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ABSTRACT

In this thesis, we address two applications of threshold cryptography — designing in-

formation escrows and key-distribution in cryptocurrency systems. We design escrow mech-

anisms in two-party and multi-party scenarios such that any unauthorized revelation of

data results in loss of cryptocurrency by the dishonest party. Later, we discuss user men-

tal models in adopting cryptocurrency wallets and propose a protocol to efficiently provide

cryptographic keys to the users in large-user systems.

An information escrow refers to users storing their data at a custodian such that it can be

revealed later. In the case of unauthorized leakage of this data by the custodian (receiver of

data), taking legal actions is expensive, time consuming and also difficult owing to difficulty

in establishing the responsibility. We address this by automatically penalizing the custodian

through the loss of cryptocurrency in case of leakage. Initially, we consider a two party

scenario where a sender forwards multimedia data to a receiver; we propose the Pepal protocol

where any total or partial leakage of data penalizes the receiver. To avoid single point of

failure at the receiver in a two-party system, we extend the protocol to a multi-party system

where a group of agents offer the escrow as a service. However, this introduces a collusion

scenario among the rational agents leading to premature and undetectable unlocking of the

data. Addressing this, we propose a collusion-deterrent escrow (CDE) protocol where any

collusion among the agents is penalized. We show that the provably secure protocol deters

collusion in game-theoretic terms by dis-incentivising it among the rational agents.

In the second part of this work, we investigate the mental models of cryptocurrency

wallet users in choosing single-device or multi-device wallets along with their preferences.

We investigate the user-preferred default (threshold) settings for the key distribution in the

wallets. We then propose the D-KODE protocol, an efficient key-generation mechanism for

cryptocurrency systems where either the payee or payer may not have the cryptographic setup

but wish to transact. The protocol utilizes a practical black-box secret sharing scheme along

with a distributed almost key-homomorphic PRF to achieve the threshold key distribution.
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1. INTRODUCTION

1.1 Information Escrows

Information Escrow (IE) refers to the responsibility of safe storage of the data at a cus-

todian [  1 ]; an IE service [  2 ] allows a user to encrypt her sensitive message to some condition,

such that the message can only be revealed after the condition is met. This condition can be

anything the user chooses and can be checked by a program (or smart contract). For exam-

ple, these escrows can include checking for the share value of some company hitting a certain

value, temperatures rising to a certain level to release funds for environmental programs,

allegation escrows [  3 ]–[ 5 ] or timed-release encryption [ 6 ]–[ 9 ] where users send messages to

the future.

Offering escrow mechanisms as a service is increasing both in terms of service offerings

and adoption. Examples include simple use cases of storing data in the cloud by individual

users and software escrows by firms like Escrowtech [  10 ] and Iron Mountain [  11 ]. These

firms provide software escrow services to technology companies that routinely appear on

the Fortune 500 list. However, the cloud platforms and escrow services increasingly find

themselves vulnerable to data breach attacks [ 12 ]–[ 15 ].

In the case of cloud storage or escrow offering by a single party, the user is forced to trust

the service provider to not reveal their data to any third party. To overcome this, escrow

services are realized using multiple agents in a distributed setting as threshold escrows.

However, in such a distributed cryptographic setting, the current protocols [  3 ]–[ 5 ], [  7 ]–[ 9 ],

[ 16 ]–[ 19 ] make a non-collusion assumption on the parties [  20 ]–[ 22 ], assuming that at least

a subset of a certain size of parties are always honest. However, this can not be true in a

more realistic rational setting; any rational agent would collude with other agents to reveal

the information stored in the escrows to maximize their utility.

In this work, we address the problems of leakage and collusion in escrow mechanisms —

first, we develop a protocol Pepal that penalizes the dishonest receiver or service provider

even under partial data leakage in a two-party setting. Then, we consider a more general

threshold escrow setting with rational agents; the agents are free to collude to maximize their

utility. Our CDE protocol deters any collusion among the agents to pre-maturely reveal or
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reconstructs the data by penalizing through loss of cryptocurrency deposit. The proposed

provably secure protocol ensures that the agents do not collude in game theoretic terms.

Two-party escrow mechanisms and data leakage. Data breach attacks on cloud plat-

forms are increasing every year [  12 ]–[ 15 ], the reasons for which vary from compromises of

ill-maintained data servers to careless data custodians. Although it has been observed and

reported that 90% of the data breaches can be avoided with good security practices on the

custodian’s infrastructure [  23 ], there is no evident decrease in the number. Any legal re-

course is expensive and time-consuming. To address this, we introduce a complementary

security mechanism that is inexpensive, automated, and not restricted by the geo-political

boundaries to disincentivize leakage of data. In particular, our goal is to make the data

custodians more accountable through automatically enforceable monetary penalties result-

ing in immediate loss of funds. We ensure the penalization of even partial leakages (Pepal)

by enforcing a cryptocurrency claim-or-refund smart contract with the deposit made by the

data receiver.

Applicability scenarios for Pepal contracts range from industrial media custodianship,

data and software escrows, leaking privately shared personal data (pictures and other media

files) of others on social media and even to non-disclosure agreements between mutually dis-

trusting entities [  24 ]. Pepal can be useful in such circumstances by automating the monetary

recovery procedure. We assume that the data sender and the custodian agree on an amount

of money that will be awarded to the owner should specified documents be demonstrably

leaked. Towards automatically ensuring that the owner will receive the funds, this amount

could take the form of a surety bond that is held in trust by a Bitcoin or other permis-

sionless/permissioned blockchain-based cryptocurrency smart contract. Another interesting

use case is with users downloading paid media that should not be publicly shared on online

platforms. The downloaders make a timed deposit along with the actual payment, for an

agreed time and value for the download. If no dishonest sharing happens, it will be returned

to the downloader/customer else it would be forfeited.

Multi-agent threshold escrow mechanisms. In a distributed/threshold information

escrow (TIE) service, the input message gets shared among a group of agents through a
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suitable distributed cryptographic primitive. Here, on one hand, a threshold number of

agents are expected to combine their shares to open the message when the opening condition

is met, and on the other hand, the message remains secret as long as only a lower than

the threshold number of agents get compromised. While this threshold-bounded adversary

assumption looks reasonable for many applications of distributed cryptography (such as

threshold signatures wallets), it is indeed a stronger assumption for IE applications; these

applications at times require significant longevity of usage.

If the escrow agents running a TIE service decide to collude and open a message before

the attached condition is satisfied, they can do it passively in an undetectable manner. As

the agents may collude among themselves in an undetectable manner, it is difficult to prevent

such collusion over a long period of time; unless the protocol design itself makes collusion

non-profitable. In this work, we design such a collusion deterrent protocol CDE where the

best strategy for any rational agent will be to not collude.

Our protocols do not preclude the use of the court system, they simply complement it

or shift the responsibility of bringing legal action to the entity seeking to recover their bond.

Allowing an escalation to court is important as some disclosures are in the public interest

(whistle-blowing) [  25 ]. In fact, in certain cases, a third party might pay the value of the

bond for the information (news media, crowdfunding, etc.). We expect that the proposed

mechanisms encourage the parties involved to follow better security practices.

1.1.1 Contributions regarding information escrows

Pepal: Penalizing data breaches in a two-party setting. We formalize and provide a

solution direction to the problem of automatically settling intentional or unintentional data

breaches with a blockchain smart contract, eschewing the traditional recourse of costly legal

action. Our Pepal protocol which achieves it, is a crypto-augmented smart contract system

obtaining an arbitrator-free settlement. It comprises a claim-or-refund smart contract, a ro-

bust watermarking scheme, a proposed cryptographic primitive – Doubly Oblivious Transfer

(DOT), and a non-interactive zero-knowledge (NIZK) proof for mutually distrusting parties.
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In our core protocol, the sender and receiver create a claim-or-refund transaction on

Bitcoin [  26 ]–[ 28 ] where an amount is deposited that can be spent at any time with a jointly

signed transaction or spent after a period of time by an sender-only signed transaction.

The document provided to the receiver has the receiver’s signing (private) key embedded

in it with a robust binary watermarking scheme that cannot be removed (or retrieved) by

anyone except the embedding party. The challenging aspects of the Pepal protocol involve

arranging for the signing key to be embedded such that (1) the sender does not learn the

value of the key at the time of embedding, (2) the receiver does not learn the document

contents until the key is embedded, and (3) the sender is convinced the embedded key is

the receiver’s correct signing key. Within these constraints, to perform the embedding the

parties must jointly perform a two-party computation with their respective private inputs.

Our novel DOT and committed receiver oblivious transfer (CROT) protocols, securely realize

this two-party computation to ensure that the sender can retrieve the receiver’s embedded

key from the document if it leaks (widely enough to reach the sender) and spend the deposited

cryptocurrency.

Given the inherent non-cryptographic robustness guarantees of the robust watermarking

system, we also analyze partial data disclosures. In particular, even when the receiver decides

to reveal the document partially, our proposed DOT protocol ensures that the embedding

party or the sender can retrieve significantly more bits than when the standard oblivious

transfer is used for the transfer. For example, when the receiver’s 256-bit signing key is

embedded 16 times in the multimedia document, even a 15% leakage of document blocks

reveals roughly 235 bits of receiver’s key to the sender with DOT; as opposed to roughly only

50 bits that are revealed when oblivious transfer is employed.

CDE: Collusion-deterrent threshold information escrow. In the form of collusion

deterrent escrow (CDE), we offer a solution direction and a provably secure protocol to

address the longitudinal trust issue with threshold information escrows. If more than a

threshold number of escrow agents collude to open some particular locked message from

a user (say Alice), the proposed distributed protocol ensures that the locked deposits of

the agents get released to an anonymous subset of agents (among the colluding agents)
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prescribed by Alice. Thus, the protocol disincentivizes collusion, the agents will not attempt

to collude to open any user message for the fear of losing their deposits and getting banned

from offering any future services. Non-collusion assumption is extremely prevalent in the

distributed cryptographic literature [  16 ], [ 18 ], [ 19 ], [ 29 ]–[ 31 ] and overcoming it has been a

significant barrier for the community for a long time.

It is typically assumed that out of n agents, a maximum of t agents can be corrupted who

can act maliciously while the other n−t are honest and follow the protocol without collusion.

However, in this work, we let all the agents be rational rather than honest, allowing collusion.

They act only to maximize their utilities. The t corrupted parties can deviate arbitrarily from

the protocol. Through game-theoretic analysis, we show that with the proposed mechanism,

offering the encryption service in a non-collusive manner is the best response strategy for

the agents.

We define our collusion deterrent escrow concept as an ideal functionality FCDE; towards

realizing it, we formally define and use a cryptographic primitive called distributed receiver

oblivious transfer (DROT). DROT is a natural distributed version of the oblivious transfer

[ 22 ] protocol, where multiple receivers share the choice bit in a threshold manner. Our CDE

protocol employs a novel combination of DROT, robust bit watermarking, distributed key

generation [  30 ], [ 31 ], and secure bit decomposition [  32 ]–[ 34 ] to securely realize FCDE in the

mixed-behavior model [ 35 ] where the agents are either rational or malicious The protocol

supports any condition that can be checked through a blockchain smart contract (even

through interaction with the real world) as a condition of data release in the protocol.

1.2 Cryptocurrency wallets and threshold key management

The cryptocurrency boom has seen millions of people adopting digital assets; the recent

economic successes [ 36 ]–[ 38 ] have enthused a broad population to explore them. The diversity

in the needs and objectives of these cryptocurrency users is vast, ranging from just being

enthused by technology to trading, sometimes even using all of their savings. With increasing

adoption and valuation, the attacks on the system have also seen a rise. To combat these
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attacks, designers constantly improve the security models with different architectures and

user preferences in mind.

However, the number of users of each popular cryptocurrency wallet  

1
 (or crypto-wallet)

such as Coinbase [ 39 ], [  40 ] and Binance [  41 ],[ 42 ] indicates higher popularity of wallets

that seem (cryptographically) weaker in the security model they offer. This popularity

can be because of various reasons, including people trusting the wallet firms, opting for

wallets based on popular opinions and different security attitudes, etc. These variations

in knowledge, understanding of security models, and risk perception may also significantly

affect the choice of wallets.

Recent studies [  43 ]–[ 47 ] attempted to understand usability and challenges while per-

forming transactions with crypto-wallets in use. They analyze the wallets using cognitive

walk-through [  48 ] and also study the common misconceptions by the users regarding the role

of wallet firm [ 43 ].

The focus of most of these previous works has been to characterize the usability and

understanding of the in-use traditional single-device wallets. However, so far, there have been

no studies regarding the emerging (and arguably more secure [  49 ]) multi-device wallets that

analyze the users’ mental model of the security and key management of multi-device wallets

to understand the barriers to their adoption. To put simply, a single-device wallet is a wallet

with secret information (a secret key) stored in a single location. In contrast, in a multi-

device wallet, the secret information is divided and stored on multiple devices, including

servers hosted by the wallet firm and the user’s devices. Owing to the increasing risks of

key-compromise attacks [  50 ], [ 51 ] and exchange hacks [ 52 ]–[ 54 ] on single-device wallets, one

may expect a greater enthusiasm for the new and emerging multi-device wallets (e.g., Torus

wallet [  55 ], ZenGo [  56 ]) which significantly mitigate these issues. However, in adoption,

multi-device wallets lag far behind their single-device counterparts. This raises an important

unanswered question: Is there an inherent gap between users’ security expectations and the

guarantees provided by current multi-device solutions, or are the multi-device wallets just

ahead of their time? Here, we seek an answer to this question.

1
 ↑ A cryptocurrency wallet is an app that allows cryptocurrency users to store and retrieve digital assets.

They typically involve a way to guard a secret key associated with the assets.
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Specifically, in this work, we attempt to understand the user’s perception towards multi-

device wallets and qualify the gap between their designed security models of key management

and the users’ mental model. The study is also the first to consider distributed cryptogra-

phy [  57 ], [  58 ] and its usability along with user preferences in wallets. Specifically, we con-

ducted a survey-based study of 255 participants; analyzed their responses qualitatively and

quantitatively to understand their current usage, choices, and if they are willing to change

them given certain minimum information. Primarily, we investigate three research questions

(RQs):

RQ1: What are the current usage-based groups, their preferences of wallets, and on what

factors are they based?

We investigated this question by asking the participant detailed questions about their

current cryptocurrency wallets, their usage, and the features that made them choose a partic-

ular wallet. We enquire if their choice has been affected by ratings and reviews of the existing

wallets. We also investigate their familiarity with different wallet types, including single and

multi-device wallets, and their security concerns. Based on usage and preference responses,

we analyze that all the participants behave as two groups: Newbies and Non-newbies. The

newbies are recent users, while the non-newbies are relatively experienced users who have

been using the wallets longer and invest more savings. The majority of participants use

single-device wallets; however, more than 75% of the participants are concerned about losing

funds by losing the key at the client device or compromising the secret key at the servers.

At this point in the survey, both the groups are not very familiar with multi-device wallets.

RQ2: Provided essential and sufficient information, are the users willing to shift to

multi-device wallets? If not, why not?

We investigated this question by first providing the users with essential knowledge re-

garding both single-device and multi-device wallets and then collecting feedback on the

preferences. In particular, we asked the participants to watch two short videos on single and

multi-device wallets. Our videos explain the single-device wallets, their challenges, and how

multi-device wallets can mitigate them. After the videos and knowledge-check, we collected

the preferences and feedback if the participants were willing to adopt multi-device wallets.
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71.9% of participants mentioned they are ready to shift to multi-device wallets; however,

20.8% of the participants wanted to stick to single-device wallets.

RQ3: What default key-management and architectural settings do they prefer for different

wallets?

We investigated this question by taking feedback for single and multi-device wallets

on the secret information (key) location preferences under different possible attacks. We

also took feedback regarding the choice of key storage of wallets under various government

characteristics where the wallet firm may host servers in locations governed by multiple laws.

We find that these government characteristics significantly impact the participants’ key-

location preferences from the survey. We also analyze how the participants prefer different

settings, including the number of servers of the wallet firm storing the user keys. 63.13% of

the participants preferred a small number of reputed servers compared to 31.76% choosing a

higher number of servers. We provide a principled analysis of users’ preferences by obtaining

insights into why the users would or would not select multi-device wallets.

We observe that our results offer a few interesting insights and novel research directions

for the threshold/distributed cryptography research itself. In the study, the participants

expressed a desire for more control over their keys even when using multi-device wallets; the

research community can focus on models achieving the same. The researchers should also

consider more general adversary and access structures for multi-device wallets; however, the

current distributed cryptographic systems literature and practice are pretty thin beyond the

standard (T−1)-out-of-N adversary. The participants also identified a privacy-accountability

trade-off between existing types of multi-device wallets, which presents an exciting challenge

for the distributed cryptography community.

1.2.1 Threshold key distribution

With the emergence of blockchain systems, for the first time, we are tokenizing our

financial and supply-chain assets using cryptographic (private/signing) keys. However, if a

user loses their private key, they lose the associated assets—there is no recovery mechanism

as with the typical password-based authentication. Given the general lack of familiarity
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with the technical aspects of public-private key management and maintenance, most first-

time users choose custodial wallets [  39 ], [ 41 ], [ 59 ], where a third party controls their keys.

However, these third parties become single points of failure and can be targeted for large-

scale thefts as well as financial surveillance and censorship. In general, this key management

problem combined with a lack of simpler tools for key setup is regarded as a bottleneck of

large-scale blockchain adoption. While start-ups such as Torus [  60 ] are developing threshold

cryptographic solutions towards maintaining secrecy and availability of the clients’ keys,

their approaches do not scale well as the number of clients grows. This work aims to provide

a scalable key management system to generate keys on the fly for the rapid proliferation of

blockchains to millions of users.

We consider two typical transaction scenarios with an online client Alice and an of-

fline/new client Bob. In the first simple scenario, a cryptocurrency user Alice does not wish

to generate and manage her keys locally on her own device. In the second more interesting

scenario, Alice wishes to pay Bob, but she does not have Bob’s public key. This can be be-

cause Bob either has never generated a key pair and is not available to engage immediately

(as in the first scenario), or Bob is offline with his already generated public key not being

available to Alice yet. For a concrete example, consider a cryptocurrency firm owned by

Alice wishing to introduce their coins to new clients by offering free tokens (airdrops)[ 61 ]–

[ 63 ]. Alice should be able to compute the public key corresponding to Bob’s public string

(identity) such that later Bob can use the same string to generate the related private key

and claim funds.

Existing distributed key generation (DKG) approaches. Current solutions [  60 ], [  64 ]

off-load the key generation and storage to a set of n servers while preserving the secrecy

of the keys against any t servers. The servers generate key shares in a distributed form by

running a distributed key generation (DKG) [  30 ] instance for each identity and providing the

secret key or public key shares for the identity as required. These architectures do not scale

well because the servers need to store shares of every client and have to perform several DKG

instances to generate the key shares for all the clients resulting in high computational and

communication overhead. The overhead further amplifies if the system, over longer terms,
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Alice

Figure 1.1. Scenario 1: Alice uses her public string IDA, obtains evaluations
and computes private key skA after authentication

attempts to provide proactive security [  65 ] against mobile adversary [  66 ]: All the millions

of key shares need to be refreshed periodically, giving rise to issues of availability while the

computation and communication intensive refreshing process are in progress.

Employing distributed PRF. In this work, we generate keys on-the-fly as pseudo-random

function (PRF) [  67 ]–[ 69 ] evaluations. A PRF is a deterministic function of a master (private)

key and an input tag that is indistinguishable from a truly random function of the input and

we plan to use the PRF output as a private/signing key. As a single node holding a master

key K introduces a key escrow and a single-point-of-failure for PRFs, we distribute the trust

using distributed PRF (DPRF) such that a set of servers holds the master key K in a secret

shared fashion and generates shares of the client’s private keys as partial PRF evaluations.

Indeed, generating private keys using DPRFs [  70 ]–[ 72 ] is already considered in the literature

and we can employ any DPRF solution for our first scenario involving only Alice. However,

none of the existing solutions is suitable for our second scenario involving Alice obtaining

public keys of an offline Bob.

As an illustrative example consider private key generation for an identity (tag) IDA

using the well-known PRF by Naor et al. [ 70 ], [ 72 ]. This involves computing skA =
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Pay to BobAlice

Figure 1.2. Scenario 2: Alice uses Bob’s public string IDB to obtain Bob’s
public key shares and computes his public key pkB

H2
(
F (K, IDA)

)
= H2

(
H1(IDA)K

)
, where hash functions H1(·) and H2(·) map to a multi-

plicative group (of elliptic curve points) G and a scalar additive group Zp respectively. When

the key K is shared among multiple servers, computing the key skA from partial evaluations

is straight-forward for Alice: she first computes H1(IDA)K using Lagrange interpolations and

then applies H2 to the output locally. Our second scenario, instead, asks to securely provide

Alice the public key pkB of an offline party Bob with identity IDB. To ensure that Alice

cannot determine skB, computation of pkB = gH2(F (K,IDB)) involves computing hash function

H2(·) through multi-party computation (MPC)—a highly expensive process in the threshold

setting [ 73 ], [ 74 ].

To be able to efficiently generate the public keys, we need a PRF whose output is a

scalar value in Zp and which does not involve H2(·) hash computations in the multi-party

setting. We observe that most other distributed PRF [ 75 ]–[ 77 ] and easy-to-distribute key-

homomorphic PRF constructions [ 78 ] in literature do not satisfy this requirement.

Our Approach. We employ the PRF in the lattice-based cryptography setting, F (X, k) =⌊
H(ID) · k

⌋
p
∈ Zp, k ∈ Zu

q , H(·) ∈ Zu
q , p < q [ 71 ] to generate keys for both the scenarios as

in Figures  1.1 ,  1.2 . It is an almost-key homomorphic PRF, with an error {−1, 0, 1} in the

evaluation for every additive term. The master key K is threshold-shared among the servers.

However, unlike standard threshold designs [  60 ], [  79 ], we cannot employ Shamir secret shar-
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ing (SSS) [  80 ] for sharing k in almost-homomorphic PRF as the reconstruction (Lagrange)

coefficients blow up the error (and error combinations) when computing the PRF output

from the partial evaluations. Another common secret sharing mechanism replicated secret

sharing (RSS) [  81 ], [ 82 ] may be employed as the RSS shares need to be simply added to

compute the value, which ensures that the error remains bounded within the range [−n, n].

However, the number of RSS shares grows exponentially as
(

n−1
t

)
for an (n, t) threshold

structure among servers with t = O(n); this has high storage and share-refreshing compu-

tation overhead and RSS-based distributed PRF can only be applied to settings with ten

or lower servers. Therefore, solving our distributed PRF problem requires going beyond the

commonly employed SSS and RSS schemes.

In this work, we demonstrate that the black-box secret sharing (BBSS) approach [  83 ]

can be made practical towards catering to a higher number of servers; this is the first effort

that realizes its utility in practice. We propose the D-KODE protocol which generates private

and public keys using almost key-homomorphic PRF evaluations, where key-sharing among

the servers is performed through BBSS. Our BBSS instantiation ensures that the evaluation

coefficients are in the set {−1, 0, 1}, resulting in the output key being in a very small range

of keys linear in the number of servers such that Bob can efficiently compute the private key

associated with the public key employed by Alice to pay Bob.

In this work, we demonstrate that the black-box secret sharing (BBSS) approach [  83 ] can

be made practical towards catering to a higher number of servers and employ it for sharing

the master key among the servers; in fact, this is the first effort that realizes its utility in

practice. We propose the D-KODE protocol, which generates discrete-log private and public

keys using almost key homomorphic PRF evaluations, where the master key is shared among

servers through BBSS. Our BBSS instantiation ensures that the reconstruction coefficients

are in the set {−1, 0, 1}. In the scenario where Alice to pays to a new Bob, the small

reconstruction coefficients help Bob efficiently compute the private key of the public key to

which Alice paid.

For share refreshing, in D-KODE, we refresh the shares of the master key instead of

(all the millions of) user keys. This makes share refreshing using proactive secret sharing

independent of the number of user keys resulting in only constant overhead. Further, while
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computing the user keys from PRF evaluations, we use a verifiability mechanism for the

PRF to allow the clients to verify the evaluations. Our prototype implementation provides

D-KODE protocol with BBSS-DKG mechanism for network size up to 50 servers. We observe

that D-KODE starts to outperform the state of the art at 94K keys for a 20-server system.

Using D-KODE, a server supports generating upto ten secp256k1 keys per second per thread.

1.2.2 Contributions regarding threshold key management

• We propose a solution for generating keys where two parties like to transact when either

or both the parties do not have mechanisms for securely generating signing key locally,

even when one of them is offline and the other party only knows his verifiable identity.

• As a key step, we propose efficient approaches to realize black box secret sharing (BBSS)

for practical setting, which can be of independent interest to threshold cryptography [ 84 ].

• We instantiate the first DKG mechanism using BBSS scheme and provide a proactive

secret sharing scheme that supports different node memberships and access structures for

different epochs. Our scheme offers constant computational overhead and hence scales well

with a large number of keys in the system. Through our experimental analysis, we observe

that D-KODE outperforms the plain DKG approach as the number of keys increases to

100 thousand.

• We also provide a verification mechanism for the PRF F (X, k) =
⌊
H(X) · k

⌋
p
∈ Zp, k ∈

Zu
p , H(·) ∈ Zu

q , p < q, which can be of independent interest.

1.3 Organization of the thesis

In Chapter  2 we introduce the building blocks and cryptographic primitives that are

required for the protocols in this thesis. In Section  2.1 of the chapter we describe the vari-

ous multi-party computation primitives including secret-sharing, distributed key generation

(DKG), black-box secret sharing (BBSS) and oblivious transfer (OT). We also introduce

robust watermarking, claim-of-refund contracts and monotone boolean formula for majority

circuits. In Chapter  3 we first define the two party escrow problem, propose the cryptographic
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primitive doubly-oblivious transfer (DOT) in Section  3.3 and propose the Pepal protocol for

achieving automatic penalization in a two party scenario in Section  3.6 . We also provide

the implementation details in Section  3.7 . In Chapter  4 we propose the collusion-deterrent

escrow (CDE) protocol to achieve automatic penalization in a multi-agent scenario where the

agents are allowed to collude. We introduce the problem definition in Section  4.1 , describe

the cryptographic setup in Section  4.3 and the game theoretic analysis in Section  4.4 .

In Chapter  5 we analyze the mental models of users in adopting different cryptocurrency

wallets. We describe the different wallet types and the classification of single-device and

multi-device wallets in Section  5.1 . We analyze the responses of 255 participants, we present

the survey methodology including recruiting, participant demographics, limitations, and the

procedure for quality control in Section  5.4 . We discuss the results of the survey in Section  5.5 

and their implications to the industry and academia in Section  5.6 . In Chapter  6 we develop

the D-KODE protocol which supports efficient threshold key generation and management for

a large set of keys in the system. In Section  6.1.1 we discuss the system setup and provide

an overview of the proposed D-KODE protocol. In Section  6.4 we describe the different

algorithms of the D-KODE protocol and verification procedure of the PRF employed. In

Section  6.7 we describe the proactive black-box secret sharing mechanism and provide the

implementation and performance details in Section  6.8 . Finally we provide the conclusion

and possible future directions in Chapter  7 .
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2. BUILDING BLOCKS AND CRYPTOGRAPHIC TOOLS

In this chapter, we introduce different basic building blocks and cryptographic tools that are

employed in the development of different protocols in this work.

2.1 MPC Primitives

Multi-party computation (MPC) [  85 ]–[ 88 ] is an approach allowing mutually distrusting

parties to collaboratively compute some functions with their private input. We use MPC

modules for distributed key-generation, bit-decomposition, and two-party computation be-

tween the user and each of the agents. We follow the standard online/offline MPC paradigm

such that an offline phase can be leveraged to generate input-independent pre-processed

values. These values are used in the online phase to speed up the computations where the

actual input is involved. For instance, Beaver triples [  89 ] are used to multiply two secret

shares.

2.1.1 Secret Sharing

In a secret sharing scheme [  80 ], [ 90 ]–[ 92 ], a designated dealer shares a secret among a

set of parties such that a certain subset of parties can interact to reconstruct the secret. All

the subsets that are designated to reconstruct the secret are qualified sets and the set of

all qualified sets is called an access structure. The threshold-t access structure T(n,t) is the

collection of subsets of parties of cardinality greater than t. Any subset of parties outside

the access structure has no information about the secret. When the total number of parties

is n, we denote such a scheme as (n, t)-secret sharing, where at least t+ 1 parties are needed

for reconstruction.

2.1.2 Black Box Secret Sharing—BBSS

A black-box secret sharing scheme is a linear secret sharing scheme over a finite Abelian

group and can be instantiated with just black box access to group operations and random

group elements. The secret generation and reconstruction is by linear combination of share
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elements. We use the construction of black box secret sharing scheme such that the recon-

struction coefficients lie in the set {−1, 0, 1}.

In black box secret sharing [ 83 ], the dealer shares an element of an Abelian group (e.g.,

Zq with publicly known q) where the share elements are computed as linear combination of

the secret value and random elements chosen by the dealer. This computation is performed

as a multiplication of a distribution matrix M and the random element vector ρ. Any set

of parties from the qualified set can reconstruct the secret as a linear combination of their

shares.

Share generation. Consider a dealer sharing a secret s ∈ Zq with a set of parties over the

(monotone) access structure denoted by Γ. To generate shares for the parties in BBSS, the

dealer uses a distribution matrix M ∈ Zd×e and a distribution vector ρ = (s, ρ2, ρ3, · · · , ρe)T

with secret s, {ρi}ei=2 uniform randomly chosen from Zq. The vector of share elements

s = (s1, s2, · · · , sd)T is computed as s = M · ρ.

Each party Pi, i ∈ {1, 2, · · · , n} is assigned a set of share elements using a surjective

function ψ : {1, · · · , d} → {1, · · · , n}, d > n. The ith share element si is assigned to the

party ψ(i) who is said to own the ith row of the matrix M . For any subset of shareholders

A, MA ∈ ZdA×e, sA ∈ ZdA denote the set of rows of M and elements of s jointly owned by

the parties in A. We let Tj = ψ−1(j) be the set of all row indices held by party Pj. Any

set A ∈ Γ is a qualified set and sets A /∈ Γ are forbidden sets. The jth share holder holds

dj = ‖ψ−1(j)‖ number of share-units.

The tupleM = (M , ψ, ε) is called an Integer span program (ISP) when M ∈ Zd×e and

the rows of M are labelled by the surjective function ψ. ε = {1, 0, · · · , 0} ∈ Ze is called the

target vector. When M is an ISP for Γ, the conditions specified by Definition  2.1.1 hold

and M can be used as a distribution matrix to realize the access structure. This defines a

reconstruction vector, which is used to reconstruct the secret when M is used as distribution

matrix to share the secret value.

Definition 2.1.1. An integer span program (ISP) [  83 ], [ 93 ] M = (M,ψ, ε) is an ISP of

the access structure Γ if for all A ∈ {1, 2, · · · , n} the following holds: If A ∈ Γ, then there

exists a reconstruction vector λA ∈ ZdA such that M>
AλA = ε, where ε = {1, 0, · · · , 0}. If
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A /∈ Γ, there exists a sweeping vector k = (k1, k2, · · · , ke) ∈ Ze such that MAk = 0 ∈ Zd

with k> · ε = 1.

The first condition states that for every qualified set, there exists a reconstruction vector,

thereby making the reconstruction of the shared secret possible.

Reconstruction. For a qualified set A, the secret value s is reconstructed as s = s>
A · λA.

Here sA is the vector of all share elements (subset of vector s) held by the parties in the set

A and λA is the corresponding reconstruction vector.

To realize a threshold access structure, one needs to compute the corresponding distribu-

tion matrix M . For that, we use the Benaloh-Leichter (BL) secret sharing construction [  93 ],

[ 94 ] where the access structure is expressed as monotone boolean formulae. The BBSS scheme

using the BL construction ensures that elements of the reconstruction vector λ are small and

in {−1, 0, 1}.

Verification. : Each party Pi receives the share vector si and the broadcast commitment

vector C. The matrix M corresponding to the access structure is locally computed by all

the parties.

The parties verify each of the received share elements as follows: let the ith row of matrix

M be (mi,1,mi,2, · · · ,mi,e), the party with share element si (and s′
i) verifies the share using

the following verification: gsihs′
i = ∏e

j=1 C
mi,j
j

e∏
j=1

C
mi,j
j =

e∏
j=1

(
gρjhrj

)mi,j

=
e∏

j=1

(
gρjmi,j

)(
hrjmi,j

)
= g

∑e
j=1 ρjmi,jh

∑e
j=1 rjmi,j = gsihs′

i

If the verification does not hold, the party with the share element si broadcasts a com-

plaint along with the share elements (si, s′
i) to all the parties. If more than t+ 1 complaints

are broadcast in the system, the dealer is deemed malicious, else the dealer responds to the

complaint by broadcasting the share forwarded to the party.
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2.1.3 Oblivious Transfer

1-out-of-2 oblivious transfer (OT2
1) is a two-party (a sender and a receiver) computation

mechanism, where the sender has two messages M0 and M1 and the receiver has a bit

b ∈ {0, 1}. The goal is to transfer Mb to the receiver and at the end of the protocol, the

receiver should not learn any information about M1−b and the sender should not learn b.

1-out-of-2 Verified Simplest Oblivious Transfer:.

Sender Receiver

Messages M0, M1 choice bit b

a←R Zq
h=ga

−−−→ r ←R Zq

c=grhb

←−−−−

k0 = H(ca)

k1 = H((c/h)a)

p = H(H(k0))⊕H(H(k1) p−→ kb = H(hr)

Verify p′ = H(H(k0)) p′
←− p′ = H(kb)⊕ pb

C0 = Ek0(M0)

C1 = Ek1(M1) C0,C1−−−−→

Decrypt Cb

Figure 2.1. 1-out-of-2 Oblivious Transfer [ 22 ]

In this protocol, by Doerner et.al. [ 22 ] (an augmented version of Oblivious Transfer by

Chou et al. [ 95 ]), given a multiplicative group G and its generator g, the sender initially

chooses a random value a ←R Zq and the receiver chooses a random value r ←R Zq. The

sender transmits h = ga to the receiver who computes c = gab+r and transmits to the

sender. The sender then computes two keys k0 and k1 as k0 = H(ca) and k1 = H(ch−1)a and

computes a challenge p = H(H(k0))⊕H(H(k1) and forwards it to the receiver. The receiver

computes the key kb = H(hr) and returns p′ = H(kb)⊕ pb. After verifying if p′ = H(H(k)),

the sender encrypts M0 and M1 using these two keys generating C0 and C1 which are then

forwarded to the receiver. The receiver decrypts the message Mb using the key kc = hr.
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OLE

Figure 2.2. Oblivious linear function evaluation (OLE)[ 96 ]. The sender has
two inputs a, b ∈ Zp, the reciever has input x ∈ Zp, the receiver obtains the
value a+ (b− a) · x ∈ Zp obliviously.

Depending on b, only one of k0 and k1 would be equal to gar computed by the receiver. The

other key gar−r2 can not be computed by the receiver and hence learns no information about

Mb−1. As the sender just encrypts and forwards the two messages, learns no information

about the bit b. Figure  2.1 provides the depiction of the protocol. The advantage of adding

the verification step is that it forces the receiver to compute the keys before receiving the

encryptions and makes the protocol (UC)secure in the real-world ideal paradigm.

2.1.4 Oblivious linear function evaluation—OLE

OLE is a two-party computation protocol where the sender has inputs a, b ∈ Zp and the

receiver has the input x ∈ Zp. After running the protocol, the receiver obtains the value

a+(b−a)·x ∈ Zp and the sender obtains > if the protocol run is successful (refer Figure  2.2 ).

The sender does not have any information about x or the value obtained the receiver. There

are several constructions of OLE [ 96 ]–[ 100 ]; in this work we consider OLE as a UC-secure

blackbox. The ideal functionality of OLE is provided in Figure  2.3 .

2.1.5 Distributed key generation—DKG

A (n, t + 1) DKG [ 30 ], [ 31 ] mechanism allows n parties to generate a public key and

shares of the corresponding secret key in a distributed manner. At the end of the generation

phase, each node has a share of the secret key sk and at-least t + 2 parties are needed to

reconstruct the key. No subset of parties with the size less than t+ 2 has any knowledge of

it. A DKG mechanism is defined by two phases, the sharing phase at the end of which every

party holds a share JskKj of the key sk, and the reconstruction phase involving every node
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The functionality FOLE interacts with the sender S, receiver R and adversary A. The sender
S has two messages a, b and the receiver has a random value x ∈ Zp.

• Upon receiving the message (inputS, a, b) from S, verify that there is no tuple stored,
else ignore the message. Store a, b, forward the message (input) to A.

• Upon receiving the message (inputR, x) from R, verify that there is no stored tuple, else
ignore the message. Store x, forward the message (input) to A.

• Upon receiving the message (deliver, S) from A, check if both a, b and x are stored, else
ignore the message. Send (delivered) to S.

• Upon receiving the message (deliver, R) from A, check if both a, b and x are stored, else
ignore the message. Set y = a+ (b− a) · x and send (output, y) to R.

Functionality FOLE

Figure 2.3. Ideal Functionality of OLE [ 96 ], [ 97 ]

broadcasting their share and running the reconstruction algorithm on the collected shares.

The two algorithms for share generation and reconstruction are:

• dkg.share(n, t+1, λ) takes in the total number of parties n, the threshold t+1, the security

parameter λ and returns to each party AIND, a share JskKj of the secret key sk and the

corresponding public key pk.

• dkg.recon(JskK) takes in the vector of shares with at least t+ 2 verified shares and returns

the reconstructed value sk.

2.1.6 Bit decomposition

A bit decomposition protocol [  32 ]–[ 34 ] takes a secret share as input and transforms the

share into bit-wise shared values i.e., for a value sk, upon input of all the shares JskK, the

protocol outputs the shares JskiK, where ski, i ∈ [0, λ − 1] are the bits of the value sk. It is

defined by two algorithms:

• bit.decomp(λ, JskK) takes in the total number of users and the shares of the secret key sk

and returns to every agent AIND a vector JskiKIND of shares of the bits of the secret key.
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• bit.recon(JskiK) takes in the vector of shares of a particular bit and returns the recon-

structed bit ski.

2.2 Pseudo Random Function

A pseudo-random function (PRF) family [ 67 ]–[ 69 ] is a set of keyed functions with a com-

mon domain and range, such that no efficient algorithm can distinguish between a randomly

chosen function from the PRF family and a random oracle. A key homomorphic PRF [ 71 ],

[ 101 ] is a PRF that is homomorphic with respect to the key-input of the function. It can be

used as a distributed PRF [  70 ], [  72 ], [  75 ] when the key is shared among the servers. With

an almost-key homomorphic PRF, the computed evaluation from the shares may differ (may

not be equal) from the evaluation of the PRF.

In this work, we use an almost-homomorphic PRF which is based on the Learning-with-

rounding (LWR) assumption (Definition  6.1.2 ).

Employed PRF [  71 ]. Given a hash function H : X → Zu
q , a key vector k ∈ Zu

q and with

p < q, the PRF evaluation F : X ×Zu
q → Zp of the string X is F (X, k) =

⌊
H(X) · k

⌋
p
∈ Zp.

That F (·, ·) is a PRF in the random oracle model follows directly from the LWR assump-

tion discussed above, where H(X) corresponds to matrix A with a single row (m = 1) and

the secret key k to vector s.

In this work, we use the above PRF in the distributed setting, with a key K shared among

them and among n servers and each server locally computing a (partial) evaluation of the

PRF on some input X non-interactively. Any party wishing to compute the PRF F (X, k)

inputsX to the servers and obtains evaluations from the each of them to reconstruct F (X, k).

2.3 Robust Bit Watermarking

A robust watermarking scheme is defined by the property that the watermark can not be

removed without loss of information from the watermarked data. The watermarking scheme

is defined by three algorithms, for key generation, embedding the watermark and detection

of the watermark. M is the set of all possible documents, W ∈ {0, 1} the set of all possible
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watermarks, K is the set of all keys and n is the security parameter. The three algorithms

define the scheme:

• wm.gen (n): Given n, outputs keys kemd, kdet ∈ K probabilistically.

• wm.embed (M,w, kemd): Takes the document M , watermark w ∈ W and embedding key

kemd as inputs and generates a watermarked document M ′.

• wm.detect (M ′, kdet, w): Takes the watermarked document M ′, the detection key kdet and

the watermark w as input and outputs > if the watermark in M ′ matches w, else outputs

⊥.

The watermarking scheme is expected to satisfy the properties of imperceptibility and

robustness. To describe the properties, we adapt the watermarking definition suggested by

Adelsbach et al. [ 102 ]. We assume a given similarity function sim(M,M ′) which returns ⊥

if the two documents M and M ′ are not similar and > if they are.

• Imperceptibility: The watermarked and the original versions of the document should be

similar i.e., ∀M ∈M, ∀kemd ∈ K and ∀w ∈ W ,

if wm.embed(M,w, kemd)→M ′, then sim(M,M ′) = >.

• Robustness: No known algorithm should be able to effectively change or remove the wa-

termark in the watermarked document without leaving the document itself unusable, even

with the detection key.

Our robustness definition is a weaker notion of traditional notion of robustness [  103 ]

which states that the any attempt to remove the watermark should result is destruction of

watermarked data. In terms of real-world applicability, not all watermarking schemes that

are currently used in practice for different kinds of data [ 104 ]–[ 106 ] have a theoretical proof

of robustness. However, for our protocol to be applicable we do need such a proof as long as

there is no known attack (till the end of expiration of escrow condition) on the watermarking

scheme being employed. This is reflected in the robustness definition provided above. While

theoretically, an algorithm may exist which can remove the watermark from the data, we
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just require that such an algorithm should not be available or known to humans; Rogaway

[ 107 ] formalized this approach.

We also need the watermarking to be imperceptible and the watermarked data to be

‘similar’ to un-watermarked data implying no loss of information from the original data. We

do not need cryptographic indistinguishability of watermarked and un-watermarked data

because the agent is aware that the data is watermarked, they do not (and should not) know

what the bit that is watermarked in the data.

2.4 Claim-or-refund deposit

A claim-or-refund escrow deposit involves a deposit that can be claimed when possession

of certain information like secret keys is proven or is returned to the creator upon the

embedded condition being satisfied. In a timed-release scenario with a time-lock deposit,

any party which produces the valid signature will be able to transfer the funds before the

time period specified in the contract expires, else the funds are returned to the party creating

the deposit. We depict below in Algorithm  1 , the claim-or-refund contract logic used in the

protocol.

Before the start of the protocol, every agent makes a deposit locking the funds to the

contract which requires the signature using the secret key sk of the protocol instance. The

condition specified by the user and agreed on by all the agents is embedded into the contract

such that as soon as the condition is met (like the expiry of a time period), the funds are

transferred back to the agents. Depending on the complexity of the condition and the choice

of the user, different cryptocurrency systems can be used for the contract creation.

The cryptocurrency script or smart contract implements the required claim-or-refund

functionality with the embedded condition.

2.4.1 Bitcoin Claim-or-Refund Contract

Bitcoin [  108 ] is a peer-to-peer decentralized network where participants are represented

by a public and private key pair. The hash of the public key serves as the user’s address and

the private key is used to sign and authorize transactions. Script in Bitcoin is a stack-based
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Algorithm 1 Claim-or-refund contract
1: if Escrow Condition == True then
2: Direct the locked funds back to the contract creator
3: else
4: if signature corresponding to public key pk of protocol instance is valid then
5: Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

language simulating a Push Down Automata and is used to write a smart contract. Spending

funds typically involves executing/running two scripts on the spender’s machine. The first

is scriptPubKey which is embedded in the input transaction under the script field. It entails

the conditions that must be met to spend the unspent transaction outputs (UTXO). The

second one is scriptSig which is an unlocking script provided by the user who wants to spend

the UTXO. When scriptSig and scriptPubKey are executed in sequence, the user gets to

know if the transaction is valid. Bitcoin offers both sender and receiver of the funds an

aspect of privacy until the funds in the deposit are directed to a recipient i.e., in our case,

after the documents become public and the key gets revealed to the sender. Such privacy is

not observable in any other non-blockchain financial system.

Time-Locked Compensation Deposits: We construct scriptPubKey with two prominent

Bitcoin scripting language operators: OP_CHECKLOCKTIMEVERIFY and OP_CHECK-

MULTISIGVERIFY. OP_CHECKLOCKTIMEVERIFY allows users to create transactions

whose outputs can only be spent in the future. OP_MULTISIGVERIFY allows the creation

of transactions which need multiple signatures. In our case, the receiver creates a deposit

which is locked till a future time t. The funds of the deposit can be transferred only if both

the signatures of sender and the receiver are submitted before the time t. After time t, the

unspent funds are transferred back to the receiver. Embedding such instructions into the

funds is commonly referred to as a smart contract. Our smart contract automates the claim-

or-refund functionality. The funds are transferred either when the time of the agreement

expires or when the signatures of both sender and receiver are available.

The scriptPubKey that receiver uses in the contract is

IF
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OP_CHECKLOCKTIMEVERIFY OP_DROP

pkR OP_CHECKSIGVERIFY

ELSE

OP_2 pkR pkS OP_2

OP_CHECKMULTISIGVERIFY

ENDIF

Oracles. Based on the condition specified by the user, the smart contract can indeed inter-

act with the parameters outside the cryptocurrency system. Systems like Ethereum support

Oracles [ 109 ] which interact with the outside world with different APIs for information like

weather parameters etc. Depending on the trust imposed on the oracles by the user and the

agents, they can agree on the oracles and the value of the deposit before the start of the

protocol.

2.5 Monotone boolean formula for majority

Majority function [  110 ] of n variables with values in {0, 1} is defined as taking the value

1 if at least n/2 number of variables are 1 and 0 otherwise. Let {xi}n
i=1 be the n variables

over which Majority function Maj(·) is being computed, then

Maj(x1, x2, · · · , xn) =

 1 if ∑
i xi ≥ n

2 ; xi ∈ {0, 1}

0 if otherwise

While majority function of n variables can be realized using non-monotone circuits of size

O(log n), monotonicity places restrictions on the circuit that the circuit should only be

realized using AND and OR gates (but not NOT) gates. Valiant [  110 ] first proved that a

polynomial size monotone circuit is realizable for majority circuit and provided a construction

of size O(n5.3). Subsequent works like one by Hoory [  111 ] discuss majority circuits and

realize threshold structures using majority circuit. Boppanna [ 112 ] showed that O(t4.3n) is

the optimal upper bound on the majority circuit over n variables for a threshold t. Hooray

[ 111 ] further improved the size of the circuit to O(n1+
√

2) while keeping the circuit depth at

O(log n). Goldreich [  113 ] provided an exposition of Valiant’s approach to the majority circuit
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construction, a probabilistic proof while using a different probability amplifier (majority-3)

than the one used by Valiant.

We briefly explain the construction provided in [ 113 ]:

Let the n variables be xi ∈ {0, 1}, i ∈ [n]. Generate m random variables yj, j ∈ [m] by

uniform randomly sampling an index among [n] and assigning the corresponding xi value to

each yj sequentially. When Pr(zi = 1) = p for each i ∈ [3], the probability that the majority

function is 1 is given by Pr(MAJ3(z1, z2, z3)) = 1 is 3(1−p)p2+p3. If p = 0.5+ε, ε ≤ ε0 < 0.5,

then p′ ≥ 0.5 + (1.5 − 2ε2
0)ε. Thus the bias of ε is increased by the factor (1.5 − 2ε2

0) for

each level of the tree. When the number of ones in the initial set of variables xi is n
2 + 1,

the bias of the variables yi at the lowest level of the tree would be 1
n
. This bias is increased

in three steps: First the bias is brought to a constant (< 1
2) using `1 layers of the tree, then

that constant is increased further to be close to 1 using `2 layers, finally the probability of

majority function being 1 when there is majority in the initial value is taken arbitrarily close

to 1, in other words, the probability of function returning 0 when there is majority is made

negligibly small < 2−n in another `3 layers of the circuit. When using majority circuit, using

p = 0.5 for a given n, when MAJ3 nodes are used as probability amplifiers, this would result

in a circuit depth of `1 + `2 + `3 ∼ 2.71 log n. When MAJ3 is expanded using fan-in 2 gates,

we have a circuit implemented using only gates with fan-in 2. This would result in a total

circuit size of O(n5.3).

2.6 Boolean formula and distribution matrix

The circuit is represented as a boolean formula by expanding MAJ3 (z1, z2, z3) as

(z1 ∧ z2) ∨ (z2 ∧ z3) ∧ (z1 ∨ z3), resulting in a monotone boolean formula computing ma-

jority/threshold function. This formula is then used to compute the distribution matrix of

the linear integer secret sharing scheme (LISS). The Benolah-Leichter (BL) [ 94 ] construction

of converting a monotone boolean formula is briefly recollected here.

Consider Boolean functions fOR = f1 ∨ f2 and fAND = f1 ∧ f2 where f1, f2 are either

Boolean functions or literals. Let Ma and Mb are share distribution matrices of f1 and f2

respectively. The share distribution matrices of fOR, fAND are computed as MOR,MAND as
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Figure 2.4. Share distribution matrix for OR and AND functions

shown in Figure  2.4 , where Ca is the first column of matrix Ma and Ra is the rest of the

matrix except the first column of matrix Ma. Similarly Cb, Rb are the first column of matrix

Mb and the rest of the matrix except the first column of matrix Mb respectively. If the

function contains only one literal, it is taken just as column i.e., for any literal f1 = xi, the

matrix is just [1] with Ca = 1 and no Ra.
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3. Pepal: PENALIZING PARTIAL LEAKAGES IN A

TWO-PARTY ESCROW MECHANISM

3.1 Problem Definition

We consider a scenario where a sender wishes to forward a private multimedia document

M to a receiver. The receiver is expected to hold a public key-secret key pair (pk, sk),

where the key sk is a signing key of a (say) Bitcoin wallet corresponding to pk. Instead of

the sender directly sending M to the receiver, we expect the sender and receiver to jointly

compute a function f((M, pk), sk) which should provide the receiver a version Msk of M

that has been tagged (or robustly watermarked) with the key sk. The protocol should abort

(or not produce a meaningful Msk) if sk from the receiver and pk from the sender are not a

matching key pair. At the end of the protocol, the sender does not learn sk or Msk and the

receiver does not learn any further information about M . A cryptocurrency wallet holds the

receiver’s escrow deposit for accountability.

We consider the problem in a mutually distrustful setting, and either the sender or the

receiver can be malicious. A malicious sender can try to learn the signing key of the receiver

so as to steal the deposit. When appropriate, he can also make the document public and try

to accuse the receiver of dishonest disclosure. The malicious receiver, on the other hand, can

try to remove/replace the watermark from the obtained document, and release the modified

version to the public without revealing her key. In such an adversarial setting, we wish to

satisfy the following privacy and integrity goals:

• Sender Privacy: Before the transfer completes, no information regarding the document is

available to the receiver.

• Receiver Privacy: Before the disclosure of document by the receiver, no information re-

garding the receiver’s signing key is available to the sender.

• Sender Integrity: In case of false accusation by the sender, no action is taken.

• Receiver Integrity (Revealing property): In case of disclosure of the document by the

receiver, the signing key of the receiver is revealed to the sender.
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Unauthorized sharing

Penalization

Cryptocurrency Network

Key
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Figure 3.1. Pepal protocol’s high-level view: The sender transfers a water-
marked version of the document to the receiver. The watermark is the secret
key of the receiver unknown to the sender. Upon unauthorized sharing pub-
licly, the sender extracts the watermark (secret key) and penalizes the receiver
by transferring the pre-setup deposit.

We formalize these properties as an ideal functionality in Figure  3.8 in Section  3.6 .

Solution Overview. We propose the Pepal protocol, depicted in Figure  3.1 involving

the two parties Sender and Receiver. The sender has the multimedia document M and the

receiver has the signing key sk. The receiver initially makes a time-locked bitcoin deposit of

an agreed value of funds that can be opened only if the signing-key of the receiver is available.

The sender divides the document into several blocks and creates two watermarked versions

(corresponding to 0 and 1) for each block. The parties run multiple 1-out-of-2 Oblivious

Transfer (OT2
1) protocol instances, one for transfer of each of the document blocks. The

sender uses the watermarked blocks as inputs while the receiver uses each of the bits of his

signing key as choice bits for the OT2
1 s and obtains one version of each block i.e., for a 256-bit

signing key of the receiver, the sender (in the simplest case) divides the document into 256

43



blocks and creates two versions for each block using robust watermarking. The sender and

receiver then perform 256 OT2
1 s, where the choice bit for each OT2

1 is each of the bits of

256-bit key of the receiver. The receiver also proves to the sender in zero knowledge that

the signing key used for the deposit is indeed formed of the bits used for OT2
1 s.

As the document is transferred through oblivious transfer, the sender can not gain any

information about the signing-key of the receiver. However, if the document is revealed/dis-

closed before the time of expiry of the agreement, the sender learns the signing key of the

receiver from the watermark of the revealed document. He can then proceed to penalize the

malicious receiver by transferring the funds to himself. The multiple OT2
1 s, one for each

block, ensure that the watermark embedded in the document corresponds to the signing-key

bits.

To transfer the funds out of the deposit, the sender needs both his and the receiver’s

signature which can not be obtained before the document is revealed to the public. Thus,

he can penalize the receiver only if she is dishonest. If the receiver is honest, the agreement

would expire after the agreed time and the funds will be transferred back to her.

The receiver instead of full disclosure, can disclose the document partially to the public.

She can reveal, say, half of the total 256 blocks received, so that only half the number of bits

of her signing-key are revealed to the sender. However, for a 256-bit key of the receiver, the

sender can in-fact divide the document into more numbers of blocks than just 256. This way,

he can embed the key multiple times in the document, for example, the sender can divide

it into 512 parts so that the key gets embedded twice. The sender can perform 512 OT2
1 s

with the receiver using her 256-bit key twice for the same. In such a scenario, the sender can

extract more number of bits upon partial disclosure. Also, the information in the document

may not be “uniform” throughout the document, so the sender can also try to embed the

key multiple times in a document part where there is “more” information by dividing it into

more number of parts at those document locations.

The receiver understands that one bit of her signing key is watermarked in each of

document blocks received using that bit in OT2
1. She also knows which particular bit is

embedded in a particular document block, this is because, the watermark embedded in a

block is same as the choice bit used for OT2
1 in obtaining a document block. Leveraging this
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knowledge, the receiver can try to minimize the number of bits revealed to the sender. For

example, with the sender dividing the document into 512 blocks and the receiver having a

256-bit signing-key, the receiver can reveal 100 blocks of the received document revealing

only 50 bits to the sender. She can achieve this by revealing two blocks received with each

bit for 50 bits. To prevent such an attack we propose a primitive called Doubly Oblivious

Transfer (DOT). DOT prevents the receiver from learning which bit (index of the bit) of her

key is watermarked into a certain block.

In DOT the sender has two messages m0,m1 and the receiver has two bits s0, s1 (refer

Figure  3.2 ). The sender has an extra choice bit c using which he transfers msc (associated

with the bit sc) to the receiver. At the end of DOT instance, the receiver cannot determine

the value of c and m1−sc and the sender does not know the bit sc that has been used in the

transfer of msc . 

1
 Refer Figure  3.2 for the pictorial depiction of the simplest form of DOT

protocol.

For Pepal, the sender can use DOT to transfer the document to the receiver such that

she has no information about which of her bits is embedded in a certain document block. As

we analyze in Section  3.6.1 , this greatly improves the expected number of bits revealed to

the sender in case of partial disclosure. For example, with the sender dividing the document

into 512 blocks and 256-bit key at the receiver, upon disclosure of 100 blocks, the expected

number of bits that the sender can extract is 90.3 instead of 50 while using just oblivious

transfer.

Notice that our Pepal protocol augments cryptographic primitive with a smart contract.

Given the limited expressibility of Bitcoin contracts our (off-chain) cryptographic solution

seems necessary but this may not be the case for turing complete systems like Ethereum [ 114 ].

However, defining the complete solution as a smart contract will not be or may not remain

inexpensive enough. Further comments regarding the contracts can be found in  3.8 .

The Pepal protocol uses a robust watermarking scheme to watermark either the bit 0 or

the bit 1. The actual watermarking scheme varies depending on the type of the data being

watermarked. While theoretically, an algorithm may exist which can remove the watermark

1
 ↑ For s0 = s1 = b, the receiver knows that she received mb; however, that does not constitute any

privacy leakage in our application as c and m1−sc
remain private.
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from the data, we just require that such an algorithm should not be available or known to

humans; this approach was formalized by Rogaway[ 107 ].

3.2 Related work

A closely related subject to penalizing data breaches, one that is well-studied, is traitor

tracing [ 115 ], [ 116 ]. In a traitor tracing scheme, decryption boxes with unique private keys

(for a common public key) are distributed to a number of subscribers. If a device is reverse

engineered and the key is leaked, the device it came from can be determined by the service

provider.

Kiayias and Tang [  117 ] adds a Bitcoin smart contract to hold a bond that is recoverable.

This body of work has limited applicability to our Pepal problem for three main reasons: (1)

we want to detect leaked documents that have been meaningfully written, not keys which

are arbitrary, random values; (2) we want the entity distributing the values to not learn the

value until it is leaked; and (3) unlike in the smart contract variant [ 117 ], we cannot have

the provider provision the signing key for use by both parties. For these reasons, we do not

build our solution from traitor tracing schemes.

In another line of work, Nasir et al. build a seller-buyer watermarking scheme in [  118 ]

where the watermark embedded in the document is not known to seller/sender but can

identify the buyer once the document is distributed. The main drawback of their scheme is

the requirement of a third trusted authority for providing the watermark for the buyer, also

the sender needs to go through the legal procedure and prove to the judge that the buyer is

indeed the one who leaked and the penalization is through court system.

In [  119 ], Andre et al. propose a zero-knowledge proof based protocol for providing proof

of ownership of the document but does not involve proving that a certain party is the leaker

or a way to penalize the leak.

Using bitcoin contracts for collatorizing the fair and correct execution of cryptographic

protocols has been explored earlier [ 26 ], [ 27 ], [ 120 ]. Our bitcoin contract is a standard claim-

or-refund transaction common in this literature. The main difference is that one party must
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prove that the singing key used in this transaction is consistent with the one taken as input

to a private computation.

3.3 Doubly Oblivious Transfer — DOT

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT2
1) is a two-party (a sender and a

receiver) computation mechanism, where the sender has two messages M0 and M1 and the

receiver has a bit b ∈ {0, 1}. The goal is to transfer Mb to the receiver and at the end of the

protocol, the receiver should not learn any information about M1−b and the sender should

not learn b. We consider the oblivious transfer protocol, called the Verified Simplest OT by

Doerner et al. [ 22 ] which is an extended version of OT protocol by Chou et.al. [ 95 ], recalled

in  2.1.3 along with Figure  2.1 .

The multiplicative group G used for the protocol is Gap-DH [  121 ] and the additional

verification step forces the receiver to make oracle queries before receiving the encryptions

from the sender, there by making the protocol UC-Secure.

In our solution, the receiver obtains the document blocks by running OT2
1 multiple times

with her signing key bits as the choice bits. However, while running OT2
1, the receiver

understands that each of the message that is received by using choice bit is indeed affected

by the choice bit i.e., the receiver knows the index of the bit embedded through watermark

in a received message/document block.

To overcome this, we propose a primitive, in which the receiver, after giving multiple

bits as input, receives several messages corresponding to the input bits, but the receiver

does not have any information about which bit was used as choice bit for choosing a certain

message. In the simplest case the sender has two messages m0,m1 along with a choice bit c

and the receiver has two bits s0, s1 as depicted in Figure  3.2 . The sender chooses one of the

indices of the bits of the receiver using the bit c and the receiver receives the message msc

corresponding to the bit of the chosen index. Here, the sender does not know which message

has been received by the receiver and the receiver does not know which of her two bits is

chosen as the choice bit to choose the messages. Hence we call it Doubly Oblivious Transfer

(DOT) protocol.
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Figure 3.2. Doubly Oblivious Transfer Primitive: the sender has two input
messages m0,m1 and a bit c. The receiver has two input bits s0, s1 and obtains
msc .

Ideal functionality FDOT interacts with sender S and receiver R. The sender has two messages
M0,M1 and a choice bit c. The receiver has two bits so, s1. The adversary A corrupts either
the sender or receiver.

• Upon receiving the message (inputS,M0,M1, c, sid) with M0,M1 ∈ {0, 1}∗, c ∈ {0, 1}
from sender S, record 〈S,M0,M1, c, sid〉, forward the message (intd, sid) to the receiver R
and (input, sid) to A.

• Upon receiving the message (inputR, s0, s1, sid) with s0, s1 ∈ {0, 1} from receiver R, record
〈R, s0, s1, sid〉, forward the message (input, sid) to A.

• Upon receiving the message (deliverS, sid) from A, check if 〈R, s0, s1, sid〉 is stored, else
ignore the message. Send (delivered, sid) to S.

• Upon receiving the message (deliverR, sid) from A, check if 〈S,M0,M1, c, sid〉 is stored,
else ignore the message. Forward (output,Msc , sid) to R.

Functionality FDOT

Figure 3.3. Ideal Functionality of DOT

Figure  3.3 represents the ideal functionality of the DOT protocol. The functionality FDOT

interacts with the sender S and receiver R. The adversary A controls the communication and

the delivery of the messages. When the sender and receiver forward their inputs, they use the

tags inputS, inputR respectively. The functionality delivers the corresponding messages

to sender and receiver on receiving the messages deliverS, deliverR from the adversary.

DOT hides the index c and m1−sc from the receiver, but it need not essentially hide the value

sc itself. For s0 = s1 = b, the receiver knows the value b but not c.
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Sender Receiver
Message blocks: M0 and M1, Choice bit: c Bits: s0, s1

Setup
Multiplicative (Public) Group G, Generator g

(pkS, skS) (pkR, skR)
pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ 1, execute the steps below

Symmetric encryption of Message Blocks
g0, g1 ←R G
Enc0 = EH(g0)(M0), Enc1 = EH(g1)(M1)
Ênci = π1(Enci), for permutation π1

Ênci−−→
El-Gamal encryption of group elements

Set gc,0 = g0, gc,1 = g1
g1−c,0, g1−c,1 ←R G
ui,0 = Epk(gi,0), ui,1 = Epk(gi,1)

Oblivious Transfer [ 22 ]
Run OT2

1 for i
Input ui,0, ui,1 Input si

Output ui,si

Re-randomization, Forwarding and Decryption
vi,si = Rpk(ui,si)

vi,si←−−
xi,si = DskS

(vi,si)
xc,sc−−→

gc,sc = DskR
(xc,sc)

Decrypt Êncsc using H(gc,sc) appropriately

Figure 3.4. Doubly Oblivious Transfer (DOT) Protocol

Each session of the protocol run is identified by a session id sid. The sender S forwards

the two messages M0,M1 and the choice bit c along with the tag inputS to the functionality

indicating the input from sender S. Upon the initiation of the session by the sender, the

functionality informs the receiver R by forwarding the intd message along with the session

id sid. The session initiation is also intimated to the adversary A. Upon the initiation of the

session, the receiver forwards the two bits s0, s1 to the functionality along with the session id

to the functionality. The adversary controls the delivery of messages from the functionality,

this is modelled by the deliverS, deliverR messages from the adversary. On receiving the
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deliverS message with the session id sid, the functionality checks if the a corresponding

previous input from the receiver is received, if yes, the sender is intimated that the receiver

input has been received by forwarding the delivered message to the sender. Finally upon

receiving the deliverR message along with sid from the adversary, the functionality checks

if it received the input from the sender for that session id and if yes forwards the message

Msc to the receiver.

Construction. We provide a construction which realizes the ideal functionality of DOT

with two messages M0,M1 and a choice bit c at the sender and two bits s0, s1 at the receiver

as given in the Figure  3.3 . Both the parties possess public key-secret key pairs (refer Figure

 3.4 ) and pk = pkS ∗ pkR where pkS, pkR are public keys of sender and receiver. The sender

samples two elements from the group (can be points from the elliptic curve), encrypts the

two messages using a symmetric encryption E(.)(.) with the keys obtained by hashing the

elements. These encryptions are randomly permuted and forwarded to the receiver in the

form of Ênci. This is the first step in DOT. The sender then transfers the elements to the

receiver such that the receiver can only decrypt Msc . The encryption and forwarding of

messages prevents the need to map random message strings onto group elements for the

ElGamal encryption in the next step.

The sender samples two more elements, populates gi,j, i, j ∈ {0, 1} as shown in Figure

 3.4 and encrypts all gi,j to the public key pk using Epk(.) - a Re-randomizable encryption like

ElGamal encryption to obtain ui,j. Now two OT2
1 instances are run, one for each i with ui,j

as inputs. The receiver inputs si as the choice bit for the instance i of OT2
1.

Here the sender S initiates the protocol, this would correspond to the inputS message

of the functionality. Once the protocol is initiated, the receiver inputs the bits s0, s1 into

the OT2
1 protocol instance. This would correspond to the inputR message of the ideal

functionality messages where the receiver forwards the bits s0, s1.

The encryption of the elements to the key pk later helps the receiver to hide which keys

have been obtained by her through OT2
1 and helps the sender to hide the order in which the

keys have been forwarded. Hiding the order implies hiding the mapping between bits si and

elements obtained by the receiver through OT2
1. The receiver after receiving the different
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ui,si through OT2
1 proceeds by applying Rpk(.), a re-randomization operation to obtain vi,si .

These re-randomized encryptions of obtained encrypted elements are now forwarded back

to the sender. If there was no re-randomization step, the sender would know what elements

have been obtained by the receiver and so will know what version of the message was taken by

the receiver. Hence we use the re-randomization step to hide from the sender, information

regarding which messages have been obtained by the receiver through OT2
1. The sender

from vi,si , decrypts his layer of ElGamal encryption using the decryption operation DskS
(.)

to obtain xi,si . He then drops x1−c,si and forwards only the element xc,sc to the receiver.

The element xc,sc (which at this point is only encrypted to the receiver’s public key) is

then decrypted by the receiver using her private key using DskR
(.) to obtain the element

gc,sc . The key obtained as hash of gc,sc is used to decrypt the initially obtained random

permutation of messages. Only one of them gets decrypted correctly. The receiver, while

decrypting the encrypted messages, would not know which message is the correct encryption

using the obtained key, she tries to decrypt each of the messages. For the receiver to be able

to recognize the correct message for the key, we need a mechanism.

To achieve the decryption and identification of the correct message block by the receiver,

the sender initially appends each of the messages with a string which is obtained as a certain

public function f̂(.) of key (like hash of the key) used to encrypt the message before the

encryption process. After decrypting each block with the key, the receiver matches the

appended string with the locally calculated string using f̂(.) of the key. Whichever message

has the correct match, is the correct message. Thus the receiver decrypts Msc .

Imagine the case when the initial encryptions are not permuted, then the receiver knows

that the the encryptions received correspond to bit indices 0 and 1 in that order, so she can

try to attack the system by setting one of the bits, say s0 = 0 and the other s1 = 1, then

which ever encryption gets decrypted, will reveal which of the two sis has been chosen by the

sender. To prevent such a scenario, the initial permutation of the encryptions is necessary.

Before we prove the security of the DOT protocol, we briefly introduce the functionality

to prove the knowledge of discrete logarithm in zero-knowledge and the definition of UC-

security.
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Functionality FDL
ZK [ 22 ]. The functionality is parameterized by group G and runs with

two parties P1 and P2. The parties can be sender S and receiver R.

Proof : On receiving (prove, a, g) where a ∈ Zq, g ∈ G from party Pi, store this message.

On receiving, (prove, h, g) from party Pj, where h, g ∈ G, if h = ga, send (accept) to Pj,

otherwise send fail to Pj.

The parties can be sender S and receiver R. The parties use the functionality FDL
ZK to

prove in zero-knowledge, that they own the secret keys of the corresponding public keys.

Definition 3.3.1. A protocol ρ UC-realizes an ideal functionality F if for any adversary

A, there exists a simulator such that for any environment E, the ensemble EXECρ,A,E and

EXECF ,S,E are computationally indistinguishable.

Theorem 3.3.1. The DOT protocol securely implements the functionality FDOT under the

following conditions:

Corruption Model: Static corruption (the sender or receiver is corrupted at the beginning

of the protocol).

Hybrid Functionalities: H is modelled as a random oracle and secure channels between

the parties are assumed.

Computational Assumption: The encryption scheme used in the initial step is sym-

metric, non-committing and robust [ 95 ]. Group used for OT2
1 module G is a Gap-DH group.

Proof. We prove the security of DOT by constructing a simulator which generates an indis-

tinguishable view in the real world - ideal world paradigm for the adversary. The parties

use the functionality FDL
ZK to prove in zero-knowledge, that they own the secret keys of the

corresponding public keys.

Malicious Sender.

• Receive (prove, skS, pkS) on behalf of FDL
ZK . On accepting, forward accept to the sender,

else abort.

• Answer all oracle queries of the sender randomly and store the query and reply pairs in

the form of (qk, rk).

52



• Receive the encrypted messages Ênci, i ∈ {0, 1} from the sender and participate in obliv-

ious transfer for the next step.

• Set the bits si, i ∈ {0, 1} randomly with values from {0, 1} as choice bits before partici-

pating in the OT2
1 protocol.

• For OT2
1 part of the protocol, invoke multiple instances corrupted sender phase of the

simulator of the UC-secure OT [ 22 ] developed by Chou et al. [ 95 ], [ 121 ] (call it, SOT ).

The simulator SOT extracts the sender inputs for each of the instances; obtain the inputs.

• Perform the operations like an honest receiver. Receive the elements ui,si and try to

decrypt (own layer of encryption, the sender is expected to encrypt the messages with

Epk(.)).

• If any of the received elements results in an error during decryption, abort. Else, re-

randomize the encryption using Rpk(.) to obtain vi,si and forward them back to the sender.

Receive an encrypted group element as xc,sc , try to decrypt and hash it to obtain the

decryption key. Decrypt one of the received messages with the obtained key. If it results

in an error, abort.

• Decrypt the initial Ênci as follows: for each i, k, from the initially stored pairs (qk, rk),

perform Decrk
(Ênci). The first value that gets decrypted meaningfully is set as Mi for

any i. If no key rk decrypts meaningfully, set Mi =⊥.

• Obtain the choice bit c of the sender as follows: during the OT2
1 protocol, the simulator

SOT extracts the message inputs of the sender side [  95 ] and forwards them to SDOT . For

each OT2
1 instance i, SDOT receives two messages gi,0, gi,1 from SOT , the simulator SDOT

stores all the elements in the form of gi,j. For each i, the simulator checks which of the

elements gi,j, j ∈ {0, 1}, matches with the decrypted element (obtained from sender in the

last step of the protocol). Whenever a match is seen, c is set to i.

• Forward the messages Mi, i ∈ {0, 1} and choice bit c to the ideal functionality FDOT.

The adversary can not distinguish between a real world view and simulated view owing to

the following facts: the simulator SOT is UC-Secure [  22 ]; ElGamal encryption offers semantic
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security when DDH is hard; the real world honest receiver’s output will be different only if

the simulator decrypts the encryptions received to a different value apart from the ones used

by the sender, but this happens with a negligible probability owing to the robustness of the

encryption scheme.

Malicious Receiver.

• Receive (prove, skR, pkR) on behalf of FDL
ZK . On accepting, forward accept to the receiver,

else abort.

• Generate two strings C1 ← A1(1λ) and C2 ← A1(1λ) and forward to the receiver.

• Sample four group elements gi,j for i, j ∈ {0, 1} and encrypt them using ElGamal encryption

Epk(.) to obtain ui,j.

• Performs two instances of OT2
1 and use ui,j as inputs for instance i of OT2

1.

• The receiver inputs si to the OT2
1 instance i. For the OT2

1 protocol, the simulator invokes

the corrupted receiver phase of simulator of Verified Simplest Oblivious Transfer [ 22 ] (call

it SOT ).

• Obtain re-randomized elements vi,si , decrypt own layer of encryption usingDskS
() to obtain

xi,si and forward xc,sc for a randomly chosen bit c.

• Answer all oracle queries randomly except at the points gi,j. When queried on any of the

points gi,j, sends the bits j, j to the functionality and obtain the message m′.

• Reply to the query with a key k ← A2(Cp,m
′) where p is uniformly picked from {1, 2} for

every instance of the simulation.

The receiver can not distinguish the real and simulated view. This is because: ElGamal

encryption offers semantic security when DDH is hard, OT2
1 used is UC-secure [ 22 ] and

the fact that when the simulator does not abort, the indistinguishability holds from non-

committing property of the encryption scheme. The UC-security of the DOT follows from

Definition  3.3.1 .
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3.4 Generalization of DOT protocol

The DOT protocol can be easily extended to work with multiple messages at the sender

and κ-bit signing key of the receiver as shown in Figure  3.5 .

Sender Receiver
Setup

Multiplicative (Public Group) G, Generator g
(pkS, skS) (pkR, skR)

pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ κ− 1, j ∈ {0, 1} execute the following steps

Message blocks: Mi,j Bits: sk for 0 ≤ k ≤ κ− 1
gi,j ←R G
Enci,j = EH(gi,j)(Mi,j)

Ênci,j = π1(Enci,j)
Ênci,j−−−→

for permutation π1
El-Gamal encryption of group elements

For each j, ĝi,j = π(gi,j) for Permutation π

ui,j = Epk(ĝi,j)
Oblivious Transfer[ 22 ]
(Run OT2

1 once for i)
Input ui,j Input si

Output ui,si

Re-randomization, Forwarding and Decryption
vi,si←−− vi,si = Rpk(ui,si)

xi,si = DskS
(vi,si)

wi,si = π−1(xi,si)
wi,si−−→ ĝi,si = DskR

(wi,si)
Decrypt Ênci,si using H(ĝi,si) appropriately

Figure 3.5. Doubly Oblivious Transfer Protocol (General Case)

In the general case, the sender has a total of 2κ messagesMi,j, for 0 ≤ i ≤ κ−1, j ∈ {0, 1}

and the receiver has bits sn, 0 ≤ n ≤ κ− 1. After participating in the protocol, the receiver

receives Mi,l, l = sπ(i) for a permutation π of set of indices i chosen at the sender. The

permutation of indices is the general case equivalent of the choice bit c of the two bit case.

Forwarding a random permuted order of encrypted messages remains similar for the

general case. When the elements are sampled in the general case, sampling extra elements
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is not necessary. The sender performs a permutation π on the rows i of the elements gi,j
to obtain ĝi,j which are encrypted using Epk(.) as before. Now, ĝi,j are input to i instances

of OT2
1 to which the receiver inputs si as the choice bits for each instance i. The receiver

obtains ui,si , re-randomizes the encryption using Rpk(.) and sends back vi,si . After receiving

vi,si , the sender reverses the permutation order to obtain wi,si = π−1(vi,si). He then decrypts

his layer of encryption using DskS
(.) and forwards xi,si to the receiver who decrypts her layer

of decryption to obtain ĝi,si . These ĝi,si are hashed to obtain the final keys which are then

used to decrypt the Ênci received in the first step. Note that if the number of messages is not

a multiple of 2κ, the sender can sample extra elements and encrypt them to input them in

OT2
1. After receiving the encrypted elements from the receiver, he can discard the elements

at the indices where the extra elements have been placed in the OT2
1 step. Also, if the receiver

tries to attack the protocol by manipulating the cipher texts after the re-randomization step,

she will not be able to receive meaningful keys for the correct decryption, she can gain no

information regarding the sender’s messages or permutation applied on encrypted messages.

3.5 Committed Receiver Oblivious Transfer

An oblivious Transfer instance transfers one message Mb where b ∈ {0, 1} of the two

messages M0 and M1 from the sender to the receiver with bit b. In our protocol which uses

DOT (which in-turn uses OT2
1), we further require the bit b to be a bit of the signing-key of

the receiver. With a simple OT2
1, the sender can not be sure if that is the case. To overcome

this, we propose the committed receiver oblivious transfer (CROT) primitive.

In CROT, the receiver forwards a non-interactive zero knowledge (NIZK) proof of knowl-

edge to prove that the bit inputs from the receiver are in fact bits of the signing key. The func-

tionality of the protocol CROT is presented in the Figure  3.7 . The functionality FCROT inter-

acts with the sender S and receiver R. The sender has 2κ messagesMi,j, i ∈ [0, κ−1], j ∈ 0, 1.

The receiver has bits si which form the secret key sk of the key pair (sk, pk). The adversary

A controls the communication and the delivery of the messages.

The sender S uses the session id sid and tag inputS to forward the messages Mi,j to

the functionality and to initiate the protocol instance. The functionality stores the sender
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input messages using the record 〈S,Mi,j, sid〉. The functionality intimates the initiation of the

session to the adversary and the receiver using the messages input, intd respectively. Upon

the intimation, the receiver R forwards the bits si with the inputR tag to the functionality.

After receiving the message (inputR, si, sid), the functionality stores the record (R, si, sid)

and intimates the adversary that the input has been received. The adversary sends the

messages deliverS and deliverR to ask the functionality to deliver the outputs to the

sender and the receiver. Upon receiving deliverS, the functionality checks if a record

〈R, si, sid〉 is stored and if yes, it sends the message (delivered, sid) to the sender. On

receiving the message (deliverR, sid), the functionality checks if there is a corresponding

record 〈S,Mi,j, sid〉. If it exists, it verifies whether the bits si forwarded by the receiver

correspond to the secret key (sk) of the public key pk. On successful verification, it forwards

the messages Mi,si to the receiver.

We depict the construction of the protocol in Figure  3.6 .

Construction. The protocol construction for the ideal functionality FCROT as given is the

Figure  3.7 is presented here. The sender has messages Mi,j for 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}.

The receiver has a signing key sk (si for 0 ≤ i ≤ κ − 1 are the bits of sk). The sender and

receiver inputs are modelled using the inputS and inputR messages of the functionality; the

sender initiates the protocol using the inputS message. Given a multiplicative group G and

its generator g, the sender initially chooses a random value a ← Zq and forwards h = ga

to the receiver. This would be the Setup phase. In the next Commit and Prove phase, the

receiver chooses random ri ←R Zq and computes ci = grihsi for 0 ≤ i ≤ κ − 1. The ci
values are forwarded to the sender as commitments to the bits si. The receiver also forwards

r = ∑κ−1
i=0 2iri to the sender. Along with these, for 0 ≤ i ≤ κ − 1, the receiver forwards

non-interactive zero knowledge (NIZK) proofs of knowledge of exponents ri and si such that

ci = gri+asi .

Each of these NIZK proofs is realized using the standard Fiat-Shamir transforma-

tion [ 122 ] of an interactive sigma protocol for Pedersen commitments in the random oracle

model.
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Sender Receiver
Multiplicative (Public) Group G, generator g

pk = gsk sk ∈ {0, 1}κ

For all i : 0 ≤ i ≤ κ− 1
Message blocks: Mi,0 and Mi,1 Bit decomposition of sk: si

Challenge
a←R Zq

h=ga

−−−→
Commit and Prove
For all i : 0 ≤ i ≤ κ− 1

ri ←R Zq

r = ∑κ−1
i=0 2iri

ci = grihsi

gr,ci,PoK{(ri,si)‖gri hsi }←−−−−−−−−−−−−−
c = ∏κ−1

i=0 c(2i)
i

Abort if c 6= (grpka) or
if verfication of NIZK fails

Transfer
For all i : 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}

ki,j = H((ci · h−j)a) ki,si = H(hri)
pi = H(H(ki,0))⊕H(H(ki,1))

pi−→ p′
i = H(ki,si)⊕ pisi

Verify p′
i = H(H(ki,0))

p′
i←−

Ci,j = Eki,j(Mi,j)
Ci,j−−→ Decrypt Ci,si using ki,si

Figure 3.6. Committed Receiver Oblivious Transfer (CROT) Protocol

Following the formal symbolic notation introduced by Camenisch and Stadler [  123 ], each

proof is depicted as PoK {(ri, si)‖grihsi} in Figure  3.6 . This phase is used by the receiver to

prove that the bits si used for the transfer are indeed the bits of the signing key sk.

The sender verifies if c = grpka for the computed c = ∏κ−1
i=0 c

(2i)
i . He also verifies the

NIZK proof. If both the verifications succeed, he proceeds with the protocol, else, aborts.

The verification would also fail if (pk, sk) are not a key pair.
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Ideal functionality FCROT interacts with sender S and receiver R. The sender has messages
Mi,0,Mi,1 and the receiver has bits si, i ∈ [0, κ− 1]. si correspond to the secret key sk whose
public key is pk. The adversary A corrupts either the sender or receiver.

Sender input. Upon receiving the message (inputS,Mi,j, sid) with Mi,j ∈ {0, 1}∗, i ∈
[0, κ−1], j ∈ {0, 1} from sender S, record 〈S,Mi,j, sid〉, forward the message (intd, sid)
to the receiver R and (input, sid) to A.

Receiver input. Upon receiving the message (inputR, si, sid) with si ∈ {0, 1}, i ∈ [0, κ−1]
from receiver R, record 〈R, si, sid〉, forward the message (input, sid) to A.

Sender output. Upon receiving the message (deliverS, sid) from A, check if 〈R, si, sid〉 is
stored, else ignore the message. Send (delivered, sid) to S.

Receiver output. Upon receiving the message (deliverR, sid) from A, check if
〈S,Mi,j, sid〉 is stored, else ignore the message. Check if the secret key sk formed
from the bits si forwarded by the receiver corresponds to the public key pk. Else,
ignore the message. Forward (output,Mi,si , sid), i ∈ [0, κ− 1] to R.

Functionality FCROT

Figure 3.7. Ideal Functionality of CROT

After successful verification the sender computes the keys ki,j = H((ci · h−j)a) for each

0 ≤ i ≤ κ − 1 and j ∈ {0, 1}. The sender verifies if the receiver computed the keys using

the verification step similar to Verified Simplest OT [  22 ]. He forwards the challenges pi =

H(H(ki,0))⊕H(H(ki,1)) for each i and receives the responses in the form of p′
i and the sender

verifies if p′
i = H(H(ki,0)). The keys ki,j are used to encrypt messages Mi,j respectively to

obtain the cipher texts Ci,j. The cipher texts Ci,j are forwarded to the receiver who attempts

to decrypt the blocks Ci,si using the keys ki,si finishing the Transfer phase. The receiver can

not compute the keys ki,1−si (follows from Lemma 1 of [  95 ]) and so can not decrypt Ci,1−si .

One can observe that the protocol does not enforce the receiver to use “bits”, if the receiver

uses any other values other than bits in CROT, the receiver receives encryptions which can

not be decrypted.

The model for CROT includes static corruption of parties, modelling H as random oracle

and group G being Gap-DH [  121 ] while the encryption used is symmetric, non-committing

and robust [ 95 ].
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Theorem 3.5.1. The CROT protocol UC-realizes the ideal functionality FCROT in the FDL
ZK-

hybrid model under the following assumptions:

Corruption Model: static corruption

Hybrid Functionalities: H is modeled as a random oracle and authenticated channels

between users are assumed.

Computational Assumptions: G is Gap-DH. The symmetric encryption used is non-

committing and robust.

Proof. The simulator SCROT interposes between a corrupted party and the CROT function-

ality FCROT. The verified OT is a “Selective-Failure” Oblivious Transfer, in which the sender

can guess the choice bit of the receiver and if the guess is correct, he will be notified it is

correct and the receiver is not informed of the same. However, in our CROT protocol, all the

messages are transferred simultaneously. For the sender to guess the receiver’s choice bits,

they need to guess all the bits simultaneously. The probability of the sender guessing all the

receiver bits correctly is negligible.

Malicious Sender. The simulator SCROT interposes between a malicious sender and the

CROT functionality FCROT, it outputs the sender’s messages Mi,0,Mi,1.

• Receiver (prove, a, A) from sender on behalf of FRDL
ZK . On receiving (accept,A) forward

it to the sender, else abort.

• Sample random values si, ri, i ∈ [0, κ − 2] and compute the corresponding ci = grihsi and

compute sκ−1, rκ−1 such that ∏κ−1
i=0 = grpka where r = ∑κ−1

i=0 2iri. Compute ZK-PoKs πi

proving the knowledge of ri, si for each grihsi . Forward gr, ci, πi to the sender.

• Invoke FDL
ZK to prove that the sampled bits correspond to the public key pk

• Compute the pads ki,j = H(ci · h−j)a. Compute the expected challenges as pexpi =

H(H(ki,0))⊕H(H(ki,1))

• Upon receiving the sender’s challenges pi, If for any i, pi = pexpi , then set the p′
i =

H(H(ki,0)) and add (guess, s′
i) to the set G; Otherwise, let Q be the set of all queries

made by the sender to the random oracle. If there exists queries Qj such that such that
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H(Qj) = pi ⊕ H(H(ki,1)) then set s′
i = 1. Otherwise set s′

i = 0. Add guess, s′
i to the set

G. Send the set G to FCROT. If cheat-undetected is received, send k′
i = H(H(ks′

i)) to the

sender. Otherwise send k′
i = H(H(ks′

i)) and halt.

• Upon receiving the cipher texts Ci,j decrypt them using ki,j and send them to the func-

tionality FCROT.

Malicious Receiver. The simulator interposes between the ideal functionality FCROT and

the malicious receiver. It outputs the choice bits si of the receiver and the corresponding

message chosen Mi,si . It makes use of the random oracle H and the functionalities FRDL
ZK

• Sample a ∈ Zp and compute ga to the receiver on behalf of the functionality FDL
ZK .

• Receive gr, ci, πi from the receiver just like an honest sender. Verify the proofs and abort

if any of the forwarded proofs fail.

• Compute the keys ki,j like an honest sender.

• Observe the random oracle queries of the receiver. If the receiver ever queries ki,0 set

si = 0. If they every query ki,1 set si = 1. Once bis are set, send si to the the functionality

FCROT and receiver no-cheat.

• Run the verification as the honest sender would.

• Upon receiving the messagesMi,si from the functionality, set the corresponding ciphertexts

as Ci,si = Eki,si
(Mi,si) and set the other ciphertexts to random values.

In the malicious sender case, the first message received by the consists of the gr, ci,PoK.

Since r is picked randomly, the view of the sender is identical in both the worlds. The

simulator SCROT receives the value a on behalf of the functionality FDL
ZK and so can compute

the values ri, ci such that the zero-knowledge proof and verification check hold. It can also

compute the the keys ki,j and hence verify if the challenges received pi are correct.

During the verification phase of the transfer, the sender is required to compute values

H(H(ki,0)), H(H(ki,1)), only one set of the hashes are known to the receiver which correspond
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to H(H(ki,si)). To induce a selective failure, the sender can try to guess the receiver bits

and set random values for the opposite ones while calculating the challenges pi, To guess all

the bits correctly and simultaneously, the sender succeeds only with negligible probability
1

2κ . All the oracle queries made by the sender can be used to compute the sender’s guesses

in the protocol which can be forwarded to the functionality which aborts if the guesses are

incorrect. After this point, the simulator behaves like an honest real world receiver and

forwards all the messages accordingly and aborts under same conditions. There the view

of the malicious sender under the real world execution of the protocol is indistinguishable

from its view while interacting with the simulator SCROT, he can distinguish the view with

no better probability than 1
2κ .

In the malicious receiver case, h is chosen by the simulator and ci is chosen by the

receiver. These values fix the computed keys ki,j to be computed. The receiver can not guess

the ki,si values except with probability of 1
2κ for each. When the receiver queries the random

oracle, the simulator records the queries and finds the corresponding choice bit si. If the

receiver can query the random oracle at ki,si and ki,1−si , then the simulator can not compute

the choice bit. However the receiver can not make both those queries, as any such receiver

breaks the CDH assumption. The rest of the simulator steps follow a honest sender and the

view generated is identically distributed to the real-world paradigm. Thus the view of the

malicious receiver is identical in the real world and the ideal world paradigm if the CDH

problem is hard in the group selected.

3.6 The Pepal protocol

Here, we detail the steps of the Pepal protocol which uses DOT with CROT. The wa-

termarking and the DOT protocol are the off-chain cryptographic components while the

smart-contract and the deposit are the on-chain parts.

1. NetworkSetup: The sender and receiver setup their Bitcoin identities by generating

secret key-public key pairs; the sender has the document M .
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2. DepositSetup(sk, t, V alue): A time-locked bitcoin deposit is created by the receiver

with the signing key sk for a time t and for a amount of V alue. The deposit is a 2-of-2

multisig deposit requiring the secret keys of both the sender and the receiver to transfer the

funds.

3. WaterMark(M): The document M is broken into κ blocks Mi, 0 ≤ i ≤ κ − 1 for

a κ-bit long sk and each block Mi is watermarked to generate two versions Mi,0,Mi,1. Any

watermarking scheme which satisfies the previously mentioned properties (refer section  2.3 )

can be used.

4. DOT with CROT(Mi,0,Mi,1, sk): The Doubly Oblivious Transfer protocol, used to

transfer the document, takes the watermarked blocks as input. In Pepal, the DOT protocol

instead of using OT2
1, uses CROT. The protocol is same as the general case of DOT (as shown

in Figure  3.5 ) but uses CROT instead of OT2
1. The sender watermarks the document blocks

to obtain Mi,j, generates keys from sampled group elements and forwards the permuted

symmetric encrypted versions of the blocks to the receiver. He then encrypts the group

elements using El-Gamal encryption to the key pk = pkS ∗pkR where pkS, pkR are the public

keys of sender and receiver. The sender inputs encrypted elements in a permuted order to the

CROT protocol. The receiver after proving in zero knowledge that the input to the protocol

is her signing key sk, receives a set of encrypted elements which she re-randomizes and sends

back. The sender, decrypts his layer of encryption, inverts the applied permutation to obtain

the elements in their original order and forwards them to the receiver who will be able to

decrypt them. The appropriately decrypted symmetrically encrypted blocks are then joined

together to form the receiver’s version of the document Msk.

5. Penalize(Msk, skS): Upon revelation of the document, the receiver’s secret key sk is

extracted from the document Msk and is used with the sender’s secret key skS to transfer

the deposited funds to the sender to penalize the receiver.

Utilizing Bitcoin. Before the Pepal protocol begins, after the two parties agree on the

Pepal process, the sender shares his/her public key pkS with the receiver to create a deposit.

The sender will assert that the receiver creates a transaction TX that is valid for a mutually

agreed upon time t, and can be redeemed by the sender instantly with the signing keys of
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the sender (skS) and the receiver(skR). Here, the deposit should hold the funds equal to

an agreed upon value V alue. VerifyDeposit(TX) at the sender verifies the above mentioned

criterion. This algorithm receives the hash of the transaction as an input and verifies that the

transaction meets the above mentioned criteria, i.e. it is a valid deposit that directs V alue

to the sender if the sender has both the signing/private keys. Earlier versions of Bitcoin

allowed senders to broadcast time locked transactions and these transactions would be in

the unverified transactions pool until the time lock expired or an unlocking scriptSig was

provided by the spender of TX. However, current (as of February 2019) Bitcoin transaction

does not permit nodes to propagate transactions that have an active time lock. Therefore,

the receiver sends TX over any secure communication channel so that the sender can verify

and sign the transaction. Once the document becomes public, we are assured from the

watermarking scheme that the leaked copy of the document will have the receiver’s signing

key. Using the extraction algorithm Extract(M , Msk) the sender can reconstruct the signing

key sk. Once the sender has sk, he can sign the transaction TX with the Sign(TX, sk) and

broadcast the signed transaction directing the funds in TX to his Bitcoin address.

Ideal functionality. Figure  3.8 presents the ideal functionality FPepal for Pepal, while The-

orem  3.6.1 proves its security.

The functionality FPepal interacts with the sender S and receiver R. The sender has 2κ

watermarked messages Mi,j, i ∈ [0, κ − 1], j ∈ 0, 1. The receiver has bits si which form the

secret key sk of the key pair (sk, pk). While forwarding the input the sender also forwards

a permutation π(·) of indices [0, κ − 1]. Before delivering the messages Mi,l, l = sπ(i) to the

receiver, the functionality checks if the input bits si form the secret key sk corresponding to

the public key pk.

Here we show that the functionality achieves the desirable properties discussed in Section

 3.1 . The properties of sender and receiver privacy are trivially satisfied by the functionality

as it does not reveal any information except transferring the corresponding watermarked

blocks to the receiver. If the receiver discloses the document, the sender can extract the

embedded watermark bits and hence the signing key of the receiver, thus satisfying the

revealing property. If the sender tries to falsely accuse the receiver by revealing the document
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in any form, the receiver does not lose the deposit as the sender does not have the receiver’s

key without disclosure, this achieves the sender integrity property. Though the penalization

is shown as a step of Pepal, as it takes place outside of the transfer mechanism after the

data breach in a non-interactive way, it is not included in the ideal functionality of the Pepal

protocol.

Ideal functionality FPepal interacts with sender S and receiver R. The sender has watermarked
messages Mi,0,Mi,1 and the receiver has bits si, i ∈ [0, κ− 1]. si correspond to the secret key
sk where public key is pk. The adversary A corrupts either the sender or receiver.

• Upon receiving the message (inputS,Mi,j, π(·), sid) with watermarked Mi,j ∈ {0, 1}∗,
i ∈ [0, κ−1], j ∈ {0, 1}, a random permutation π(·) from sender S, record 〈S,Mi,j, π(·), sid〉,
forward the message (intd, sid) to the receiver R and (input, sid) to A.

• Upon receiving the message (inputR, si, sid) with si ∈ {0, 1}, i ∈ [0, κ − 1] from receiver
R, record 〈R, si, sid〉, forward the message (input, sid) to A.

• Upon receiving the message (deliverS, sid) from A, check if 〈R, si, sid〉 is stored, else
ignore the message. Send (delivered, sid) to S.

• Upon receiving the message (deliverR, sid) from A, check if 〈S,Mi,j, sid〉 is stored, else
ignore the message. Check if the secret key sk formed from the bits si forwarded by
the receiver corresponds to the public key pk. Else, ignore the message. Forward
(output,Mi,l, sid), l = sπ(i), i ∈ [0, κ− 1] to R.

Functionality FPepal

Figure 3.8. Ideal Functionality of Pepal

Theorem 3.6.1. The Pepal protocol securely implements the ideal functionality FPepal under

the following assumptions:

Corruption Model: static corruption

Hybrid Functionalities: H is modeled as a random oracle and authenticated channels

between users are assumed.

Computational Assumptions: CDH and DDH are assumed to be hard in G, G is Gap-

DH. The symmetric encryption used is non-committing and robust.

Proof Pepal protocol uses DOT which internally uses CROT instead of multiple instances

of the standard OT2
1 for the transfer of messages/document blocks from the sender to the
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receiver. The simulator for the Pepal protocol simply invokes the corresponding simulator

SDOT which invokes the simulator SCROT instead of instances of SOT . The UC-security of the

CROT protocol is already established through Theorem  3.5.1 .

Malicious sender.

The simulator SCROT interposes between a malicious sender and the Pepal functionality

FPepal.

• Receive (prove, skS, pkS) on behalf of FDL
ZK . On accepting, forward accept to the sender,

else abort.

• Sample a random secret key skR′ and parse the bits of the secret key into si, i ∈ [0, κ− 1]

and participate in the DOT protocol.

• Invoke the malicious sender phase of the simulator SDOT for the same.

• The simulator SDOT receives the ElGamal encryptions from the sender just as a receiver

would

• For the message transfer, SDOT inturn invokes a single instance of the malicious sender

phase of the CROT simulator SCROT (instead of multiple instances of SOT ) during the

transfer phase.

• The simulator SCROT after interacting with the malicious sender, outputs the sender mes-

sages ui,j. Since the simulator acts as the receiver it has access to skR. It also has access

to skS through the FDL
ZK functionality. Hence it can decrypt the messages ui,j.

• After this the simulator behaves like a honest receiver and participates in all the further

protocol steps.

• The keys ui,j are used to decrypt the messages Mi,j. Forward the messages Mi,j to the

functionality FPepal as 〈inputS,Mi,j, π, sid〉 for the session id sid.

Malicious receiver. The simulator SCROT interposes between a malicious receiver and the

Pepal functionality FPepal.
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• Receive (prove, skR, pkR) on behalf of FDL
ZK . On accepting, forward accept to the receiver,

else abort.

• Invoke the malicious receiver phase of the simulator SDOT which forwards the encryptions

of the keys.

• As a part of steps of SDOT, invoke the malicious receiver phase of SCROT instead of multiple

instances of the simulator SOT .

• SCROT outputs the choice bits si of the receiver.

• Forward the choice bits to the functionality FDOT to obtain the messages Mi,si .

• Use the receiver bits si through DOT simulator to set the encryptions which can be opened

by the receiver to the values forwarded by the functionality FDOT.

The simulator SPepal is the simulator SDOT which invokes the simulator SCROT instead of

multiple instances of SOT for the transfer protocol. The UC-security follows from the UC-

security of the DOT and the CROT protocols. SDOT which internally invokes SCROT (instead

of SOT ), produces an indistinguishable view for the adversary in the real world-ideal world

paradigm.

3.6.1 Illustration

We illustrate the utility of Pepal with DOT using CROT with an example. The sender can

break the document down into more than κ blocks, say 2κ, to perform CROT twice, there

by embedding the receiver’s key two times. The finer he breaks the document, the more

number of times he will be able to embed the receiver’s key and so can extract more number

of bits upon partial disclosure. For a receiver with 256 bit key, the sender for embedding

the key twice divides the document into 512 blocks and creates two watermarked versions

for each of the 512 blocks and wishes to transfer 512 messages.

The receiver wishes to selectively reveal parts of the document to the public while not

revealing too much of her key bits to the sender. It is understood that the receiver reveals

at least enough number of blocks (not too few) to carry useful/sufficient information. Let
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Table 3.1. Time (mean ± standard deviation) taken (in seconds) for steps of
the protocol when signing key is embedded for ` = 1, 4 and 16

Watermarking Full protocol
` = 1 0.357 ± 0.009 1.737 ± 0.226
` = 4 1.346 ± 0.213 16.067 ± 0.638
` = 16 1.643 ± 0.283 83.101 ± 1.623
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Figure 3.9. Number of bits revealed to sender upon dishonest disclosure by
receiver when Pepal is employed with OT2

1 and DOT with 256-bit signing key

us assume she wishes to reveal 100 document blocks. We wish to compare how many bits

she will actually reveal to the sender when she reveals 100 document blocks when Pepal with

DOT is used, to a scenario where just OT2
1 is used to transfer the messages instead of DOT.

If the sender uses just OT2
1 for the message transfer, he inputs one pair of messages for

each OT2
1 and performs 512 such OT2

1 instances to transfer the 512 messages. In this case,

the receiver knows which document block has been obtained using a particular key bit and

so knows which two blocks have a certain key bit embedded in them. As she knows which

two blocks have the same bit embedded in them, she will reveal 50 such pairs (with the same

key bit) to the public so that the sender can learn only 50 of her signing key bits .
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(a) Original image before watermarking at the
sender

(b) Watermarked image reconstructed by the re-
ceiver

Figure 3.10. Original and reconstructed images

However, if the sender uses DOT with CROT to transfer the document and the receiver

decides to reveal 100 document blocks, as she does not know which key bit is embedded in a

certain document block, she randomly picks 100 document blocks and reveals to the public.

The expected number of key bits revealed to the sender in such a scenario would be 90.3 for

100 blocks as opposed to 50 bits with just OT2
1. Following [  124 ], [ 125 ], the expected number

of bits revealed to the sender when m blocks of the document are released with κ -bit key

being watermarked over ` times in the document is κ
[
1−

[(
(κ−1)∗`

m

)
/

(
κ∗`
m

)]]
.

Figure  3.9 indicates the number of bits revealed to the sender against the percentage

of blocks revealed to the public when the signing-key is watermarked ` times with ` ∈

{2, 4, 8, 16}. When the key is embedded 8 times, a leakage of 20% of the document/file can

leak up to 211 bits of the key whereas, when it is embedded 16 times, even a 15% leak

reveals as many as 235 bits. This scenario is particularly useful with larger files like video

files, where the key can be embedded many number of times such that even a minor clip
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of the video can reveal close to the whole of the signing key. The plot in the Figure  3.9 

compares the number of signing-key bits revealed to the sender when Pepal uses DOT and

OT2
1. It clearly indicates that higher the number of times the key is embedded, higher are

the number of bits revealed to the sender upon leakage. However, one has to note that the

maximum number of times a key can be embedded by dividing the document depends on

the document and its entropy.

Computation and Communication Overhead. For the transfer protocol, the number

of exponentiations at the sender and receiver is linear in `. When DOT uses CROT, the

number of exponentiations performed by the sender would be 11`κ + ` and by the receiver

would be 7`κ. The communication in the DOT protocol involves forwarding two versions of

AES encrypted blocks, messages of CROT and forwarding of κ ElGamal encrypted points by

the receiver and the sender. In CROT, the sender forwards 2κ ElGamal encrypted elements

while the receiver forwards 3κ elements including the proof of knowledge messages.

3.7 Implementation and Analysis

We have implemented the Pepal protocol as a single-threaded program and analyzed

its performance on a MacOS machine with 3.1 GHz Intel Core i7 and 16 GB RAM. Our

implementation involves the DOT protocol with robust watermarked images and a claim-

or-refund contract as a Bitcoin script. An execution run involves the transfer of an image

to the receiver, and we examine the execution times for the different involved modules.

The receiver’s key is 256-bit long and the sender breaks the document into blocks before

proceeding with the protocol.

Watermarking. The sender, after creating the document blocks, watermarks each block

with 0 and 1 to generate two versions. We employ the watermarking system by Meerwald

[ 126 ] which implements the Cox algorithm [  127 ] of robust watermarking for the image blocks.

The Cox algorithm is well-studied and benchmarked against several attacks [  128 ]. In our

scheme, we watermark the image document by embedding the key multiple times, Table  3.1 

indicates the watermarking time taken where the 256-bit is embedded for ` = 1, 4 and 16

indicating embedding once, 4 and 16 times. For ` = 1, 4 the document in divided into 256
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and 1024 blocks respectively which are transferred using the DOT protocol to the receiver

who reconstructs the image from the received blocks. For demonstrative purposes, the

original image before watermarking and the image reconstructed at the receiver for ` = 1 are

available in Figure  3.10 . While we use the Cox algorithm which is not proven to be robust,

we reiterate that depending on the data type and application, any robust watermarking

scheme can be used in our protocol for that specific application. Works such as [  129 ], [  130 ],

[ 131 ] present different audio watermarking schemes while works like [  132 ], [  133 ] deal with

robust video watermarking. For software watermarking, schemes suggested in [  134 ], [  135 ]

can be considered.

Cryptographic Module - DOT. For the cryptographic part, we use the RELIC li-

brary [  136 ]. The receiver’s key is 256-bit long. The sender breaks the document into blocks,

encrypts each of the watermarked document and forwards the blocks to the receiver in the

first step of DOT protocol. The encryption used to for this step is AES in the counter mode.

The sender generates group elements while participating in the DOT protocol to transfer the

blocks which are ElGamal encrypted, which are later re-randomized by the receiver. The

receiver decrypts the AES encrypted document blocks with the keys obtained through the

ElGamal encryption and oblivious transfer.

Table  3.1 provides the computation timing details for the complete protocol i.e., the time

including breaking the document into blocks to the point where the receiver reconstructs

the document from received watermarked blocks. It presents the statistics of execution

times taken over 100 runs of the experiment. Notice that the timing values reported are

when the process is running in a single-thread. With multi-threading and pre-processing

ElGamal encryption exponentiation, we expect significant improvement in performance and

reduction in timing. To simulate the dishonest breach and eventual procurement of the leaked

document by the receiver, the reconstructed image is sent to the sender of the document. The

sender runs the key-extraction algorithm on the obtained image and extracts the receiver’s

key to perform the penalization.

71



3.8 Discussion

Multiple Receivers. In a scenario involving multiple receivers of the same document,

the sender can embed the signing key of a each receiver multiple times into each receiver’s

version of the document. He can do so by dividing the document into higher number of

parts compared to the receiver’s key length. This ensures that, in case of collusion and each

receiver contributing a small portion of his document while colluding, the sender can still

extract considerable amounts of signing keys from the revealed document.

Contracts. In Section  2.4.1 , we developed a penalization smart contract for the Bit-

coin scripting system, which intentionally has a limited set of instructions. Systems like

Ethereum [ 114 ] expand this set of instructions into a fully-featured programming language

allowing it to perform much elaborate tasks where it is easily possible to write our claim-

or-refund contract. However, despite the much better expressivity, it does not seem to be

possible to create an elaborate contact that can efficiently substitute the required DOT proto-

col and robust watermarking scheme.We implemented the penalizing claim-or-refund smart

contract as a Bitcoin smart contract as well as a Hyperledger chaincode, as they allow the

systems to be executed in a permissionless as well as permissioned blockchain setting. In the

future, it would be interesting to create similar solutions using Solidity over the Ethereum

network that can at least partially reduce the required cryptographic tools.

Fairness. The receiver deposits the bitcoins before the commencement of the protocol and

so, if the document transfer does not go through, his funds will be locked till the end of the

deposit time period. This is not ‘fair’ for the receiver. However, in a more realistic setting,

in such a scenario the parties would just re-run the protocol and transfer the document.

Miner. The receiver can indeed be a miner in a Bitcoin system. He can try to pre-mine

transactions to escape penalty incase of disclosure. This scenario can be prevented by the

approach taken in [  28 , Sec. 6]. In case the sender has the knowledge only of the breach

without having access to the revealed document, he can choose to make the watermarking

algorithm’s private‐key public to make the receiver lose her deposit.
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Data Custody. In case of storing data at a custodian, the user should be retrieving or

downloading the data after the end of time period, this is because if the sender retrieves the

data, he can get a copy of the receiver’s data with receiver’s key embedded in it, he may

reveal it to the public and try to blame the receiver for the leak. In such a scenario, the

parties can agree to retrieve the deposit and nullify the contract and when the sender decides

to store the data again, can perform the protocol. Another way is to have a mechanism in

which along with the cooperation of the sender, the receiver can forward a copy of the data

with the watermark stripped, such an approach can be looked at in the future.
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4. CDE: COLLUSION-DETERRENT THRESHOLD

INFORMATION ESCROW

4.1 System Model and Problem Definition

The system consists of n agents who offer a threshold information escrow (TIE) service,

and a user engaging the service in a multi-party computation (MPC) setting. The agents

are associated with fixed identities (typically connected with real-world identities), the user

verifies the identities of the agents before engaging the service. All the communication is

over secure and authenticated channels.

We consider the mixed-behavior model [  35 ] where the agents are either rational or mali-

cious. Rational agents aim to maximize their utility at any given point in time, the malicious

ones can deviate from the protocol arbitrarily. Any number of agents among the n agents

can collude to increase their utility.

A malicious adversary can make the corrupted parties deviate arbitrarily from the pro-

tocol. We consider a t−bounded adversary under a static corruption setting: 

1
 Up to t of n

parties can be corrupted before the start of the protocol execution and the corrupted parties

remain corrupted throughout the execution.

Problem Definition. The user has a private message that she wishes to encrypt to

a certain condition and t agents offer the information escrow service. Each of the agents

makes a cryptocurrency deposit to the public key pk of the protocol instance, with an

embedded condition in the smart contract such that the funds can be transferred when the

user-specified condition is met or with the associated secret key sk. The user requires that

her secret information would not be revealed before the condition is met. The agents can

collaborate to selectively open the user message at any point of time; however, if the agents

open the message, the system should ensure that all the agents’ deposits are available to a

subset of agents. This subset is chosen by the user at the time of using the service. In this

setting, we wish to achieve the following security goals:

1
 ↑ The employed protocols secure against the static adversary can be made secure against adaptive

adversary using standard techniques [ 137 ], [ 138 ].
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Correctness: Any secret message can be retrieved if more than a threshold number of agents

collaborate (even before the user-specified condition is met).

Privacy: No secret information can be retrieved from the system unless more than a threshold

number of agents collaborate.

Revealing: If the data of a user is decrypted, all other secret information of the protocol will

be available to the user-chosen subset of agents.

Agents perform DKG to
generate shares of 

Agents make conditional
deposit to

User transfers encrypted document
watermarked with         using DROT 

 

User forwards watermarking
key to subset of agents

 

Agent with watermark
key reads       and

transfers whole deposit

Agents perform
selective open 

 

Step1: Deposit Step2: Document Transfer

Step3: Collusion attack and deposit transfer

Figure 4.1. Steps involved in the collusion deterrent escrow mechanism.
Distributed key generation (DKG) is used the the agents to generate shares
of secret key sk corresponding to public key pk. Distributed receiver obliviovs
transfer (DROT) is used the user to transfer a copy of the document to the
agents such that it contains the secret key sk as watermark.

4.1.1 Key Idea

The escrow agents offer the information escrow service. A public-secret key pair (pkτ , skτ )

is associated with a condition τ , corresponding to which the user’s document is encrypted.
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Each secret key sk  

2
 is (n, t+ 1) secret-shared among the agents using Shamir secret sharing

(SSS) [  80 ], where at-least t + 2 agents are needed to reconstruct the secret. The key idea

involves MPC among the agents and the user such that the user transfers a copy of the

document watermarked with the secret key sk to the agents. Unless at least t + 2 agents

collaborate, none of the agents or the user can determine the transferred, watermarked

document. When they collaborate to decrypt the watermarked document, it can reveal the

watermark (i.e., the secret key sk). However, the user introduces an interesting information

asymmetry by choosing only a subset of agents and providing them with the watermarking

detection key. Only the agents in the user-chosen subset can detect the watermark or sk.

Before interacting with the user, all the agents make a claim-or-refund cryptocurrency

deposit to an address associated with pk with the user-defined condition τ ; here, the funds

can be claimed before the condition is met using sk or the respective agents get the refund

after the condition is met. If the agents collude to reveal the watermarked document, any

agent with access to the watermarking detection key can compute the watermark sk and

claim all the deposits of all agents including his own. In case the deposits are claimed (visible

publicly on the blockchain) before the condition is met, all the agents except the transferring

agent are banned from offering the future IE service. As the agents do not have information

on which agents have access to the correct detection key, no agent attempts to collude for the

fear of losing the deposit and getting banned from the system. In fact, we prove that the best

response strategy of the agents is to not collude (refer Section  4.4 for a detailed analysis).

Figure  4.1 depicts the three steps of making a conditional deposit, document transfer from

the user, and agents attempting to collude with one of the agents with watermarking key

transferring the deposits of all agents to himself.

4.1.2 Protocol Steps

At the beginning of the protocol, the agents run a distributed key generation (DKG)

scheme [ 30 ] to generate a public key pk and a (n, t+ 1) SSS of the corresponding secret key

2
 ↑ for ease of exposition, we drop the index τ further.
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sk, with each agent AIND for IND ∈ [1, t] receiving the INDth share JskKj. Here, an (n, t+ 1)

threshold secret sharing requires at least t+ 2 agents to reconstruct the secret.

The agents run a secure bit decomposition protocol [  32 ]–[ 34 ] on the shared key sk to

obtain the SSS shares of the secret key sk bits; i.e., each agent AIND now have a SSS share

of the bit ski, i ∈ [0, λ − 1] (ski is the ith bit of the λ-bit secret key sk), denoted by JskiKj.

A public bulletin board server is available to all the users and agents where they publish

non-secret information and encrypted data whenever needed. The public key pk is stored on

the server, each agent AIND makes a crypto-currency claim-or-refund deposit using a smart

contract to the address associated with pk with the condition τ embedded in it such that

the deposit can be transferred if the condition is met or by anyone with the key sk.

Document transfer. When the user wants to use the TIE service for the message m,

she splits the message/document into λ parts (λ is the bit length of secret key sk) and

watermarks each part with robust bit watermarking to generate two versions of each part;

i.e., for each part mi for i ∈ [0, λ− 1], she computes two watermarked parts (mi,0,mi,1) with

watermarks corresponding to bit 0 and 1. She symmetric-key encrypts each part mi,b for

i ∈ [0, λ− 1] and b ∈ {0, 1} using randomly sampled keys ki,b to obtain the ciphertexts ci,b.

She then performs 2−party computation with each of the servers such that each agent

obtain SSS shares of key ki,ski = ki,0 + (ki,1 − ki,0)ski (Refer Section  4.3.2 for details), where

the above equation is a representation of the standard oblivious transfer (OT) functionality.

We realize this functionality by running a version of OT protocol where the input of agent Aj

is share JskiKj of the secret key bit ski and the input of the user is the key pair (ki,0, ki,1). The

user runs λ such computations with each server such that the servers obtain key shares for λ

document parts. All 2λ ciphertexts ci,b are published. When the agents collaborate, they can

reconstruct the keys ki,ski and decrypt the corresponding ciphertexts ci,ski . However, even

through collaboration, they will not be able to decrypt the ciphertexts ci,1−ski . See Figure  4.2 

for an illustration of a transfer of the document from the user to the agents.

The aim of the user is to transfer an encrypted version of each document part such that

the transferred part is watermarked with a secret key bit that is shared among all the agents.

If the encrypted document part is decrypted, the decrypted part would reveal a secret key
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Figure 4.2. Watermarking the document blocks and transferring them to the
agents. Two versions of each block are obtained by watermarking 0, 1. The
secret key bits are shared among the agents. Depending on the bit of the
secret key, the transferred document block consists of the corresponding bit as
the watermark. Thus final transferred encrypted document contains the whole
secret key as the watermark.

bit to whoever can read the watermark. At a later point of time, when the agents decrypt

the encryption ci,ski of the watermarked message mi,ski , the detection key would be necessary

to detect the watermark. The user forwards this detection key to a subset of agents of her

choice as soon as she watermarks the message parts. Once the transfer of the keys and the

two-party computation with each of the servers is performed, the interactive part of the user

is complete. During the transfer, the agents prove in zero-knowledge to the user that the

input share of each agent is indeed the share obtained by bit-wise sharing of the secret key.

When the condition is met (e.g.: time period expires), the agents can come together and

reconstruct the keys ki,ski , i ∈ [0, λ−1] by combining the shares Jki,skiK. The cipher texts ci,ski

are decrypted using the reconstructed keys to reveal the message partsmi,ski . All the revealed

message parts are combined to form a watermarked version m′ of the message/document m.

Collusion and Key revelation. The agents may decide to collude and decrypt the

message m by reconstructing the keys k(·,·) even before the user condition is met. However,

the decrypted message version m′ would contain the secret key sk as a watermark. The two-

party computation of oblivious transfer functionality ensures that each version of the message

part that can be decrypted by the agents contains the secret key bit ski as a watermark.
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When all the watermarked bits are read from the message parts, the secret key is revealed.

Any agent who has access to the watermark detection key can read the secret key sk (and

any information encrypted to the public key pk) and transfer all the deposits to an address

of his choice. This is the revealing and penalizing property of the protocol. When the funds

are publicly transferred on the blockchain before the user condition is met, all the agents

except the agent who performed the transfer are banned from the system.

The agents may also collude to reconstruct the secret key from the shares and transfer to

an address different from any of the agents’ addresses. In this case, the transfer is publicly

visible and all the agents are banned from the system. Any evidence of collusion, including

signature generated through the embedded key by multi party computation can result in

banning of all the agents – if the deposit is not transferred by a single agent to his/her address.

In case the agents try to attack by removing the watermark in the received documents, the

robustness of the watermarking ensures that when the agents try to remove the watermark,

the data itself is damaged or rendered useless. This is the property that necessitates the use

of robust binary watermarking in our protocol.

With the penalizing and banning policy of the protocol, no rational agent would attempt

to collude for the fear of loss of deposit and future service offering. As we will prove in

Section  4.4 , in the game induced by the protocol the equilibrium strategy of rational agents

is to not collude. The threshold requirement of t + 1 where t + 2 agents are needed from

reconstruction follows from the game-theoretic analysis in Section  4.4 . The threshold of

t+ 1 prevents the adversary from publishing t shares and influencing the equilibrium in the

game. In the event of collusion among the agents, even if the agents agree not to transfer the

deposit after collusion, any of the agents can unilaterally deviate from such an agreement

and increase his pay-off by trying to transfer the deposit. Thus agents inevitably transfer

the deposit (and act as whistle-blowers) after collusion.

We further elaborate few implicit assumptions made in the analysis in Section  4.4 .
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4.2 Related Work

Timed-release encryption (TRE) was first introduced by May [  6 ]. Several applications

and approaches using TRE have been proposed including sealed bids [  139 ] electronic voting

systems [  140 ], spam and denial of service preventions [  141 ] and proof-of-work systems [ 142 ].

For time-lock puzzles, a well known puzzle was created by Rivest et al. in 1996 [  9 ] based on

the RSA assumption which required non-parallelizable repeated squaring. Many other prim-

itives based on their idea for time-lock-puzzles have been proposed including commitments

[ 143 ], signatures [  144 ], [ 145 ] and key escrow [  146 ], [ 147 ]. Besides the RSA-based construc-

tion of a time-lock puzzles recent results from Bitansky et al. show constructions based on

random encodings [  148 ], [  149 ]. Their security is based on the existence of non-parallelizing

languages. The inherent problem with time-lock puzzles is that the time needed for solving

the puzzle is dependent on the computing speed which can not be accurately predicted into

the future.

In the category of schemes using trusted party, one of the first was presented by Rivest

et al. [  9 ] where a trusted party creates public keys for encryptions of messages and publishes

the corresponding secret keys for different time-periods regularly. This idea was employed by

Rabin and Thorpe with multiple trusted agents, using a distributed key generation [  17 ] to dis-

tribute the secret key used for encryptions among different parties. There are other schemes

based on different approaches, like the timed-release encryption scheme from Crescenzo et

al. [ 7 ] which uses a trusted time-server and a newly created primitive called ‘Conditional

oblivious transfer’. They create an efficient protocol based on the quadratic residuosity as-

sumption which in addition offers sender anonymity. Watanabe et al. used secret sharing

where the dealer can choose a time. The shareholders can not reconstruct the secret shared

before the time specified is over [  150 ]. Many schemes based on identity based encryption

were proposed, where the trusted key distribution center is also used for ensuring the correct

time [  8 ], [ 18 ], [ 151 ], [ 152 ]. In these models, any criterion which can be verified by the trusted

party can be used as a reason to open a capsule.

For watermarking schemes, depending on the data type and application, many robust

watermarking schemes have been proposed in the literature. Works such as [ 129 ], [ 130 ],
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[ 131 ] present different audio watermarking schemes while works like [  132 ], [  133 ] deal with

robust video watermarking. For software watermarking, schemes suggested in [  134 ], [  135 ]

can be considered. The proposed IE protocol admits any robust watermarking scheme with

no known attacks [ 107 ].

Halpern and Teague [ 153 ] introduce rational secret sharing where the agents sharing a

secret are rational rather than honest or malicious. They show that at equilibrium, the

agents do not contribute shares for reconstruction and propose a randomized protocol for

performing the reconstruction. Gordon et al. [ 154 ] improve on the randomized protocol of

[ 153 ] by overcoming the impossibility result. Lysyanskaya et al. [ 35 ] introduces the mixed

behaviour model where the parties are either rational or adversarial, the authors provide

a framework for multi-party computation in the proposed model. We adopt the mixed-

behaviour model in this work.

Collusion in a multi-party setting to achieve collusion free MPC has been considered in

works like [  155 ]–[ 157 ], however, these works have stringent assumptions including the parties

being co-located and communication only through a mediator. Recently, Ciampi et al. [ 158 ]

define collusion proofness for multi-party functionalities, they assume availability of stateful

trusted hardware tokens with each of the agents and parties communicate through authenti-

cated broadcast channels. However, none of these works can be used for information escrows

as agents can communicate over external channels and reconstruct the stored documents. In

this work, we make no assumptions on communication or existence of envelopes and hard-

ware tokens; we allow the agents to communicate freely on external channels and design the

mechanism such that non-collusion is a Bayesian Nash Equilibrium for the system.

4.3 Cryptographic Construction

The CDE protocol consists of algorithms for generating the shares of the secret key sk,

setting up the message blocks by the user, the distributed receiver oblivious transfer (DROT)

to transfer the message blocks to the agents and to open the message by the agents. The

protocol with a user/sender U and n agents Aj, j ∈ [1, n] constitutes the following algorithms:
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• KeySetup(t, t, λ) generates a bit-wise shared secret key sk for the t participating agents

with threshold t + 1. It also generates the corresponding public key pk and the other

public components.

• MessageSetup(m,λ, pk) outputs λ pairs of encryptions of binary-watermarked parts of the

message m encrypted to the public key pk.

• DROT
(

(ki,0, ki,1), JskiK
)
The DROT protocol takes the keys ki,0, ki,1 from the sender and

the shares of the bit ski from the receivers and transfers sharing Jki,skiK corresponding to

the bit ski to the receivers for i ∈ [0, λ− 1].

• Open
(
JskiK, Jki,skiK, ci,b, b ∈ {0, 1}i ∈ [0, λ − 1]

)
takes the shares of secret key bits along

with the cipher texts, decrypts the ciphertexts forming the message blocks and outputs

the final combined message.

4.3.1 Cryptographic Setup

KeySetup(n, t, λ, n). It provides the bit-wise shared secret key sk using (t, t+1)-secret sharing

and the corresponding public key to the n agents. The algorithm first generates the public

parameters using grp.gen(·) which takes the security parameter λ as input. It generates the

cyclic group G of prime order p and two generators g, h. The two generators are used for

Pedersen commitments. The agents run the distributed key generation (DKG) algorithm

dkg.gen(·) to generate the public key pk and the vector of secret key shares JskK, with each

agent AIND, IND ∈ [1, n] obtaining the share JskKIND. The agents run a bit decomposition

algorithm bit.decomp(·) with the shares to obtain the bit-wise threshold-shares JskiKIND of

the bits ski, i ∈ [0, λ− 1] for each agent. Here, n is the security parameter and λ = poly(n).

Algorithm  2 depicts algorithm KeySetup.

MessageSetup(m,λ, kemd). It is run by the sender who takes the message m and uses an

algorithm split(m,λ) to divide it into λ parts (m0, . . . ,mλ−1) where λ is the bit-length of

the secret key sk. The sender forms the robust binary watermarked versions of the mes-

sage parts (using wm.embed(·)) with the watermark embedding key kemd, watermarked with

{0, 1} to obtain {(m0,0,m0,1), · · · , (mλ−1,0,mλ−1,1)} and encrypts them using the randomly
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Algorithm 2 KeySetup (n, t, λ, n)
1: G, g, h, p← grp.gen(λ)
2:

(
JskK, pk

)
← dkg.share(t, t, λ)

3:
(
Jsk0K, · · · , Jskλ−1K

)
← bit.decomp

(
λ, JskK

)
4: kemd, kdet ← wm.gen(n)

Algorithm 3 MessageSetup(m,λ, kemd)
1: (m0, . . . , mλ−1)← split(m, λ)
2: for i = 0 . . . λ− 1 do
3: mi,0 ← wm.embed(mi, 0, kemd)
4: mi,1 ← wm.embed(mi, 1, kemd)
5: ki,0, ki,1

$←− K; K − key space
6: ci,0 ← enc(ki,0, mi,0)
7: ci,1 ← enc(ki,1, mi,1)

Figure 4.3. KeySetup and MessageSetup algorithms

chosen symmetric keys ki,b to produce ci,b, i ∈ [0, λ − 1], b ∈ {0, 1}. The split(·) is a simple

split/chopping of the message into parts. However, if the watermarking scheme allows recon-

struction of the data, the split can be a secret sharing based split outputting secret shares

of the message. Algorithm  3 depicts algorithm MessageSetup.

4.3.2 Distributed Receiver Oblivious Transfer—DROT

Oblivious transfer is a 2-party computation protocol, in which the sender has two mes-

sages m0,m1 and the receiver has the bit c; at the end of the protocol, the receiver receives

the message mc. The protocol ensures that sender has no information of c and the receiver

has no information about m1−c. We develop a multi-party version of oblivious transfer called

the Distributed Receiver Oblivious Transfer protocol (DROT) which is used in the APBpro-

tocol to transfer the document to the agents. The DROT protocol involves n + 1 parties

with one sender and n receivers. The sender has the messages k0, k1 and the receivers have

the shares JsK for the bit s. At the end of the computation, each of the receivers receives

the shares JksK. The receivers can reconstruct ks by collaboration, however, they cannot

reconstruct k1−s. This is similar to the standard oblivious transfer protocol in which the

other value m1−c cannot be computed by the receiver.

Ideal functionality of DROT. The functionality (refer Figure  4.4 ) interacts with the

sender S and the n receivers Aj, j ∈ [1, n]. S has the messages k0, k1 and each receiver Aj

has the share JsK of the bit s. The adversary A can corrupt a total of t parties in the

system — the sender or upto t receivers or sender and t − 1 receivers. The sender initiates
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The functionality FDROT interacts with the sender S and n receivers Aj, j ∈ [1, n]. Each
receiver Aj has share JsKj of a random, unknown secret bit s and the sender S has two
messages k0, k1. A maximum of t parties in the system can be corrupted by the adversary
A.

• Upon receiving the message (inputS, k0, k1, sid) from sender S, record 〈k0, k1, sid〉, forward
the message (intd, sid) to the receivers Aj and (input, sid) to A.

• Upon receiving the message (inputR, JsKj, j, sid) from receiver Aj, add 〈j, [s]j〉 to the set
I, forward the message (input, sid) to A. When ‖I‖ ≥ t + 2, compute the secret bit s
from the shares JsKj.

• Upon receiving the message (deliverS, sid) from A, check if 〈k0, k1, sid〉 is stored and
‖I‖ ≥ t+ 2, else ignore the message. Send (delivered, sid) to S.

• Upon receiving the message (deliverR, sid) from A, check if 〈k0, k1, sid〉 is stored and
‖I‖ ≥ t + 2, else ignore the message. Generate shares JksKj of the value ks. Forward
(output, JksKj, sid) to Aj, j ∈ I.

Functionality FDROT

Figure 4.4. Ideal Functionality Of DROT

by forwarding the input by sending the inputS message with the two messages k0, k1 and

the session id sid to FDROT. The functionality stores them and informs the adversary by

sending the (input, sid) message. It also informs the receivers that the protocol has been

initiated by sending the (intd, sid) messages. The receivers forward their shares JsKj using

the message inputR to FDROT , whose id j is stored in the set I. After receiving at least t+2

shares, the functionality computes the bit s by combining the shares JsKj. When A sends the

(deliverS, sid) message, the functionality checks if the inputs from the sender and at least

t + 2 receivers have been received. If not, the message is ignored. The sender is informed

by forwarding the (delivered, sid) message to S. A sends the (deliverR, sid) message to

release the output to the receivers. On receiving the deliverR message, the functionality

checks if ‖I‖ ≥ t+ 2, if at least t+ 2 receivers have forwarded to release the output. If yes,

it generates shares of the value ks and forwards the share JksKj to the receivers Aj, j ∈ I.

Protocol. We realize DROT using multiple instances of two-party computation, realizing

an oblivious linear function evaluation (OLE) [ 96 ] between the sender and the receivers. In
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DROT, the OLE computation is run by the sender with all the n receivers Aj, j ∈ [1, n]. The

input of the sender is messages (k0, k1) and the input of each receiver is share JsKj of the bit

s. JsKj are (n, t+ 1) shared values of the value s. After the DROT protocol run, the receivers

obtain the value k0 + (k1 − k0) · JsKj. These are the shares JksKj, j ∈ [1, n] of the value ks,

such that any t + 2 or more parties can reconstruct the value ks. The receivers prove in

zero-knowledge that the input shares indeed correspond to a bit s.

The CDE protocol uses the DROT protocol to transfer the encrypted message blocks and

the corresponding keys’ shares to the agents. The user encrypts the message blocks mi,b,

using keys ki,b to obtain ci,b for i ∈ [0, λ − 1] and b ∈ {0, 1} and broadcasts the ciphertexts

to all the agents. User transfers shares of keys ki,ski to the agents using DROT. As a part

of DROT the user runs λ instances of OLE— for each instance i, the input of the user is

(ki,0, ki,1) where the inputs of the agents would be shares JskiKj of the bit ski of the signing

key sk. At the end of the runs, each agent Aj has the values Jki,skiKj which are shares of the

values ki,ski = ki,0 − (ki,1 − ki,0) · ski. While running DROT for CDE, the agents prove to the

user that the input bit shares indeed correspond to bits of the secret key sk by forwarding

a zero knowledge proof πsk. This way of directly computing the shares of the keys ki,ski

prevents the agents from learning the other key corresponding to ki,1−ski . The oblivious

transfer functionality can be realized using standard oblivious transfer primitives, however,

they involve computing hash functions in a distributed manner which is computationally

intensive. Realizing the oblivious transfer functionality as oblivious linear function evaluation

using secret sharing based 2-party computation avoids the computational bottlenecks.

The security analysis of DROT is discussed in Section  4.5 .

4.3.3 Post-processing

Open. The algorithm open decrypts a message with the collaboration of t + 2 or more

agents. The agents combine their shares for every key bit Jki,skiK, i ∈ [0, λ − 1] for each i

and the corresponding ciphertext ci,ski is decrypted to mi,ski . After all parts of the messages

mi,ski are recovered, they are combined to form the final message m′ which is a watermarked
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Algorithm 4 Open (JskiK, Jki,skiK, ci,b, b ∈ {0, 1}i ∈ [0, λ− 1])
1: for i = 0 . . . λ− 1 do
2: ski ← bit.recon(JskiK)
3: ki,ski ← dkg.recon(Jki,skiK)
4: mi,ski ← dec(ci,ski , ki,ski)
5: m′ ← combine(m0,sk0 , . . . , mλ−1,skλ−1)
6: return m′

version of m. m′ contains the whole of the secret key sk as watermark embedded in it.

Algorithm  4 presents algorithm Open.

Detection key distribution. In the protocol, the user forwards the detection keys of

the watermark she employed to some of the agents to ensure that if the agents decide to

decrypt the user message, the agents with the watermark detection key will be able to detect

the watermark sk embedded in the document. These agents will be able to transfer the

deposit of all other agents. The user distributes the correct detection key to a subset of

agents such that any subset of t + 2 agents has at least one agent with the detection key.

The user forwards either a correct or an incorrect (dummy) key to all the agents, who can

not distinguish if the received key is a correct detection key unless they collude and decrypt

the document.

4.3.4 Escrow deposits

Before the start of the protocol, the user and the agents agree on the deposit value D.

The agents proceed to deploy smart-contracts embedding the condition τ specified by the

user to the address corresponding to the public key pk. Each agent Aj creates a deposit

transaction TXj for the value D and the user verifies that the agreed-on values of funds have

been held in the deposit. When the condition τ is met, the deposits can be immediately

transferred back to the agents. Any agent with sk can claim/transfer all the deposits to the

address of his choice before the condition τ is met. If the deposit is ever transferred before

τ , all the agents except the agent that transferred the deposit are banned from offering any
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future service thereby penalizing them. This ban can be either permanent or for a specified

period of time.

In the non-colluding scenario, after the condition τ is met, we expect the agents to take

a non-zero time to compute the secret key sk. Indeed, we expect that the deposits are

transferred back instantaneously to all the agents by the smart contracts before the sk is

computed by the agents once τ is met.

Before the transfer of the document by the user, she includes partial payment in the

cryptocurrency deposit smart contract which will be paid to the agents when the condition

is met and if the agent deposits are not transferred by then. This payment can be in addition

to partial initial payment made by the client to the agents for the service.

As the agents provide strong identities linked to their physical identities, they cannot

launch any Sybil attack to target and ban other agents.

4.4 Game-theoretic Modelling and Analysis

We model and analyze the collusion deterrent escrow (CDE) protocol as a mechanism

through which the user induces a game between the agents offering the service. Two collusion

scenarios are possible: (i) collude and reconstruct the keys such that the document can be

decrypted (ii) reconstruct the secret key sk from the shares. These two scenarios are modeled

as collusion strategies played by the agents. For simplicity, we initially analyze the scenario

with one regulator (user) and two agents A1,A2.

Further assumptions. : Before we analyze the system, we mention some of the (implicit)

assumptions under which the proposed protocol is applicable:

• The agents provide physical verifiable identities before offering the service such that ban-

ning is effective. This prevents the banned agents from offering the service again under a

different pseudonym.

• When multiple agents try to transfer the deposit after collusion, each agent transfers

(wins the race) with equal probability. We make this assumption for the ease of analysis.
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Table 4.1. (Trivial) Pay-off matrix for the two agent threshold escrow without
collusion-deterrence. v is the fee offered by the user and d is the value of the
escrowed document to the agents.

A2

A1 reject accept (not collude) accept and collude

reject (0,0) (0,0) (0,0)
accept (not collude) (0,0) (v, v) (v, v)
accept and collude (0,0) (v, v) (v + d

2 , v + d
2)

However, if the probabilities are different, it deters the agents further to collude since the

agents do not know if they have higher/lower probability of success.

• The sum total of all the future payments (F ) that are receivable by the agents for the

future services to be offered is greater than the value v of individual documents encrypted

for any time period.

When the user engages the agents for the escrow service, she induces a trivial game

between the agents. They have a choice of either accepting to offer the service or rejecting,

indicated by accept or reject in Table  4.1 . If both the agents accept, the user offers a transfer

of value v to each of the agents. This results in a trivial pay-off matrix as shown in Table

 4.1 with only the accept and reject strategies. accept indicates the strategy of offering the

service without collusion. Each of the agents makes a deposit of value D before the user

interacts with them.

The agents are free to interact, they can collude with each other to open the user’s escrow

message and share the value of the document among themselves. We assume the agents are

symmetrical and value the document equally. If d is the value of the document and if agents

are assumed to share the value equally under collusion, the pay-off of each of the agents is

α = v + d
2 . This extends the pay-off matrix in Table  4.1 to include the collude strategy. If

only one of the agents wishes to collude and the other does not, collusion does not occur

and the pay-off of each is still v. Since the agents accrue a pay-off strictly greater than v,

colluding is a dominant strategy equilibrium of the game [  159 ] and hence both the agents

play the accept and collude strategy at equilibrium.
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To prevent such a collusion attack and to prevent accept and collude as the equilibrium

strategy, the user who acts as a principal/regulator designs a mechanism implemented by

offering the grand contract. In our protocol, the agents collude to attack the system either by

decrypting the document or by reconstructing the secret key. These two cases are considered

as the collusion scenarios inducing two collusion games among the agents.

Along with the document/data, the user(regulator) transfers information types {I,D}

to the agents such that the agent with information I is considered the efficient agent and the

agent with D, the inefficient agent. The typeset Θ = {e, ie} indicates efficient and inefficient

agents. The regulator forwards the information I (resp. D) with probability p (resp. 1− p)

to each of the agents. Thus the user induces an information asymmetry among the agents.

One can note that, unlike a typical setting, in this model the regulator induces types on the

agents.

In the implementation of the game as a protocol, the information I would correspond to

the correct detection key and D, an incorrect detection key. D > 0 is the value of conditional

deposit made by each agent and F is the approximate sum of future payments to be received

if the agent/node is not banned from the system. The two collusion scenarios Collusion-

1, Collusion-2 would be collusion scenarios using document decryption and secret key (sk)

reconstruction respectively. In the protocol, when the deposits are transferred before the

condition is met, whoever transfers the deposits can gain the value D (deposit of the other

agent apart from getting back own deposit). However, every agent except the agent that

performs the transfer is banned from the system. Getting banned would make the agents

lose all future payments/pay-offs that they can receive from other clients/users whose total

is approximated to a value F � 0.

4.4.1 Collusion-game-1

When the agents decide to collude and threshold-decrypt the document, we call it

Collusion-1 and the game induced is Collusion-game-1. The following parameters define

the game.

• The set of agents N = {A1,A2}
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• The typeset of the agents Θ = {e, ie}

• The strategy space of each agent IND is SIND = {wait1, transfer1}

• The utilities corresponding to the strategy and the type of the agent

uIND(θIND, sIND, s−IND), θIND ∈ Θ, sIND ∈ SIND. s−IND indicates the strategy(ies) of

player(s) other than player j.

Table 4.2. Pay-offs of rational agents under different strategies in Collusion-1-
document decryption (strictly dominant strategies indicated in grey)

A2

A1 Efficient(e) Inefficient(ie)
wait1 transfer1 wait1

Efficient
(e)

wait1 (α, α) (α + D, α− F −D) (α, α)
transfer1 (α− F −D, α + D) (α− F

2 , α− F
2 ) (α− F −D, α + D)

Ineffi-
cient
(ie)

wait1 (α, α) (α + D, α− F −D) (α, α)

When the agents/nodes collude and decrypt the document version (Collusion-1), the

agent that has access to the watermark detection key can ‘transfer’ the deposit, however,

he can choose not to transfer the deposit and ‘wait’. These two actions are indicated by

transfer1 and wait1. The agent that does not have the detection key can not transfer the

deposit and hence can only wait after collusion.

Payoffs. The expected pay-offs of the agents under Collusion-1 is captured by the pay-

off matrices in Table  4.2 . An efficient agent (e) has the correct detection key and ineffi-

cient agent (ie) does not. When both agents are efficient and decrypt the user document

and not transfer the deposit (play wait1), they both can accrue a pay-off of α = v + d
2 .

If one of the agents transfers (plays transfer1) the deposit, he gets a pay-off of α + D

where as, the other agent loses his deposit and gets banned thereby accruing a pay-off

of α − (F + D). In the case when both the efficient agents attempt to transfer the de-

posit simultaneously, since only one agent can succeed in the transfer, it creates a race

condition and we assume that each will succeed in the transfer with equal probability
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3
 ; hence in expectation they accrue a pay-off 0.5(α + D) + 0.5(α − F − D) = α − F

2 .

uIND(e, transfer1, s−IND) > uIND(e,wait1, s−IND)∀s−IND ∈ {transfer1,wait1} (from Table  4.2 ).

For an efficient agent transfer1 is a strictly dominant strategy, he always plays transfer1.

For the inefficient agent, wait1is the only strategy available to play in Collusion-1, trivially, it

is the dominant strategy. The dominant strategies have been indicated in grey in Table  4.2 ,

the pay-off submatrix of Table  4.2 when both the agents are efficient are similar to the pay-

offs in well known prisoners’ dilemma [ 160 ]. The agents playing their dominant strategy for

the given type according to the payoff matrix of Table  4.2 indeed forms the Bayesian Nash

Equilibrium as defined below.

Definition 4.4.1 (Bayesian Nash Equilibrium [  161 ]). A strategy profile s(·) is a Bayesian

Nash equilibrium if Euj(sj‖s−j, θj) ≥ Euj(s′
j‖s−j, θj) for all θj ∈ Θj, for all s′

j(θj) ∈ Sj where

the expected utility Euj(sj‖s−j, θj) = ∑
θ−j∈Θ−j uj(sj, s−j(θ−j), θj, θ−j)p(θ−j‖θj).

Expected payoff. The regulator chooses each agent and transfers information I with

probability p independently. Hence the expected payoff of each agent playing their dominant

strategies (Table  4.2 ) is:

â = p2(α− F

2 ) + p(1− p)(α +D) + (1− p)p(α− F −D) + (1− p)2α

= α(p2 + 2p(1− p) + (1− p)2)− p2F

2 − (p− p2)F = α− F (p− p2

2 ) (4.1)

4.4.2 Collusion-game-2

In the collusion scenario where the agents reconstruct the secret key (Collusion-2), the

game induced is Collusion-game-2. The agents can either choose to transfer the deposit –

play transfer2 or wait without transferring – play wait2. The actions do not depend on the

availability of the detection key and hence do not depend on the type of the agent. The

following parameters define the game.

• The set of agents N = {A1,A2}

3
 ↑ If we assume different probabilities, the agent succeeding with lesser probability has lesser pay-off and

is further dis-incentivzed from collusion
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Table 4.3. Pay-offs of rational agents under different strategies in Collusion-2-
secret key reconstruction

A2

A1 wait2 transfer2

wait2 (α, α) (α + D, α− F −D)
transfer2 (α− F −D, α + D) (α− F

2 , α− F
2 )

• The strategy space of each agent IND is SIND = {wait2, transfer2}

• The utilities corresponding to the strategy.

The obtained pay-offs of different actions in Collusion-game-2 are presented in Table  4.3 .

After the reconstruction of the secret key, if both the agents wait and do not attempt to

transfer the deposit (play wait2), both the agents obtain a pay-off of α, however, if one of

the agents transfers the deposit (plays transfer2), he obtains α+D whereas the other agent

obtains a payoff of α − (F + D). In the case when both the agents attempt to transfer

the deposit, they obtain an expected payoff of α − F
2 . Again, playing transfer2 is a strictly

dominant strategy of every agent in this collusion scenario, and hence the agents always play

transfer2. Both the agents play transfer2 as their dominant strategy, accruing a pay-off of b

as shown in Table  4.3 where,

b̂ = α− F

2 (4.2)

Maximum pay-off from collusion. It can be seen from Equation (  4.1 ), Equation ( 4.2 )

the maximum expected pay-off that can be obtained by each agent through either collusion

scenarios is

β = max(â, b̂) = max
(

(α− F (p− p2

2 )), (α− F

2 )
)

(4.3)

As F is the sum of all future payments from many users, we have, F � D,F � d, v. The

regulator or the user sets the value of p such that β < v. The expected pay-off from the

collusion game β is strictly less than v making collusion unviable.

Bargaining: Apart from the two collusion scenarios with the actions defined, each agent

may indulge in bargaining/bribing by offering a positive payment through the side contract

to other agents to prevent them from playing transfer2. We assume that the other agents
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can not impose a negative pay-off on the whistle blower (playing transfer1/transfer2) outside

the system. Hence the agent will always play his dominant strategy of transfer to improve

his pay-off even after accepting a payment from the other agent. From the strictly dominant

strategies, it is clear that whenever the agents decide to collude, they always attempt to

transfer the deposit and act as whistle-blowers in the protocol irrespective of the actions of

other agents.

Theorem 4.4.1. In CDE protocol under Bayesian Nash equilibrium (ref Definition  4.4.1 )

with n = 2, the agents do not collude; for n > 2, no more than threshold t+ 1 agents collude

when the secret key is shared in a (n, t + 1) threshold structure (at least t + 2 agents are

required to obtain secret information).

For n = 2 when the agents collude, the expected pay-off as computed in Equation ( 4.3 )

is β = max
(

(α − F (p − p2

2 )), (α − F
2

)
. Since F � d, v, α = v + d

2 , we have β � v. The

maximum expected pay-offs when the agents play accept and collude are (β, β). Thus the

trivial pay-off matrix of Table  4.1 , under the CDE protocol mechanism changes to Table  4.4 .

Since β < v, it is evident from Table  4.4 that accept and collude is not an equilibrium as

agents can deviate unilaterally and improve their pay-offs. Thus at equilibrium the agents

do not collude. When the number of agents is n and the secret is shared with (n, t + 1)

threshold secret sharing, collusion occurs only when at least t + 2 agents collude with each

other. When t agents play the collusion strategy, no rational t+ 2nd agent plays accept and

collude as his expected pay-off will drop from v to β. Thus irrespective of the t+1 agents, no

rational agent attempts to collude and collusion is not an equilibrium in the pay-off matrix.

The equilibrium pay-off of the agents is v.

This is also evident from the extensive-form game depiction of the overall game played

by the agents as shown in Figure  4.5 . ‘Collude’ indicates the two collusion scenarios and

the pay-off is the maximum obtained from either of the two scenarios when the agents play

the collusion strategy. The leaf nodes are associated with the pay-offs of the agents for a

run of the game. As evident from the last decision node of the tree, player 2 never chooses

to collude when agent 1 plays accept and collude as accept, not collude offers strictly higher

pay-off. Similarly, when the game tree is formed for n agents, at a node where t+ 1 agents
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Table 4.4. Pay-off matrix of the two agents under CDE. v is the pay-off when
agents do not collude and β � v is the pay-off when the agents collude.

A2

A1 reject accept
(not
collude)

accept
and col-
lude

reject (0,0) (0,0) (0,0)
accept (not collude) (0,0) (v, v) (v, v)
accept and collude (0,0) (v, v) (β, β)

accept,not
collude

reject

Agent 1

Agent 2

reject reject

accept and
collude

accept,not
collude

accept and
collude

accept and
collude

accept,not
collude

Figure 4.5. Extensive form game induced by the user in CDE between two
agents. v is the pay-off when agents do not collude and β � v is the pay-off
when the agents collude

collude, the t+ 2nd agent chooses not to collude as the equilibrium strategy. It can be seen

that ‘accept and not collude’ of every agent is the strategy that survives the iterated deletion

of weakly dominated strategies and hence the unique equilibrium strategy profile of the game

consists of each player playing ‘accept and not collude’.

After collusion. Tables  4.2 ,  4.3 show that during collusion irrespective of what the other

agents’ strategy is, the dominant strategy of any rational agent is to attempt to transfer

the deposit to himself. Thus whenever collusion occurs (with > t+ 2 parties) irrespective of

which set of agents collude during the collusion phase, every colluding rational agent attempts

to transfer to himself leading to an expected pay-off strictly lower than obtained without

collusion. The adversary controlling t agents can approach any rational agent to reveal all
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the secret shares with the adversary, however, since the threshold of secret information is

t + 1, at least 2 rational agents need to participate in collusion along with the adversary

to transfer all the deposit. If more than t + 1 agents participate in collusion, the expected

pay-off is strictly less than without collusion. Thus no rational agent participates in the

collusion.

In works involving rational secret sharing[ 153 ], [  154 ], the authors show with the utility

structure where the parties do not prefer others to know the secret information, the parties

do not reconstruct the shared secret in equilibrium. In CDE protocol, we have a similar utility

function structure, however, in this protocol not sharing the information (here, not colluding)

survives the iterated deletion of weakly dominant strategies and hence an equilibrium. What

is a road-block in works like [  153 ], [  154 ], [  162 ] is actually made use of as an advantage in

the CDE protocol. After the condition set by the user is met, the utilities of the agents

change such that other agents learning the secret information does not affect the agent and

the equilibrium strategy would be to decrypt and obtain the pay-off.

4.4.3 Remarks

We now discuss two practical issues:

Multiple-rounds. : Even though the analysis considers only one round of play of the game,

since collusion and corresponding banning of agents occurs only once for a set of agents, the

same analysis can be used to depict multiple-rounds by appropriately modifying the values

of d, v, β, F . As ‘future’ always exists and the longer the system runs the longer can be the

future service offering, the value of F is still higher even if values of d, v, β are considered

cumulatively for multiple rounds and multiple documents. Once the whistle-blower transfers

the deposit, all other colluding parties are banned from the system and the whistle-blower

can join another set of agents to continue offering the service without any damage/change

to his reputation.

Partial Decryption. : The receivers may try to decrypt the document partially (and not

the full document) so that the agents with the detection key will not be able to detect the

whole secret key watermarked in the document. This can be prevented by the user as follows:

95



she can split the document into much more number of parts (multiples of λ instead of just

λ) and transfer them to the agents. Through this, she embeds multiple copies of the secret

key in the document such that any small decrypted portion contains the whole secret key

as the watermark. She can introduce dummy blocks, randomize them in the total message

blocks and also embed multiple copies of the key in the part of the document which has more

information or high entropy, whereby decrypting any useful part of the document reveals the

full key. Also, when an agent with the detection key obtains the key partially, he can brute

force the remaining bits of the key whenever possible. The exact number of copies of the

secret key to be embedded depends on the entropy of the document and the information it

contains, the analysis of which is beyond the scope of this document.

4.5 Security Analysis

4.5.1 Security Definition

The system consists of t agents Aj, j ∈ [1, n] and a user U with an input mU. The agents

and the user are interactive Turing machines that communicate with an ideal functionality.

The adversary is a PPT machine with access to a corrupt interface that takes an agent/user

identifier and returns the internal state of the agent to the adversary. All subsequent incom-

ing and outgoing communication of the agent is then routed through the adversary. The

adversary is t-bounded, and can corrupt up to t agents and the user. For formal security, as

discussed earlier, we consider the static corruption model i.e., the adversary commits to the

identifiers of the agents it wishes to corrupt ahead of time. The adversary is also informed

whenever some communication happens between two agents and it can arbitrarily delay the

delivery of the message between honest parties; however, it cannot drop messages between

two honest agents or between the honest user and the honest agent.

Ideal Functionality. In our ideal functionality FCDE (See Figure  4.6 ), the user chooses

a set of agents SU = {Au1 , · · · ,Auq} where U = {u1, · · · , uq} is the set of indices. The user

initiates the document transfer using the inputU message and forwards the data mU and

the set SU to FCDE with the session id sid. FCDE receives and stores 〈U,SU ,mU, sid〉. The

intd message is sent to all the agents indicating that the session has been initiated by the

96



The functionality interacts with a user U and t agents with identities Aj, j ∈ [1, n]. U has
a message mU to be locked and selects the subset of agents SU = {Au1 , · · · ,Auq} where
U = {u1, · · · , uq} is the set of indices of agents chosen. The user and a maximum of t agents
can be corrupted by the adversary A.

Init Session and user input:

• Upon receiving the message (inputU,SU ,mU, sid) from user U, record and store
〈U,SU ,mU, sid〉, forward the message (intd,U, sid) to each agent Aj and forward
(input, sid) to A.

Open message:

• Upon receiving the message (openR, j, sid,U) from the agent Aj and store j in the set
Qsid and forward (open, sid) to A.

Release message:

• Upon receiving the message (releaseR, j, sid,U) from the agent Aj, store j in the set
Rsid and forward (release, sid) to A.

Delivery:

• Upon receiving the message (deliverU, sid) from A, check if 〈U,SU ,mU, sid〉 is
stored, else ignore the message. Send (delivered) to U.
• Upon receiving the message (openA, sid) from A, check if 〈U,SU ,mU, sid〉 is stored

and ‖Qsid‖ ≥ t + 2, otherwise ignore the message. Send (openoutput,mU, sid) to
all the agents Ak for k ∈ Qsid and forward the message “key” to agents Ad for
d ∈ Qsid ∩ U .
• Upon receiving the message (releaseA, sid) from A, check if 〈U,SU ,mU, sid〉

is stored and ‖Rsid‖ ≥ t + 2, otherwise ignore the message. Send
(releaseoutput,mU, sid) to all the agents Ak for k ∈ Rsid.

Functionality FCDE

Figure 4.6. Ideal Functionality of CDE

user. U is the set of indices of all agents to whom detection key is forwarded in the protocol

implementation.

Each agent Aj can wish to open the user message, they forward the message

(openR, j, sid,U) to indicate they wish to open the message of the user U. The functionality

stores the index in the set Qsid. Similarly, the users may wish to release the user message

and forward (releaseR, j, sid,U) to the functionality. Opening the message indicates the
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selective opening of the message, using threshold decryption in the protocol implementation.

Releasing the message implies reconstructing the secret key using the shares of secret key

bits among the agents and decrypting the user message. When the agents forward openR

and releaseR messages from agents, the functionality informs the adversary by forwarding

open and release messages respectively.

When the adversary A sends the message deliverU to the functionality, it checks if the

input from the user is received and informs the user by forwarding the message delivered to

the user. When A forwards the message openA, the functionality checks if at least t+2 agents

have forwarded an openR message, if yes, it forwards the user message to all such agents.

Apart from that it forwards the key to those agents in the set Qsid ∩ U . The key message

models the release of secret key sk to agents in the real world protocol. The watermarked

secret key is revealed to the agents to whom the detection key has been forwarded by the

user, indicated by the set U . On receiving the releaseA message from A, the functionality

checks if at least t + 2 agents forwarded the releaseR message, if yes, it forwards the user

message to those agents. This models the release of the user message by collaboration from

at least t+ 2 agents.

From the different steps of the CDE protocol described in Section  4.3 it can be seen that,

when the agents decide to decrypt the secret message, they reconstruct the keys ki,ski and the

decrypted message consists the secret key embedded as the watermark. A subset of agents

who have the correct detection key will be able to detect the watermarked secret key, this

corresponds to receiving the ‘key’ message in the open phase of the ideal functionality.

Towards analyzing the security of our protocols under the mixed-behaviour model [  35 ],

we offer theorem statements and proof sketches for ideal-real world security paradigm. We

employ all our functional blocks in a black-box manner and find that the formal crypto-

graphic analysis to be canonical. We first consider the security of the DROT protocol from

Section  4.3.2 , which is the key cryptographic construction of CDE. DROT uses multiple in-

stances of UC-Secure OLE protocol for forwarding the key shares to the agents. We present

the simulator SDROT of the DROT functionality in Figure  4.7 before we proceed to provide

the proof-sketch for the CDE protocol.
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Theorem 4.5.1. Assuming a secure two-party computation of the OLE protocol, the DROT

protocol (Section  4.3.2 ) securely implements the ideal functionality FDROT (in Figure  4.4 )

under the mixed-behaviour model.

The simulator SDROT in Figure  4.7 interacts with the user U and n agents Aj, j ∈ [1, n], the

adversary A corrupts a maximum of t parties. The simulator presents an indistinguishable

view to the adversary in the real-world ideal-world paradigm. In the DROT protocol, the

user inputs pair of of keys k0, k1 where as the agents input shares [s] of a secret key bit s

which is (n, t+ 1) threshold shared among the agents.

The transfer of secret key shares from user to the agents is realized using the secure

2-party computation of oblivious linear function evaluation (OLE) between the user and

each of the agents. The simulator SDROT invokes SOLE [ 97 ] with corresponding inputs while

generating the view for the adversary. The simulator for the OLE protocol SOLE provided

by Ghosh et al. [ 97 ] is a generalization where the inputs are t element vectors. This can be

used in a straightforward manner for t = 1. SDROT uses SOLE in a black box manner while

interacting with corrupt parties, invoking the corresponding side (corrupt sender or corrupt

receiver) of it.

While interacting with corrupt S, SDROT invokes n instances of SOLE each simulating

one agent. SOLE extracts the sender inputs k0, k1 which are forwarded to the functionality

using the message (inputS, k0, k1).

Up to t receivers can be corrupted by the adversary. While interacting with corrupted

receivers, SDROT invokes t instances of SOLE which interact with the corrupted receivers.

Each instance of SOLE extracts the receiver input JsKj, j ∈ [n − t, n]. The values JsKj are

forwarded to FDROT using the message (inputR, sid, JsKj, j). After receiving all the shares,

the funcationality computes the value ks and forwards the shares JksKj, t of which are received

by SDROT . These values are input the t instances of SOLE, which take the values JksKj, set

the two inputs while interacting with the corrupted receivers.

When the sender and t− 1 receivers are corrupted, SDROT simulates n− t+ 1 receivers

to the sender and forwards all the messages between the corrupted sender and the receivers

without any modifications. SDROT invokes n − t + 1 instances of SOLE which simulate the
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receivers. SOLE extracts the sender inputs k0, k1 which are forwarded to FDROT using the

message (inputS, sid, k0, k1).

The indistinguishability of the view follows from the UC-security of FOLE. In the case

when the sender and t − 1 receivers are corrupted, all the messages are forwarded between

them without modification. we know that any collusion during or after the document transfer

with secret information being revealed to the agents, results in a lower expected pay-off as

computed in Section  4.4.1 and Table  4.4 . No rational agent deviates from the protocol as

participating in the protocol without abort results in a positive non-zero pay-off. Hence the

agents neither collude nor deviate from the protocol realizing the functionality securely.

Next, we analyze the security of the CDE protocol assuming that we have access to

secure protocols for dkg, bit-decomp, robust bit watermarking and DROT.

Theorem 4.5.2. Let dkg, bit-decomp be secure MPC protocols, wm(·) is a robust bit wa-

termarking algorithm, and DROT is secure (as in Theorem  4.5.1 ). The CDE protocol πCDE

securely realizes the ideal functionality FCDE under the mixed-behaviour model.

The system consists of user U and n agents Aj, j ∈ [1, n]; at any instance of time a

maximum of t parties can be corrupted by the adversary A. The CDE protocol involves

distributed key generation, bit-decomposition and DROT protocols, where DKG and bit-

decomposition are performed among the agents and DROT protocol is run between the user

and the agents. We use these three protocols in a black-box manner with their corresponding

simulators. We refer the reader to the works [ 30 ] and [  163 ], [ 164 ] for the simulators for DKG

and bit-decomposition algorithms. We refer to them as SDKG and SBitDec.

The simulator SCDE generates an indistinguishable view for the adversary in the real-

world ideal-world paradigm. It invokes the three simulators SDKG, SBitDec and SDROT for

each of the phases of the protocol run. The DKG protocol [  30 ] is based on polynomial

evaluation and Pedersen commitments for generating verifiable secret shares for the parties.

Each of the parties generates shares of a random value and locally compute the secret share

value from the shares of the qualified set of parties. The bit-decomposition algorithm takes

the shares values and generates bit-wise shares of each of the bits of the secret key shared

among the users. The simulator SCDE invokes SDKG, SBitDec during these phases of the
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The Simulator SDROT interacts with the sender S and receivers Aj, j ∈ [1, n].
The sender S has two messages k0, k1 and the receivers have shares JsKj of a random bit s.
No more than t parties are corrupted by the adversary A.
SDROT invokes the simulator SOLE wherever necessary. SOLE extracts the inputs of the
parties to the OLE protocol while simulating an indistinguishable view in the real world -
ideal world paradigm.

Corrupt Sender
The simulator simulates n agents to the sender.

• Invoke corrupted sender version of SOLE while interacting with the sender as each
of the agents. The sender input for each of the instances is (k0, k1). SOLE extracts
the inputs k0, k1.
• Forward the message (inputS, k0, k1) to the functionality FDROT .

Corrupt Receivers:
The simulator simulates the sender to t corrupted receivers. For a bit s, the honest
receivers forward their shares to the functionality using (inputR, sid, JsKj, j) for j ∈
[1, n− t− 1]. Assume wlog. that agents Aj, j ∈ [n− t, n] to be the corrupted receivers.

• For each of the corrupted receivers, invoke corrupted receiver side of SOLE. The
input of the receiver Aj is JsKj. SOLE extracts the inputs JsKj, j ∈ [n− t, n].
• Forward the message (inputR, sid, JsKj, j) for j ∈ [n− t, n] to the functionality.
• The functionality forwards the value (output, JksKj) to all the agents, input the

value JksKj to SOLE instances which using the value, set the corresponding inputs
and interact with the corrupted receivers.

Corrupt Sender and t− 1 corrupt receivers
The simulator just forwards messages between the corrupted sender and t−1 corrupted
receivers.

• Invoke corrupted sender version of SOLE while interacting with the sender as each
of the remaining n− t+ 1 receivers. SOLE extracts the inputs k0, k1.
• Forward the message (inputS, k0, k1) to the functionality FDROT .

Simulator SDROT

Figure 4.7. Simulator for DOT

protocol simulation. Any deviation from the protocol is detected and the instance is aborted

in-case of such deviation. However, before the next two party computation phase commences

between the user and the agents, the simulator answers all oracle queries of the user and
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stores the query values qi. These queries are used by the user to sample keys to encrypt the

different message blocks. The simulator SCDE invokes λ instances of SDROT once for each of

the bits of the secret key. In cases with corrupted sender, the simulator computes the keys

used for encryption ki by checking over all the stored queries qi and inputs those keys.

Since the rational parties have an incentive to obtain the correct key shares for the

protocol to proceed, they have an incentive to not deviate from the protocol during the

setup. After obtaining the watermarked and encrypted user data and the corresponding

key shares through DROT, the agents do not collude at equilibrium as was proved by From

Theorem  4.4.1 . If the watermark can be removed without destruction of the data, the agents

would collude and decrypt the user data. Thus, robust watermarking ensures that collusion

is not an equilibrium of the collusion-game. The agents neither deviate nor collude at any

point of the protocol there by securely realizing the functionality.

4.6 Implementation

We implement the CDE protocol using HoneybadgerMPC [  86 ], SCALE-MAMBA [ 85 ],

and Charm cryptographic library [  165 ]. Our implementation includes realizing the DROT

protocol to transfer encrypted watermarked images and their corresponding key shares. Each

run of the protocol involves splitting the data into blocks, watermarking the blocks, and

transferring them. The DKG and bit-decomposition protocols are run by the agents as

setup before the user enters the system.

Distributed Key Generation—DKG. The DKG protocol is realized using Honeybad-

gerMPC [ 86 ], a secret sharing based python MPC framework supporting malicious security.

 

4
 We implement the DKG protocol proposed by Gennaro et al. [ 30 ], we realize Pedersen ver-

ifiable secret sharing (VSS) leveraging the communication layer of HoneybadgerMPC. The

DKG is realized by letting each agent perform VSS of random values, sum them up to get

the shared private key, and compute the public key from the commitments obtained. The

agents generate shares of the 256−bit secret key with the key pair on the curve secp256k1.

The DKG protocol has a message complexity of O(n3) for n parties. When adversary can
4

 ↑ HoneybadgerMPC supports the robust reconstruction of secret shared values and requires the adver-
sary to control up to t < n/3 parties. All test cases we run on honeybadgerMPC satisfy this threshold.
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corrupt t agents, the threshold of secret sharing is t+ 1 (at-least t+ 2 agents are needed for

reconstruction ), requiring n > 3t+ 2 for safety and liveness of the DKG protocol.

Bit-Decomposition. The bit-decomposition protocol is implemented through Honeybad-

gerMPC framework and the protocol realized is based on the one proposed by Catrina et

al. [ 32 ]. The round complexity of protocol is O(log(κ)) where κ is the number of bits that

we want to extract. We implement its variant with constant round complexity by using an

alternative sub-protocol for bit-wise addition [  163 ]. Moreover, we use the prefix multiplica-

tion protocol introduced in [  166 ] to replace the prefix AND sub-protocol in [  163 ]. Finally, we

achieve a bit decomposition protocol with O(κ2) communication complexity. The protocol

requires O(κ2) beaver triples and O(κ2) random shares as the offline cost. The field size for

bit-decomposition is the same as the curve sect571k1 to support decomposing 256-bit values

with a sufficiently large security parameter. With a large number of multiplications involved,

this is the most expensive operation in our protocol.

Two-party computations. Two party computation is required for the DROT protocol (Re-

fer Section  4.3.2 ) and we implement it using SCALE-MAMBA [ 85 ] since HoneybadgerMPC

does not support a full threshold protocol. In SCALE-MAMBA, fully homomorphic encryp-

tion is used in the offline phase and SPDZ-style secret sharing [  85 ] is leveraged in the online

phase. The whole two-party computation involves one multiplication and one reconstruc-

tion. The computation is performed by the user with each agent so the total communication

complexity is O(n) for n agents.

Watermarking. The user splits the data into blocks and generates two versions of each

block by watermarking with bits 0, 1. For a 256-bit secret key of the agents, the user divides

his data into 256 blocks. While the data can be of any form including multi-media and

document data, we use bit map images for the prototype. For image watermarking we use

the combined DWT-DCT watermarking algorithm proposed by Ali Al-Haj [  167 ] and the

implementation based on [  168 ]. The DWT-DCT algorithm works by altering the wavelets of

the Discrete Wavelet Transform (DWT) sub-bands and applies Discrete Cosine Transform

(DCT) on few sub-bands.

103



Table 4.5. Time taken and data transferred for DKG and bit-decomposition
phases for number of parties n = 5, 8. DROT involves two-party computation
with n = 2

n Phase Time Data

5
DKG 2.155sec 3.6 KB
BitDec 34.1sec 92MB

8
DKG 2.165sec 6.3 KB
BitDec 34.2sec 108MB

2 DROT 124.6msec -

Table 4.6. Time (mean ± standard deviation) taken in seconds for different
steps of watermarking for different images

Image Size(KB) Splitting Watermarking Extraction
Cameraman.bmp 66 0.00710 ± 1.2e-05 0.0542 ± 2.2e-04 0.023 ± 1.6e-04
Bridge.bmp 263 0.04176 ± 4.8e-08 0.1241 ± 6.7e-04 0.046 ± 3.2e-04
Sailboat.bmp 769 0.0713 ± 2.8 e-06 0.1827 ± 17.8e-04 0.065 ± 7.6e-04
Airplane.bmp 769 0.0785 ± 1.09e-06 0.1811 ± 3.69e-04 0.062 ± 5.4e-04

4.6.1 Experimental results

To evaluate the performance of our building blocks, we deploy our prototype on AWS

clusters and run the protocols on the c5.2xlarge instances (8 cores and 16GB RAM). The

instances are allocated in 5 regions across 4 continents. The benchmark data has been

averaged over 10 runs of the protocol each for n = 5, 8.

Table  4.5 presents the times taken and the data transferred by each node for the DKG and

the bit-decomposition (BitDec) phases. The DKG and the bit-decomposition take around

40 seconds, which would be the time for setup of the protocol before the users interact. We

observe that the running times for n = 5, 8 are almost the same. The reason is that when

n increases, the number of instances in each region also increases, thus parties can receive

shares from geometrically closer parties, and this advantage cancels the workload caused by a

larger threshold. DROT realized through SCALE-MAMBA, involves two-party computation

(n = 2) between the user and an agent. The interaction takes around 120 milliseconds, which

is dominated by network latency (the local computation takes only around 0.1 milliseconds).
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Table  4.6 shows the times taken for image watermarking including splitting the image,

watermarking each block, and extracting the watermark from the whole reconstructed image

after the revelation. The mean and variance have been reported when each step is run 100

times. The user performs the watermarking offline before interaction with the agents.
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5. UNDERSTANDING USERS’ MENTAL MODEL IN

ADOPTING MULTI-DEVICE WALLETS

5.1 Classifying wallets

All cryptocurrency wallets today use paired secret keys and public keys [ 169 ], [  170 ],

where a wallet’s address is derived from its public key. However, storing and accessing a

secret key is a non-trivial problem and varies from one class of wallets to another. Here,

first, we briefly summarize the existing classification of wallets and identify that they often

ignore the underlying security models. Then we present a new classification to address this

issue.

Existing classifications of the cryptocurrency wallets. Several classes [  171 ]–[ 173 ] of

cryptocurrency wallets exist today depending on different dimensions—hot and cold wallets,

custodial and non-custodial wallets [  44 ], [  172 ] etc. Hot wallets are connected to the internet

while cold wallets are not. To perform a transaction with wallet’s firmhe wallet’s firmcold

wallet, the secret key needs to be taken from the offline storage like paper or QR code

and employed. In another classification, a non-custodial wallet refers to a simple model of

wallets where the secret key resides at user device. These wallets are notorious for loss or

misplacement of keys and subsequent loss of funds—∼20% of all mined bitcoin lost this

way [  174 ]. In contrast, custodial wallets refer to ones where the secret key is not of the

user (device) but at the firm which is offering the wallet. Every time the user makes a

transaction, they authenticate to the firm which performs the transaction on their behalf.

While this safeguards against the loss of key at the user, it forces the user to trust the firm

operating the wallet. A popular way to achieve a custodial wallet mechanism is to place the

keys at the cryptocurrency exchanges that offer wallets and transact on behalf of the users.

This approach is susceptible to attacks by hackers on exchanges and affects very large user

bases [  52 ]–[ 54 ], [  175 ]–[ 178 ]. Thus, it is quite evident that storing the keys at a single location

is a security risk, irrespective of the user (client-side) or the firm (server-side).

A relatively new type of wallet solves these issues—it distributes the secret keys into

multiple shares [  58 ], [  179 ] and places them at different locations. Depending on the specific
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application, these locations can be a combination of different firms/servers, and devices

owned by a single or multiple users.

Need for new security-focused classification. Note that the existing classifications of

wallets focus far more on how the wallet is used rather than the underlying nuanced security

models (e.g., how the security of the keys is guaranteed). While Hot-Cold classification

focuses on wallets’ connection to the internet, Custodial-Non custodial notion classifies the

wallets as whether the key is only with the user or the remote server. However, in all

presented cases, irrespective of if the key is placed at the user or the server, compromising

the single key location compromises the funds; the multi-device wallets mitigate this security

risk [  49 ]. Understanding this risk by explicitly stating the security model is essential. If the

users appreciate the underlying security model, they can make informed choices about their

wallets. Hence, to investigate the user risk perception and mental model regarding the

security of different wallets which is invariably related to the key location, we classify all

the wallets into single-device and multi-device wallets with the key being stored at a single

location or distributed among multiple locations.

5.2 Different single device wallets

• Brain wallet: In this, users choose to remember the passphrase or key associated with

the wallet. This wallet is a single device wallet as the key is in a single location, the

brain. If the user forgets the secret information, they can not access the funds.

• Paper wallet: The secret key of the wallet is placed on paper, typically as a QR code

etc.

• Desktop/Mobile wallet: The wallet and the corresponding secret key are placed on the

desktop or the mobile device of the user. The user can access the wallet only from that

particular device. Eg: Electrum

• Exchange wallet: The secret key is placed at the exchange hosting the wallet. The

exchange performs the transactions on behalf of the user. Eg: Coinbase.com, Binance

• Web wallet: The secret key is stored at the firm offering the wallet. This wallet is

accessed through the web and hence is not device dependant.
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• Hardware wallet: The secret key is stored on a particular hardware token. The client

needs to plugin the hardware token every time a transaction is made. Eg: Trezor,

Ledger Nano

5.2.1 Single- and Multi-device wallets

Single-device wallets store the keys at a single location; either on a client device or a

remote server hosting the data of the firm offering the wallet. If the user loses access to the

device, they can not access any funds associated with the account. The different well-known

single-device wallet types, including paper, desktop/mobile, hardware, and exchange wallets,

are presented in Section  5.2 . These wallets provide control of the key to a single entity – the

user or the wallet firm. In a multi-device wallet, the secret information is placed on multiple

locations/devices; any subset of a particular size or higher of the devices should respond to

authorize the transaction. These devices are held by one or more entities, including users

and remote servers of the firm.

Single-device and multi-device wallets - Security. In a single-device wallet, since the

key is in a single location, it introduces a single point of failure for the loss of the key. Loss of

keys by the users and exchange hacks [ 52 ]–[ 54 ], [  174 ]–[ 178 ] show that the single-device wallets

are highly vulnerable to loss or compromise from an adversary. In an multi-device wallets,

the key is distributed among multiple locations, loss or compromise of a single device does

not lead to loss of key; the attackers need to compromise multiple servers simultaneously to

compromise the keys. Hence they are more resistant to stealing keys by adversaries and are

less prone to key loss.

Recently, Eyal [  49 ] has shown that for a wallet, an increase in the number of associated

heterogeneous keys improves security; the probability of users losing access and adversaries

gaining access is lower for multi-device (multi-key) wallets than single key scenarios. Hence,

multi-device wallets are more secure than their single-device counterparts. Several different

approaches [  49 ], [  180 ]–[ 182 ] mitigating the security risks of the single-device wallets also

indicate that multi-device wallets have been invariably proposed as schemes to achieve better

security than single-device wallets. In this study, we investigate the users’ mental model
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regarding the security offered by the multi-device wallets and the gap between the proposed

and perceived security.

Single-device and multi-device wallets - Trust and Usability. The trust and usability

aspects of single-device and multi-device wallets are more nuanced. For single-device wallets,

since the key is placed in a single location, the users need to trust the single entity or location

not to get compromised for the safety of their funds. In contrast, for multi-device wallets,

users need not trust a single entity like in exchange wallets since the secret information is dis-

tributed. Naturally, since the key is distributed among multiple entities, multi-device wallets

achieve higher replication of the keys.

For an multi-device wallet, when part of the key is placed on the client device, key-

recovery is straightforward in case of device loss since the other parties can generate new

shares. Also, with a good choice of threshold structure, the keys can be made highly avail-

able [  182 ] similar to the single-device scenario. It should be noted that depending on the

setting multi-device wallets can also provide complete control of the key to the user like the

single-device wallets. For example, in a scenario when the key is divided into two shares and

one of the shares is placed on the client device, the transaction does not go through without

client authorization irrespective of how the second share is shared among multiple servers.

Though the interface of many multi-device wallets (Eg: ZenGo, Torus) is similar to

single-device wallets for making transactions, multi-device wallets typically have a higher

setup time. The usability issues and misconceptions of users regarding wallets [ 43 ] like par-

ticipants’ confusion regarding transaction and mining fees, cancellation of transactions, lack

of blockchain transparency regarding the transaction state is likely to be common between

both single-device and multi-device wallets since they are not dependent on the location of

key or authorization.

While the focus of this work is on the security model of different wallets and the users’

perception of them, we uncover interesting mental models regarding usability aspects. The

perceptions of usability directly affect the different preferred settings and thresholds for the

multi-device wallets (discussed in Section  5.5 ).
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(a) (5, 3)-Threshold wallet (b) (5, 3)-Multisig wallet

Figure 5.1. Multi-device wallets. (a) Threshold Wallet: Key-shares of a
single key are generated and stored in different locations. (b) Multisig Wallet:
Multiple (different) keys are stored on different devices (can be different client
devices). A subset of shares or keys – threshold T or more – are required to
sign the transaction in each case.

5.2.2 Subclasses of Multi-device wallets

We further classify the multi-device wallets into two types Multisig wallets and Threshold

wallets. In a multisig (multi-signature) wallet [  183 ]–[ 185 ], N different keys are generated and

placed on N devices such that signatures [  186 ]–[ 188 ] from at least T devices are needed to

authorize the transaction. These keys may be placed on devices of different users or a single

user. For example, multiple keys are given to different people in a board of a firm such that

at least a subset of them need to provide the signature for the transaction or payment to go

through. The set of signatures authorizing the transaction, reveals the access structure (N, T )

of the distribution of the keys used. Both multisig wallet and threshold wallet (depicted in

Figure  5.1 ) employ an access structure where the secret information is distributed among N

locations such that any T or more locations need to respond to authorize the transaction.

We call it the (N, T ) access structure. In a threshold wallet[ 189 ], [ 190 ], a single secret key is

secret-shared [ 191 ], [  192 ] among N devices out of which T or more devices provide a partial

signature. The partial signatures are collected and aggregated into a single (threshold)

signature [ 188 ], [ 193 ] to authorize the transaction.
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The signature generated as a threshold signature does not reveal [  193 ], [  194 ] the under-

lying access structure among the clients or which parties signed the transaction. A threshold

signature is similar to a single regular signature, unlike multisig, which is a concatenation

of multiple signatures, so it offers better storage efficiency. However, threshold signatures

are dependent on the exact cryptographic scheme and are not widely available for all signa-

ture schemes. This is not an issue with multisig schemes as they can be realized using any

signature scheme, but they impose scripting [ 195 ] requirements.

5.3 Related Work

5.3.1 Usability and security of crypto-wallets

Many recent studies [  43 ]–[ 46 ], [  196 ], [  197 ] have focused on usability issues and challenges

of cryptocurrency systems. Few studies have also explored issues of trust in blockchain sys-

tems, the trust challenges/risks and ways to mitigate them [  198 ]. Recently, Mai et al. [ 199 ]

brought out the general misconceptions of users in using cryptocurrency systems regarding

keys, anonymity, and fees. They investigate misconceptions about the generation of cryp-

tographic keys, which may lead to their mishandling and loss of funds. Voskobojnikov et

al. [ 196 ] study the risk perceptions of both users and informed non-users of cryptocurren-

cies. They discuss several perceived risks, including loss of keys by the participants and

risk mitigation strategies for different cryptocurrencies. They [ 196 ] observed that some non-

users (non-crypto wallet users) are concerned that governments can trace the transactions

back to them (loss of pseudonymity/anonymity). In contrast, we consider only participants

who have used crypto-wallets. We aim to understand their preferences, e.g., under different

government policy and capability scenarios where the governments can access or block the

secret keys. The considered multi-device wallet settings include different settings hindering

such overreach.

Usability. Cryptocurrency users face challenges regarding usability and understanding of

the security implications of features of the wallets. Blockchains and cryptocurrencies also

suffer from entry barriers and the perception of usability between users and non-users [ 45 ],

[ 46 ], [  196 ]. Voskobojnikov et al. [  43 ] study the user experience of wallets by analyzing the
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(> 45K) ratings of famous cryptocurrency wallet applications. They reveal that users have

several misconceptions regarding the features and interface, including how mining and trans-

action fees are collected, leading to grave errors in handling the secret keys and currency

transfers. They [  43 ] briefly observed that some of the users preferred access to the secret

keys (like in iOS Apple devices) compared to custodial wallet settings. Furthermore, some

of their participants were also concerned about losing the device and the secret keys. In

contrast, we explore how participants wish to overcome such concerns if they wish to shift

to multi-device wallets. For the multi-device wallets, we explore and understand user pref-

erences among the varied settings offered by multi-device wallets differing in the levels of

control, availability, and security of secret keys. In fact, our user study is the first of its kind

for multi-party computation (MPC) or threshold cryptography, although MPC is almost as

old as public-key cryptography itself.

Krombholz et al. [ 47 ] performed a large-scale survey and evaluation of different security

practices of Bitcoin users and brought out the perceptions and flaws in the usage of bitcoin

wallets. Halpin et al. [ 197 ] studied the usability problems in using crypto-wallets like ZCash

while achieving privacy through Tor and VPNs. They identify that most users find it difficult

to set up wallets and integrate with anonymization tools like Tor. Frohlich et al. [ 44 ] study

the usability of wallets and security practices by conducting semi-structured interviews of

participants and propose a model to map the users by their exposure to the internet and key

management. More recently, Abramova et al. [ 200 ] classified all the crypto-wallet users into

three groups cypherpunks, hodlers, and rookies. They measured multiple factors, including

perceived notions of self-efficacy, vulnerability, concern, etc, for clustering and observed

specific differences in the preferences of different types of wallets, measures taken to secure

their wallets, etc.

Building on this line of research, along with security issues, we investigated and un-

covered different perceived usability aspects and how they affect the choice of threshold

settings in multi-device wallets. For example, some participants preferred lower thresholds

in multi-device wallets for lower transaction (submission) delay.
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Security and Privacy issues. Frolich et al. [ 201 ] presented a systematic overview

of different threats faced by cryptocurrency users—accidental, privacy, physical, finan-

cial fraud, social and technical threats. Among the physical threats they observe

loss of cryptocurrency as a potential threat. As a possible counter measure they

suggested backup mnemonics—divided and stored as separate parts on multiple de-

vices. Furthermore, recently, Ghesmati et al. [ 202 ] studied the privacy perceptions of

(12 cryptocurrency users and 58 non cryptocurrency users) about blockchains. They evalu-

ated user-perceptions about anonymity, privacy and users’ mitigation measures. They found

that privacy concerns for few of 12 users were about exchanges having access to the secret

information of the wallets and also exchange hacks. The authors observed that a majority

of their participants preferred to use privacy coins with additional tools like CoinJoin, Coin-

Swap [  203 ]–[ 206 ]. Our work builds on and is complementary to these prior works—instead

of threats and privacy enhancing systems, our work focuses on (mis) conceptions about

key-management as well as user preferences regarding key management for better perceived

security of crypto-assets.

5.3.2 Key management in wallets

Passwords are still a popular form of authentication [  207 ] and are even used by many

cryptocurrency wallets [  39 ], [  41 ], [  208 ]–[ 210 ]. However, the underlying authentication mech-

anism for cryptosystems is through public-key cryptography using secret-key, public-key

pairs. Usability issues of public-key cryptography in encrypted e-mail have been studied

[ 211 ]–[ 213 ] to report that key management by the end-users is indeed a complex task. To

uncover usability issues in bitcoin key management, Eskandari et al. [ 48 ] conducted a cogni-

tive walk-through of bitcoin applications, uncover shortcomings, and provided a framework

to evaluate such key management systems.

Vulnerabilities in wallets. Single devices wallets are vulnerable to several attacks; Vasek

et al. [ 50 ] study how brain wallets are prone to offline password guessing attacks. They

show that most brain wallets are vulnerable and can be drained within a day of creation.

Arapinis et al. [ 51 ] study the vulnerabilities of the hardware wallets by modeling their
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security in the Universal Composability framework. They analyze a few well-known hardware

wallets in their framework and show that they are vulnerable to payment, address generation,

and chain attacks. Bui et al. [ 214 ] study how computer/desktop wallet applications are

vulnerable; even without privileges, the attacker can impersonate the endpoints of remote

procedure calls (RPC) and transfer funds. While multi-device wallets mitigate the risks

of single-device wallets by distributing secret information among many devices, they still

can be vulnerable to attacks. Aumasson and Shlomovits [ 190 ] show ways to attack the

implementations of schemes like threshold-ECDSA [  215 ], [  216 ]; they also suggest ways to

mitigate them.

Several works [ 181 ], [  217 ], [  218 ] studied the vulnerabilities in single device wallets and

proposed various ways to mitigate them. Instead of storing the secret key in the memory,

Dai et al. [ 217 ] suggest storing the seed of the secret key in a trusted part of the hardware

such that no adversary can access it. Barber et al. [ 180 ] propose a super wallet - sub wallet

mechanism where the currency is placed in the super wallet and transferred to sub wallets in

smaller quantities as and when required; Rezaeighaleh and Zou [ 218 ] propose a deterministic

sub wallet key generation from the super wallet seed. Marcedone et al. [ 181 ] proposed a two-

factor signature generation mechanism in hardware wallets to be secure against malicious

hardware vendors. He et al. [ 182 ] propose a distributed key management mechanism for

better availability of keys in a multi-device wallet setting where the key is distributed among

multiple servers; the proposed scheme provides high availability of the keys for the users.

It is evident from the different approaches [  49 ], [  180 ]–[ 182 ] that multi-device wallets have

been invariably proposed as schemes to mitigate the security risks of single-device wallets.

This work contributes to understanding how the different users perceive the security of

multi-device wallets and if there is a gap between offered and perceived security, thereby

affecting their adoption.

5.4 Methodology

In this section, we discuss our survey-based study design to understand the wallets’ usage

and user preferences.
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5.4.1 Survey instrument

Our survey instrument  

1
 had two parts. We asked questions regarding users’ experiences

with different crypto-wallets in part I. In part II, we probed users’ preferences for two broad

classes of wallets—single-device and multi-device wallets after grounding their understanding

with videos discussing them. In our mixed-methods study, similar to Owens et al. [ 219 ],

quantitative approaches uncovered user behavior, and qualitative methods uncovered mental

models.

Part I: Usage characteristics, experiences with current wallets, and factors re-

sponsible for choosing a wallet (RQ1). We start part 1 of our study with a survey

by asking which wallets are used by the participant and what factors impacted this choice.

Specifically, we probed the impact of factors like wallets’ interfaces, security guarantees, op-

eration in multiple currencies, ease of recovery, as well as the relative importance of crowd-

sourced ratings or reviews from famous personalities on the choice of a particular wallet.

Next, to uncover experiences with their current wallets, we asked if our participants ever

lost a key or password, resulting in the loss of crypto funds and their most significant se-

curity concern regarding crypto-wallets. We also adopted two sets of questions from earlier

work to understand our participant attitudes better. These questions measured perceived

vulnerability and perceived self-efficacy regarding safeguarding the funds and secret keys in

crypto-wallet settings [  200 ]. Finally, we asked the participant how familiar they were with

each wallet– paper, exchange, desktop/mobile, threshold, and multisig wallets. These ques-

tions helped us estimate the user-familiarity levels with different wallets presented in the

next part of our study.

Part II: Users’ preference for multi-device wallets and their default settings

(RQ2, RQ3). In the second part, we first educated the participants about different

wallets using two short videos, each approximately 2 minutes long. The first video  

2
 dis-

cussed different single-device wallets and their pros and cons. The second video  

3
 showed

how multi-device wallets mitigate the single-device wallets problems and discussed the two
1

 ↑ Can be found at  https://eprint.iacr.org/2022/075 

2
 ↑ Can be found at  https://www.youtube.com/watch?v=rH1bcbeoPew 

3
 ↑ Can be found at  https://www.youtube.com/watch?v=LVa00yiOBjA 
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multi-device types —threshold and multisig wallets. Informing the participant using the

videos helps us bring all participants to a similar understanding of wallets and helps us

analyze their responses more confidently. To assess whether the participants have indeed

watched and understood the content, we ask three knowledge-based questions (with justifi-

cations for their answers) after each video.

We first explain why multi-device wallets can be more secure (see Section  5.2.1 ) and

survey if the participants are willing to shift to them. After inquiring the specific reasons

for shifting (or not), we study their preferred different settings.

After showing the videos, first, we asked users’ preference of the location for storing the

key of an exchange wallet. This question helps us understand if the users trust the exchange

and any single location among different client devices and remote servers. We further asked

the participants about the vulnerability of various key storage locations of single-device wal-

lets. Next, we inquired if the participants were willing to shift to multi-device wallet if the

wallet developer provided it. We also asked which one they prefer between threshold and

multisig wallets and why.

To understand the participants’ preferred settings for the multi-device wallets, we asked

them to choose among three different settings with a varied number of servers and threshold

values. In this part, we essentially uncover participants’ preferences regarding the reputation

of the server hosts and the total number of servers. Furthermore, we explored the partic-

ipants’ preference regarding storing the secret keys for single-device wallets in the face of

different attack scenarios and preference regarding the distribution of the shared keys among

different devices for multi-device wallets.

Finally, we asked questions to investigate the participants’ preferences regarding the key

locations. Specifically, we showed users scenarios regarding different threat models (e.g.,

governments viewing and blocking access to the information hosted on servers in their juris-

diction). Then we asked where the participants preferred to store the key (share) by default

among the options provided in the single device and multi-device wallet settings for these

different threat models. These questions provide us with information regarding the desired

settings of wallets under various threat models.
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Essentially, we first educated the user regarding the advantages of multi-device wallets

and checked if they were willing to shift to them. If they are not ready to shift even at the

cost of security, we analyzed the reasons. We then studied the preferred settings for the

multi-device wallets, including server setup under various government policies.

5.4.2 Pilot Studies

Before final deployment, we conducted two pilot studies for our survey. In the first, we

piloted the survey using in-person interviews with six participants to test the comprehensi-

bility of the questions and measure the average completion time.

Initially, the survey videos were shown to the participants consecutively, followed by four

knowledge-check questions. However, during the first pilot, participants demonstrated a loss

of attention, evident from the incorrect answers to our follow-up knowledge-check questions.

However, when asked to explain the wrong answers, participants reevaluated and desired

to change their responses, hinting at a cognitive overload. We divided the videos into two

sections to address this problem and ask questions about each video separately. Responses

from this first pilot also prompted us to simplify some questions which asked to rank provided

options—we ended up converting them to equivalent Likert scale questions.

After incorporating the changes, we conducted a second pilot study using a crowdsourcing

platform named Prolific.co, which is regularly used for academic advertising surveys. We

recruited 20 (pre-screened) participants for further feedback. We asked additional follow-

up questions to check the ambiguity of questions and answers in this pilot. 90% of the

participants found no ambiguity in the survey. Additionally, we asked to explain the answers

to knowledge-check questions to nudge participants to be attentive to our educational videos

on wallets. We also increased the knowledge-check questions to three per video, totaling six

instead of the earlier four for more stringent checking of the acquired knowledge.

5.4.3 Recruitment

Our online survey is scalable to a large number of participants. Consequently, we uncov-

ered interesting user behaviors and attitude patterns using statistical analysis. However, one
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key challenge of our recruitment was to target crypto-wallet users and enthusiasts. To that

end, following the approach of Abramova et al., [ 200 ], we recruited participants from two

sources—(i) The crowdsourcing platform Prolific.co, (ii) the social media platform Twitter to

reach the broader cryptocurrency community. We recruited participants who have been using

single-device and multi-device wallets; we do not restrict this study to only multi-device wal-

let users since we study the preferences of both single-device and multi-device wallet users

and if single-device wallet users are willing to migrate to multi-device wallets. Restricting

to only multi-device wallet users would not have been sufficient for our purpose.

Recruitment from Prolific: For Prolific, we chose participants both from the US

and UK  

4
 . We ensured that they had not taken our pilot studies. We selected them using

a screening survey conducted before the entire survey. This screening survey consisted of

seven questions about the wallets they were using, for how long, and how frequently they

used those wallets. To avoid irrelevant user responses, we made the question about their

current wallet a text entry question. We removed all the participants who left the text

field blank or entered an invalid wallet name. We also asked screening survey participants

whether they were interested in a future longer survey.

We deployed the final survey in multiple batches of 30− 50 participants on various days

and times over one week. We did this for the distribution to counter any anomalous time

dependencies due to the effect of events occurring at a specific time [  221 ]. The median time

of completion of the survey was 21 minutes 52 seconds, and the compensation was 4$ for

each participant (indicating an hourly wage of 10.88$, comparable to prior studies [  200 ]).

Furthermore, participant feedback from the pilot study on prolific showed that 95% of the

participants were satisfied with the payment. We used additional stringent quality control

criteria (Section  5.4.4 ) to ensure the quality of responses in our final dataset.

Ethical Considerations. For all participants, before the survey began, we informed the

participants of the purpose of the study, its estimated duration, and the compensation. We

further assured the participants that we would not collect any personally identifiable infor-

mation (PII). Participants could abort and return the survey at any time during the study.

4
 ↑ Over 65% of the participants on Prolific are from the US and UK [ 220 ] who speak English and more

than 18 years of age
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Any identifying information like email ids, Twitter handles, etc., related to the participant

is removed from the collected responses to preserve the anonymity of the participants. Our

study was examined and approved by the lead author’s Institutional Review Board (IRB).

5.4.4 Quality Control

To ensure the quality of responses, we randomly added an attention check question ask-

ing them to choose the current month of the year. Apart from that, we consider responses

only from those participants who have answered our knowledge-based (Yes/No) questions

satisfactorily (to check if they watched our videos). We consider only those participants who

answered at least two out of three correctly in each subset. Furthermore, if a participant

answered two or more questions wrong, one author manually checked the corresponding

explanation to see if the participant was knowledgeable. For example, in one of the ques-

tions asked about the loss of funds upon an Exchange wallet compromise, participant P25

disagreed and responded —“compromise of the server holding the keys does not necessarily

mean my money is lost”. This participant has understood the question and has an idea

about the correct answer but over-thought the questions. Correspondingly, they chose the

wrong option; we included all such participants in our final study even when they answered

more than two questions wrong in each set. There were 22 such responses. When watched

at regular speed, the total length of videos was 4 minutes 35 seconds; hence we also ex-

clude participants who finished the survey in less than 15 minutes, including watching the

study. Since that would have implied they completed both parts of the study in around 10

minutes or less, signifying the poor quality of responses (also manually verified via checking

qualitative responses).

Knowledge-test after the videos. Few participants were already familiar with multi-

device wallets (evident from ”familiarity”-related responses); However, to bring all partici-

pants to a similar level of understanding, we developed the two educational videos on different

wallets (Section 4.1).

We were careful not to offer any views on the different settings of the different types

of wallets and only introduced the single-device and multi-device wallet models. We were
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mindful of any influence that the videos might exert on the users’ choices. Note that there

were significant number of participants who preferred single-device wallets (see Section  5.5.2 )

over multi-device wallets after watching the videos. Our approach, inspired by Ghorbani et

al. [ 222 ], quantized the utility of the videos with a total of six knowledge-test questions (and

accompanying free-text explanations). We included participants who answered most of the

questions correctly, and an additional 22 participants who were considered knowledgeable

from the manual evaluation (by authors) of free-text explanations.

5.4.5 Participant Demographics

A total of 334 participants responded to the survey on Prolific. We discarded the re-

sponses that did not meet the validity criterion and passed our quality control checks (Sec-

tion  5.4.4 ). Finally, there were 210 valid responses from Prolific and 45 valid responses (

total 250) from the Twitter platform.

In total, 72.15% of the participants identified themselves as male and 27.45% as female,

while one participant preferred not to answer, indicating a male bias in our sample. Among

the different age groups, the 25 − 34 age group dominated the total population with more

than half of the total at 52.15% followed by the 18−24 and 35−44 age groups at 21.56% and

20%. Thus, our study has a larger younger population than older (> 35). The participants

in our survey are also more educated than the general US population [ 223 ], with 73.32% of

the participants having a Bachelor’s degree or higher. While one expects the participants

from crowdsourcing platforms like Prolific to be tech-savvy [ 224 ], more than half of the

participants (50.98%) of our participants reported that they do not have any experience in

the information technology (IT) field.

Importantly, our participants are active users of different crypto-wallets, where they

invest 29.56% of their savings on average across all participants. We provide our participants’

crypto-wallet usage pattern in Figure  5.3 . They follow different social media and reputed

personalities for ratings and reviews in choosing their wallets, as shown in Figure  5.2a and

Figure  5.6 . Overall, a majority of our participants are young, well-educated and have invested

in cryptocurrencies.
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5.4.6 Analysis Method

Coding free text answers. We coded all the free text answers and explanations for ques-

tions from our survey to segregate and uncover different perceptions of the participants. Two

researchers have independently coded all the free-text responses using a common codebook.

Across the various questions, the inter-rater agreement – Cohen’s κ [ 225 ] was in the range

0.7 − 1, indicating substantial agreement. The coders met and resolved the disagreements

to arrive at the final codes.

Statistical Analysis. We used statistical hypothesis testing to uncover different correla-

tions and identify the significant factors affecting the various preferences of the participants.

We used Chi-Squared (χ2) test [  226 ], [  227 ] for the different responses to all the questions to

uncover correlations between groups of participants and their preferences. We also used the

Mann-Whitney U test [  228 ] between participant groups to compare their characteristics. For

our tests on the multi-answer questions, we treat each option as an independent question/an-

swer. Our results for the χ2 tests have been presented in Table  5.1 and for Mann-Whitney U

test are presented in Table  5.2 . We used Mann-Whitney U (MWU) on Likert-scale responses

and Chi-squared (χ2) test for checking correlation between user-groups and categorical pref-

erences (Section 4.6). For all the tests, the significance level α was 0.05, which was further

adjusted using Bonferroni multiple-testing correction[ 229 ] .

5.4.7 Limitations

We conducted the study to uncover factors affecting the users’ preferences in choosing

their wallets. While we tried to cover the aspects comprehensively, one should interpret our

study in the context of limitations like all the previous studies. We collected 255 responses

from platforms Prolific and Twitter. The responses from Prolific were limited to UK and US.

Cryptocurrencies have proliferated and are used by various people varying in understanding,

knowledge, and preferences. Restricting to two countries and online platform Twitter may

be restricted in terms of the range of preferences uncovered, including any geographical or

cultural influences on the choices made. However, we obtain interesting insights into the
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mindset of the crypto-users in choosing the single-device and multi-device wallets. We bring

out interesting observations regarding the participants’ desire for control over their funds

even in conditions of possible compromise.

Our survey and the two videos included in it have been in English. We required the

participants to speak English which might have excluded any non-English speaking popula-

tion and resulted in possible language and cultural bias. It would indeed be an interesting

future work to identify and understand these biases and their effect on the choices made in

choosing wallets. However, we believe our study covers a significant range of crypto users

with varied experiences obtained while dealing with cryptocurrencies.

5.5 Results

5.5.1 Current usage-based groups and factors affecting users’ choice of wallets
- RQ1

We begin by categorizing our participants into two distinct usage-based groups: Newbie

and Non-newbie. We report the usage and preferences of each group and compare them. We

also analyzed the security-related preferences of these groups.

Two different user groups exist with different familiarity and usage. We first

divided the users into usage-based groups to capture various behaviors and understand their

preferences.

Recall that Abramova et al. [ 200 ] categorize participants into three categories using

multiple factors, of which perceived vulnerability and self-efficacy are significant. However,

a similar investigation of the perceived vulnerability and self-efficacy using the same set of

questions has not resulted in any statistically significant clustering. Interestingly, the self-

identified categories correlated well with the other independent survey responses regarding

expertise and preferences. Specifically, we asked the participants to identify themselves

among three types – (i) I use them solely for the interest in technology, (ii) I use them

primarily as an avenue for trade, buying, and selling cryptocurrencies (iii) I am a newbie,

started using them for fear of missing out the crypto boom.
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The pairwise tests between responses from these three categories (for familiarity with

wallets and usages) depicted a lack of statistically significant difference between the first and

second categories (see Tables  5.4 and  5.5 for pairwise p-values for 3 group classification).

Hence we group all the participants choosing the first two options as Non-newbies and the

participants self-reporting as newbies under the Newbies group. These two groups signifi-

cantly correlated with their responses to other questions, as indicated by the low p-values

(see Table  5.1 ). We present the mean values for different responses among the two groups

in Tables  5.1 and  5.2 . We categorized the users based on self-identification, however, this

division was supported by statistical tests from other independent survey responses—usage,

investment, and familiarity.

Specifically, responses to the questions which significantly correlated with these two

groups are in Tables  5.1 and  5.2 (p-values are with Bonferroni correction). The key differences

occurred in the duration of usage of the crypto-wallets, % of savings invested in crypto assets,

background knowledge in computer science/information technology (IT), and the purpose

of use (trading). The other factors that differentiate the two groups are familiarity with

different wallet types.

Our survey also reveals that participants consider ratings to be important in choosing

wallets and the majority of current users are recent adopters (65% of the participants started

using them only in the last two years); Loss of keys either through server compromise,

by the user or compromise by the server and lack of recovery mechanisms are among the

prominent security concerns of the participants. Social media is a source of knowledge for

the participants regarding crypto-wallets where Twitter, YouTube and Reddit featuring in

the prominent ones.

Most users use single-device wallets. Most of the participants use single device wallets,

including hardware wallets like Trezor (presented in Figure  5.13 ). Coinbase and Binance

seem to be popular among the Newbie and Non-newbie groups. 60% of all the participants

use Coinbase, whereas 37.2% use Binance. The participants had a choice to enter up to

3 unlisted wallets in the ‘Other’ fields. The wallets listed by participants varied widely,

including TrustWallet, Ziglu, Atomic, Dharma, and ZenGo.
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Table 5.1. Chi-squared test results for different questions including demo-
graphics for Newbies and Non-newbies. The number of samples is 255. The
table only shows the variables that have significant p-values. df is degrees of
freedom.

Variable χ2 df p-value
Number of years 39.1284 3 1.63e-08***
% of savings invested 27.1900 4 1.81e-05***
Background in IT 24.3844 2 5.06e-06***
Usage - Trading 17.10456 1 3.53e-05***
Significance codes: ***p< 0.001, **p<0.01, *p < 0.05

Table 5.2. U, p values for the Mann-Whitney U test. In the table we only
present the variables that have significant p-values. The mean values for New-
bie and Non-newbie groups are also presented.

Variable U p-value µ-Newbie µ-NonNewbie
Familiarity- Wallet
Paper 7575 0.0001*** 2.15 2.98
Exchange 8575 2.48e-09*** 2.44 3.71
Desktop/Mobile 8161 2.61e-07*** 2.93 3.90
Hardware 8962 1.78e-11*** 1.87 3.24
Multisig 8121 2.73e-07*** 1.44 2.38
Threshold 8033 4.46e-07*** 1.34 2.14

Significance codes: ***p < 0.001, **p <0.01, *p < 0.05

See Figure  5.14 for the reasons for choosing the different wallets and the corresponding

number of participants. Among the various reasons, the one with the highest number of

participants among the Non-newbie group is the security guarantees offered by the wallet,

with 75.6% opting for it. In contrast, among the Newbie group, it is the ease of usage of

interface with 77.5%.

The most cited reasons for choosing the wallets among the participants across the two

groups are the security guarantees they offer, the ease of interface, support for multiple

currencies, and the popularity of the wallets.

Users are less familiar with multi-device wallets. The self-reported familiarity with

the different wallet terms indicates that the users are unfamiliar with multi-device wal-

124



lets. On a Likert scale of 1 − 5 with 1 being “Not-familiar at all”, only 3.5% of all the

participants claimed that they are ‘very familiar’ with the threshold wallet while 49.1%

claimed to be “Not-familiar at all”. The corresponding percentages for multisig wallets are

3.13%, and42.7%. The mean familiarity over all the wallet types for the Newbie group is 2.02

and for the Non-newbie group is 3.05. The familiarity of the groups with the multi-device wal-

lets is lower at 1.39 and 2.26, respectively. This corroborates with the names of different

wallets reported to be used by the participants (see Figure  5.13 ) where single-device wallets

dominate and shows that the participants are less familiar with multi-device wallets.

To overcome this lack of familiarity in the latter part of the survey and to bring all

the participants to a similar level of understanding of multi-device wallets, we designed

and presented two short videos explaining the advantages and disadvantages of single and

multi-device wallets. The videos are followed by two sets of 3 questions each for the expla-

nations are sought. 120 participants got all the 6 correct, showing increased knowledge and

familiarity after the videos.

Ratings and reviews in crowd-sourced platforms heavily affect users’ choice of

wallets. Ratings of the wallets seem to affect the users’ choice to a great extent – 34.9%

of total participants have claimed to choose their wallets solely based on ratings of wallets

on crowd-sourced platforms like Play Store and App Store. 56.8% of all have reported that

ratings and reviews by famous personalities are ‘very important’ compared to 38.8% who

mentioned that they are ‘slightly important’. Only 4.3% have claimed ratings and reviews are

not important at all. In both the Newbie and Non-newbie groups, at least 29% of each group

have claimed to have chosen the wallets solely based on ratings showing their significance

(see Figure  5.2a and Figure  5.2b ). This shows that ratings and reviews influence the choice

of wallets; however, exact such influence on the mental models needs to be studied in the

future.
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Figure 5.2. Response to the questions (a) Was the wallet chosen solely based
on ratings (b) Importance of ratings and reviews while choosing a wallet. They
show that ratings are reviews are important to many participants.

The current majority of users are recent adopters and use them for long-term
investment

Majority of current crypto users are ‘recent’ adopters. Of the total participants

surveyed, a total of 65% have reported having started using crypto-wallets only in the last

two years, and 33% have started using less than a year ago. This shows the rapidly ex-

panding nature of cryptocurrencies in recent years. Among the Non-newbie group, 59.8% of

participants have been using it for the last two years. All the participants using the wallets

for more than four years are in the Non-newbie group, accounting for 17.25% of that group.

Among the Newbie group, 63.7% have started using only in the last year while 93% have

reported using them for the previous two years. This is expected as the group identifies it-

self as one adopting cryptocurrencies for fear of missing out on the crypto boom. Figure  5.3 

shows the total number of users for each time period 

5
 . It indicates that the majority of our

participants are recent adopters using them for less than two years.

*. Users employ cryptocurrencies as long-term investment far more than as an alternative

to fiat currency 80.3% of the participants reported using cryptocurrencies as a long-term in-

vestment, and only 20.8% use them as an alternative for fiat currency. 81.02% of newbies use

5
 ↑ Questions with a single answer are displayed in red-blue, and ones with multiple answers are shown in

green-grey bar graphs.

126



0 10 20 30 40 50 60 70 80 90

> 4 years

2-4 years

1-2 years

< 1 year

0

4

17

37

34

45

72

46

Number of participants

Newbie

NonNewbie

Figure 5.3. Duration of crypto-wallet usage by the participants. Most recent-
adopters were using them for the last two years.
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Figure 5.4. Purpose of using crypto-wallets; Majority of participants use
them for long-term investments and trading.

them for long-term investment, whereas the corresponding percentage among non-newbies is

79.69%. Among non-newbies, 23.8% report using cryptocurrencies as an alternative to fiat

currency, and only 10.34% of newbies use it for the same.

Type of security concerns for user groups. Different participants have different se-

curity concerns regarding the wallets. However, the biggest concern is the loss of funds by

compromise of server and secret key hosted by the remote server (see Figure  5.5 ). The next

biggest concern for both groups is the lack of proper recovery mechanisms for the secret key.

These are followed closely by the other concerns of compromise and loss of key at the user

device and server and the loss of secret key by the user in both groups.

Social Media as a source of knowledge. Among the social media followed by the partic-

ipants for learning about wallets, Twitter and Youtube occupy the top positions, followed by

Reddit and Facebook. We asked the participants to choose (or add) all the social media they

followed in the survey. The percentage of participants using Twitter, YouTube, Facebook

and Reddit among Non-newbies are 59.89%, 36.54%, 27.91%, 27.91% and the corresponding
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Figure 5.5. Biggest security concern of the participants when using a crypto-wallet.
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Figure 5.6. Followed social media for knowledge and information regarding
crypto-wallets.

numbers for newbies are 34.48%, 18.96%, 13.79%, 34.48% (see Figure  5.6 ). The number of

Reddit followers among Newbies is higher than the other social media except for Twitter,

showing its increasing popularity among the recent users.

Users wish to distribute trust for a fixed total number of devices. To under-

stand if the participants were willing to distribute trust among more entities, we asked if

they were willing to increase the value of T (threshold) for a given N (total servers) in a

multi-device wallet. 60.4% of the Non-newbie group opted to increase the value of T while

36.54% chose not to. In the Newbie group, these percentages stood at 53.44% and 44.82%

(see Figure  5.12 ). Increasing T would imply distributing the trust among more devices/peo-

ple. However, since signatures from any T or more are required to authenticate a transaction,
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Table 5.3. Reasons from our open coding and % of participants for their will-
ingness (non-willingness) to shift from single-device wallet to multi-device wal-
let.

Not willing

Reasons %
Single-device wallets are more secure 37.5%
Single-device wallets are simple to use 25%
I do not want to lose control of keys 20.8%

Other reasons 16.6%

Willing
Multi-device wallets are more secure 79.2%
Other reasons including availability 20.78%

it would mean higher communication overhead and possible delays if that person/device does

not respond as expected. Thus the trade-off would be between distributing the trust against

higher availability of the keys.

5.5.2 Users’ willingness to shift towards multi-device wallets - RQ2

The majority of users are willing to shift to multi-device wallets, but few are not

After learning about multi-device wallets, when asked which wallet they prefer, 67% of all

the participants chose multi-device wallets (see Figure  5.7a ). The majority of participants

wished to shift to them if their current firm offers it; at least 70% of each group wanted

to shift (see Figure  5.7b ). However, the remaining – slightly < 30% of each group were

unwilling to use multi-device wallets. Table  5.3 shows the percentage of participants, the

reason for retaining single-device wallets, and shifting to multi-device wallets. Believing that

single-device wallets are more secure, simple to use, and retaining control of the secret key

are the main motives across the users for remaining with single-device wallets. There is

no correlation between the Newbie and Non-newbie groups and their choices of shifting to

multi-device wallets (indicated by high p values in the χ2 analysis).

Reasons for shifting to multi-device wallets.. Most participants who chose ‘Yes’, opted

for it because multi-device wallets offer better security features like overcoming a single point

of failure— P53 explained “Better security because you need multiple devices to gain access.
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This also means that even if one device is compromised the attacker can’t gain access”. 79.2%

of participants who chose to shift opted multi-device wallets for better security features (see

Table  5.3 ).

Around 20.8% participants (of the ones choosing to shift) wanted to shift to

multi-device wallets for reasons including ease of access from any device of their choice,

better availability in case of loss of a device, and ease of recovery. P202 wrote, “I can access

my wallet from several devices, that’s better as I don’t have to depend on one device”. In

the case of multi-device wallets, the other parties can refresh the shares when a device is

compromised. Some participants realized this and chose to shift to multi-device wallets for

the easier key recovery; P213 opined “It is much easier to recover your keys in a multi-device

wallet than a single-device wallet.”

Reasons for not shifting to multi-device wallets. Among those who opted not to

shift to multi-device wallets, when asked to explain, the responses included a few factors —

believing that the single-device wallets are more secure and preferring the simplicity to place

the trust only on the self to safeguard the keys.

37.5% of the participants who stick to single-device wallets believe they are more se-

cure than the multi-device wallets. They wrote “Personal hardware keys should be secure

enough” (P18), “I will still stick to my single wallet device because it is difficult to compro-

mise.”(P99). However, this is a flawed mental model of security since it is shown [ 49 ] that

multi-device wallets are more secure than single-device wallets. 20.8% participants wish to

use single-device wallets since they want to hold on to the key themselves. Few answered,

“I prefer to be responsible for my keys. If I lose them, that is my fault”(P1), “Id rather keep

the key on me at all times so I know where it is and who has it, I only trust myself”(P25).

Another participant, P38 preferred single-device wallets for their simplicity; they said “I’m

happy with the simplicity and current security available with a single-device wallet”.

In multi-device wallets, multiple devices need to communicate and aggregate the signa-

tures collected to compute the final signature. This may induce some delays and also affect

the availability. Few participants preferred to stick to single-device wallets for the availabil-

ity of the keys. P101 mentioned “I prefer that I try my best to keep the single key safe than
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run into server down-times. If I decide to use a Multi-device scheme, the devices might have

downtime”.
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Figure 5.7. (a) Preference among single-device and multi-device wal-
lets. (b) Willingness to shift to a multi-device wallet from the employed
single-device wallet.

Among multi-device wallets, users prefer threshold wallets for their privacy

In a threshold wallet, the threshold signature [  188 ] generated to authenticate a transac-

tion does not reveal the access structure, i.e., does not reveal the (N, T) values. In a multisig

wallet, the access structure and T (minimum number of required signatures) are revealed.

When asked to choose among multi-device wallets, 63.95% of the Non-newbie group and

68.96% of the Newbie group participants chose the threshold wallet over the multisig wallet

as shown in Figure  5.8 .

These participants opted for threshold wallet for its privacy properties, like not revealing

the access structure. On these lines, P158 commented, “threshold wallet withholds a little

more information like the N, T values and this provides more security”. Some participants

realized not knowing the N and T values makes it difficult for the adversary to decide on how

many devices to compromise. This provides better security apart from the privacy offered

by the threshold signature.
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Figure 5.8. Preference among the multi-device wallets types – threshold and
multisig wallets. The majority choose threshold wallets for offered privacy.

In a multisig wallet, several signatures are collected and aggregated by concatenation,

whereas, in a threshold wallet, the threshold signature appears similar to a single device

signature. Hence the total data needed to represent the threshold signature is lesser than

the multisig signature, making it more space-efficient. While this is a technical aspect to

grasp, few participants understand this and have opted for threshold wallet. P246 commented

“Multi-sig wallets are inefficient - requiring several signatures wasting gas. Better implement

a threshold wallet with MPC to reduce inefficiencies”.

Participants chose multisig wallets for their simplicity and because it reveals the access

structure (N, T ). P146 commented “It is easier for me to know how many devices and

threshold I will require to be able to authenticate a transaction. It is easy to use too”.

Multisig wallet signature reveals which parties have provided the signature; if the signature

is generated by any collusion, the colluding parties are revealed in the signature. Some

participants prefer this over not knowing who signed. Participant P240 who chose the option

‘Can not say’ wrote, “The Multisig system clearly labels who the bad nodes are in a collusion

attack, which information is missing from the threshold. OTOH, Multisig adds more load on

the transactions, as more sigs is more data”.

After familiarizing themselves through the presented videos, more than two-thirds of

participants were willing to shift to multi-device wallets. Among those who wish to use only

single-device wallets, 37.5% (wrongly) believe that they are more secure. 20.8% of them

choose so because they do not want to lose control over the keys. It should be noted here

that, multi-device wallets can indeed provide control over the keys to users. For example,

if one share among the two total shares of the key is placed on the user’s device, no entity
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can access the key and funds without the user’s approval and authentication. Among the

multi-device wallets, the participants prefer the threshold wallets for the privacy properties

they offer. A smaller set of participants prefer the multisig wallet for the simplicity and

accountability they impose on the signers. We further investigate the participants’ attitude

in terms of security by studying the default security settings they prefer for the different

wallets.

5.5.3 Preferred default settings for crypto-wallets - RQ3

In single-device wallets retaining agency over the key is preferred over the ac-
count compromise risk

It is natural to choose a particular location for a secret key depending on the risk percep-

tion of certain attacks on the system. Hence to understand the participants’ risk perception,

we investigated their preferred key-storage location for a single-device wallet under different

attack scenarios. When asked to choose a location of secret key storage under the specific

threat of client-device compromise, the choice of a maximum number of participants of each

group is “Multiple remote servers (each storing the key)”. This can be expected as one would

expect users to opt for remote servers under the client compromise scenario. Hosting the key

on multiple remote servers increases the availability of the key while also increasing the risk

of being compromised. Many participants in both groups opted for client devices, including

desktop/mobile, paper, and hardware tokens as the preferred location for client storage (see

Figure  5.15 ). This indicates that even under vulnerabilities and client device compromise,

many wish to retain control over the secret key and thereby the agency over the funds. In the

remote server compromise scenario (see Figure  5.16 ) the three key storage locations chosen

by the highest number of participants are paper, client desktop/mobile, and hardware token.

For multi-device wallets, users weigh reputation over distributing the attack
surface

To understand the settings that the users prefer for multi-device wallets, we asked the

participants to pick among three choices — (i) a smaller number of reputed servers, (ii) a
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large number of servers with a much lower threshold, (iii) a large number of servers with a

high threshold. In the case of a smaller number of reputed servers, they would provide higher

availability with very few servers needing to respond; however, the attacker just needs to

compromise those few servers. In the second option, the servers are randomly chosen (with

a certain criterion) among many servers across the globe but with a lower threshold. Here

the attacker is not readily sure of which servers to attack even though the threshold is small.

The last option has a higher threshold indicating that the attacker needs to compromise

a high number of servers. We deliberately provided options with numbers starkly showing

these differences to bring them to participants’ attention.

More than half of the participants placed their trust in reputation rather than the in-

ability of attackers to compromise a large number of servers distributed across the globe.

65.48% of Non-newbies and 55.17% of Newbies chose a small number of servers ((10, 5) in

Figure  5.9 ) hosted by reputed firms. Participants seem to trust the reputed servers to take

good security measures as their reputation is at stake in case of compromise. P38 wrote, “I

prefer servers hosted by well-known reputed firms as they are likely to have stringent security

measures to stop any breaches.” Few chose a smaller number of servers since maintaining

and keeping track of a large number of them can be a complex task; they wrote, “Keep it

simple. More servers, more things to go wrong” (P244).

Among the parties who opted for choices with more servers, increasing the number of

servers for the adversary to attack is the most quoted reason. P25 said “The more there

are, the harder it will be to be compromised. Being random servers, it is also harder to

track them down”. Another interesting aspect is that reputed firms can become centers

for targeted attacks by adversaries. Given this one participant, P76 said “I would prefer

randomly chosen servers as they are less likely to be targeted than established companies”

while choosing the (100, 50) setting. The participants who chose a larger number of servers

and a low threshold (100, 5) opted for high availability of keys; even if many servers are

down, the secret information is available to the clients.
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Figure 5.9. Preferred settings for (N, T ) multi-device wallet. N is the total
number of devices, and T is the minimum number of devices needed to generate
the signature. (10, 5) is with servers hosted by reputed firms. In other settings,
servers are chosen randomly across the globe.

Users wish to distribute trust for a fixed total number of devices

When asked if the participants were willing to increase the value of T (implying dis-

tributing the trust among more devices/people), majority of them opted for it (see ?? 11

for details). The participants were allowed to choose the ‘Other’ option followed by a text

response which we analyzed; Few of them who chose ‘Other’ indicated that they did not wish

to simply distribute the secret key among more parties but carefully tailor the threshold for

the scenario.

The government policies affect the preference for share-distribution

Any server hosted in a particular country is subject to the local government privacy

policies. Depending on the policy, few governments may be able to view or even block

access to any cryptocurrency server data if they wish (here, we assume a setting where the

governments do not share data with each other). Thus, the location of the hosted server

is significant in terms of privacy and availability of keys to the users. Our survey explores

users’ preferences for the location of these servers for different secret-key distributions among

client devices and remote servers. We investigate these preferences for both single-device

and multi-device wallet scenarios under different government characteristic settings. For

Threshold wallets, the participants were allowed to choose from (i) sharing the key among

servers, (ii) dividing the key in two parts (Share1 and Share2), placing one part Share1 on

the client, and sharing the second part Share2 among all the servers.
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Users do not prefer server locations where governments can block data access.

For threshold wallets, whenever the government can not block access, irrespective of the

government can view the data, at least 50% of the Newbie group are willing to opt for

sharing the key only among servers. When the government can block access, less than

37.93% chose to share among servers, with 63.79% choosing to share between the client

device and the servers. In the Non-newbie group, more than 55% always wanted to place a

share on the client device, which went up to 69% when the government could deny access to

the data (see Figure  5.11 ). The responses are significantly correlated against the different

government characteristics with χ2 test p-value of 0.001. Thus government policies greatly

affect the choice of location for the secret and majority of users wish to have a share of the

key on their devices when the government can deny access.

In short, in our study, most participants wish to retain control over the secret key despite

its vulnerabilities. They prefer the keys distributed on a smaller number of servers hosted

by reputed firms; they also like to increase the threshold for a fixed number of servers

to distribute the trust further. The governments’ ability to block access to their secret

information affects their choices of key locations.

Settings for single-device wallets. For the single-device scenario, as long as the govern-

ment can not block access to the server data, more than 56% of the Newbie group was willing

to place the secret information on multiple servers. However, when the government can deny

data, this percentage is less than 36%. Among the Non-newbie group, when the government

cannot view and deny data, 60.9% of participants were willing to place the secret shares on

multiple servers while this drops to 41.6% when the government can view and deny data to

the clients (see Figure  5.10 ). The p-value of 0.013 in the χ2 test shows significant correlation

of responses against the government characteristics.

5.6 Implications

Our study offers the developers specific insights into the settings and architectures for

their wallets. We also observe few interesting threshold cryptographic research problems.

136



0 20 40 60 80 100 120 140 160

L1
L2

27

34

100

120

Newbie
NonNewbie

(a) Govt. can neither view nor deny access

0 20 40 60 80 100 120 140

L1
L2

28

33

115

97

Number of pariticipants

(b) Govt. can view but not deny access

0 20 40 60 80 100 120 140 160

L1
L2

38

21

117

91

Number of pariticipants

(c) Govt. can not view but can deny access

0 20 40 60 80 100 120 140 160

L1
L2

41

18

124

82

Number of pariticipants

(d) Govt. can both view and deny access

Figure 5.10. Single device wallet – user key location preference under dif-
ferent government characteristics L2 - The key is on multiple remote servers
across different countries (these countries do not share data). L1 -The key is
on client desktop/mobile/hardware token.

Educating the users

As participants prefer multi-device wallets for better security, this study encourages

developers who have developed or are considering a multi-device version of their wallets.

However, about 37% of participants who were unwilling to shift to multi-device wallets

believed that single-device wallets are more secure. This flawed mental model needs to be

addressed by educating the users about the security features of multi-device wallets. It can

be achieved by nudging the users towards better practices [  230 ], [ 231 ]. About 20.5% of them

wanted to stick to single-device wallets because they did not want to lose control over the
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Figure 5.11. Threshold Wallet – user key location preference under differ-
ent government characteristics. L2 - Threshold-share the key among multiple
servers. L1 - Divide the key into two parts. Place one part on the client-device.
Threshold-share the other part among multiple-servers.

keys. This should encourage the multi-device wallet developers to choose settings where they

provide control of the keys to the user and convince them of the same.

Distributed server setup for multi-device wallets

While choosing a distributed server setup to host the shared keys, our study can signif-

icantly help developers arrive at a setting. We learn that the majority of the participants

prefer a smaller set of reputed servers in locations where the governments cannot deny access

to the data (see  5.5.3 ). Among the different share distributions (or access structures), as

chosen by the participants, the developers should consider always placing a share on the
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Figure 5.12. Willingness to increase T for a fixed N in a (N, T )
multi-device wallet. It shows willingness of participants to distribute trust
among higher (threshold) number of nodes.

Table 5.4. p-values for the Chi-squared test for 3 group classification —
Newbie, Trader and Techie. Here we present the variables that had significant
p-values for Newbie-Non newbie classification (in Table  5.1 ). df is the degrees
of freedom.

Variable χ2 df p-value
Number of years 2.21 3 0.33
% of savings invested 6.523 4 0.58
Background in IT 9.534 2 0.049*
Usage - Trading 0.252 1 0.881
Significance codes: ***p< 0.001, **p<0.01, *p < 0.05

client device to give them control (see Section  5.5.3 ). This can be achieved by generating

two shares of the secret key Share1 and Share2, placing, say Share1 on the client device,

and dividing Share2 among multiple servers. Note that threshold wallet ZenGo [ 56 ] already

follows this pattern with only one server share, while Torus [  55 ] wallet offers no such control

to the users. It is important for the wallet firms to choose the proper default settings the

covers most user preferences as most users may just choose them [ 232 ]–[ 235 ]. The users

consider the location of the servers (see Section  5.5.3 ), so the firms offering the wallets must

also allow the users choose the servers on which to host their secret key shares.

General adversary access structure. In fact, the developers can consider general ad-

versary structure secret sharing (GASS) [  236 ]–[ 239 ] for their wallets. In a typical threshold

cryptographic setting, the adversary can corrupt up to a fixed fraction of players. However,

GASS considers more general adversary corruption patterns, in which the adversary is al-

lowed to corrupt any set of players in some pre-defined collection of sets (or access structure).
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Table 5.5. p-values for the Mann-Whitney U test for 3 group classification
— Newbie, Trader and Techie. In the table we only present the variables that
had significant p-values for Newbie-Non newbie classification (in Table  5.2 ).

Variable Newbie-Trader Trader-Techie Techie-Newbie
Familiarity- Wallet
Paper 0.00016*** 0.8471 0.0093**
Exchange 2.21e-09*** 0.8114 0.00068***
Desktop/Mobile 7.40e-08*** 0.0766 0.0370*
Hardware 3.22e-11*** 0.9900 1.69e-05***
Multisig 1.39e-07*** 0.3980 0.0059**
Threshold 2.51e-07*** 0.2068 0.0043**

Significance codes: ***p< 0.001, **p<0.01, *p < 0.05

Table 5.6. Percentage of participants who answered correct (and wrong) in
the 6 knowledge-test questions after the videos – Questions 19 and 25 of the
survey instrument. The comparison is between two groups of participants who
have been using multi-device wallets and single-device wallets.

Question multi-device users single-device users
Q19(a) 92% (8%) 97.9% (2.1%)
Q19(b) 92% (8%) 94.8% (5.2%)
Q19(c) 92% (8%) 95.3% (4.7%)
Q25(a) 92% (8%) 86% (14%)
Q25(b) 76% (24%) 80% (20%)
Q25(c) 68% (32%) 63% (37%)

Developing personalized threshold wallets based on GASS enables the developer to realize

individual users’ adversary mental models better and be more realistic for a wallet design.

General adversary structure secret sharing and threshold signing for multi-device wallets

can be an interesting design and implementation target for the research community and the

wallet developers.

We note that implications of the user control go beyond the multi-device wallets set-

ting and are also highly relevant for NIST threshold cryptography efforts [  58 ] as well as

fast-growing multi-party computation (MPC) based privacy-preserving machine learning

(PPML) [  240 ], [  241 ]. For example, in the context of NIST’s threshold cryptography initia-

tive, it will be an interesting research problem to design a secure threshold ECDSA protocol
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Figure 5.13. Currently used crypto-wallets. D/Mo- Desktop/Mobile, H -
Hardware, Multi - Supports MultiSig, E* - Behaves like exchange wallet by
maintaining keys.
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Figure 5.14. Reasons for choosing the most used crypto-wallets by the participants.

that maintains the users’ control over the keys in the wallets. The current threshold ECDSA

protocols [ 193 ], [ 215 ], [ 216 ], [ 242 ] cannot securely realize users’ control in the above-described

setting where one of the two shares is re-shared among the servers.

Threshold vs. Multisig wallets. Threshold and multisig wallets offer interesting trade-

offs concerning accountability and privacy. While many participants prefer the privacy pro-

vided by the threshold wallet, some do not wish to use them for the exact reason that they

do not reveal enough information (see Section  5.5.2 ). For example, if a signature is generated
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Figure 5.15. Key storage location preference under client device compromise scenario.
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Figure 5.16. Key storage location preference under remote server compromise scenario.

under collusion, the information of who is involved is not revealed in a threshold signature

but is revealed under multi-signatures.

This study shows that users understand and consider the trade-offs in two types of

multi-device wallets. This motivates security research toward signature generation and wal-

let design to offer the best of both worlds, including privacy and accountability. Furthermore,

since participants are concerned about the space requirements of multi-signatures in wallets

(see Section  5.5.2 ), developing space-efficient multi-signature schemes is an interesting prob-

lem to consider.
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6. D-KODE: KEY-DISTRIBUTION USING A LATTICE BASED

KEY-HOMOMORPHIC PRF

6.1 System Setup and Solution Overview

6.1.1 System Setup

Consider a system of n servers {P1, P2, · · · , Pn} that share a master secret (vector) k  

1
 

through a (n, t)-threshold scheme. The servers interact with clients who join and leave the

network anytime. All the servers have access to a broadcast channel and the network is

synchronous. We consider a t−bounded static adversary that corrupts up-to t servers at the

start of the protocol. Corrupted servers remain so through-out the protocol run. Each pair of

servers is connected through a secure channel that provides secrecy and authenticity; this is

typically achieved through TLS channels [  243 ] which mitigate any man-in-the-middle attacks.

While we consider a static adversary model for the distributed key generation mechanism, we

extend it to a mobile adversary model for the proactive secret sharing mechanism discussed

in Section  6.7 . The secrecy/confidentiality of the secret key in the D-KODE-protocol is based

on the discrete logarithm (DLog) and Learning-with-rounding assumptions:

Definition 6.1.1. The Discrete Logarithm (DLog) assumption [  244 ]: For a generator g ∈ G

and a $←− Zq, given the value ga, the probability of a ppt algorithm ADLog to output the value

a, Pr[ADLog(g, ga) = a] is negligible.

Definition 6.1.2. The Learning-with-rounding (LWR) [  245 ] problem consists of distinguish-

ing the distribution (A, bAscp) where A ∼ U(Zm×n
q ), s ∼ U(Zn

q) and the uniform distribution

U(Zm×n
q × Zm

p ); q ≥ 2. We say that the LWR(q,m,n) is hard if for all ppt algorithm A, the

advantage AdvLWR
q,m,n(A) = ‖Pr[A(A, bAscp) = 1]− Pr[A(A, u) = 1]‖ is negligible, with the

probabilities taken over A ∼ U(Zm×n
q ), s ∼ U(Zn

q), and u ∼ U(Zm
p ).

1
 ↑ We denote all vectors and matrices in bold font.
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Alice

Figure 6.1. Scenario 1a: Alice uses her public string IDA, obtains evaluations
and reconstructs private key skA after authentication

Alice

Figure 6.2. Scenario 2: Alice uses Bob’s public string IDB to obtain his public
key shares and compute the public key pkB

6.1.2 Design Overview

In the D-KODE protocol, a master key k is (n, t)-threshold secret-shared among n servers

and the client private key is computed as the PRF [  71 ] evaluation F (X, k) =
⌊
H(X)·k

⌋
p
∈ Zp,

for X ∈ X where X is the client-input space, K ∈ Zu
q the server key and H : {0, 1}∗ → Zu

q a

cryptographic hash function. (·) indicates the vector dot product computation. The master

key vector k is shared among the servers with each server Pi obtaining the share matrix

K i, the PRF evaluation of each server is bH(X) ·K icp. The shares K i are generated in a
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distributed manner using distributed key generation (DKG) involving verifiable black box

secret sharing (BBSS) scheme (elaborated in Section  2.1.2 ). The BBSS scheme involves

a distribution matrix which is constructed such that the reconstruction coefficients for the

shares are in the set {−1, 0, 1}. It is done by realizing the (n, t)-threshold access structure as

a threshold circuit and expressing it as a monotone boolean function. This function is then

converted to a distribution matrix using the Benaloh and Leichter [  94 ] construction (recalled

in  2.6 ).

Let each server Pi be associated with a set Ti such that Pi receives the matrix K i =

{kj, j ∈ Ti},kj ∈ Zu
q . The partial evaluations of server Pi upon client input X is a vector

of evaluations {F (X,kj), j ∈ Ti}. To compute the required keys, the client forwards the

public string X, obtains partial evaluations and reconstructs the corresponding keys. Let

y = F (X, k) and y` = F (X,k`), ` ∈ ∪iTi be the set of all partial evaluations received from the

servers. To generate the private key the client obtains a linear combination ỹ = ∑
i∈S λi · yi

where each λi ∈ {0, 1,−1}. ỹ differs from y by an error e = ±t′ when t′ > t evaluations have

been used for the computation.

(Scenario 1) Private key of Alice, the online client. Alice securely authenticates

herself to the servers (using email-login, OAuth tokens etc.) and forwards her public string

IDA (for example, her email ID), obtains the partial evaluations y` = F (IDA,k`) from servers

and computes the private key as skA = ∑
i λi · yi as depicted in Figure  6.1 . The values

of λi are determined by the qualified set of servers whose evaluations are utilized in the

reconstruction (refer Section  2.1.2 ). From the private key skA, she can compute the public

key as pkA = gskA . With the key pair (skA, pkA) she can perform any required transaction.

(Scenario 2) Public key of Bob, the offline client. When Alice tries to pay Bob,

she forwards Bob’s public string IDB to the servers and obtains the evaluations z` = gy′
`

where y′
` = F (IDB,k`) as depicted in Figure  1.2 . She computes a public key of Bob as

pkB = ∏
i(zi)λi and proceeds to pay Bob using the computed public key pkB.

When Bob tries to compute his private key later corresponding to this public key pkB,

he authenticates to the servers and obtains a private key sk′
B which differs from the private

key skB (corresponding to the public key pkB), by a maximum of n. He simply computes
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all the private keys in the range [sk′
B − n, sk′

B + n], obtains the corresponding public keys

[gsk′
B−n, gsk′

B+n] and queries for balance on the 2n (where n ∈ [5, 50]) public keys in this set

from the crypto-currency system. pkB will be in that set of 2n keys and since he has private

keys corresponding to all of them, he can utilize the funds transferred by Alice to pkB. Note

that only Bob owns these secret keys.

Thus Alice can pay Bob by computing skA in scenario 1 and pay him by computing

pkB in scenario 2. Bob can later compute the corresponding key skB and retrieve the funds

whenever necessary. This solution does not involve any interaction between the servers for

the computation of client keys, since they just evaluate y′
i = F (IDB,ki) and forward gy′

i to

the client non-interactively. In summary, the proposed solution for the two scenarios consists

of following steps:

• The servers Pi, i ∈ [n] participate in DKG involving BBSS and obtain shares K i =

{kj, j ∈ Ti} of a master key k

• For Scenario 1: The servers generate partial evaluations y` = F (X,k`) using the

server key shares K i and public input string input X from the client. The client combines

the shares to compute the private key evaluation y = F (X, k).

• For Scenario 2: The servers evaluate y′
i = F (X ′,ki) and forward gy′

i for the evaluation

of public key z = gy′ for the input X ′ from any client.

Since we envisage a full-fledged deployment where the servers are used for the evaluation

of keys for a very large number of clients over a long period of time, we propose proactive se-

cret sharing mechanism for BBSS. The servers store only one set of key shares corresponding

to the master key k and perform share-refreshing periodically using the proposed Proactive

BBSS scheme (refer Section  6.7 ). For share refreshing, the servers re-share each of their

share elements to the set of servers in the next time period. The servers then compute the

new shares from the shares of the share-elements.

We implement the full protocol and extract many interesting aspects of BBSS scheme

in the practical regime. While the existing works discussing BBSS and the related Linear

Integer secret sharing (LISS) scheme [  93 ], [ 245 ] have shown that the circuit size for the

construction of distribution matrix varies from O(n5.3)−O(n2.414), we show that for certain

threshold access structure regimes, this size is much smaller than what can be theoretically
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surmised from the literature, making the sharing mechanisms very efficient in the practical

setting.

6.2 Verifiable BBSS (V-BBSS)

Verifiability of a secret sharing scheme is the property which lets the parties receiving the

shares from a dealer to verify the validity of the shares. Several verifiability techniques [ 246 ]–

[ 248 ] have been proposed for different secret sharing schemes, here we discuss the verifiability

of the BBSS scheme.

After generating the share elements by performing s = M · ρ, for a distribution matrix

M and a random vector ρ = {ρ1, ρ2, · · · , ρe} ∈ Ze
q, the dealer commits to each element

of the vector ρ and forwards the commitments to all the parties receiving the shares. The

matrix M = mi,j, i ∈ [d], j ∈ [e] is public and is known to all the parties.

We briefly sketch the different steps of the Verifiable-BBSS scheme [ 249 ]:

Share Generation. : The dealer samples a random vector ρ = {ρ1, ρ2, · · · , ρe} ∈ Ze
q and

sets the element ρ1 to the desired secret value s to be shared. For a (n, t) threshold sharing,

he computes the distribution matrix (M) and generates share element vector s = M ·ρ, s =

{si}, i ∈ [d]. The dealer generates a commitment vector C consisting of commitments Ci to

each element of the vector ρ. The element ρi is committed using Pedersen commitment as

Ci = gρihρ′
i using random ρ′

i ∈ Zq. The dealer also computes the vector s′ = M · ρ′ where

ρ′ = (ρ′
1, ρ

′
2, · · · , ρ′

e) and s′ = {s′
i}, i ∈ [d]

The dealer forwards the share vectors si = {sj}, s′
i = {s′

j}, j ∈ Ti to party Pi where Ti
is the set of all row indices owned by party Pi. The dealer also broadcasts the commitment

vector C to all the parties.

6.3 Distributed Key Generation using BBSS

A distributed key generation (DKG) [  30 ] protocol allows a set of nodes to share a secret

among themselves without a trusted third party such that any qualified subset of nodes can

use/reveal their shares to compute the secret. However, any subset of nodes outside the

set of qualified sets has no information about the shared secret. For a (n, t)−DKG, any
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pp: {n, t, q, p,M ∈ {0, 1}d×e, ψ(·)}
Phase 1: Generating shares of sk ∈ Zq :

1. Each party Pi performs a Verifiable BBSS of a random value zi ∈ Zq :

(a) Pi chooses two random vectors ρi = {ρi,1, ρi,2, · · · , ρi,e} and ρ′
i =

{ρ′
i,1, ρ

′
i,2, · · · , ρ′

i,e}; ρi,ρ
′
i ∈ Ze

q. Sets the first element ρi,1 = zi.
(b) Pi computes two vectors Si = M · ρi and S′

i = M · ρ′
i, generates commitment

vector C i consisting of commitments to each of the elements of the vector ρi as
Ci,l = gρi,lhρ′

i,l ; l ∈ [e] where g, h are generators of a multiplicative group G. Let the
computed vectors be Si = {si,1, si,2, · · · , si,e},S′

i = {s′
i,1, s

′
i,2, · · · , s′

i,e}.
(c) Pi forwards the shares si,j, a subset of the vector Si to Pj consisting of share elements

si,k, k ∈ {Tj = ψ−1(j)} and it also forwards the corresponding s′
i,j, a subset of the

vector S′
i to the Pj, j ∈ [n].

(d) Pi broadcasts its commitment vector C i with elements Ci,l, l ∈ [e] to every other
party Pj, j ∈ [n].

(e) Pj verifies the shares it received from the other parties using the specified verification
procedure. si,k (corresponding to the row k of the vector Si of Pi) received by Pj from
Pi is verified as: gsi,khs′

i,k = ∏e
l=1 C

mk,l

i,l mod p. (Here row k is held by Pj, k ∈ Tj).
If any verification fails, party Pj broadcasts a complaint against party Pi by broad-
casting the shares (si,k, s′

i,k).
(f) On receiving a compliant against self from Pj for any row k, Pi reveals the shares by

broadcasting si,k, s
′
i,k.

2. Every party maintains a set of parties Qualified Q, any party excluded from the set is
disqualified by that particular party. Every party Pj excludes a party Pi if Pi either
receives more that t complaints or the broadcasted shares after complaint do not pass the
verification. At the end of the complaint and verification phase, every honest party will
have the same qualified set Q.

3. Every party Pj locally forms its shares of the secret key sk by adding element-wise, the
shares of the vectors si,j received from every other party Pi, i ∈ [n] i.e., each Pj computes
its share as skj = {ŝk‖k ∈ Tj} = ∑

i si,k for each k ∈ Tj. Share of each party Pj is a vector
skj of share elements whose cardinality is dj = ‖Tj‖.

Phase 2: Computing the public key gsk:

1. Each Pi, i ∈ [n] broadcasts the values Ai,1 = gρi,1 and a NIZKPoK πi proving that the value
committed zi = ρi,1 is same value in both Ai,1, Ci,1 broadcast earlier to every other party
Pj, j ∈ [n].

2. Each party verifies the broadcast NIZKPoK of every other party and anyone failing veri-
fication is disqualified and removed from Q.

3. Finally the public key is computed as pk = ∏
i∈Q g

ρi,1 .

BBSS-DKG

Figure 6.3. BBSS-DKG Protocol
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subset of t + 1 or more nodes constitutes the qualified subset. At the heart of any DKG is

a verifiable secret sharing (VSS) scheme. To achieve a (n, t)-DKG protocol, we consider a

(n, t)-VSS scheme; unlike a VSS scheme which requires a trusted dealer, the DKG mechanism

distributes the trust among the nodes removing the requirement of a trusted party. In this

work, we consider a DKG protocol resistant to f malicious nodes with the total number of

nodes n = 3f + 1 in the network.

Using the verifiable BBSS scheme (refer  6.2 ), we obtain a DKG on the lines of the scheme

by Gennaro et al. [ 30 ]. The protocol proceeds in two phases, in phase 1, each party Pi

performs a verifiable secret sharing of a random value zi and every party verifies the received

shares using the broadcast commitments. After this, every party Pj forms the qualified set of

parties Q whose shares are verified and compute its share skj by locally adding the verified

shares. The computed shares correspond to shares of a random secret key sk ∈ Zq. In Phase

2, the parties of the qualified set forward the exponentiation of their shared secret zi and a

zero-knowledge proof that the forwarded Pedersen commitment in Phase 1 corresponds to

the same. Every party computes the public key pk = gsk after verifying the zero-knowledge

proofs. The complete DKG protocol based on BBSS sharing is described in Figure  6.3 .

The proposed DKG mechanism offers the following properties:

• Correctness: All qualified subsets of shares provided by honest parties define the same

unique secret key sk; All honest parties compute the same public key pk = gsk value

corresponding to the secret key sk

• Secrecy: No information on sk can be obtained by the t−limited adversary except

what can be inferred from the public information.

Theorem 6.3.1. Given a correct and secure (n, t)-verifiable BBSS scheme, the DKG pro-

tocol of Figure  6.3 satisfies correctness and secrecy properties under the Dlog assumption

(Definition  6.1.1 )

Proof. Proof. Correctness. In Phase 1 of the BBSS-DKG protocol from Figure  6.3 , all

honest parties compute the same qualified set Q as the complaint and disqualification in-

formation is broadcast to all parties. Any party Pi ∈ Q, which shared its value zi suc-

cessfully and any set T of t + 1 or more honest parties can reconstruct the secret key
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value, owing to the threshold structure of the BBSS performed. Let R = ⋃
i Ti, i ∈ T

be the set of all row indices of M held by the parties of T . Each zi = ∑
k∈R si,k · λk

λT = {λk, k ∈ R} such that M>
T · λT = ε and zi = s>

T · λT , where sT is the vector of all

share elements held by all the parties in T . Every honest party computes its share vector

skj = {ŝk‖ŝk = ∑
i∈Q si,k, k ∈ Tj} element-wise for each k. Thus we have,

sk =
∑
i∈Q

zi =
∑
i∈Q

( ∑
k∈R

si,k · λk

)

=⇒ sk =
∑
k∈R

λk ·
( ∑

i∈Q
si,k

)
=

∑
k∈R

λk · ŝk

This holds for any set qualified set T (and hence the corresponding set of rows R), thus

giving a unique sk for all such sets with t+ 1 or more parties.

Also, each share element ŝk, k ∈ Tj of a party Pj, can be computed and verified from the

publicly available values gsi,k .

gŝk = g
∑

i∈Q si,k =
∏
i∈Q

gsi,k =
∏
i∈Q

( e∏
l=1

A
mk,l

i,l

)

which is available from Phase 2 of the protocol of Figure  6.3 . Thus each share (and share

element) can be verified for correctness at the time of reconstruction.

The public key pk = ∏
i∈Q g

ρi,1 is computed from values broadcast in the protocol, hence

the value can be obtained by all the honest parties. It remains to be shown that pk = gsk

such that sk = ∑
i∈Q zi. For the parties against whom a complaint is generated, the value

zi is reconstructed publicly. For the other parties against whom there was no complaint,

all their values Ai,l, l ∈ [e] have been verified using the verification step in Phase 2 of the

protocol. Since all such parties constitute the qualified set Q which is computed by all the

honest parties, the value Ai,1 = gρi,l = gzi . The value pk is computed by honest parties as

pk = ∏
i∈Q g

zi = g
∑

i∈Q zi = gsk. Hence all the honest parties compute the same public key

pk corresponding to sk. Also since the qualified set of parties Q computed in the phase 1

of the protocol consists of at least one honest party who shares the value zi which is chosen

randomly, the secret key sk = ∑
i∈Q zi is uniformly random.
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Secrecy. We provide a simulator S in Figure  6.4 on the lines of [ 30 ], [  250 ] which simulates

the adversary view of the BBSS-DKG protocol of Figure  6.3 . With out loss of generality

we assume that the set of parties C = {P1, · · · , Pt′} are corrupted and set of rest of the

parties H = {Pt′+1, · · · , Pn} are honest. The simulator controls all the honest parties H and

performs all computations and communications with the corrupt parties on behalf of them.

The simulator follows the Phase 1 of the protocol as shown in Figure  6.3 and generates

share vectors si,j using random ρi for Pi ∈ H, Pj ∈ C. Similarly it generates and forwards the

vectors s′
i,j using random ρ′

i. Simfollows the protocol including the computation of qualified

set Q. However, in the second phase of the protocol, it computes and broadcasts all the Ai,l

for all the honest parties except one party Pn. For the party Pn it sets the secret value Ai,0

such that the public key obtained as ∏
i∈Q Ai,l, l ∈ [e] is the desired value y. The simulator S

will be able to reconstruct the vector ρk for any party Pk which is present in the qualified set

Q but not in the set H. Whenever a valid complaint is broadcast from any party controlled

by adversary, Sim constructs the secret value and opens it.

6.4 D-KODE Protocol

By D-KODE protocol we refer to set of all algorithms for generating client keys in a

distributed fashion. These algorithms include generation of shares of master key k at the

servers using BBSS-DKG, PRF evaluation upon user input and algorithms to combine the

partial evaluations to compute keys at the client. Since BBSS-DKG and PRF are run on

the server, we refer to them as server-side algorithms and the algorithms for combining the

partial evaluations for computing keys at the client as client-side algorithms. On the client

side, we have two different versions corresponding to offline or online client. Offline client

refers to the one to whose public key the payment has been made and wishes to retrieve the

funds by generating the corresponding secret key. Online client computes the private key

of self and public key of another client to process payment etc. For the ease of exposition,

we present the verifiability of the PRF evaluation as a separate subsection. The D-KODE

protocol consists of following algorithms.
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Let C = {Pi, i ∈ {1, · · · , t′}} denote the parties controlled by the adversary and H = {Pj, j ∈
{t′ + 1, · · · , n}} denote the set of honest parties in the protocol. t′ ≤ t. Simtakes the public
key y as input.

1. The simulator S performs all the steps in the Phase 1 of the BBSS-DKG on behalf
of the parties of set H including generating and forwarding shares and commitments,
verifications of the received shares and handling all communications with the corrupted
parties such that the following hold:

(a) The values ρi,ρ
′
i for Pi ∈ H are chosen at random by S.

(b) The set Q is well defined with H ⊂ Q
(c) The adversary’s view consists of (ρj,ρ

′
j) for Pj ∈ C, shares (si,j, s

′
i,j) for Pi ∈

Q and Pj ∈ C and commitments Ci,k, Pi ∈ Q, k ∈ [t]
(d) S has all shares and commitments of the parties in Q. For j ∈ Q\H, Sim has enough

valid shares to reconstruct the vector ρj,ρ
′
j.

2. Perform:

(a) Compute Ai,l, l ∈ [e] = gρi,l for i ∈ Q\n, l ∈ [e]
(b) Set A∗

n,0 = y
∏

i∈Q\n(Ai,0)−1 and s∗
n,k = sn,k = {sn,k, k ∈ Tn} where sn,l, l ∈

[e] is an element of the vector M · ρn item Broadcast the values Ai,l for i ∈
H\n and A∗

n,l with l ∈ [e] along with the corresponding NIZKPoK πi

Simulator S

Figure 6.4. Simulator for BBSS-DKG

6.4.1 Server Side Algorithms

Cryptographic Setup. Setup(λ, n, t): It takes as input the security parameter λ, the

threshold t and the number of servers n and outputs the public parameters pp :=

{H(·), p, q, q′, u,G, g,G, g, h,M , ψ(·)}.

Distributed Key Generation. DKG(n, t, q, u): The servers run the BBSS-DKG mecha-

nism among themselves using (n, t)-BBSS to generate shares of a master key k ∈ Zu
q .

The BBSS-DKG mechanism presented in Section  6.3 (Figure  6.3 ) provides shares corre-

sponding to a single element sk ∈ Zq to all the servers. However, for the PRF evaluation,

F (X, k) = bH(X) · kcp introduced in Section  2.2 , the key k is a vector of length u. Hence,
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Algorithm 5 ParSecretKeyEval (X,Ei, pp)
1: Parse the matrix E>

i ∼ Zu×di
q as [ki,1‖ki,2‖ · · · ‖ki,di ]

2: for 1 ≤ j ≤ di do
3: zi,j =

⌊
H(X) · ki,j

⌋
p
∈ Zp

4: return zi = {zi,1, zi,2, · · · , zi,di} ∈ Zdi
p

Algorithm 6 ParPubKeyEval(X ′,Ei, pp)
1: Parse the matrix E>

i ∼ Zu×di
q as [ki,1‖ki,2‖ · · · ‖ki,di ]

2: for 1 ≤ j ≤ di do
3: zi,j =

⌊
H(X ′) · ki,j

⌋
p
∈ Zp

4: return yi = {gzi,1 , gzi,2 , · · · , gzi,di} ∈ Gdi

initially, the servers run u instances of DKG to generate shares of elements of vector in Zu
q .

Let the share element matrix obtained by each server Pi be Ei.

PRF evaluation. The servers run the PRF service through the ParSecretKeyEval and

ParPubKeyEval algorithms to compute private key or public key shares respectively for an

identity forwarded by the client.

ParSecretKeyEval(X,Ei, pp): Sever Pi takes the client input string X, share matrix Ei,

the public parameters pp and returns the evaluation of the PRF as the vector zi. The matrix

E>
i is parsed into di columns of u length each while input X is hashed to a vector of length

u using the hash H : {0, 1}∗ → Zu
q . di is the number of rows of matrix M owned by Pi.

ParSecretKeyEval is shown in Algorithm  5 .

ParPubKeyEval(X ′,Ei, pp): Partial evaluation for public key generation is similar to that

of the secret key except that the final vector is the exponentiated version of partial secret key

evaluation. Server Pi takes the client input string X ′, share matrix Ei, the public parameters

pp and returns a vector yi. The matrix E>
i is parsed into di columns of u length each while

input X is hashed to a vector of length u using H : {0, 1}∗ → Zu
q . di is the number of rows

of matrix M owned by Pi. Each of the elements of the PRF evaluation is exponentiated

resulting in a vector of elements of group G and of length di. ParPubKeyEval is shown in

Algorithm  6 .
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6.4.2 Client Side Algorithms

The client computes the private key by combining the partial evaluations using the

CombSecKey algorithm and computes the public key of identity X ′ by using the CombPubKey

algorithm. The offline client after generating private key of his identity searches for the

appropriate secret key - public key pair to which payment has been made.

Private key generation. CombSecKey(pp, {z1, z2, · · · , z‖T ‖}): Let T with ‖T ‖ ≥ t + 1

be the set of parties whose evaluations are used for reconstruction. CombSecKey() takes-in

the partial evaluation vectors zi received from the servers Pi of the set T and concatenates

them to form Z = {z1‖‖z2‖‖ · · · ‖‖z‖T ‖} . Let the set of all the row indices of matrix M

held by the parties in T be R = ⋃
i Ti, Pi ∈ T . Z is a vector of length ‖R‖. The private key

is computed as the linear combination of the vector elements. The reconstruction coefficient

vector λT is computed by solving M>
T ·λT = ε. M>

T is the set of all rows of matrix M held

by the parties in T . ε = {1, 0, · · · , 0}.

Online client : The online client computes the private key sk and the corresponding

public key as pk = gsk and uses the key-pair (sk, pk) to perform different transactions as

needed.

Offline client: Once the offline client computes the private key sk corresponding to his

identity, he computes 2‖T ‖ secret keys as [sk − ‖T ‖, · · · , sk + ‖T ‖] and obtains the cor-

responding public keys [gsk−‖T ‖, · · · , gsk+‖T ‖]. He then queries the blockchain based system

for the 2‖T ‖ public keys (addresses) and uses the secret key sk′ corresponding to the public

key to which funds have been transferred. CombSecKey is shown in the Algorithm  7 .

Public key generation. CombPubKey(pp, {y1,y2, · · · ,y‖T ‖}): Let T with ‖T ‖ ≥ t + 1

be the set of servers whose evaluations are used for reconstruction. CombPubKey takes-in

the vector of partial evaluations yi received from the servers Pi of the set T and concatenates

them to form Y = {y1‖‖y2‖‖ · · · ‖‖y‖T ‖}. The set of all the row indices (of matrix M) held

by the parties in T is R = ⋃
i Ti, Pi ∈ T . Z is a vector of length ‖R‖. Compute the public

key as pk = ∏
1≤j≤‖R‖ y

λj
j , where M>

T · λT = ε, M>
T is the set of all rows of matrix M held

by the parties in T , λT = {λj, 1 ≤ j ≤ ‖R‖}, Y = {yj, 1 ≤ j ≤ ‖R‖}.
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Algorithm 7 CombSecKey (pp, {z1, z2, · · · , z‖T ‖})

1: Compute Z = {z1‖‖z2‖‖ · · · ‖‖z‖T ‖} ∈ Z‖R‖
p

2: Compute λT ∈ {−1, 0, 1}‖R‖ such that M>
T · λT = ε

3: Compute sk = λ>
T ·Z ∈ Zp

4: if Online client then
5: return sk
6: if Offline client then
7: Compute [sk − ‖T ‖, · · · , sk + ‖T ‖]
8: Compute public keys ~pk = [gsk−‖T ‖, · · · , gsk+‖T ‖]
9: Query public keys ~pk and find corresponding sk′

10: return sk′

Algorithm 8 CombPubKey (pp, {y1,y2, · · · ,y‖T ‖})

1: Compute Y = {y1‖‖y2‖‖ · · · ‖‖y‖T ‖} ∈ G‖R‖

2: Compute λT ∈ {−1, 0, 1}‖R‖ such that M>
T · λT = ε

3: λT = {λj}, Y = {yj}, 1 ≤ j ≤ ‖R‖
4: Compute pk = ∏

1≤j≤‖R‖ y
λj
j ∈ G

5: return pk

Any client can forward the public identity of another client and compute the public key

from the obtained partial evaluations using CombPubKey which shown as Algorithm  8 .

6.4.3 Verifying the evaluation of the PRF

While the clients obtain shares as the PRF evaluations presented in Section  6.4.1 , it

is imperative for the clients to verify if the values received were generated correctly. The

servers after evaluating the PRF, forward a commitment and a zero-knowledge proof proving

that the values have been computed according to the protocol. For ease of exposition, we

present here the verifiability for one PRF evaluation.

The PRF function employed by D-KODE protocol is

F (X,K) =
⌊
H(X) ·K

⌋
p
∈ Zp with H : X → Zu

q , K ∈ Zu
q , F : X ×Zu

q → Zp and p < q.

Let K = {α1, α2, · · · , αu}.

Verification of the private key evaluation. Let z = F (X, k) for k defined as above.

To compute z, the servers compute the inner product ẑ = (H(X) · k) ∈ Zq and perform the
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operation z = bẑcp ∈ Zp. Hence we have, z =

ẑ · p
q

 =⇒ pẑ = zq + r where the value

r < q. To provide verifiability, it is enough for the server to prove that the above equation

has been evaluated correctly and that the value r < q. The server uses commitments and

zero-knowledge range proof to do the same.

Using Pedersen commitments[ 251 ]: For a key K = {α1, α2, · · · , αu}, the server initially

publishes the commitments ci = gαihβi , i ∈ [u], g, h ∈ G are generators of multiplicative group

of order q′ > pq. While forwarding the value z = F (X, k), the server forwards the value z′

and commitment to the value r, c = grhr′ such that pẑ = zq + r; pẑ′ = z′q + r′ where

z′ = F (X,K ′),K ′ = {β1, β2, · · · , βn}.

The server also provides zero-knowledge range proof πr [ 252 ] proving that r < q. Thus

when evaluating the PRF for an input X, the server replies with the following: {z, z′, c, πr}

As the server publishes the ci values, they are available to the client before the evaluation.

Verification: After verifying the zero-knowledge range proof [  252 ], the client verifies the

obtained value z by checking if ∏u
i=1(ci)hip = (gz · hz′)q · c where H(X) = {h1, h2, · · · , hn}.

We have, ∏u
i=1(ci)hip = ∏u

i=1

(
gαihβi

)hip = g
∑

i αihi·ph
∑

i βihi·p = gẑphẑ′p

= gzq+rhz′q+r′ =
(
gzhz′

)q
· grhr′ =

(
gzhz′

)q
· c

Verification of the public key evaluation. When the client requests for the public key

corresponding to identity X, the server computes and forwards the value gz, z = F (X, k),

for g ∈ G a generator of a multiplicative group of order p.

For verifiability, the server forwards values gz and commitments gzhz′ , g, h ∈ G are gen-

erators of multiplicative group of order q′ > pq. The server also forwards a commitment

c = grhr′ such that pẑ = zq+r; pẑ′ = z′q+r′ where ẑ′ = F (X,K ′),K ′ = {β1, β2, · · · , βn}.

The commitments ci = gαihβi , i ∈ [u] are published by the server earlier.

The server also forwards the value z′, two zero-knowledge proofs, one πEqu(gz, gzhz′)

proving that the value z in both the exponents (gz, gzhz′) is equal for the zero knowledge

proof used) and πr, proving that the value r < q. Thus the server forwards the values

{gz, gzhz′
, c, πr, πEqu(gz, gzhz′)}. After verifying the zero knowledge proofs, the client verifies

if: ∏u
i=1(ci)hip = (gz · hz′)q · c
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Theorem 6.4.1. If the LWR(q,m,n) assumption holds, ParSecretKeyEval(X,E, pp) is a pseudo-

random function.

Proof. Let ParSecretKeyEval(X,E, pp) be fE(X), we show that fE is a family of pseudo-

random functions. Let D be an efficient algorithm that gets the value of fE on `−1 uniformly

chosen inputs X1, X2, · · · , X`−1 and distinguishes fE(X`) from random with a non-negligible

advantage ε. We construct an algorithm A that breaks the LWR assumption:

On input (A, bAscp) where A ∼ U(Zm×n
q ), s ∼ U(Zn

q). A parses the matrix A as rows

a1,a2, · · · ,am and vector bAscp as z′
1, z

′
2, · · · , z′

m. For each z′
i, i ≤ m, sample d − 1

uniformly random values si,2, si,3, · · · si,d ∈ Zp. Let zi,j = ai · si,j for i ≤ m; 2 ≤ j ≤ d. Now A

invokes m instances of algorithm Di each with the `− 1 pairs of values {〈H(Xj), fE(Xj)〉}`−1
j=1

and a pair 〈ai, [z′
i, zi,2, zi,3, · · · , zi,d]〉 for i ≤ m. Di distinguishes [z′

i, zi,2, zi,3, · · · , zi,d] from

a uniformly random vector with advantage ε. Algorithm A distinguishes the LWR instance

from a uniformly random vector U(Zd
q) with an advantage at-least ε.

Theorem 6.4.2. If the LWR(q,m,n) assumption holds, CombSecKey is a (n, t)-threshold eval-

uation of a pseudo-random function.

Proof. Let D′ be an efficient algorithm that differentiates an evaluation of CombSecKey from

a uniformly random vector with a non-negligible advantage ε after `−1 queries. It takes the

vectors [z1, z2, · · · , zn], computes λi · zi such that the elements of the vector λi ∈ {−1, 0, 1}

and differentiates the resultant vector sk from the uniform vector U(Zn
q ) with an advantage

ε.

We first consider the case when all the n servers are honest and then consider the case

when t of them are corrupt. We build an algorithm A′ with uses D′ to solve the LWR

instance. On input (A, bAscp) where A ∼ U(Zm×n
q ), s ∼ U(Zn

q ). A parses the matrix

A as rows a1,a2, · · · ,am and vector bAscp as z′
1, z

′
2, · · · , z′

m. For each z′
i, i ≤ m, sample

d− 1 uniformly random values si,2, si,3, · · · , si,d ∈ Zp. Let zi,j = ai · si,j for i ≤ m; 2 ≤ j ≤ di,

Zi = [z′
i, zi,2, zi,3, · · · ,zi,di ]. NowA′ invokes j instances of algorithm D′ each with `−1 vectors

Ẑi,j, i ≤ `− 1 and an additional input a vector Z ′
j = [Zj, Zj+1, · · ·Zj+n] for 1 ≤ j ≤ dm

n
e. Each

instance of D′ distinguishes the input vector from uniformly random vector U(Zn
p ) with an
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advantage ε, thus algorithm A′ distinguishes an LWR instance from a random vector with

an advantage at-least ε.

In the case where t′ servers are corrupt, the adversary has access to the secret key shares

of the t′ servers. In such a case, the algorithm A′ supplies only n − t element vectors to

each instance of the algorithm D′ through the vector [Zj, Zj+1, · · ·Zj+n−t]. Each D′ simulates

the t servers by sampling t values Zj+n−t, · · · , Zj+n ∈ Zdi
p . It constructs the vector Z ′

j =

[Zj, Zj+1, · · · , Zj+n], computes skj = λi ·Zj for each element of λi ∈ {−1, 0, 1}. The algorithm

D′ differentiates the vector from uniform random vector with an advantage ε. The algorithm

A′ differentiates the LWR instance from random vector with an advantage of at-least ε.

6.5 Distribution Matrix from Threshold Function

To generate the distribution matrix M for a (n, t)-threshold BBSS scheme used in the

DKG mechanism, we realize the (n, t) threshold access structure as a threshold circuit of

sufficient depth. We convert the monotone boolean function representation of the circuit

to the distribution matrix using the Benaloh-Leichter (BL) [ 93 ], [  94 ] construction. Much of

the previous works [  93 ], [ 110 ], [ 112 ] suggest realizing the threshold access structure using a

majority function [ 110 ]. Valiant [ 110 ] first proved that a polynomial size monotone circuit

is realizable for majority circuit and provided a construction of size O(n5.3), while the work

by Hooray et al. [ 111 ] further improved the size of the circuit to O(n1+
√

2). Valiant[ 110 ]

suggested realizing threshold function using majority circuit of 2n variables  

2
 which was

adapted by other works like Damgard et al. [ 93 ] following similar approach. Also, the

proposed constructions [  110 ], [  111 ] are probabilistic in nature and depth of the circuits is

such that the probability with which the circuits outputs 1, on majority in the n input

variables, is 1 − e where e = 2−n. In this work, instead of realizing threshold circuit using

majority circuit, we compute the required threshold circuit directly and also report that

choosing e = 2−n is indeed an overkill increasing the depth of circuit. Larger e > 2−n is

2
 ↑ For (n, t) threshold function, take n extra variables (total 2n variables), fix n− t of them to be 1 and

the rest t to 0; whenever there are more than t 1s in the original n variables, the majority function outputs
1.
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Table 6.1. m values obtained through threshold circuit for different n, p
values and error margins

n
e = 2−n e = 2− n

4

p = 0.5 p = 0.66 p = 0.5 p = 0.66
5 81 9 9 9
10 2187 81 81 27
20 59049 729 2187 27
30 177147 2187 19683 81

Table 6.2. Dimensions of Distribution matrix M for different m
m Rows Columns
3 6 4
9 36 22
27 216 130
81 1296 778
243 7776 4666

sufficient to realize the required access structure in the practical system profiles considered.

Essentially, we relax the error to achieve efficient implementation while still reconstructing

the secret for all the qualified sets of the access structure.

We adapt the construction provided by Goldreich [ 113 ] for the majority circuit con-

struction that uses a MAJ3 probability amplifier node  

3
 (Refer  2.5 for a brief description of

Goldreich’s [  113 ] construction and analysis of the majority circuit). The construction as de-

picted in Figure  6.5 consists of n variables xi, i ∈ [n] and m variables yj, j ∈ [m] are assigned

as follows: choose random indices i uniformly between 1 and n and assign the corresponding

xi to each yj, j ∈ [m] sequentially. Construct a 3-ary tree of MAJ3 nodes with yj as leaves.

The probability p = Pr(yj = 1) is taken as 0.5 for designing a majority circuit. However,

we choose the value of p as t
n
for the threshold access structure (n, t), we also compute

depth with e= 2− n
4 . To see why this is significant, we first present how the dimensions of

the distribution matrix M are related to the value m, the number of leaves in the circuit.

3
 ↑ The MAJ3 node realizes majority of 3 variables (x1, x2, x3) as x1x2 + x2x3 + x1x3
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Figure 6.5. Majority circuit realization using MAJ3 nodes. The variables
xi, i ≤ n are mapped to yj, j ≤ m uniformly randomly. MAJ3 tree is formed
from yj.

Table  6.2 presents m values and the dimensions of M when the circuit is constructed using

MAJ3 nodes and the distribution matrix is constructed by BL construction [  93 ], [ 94 ] from

the monotone boolean formula representation of the circuit. With the above construction,

the number of rows of matrix M grow as 6log3(m). Table  6.1 depicts the value of m needed

to represent the threshold access structure for different values of p and e. For instance, from

Table  6.2 for m = 243, the number of rows of M is 7776. Observe from Table  6.1 that for

(n, p, e) = (20, 0.5, 2−n), the value m = 59049. For m = 243 itself, the number of rows is

7776, for m = 59049 the number of rows make it extremely difficult (almost impossible) to

perform the secret sharing on a laptop or a phone using a majority circuit implementation

(p = 0.5) with e = 2−n. However, through implementation (by computing different threshold

combinations) we find that e = 2− n
4 is indeed sufficient to successfully reconstruct the secret

for the qualified sets for number of servers n up to 50.

In this work we consider the (n, b2n
3 c) access structure and generate the matrix M with

depth analysed using p = 2
3 . It must be noted that the distribution matrix size is dependent

on the computed m value rather than directly on the value n that is to say, multiple n values

may result in similar m value computed and hence will have similar distribution matrices.

Since the designed circuit is a 3-ary tree, the m value chosen will be a power of 3 for any
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Table 6.3. m values when using majority and threshold circuits for different
n values for p = 0.5, 0.66, e = 2− n

4

n
Majority Circuit Threshold Circuit

p = 0.5 p = 0.66 p = 0.5 p = 0.66
5 9 81 9 9
10 81 2187 81 27
20 2187 59049 2187 81
30 19683 531441 19683 243

given n. Table  6.3 compares the value of m needed for different n, p values using majority

circuit and threshold circuits to achieve error margin e = 2−n
4 .

6.6 Search for Distribution Matrix

We realize the threshold circuit usingMAJ3 internal nodes and compute the distribution

matrix for different values of n. To generate the matrix, different random instances of

assignment of yi values of Figure  6.5 from xi values are considered. A distribution matrix

is taken as the matrix M for the access structure if any secret shared using the matrix M

can be successfully reconstructed by any set that belongs to the set of qualified subsets of

the total number of nodes.

We consider a (n, b2n
3 c) access structure and compute the distribution matrix M for

different number of nodes. A random instance of mapping from literals xi, i ∈ [n] to literals

yj, j ∈ [m] needs to be fixed for the computation, to do so one needs to search across the

possible random instances of mapping when each yj is assigned a uniformly sampled xi.

Since for each yj, any of the xi values can be assigned, the size of the assignment space is

nm, however the search space can be drastically reduced when considering the number of

occurrences of each literal among xis. Each literal xi corresponds to the node with index

i, hence in an ideal scenario, all the nodes need to occur “uniformly” among the literals

yj, that is to say, the number of occurrences/assignments of each xi to certain yj should be

almost equal. Thus we look at only those random instances where each literal xi occurs

∼ m
n

times, so we restrict ourselves to those instance where each literal is assigned literals
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between
[
bm

n
c, dm

n
e+1

]
, for each of the instance of random mapping, the distribution matrix

is constructed and checked against all the possible threshold combinations.

For an access structure (n, t), there are ∑n
k=t+1

(
n
k

)
qualified sets that can reconstruct

the secret value, however if the reconstruction is successful for all the t+ 1 element subsets,

it will successful for any of the subsets with more than t + 1 elements. Thus a distribution

matrix is declared to be valid if all the t+ 1 element subsets result in correct reconstruction.

Reconstruction. When a subset T of nodes come together to reconstruct a secret, they

first compute the vector λT such that M>
T λT = (1, 0, · · · , 0)>. As can be observed from the

dimensions of the matrix M , for a threshold access structure (n, 2n
3 ), λT is a solution for

under-determined system of linear equations with solution {λi} ∈ {0, 1,−1}.

6.7 Proactive BBSS Mechanism

System attacks are common as flaws in the software realization of the protocols are

ubiquitous. While cryptographic secrecy protects again break-ins, its effect is limited over

a longer time. This is especially true in-case of a mobile attacker [  65 ], [  66 ] who can break

into systems one-by-one over a long time. Proactive secret sharing (PSS) guards against

these gradual attacks by combining distributed trust with periodic share renewing. When

systems store keys for a long time, even when the secret information is threshold-shared,

it is imperative to refresh the shares such that the adversary does not eventually gain all

the information. In proactive security [  65 ], [  66 ], [  253 ], the nodes modify their secret shares

periodically such that the adversary’s knowledge of secret information from any previous

period is not useful in the next. For the D-KODE protocol, we propose proactive secret

sharing for the BBSS scheme.

Adversary. We consider a computationally bounded mobile adversary [  65 ] that can cor-

rupt any server any point of time, however, the adversary can corrupt no more than t servers

at any instant of time. The adversary after compromising the server has full access to the

server’s secret information and communication. We consider malicious corruption in which

the adversary makes the server deviate arbitrarily from the protocol. The adversary has

access to the complete view of the corrupted server’s communication, however, he can nei-
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ther inject, access or deny messages between any two non-compromised nodes nor affect the

broadcast channel. The adversary corrupting the servers is removable by a reboot mecha-

nism [  253 ], which is handled by the system management interacting with the servers. The

defined protocol provides explicit mechanism to detect malicious behaviour, we assume a

reboot is triggered as soon as malicious behaviour is detected which is completed with in

that epoch. The system management initializes the system by establishing server to server

communication and no secret information of the protocols is available to it.

The aim of the adversary corrupting the servers is to learn the secret information or the

secret key shares involved in the protocol. The user or clients interacts with the servers to

obtain partial evaluations of the keys. He may try to attack the system by either predicting

the server secret key or the evaluations for other clients. At the end of each refresh phase,

the servers erase the old information of the previous epochs. This process is a assumed

reliable such that when the server is compromised, the adversary does not have access to the

secret information of the previous epochs. If a server is compromised in the refresh phase,

the server is assumed to be compromised in both the phases adjacent to that phase.

Protocol. We propose a proactive secret sharing scheme [  65 ] for the black box secret sharing

mechanism where the size of share-elements does not increase with each refresh. The protocol

proceeds in intervals of time called epochs, which are synchronized by the common global

clock. The parties participate in a share refresh phase at the beginning of each epoch after

which every party in the system has access to the new shares. The adversary can corrupt

up-to t parties, if it is detected that a certain party is corrupted in an epoch, its shares

are renewed in the share renewal phase phase of the next epoch, similarly if a node crashes

during an epoch, its shares are reconstructed in the reconstruction phase of the next epoch.

Share renewal and reconstruction are a part of the refresh phase of each epoch.

Without loss of generality, let (n, t) be the access structure of epoch e and (n′, t′) be

the access structure of the epoch e + 1. Let the access structure of epoch e correspond to

the share distribution matrix M and M ′ for the epoch e + 1. Let ski be the set of share

elements held by the party Pi for the epoch e. In our proactive protocol, each party re-shares
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The public parameters pp = {n, t, q, p,M ,M ′, ψ(·), ψ(·)′}. Each party Pi begins with an
initial verified share ski( and sk′

i) consisting of elements ŝi,k′( and ŝ′i,k′) ∈ Zq, 0 ≤ k′ ≤
‖ψ−1(i)‖. M ∈ {0, 1}d×e,M ′ ∈ {0, 1}d′×e′ . All the honest parties begin with a commitment
vector V = (v1, v2 · · · ve). Share renewal:
For each k′ from above party Pi performs the following:

1. Performs a Verifiable-LISS of each of the share elements among all the parties. Samples
random vectors ρi,ρ

′
i ∈ Ze′

p with elements ρi,l, ρ′
i,l, l ∈ [e′] and computes Si = M ′ ·ρi and

S′
i = M ′ · ρ′

i with ρi,1 = ŝi,k′ and ρ′
i,1 = ŝ′i,k′

2. Let the share elements of Si and S′
i be si,l and s′

i,l, l ∈ [e′]. Forward the share elements
si,k, s

′
i,k to party Pj, k ∈ Tj = ψ−1(j) and commitments Ci,l = gρi,lhs′

i,l , l ∈ [e′] to all the
parties.

3. Pi verifies the shares and the corresponding commitments received from party Pj and
broadcasts a complaint against Pj if the verification fails.

4. Pi computes the qualified set Q′ as in Phase 1 of BBSS-DKG, at the end of which all
honest parties compute the same set Q′.

5. Pi computes the new share as follows: Let M ′
Q′ be the set of rows held by the parties in

the set Q′. Each party computes the vector λQ′ ∈ {0, 1,−1}dQ′ such that M ′>
Q′ ·λQ′ = ε.

The new share of Pi is sk′
i = S̃

>
i,Q′ ·λQ′ , where S̃i,Q′ is the set of all share elements received

by party Pi from the parties in the set Q′.

Proactive BBSS

Figure 6.6. Proactive BBSS Scheme

every share element held by the party to all other parties of the next epoch. The Proactive

BBSS scheme is presented in Figure  6.6 .

Proactive BBSS offers the following properties [ 253 ]:

• Robustness/Correctness: The new shares computed at the end of the share renewal phase

correspond to the original secret sk shared among the parties i.e., any qualified set of

parties - t+ 1 or more number of parties can reconstruct the secret sk.

• Secrecy: No information about the secret sk is obtained by the t-limited adversary in any

epoch. The adversary who obtains shares of no more than t parties has no information

about the secret sk in any epoch.
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• Liveness: All honest parties complete the refresh of shares (at the beginning) in each

epoch.

The proactive BBSS mechanism works mainly in two steps:

• Each party Pi, i ∈ [n] does verified secret sharing of each of its shares ski among all the

parties

• From the obtained verified shares, each party reconstructs their new shares sk′
i.

Let Ci be the vector of commitments to the vector ρi by each party Pi in the previous

epoch and Q be the qualified set computed during that epoch. Each party stores a vector

V of commitments from the parties of qualified set computed during the re-sharing from

the previous epoch for the verifiability of shares for the next epoch. All the honest parties

update the commitment vector V with elements Vl = ∏
Pi∈Q C

λi
i,`, ` ∈ [e]. When party Pi

shares ŝi,k (while using ŝ′i,k), each party Pj checks if gŝi,khŝ′i,k = ∏
k(Vk)mi,k where M>

QλQ =

ε,λ = {λk, k ∈
⋃
i Ti, Pi ∈ Q}. Let si,k, k ∈ Tj be the shares received by Pj from party

Pi ∈ Q′. R′ = {⋃i Ti, Pi ∈ Q′} is the set of all rows held by Q′. Pj computes the new share

element sk = ∑
i∈Q′ λisi,k, k ∈ Tj.

Theorem 6.7.1. Given a correct and secure (n, t)-verifiable BBSS scheme, the Proactive

BBSS protocol of Figure  6.6 satisfies correctness and secrecy properties under the discrete

logarithm assumption.

Proof. Correctness. Let (n, t), (n′, t′) be access structures in the epochs e and e + 1.

Without loss of generality let ski, i ∈ [n] be shares of secret key sk of the n parties in epoch

e and sk′
i, i ∈ [n′] be shares of the n′ parties in epoch e + 1. We need to show that any set

of t′ + 1 or more parties in epoch e + 1 reconstruct the secret key sk.

For epoch e, the share elements held by parties in qualified set Q are ŝk, k ∈ R =

{⋃i Ti, Pi ∈ Q}. R is the set of all rows held by the parties in Q. We know, sk = ∑
k∈R λkŝk
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Figure 6.7. Time taken to perform DKG to generate shares of a 256-bit key
for Shamir-DKG and 283-bit value for RSS and BBSS-DKG. The values show
the mean of values across nodes for 10 runs of the protocol.

However, each share element ŝk is verifiable secret shared in the next epoch e + 1. Thus

any qualified set Q′ of t′ + 1 parties can construct the share element ŝk. Let R′ be the rows

held by the parties in Q′. Then,

sk =
∑
i∈R

λiŝi =
∑
i∈R

λi

( ∑
j∈R′

λjsi,j

)

=
∑
j∈R′

λj

( ∑
i∈R

λisi,j

)
=

∑
j∈R′

λjsj = sk

Secrecy. The secrecy of the secret in each phase follows from the security properties of

Verifiable BBSS scheme. Let B,B′, ‖B‖,B′‖ < t be the set of servers corrupted in an epoch

e and e + 1. W.l.o.g let B ∩ B′ = φ, from the correctness principle above, we know that any

t′ + 1 or more parties can construct the secret key in the epoch e + 1. From the security of

the BBSS scheme we know what no set of t′ or less number of parties has any information

about the secret, hence maintaining the secrecy property.

6.8 Performance Analysis

We evaluate the performance of D-KODE protocol, using AWS EC2 t3a.2xlarge instances

with 8 cores. Our prototype Python implementation includes BBSS, BBSS-DKG, BBSS-

PSS and the corresponding reference implementations of New-JF-DKG [  30 ] instantiated

with Shamir secret sharing and replicated secret sharing (RSS).
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Distributed Key Generation (DKG). We implement the DKG protocols using Ten-

dermint [ 254 ] as a broadcast channel for verifiable secret sharing. Figure  6.7 provides a

logarithmic plot comparing time taken to run DKG to generate shares of a 256-bit key using

Shamir, replicated (RSS) [ 82 ] and black-box (BBSS) secret sharing schemes for up-to 50

nodes. RSS is a well-known scheme [ 82 ] to share secrets in Zq in an additive form. The ac-

cess structure for the verifiable sharing corresponds to (n, b2n
3 c) threshold in all the protocols

analysed through Figure  6.7 .

Shamir secret sharing allocates one share element per node while BBSS and RSS allocate

share vectors. The vector length for RSS grows exponentially as
(

n−1
t

)
for (n, t)-sharing. The

share vector length for a node in BBSS is determined by the distribution matrix and the

share allocation function ψ(·). While BBSS allocates more than one share element per user,

the verification of shares is efficient involving only multiplications instead of exponentiations

since the distribution matrix is a sparse binary matrix. This is reflected in the slightly lesser

times recorded compared to Shamir-DKG for up-to 27 nodes. The distribution matrix is of

dimension 36 × 22 (with different ψ(·) function) when the number of nodes n ∈ [4, 9]; it is

216× 130 and 1296× 778 for n ∈ [11, 27] and n ∈ [28, 50] respectively. Beyond 28 nodes, the

time to perform BBSS-DKG shows a jump owing to the change in the distribution matrix

size. Such a change in matrix occurs at 10 nodes as well, however the change in the time

taken is not too significant. The higher variance beyond n = 28 for BBSS-DKG results from

the difference in the number of shares obtained by each node. While using RSS, the time

taken for DKG grows exponentially owing to exponential increase in number of shares per

node with the n, the scheme becomes un viable beyond 12-15 nodes. In Shamir-DKG, since

each node provides only one share element for every other node, the time taken is the lowest

for higher n. Though the time taken to perform BBSS-DKG can be higher than Shamir-

DKG, it is the number of instances of the DKG that is significantly lesser while employing

D-KODE protocol when compared to the Plain-DKG  

4
 .

Distributed PRF. D-KODE provides key-shares using PRF F (X, k) where k is a vector.

Each element of the vector k at the server is a share generated using BBSS-DKG. The

4
 ↑ The basic differences between Plain-DKG and D-KODE are recalled in Table  6.4 
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Table 6.4. Comparison of Plain-DKG and D-KODE with BBSS for n servers,
c keys and a constant k. Refer Table  6.5 for the exact value of k for different
n.

Plain-DKG D-KODE (with BBSS)
Key-generation DKG, Consensus for every new-id Non-interactive PRF
Storage - shares c k

Communication complexity (PSS) c ·O(n3) k ·O(n3)
Security assumptions DLog DLog and LWR

Preferable for keys range < 100K > 100K

parameters (LWR) for computing the PRF are chosen as following: n = 8192, q : 256-bit,

p : 32-bit. The parameter q′ > pq used for commitments is 571-bit with commitments on the

curve secp571r1. The servers run 8192 instances of BBSS-DKG to generate shares for the

key k. The PRF output is a 32−bit key; for the scenario where user generates the private

key, for each input X, the servers compute 8 instances of the PRF by deriving 8 inputs from

X and finally forward the resulting 32 bit keys to the user. The user concatenates them to

generate a 256−bit key. The corresponding public key is computed on the secp256k1 curve.

In the case of computing public key of another party, the servers use 8 instances of 32-bit

key shares to generate the public key share (on the curve secp256k1) and forward it to the

user. Each server takes < 300 msec to generate shares for a user per thread, for n ∈ [5, 50];

AWS EC2 t3a.2xlarge on an average (over 10 runs) supports 35 such threads per second.

Decreasing the value of p increases the bit-security and can reduce the vector length

n for a fixed bit-security, however it increases the number of instances of PRF required to

generate a 256-bit key and vice versa. The chosen parameters offer more than 128bits of

LWR security (for solving the LWR instance) as estimated using the LWE-estimator [ 255 ].

Since the secret keys are 256-bit with public keys on the secp256k1 curve, the bit-security

offered by our system is 128-bits which is similar to the Plain-DKG approach.

D-KODE vs Plain-DKG. D-KODE allows clients to generate private and public keys

using partial share-evaluations from different servers. Plain-DKG approach is another way

to provide such key shares where one instance of DKG is run per user to provide the shares

(private or public key shares) whenever requested. In this, for every new user the servers
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perform consensus on index of pre-shared keys and offer the key shares to the user. As

Shamir-DKG is efficient even for higher number of servers as shown in Figure  6.7 , we consider

Shamir-DKG for Plain-DKG approach. We compare D-KODE with Plain-DKG as it is the

only other major approach available currently in the industry (Torus[ 60 ], Sepior [ 64 ] etc).

When the servers store keys, either own or user’s secret keys for a long-time, proactively

refreshing the shares is inevitable. This is one of key phases where D-KODE offers advantage.

To bring this out, we compare the different number of shares and commitments stored at

each server when using different schemes to provide the key shares in Table  6.5 . The table

compares D-KODE where the master key between servers is shared using RSS and BBSS

and Plain-DKG for different number of servers and clients present in the system. For share

refreshing, each share value stored at the server is re-shared in the next epoch. Hence number

of shares stored at each server is the same as the number of verifiable secret sharings to be

performed in the next round. Table  6.5 also provides the number of commitments to be stored

at each server for the pro-active secret sharing, thus providing the total storage requirement.

Each share value is a Zq element where q is 256-bit and the commitments are on the curve

secp256k1 where each commitment is of size 56 bytes. Plain-DKG stores t+1 commitments

for each (n, t) DKG, hence for c number of client keys, stores c · (t + 1) commitments per

server. For BBSS with distribution matrix of size d × e, each server stores e commitments

per shared value. Hence for 8192-element master key, stores 8192 · e commitments. For RSS,

each server forwards commitments to each of the share, hence the number of commitments

is 8192 ·
(

n
t

)
.

For Plain-DKG, since the number of shares is same as the number of keys and hence linear

with, increasing the share-refresh time with higher number of keys. D-KODE uses a fixed

256-element long master key vector shared among the servers. Only shares corresponding

to the master key vector need to refreshed at each round and does not change with the

number of keys. For D-KODE with RSS, the number of shares is constant with respect to

the users but increases exponentially with the number of servers. The number of shares

stored at the server when D-KODE is used with BBSS is dependent on the distribution

vector. Since the actual number of share elements per server may vary depending on the

share distribution function, we provide the average number of share elements per server. For
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Table 6.5. Number of shares per server while using Plain-DKG[ 30 ] and D-
KODE with either RSS or BBSS for c keys. Here, c can be as large as 1 billion.
Number of verifiable secret sharing instances for share refreshing is same as
the average number of shares stored. The shares are 256-bit for Plain-DKG
and 283-bit for BBSS.

No.
of
keys
(c)

No. of
servers
(n)

Average number of shares per server
Plain DKG D-KODE

With RSS With BBSS

c

5 c 32768 58982.4
10 c 688,128 176,947.2
20 c 22.224e+7 88,473.6
30 c 82.016e+9 353,894.4
40 c 66.528e+12 265,420.8
50 c 27.424e+15 212,336.64
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Figure 6.8. Time taken to refresh shares corresponding to one scalar value
using PSS. For BBSS, it corresponds to re-sharing a total of 216 values for 10-
27 nodes and 1296 283-bit values for 28− 50 node network. For Shamir secret
sharing, each node re-shares just one 256-bit element per key. The values show
the mean of values across nodes for 10 runs of the protocol.

the ranges n ∈ [4, 9], [10, 27], [28, 50], the distribution matrix would be the same within each

range. Hence with increasing n in those ranges, the average number of shares per server

decreases. In fact, the distribution matrix would again change at n = 82.

Figure  6.8 shows the time to refresh one share through proactive secret sharing (PSS).

BBSS-PSS takes longer as the number of share elements per server is higher whereas it is

just one element for Shamir secret sharing while sharing a single secret value. The increase
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Figure 6.9. Estimated time to refresh shares through proactive se-
cret sharing for D-KODE and Plain-DKG for number of keys c =
100K, 1million and 10million for 10 parallel instances. D-KODE re-shares
shares of a fixed number of 8192 values and hence takes the same time even for
a billion keys (c = 1 billion); Plain-DKG re-shares values equal to the number
of keys.

in time at n = 10 and n = 28 for BBSS-PSS is due to the change in distribution matrix

size. Figure  6.9 shows the estimated time to refresh shares using D-KODE and Plain-DKG

for increasing number of keys. We note that any parallelization applied to speed-up can be

applied to both schemes. Hence, we provide an estimate of times taken by appropriately

scaling the timing values obtained for re-sharing of single share value. D-KODE out-performs

Plain-DKG for 94K and higher keys when the number of servers used is below 27. In the

range of 28-50 servers, D-KODE out-performs Plain-DKG from 1 million keys. D-KODE

protocol also offers the non-trivial advantages of storing shares of 8192-element key vector

versus millions of key-shares and the servers being essentially non-interactive except during

the share-refreshing phase. D-KODE is particularly suitable for large-scale service-offering

scenarios involving millions of keys.
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7. CONCLUSION AND FUTURE WORK

In this work, we have addressed two applications of threshold cryptography, realizing in-

formation escrows and key maintenance using threshold cryptography. We first realize a

two-party escrow mechanism in which any dishonest behavior is automatically penalized by

loss of the claim-or-refund deposit made prior to the escrow mechanism operations. The pro-

posed Pepal protocol which employs the proposed doubly-oblivious transfer primitive allows

the sender to penalize even partial leakages. We extend the two-party escrow scenario to a

multi-party escrow scenario where a group of agents offers the service such that the informa-

tion of the sender is distributed among the agents. Any qualified set of agents (set greater

than a certain threshold size) may collude and decrypt the sender’s information prematurely.

To prevent this we propose the CDE protocol which ensures that any such collusion results in

a subset of agents being able to transfer the claim-or-refund deposits of all the other agents.

The enforced policy of banning colluding agents ensures that the non-collusion is the best

response strategy for the agents. In the future, we aim to realize partial leakage prevention

in the multi-agent collusion scenario. For this, a multi-party version of doubly-oblivious

transfer or an efficient cryptographic primitive which realizes a similar functionality may

be proposed. Alternative mechanisms of collusion prevention including complaints on other

agents which may remove the necessity of claim-or-refund deposits would be a good future

direction to explore in realizing escrows.

Towards understanding the mental models of the users in adopting different cryptocur-

rency wallets, we analyzed a total of 255 valid responses of participants through an on-

line survey. We analyzed why the adoption of the more secure multi-device wallets is not

high compared to the single-device wallets and if the participants are willing to shift to

multi-device wallets after learning their security properties. We identified that the users be-

have as two specific groups of newbies and non-newbies and the majority of them are willing

to shift to multi-device wallets but few are not. I would be interesting to see how these groups

evolve with advancements in the settings are properties offered by the multi-device wallets

in the future. To propose a mechanism to achieve efficient threshold key-management, we

design the D-KODE protocol which uses practical black-box secret sharing to distribute a
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master secret key among a set of servers. The servers compute a lattice-based PRF on the

user’s input as a partial evaluation of the user key. The user combines the partial evaluations

from the servers to compute the required keys. Alternatively, the user can request the servers

to generate threshold signatures on behalf of the users. In the D-KODE setup it is assumed

that up to a certain threshold t number of servers can be corrupted and the rest are honest

and hence will not collude. It would be interesting in the future to consider rationality in

such a key-management protocol that can deter collusion. The D-KODE protocol can also

be extended to consider different communication models including the asynchronous model.
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