

ideal with the same Hilbert function and larger Betti numbers than I. The ideal M(I, m) is

then used to prove the main results of Chapter 4, namely the following.

Theorem 1.0.6. Assume k is a field of any characteristic and H a fixed Hilbert function.

For all m, provided Hilb(H, m) 6= ∅, then there exists an ideal J ∈ Hilb(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilb(H, m) also in this set.

also
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Theorem 1.0.7. Assume k is a field of any characteristic and H a fixed Hilbert function.

For all m, provided Hilbsat(H, m) 6= ∅, then there exists an ideal J ∈ Hilbsat(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilbsat(H, m) also in this set.

The proofs of both of the above statements require a reduction to the case of a strongly

stable monomial ideal, which is done via the distraction-generic initial ideal.
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2. PRELIMINARIES

In this chapter we will cover basic information, facts, and definitions related to graded rings,

projective dimension, Betti numbers, local cohomology, Castelnuovo-mumford regularity,

Hilbert functions, Gröbner bases, generic initial ideals, and distractions.

2.1 Graded Rings

For a short introduction to the subject of graded rings and algebras see [ 3 ].

Definition 2.1.1 ([ 3 ]). Let R be a commutative ring. R is graded over Z if there exists a

family of subgroups {Ri}i≥0 such that

1. As a direct sum of abelian groups R = ⊕∞
i=0Ri.

2. RiRj ⊆ Ri+j for all i, j ∈ Z.

Note that each Ri is an R-module. One can similarly define graded vector spaces and

graded modules. A graded A-algebra refers to a graded ring R that is also an A-algebra.

Next we need define what is meant by a homogeneous element and homogeneous submodule.

Definition 2.1.2. Let M be a graded module of R. An element x ∈ M is homogeneous

if x ∈ Mi for some i. A submodule N ⊆ M is called homogeneous if it is generated by

homogeneous elements.

We can also have graded homomorphisms between modules.

Definition 2.1.3. Let R be a graded ring and M, N graded R-modules. Let f : M → N be

an R-module homomorphism. Then f is said to be a graded homorphism of degree i if

f(Md) ⊆ Nd+i for all d.

Definition 2.1.4. Let R be a graded ring and M, N graded R-modules. A homogeneous

module homomorphism f : N → N is a graded module homorphism that maps every

homogeneous element of degree d in N to a homogeneous element of degree d in M .

Note that homogeneous module homomorphisms are graded homomorphism of degree 0.

For Noetherian rings we have the following theorem.
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Theorem 2.1.5. Let R be a commutative graded ring. Then R is a Noetherian ring if and

only if R0 is Noetherian and R is finitely generated as an R0-algebra.

Throughout this thesis we will mainly be concerned with the standard graded ring S =

k[x1, . . . , xn] where k is a field. Note that S is called standard graded when S is a graded

k-algebra with all the variables having degree one. We let Si be the set consisting of all

homogeneous polynomials of degree i, in particular S0 = k. Thus a k-basis for Si consists of

all the monomials of degree i. Hence S = ⊕
i Si.

2.2 Invariants of Graded Ideals

The purpose of this section is to give a short background on projective dimension, Betti

numbers, local cohomology modules, Castelnuovo-Mumford regularity, and Hilbert function

of ideals.

2.2.1 Projective Dimension

Recall that for a finitely generated module M of a ring R the projective resolution, P, of

M is an exact chain complex

P : . . . → Pr → · · · → P1 → P0 → M → 0.

where every Pi is a projective module. When every Pi in the resolution are free modules,

such a resolution is called a free resolution. A resolution is called graded when all the maps

in the resolution are homogeneous module homomorphisms. A finite projective resolution of

M is

P : 0 → Pt → · · · → P0 → M → 0

The projective dimension of M is defined as projdim(M) = t, where t is the smallest

integer such that the resolution is finite. If M does not have a finite projective resolution,

then projdim(M) = ∞.

Furthermore, as every free module is a projective module, in the case of polynomial rings

over a field Hilbert’s Syzygy Theorem gives us the following
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Theorem 2.2.1. Every finitely generated graded module M of the ring S has a graded free

resolution of length less than or equal to n. Hence projdim(M) ≤ n.

In a sense, the projective dimension of M is a measure of how close M is to being a

projective module. It follows from the definition that that projdim(M) = 0 if and only if M

is a projective module. As we are working over S the Quillen-Suslin Theorem tells us

Theorem 2.2.2 (Quillen-Suslin). Let P be a finitely generated projective module over S.

Then P is free.

Hence the projective dimension of M over S also gives a measurement of how close M is

to being a free module of S.

2.2.2 Betti Numbers

Recall that for M , where M is any finitely generated graded S-module, you can construct

a minimal graded free resolution. In other words there exist a resolution,

· · · F2 F1 F0 M 0f2 f1 f0

where each Fi is a graded free module, the maps are graded of degree zero, and furthermore,

these free modules can be chosen so that the resolution has minimal length. This minimal

length can be shown to be equivalent to the fact for every i, the basis of Fi+1 maps into

a minimal system of generators of the kernel of the map fi. Each free module Fi can be

written as Fi = ⊕
j S(−j)βij . These βij are known as the graded Betti numbers of M . The βij

in the above minimal resolution can be written in terms of the Tor functor which leads to

the following definition. Note that TorS
i (k, M) is also a graded S-module.

Definition 2.2.3. The graded Betti numbers of a finitely generated graded module M are

defined to be βS
ij (M) = dimk(TorS

i (k, M)j).

The ith Betti number of M is defined to be βS
i (M) = ∑

j βij, which is equivalent to βS
i (M) =

dimk(TorS
i (k, M)).
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We will use the notation βij when it is clear from context which ring and module we are

referring to. It is well known that the length of any minimal graded free resolution is equal

to the projective dimension of M .

Betti numbers are often visually illustrated through the use of a Betti table, a table where

the entry in the i-th column and j-th row is βi,i+j.

Betti table of a module M

0 1 · · · i · · · projdim(M)
... ... ... · · · ... · · · ...

0 β0,0 β1,1 · · · βi,i · · · ...

1 β0,1 β1,2 · · · βi,i+1 · · · ...
... ... ... · · · ... · · · ...

j β0,j β1,j+1 · · · βi,i+j · · · ...
... ... ... · · · ... · · · ...

When considering ideals of polynomial rings, both graded Betti numbers and Betti num-

bers are invariant under extensions of the base field. In other words, if k ⊂ F is an extension

of k to the field F one can extend the ring S to S̄ = S ⊗k F . Every S-module M can be

extended to a S̄-module M̄ in a similar manner. This operation is faithfully flat, hence under

this extension the graded Betti numbers of M as an S-module are equal to those of M̄ as

an S̄-module. For instance when k is finite you can extend to an infinite field k ⊂ F but

this extension maintains the equality between the Betti numbers of a module M of S and

the Betti numbers of the module M̄ of S̄.

One important type of Betti numbers are the extremal Betti numbers defined by Bayer,

Charalambous, and Popescu [ 4 ].

Definition 2.2.4. The graded Betti number βi,i+j 6= 0 of a finitely generated S-module M

is called extremal if βk,k+` = 0 for all pairs of integers (k, `) 6= (i, j) with k ≥ i and ` ≥ j.

In fact, the position of the extremal Betti numbers can be found by considering the

outside corners of the nonzero graded Betti numbers when viewed on a Betti table. See [ 5 ]

for an illustration of this.
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2.2.3 Local Cohomology

Local cohomology was first introduced by Alexander Grothendieck. While there are

multiple equivalent ways to define the local cohomology modules of a fixed module, we shall

only mention one.

The local cohomology of a module M is always calculated with respect to an ideal, say

I ⊆ S. In this thesis because we are considering the case of graded modules over polynomial

rings we will use the homogeneous maximal ideal I = m = (x1, . . . , xn). To define local

cohomology we need ΓI(M) = {x ∈ M | ∃n ∈ N such that Inx = 0}.

Definition 2.2.5. The ith local cohomology module of M , with respect to I, is H i
I(M),

where H i
I(−) is the ith derived functor of ΓI .

Remember that as ΓI is a left exact functor there is the equivalence H0
I (M) = ΓI(M). An

important fact of the local cohomology is that the local cohomology can also be computed

by using the radical of the ideal I.

Proposition 2.2.6. Let I be an ideal of S. Then H i
I(M) = H i√

I
(M).

Notice that the above proposition means that if I and J are two ideals with
√

I =
√

J

then H i
I(M) = H i

J(M). Furthermore, as we are in a Noetherian ring we know for two ideals

I, J ⊆ S that
√

I =
√

J if and only if In ⊆ J for some n ∈ N and Jr ⊆ I for some r ∈ N. For

monomial ideals in S this gives us an easy way to tell when the local cohomology modules

coincide.

2.2.4 Castelnuovo-Mumford Regularity

The Castelnuovo-Mumford was first used, although not explicitly defined, by Castelnuovo

in [  6 ].The first explicit definition came from Mumford (see [  7 ]), which led to this invariant

being known as the Castelnuovo-Mumford regularity. We shall first introduce a definition of

regularity for modules.
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Definition 2.2.7. Let M be a finitely generated graded S-module. The regularity of M is

reg(M) = max{j : H i
m(M)j−i 6= 0 for some index i}.

Note in the above definition that H i
m(−) is the local cohomology taken with respect to the

homogeneous maximal ideal of S. Furthermore, as we are in the case of a graded polynomial

ring the local cohomology modules are graded S-modules which means that H i
m(M)j−i is well

defined. In the case of M being a finitely generated graded S module there is an equivalent

definition of the regularity of M where one replaces HI
m(M)j−1 with Tori(k, M)i+j. This in

turn gives us the following definition for the regularity of an S-module in terms of its Betti

numbers.

Definition 2.2.8 (Castelnuovo-Mumford Regularity). Let M be a finitely generated graded

module of S. The regularity of M is reg(I) = max{j : βi,i+j(M) 6= 0 for some i}.

Notice that in our example of the Betti table from earlier this definition of regularity

allows us to say that the last row of the Betti table of a module M will occur at the

regularity of M .

2.2.5 Hilbert Functions and Polynomials

Recall that the polynomial ring S is a standard graded ring where the degree of xi = 1 for

all 1 ≤ i ≤ n and S can be written as S = ⊕
i≥0 Si where each Si is the space of polynomials

in degree i. Every finitely generated graded S-module can be decomposed in the same way,

i.e. M = ⊕
i≥0 Mi where each graded component of M is a finite-dimensional k-vector space.

The Hilbert function is then defined by using the dimension of these vector spaces.

Definition 2.2.9. The Hilbert function of the module M , HFM(−) is a function on Z

where HFM(i) = dimk(Mi) as a k-vector space.

From the Hilbert function comes the Hilbert series.

14



Definition 2.2.10. The Hilbert series is the formal Laurent series

HSM(t) =
∑
i∈Z

HFM(i)ti.

An important fact is that for large enough degree the Hilbert function behaves as a

polynomial. For a standard graded k-algebra the following result is well known.

Theorem 2.2.11. Let k be a field, R a standard graded k-algebra, and M a nonzero finitely

generated graded R-module of dimension d. Then

• There exists a Laurent polynomial of Z[t, t−1], denoted QM(t), where QM(1) > 0 and

HSM(t) = QM (t)
(1−t)d .

• There exists a polynomial in Q[x], denoted PM(x), called the Hilbert polynomial,

such that HFM(i) = PM(i) for all i > deg(QM) − d.

In the case of the polynomial ring, the Hilbert function and Hilbert series of the ring can

be written easily.

Theorem 2.2.12. Let S = k[x1, . . . , xn] with the standard grading.

• HFS is a polynomial function of degree n − 1 where HFS(i) =
(

n+i−1
n−1

)
.

• HSS(t) = 1
(1−t)n .

Another important property of Hilbert functions and Hilbert series is that they are ad-

ditive on short exact sequences.

2.3 Gröbner Bases

To understand computations that involve monomial ideals in polynomial rings one has

to first understand monomial orders and Gröbner bases.

Definition 2.3.1 ([ 5 ]). A monomial order on S is a total order < on the monomials of S

such that 1 < u for every monomial u ∈ S not equal to 1, and if u, v ∈ S are monomials

with u < v then uw < vw for every monomial w ∈ S.

15



While any ordering of the variables in S is allowed, we will follow convention and only

consider monomial orders such that x1 > x2 > · · · > xn. Two particular monomial order-

ings that will be important later are the graded lexicographic order and the graded reverse

lexicographic order.

Definition 2.3.2 (Graded lexicographic order (lex)). We let a = (a1, . . . , an) and b =

(b1, . . . , bn) where ai, bi ∈ Z≥0 for every i. Let xa = xa1
1 · · · xan

n and xb = xb1
1 · · · xbn

n . The

graded lexicographic order (lex for short) is defined by setting xa <lex xb if either (1)∑n
i=1 ai <

∑n
i=1 bi or (2) ∑n

i=1 ai = ∑n
i=1 bi and the leftmost nonzero component of the vector

a − b is negative.

Definition 2.3.3 (Graded reverse lexicographic order (revlex)). Let a = (a1, . . . , an) and

b = (b1, . . . , bn) where ai, bi ∈ Z≥0 for every i. Let xa = xa1
1 · · · xan

n and xb = xb1
1 · · · xbn

n . The

Graded reverse lexicographic order (revlex for short) is defined by setting xa <revlex xb

if either (1) ∑n
i=1 ai <

∑n
i=1 bi or (2) ∑n

i=1 ai = ∑n
i=1 bi and the rightmost nonzero component

of the vector a − b is a positive number.

One of the first steps towards standardizing the concept of monomial orders was done

by Macaulay in [ 8 ]. By ordering the monomials in a polynomial ring, Macaulay was able to

compare graded ideals to monomial ideals and make conclusions about the Hilbert function

of the graded ideals. Macaulay’s work then influenced Gröbner who used Macaulay’s work

to explicitly compute bases of certain rings. Gröbner’s then student, Buchberger, further

expanded the computation of bases using monomial orderings in his thesis (see [ 9 ] for an

English translation of this thesis). Buchberger came up with an criterion and an algorithm,

now known as Buchberger’s algorithm, that allowed for the explicit computation of bases of

ideals in polynomial rings. These bases are now known as Gröbner bases and are a key tool

in the study of ideals of polynomial rings. For more history on the subject see the notes

in [  5 ] and [  10 ]. We will now give a short introduction to Gröbner bases using the following

definitions from [ 5 ].

Definition 2.3.4. Let f ∈ S be a nonzero polynomial. The initial monomial of f with

respect to <, denoted in<(f), is the biggest monomial ordered with respect to < among the

monomials belonging to the support of f .
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This leads to the following definition of the initial ideal of any given ideal I ⊆ S.

Definition 2.3.5. Let I ⊆ S be a nonzero ideal. The initial ideal of I with respect to <

is defined as

in<(I) = ({in<(I) : 0 6= f ∈ I}).

Gröbner bases can then be defined in terms of the initial ideal.

Definition 2.3.6 ([ 5 ]). Let I be a nonzero ideal of S. A finite set of nonzero polynomials

{g1, . . . , gs}, gi ∈ I, is a Gröbner basis of I with respect to < if the ideal in<(I) is generated

by the monomials {in<(g1), . . . , in<(gs)}.

A key fact is that for every ideal I and every monomial order <, a Gröbner basis with

respect to < of I will always exist. This means that problems about ideals in polynomial

rings can often be reduced to the case of monomial ideals. Furthermore, you can explicitly

find a Gröbner basis of an ideal with respect to a given monomial order through the use of

a process known as Buchberger’s algorithm. A primary step within Buchberger’s algorithm

is the computation of polynomials known as S-polynomials.

Definition 2.3.7 ([ 5 ]). For two nonzero polynomials f, g ∈ S the S-polynomial is the

polynomial

S(f, g) = lcm(in<(f), in<(g))
cf in<(f) f − lcm(in<(f), in<(g))

cgin<(g) g

where cf and cg are the coefficients of in<(f) in f and in<(g) in g, respectively.

Recall that the division algorithm over S allows you to write any nonzero polynomial f ∈

S with respect to a set on nonzero polynomials g1, . . . , gr ∈ S as f = f1g1+f2g2+· · ·+frgr+f ′

where f ′ ∈ S and the fi’s satisfy the following conditions:

1. if f ′ is a nonzero polynomial then none of the monomials in the support of f ′ belong

to the ideal (in<(g1), . . . , in<(gr)) and

2. if fi is nonzero then there is the inequality in<(f) ≥ in<(figi).

Such an expression for f is called a standard expression of f with respect to the gi’s with

f ′ as the remainder. Alternatively, one can say that f reduces to f ′ with respect to the
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gi’s.

Remember that every algorithm needs a stopping criterion, and Buchberger’s Algorithm is

no different. This leads to Bucherger’s Criterion, which outlines when a system of generators

of an ideal is a Gröbner basis for that ideal.

Theorem 2.3.8 (Buchberger’s Criterion). Let I be a nonzero ideal of k[x1, . . . , xn] and

G = {g1, . . . , gs} a system of generators of I. Then G is a Gröbner basis of I if and only if

the following condition is satisfied:

• For all i 6= j, the S-polynomial S(gi, gj) reduces to 0 with respect to g1, . . . , gs.

With this criterion in place we can now discuss Buchberger’s algorithm which allows you

to start with the generators of an ideal and find a Gröbner basis for that ideal with respect

to a given term order. The process is straightforward.

Start with a set {gi}1≤i≤s of generators for a given ideal I ⊆ S.

• Compute the S-polynomials S(gi, gj) for every index i and j.

• If all these polynomials reduce to 0 with respect to {gi}1≤i≤s, then the Buchberger

criterion tells us that our system of generators was a Gröbner basis. If they don’t all

reduce to 0, then one of the polynomials S(gi, gj) has a nonzero remainder.

• Label this remainder as gs+1, add it to the list of generators, and repeat the above

process until all the S-polynomials reduce to 0 with respect to the current list of

polynomials.

As we are working over a Noetherian ring the Buchberger algorithm will always give a

Gröbner basis in a finite number of steps. To see this, notice that each step of the algorithm

gives the strict inclusion of monomial ideals (in<(g1), . . . , in<(gs)) ⊆ (in<(g1), . . . , in<(gs),

in<(gs+1)). If this process did not terminate we would have an infinite ascending chain of

ideals, which is not possible in a Noetherian ring.

The fact that the Buchberger algorithm will always return a Gröbner basis in a finite number

of steps is what allows one to always find a Gröbner basis with respect to a given monomial

order for a set ideal. Furthermore, notice that extending the base field via a flat extension of
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scalars will not change any of the initial monomials or coefficients that appear in Buchberger’s

algorithm. Hence if k̄ is a field extension of k and I ⊆ S ⊆ S̄ then the Gröbner basis of I

with respect to a given order will calculated over S will also be a Gröbner basis of the ideal

IS̄ ⊆ S̄.

2.4 Invariants and Initial Ideals

When one wishes to study upper bounds for the homological invariants of ideals I ⊆

S one can often reduce to the case of monomial ideals. Such a reduction allows one to

take advantage of the combinatorial properties of monomial ideals. To illustrate how this

reduction works, we shall consider initial ideals. The first important property of initial ideals

has to do with the Hilbert function.

Proposition 2.4.1 (Macaulay). Let I be a graded ideal of S and < a monomial order. Then

S/I and S/in<(I) have the same Hilbert function.

Furthermore, by reducing to the initial ideal we have the following equalities and upper

bounds of invariants. The proof the result below is a standard argument that uses the upper

semicontinuity of those invariants in flat families.

Proposition 2.4.2. Let I be a homogeneous ideal of S and < a monomial order. Then

• βij(I) ≤ βij(in<(I)) for all i and j.

• dim(S/I) = dim(S/in<(I)).

• HF(S/I) = HF(S/in<(I)).

• projdim(S/I) ≤ projdim(S/in<(I)).

• reg(S/I) ≤ reg(S/in<(I)).

• depth(S/I) ≥ depth(S/in<(I)).

As a corollary one has:

Corollary 2.4.3. Let I be a homogeneous ideal of S. If S/in<(I) is Cohen-Macaulay then

S/I is Cohen-Macaulay. If S/in<(I) is Gorenstein then S/I is Gorenstein.
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2.5 Generic Initial Ideals

When working over polynomial rings it is common to reduce the case of an arbitrary

ideal to case of monomial ideals. Such reductions can be done via the initial ideal but

sometimes it is possible to reduce even further. In fact when working with monomial ideals

over polynomial rings, the best case scenario is a reduction to a strongly stable ideal due

to the useful combinatorial properties of such ideals. Over fields of characteristic 0, this is

typically done via a reduction to the generic initial ideal.

Theorem 2.5.1 ([ 5 ]). Assume |k| = ∞. Let I ⊆ S be a homogeneous ideal and < a

monomial order on S. Then there exists a nonempty Zariski open subset U ⊆ GLn(k) such

that in<(αI) = in<(α′I) for all α, α′ ∈ U .

The ideal in<(αI) is called the generic initial ideal of I with respect to < and will be

denoted gin<(I).

For a definition of generic initial ideals when |k| < ∞ see the remark after Definition 2.1

in [  11 ] or the discussion in chapter 3 of this thesis after Theorem  3.1.9 . Generic initial ideals

are always Borel fixed (see [  12 ] and [  1 ]), i.e. fixed under the action of the Borel subgroup of

GLn(k). When the characteristic of k is 0, a monomial ideal being Borel fixed is equivalent

to that monomial ideal being strongly stable.

Definition 2.5.2. A monomial ideal I ⊂ S is strongly stable if xi(u/xj) ∈ I for all monomials

u ∈ I and all i < j such that xj divides u.

To illustrate this property, consider the following example.

Example 2.5.3. Consider the polynomial ring k[x1, x2, x3], k any characteristic. The ideal

(x1x3) ⊂ k[x1, x2, x3]. Then x2(x1x3/x3) = x1x2 6∈ (x1x3) which means that this ideal is not

strongly stable.

The ideal (x2
1, x1x2, x1x3) ⊂ k[x1, x2, x3] is strongly stable, however.

Note that when checking for strong stability, it is enough to check for the property on

the generators of an ideal.
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Strong stability and being Borel fixed are not equivalent over fields of characteristic p.

While a strongly stable ideal will always be Borel fixed, when the characteristic of k is not

0 there will be Borel fixed ideals that are not strongly stable (see [ 10 ]).

Example 2.5.4. Consider the polynomial ring k[x1, x2] where the characteristic of k is 2.

Then the ideal (x2
1, x2

2) is Borel fixed but is not strongly stable.

Thanks to Bayer and Stillman the following is known about the homological invariants

of generic initial ideals with respect to the revlex order.

Theorem 2.5.5 (Bayer-Stillman [  1 ]). Let I ⊆ S be a graded ideal and ”<” the revlex order.

Then

1. projdim(I) = projdim(gin<(I)).

2. depth(S/I) = depth(S/gin<(I)).

3. S/I is Cohen-Macaulay if and only if S/gin<(I) is Cohen-Macaulay.

4. reg(I) = reg(gin<(I)).

2.6 Distractions and Polarizations

We first recall the definition of a distraction matrix and distraction of an ideal from

Definition 2.1 and Corollary 2.10 of [ 13 ].

Definition 2.6.1 (Distraction Matrix [ 13 ]). We let L = (`ij | i = 1, . . . , n, j ∈ Z>0) be an

infinite matrix with entries `ij ∈ S1 with the following two properties:

1. The equality 〈`1j1 , . . . , `njn〉 = S1 holds for every j1, . . . , jn ∈ Z>0.

2. There exists an integer N ∈ Z>0 such that `ij = `iN for every j > N .

Then L is a distraction matrix.

In the next chapter of this thesis we will need a very particular type of distraction

matrix which corresponds to upper triangular changes of coordinates. Therefore we define a

triangular distraction matrix as follows.
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Definition 2.6.2 (Triangular Distraction). A distraction matrix L is triangular if for

every i, j, the support of `ij is contained in {x1, . . . , xi}.

Remark 2.6.3. It follows from the definition that a triangular distraction matrix will also

have the property that xi ∈ supp(`ij) for all i and all j.

For any distraction matrix it is important to understand how the matrix acts on the

individual monomials of an ideal I ⊆ S. Definition 2.2 of [  13 ] states the following.

Definition 2.6.4 ([ 13 ]). Let L be a distraction matrix and t = xa1
1 xa2

2 · · · xan
n . Then

DL (t) = ∏n
i=1

(∏ai
j=1 `ij

)
is called the L -distraction of t.

Note that the above definition of a distraction of a monomial allows you to define the

distraction of a vector subspace of S, which can then be used to justify the definition of a

distraction of a monomial ideal as follows

Definition 2.6.5 ([ 13 ]). For a graded monomial ideal I ⊆ S the distraction of I with respect

to a distraction matrix L is

DL (I) = ⊕dDL (Id).

Several key properties of distractions are stated below. These statements can be found

in Corollary 2.10 and Corollary 2.20 of [ 13 ].

Theorem 2.6.6 ([ 13 ]). Let L be a distraction matrix and I a monomial ideal in S. Then

1. DL (I) is a homogeneous ideal of S.

2. If I = (t1, . . . , tr) then DL (I) = (DL (t1), . . . , DL (tr)).

3. HF (I) = HF (DL (I)).

4. The graded Betti numbers of I and DL (I) are the same.

Since the previous theorem gives equality between the Hilbert function and Betti numbers

of an ideal and the distraction of the ideal, it gives information about the invariants that

can be computed by using the Hilbert function and Betti numbers. In particular, extremal

Betti numbers, projective dimension, and Castelnuovo-Mumford regularity will be the same
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for both an ideal and its distraction. It is worth noting that the distraction of a monomial

ideal is related to the concept of the polarizing a monomial ideal and then specializing it.

This allows the previous theorem to be justified using polarizations.

Definition 2.6.7 (Polarization [ 5 ]). Let I ⊆ S be a monomial ideal where I = (u1, . . . , ur)

is a minimal generating set of monomials. Write ui = ∏n
j=1 x

aij
j for 1 ≤ i ≤ r. For each

1 ≤ j ≤ n choose αj as αj = max{aij : 1 ≤ i ≤ r}. Define Sp to be the polynomial ring

Sp = S[x11, x12, . . . , x1α1 , x21, . . . , x2α2 , . . . , xn1, . . . , xnαn ].

Let P (I) ⊆ Sp be the squarefree monomial ideal P (I) = (v1, . . . , vr) where vi = ∏n
j=1

∏aij
t=1 xjt

for 1 ≤ i ≤ r. Then vi is the polarization of ui and P (I) is the polarization of I.

Remark 2.6.8. As before we let HF(−) denote the Hilbert series. It is well known that

HS (Sp/P (I)) = HS (S/I) 1
(1−z)

∑
αi

. It then follows from part two of Theorem  2.6.6 that

xij − `ij is a regular sequence for Sp/P (I). Furthermore we see that DL (I) is just the image

of P (I) after modding out such a regular sequence.
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3. DISTRACTION-GENERIC INITIAL IDEALS

3.1 General and Generic Distractions

In this section we study generic distractions and the interaction of initial ideals with such

operations. In doing so we will construct ideals associated to a given ideal with properties

similar to those of generic initial ideals. Note that some of the results of this chapter are

taken from [ 14 ].

In order to focus the discussion and simplify notation for this section we will fix a mono-

mial ideal I ⊆ S, where I is generated in degree d or less, and set M � d. While in this

section it will be sufficient to have M ≥ d, in later sections M will be defined in terms of

the regularity of lex(I). One reason for fixing M as such is given in the next remark.

Remark 3.1.1. If a monomial ideal J is generated in degree less than or equal to d and L ,

L ′ are two distraction matrices agreeing on the first M columns, where M ≥ d, then clearly

DL (J) = DL ′(J).

The distraction matrices defined further on in this section depend on M . This choice of

M allows us to treat the distraction matrices considered here as finite matrices.

Notation 3.1.2. We extend the field k by setting

k∗ = k (αi,j,h | 1 ≤ i ≤ n, 1 ≤ j ≤ M, 1 ≤ h ≤ n)

and then extend the scalars of S by defining the new ring

S∗ = S ⊗k k∗.

Our ideal I can then be extended to S∗ by setting

I∗ = I ⊗k k∗ = IS∗ ⊆ S∗.
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We define the generic distraction matrix G and the generic triangular distraction

matrix T over k∗ as follows:

G =
(

G|X
)

and T =
(

T |X
)

,

where

G = [gij]n,M
i=1,j=1 , gij =

n∑
h=1

αi,j,hxh,

T = [tij]n,M
i=1,j=1 , tij =

i∑
h=1

αi,j,hxh,

and X = [χij]n,∞
i=1,j=1 where χij = xi.

Note that the behavior of the above distraction matrices will depend strictly on the first

M columns of the matrix. As such, when referencing the action of just the first M columns

of DG and DT on an ideal we will use DG and DT , respectively.

Recall that < indicates a monomial order such that x1 > x2 > · · · > xn. If a particular

monomial order is needed, it will be specified in the theorem statement. It is important to

note that the generic triangular matrix T is needed in the next section in place of the generic

distraction matrix G . This is because when ever J ⊆ S∗ is a strongly stable monomial ideal

and < the lexicographical monomial order, then in<(DG (J)) will always be different from J

unless J = lex(J). In particular, for r � 0 it happens that (in< ◦ DG )r(J) will always be

lex(J). This follows from Pardue’s proof of the Bigatti-Hulett-Pardue inequality on Betti

numbers in [ 15 ].

Given the generic triangular distraction matrix T a question then becomes how does the

distraction of an ideal interact with the initial ideal. As mentioned in the previous chapter,

one highly studied class of ideals is that of Borel fixed ideals. Recall that over fields of

characteristic 0, Borel fixed is equivalent to being strongly stable. As this equivalence does

not hold over fields of characteristic p, over such fields there are Borel fixed ideals that are

not strongly stable. No matter the characteristic of the base field, however, the initial ideal

of a Borel fixed ideal will always be a Borel fixed ideal. And further, the generic initial ideal
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is always Borel fixed. However, the distraction of a Borel fixed ideal is not generally Borel

fixed even after taking an initial ideal.

Example 3.1.3. Let I = (x3
1, x3

2) ⊂ k[x1, x2] where k is of characteristic 3 and < is the graded

reverse lexographic order. Note that I is a Borel fixed ideal. Let

D =

x1 x1 x1 x1 · · ·

x2 x2 x1 + x2 x2 · · ·

 .

Then DD(I) = (x3
1, x2

2(x1 + x2)) and in<(DD(I)) = (x3
1, x1x

2
2, x5

2) which is not Borel fixed in

characteristic 3.

Notice in the above distraction that although D is a triangular distraction, it is not

a generic triangular distraction. The question then becomes under what conditions is the

distraction of Borel fixed ideal Borel fixed and under what conditions the initial ideal of a

distraction of Borel fixed ideal is also Borel fixed.

For what follows we need to define the concept of a Zariski open set of distraction matrices.

Define DnM(k) as the set all of all distraction matrices on k[x1, . . . , xn] where L ∈ DnM(k)

has the property that `ij = `iM for every j > M and for all i. Let TnM ⊂ DnM be the subset

of all triangular distraction matrices in DnM .

Definition 3.1.4. Assume that k is an infinite field. Then DnM(k) can be viewed as the

affine space An·n·M(k) and TnM as the affine space A(n+1
2 )·M(k). We say that a property (p)

holds for a general distraction if there exists a nonempty Zariski open set U of DnM(k)

(respectively, TnM(k)) such that the property (p) is constant on U .

Theorem 3.1.5. Under the assumptions of Definition 2.3, there exists a nonempty Zariski

open set U of TnM(k) (respectively DnM(k)) such that in<(DU (I)) is constant as a function

of U on U and that in<(DU (I)) is equal to in<(DT (I∗)) ∩ S (respectively in<(DG (I)) ∩ S).

Proof. We shall prove the above statement for TnM(k) as the proof for DnM(k) is similar.

Compute a Gröbner basis for in<(DT (I∗)) using the Buchberger algorithm. Then collect
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all elements in k∗ which appear as nonzero coefficients of every possible term in every pos-

sible polynomial used and needed in the Buchberger algorithm. Notice that there are only

a finite number of such coefficients and as these coefficients live in k∗ they are rational

polynomial functions in the elements αijh. Denote the numerators and denominators of

these coefficients as p1, . . . , pq ∈ k[αijh]1≤i≤n,1≤j≤M,1≤h≤n. Now define U = {U ∈ TnM(k) |

p1(µ) 6= 0, . . . , pq(µ) 6= 0} where the ij entry of U is ∑i
h=1 µijhxh and p(µ) is the evaluation

of p ∈ k[αijh]1≤i≤n,1≤j≤M,1≤h≤n at the µijh’s. Now U is a nonempty Zariski open set since

it is the nonzero locus of a finite set of nonzero polynomials. For every U ∈ U , consider

in<(DU (I∗)) and its Gröbner basis. The Buchberger algorithm will produce the same initial

ideal for any choice of U ∈ U since the initial monomials of such a Gröbner basis will be

the same as the initial monomials of the Gröbner basis of DT (I∗).

Remark 3.1.6. Notice that the computation of in<(DG (I∗)) and in<(DT (I∗)) depend only

on the characteristic of the base field k. This follows from the fact that the scalars used in

such calculations are inside Q(αijh) when char(k) = 0 and inside Zp(αijh) when char(k) = p.

We now need the following lemma.

Lemma 3.1.7. Let J ⊆ k[x1, . . . , xn] be a monomial ideal and F ⊆ k a field, not necessarily

infinite. Let B(k) ⊂ GLn(k) be the Borel subgroup of GLn(k) and B(F ) ⊂ GLn(F ) be the

Borel subgroup of GLn(F ). Then J is fixed under the action of B(F ) if and only if J is fixed

under the action of B(k).

Proof. First, note that since F ⊆ k we have that B(F ) ⊆ B(k). Thus one of the above im-

plications is clearly satisfied. When char(k) = 0 we have that char(F ) = 0. In characteristic

0 Borel fixed is equivalent to being strongly stable. Hence if J is fixed under B(F ) then J is

a strongly stable monomial ideal and is fixed under B(k).

When char(k) = p we have that char(F ) = p. We observe that the proof of Theorem 15.23

from [  10 ] also works when the field considered is finite. It follows that as J is fixed under

B(F ) it must be p-Borel. As J is p-Borel, we have that J is fixed under B(k).

Before we prove the next statement, however, notation for the rank of a vector space

is needed. Let d ∈ N be a fixed degree. Write a monomial basis for the vector space of
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homogeneous polynomials in degree d as m1 = xd
1, m2 = xd−1

1 x2, · · · , ms = xd
n, ordered with

respect to <. For a given vector space W generated by homogenous polynomials of degree d

write W = 〈w1, . . . , wp〉 where wi = ∑
aijmj for all i. Denote by A the matrix (aij)1≤i≤p,1≤j≤s

of size p by s.

Definition 3.1.8. For a vector space W as given above, we define the rank vector of W ,

r(W), as the vector whose ith entry ri(W), is the rank of the submatrix of A consisting of

the first i columns of A.

One sees by Gaussian elimination that m1 ∈ in(W) if and only if r1 6= 0 and in general

that mi+1 ∈ in<(W) if and only if ri+1(W) > ri(W). It follows that ri(W) = ri(in<(W )) and

that the rank vector is independent of the choice of generators of the vector space.

It is also important to understand how the rank vector of in<(W) and the rank vector of

W change under the action of Borel matrices. Recall that for any monomial order < there

exists a weight w = (w1, . . . , wn) ∈ Nn
+ such that the ordering of monomials in Sd under <

is the same ordering of monomials in Sd under w. You can then extend S to S̃ = S[t], the

homogenization of S where t is given weight 0. Then W ⊆ Sd can be extended to the vector

space W̃ = 〈ṽ | v ∈ W〉 ⊆ S̃d where ṽ = ta · v(t−w1x1, . . . , t−wnxn) and a is the largest weight

of a monomial in the support of v. Specializing back to S with t = 1 gives back W while

specializing back with t = 0 gives in<(W). In general, for all i where the ith rank is not 0

this gives the inequality ri(W̃) ≥ ri(W̃t=0) = ri(in<(W)).

Under the action of a matrix g we then have that ri(g(W̃t=0)) = ri((gW̃)t=0) ≤ ri(gW̃).

Furthermore, by collecting all the nonzero minors of the matrix Ã associated with W̃ we can

define a nonempty Zariski open set U of k = A1 where those minors do not vanish. This

then gives that for all α ∈ U we have ri(W̃) = ri(W̃t=α) where we can write W̃t=α = λW ,

where λ is the diagonal matrix whose diagonal entries are precisely α−w1 , . . . , α−wn . Hence

for a matrix g, ri(gλW) ≥ ri(g(in<(W))).

With this information we can now prove the following theorem.

Theorem 3.1.9. Let I be the monomial ideal fixed at the start of this section. Then the

ideal in<(DT (I∗)) (respectively in<(DG (I∗))) is Borel fixed.
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Proof. Since in<(DT (I∗)) is a monomial ideal, by the previous lemma it is sufficient to

show that is fixed under the action of B(k). Further, by Remark  3.1.6 and Lemma  3.1.7 we

can extend our field k and thereby assume that k is infinite as the monomial generators of

in<(DT (I∗)) and the Borel fixed condition do not change under field extensions.

To show that in<(DT (I∗)) is Borel fixed, it is enough to show that for every degree d the

vector space (in<(DT (I∗)))d is Borel fixed. By the previous discussion of rank of a vector

space one has for all L ∈ TnM(k) and for all 1 ≤ i ≤ s that ri ((DL (I))d) ≤ ri ((DT (I∗))d).

This follows because every non zero minors used to compute ri ((DL (I))d) correspond to a

non zero minor of (DT (I∗))d.

Now for the sake of contradiction assume that in<(DT (I∗)) is not Borel fixed. Then by

Lemma  3.1.7 there exists a b ∈ Bn(k) such that b(in<(DT (I∗))) 6= in<(DT (I∗)). As k is an

infinite field there exists L ∈ TnM(k) with in<(DL (I)) = in<(DT (I∗)) ∩ S. But by our

choice of b we also have that b(in<((DL (I))d)) 6= in<((DL (I))d). As b ∈ Bn(k), b is an upper

triangular matrix. So for every monomial vector space W ⊆ Sd we have that ri(bW) ≥ ri(W)

for 1 ≤ i ≤ s. This fact combined with b(in<((DL (I))d)) 6= in<((DL (I))d) means that there

exists an index i where ri(b(in<((DL (I))d))) > ri(in<((DL (I))d)) = ri(DT (I∗)d). We then

also have that ri(b(λDL (I))d) ≥ ri(b(in<((DL (I))d))) where λ is the diagonal matrix found

by homogenizing and specializing. This is a contradiction because the rank with respect to

T are larger than or equal to the rank using a distraction with entries in k.

Example 3.1.10. Let I ⊆ S be a principle monomial ideal, I = (u). Then the only Borel

fixed ideal with the same Hilbert function as I is the ideal (xdeg(u)
1 ). Hence in<(DG (I∗)) =

in<(DT (I∗)) = (xdeg(u)
1 ).

Recall that over an infinite field k, the generic initial ideal of an ideal J ⊂ S is defined to

be gin<(J) = in<(gJ) where g is an element of a nonempty Zariski open setset U ⊂ GLn(k).

The subset U is a special subset such that in<(gJ) = in<(g′J) for all g, g′ ∈ U .

It is however, not necessary to require that the base field k is infinite in order to define the

generic initial ideal. In general, one can extend the field k to an infinite field k̃ = k(y) and S

to S̃ = k̃[x1, . . . , xn] in a similar way to the extension laid out in the notation at the start of
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the section, where y is a finite number of algebraically independent indeterminates. Setting

J̃ = J ⊗k k̃ ⊆ S̃ one can then compute the generic initial ideal of J over S̃ and contract back

to S. In other words, gin<(J) = in<(gĨ) ∩ S. Thus one gets the usual generic initial ideal

without requiring the base field to be infinite.

Recall that a monomial ideal I being of Borel type means that all the associated primes

of I are of the form (x1, . . . , xi) for some i. This is equivalent to xn, xn−1, . . . , x1 being a filter

regular sequence. Bayer and Stillman proved that Borel fixed ideals are of Borel type in [ 1 ].

We now recall the following theorem about ideals of Borel type. Parts 1 and 2 of the following

statement are due to Bayer and Stillman in [  1 ]. Part 3 is due to Bayer, Charalambous, and

Popescu in [ 4 ].

Theorem 3.1.11. Let I be a graded ideal such that inrevlex(I) is of Borel type. Then

1. reg(I) = reg(inrevlex(I)).

2. projdim(I) = projdim(inrevlex(I)).

3. I and inrevlex(I) have the same extremal Betti numbers.

Recall that if a monomial ideal is Borel fixed then it is of Borel type (see [  5 ]). Hence we

get the following statement.

Theorem 3.1.12. Let I ⊂ k[x1, . . . , xn] be a fixed monomial ideal and T (respectively G )

be the distration matrix defined at the start of the section. Then I and inrevlex (DT (I∗)) (re-

spectively inrevlex (DG (I∗))) have the same extremal Betti numbers, regularity, and projective

dimension.

Proof. As extending by scalars is faithfully flat, we have that I and I∗ have the same standard

graded Betti numbers. By properties of distraction matrices, I∗ and DT (I∗) have same

extremal betti numbers, regularity, and projective dimension. By Theorem  3.1.9 we know

that inrevlex(DT (I∗)) is Borel fixed. So then applying Theorem  3.1.11 to DT (I∗) gives the

theorem.
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3.2 The Distraction-Generic Initial Ideal

In this section we will fix a Hilbert function H. Consider a homogeneous (but not nec-

essarily monomial) ideal I ∈ Hilb(H). The lexsegment ideal whose Hilbert function is H

will have the largest regularity out of all ideals in Hilb(H). For more information about the

lexsegment ideal, see the beginning of Chapter 4. As we will be iteratively be computing

distractions and initial ideals, we set M = reg(lex(I)) and then follow the notation laid out

in Notation  3.1.2 .

Remember that we will use < to indicate a monomial order such that x1 > x2 > · · · > xn.

If a particular monomial order is needed, it will be specified in the theorem statement.

The next portion of this section will be spent proving the following statement.

Proposition 3.2.1. Using the assumptions and notations at the start of this section and I

a homogeneous ideal in S, (in< ◦ DT )r (gin<(I∗)) is eventually constant as a function of r.

The above proposition is important because as a consequence of this proposition, we can

define the following ideal which has similar properties to that of the generic initial ideal, but,

as will be shown later in this section, is always strongly stable in characteristic p.

Definition 3.2.2 (D-gin). Let I be a homogeneous ideal in S,

D-gin<(I) = ((in< ◦ DT )r (gin<(I∗))) ∩ S

for r sufficiently large.

We first need to set up the following ordering on monomial ideals.

Notation 3.2.3. Let U be the set of all monomial ideals of S∗ (equivalently of S). Define

a total order, �, on the elements of U from > as follows.

• Set xa ≺m xb when either (1) the total degree |a| > |b| or (2) the total degree |a| = |b|

and xa < xb in the monomial order.
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• For J, J ′ ∈ U fix a minimal set of monomial generators J = (m1, . . . , ms) where

m1 m�m2 m� · · · m�ms and fix a minimal set of monomial generators J ′ = (m′
1′ , m′

2′ ,

. . . , m′
s′) where m′

1′ m�m′
2′ m� · · · m�m′

s′ .

Then J � J ′ if J ( J ′ or there exists an index i such that mj = m′
j when j < i and

mi m�m′
i.

• Write J � J ′ whenever J = J ′ or J � J ′.

Proposition 3.2.4. If J is a strongly stable monomial ideal of S∗ then DT (J) = J .

Proof. Without loss of generality we can assume that J is generated in a single degree d. We

induct on the number, r, of minimal monomial generators of J . If r = 1 then J is generated

by a power of x1 and clearly DT (J) = J .

Without loss of generality write J = (v1, v2 . . . , vr) where the vi’s are ordered decreasing

with respect to revlex. Under this ordering (v1, . . . , vr−1) is strongly stable and therefore

(v1, . . . , vr−1) fixed under DT by the inductive hypothesis. Hence DT (J) = (v1, . . . , vr−1) +

DT (vr).

Now vr = xa1
1 · · · xan

n and since T is triangular, all the monomials in the support DT (vr) are

either a scalar multiple of vr or obtained by a repeated use of a strongly stable exchange of

variables.

Notice that {vr} ⊆ supp(DT (vr)) ⊆ {vr} ∪ (v1, . . . , vr−1) where the last inclusion follows

from the fact that T is triangular and J is strongly stable.

Thus DT (J) ⊆ J and the equality follows as HFJ = HFDT (J) .

Proposition 3.2.5. If J is a nonzero monomial ideal of S∗ generated in degree less than or

equal to M and J is not strongly stable then in<(DT (J)) � J

Proof. Write J = (v1, . . . , vr) where the vi’s are ordered v1 m�v2 m� · · · m�vr. Notice that

this ordering gives us that deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vr). Let i be the smallest index

such that (v1, . . . , vi) is not strongly stable. If i = 1 then v1 6= x
deg(v1)
1 but in<(DT (v1)) =

(xdeg(v1)
1 ). Therefore x

deg(v1)
1 is the largest monomial generator of in<(DT (J)) with respect

to �. Hence in<(DT (J)) � J .

Now assume i > 1. Then (v1, . . . , vi−1) is a strongly stable ideal and by the previous theorem
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DT ((v1, . . . , vi−1)) = (v1, . . . , vi−1). By assumption (v1, . . . , vi) is not strongly stable. Hence

there exists indices 1 ≤ t < s ≤ n such that xs divides vi and vi

xs

xt 6∈ (v1, . . . , vi−1). Write

vi = xa1
1 · · · xan

n and DT (vi) = ∏n
i=1

(∏ai
j=1 gij

)
. By the definition of T the support of DT (vi)

consists of all the monomials that can be obtained by repeated applications of strongly stable

exchanges on vi.

Thus vi

xs

xt ∈ Supp(DT (vi)). Let wi be the largest monomial contained in the set

{Supp(DT (vi)) \ (v1, . . . , vi−1)} with respect to m�. Then deg(wi) = deg(vi) and we have

wi m� vi

xs

xt m�vi. Now {v1, · · · , vi−1, wi} ⊆ in<(DT (J)). Furthermore v1, . . . , vi−1, wi are

among the minimal generators of DT (J) because DT (vi+1), . . . , DT (vr) have degrees equal

to or larger than deg(vi). Hence in<(DT (J)) � J .

The proof of proof of Proposition  3.2.1 then follows from the previous propositions.

Proof of Proposition  3.2.1 . For given Hilbert function there exist only finitely many mono-

mial ideals in k[x1, . . . , xn] with that Hilbert function. Since I is fixed every monomial ideal

with the same Hilbert function as I will be generated in degree less than or equal to M .

There are only finitely many such ideals. Therefore r in Proposition  3.2.1 must be finite

as otherwise the previous propositions would give an infinitely ascending chain of monomial

ideals with respect to � all having Hilbert function H.

As an immediate corollary we have

Corollary 3.2.6. D-gin<(I) is a strongly stable monomial ideal.

Proof. By Proposition  3.2.1 we know that D-gin<(I) is well defined and constant for all

r′ > r ∈ N for some fixed r. So by the previous propositions it must be strongly stable.

3.2.1 Homological Invariants and the Distraction-Generic Initial Ideal

Our construction D-gin<(I) has many properties which are similar to that of the generic

initial ideal. Of prime importance are the following.

Theorem 3.2.7. Let I be a homogeneous ideal of S.

1. D-gin<(I) = I if and only if I is strongly stable.
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2. When char(k) = 0 we have D-gin<(I) = gin<(I).

3. I and D-gin<(I) have the same Hilbert function.

4. βij(I) ≤ βij(D-gin<(I)).

5. When < is the degree revlex order, then reg(S/I) = reg(D-gin<(S/I)), projdim(S/I) =

projdim(S/D-gin<(I)), depth(S/I) = depth(S/D-gin<(I)), and moreover the extremal

Betti numbers of I and D-gin<(I) are the same.

For part of the proof of statement (5) in the above theorem and the proof of statement

(4) in the next corollary we will need the Auslander-Buchsbaum formula. The general form

of the Auslander-Buchsbaum formula is as follows.

Theorem 3.2.8 (Auslander-Buchsbaum). Let M be a finitely generated graded module of a

commutative local Noetherian ring R such that projdim(M) < ∞. Then

depth(M) + projdim(M) = dim(R).

There is also a specialized version of the Auslander-Buchsbaum formula for polynomial

rings.

Theorem 3.2.9 (Auslander-Buchsbaum for Polynomial Rings). Let M be a finitely generated

graded S-module, where S is the polynomial ring S = k[x1, . . . , xn]. Then

projdim(M) + depth(M) = n.

Now for the proof of above theorem.

Proof. 1) Since I is strongly stable, gin<(I) = I and in<(I) = I. Hence by the previous

proposition, D-gin<(I) = I.

2) As gin<(I) is a strongly stable monomial ideal in characteristic 0 it immediately follows

that D-gin<(I) = gin<(I).

3) For any ideal I, in<(I), gin<(I), and DG (I) all have the same Hilbert function. Hence I
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and D-gin<(I) have the same Hilbert function.

4) Distractions, initial ideals, and generic initial ideals all satisfy upper semi-continuity for

Betti numbers. Hence βij(I) ≤ βij(D-gin<(I)).

5) The equality of the regularity, projective dimension, and extremal Betti numbers follows

from Theorem  3.1.12 . The equality of the depth follows from the equality of the projective

dimension and the Auslander-Buchsbaum formula.

Remark 3.2.10. Notice that although the above inequality βij(I) ≤ βij(D-gin<(I)) is phrased

for the graded Betti numbers since the j Betti number is a sum of graded Betti numbers we

also have the ineqality βj(I) ≤ βj(D-gin<(I)) for all j.

Parts 3, 4, and 5 of the above theorem will be crucial for the use of the distraction-generic

initial ideal in the proof of the main result in the next chapter. The inequality of the Betti

numbers is especially of note since it is unknown if other constructions of strongly stable

generic ideals in characteristic p, such as the zero-generic initial ideal defined by Caviglia

and Sbarra in [ 11 ], preserve this pointwise inequality.

As a corollary of Theorem  3.2.7 we have the following.

Corollary 3.2.11. Let I be a homogeneous ideal I ⊆ S.

1. dim(S/I) = dim(S/D-gin<(I)).

2. projdim(S/I) ≤ projdim(S/D-gin<(I)).

3. reg(S/I) ≤ reg(S/D-gin<(I)).

4. depth(S/I) ≥ depth(S/D-gin<(I)).

Proof. For statement (1) the equality dim(S/I) = dim(S/D-gin<(I)) is a direct consequence

of the fact that I and D-gin<(I) have the same Hilbert function. As we have previously

proved that βij(I) ≤ βij(D-gin<(I)), this gives us the two inequalities (2) projdim(S/I) ≤

projdim(S/D-gin<(I)) and (3) reg(S/I) ≤ reg(S/D-gin<(I)).

Lastly the inequality (4) depth(I) ≥ depth(S/D-gin<(I)) follows from the

Auslander-Buchsbaum formula for polynomial rings in conjunction with statement (2).
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We also have the following relation between S/I and S/D-gin<(I) in regards to being

Cohen-Macaulay. Recall that an S-module is Cohen-Macaulay if and only if the dimension

of the modules is equal to the depth of the module.

Theorem 3.2.12. Let I be a homogeneous ideal of S.

1. If S/D-gin<(I) is Cohen-Macaulay, then S/I is Cohen-Macaulay.

2. If S/D-gin<(I) is Gorenstein then S/I is Gorenstein.

3. When < is the revlex order we have that S/D-gin<(I) is Cohen-Macaulay if and only

if S/I is Cohen-Macaulay.

Proof. For the first statement S/D-gin<(I) is Cohen-Macaulay if and only if

dim(S/D-gin<(I)) = depth(S/D-gin<(I)). Statements (1) and (2) from  3.2.11 then give the

chain of inequalities

dim(S/I) = dim(S/D-gin<(I)) = depth(S/D-gin<(I)) ≤ depth(I) ≤ dim(S/I)

giving that dim(S/I) = depth(S/I). Hence S/I is Cohen-Macaulay.

For statement (2) recall that S/D-gin<(I) being Gorenstein is equivalent to S/D-gin<(I)

being Cohen-Macaulay and the last non-zero Betti number of S/D-gin<(I) being equal to

1. Hence if S/D-gin<(I) is Gorenstein then S/I is Cohen-Macaulay. As S is a polynomial

ring the last nonzero Betti number of S/I occurs at the same spot of the free resolution of

S/I as the last nonzero Betti number of S/D-gin<(I) occurs in its free resolution. By the

inequality βj(I) ≤ βj(D-gin<(I)) the last nonzero Betti number of S/I must be 1 giving us

that S/I is Gorenstein as well.

Lastly to get statement (3) notice that under the revlex order we have projdim(I) =

progdim(D-gin<(I)). Using the Auslander-Buchsbaum formula we have that the depth of S/I

and S/D-gin<(I) are the same. Hence S/I being Cohen-Maulay implies that S/D-gin<(I)

is also Cohen-Macaulay.

Some other minor things to note are as follows.
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Remark 3.2.13. Consider the case S = k[x1, x2], I ⊆ S a homogeneous ideal. Since D-gin<(I)

is strongly stable it must be a lexsegment ideal as every strongly stable ideal in a polynomial

ring in two variables is a lexsegment ideal.

3.2.2 Saturation and the Distraction-Generic Initial Ideal

The purpose of this section is to consider how the saturation of an ideal interacts with

the distraction-generic initial ideal. It is motivated by the following combination of results

found in [ 16 ].

Proposition 3.2.14. Let I ⊆ S = k[x1, . . . , xn] be a homogenous ideal, k a field of char-

acteristic 0, Isat its saturation with respect to the homogeneous maximal ideal, and ”<” the

revlex order. Then gin<(Isat) = (gin<(I))sat.

Although Green in [  16 ] only considers fields of characteristic 0, following a proof similar

to Theorem  3.2.22 below, one can see that the above proposition is also true without the

characteristic 0 assumption on k.

Recall some basic facts about saturations of ideals.

Definition 3.2.15. Let I ⊂ S be a homogeneous ideal. Then the saturation of I is defined

as Isat = (I :S m∞) = ∪i≥0(I :S mk), where m denote the homogeneous maximal ideal, i.e.

m = (x1, . . . , xn).

I is called saturated if (I :S m) = I.

Note that the image of the ideal (I :S m) in S/I is also known as the socle of S/I. When

it is clear which ring the saturation is being taken with respect to, the underscore on the

colon may be dropped.

When I is a strongly stable monomial ideal we have the following (see [ 10 ]).

Proposition 3.2.16. Let I ⊆ S be a strongly stable monomial ideal. Then for all t ≥ 0 and

all 1 ≤ i ≤ n

I :S xt
i = I :S (x1, . . . , xi)t

and further

I :S x∞
i = I :S (x1, . . . xi)∞.
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Note that for strongly stable ideals the above proposition in particular gives the equalities

I :S m∞ = I :S x∞
n

and

I :S m = I :S xn.

Hence for two strongly stable saturated ideals we have the following way to check ideal

equality.

Lemma 3.2.17. Let I, J ⊆ S be two strongly stable saturated ideals. Assume that Id = Jd

for all d >> 0. Then I = J .

Proof. We do a decreasing induction on a degree i ≤ d. Take a monomial u ∈ Ji−1. Then

xnu ∈ Ji = Ii. As I is a strongly stable saturated ideal (I : xn) = I. Hence u ∈ I and

therefore u ∈ Ii−1. Similarly every v ∈ Ii−1 is also in Ji−1. Hence I = J .

Now recall the definition of an associated prime.

Definition 3.2.18. Let R be a Noetherian ring and I ⊂ R an ideal. The associated

primes of I, denoted by Ass(I), are the prime ideals P ⊂ R such that there exists a nonzero

element x ∈ R/I with P = {a ∈ R|ax = 0}.

The following proposition is well known.

Proposition 3.2.19. Let I ⊆ S be homogeneous monomial ideal. Then I is saturated if and

only if m is not an associated prime of I.

In the case of R being a Noetherian local ring, we recall the following (see [ 10 ]).

Proposition 3.2.20. Let R be a Noetherian local ring with maximal ideal m. Then

depth(R) = 0 if and only if m is an associated prime of R.

Putting this all together gives for a compact proof for the following statement.

Proposition 3.2.21. Assume I ⊆ S is a homogeneous ideal and < is the revlex order. Then

I is saturated if and only if D-gin<(I) is saturated.
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Proof. By Theorem  3.2.7 since the monomial order is the revlex order we have that

projdim(S/I) = projdim(S/D-gin<(I)). By the Auslander-Buchsbaum formula it follows

that depth(S/I) = depth(S/D-gin<(I)). If I is saturated then depth(S/I) > 0 which im-

plies that depth(S/D-gin<(I)) > 0. So by the previous theorem D-gin<(I) is a saturated

ideal. Alternatively, if D-gin<(I) is saturated then depth(S/D-gin<(I)) > 0 implying that

depth(S/I) > 0 and hence I is saturated.

Furthermore we have an result for the distraction-generic ideal analogous to the theorem

stated at the beginning of the section.

Theorem 3.2.22. Let I ⊆ S be a homogeneous ideal, Isat its saturation with respect to the

homogeneous maximal ideal, and < the revlex order. Then D-gin<(Isat) = D-gin<(I)sat.

Proof. As noted earlier in this section as both D-gin<(Isat) and D-gin<(I)sat are strongly

stable saturated ideals it suffices to show that D-gin<(Isat)r = (D-gin<(I)sat)r for r >>

0. However for some sufficiently large degree r we will have that Ir = (Isat)r and that

(D-gin<(I)sat)r = D-gin<(I)r. Hence in some large degree there is the equality

D-gin<(Isat)r = D-gin<Ir = D-gin<(I)r = (D-gin<(I))sat
r

Where the equality D-gin<Ir = D-gin<(I)r follows from the definition of the Distraction-

generic initial ideal.

Further note that it should be possible to expand the definition of D-gin< so that the

results presented in this chapter hold for homogeneous finitely generated modules M of S

and not just ideals of S.
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4. THE MALL IDEAL

A natural question that arises when studying polynomial rings is whether or not there are

any ideals that exhibit extremal properties. To this end one can fix the Hilbert function H of

a homogeneous ideal and consider the Hilbert Scheme, Hilb(H), associated to H consisting of

all the graded ideals in S with Hilbert function H. As an example of an ideal with extremal

properties, for any given ideal I ⊂ S, there exists a unique ideal lex(I), known as the

lexsegment ideal, such that I and lex(I) have the same Hilbert function ([  8 ]). In order to

understand the lexsegment ideal it is important to first understand what a lexsegment is.

Definition 4.0.1. A vector space L ⊆ Sd is called a lexsegment if it is generated by mono-

mials and whenever u ∈ L and v ∈ Sd with v ≥ u in the lex ordering, we have that v ∈ L.

A monomial ideal I ⊂ S is called a lexsegment ideal if for every d the monomials in

Id form a lexsegment. We use lex(I) or lex(H) to indicate the unique lexsegment ideal with

the same Hilbert function as I (by abuse of notation we with use lex of a vector space to

refer to the lexsegment with the same dimension as a given vector space). Note also that

lexsegment ideals are strongly stable ideals. Furthermore, the following was shown by Bigatti

[ 17 ], Hulett [ 18 ], and Pardue [ 15 ],

Theorem 4.0.2 (Bigatti-Hulett-Pardue). Fix a Hilbert function H and let lex(H) denote

the unique lexsegment ideal corresponding to H. Then the graded Betti numbers of lex(H)

are pointwise the largest among all ideals I ∈ Hilb(H).

However, for a given ideal I the regularity of I and lex(I) may be different. This then

leads to the definition of a strata of a Hilbert scheme. For a fixed regularity m, the Hilbert

strata defined by m of Hilb(H) is the set of all ideals in Hilb(H) with regularity less than or

equal to m. Such a strata will be denoted by Hilb(H, m).

In his paper ”Betti Numbers, Castelnuovo Mumford Regularity, and Generalizations of

Macaulay’s Theorem” [  2 ] Daniel Mall shows that when the characteristic of k is zero and

Hilb(H, m) 6= ∅ there exists an ideal J ∈ Hilb(H, m) with the property that βqd(J) ≥ βqd(I)

for all q, d ∈ N and all I ∈ Hilb(H, m). In other words, over a field of characteristic 0 for a

fixed regularity and Hilbert function you can find an ideal that is extremal with respect to
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graded Betti numbers. Note that in the case of m being equal to or larger than the regularity

of the lexsegment ideal this ideal will be the lexsegment ideal. Mall’s proof, however, relies

on the reduction to the case of a strongly stable monomial ideal using the generic initial

ideal, which is why his proof only holds when the characteristic of the base field is 0. Mall

also has an analogous result over fields of characteristic 0 for the saturated Hilbert strata,

Hilbsat(H, m), of the saturated Hilbert scheme, Hilbsat(H), where Hilbsat(H) consists of the

set whose elements are all saturated homogeneous ideals with a fixed Hilbert function H.

By using the distraction-generic initial ideal from the previous section, Mall’s results can be

expanded to fields of any characteristic.

4.1 Hilbert Strata and the Mall Ideal

This section will focus on explicitly constructing Mall’s ideal and showing that it is a

strongly stable ideal contained in Hilb(H, m). Both this construction and the expansion

of Mall’s result will use the following extension of Green’s Hyperplane Theorem ([  19 ]). It

was proven by Herzog and Popescu ([  20 ]) in characteristic 0 and by Gasharov ([ 21 ]) in any

characteristic.

Theorem 4.1.1 ([ 19 ] [  20 ] [  21 ]). Assume |k| = ∞ and let I ⊆ S be a homogeneous ideal with

Hilbert function H and ` a general linear form. Then for all d

HF (S/(I + (`d))) ≤ HF (S/(lex(I) + (xd
n))).

Furthermore when I is strongly stable, ` can be chosen to be xn.

4.1.1 Decomposing Strongly Stable Ideals

As the distraction-generic initial ideal from the previous chapter allows us to reduce to

the case of a strongly stable monomial ideal no matter what characteristic we are in, we

will build Mall’s ideal by starting with the reduction to the strongly stable monomial ideal

case. Our construction, however, will use the following decomposition of monomial ideals

and vector spaces.

41



Remark 4.1.2. Let I be a monomial ideal, I ⊆ S = k[x1, . . . , xn].

I can be written as

I = I[0] ⊕ I[1] · xn ⊕ · · · ⊕ I[j] · xj
n ⊕ · · ·

where each I[j] is an ideal of S̄ = k[x1, . . . , xn−1].

For Id ⊂ I we will write

Id = Id,[0] ⊕ Id,[1] · xn ⊕ · · · ⊕ Id,[j] · xj
n ⊕ · · ·

In the preceding remark notice that I[0] will be a monomial ideal of S̄ generated by all

the monomials of I that do not contain xn. Similarly I[1] will be a monomial ideal of S̄ that

is generated by the set of monomials w ∈ S̄, where wxn = u, u ∈ I. In general, I[j] will be

a monomial ideal that is generated by the set of monomials w ∈ S̄, where wxj
n = u, u ∈ I.

Furthermore, for any monomial u ∈ I[j] notice that uxj
n ∈ I which means that uxj+1

n ∈ I.

Hence I[j] ⊆ I[j+1].

This decomposition leads to the following property for strongly stable monomial ideals.

Proposition 4.1.3. Let I ⊆ S be a monomial ideal. I being a strongly stable ideal is

equivalent to each I[j] being a strongly stable ideal of S̄ and for each index j > 0, I[j]m̄ ⊆ I[j−1],

where m̄ = (x1, . . . , xn−1) ⊂ S̄.

Proof. Assume I is a strongly stable ideal of S and that I[j] is not strongly stable. Then

there would exist a monomial u ∈ I[j] and indices s, t such that s < t < n and xt divides

u but xs(u/xt) 6∈ I[j]. But this would imply that xs(u/xt)xj
n 6∈ I, which contradicts I being

strongly stable. To see that I[j]m̄ ⊆ I[j−1], notice that for any w = uxj
n ∈ I, u not divisible

by xn, we must have that xiuxj−1
n ∈ I for any index j < n. As u ∈ I[j] this gives I[j]m̄ ⊆ I[j−1].

For the other direction, let u ∈ I be a monomial. Then u = wxj
n for some index j. As

I[j] is strongly stable, for any indices s, t with s < t < n and xt dividing w we have that

xs(w/xt) ∈ I[j] which means that xs(u/xt) ∈ I. Furthermore, as I[j]m̄ ⊆ I[j−1] we have that

xiw ∈ I[j−1] for every index i < n and hence xi(u/xn) = xiwxj−1
n ∈ I. So I is a strongly

stable monomial ideal.
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We can also discuss the growth of strongly stable ideals from one degree to the next.

Remark 4.1.4. Let I be a strongly stable ideal generated in degree d. If we consider I in

degree d + a for a ∈ N then we can write Id+a as

Id+a = Id,[0] · m̄a ⊕ Id,[0]m̄
a−1 · xn ⊕ · · · ⊕ Id,[0] · xa

n ⊕ Id,[1] · xa+1
n ⊕ · · · ⊕ Id,[j] · xa+j

n ⊕ · · ·

where m̄ = (x1, . . . , xn−1)S̄

We can decompose vector spaces in the same manner.

Remark 4.1.5. For V a monomial vector space inside Sd, for any degree d,

1) V can be written as

V = V[0] ⊕ V[1] · xn ⊕ · · · ⊕ V[j] · xj
n ⊕ · · ·

where each V[j] is an vector space of S̄d ⊂ Sd.

2) V being a strongly stable vector space is equivalent to each V[j] being a strongly stable

vector space of S̄ and for each index j > 0, V[j] · S̄1 ⊆ V[j−1], where S̄1 is the degree one

component of S̄.

The proofs of the above statements are similar to the proofs of the ideal case.

Remark 4.1.6. For I a strongly stable ideal use the above notation to write Ij = Ij,[0] ⊕

Ij,[1]xn ⊕ · · · . As I is a standard graded ideal, and hence a graded module, Ij−1S1 ⊆ Ij. In

particular, as I is strongly stable we can note that Ij−1xn ⊆ Ij,[1]xn ⊕ · · · .

4.1.2 Building the Mall Ideal

For this section we will fix a regularity m. Given a strongly stable I ⊆ S generated in

degree less than or equal to m (equivalently reg(I) ≤ m) we recursively define M(I, m) as

follows

Definition 4.1.7 (Mall Ideal of I). Let n be the number of variables in S.

1) M(I, m) = I when n = 1.

2) For n > 1 Let Im be the m-graded component of I, which is a strongly stable vector
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space. Then Im = Im,[0]
⊕

Im,[1]xn
⊕ · · ·⊕ Im,[m]x

m
n (where some of the summands may be

zero) and
(
Im,[1]

⊕
Im,[2]xn

⊕ · · ·⊕ Im,[m]x
m−1
n

)
= (I : xn)m−1. Further note that (I : x∞

n )[0] =

(I : x∞
n ) ⊂ S̄. We can then define M(I, m) as follows.

M(I, m) :=
⊕
d<m

(lex(I))d

⊕(
M̄
⊕

L
)

.

Where (M̄ ⊕ L) is the ideal generated by the direct sum of the vector spaces M̄ and L.

M̄ = M((I : x∞
n )[0] , m)m, L = lex ((I : xn)m−1) · xn, and M((I : x∞

n )[0] , m)m is calculated in

the ring k[x1, . . . , xn−1] and extended to S.

Proposition 4.1.8. With the above setup, M(I, m) is a strongly stable ideal that has the

same Hilbert function as I and reg(M(I, m)) ≤ m, βij(I) ≤ βij(M(I, m)) for all i, j ∈ N.

For ease of reading we will break the proof of Proposition  4.1.8 into multiple pieces. First

we shall consider the statement that M(I, m) is a strongly stable ideal.

Stability of Mall Ideal. We will proceed by induction on the number of variables of S. As

M(I, m) = I for n = 1 and in one variable each monomial ideal is lex, this statement is true

for n = 1.

Now assume our statement holds for rings of n − 1 variables and consider S, a polynomial

ring over n variables. As M(I, m) is generated by a direct sum of monomial vector spaces,

it will be a monomial vector space. First, we show that M(I, m) is an ideal, or equivalently

that the product of the vector space S1 and the graded component of degree d is contained

into the graded component of degree d + 1 for all d.

By definition of the Mall ideal M(I, m)d = lex(I)d for d ≤ m − 1. So the above is true for

d < m − 1.

Now to see that M(I, m)m−1 ·S1 ⊆ M(I, m)m. By definition M(I, m)m−1 = lex(I)m−1 and the

degree m component is M(I, m)m = M((I : x∞
n )[0] , m)m

⊕ lex ((I : xn)m−1) · xn. As vector

spaces we have lex(I)m−1 · S1 =
(
Z[0] ⊕ Z[1]xn ⊕ · · · ⊕ Z[m−1]x

m−1
n

)
· S1. As lex(I)m−1 is the
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m − 1 component of a lex ideal, each Z[i] is itself a lexsegment, and hence this is a strongly

stable vector space. So

lex(I)m−1 · S1 =
(
Z[0] ⊕ Z[1]xn ⊕ · · · ⊕ Z[m−1]x

m−1
n

)
· S1

= Z[0]S̄1 ⊕ Z[0]xn ⊕ Z[1]x
2
n ⊕ · · · ⊕ Z[m−1]x

m
n

To see this directly without using Remark  4.1.4 , first notice that Z[0] · S1 ⊆ Z[0]S̄1 ⊕ Z[0]xn.

As each Z[j] is strongly stable, we also have Z[j]x
j
n · S1 ⊆ Z[j−1]x

j
n ⊕ Z[j]x

j+1
n . This gives us the

inclusion (
Z[0] ⊕ Z[1]xn ⊕ · · · ⊕ Z[m−1]x

m−1
n

)
· S1

⊆ Z[0]S̄1 ⊕ Z[0]xn ⊕ Z[1]x
2
n ⊕ · · · ⊕ Z[m−1]x

m
n

For the other inclusion, we have Z[j]x
j+1
n ⊆ Z[j]x

j
n · S1 ⊕ Z[j+1]x

j+1
n · S1 giving

(
Z[0] ⊕ Z[1]xn ⊕ · · · ⊕ Z[m−1]x

m−1
n

)
· S1

⊇ Z[0]S̄1 ⊕ Z[0]xn ⊕ Z[1]x
2
n ⊕ · · · ⊕ Z[m−1]x

m
n

Note that since Z[0] is lex inside S̄, it is also lex in S̄m−1. Next, write M(I, m)m =

M(I, m)m,[0] ⊕ M(I, m)m,[1]xn ⊕ · · · M(I, m)m,[m]x
m
n , where possibly some of these summands

are 0. Then by construction of M(I, m)m we see that M(I, m)m,[0] = M((I : x∞
n )[0] , m)m and

the tail of M(I, m)m, M(I, m)m,[1]xn⊕· · · M(I, m)m,[m]x
m
n , corresponds to lex ((I : xn)m−1)·xn.

As Z[0] are those elements of lex(I)m−1 of degree m − 1 in I, M(I, m)m,[1] are those elements

of degree m − 1 in lex ((I : xn)m−1), and both Z[0] and M(I, m)m,[1] are lex in S̄ we have

Z[0] ⊆ M(I, m)m,[1].

So now we show Z[0]xn ⊕ Z[1]x
2
n ⊕ · · · ⊕ Z[m−1]x

m
n ⊆ lex ((I : xn)m−1) · xn and Z[0]S̄1 ⊆

M((I : x∞
n )[0] , m)m. Note that Z[0]xn ⊕ Z[1]x

2
n ⊕ · · · ⊕ Z[m−1]x

m
n ⊆ lex ((I : xn)m−1) · xn is

equivalent to Z[0] ⊕ Z[1]xn ⊕ · · · ⊕ Z[m−1]x
m−1
n = lex(I)m−1 ⊆ lex ((I : xn)m−1).

But this is true since lex(I)m−1 ⊆ lex(Im−1) ⊆ lex((I : xn)m−1).

Now to see that Z[0]S̄1 ⊆ M((I : x∞
n )[0] , m)m. We will do this by showing that Z[0] ⊆

45



M(I, m)m,[1] ⊆ lex(Im,[1]). By induction, M((I : x∞
n )[0] , m) ⊆ S is a strongly stable ideal.

Notice that since (I : xn)m−1,[0] = Im,[1] ⊆ (I : x∞
n )[0] by construction we have lex(Im,[1]) ·

S̄1 ⊆ M((I : x∞
n )[0] , m)m. By Green’s Hyperplane Theorem we can state that as vector

spaces dim ((S/I + `)d) ≤ dim ((S/lex(I) + xn)d). Equivalently, as vector spaces we have

dim((I + `)d) ≥ dim((lex(I) + (xn))d) which means dim(Id,[0]) ≥ dim(lex(I)d,[0]). When I is

strongly stable we can take xn = ` which means lexS(Id,[0]) ⊇ (lexS(I))d,[0]. But as M((I :

x∞
n )[0], m)m−1 = lexS(Im,[1]) there is the containment M(I, m)m,[1] = lex((I : xn)m−1)[0] ⊆

lex(Im,[1]). So Z[0]S1 ⊆ lex(Im,[1]) · S̄1 ⊆ M((I : x∞
n )[0] , m)m.

So M(I, m) is an ideal.

To see that it is a strongly stable ideal, it is enough to check that it is a strongly stable vector

space. As a vector space is strongly stable if and only if its summands are strongly stable

vector spaces and closed under multiplication by S̄1, it is enough to check that M(I, m)m,[1] ·

S̄1 ⊆ M(I, m)m,[0]. But this again follows from Green’s Hyperplane Theorem.

The next piece we shall consider is the Hilbert function.

Hilbert Function of the Mall Ideal. For the Hilbert Function, notice that the statement holds

for n = 1 variables and assume by induction it holds for n − 1 variables. In n variables,

induct also on the degree d of the Hilbert function. Note M(I, m)d+1 = M(I, m)d · S1 =

M(I, m)d,[0] · S̄1 ⊕ M(I, m)d · xn. and that for d < m, M(I, m)d = lex(I)d, which makes the

base case of induction on d true. So we can assume that for dimension less than or equal to

d, the Hilbert functions are equal. Then by induction on the degree, Id ·xn and M(I, m)d ·xn

have the same dimension. By induction on the number of variables, M((I : x∞
n )[0], m) has

the same Hilbert function as (I : x∞
n )[0]. But as the regularity of I ≤ m, in degree greater

than or equal to m the Hilbert function of (I : x∞
n )[0] is the same as the Hilbert function

of I[0]. So the dimension of M(I, m)d,[0] · S1 is the same as I[0] · S1, giving us equal Hilbert

functions.

For the regularity, recall that for a strongly stable monomial ideal I ⊂ S the regularity

of I is less than or equal to the degree of the largest generator of I.
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Regularity of the Mall Ideal. Notice that M(I, m) is a strongly stable ideal generated in de-

gree less than or equal to m. Hence reg(M(I, m)) ≤ m.

For the inequality of the graded Betti numbers we need the following extension of Green’s

Hyperplane Theorem.

Theorem 4.1.9. Let B1 and B2 be two strongly stable vector spaces generated in degree d and

let Q1 and Q2 be the ideals generated in S by B1 and B2, respectively. Assume further that the

Hilbert functions are equal, i.e. HF (Q1) = HF (Q2). Then HF (Q1+(xn)) = HF (Q2+(xn)).

Proof. We prove this by induction on d. For d = 0 and d = 1 the statement is obvious.

So assume that d > 1 First, note that Q1 and Q2 are both strongly stable monomial ideals

as they were generated from strongly stable vector spaces. Hence the minimal graded free

resolution of both Q1 and Q2 are linear resolutions.

0 → Fr1 → Fr1−1 → · · · → F1 → F0 → Q1

0 → F ′
r2 → F ′

r2−1 → · · · → F ′
1 → F ′

0 → Q2

Each free module is of the form Fi = ⊕jS(−j)βij and F ′
i = ⊕jS(−j)β′

ij where each of these

sums is a finite direct sum. Furthermore, as both Q1 and Q2 are generated in degree d and

have a linear resolution we know that βi,i+j = 0 for all j 6= d. Hence Fi = ⊕jS(−j)βij =

S(−(i + d))βi,i+d and F ′
i = ⊕jS(−j)β′

ij = S(−(i + d))β′
i,i+d . Using the additivity of the Hilbert

series and the fact that S is a polynomial ring over a field, one gets that

HSQ1(t) = HSS(t)
∑

ij
(−1)iβijt

j = 1
(1 − t)n

∑
ij

(−1)iβijt
j = 1

(1 − t)n

∑
i

(−1)iβi,i+dti+d

and

HSQ2(t) = HSS(t)
∑

ij
(−1)iβ′

ijt
j = 1

(1 − t)n

∑
ij

(−1)iβ′
ijt

j = 1
(1 − t)n

∑
i

(−1)iβ′
i,i+dti+d

As both the projective dimension and regularity of Q1 and Q2 are finite, both of the above

sums are finite. By the equality of the Hilbert functions it follows that βi,i+d = β′
i,i+d and

47



r1 = r2.

It follows that the socles of the algebras S/Q1 and S/Q2 have the same dimension. But as

Q1 and Q2 are strongly stable ideals generated in degree d the socles of those algebras have

dimension equal to the monomials of Q1 (respectively Q2) that are divisible by xn. This

forces equality between the Hilbert function of Q1 + (xn) and Q2 + (xn) in degree d. We can

now consider the ideals generated by d + 1 components of Q1 and Q2, respectively. As these

are both ideals generated in a single degree by a strongly stable vector space the proof is

done by induction.

Furthermore we have the following.

Theorem 4.1.10. For any I1, I2 ∈ Hilb(H, m) where I1 and I2 are strongly stable we have

M(I1, m) = M(I2, m).

Proof. First, notice that when n = 1 we have S = k[x1] and M(I, m) = I. Since I is strongly

stable monomial ideal with a fixed Hilbert function and regularity, I is unique with I = (xr
1)

for some r ∈ N.

When n = 2 we are in the case of S = k[x1, x2]. In this polynomial ring every strongly stable

ideal is a lexsegment ideal. As the lexsegment ideal is unique for a fixed Hilbert function,

we have that M(I, m) = I and is unique.

For n ≥ 3 we have S = k[x1, . . . , xn]. If Hilb(H, m) contains only one strongly stable ideal

I then M(I, m) is trivially unique. Otherwise, assume that there is more than one strongly

stable ideal, say I1, I2 ∈ Hilb(H, m) and that the statement holds for the Mall ideal in n − 1

variables. Set Q = M(I1, m) and P = M(I2, m). For d < m we have that Qd = Pd as

HF (Q) = HF (P ) and both P and Q are lexsegments in degree d by the definition of the

Mall ideal.

For d = m, We have

Qm = M((I1 : x∞
n )[0] , m)m

⊕
lex ((I1 : xn)m−1) · xn

48



and

Pm = M((I2 : x∞
n )[0] , m)m

⊕
lex ((I2 : xn)m−1) · xn

Note that while (I1 : x∞
n )[0] and (I2 : x∞

n )[0] may have different Hilbert functions, these Hilbert

functions will agree in degree m with the Hilbert functions of (I1)[0] and (I2)[0] respectively.

After going module xn, by Theorem  4.1.9 the Hilbert functions of (I1)[0] and (I2)[0] will

also agree in degree m and above. Hence by induction we have that M((I1 : x∞
n )[0] , m)m =

M((I2 : x∞
n )[0] , m)m and lex ((I1 : xn)m−1) · xn = lex ((I2 : xn)m−1) · xn.

In other words, for a fixed Hilbert function H and regularity m, the Mall ideal is unique.

Remark 4.1.11. Notice that if I is a strongly stable ideal with Hilbert function H and

regularity m with corresponding Mall ideal M(I, m). Then M(I, m)/(xn) ⊂ k[x1, . . . , xn−1]

is also a Mall ideal. This follows from the definition of the Mall ideal as in degree d < m the

Mall ideal is a lexsegment and the property holds for lexsegment ideals and in degree m the

Mall ideal depends only on the generators of degree m.

Now to consider the inequality of the Betti numbers.

Graded Betti Numbers of the Mall Ideal. Remember that I is a strongly stable ideal. Recall

that I and J = M(I, m) have the same Hilbert function. It is easy to see that

HF ((I + (xn))/(xn)) ≥ HF ((J + (xn))/(xn))

with equalities, thanks to Theorem  4.1.9 for all degrees d ≥ m. Furthermore, for n = 1 and

n = 2 the inequality holds trivially as the Mall ideal will be the lexsegment ideal. So now

consider n ≥ 3. Since xn is a non-zero divisor for I and J we have the equality

βS
ij (I) = βS

ij (I/xnI) = βS̄
ij

(
I[0] ⊕

I[1]

I[0]
(−1) ⊕

I[2]

I[1]
(−2) ⊕ · · ·

)
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and analogous equalities for J . Now since J is equal to lex(I) in all degrees d < m, the

inequalities on the Betti numbers βij are clear for all j < i + m thanks to the Bigatti-Hulett

Pardue theorem. When j ≥ i + m the desired inequalities follow by observing first that

βS̄
ij

(
I[0]
)

≤ βS̄
ij

(
M(I[0], m)

)
= βS̄

ij

(
J[0]

)

where the first inequality is a consequence of the induction on n. And also by observing that

in degrees d ≥ m the S̄ modules

I[1]

I[0]
(−1) ⊕

I[2]

I[1]
(−2) ⊕ · · ·

and
J[1]

J[0]
(−1) ⊕

J[2]

J[1]
(−2) ⊕ · · ·

have the same Hilbert functions and are both annihilated by m̄, thus contributing in an

identical manner to βS
ij (I) and βS

ij (J) respectively.

4.2 The Results of Mall Over Fields of Any Characteristic

In his paper [ 2 ] Mall has two main theorems with regards to homogeneous ideals. The

first is as follows.

Theorem 4.2.1 (Mall [  2 ]). Assume k is a field of characteristic 0 and fix a Hilbert function

H. For all m, provided Hilb(H, m) 6= ∅, then there exists an ideal J ∈ Hilb(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilb(H, m).

His second theorem is similar, but for saturated homogeneous ideals.

Theorem 4.2.2 (Mall [  2 ]). Assume k is a field of characteristic 0 and fix a Hilbert function

H. For all m, provided Hilbsat(H, m) 6= ∅, then there exists an ideal J ∈ Hilbsat(H, m) such

that βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilbsat(H, m).

By using the distraction-generic initial ideal we are able to extend these results to fields

of characteristic p.

50



Definition 4.2.3. Let I ⊂ S be a homogeneous ideal of S with I ∈ Hilb(H, m) for a fixed

Hilbert function H. Let < be the revlex order. Then M(I, m) is defined as M(I, m) =

M(D-gin<(I), m) ∈ Hilb(H, m).

Note that under the revlex order, the distraction-generic ideal of an ideal I has the same

regularity as I. We now have the following result.

Theorem 4.2.4. Assume k is a field of any characteristic and fix a Hilbert function H.

For all m, provided Hilb(H, m) 6= ∅, then there exists an ideal J ∈ Hilb(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilb(H, m).

Proof. For any arbitrary ideal I ∈ Hilb(H, m) the ideal D-ginrevlex(I) is a strongly stable

monomial ideal with HF (I) = HF (D-ginrevlex(I)) and reg(I) = reg(D-ginrevlex(I)). Further-

more, as we proved in the previous chapter βij(I) ≤ βij(D-ginrevlex(I)). Hence we only need

to show that there exists a monomial ideal whose graded Betti numbers are larger than those

of all the strongly stable ideals in Hilb(H, m). However, by Theorem  4.1.10 we know that for

any strongly stable I1, I2 ∈ Hilb(H, m) that M(I1, m) = M(I2, m). Furthermore, as we have

shown in the previous section for any strongly stable ideal I we have HF(I) = HF(M(I, m)),

reg(M(I, m)) ≤ m, and βij(M(I, m)) ≥ βij(I). Hence we are done.

Recall that in general the lexsegment ideal corresponding to a given saturated ideal is

not necessarily saturated. Therefore we must also define the saturated Mall ideal.

Definition 4.2.5. Let I be a saturated homogeneous ideal of S. Let Ĩ = D-ginrevlex(I) ∩ S̄.

Then we define Msat(I, m) = M(Ĩ , m)·S, where M(Ĩ , m) is computed inside k[x1, . . . , xn−1] =

S̄.

Note that in the above definition one can assume without loss of generality that the base

field k is infinite. Hence such a general linear form ` will always exist. It then follows from

the above definition of Msat(I, m) that xn is a nonzerodivisor of S/Msat(I, m).

Remark 4.2.6. Note that for a strongly stable saturated ideal I we have that HF(Ĩ) =

HF(M(Ĩ , m)) which means that HF(I) = HF(Msat(I, m)). Further reg(Ĩ) ≤ m gives that

reg(M(Ĩ , m)) ≤ m. Hence reg(Msat(I, m)) ≤ m and Msat(I, m) is a strongly stable saturated

ideal.
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We now have the following.

Theorem 4.2.7. Assume k is a field of any characteristic and fix a Hilbert function H. For

all m, provided Hilbsat(H, m) 6= ∅, then there exists an ideal J ∈ Hilbsat(H, m) such that

βij(J) ≥ βij(I) for all i, j ∈ N and all I ∈ Hilbsat(H, m).

Proof. For any arbitrary ideal I ∈ Hilbsat(H, m) the ideal D-ginrevlex(I) is a saturated

strongly stable monomial ideal with the equalities HF (I) = HF (D-ginrevlex(I)) and reg(I) =

reg(D-ginrevlex(I)), Furthermore, as we proved in the previous chapter there is the pointwise

inequality between Betti numbers βij(I) ≤ βij(D-ginrevlex(I)). Hence we only need to show

that there exists a saturated monomial ideal whose graded Betti numbers are larger than

those of all the strongly stable ideals in Hilbsat(H, m). Let I ∈ Hilbsat(H, m) be an arbitrary

strongly stable ideal. As previously stated by the definition of Msat(I, m) we have that xn

is a nonzerodivisor of S/Msat(I, m), HF(I) = HF(Msat(I, m)), reg(Msat(I, m)) ≤ m, and

Msat(I, m) is a strongly stable saturated ideal. As going modulo xn does not change the

Betti numbers of a strongly stable saturated ideal βij(Ĩ) ≤ βij(M(Ĩ , m)). It follows that

βij(I) ≤ βij(Msat(I, m)) and we are done.

4.3 Green’s Hyperplane Section Theorem

Recall the statement of Green’s Hyperplane Section theorem, in its strongest form, which

was introduced at the beginning of this chapter.

Theorem 4.3.1 ([ 19 ] [  20 ] [  21 ]). Assume |k| = ∞ and let I ⊆ S be a homogeneous ideal with

Hilbert function H and ` a general linear form. Then for all d ≥ 1

HF (S/(I + (`d))) ≤ HF (S/(lex(I) + (xd
n))).

Furthermore when I is strongly stable, ` can be chosen to be xn.

The extremal properties of the Mall ideal give us the following result, which is similar to

the strongest form of the hyperplane theorem.
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Theorem 4.3.2. Let I ⊆ S be a strongly stable ideal. Then

HF(S/(I + (xd
n))) ≤ HF(S/(M(I, m) + (xd

n))).

Proof. For degree t, t < m this follows immediately from Green’s Hyperplane section theorem

as M(I, m)t = lex(I)t for t < m. For degree t = m when d = 1 we have equality between

HF(S/(I + (`))) and HF(S/(lex(I) + (xn))) in degree m due to Theorem  4.1.9 . When d > 1

this theorem follows again from Green’s Hyperplane Section theorem due to the construction

of the Mall ideal, because in particular we have

HF(S/((I : xn−1)m−1 + (xd
n))) ≤ HF(S/(lex((I : xn−1)m−1) + (xd

n))).

But as noted in the definition of the Mall ideal, Im = Im,[0] ⊕ (I : xn)m−1 · xn. As the Hilbert

functions of Im,[0] and M̄ are identical the inequality follows.

For d > m this statement follows from the above reasoning in conjunction with Remark

 4.1.4 .
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