
SCALABLE AND ENERGY-EFFICIENT SIMT SYSTEMS FOR
DEEP LEARNING AND DATA CENTER MICROSERVICES

by

Mahmoud Khairy A Abdallah

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2022



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Timothy G. Rogers, Chair

Department of Electrical and Computer Engineering

Dr. Mithuna S Thottethodi

Department of Electrical and Computer Engineering

Dr. Milind Kulkarni

Department of Electrical and Computer Engineering

Dr. David Nellans

NVIDIA

Approved by:

Dr. Dimitrios Peroulis

2



ACKNOWLEDGMENTS

I have many people to thank who have supported me during my Ph.D. journey over the

last five years. First and foremost, I would like to express my deepest and sincere gratitude

to my advisor, Professor Tim Rogers. I really appreciate his expert guidance, meaningful

mentorship, constant care, and support throughout my Ph.D.

I thank my committee members, Professor Mithuna S. Thottethodi, Professor Milind

Kulkarni, and Dr. David Nellans, for supervising this thesis. Your feedback is integral to

improving both the thesis and its constituent works. In particular, I would like to thank

David for providing me with incredible technical support, valuable discussions, and countless

pieces of critical advice during the LADM project.

I would like to thank my colleagues at AALP group who directly helped me with my

research projects and social life, including Mengchi Zhang, Tsung Tai, Akshay Jain, Roland

Green, Aaron Barnes, Ahmad Alawneh, Yechen Liu, Abhishek Bhaumick, Cesar Avalos,

Junrui Pan, Fanjia Shen, Vadim Nikiforov, Jason Shen, Christin Bose, Ni Kang, and Weili

An.

And last but not least, I would like to express my profound gratitude to my family for

their unconditional and continued love and support. I am most grateful to my parents and

brothers for enabling me to pursue my passion for learning and for being by my side at each

step of this journey. I would also like to thank my friends in the Egyptian community at

Purdue: Mohamed Zahran, Ashraf Youssef, Mostafa Abdallah, Tarek Ameen, Amr Ebid and

my roommates Nour Hendy and Mohamed Saad.

Finally, I would like to acknowledge the funding sources that made my research possible:

National Science Foundation, Purdue Graduate Fellowship, and Sandia National Labs.

3



PREFACE

The following is a list of my publications that have been incorporated into this dissertation

in chronological order:

1. Mahmoud Khairy, Jason Shen, Tor M. Aamodt, and Timothy G. Rogers, “Accel-

Sim: An Extensible Simulation Framework for Validated GPU Modeling,” In The 47th

International Symposium on Computer Architecture (ISCA 2020), Virtual Event,

May 2020, (Acceptance rate: 77/421 = 18%)

2. Mahmoud Khairy, Vadim Nikiforov, David Nellans, and Timothy G. Rogers, “Locality-

Centric Data and Threadblock Management for Massive GPUs,” In The 53rd IEEE/ACM

International Symposium on Microarchitecture (MICRO 2020), Virtual Event, Oc-

tober 2020 (Acceptance rate: 82/422 = 18%)

3. Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers, “SIMR:

Single Instruction Multiple Request Processing for Energy-Efficient Data Center Mi-

croservices”, In The 55th IEEE/ACM International Symposium on Microarchitecture

(MICRO 2022), Chicago, October 2022 (Acceptance rate: 86/348 = 22%)

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

1.1.1 Inaccurate Out-of-date Academic Simulators . . . . . . . . . . . . . .  21 

1.1.2 Post-Moore Multi-GPU Multi-Chiplet Scaling . . . . . . . . . . . . .  22 

1.1.3 Data Center Energy Efficiency Crisis and Microservices Evolution . .  23 

1.2 My Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

1.2.1 Building for Flexibility and Modularity: An Accurate and Extensible

Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

1.2.2 Optimizing for Locality: Transparent Multi-GPU Scaling for DL and

HPC Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

1.2.3 Exploiting Microservices Similarity and Eliminate Redundancy: Single

Instruction Multiple Request Processing . . . . . . . . . . . . . . . .  26 

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

5



2 ACCEL-SIM: AN EXTENSIBLE SIMULATION FRAMEWORK FOR VALIDATED

GPU MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

2.2 Accel-Sim Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . .  33 

2.2.1 Flexible Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2.2.2 Flexible and Detailed Performance Model . . . . . . . . . . . . . . .  35 

2.2.3 Tuner and Targeted Microbenchmarks . . . . . . . . . . . . . . . . .  37 

2.2.4 Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

2.2.5 Simulation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

2.3 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

2.4 Modeling Different GPU Generations . . . . . . . . . . . . . . . . . . . . . .  40 

2.5 A Detailed Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . .  43 

2.5.1 Overall System Correlation . . . . . . . . . . . . . . . . . . . . . . .  46 

2.5.2 Achieved Bandwidth Correlation . . . . . . . . . . . . . . . . . . . .  50 

2.5.3 L1 Cache Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

2.5.4 L2 Cache Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

2.5.5 DRAM Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

2.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

3 LADM: A SCALABLE AND TRANSPARENT MULTI-GPU SYSTEM FOR DL

AND HPC WORKLOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

6



3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.1.1 NUMA Locality in CPUs vs GPUs . . . . . . . . . . . . . . . . . . .  60 

3.1.2 Existing NUMA-GPU Optimizations . . . . . . . . . . . . . . . . . .  62 

3.2 Locality-Aware Data Management . . . . . . . . . . . . . . . . . . . . . . . .  66 

3.2.1 LADM System Design . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

3.2.2 Threadblock-centric Locality Patterns . . . . . . . . . . . . . . . . . .  68 

3.2.3 Static Locality and Sharing Detection . . . . . . . . . . . . . . . . . .  70 

3.2.4 Locality-Aware Scheduling and Page Placement . . . . . . . . . . . .  73 

LASP Data Placement . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

LASP Threadblock Scheduling . . . . . . . . . . . . . . . . . . . . . .  74 

3.2.5 Compiler-assisted Remote Request Bypassing . . . . . . . . . . . . .  76 

3.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

3.3.1 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . .  77 

3.3.2 Workload Selection and Characterization . . . . . . . . . . . . . . . .  78 

3.3.3 Hardware Validation of LASP Principles . . . . . . . . . . . . . . . .  79 

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

3.4.1 Simulation Results of LADM . . . . . . . . . . . . . . . . . . . . . .  80 

3.4.2 Remote Request Bypassing Analysis . . . . . . . . . . . . . . . . . .  82 

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

7



4 SINGLE INSTRUCTION MULTIPLE REQUEST PROCESSING FOR DATA CEN-

TER MICROSERVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

4.2 SIMR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

4.2.1 RPU Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

CPU vs GPU vs RPU . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

An Examination of SMT vs SIMT . . . . . . . . . . . . . . . . . . . .  96 

4.2.2 SIMR Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

SIMR-Aware Batching Serve . . . . . . . . . . . . . . . . . . . . . . .  99 

Stack Segment Coalescing . . . . . . . . . . . . . . . . . . . . . . . .  100 

Batch Size Tuning and Memory Contention . . . . . . . . . . . . . .  102 

SIMR-Aware Memory Allocation . . . . . . . . . . . . . . . . . . . .  104 

System-Level Batch Splitting . . . . . . . . . . . . . . . . . . . . . .  105 

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

4.4.1 Chip-Level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Service Latency Analysis . . . . . . . . . . . . . . . . . . . . . . . . .  113 

GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 

4.4.2 System-Level Results . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 

8



4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

4.5.1 RPU vs CPU’s SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

4.5.2 Multi-threaded vs Multi-process Services . . . . . . . . . . . . . . . .  116 

4.5.3 Security Implications . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

4.5.4 GPGPU Workloads on RPU . . . . . . . . . . . . . . . . . . . . . . .  117 

4.5.5 RPU vs GPU Terminology . . . . . . . . . . . . . . . . . . . . . . . .  117 

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

5.1 GPU Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

5.2 NUMA-aware Management for CPUs and GPUs . . . . . . . . . . . . . . . .  120 

5.3 Webservices Acceleration on GPUs . . . . . . . . . . . . . . . . . . . . . . .  122 

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . .  124 

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

6.1.1 Other Collaboration Work . . . . . . . . . . . . . . . . . . . . . . . .  125 

6.1.2 Potential Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

6.2 Future Research Directions: . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

6.2.1 Enabling Efficient Multi-Trillion Model Training . . . . . . . . . . .  127 

Identifying Bottlenecks with Heterogeneous Memory . . . . . . . . .  127 

Model vs Data Parallelism Trade-off . . . . . . . . . . . . . . . . . .  127 

6.2.2 Phase-Aware Thread Scheduling for Micro-Second-Scale Latency . .  128 

9



6.2.3 Physical Design of RPU with RISC-V Prototyping . . . . . . . . . .  128 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 

10



LIST OF TABLES

2.1 Landscape of open-source GPU simulation. Accuracy numbers are taken from
each simulator’s respective publication. . . . . . . . . . . . . . . . . . . . . . . .  32 

2.2 Example demonstrating how mISA instruction traces and vISA instructions trans-
late into the ISA-independent intermediate representation used by the perfor-
mance model. In traces, the mapping between opcode and execution unit is
provided by the ISA def file in Figure  2.1 .* indicates these values are computed
using emulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2.3 Workloads used in our study. Table  2.8 lists the hardware cycles for each workload.  40 

2.4 Accel-Sim modeling properties across four different GPU generations. SPU:
Single-Precision Floating Point Unit. DPU: Double-Precision Unit. SFU: Special
Function Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

2.5 Accel-Sim cycle error and correlation factor across four different GPU generations.  43 

2.6 Volta GPU configuration for GPGPU-Sim 3.x vs Accel-Sim. INT: Integer oper-
ation unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

2.7 Error and correlation rates of GPGPU-Sim 3.x versus Accel-Sim when modeling
an NVIDIA Volta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

2.8 Cycle mean absolute error per workload in GPGPU-sim 3.x, Accel-Sim [PTX
Mode] and Accel-Sim for SDK, Rodinia and Parboil . . . . . . . . . . . . . . . .  48 

2.9 Cycle mean absolute error per workload in GPGPU-sim 3.x, Accel-Sim [PTX
Mode] and Accel-Sim for Polybench, Microbenchmark, and CUTLASS . . . . .  56 

3.1 LADM vs state-of-the-art techniques . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.2 Index analysis and taken actions. bx = blockIdx.x, by = blockIdx.y, gDimx =
gridDim.x, m is an induction variable. For the loopInvariant function, if one of
bx or by is not listed, then none of the terms in the equation contain that variable.
For the loopV ariant function, if gDimx is not listed, then none of the terms in
the equation contain gDimx. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

3.3 Multi-GPU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

3.4 Workloads used to evaluate LADM in simulation. . . . . . . . . . . . . . . . . .  79 

4.1 CPU vs RPU vs GPU Key Metrics . . . . . . . . . . . . . . . . . . . . . . . . .  87 

4.2 CPU vs RPU vs GPU Architecture Differences . . . . . . . . . . . . . . . . . . .  95 

4.3 CPU inefficiencies in the data center . . . . . . . . . . . . . . . . . . . . . . . .  96 

4.4 CPU vs RPU Simulated Configuration . . . . . . . . . . . . . . . . . . . . . . .  108 

4.5 Per-component area and peak power estimates . . . . . . . . . . . . . . . . . . .  109 

11



4.6 GPU vs RPU Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

12



LIST OF FIGURES

1.1 The architecture design and simulation process represented as a collection of
good and ineffective ideas. As the level of simulation detail increases, the
space of effective ideas shrinks and potentially moves. . . . . . . . . . . . .  22 

1.2 Performance of GPU workloads in a hypothetical monolithic GPU, where all
resources scale proportionally. . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

1.3 Data center power consumption breakdown. Source: [ 11 ]–[ 13 ] . . . . . . . . .  24 

2.1 Accel-Sim’s end-to-end flow. . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2.2 Updated GPGPU-Sim 4.0 performance model. . . . . . . . . . . . . . . . . .  36 

2.3 L1 latency microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

2.4 Correlation of key metrics from Accel-Sim versus GPGPU-Sim 3.x over the
80 workloads. These workloads are listed in Tables  2.8 and  2.9 . . . . . . . .  45 

2.5 Cycle correlation of Accel-Sim in execution-driven PTX mode versus Accel-
Sim in trace-driven SASS mode. . . . . . . . . . . . . . . . . . . . . . . . . .  46 

2.6 Accel-Sim cycle correlation when executing deepbench workloads, which can-
not be executed by GPGPU-Sim 3.x or Accel-Sim [PTX Mode]. 60 workloads
(comprised of 11,440 kernel instances). . . . . . . . . . . . . . . . . . . . . .  47 

2.7 Measured cache and memory bandwidth for Accel-sim, GPGPU-sim 3.x and
Volta hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

2.8 L1 cache reservation fails per kilo cycles for cache sensitive workloads in both
Accel-Sim and GPGPU-sim 3.x. . . . . . . . . . . . . . . . . . . . . . . . .  54 

2.9 FR FCFS performance normalized to the FCFS in Accel-Sim and GPGPU-
sim 3.x for memory intensive workloads in Volta. . . . . . . . . . . . . . . .  54 

3.1 Future massive logical GPU containing multiple discrete GPUs, which are
themselves composed of chiplets in a hierarchical interconnect. . . . . . . . .  58 

3.2 OpenMP vs CUDA thread mapping for sgemm [ 74 ]. . . . . . . . . . . . . . .  61 

3.3 Behavior of kernel-wide partitioning in a 2-node system with 2 threadblocks
that access a 4 datablock data structure with a stride of one datablock. . .  63 

3.4 Bandwidth sensitivity analysis of state-of-the-art techniques normalized to a
hypothetical monolithic GPU with the same number of SMs. Performance is
averaged over the applications listed in Section  3.3.1 . . . . . . . . . . . . . .  65 

3.5 End-to-end overview of our proposed Locality-Aware Data Management Sys-
tem. In the locality table: MallocPC, the kernel/arg tuple, the locality type
and data type are filled statically, whereas memory address and #pages are
filled dynamically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

13



3.6 Matrix multiplication indices analysis . . . . . . . . . . . . . . . . . . . . .  67 

3.7 Common locality types found in GPU workloads. Arrows indicate threadblock
motion and datablocks are shaded based on the shade of the threadblock (TB)
that accesses them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

3.8 llustration of existing NUMA caching policy cache-remote-twice (the solid line)
and our proposed cache-remote-once cache management strategy (the dashed
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

3.9 Performance of H-CODA, LASP with RTWICE and RONCE, LADM and hy-
pothetical monolithic GPU. The data are normalized to H-CODA performance.  81 

3.10 Percentage of total memory traffic that goes off-node for H-CODA vs LASP
vs LADM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

3.11 Case study of RONCE cache policy effectiveness on high and low reuse work-
loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

4.1 Conceptual energy-efficiency vs. single thread latency for different compute
unit design points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.2 High level view of our SIMR system. . . . . . . . . . . . . . . . . . . . . . .  86 

4.3 Social network microservice graph studied in this work, similar to [ 27 ]. . . .  88 

4.4 SIMT control efficiency of naive batching for some microservices. . . . . . .  89 

4.5 Off-chip DRAM BW and Thread per socket scaling. . . . . . . . . . . . . .  90 

4.6 RPU hardware overview. Changes to the OoO core needed to support SIMR
execution are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . .  91 

4.7 IPDOM analysis with HW SIMT stack. . . . . . . . . . . . . . . . . . . . . .  92 

4.8 MCU and sub-batch interleaving to improve memory efficiency and hiding
front-end latency respectively . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

4.9 Hardware/Software Stack of CPU vs GPU vs RPU for microservices program-
ming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

4.10 SIMT control flow efficiency with different request batching policies (Batch
Size = 32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

4.11 Stack Segment (SS) coalescing (physical stack page size = virtual page size *
batch size) with 4-byte interleaving. . . . . . . . . . . . . . . . . . . . . . .  101 

4.12 RPU L1 accesses, normalized to CPU accesses . . . . . . . . . . . . . . . . .  102 

4.13 L1 MPKI of a single threaded CPU vs RPU with different batch sizes (32, 16,
8, 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

4.14 SIMR-aware memory allocator. . . . . . . . . . . . . . . . . . . . . . . . . .  104 

14



4.15 Batch split technique for control flow divergence when a path contains long
network/storage blocking event. . . . . . . . . . . . . . . . . . . . . . . . .  105 

4.16 End-to-End Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . .  107 

4.17 RPU and CPU-SMT8 energy efficiency (Requests/Joule) relative to single
threaded CPU (higher is better) . . . . . . . . . . . . . . . . . . . . . . . . .  111 

4.18 RPU and CPU-SMT8 service latency relative to single threaded CPU (lower
is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

4.19 Metrics that contribute to total service latency. . . . . . . . . . . . . . . . .  113 

4.20 End-to-end tail and average latency for CPU-based system vs RPU-based
system with and without batch split. . . . . . . . . . . . . . . . . . . . . . .  114 

4.21 Potential binary transformation of a scalar binary to a vector version . . . .  115 

15



ABBREVIATIONS

GPU Graphics Processing Unit

GPGPU General Purpose on Graphics Processing Unit

LADM Locality Aware Data Management

SIMT Single Instruction, Multiple Thread

SIMR Single Instruction, Multiple Request

MIMD Multiple-Instruction, Multiple-Data

SIMD Single-Instruction, Multiple-Data

SMT Simultaneous MultiThreading

RPU Request Processing Unit

CPU Central Processing Unit

HPC High Performance Computing

ML Machine Learning

DL Deep Learning

AI Artificial Intelligence

IoT Internat of Things

NUMA Non Uniform Memory Access

SM Streaming Multiprocessor

L1 Level One

L2 Level Two

L3 Level Three

L1D Level One Data

MSHR Miss Status Holding Register

GDDR Graphic Dual Data Rate

DRAM Dynamic Random Access Memory

HBM High Bandwidth Memory

BW Bandwidth

CSR Compressed Sparse Row

PDOM Post Dominator

16



API Application Programming Interface

TDP Thermal Design Point

FLOPS Floating point Operations Per Second

GB/sec Giga Byte Per Second

QoS Quality of Service

17



ABSTRACT

Moore’s law is dead. The physical and economic principles that enabled an exponential

rise in transistors per chip have reached their breaking point. As a result, High-Performance

Computing (HPC) domain and cloud data centers are encountering significant energy, cost,

and environmental hurdles that have led them to embrace custom hardware/software so-

lutions. Single Instruction Multiple Thread (SIMT) accelerators, like Graphics Processing

Units (GPUs), are compelling solutions to achieve considerable energy efficiency while still

preserving programmability in the twilight of Moore’s Law.

In the HPC and deep learning (DL) domain, the death of single-chip GPU performance

scaling will usher in a renaissance in multi-chip Non-Uniform Memory Access (NUMA)

scaling. Advances in silicon interposers and other inter-chip signaling technology will enable

single-package systems, composed of multiple chiplets that continue to scale even as per-chip

transistors do not. Given this evolving, massively parallel NUMA landscape, the placement

of data on each chiplet, or discrete GPU card, and the scheduling of the threads that use

that data is a critical factor in system performance and power consumption.

Aside from the supercomputer space, general-purpose compute units are still the main

driver of data center’s total cost of ownership (TCO). CPUs consume 60% of the total data

center power budget, half of which comes from the CPU pipeline’s frontend. Coupled with

the hardware efficiency crisis is an increased desire for programmer productivity, flexible

scalability, and nimble software updates that have led to the rise of software microservices.

Consequently, single servers are now packed with many threads executing the same, relatively

small task on different data.

In this dissertation, I discuss these new paradigm shifts, addressing the following con-

cerns: (1) how do we overcome the non-uniform memory access overhead for next-generation

multi-chiplet GPUs in the era of DL-driven workloads?; (2) how can we improve the energy

efficiency of data center’s CPUs in the light of microservices evolution and request similar-

ity?; and (3) how to study such rapidly-evolving systems with an accurate and extensible

SIMT performance modeling?
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To this end, I propose three different frameworks and systems to address these challenges.

First, to improve the quality of GPU research produced by the academic community, I have

developed, Accel-Sim, a new GPU simulation framework to help solve the problem of keeping

simulators up-to-date with contemporary designs. Using a counter-by-counter validation

of the GPU memory system, Accel-Sim decreases cycle error from 94% in state-of-the-art

simulation to 15%.

Second, to maintain GPU performance scalability in the twilight of Moore’s Law, I

propose a programmer-transparent Locality-Aware Data Management (LADM) system de-

signed to operate on massive logical GPUs composed of multiple discrete devices, which

are themselves composed of chiplets. LADM has two key components: a threadblock-centric

compiler-assisted index analysis, and runtime system that performs adaptive data placement,

threadblock scheduling and cache insertion policy. Compared to state-of-the-art multi-GPU

scheduling, LADM reduces inter-chip memory traffic by 4× and capturing 82% of the un-

buildable monolithic chip performance.

Third, to exploit the similarity in contemporary microservices, I propose a new class of

computing hardware, the Request Processing Unit (RPU), which modifies out-of-order CPU

cores to execute microservices using a Single Instruction Multiple Request (SIMR) execution

model. Our solution leverages the CPU’s programmability and latency optimizations while

still exploiting the GPUs’ SIMT efficiency and memory model scalability. By using the

lock-step execution of concurrent requests, RPU reduces the size and access frequency to

the out-of-order frontend and memory system. Our resulting RPU system processes 5.6×

more Requests/Joule than multi-core CPUs while maintaining acceptable service latency

and keeping the traditional microservices software stack unchanged.
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1. INTRODUCTION

Single Instruction Multiple Thread (SIMT) hardware, like Graphics Processing Units (GPUs),

has been widely adopted in many areas, including graphics, High-Performance Computing

(HPC), and Deep Learning (DL). The Single Program Multiple Data (SPMD) pattern avail-

able in these workloads makes them amenable to lock-step execution on SIMT hardware, as

threads execute the same program code and exhibit similar control flow. Moreover, these

workloads show regular memory behavior, which increases memory coalescing opportunities.

These program characteristics have led to significant performance and energy efficiency gains

when they are ported to SIMT-based hardware, like GPUs. Thus, there is no wonder that a

large portion of supercomputers found in the Top500 list relies on GPUs [ 1 ], [ 2 ]. However,

GPU performance scalability is at risk! Building a larger GPU with dozens of GPU cores

in one monolithic chip may not be possible due to low manufacture yield and high cost of

building huge chips at small technology nodes [ 3 ].

Aside from supercomputer and HPC space, modern data centers exhibit massive degrees

of similar request-level parallelism in which they receive a significant amount of independent

requests from millions of users running the same service code. Further, the shift toward mi-

croservice and nanoservice-based architecture makes the control flow among these requests

less divergent and reduces the cache footprint per node. Current CPUs run these requests

independently on multi-core and do not exploit this similarity and finer granularity of mi-

croservices. These microservice requests follow the Single Program Multiple Data pattern

with rich inter-request data sharing that can be efficiently leveraged on SIMT hardware.

However, current SIMT hardware, like GPUs, is unsuitable for microservice as they opti-

mize throughput over latency, making them ill-suited to meet the QoS requirement, and

force the programmer to rewrite the microservices in GPGPU programming language (e.g.,

CUDA/OpenCL), hindering software productivity. Therefore, I argue for a new class of

SIMT hardware that can take advantage of the latency-optimizations and programmability

of the CPUs while still exploiting the SIMT efficiency and memory model scalability of the

GPUs. In other words: “Let’s bring the SIMT Efficiency to the CPU world!”.
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1.1 Challenges

In this dissertation, I aim to address the following three challenges.

1.1.1 Inaccurate Out-of-date Academic Simulators

In computer architecture, significant innovation frequently comes from industry. How-

ever, the simulation tools used by industry are often not released for open use, and even

when they are, the exact details of industrial designs are not disclosed. As a result, research

in the architecture space must ensure that assumptions about contemporary processor design

remain true. Figure  1.1 illustrates, simulation inaccuracy can lead to the retention of design

proposals with overestimated benefits, or the rejection of design proposals with underesti-

mated benefits. In one scenario promising ideas are throw out prematurely leading to less

optimal solutions. In the other scenario, ineffective ideas are retained longer than necessary,

leading to wasted time and effort during the architecture design process. Therefore, research

cannot look ahead, if its baseline assumptions are too far behind.

To keep up with industry, state-of-the-art academic and public research must both be

aware of and adapt to changes in contemporary designs. In the computer architecture space,

keeping up with proprietary industrial machines is a challenge. This is a problem in all seg-

ments of the processor industry, but perhaps a more acute challenge in the programmable

SIMT accelerator space, where the rapid scaling of parallelism, introduction of new process-

ing pipelines (i.e. Tensor Cores [ 4 ]) and undocumented changes to both the microarchitecture

and Instruction Set Architecture (ISA) are commonplace in each new product generation.

GPU architectures have widely embraced the use of a virtual ISA (vISA), which provides

hardware vendors with tremendous flexibility to make machine ISA (mISA) changes while

still maintaining binary compatibility. Vendors like NVIDIA keep the operation of these ISAs

private, while others like AMD document each new machine ISA, but freely make drastic

changes which open-source simulators must then implement.

This situation presents three separate, but related challenges: (1) How do academic

researchers quickly simulate a new, often undocumented ISA every year and a half? (2)

Once functionally correct, how are changes to the architecture detected and modeled? (3)
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Figure 1.1. The architecture design and simulation process represented as
a collection of good and ineffective ideas. As the level of simulation detail
increases, the space of effective ideas shrinks and potentially moves.

What is a sustainable, rigorous validation mechanism to ensure that new baselines are still

tracking industrial designs?

1.1.2 Post-Moore Multi-GPU Multi-Chiplet Scaling

GPU accelerated workloads are commonly used in deep learning and exascale HPC com-

puting systems [ 5 ], [  6 ]. These workloads exhibit high levels of implicit parallelism, which

transparently enables performance scalability, but only if GPUs can continue to scale their

hardware resources into the future. Over the past decade GPUs have more than quadru-

pled the number of Streaming Multiprocessors (SMs) in their designs, while simultaneously

increasing their on-chip transistors by an order of magnitude. Figure  1.2 shows the an-

ticipated performance of balanced GPU resource scaling (Streaming Multiprocessor (SM),

SM-interconnect bandwidth, registers, caches, and DRAM bandwidth) if all components can

be equally scaled into the future. While the expected performance is appealing, building a

GPU with hundreds of SMs in a single monolithic GPU will not be possible due to low

manufacturing yields and the high cost of building large chips at small technology nodes [ 3 ],

[ 7 ].

To overcome these problems and enable continuous performance scaling beyond the

bounds of Moore’s law [ 8 ], [ 9 ], researchers have proposed increasing GPU transistor count

by both aggregating multiple GPUs together (coordinated as a single virtual GPU), as well

as dissagregating single-GPUs into scalable multi-chip-module designs [ 3 ], [  10 ]. In both ap-
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Figure 1.2. Performance of GPU workloads in a hypothetical monolithic
GPU, where all resources scale proportionally.

proaches, to maintain the existing single GPU programming model and support transparent

scaling for current CUDA programs, the architecture and runtime systems must coordinate

to hide the fact that a single programmer visible GPU may be comprised of several differ-

ent GPU NUMA domains. Maintaining this illusion enables rapid software development on

small local GPU resources while enabling scalable performance on larger and more complex

GPU interconnect topologies. Consequently, transparently overcoming NUMA effects will

be one of the largest problems facing GPUs in both these integration domains over the next

decade.

1.1.3 Data Center Energy Efficiency Crisis and Microservices Evolution

The growth of hyperscale data centers has steadily increased in the last decade, and is ex-

pected to continue in the coming era of Artificial Intelligence and the Internet of Things [  14 ].

However, the slowing of Moore’s Law [ 9 ] has resulted in energy [  15 ], environmental [ 16 ], [ 17 ]

and supply chain [ 18 ] issues. It is anticipated that, by 2030, the data centers will consume

about 10% of the total electricity demand [ 19 ]. These all have lead data centers to embrace

custom hardware/software solutions [ 20 ], [  21 ].

While improving Deep Learning (DL) inference has received significant attention [ 20 ],

[ 22 ], general purpose compute units are still the main driver of a data center’s total cost
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of ownership (TCO). Figure  1.3 demonstrates that CPUs consume 60% of the data center

power budget [ 11 ], half of which comes from the pipeline’s frontend (i.e. fetch, decode and

Out-of-Order (OoO) structures) [ 12 ], [ 13 ], [ 23 ]–[ 25 ]. Therefore; 30% of the data-center’s

total energy is spent on CPU instruction supply.

Coupled with the hardware efficiency crisis is an increased desire for programmer produc-

tivity, flexible scalability and nimble software updates that has lead to the rise of software

microservices. Monolithic server software has been largely replaced with a collection of micro

and nanoservices that interact via the network [ 26 ]–[ 28 ]. Compared to monolithic services,

microservices spend much more time in network processing [ 27 ], [ 29 ], have a smaller instruc-

tion and data footprint [  27 ], and can suffer from excessive context switching due to frequent

network blocking [  26 ], [ 30 ]–[ 32 ]. Microsecond scale network latencies cannot be hidden by

course-grained OS context switching [ 33 ], requiring more threads on each core to support

higher throughput [ 34 ], [  35 ], under tight single-thread latency constraints.

1.2 My Approach

In this subsection, I discuss my proposed approaches to overcome and solve the previous

hurdles.
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1.2.1 Building for Flexibility and Modularity: An Accurate and Extensible
Simulation Framework

To help bridge the gap between opaque industrial innovation and public research, I in-

troduce three mechanisms that make it much easier for GPU simulators to keep up with

industry. First, I introduce a new GPU simulator frontend that minimizes the effort required

to simulate different machine ISAs through trace-driven simulation of NVIDIA’s native ma-

chine ISA, while still supporting execution-driven simulation of the virtual ISA. Second, I

extensively modify GPGPU-Sim’s performance model to increase the level of detail, config-

urability and make hardware validation easier. Along with the detailed statistics available in

simulation, the updated model outputs a set of performance counters that have 1:1 analogs

with profiling data generated by contemporary GPU profilers. Finally, surrounding the new

simulator and flexible performance model is an infrastructure that enables quick, detailed

validation. A comprehensive set of microbenchmarks and automated correlation plotting

make performance model validation an automated process.

I use these three new mechanisms to build Accel-Sim, an accurate, detailed simulator

capable of modeling the performance of contemporary GPUs with 80.2% less error than state-

of-the-art, open-source simulators over a wide range of 78 workloads, consisting of 2221 kernel

instances. I further demonstrate that Accel-Sim is able to simulate benchmark suites that no

other open-source simulator can. In particular, I demonstrate Accel-sim’s ability to execute

27 workloads, comprised of 2328 kernel instances, from the machine learning benchmark

suite Deepbench. Deepbench makes use of closed-source, hand-tuned kernels with no virtual

ISA implementation. To demonstrate Accel-Sim’s flexibility and extensibility, I model and

validate Accel-Sim against four different NVIDIA GPU generations. Accel-Sim is the only

open-source simulator to support contemporary SASS simulation.

Finally, to highlight the effects of falling behind industry, this thesis presents two case-

studies that demonstrate how incorrect baseline assumptions can hide new areas of oppor-

tunity and lead to potentially incorrect design decisions.
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1.2.2 Optimizing for Locality: Transparent Multi-GPU Scaling for DL and
HPC Workloads

In order to maintain GPU performance scalability for deep learning and HPC workloads,

I propose a programmer-transparent Locality-Aware Data Management (LADM) system de-

signed to operate on massive logical GPUs composed of multiple discrete devices, which are

themselves composed of chiplets. LADM has three key components: a threadblock-centric

index analysis, a runtime system that performs data placement and threadblock schedul-

ing, and an adaptive cache insertion policy. The runtime combines information from the

static analysis with topology information to proactively optimize data placement, thread-

block scheduling, and remote data caching, minimizing off-chip traffic. Compared to state-of-

the-art multi-GPU scheduling, LADM reduces inter-chip memory traffic by 4× and improves

system performance by 1.8× on a future multi-GPU system.

1.2.3 Exploiting Microservices Similarity and Eliminate Redundancy: Single
Instruction Multiple Request Processing

Contemporary data center servers process thousands of similar, independent requests

per minute. In the interest of programmer productivity and ease of scaling, workloads in

data centers have shifted from single monolithic processes on each node toward a micro and

nanoservice software architecture. As a result, single servers are now packed with many

threads executing the same, relatively small task on different data.

State-of-the-art data centers run these microservices on multi-core CPUs. However, the

flexibility offered by traditional CPUs comes at an energy-efficiency cost. The Multiple

Instruction Multiple Data execution model misses opportunities to aggregate the similarity in

contemporary microservices. I observe that the Single Instruction Multiple Thread execution

model, employed by GPUs, provides better thread scaling and has the potential to reduce

frontend and memory system energy consumption. However, contemporary GPUs are ill-

suited for the latency-sensitive microservice space.

To exploit the similarity in contemporary microservices, while maintaining acceptable

latency, I propose the Request Processing Unit (RPU). The RPU combines elements of tra-
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ditional out-of-order CPUs with lockstep thread aggregation mechanisms found in GPUs to

execute microservices in a Single Instruction Multiple Request (SIMR) fashion. To comple-

ment the RPU, I also propose a SIMR-aware software stack that uses novel mechanisms to

batch requests based on their predicted control-flow, split batches based on predicted latency

divergence and map per-request memory allocations to maximize coalescing opportunities.

My resulting RPU system processes 5.6× more Requests/Joule than multi-core CPUs, while

maintaining acceptable service latency

1.3 Thesis Statement

My thesis statement, hence, is as follows:

SIMT-based accelerators, like GPUs and my proposed RPUs, are promising

solutions to achieve significant energy efficiency while still preserving pro-

grammability in the twilight of Moore’s Law. I propose three approaches to

build next-generation scalable and energy-efficient SIMT systems: (1) detect

and optimize for each type of locality exist in the DL and HPC workloads to

overcome NUMA effects and reduce off-chip communication between multi-

chiplet GPUs, (2) exploit microservices execution similarity and eliminate re-

dundancy to improve data center energy efficiency, and (3) build extensible

and validated SIMT simulation tools to keep-up with industrial changes.

1.4 Contributions

This dissertation makes the following contributions:

• It introduces Accel-Sim, a simulation framework explicitly designed to make modeling

and validating future GPUs easier. By utilizing a flexible frontend, capable of switching

between execution-driven vISA simulation and trace-driven mISA simulation, I am

able to simulate hand-tuned machine code from NVIDIA binaries without giving up

the option to perform execution-driven simulation when appropriate. I demonstrate

Accel-Sim’s flexibility by modeling GPUs from Kepler to Turing.
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• It performs a rigorous, counter-by-counter comparison of my new performance model

against state-of-the-art simulation when modeling an NVIDIA Volta card, reducing

error by 79 percentage points. Through this analysis, we uncover and model several

previously undocumented architectural features in contemporary GPUs.

• It introduces a comprehensive set of validation infrastructure that includes: a set of

targeted GPU microbenchmarks, an automated parameter tuner and an automatic

correlation visualizer, useful for adapting Accel-Sim to model new designs quickly.

• It performs a set of case-studies to concretely demonstrate the effects of falling behind

industry and uses Accel-Sim to suggest future areas of new research for GPUs.

• It performs a detailed analysis of the locality types present in GPU programs and

show that no state-of-the-art NUMA-GPU system can exploit them all. I propose

LADM, which uses static index analysis to inform runtime data placement, threadblock

scheduling, and remote caching decisions by exploiting a new logical abstraction called

the GPU datablock.

• It leverages this automatic analysis to perform threadblock and datablock co-placement

within hierarchical GPUs. By pre-calculating an optimized data layout in the compiler,

LADM can orchestrate prefetching that negates on-demand page-faulting effects and

adjust the threadblock schedule based on dynamic data structure sizes.

• Building on my program analysis, I architect a novel compiler-informed cache orga-

nization that selectively inserts requests into each L2 cache partition based on the

memory request’s origin relative to the data’s home node and its likelihood for reuse.

By understanding the expected reuse patterns for datablocks, LADM’s cache hierarchy

minimizes both inter-GPU and inter-chiplet bandwidth, the primary factor influencing

the scalability of future GPUs.

• It performs the first SIMT-efficiency characterization of microservices using their native

CPU binaries. I demonstrate that, given the right batching mechanisms, microservices

execute efficiently on SIMT hardware.
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• It proposes a new hardware architecture, the Request Processing Unit (RPU). The

RPU improves the energy-efficiency and thread-density of contemporary OoO CPU

cores by exploiting the similarity between concurrent microservice requests. With a

high SIMT efficiency, the RPU captures the single-threaded advantages of OoO CPUs,

while increasing Requests/Joule.

• It proposes a novel software stack, co-designed with the RPU hardware that introduces

SIMR-aware mechanisms to compose/split batches, tune SIMT width, and allocate

memory to maximize coalescing.

• On a diverse set of 13 CPU microservices, I demonstrate that the RPU improves Re-

quests/Joule by an average of 5.6x versus OoO single threaded and SMT CPU cores,

while maintaining acceptable end-to-end latency.

1.5 Organization

The rest of this dissertation is organized as follows:

• Chapter  2 introduces Accel-Sim, a new GPU simulation framework that helps solve the

problem of keeping simulators up-to-date with contemporary designs. I show how the

proposed simularot is extensible, accurate and validated to various GPU generation

found today in the market.

• Chapter  3 details, Locality-Aware Data Management (LADM), a transparent and scal-

able system designed to operate on massive logical GPUs composed of multiple discrete

devices, which are themselves composed of chiplets.

• Chapter  4 performs SIMT-efficiency characterization of microservices and proposes

Single Instruction Multiple Request system, a hardware-software co-design to exploit

request similarity in the data centers.

• Chapter  5 discusses related work.

• Chapter  6 concludes the dissertation and discusses directions for potential future work.
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2. ACCEL-SIM: AN EXTENSIBLE SIMULATION

FRAMEWORK FOR VALIDATED GPU MODELING

In computer architecture, significant innovation frequently comes from industry. However,

the simulation tools used by industry are often not released for open use, and even when

they are, the exact details of industrial designs are not disclosed. As a result, research in

the architecture space must ensure that assumptions about contemporary processor design

remain true. We present a new simulation framework, Accel-Sim, that is designed to address

this challenge.

Accel-Sim introduces a flexible frontend, that enables it to operate in either trace- or

execution-driven mode. Accel-Sim includes a trace-generation tool (built using the NVBit [ 36 ]

binary instrumentation tool), that produces machine ISA instruction traces from any CUDA

binary, including those that use closed-source libraries, like cuDNN [ 37 ]. These machine ISA

traces are then converted into an ISA-independent intermediate representation that is in-

put to the performance model. The trace-driven frontend allows Accel-Sim to simulate the

machine ISA in new cards without implementing the ISA’s functional model and increases

the accuracy of the simulator over executing the virtual ISA. However, trace-based simu-

lation has its drawbacks. Evaluating new designs that rely on the data values stored in

registers or memory [ 38 ] and global synchronization mechanisms [ 39 ] are either not possi-

ble or very difficult to study without emulation-based execution-driven simulation. Since

Accel-Sim is based on an ISA-independent performance model, it is also capable of running

emulation-based execution-driven simulations using NVIDIA’s relatively stable, well docu-

mented virtual ISA, PTX. Accel-Sim is the first academic simulation framework to support

contemporary CUDA applications, modern Source and ASSembly (SASS) machine ISAs and

simulate hand-tuned assembly in closed-source GPU binaries.

Shifting the focus from implementing an undocumented functional model enables Accel-

Sim to focus on the performance model. We extensively modify GPGPU-Sim’s performance

model (which we release as part of GPGPU-Sim 4.0) to increase its level of detail, config-

urability and accuracy. To facilitate rigorous validation, the performance model outputs a

set of counters that have 1:1 equivalents with hardware data emitted by NVIDIA profil-
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ers, in addition to the detailed statistics that can only be provided by simulation. These

counter values are then fed into an automated tuning framework that generates correlation

plots and modifies the simulator’s configuration files, making it easier to create a validated

performance model for a new GPU.

Using our new frontend and validation infrastructure, we perform an extensive model-

ing effort that builds on GPGPU-Sim’s [  40 ] performance model to create a more flexible,

extensible GPU simulator. Through careful counter-by-counter validation, we expose sev-

eral changes to contemporary GPU hardware. We demonstrate Accel-Sim’s flexibility and

accuracy by validating it against four generations of NVIDIA GPUs ranging from Kepler to

Turing, performing an extensive side-by-side comparison of Accel-Sim and GPGPU-Sim 3.x

modeling a Volta V100 [ 41 ].

During the course of this analysis we uncover a number of interesting insights into how

contemporary hardware works. We utilized every publicly available resource to construct

the performance model, capturing the details of what others have either disclosed or dis-

covered [ 42 ]–[ 45 ]. In the process of correlating the memory system we discover and model

several undocumented features, such as: details of the streaming, adaptive L1 data cache,

sectoring of both the L1 and L2, a sub-warp, sector-centric memory coalescing policy, and

an L2 write policy that conserves memory bandwidth in the presence of sub-sector reads.

Finally, this work performs two case-studies to highlight new research opportunities on

contemporary GPUs and to demonstrate pitfalls that are alleviated by having a simulation

infrastructure that is easier to validate. In particular, we demonstrate that out-of-order

memory access scheduling, which appears relatively ineffective using an older model, yields

a significant performance improvement when the level of detail in the memory system is

increased to more closely match hardware. We also demonstrate that the L1 cache through-

put bottleneck present in GPUs no longer exists in contemporary hardware, decreasing the

effectiveness of techniques that selectively bypass the L1 for throughput reasons.
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Table 2.1. Landscape of open-source GPU simulation. Accuracy numbers are
taken from each simulator’s respective publication.

GPGPU-
Sim 3.x [ 40 ]

Gem5-
APU [ 48 ], [ 49 ]

MGPU-
Sim [ 50 ]

MacSim
[ 51 ], [ 52 ]

Multi2-
Sim [ 53 ], [ 54 ] Accel-Sim

ISA vISA +
mISA GT200

vISA +
AMD mISA

vISA +
AMD mISA

vISA +
Intel mISA

vISA +
mISA Kepler +

mISA AMD

vISA + NVBit
generated [ 36 ] mISA

Front-end Execution Execution Execution Trace Execution Trace- and
Execution-driven

Validated perf. model Fermi AMD AMD Fermi Kepler Kepler, Pascal, Volta,
Turing

Validated Workloads 14 10 7 N/A 24 80
Reported Accuracy (error %) 35% [ 46 ] 42% [ 49 ] 5.5% [ 50 ] N/A 19% [ 53 ] 15%

Simulation rate (KIPS) 3 N/A 28 [ 50 ] N/A 0.8 [ 50 ] 12.5 (Trace-driven)
6 (Exec-driven)

Multi-threaded simulation ✗ ✗ ✓ ✗ ✗ ✗

Hand-tuned NVIDIA libraries
(i.e. Volta cuDNN) ✗ ✗ ✗ ✗ ✗ ✓

2.1 Background

In contemporary computer architecture research, simulation is commonly used to es-

timate the effectiveness of a new architectural design idea. High-level simulators enable

architects to rapidly evaluate ideas at the expense of less accurate simulation results. Ideas

that do not show promise in simulation are discarded while those that do show promise are

refined in an iterative process.

Our work focuses on the simulation of massively parallel architectures, in particular

GPUs. GPUs have witnessed rapid change and a widespread increase in their adoption

with the rise of GPGPU computing and machine learning. In academia, the design of

programmable accelerators is mostly carried out through modeling new techniques in high

level GPU simulators. Over the past four years, there have been approximately 20 papers

per year focusing on GPU-design at the top architecture conferences. 80% of those papers

have used today’s most popular open-source GPU simulator, GPGPU-Sim [  46 ]. The relative

popularity of GPGPU-Sim can be attributed to several factors, but it’s most appealing aspect

is perhaps the accuracy with which it models modern GPUs (relative to other open-source

solutions). Such accuracy should provide a solid baseline for studying important architectural

ideas that are relevant to future machines. Recent work on validating GPGPU-Sim [  47 ] has

demonstrated that there are several areas where a lack of detail in the performance model

creates a a major source of error. However, the bulk of the error comes from the modeling

of the memory system.
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Table  2.1 presents a survey of the open-source GPU simulation space. Over the last

decade, several GPU simulators have been developed, each serving a different purpose. Mac-

Sim [  51 ] is an early GPU simulator that performs trace-based simulation of NVIDIA’s vir-

tual ISA and includes a Fermi-like microarchitecture model. Recent work on MacSim has

extended the simulator to execute traces for Intel GPUs [ 52 ]. Multi2-Sim is a versatile GPU

simulator that has emulation-based functional simulation for both the virtual ISA and a sub-

set of older machine ISAs from both AMD and NVIDIA. GPGPU-Sim [ 40 ] is a CUDA-centric

simulator capable of functionally executing NVIDIA’s virtual ISA and a subset of an older

machine ISA. More recently, Gem5 has been augmented to support an APU performance

model for AMD’s virtual and machine ISAs [ 48 ]. MGPU-Sim [ 50 ] is a parallel GPU simulator

for AMD’s virtual and machine ISAs. One of the primary drawbacks with all the simulators

that support execution-driven machine ISAs is the challenge of keeping up with changes to

the mISA’s functional model. As a result, only a limited subset of the instruction set (and

hence applications) are ever fully supported. This is especially important for supporting

optimized libraries that often use exotic, hand-tuned machine code to improve performance,

such as NVIDIA’s cuDNN. Although recent work has augmented GPGPU-Sim [ 55 ] to enable

virtual ISA execution of these libraries, the functionality only works in pre-Volta GPUs. For

Volta and Turing, cuDNN executes hand-tuned SASS kernels for which there is no virtual

ISA implementation. Accel-Sim’s support for machine ISA traces bypasses all of these issues.

In addition, existing GPU simulation frameworks lack a systematic methodology to validate

and model new architectural designs quickly.

2.2 Accel-Sim Simulation Framework

Figure  2.1 depicts an overview of our new simulation framework. Accel-Sim is composed

of: (1) a flexible frontend that supports execution-driven simulation of NVIDIA’s virtual

ISA and trace-driven simulation of contemporary machine ISAs, (2) a flexible and detailed

performance model, (3) a correlation generation tool, and (4) a microbenchmarks-based

configuration tuner. Together, the four components reduce the effort required to model

contemporary and future GPUs.
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Figure 2.1. Accel-Sim’s end-to-end flow.

Table 2.2. Example demonstrating how mISA instruction traces and vISA
instructions translate into the ISA-independent intermediate representation
used by the performance model. In traces, the mapping between opcode and
execution unit is provided by the ISA def file in Figure  2.1 .* indicates these
values are computed using emulation.

Execution Mode Example Instruction ISA-independent representation

PC Active
mask

Reg info:
(dsts, srcs) Exec. unit Memory

addresses, width Memory scope

[Trace] Kepler mISA LD.E R4, [R6] 0x78 0xFFFF R4, R6 Memory unit 0x2000,..., 4 global, L1 cached
[Trace] Volta mISA LDG.E.U32.SYS R4, [R6] 0x32 0x00FF R4, R6 Memory unit 0x4000,..., 4 global, L1 cached
[Trace] Pascal mISA IADD.X R7,R7,R0 0x12 0x00EF R7, R0 INT unit - -
[Exec] PTX vISA ld.global.cg.b32 r1, [r0]; * * R1, R0 Memory unit * global, L2 cached

2.2.1 Flexible Frontend

Our new frontend supports both vISA (PTX) execution-driven and mISA (SASS) trace-

driven simulation. In trace-driven mode, mISA traces are converted into an ISA-independent

intermediate representation, that has a 1:1 correspondence to the original SASS instructions.

Table  2.2 depicts an example of how SASS instructions from different machine generations

and the virtual instructions from PTX are translated into the ISA-independent representa-

tion used by the performance model. The intermediate format is integrated into GPGPU-Sim

4.0 and represents the interface between the frontend and the performance model. The for-

mat includes all the information necessary to perform timing simulation, in particular: (1)

the instruction’s control flow (PC and active mask), (2) the instruction’s datapath informa-

tion (registers accessed and execution unit) and (3) memory addresses for ld/st instructions.

In execution-driven mode, the active mask and memory addresses are computed by emulat-
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ing the PTX instructions, whereas these values are embedded in the trace when executing

the machine ISA.

We generate the traces from NVIDIA GPUs using Accel-Sim’s tracer tool that is built

on top of NVbit [ 36 ]. We use base+stride compression for the memory traces to keep the

trace sizes within an acceptable range. When a new SASS ISA is released, users provide

the frontend with an ISA Def file that specifies where each instruction should be executed.

This is a relatively simple mapping that can be derived from publicly available information

on NVIDIA’s machine ISA [  56 ].

By not emulating hundreds of scalar threads each cycle, Accel-Sim’s trace-driven mode

improves simulation speed versus execution-driven mode. Prior work [ 47 ], [ 49 ] demonstrates

that executing GPU vISAs may not be an accurate representation of some workloads. The

mISA representation of the program includes register allocation and other compiler opti-

mizations, whereas the vISA assumes an infinite register space and has naive instruction

scheduling. Further, supporting SASS gives researchers the ability to simulate closed-source,

optimized libraries, such as cuDNN [  37 ], which are written in hand-tuned SASS.

2.2.2 Flexible and Detailed Performance Model

To accurately model contemporary GPUs, we make extensive modifications to GPGPU-

Sim 3.x’s performance model. This new performance model is released as part of GPGPU-

Sim 4.0 and can be used, independent of Accel-Sim, for PTX simulation. Accel-Sim utilizes

our GPGPU-Sim 4.0 performance model, interfacing with it through the ISA-independent

instruction representation.

Figure  2.2 depicts an overview of the performance model. Streaming multiprocessors

(SMs) are composed of multiple warp schedulers. Each warp scheduler has a dedicated

register file (RF) and its own execution units (EUs). A warp scheduler with its dedicated

RF and EUs is called a sub-core [ 4 ], [ 57 ]. Sub-cores are isolated, sharing only the instruction

cache and the memory subsystem. The memory coalescing unit is designed to support sub-

warp coalescing on every consecutive group of N threads. Our performance model is capable

of simulating both separate and unified L1D cache and shared memory scratchpad [ 58 ].
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Figure 2.2. Updated GPGPU-Sim 4.0 performance model.

Contemporary GPU architectures make use of an adaptive cache mechanism, in which the

device driver transparently configures the shared memory capacity and L1D capacity on a

per-kernel basis. Using the adaptive cache, if a kernel does not utilize shared memory, all

the on-chip storage will be assigned to the L1D cache [ 59 ].

With the slowing growth of Moore’s law, domain-specific processing pipelines continue

to be introduced in GPUs (i.e. Tensor cores in Volta [ 41 ]). To ensure extensibility with

this trend, Accel-Sim supports adding simple execution units from the configuration file,

without the need to update the codebase. To add a new specialized unit, the user declares

the new unit in the configuration file and maps the machine ISA op codes that use this unit

in the ISA def file, as described in Figure  2.1 . If execution-driven PTX support is required,

then the user must also implement the code to emulate the new instruction’s functionality.

To determine the latency and throughput of the new unit, the user specifies a sequence of

instructions that can be measured by the microbenchmark tuning framework (described in

Section  2.2.3 ). We follow this process to model Volta and Turing’s Tensor Cores.

Our GPU cache model supports a throughput-oriented, banked, and sectored cache de-

sign [ 60 ], [ 61 ]. The cache is flexible enough to model GPUs from Kepler through Turing.

We also model the CPU-GPU memory copy engine, since all DRAM accesses go through the

L2, including CPU-GPU memory copies [ 62 ]. To reduce unbalanced memory accesses across

36



#define ITERS 32768
#include <HW_def.h>   //L1_ARRAY_SIZE is defined in this header based on HW

__global__ void l1_lat(uint32_t *startClk, uint32_t *stopClk, uint64_t *data) {
// initialize the pointer-chasing array and warm up L1 cache
for (uint32_t i=0;   i<(L1_ARRAY_SIZE-1);   i++)

data[i] = (uint64_t)(data + i + 1);

uint64_t * ptr0 = data, ptr1 = NULL;
// start timing
startClk = clock();

// pointer-chasing for ITERS times
// use ca modifier to cache the load in L1
for (uint32_t i=0;   i<ITERS;    ++i) { 

asm volatile ("ld.global.ca.u64 ptr1, [ptr0];");
ptr0 = ptr1; //swap the register for the next load

}

// stop timing
stopClk = clock();
}

l1_lat<<<1,1>>>(startClk , stopClk , data);
printf("L1 Latency = %12.4f cycles\n", (float)(stopClk-startClk) / ITERS);

LDG.E.64 R12, [R10]; 
LDG.E.64 R12, [R12];
LDG.E.64 R14, [R12];
LDG.E.64 R14, [R14];
LDG.E.64 R16, [R14];
LDG.E.64 R16, [R16];

SASS

Figure 2.3. L1 latency microbenchmark

L2 memory partitions, which we refer to as partition camping [ 63 ], [ 64 ], we add advanced

partition indexing that xors the L2 bank bits with randomly selected bits from the page row

bits using a Galois-based irreducible polynomial (IPOLY) interleaving mechanism [  65 ]. Par-

tition camping is a major problem in contemporary GPUs that have 2n memory partitions,

like High Bandwidth Memory (HBM) [ 66 ] which has 8 channels per stack [  64 ], [  67 ]. IPOLY

hashing is guaranteed to be conflict-free for all 2n strides, which are common in GPGPU

applications, and also shows reasonable, deterministic performance for other strides [ 65 ].

In the memory system, we model new advances in HBM and GDDR6 [ 66 ], [ 67 ]. This in-

cludes the dual-bus interface to launch row and column commands simultaneously, increasing

bank parallelism [ 67 ], and detailed HBM timing. Further, we implement well-known memory

optimization techniques such as advanced xor-based bank indexing and separate read/write

buffers, to reduce memory bank conflicts and read-write interference [ 68 ]–[ 70 ].

2.2.3 Tuner and Targeted Microbenchmarks

Accel-Sim includes a microbenchmark suite to pinpoint latency, bandwidth and geometry

changes to known hardware structures from one generation to another. When new hardware
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is released, the user provides a hardware def header file to the tuner, as shown in Figure  2.1 .

The file is used by the microbenchamrks to help discover non-public configuration param-

eters. The def file enumerates a minimal amount of information (such as number of SMs,

warp size, etc.) that can be derived from publicly available documents [  41 ].

In total, we have 38 microbenchmarks that span from L1/L2/shared memory latency

and attained bandwidth, cache write policy, cache configuration, access/sector granularity,

number of cache banks, memory coalescing policy, cache streaming behavior, execution unit

latency/throughput and DRAM latency/bandwidth for different data elements: float, double

and 128-bit vector. To illustrate the general configuration of the microbenchmarks, Figure  2.3 

lists the code for our L1 latency microbenchmark that uses pointer chasing [  44 ], [ 71 ] to create

data dependencies with minimal overhead. The microbenchmark is written such that the

kernel’s execution time is dominated by the L1 latency. After execution, the tuner reads the

microbenchmark’s output and generates a configuration file for the performance model.

For other parameters that cannot be directly determined by our microbenchmarks (such

as warp scheduling, memory scheduling, the L2 cache interleaving granularity and the L2

cache hashing function), Accel-Sim simulates each possible combination of these four param-

eters on a set of memory bandwidth microbenchmarks (l1-bw, l2-bw, shd-bw and mem-bw).

The combination with the highest average hardware correlation is chosen by the tuner.

2.2.4 Correlator

An automated configuration tuner does not capture more drastic architectural changes in

different generations. Manual effort is required to model such changes. However, the magni-

tude of the effort can be lessened with quickly generated, targeted information on inaccuracy.

Accel-Sim’s correlation tool automates the process of generating counter-by-counter corre-

lation data for different architectures. The tool generates graphs and data that serve as

correlation guidance to pin-point workloads and metrics where the simulator is not well cor-

related to hardware. Using insights from the correlation of various performance counters over

different realistic workloads and microbenchmarks, performance bugs or misrepresentations

in the simulator are identified and corrected.
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2.2.5 Simulation Rate

Adding detail and flexibility to a performance model often comes at the expense of in-

creased simulation time. Although Accel-Sim is not multithreaded, we take steps to improve

its speed. With our improvements, Accel-Sim in trace-driven mode is able to perform 12.5

kilo warp instructions per second, a 4.3× simulation time improvement over GPGPU-Sim

3.x. Half of our speed improvement comes from the fact that trace-driven mode avoids func-

tional execution. The second half comes from a simulation optimization strategy we call

simulation-gating, which is a trade-off between event-driven and cycle-driven simulation.

GPU simulations involve thousands of in-flight memory requests and hundreds of active

threads. Thus, there will always be something to simulate each cycle. Similar to GPGPU-

Sim 3.x, the updated performance model is cycle-driven, ticking all the components every

cycle. However, we observe that the simulator ticks many empty components and spends a

significant amount of time doing non-useful work. To overcome this issue, we keep a status

state for each component (core, execution unit, cache, dram channel), then the simulator

only ticks active components every cycle and skips unnecessary code and loop iterations

when there is no useful work in the pipeline. Finally, in trace-driven mode, the user can

set kernel-based checkpointing to select the desired hotspot kernels to simulate and avoid

executing long running initialization kernels, which can further improve simulation speed.

2.3 Workloads

To validate Accel-Sim and perform a detailed comparative analysis against prior work,

we use a wide range of applications from different domains and benchmark suites. With

the exception of a handful of applications with trace-size issues, we run all the applications

found in Rodinia 3.1 [  72 ], the CUDA SDK [ 73 ], Parboil [ 74 ], Polybench [ 75 ], CUTLASS [ 76 ],

our microbenchmark suite, and cutting-edge machine learning workloads from the Deep-

bench benchmark suite [  77 ]. The sum total is 140 workloads from the applications listed

in Table  3.4 . The applications cfd, heartwall, hotspot3D, huffman, leukocyte, srad v2 from

Rodinia, lbm and tpacf from Parboil, corr, cover, fdtd2d and gram-shm from Polybench are

omitted since their trace sizes are prohibitively large. We leave developing trace compression
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Table 2.3. Workloads used in our study. Table  2.8 lists the hardware cycles
for each workload.
Benchmark Suite Workloads Trace Size [Compressed]
Rodinia 3.1 [ 72 ] b+tree, backprob, bfs, hotspot, srad-v1, sc, nn, needle,

dwt2d, lud, lavaMD, kmeans, myocyte
302 GB [15 GB]

CUDA SDK [ 73 ] sp, blk, vec-add, traspose, conv, scan, sorting-net, walsh-
transform, histo, mergesort

18 GB [1.2 GB]

Parboil [ 74 ] sad, sgemm, stencil, cutcp, mri-q, histo, spmv, bfs 250 GB [12 GB]
Polybench [ 75 ] 2dconv, 3dconv, 2mm, 3mm, mvt, atax, bicg, gesummv,

gemm, syrk
743 GB [33 GB]

Microbenchamrks l1-lat, l1-bw, shd-lat, shd-bw, l2-lat, l2-bw, mem-lat, mem-
bw, maxflops

3 GB [94 MB]

CUTLASS [ 76 ] SGEMM with tensor cores WMMA (10 different input)
and SGEMM with normal floating point (10 different in-
put)

2.5 TB [125 GB]

Deepbench [ 77 ] GEMM bench (10 train, 10 inference), CONV bench (10
train, 10 inference), RNN bench (10 train, 10 inference)

2.6 TB [130 GB]

techniques and gradual trace creation to support these workloads as future work. We note

that without traces, Accel-Sim is still able to execute these apps in execution-driven mode.

The total disk size required for all the traces we simulate is 6.2 TB uncompressed (317 GB

compressed) for each card generation. Table  3.4 lists the trace size for all the benchmark

suites. Generating all 6.2 TB worth of traces takes approximately 48 hours using one GPU.

All the workloads are compiled with CUDA 10, using the compute capability of their

respective architecture (i.e. sm 70 in the case of Volta). We run the workloads with the

input sizes provided by each benchmark suite. Since deep learning performance is highly

sensitive to input size, we run Deepbench with multiple inputs, 10 inputs for training and

10 inputs for inference. For the Volta and Turing cards, we execute two versions of the

CUTLASS matrix-multiply apps, one that uses tensor cores and one that uses 32-bit floating

point operations. For CUTLASS, the input sizes from DeepBench’s matrix multiply kernels

are used. Hardware counters are collected using the nvprof [ 78 ] and nsight [  79 ] command-line

profilers from CUDA 10. We collect the timing data on a per-kernel basis by running the

applications several times and averaging the results.

2.4 Modeling Different GPU Generations

To demonstrate Accel-Sim’s flexibility, we model four different NVIDIA GPU generations

(Kepler, Pascal, Volta and Turing). First, we generate the traces for all the benchmarks using
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Table 2.4. Accel-Sim modeling properties across four different GPU gener-
ations. SPU: Single-Precision Floating Point Unit. DPU: Double-Precision
Unit. SFU: Special Function Unit.

Kepler TITAN [ 80 ] Pascal TITAN
X [ 81 ] Volta QV100 [ 41 ] Turing RTX

2060 [ 82 ]
Machine ISA sm 35 sm 62 sm 70 sm 75
Core Model shared model sub core model sub core model sub core model

Inst Dispatch/Issue dual-issue dual-issue single-issue single-issue

Execution units SPUs, SFUs SPUs, SFUs,
DPUs

SPUs, SFUs,
Tensor Cores

SPUs, SFUs,
Tensor Cores

L1 Configuration

128B line, 1 bank ,
96-way,

128B/cycle, 42
cycles

32B sector, 2
banks, 48-way,
64B/cycle, 80

cycles

32B sector,
adaptive, 4 banks,

256-way,
128B/cycle, 28

cycles

32B sector, 4
banks, 96-way, 28

cycles

L2 Configuration 32B sector, 24
banks, 190 cycles

32B sector, 24
banks,238 cycles

32B sector, 64
banks, 212 cycles,
IPOLY hashing

32B sector, 24
banks, 226 cycles

DRAM Configuration GDDR5 GDDR5 HBM GDDR6

Accel-Sim’s tracing tool on each card 

1
 . Second, we provide the ISA def and HW Def files

for each card from publicly available documents [ 41 ], [  56 ] to the Accel-Sim frontend and

tuner respectively, as illustrated in Section  2.2 . Third, we run our microbenchmark suite

and automated tuner on each card to configure the performance model’s parameters for the

card in question. Fourth, using Accel-Sim’s correlation tool, we generate a set of graphs

for performance counters to validate and improve correlation accuracy. Table  2.4 shows the

machine ISA version and modeling parameters obtained using Accel-Sim’s tuner to model

each GPU generation. These correlation results drive the development of our performance

model and enable us to uncover a number of interesting insights into contemporary hardware

in different GPU generations. Three significant aspects are:

Sub-Warp, Sectored Memory Coalescer: We find that in Pascal, Volta and Turing,

both the L1 and L2 caches have 32B sectors [ 83 ], with 128B cache lines. This sub-line fetch-

ing behavior has a significant impact on irregular applications running with the L1 cache

enabled. To support an access granularity of 32B into the cache, the memory coalescer

operates across sub-warps of eight threads, as opposed to grouping 32 threads into a wide

128B access, as other contemporary GPU simulators do when the L1 cache is enabled. We

speculate that the caches have been sectored to: (1) mitigate the memory over-fetching for
1

 ↑ We use the Volta (sm 70) traces to simulate Turing (sm 75), as NVBit support for Turing is not expected
until Summer 2020.
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uncoalesced accesses [ 84 ], and (2) reduce the cache tag overhead, especially the high power

consumption associated with the large content-address memory [  85 ] structures required for

4× more tag comparisons if a 32B line is used as opposed to a 128B with 32B sectors. Our

experiments suggest that Kepler does not support such a coalescing mechanism. Accel-Sim’s

flexibility allows it to model either the legacy Kepler configuration or the Pascal/Volta/Tur-

ing configurations with reasonable accuracy.

Improved L1 throughput: The L1 cache in Volta and Pascal is a streaming cache [ 4 ],

[ 58 ], which allows many cache misses to be in flight, regardless of how many cache lines are

allocated from the unified scratchpad + L1 (in Volta) or the relatively limited 24kB L1 cache

(in Pascal). By running a microbenchmark, similar to [ 43 ], we evaluate miss-status holding

register [ 86 ] (MSHR) throughput and find that the number of MSHR entries has increased

substantially. Also, we notice that, independent of L1 configured size, the MSHR throughput

is the same, even if more of the on-chip SRAM storage is devoted to shared memory.

Write-Aware Cache Design: Using Accel-Sim’s detailed correlation plots, our initial

experiments found that hardware conserves memory bandwidth much more than expected

when running write-intense GPU workloads. To understand the behaviour, we developed an

L2 write policy microbenchmark to confirm that the L2 is write-back with a write-allocate

policy. Interestingly, we also observed additional behaviour on write misses. Historically,

there are two different write allocation policies [ 83 ], fetch-on-write and write-validate. Using

Accel-Sim, we find that the L2 cache in all four generations applies a version of write-validate

that handles the varying granularity of GPU read/write requests. L2 reads have a minimum

granularity of 32B, but writes can be sub-32B. When a write to a single byte is received, it

writes the byte to the sector, sets a corresponding write bit in a byte-level write mask and

sets the sector as valid and modified. When a sector read request is received to a modified

sector, it first checks if the sector write-mask is complete, i.e. all the bytes have been written

to and the line is fully readable. If so, it reads the sector, avoiding a DRAM access. If the

sector is not fully written, it generates a read request for this sector and merges it with the

modified bytes. Applying this write policy saves DRAM bandwidth that can be wasted by

read-write interference at the DRAM when sub-sector writes are received at the L2 cache.
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Table 2.5. Accel-Sim cycle error and correlation factor across four different
GPU generations.

Kepler[ 80 ] Pascal [ 81 ] Volta [ 41 ] Turing [ 82 ]
TITAN TITAN X QV100 RTX 2060

MAE Corr. MAE Corr. MAE Corr. MAE Corr.
PTX
Exec 28% 0.99 53% 0.97 34% 0.98 32% 0.99
SASS
Trace 25% 0.99 30% 0.97 15% 1.00 25% 0.99

To demonstrate Accel-Sim’s ability to model different ISAs and hardware generations in

both SASS and PTX simulation, Table  2.5 presents the Mean Absolute Error (MAE) and the

Karl Pearson Coefficient of dispersion (Correl) for simulated cycles across four different GPU

cards. Correl is the ratio of the standard deviation to the mean and indicates how closely

the trends in both the simulator data and the hardware data match. Table  2.5 demonstrates

that correlation is > 0.97 in all instances and error is <= 30% for all SASS simulations.

The accuracy gained by executing the machine ISA over the virtual ISA can be as much

2×, depending on the generation. The one outlier with the greatest error is Pascal in PTX

mode. In Pascal, the L1D and texture cache are merged and L1D caching is disabled by

default. Without the L1D as a bandwidth filter, L2 throughput is more important in Pascal.

The poor instruction scheduling in PTX results in a 53% error that is reduced to 30% when

SASS instruction scheduling is used.

2.5 A Detailed Correlation Analysis

In this section, we perform a quantitative analysis to demonstrate how our new perfor-

mance model can be used to simulate an NVIDIA Quadro V100 [ 4 ]. We compare Accel-Sim

against the state-of-the-art NVIDIA simulation model from GPGPU-Sim 3.x [ 40 ], [ 46 ]. The

GPGPU-sim 3.x model is a best-effort attempt to model the Volta card using GPGPU-Sim

3.x without the modeling updates described in this work. Table  2.6 details the configuration

parameters used to model the architecture. The left column of the table details the configura-

tion of GPGPU-sim 3.x, obtained by scaling resources. The right column lists changes made

possible using Accel-Sim and our updated GPGPU-Sim 4.0 performance model. For the sake

of brevity, we refer to GPGPU-Sim 3.x as ‘GPGPU-Sim’ and Accel-Sim with GPGPU-Sim
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Table 2.6. Volta GPU configuration for GPGPU-Sim 3.x vs Accel-Sim. INT:
Integer operation unit.

GPGPU-Sim 3.x Accel-Sim (SASS + GPGPU-Sim 4.0)
Front End Execution-driven PTX 2.0 Trace-driven SASS 7.0
#SMs 80 80
SM Configuration Warps per SM = 64, #Schedulers per SM

= 4, #Warps per Sched = 16, RF per SM
= 64 KB

+Subcore model, warp scheduler isolation

#Exec Units 4 SPUs, 4 SFUs, 4 WMMA Tensors
cores [ 57 ]

+ 4 DPUs, 4 INTs, 8 HMMA Tensor cores

Memory Unit Fermi coalescer (32 thread coalescer) sub-warp (8 thread) coalescer + Fair memory
issue

Shared Memory Programmable-specified up to 96 KB Adaptive (up to 96 KB), latency = 20 cycles
L1 cache 32KB, 128B line, 4 sets, write-evict +32B sector, adaptive cache (up to 128 KB),

Streaming cache, banked, latency = 28 cycles
L2 cache 6 MB, 64 banks, 128B line, 32 sets,

Write Back, Naive write policy, LRU, la-
tency=100 cycles

+32B sector, subsector write policy, mem-
ory copy engine model, +pseudo-random irre-
ducible polynomial L2 hashing with IPOLY(67)

Interconnection 80x64 crossbar, 32B flit
Memory Model GDDR5 model, BW=850 GB/sec, la-

tency=100ns
HBM Model, dual-bus interface, Read/Write
buffers, advanced bank indexing

Table 2.7. Error and correlation rates of GPGPU-Sim 3.x versus Accel-Sim
when modeling an NVIDIA Volta.

Statistic Error Correlation
GPGPU-
Sim 3.x

Accel-
Sim

GPGPU-
Sim 3.x

Accel-
Sim

L1 Reqs NRMSE=3.04 NRMSE=0.00 0.99 1.00
L1 Hit NRMSE=1.04 NRMSE=0.76 0.69 0.87
Ratio
Occupancy NRMSE=0.12 NRMSE=0.13 0.99 0.99
L2 Reads NRMSE=2.67 NRMSE=0.03 0.95 1.00
L2 Read NRMSE=3.24 NRMSE=0.47 0.82 0.99
Hits
DRAM NRMSE=5.69 NRMSE=0.92 0.89 0.96
Reads
Instructions MAE=27% MAE=1% 0.87 1.00
Execution MAE=94% MAE=15% 0.87 1.00
Cycles

4.0 as ‘Accel-Sim’. Note that both simulators are capable of executing NVIDIA’s Tensor

Core instructions. GPGPU-sim uses the PTX-level WMMA tensor core instruction. Based

on the analysis from Raihan et al. [ 57 ], Accel-Sim models the fine-grained, SASS-level HMMA

instruction. Since Accel-Sim is capable of both SASS-trace and PTX-execution driven sim-

ulation, we refer to them as Accel-Sim and Accel-Sim [PTX Mode] respectively.

In this section, we demonstrate the accuracy of our more flexible performance model and

the effect of being able to simulate SASS traces. The correlation figures presented throughout

this section plot hardware results from the NVIDIA profilers nvprof [ 78 ] and nsight-cli [ 79 ]
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Figure 2.4. Correlation of key metrics from Accel-Sim versus GPGPU-Sim
3.x over the 80 workloads. These workloads are listed in Tables  2.8 and  2.9 .
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Figure 2.5. Cycle correlation of Accel-Sim in execution-driven PTX mode
versus Accel-Sim in trace-driven SASS mode.

on the x-axis and the simulation results on the y-axis. Depending on the statistic, there are

up to 80 datapoints on each graph (80 applications, without the Deepbench workloads). The

blue x represents the GPGPU-Sim result and the circles represent Accel-Sim. Each plot also

lists the Correl and error for the statistic. We use two different aggregation techniques for

error. Intuitively, the Mean Absolute Error (MAE) makes the most sense since it provides

a percentage error and is resistant to outliers. However, calculating MAE is not possible if

the reference counter is zero and creates the appearance of massive error when small values

deviate. As a result, we cannot use the MAE for counters other than the number of cycles,

instructions executed and Instructions Per Cycle (IPC), which will always be non-zero values.

For the remaining counters, we use the Normalized Root Mean Squared Error (NRMSE).

Table  2.7 summarizes the error and correlation co-efficients for GPGPU-Sim versus Accel-

Sim, over a number of important performance metrics.

2.5.1 Overall System Correlation

Figure  2.4 details a direct comparison of GPGPU-Sim to Accel-Sim over a set of key

simulation metrics. Figure  2.4a plots the final number of cycles reported for each application.

Rounded to 2 significant digits, Accel-Sim has a 1.00 correlation with hardware, and a
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Figure 2.6. Accel-Sim cycle correlation when executing deepbench workloads,
which cannot be executed by GPGPU-Sim 3.x or Accel-Sim [PTX Mode]. 60
workloads (comprised of 11,440 kernel instances).

15% mean absolute error. In contrast, GPGPU-Sim has a correlation of 0.87 and 94%

error. Generally, GPGPU-sim’s values are above the x=y line, meaning the simulator is

over-estimating the number of cycles for the workload. GPGPU-Sim is not modeling the

performance enhancements made to the memory system, which Accel-Sim does.

Accel-Sim’s increased accuracy can be attributed to two factors: the machine ISA repre-

sentation and the updated performance model. To understand the effect of the instruction

set, Figure  2.4b plots the number of warp instructions executed. Since GPGPU-Sim operates

on PTX, the correlation is relatively low and shows a 27% error. In contrast, Accel-Sim has

a 1.0 correlation and a 1% error. Accel-Sim’s small error occurs because some applications

execute a non-deterministic number of instructions in hardware. Figure  2.4b demonstrates

that PTX generally executes a reasonable number of instructions. However, the ordering of

the instructions is significantly different in SASS, resulting in better instruction-level paral-

lelism. To quantify the difference between PTX and SASS more clearly, Figure  2.5 shows

the cycle correlation when using Accel-Sim [PTX Mode] versus Accel-Sim. Figure  2.5 allows

us to examine the effect of SASS versus PTX on the same performance model. On average,

simulating SASS improves the mean absolute error by 2×, reducing the error from 34% to

15%. To provide additional insight on an app-by-app basis, Tables  2.8 and  2.9 enumerates

47



Table 2.8. Cycle mean absolute error per workload in GPGPU-sim 3.x, Accel-
Sim [PTX Mode] and Accel-Sim for SDK, Rodinia and Parboil
Workload HW

cycles

GPGPU-
Sim 3.x

Error (%)

Accel-Sim
[PTX]

Error (%)

Accel-Sim
Error (%)

CUDA SDK
blk 10214 -13 -11 -7
conv 327868 3 30 -11
fast-walsh-transform 731574 35 -6 4
merge-sort 52905 17 -15 2
scalar-prod 300811 -30 -30 -32
sorting-networks 85713 10 -13 -10
transpose 97339 -2 12 -19
vector-add 140161 -22 32 -17
scan 2659445 29 -16 -16
histo 61085 21 21 -9
CUDA SDK MAE - 13 16 9

Rodinia Suite
b+tree 167146 -7 -8 -19
backprop 63456 0 4 -14
bfs 1107676 61 -11 -31
dwt2d 35246 90 51 -3
hotspot 56101 63 58 16
lud 710043 9 48 -9
myocyte 4561278 51 42 22
neddle 3016000 151 43 -16
srad-v1 6031393 -7 42 0
sc 699593 82 -15 -8
kmeans 1437879 300 300 63
nn 7305 -59 -40 -11
lava-md 5017353 20 12 8
Rodinia MAE - 32 28 8

Parboil Suite
bfs 6396950 -23 -22 -47
histo 5590035 -56 -59 -39
mri-q 299165 220 207 9
sad 131272 4 9 -47
sgemm 362333 111 148 -16
spmv 3405773 38 -8 -7
stencil 4698755 -46 -17 -10
cutcp 5321758 75 75 39
Parboil MAE - 45 37 20

the per-application cycle error for GPGPU-Sim, Accel-Sim [PTX Mode] and Accel-Sim. In

many of the CUTLASS sgemm and Rodinia workloads, the error is significantly reduced by

moving to SASS-based simulation. In these workloads, capturing the improved instruction

scheduling in SASS is critical to simulator accuracy.

In addition to examining SASS versus PTX, Tables  2.8 and  2.9 demonstrate some in-

teresting trends across benchmark suites. In the CUDA SDK, many of the workloads are

streaming and sensitive to DRAM bandwidth. As such, our detailed HBM model and SASS

representation reduces the error in these workloads, providing relatively low error. In the
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Rodinia suite, which includes a number of workloads that have cache-locality and more

diverse, irregular behaviour, Accel-Sim’s detailed cache model, combined with SASS instruc-

tion scheduling helps to reduce the error. Although Accel-Sim’s overall correlation and

accuracy are greatly improved, there are still several benchmarks with a high error. Further

investigation reveals that correctly modeling the L2 bandwidth is critical in the Rodinia

workloads. Our IPOLY indexing helps to alleviate many L2 bank conflicts, however it does

not exactly match the hardware’s indexing function, as described in Section  2.5.2 . The

Polybench workloads are cache capacity sensitive [ 87 ]. GPGPU-sim employs a fixed capac-

ity of 32KB in the L1, whereas the adaptive, sectored cache in Accel-Sim allocates the whole

128KB of Volta’s unified on-chip memory to the L1D. The 4× greater cache capacity and

more accurate 32B fetch granularity reduces the error in atax, bicg, gesummv, syrk and mvt

from 400% to 20% on average.

For the CUTLASS sgemm workloads (without Tensor Core instructions) the streaming

L1 cache, advanced L2 hashing and support for SASS all contribute to reducing the error

in Accel-Sim to less than 5%. Interestingly, Accel-Sim’s error for CUTLASS gemm-wmma

is higher than sgemm. In addition, GPGPU-Sim’s error is generally much lower on gemm-

wmma than on sgemm. We find that the abstract WMMA PTX instructions are a good

approximation for the SASS instructions. For some input sizes, the abstract instructions are

an even better representation than Accel-Sim’s SASS model for HMMA. In these instance,

Accel-Sim [PTX Mode] demonstrates nearly zero cycle error, since it benefits from both the

memory system updates and the accuracy of the abstract WMMA instructions.

We also plot the attained occupancy (Figure  2.4h ) and IPC (Figure  2.4g ). The occupancy

data tracks well for both GPGPU-Sim and Accel-Sim, both models correctly estimate the

initial occupancy, deviation from hardware occurs in imbalanced kernels where occupancy

falls off at different rates. The purpose of correlating IPC is to demonstrate how well the

simulator handles different rates of work. In order to avoid negatively biasing GPGPU-

Sim (which uses a different instruction set than both Accel-Sim and hardware), we use

the machine instruction count as the numerator to calculate the IPC in both simulators.

Figure  2.4g follows from Figure  2.4a , where Accel-Sim shows better correlation and less
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error. GPGPU-Sim’s IPC error is less than its cycle error. Most of GPGPU-Sim’s error

occurs in long running apps, where the gap in cycles becomes orders of magnitude larger.

Finally, Figure  2.6 plots the Deepbench workloads that make use of the closed-source

cuDNN and cuBLAS libraries, that include hand-tuned SASS code for which there is no PTX

representation. Only Accel-Sim is able to simulate these workloads. Generally, Accel-Sim is

well correlated, although the overall error is higher than for the other workloads. Further

inspection reveals that the Deepbench workloads make extensive use of texture memory and

local loads, which could require additional modeling to improve their accuracy. For hardware

occupancy, Accel-sim achieves 0.9 correlation and 0.16 NRMSE on the Deepbench workloads.

Low occupancy in RNN workloads has been observed by prior work [ 88 ] in silicon GPUs,

which we also observe in Accel-Sim. Accel-Sim’s support of NVIDIA’s hand-tuned libraries

enables new architecture research into the performance of RNNs and other deep learning

networks on GPUs, which is not possible in any other simulation framework.

2.5.2 Achieved Bandwidth Correlation

GPU workloads are highly sensitive to cache and memory bandwidth, making them

important factors for modeling GPUs accurately. Significant effort has been expended to

design contemporary GPUs to achieve the highest possible bandwidth. To measure how

much memory bandwidth can be saturated, we design a set of microbenchmarks to saturate

the memory bandwidth of the L1, L2 and main memory. Figure  2.7 depicts the cache and

memory bandwidth attained for in the Volta card, normalized to the theoretical bandwidth.

In Volta [ 4 ], [ 45 ], the theoretical bandwidth for both simulators have been configured to

supply, at most, the theoretical bandwidth of each component.

As shown in Figure  2.7 , GPGPU-Sim is only able to achieve 33% of the theoretical

L1 bandwidth, whereas the Accel-Sim’s streaming and banked L1 cache is able to attain

85%, within 10% error of the attained hardware bandwidth. In L2 cache, thanks to our

advanced Galios-based random hashing and accurate interconnect bandwidth, Accel-Sim

mitigates L2 partition camping, which has been exacerbated in contemporary GPUs with

the introduction of HBM [ 63 ], [ 64 ], and comes within 22% of hardware. We believe that the
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Figure 2.7. Measured cache and memory bandwidth for Accel-sim, GPGPU-
sim 3.x and Volta hardware .

hashing mechanism used in contemporary GPUs is highly tuned, and eliminating the last

22% error would require extensive reverse-engineering. We leave improving the L2 bandwidth

for future work. For memory bandwidth, our detailed HBM model with a dual-bus interface,

the random partition indexing and write buffers employed in Accel-Sim achieves 82% of the

theoretical memory bandwidth and very close to the 85% attained in hardware. In the

GPGPU-Sim, read/write interference, low bank-group level parallelism and naive L2 write

policy waste memory bandwidth leading it to attain only 62% bandwidth.

2.5.3 L1 Cache Correlation

Figure  2.4f plots correlation for the post-coalescer accesses received by the L1 cache. As

Figure  2.4f shows, Accel-Sim has a correlation co-efficient of 1.00 correlation and no error.

This is primarily due to the implementation of the subwarp coalescer and the fact that

the L1 cache is sectored. Figure  2.4i plots the corresponding hit rate for the L1D cache.

We note that this statistic is particularly hard to correlate, given that the warp scheduling

policy, cache replacement policy and hit/miss accounting decisions in the profiler can skew

the results. For example, through microbenchmarking, we determined that the hardware

profiler will count a sector miss on a cache line whose tag is already present as a hit, but will

still send the sector access down to the L2. Effectively, the profiler appears to be counting

128B line cache tag hits, even if the sector is missed. Even with these variables, Accel-sim’s

cache model achieves only 0.77 NRMSE and a correlation co-efficient of 0.87. In the apps
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where pervasive error still exists, we believe more detailed reverse engineering of the warp

scheduling policy and replacement policy will help.

GPGPU-sim have a high correlation, but an NRMSE of 3.06 in L1D read accesses.

GPGPU-sim does not model a sectored cache, thus one 128B access will count as four sector

accesses in the hardware. Completely divergent applications show consistent behaviour with

hardware since 32 unique sectors are generated in hardware and 32 unique cache lines are

generated in GPGPU-sim.

2.5.4 L2 Cache Correlation

Although all L1D read misses are sent to L2 cache, Accel-Sim’s L2 reads has higher

correlation and less error compared to the L1 hit rate. This result confirms our observation

that the profiler’s L1 hit/miss accounting decisions are different from our assumption. As

shown in Figure  2.4c , Accel-sim exhibits 1.00 correlation and normalized error reaching only

0.03. We also collected information on write transactions, and noticed similar behaviour.

We attempted to correlate the L2 cache read hit rate with simulation results, but found

that the profiler gives inconsistent results, some of which are greater than 100%. So instead,

we correlated with the number of L2 hits, which gave more grounded readings. Figure  2.4d 

presents the L2 read hit correlation. Overall, Accel-sim achieves 0.99 correlation and 0.47

normalized error. Again, at the L2, scheduling effects from the order in which memory

accesses reach the L2 will have an effect on it’s hit rate.

2.5.5 DRAM Correlation

Finally, Figure  2.4e plots the correlation of DRAM read accesses. The NRMSE is 0.93

and has a 0.96 correlation co-efficient. The DRAM read correlation remains high and is

more accurate for larger kernels. However, Accel-sim shows a high level of error for smaller

workloads.

The results in GPGPU-sim are significantly worse than those in Accel-Sim. Interestingly,

the reason for the massive error in the GPGPU-sim is due to its per-cacheline fetch on write

policy. The end result of that policy was that every write to the writeback L2 fetched 4
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32-byte memory values from DRAM, which is why the DRAM reads of the GPGPU-sim are

consistently overestimated. Accel-sim has eliminated this problem by sectoring the cache

and implementing a more accurate write policy, as explained in Section  2.4 .

2.6 Case Studies

This section presents the effect of memory system simulation detail on architectural de-

sign decisions. A less detailed architecture model may lead to unrealistic issues or incorrect

conclusions that are not relevant to state-of-the-art designs already being used in industry.

This section demonstrates how our more accurate GPU model removes the well-studied bot-

tleneck of cache throughput and opens up new research opportunities in chip-wide memory

issues.

L1 cache throughput: The L1 cache throughput bottleneck for GPUs has been well

explored in literature using cache bypassing and warp throttling techniques [ 89 ]–[ 93 ]. Due to

massive multithreading, GPGPU L1 caches can suffer from severe resource contention (e.g.

MSHRs and cache line allocation [ 89 ]). However, contemporary GPUs are designed such

that the L1 cache is not a throughput bottleneck. Modern GPUs employ advanced archi-

tecture techniques to improve L1 cache throughput, such as sectored, banked, adaptive and

streaming L1 caches. These techniques shift the memory bottleneck from the L1 cache to

the lower levels of the memory hierarchy. Figure  2.8 plots the L1 cache reservation fails per

kilo cycles for cache sensitive workloads for GPGPU-sim vs Accel-Sim. The new L1 model

eliminates reservation fails and the L1 cache is no longer a throughput bottleneck. Conse-

quentially, any design aimed at mitigating this L1 throughput bottleneck is less effective on

a contemporary GPU, which is reflected in our new performance model.

Memory scheduling sensitivity: Throughput-oriented GPGPU workloads are often

sensitive to memory bandwidth. Thus, the DRAM memory access scheduler plays an impor-

tant role to efficiently utilize bandwidth and improve the performance of memory-intensive

workloads (i.e. those that utilize > 50% of DRAM bandwidth). Figure  2.9 shows the sensi-

tivity of memory-intensive GPGPU workloads for two memory scheduling policies: the näıve

first-come first-serve scheduling (FCFS) and the advanced out-of-order First-row-ready first-
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Figure 2.8. L1 cache reservation fails per kilo cycles for cache sensitive work-
loads in both Accel-Sim and GPGPU-sim 3.x.

0
1
2
3
4
5
6

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

GPGPU-sim 3.x Accel-sim

Figure 2.9. FR FCFS performance normalized to the FCFS in Accel-Sim and
GPGPU-sim 3.x for memory intensive workloads in Volta.

come first-serve scheduling (FR FCFS) [ 94 ]. FR FCFS performance is normalized to FCFS

in both Accel-Sim and GPGPU-sim to demonstrate the performance improvement from more

advanced scheduling. In the GPGPU-Sim, some workloads are insensitive or show little dif-

ference between the two scheduling policies. On average, applying FR FCFS in GPGPU-sim

increases performance by 20%.

In Accel-Sim, the memory scheduling policy is more critical. Applying FR FCFS to Accel-

Sim improves performance by 2.5× on average. More detailed coalescing rules, improved on-

chip cache throughput, advanced L2 cache interleaving and write allocation policies increase

the likelihood of losing page locality, which must be recaptured by out-of-order memory

access scheduling. Further, with the new features and capabilities of the HBM such as dual-

bus interface [ 67 ], pseudo-independent accesses [ 95 ] and per-bank refresh command [ 66 ],

memory scheduling and the interaction with the L2 cache indexing will become a more critical

issue to investigate. This experiment demonstrates how accurately modeling contemporary
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GPU hardware reveals performance issues obscured using a less detailed simulation. We

believe Accel-Sim opens up a rich new design space in system-level GPU research where

core-level memory issues are alleviated and there is increased sensitivity to chip-wide memory

issues.

2.7 Summary

This chapter introduces three innovative mechanisms to help solve the problem of keeping

simulators up-to-date with contemporary designs. We propose a novel, ambidextrous GPU

frontend that translates both functionally executed virtual instructions and machine in-

struction traces into an ISAindependent format for simulation. Using the flexible frontend,

a detailed performance model is developed, which has the ability to model contemporary

GPUs and execute proprietary binaries that no other open-source simulator can. We believe

that Accel-Sim is the most extensively validated open-source GPU simulation framework to

date. We demonstrate that Accel-Sim decreases cycle error from 94simulation to 15Accel-

Sim’s ISA-independent performance model opens up opportunities to simulate cards from a

wide variety of vendors. We believe that Accel-Sim will reduce the accuracy gap between

industrial and academic simulators on an ongoing basis, increasing the potential impact of

accelerator research.
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Table 2.9. Cycle mean absolute error per workload in GPGPU-sim 3.x, Accel-
Sim [PTX Mode] and Accel-Sim for Polybench, Microbenchmark, and CUT-
LASS

Polybench Suite
2dconv 269298 62 6 -15
2mm 62994676 8 0 0
3dconv 1788022 -26 -17 3
3mm 1766299 9 -12 -12
atax 3322009 432 -23 -23
bicg 3330876 604 -24 -23
gemm 587160 19 -12 -1
gesummv 2661367 1700 -7 -7
mvt 3323425 445 -24 -23
syrk 15668564 658 -7 -7
Polybench MAE - 111 6 4

Microbenchmark Suite
maxflops 73152 39 3 3
l1-bw 578838 134 9 -4
l1-bw-unroll 237705 304 433 -6
l1-lat 1177511 -65 -2 -8
shared-bw 4921085 -1 -3 -3
shared-lat 70231 6 12 12
l2-bw 786881 202 31 44
l2-lat 7184779 -33 -18 -19
mem-bw 382171 21 15 16
mem-lat 2389456 -71 10 -16
Microbenchmark MAE - 37 14 9

CUTLASS GEMM wmma Suite
wmma-2560x128x2560 1455597 11 -1 10
wmma-2560x16x2560 1325345 7 0 15
wmma-2560x32x2560 1338720 6 0 14
wmma-2560x64x2560 1376862 4 0 13
wmma-2560x7000x2560 19717874 12 0 16
wmma-4096x128x4096 2231763 32 0 14
wmma-4096x16x4096 2055799 10 1 17
wmma-4096x32x4096 2060767 12 1 17
wmma-4096x64x4096 2103894 17 2 16
wmma-4096x7000x4096 48103472 21 0 -4
CUTLASS wmma MAE - 11 0.5 12

CUTLASS sgemm Suite
sgemm-2560x1024x2560 10525540 96 54 -3
sgemm-2560x128x2560 5272700 97 54 -3
sgemm-2560x16x2560 5199087 97 55 -2
sgemm-2560x2560x2560 26224856 95 55 -3
sgemm-2560x32x2560 5193979 97 55 -2
sgemm-2560x512x2560 5289253 97 54 -3
sgemm-2560x64x2560 5187370 98 55 -2
sgemm-4096x128x4096 8352408 113 55 -3
sgemm-4096x16x4096 8266794 97 55 -2
sgemm-4096x64x4096 8240064 100 56 -1
CUTLASS sgemm MAE - 98 54 2
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3. LADM: A SCALABLE AND TRANSPARENT MULTI-GPU

SYSTEM FOR DL AND HPC WORKLOADS

GPU accelerated workloads are commonly used in deep learning and exascale high perfor-

mance computing (HPC) systems [ 5 ], [  6 ]. These workloads exhibit high levels of implicit

parallelism, which enables performance scalability, but only if GPUs can continue to scale

their hardware resources. Over the past decade, GPUs have more than quadrupled the num-

ber of Streaming Multiprocessors (SMs) in their designs, while simultaneously increasing

their on-chip transistors by an order of magnitude. Prior work by Arunkumar et al. [ 3 ]

demonstrates linear performance scalability if GPU resources (SMs, SM-interconnect band-

width, registers, caches, and DRAM bandwidth) are able to scale proportionally. However,

building a GPU with hundreds of SMs in a single monolithic GPU die will not be possible

due to low manufacturing yields and the high cost of building large chips at small technology

nodes [ 3 ], [  7 ].

To overcome these problems and enable continuous performance scaling as Moore’s law

slows [  8 ], [ 9 ], researchers have proposed increasing GPU transistor count by aggregating

multiple GPUs together (as a single logical GPU) as well as disaggregating single-GPUs into

scalable multi-chip-modules [ 3 ], [ 10 ], [  96 ], [  97 ]. Compared to single-chip systems, chiplet

based architectures  

1
 are desirable because they provide a larger aggregate chip perimeter

for I/O, enabling a higher number of DRAM interfaces to be connected to the system and

thus scale memory bandwidth and capacity alongside compute resources [ 3 ], [  5 ], [  98 ]–[ 101 ].

Future chiplet-based designs will be limited by the size of silicon interposers or the short

haul, high bandwidth interconnects needed to traverse a small printed circuit board. Com-

pared to chiplets, multiple GPUs are more easily combined into large coordinated systems

but suffer from lower inter-GPU bandwidth, which increases the NUMA performance penalty.

As shown in Figure  3.1 , these approaches are complimentary and it is likely that both will be

employed in future systems with hierarchical interconnects to create a massive logical GPU.

Architecture and runtime systems must coordinate to maintain the existing single-GPU

programming model and support transparent scaling for current CUDA programs. The goal
1

 ↑ In this thesis, chiplet and multi-chip-module (MCM) are used interchangeably.
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Figure 3.1. Future massive logical GPU containing multiple discrete GPUs,
which are themselves composed of chiplets in a hierarchical interconnect.

is to create a single programmer-visible GPU that may be comprised of hierarchical locality

domains. Maintaining this illusion enables rapid software development on small local GPU

resources while allowing scalable performance on larger and more complex GPU systems.

Transparently overcoming locality effects will be a challenging problem for GPUs over the

next decade. Such an extreme NUMA scale requires new techniques to place pages, cache

data, and schedule the many thousands of threads managed in such systems.

Recent work on static analysis for transparent multi-GPU programs, CODA [  102 ], is a

step in the right direction. Using the compiler to perform index analysis, CODA calculates

the width of the data accessed by one threadblock and ensures that threadblocks and the data

they access are placed on the same GPU for the locality types they can identify. However,

a more robust analysis of the code is required to exploit different GPU access patterns on

hierarchical GPUs. In this work, we deconstruct the accesses patterns observed across a

diverse set of GPU applications and detail which patterns are captured by recent state-of-

the-art NUMA-GPU mechanisms and those that remain unexploited. We show that many of

the previously unexploited patterns can be successfully detected by static analysis, which we

use to drive data placement, caching, and thread scheduling decisions in our Locality-Aware

Data Management (LADM) system.

Static index analysis has been extensively used in sequential code to perform affine loop

transformations, eliminate data dependencies, and partition work for automatic paralleliza-

tion [  103 ], [ 104 ]. In many ways, a static analysis of a GPU program is more straightforward
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than a sequential one, as the parallelism in CUDA programs is inherent to the programming

model. A parallel GPU program can be transformed into a sequential program by converting

the threadblock and grid dimensions into loop index variables on data-parallel outer loops.

Once this transformation is made, any sequential program analysis can be applied to the

GPU code. However, it is less obvious how the nature of the hierarchical programming

model (i.e., threadblocks and kernels) can be combined with sequential locality analysis to

map schedulable chunks of work (i.e., threads within the same threadblock) to data structure

accesses. To tackle this issue, we introduce the concept of datablock locality analysis that

maps each threadblock in a kernel to chunks of data we predict it will access.

Fundamentally, the programming model for GPUs is different than for CPUs. Due to

their massively-multithreaded nature, GPU programs are composed of many fine-grained

threads, where each individual thread exhibits little spatial or temporal locality to global

memory. This, combined with the expressiveness of thread IDs in the CUDA programming

model creates both a new challenge and an interesting opportunity to apply static analysis

for NUMA data placement and thread scheduling.

3.1 Background

Figure  3.1 depicts what next-generation exascale GPU compute accelerators may look

like in the future. Within a single GPU, monolithic GPU dies will be subdivided into dis-

aggregated chiplets, where each chiplet is composed of a group of SMs associated with its

own local High Bandwidth Memory (HBM) and hardware thread block scheduler. Several

different ways to connect these chiplets have been proposed. Interposer-based through-

silicon vias (TSVs), similar to those proposed in AMD’s future exascale node [  5 ], [ 97 ], high

rate signaling through organic substrate-based connections similar to NVIDIA’s Ground

Reference Signaling (GRS) [ 3 ], [  105 ], [  106 ], Intel’s Embedded Multi-die Interconnect Bridge

(EMIB) [ 107 ] or waferscale integration using Silicon Interconnection Fabric (Si-IF) [ 96 ], [ 108 ]

are all possible solutions. While these links may provide high enough bandwidth to alleviate

the NUMA-GPU performance penalty [ 5 ], such solutions are likely to be expensive and hard

to manufacture. These same technologies could be conservatively applied to provide cost-
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effective, bandwidth restricted interconnections [ 3 ]. Architectural and software techniques

are necessary to reduce off-chiplet traffic and mitigate the performance loss due to band-

width constraints. While reducing off-chiplet traffic across exotic high-speed connections

may not lead to performance improvement, LADM still improves overall energy efficiency

by minimizing data movement among the chiplets [ 101 ].

NUMA-GPU designs will not only exist within on-package solutions. With the arrival

of high bandwidth switch-connected GPUs such as NVIDIA’s DGX-2 and NVLink [ 109 ],

[ 110 ] interconnect, aggregating multiple discrete GPUs into a large virtual GPU is now

being considered [  10 ]. Because these GPUs may operate as both individual GPUs and in

aggregate (as a single GPU), this aggregation must be done with more limited hardware

support, primarily by the GPU runtime software. In addition, the type of hierarchical

NUMA present in Figure  3.1 must be accounted for both page placement and threadblock

scheduling. Previous, hierarchy-oblivious approaches [ 3 ], [  10 ], [  102 ] to NUMA-GPU should

be applied recursively, accounting for the fact that chiplets on the same discrete GPU will

have greater peer-to-peer bandwidth than chiplets that reside on different GPUs.

3.1.1 NUMA Locality in CPUs vs GPUs

Parallel programming on NUMA multi-processor and on-chip multi-core CPU systems

is a well studied problem. Many proposals attempt to minimize NUMA memory access

latency transparently through software memory allocation and migration policies[  111 ]–[ 115 ]

or thread-to-core mapping [ 116 ]–[ 119 ] techniques. Most of these works are reactive solutions,

wherein they detect locality and congestion at runtime, then they perform page migration,

replication and thread-clustering based on runtime observations. Although reactive systems

can be applied to GPUs, they introduce a substantial performance penalty that can outweigh

the benefits. For example, data replication increases memory capacity pressure, which is a

scarce resource in contemporary GPUs [ 120 ]. First-touch page placement policy can reduce

performance significantly, stalling SMs for 20-50 microseconds [ 121 ]. Furthermore, the sheer

number of threads in flight makes reactive work re-distribution intractable, and the cost of
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Figure 3.2. OpenMP vs CUDA thread mapping for sgemm [ 74 ].

page migration in bandwidth-limited GPU workloads is high [ 122 ], [ 123 ]. These all motivate

a proactive, prediction-based solution based on static program analysis.

The GPU programming model introduces new challenges in the design space for NUMA

systems that did not exist in traditional NUMA-based multi-processor systems. Since GPUs

are programmed using a huge number of threads, the work done by each individual thread

is small, resulting in far more thread scheduling decisions. To manage all these threads,

they are grouped into a multi-dimensional grid of threadblocks, where each block operates

on one multi-dimensional chunk of the data structure. This is in contrast to the coarse-

grain nature of CPU threads, where far fewer threads do much more work each. Figure  3.2 

illustrates how threads in CPUs and GPUs typically access a row-based data structure with

an example from the Parboil benchmark suite [ 74 ]. In the coarse-grained CPU case, each

thread has significant spatial locality and static index analysis of the single-threaded code

can easily determine the access pattern of each thread. In the fine-grained GPU case, the

same per-thread analysis can be applied. However, the reach of each individual thread is

minimal, as each thread will access very few (or even just one) elements in the row. In

order to capture the locality pattern in GPUs, an inter-thread analysis must be performed,

to account for both the hierarchy of the grid (i.e. the presence of threadblocks) and the

dimensionality of the thread grid. This type of inter-thread analysis is what we propose in

LADM.

In addition, there is little intra-thread locality in highly-optimized GPU applications with

regular access patterns. Instead of repeatedly accessing values on the same cache line, GPU
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Table 3.1. LADM vs state-of-the-art techniques
Batch+FT [ 3 ] Kernel-

wide [ 10 ] CODA [ 102 ]
LD / TB

clustring [ 50 ],
[ 124 ], [ 125 ]

LADM

Page placement policy First-Touch Kernel-wide
chunks

Sub-page
round robin

Hand-tuned
APIs LASP

Threadblock scheduling policy Static batched
round robin

Kernel-wide
chunks

Alignment-
aware batched

round robin

Hand-tuned
APIs LASP

Page alignment ✗ ✓ ✓ ✓ ✓

Threadblock-stride aware ✓ ✗ ✗ ✓ ✓

Row sharing ✗ ✓ ✗ ✓ ✓

Col sharing ✗ ✗ ✗ ✓ ✓

Adjacent locality (stencil) ✗ ✓ ✗ ✓ ✓

Intra-thread loc ✓ ✗ ✓ ✗ ✓

Input size aware ✗ ✗ ✗ ✓ ✓

Overhead +First-touch
page faulting - +Hardware for

sub-pages +APIs -

Transparency ✓ ✓ ✓ ✗ ✓

Hierarchical-aware ✗ ✗ ✗ ✗ ✓

programs typically access values on the same line in different coalesced threads. Optimized

GPU programs also make extensive use of a scratchpad memory, which effectively prevents

a large portion of global data from being accessed more than once. The end result is that

there is very little global data reuse in GPU programs, making the initial decision on where

a page should be placed extremely important, since temporal locality in upper-level caches

is rare.

3.1.2 Existing NUMA-GPU Optimizations

In this section, we qualitatively and quantitatively study state-of-the-art NUMA-GPU

page placement and threadblock scheduling techniques for both MCM [ 3 ] and Multi-GPU [ 10 ],

[ 102 ], [ 124 ] configurations, teasing out the fundamental properties they exploit and highlight-

ing opportunities they miss.

The first work on chiplet-based GPUs by Arunkumar et al. [ 3 ] optimizes per-chiplet

locality through a synergistic approach of statically batching threadblocks and performing

a reactive first-touch (Batch+FT) page placement policy. While optimizing for locality,

Batch+FT relies on the GPU unified virtual memory (UVM) system to page fault data to

the chiplet on which the data is first accessed. While effective for improving data locality, re-

lying on the UVM first-touch page placement policy can introduce a substantial performance
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Figure 3.3. Behavior of kernel-wide partitioning in a 2-node system with
2 threadblocks that access a 4 datablock data structure with a stride of one
datablock.

penalty as data must be page-faulted into GPU memory from system memory, stalling SMs

for 20-50 microseconds [ 121 ]. An ideal GPU locality management system should make an

educated guess about threadblock and data locality before execution begins, so that data

and computation can proactively be pushed to the right location whenever possible.

The second work, by Milic et al. [ 10 ], focuses on multiple discrete GPUs. Their solution

partitions both the kernel’s grid and each data structure (i.e., every call to cudaMalloc) into

N contiguous chunks, where N is the number of GPUs. Each chunk of data and threadblocks

are then assigned to each respective GPU. We call this technique kernel-wide grid and data

partitioning and it is pictured in Figure  3.3 .

The third class of work, by Vijaykumar et al. [ 124 ] and Sun et al. [ 50 ], propose a flexible

and portable software interface, called the Locality Descriptor (LD), to explicitly express

data locality with a series of highly-specific APIs. Similarly, Cabezas et al. [ 126 ] rely on

programmer input to shape the data placement in the program. Locality-aware threadblock

clustering with code annotations was also proposed in a single GPU context [  125 ]. Our

proposed research seeks to marry the locality description benefits of these manual APIs with

the transparency benefits of the locality-agnostic techniques.

Finally, the most closely related work to our own is CODA by Kim et al.[ 102 ]. CODA

is a compiler-assisted index analysis framework that calculates the data accessed by each

threadblock to ensure page alignment. CODA applies round-robin page and sub-page in-

terleaving and launches static batches of threadblocks that share the same sub-page on the

63



same node. However, CODA is only able to exploit one specific locality pattern and requires

hardware changes to support sub-page address mapping.

Table  3.1 breaks down a number of common access patterns found in contemporary GPU

workloads and details which prior work is able to capture them, preventing off-chip traffic.

The first pattern that is Page alignment. If the data-placement mechanism and threadblock

scheduler are unaware of how much data is accessed by a threadblock, and round-robin

threadblocks among chiplets, they may not place contiguous threadblocks accessing the same

page on the same chiplet. The Batch+FT scheduler launches a statically-defined batch of

threadblocks (4-8 threadblocks) in a loose round-robin fashion across chiplets, in an attempt

to load-balance the workload. Without knowing how big the threadblock batch should be,

unnecessary off-chip accesses may occur. On the other hand, CODA is explicitly-designed to

capture this pattern and to ensure that the batches are page-aligned. Kernel-wide partition-

ing captures this pattern as well by avoiding a round-robin scheduler and launch threadblocks

in coarse-grained chunks.

The second pattern is Threadblock-stride aware. In this pattern, threadblocks access one

chunk of data, then jump with a constant stride to read another chunk of data. Batch+FT is

able to capture this pattern since the first-touch page placement policy will bring the page to

the correct node. Kernel-wide partitioning and CODA are unaware of this strided behavior

and will generate off-chip traffic if the stride does not accidentally match their partitioning.

Figure  3.3 depicts an example of how kernel-wide partitioning works in a simple strided

accesses scenario where the stride is misaligned with the system configuration, resulting in

50% off-chip accesses.

The next two patterns: Row sharing and Column sharing occur when a row or a column

of threadblocks in a two-dimensional grid access the same row or column of a data structure.

None of the prior techniques account for these sharing patterns, but kernel-wide partitioning

is able to exploit row sharing by dividing both the grid and data structures into contiguous

row-wise chunks.

The Adjacency locality pattern is commonly found in stencil applications where adjacent

threads share data on their boundaries. The round-robin nature of Batch+FT and CODA

create memory traffic at the edge of every threadblock batch. Since kernel-wide partitioning
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Figure 3.4. Bandwidth sensitivity analysis of state-of-the-art techniques nor-
malized to a hypothetical monolithic GPU with the same number of SMs.
Performance is averaged over the applications listed in Section  3.3.1 .

is scheduled in large chunks, the number of grid cuts is minimized and so is the off-chip

traffic in stencil workloads.

The Intra-thread locality pattern is often found in irregular workloads that have significant

spatial locality in a single thread [ 87 ]. Batch+FT naturally captures this locality by moving

pages to where they are first accessed. Finally, none of the existing techniques account for the

size of a program’s data structures and are hence input-size unaware. We explicitly design

LADM to exploit all of these characteristics, which we describe in more detail in Section  3.2 .

To demonstrate the relative performance of prior techniques across a variety of integration

domains, we implement and evaluate several pieces of state-of-the-art work [  3 ], [ 10 ], [ 102 ],

along with a baseline round-robin placement and scheduling mechanism adopted from [ 5 ].

Figure  3.4 shows the average performance of a four GPU NUMA system with 64 SMs on

each node for each evaluated technique. All values are normalized to the performance of a

hypothetical monolithic GPU (where there is no NUMA access penalty to remote memories)

with the same number of SMs (256).

To understand the effect topology and interconnect has on their relative performance, we

simulate two different interconnection configurations connecting the four GPU nodes. First,

a crossbar inter-GPU switch, similar to an NVSwitch [ 127 ], with different link bandwidths.

Second, a hypothetical high-speed bi-directional ring with 1.4 and 2.8 TB/sec per-GPU

to model an MCM-like topology [ 3 ]. We model optimal on-demand paging (Batch+FT-

optimal) assuming page faults have zero overhead. Ideally, we would like to achieve the

same monolithic chip performance with the cheapest possible interconnection. We observe

that uniformly, CODA outperforms Batch+FT-optimal and kernel-wide partitioning, thanks
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Figure 3.5. End-to-end overview of our proposed Locality-Aware Data Man-
agement System. In the locality table: MallocPC, the kernel/arg tuple, the
locality type and data type are filled statically, whereas memory address and
#pages are filled dynamically.

to its alignment-aware static index analysis. Yet CODA only achieves 52% and 80% of the

monolithic GPU for the xbar-90 GB/sec and ring-1.4 TB/sec configurations. This implies

that while CODA should be considered state-of-the-art versus other policies, there still re-

mains significant room for improvement.

3.2 Locality-Aware Data Management

The goal of Locality-Aware Data Management is to optimize NUMA-GPU page place-

ment, threadblock scheduling, and GPU cache management based on access patterns derived

from a new threadblock-aware compiler pass with unmodified applications.

3.2.1 LADM System Design

Figure  3.5 depicts an end-to-end overview of our proposed LADM mechanism. First,

we perform a symbolic off-line index analysis on CUDA source code during the compilation

process, detailed in Sections  3.2.2 and  3.2.3 . Our analysis generates a locality table, which

is embedded in the executable. There is one row in the table for every access to a global

data pointer passed to every global CUDA function. The compiler fills the locality table

with the detected locality type, data type and the MallocPC of the associated cudaMal-

locManaged call from the CPU that allocated this data structure. The MallocPC is used
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for (int m = 0; m < Width/TILE_WIDTH; ++m) {

/*Original Code A: Row Horizontally-shared*/
As[ty][tx] = A [   Row * WIDTH + m*TILE_WIDTH+tx ];

// Prime comp.
// As[ty][tx] = A [( by * TILE_WIDTH + ty )

* (blockDim.x*gridDim.x) + tx + m*TILE_WIDTH ];

/*Original Code B: Column vertically-Shared*/
Bs[ty][tx] = B [(m*TILE_WIDTH+ty)*WIDTH +Col]; 

// Prime comp.  B[ (m*TILE_WIDTH*blockDim.x*gridDim.x) +

// Prime comp.    (ty*(blockDim.x*gridDim.x)+(bx*TILE_WIDTH+tx)) ]

…
}
/*Original Code C: No Locality*/
C[Row * Width+Col] = Pvalue;
// Prime comp.
// C[(by * TILE_WIDTH + ty ) * (blockDim.x*gridDim.x)

+ ( bx * TILE_WIDTH + tx) ] = Pvalue;

loop-invariant(by,…)

loop-variant(m,gx,…)

loop-variant(m,…)

loop-invariant(bx,…)

loop-invariant(bx,by,…)

Figure 3.6. Matrix multiplication indices analysis

to connect the symbolic compile-time information with dynamic runtime parameters. At

runtime, each cudaMallocManaged call inserts the number of allocated pages and address

information into the kernel/argument tuples associated with this call. The mapping between

cudaMallocManaged calls and kernel launch arguments is provided by the CPU compiler.

Fortunately, the way GPU programs are written today, cudaMallocManaged(ptr); followed

by kernel launch(ptr); almost always occurs. This allows us to statically determine which

cudaMallocManaged is associated with which kernel argument. We use traditional pointer

aliasing analysis to determine the safety of this argument binding. If the static analysis is

not successful, then LADM has no choice but to use a default policy for that particular

call operation. Finally, on every kernel launch, the Locality-Aware Scheduling and Place-

ment (LASP) component, described in Section  3.2.4 , reads the locality table and decides the

proper scheduling policy, data placement and cache strategy to reduce off-chip traffic and

mitigate NUMA impact.
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Figure 3.7. Common locality types found in GPU workloads. Arrows indi-
cate threadblock motion and datablocks are shaded based on the shade of the
threadblock (TB) that accesses them.

3.2.2 Threadblock-centric Locality Patterns

When work is launched to a transparent NUMA-GPU system, threads are assigned to

GPUs at the threadblock granularity [  10 ]. To create a 1:1 mapping between data placement

and threadblock scheduling, we define a datablock as the region of data accessed by a thread-

block on each iteration of the kernel’s outermost loop. For example, consider the simplified

kernel code for a dense A × B = C matrix-matrix multiply listed in Figure  3.6 . Each thread

computes one output element of the C matrix, striding through a row of A and a column of

B on each loop iteration. Across an entire threadblock, each iteration of the loop will access

a square region of both matrix A and B. The data accessed by the threadblock on this loop

iteration is what we call a datablock. The datablock’s size is directly related to the size

of the data type being accessed by each thread, the dimensions of the threadblock and the

components that make up the array index. Using this taxonomy, it is possible to classify the

way threadblocks access data structures into one of three categories: No datablock-locality,

row/column-locality, and intra-thread locality. Figure  3.7 plots a visual representation of

our datablock-locality definitions.
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Table 3.2. Index analysis and taken actions. bx = blockIdx.x, by = block-
Idx.y, gDimx = gridDim.x, m is an induction variable. For the loopInvariant
function, if one of bx or by is not listed, then none of the terms in the equation
contain that variable. For the loopV ariant function, if gDimx is not listed,
then none of the terms in the equation contain gDimx.

Locality Types Index Equation Fig Dims Threadblock
Scheduling

Data
Placement

Cache
Policy

1: No
datablock-
locality

loopInvariant(bx, by, ...) +
stride × m ∀ stride ̸= 1

 3.7a 1D/2D Align-aware Stride-aware RTWICE

2: Row-
locality, hori-
zontally shared

loopInvariant(by, ...) +
loopV ariant(m, ...)

 3.7b 2D Row-binding Row-based RTWICE

3: Column-
locality, hori-
zontally shared

loopInvariant(bx, ...) +
loopV ariant(m, ...)

 3.7b 2D Col-binding Row-based RTWICE

4: Row-
locality, verti-
cally shared

loopInvariant(by, ...) +
loopV ariant(m, gDimx, ...)

 3.7b 2D Row-binding Col-based RTWICE

5: Column
locality, verti-
cally shared

loopInvariant(bx, ...) +
loopV ariant(m, gDimx, ...)

 3.7b 2D Col-binding Col-based RTWICE

6: Intra-thread
locality

loopV ariant(m) = m  3.7c 1D Kernel-wide Kernel-wide RONCE

7: Unclassified none of the above N/A 1D/2D Kernel-wide Kernel-wide RTWICE

Figure  3.7a shows the No datablock-Locality (NL) case, where threadblocks do not access

the same datablocks. A simple example of an application with no datablock-locality is

C = A + B vector addition, where each threadblock accesses a contiguous region of A and

B with no reuse or sharing. Stencil applications are another example where there is no

locality among threadblocks, except among the adjacent elements. Applications that have

no datablock-locality come in two forms. In the first, the kernel does not contain any loops,

each datablock is computed on and then discarded. In the second, the kernel has loops and

on each iteration of the loop, the threadblock strides across the data structure to another

non-shared datablock. We call this movement among datablocks, threadblock motion. As

shown in Figure  3.7a , threadblocks can access exclusive datablocks with a stride in either

the x or y direction. Strided accesses frequently exist in GPGPU workloads when kernels

increase the work in each thread by launching fewer threads than elements in the input data

structures. Increasing work granularity per thread is a widely used optimization in CUDA

programs to reduce thread initialization overhead and redundant computation [ 128 ].

It is also common for groups of threadblocks to share groups of datablocks. Figure  3.7b 

illustrates a sharing pattern where datablocks are accessed in either the row or column di-
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rections, by either a row or a column of threadblocks from the thread grid. For example,

consider the A matrix in A × B = C matrix-matrix multiplication. A row of datablocks

is shared among horizontal threadblocks. The accesses to the B matrix in matrix-matrix

multiply demonstrate a different pattern. Here, a column of datablocks will be shared among

vertical threadblocks. Two other possible combinations occur when rows are vertically shared

and when columns are horizontally shared. We call workloads that have Row and/or Column

Locality RCL workloads.

Figure  3.7c demonstrates the last type of common locality present in GPU workloads:

Intra-Thread Locality (ITL). For these data structures, individual threads exhibit spatial

locality across strided, regularly-sized datablocks or data-dependent, irregularly-sized dat-

ablocks. A number of prior works have shown that these applications can have significant

intra-thread locality [ 87 ], [ 129 ]–[ 132 ], making shared-cache interference a significant problem.

3.2.3 Static Locality and Sharing Detection

We make the observation that static compiler analysis can make reasonable predictions

about which of these three common locality patterns exist in GPU programs. We show that

each locality and sharing pattern can be predicted based on an index analysis of accesses to

each global data structure. The core idea is to extend traditional CPU index analysis [ 104 ]

to be aware of threadblock-level definitions of parallelism. This index analysis is performed

on the CUDA source code.

For regular kernels, there are two key elements we seek to determine from the static

analysis: (1) the direction the threadblock moves on each loop iteration (i.e., threadblock

motion), and (2) which threadblocks in the grid share the same datablocks. To determine

these two variables, our source analysis begins by identifying global array accesses and ex-

panding their index equations such that they are composed of only prime variables. We

consider the following variables prime: thread IDs, block IDs, grid dims, block dims, induc-

tion variables (i.e., the loop counter) and constants. Using these variables, we then perform

the analysis detailed in Algorithm  1 to classify the access, if possible.

70



Table  3.2 details the general index equations that are matched by our static analysis

to determine which type of locality is predicted for each global array access. The compiler

will attempt to match each array access to one of these 6 mutually exclusive types using

Algorithm  1 . The basic idea behind our index analysis is to break the index in two groups of

terms. One group contains all the terms dependent on an induction variable, which we call

the loop-variant group. The second group is composed of all the terms that are not dependent

on the induction variable, which we call the loop-invariant group. That is, all the terms that

are multiplied by an induction variable are combined in the loop-variant group, and all the

remaining terms are collected in loop-invariant group. The loop-variant group determines the

threadblock motion of the access, i.e., do threadblocks move horizontally or vertically through

the data structure and how far do they move. Conversely, the loop-invariant terms do not

change on each loop iteration and are used to determine which datablock each threadblock

starts at.

To illustrate how global array-based data structures are typically accessed in GPU pro-

grams, we refer to the matrix multiplication example in Figure  3.6 . The comments below

the accesses to matrix A, B and C decompose the Row, Col and WIDTH variables into the

prime components using backward substitution and algebraic simplification. Once the access

has been broken down into invariant and variant components, the compiler determines which

key variables the groups are dependent on and detects the locality type using Algorithm  1 .

The classification in Algorithm  1 begins by testing the special-case that the only term

in the loop-variant group is the induction variable multiplied by 1. If this is the case, then

we assume the access has intra-thread locality and classify the access as ITL (row 6 in Ta-

ble  3.2 ). If that test fails, the algorithm tests if the access has no locality, by checking if

the loop-invariant terms are dependent on both bx and by (for 2D threadblocks) or just bx

(for 1D threadblocks). If so, we predict the access has no locality and then derive the stride

by dividing the loop-variant term by m, classifying the access as row 1 of Table  3.2 . The

access to C in Figure  3.6 is an example of a no locality access. If neither of these first checks

are true, then we search for the 4 sharing patterns in Figure  3.7b . If the loop-invariant

term depends on by and not bx, then the starting datablock of all the threadblocks with the
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Algorithm 1 Access classification algorithm.
1: if loopV ariant(m, ...) = m then
2: access = ITL;
3: else if loopInvariant(bx, by, ...) then
4: access = NoLocality;
5: stride = loopV ariant(m, ...)/m;
6: else if 2D Blocks then
7: if loopInvariant(by, ...) then
8: access = ThreadblockRowShares;
9: else if loopInvariant(bx, ...) then

10: access = ThreadblockColsShares;
11: if loopV ariant(m, gDimx, ...) then
12: access += ColumnThreadblockMotion;
13: stride = loopV ariant(m, gDimx, ...)/m;
14: else if loopV ariant(m, ...) then
15: access += RowThreadblockMotion;

same by (i.e., all threadblocks in the same row) will be the same. The same is true for a

dependence on bx only, except threadblocks in the same grid column start in the same place.

After the sharing pattern is determined, the loop-variant terms are checked to determine

the threadblock motion direction. If the loop-variant terms depend on gDimx, then we

predict a whole row is being skipped on each iteration and that the threadblock motion is

in the column direction, otherwise we predict that threadblocks move across a row of the

data structure so long as a loop-variant term exists. Based on which combination of sharing

and motion is detected, one of rows 2 through 5 in Table  3.2 is selected for accesses in 2D

threadblocks. The A access in Figure  3.6 is an example of row threadblock motion, shared

across threadblocks in a grid row and the B access illustrates column threadblock motion,

shared across columns of threadblocks. If the array index does not match one of the locality

types in Table  3.2 , for example the array index contains a data-dependent component with

no intra-thread locality (i.e., X [Y [tid]]), we leave it as unclassified (row 7 in Table  3.2 ) and

the default placement policy is used.

After classifying each of the global array accesses in a kernel to one of the rows in

Table  3.2 , the compiler’s work is done. The final classification of each symbol is embedded
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into the binary and used by the runtime system, described in the next section, to determine

appropriate placement and threadblock scheduling.

3.2.4 Locality-Aware Scheduling and Page Placement

LASP is LADM’s runtime system that implements page placement and threadblock

scheduling based on locality patterns identified by the compiler.

LASP Data Placement

Based on the locality pattern detected for each data structure, LASP places data using

the following methods.

Stride-aware placement (Row 1 in Table  3.2 ): To avoid off-chip traffic from

strided accesses, LASP must ensure that all the datablocks accessed by a particular thread-

block map to the same node. Using the stride information provided by the compiler analysis,

we determine which pages need to be co-located on a given node. We interleave the pages in

a round robin fashion using the page granularity given by Equation  3.1 . Note that, in order

to determine which threadblock maps to the next node we need to know what decision the

threadblock scheduler will make. Here we assume that the aligned scheduler described in

Section  3.1.2 will be used.

InterleavingGranularity =
⌈

strideSize
#nodes

⌉pageSize

(3.1)

Row- and column-based placement (Rows 2-5): LASP uses row- or column-based

page placement to put a whole row or column of data on the same node. For example,

when rows are horizontally shared, row-based placement is used along with the row-binding

scheduler (Section  3.1.2 ). When column-based locality is horizontally shared, column-based

placement is employed with row-binding scheduler. In column-based placement, we interleave

data over nodes in a round-robin fashion using Equation  3.1 where stride size is the data

structure’s row width.
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Kernel-wide data partitioning (Rows 6 and 7): If a data structure has intra-

thread locality or unclassified irregular accesses, such as graph traversal workloads. In this

case, we fall back to the default data placement strategy of kernel-wide partitioning that has

experimentally shown good performance for workloads that use CSR data or perform stencil

operations. In these difficult to predict workloads, LADM relies on our caching mechanism

described in Section  3.2.5 to further mitigate off-chip accesses by improving the L2 hit rate.

Timing of page placement and prefetching opportunities: LASP works with

UVM, relieving the programmer from the burden of manually copying memory to the device.

However, unlike traditional first-touch page placement, LASP makes a prediction about

where every page should be placed. The pages for the data structure can be copied to the

correct node as soon as the first kernel that uses a data structure is launched. We must

wait until kernel launch time in order to determine the threadblock and grid sizes, which are

required to compute the datablock size and strides. However, if the compiler can statically

determine what the size of the first kernel launch will be, copying could potentially be started

before kernel launch. It is possible that the placement derived from the first kernel launch

is sub-optimal for subsequent kernel launches. Despite this potential disagreement, we find

that the access pattern from the first kernel launch is often consistent with subsequent kernel

launches. We leave the exploration of inter-kernel data transformations as future work.

LASP Threadblock Scheduling

Based on the locality pattern detected for each data structure, LASP schedules thread-

blocks using the following methods.

Alignment-aware and kernel-wide scheduler (Rows 1, 6 and 7): In the ab-

sence of any strong row or column data affinity, the scheduler attempts to load balance

the work in a page-aligned fashion. To avoid the issue of page-misalignment suffered by

Batch+FT [ 3 ], we can predict what the minimum threadblock batch size by using Equa-

tion  3.2 , where dividing the page size by the datablock size tells us the minimum number

of consecutive threadblocks (MinTBBatch) that should be assigned to each node to avoid

misaligning datablocks and threadblocks.
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M inTBBatch = pageSize
datablockSize (3.2)

The minimum batch size will change depending on the page size and kernel arguments,

since the datablock size will vary between kernels. As a result, the static batch size used in [ 3 ]

will suffer when the datablocks are mis-aligned. In workloads with no locality, we have found

that the datablock size is often equal to bx×primitiveSize, where primitive size is 4 or 8 bytes

(i.e., float versus double). Unlike CODA [ 102 ], which changes the physical page interleaving

granularity and proposes fine-grained sub-page interleaving to ensure alignment, LASP keeps

the page interleaving as-is and applies dynamic batch sizing using Equation  3.2 to maintain

data alignment. The scheduler interleaving granularity can be any multiple of the batch size

(i.e., n × MinTBBatch, n ≥ 1). In kernel-wide scheduling, n is the maximum possible value,

in which we partition the threadblock grid into N contiguous chunks of threadblocks, where

N is the number of GPU nodes.

Row- and Column-binding scheduler (Rows 2-5): The row-binding scheduler will

place all threadblocks from the same row on the same node such that row-level datablock-

locality is exploited. For a grid with more rows than GPU nodes, we place contiguous rows

of threadblocks on each node. Similar to the row-binding scheduler, the column-binding

scheduler assigns all threadblocks from the same column of the grid to the same node in

order to exploit column-level datablock-locality.

Hierarchical-aware Scheduling: To exploit the fact that chiplets on the same discrete

GPU will have greater bandwidth than chiplets that reside on different GPUs, the hardware

and runtime system must coordinate to expose the hierarchically clustered locality domains

of the underlying hardware to LASP. This allows LASP to assign adjacent threadblocks to

the physically co-located chiplets on the same GPU, before moving to the next GPU. LASP

employs a hierarchical affinity round-robin scheduler wherein we assign a chuck of contiguous

rows or columns of threadblocks to a discrete GPU, then the assigned threadblocks are

scheduled in a round-robin fashion among the chiplets within the GPU.
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Figure 3.8. llustration of existing NUMA caching policy cache-remote-twice
(the solid line) and our proposed cache-remote-once cache management strat-
egy (the dashed line)

Data structure Locality Disagreements: Some kernels will access multiple data

structures in different ways. When this happens, each structure will be placed in the way we

predict is optimal, but there is only one threadblock scheduler we can select for a particular

kernel. For example, in the matrix multiply example in Figure  3.6 , the placement of the

A matrix favors a row-binding threadblock scheduler, whereas the placement of B favors

column-binding scheduling. Since it is not possible to give each data structure the scheduler

that suits it best, we must pick a winner. To break the tie, we favor the scheduling policy

that is associated with the larger data structure, because it will intuitively have a bigger

effect on off-chip accesses, whereas smaller, frequently accessed data structures have a much

greater chance of residing and hitting in the requesting node’s L2. So, in our matrix multiply

example, if matrix A is larger than B, we opt for a row-binding scheduling and rely on the

L2 cache to reduce the off-chip traffic of the smaller matrix B. Unequal matrix sizes are

commonly found in deep learning applications where a small matrix of images is multiplied

by a large matrix of neuron weights.

3.2.5 Compiler-assisted Remote Request Bypassing

LASP is an efficient solution for regular workloads. However, there are additional oppor-

tunities presented in NUMA-GPU when the workloads are irregular and have intra-thread

locality. Predicting the data-dependent access patterns of these irregular applications is not
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possible at compile time. Therefore, these irregular workloads, shown in Figure  3.7c , rely

heavily on L2 caches to reduce off-chip traffic and mitigate NUMA issues [ 10 ]. We seek

to improve these workloads via an intelligent cache management technique we call cache-

remote-once that makes better use of cache in NUMA-GPUs.

Figure  3.8 illustrates the key idea of cache-remote-once (RONCE). In our baseline, the

L2 cache is shared between local and remote traffic, similar to the dynamic shared L2 cache

proposed in [  10 ]. That is, the remote request checks the local L2 first, and if it is a miss,

the request is redirected to the correct home node through the inter-chip connection. In this

scenario, remote read requests are cached twice, once at the L2 cache of the home GPU and

another time at the L2 cache of the GPU that sends the request. In fact, cache-remote-twice

(RTWICE) can be beneficial in RCL workloads that count on the remote cache to minimize

the NUMA effects on the victim data structure. In these workloads, remote requests are

accessed by multiple SMs across the GPUs (i.e. inter-GPU locality), as shown by the solid

line in Figure  3.8 . However, workloads with intra-thread locality, caching requests twice

is a waste of cache resources if the line is only accessed by one warp and one SM in the

requesting GPU, as depicted by the dashed line in Figure  3.8 . Therefore, there is no need

to cache the request at the home GPU, since it may interfere with local traffic. To this end,

we propose compiler-assisted remote request bypassing (CRB). In CRB, we use our compiler

index analysis to determine the locality type found in the program (i.e., RCL vs ITL) and

enable the RONCE bypassing policy only in ITL workloads, since our experiments show that

applying RONCE for RCL may hurt the performance.

3.3 Experimental Methodology

3.3.1 Simulation Methodology

To evaluate LADM we use GPGPU-Sim version 4.0 with the recent memory system

improvements from Accel-Sim simulation framework [  133 ]. We have modified the simulator

in order to model a hierarchical multi-GPU design with four GPUs connected via a switch,

where each GPU is composed of four chiplets as depicted in Figure  3.1 . The configuration

parameters used in our system are listed in Table  3.3 and are similar to prior works [ 3 ],
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[ 10 ], [ 134 ]. We have implemented the dynamically shared L2 multi-GPU cache coherence

proposal from Milic et al. [ 10 ] with cache insertion policy changes that have been described

in Section  3.2.5 .

We have implemented the NUMA-GPU analysis proposed in the CODA system [ 102 ] and

have also extended it to be aware of the GPU’s hierarchical nature (H-CODA). We consider

the offline profiling proposed in CODA to be an orthogonal approach to static analysis, thus

we did not apply it to any evaluated technique. In all results, H-CODA is operating on

top of the baseline cache coherence system. The original CODA work did not utilize any

remote caching capability in hardware, but as shown in [  10 ], utilizing remote caching in

NUMA-GPUs significantly improves performance scalability on a wide range of workloads.

In particular, our experiments show that enabling remote caching improves performance of

general matrix multiplication (GEMM) operations by 4.8× on average, reducing off-chip

traffic by 4×.

3.3.2 Workload Selection and Characterization

We run LADM on a selection of 53 scalable workloads from Rodinia 3.1 [ 72 ], CUDA

SDK [ 73 ], Parboil [ 74 ], Lonestar [ 135 ] and Pannotia [ 136 ]. In addition, we include a variety

of deep learning matrix math operations in which we exploit intra-layer model parallelism

by running GEMM operation on multiple GPU nodes as practiced in large model training

frameworks [ 137 ]. We used the optimized sgemm from [  73 ], [ 74 ] as our reference implemen-

tation of GEMM and we extract layer and matrices dimensions from several popular DL

networks [ 138 ]–[ 140 ]. Like prior work [ 3 ], [ 10 ], we initially pare a broader set of 53 work-

loads from all the benchmarks suites listed above and select only those workloads that have

enough parallelism to scale-up on our simulated multi-GPU system. Of these 27 scalable

benchmarks, LADM’s locality detector places 24 into identifiable patterns and places 3 into

the unclassified category. Table  3.4 lists the workloads used in this study, along with their

detected locality types, scheduler decision, number of launched threadblocks, input size and

L2 sector misses per kilo warp instructions (MPKI). It is worth noting that a workload can

78



Table 3.3. Multi-GPU Configuration
#GPUs 4 GPUs, 4 chiplets per GPU
#SMs 256 SMs (64 SMs per GPU, 16 SMs per chiplet)
SM configuration Volta-like SM [ 133 ], 64 warps, 4 warp scheds, 64KB shared mem-

ory, 64KB L1 cache, 1.4 GHZ
L2 cache 16MB (1MB per GPU chiplet), 256 banks, Dynamic shared L2

with remote caching [ 10 ]
Intra-Chiplet Connect 16x16 crossbar, total BW=720 GB/s
Inter-Chiplet Connect bi-directional ring, 720 GB/s per GPU
Inter-GPU Connect 4x4 crossbar, 180 GB/s per link, bi-directional
Monolithic Interconnect 256x256 crossbar, total BW=11.2 TB/s
Memory BW 180 GB/s per chiplet, 720 GB/s per GPU

Table 3.4. Workloads used to evaluate LADM in simulation.
Workload Locality

Type
Scheduler
Decision

TB
Dim

Input
Size

Launched
TBs

L2
MPKI

VecAdd [ 73 ] NL Align-aware (128,1) 60 MB 10240 570
SRAD [ 72 ] NL Align-aware (16,16) 96 MB 16384 290
HS [ 72 ] NL Align-aware (16,16) 16 MB 7396 58
ScalarProd [  73 ] NL-Xstride Align-aware (256,1) 120 MB 2048 329
BLK [ 73 ] NL-Xstride Align-aware (128,1) 80 MB 1920 291
Histo-final [ 74 ] NL-Xstride Align-aware (512,1) 36 MB 1530 268
Reduction-k6 [ 73 ] NL-Xstride Align-aware (256,1) 32 MB 2048 1056
Hotspot3D [ 72 ] NL-Ystride Align-aware (64,4) 128 MB 1024 87
CONV [ 73 ] RCL Row-sched (16,4) 120 MB 18432 66
Histo-main [ 74 ] RCL Col-sched (16,16) 36 MB 1743 201
FWT-k2 [ 73 ] RCL Col-sched (256,1) 64 MB 4096 102
SQ-GEMM [ 73 ] RCL Row-sched (16,16) 128 MB 2048 61
Alexnet-FC-2 [ 73 ], [ 139 ] RCL Col-sched (32,4) 400 MB 2048 8
VGGnet-FC-2 [ 73 ], [ 139 ] RCL Col-sched (32,4) 76 MB 8192 8
Resnet-50-FC [ 73 ], [ 139 ] RCL Col-sched (32,4) 99 MB 16384 17
LSTM-1 [ 73 ], [ 140 ] RCL Col-sched (32,4) 64 MB 4096 6
LSTM-2 [ 73 ], [ 140 ] RCL Col-sched (32,4) 32 MB 2048 27
TRA [ 73 ] RCL Row-sched (16,16) 32 MB 16384 291
PageRank [ 136 ] ITL Kernel-wide (128,1) 18 MB 23365 85
BFS-relax [ 135 ] ITL Kernel-wide (256,1) 220 MB 2048 508
SSSP [ 136 ] ITL Kernel-wide (64,1) 57 MB 4131 585
Random-loc [ 120 ] ITL Kernel-wide (256,1) 64 MB 41013 4128
Kmeans-noTex [ 87 ] ITL Kernel-wide (256,1) 60 MB 1936 158
SpMV-jds [ 74 ] ITL Kernel-wide (32,1) 30 MB 4585 640
B+tree [ 72 ] unclassified Kernel-wide (256,1) 16 MB 6000 112
LBM [ 74 ] unclassified Kernel-wide (120,1) 370 MB 18000 784
StreamCluster [ 74 ] unclassified Kernel-wide (512,1) 56 MB 1024 89

contain more than one locality type and kernel. In the table, we list the dominant locality

type found in the dominant kernel.

3.3.3 Hardware Validation of LASP Principles

Like prior work, the LADM system relies on co-designed hardware and software features

to maximize locality and performance. Features like remote caching, inter-GPU cache coher-

ence, programmatically available hierarchical locality cluster information, and the capability
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to perform fine grained data placement among chiplets in GPUs are not present in GPUs

that are available to researchers today. However, the compiler analysis provided by LASP

allows us to test the software based placement of thread and data blocks on real GPUs today.

We hand implemented LASP for the RCL machine learning workloads listed in Table  3.4 

when running on a 4-GPU cluster within an NVIDIA DGX-1 system [ 109 ].

We use the cudaMemAdvise API to place the data in the correct node, assuming a 4k

page. For threadblock scheduling, we used multi-kernel execution where we launch each ker-

nel on a different GPU using CUDA streams. The kernel code was not changed and we did

not employ any data replication or reactive solutions as practiced in optimized multi-GPU

libraries [ 137 ], [ 141 ]. If we had access to the GPU driver, we could provide these features to

the user transparently. When applying LASP’s input aware scheduler and placement on real

hardware, we observed 1.9× and 1.4× performance improvement compared to CODA and

kernel-wide partitioning respectively. This performance improvement is achieved by preserv-

ing row- and column-locality and favoring column-binding scheduling over the row-binding

scheduling when matrix B is larger than matrix A. Although this speedup required hand

application coding to implement the LASP placement functionality, it is an existence proof

that static analysis based locality management can lead to significant changes in performance

on real systems today and into the future.

3.4 Experimental Results

3.4.1 Simulation Results of LADM

Figure  3.9 and  3.10 show the normalized performance and off-chip memory traffic for

LADM, H-CODA [ 102 ] and a hypothetical monolithic GPU, when running on our simulated

multi-GPU system described in Section  3.3.1 . Compared to H-CODA, LADM improves

the performance by 1.8× and decrease inter-GPU memory traffic by 4× on average. H-

CODA and LADM are both aware of page-alignment issues. Thus, for the VecAdd, they

both achieve the same performance. However, LADM achieves better performance in the

remaining no-locality workloads due to its stride-aware placement. H-CODA fails to exploit

the strided accesses found in the no-locality workloads, which causes more than 50% of
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Figure 3.9. Performance of H-CODA, LASP with RTWICE and RONCE,
LADM and hypothetical monolithic GPU. The data are normalized to H-
CODA performance.
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Figure 3.10. Percentage of total memory traffic that goes off-node for H-
CODA vs LASP vs LADM.

memory accesses to go off-chip. Moreover, in stencil workloads, SRAD, HS and HotSpot3D,

LADM outperforms H-CODA by 4× on average by launching contiguous threadblocks and

exploiting adjacent locality of stencil workloads.

In column-locality and row-locality workloads, LADM outperforms H-CODA by 2.25×.

Exploiting the column and row locality efficiently and launching the same threadblock row or

column to the same chip has a substantial effect on performance. However, due to the round-

robin page and threadblock interleaving of H-CODA, it fails to exploit row- and column-

locality. In the machine-learning workloads, L2 remote-caching filters out off-chip traffic

significantly with only 8% remaining in H-CODA. However, because of its row and column

schedulers, along with its input size awareness, LADM reduces off-chip traffic further, and

outperforms H-CODA by 17% on average. Although H-CODA’s static analysis is agnostic to
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column sharing among threadblocks, it performs well when column placement is preferable.

The matrix sizes in these machine-learning layers are aligned such that H-CODA’s static

page interleaving happens to place shared pages on the same node.

In the ITL workloads, H-CODA fails to exploit the locality between adjacent edges in

graphs represented in CSR format. In contrast, LASP preserves locality by partitioning the

data into large chunks of consecutive pages, improving performance by 1.7× on average.

Furthermore, after applying our RONCE policy, LASP+RONCE outperforms RTWICE by

an average of 38%. However, applying RTWICE outperforms RONCE by 8% on average

for RCL and stencil workloads. Thus, CRB takes the best of both policies by enabling

RONCE in ITL workloads and RTWICE in other locality patterns. In the unclassified

workloads, LADM does not improve either performance or off-chip data accesses, except for

streamcluster. Some workloads, like b+tree and streamcluster achieve higher performance

than the monolithic GPU due to reducing bank conflicts and higher cache hit rate in the

distributed L2 cache of the multi-GPU configuration. Similar trends were also observed in

prior work [  120 ].

Overall, LADM outperforms H-CODA by 1.8× on average and capturing 82% of mono-

lithic chip performance. The reasons behind the remaining 18% performance gap between

LADM and monolithic chip are three-fold. First, complex indices are used, as in lbm and

histo, and LADM fails to exploit their locality. Second, irregular data-dependent accesses

with no intra-thread locality are frequently generated in many ITL graph workloads, and L2

remote-caching has limited impact to reduce off-chip traffic. Third, the L2 cache coherence

overhead, that invalidates L2 caches between kernel boundaries, combined with global syn-

chronization, destroys the inter-kernel locality that was exploited in the large L2 cache of the

monolithic chip. Recent work [ 134 ] on hardware-supported L2 cache coherence is orthogonal

to LADM and can be integrated to reduce the L2 coherence overhead.

3.4.2 Remote Request Bypassing Analysis

To better understand the remote request bypassing technique, we classify incoming L2

traffic into one of three categories: (1) LOCAL-LOCAL: A memory request generated from a
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(b) SQ-GEMM high reuse workload.

Figure 3.11. Case study of RONCE cache policy effectiveness on high and
low reuse workloads.

local (in-node) core and serviced by local DRAM. (2) LOCAL-REMOTE: A memory request

generated from a local (in-node) core. On a miss, the DRAM for the memory request is on a

remote node. (3) REMOTE-LOCAL: A memory request generated from a remote node. On

a miss, the DRAM for the memory request is on the local DRAM node. The total number

of misses in LOCAL-REMOTE traffic is equal to the total number of REMOTE-LOCAL

accesses.

Figure  3.11a presents a case study of the random loc workload, where RONCE improves

the performance. In random loc, REMOTE-LOCAL traffic has a low hit-rate when applying

RTWICE. Additionally, REMOTE-LOCAL represents 45% of the L2 traffic and causes severe

contention with local accesses. Applying RONCE to bypass the REMOTE-LOCAL accesses

gives more cache resources to the other traffic types and improves total L2 hit-rate by

4×. Improving the LOCAL-REMOTE hit-rate leads to fewer off-chip accesses, resulting

in better performance. In contrast, Figure  3.11b plots the results when RONCE hurts the

performance in SQ-GEMM workload. As shown in figure, REMOTE-LOCAL represents
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12% of the traffic and has a relatively high hit-rate from the inter-GPU data sharing of the

shared matrix. Thus, bypassing REMOTE-LOCAL leads to a performance degradation.

3.5 Summary

Recent work has shown that building GPUs with hundreds of SMs in a single monolithic

chip will not be practical due to slowing growth in transistor density, low chip yields, and

photoreticle limitations. To maintain performance scalability, proposals exist to aggregate

discrete GPUs into a larger virtual GPU and decompose a single GPU into multiple-chip-

modules with increased aggregate die area. These approaches introduce non-uniform mem-

ory access (NUMA) effects and lead to decreased performance and energy-efficiency if not

managed appropriately. To overcome these effects, we propose a holistic Locality-Aware

Data Management (LADM) system designed to operate on massive logical GPUs composed

of multiple discrete devices, which are themselves composed of chiplets. LADM has three

key components: a threadblock-centric index analysis, a runtime system that performs data

placement and threadblock scheduling, and an adaptive cache insertion policy. The run-

time combines information from the static analysis with topology information to proactively

optimize data placement, threadblock scheduling, and remote data caching, minimizing off-

chip traffic. Compared to state-of-the-art multi-GPU scheduling, LADM reduces inter-chip

memory traffic by 4× and improves system performance by 1.8× on a future multi-GPU

system
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4. SINGLE INSTRUCTION MULTIPLE REQUEST

PROCESSING FOR DATA CENTER MICROSERVICES

To meet both latency and throughput demands, contemporary data centers typically run mi-

croservices on multicore, OoO CPUs with and without Simultaneous Multithreading (SMT).

Previous academic and industrial work [ 30 ], [ 142 ]–[ 147 ] has shown that current CPUs are

inefficient in the data center as many on-chip resources are underutilized or ineffective. To

make better use of these resource, on-chip throughput is increased [  30 ], [ 144 ], [ 148 ] by adding

more cores and raising the SMT degree [ 149 ]–[ 154 ]. Figure  4.1 visualizes the energy-efficiency

and single thread latency of different processor design points, logically separated by their exe-

cution model. On the low-latency end are OoO Multiple Instruction Multiple Data (MIMD)

CPUs with a low SMT-degree. Different CPU designs trade-off single thread latency for

energy-efficiency by increasing the SMT-degree and moving from OoO to in-order execution.

On the high-efficiency end are in-order Single Instruction Multiple Thread (SIMT) GPUs

that support thousands of scalar threads per core. Fundamentally, GPU cores are designed to

support workloads where single-threaded performance can be sacrificed for multi-threaded

throughput. However, we argue that the energy-efficient nature of the GPU’s execution

model and memory system can be leveraged by low-latency OoO cores, provided the work-

load performs efficiently under SIMT execution. SIMT machines aggregate scalar threads

into vector-like instructions for execution (i.e. a warp). To achieve high energy-efficiency,

the threads aggregated into each warp must traverse similar control-flow paths, otherwise

lanes in the vector units must be masked off (decreasing SIMT-efficiency) and the benefits

of aggregation disappear.

We make the observation that contemporary microservices exhibit a SIMT-friendly ex-

ecution pattern. Data center nodes running the same microservice across multiple requests

create a natural batching opportunity for SIMT hardware, if service latencies can be met.

Contemporary GPUs are ill-suited for this task, as they forego single threaded optimiza-

tions (OoO, speculative execution, etc.) in favor of excessive multithreading. Prior work on

directly using GPU hardware to execute data center applications [ 155 ], [ 156 ] reports up to

6000× [ 156 ] higher latency than the CPU. Furthermore, accessing I/O resources on GPUs re-
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quires CPU co-ordination [ 156 ]–[ 160 ] and GPUs do not support the rich set of programming

languages represented in contemporary microservices [ 27 ].

We propose replacing the CPUs in contemporary data centers with a general-purpose

architecture customized for microservices: the Request Processing Unit (RPU). The RPU

improves the energy-efficiency of contemporary CPUs by leveraging the frontend and mem-

ory system design of SIMT processors, while meeting the single thread latency and pro-

grammability requirements of microservices by maintaining OoO execution and support for

the CPU’s ISA and software stack. Under ideal SIMT-efficiency conditions, the RPU im-

proves energy-efficiency in four ways. First, the 30% of total data center energy spent on

CPU instruction supply can be reduced by the width of the SIMT unit (up to 32 in our

proposal). Second, SIMT memory coalescing aggregates access among threads in the same

warp, producing up to 32× fewer memory system accesses. Finally, SIMT pipelines make

use of vector register files and SIMD execution units, saving area and energy versus a MIMD
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Table 4.1. CPU vs RPU vs GPU Key Metrics
Metric CPU GPU RPU

Thread/Execution Model SMT SIMT SIMT
General Purpose Programming ✓ ✗ ✓

System Calls Support ✓ ✗ ✓

Service Latency ✓ ✗ ✓

Energy Efficiency (Requests/Joule) ✗ ✓ ✓

pipeline of equivalent throughput. Although the cache hit rate for SMT CPUs may be

high when concurrent threads access similar code/data, bandwidth and energy demands on

both cache and OoO structures will be higher than an OoO SIMT core where threads are

aggregated.

Moving from a scalar MIMD pipeline to a vector-like SIMT pipeline has a latency cost. To

meet timing constraints, the clock and/or pipeline depth of the SIMT execution units must

be longer than that of a MIMD core with fewer threads. However, the SIMT core’s memory

coalescing capabilities help offset this increase in latency by reducing the bandwidth demand

on the memory system, decreasing the queueing delay experienced by individual threads. In

our evaluation, we faithfully model the RPU’s increased pipeline latency (Section  4.3 ) and

demonstrate that despite a pessimistic assumption that the ALU pipeline 4× deeper in the

RPU [ 161 ] and that L1 hit latency is > 2× higher, the average service latency is only 33%

higher than a MIMD CPU chip.

Critical to the RPU’s success is a well designed software system, aware of the hardware’s

aggregating nature that can balance SIMT efficiency and end-to-end request latency. To

meet these demands, we co-design the RPU with a SIMR-aware software system pictured

in Figure  4.2 . The RPU executes a general-purpose CPU ISA, supporting all the same

functionality as a typical CPU core, but aggregates the use of all its frontend structures

over multiple threads. Table  4.1 contrasts CPUs, GPUs and the RPU at a high level.

At runtime, a SIMR-aware HTTP server groups similar requests together as they enter the

microservice graph. To maintain end-to-end latency requirements and keep throughput high,

we introduce a similarity-aware batching technique to increase SIMT efficiency, hardware

resource tuning to reduce cache and memory contention, SIMR-aware memory allocation to
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maximize coalescing opportunities, and a system-wide batch split mechanism to minimize

latency when requests traverse divergent paths with drastically different latencies.

4.1 Background and Motivation

In this section, we detail five key observations from contemporary cloud and microservices

that motivate the RPU.

Key Observation #1: Data center workloads have an abundant number of similar

requests: Public and private data centers receive a significant amount of independent re-

quests from millions of users running the same service code [ 162 ]. These requests follow a

Single Program Multiple Data (SPMD) pattern that can be efficiently leveraged on SIMT

hardware [ 155 ], [  156 ], [  163 ].

Key Observation #2: Microservices reduce the cache required per-thread and minimize

control-flow variations between concurrent threads: In the microservice design paradigm, a

monolithic logic tier is broken down into smaller, software-friendly microservices where each is

responsible for a small functionality piece of the system. Figure  4.3 depicts a simple microser-

vice graph for a social network service similar to [  27 ]. Each node in the data center is tasked

with many threads all running the same microservice. When monolithic services are disaggre-

gated, divergent control-flow paths are often split into different microservices. That is, if/else

conditionals in the monolithic service are split into one service for if and one service for else.

Such an organization makes it much more common that concurrent microservices on the same

machine traverse exactly the same control-flow path before sending their request to the next

microservice. In addition, the per-thread data cache requirement is significantly reduced, as
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Figure 4.4. SIMT control efficiency of naive batching for some microservices.

each thread fundamentally does less work. Figure  4.4 shows the SIMT control flow efficiency

of modern microservices, assuming they are batched on arrival into groups of 32 threads.

On average, we are able to achieve 65% SIMT efficiency when applying naive batching. In

section  4.2.2 , we propose optimized batching techniques, which bring efficiency to 91%.

Key Observation #3: Modern data centers already rely on request batching: In order

to enable SIMT execution, requests have to be batched and executed together. Batching

can introduce additional latency to wait and group a complete batch of requests. However,

batching is already heavily used in data centers and employed in at least one microservice

on each network path, for example: (1) Deep Learning inference batches requests to increase

accelerator compute throughput [  22 ], (2) key-value store applications, like memcached [ 164 ],

batch to amortize the network overhead, (3) streaming graph analytics [ 165 ] batch to allevi-

ate lock contention, and (4) dynamic power management [ 166 ]–[ 169 ] applies batching to save

power. Therefore, if we apply batching to exploit request similarity, the batching overhead

is amortized, as there are already individual microservices on the same path that employ

batching. Instead of enabling batching on specific microservices, we propose to implement

batching to all other microservices from end-to-end scenarios, as depicted in Figure  4.3 .

Key Observation #4: In the data center, all throughput gains must be made under a

tight latency constraint: The trade-off between brawny and wimpy cores in the data center

has been a well-studied problem [ 170 ], [ 171 ]. However, the use of wimpy cores has not been

widely adopted by data center providers [ 170 ]. Although, under the same power budget,

wimpy cores can increase throughput [ 172 ], they have higher task execution latency than

brawny cores, increasing total request latency and making them ill-suited for the data center’s

QoS-driven workloads unless their single-thread latency is no worse than 2× that of brawny
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cores [ 170 ], [  172 ]. The same argument applies for GPUs, that have high energy-efficiency,

but have unacceptably high service latency, 6000× worse than CPUs for SPEC-Web [ 156 ],

and 10× worse for memcached [  155 ].

Key Observation #5: Future data center nodes need to increase their on-chip thread

count: Previous academic and industrial work [ 30 ], [  142 ]–[ 147 ] has shown that current CPUs

are inefficient when executing data center workloads as there are many underutilized re-

sources. They suggest that an increase in the number of threads on-chip is necessary to

better use these resources [ 30 ], [ 143 ], [ 144 ]. Figure  4.5 depicts the off-chip bandwidth and

thread count per socket scaling in the future. CPU vendors typically ensure 2 GB/sec of

DRAM BW per thread. If this is the case, we need to provide up to 256 threads per socket

with DDR5 [  173 ]–[ 176 ] and 512 threads with DDR6 [ 177 ] and HBM [ 178 ] to utilize the avail-

able off-chip BW. The industry standard to increase on-chip throughput is by adding more

chiplets [ 149 ], [ 150 ], cores [  151 ], [ 152 ] and increasing the SMT degree [ 153 ], [ 154 ]; however

we argue that introducing SIMT to OoO CPU cores will provide a more energy-efficient

mechanism to scale on-chip throughput.

Given these five observations, we design our RPU hardware and software system to

exploit the similarity among requests in microservices through intelligent batching. The

RPU’s OoO SIMT frontend is able to meet the latency constraints of contemporary services,

while improving upon the energy-efficiency and thread-density of modern CPUs. In the next

section, we discuss our system’s design.
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4.2 SIMR System

Figure  4.2 presents a high level overview of our SIMR system. Groups of independent

Remote Procedure Call (RPC) or HTTP requests are received by our SIMR-Aware server.

The server ( I in Figure  4.2 ) groups requests into a batch based on each request’s Appli-

cation Program Interface (API) similarity and argument size. The batches in the RPU are

analogous to warps in a GPU. Our batch size is tunable based on resource contention, desired

QoS, arrival rate and system configuration (Section  4.2.2 explores these parameters). Then,

the server launches a service request to the RPU driver and hardware. The RPU hardware

( II ) executes the batch in lock-step fashion over the OoO SIMT pipeline (Section  4.2.1 ).

4.2.1 RPU Hardware

Figure  4.6 presents a detailed overview of our RPU hardware. Each RPU core is simi-

lar to a brawny OoO CPU core, except hardware is added to perform multithreading in a

SIMT fashion. The design philosophy of the RPU is that the area/power savings gained

by SIMT execution and amortizing front-end (e.g., OoO control logic, branch predictor,

fetech&decode) are used to increase the thread context and throughput at the back-end

( 1 in Figure  4.6 ), e.g., register file, execution, and cache resources; thus we still maintain

the same area/power budget and improve overall throughput/watt. Our RPU chip contains

multiple RPU cores, and a few CPU cores. The role of the CPU cores is to run the OS

process, HTTP server, and RPU driver.
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OoO SIMT Pipeline: When merging the RPU’s SIMT pipeline with speculative, OoO

execution, we assume the following design principles. First, the active mask is propagated

with the instruction throughout the entire pipeline ( 2 ). Therefore, instruction buffer, re-

order buffer, and register alias table (RAT) entries are extended to include the active mask

(AM). Second, to handle register renaming of the same variable used in different branches,

a micro-op is inserted to merge registers from the different paths [ 179 ]. Third, the branch

predictor operates at the batch (or warp) granularity, i.e., only one prediction is generated

for all the threads in a batch. When updating the branch history, we apply a majority vot-

ing policy of branch results ( 3 ). For mispredicted threads, their instructions are flushed at

the commit stage and the SIMT stack is updated accordingly. Adding the majority voting

circuitry before the branch prediction increases the branch execution latency and power. We

account for these overheads in our evaluation, detailed in Section  4.3 .

Control Flow Divergence Handling: To address control flow divergence, a hardware

SIMT stack ( 4 ) is employed to serialize divergent paths [ 180 ], [ 181 ]. Upon receiving a

new request from the server, the driver performs a just-in-time Immediate Post-Dominator

(IPDOM) analysis on the CPU binary [ 182 ], and send this reconvergence information to

the hardware along with the program. Note that this analysis needs only be done once

per application binary. Figure  4.7 illustrates a simple example of IPDOM analysis and how

the SIMT stack interacts with divergent control flow. This mechanism is identical to the

stack used in contemporary GPUs. When batched requests execute divergent control flows,

the paths are serialized, and each path is associated with a corresponding active mask and
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reconvergence PC. The serialization overhead is minimized by intelligent batching techniques

that minimize control flow divergence, which we describe in Section  4.2.2 .

Running threads in lock-step execution with IPDOM reconvergence can induce deadlock

when programs employ inter-thread synchronization[ 183 ]–[ 185 ]. There have been several

proposals to alleviate the SIMT-induced deadlock issue on GPUs. Fundamentally, all the

proposed solutions rely on multi-path execution to allow control flow paths not at the top

of the SIMT stack to make forward progress. In the RPU, we use delayed reconvergence

with warp split table ( 4 ) introduced by ElTanawy and Aamodt [ 183 ], which requires an

additional 1KB of storage/batch (accounted for in Section  4.3 ). NVIDIA’s independent

thread scheduling [ 185 ], introduced in Volta, is a SIMT stackless solution that potentially

requires programmer input to optimize SIMT efficiency. We leave the exploration of a

transparent stackless solution as future work.

Memory Coalescing: To improve memory efficiency, a low-latency memory coalescing

unit (MCU) is placed before the load and store queues ( 5 ). As described in Figure  4.8a ,

the MCU is designed to coalesce memory accesses to the same cache line from threads in a

single batch, making better use of cache throughput and avoiding cache access serialization.

The MCU filters out accesses to shared inter-request data structures that might exist in the

heap or data segments [ 144 ]. To balance the need for a low cache hit latency and avoiding

divergent accesses serialization, the MCU only detects the two most common memory coa-

lescing scenarios: when all threads access the same word, or when threads access consecutive

words from the same cache line. This is unlike the complex sub-batch sharing in GPU data

coalescing [ 180 ], [  186 ] that increases memory access latency to detect more complex locality

patterns [ 187 ].

LD/ST Unit: In our MCU, if neither simple pattern is detected, the number of accesses

generated will equal the number of active SIMT lanes. All accesses from the same instruction

will allocate one row in the load or store queue ( 6 ), sharing the same PC and age fields/logic,

and thus amortizing the memory scheduling and dependence prediction [ 188 ] overhead. The

entries of the RPU’s LD/ST queues are expanded such that each row can contain as many

addresses as there are SIMT lanes. This expansion is accounted for in Section  4.3 .
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Cache and TLB: To serve the throughput needs of many threads, while achieving

scalable area and energy consumption, the RPU uses a banked L1 cache. The load/store

queues are connected to the L1 cache banks via a crossbar ( 7 ). To ensure TLB throughput

can match the L1 throughput, each L1 data bank is associated with a TLB bank. Since

the interleaving of data over cache banks is at a smaller granularity than the page size,

TLB entries may be duplicated over multiple banks. This duplication overhead reduces the

effective capacity of the DTLBs, but allows for high throughput translation on cache+TLB

hits. As a result of the duplication, all TLB banks are checked on the per-entry TLB

invalidation instructions [ 189 ]. Sections  4.2.2 and  4.2.2 discuss how we alleviate contention

to preserve intra-thread locality and achieve acceptable latency via batch size tuning.

Sub-batch Interleaving: Previous work [ 143 ], [ 144 ] show that data center workloads

tend to exhibit low IPC per thread (a range of 0.5-2, the average is 1 out of 5), due to long

memory latencies at the back-end and instruction fetch misses at the front-end [ 30 ], [ 145 ].

To increase our execution unit utilization, we implement sub-batch interleaving [ 190 ], [ 191 ]

as depicted in Figure  4.8b . By decreasing the number of SIMT lanes per execution unit, we

issue threads over multiple cycles. Sub-batch interleaving along with OoO scheduling can

hide nanosecond-scale latencies, increasing our IPC. Another advantage of sub-batch inter-

leaving is that we can skip issue slots of non-active threads to mitigate control divergence

penalty and support smaller batches of execution [ 190 ]. To hide longer microsecond-scale
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Table 4.2. CPU vs RPU vs GPU Architecture Differences
Metric CPU GPU RPU

Core model OoO In-Order OoO
Freq High Moderate High
ISA ARM/x86 HSAIL/PTX ARM/x86

Programming General-Purpose CUDA/OpenCL General-Purpose
Thread grain Coarse grain Fine grain Coarse grain
TLP per core Low (1-8) Massive (2K) Moderate (8-32)
Thread model SMT SIMT SIMT
Consistency Variant Weak+NMCA Weak+NMCA
Coherence Complex Relaxed Simple Relaxed Simple

Interconnect Mesh Crossbar Crossbar

latencies [  33 ], multiple batches are interleaved via hardware batch scheduling ( 8 ) in a coarse-

grain, round-robin manner with zero-overhead context switching.

Weak Consistency Model: To exploit the fact that requests rarely communicate and

exhibit low coherence, read-write sharing or locking [ 143 ], [ 144 ], as well as extensive use of

eventual consistency in data center [  192 ], we design the memory system to be similar to a

GPU, i.e., weak memory consistency with non-multi-copy-atomicity (NMCA) and a simple,

relaxed coherence protocol with no-transient states or invalidation acknowledgements, sim-

ilar to the ones proposed in HMG [ 134 ] and QuickRelease [  193 ]  

1
 . That is, cache coherence

and memory ordering are only guaranteed at synchronization points (i.e., barriers, fences, ac-

quire/release), and all atomic operations are moved to the shared L3 cache. Therefore, we no

longer have core-to-core coherence communication, and thus we replace the commonly-used

mesh network in CPUs with a higher-bisection-bandwidth, lower-latency core-to-memory

crossbar ( 9 ).

CPU vs GPU vs RPU

Table  4.2 lists the key architectural differences between CPUs, GPUs and our RPU. The

RPU takes advantage of the latency-optimizations and programmability of the CPU while

exploiting the SIMT efficiency and memory model scalability of the GPU. Finally, Table  4.3 

1
 ↑ In fact, some CPU ISA, like ARM [ 194 ], [ 195 ] and POWER [ 196 ], already supports weak consistency

model with non-multi-copy-atomicity in their specifications [ 197 ].
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Table 4.3. CPU inefficiencies in the data center
Data center characteristics &

CPU inefficiency RPU’s mitigation

Request similarity [ 156 ] & high frontend power
consumption [ 12 ]

SIMT execution to amortize frontend overhead

Inter-request data sharing [ 144 ] Memory coalescing and an increase in the num-
ber of threads sharing private caches

Low coherence/locks [ 143 ], [ 144 ] and eventual
consistency [ 192 ]

Weak memory ordering, relaxed coherence with
non-memory-copy-atomicity & higher band-
width core-to-memory interconnect

Low IPC due to frequent frontend stalls and
memory latency [ 30 ], [ 33 ], [ 142 ]–[ 145 ]

Multi-thread interleaving

DRAM & L3 BW are underutilized, data
prefetchers are ineffective [ 31 ], [ 143 ], [ 144 ], [ 146 ]

High thread level parallelism (TLP) to fully uti-
lize BW

Microservice/nanoservice have a smaller cache
footprint [ 27 ]

High TLP and decrease L1&L2 cache capaci-
ty/thread

summarizes a set of data center characteristics that create inefficiencies in CPU designs and

how the RPU improves them.

An Examination of SMT vs SIMT

This subsection examines why the RPU’s SIMT execution is able to outperform MIMD

SMT hardware for data center workloads. Equation  4.1 presents an analytical computation

of the RPU’s energy efficiency (EE) gain over the CPU. In Equation  4.1 , n is the RPU batch

size, eff is average RPU SIMT efficiency, and r is the ratio of memory requests that exhibit

inter-thread locality within a single SIMR batch. CPU energy is divided into frontend OoO

overhead (i.e., fetch, decode, branch prediction and OoO control logic), execution (includ-

ing, register reading and instruction execution), memory system (including, private caches,

interconnection and L3 cache), and static energies.

EnergyEff iciency = CPUEnergy

RPUEnergy
= ExecEnergy + MemEnergy+

ExecEnergy + (1 − r)MemEnergy+
Front OoOEnergy + StaticEnergy

1
n∗eff [r ∗ MemEnergy + Front OoOEnergy + StaticEnergy] + SIMTOverhead

(4.1)
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In Equation  4.1 , we make the conservative assumption that the RPU’s energy consump-

tion in back-end instruction execution and non-coalesced memory accesses are no different

than a MIMD CPU. However, front-end and OoO overheads are amortized in the RPU

by running threads in lock step; hence the energy consumed for instruction fetch, decode,

branch prediction, CAM Tag accesses [ 198 ] for register renaming, reservation station, and

store-to-load forwarding are all consumed only once for all the threads in a single batch (see

Figure  4.6 ). In scalar CPU designs, the front-end and OoO overheads have to be consumed

for each thread. Even with SMT, the entire CPU pipeline is partitioned among the simul-

taneous threads. Threads on the same core are executed independently [ 153 ], [ 154 ], [ 199 ],

which fails to exploit thread similarity and increases single thread latency.

Coalesced memory accesses are also amortized in the RPU by generating and sending only

one access for a batch to the memory system. While private cache hits and MSHR merges

can filter out some of these coalesced accesses in a SMT design, you have to guarantee that

the simultaneous threads are launched and progress together to capture this inter-thread

data locality [ 200 ], [ 201 ] and you still pay the energy cost of multiple cache accesses. Fur-

thermore, since SIMT can execute more threads/core given the same area constrains, the

reach of its locality optimizations is wider.

The final metric SIMT execution amortizes is static energy. The RPU improves through-

put/area and has a smaller SRAM budget/thread compared to an SMT core. In summary,

if these amortized components consume 50-80% of the total CPU energy [  12 ], an anticipated

2-5x energy efficiency gain can be achieved with the RPU if SIMT efficiency is high and

accesses are frequently coalesced. It is worth mentioning that the RPU introduces an energy

overhead for SIMT stack updates, active mask propagation, MCUs and multi-bank L1/L2

cache arbitration. However, at high SIMT efficiency, the energy savings from the amor-

tized metrics greatly outweigh the SIMT management overhead. In the next section, we

experimentally show how much SIMT control and memory efficiency exist in microservices

workloads and explore the effect of different batch sizes.
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(I/Os management)

CUDA driver 
(VM/thread management)

GPU Hardware
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Webservice (C++, PHP,  …)
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(pthread, cstdlib, ..)
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RPU driver 
(VM/thread management)

RPU Hardware

D

F

C

E

(c) RPU SW Stack

Figure 4.9. Hardware/Software Stack of CPU vs GPU vs RPU for microser-
vices programming

4.2.2 SIMR Software Stack

Figure  4.9 compares the RPU’s software (SW) stack, to that of the CPU and GPU. GPU

computing ( B in Figure  4.9 ) generally requires the programmer to use a specialized language,

like CUDA, and (in the case of NVIDIA) uses a closed-source compiler, runtime, driver, and

ISA. These all restrict programmer productivity. While GPUs have been successful for

accelerating the DL inference, they are poorly suited for others with middling parallelism

and tight deadlines.

Microservice developers typically use a variety of high-level, open-source programming

languages and libraries ( A ). For the RPU, we maintain the traditional CPU software stack

( C , E ), changing only the HTTP server, driver and memory management software. The

RPU is ISA-compatible with a traditional CPU.

The role of our HTTP server ( D ) is to assign a new software thread to each incoming

request [  202 ], [ 203 ]. The SIMR-aware server groups requests in a batch based on each re-

quest’s Application Program Interface (API) similarity and argument size (see Section  4.2.2 ),

then sends a launch command for the batch to the RPU driver with pointers to the thread

contexts of these requests.

The RPU driver ( F ) is responsible for runtime batch scheduling and virtual memory

management. The driver overrides some of the OS system calls related to thread scheduling,

context switching, and memory management, optimizing them for batched RPU execution.

For example, context switching has to be done at the batch granularity (Section  4.2.2 ), and
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Figure 4.10. SIMT control flow efficiency with different request batching
policies (Batch Size = 32)

memory management is optimized to improve memory coalescing opportunities at runtime

(Section  4.2.2 ).

To ensure efficient SIMT execution, the software stack’s primary goals are to: (1) mini-

mize control flow divergence by predicting and batching requests control flow (Section  4.2.2 ),

(2) reduce memory divergence and alleviate cache/memory contention (Sections  4.2.2 ,  4.2.2 ,  4.2.2 )

with batch tuning and SIMR-aware virtual memory mapping, and (3) alleviate network/s-

torage divergence through system-wide batch splitting (Section  4.2.2 ).

SIMR-Aware Batching Serve

A key aspect to achieve high energy efficiency is to ensure batched threads follow the same

control flow to minimize control divergence. To achieve this, we need to group requests that

have similar characteristics. Thus, we employ two heuristic-based proof-of-concept batching

techniques. First, we group requests based on API or RPC calls. Some microservices may

provide more than one API, for example, memcached has set and get APIs, post provides

newPost and getPostByUser calls. Therefore, we batch requests that call the same proce-

dure to ensure they will execute the same source code. Second, we group requests that have

similar argument/query length. For example, when calling the Search microservice, requests

that have long search query (i.e., more words) are grouped together as they will probably

have more work to do than the smaller ones. Figure  4.10 shows the SIMT efficiency (i.e.,

= #scalar-instructions / (#batch-instructions × batch-size)) for naive batching (based on

arrival time) and an optimized per-API and per-argument batching. We assume a batch

size of 32 requests for all microservices and we calculate the average over 75 batches (2400
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requests). As shown in Figure  4.10 , batching per-API improves SIMT efficiency for many

microservices, up to 2x improvement is noticed in memcached, and 4x in Post microservices.

When taking into account per-argument length batching, the overall SIMT efficiency is fur-

ther improved by 20% on average and up to 5x better on the TextSearch-leaf and post-text

microservices. In total, we are able to achieve 91% SIMT efficiency over 13 microservices.

It is worth mentioning that we achieve this SIMT efficiency while making the following

assumptions. First, some of these microservices are not well optimized and employ coarse-

grain locking which affects our control efficiency negatively due to critical section serialization

and lock spinning. In practice, optimized data center workloads rely on fine-grain locking to

ensure strong performance scaling on multi-core CPUs [ 144 ], [ 203 ]. In our experiments, if

threads access different memory regions within a data structure we assume that fine-grained

locks are used for synchronization. We also assume that a high-throughput, concurrent

memory manager is used for heap segment allocation [ 204 ]–[ 206 ] rather than the C++ glibc

allocator that uses a single shared mutex. Finally, the microservice HDSearch-midtier ap-

plies kd-tree traversal and contains data-dependent control flow in which one side of a branch

contains much more expensive code than the others. To improve SIMT efficiency in such sce-

narios, we make use of speculative reconvergence [ 207 ] to place the IPDOM synchronization

point at the beginning of the expensive branch.

Stack Segment Coalescing

Similar to the local memory space in GPUs [ 180 ], [  208 ], Figure  4.11 depicts how the

RPU driver and TLB hardware allocate and map stack memory from different threads in

the same batch to minimize memory divergence. The interleaving is static and transparent

to the compiler and the programmer. When the runtime system calls mmap to allocate

a new stack segment for a thread [ 209 ], [ 210 ], we ensure that the stack segments for all

the threads in a batch are contiguous ( a in Figure  4.11 ). In hardware, we detect accesses

to stack addresses and apply an interleaved data mapping ( b ), such that stack segments

from different threads are interleaved every 4 bytes in the physical address space ( c ). The

RPU’s address generation unit overrides the stack base of all active threads with the stack
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Figure 4.11. Stack Segment (SS) coalescing (physical stack page size = virtual
page size * batch size) with 4-byte interleaving.

base of thread 0, thus we only need one TLB translation per stack access. A hardware

offset mapping uses the thread ID (TID) of the accessing thread as an index into the S0

space to determine where the value resides in physical memory. This hard mapping prevents

threads from accessing other thread’s stack data, which is allowed in CPU programming.

To alleviate this issue, we calculate the target stack segment TID of each access based on

the access’ virtual segment address, i.e. TargetT ID = (SS − SS0)/StackSize, exploiting

the fact that stacks are allocated consecutively in the virtual space. If the accessing thread

has permission to access the target thread’s stack (discussed further in Section  4.5 ), then

the TargetTID is used, allowing inter-thread stack accesses. It is worth noting that GPU

programming languages avoid this issue by making stack values thread-loca.

Figure  4.12 demonstrates the effectiveness of our stack interleaving and heap memory

coalescing policies (previously described in Section  4.2.1 ). Figure  4.12 plots the total num-

ber of L1 accesses in the RPU, normalized to a MIMD CPU, when both are executing 640

threads. The RPU’s 32-thread batches generate on average 3x less accesses than the CPU.

The causes of this traffic reduction are two-fold. First, many of our middle tier microser-

vices contain significant stack segment accesses (up to 90% in the Post microservices) caused

by frequent procedure/system calls, push/pop argument passing, and reading/writing local

variables. Our stack segment interleaving technique coalesces all these accesses and generates

less traffic compared to the CPU. For example, pushing an 8-byte address in each thread of
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Figure 4.12. RPU L1 accesses, normalized to CPU accesses

a 32-thread batch onto the stack generates 8 accesses (8B x 32 threads / 32B cache lines);

however, in the CPU, 32 accesses are generated. Second, microservices typically share some

global data structures and constant values in the heap and data segments [ 144 ] respectively.

In the RPU, accesses to this shared data are coalesced within the MCU and loaded once for

all the threads in a batch, improving L1 data locality. While traffic reduction is significant

in many cases, back-end data-intensive microservices, like HDSearch, still exhibit high traffic

as each thread contains private data structures in the heap with little sharing, resulting in

frequent divergent heap accesses.

Batch Size Tuning and Memory Contention

Previous work [  27 ] shows that micro and nanoservices typically exhibit a low cache foot-

print per thread, as services are broken down into small procedures and read-after-write

inter-procedure locality is often transferred to the system network via RPC calls. To exploit

this fact, we increase the number of threads per RPU core compared to traditional CPUs.

Figure  4.13 shows the L1 MPKI of a single threaded CPU with 64KB of L1 cache and an

RPU with different batch sizes (32, 16, 8, 4) and 256KB of L1 cache. Interestingly, many

of our microservices can run at a batch size of 32 threads and require only 8KB/thread

without thrashing the L1 cache. More importantly, for these microservices, the L1 MPKI is

significantly improved compared to the CPU. This is because memory coalescing reduces the
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Figure 4.13. L1 MPKI of a single threaded CPU vs RPU with different batch
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overall number of L1 accesses as well as the number of misses. As the batch size decreases,

the coalescing efficiency is reduced.

On the other hand, some microservices, like HDsearch-leaf and Textsearch-leaf, have high

L1 MPKI compared at a batch size of 32. These are data-intensive services, exhibiting a

larger intra-thread locality footprint due to divergent heap segment accesses and read-after-

write temporary data. However, they show low MPKI when we throttle the batch size to

8 (see Figure  4.13 ). We have similar observations for TLB and memory system contention

when applying batch size tuning. Therefore, we run all our microservices at a batch size of

32, except for these data-intensive services, which are executed with a batch size of 8. Thanks

to sub-batch interleaving, running at this smaller batch size does not affect our execution

unit utilization. Regardless of batch size, the RPU hardware is designed with 8 SIMT lanes,

as such, an 8-thread batch can fully utilize the pipeline, even though amortization suffers

versus a 32-thread batch. It is worth noting that, after inspecting the HDsearch source code,

we find that we can reduce the L1 cache footprint of the workload by eliminating some un-

necessary data copies and employing function fusion (similar to kernel/layer fusion in GPU

and DL); however, we decided not to alter the program in our experiments.
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1. Microservice () 
2. // Create private temporary
3. // array in the heap segment
4. int* temp = new int[n];

5. ………..
6. for(int i=0; i<n; i++)
7. // Write to the temp
8. temp.push_back(x);      
9. ………..

10. for(int i=0; i<n; i++)
11. // Read from the temp
12. sum += temp[i];         
13. ………..
(a) A divergent heap segement
accsses of temp data

B0 B1 B2 B3

T0
0xf6746000

temp array address

SIMR-Agnostic Memory Allocator

T3
0x78f47000

T1
0x80764040

T2
0x78f47040

L1 cache 
banks

B0 B1 B2 B3

SIMR-Aware Memory Allocator

L1 cache 
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T0
0xf6746000

T3
0x78f47020

T1
0x80764040

T2
0x78f47060

(b) SIMR-aware memory allocation as-
suming 4 banks 32B interleaving

Figure 4.14. SIMR-aware memory allocator.

Selecting the right batch size has many other factors, e.g. the request arrival rate and

the system configuration. As widely practiced by data center providers [  22 ], [ 30 ], an offline

configuration can be applied to tune the batch size for a particular microservice. The time

overhead to determine the correct batch size is well tolerated by data center providers and

matches those used in Google and Facebook’s batching mechanisms [  22 ], [  211 ].

SIMR-Aware Memory Allocation

Divergent accesses to the heap have the potential to create bank conflicts in the RPU’s

multi-bank L1 cache. Figure  4.14a depicts a frequent code pattern in our microservices. The

program dynamically allocates a thread-private temporary array on the heap (line#4), fills

the array with intermediate results in a linear fashion (line#8), and reads from this array

to process thedata (line#12). The top section of Figure  4.14b shows how the default SIMR-

agnostic CPU allocator may assign addresses to the temp array that result in significant bank

conflicts. One solution for this is to change the address mapping of the heap segment [ 212 ]

to interleave elements accessed by parallel threads, similar to our stack segment interleaving.

However, this type of interleaving is ill-suited for heap accesses, which are less structured
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1. Procedure get_user(int userid) 

2. /* first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data         /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users WHERE userid = ?", userid)

7. /* then store in cache until next get */

8. memcached_add("userrow:" + userid, data) 

9. end /* SIMT Reconvergence Point*/

10. return data 

(a) Code snapshot for network divergence

User

Storage

Memcached

Millisecond latency

Microsecond latency

Batch

Split

1

2

3

4

(b) Batch split

Figure 4.15. Batch split technique for control flow divergence when a path
contains long network/storage blocking event.

than stack accesses. Another solution is to rely on hardware-based xoring hashing [  65 ], [ 213 ],

however our experiments show that it is ineffective to alleviate bank conflicts.

To this end, we address this problem by proposing a new SIMR-aware memory allocator

that the RPU driver can provide as an alternative and overrides the memory allocator used

by the run-time library through LD PRELOAD Linux utility [ 214 ], [  215 ]. Our proposed

memory allocator, demonstrated in the bottom image of Figure  4.14b , avoids data inter-

leaving for the heap segment. Instead, the key idea is to take into account that data are

already interleaved every n bytes over L1 banks (n=32B in our baseline). Therefore, if we

ensure that the start address of every new memory allocation per thread follows the condition

(start address%(n*tid) = 0), then accesses to the private data structure will be conflict-free

for all consecutive data accesses, as shown in Figure  4.14b . The overhead of this method is

the unused few bytes at the start of each data allocation to ensure the alignment constraint

(around 896 bytes for an 8-thread allocation). This memory fragmentation is amortized with

large memory allocation sizes.

System-Level Batch Splitting

In the RPU, context switching is done at the batch granularity, either all threads in a

batch are running or all the threads in the batch are switched out. When RPU threads are

blocked due to an I/O event, the RPU driver groups the I/O interrupts and wakes the all

the threads in the same batch at the same time to handle their interrupts and continue lock-

step execution. However, requests with the same batch can follow different control paths, in
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which one path may be longer than the other. For memory and nanosecond-scale latencies,

the paths synchronize the at the IPDOM reconvergence point. However, if one path contains

significantly longer millisecond-scale latency (e.g., a request to storage or the network), this

can hinder the threads on the other path, exaggerating the average latency. Figure  4.15a 

illustrates a frequently-used design pattern in microservice development, in which we cache

the back-end storage accesses in a fast in-DRAM key-value store, like memcached (line#3

in Figure  4.15a ). If the user request hits in the microsecond-scale latency memcached,

the request returns immediately to the client (line#10); otherwise, it has to access the

millisecond-scale storage, update the cache, and send the result back (lines#5-10). If the hit

requests have to wait for the misses at the reconvergence point (line#9), then the storage

latency will dominate the total average latency.

To avoid this issue, we propose, a batch splitting technique, as depicted in Figure  4.15b , in

which we split the batch and allow multi-path execution [ 216 ] for hit and miss requests. That

is, the batch is subdivided into two batches, one for the hit requests to continue execution

beyond reconvergence point ( 4 in Figure  4.15b ) and the other for blocked requests accessing

the storage ( 3 ). It is worth noting that, in cycle-level multipath execution on GPUs [ 216 ]–

[ 218 ], divergent paths still ultimately converge and resources are not freed until all paths are

complete. In SIMR batch splitting, the fast completing path can be allowed to continue, and

finish execution, while the slower blocked path is context switched out, freeing up resources

for other requests.

A hardware-based timeout or software-based hint can be used to determine the splitting

decision. Although batch splitting reduces control efficiency, as the miss requests will con-

tinue execution alone, we can still batch these orphan requests at the storage microservice

and formulate a new batch to be executed with a full SIMT active mask. We believe there

is a wide space of future work to analyze the microservice graph for splittng and batching

opportunities.
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Figure 4.16. End-to-End Experimental Setup

4.3 Experimental Setup

Workloads: We study a microservice-based social graph network as depicted in Fig-

ure  4.3 , similar to the one represented in the DeathStarBench suite [ 27 ]. TextSearch, HDIm-

ageSearch, and McRouter are adopted from the usuite benchmarks [ 26 ], we use the input

data associated with the suite. The microservices use diverse libraries, including c++ stdlib,

Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack. The post and

user microservices are adopted from the DeathStarBench workloads [ 27 ] and social graph

is from SAGA-Bench [ 219 ]. The microservices have been updated to interact with each

other via Google’s gRPC framework [  220 ], and they are compiled with the -O3 option and

SSE/AVX vectorization enabled. While the RPU can also execute other HPC/GPGPU ap-

plications that exhibit the SPMD pattern, like OpenMP and OpenCL, we only focus our

study here on microservice workloads.

Simulation Setup: We analyze our RPU system over multiple stages and simulation

tools. Figure  4.16 shows our end-to-end experimental setup. First, we analyze the SIMT

efficiency of our microservice with an in-house x86 PIN [ 221 ]-based tool, named SIMTizer.

The tool traces the dynamic control flow of CPU threads running in a batch with stack-based

IPDOM reconvergence analysis [ 182 ], [ 207 ], and calculates the associated active mask and

overall SIMT efficiency. SIMTizer traces the whole SW stack, including user code, libraries,

and frameworks.

Second, we use the trace-driven, cycle-level Accel-Sim v1.1 [ 133 ] simulator and Book-

Sim [ 222 ] for interconnect simulation to obtain chip-level throughput and service latency for

the CPU vs. the RPU. We updated Accel-Sim’s front-end to execute x86 traces generated by
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Table 4.4. CPU vs RPU Simulated Configuration
Metric CPU CPU SMT RPU

Core
Pipeline

8-wide
256-entry OoO

8-wide
256-entry OoO

8-wide
256-entry OoO

ISA x86-64 x86-64 x86-64
Freq 2.5 GHZ 2.5 GHZ 2.5 GHZ

#Cores 98 80 20
Threads/core 1 SMT-8 SIMT-32 (1 batch)
Total Threads 98 640 640

#Lanes 1 1 8
Max IPC/core 8 8 64 (issue x lanes)

ALU/Bra Exec Lat 1-cycle 1-cycle 4-cycle
#Stages (ALU-load) 9-12 9-12 14-18

L1 Inst/core 64KB 64KB 64KB
Reg File (PRF)/core 6KB 48KB 192KB

LSU (read/write) 128/64 128/64 128/64 (8x wide)

L1 Cache
64KB, 8-way,

3 cycles, 1-bank
32B/cycle

64KB, 8-way,
3 cycles, 8-bank

256BB/cycle

256KB, 8-way,
8 cycles, 8-bank

256B/cycle

L1 TLB 48-entry 64-entry 256-entry, 8-bank
(32-entry/bank)

L2 Cache 512KB, 8-way,
12 cycles, 1-bank

512KB, 8-way,
12-cycles, 2-banks

2MB, 8-way,
20 cycles, 2-banks

L3 Cache 32MB, 16-way 32MB, 16-way 32MB, 16-way

DRAM 8x DDR5-3200,
200 GB/sec

10x DDR5-7200,
576 GB/sec

10x DDR5-7200,
576 GB/sec

Interconnect 9x9 Mesh 11x11 Mesh 20x20 Crossbar
OoO entries/thread 256, 8-wide 32, 1-wide 256, 8-wide
L1 capacity/thread 64KB 8KB 8KB
TLB entries/thread 48 8 8
L1B/cycle/thread 32B/cycle 32B/cycle 32B/cycle
memBW/thread 2 GB/sec 0.9 GB/sec 0.9 GB/sec

SIMTizer. CISC instructions with memory operands are broken down to multiple RISC-like

instructions with separate loads and stores [ 223 ]. Further, Accel-Sim’s performance model

has been extended to model a CPU-like pipeline with superscalar, OoO issue. Table  4.4 

lists the simulator configuration for CPU vs. RPU. We model many-core x86-based single-

threaded CPU similar to the ones found on the market today and used in data centres [ 149 ]–

[ 152 ]. We also model an 8-way simultaneous multi-threading CPU (SMT8), to reflect the

highest SMT degree found in the market today from IBM POWER9 [  154 ].

We ensure both CPU and RPU have the same pipeline configuration, and frequency.

For SMT8, we maintain the same number of total threads and memory resources/thread vs

RPU (see the last four entries in Table  4.4 ). Cache latency is calculated based on CACTI

v7.0 [ 224 ]. The multi-bank caches and MCU increase the L1/L2 hit latency from 3/12

cycles in the CPU to 8/20 cycles in the RPU. For other execution units, the ALU/Branch

execution latency is increased to 4 cycles in the RPU to take into account the extra wiring

and capacitance of adding more lanes [ 161 ] and the majority voting circuit. We assume an
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Table 4.5. Per-component area and peak power estimates
Component

Area Peak Power
CPU RPU CPU RPU

mm2 %
Core mm2 %

Core Watt %
Core Watt %

Core
Fetch&Decode 0.27 24.3 0.3 4.3 0.39 15.6 0.4 3.6

Branch Prediction 0.01 0.9 0.01 0.1 0.02 0.8 0.02 0.2
OoO 0.11 9.9 0.17 2.4 0.85 34 1.45 12.9

Register File 0.14 12.6 2.52 35.8 0.49 19.6 4.26 38
Execution Units 0.25 22.5 2.31 32.8 0.34 13.6 2.51 22.4
Load/Store Unit 0.07 6.3 0.34 4.8 0.13 5.2 0.41 3.7

L1 Cache 0.04 3.6 0.22 3.1 0.09 3.6 0.2 1.8
TLB 0.02 1.8 0.08 1.1 0.06 2.4 0.4 3.6

L2 Cache 0.2 18 0.71 10.1 0.13 5.2 0.24 2.1
Majority Voting 0 0 0.03 0.4 0 0 0.05 0.4

SIMT Stack 0 0 0.02 0.3 0 0 0.01 0.1
MCU 0 0 0.02 0.3 0 0 0.03 0.3

L1-Xbar 0 0 0.31 4.4 0 0 1.23 11
Total-1core 1.11 7.04 2.5 11.21

mm2 %
Chip mm2 %

Chip Watt %
Chip Watt %

Chip
Total-Allcores 108.8 77.2 140.8 81 245 72.5 224.2 73.7

L3 Cache 7.82 5.5 7.82 4.5 0.75 0.2 0.75 0.2
NoC 9.78 6.9 1.72 1 36.52 10.8 7.02 2.3

Memory Ctrl 14.64 10.4 23.59 13.6 6.85 2 19.27 6.3
Static Power 49 14.5 53 17.4
Total Chip 141 173.9 338.1 304.2

idealistic cache coherence protocol for the CPU, with zero traffic overhead, in which atomics

are executed as normal memory loads in private cache, whereas, in RPU, atomic instructions

bypass private caches and execute at shared L3 cache.

Third, to study batching effects on a large scale and system implications with context

switching, queuing delay, and network/storage blocking, we harness uqsim [  225 ], an accu-

rate and scalable simulation for interactive microservices. The simulator is configured with

our social graph network along with the latency and throughput obtained from Accel-Sim

simulations to calculate system-wide end-to-end tail latency.

Energy&Area Model: We use McPAT [ 226 ], and some elements from GPUWattch [ 187 ]

to configure the CPU and RPU described in Table  4.4 , to estimate per-component area, peak

power and dynamic energy. For the RPU, we consider the additional components and aug-

mentation required to support SIMT execution described in Figure  4.6 . The majority voting

circuitry is modeled as a CAM structure (32-way comparator) to count the taken and non-

taken results and a reduction tree to calculate the most selected destination address. The

SIMT stack is modeled as 1KB memory structure [ 183 ]. A 2x 32-way CAM structure is
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used to model the memory coalescing units [ 187 ], and the RAT, ROBs, and uop buffers are

extended to include the 4-byte active mask and its associated logic.

Table  4.5 shows the calculated area and peak power for the RPU and single-threaded

CPU at 7-nm technology [ 227 ]. The CPU’s frontend+OoO area and power overhead are

roughly 40% and 50% respectively, which are aligned with modern CPU designs [ 12 ]. The

table shows that the RPU core is 6.3x larger and consumes 4.5x more peak power than the

CPU core; however, the RPU core supports 32x more threads. In the RPU core, most of

the area is consumed in the register file and execution units, 68% of the area vs. 35% in the

CPU. The additional overhead of the RPU-only structures consume 11.8% of the RPU core.

Most of this overhead comes from the 8x8 crossbar that connects the L1 banks to the LD/ST

queues. To support SMT-8 in the CPU, 14% area and power increase per core is required

(not shown in the table for brevity). In Section  4.4 , we use the per-access energy numbers

generated from our McPAT analysis with the simulation results generated by Accel-Sim to

compute the runtime energy efficiency of each workload (Figure  4.17 ).

4.4 Experimental Results

4.4.1 Chip-Level Results

Figure  4.17 and Figure  4.18 show energy efficiency (Requests/Joule) and service latency

of RPU and CPU-SMT8 normalized to single threaded CPU. All the hardware executes the

same number of requests (2400). On average, the RPU can achieve 5.6x higher energy effi-

ciency compared to CPU, while still coming within 1.35x of its service latency, with the worst

service latency of 1.7x at HDSearch-midtier. Overall, the RPU’s service latency remains un-

der the 2x higher latency limit defined by data center providers [  170 ]. The main causes of

RPU’s energy-efficiency are: (1) reducing the number of issued instructions by a factor of 30x,

amortizing the frontend and OoO dynamic energy overhead that accounted for up to 70% in

some scalar heavily-integer microservices, (2) generating 4x less traffic on average, therefore

decreasing the memory energy consumption, and (3) running 6x more requests at almost the

same service latency vs. the CPU, and thus amortizing the static energy. The HDSearch and
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Figure 4.17. RPU and CPU-SMT8 energy efficiency (Requests/Joule) rela-
tive to single threaded CPU (higher is better)
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Figure 4.18. RPU and CPU-SMT8 service latency relative to single threaded
CPU (lower is better)

TextSearch microservices exhibit less energy-efficiency than the average. These workloads run

at a smaller batch size, and the frontend+OoO only accounts for 33% of the CPU’s energy.

On the other hand, CPU-SMT8 only improves energy efficiency by 5% at a 5x higher

service latency cost. This is because the number of issued instructions and the generated

accesses are the same as in single threaded CPU. Further, SMT8 partitions the front-end

resources per thread and causes cache serialization of stack segment accesses and shared

heap variables, hindering service latency, whereas RPU avoids all these issues through SIMT

execution.

The main causes of our 1.35x higher service latency in the RPU are three-fold. First,

the control SIMT efficiency of some microservices like text and Textsearch is below 90% (see

Table  4.10 ) in which the RPU serializes the divergent paths and increases service latency.

Second, when CPU threads run consecutively, they prefetch some shared data to the L1

cache for the incoming threads running on the same core. In the RPU, many threads are

run in parallel and incur these compulsory misses at the same time. Third, the L1 access
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latency of the RPU is longer (3 vs 8 cycles) as a result of a larger L1 cache size, the MCU

and multi-bank arbitration.

Sensitivity Analysis

• Sub-batch interleaving: In the CPU, IPC per thread is limited, with an average

IPC of 1, similar to those reported in data center studies [ 30 ], [  143 ]–[ 145 ]. In the RPU,

and thanks to sub-batch interleaving, we are able to improve our IPC utilization up

to 4x by issuing threads over multiple cycles to the SIMT lanes. Although we reduced

the number of SIMT lanes by 4x with sub-batch interleaving (i.e., from 32 to 8 lanes),

we only noticed 2% performance loss on average compared to full width SIMT lanes

• Moving atomics to L3: We did not notice slow down from moving atomics to L3

cache in the RPU as our microservices exhibit low atomic/locks per instructions.

• SIMR-aware heap allocation: our SIMR-aware heap segment improves the L1 cache

throughput for frequent divergent heap segments in HDSearch and TextSerach, where a

1.9x higher throughput was achieved versus the RPU SIMR-agnostic heap allocations.

• Majority voting: Majority voting optimizes the branch prediction for the common

control flow (92% of the time threads traverse the same control flow). Still, the 8%

control divergence causes some threads to have different predictions than they would

with a per-thread prediction (i.e., as in CPUs). Since we predict next PC per entire

batch, we will always have misprediction for the divergent threads of the other path.

Majority voting mitigates the flushes caused by these inevitable branch mispredictions

by optimizing for the common control flow, and thus improving overall energy efficiency.

The Majority voting has little impact on performance, instead it aims to optimize power

consumption. Improving the SIMT branch prediction such that it can predict the next

PC along with the associated active mask is an interesting area of future research.
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Figure 4.19. Metrics that contribute to total service latency.

Service Latency Analysis

Despite our higher L1 access (2.3x), ALU and branch execution latency (4x), and control

divergence (8%), some microservices are still able to achieve service latency close to the

CPU, and on average only 1.35x higher latency. This is because memory coalescing has

reduced the on-chip memory traffic, alleviating contention and minimizing the memory la-

tency. Figure  4.19 depicts several metrics that explain the relatively little increase in service

latency for the RPU. The average network on chip (NoC) latency has been reduced by 1.33x

because 4x less traffic is generated. The RPU’s memory coalescing and single-hop crossbar

interconnect both combine to offset the latency increases in instructions and cache hits.

GPU Performance

We also run our experiments on an Ampere-like GPU model [  228 ] with the same software

optimization as the RPU (e.g., stack memory coalescing and batching) and assuming that

the GPU supports the same CPU’s ISA and system calls. For the sake of brevity, we did

not plot the per-app results in the figures. On average, the GPU achieves 28x higher energy

efficiency than the CPU but at 79x higher latency. This high latency is unacceptable for

QoS-sensitive data center applications [ 170 ], [ 172 ], [ 229 ]. These results are expected and

aligned with previous work executing server workloads on GPUs [ 156 ].
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Figure 4.20. End-to-end tail and average latency for CPU-based system vs
RPU-based system with and without batch split.

4.4.2 System-Level Results

Figure  4.20 shows the system-level, end-to-end 99% tail and average latency for CPU-

based system and RPU-based system with and without our batch splitting technique de-

scribed in Section  4.2.2 . We scale the QPS load until reaching the highest maximum through-

put at acceptable QoS and the system saturates. We configure uqsim with the end-to-end

User microservice scenario passing from Web Server to User to McRouter to Memcached and

Storage in Figure  4.3 .

We simulate three CPU server machines with 40 cores, where each microservice runs on

its own server node. We assume a 90% hit rate of Memcached with 100, 20, 25, 1000 and

60 microseconds latency for User, McRouter, Memcached, Storage and network respectively.

In the RPU configuration, we replace the CPU servers with RPU machines consuming the

same power budget, i.e. assuming 5.2x higher Requests/Joule and 1.2x higher latency as were

obtained from chip-level experiments for these services. Request batching is employed for

memcached in the CPU configuration for epoll system call to reduce network processing, as

is the common practice in data centers [ 225 ]. To focus our study on processing throughput,

we assumed unlimited storage bandwidth for both CPU and RPU configurations.

From analyzing the end-to-end results in Figure  4.20 , we can make the following observa-

tions. First, the RPU (with batch split) can achieve 5x higher request throughput per Joule

compared to the CPU with almost the same tail and average latency. Second, the batching

formulation time is amortized and incurs negligible overhead at both low and high traffic
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…..
ADD R1,R2 
LD R3,[R1]
…
VMUL vR4,vR5
….
….
….
Jump [0x2356]
….
BR.EQ R4, R5, label1
….
….
XCHG  [R2], R3
REPNE SCASW R8

Original scalar
x86 or ARM

…..
VADD vR1,vR2,
LD.V vR3,[vR1]
….
VMUL vR4,vR5
….
VMUL vR31,vR32
….
Jump [0x2356]
….
CMP.EQ P1,vR4,vR5
!P1 ….
….
?
?

Vectorized x86 AVX-512 
or ARM SVE 

Binary 
Transformation

Serialize
SIMD inst

Use predicate 
for branching

Uniform inst

No 1:1 mapping

D

E

F

Figure 4.21. Potential binary transformation of a scalar binary to a vector version

load. This is due to the fact that CPU system employs batching already for memcached.

Third, without batch splitting on millisecond-scale storage accesses, the RPU exhibits higher

average latency than the CPU, as blocked threads are waiting on a reconvergence point for

the others that access the storage. However, RPU without batch splitting is still able to

attain acceptable tail latency. Although tail latency is more important than average latency

for QoS measurements, the batch splitting technique can be beneficial to ensure predictable

responsive time when unpredictable high latency episodes occur in large online services [ 229 ].

4.5 Discussion

4.5.1 RPU vs CPU’s SIMD

A possible alternative to the RPU would be recompile scalar CPU binaries for execution

on the CPU’s existing SIMD units, e.g., x86 AVX [ 230 ], [  231 ] or ARM SVE [ 232 ]. Each

request could be mapped to a SIMD lane, amortizing the front-end overhead, leveraging the

latency optimizations of the CPU pipeline, and executing uniform instruction on the scalar

units [  233 ]. Such a transformation could be done using a SPMD-on-SIMD compiler, like Intel

ISPC [  233 ], or at the binary-level, as depicted in Figure  4.21 . However, this solution has three

primary shortcomings. First, it requires a complete recompilation of the microservice code,

libraries, and OS system calls. Second, SIMD units on contemporary CPUs are designed to
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accelerate computationally-dense inner loops. The memory system and vector ISA are not

optimized for the branch- and memory-heavy microservices we focus on in the RPU. As a

result, energy-efficiency and service latency will be negatively affected. For instance, we need

to serialize existing SIMD instructions in the scalar binary ( D in Figure  4.21 ), predicate

computation that cannot take advantage of branch prediction ( E ), and the fact that there

are 2-3x more scalar units than SIMD units [ 149 ], [  150 ] on existing CPUs, which will go

unused if the code could be fully vectorized. Finally, many existing scalar instructions

lack a 1:1 mapping with any vector instruction ( F ), e.g., complex string manipulation,

atomic and OS operations. Based on a manual investigation in x86 ISA [ 230 ], there are 129

AVX instructions, and 463 scalar instructions, thus only a maximum of 27% of the scalar

instructions are represented in the vector ISA.

4.5.2 Multi-threaded vs Multi-process Services

Our proposed SIMR system focuses on multi-threaded services, which are widely used in

data centers [ 144 ], [  234 ]. However, the rise of serverless computing has made multi-process

microservices more common [ 27 ], [  235 ]. In multi-process services, the separate virtual ad-

dress spaces can cause both control flow and memory divergence, even if the processes use

the same executable and read the same data, which also causes cache-contention issues on

contemporary CPUs. We believe that with user-orchestrated inter-process data sharing and

some modifications to the RPU’s virtual memory; these effects can be mitigated. However,

since the contemporary services we study are all multi-threaded, we leave such a study as

future work.

4.5.3 Security Implications

The grouping of concurrent requests for SIMT execution may enable new vulnerabilities.

For instance, a malicious user may generate a very long query that could affect the QoS

of other short requests or leak control information. Such attacks can be mitigated in our

input size-aware batching software by detecting and isolating maliciously long requests, as

described in Section  4.2.2 . Another security vulnerability is the potential for parallel threads
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to access each other’s stack data (exploiting the fact that threads’ stack data are adjacent

in the physical space). However, as described in Section  4.2.2 , the RPU’s address generation

unit is able to identify inter-thread stack accesses and throw an exception if such sharing is

not permitted.

4.5.4 GPGPU Workloads on RPU

RPU can also execute other HPC, GPGPU, and DL applications that exhibit the SPMD

pattern, written in OpenMP, OpenCL, or CUDA. GPUs have been shown to be 2-5x more

energy efficient than CPUs [ 236 ]–[ 239 ], thanks to its simpler In-Order pipeline and software-

managed caches. However, this comes at the cost of easy-to-program. Developers need to

rewrite the code in GPGPU programming language and make a heroic effort to get the

most out of GPU’s compute efficiency [ 128 ], [ 240 ]. Recently, and to achieve high efficiency

in the lack of HW-support OoO scheduling, Nvidia has written its back-end libraries in

hand-tuned machine assembly to improve instruction scheduling [ 133 ] and proposed complex

asynchronous programming APIs [ 241 ] to hide memory latency via prefetching. In CPUs, the

HW-support OoO with large instruction window relieve this burden from the programmers.

On the other hand, we believe that RPU takes the best of both worlds. It can execute

GPGPU workloads with the same easy-to-program CPU interface and still get as close as to

the GPU’s energy efficiency. By amortizing the frontend and OoO overhead, the RPU can

reduce the energy efficiency gap between CPU and GPU, becoming a first-class engine for

HPC/GPGPU as well as microservices workloads. We leave studying such an argument and

evaluate the achievable energy efficiency of GPGPU workloads on RPU for future work.

4.5.5 RPU vs GPU Terminology

RPU and GPU are SIMT-based hardware. However, through this thesis, we have used

different hardware terminology. Table  4.6 compares between Nvidia’s GPU and our RPU

terminology.
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Table 4.6. GPU vs RPU Terminology
GPU RPU
Grid/Thread Block SW Batch
Warp HW Batch
Thread Thread/Request
Kernel Service
GPU Core / Streaming
MultiProcessor (SM)

RPU Core / Streaming
MultiRequest (SM)

Warp Scheduler Batch Scheduler
SIMT SIMR
CUDA core Execution Lane

4.6 Summary

Data center computing is experiencing an energy-efficiency crisis.. Aggressive OoO cores

are necessary to meet tight deadlines but waste excessive energy and limit the number

of threads that can be packed into one core. However, modern productive software has

inadvertently produced a solution hardware can exploit: the microservice. By subdividing

monolithic services into small pieces and executing many instances of the same microservice

concurrently on the same node, parallel threads execute similar instruction controlflow and

access similar data. We exploit this fact to propose our Single Instruction Multiple Request

(SIMR) processing system, comprised of a novel Request Processing Unit (RPU) and an

accompanying SIMR-aware software system.

The RPU adds Single Instruction Multiple Thread (SIMT) hardware to a contemporary

OoO CPU core, maintaining single threaded latency close to that of the CPU. As long as

SIMT efficiency remains high, all the OoO structures are accessed only once for a group of

threads, and aggregation in the memory system reduces accesses. Complimenting the RPU,

our SIMR-aware software system handles the unique challenges microservice + SIMT com-

puting by intelligently forming/splitting batches and managing memory allocation. Across

13 microservices, our SIMR processing system achieves 5.6x higher Requests/Joule, while

only increasing single thread latency by 1.35x. We believe the combination of OoO and SIMT

execution opens a series of new directions in the data center design space, and presents a

viable option to scale on-chip thread count in the twilight of Moore’s Law
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5. RELATED WORK

This chapter summarizes and contrasts the work done in this dissertation against related

work in GPU simulations, NUMA-aware management for CPUs and GPUs, and online web

services/microservices acceleration. Section  5.1 discusses work relating to Accel-Sim. Sec-

tion  5.2 details work related to LADM. Section  5.3 gives overview on related work to SIMR

in literature.

5.1 GPU Simulation

As Table  2.1 illustrates, there has been extensive work done in GPU simulation over the

last decade. Xun et al. [ 53 ] model GPU Kepler architecture [ 242 ] that is integrated with the

Multi2sim simulation infrastructure [ 54 ]. The new simulator was validated using applications

from the CUDA SDK. Power et al. [ 243 ] propose the Gem5-GPU simulator which models

detailed CPU-GPU interaction. Beckmann et al. [ 48 ], [ 49 ] introduce a Gem5 GPU model,

that simulates AMD’s GCN architecture. Barrio et al. [  244 ] propose ATTILA, which is a

trace-driven GPU simulator that models the graphics pipeline for the GT200 architecture.

Gubran et al. [  245 ] update GPGPU-sim to execute graphics workloads. Sniper [ 246 ] is a

multithreaded CPU simulator that can execute in trace- or execution-driven mode using

PIN-based callbacks to simulate instructions without emulation. In this vast landscape,

Accel-Sim is the only open-source framework, explicitly designed for validation, that can

simulate NVIDIA SASS instructions and accurately model contemporary NVIDIA GPUs.

Stephenson et al. [ 247 ] introduce SASSI, a low-level assembly-language instrumentation

tool for GPUs. Many previous works [ 248 ]–[ 253 ] aim to estimate the execution time of

GPGPU applications throughout source-level analysis, however they do not perform detailed

performance modeling for architecture research. Nowatzki et al. [ 254 ] show that GPGPU-

Sim is inaccurate in modeling some in-core parameters and connection delays. Hongwen

et al. [ 255 ] argue that GPGPU-Sim has a very weak L1 cache model and they suggest

enhancements to improve the L1 cache throughput. Jain et al. [  47 ] demonstrate a large

gap in GPGPU-Sim 3.x’s memory system when correlating against Pascal hardware. Prior

work [ 256 ]–[ 258 ] propose a methodology for validating CPU simulation models against real
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hardware. Numerous works have done micro-benchmarking to characterize aspects of GPU

architecture for Tesla GT200 [ 42 ], Fermi [  43 ], Maxwell [ 44 ], and recently Volta [ 45 ]. They

demystified the L1/L2 cache’s associativity and replacement policy. However, none of these

works have investigated the L1 streaming cache, sectoring of the L1/L2 caches and the

interaction of the memory coalescer with caches or the cache write policy.

5.2 NUMA-aware Management for CPUs and GPUs

A number of researchers [ 98 ]–[ 100 ] have explored disintegrating multi-core CPUs into

smaller chips in order to improve manufacturing yield. In a multi-GPU context, past

work [ 10 ], [  102 ], [  120 ] investigated similar multi-socket and MCM NUMA GPU designs

to scale GPU performance beyond a single socket. We have discussed their approaches in

details throughout this thesis and compare their results with LADM. Baruah et al. [ 123 ] pro-

pose hardware-software support for page migration in multi-GPU shared-memory systems.

Milic et al. [  10 ] propose dynamic, phase-aware interconnect bandwidth partitioning. They

also dynamically adapt L2 caching policy to minimize NUMA effects. These works employ

reactive runtime solutions whereas we apply a low-overhead proactive approach.

Young et al. [ 120 ] propose a DRAM-cache with optimized hardware coherence for multi-

GPU systems. Xiaowei et al. [ 134 ] propose a customized L2 cache coherence protocol for

hierarchical multi-chiplet multi-GPU systems. These cache coherence protocols are orthog-

onal to our work and can be applied on top of LADM for further performance improvement.

While significant work has been done to optimize weak-scaling performance using MPI

+ GPUs (where each rank controls a GPU operating on a relatively isolated partition of

data [ 259 ], [ 260 ]) or via the OpenCL runtime driver [ 261 ], [ 262 ]. However, transparently

achieving strong scaling on NUMA-GPU systems with diverse sharing patterns is still an

open problem, which we aim to address in this work.

Prior work on locality-aware threadblock scheduling in single GPU contexts has either

not used static analysis [ 131 ], [ 263 ], [ 264 ] or performed a subset of the analysis done by

LADM [ 125 ], [ 265 ] simply because the placement of data has not been an objective. Han-

dling page alignment, the effect of remote caching, and matching competing access patterns
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to data structures are all issues that arise in the NUMA context that are not addressed

in prior work on threadblock scheduling for cache locality. It is difficult to provide a fair

quantitative comparison to these works, as it requires us to fill-in-the-blanks on how the

techniques would be applied to NUMA-GPUs.

Several works [ 121 ], [  122 ], [  266 ], [  267 ] have provided batching and reactive prefetching

to improve UVM performance in single GPU systems. LASP can be extended to efficiently

support oversubscribed memory by proactively placing the next page where it is predicted

to be accessed, avoiding page-faulting overheads. Using the locality table information, the

pages that are already accessed by finished threadblocks and will not be used again, can be

evicted and replaced with the new pages proactively.

Compiler-assisted index analysis has been used in CPUs and GPUs to perform affine

loops transformation in order to: (1) improve locality via data tiling within a single-GPU

machine [ 268 ]–[ 270 ], and (2) automatically parallelize serial code on parallel machines [ 103 ],

[ 271 ]–[ 273 ]. However, these works perform source-to-source transformation and do not pro-

vide any runtime decisions on how to efficiently schedule the threads. Furthermore, prior

work on GPU static analysis does not exploit all the locality patterns identified by LADM. In

this work, we extend single thread index analysis to be threadblock-centric for the NUMA-

GPU domain.

It is worth mentioning that, with modifications to account for threadblock motion and

inter-thread sharing, a polyhedral framework [ 270 ], [ 274 ], [ 275 ] could be used in place of

LADM’s index analysis. However, we believe that LADM‘s simpler and effective index-

based analysis increases the likelihood it will be adopted in contemporary GPU compilers

(e.g. NVCC [ 276 ]). Either way, the choice of compiler infrastructure used is orthogonal to

the datablock analysis proposed in this thesis.

Data placement has been a focus of CPU research in OpenMP NUMA systems. So-

lutions include adding new OpenMP language primitives which are explicitly used by the

programmer [ 277 ]–[ 280 ], compiler-assited page migration [  281 ], [ 282 ] or reactively changing

the virtual page size [ 283 ]. Although thread scheduling is a concern in CPU-NUMA systems,

the focus is largely on workload balancing via advanced work stealing algorithms [ 284 ] or

avoiding cache thrashing [ 285 ], but not to ensure memory page locality. In this work, we
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coordinate both data placement and thread scheduling to exploit various locality patterns

of massively multithreaded multi-GPU systems.

5.3 Webservices Acceleration on GPUs

Server Workloads on GPUs: The most closely related work to SIMR are [ 155 ], [ 156 ],

[ 163 ]. Agrawal et al. [ 156 ] proposed to run data center server workloads, SPEC-Web bench-

marks, in lock-step execution on GPUs to expliot request similarity. While achieving sig-

nificant energy efficiency, the authors had to rewrite the workloads from PHP to CUDA.

Similarly, Hetherington et al. [  155 ], [ 286 ] run memcahced workload on a GPU. The longer

request latency, system calls support, and limited programmability are hinder the adoption

of GPUs for general data center workloads with limited intra-request parallelism. Agrawal

et al. [ 163 ] study the SIMT efficiency of SEPC-web workloads and show that it contains

promising control and memory efficiency that can be executed on SIMT hardware.

System Calls on GPUs: Previous studies have explored supporting system calls on

GPUs, including, file system [ 157 ], networking [ 158 ], and generic system calls [ 159 ]. In all

these studies, the actual system calls are still executed on the CPU, as GPU cannot run

OS the layer and does not have direct access to system I/Os. Thus, they had to build an

event-handling wrapper framework to execute system calls on CPUs, which increased the

request latency due to frequent PCIe communication between CPU and GPU. NVIDIA has

proposed GPUDirect technology [ 160 ] which aims to optimize data movement of GPUs to

I/Os, by copying the data directly from the network card and storage to GPU memory,

however, the actual system call processing is still being executed on the CPU side.

SIMT+OoO Execution: Kalathingal et al. [ 287 ] proposed dynamic inter-thread vec-

torization architecture to leverage the implicit similarity that exists across SMT threads

when running SPMD Rodinia applications. Tino et al. [  179 ] introduced an out of order

pipeline for SIMT hardware to optimize OpenMP workloads. Similar threads are detected

and grouped dynamically with hardware support. Previous work [ 288 ]–[ 292 ] explored adding

light-weight out-of-order execution in GPUs to further improve memory latency hiding.

Our work is fundamentally different in that we start with an aggressive OoO CPU de-
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sign, then adding GPU-like SIMT elements as necessary to improve energy-efficiency. This

approach frees the RPU from the constraints of the GPU programming model, introducing

several new challenges we must address to efficiently execute general-purpose pre-compiled

microservices. Examples include handling network divergence (Section  4.2.2 ), optimizing

microservice batches (Section  4.2.2 ), supporting more exotic features such as inter-thread

stack sharing (Section  4.2.2 ). In addition, prior GPU+OoO approaches still relied on mas-

sive fine-grained multithreading and focus on throughput, whereas the RPU has significantly

fewer threads and balances throughput and latency, addressing the unique challenges in the

memory system. Examples include low-latency memory coalescing (Section  4.2.1 ) and SIMR-

aware memory allocation (Section  4.2.2 ). Furthermore; none of these prior work has made

the connection between SIMT and microservices.

Microservices Acceleration: Previous work [ 28 ], [ 29 ], [ 293 ], [ 294 ] have explored using

hardware to accelerate microservices, with a focus on remote procedure calls [ 28 ], [  29 ], [  294 ],

and network data transformation [ 293 ]. These proposals are orthogonal to our work and

could be applied on top of the RPU. These works focus on helping the CPU remove isolated

bottlenecks, whereas the RPU focuses on a full system solution that is meant to replace the

CPU.
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6. CONCLUSIONS AND FUTURE WORK

This chapter concludes the dissertation and proposes potential future work based on its

findings.

6.1 Conclusions

SIMT-based accelerators, like GPUs and RPUs, are promising solutions to achieve sig-

nificant energy efficiency in the data centers while still preserving programmability. In this

dissertation, I tried to address the following three challenges: (1) how do we overcome the

non-uniform memory access overhead for next-generation multi-chiplet GPUs in the era of

DL-driven workloads?; (2) how can we improve the energy efficiency of data center’s CPUs

in the light of microservices evolution and request similarity?; (3) How to build and accurate

and extensible SIMT simulation that can keep up with industrial changes?

First, modeling an accurate simulator for contemporary accelerators plays a crucial role

in the computer architecture field. An old inaccurate architecture model may lead to unre-

alistic issues or incorrect conclusions that are irrelevant to industrial designs. Since GPU is

becoming the defacto standard for ML training, I rigorously correlated the commonly-used

GPGPU-Sim simulator with contemporary hardware. Conclusions from this analysis show

that the absolute error between hardware and simulation performance is relatively high (be-

tween 22% and 105%). I concluded that the two main sources of simulator inefficiency are:

(i) inaccurate memory system modeling, and (ii) simulating old machine ISAs. To improve

the quality of GPU research produced by the academic research community, I have devel-

oped Accel-Sim [ 133 ], [ 295 ], a new GPU simulation framework to help solving the problem

of keeping simulators up-to-date with contemporary designs and enabling GPU-based deep

learning research with tensor cores and multi-GPU systems.

Second, thanks to high levels of inherent parallelism, many GPU workloads will be able to

strongly scale performance, if large enough GPUs can be built. However, due to the physical

limitations of chip and interconnect technologies, GPUs built with enough resources to lever-

age this abundant parallelism will have to overcome significant NUMA effects. This thesis

describes a locality aware data management system (LADM) [ 298 ] designed to transparently
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overcome the NUMA effects of future GPUs by combining static analysis with hardware data

placement, thread scheduling, and cache insertion policies LADM can decrease inter-GPU

memory traffic by 4× and improve system performance by 1.8× across a range of workloads

with varying locality. LADM demonstrates that intelligent coordination of thread scheduling

and data placement can offset the need for expensive GPU interconnect technologies in the

future.

Third, data center computing is experiencing an energy-efficiency crisis. Aggressive OoO

cores are necessary to meet tight deadlines but waste excessive energy and limit the number

of threads that can be packed into one core. However, modern productive software has

inadvertently produced a solution hardware can exploit: the microservice. By subdividing

monolithic services into small pieces and executing many instances of the same microservice

concurrently on the same node, parallel threads execute similar instruction controlflow and

access similar data. We exploit this fact to propose our Single Instruction Multiple Request

(SIMR) processing system, comprised of a novel Request Processing Unit (RPU) and an

accompanying SIMR-aware software system.

The RPU adds Single Instruction Multiple Thread (SIMT) hardware to a contemporary

OoO CPU core, maintaining single threaded latency close to that of the CPU. As long as

SIMT efficiency remains high, all the OoO structures are accessed only once for a group of

threads, and aggregation in the memory system reduces accesses. Complimenting the RPU,

our SIMR-aware software system handles the unique challenges microservice + SIMT com-

puting by intelligently forming/splitting batches and managing memory allocation. Across

13 microservices, our SIMR processing system achieves 5.6x higher Requests/Joule, while

only increasing single thread latency by 1.35x. We believe the combination of OoO and SIMT

execution opens a series of new directions in the data center design space, and presents a

viable option to scale on-chip thread count in the twilight of Moore’s Law.

6.1.1 Other Collaboration Work

To further improve GPU simulation methodology, I proposed, in collaboration with re-

searchers from various universities, Principle Kernel Analysis [ 296 ] and Accel-Wattch [ 297 ]
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which address simulation time and power modeling respectively. In [ 296 ], we demonstrate

how simulating century-long scalable ML workloads, like MLPerf benchmarks, can be re-

duced to a matter of hours with error rates that are in line with the baseline simulator.

6.1.2 Potential Impact

The GPU simulation framework, Accel-Sim, opens up a rich new design space in system-

level GPU-based research and reduce the accuracy gap between industrial and academic

simulators on an ongoing basis, increasing the potential impact of academic research. In

addition, the simulator can be configured to simulate emerging SIMT-based accelerator, like

RPU, with x86 traces for data center microservices workloads. Based on our survey, Accel-

Sim is considered the most widely used and highly validated GPU simulation framework in

the academia. As it has been shown in a recent work from NVIDIA Research on building their

in-house GPU simulator [ 299 ], Accel-Sim demonstrates accuracy comparable to simulators

used in industry. Therefore, and thanks for its flexibility and usability, Accel-Sim is widely

used by national labs and emerging industrial start-ups.

Further, my proposed LADM solution can transparently be used to run CUDA programs

as-is on current multi-GPU multi-chiplet systems, achieving strong GPU scaling without

burdening the programmer and enabling continuous performance scaling in the twilight of

Moore’s law. Finally, and in the light of microservice era, the new RPU-based system

is a compelling approach to design more cost-effective data centers by exploiting request

similarity and reducing the growing CPU’s front-end power consumption. This dissertation

will help in building our tomorrow’s hardware to be more programmable, scalable, energy-

efficient, reducing carbon emissions.

6.2 Future Research Directions:

There are various research directions that can be built on the top of this dissertation:

(1) identifying multi-trillion model training bottlenecks, (2) RPU prototyping, and (3) ad-

dressing the killer microseconds devices.
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6.2.1 Enabling Efficient Multi-Trillion Model Training

Identifying Bottlenecks with Heterogeneous Memory

A key observation from modern GPU generations is that memory capacity do not scale

at the same pace as compute resources. As a result, many GPU workloads are limited by

memory capacity. In [ 300 ], I demonstrated how the memory capacity can affect the ML

hardware functionality and limit the model and batch size that can run on the system.

As of today, the largest natural language understating model is Google’s Gshard model

with 600B parameters. In order to achieve human’s level accuracy, the ML experts aim

to build a multi-trillion parameter model which requires a significant amount of memory

capacity. Employing heterogeneous memory seems to be a compelling solution to improve

memory capacity scalability and has been adopted by several ML hardware vendors and

startups. By integrating multiple levels of heterogeneous memory modules, training giant

multi-trillion models in a cost-effective way is possible. This is achieved by saving the model

weights in a large-capacity low-speed memory (e.g., DRAM or SSD storage), and proactively

fetch the next active layer’s weights into a small-capacity high-speed memory (e.g., HBM or

SRAM), i.e., overlapping compute with memory access. In this research, I set out to build an

analytical model and a new tool that quantitatively evaluate the hardware’s ability to hide

the latency and identify performance bottlenecks, taking into account the various system

configuration, including batch size, back-end memory bandwidth, I/Os, network topology,

layer size, model type (GPT-like dense layer or Google’s sparse MoE layer), and overall

system compute efficiency. Such tool may be very beneficial for the ML scientists in a way

that they can tune the above parameters to find the best configuration, hence reaching the

highest compute efficiency before starting the actual training process.

Model vs Data Parallelism Trade-off

There are two kinds of parallelism to exploit in large model training: data parallelism

and model parallelism. In [ 301 ], I demonstrate that current ML vendors seem to build their

hardware to efficiently optimize one specific type of parallelism. Both NVIDIA and Google

127



rely on data parallelism to scale performance, whereas some startups, like Cerebras and

Graphcore, take a different approach, focusing heavily on model parallelism. It seems that

one open question researchers can help answer is what the right balance between model and

data parallelism should be. Data parallelism is difficult to scale, and excessive hyperparame-

ter tuning gives a clear advantage to more prominent players with the time and resources to

tune them. In contrast, model parallelism requires less tuning, but as soon as the model no

longer fits on-chip or on-node, most of the advantages are lost. Vendors seem to be coalescing

around a hybrid solution, but where will the sweet spot be in the machine learning solutions

of the future?

6.2.2 Phase-Aware Thread Scheduling for Micro-Second-Scale Latency

A key observation from modern data centers is the profound of micro-second latency

resources [ 33 ] that cannot be hidden by the coarse-granularity of OS context switching,

e.g., NVM memory or dis-aggregated DRAM. One solution to improve the latency hiding of

data-intensive services for micro-second scale resources is via fast hardware-support context

switching for many running threads (or requests), similar to GPU’s warp scheduling to hide

memory latency. However, running and interleaving many threads on the same CPU core can

cause severe cache contention, exaggerating service latency and decreasing energy efficiency.

In this project, I aim to study the execution phases of microservice workloads and quantify

the cache footprint over time. Using this information, I plan to co-design the RPU’s hardware

and software to build efficient thread scheduling techniques by interleaving the high-cache

footprint compute phase of the running thread with smaller footprint phases from other

threads in the pool, and hence hiding micro-second latency and alleviating cache contention.

6.2.3 Physical Design of RPU with RISC-V Prototyping

In Chapter  4 , I propose the Request Processing Unit (RPU), which modifies out-of-order

CPU cores to execute microservices using a SIMT execution model. Through performance

modeling simulation, the RPU system achieves 5.6x higher throughput/Watt while maintain-

ing acceptable service latency for contemporary microservices. However, for more accurate
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evaluation and to prove the actual benefits of the RPU to the research community and data

center providers, I am motivated to build and physically layout the RPU chip and test it

in a real environment. The project will rely on the open-source RISC-V ISA for hardware

implementation along with Apache HTTP server and LLVM compiler for software stack.

Through the prototype, this work will evaluate the fundamental principles of RPU, tackle

implementation related issues that were not addressed in the simulation experiment (e.g.

branch predication penalty and TLB duplication overhead for large-footprint services), and

study the limitations of RPU-based systems.
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[159] J. Veselỳ, A. Basu, A. Bhattacharjee, G. H. Loh, M. Oskin, and S. K. Reinhardt,
“Generic system calls for GPUs,” in 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), 2018.

[160] NVIDIA, NVIDIA GPUDirect,  https://developer.nvidia.com/gpudirect .

[161] A. Fog et al., “Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs,” Copenhagen University College of
Engineering, vol. 93, p. 110, 2011.

[162] Amazon, Netflix on AWS,  https://aws.amazon.com/solutions/case-studies/netflix/ ,
2021.

[163] V. Agrawal, M. A. Dinani, Y. Shui, M. Ferdman, and N. Honarmand, “Massively Parallel
Server Processors,” IEEE Computer Architecture Letters, 2019.

[164] Memchached, Caching beyond RAM: Riding the cliff,  https://memcached.org/blog/
nvm-multidisk/ , 2019.

[165] A. Basak, Z. Qu, J. Lin, et al., “Improving streaming graph processing performance
using input knowledge,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021.

[166] D. Meisner and T. F. Wenisch, “DreamWeaver: Architectural Support for Deep Sleep,”
in Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

143

https://developer.nvidia.com/gpudirect
https://aws.amazon.com/solutions/case-studies/netflix/
https://memcached.org/blog/nvm-multidisk/
https://memcached.org/blog/nvm-multidisk/


[167] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating Server Idle Power,”
in Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

[168] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µDPM: Dynamic power management for the
microsecond era,” in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2019.

[169] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood, and F. T. Chong, “Multi-
execution: Multicore caching for data-similar executions,” in 2009 ACM/IEEE 36th Annual
International Symposium on Computer Architecture (ISCA), 2009.

[170] U. Hölzle, “Brawny cores still beat wimpy cores, most of the time,” IEEE MICRO, 2010.

[171] V. Petrucci, M. A. Laurenzano, J. Doherty, et al., “Octopus-Man: QoS-driven task
management for heterogeneous multicores in warehouse-scale computers,” in 2015 IEEE
21st International Symposium on High Performance Computer Architecture (HPCA), 2015.

[172] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,” Communications of
the ACM, 2018.

[173] J. Hruska, DDR5 specifications,  https://www.extremetech.com/computing/312730-
ddr5-memory-specification-finalized-up-to-6400gt-s-2tb-lrdimms .

[174] S. Schlachter and B. Drake, Introducing Micron DDR5 SDRAM: More Than a Gener-
ational Update, 2020.

[175] R. Press, DDR5 vs DDR4 – All the Design Challenges & Advantages,  https://www.
rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets/ , 2021.

[176] T. Morgan, NVIDIA enters the ARMs race with homegrown Grace CPUS,  https://www.
nextplatform.com/2021/04/12/nvidia-enters-the-arms-race-with-homegrown-grace-cpus/ ,
2021.

[177] Z. Peterson, DDR5 vs. DDR6: Here’s What to Expect in RAM Modules,  https://resour
ces.altium.com/p/ddr5-vs-ddr6-heres-what-expect-ram-modules , 2021.

[178] I. Cutress, Intel to Launch Next-Gen Sapphire Rapids Xeon with High Bandwidth Mem-
ory,  https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-
xeon-with-high-bandwidth-memory  , 2021.

[179] A. Tino, C. Collange, and A. Seznec, “SIMT-X: Extending single-instruction multi-
threading to out-of-order cores,” ACM Transactions on Architecture and Code Optimization
(TACO), 2020.

144

https://www.extremetech.com/computing/312730-ddr5-memory-specification-finalized-up-to-6400gt-s-2tb-lrdimms
https://www.extremetech.com/computing/312730-ddr5-memory-specification-finalized-up-to-6400gt-s-2tb-lrdimms
https://www.rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets/
https://www.rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets/
https://www.nextplatform.com/2021/04/12/nvidia-enters-the-arms-race-with-homegrown-grace-cpus/
https://www.nextplatform.com/2021/04/12/nvidia-enters-the-arms-race-with-homegrown-grace-cpus/
https://resources.altium.com/p/ddr5-vs-ddr6-heres-what-expect-ram-modules
https://resources.altium.com/p/ddr5-vs-ddr6-heres-what-expect-ram-modules
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory


[180] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, “General-Purpose Graphics Processor
Architectures,” Synthesis Lectures on Computer Architecture, 2018.

[181] B. W. Coon, J. E. Lindholm, P. C. Mills, and J. R. Nickolls, Processing an indirect
branch instruction in a simd architecture, US Patent 7,761,697, Jul. 2010.

[182] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp formation and
scheduling for efficient GPU control flow,” in 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 2007), 2007.

[183] A. ElTantawy and T. M. Aamodt, “MIMD synchronization on SIMT architectures,”
in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on,
2016, pp. 1–14.

[184] B. Kerbl, M. Kenzel, M. Winter, and M. Steinberger, “CUDA and Applications to
Task-based Programming,” in Eurographics (Tutorials), 2022.

[185] NVIDIA, “NVIDIA Tesla V100 GPU architecture,” 2017.

[186] L. Nyland, J. R. Nickolls, G. Hirota, and T. Mandal, Systems and methods for coalescing
memory accesses of parallel threads, US Patent 8,086,806, Dec. 2011.

[187] J. Leng, T. Hetherington, A. ElTantawy, et al., “GPUWattch: enabling energy optimiza-
tions in GPGPUs,” in Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), 2013.

[188] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Dynamic speculation
and synchronization of data dependences,” in Proceedings of the 24th annual international
symposium on Computer architecture, 1997.

[189] felixcloutier.com, INVLPG — Invalidate Specific TLB Entries,  https://www.felixclout
ier.com/x86/invlpg  .

[190] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving GPU performance via large warps and two-level warp scheduling,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, 2011.

[191] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanović, “Convergence and
scalarization for data-parallel architectures,” in Proceedings of the 2013 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), 2013.

[192] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions, and
beyond,” Communications of the ACM, 2013.

145

https://www.felixcloutier.com/x86/invlpg
https://www.felixcloutier.com/x86/invlpg


[193] B. A. Hechtman, S. Che, D. R. Hower, et al., “QuickRelease: A throughput-oriented
approach to release consistency on GPUs,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), 2014.

[194] ARM, Overview of memory consistency,  https://developer.arm.com/documentation/dd
i0406/c/Appendices/Barrier-Litmus-Tests/Introduction/Overview-of-memory-consistency  .

[195] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell, “Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8,” Proceedings
of the ACM on Programming Languages, 2017.

[196] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Understanding power
multiprocessors,” in Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, 2011, pp. 175–186.

[197] L. Maranget, S. Sarkar, and P. Sewell, “A tutorial introduction to the ARM and
POWER relaxed memory models,” Technical Report, 2012.

[198] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits
and architectures: A tutorial and survey,” IEEE journal of solid-state circuits, 2006.

[199] M. Clark, “A new x86 core architecture for the next generation of computing,” in 2016
IEEE Hot Chips 28 Symposium (HCS), 2016.

[200] J. Meng, J. W. Sheaffer, and K. Skadron, “Exploiting inter-thread temporal locality
for chip multithreading,” in 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), IEEE, 2010, pp. 1–12.

[201] H. Kwak, B. Lee, A. R. Hurson, S.-H. Yoon, and W.-J. Hahn, “Effects of multithreading
on cache performance,” IEEE Transactions on Computers, 1999.

[202] R. T. Fielding and G. Kaiser, “The Apache HTTP server project,” IEEE Internet Com-
puting, 1997.

[203] A. Wiggins and J. Langston, “Enhancing the scalability of MemCached,” Intel docu-
ment, unpublished, 2012.

[204] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A Scalable
Memory Allocator for Multithreaded Applications,” ACM Sigplan Notices, 2000.

[205] I. Gelado and M. Garland, “Throughput-oriented GPU memory allocation,” in Proceed-
ings of the 24th symposium on principles and practice of parallel programming, 2019.

146

https://developer.arm.com/documentation/ddi0406/c/Appendices/Barrier-Litmus-Tests/Introduction/Overview-of-memory-consistency
https://developer.arm.com/documentation/ddi0406/c/Appendices/Barrier-Litmus-Tests/Introduction/Overview-of-memory-consistency


[206] P. Menage, TCMalloc : Thread-Caching Malloc,  http://goog-perftools.sourceforge.net/
doc/tcmalloc.html  .

[207] S. Damani, D. R. Johnson, M. Stephenson, et al., “Speculative reconvergence for im-
proved SIMT efficiency,” in Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization, 2020.

[208] NVIDIA, “CUDA C Programming Guide,”

[209] C. Wellons, Raw Linux Threads via System Calls,  https://nullprogram.com/blog/2015/
05/15/ , 2015.

[210] M. Kerrisk, mmap — Linux manual page,  https://man7.org/linux/man-pages/man2/
mmap.2.html  .

[211] M. Anderson, B. Chen, S. Chen, et al., “First-generation inference accelerator deploy-
ment at facebook,” arXiv preprint arXiv:2107.04140, 2021.

[212] M. Winter, M. Parger, D. Mlakar, and M. Steinberger, “Are dynamic memory managers
on GPUs slow? a survey and benchmarks,” in Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2021, pp. 219–233.
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