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ABSTRACT

Open quantum systems have become a rapidly developing sector for research. Such

systems present novel physical phenomena, such as topological chirality, enhanced sensitivity,

and unidirectional invisibility resulting from both their non-equilibrium dynamics and the

presence of exceptional points.

We begin by introducing the core features of open systems governed by non-Hermitian

Hamiltonians, providing the PT -dimer as an illustrative example. Proceeding, we intro-

duce the Lindblad master equation which provides a working description of decoherence in

quantum systems, and investigate its properties through the Decohering Dimer and periodic

potentials. We then detail our preferred experimental apparatus governed by the Lindbla-

dian. Finally, we introduce the Liouvillian, its relation to non-Hermitian Hamiltonians and

Lindbladians, and through it investigate multiple properties of open quantum systems.
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1. INTRODUCTION TO NON-HERMITIAN PHYSICS

Over the last quarter-century, non-Hermitian physics has burgeoned into a heavily researched

field of study [  1 ]. Initially conceived as an extension to the constuction of quantum mechan-

ics [  2 ], non-Hermitian physics has matured into the study of non-conservative but coherent

evolution. Today the concepts of non-Hermitian systems have permeated into every branch

of physics, spanning semi-classical optical arrays and the transient dynamics of open quan-

tum systems, as well as proving equivalent constructions for classical dissipative systems

such as friction and electrical circuits [ 1 ].

In this preliminary chapter, we investigate the fundamental construction of quantum me-

chanics to develop the principles of non-Hermitian physics. We then explore these concepts

through the most fundamental case: a two level system known as the PT -Dimer. Finally,

we introduce the Floquet Theorem to expand our analytic techniques to time dependent

systems.

1.1 Background and Terminology

In their 1998 paper [  2 ], Bender and Boettcher demonstrated that a class of Hamiltonians

extending from the quantum harmonic oscillator (QHO) possessed both purely real spectra

and a positive Hilbert space. These Hamiltonians took the form H = p2 +x2(ıx)ε where p is

the momentum operator, x is the position operator, and ε is a real valued parameter. Such

systems break many of the conventions of quantum mechanics: (1) they are non-Hermitian

when ε 6= 2Z, (2) they do not commute with the parity operator (P), and (3) they do not

commute with the time-reversal operator (T ). Yet these systems do commute with the PT

operator, and contain purely real spectra if ε ≥ 0. From this seminal work we receive the

notions of PT -symmetry:

• The PT -symmetric regime, where the spectrum of H is purely real. In this regime, all

states are oscillatory.

13



• The PT -broken regime, where the spectrum of H contains at least one pair of complex-

conjugate energies. In this regime, states with complex energies exhibit exponential

growth or decay.

• These two regimes are seperated by a transition point referred to as the PT -threshold.

At the source of this transition is the presence of an exceptional point, where two

modes of the Hamiltonian become degenerate.

which we still use today in the analysis of general non-Hermitian systems.

The early years of PT -symmetry were marked by an explosion of theoretical work, but

little experimental evidence. The dilemma therein lay in the construction of the complex

valued potentials that appeared in non-Hermitian Hamiltonians. These difficulties were

eventually allieviated through the field of optics, where complex refractive indeces had been

used for years as an effective model for absorptive materials. In 2010, Christodoulides et

al. reported the experimental observation of PT -symmetric and PT -broken modes in an

optically coupled waveguide array, using Fe-doped LiNbO3 as a loss mechanism and an Ar+

pump laser as a gain mechanism [ 3 ]. From this and other experiments in optical lattices, we

obtained the notions of gain and loss in PT -symmetry

• Loss describes potentials which lead to a decrease of detection probability as the sys-

tem evolves. These are normally associated with Block diagonalized potentials with

negative imaginary parameters.

• Gain describes potentials which lead to an increase of detection probability as the

system evolves. These are normally associated with Block diagonalized potentials

with positive imaginary parameters.

Today, non-Hermitian physics has broadened beyond PT -symmetric interactions. Pas-

sive PT systems, where a PT -symmetric system has been shifted by a global decay rate so

only loss potentials are needed, can be used to study the presence and interactions between

exceptional points [  4 ]. Open systems, such as in ultra-cold atoms [ 5 ] and superconducting

qubits [  6 ], allow us to study passive PT systems by selecting for coherent evolution paths of
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the state density matrix [ 7 ]. Such open systems are governed by the Lindblad master equa-

tion, and grant the oppurtunity to observe exceptional point signatures in a purely quantum

setting [ 6 ]. In the classical regime, dissipation in optics, electrical circuits, and mechani-

cal systems can be rewritten as equivalent Schrödinger equations, yielding PT -symmetric

interpretations for coupled-laser noise, LC-circuits, and coupled oscillator arrays [ 1 ].

1.2 Construction of Quantum Mechanics

To identify the consequences of non-Hermitian physics we now follow the construction

of quantum mechanics [ 8 ], while removing the restriction that the Hamiltonian be Hermi-

tian [  1 ]. We begin by defining the state |ψ〉 which contains the information about the current

configuration of a quantized system, and exists in a positive definite Hilbert space Hψ. The

state |ψ〉 may depend on a number of continuous variables (time t, position ~x, momentum

~p), discrete variables (occupation number n), or numeric parameters (coupling strength J),

etc. and is mathematically equivalent to a vector.

The dynamics of |ψ〉 are governed by the Schrödinger equation

ı∂t |ψ〉 = H |ψ〉 (1.1a)

−ı∂t 〈ψ| = 〈ψ|H† (1.1b)

where H is the Hamiltonian operator. It is often useful to split H into its Hermitian and

anti-Hermitian components H = Hh+ıΓ if both are present. As |ψ〉 is equivalent to a vector,

operators may be represented as square matrices of the same rank as |ψ〉. The Schrödinger

equation yields solutions of the form

|ψ(t)〉 = U |ψ(t0)〉 (1.2a)

〈ψ(t)| = 〈ψ(t)|U † (1.2b)

U = Toe
−ı
∫ t

t0
dt′H(t′) =⇒

∂tH=0
e−ı(t−t0)H (1.2c)

15



The actions of H and U on an arbitrary |ψ〉 will (in general) be complicated, and so we

decompose H into its eigenstate basis

H =
∑

j
εj |εj〉 〈〈εj| (1.3a)

H† =
∑

j
ε∗

j |εj〉〉 〈εj| (1.3b)

where |εj〉 are the right energy-eigenstates, 〈〈εj| are the left energy-eigenstates, and εj are the

associated energies. Note that |εj〉 are members of the Hilbert space of the Hamiltonian HH ,

while |εj〉〉 are instead members of the dual space H∗
H . For Hermitian quantum mechanics,

the two spaces are equivalent, but for non-Hermitian Hamiltonians (|εj〉)† = 〈εj| 6= 〈〈εj|.

1.2.1 Consequences of Non-Hermiticity

Due to the inequivalences H† 6= H and (|εj〉)† 6= |εj〉〉, a few consequences arise in the

standard definition of states. First the eigenstates lose their orthogonality condition which

is replaced by a bi-orthogonality condition with the left-eigenstates

〈εi|εj〉 6= δij (1.4a)

〈〈εi|εj〉〉 6= δij (1.4b)

〈〈εi|εj〉 = δij (1.4c)

which allows us to form projectors |εj〉 〈〈εj|. Second, the violation of the spectral theorem

〈εi| (H† −H) |εj〉 = (ε∗
i − εj) 〈εi|εj〉 (1.5)
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removes the restriction that the energies be real valued. Third, as H is no longer Hermitian

U is not expected to be a unitary matrix. Fourth, the norm and energy of a given state is

expected to vary with time

∂t 〈ψi|ψj〉 = ı 〈ψi| (H† −H) |ψj〉 6= 0 (1.6)

∂t 〈ψi|H|ψj〉 = ı 〈ψi| (H† −H)H |ψj〉+ 〈ψi|∂t(H)|ψj〉 (1.7)

and therefore there is a flow of both probability and energy into/out of the system, identifying

such Hamiltonians as describing non-conservative dynamics. Finally, at the exceptional point

n different eigenstates become degenerate and H is no longer diagonalizable, marking the

exceptional point as nth order. This is then reflected in U which terminates at the nth order

correction. As a direct result of this point, the time evolution of a general state requires

Jordan generalized eigenvectors to describe [ 1 ].

The Jordan Normal Form of H is a direct sum of Jordan blocks

HV = V J (1.8)

J =
⊕

j
Jj =



ε0 0 0 0 0

0 ε1 0 0 0

0 0 ε2 1 0

0 0 0 ε2 1

0 0 0 0 ε2


(1.9)

where j counts the unique eigenvalues of H. Each individual Jordan block is an n×n matrix

Jj = εj1 + D1 where n is the order of the exceptional point and D1 are the elements of the

first superdiagonal of the matrix. The first Jordan vector |εj,1〉 to appear will be equal to

the degenerate eigenvector of H, while subsequent Jordan vectors are obtained from

(H − εj1)
∣∣∣εj,kj

〉
=
∣∣∣εj,kj−1

〉
(1.10a)

(H − εj1)kj
∣∣∣εj,kj

〉
= 0 (1.10b)〈〈

εj,kj

∣∣∣ (H − εj1)kj = 0 (1.10c)
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To determine the time evolution of a general state, we utilize the property

f(J) =



f(ε0) 0 0 0 0

0 f(ε1) 0 0 0

0 0 f(ε2) 1
1!∂εf(ε2) 1

2!∂
2
ε f(ε2)

0 0 0 f(ε2) 1
1!∂εf(ε2)

0 0 0 0 f(ε2)


(1.11)

to write the time evolution as

|ψ(t)〉 = U |ψ(t0)〉 =
∑

j

nj∑
kj=1

kj∑
ki=1

tkj−ki

(kj − ki)!
e−ıεjt |εj,ki〉

〈〈
εj,kj

∣∣∣ψ(t0)
〉

(1.12)

1.2.2 Degrees of Non-Hermiticity

While all non-Hermitian systems will have the properties described above, the active

interests of the field are in systems that retain real spectra for some subset of the parameter

region away from the Hermitian limit, or that allow us to study the properties of such systems.

Hamiltonians that retain purely real spectra will be oscillatory under time evolution, and

therefore a general preparation state |ψ〉 is stable and can be observed over long time frames.

On the other hand, systems that avoid implementing gain potentials also avoid the difficulties

associated with such terms, such as exponentially growing norms and non-linear or noisy

effects in real world implementations. These pure-loss systems allow the study of geometric

properties such as exceptional point contours over short time frames. We now categorize the

three major classes of non-Hermitian systems studied today.
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PT -Symmetry

The class of PT -symmetric systems consists of all Hamiltonians that commute with an

anti-linear PT operator

[H,PT ] = 0 (1.13a)

PT HT −1P−1 = H (1.13b)

In the most general construction, P is some involutory operator (P2 = 1) that is usually

chosen as one of the symmetries of the Hermitian component of the Hamiltonian. On the

other hand, T is an anti-unitary operator [ 9 ]

T = UK (1.14a)

T |ψ〉 = T
∑

j
cj |j〉 =

∑
j
c∗

j T |j〉 (1.14b)

where K is the complex conjugation operator (KıK = −ı), and U is a unitary matrix.

Usually we can choose U = 1 for simplicity and require PHP = H∗, though it is sometimes

physically relevant to choose a specific U (T = e−ıπSyK for particles with spin ~S).

Two major properties arise as a result of this commutation property. First, we obtain

the similarity transformation

H∗ = PUH(PU)−1 (1.15)

This implies that PT -symmetric systems must have eigenvalues that are real or come in

complex conjugate pairs as similar matrices must share a set eigenvalues. Second and more

subtly, due to the interaction of the anti-linear PT with the complex spectrum of H

H (PT |εj〉) = PT H |εj〉 (1.16a)

= ε∗
j (PT |εj〉) (1.16b)

H |εj〉 = ε∗
j |εj〉 (1.16c)
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Table 1.1. Table comparing the effects of the operators P , T , and PT
on physically relevant quantities. P negates vectors while leaving bi-vectors
unchanged. T negates fields sourced by a current.

P T PT
Time t→ t t→ −t t→ −t

Position ~x→ −~x ~x→ ~x ~x→ −~x
Energy E → E E → E E → E

Linear Momentum ~p→ −~p ~p→ −~p ~p→ ~p

Angular Momentum ~L→ ~L ~L→ −~L ~L→ −~L
Electric Field ~E → − ~E ~E → ~E ~E → − ~E

Magnetic Field ~B → ~B ~B → − ~B ~B → − ~B
Spin ~S → ~S ~S → −~S ~S → −~S

and so H and PT will only share an eigenbasis while H has a purely real spectrum.

The main draw of PT -symmetry among non-Hermitian systems is that it prompts a

physically motivated construction of the non-Hermitian Hamiltonian. P is chosen as the

parity operator (~x → −~x), while T is chosen as the time reversal operator (t → −t). For

a physically motivated Hamiltonian H = p2

2m + V (x), Eq.  1.13a requires that the potential

energy V (x) take the form

H = p2

2m + V1(x) + ıV−1(x) (1.17)

where PV1(x)P = V1(x) and PV−1(x)P = −V−1(x). Table  1.1 lists some of the most

commonly employed transformation properties when designing PT -symmetric perturbations.

Pseudo-Hermiticity and Quasi-Hermiticity

The second major class of non-Hermitian systems are defined by the intertwining rela-

tion [ 10 ]

ηH = H†η (1.18)
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for some set of Hermitian operators η. From Eq. 1.1 it follows that such operators define

conserved quantities of H

∂t 〈ψ| η |ψ〉 = −ı 〈ψ|
(
ηH −H†η

)
|ψ〉 = 0 (1.19)

From Eq. 1.3 , we can construct one set of η from the left-eigenstates of H

ηεj =



|εj〉〉 〈〈εj| εj ∈ R

|εj〉〉〈〈εj∗|+|εj∗〉〉〈〈εj|
2 εj /∈ R

|εj〉〉〈〈εj∗|−|εj∗〉〉〈〈εj|
2ı εj /∈ R

(1.20)

and since Eq.  1.18 is linear in η we can construct any other set from linear combinations of

ηεj. From here we can define two useful restrictions on the η operators.

First, if we constuct η to be invertible then we can rewrite Eq.  1.18 as a similarity trans-

formation

H† = ηHη−1 (1.21)

Just as in Eq. 1.15 this requires that the spectrum of H consists of purely real or complex

conjugate paired eigenvalues. Systems satisfying this restriction are referred to as η-pseudo-

Hermitian [  1 ], [ 10 ]–[ 13 ], and demonstrate all of the unique properties of PT -symmetric

systems. In fact, many PT -symmetric systems are P-pseudo-Hermitian.

Furthermore, if we can construct at least one η to be positive-definite that η can be

decomposed as a principal root

η = ξ†ξ (1.22)

Substituting into Eq. 1.21 yields

h = ξHξ−1 =
(
ξ†
)−1

H†ξ† =
(
ξHξ−1

)†
= h† (1.23)

Therefore, whenever a positive-definite η exists there is a similarity transformation (referred

to as the Dyson map [ 13 ]) between the non-Hermitian system H and a Hermitian system
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h, restricting H to purely real spectra. In addition, the Hermitian system h will possess

orthogonal eigenstates |λj〉 = ξ |εj〉, and so the eigenstates of H will be orthogonal under the

metric η

〈εi|εj〉η =
〈
εi

∣∣∣ξ†ξ
∣∣∣εj
〉

= 〈λi|λj〉 = δij (1.24)

From these properties, the region where an η-pseudo-Hermitian H possesses a positive def-

inite η is the equivalent of the PT -symmetric region, the region where a positive definite η

is no longer constructible is the PT -broken region, and the transition point corresponds to

the PT -threshold [ 11 ]–[ 13 ].

Before moving forward, we will note the use of the term Quasi-Hermitian within the

broader field [  11 ]–[ 13 ]. Quasi-Hermitian systems are non-Hermitian systems which possess

purely real spectra for their entire parameter space. Specifically, quasi-hermiticity is defined

by positive-definite (but not necessarily invertible) η which span the entire parameter space,

while pseudo-hermiticity is defined by invertible (but not necessarily positive-definite) η.

Such a definition makes quasi-hermiticity a subset of pseudo-hermiticity for any finite rank

H. However, for systems with infinite rank (such as systems with continuous variables) the

positive-definite η may be defined using unbounded operators which cannot be inverted (ex:

∂x), and so it is in such infinite systems where the distinction becomes important.

Passive PT Systems

The third class of non-Hermitian systems commonly studied are passive PT systems [  4 ],

[ 14 ]. Such systems are constructed from a PT -symmetric system that has been shifted by a

global decay rate

HpPT = HPT − ıγp1 (1.25)

As a result, Eq.  1.15 is broken and the system will not maintain real spectra. However, the

geometric properties of the original system will remain intact, allowing one to study the

exceptional points and HH of the original system.
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The main advantage of studying passive PT systems is the reduction / removal of gain

potentials from the original model. Unlike loss potentials, a system with excess gain will

eventually saturate resulting in non-linear dynamics in real-world experiments. Because of

these non-linear effects, experimental validations of PT -symmetry have required that the

apparatus be run in the low gain limit where the gain can be approximated as a linear

potential [ 1 ], [  3 ], [  7 ], [  14 ]. By removing the gain elements, experimental teams can trade

observation time for better signal-to-noise ratios.

1.3 Fundamental Case: PT -Dimer

Let us consider the simplest possible non-Hermitian model and determine under what

conditions the model will demonstrate PT -symmetric behavior. For a rank 2 Hamiltonian

H2general, a general parametrization would be

H2general =
3∑

j=0
ajσj =

 a0 + a3 a1 − ıa2

a1 + ıa2 a0 − a3

 (1.26)

where aj are complex coefficients and σj are the Pauli matricies. The eigenvalues of the

general model are ε2general = a0 ±
√
a2

1 + a2
2 + a2

3, which are real only when

Im (a0) = 0 (1.27a)

Im (a2
1 + a2

2 + a2
3) = 0 (1.27b)

Re (a2
1 + a2

2 + a2
3) ≥ 0 (1.27c)

Condition  1.27a is simply a complex identity shift and can be used to displace a PT -

symmetric system into a passive PT system. Condition  1.27b separates trivially-broken

models from models with PT -symmetric and PT -broken regimes. Since the coefficients

aj = Re (aj) + ı Im (aj) are complex, Condition  1.27b can be rewritten as Re ([a1 a2 a3]) ·

Im ([a1 a2 a3]) = 0 using vectors formed from the real and imaginary components. Thus,

the Hermitian and anti-Hermitian components of H2general must be orthogonal to demon-
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strate PT -symmetric behavior. Finally, Condition  1.27c seperates the PT -symmetric and

PT -broken regimes for non-trivial models.

If we take these conditions into consideration, we can simplify H2general to the point of

unitary invariance. The reduced form is

H2 = 1
2

∆ + ıγ J

J −∆− ıγ

 = J

2 σx + (∆ + ıγ)
2 σz (1.28)

where ∆ is the energy difference between the states in the z-basis, J is the coupling strength

between the two levels, and γ is the non-Hermitian perturbation strength. We refer to

this as the PT -Dimer, and it is the model upon which much of the novel material of this

work is constructed. Since we have aligned the anti-Hermitian components with the z-axis,
∆
J

= 0 is required for real eigenvalues to emerge. The factor of 1
2 is set by convention so

that the period when ∆ = γ = 0 is T = 2π. Figure  1.1 provides two commonly employed

experimental models which differ from H2 by an identity shift.

a. b.

Figure 1.1. PT -Dimer: Illustrations commonly used for a PT -symmetric,
two level system. Figure  1.1 a shows the cross-section of a system of two waveg-
uides, where J is the evanescent coupling, and η± = µ± ıγ are the (complex)
refractive indeces for the two waveguides [ 4 ]. Figure  1.1 b shows an energy level
diagram for a driven two level atom (denoted by the dashed line box), where J

2
is a microwave drive, ∆ is the energy level difference between |f〉 and |e〉, and
γ is the decay rate of |e〉 into an auxillary state [  6 ], [  15 ]. The Hamiltonians
are provided below each model, and are an identity shift away from H2.
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Figure 1.2. ε± when ∆ = 0: Shows the energies ε± as γ
J

is varied from [0, 2].
Fig. 1.2 a shows the real part in (blue), while the imaginary part is shown in
(red). The presence of an exceptional point can clearly be seen at γ

J
= 1, at

which point ε± and |ε±〉 are degenerate. Fig. 1.2 b shows 〈ε+|ε−〉 as a measure
of non-orthogonality. We observe a linear increase in the overlap until reaching
〈ε+|ε−〉 = 1 at the exceptional point, after which the overlap decays as J

γ
.
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The energies and eigenstates for H2 are

ε± = ±

√
J2 + (∆ + ıγ)2

2 (1.29a)

|ε±〉 = 1
A

(
∆ + ıγ + 2ε±

J
|↑〉+ |↓〉

)
(1.29b)

〈〈ε±| =
JA

4ε±

(
〈↑|+ −∆− ıγ + 2ε±

J
〈↓|
)

(1.29c)

whereA is the normalization such that 〈εj|εj〉 = 1. Note that whenH2 is in the PT -symmetric

phase (∆ = 0,
∣∣∣ γ
J

∣∣∣ < 1) the eigenstates take a simplified form

|ε±〉 = 1√
2
(
±e±ıθ |↑〉+ |↓〉

)
⇐⇒ ∆ = 0,

∣∣∣∣γJ
∣∣∣∣ < 1 (1.30a)

〈〈ε±| =
sec(θ)√

2
(
〈↑| ± e∓ıθ) 〈↓|

)
⇐⇒ ∆ = 0,

∣∣∣∣γJ
∣∣∣∣ < 1 (1.30b)

where θ = sin−1( γ
J
) = cos−1

(√
1−

(
γ
J

)2
)

.

Figure  1.2 shows the progression of the energy levels when ∆ = 0 as γ
J

is increased

from 0 → 2, with Re (ε±) in blue and Im (ε±) in red. From Eq.  1.29a and Fig.  1.2 we detect

exceptional points at the coordinates (∆ = 0, γ
J

= ±1), where the right-eigenstates and

left-eigenstates coalesce on opposite sides of the Bloch sphere. Fig. 1.2 a shows that in the

region (∆ = 0,
∣∣∣ γ
J

∣∣∣ < 1) H2 is in the PT -symmetric phase and ε± are purely real, while in

the region (∆ = 0,
∣∣∣ γ
J

∣∣∣ > 1) H2 is in the PT -broken phase and ε± are complex. Fig. 1.2 b

measures the non-orthogonality of the eigenstates 〈ε+|ε−〉. Here we see that the |ε±〉 become

degenerate in addition to ε±.

The time evolution operator for the system is U2 = e−ıtH2 . However, since H2 is finite

rank we can eventually decompose Hn
2 in terms of the lower powers of H2. For our model

H2
2 = ε2

±1, and so U2 can be decomposed as

U2 = cos (ε±t)1−
ı

ε±
sin (ε±t)H2 (1.31)
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which can be further reduced when ∆ = 0

U2 =



cos (|ε±| t)1− ı
|ε±| sin (|ε±| t)H2 ∀

∣∣∣ γ
J

∣∣∣ < 1

1− ıtH2 ∀
∣∣∣ γ
J

∣∣∣ = 1

cosh (|ε±| t)1− ı
|ε±| sinh (|ε±| t)H2 ∀

∣∣∣ γ
J

∣∣∣ > 1

(1.32)

We see here that the expansion of U2 termiates at n = 2 for the exceptional point, again

marking the exceptional point as 2nd order.

From the perspective of PT -Symmetry, the principal anti-linear symmetry responsible

for this behavior is the PT operator

PT =

0 1

1 0

K (1.33)

where P exchanges z-eigenstates (|↑〉 ↔ |↓〉), and T is the complex conjugation operator

(K). The eigenvalues and eigenstates of PT are identical to σx. However, from the relation

PT 2 = 1

|φ〉 = PT 2 |φ〉 = PT (λ |φ〉) = |λ|2 |φ〉 (1.34)

we find that λ = eıφ is a phase factor. Including this phase with the eigenstates yields the

basis

|1〉 = |→〉 = 1√
2

1

1

 , |2〉 = ı |←〉 = ı√
2

 1

−1

 (1.35)

each with eigenvalue λ = 1. Linear combinations of |1〉 and |2〉 are also eigenstates of PT ,

but only if the linear coefficients are real valued. Therefore, all states along the xy-plane of

the Bloch sphere are valid eigenstates of PT , while any state where 〈ψ|σz|ψ〉 6= 0 cannot be

recreated. Figure  1.3 shows the path taken by the eigenstates as γ
J

varies between [0, 10].

Fig. 1.3 a shows that in the PT -symmetric phase (∆ = 0,
∣∣∣ γ
J

∣∣∣ ≤ 1) (blue) the eigenstates of H2

lie along the xy-plane up until the exceptional point, where they deviate onto the yz-plane
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Figure 1.3. Progression of States: Depiction of a Bloch sphere formed by
|↑〉 and |↓〉 as H2 varies from γ

J
∈ [0, 10]. Fig.  1.3 a shows points for ∆

J
= 0, while

Fig. 1.3 b shows points for ∆
J

= 0.25. The spacing between points is γ
J

= 0.1. At
the Hermitian limit (black), the |ε±〉 are orthogonal at opposite points of the
bloch sphere aligned on the x-axis. For Fig.  1.3 a, as γ is increased in the PT -
symmetric phase (blue), the |ε±〉 approach |↓〉y = [1 − ı]T while 〈ε+|ε−〉 → 1,
finally becoming degenerate at γ

J
= 1. After passing the exceptional point

(red), the |ε±〉 asymtotically approach |l〉, where at γ
J

= ∞ they become
orthogonal once more. For Fig.  1.3 b, H2 is always in the PT -broken phase
except at the Hermitian limit (the regions of γ

J
≤ 1 and γ

J
≥ 1 are denoted

with the same colors as before). The corresponding |ε±〉〉 (cyan and magenta)
always exist in the direction opposite to their conjugate counterpart |ε∓〉, but
due to the normalization 〈〈εi|εj〉 = δij are not bound to the Bloch sphere. Their
projections onto the Bloch sphere are plotted in faded colors.
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for higher values of
∣∣∣ γ
J

∣∣∣ (red) and no longer serve as a basis for PT . In contrast, Fig.  1.3 b

shows how when ∆ 6= 0 the model is trivially broken, as the eigenstates of H2 are never in

contact with the xy-plane.

From the perspective of Pseudo-hermiticity, we find two intertwinning operators when

∆ = 0

η1 = σx =

0 1

1 0

 (1.36a)

η2 = 1 + γ

J
σy =

 1 − ıγ
J

ıγ
J

1

 (1.36b)

Here we see that η1 is simply P , while η2 has eigenvalues λ = 1± γ
J

making it positive definite

within the PT -symmetric region. Within this region we can define the Dyson map

ξ2 =

√
1 + γ

J
+
√

1− γ
J

2 1 +

√
1 + γ

J
−
√

1− γ
J

2 σy (1.37)

=


√

1+ γ
J

+
√

1− γ
J

2
−ı
√

1+ γ
J

+ı
√

1− γ
J

2
ı
√

1+ γ
J

−ı
√

1− γ
J

2

√
1+ γ

J
+
√

1− γ
J

2


h = ξ2H2ξ

−1
2 =

√
J2 − γ2σx (1.38)

The expectation values for each ηj are

〈
ε±

∣∣∣U †η1U
∣∣∣ε±
〉

=
〈
ε±

∣∣∣η1U
−1U

∣∣∣ε±
〉

= 〈ε±|η1|ε±〉 = ±
√

1−
(
γ

J

)2
(1.39a)

〈ε±|η2|ε±〉 = 1−
(
γ

J

)2
(1.39b)

These expectation values do not change with time so long as ∆, γ, and J are static, marking

them as constants of motion.

Finally, we can consider an alternate perspective where J and ∆ vary as γ is held constant.

These conditions commonly occur in experimental settings where the gain or loss rate of the

model is fixed by the physical construction of the PT -dimer, while J and ∆ can be modified

by adjusting external fields [  4 ]. Alternatively, such diagrams prove useful when periodically
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Figure 1.4. ε Surface: Shows the energies ε± as J
γ

is varied from [0, 2] and
∆
γ

is varied from [ − 2, 2]. Fig.  1.4 a shows the real part, while Fig.  1.4 b shows
the imaginary part. The presence of an exceptional point can again be seen at
∆
γ

= 0,J
γ

= 1. Fig.  1.2 c shows 〈ε+|ε−〉 reaching 〈ε+|ε−〉 = 1 at the exceptional
point.
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driving J and ∆ in order to encircle exceptional points. Figure  1.4 shows the progression of

the energy levels when γ is held constant (γ = 1) for varying values of J and ∆. We observe

the exceptional point at (∆
γ

= 0,
∣∣∣J
γ

∣∣∣ = 1). Moreover, we now see that the ε form a surface

which intersects itself, with the intersection defining the non-trivial PT -broken regime in

Re (ε±) and the PT -symmetric regime in Im (ε±). |ψ〉 traveling around the exceptional

point due to a time dependent U are forced to follow the curvature of the surface through

the intersection, resulting in the ”Mode-Switching” phenomenon described in [ 4 ].

1.4 Floquet Analysis for Non-Hermitian Physics

So far we have investigated systems driven by static Hamiltonians ∂tH(t) = 0, under

which U = exp(−ıtH). As a result we are assured that U and H will share a basis since

[H,U ] = 0, and therefore finding the solutions of H amounts to finding the normal modes

of the system as it evolves in time. We now need to consider systems where H varies in

time, especially systems where the instantaneous Hamiltonian does not commute with the

total time evolution [H(t), U ] 6= 0. Such U must generally be diagonalized into a time

dependent basis. However if the Hamiltonian is periodic in time with some period T then

we can observe quasi-stable modes over timescales δtF � T . Characterizing these quasi-

stable modes is the focus of Floquet Analysis, which we will now apply in the context of

non-Hermitian Hamiltonians [ 16 ].

Consider a time dependent H(t) with period T parametrized as

H(t+ nT ) = H(t) ∀ t ∈ [0, T ], n ∈ Z0+ (1.40)

The time evolution operator U(t + nT ) is then given by Eq.  1.2 . However, since H(t + nT )

is periodic we can split U(t+ nT ) into a combination of regular U(T ) and particular U(t)

U(t+ nT ) = Toe−ı
∫ t+nT

0 dt′H(t′)

= Toe−ı
∫ t

0 dt
′H(t′)

(
e−ı

∫ T

0 dt′H(t′)
)n

(1.41)
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From this we define the Floquet Time Evolution operator UF , as well as the Floquet Hamil-

tonian HF

UF = T0e−ı
∫ T

0 dt′H(t′) (1.42)

HF = ı

T
ln(UF ) (1.43)

In the Hermitian Floquet theorem, UF is assured to be unitary and as such there is assured

to be an HF that is Hermitian. For the non-Hermitian construction, UF is non-unitary but

there will be an associated non-Hermitian HF so long as UF is invertible. If HF exists, then

the eigenvalues will lie in a strip of the complex plane −π < Im(εF ) ≤ π. We can then derive

the Floquet energies (quasi-energies) and associated Floquet states

UF |εF j〉 = e−ıεF jT |εF j〉 (1.44)

〈〈εF j|UF = e−ıεF jT 〈〈εF j| (1.45)

The total time evolution can then be expressed as

U(t+ nT ) = Toe−ı
∫ t

0 dt
′H(t′) (UF )

nT
T (1.46)

= P (t) (UF )
t+nT

T (1.47)

The operator P (t) = Toe−ı
∫ t

0 dt
′H(t′) (UF )− t

T is a periodic micro-motion operator (P (T ) = 1)

that perturbs the evolution of the Floquet states towards the expected state. The time

evolution of a general state |ψ〉 can then be expressed as a linear combination of the perturbed

Floquet states

U(t+ nT ) |ψ〉 =
∑

j
e−ıεF j(t+nT )P (t) |εF j〉 〈〈εF j|ψ〉 (1.48)

1.5 Physical Questions

In this chapter we have provided a mathematically consistent description for open quan-

tum systems in a non-Hermitian setting. Experimental demonstrations of PT -Symmetric
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behavior including purely real spectra, exceptional points, and non-orthogonal eigenstates

have been observed in [  3 ], [  6 ], [  17 ], [  18 ]. What remains is how to interpret these non-

Hermitian phenomena in a physically consistent model of quantum mechanics. Obviously

the interpretation of complex components of εj as energy transfer to/from the system implies

secondary systems that act as a source/sink respectively, all of which must be described by

some set of unitary dynamics when considered together. In addition, the fact that the identity

for a system changes implies that the trace of a density matrix defined by ρ = ∑
j pj |εj〉 〈εj|

does not remain normalized to Tr(ρ) = 1, and so such a density matrix can no longer be

interpreted as a statistical distribution of states.

In the following chapters we will investigate models of decoherent evolution, and find that

under specific circumstances coherent but non-unitary dynamics arise. We will then relate

these dynamics to non-Hermitian models and give a physical interpretation to PT -Symmetry

and Pseudo-hermiticity in their context.
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2. OPEN QUANTUM MAPS

In Chapter  1 we found that non-Hermitian Hamiltonians described non-conservative pro-

cesses which maintain coherence, and developed the mathematical tools to analyze such sys-

tems. This identification as non-conservative dynamics then naturally calls for a comparison

to quantum maps, which have been used to describe decoherent processes for decades [ 19 ],

[ 20 ]. In this chapter we will introduce the Gorini– Kossakowski– Sudarshan– Lindblad mas-

ter equation (Lindbladian) in preparation for Chapter  4 , where we show that under specific

circumstances the Lindbladian is reduced to one of the possible master equations for non-

Hermitian systems. Such circumstances allow for the study of non-Hermitian Hamiltonians

through established Lindbladian experiments, and so we will develop our preferred experi-

mental apparatus in the Chapter  3 .

2.1 Quantum Maps

Central to the study of decoherent processes are quantum maps (quantum channels) [ 19 ],

[ 21 ]. A quantum map is defined as a linear map between two state density operators

ρf =M[ρ0] (2.1)

where M[ · ] is a general map, ρ0 is the initial state density, and ρf is the resulting state

density. We can see thatM is a linear function that accepts operators as inputs and outputs

another operator, and so is an operator on operator-spaces. We will refer to such “operators-

of-operators” as super-operators, and will denote them in this work with caligraphic text (M

instead of M). We will note that in the general theory of quantum maps ρ0 and ρf do not

need to be the same rank, but for this work we are specifically interested in maps that are

automorphic.
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As for the state density operators, we normally declare that the operator-space uses an

orthogonal Hilbert space as a basis. Doing so makes the definition of the state density

unambiguous

ρ =
∑
i,j
pij |ψi〉 〈ψj| (2.2)

Tr(ρ) =
∑

j
pjj (2.3)

where |ψj〉〉 = |ψj〉 and 〈ψi|ψj〉 = δij since we have returned to the Hermitian regime. In

addition, we normally set Tr(ρ) = 1 so that pjj correspond to probabilities. From these

definitions, we can express a measurement with respect to a Hermitian operator Q as

〈Q〉 = Tr(Qρ)
Tr(ρ) (2.4)

To proceed further we will need to specify the mathematical form of M, however the

map can take a few alternate representations (each with their own uses). At the end of this

section, Table  2.1 will then compile the properties of each form.

2.1.1 Operator Sum Representation

From Eq.  2.2 we can see that the standard representation of the state density operators

are square matrices. As a result, for a map to access all of the elements of ρ individually the

map must include a transformation from both the left and right of ρ. The map then takes

the form of a sum of transformations

ρf =
d2

0∑
α=1

Lαρ0R
†
α (2.5)

where Lα and Rα are matrices with dimensions Df × D0. All quantum maps require a

maximum of d2
0 pairs of {Lα, Rα} to fully describe the map, though some maps will require

fewer. We will denote quatum maps in the operator sum representation by the attached

square brackets M[ · ].
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The value of the Operator Sum representation is its simplicity. The form of the map

mirrors the unitary evolution of the state density ρf = Uρ0U
†, a property which we will

utilize in the next section to define Kraus operators. The form of Q in the Heisenberg

representation can be quickly derived

Qf =
d2

0∑
α=1

R†
αQ0Lα (2.6)

Whether or not the map is trace preserving can be obtained as

Tr(ρf ) = Tr(ρ0) ⇐⇒
d2

0∑
α=1

R†
αLα = 1 (2.7)

The map is only hermiticity preserving when

ρ†
f = ρf ∀ ρ†

0 = ρ0 ⇐⇒ Lα = ±Rα ∀ α (2.8)

and the map is only positive when

ρf ≥ 0 ∀ ρ0 ≥ 0 ⇐⇒ Lα = Rα ∀ α (2.9)

2.1.2 Vectorized Representation

Since the quantum map is linear in ρ, it stands to reason that the elements of ρ can be

rearranged into a vector that is more easily addressed. One possible method for accomplish-

ing this is to transform |ψi〉 〈ψj| → |ψj〉∗ ⊗ |ψi〉, which will stack the columns of ρ on top of

each other

ρ =

a b

c d

→ |ρ〉 =



a

c

b

d


(2.10)
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We then denote the vectorized form of ρ using the ket notation. This transformation then

alters transformation from the left and right as per

Aρ→ (1⊗ A) |ρ〉 (2.11)

ρA→ (AT ⊗ 1) |ρ〉 (2.12)

Thus the form ofM will be a d2
f×d2

0 matrix that is generally non-Hermitian and non-unitary

|ρf〉 =M|ρ0〉 =
d2

0∑
α

(R∗
α ⊗ Lα) |ρ0〉 (2.13)

We will denote quantum maps in the vectorized representation without attached square

brackets.

The advantage of the Vectorized representation is that the map can be manipulated

and analyzed using the standard linear algebra techniques [  7 ], [  19 ]. Since the state density

operators tranform as ρ→ |ρ〉, it follows that measurement operators Q transform as

Q =

a b

c d

→ 〈Q| = [
a b c d

]
(2.14)

〈Q〉 = 〈Q|ρ〉 (2.15)

If df = d0 then the exponential is well defined

eM =
∞∑
n=0

1
n!M

n (2.16a)

and the logarithm of M exists if M is invertible, and is well defined if M > 0

ln(M) = −
∞∑
n=1

1
n

(1−M)n (2.16b)
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Further, the normal modes of the map can be obtained through eigen-decomposition

M|ρj〉 = λj |ρj〉 (2.17a)

〈〈Qj|M = λj 〈〈Qj| (2.17b)

where |ρj〉 correspond to eigen-densities ofM, while 〈〈Qj| correspond to eigen-measurements

for M.

2.1.3 Choi Representation

The final form ofM we will investigate arises when applying the vectorization procedure

to Lα and Rα rather than ρ and Q. Consider the (dfd0) × (dfd0) matrix constructed from

the vectorized forms of Lα and Rα

ΥM =
d2

0∑
α

|Lα〉
〈
R†
α

∣∣∣ (2.18)

where
〈
R†
α

∣∣∣ = (|Rα〉)†. One can show that this matrix is equivalent to the action of M[ · ]

acting on one subsystem of a maximally entangled system plus ancilla

ΥM =
∑
i,j
|ψi〉〈ψj| ⊗M[ |ψi〉〈ψj| ] = (1d0 ⊗M) [ |Ω〉〈Ω| ] (2.19)

where |Ω〉 = ∑
j |ψj〉 ⊗ |ψj〉. Further, it can be shown that

ρf = Trd0

(
ΥM

(
ρT0 ⊗ 1df

))
(2.20)

where Trd0(·) is the partial trace over the system that is not acted on byM[ · ] (see Appendix

 A ).

The value of the Choi representation lies in its mathematical properties [  19 ], [  20 ]. Like

the Operator Sum representation, we can determine if M is trace preserving through

Tr(ρf ) = Tr(ρ0) ⇐⇒ Trdf
(ΥM) = 1d0 (2.21)
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Table 2.1. Table comparing the useful properties of each of the representa-
tions of the quantum map M.

Operator Vectorized Choi
Notation M[ · ] M ΥM

ρf M[ρ] M|ρ〉 Trd0

(
ΥM

(
ρT0 ⊗ 1df

))
〈Q〉 Tr(QM[ρ]) 〈Q|M |ρ〉 Tr

(
ΥM

(
ρT0 ⊗Q

))
Exponent x eM x
Logarithm x ln(M) x

Trace ∑d2
0
α=1 R

†
αLα = 1 x Trdf

(ΥM) = 1d0

Hermiticity Lα = ±Rα x Υ†
M = ΥM

Positivity Lα = Rα x ΥM ≥ 0
Decomposition x Eigen-ρ, Eigen-Q Minimal Lα, Rα

and the map is only hermiticity preserving when

ρ†
f = ρf ∀ ρ†

0 = ρ0 ⇐⇒ Υ†
M = ΥM (2.22)

The Choi representation can also be used to determine if the map is completely positive

(positive semidefinite for all extended systems) through

ρf ≥ 0 ∀ ρ0 ≥ 0 ⇐⇒ ΥM ≥ 0 (2.23)

In addition, the Choi rank (rank(ΥM)) corresponds to the minimum pairs of Lα and Rα

required to recreate the map, and the individual Lα and Rα are obtained from the eigen-

decomposition of ΥM.

2.2 Kraus Maps

We are now in a position to derive the quantum maps which govern physical systems.

Starting from a state-density operator for the universe ρuni, we can split ρuni into a subsystem
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we are interested in ρ and the surrounding environment, which we will consider to be in the

ground state

ρuni = ρ⊗ |0〉 〈0| (2.24)

We specify that the environment must be in the ground state so that the environment is

incapable of supplying energy to the system in question. ρuni is considered to be a completely

closed system, and so it evolves under unitary evolution

ρuni(t) = U (ρ(t0)⊗ |0〉 〈0|)U † (2.25)

From this point we remove the degrees of freedom for the environment by partial tracing

over the states of the environment |α〉, leaving us with a quantum map in the operator sum

representation

ρ(t) = V [ρ(t0)] =
de∑
α=0

Kαρ(t0)K†
α =

dK∑
µ=0

Kµρ(t0)K†
µ (2.26)

where Kα = 〈α|U |0〉 are referred to as Kraus operators. We write the second summation

in Eq. 2.26 as the maximum number of Kraus operators is dK ≤ d2
ρ, and so the set of Kα

may not be linearly independent. Instead, the index µ runs over the minimal set of Kraus

operators. We can also see that V is trace preserving, hermiticity preserving, and completely

positive as per the properties of the Operator Sum representation.

2.2.1 Markovianity

We can see from the form of Kα that each of the Kraus operators is responsible for

exciting the environment from the ground state to an excited state |α〉. Since U is unitary

and creates entanglements between the system and environment, this will be accompanied

by a change in the purity of ρ. Beginning in a short timescale the change will be highly

volatile, then will transition to a largely decoherent regime, before becoming oscillatory at
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long times. The one exception is K0, which does not excite the environment and so drives

coherent evolution within ρ.

The logical problem that this creates is that we would like to connect V to a generating

master equation L in the same way that U and H are connected. However since U is

unitary the entanglement between the system and environment will mean that ρ(t + δt)

generally depends on ρ(t) and ρ at earlier times, since the information of such states exists

in the environment. To overcome these complications, it is necessary that we take a Markov

approximation of the model [ 22 ]–[ 25 ]. This approximation assumes:

δtmem � δtmsr � δtdyn � δtrch (2.27)

1. The environment is large enough, or sufficiently noisy enough, that there is a time

scale δtmem at which information in the environment is lost. Thus, any back-action of

the environment on the system is generated from incoherent dynamics.

2. The timescale of measurements δtmsr is large enough that random noise is averaged

over.

3. The timescale of the dynamics we are interested in studying δtdyn is large compared

to δtmsr, but small compared to the recoherence timescale δtrch.

If the system satisfies these conditions we can approximate V to be Markovian by requiring

that the environment is reset to its ground state after any excitation occurs. Markovian

maps are local in time so that ρ(t+ δt) depends on ρ(t) alone. In addition, Markovian maps

allow for sequential application of V [ · ] to yield the proper evolved ρ(t)

ρ(t+ 2dt) = V [ρ(t+ δt)] = V [V [ρ(t)]] (2.28)

Not all Kraus maps are Markovian, but we can check whether a map is by using the Choi

matrix so long as the map is known to be trace preserving and completely positive [ 25 ]

||ΥV || = Tr
√

Υ†
VΥV ≥ 1 (2.29)

41



where ||ΥM|| is the trace norm of ΥM. In the instance that ||ΥV || = 1 the map is Markovian.

However if ||ΥV || > 1 then non-Markovian effects will be present and no master equation

can be written.

2.2.2 Lindblad Master Equation

With the Markovian condition on V we can now tackle defining a master equation for

open systems. Our goal will be to define the generator of decoherent evolution L, as well

as relate this generator to the quantum von-Liouville equation ı∂tρ = [H, ρ] which L should

approach for unitary evolution.

To begin, we expand the corrections to ρ(t+ δt) in orders of δt

ρ(t+ δt) = V [ρ(t)] =
de∑
α=0

Kα(δt)ρ(t0)K†
α(δt) (2.30)

Since V is Markovian, we expect the first order to yield the largest correction as dt → 0.

First, we seperate the contribution of K0 from the other Kα as K0 should be associated with

coherent evolution. We specify that K0 = 1 + δt(−ıH+C) +O(δt2), where C is a correction

operator which will be needed later. Expanding the Kraus operators in terms of
√
δt yields

corrections Kα(δt) = Lα,0 +
√
δtLα,1 + O(δt) Substituting the first order corrections for Kα

then yields

ρ(t+ δt) = ρ(t) + δt

−ı[H, ρ(t)] + {C, ρ(t)}+
de∑
α=1

Lα,1ρ(t0)L†
α,1

+O(δt2) (2.31)

Next, we require that V be trace preserving. Since Tr(ρ(t+ δt)) = Tr(ρ(t)) = 1, this requires

that all correction orders obey Tr(O(δtn)) = δ0n. This is only possible for all correction

orders if C = −1
2
∑de
α=1 L

†
α,1Lα,1. As a final step, we remove the linearly dependent members

of the Lα,1 set by replacing them with the normalized set √γµLµ.
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Finally, we are left with the Gorini– Kossakowski– Sudarshan– Lindblad master equation

(Lindbladian)

∂tρ = L[ρ] = −ı [H, ρ]︸ ︷︷ ︸
(1)

+
∑
µ

γµ LµρL
†
µ︸ ︷︷ ︸

(2)

−γµ2
{
L†
µLµ, ρ

}
︸ ︷︷ ︸

(3)

(2.32)

where the set of Lµ are referred to as Lindblad dissipators, and γµ are the associated decay

rates. Note that all the decay rates must be γµ ≥ 0 for L to remain completely positive.

The set of Lµ are usually normalized so that they are traceless and are Hilbert-Schmidt

orthogonal

Tr(Lµ) = 1 (2.33a)

Tr(L†
µLν) = δµν (2.33b)

The commutator(1) is identical to the quantum von-Liouville equation, and since H is Her-

mitian this term will generate unitary dynamics in ρ(t). The second term(2) is similar to

the Kraus map and so this term is responsible for the decoherent “jumps” that occur [ 7 ].

The anti-commutator(3) which was required for trace preservation of the map was an anti-

Hermitian component of K0 originally, and so this term will generate coherent but non-

unitary dynamics.

By transforming L[ · ] to the vectorized representation, we can quickly determine the

eigen-densities and eigen-measurements

Lµ |ρj〉 = λj |ρj〉 (2.34a)

〈〈Qj|Lµ = λj 〈〈Qj| (2.34b)

Since L is trace preserving, we know that one 〈〈Qss| = 1 with eigenvalue λss = 0 since

Tr(ρ(t)) → 〈1|ρ(t)〉 in the vectorization representation. λss will then have an associated

eigen-density

L |ρss〉 = 0 (2.35)
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which represents the steady state density of the system [ 7 ], [ 26 ], [ 27 ]. The rest of the λj will

exist in the Re (λj) ≤ 0 half plane, and must be purely real or come in complex conjugate

pairs. The associated |ρj〉 will be Hermitian if λj is real, or come in Hermitian conjugate

pairs if λj is complex. In addition, since 〈1| is a member of the 〈〈Qj|, and 〈〈Qj| and |ρj〉 form

a bi-orthogonal set, all |ρj〉 other than |ρss〉 must obey

Tr(ρj) = 0 ∀ j 6= ss (2.36)

There are two circumstances in which the steady state properties are violated. The first

is if complex conjugate pairs exist with Re (λj) = 0 [ 26 ], [  27 ]. In these cases ρ(t) will oscillate

between multiple steady states. This behavior is expected in the unitary limit, but is rare

when γµ 6= 0. The second is if L lies on an exceptional point [  7 ]. Under this condition L will

have degenerate eigen-densities similar to the case found in non-Hermitian Hamiltonians.

In these cases, we use the Jordan decomposition found in Ch.  1 to determine the additional

vectors needed for V [ 1 ].

2.3 Fundamental Case: Decohering Dimer

We now consider the case of the Decohering Dimer L2. For the Lindblad dissipators we

will use the basis

Lz = 1
2σz, L+ = σ+, L− = σ− (2.37)

Lz corresponds to phase noise, and will cause 〈σx〉 and 〈σy〉 to decay toward zero. L−(L+)

corresponds to spontaneous emission (absorption), and will cause ρ to decay toward |↓〉 〈↓|

(|↑〉 〈↑|). For the Hermitian component of L2, we choose

H = J

2 σx (2.38)

while a more general case would include the detuning potential ∆
2 σz. We choose this H as

(much like the PT -dimer) choosing a coupling orthogonal to the natural alignment of the
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dissipators yields ideal properties for λj and ρj. Figure  2.1 shows a possible implementation

of L2 in a two level transmon circuit

Figure 2.1. Decohering Dimer: Shows an energy level diagram for a deco-
hering two level transmon, where J

2 is a microwave drive and ∆ is the energy
level difference between |↑〉 and |↓〉. There are 3 forms of dissipation present
in the model consisting of spontaneous emission (γ−), spontaneous absorption
(γ+), and phase noise (γz). Unlike in Fig.  1.1 b the dissipation of the Decohering
Dimer is internal to the two level manifold, and thus the effects of decoherent
jumps remain present [ 15 ].

The Lindbladian in the Operator Sum representation reads as

L2[ρ] = − ıJ2 [σx, ρ] +
∑
µ=z,±

γµDµ[ρ] (2.39a)

Dz[ρ] = 1
4σzρσz −

1
4ρ (2.39b)

D+[ρ] = σ+ρσ− + 1
4 (σzρ+ ρσz)−

1
2ρ (2.39c)

D−[ρ] = σ−ρσ+ −
1
4 (σzρ+ ρσz))−

1
2ρ (2.39d)

and the vectorized representation reads as

L2 = 1
2



−2γ− −ıJ ıJ 2γ+

−ıJ − (γz + γ+ + γ−) 0 ıJ

ıJ 0 − (γz + γ+ + γ−) −ıJ

2γ− ıJ −ıJ −2γ+


(2.40)
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As with all Lindbladian systems there is a steady state corresponding to λss = 0 associated

with Qss = 1

ρss = 1
2

1 + r cos(θ) −ır sin(θ)

ır sin(θ) 1− r cos(θ)

 (2.41)

where r = γ+−γ−
J2−λ0(γ++γ−) and tan(θ) = J

λ0
. We can see from the form of ρss that the system

always decays to a point that lies in the yz-plane. The constant λ0 = −γ++γ−+γz

2 corresponds

to the second eigenvalue, which is associated with

ρ0 = 1
2Q0 = 1

2

0 1

1 0

 (2.42)

ρ0 is unusual as it is the only self-orthogonal member of the biorthogonal sets ρj and Qj. Its

form implies that there is an exponential decay of 〈σx〉 with time, which explains why ρss

has no x-component.

The final two λj exist as a pair

λ± = λ0 − Je±ζ (2.43a)

Q± =

r(cos(θ)− e∓ζ sin(θ))− 1 −ıe∓ζ

ıe∓ζ r(cos(θ)− e∓ζ sin(θ)) + 1

 (2.43b)

ρ± = 1
4 sinh(ζ)

−e±ζ ı

−ı e±ζ

 (2.43c)

where cosh(ζ) = −λ0+γz

2J . When
∣∣∣γz+λ0

2J

∣∣∣ > 1 then λ± are purely real and both ρ± and Q±

are Hermitian. On the other hand, when
∣∣∣λ0+γz

2J

∣∣∣ < 1 the λ∗
± = λ∓ and so both ρ†

± = ρ∓

and Q†
± = Q∓. At the point when

∣∣∣λ0+γz

2J

∣∣∣ = 1 the pairs become degenerate and L is not full

rank.

Figure  2.2 shows the progression of λj as J increases from 0→ 5 for γz = .25, γ+ = .75,

and γz = .5. Figure  2.2 a shows the λj, while Figure  2.2 b shows the eigenvalues of V (eλjt)

for t = 1. The steady state λss is shown as the unmoving black dot. Since all of the
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Figure 2.2. Decohering Dimer Eigenvalues: Shows the eigenvalue spec-
trum for a Decohering Dimer with γz = .25, γ+ = .75, γz = .5 and varying
J . Figure  2.2 shows the position of λj in the complex plane, while Figure  2.2 b
shows the eigenvalues of V2 (eλjt) when t = 1. The region of the complex plane
that the eigenvalues cannot exist in is shaded gray. The steady state λss = 0
is marked in black. λ0 = −γ++γ−+γz

2 is marked in red. The remaining pair λ±
is marked with the color gradient blue→yellow. λ+ and λ− initially lie on the
real axis, but become degenerate at

∣∣∣ 2J
λ0+γz

∣∣∣ = 1 after which they form a com-
plex conjugate pair. The corresponding eλ+t and eλ−t wind around the origin,
but do not become degenerate at larger J . The non-orthogonal character of
the ρj is tracked in Figure  2.2 c.
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γµ are constant, λ0 is shown by the unmoving red dot. The remaining pair λ± change

as J is increased, and so are shown with the color gradient blue→yellow. The pair is

initially real valued before becoming degenerate at J = 1
4 , and then split off the real axis as

complex conjugates. The forbidden region of the Lindbladian is shown shaded gray. Finally,

Figure  2.2 c shows the overlap of eigen-densities max(〈ρi|ρj〉). Unlike with the PT -dimer,

the system begins with a small degree of non-orthogonality. The maximum overlap then

becomes dominated by 〈ρ+|ρ−〉, raising as ρ+ and ρ− become degenerate. The behavior of

the maximum overlap falls off as J →∞, signifying that L is approaching the unitary limit.

Figure  2.3 shows time evolution of a general pure state density. The position of ρ(t)

within the Bloch sphere is tracked using the color gradient line. The chosen γµ and J are

such that the evolution of the state density toward the steady state is critically damped. For

higher values of J ρ(t) will spiral around the steady state, while lower values will cause ρ(t)

to curve less but be pulled at a slower rate.

2.4 Floquet Analysis for Quantum Maps

Similar to non-Hermitian Hamiltonians, we can define a Floquet Analysis for quantum

maps [  16 ], [  25 ]. For a quantum map parametrized by time dependent parameters the final

map is the composition of the map at consecutive time instances, which is expressed most

easily in the vectorized representation

MT (t) = lim
δt→0
M(t, t− δt) · · ·M(δt, 0) (2.44a)

=
t∏
0
M(t′)dt′ (2.44b)

V(t) = Toe
∫ t

0 dt
′L(t′) (2.44c)
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Figure 2.3. Evolution of the Decohering Dimer: Shows the evolution
of the state density ρ(0) = |↑〉 〈↑| under L2 when γz = 6, γ+ = 1, γz = 1,
and J = 1. The outline of the Bloch sphere is shown with a transparent
gradient. The steady state the system approaches at t→∞ is the maximally
mixed state, shown here as the black dot at the center of the Bloch Sphere.
As t increases V2 |ρ(0)〉 is traced using the color gradient line. The specific
combination of coupling strength and decay rates means that L2 is critically
damped, meaning that λ+ = λ− and ρ(t) will approach ρss as fast as possible
for the given γµ
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If the Lindbladian is periodic in time (L(t+ nT ) = L(t)) then we can define a Floquet map

VF , Floquet-densities ρF j, and Floquet-measurements QF j

VF = T0e−ı
∫ T

0 dt′L(t′) (2.45)

V(t+ nT ) = P(t) (VF )
t+nT

T (2.46)

VF |ρF j〉 = eλF jT |ρF j〉 (2.47)

〈〈QF j| VF = eλF jT 〈〈QF j| (2.48)

which we can use to express the evolution of a general state density

|ρ(t)〉 = V(t+ nT ) |ρ(0)〉 =
∑

j
eλF j(t+nT )P(t) |ρF j〉 〈〈QF j|ρ(0)〉 (2.49)

The one major difference that exists for Floquet maps is the existence of a Floquet

Lindbladian [ 25 ]

LF
?= 1
T

ln(VF ) (2.50)

For the Hamiltonian case UF and HF were simply operators, and so the only restriction on

the existence of HF was that UF be invertible. However, for the Lindbladian case VF must

additionally be trace preserving, hermiticity preserving, completely positive, and Markovian.

The first two restrictions are generally not in question so long as the instantaneous maps

also preserve trace and hermiticity. On the other hand, the complete positivity condition

can sometimes create issues when LF would require a (usually small) negative decay rate

to approximate V . The most common issue to arise however is the Markovianity condition,

as the composition of instantaneous Markovian maps may not be Markovian itself. Due to

these complications we typically analyze the properties of VF directly.
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2.4.1 Floquet Lindbladians with Periodic Potentials

For our first investigation into the dynamics of Floquet Linbladians we will focus on

models in which the elements of the Hamiltonian are periodic in time. We will utilize the

same 2× 2 Hamiltonian with two seperate periodic functions

H(t) = −1
2J(t)σx (2.51)

J(t) =



J(1− δ sin2 (Ω
2 t))

J(1− δSq(t− π

Ω)) =


J t < π

Ω

J(1− δ) t ≥ π

Ω

(2.52)

where Ω = 2π

T
, δ ∈ [0, 2] is a parameter controlling the minimum of the coupling, and Sq(t)

is the function of a square wave. We will also seperately use two different static Lindblad

dissipators, L− at first and Lz second. We note here that whenever a single dissipator is

present the dissipator L+ yields identical results to L− when |↑〉 is exchanged with |↓〉.

First we will consider periodic modulation with spontaneous emission. The instantaneous

Lindbladian L2(t) in the Operator Sum representation reads as

L2(t)[ρ] = −ıJ(t)
2 [σx, ρ] + γ−D−[ρ] (2.53a)

D−[ρ] = σ−ρσ+ −
1
4 (σzρ+ ρσz))−

1
2ρ (2.53b)

and the vectorized representation reads as

L2(t) = 1
2



−2γ− −ıJ(t) ıJ(t) 0

−ıJ(t) −γ− 0 ıJ(t)

ıJ(t) 0 −γ− −ıJ(t)

2γ− ıJ(t) −ıJ(t) 0


(2.54)
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For VF , we need to solve Eq.  2.45 to obtain an analytic form. However an analytic expression

for the Dyson series under sinusoidal modulation has not been found, and so we obtain VF
numerically by discretizing the integral into

VF =
n∏
k=1

∑
j

e
2πk
n

λj(k)
Ω |ρj(k, t)〉 〈〈Qj(k, t)|

 (2.55)

At a discretization of n = 100 we obtain a close approximation of VF , though the error is

higher for low Ω
J

and large γ
J
. We then calculate the eigenvalues eλF j

2π

Ω and eigen-densities

|ρF j〉. In the case of the square wave modulation VF is explicitly calculable, but a simple

representation like we saw with the static L2 is not available.

Based on the behavior of Figure  2.2 c, we expect that max(〈ρF i|ρF j〉) will show the system

is non-orthogonal whenever γ 6= 0. The greatest non-orthogonality is expected between two

eigen-densities ρF+ and ρF− which will become degenerate at specific combinations of Ω
J

and γ
J
, while at the points max(〈ρF+|ρF+〉) ≈ 0 small non-orthogonalities between ρFss,

ρF+, and ρF− will keep max(〈ρF+|ρF+〉) 6= 0. However, in the case of ρF0, we notice that

ρ0 = 1
2Q0 = 1

2σx is a self-orthogonal eigen-density for all instantaneous L2(t), and therefore

we can determine that VF will have an eigen-density corresponding to ρF0 = ρ0.

Figure  2.4 a shows the phase diagram for periodic driving J(t) and spontaneous emission

rate γ for δ = 1. Within the phase diagram we see the presence of exceptional points

at the bright yellow lines where max(〈ρF i|ρF j〉) = 1. Along these contours ρF+ and ρF−

are degenerate and the system is critically damped. Between the contours lie regions of

underdamped and overdamped oscillations, with the underdamped regions in contact with

the unitary limit. We see all of the exceptional point contours of VF converge at the point(
Ω
J
, γ
J

)
= (0, 4). This convergence is a signature of the lone exceptional point of the static

system L2. Similarly, we can see the signature of the same exceptional point of L2 through

the contour that approaches
(

Ω
J
, γ
J

)
= (∞, 4− 2δ). This exceptional contour exists in the

high frequency limit where the changes in J(t) are averaged over, resulting in an effective

J(t) ≈ J 2−δ
2 . The rest of the exceptional point contours form into pairs as they approach

the unitary limit γ
J

= 0, where they approach points
(

Ω
J
, γ
J

)
=
(

2−δ
n
, 0
)
, ∀ n ∈ Z+. This

effect can be understood as a Lindbladian extention of the Bloch-Siegert shift [  28 ] resulting
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Figure 2.4. Periodic Driving with L− Phase Diagram: Shows the max-
imum inner product of eigen-densities max(〈ρF i|ρF j〉) for periodic driving J(t)
and spontaneous emission rate γ with δ = 1. Figure  2.4 a shows the sinusoidal
modulation, while Figure  2.4 b shows the square wave modulation. The pres-
ence of exceptional point contours is clearly seen in both cases. We see that
all of the contours converge at the point

(
Ω
J
, γ
J

)
= (0, 4), which corresponds

to the exceptional point of the static system L2. We also see that there is
a contour which approaches

(
Ω
J
, γ
J

)
= (∞, 2), which corresponds to the same

exceptional point of L2 in the high frequency regime where the motion is aver-
aged out. The rest of the contours converge toward the unitary limit as pairs
symmetrically approaching the points

(
Ω
J
, γ
J

)
=
(

1
n
, 0
)
.
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from multiphoton resonances in the traditional Rabi problem [ 29 ]–[ 31 ]. The fact that these

contours approach the unitary limit allows for the exploration of exceptional point effects at

lower γ
J

than would be possible in static systems. Furthermore, we can alter the shape of the

contours within the phase diagram by changing δ. Decreasing δ will cause the underdamped

regions to expand within the phase diagram rescaled by Ω
J
→ Ω

J(2−δ) , while increasing δ will

cause the overdamped regions to expand.

Figure  2.5 a shows the lower section of Figure  2.4 a, with the dashed line at γ
J

= 0.125

marking a path which crosses multiple exceptional point contours in the phase diagram.

Figure  2.5 b shows the real and imaginary components of eλF 0
2π

Ω , eλF +
2π

Ω , and eλF −
2π

Ω along

this path. We see that eλF 0
2π

Ω follows a simple exponential decay as Ω
J
→ 0, beginning near

the steady state eλF ss
2π

Ω = 1 and decaying toward 0. Next, we see that eλF +
2π

Ω and eλF −
2π

Ω are

initially a complex conjugate pair in the high frequency limit. The pair then spiral inward

as Ω
J
→ 0 before becoming degenerate on the negative real axis. This case is notable as it

was impossible with the static L2, and signifies that LF would require λF+ and λF− that

are complex but become degenerate at opposing Im(λF±) = ±π. After the exceptional point

the λF± would not form a conjugate pair after diverging. A way of rationalizing this is

that λF± which exist on different Riemann sheets become degenerate, resulting in λF± being

bound to the lines Im(λF±) = ±π while they are in the overdamped region Schnell. We

see this behavior present in Figure  2.5 b, where after entering the overdamped region eλF +
2π

Ω

and eλF −
2π

Ω briefly diverge along the negative real axis before rebounding to coalesce again

closer to eλF
2π

Ω = 0. At this point, the system enters a different underdamped region and

the behavior repeats again on the positive real axis. This cycle repeats as Ω
J
→ 0 while the

eigenvalues spiral inward, with overdamped regions of odd n on the negative real axis and

even n on the positive axis.

Taking a path further from the unitary limit results in larger deviations along the real

axis, but pulls the entire structure inward making the paths overlap and harder to resolve. In

fact, this exponential reduction of eλF +
2π

Ω and eλF −
2π

Ω eventually pulls the eigenvalues below

the point where floating point errors begin to appear. This manifests in Fig.  2.4 where we

begin to see visible errors for low Ω
J

but large γ
J
, compounding with the errors induced by

our discretization process.
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Figure 2.5. Evolution of Eigenvalues for VF : Shows the evolution of the
eigenvalues of VF− as Ω

J
increases from 0.2 → 2. The center of the allowed

complex disk is marked by the black dot. The path traced through the phase
diagram in Figure  2.5 a is marked by the dashed line, while the evolution along
the path is denoted by the gradient line in Figure  2.5 b.
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Similarly one could take a path with constant Ω
J

and linearly increasing γ
J

and see the same

behavior as one passes over the large contour “bundle” near the point
(

Ω
J
, γ
J

)
= (0, 4). In this

case however, the cycle will repeat a finite number of times before diverging permanently.

Our second investigation will utilize the phase noise dissipator Lz. The instantaneous

Lindbladian L2(t) in the Operator Sum representation reads as

L2(t)[ρ] = −ıJ(t)[σx, ρ] + γzDz[ρ] (2.56a)

Dz[ρ] = 1
4σzρσz −

1
4ρ (2.56b)

and the vectorized representation reads as

L2(t) = 1
2



0 −ıJ(t) ıJ(t) 0

−ıJ(t) −γz 0 ıJ(t)

ıJ(t) 0 −γz −ıJ(t)

0 ıJ(t) −ıJ(t) 0


(2.57)

We use the same discretization method for calculating VF as before. As before, we also

expect an eigen-density matching ρF0 = ρ0 to appear. We also can find that ρFss = 1
21 from

Eq. 2.41 . Therefore, ρF+ and ρF− are completely responsible for the non-orthogonality of the

system.

Figure  2.6 shows the phase for periodic driving J(t) and phase noise dissipation rate γ

for δ = 1. We see the same behavior of the exceptional points while the paths of the contours

are slightly altered. The contours once again approach the static L2 exceptional point at(
Ω
J
, γ
J

)
= (0, 4) as a bundle, and we see the presence of the high frequency contour approach-

ing
(

Ω
J
, γ
J

)
= (∞, 4− 2δ). We also see the exceptional contours form pairs approaching the

resonance points
(

Ω
J
, γ
J

)
=
(

2−δ
n
, 0
)
.

In addition, we see that the phase diagram contains a new feature. We see deep blue paths

stretching from the static exceptional point to the harmonic points through the overdamped

regions. This indicates that at points within the overdamped region all of the eigen-densities

have become orthogonal once again. These “maximally-orthogonal” contours present an

56



Figure 2.6. Periodic Driving with Lz Phase Diagram: Shows the max-
imum inner product of eigen-densities max(〈ρF i|ρF j〉) for periodic driving J(t)
and phase noise rate γ with δ = 1. Figure  2.6 a shows the sinusoidal mod-
ulation, while Figure  2.6 b shows the square wave modulation. Most of the
properities of the phase diagram are the same as Figure  2.4 , with identical
limits on the exceptional point contours. The major difference lies in the de-
gree of non-orthogonality in the overdamped regions. Here we see the system
reach max(〈ρF i|ρF j〉) = 0 within the overdamped region, signifying that all ρF j
have become orthogonal. These “maximally-orthogonal” contours extend all
the way up to the static exceptional point at

(
Ω
J
, γ
J

)
= (0, 4).
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opportunity for simplified quantum-process tomography under significant decay strength as

each eigen-density is its own measurement operator.

2.4.2 Floquet Lindbladians with Periodic Dissipators

We now switch from periodic driving to periodic dissipation. We will use the same

periodic functions as with the driving cases

γ(t) =


γ(1− δ sin2 (Ω

2 t))

γ(1− δSq(t− 2π

Ω ))
(2.58)

Note that due to the complete positivity requirement that δ ∈ [0, 1] when considering the

dissipators. The Floquet Lindbladian in the Operator Sum representation reads as

L2(t)[ρ] = −ıJ2 [σx, ρ] + γ−(t)D−(t)[ρ] (2.59a)

D−(t)[ρ] = σ−ρσ+ −
1
4 (σzρ+ ρσz))−

1
2ρ (2.59b)

and the vectorized representation reads as

L2(t) = 1
2



−2γ−(t) −ıJ ıJ 0

−ıJ −γ−(t) 0 ıJ

ıJ 0 −γ−(t) −ıJ

2γ−(t) ıJ −ıJ 0


(2.60)

Figure  2.7 shows the phase diagrams for periodic dissipation γ−(t) and γz(t) under fixed

coupling J for δ = 1. Unlike in the case of periodic driving, here we see that the exceptional

point contours do not converge to a single point. Instead, they form a set of splines that

run from the unitary limit up toward γ
J
→ ∞. We can still see the influence of the excep-

tional point of the static L2 in two ways. The first is that the high frequency limit contour

approaches
(

Ω
J
, γ
J

)
= (∞, 8) due to an average γ−(t) ≈ γ 2−δ

2 . The second is that each spline

has narrow sections at low and high γ
J
, while the spline widens in the middle (represented
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Figure 2.7. Periodic Dissipation Phase Diagrams: Shows the maximum
inner product of eigen-densities max(〈ρF i|ρF j〉) for periodic dissipations γ−(t)
and γz(t) with δ = 1. Figure  2.6 a shows the sinusoidal modulation with L−(t),
while Figure  2.6 b shows the square wave modulation with L−(t). Figure  2.6 c
shows the sinusoidal modulation with Lz(t), while Figure  2.6 d shows the square
wave modulation with Lz(t). Both the exceptional point contours as well as
the maximally-orthogonal contours continue on toward γ

J
. The exceptional

contours no longer converge on the static exceptional point, instead the widest
point of each curve traces a path toward

(
Ω
J
, γ
J

)
= (0, 4). In Figure  2.7 d we

see the result of this continuation causes the contour sets to cross over each
other, forming a grid of small underdamped and overdamped regions.
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by a wider yellow section in  2.7 ). These wide sections converge on the point
(

Ω
J
, γ
J

)
= (0, 4)

in the low frequency limit. Figure  2.7 cd we see once again the emergence of the maximally-

orthogonal contours, though in the case of periodic dissipation they are capable of continuing

toward γ
J
→ ∞. We also see in the square wave modulation that the maximal-orthogonal

contours converge on the static limit. To do this, the maximal-orthogonal contours must

cross several sets of exceptional contours, leading to an interwoven grid of underdamped and

overdamped regions. Because of this, the region near the static exceptional point can be

used to cross from the underdamped to overdamped region with small parameter changes.

Figure  2.8 shows a magnified version of Figure  2.7 d. Here we can see that the structure of

the resonances with periodic dissipation is different than under periodic driving. Rather than

all resonances reaching the unitary limit, they are split into two distinct categories. Reso-

nances of the type
(

Ω
J
, γ
J

)
=
(

2(2−δ)
2n+1 , 0

)
, ∀ n ∈ Z+ describe a true exceptional contour

and reach the unitary limit. On the other hand, resonances of the type
(

Ω
J
, γ
J

)
=
(

2−δ
n
, 0
)

never reach max(〈ρF i|ρF j〉) = 1 and so do not define a proper exceptional point contour.

Because of this, they become increasingly orthogonal near the unitary limit and disappear

into the underdamped region.
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Figure 2.8. Resonances Lz(t) Phase Diagram: Shows a close up of Figure
 2.7 d. We see that some of the exceptional point lines reach all the way to the
unitary limit, while others fade into the underdamped region.
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3. EXPERIMENTAL PLATFORM: CAVITY-COUPLED

TRANSMON CIRCUITS

With Kraus maps providing an effective theory of quantum decoherence, we now seek a

physical system governed by the Lindblad master equation through which we can study the

models and measurement techniques we have covered. There are many such systems includ-

ing evanescently coupled waveguides [  5 ] and superconducting circuit arrays [  32 ], [  33 ]. In our

case, the experimental platform that we are most familiar with consists of a superconducting

transmon circuit placed within a large cavity [  15 ]. The lowest energy levels of the transmon

form an effective dtr-level system, for which we will normally choose a qubit or qutrit con-

struction. The circuit is then coupled to the ground level of the electromagnetic field within

the cavity, resulting in a frequency shift dependent on the state of the qubit. In this chapter

we will build up the physical framework for how these devices combine to produce a working

quantum platform.

3.1 Quantization of the Transmon Circuit

A transmon is a type of superconducting circuit formed when a Josephson junction is

shunted by a capacitor. Figure  3.1 shows the schematic for a simple transmon, where the

capacitor C is marked by the parallel plates, and the Josephson junction Lj is marked by

the boxed cross.

To find an effective Hamiltonian for the circuit, we will make use of some concepts from

Electrodynamics. We define the voltage V along a circuit path to be the integral of the

electric field ~E along the path. We define the current I along a circuit path to be the

integral of the magnetic field ~B encoupassing the path in a plane perpendicular to a point
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Figure 3.1. Transmon Schematic: Circuit diagram for a transmon, con-
sisting of a Josephson junction LJ that has been shunted by a capacitor C.

along the path. We can further define the accumulation of V (I) with time as the circuit’s

branch flux Φ (charge Q) respectively.

V (t) =
∫ b

a

~E · d~r (3.1a)

I(t) =
∮
~l

~B · d~l (3.1b)

Φ(t) =
∫ t

−∞
dt′V (t′) (3.1c)

Q(t) =
∫ t

−∞
dt′I(t′) (3.1d)

where ~r is the parametric path of the circuit and ~l is a closed path in a plane perpendicular

to ~r.

3.1.1 Capacitors

Looking at the components of the transmon, the capacitor is constructed from two par-

allel plates seperated in space by either a vacuum or a dielectric material. The defining
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characteristic of the capacitor is the relation between the voltage difference across the plates

to the charge stored on the plates

∂tΦ(t) = VC(t) = 1
C
QC(t) = 1

C

∫ t

−∞
dt′I(t) (3.2)

This linear function allows us to express the “kinetic” energy stored in the capacitor as a

function of ∂tΦ(t)

KC(t) =
∫ t

−∞
dt′VC(t′)I(t′) = 1

2C(∂tΦ(t))2 (3.3)

3.1.2 Josephson Junctions

Somewhat similar in construction to the capacitor, the Josephson junction itself is formed

from two superconducting leads bridged by a thin insulator (∼ 1nm). Pairs of electrons in

the superconducting material are bound into superposition states known as Cooper pairs,

which cause the electron pair to behave as a boson. These pairs are then capable of tunneling

across the insulator to the opposite superconducting lead, producing a current when they

do so but experiencing a change in phase φ(t)

VJ(t) = 1
2e
∂tφ(t) (3.4a)

IJ(t) = Icr sin(φ(t)) (3.4b)

where 2e is the charge per Cooper pair, and Icr is the critical current of the superconductor.

Eq. 3.4a allows us to relate φ(t) to the branch flux Φ(t) = 1
2eφ(t). Substituting this into

Eq. 3.4b yields

IJ(t) = Icr sin
(

2π
Φ(t)
Φ0

)
(3.4c)
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where Φ0 = 1
2e is the magnetic flux quantum. As the current is a function of Φ(t), we find

that the Josephson junction behaves like a non-linear inductor (the first order correction is

precisely a linear inductor), and we can derive an effective inductance

L(t) = dΦ
dI

= Φ0

2πIcr
sec

(
2π

Φ
Φ0

)
(3.5a)

∂tΦ(t) = VJ(t) = L∂tI(t) = L∂2
tQJ(t) (3.5b)

which allows us to express the “potential” energy stored in the Josephson junction

PJ(t) =
∫ t

−∞
dt′VJ(t′)I(t′) = Φ0Icr

2π

(
1− cos

(
2π

Φ(t)
Φ0

))
(3.6)

= πIcrΦ(t)2

Φ0
− π3IcrΦ(t)4

3Φ3
0

+O(Φ6)

Before moving forward we will note that there is an opportunity during circuit construc-

tion to make the Josephson junction tunable. A Superconducting QUantum Interference

Device (SQUID) is constructed from a Josephson junction that has been split along the cir-

cuit path and separated, resulting in two Josephson junctions in parallel. The area between

the junction paths becomes a loop that is highly susceptible to external magnetic fluxes

Φex(t). This external flux modifies PJ as

PJ(t) = Φ0Icr
π

cos
(

π
Φex(t)

Φ0

)(
1− cos

(
2π

Φ(t)
Φ0

))
(3.7)

We can then collect the terms 2Icr cos
(
π

Φex(t)
Φ0

)
= ISQUID(t) to effectively create a single

Josephson junction with a externally adjustable critical current.

3.1.3 Deriving the Transmon Hamiltonian

Thus the Lagrangian for Fig. 3.1 is

Ltr = KC − PJ = 1
2C(∂tΦ)2 − Φ0Icr

2π

(
1− cos

(
2π

Φ
Φ0

))
(3.8)
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At this point we need to make a couple observations. First, L has a natural coordinate of

Φ whose conjugate momentum is p = dL
d(∂tΦ) = Q. Second, it will be simpler to work in a

unitless basis. Therefore we exchange the charge for the number of Cooper pairs Q = −2em,

and we exchange the branch flux for the superconducting phase Φ(t) = 1
2eφ(t). Finally, we

will collect the coefficients of the function by defining the charging energy of the capacitor

EC = e2

2C , as well as the Josephson energy EJ = Icr

2e . This leaves us with the (classical)

Hamiltonian

Htr = m∂tφ− L = 4ECm2 + EJ (1− cosφ) (3.9)

From this point we quantize the Hamiltonian by exchanging the continuous variables m and

φ for operator equivalents which obey the commutation relation

[Φ, Q] = ı (3.10)

[φ,−m] = ı (3.11)

We choose a basis for the operators in which φ is diagonal, as this will make working with

the non-linear term simpler. For this reason, we rewrite m = −ı∂φ.

Finally, we are left with the (quantized) Hamiltonian

Htr = −4EC∂2
φ + EJ (1− cosφ) (3.12a)

= −4EC∂2
φ + EJφ

2

2 +O(φ4) (3.12b)

= −4EC∂2
φ + EJφ

2

2 − EJφ
4

4! +O(φ6) (3.12c)

Figure  3.2 plots Eq.  3.12 , which gives three approximations for the potential energy of H.

Eq. 3.12a gives the proper expression for the Hamiltonian, however there are infinitely many

orders of corrections to H and we are only interested in utilizing the lowest levels of the

transmon for our qubit / qutrit. Therefore we consider the limit EJ � EC , under which we

expand the cosφ potential and keep the lowest order correction.
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Figure 3.2. Transmon Potential Approximations: Shows the various
potential approximations in Eq.  3.12 when EJ

8EC
= 16. The proper potential

Eq. 3.12a is shown in black. The harmonic potential Eq.  3.12b is shown in blue.
The anharmonic potential Eq. 3.12c is shown in red. In addition, the first four
energy levels are plotted for the harmonic and anharmonic oscillators, with
blue dashes for the harmonic oscillator, and red dots for the anharmonic os-
cillator. We see that the energy levels of the harmonic oscillator are evenly
spaced, while the energy levels of the anharmonic oscillator are unevenly dis-
tributed. This unevenness allows us to drive specific pairs of levels when
coupled to the cavity.
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The result is Eq. 3.12b , which has the form of a quantum harmonic oscillator (this is the

result that we would have obtained by using a linear inductor instead of a Josephson junc-

tion). This suggests that we fully quantize H by defining creation (annihilation) operators

b† (b) with commutation relation [b, b†] = 1

b = 1√
2

(
4

√
EJ

8EC
φ− ı 4

√
8EC
EJ

m

)
(3.13a)

b† = 1√
2

(
4

√
EJ

8EC
φ+ ı 4

√
8EC
EJ

m

)
(3.13b)

φ = 4

√
2EC
EJ

(
b+ b†

)
(3.13c)

m = 4

√
EJ

32EC

(
b− b†

)
(3.13d)

These operators allow us to express H as

Htr ≈
√

8ECEJ
(
b†b+ 1

2

)
(3.14)

with an associated eigenbasis |nb〉 where n ∈ Z0+. The solutions of this Hamiltonian provide

a good approximation for the lowest energy levels of the transmon, but come with a physical

consequence. Since we have approximated Eq.  3.12b to a quantum harmonic oscillator, we

have been left with energy levels that have even spacing. We know phenomenologically that

the energy levels of the transmon will not be evenly spaced, and this is an important physical

property as it allows us to address specific energy gaps in the transmon.

To remedy this, we include the next highest correction order in Eq.  3.12c . We can still

make use of b and b† to express Eq. 3.12c as

Htr ≈
√

8ECEJ
(
b†b+ 1

2

)
− α

12
(
b+ b†

)4
(3.15)

We refer to α = EC as the anharmonicity produced by the fourth order correction term.

This term can be expanded in normal ordering to produce a long list of potentials, many of

which will not conserve the number of excitations in a state. For this reason we will leave
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expanding the anharmonicity until later on when we transform into the rotating frame, as

we can effectively remove these non-conserving potentials.

3.2 Quantization of the Cavity

Consider a cavity inside of a conductor in the shape of an elongated cylinder r � h. Due

to the geometry of the cavity we can approximate electromagnetic waves inside the cavity

as traveling along the rotational axis of the cylinder, while the polarization of the electric

and magnetic fields are along the xy-plane. We align the rotational axis of the cylinder to

the z-axis, and set the polarization of the electric field ~E inside the cavity to the x-axis.

3.2.1 Maxwell’s Equations

Now consider the four Maxwell’s equations which describe the electric and magnetic fields

within the cavity

~∇ · ~E = ρ

ε0
(3.16a)

~∇ · ~B = 0 (3.16b)

~∇× ~E = −∂t ~B (3.16c)

~∇× ~B = µ0 ~J + ε0µ0∂t ~E (3.16d)

where ~∇ is the spacial gradient, ρ is the distribution of charge sources, ~J is the distribution

of currents, and ε0 (µ0) is the vacuum permittivity (permeability). The cavity will not have

external currents or charge sources present, so these terms are eliminated. This, combined

with our choice of polarization, yield the following second order differential equations

∂2
zEx(z, t) = 1

c2∂
2
tEx(z, t) (3.17a)

∂2
zBy(z, t) = 1

c2∂
2
tBy(z, t) (3.17b)
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where c = 1√
ε0µ0

is the speed of light. The solutions to these equations are plane waves

Ex(k, z, t) = Aeık(z−ct) (3.18a)

By(k, z, t) = A

c
eık(z−ct) (3.18b)

where A is an arbitrary normalization factor. However, the presence of the conductive walls

of the cavity forces the electric field at the walls to 0. This requires that the solutions form

standing waves (modes) within the cavity

Ex(k, z, t) = A sin(kz) sin(kct) (3.19a)

By(k, z, t) = A

c
cos(kz) cos(kct) (3.19b)

where k = πnk

L
, nk ∈ Z+, and L is the height of the cavity.

3.2.2 Deriving the Cavity Hamiltonian

Finally, we can calculate the energy of the cavity per mode through

Hk =
∫
V
dV

ε0

2 |Ex(k, z, t)|
2 + 1

2µ0
|By(k, z, t)|2 = ε0V A

2

2 (3.20)

We can now move to quantize the electromagnetic field in the cavity. The trick will be

to note that we can express

Ex(k, z, t) = A sin(kz)f(t) (3.21a)

By(k, z, t) = A

kc2 cos(kz)∂tf(t) (3.21b)
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by obfuscating the temporal components of Ex(k, z, t) and By(k, z, t). This results in the

energy appearing as a simple harmonic oscillator with coordinate f(t) after integration

Hk = ε0V

2 A2
(

1
2f(t)2 + 1

2(kc)2 (∂tf(t))2
)

(3.22)

= (kc)2

2 f(t)2 + 1
2g(t)

2 (3.23)

where we have set A =
√

2(kc)2

ε0V
, and g(t) = ∂tf(t) is the canonical momentum for our

“temporal function” coordinate. We then express Hk in creation (annihilation) operators a†
k

(ak) with commutation relation [ak, a†
l ] = δkl

ak = 1√
2

(√
kcf(t) + ı

1√
kc
g(t)

)
(3.24a)

a†
k = 1√

2

(√
kcf(t)− ı 1√

kc
g(t)

)
(3.24b)

Ex(k, z, t) =
√
kc

ε0V
sin(kz)

(
ak + a†

k

)
(3.24c)

By(k, z, t) = −ı
√

k

cε0V
cos(kz)

(
ak − a†

k

)
(3.24d)

This makes the diagonalized Hk

Hk = kc
(
a†
kak + 1

2

)
(3.25)

with the Fock states |na, k〉, n ∈ Z0+ as a basis for each mode of the electromagnetic field.

3.3 Cavity-Circuit Interaction

The next piece we need is to determine how the transmon and the cavity interact. We

place the transmon circuit at the center of the cavity, and seek to couple two levels of the

transmon with the lowest mode of the cavity k1 = π

L
. The two-level submanifold of the

transmon we wish to couple to the cavity has an associated dipole moment, which we can
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describe in terms of the Pauli matrices of the submanifold. This dipole then couples to the

electric field of the cavity, giving us the interaction potential

Hint = −~d · ~E(k, L2 , t) = −J
(
b+ b†

) (
ak + a†

k

)
(3.26)

where J = dx
√

kc
ε0V

. Note that the strength of the coupling is normally chosen J �
√

8ECEJ
(if the transmon energy spacing is GHz range, then the coupling will be MHz range). Then,

the full Hamiltonian for the cavity coupled transmon circuit is

H = Htr +Hk +Hint

=
√

8ECEJ
(
b†b+ 1

2

)
− α

12
(
b+ b†

)4
+ kc

(
a†
kak + 1

2

)
− J

(
b+ b†

) (
ak + a†

k

)
(3.27)

3.3.1 Rotating Wave Approximation

To significantly reduce the complexity of H, we now take a rotating wave approximation

of the system. We start by transforming H to the interaction picture HI

HI = U †HU + ı(∂tU †)U (3.28a)

U = e−ıtH0 (3.28b)

H0 = kca†
kak +

√
8ECEJb†b (3.28c)

where H0 is the frame of reference that rotates between the transmon and the cavity. Note

the transformation properties of the creation and annihilation operators in the rotating frame

U †bU = e−ı
√

8ECEJ tb (3.29a)

U †b†U = eı
√

8ECEJ tb† (3.29b)

U †aU = e−ıkcta (3.29c)

U †a†U = eıkcta† (3.29d)
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From these, we observe that many of the normal ordered potentials in Eq.  3.27 pick up a

time-dependent phase with a large frequency. The “approximation” aspect of the rotating

wave approximation will be to treat most of these “rapidly rotating” potentials as if they

average out of the problem over the ∼ µs timescale that we are interested in observing. For

this reason, we now reduce HI to HRWA by removing any potentials which

• Operate only on the transmon, and do not conserve excitation number nb.

• Operate only on the cavity, and do not conserve excitation number na.

• Operate on both the transmon and cavity, but which rotate with a frequency∣∣∣√8ECEJ − kc
∣∣∣� J .

Thus we arrive at the rotating wave Hamiltonian

HRWA = ωtr

(
b†b+ 1

2

)
− α

2 b
†b†bb+ ωk

(
a†
kak + 1

2

)
− J

(
eıωJ tb†ak + e−ıωJ ta†

kb
)

+ α

2 (3.30)

where ωtr =
√

8ECEJ−α, ωk = kc, and ωJ =
√

8ECEJ−kc. Our final step will be to truncate

the levels of the transmon to the two or three lowest levels in order to form our qubit / qutrit.

For the qubit, selecting the bottom two levels of the transmon and transforming to rotating

with the cavity alone leaves us with

H2tr = (ωtr − ωk)σz − Jσx + ωk

(
a†
kak + 1

2

)
= −2H2 +Hk (3.31)

3.4 Measuring Dissipation

The final consideration we are missing is how to implement the Lindblad dissipators so

that the system will be governed by L rather than H. Unlike in the previous sections where

the source of the potentials were derivable from physical laws, the sources of decoherence are

often somewhat random. The Lindblad dissipators that describe spontaneous emission and

phase noise often arise stochastically on short timescales from a variety of sources. Some of

these effects include impurities in the transmon circuit, imperfections in the cavity geometry,

and collisions with particles remaining in the cavity after pumping. In most circumstances
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the more practical approach is to characterize the dissipative effects on the experiment

apparatus once it has been assembled. The components of the Hamiltonian component of L

can then be varied to explore the desired phenomena.

3.4.1 Spontaneous Emission

The simpler of the two dissipators to characterize is the spontaneous emission. For a

cavity coupled transmon which is initialized with a combined excitation number n = na+nb,

Eq. 3.30 predicts that n will be a conserved quantity. However, both the transmon circuit

and the cavity have mechanisms through which the n can be irreversibly reduced. For this

reason there is a natural tendency of the system to fall toward the state |0b 0a k〉.

In order to make a measurement of this effect, we first need to excite the transmon into

an excited state |jb 0a k〉. We begin by sending an electromagnetic signal (usually a coherent

state) through the cavity, representing an excitation of the cavity field to |jb 0a k〉 for each

k present in the signal. For frequencies at which the cavity and transmon are on resonance

this will drive the transmon between |0b ja k〉 and |jb 0a k〉. This effect will be observable in

the transmittance spectrum of the cavity as a frequency shift of the peak transmittance. We

can then characterize the time it takes to fully drive the transmon into |jb 0a k〉 as a π-shift

of the transmon.

In order to measure the spontaneous emission rate, we perform a π-shift of the transmon,

wait for a time t, then a measurement of the current transmon state. What we will observe

is that there will be an exponential decay in the population of |jb 0a k〉 over time. Thus by

finding the decay rate we can determine γ−.

3.4.2 Phase Noise

In addition to determining the driving time for a π-shift of the transmon we can also

determine a π

2 -shift of the transmon. Performing this rotation will place the transmon and

cavity in a superposition 1√
2 (|0b ja k〉+ |jb 0a k〉). We can use this superposition state to

determine γz through Ramsey interferometry.
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First, we use a π

2 -shift to drive the system into the superposition state, which corresponds

to a σx eigenstate. The phase noise dissipator will cause 〈x〉 to decay over time, however

this is complicated by the fact that we are in a rotating frame H0 = −1
2ωtrσz. Finally, we

perform a −π

2 -shift to return the superposition state to |jb 0a k〉 and make a measurement.

What we will observe is an underdamped oscillation of the population in |jb 0a k〉. We can

then determine γz from the decay of the envelope of this oscillation.
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4. CONNECTING NON-HERMITIAN PHYSICS TO

QUANTUM MAPS

In the previous chapters we introduced two schemes for creating non-conservative dynamics

in quantum systems. Non-Hermitian physics was developed in the language of states and

operators, and acts as a working model of coherent gain and loss to a system. On the other

hand open quantum maps were developed in the language of state densities, measurements,

and super-operators, and are capable of describing the dynamics of decohering systems.

In this chapter we will seek to connect the two theories, as well as develop experimental

procedures through which non-Hermitian physics can be addressed through Lindbladian

platforms.

4.1 Master Equations for Non-Hermitian Hamiltonians

With the Lindblad master equation defined, we are interested in extending the concepts

of quantum maps to systems generated by non-Hermitian Hamiltonians. We immediately

encounter a problem however, as the definition of the state density operator is no longer

unambiguous with three possible definitions listed in Eq. 4.1 

ρ
?=



∑
ij pij |ψi〉 〈〈ψj| ⇐⇒ Tr(ρ) = ∑

j pjj 〈〈ψj|ψj〉∑
ij pij |ψi〉 〈ψj| ⇐⇒ Tr(ρ) = ∑

j pjj 〈ψj|ψj〉∑
ij pij |ψi〉 〈ψj| ⇐⇒ Tr(ρ) = ∑

j pjj 〈ψj|ψj〉η

(4.1)

where we are working once again with a bi-orthogonal basis such that (〈〈ψj|)† 6= |ψj〉.

The first possibility is that all operators acting on a Hilbert space (state density operator

included) are decomposed into the right-eigenstates and left-eigenstates of H. This definition

for ρmaintains the form of the quantum von-Liouville equation ∂tρ = [H, ρ], but has solutions

ρ(t) = Uρ(0)U−1 as 〈〈ψj| evolve under U−1 rather than U †. Such a definition leverages the

property that |ψj〉 and 〈〈ψj| form a bi-orthogonal basis to make mathematical operations

easier to perform. However this results in the loss of hermiticity for ρ, and so information
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on the imbalances between state coherences would be required to fully describe ρ in an

experiment.

The second possibility is that ρ is constructed from right-eigenstates, while utilizing

the Dirac inner product. This definition for ρ maintains the form of the solutions to the

quantum von-Liouville equation ρ(t) = Uρ(0)U †, but must be generated by an altered master

equation ∂tρ = Hρ − ρH†. This convention is experimentally relevant as the hermiticity of

ρ is maintained and there is no need for additional information on the coherence terms.

However, ρ will not be trace preserving as 1 is not a constant of motion, and thus the

statistical interpretation of ρ is broken.

The final possibility is that ρ is constructed from right-eigenstates, but that the inner

products of states are taken with respect to a metric specified by H. This convention is

commonly used in pseudo-Hermitian studies of non-Hermitian systems, and maintains the

trace of ρ(t) as the system evolves under H. Similar to H it is possible to maintain the

“effective” hermiticity of ρ if η is positive definite, as there will exist a Dyson map from the

seemingly non-Hermitian system to an equivalent Hermitian system. However, there only

exists a positive definite η in the PT -symmetric regime, and so the physical interpretation

of pjj as probabilities is lost when transitioning to the PT -broken regime.

To settle on a definition for ρ we will make an analogy to the Lindbladian. In the

derivation for L we expanded K0 to first order as K0 = 1 + δt(−ıH +C) where H† = H was

a Hermitian operator and C† = −C was an anti-Hermitian operator. Cast in the conventions

of non-Hermitian Hamiltonians, this expansion is equivalent to

K0 = 1 + δt(−ıHh + Γ) = 1 +−ıHδt (4.2)
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Proceeding further with the derivation of L, but grouping the anti-commuting term (3) with

the commuting term (1) rather than the Kraus operator like term (2) yields a new expression

for L

L[ρ] = −ı
(
Hρ− ρH†

)
︸ ︷︷ ︸

(4)

+
∑
µ

γµ LµρL
†
µ︸ ︷︷ ︸

(2)

(4.3)

H = Hh − ı
∑
µ

γµ
2 L

†
µLµ (4.4)

where we can see that term (4) is identical to the generating master equation for the second

possible definition of ρ. Furthermore, removing term (2) corresponds to reducing the number

of Kraus operators in V until ρ(t) = K0ρ(0)K†
0 which will describe coherent but non-unitary

evolution (though this will require that we disregard the trace preserving requirement or be

forced to alter H).

Based on these similarities, we define the state density

ρ =
∑

ij
pij |ψi〉 〈ψj| (4.5)

Tr(ρ) =
∑

j
pjj 〈ψj|ψj〉 (4.6)

This results in a definition for the time evolution of ρ, which we can cast in the conventions

of quantum maps

ρ(t) = U [ρ(0)] = Uρ(0)U † (4.7)

∂tρ = H[ρ] = −ı
(
Hρ− ρH†

)
(4.8)

where U is the quantum map of coherent evolution and H is the non-Hermitian extention of

the quantum von-Liouville equation, which we will refer to as the Liouvillian (H) as opposed

to the Hamiltonian (H) or Lindbladian (L).

We will note that in many works concerning the Lindblad master equation, the term

“Liouvillian” is used interchangably with the term “Lindbladian” [  7 ]. For our purposes
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however, the two are distinct and the Liouvillian is the generator of coherent but non-unitary

time evolution.

4.1.1 The Renormalized Master Equation

With our definition of ρ settled on, we now need to confront the statistical interpretation

of non-Hermitian systems. Obviously since 1 is not a conserved quantity in these systems

the coefficients pij are not the statistical weights for the states when making a measurement.

However, this measurement-oriented statistical interpretation may give a hint at an answer.

Any measurement that we make of a system whose trace is not 1 will inevitably be

normalized relative to the total number of measurements taken. For a static measurement

operator Q, this amounts to normalizing the final state density ρ̃(t) = 1
A
U [ρ(0)] such that

Tr(ρ̃(t)) = 1 where A is the normalization factor. One approach we could take then would

be to set the normalization as the growth of the initial state over the evolution time, which

would make the final state density

ρ̃(t) = U [ρ(0)]
Tr(U [ρ(0)]) = U |ρ(0)〉

〈1|U|ρ(0)〉 =
∑

ij pijU |ψi(0)〉 〈ψj(0)|U †∑
j pjj 〈ψj(0)|U †U |ψj(0)〉 (4.9)

Taking this approach means that the coefficients pjj are not the measurement probabilities,

but are proportional to them. Therefore, as a particular pjj grows relative to the rest of the

system, the likelyhood that state is measured grows with it. However, the other consequence

of this approach is that ρ̃ must be governed by a non-linear master equation

∂tρ̃ = −ı
(
Hρ̃− ρ̃H†

)
+ ıTr

(
(H −H†)ρ̃

)
ρ̃ (4.10a)

ı∂t
∣∣∣ψ̃〉 = (H − 〈H〉)

∣∣∣ψ̃〉 (4.10b)

−ı∂t
〈
ψ̃
∣∣∣ =

〈
ψ̃
∣∣∣ (H† −

〈
H†
〉)

(4.10c)

and we expect to see non-linear complications such as accelerations under static H, and the

development of sources and sinks on the surface of the Bloch sphere.
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4.2 Pseudo-Hermiticity from Vectorization

The definition of the Liouvillian prompts us to investigate its properties from the per-

spective of quantum maps. We can define eigen-densities and eigen-measurements for H just

as we could with L

H |ρj〉 = λj |ρj〉 (4.11a)

〈〈Qj|H = λj 〈〈Qj| (4.11b)

However, now that the map is not trace preserving we will see several eigen-densities with

non-zero trace.

We can further characterize the set of λj. The vectorized form of H can be written as

H = −ı (1⊗H −H∗ ⊗ 1) (4.12)

we know that the set of λj contains purely real or complex conjugate pairs if H is pseudo-

Hermitian. From this we see that for pseudoHermitian systems we can classify λj into three

broad categories based on the combinations

λk → λij = −ı
(
εi − ε∗

j

)
(4.13)

where the indeces i and j count over d indeces, and the index k counts over d2 indeces.

First, there is the set over identical indeces λjj = −ı
(
εj − ε∗

j

)
= 2 Im(εj). This set consists

of purely real eigenvalues, as well as λk = 0 for all purely real εj. Second, there is the set over

complex conjugate paired indeces λjj∗ = −ı (εj − εj∗) = 0. This set only contains members if

H is pseudo-Hermitian, but is empty otherwise. Finally, there is the set of unrelated indeces

λij = −ı
(
εi − ε∗

j

)
, ∀ i 6= j 6= j∗. This set consists of complex valued λk, which may

contain purely real, purely imaginary, or zero eigenvalues depending on the spectrum of H.

We note that if there are no degenerate eigenvalues in H, we expect d zero eigenvectors

among the first and second sets, which mark an important group of λj. Consider the super-
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operator H†, which time evolves measurements in the Heisenberg picture. H† in the operator

sum representation is written

H†[Qj] = λjQj = ı
(
H†Qj −QjH

)
(4.14)

for λj = 0 we are left with the right hand side of the equation, which becomes

QjH = H†Qj (4.15)

and so we have reproduced the intertwining relation Eq.  1.18 . Therefore we can quickly

obtain a full set of intertwining operators ηj simply by diagonalizing H.

This procedure also reveals that there are a set of operators related to ηj which experience

an exponential decay rather than remain constant. For λjj 6= 0, we can displace a particular

eigenvalue to zero by providing a complex shift H ′ = H − ıλjj. Doing so will break the

pseudo-hermiticity of the system into a loss (or gain) favored system, and yet there will be

an operator that remains a constant of motion.

4.2.1 Intertwining Operators for Periodic Systems

We can use this definition of intertwining operators to quickly find the ηj for a Floquet

Hamiltonian. We will consider the PT -dimer with a time dependent gain and loss

H2(t) = Jσx + ıγ(t)σz (4.16)

This system is P-pseudo-Hermitian regardless of the modulation we choose, and so we know

that η0 = σx. The system is also PT -symmetric if
∫ T

0 dt′H(t′) = 0. The eigenvalues and

eigenvectors for the instantaneous H(t) are the same as those calculated in Chapter  1.3 once

substituted with J
2 → J and γ

2 → γ(t). For each potential we calculate the QF j by setting

UF = U∗
F ⊗ UF and solving for the left-eigenvectors.
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The first case we consider will be square wave modulation with δ = 2

γ(t) =


γ t < T

2

−γ t ≥ T
2

(4.17)

for t ∈ [0, T ). We can explicitly evaluate UF as

UF = Toe
∫ T

0 dt′H(t′) = G01 + iGxσx +Gyσy (4.18)

where G0 = [J2 cos(εT )− γ2]/ε2, Gx = −J sin(εT )/ε and Gy = −Jγ[1− cos(εT )]/ε2 are real

for all ε±. We will note that as ε → 0, the power series for UF terminates as second order

in T . For the static H2, the maximum correction order we expect at the exceptional point

is a first order correction as there are a maximum of two eigenvectors becoming degenerate.

For the Floquet case, this shows that the order of the exceptional point, the correction order

of the time evolution operator, and the rank of the Jordan block are not equivalent in time

dependent dynamics.

The eigenvalues of UF are

e−ıεF jT = G0 ± ı
√
G2
x −G2

y (4.19)

From the eigen-measurements of UF we have the two intertwining operators η1 = σx and

η2 = G01 + Gyσz, as well as the related Q3 and Q4. Note that since Q3 and Q4 correspond

to εF j 6= 0 that they cannot be Hermitianized, though they do have the relations e−ıεF 3T =

e−ıεF 4T and Q3 = Q†
4.

Figure  4.1 compares the behavior of the intertwining operators of UF during the time

evolution as opposed to the predicted evolution e−ıεF jT . We see that at intermittent times the

instantaneous 〈Qj〉 (t) diverges from the predicted e−ıεF jT , but always converges on e−ıεF jT

at stroboscopic times t = nT . The one exception is η1 which is a constant of motion for all

instantaneous H2(t), and therefore is also a constant of motion for UF .
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Figure 4.1. Intertwining Operators and Eigen-Measurements of
Square Wave: Shows the expectation values 〈Qj〉 for the four eigen-
measurements of H2(t) under square wave modulation with γ

J
= 0.5, JT = 1,

and ρ(0) = |↑〉 〈↑|. Figure  4.1 a shows η1, Figure  4.1 b shows η2, Figure  4.1 c
shows Q3, and Figure  4.1 d shows Q4. In each figure, the solid line shows the
real-time value of 〈Qj〉, while the dashed line shows the trend predicted by
eλF jT . We see that at stroboscopic points the two trends converge in all four
figures, while only η1 is a constant of motion at all times.
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The second case we consider will be a non-Hermitian “kicked” potential

γ(t) = γδ(t− T )− γδ(t− T

2 ) (4.20)

for t ∈ (0, T ]. We can explicitly evaluate UF as

UF = G01 + ıGxσx +Gyσy +Gzσz (4.21)

G0 = cos2(JT4 )− sin2(JT4 ) cosh(γT ) (4.22)

Gx = − sin(JT2 ) sinh2(γT2 ) (4.23)

Gy = sin(JT2 ) sinh(γT )/2 (4.24)

Gz = − sin2(JT4 ) sinh(γT ) (4.25)

The eigenvalues of UF are

e−ıεF jT = G0 ± ı
√
G2
x −G2

y −G2
z (4.26)

From the eigen-measurements of UF we have the two intertwining operators η1 = σx and

η2 = Gx1−Gzσy +Gyσz, as well as the related Q3 and Q4. As in the first potential, Q3 and

Q4 cannot be Hermitianized but have the relations e−ıεF 3T = e−ıεF 4T and Q3 = Q†
4.

Figure  4.2 compares the behavior of the intertwining operators of UF during the time

evolution as opposed to the predicted evolution e−ıεF jT . We see that at intermittent times the

instantaneous 〈Qj〉 (t) diverges from the predicted e−ıεF jT , but always converges on e−ıεF jT

at stroboscopic times t = nT . The one exception is η1 which is a constant of motion for all

instantaneous H2(t), and therefore is also a constant of motion for UF .

4.3 Postselection of the Lindbladian

The next issue we need to address is how to go about removing the jump operators from

L. Physically the jump operators produce instantaneous changes in ρ, but these events occur

sporadically during the evolution of ρ at a rate controlled by γµ. We also cannot continuously
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Figure 4.2. Intertwining Operators and Eigen-Measurements of
Kicked Potential: Shows the expectation values 〈Qj〉 for the four eigen-
measurements of H2(t) under non-Hermitian δ potential kicks with γ

J
= 0.5,

JT = 1, and ρ(0) = |↑〉 〈↑|. Figure  4.2 a shows η1, Figure  4.2 b shows η2, Figure
 4.2 c shows Q3, and Figure  4.2 d shows Q4. In each figure, the solid line shows
the real-time value of 〈Qj〉, while the dashed line shows the trend predicted by
eλF jT . We see that at stroboscopic points the two trends converge in all four
figures, while only η1 is a constant of motion at all times.
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measure the system to try and detect the jumps, as such a strong measurement would result

in a back action on the system. What we require then is a herald of the jump event that is

long lived or detectable without interfering with the system.

Figure 4.3. Transmon Qutrit Postselection Scheme: Illustration de-
picting a ideal transmon qutrit. The system consists of three energy levels
with unequal spacing, allowing the excited states |f〉 and |e〉 to be driven in-
dependent of the ground state |g〉. The ideal system has only one Lindblad
dissipator of the form Lge = |g〉 〈e|, allowing the detection of quantum jumps
simply by non-zero measurement of |g〉.

One way that we can accomplish this is by implementing a postselection process using

an ancillary state, similar to what we saw in Figure  1.1 b. By increasing the anharmonicity

we can select the lowest three levels of the transmon circuit. We then select the two excited
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states |f〉 and |e〉 with detuning ∆ to be driven by the coupling J . The isolation of the two

level manifold is then broken by a single Lindblad dissipator of the form

Lge = |g〉 〈e| (4.27a)

L†
geLge = |e〉 〈e| (4.27b)

which results in term (2) in L being isolated within the two level manifold, while any jump

event that occurs transitions out of the two level manifold to |g〉. Furthermore, since there

is no driving between |g〉 and the other states, the population flow is unidirectional and can

be detected during any future measurement event. In this way |g〉 acts as the ancillary state

herald we require, and the three level system can be postselected by removal of measurement

results |g〉.

If we interpret this process statistically, the jump events will be expected at a rate

governed by γge resulting in an expected population

〈Πg〉 (t) = 〈g|ρ(t)|g〉 (4.28)

where Πg is the projector onto the ground state. Therefore, the removal of trials where |g〉

is detected amounts to the removal of 〈Πg〉 (t) from the overall probability. We can therefore

express the postselection of L as a renormalization relative to the trace of the remaining two

level submanifold.

ρ̄(t) = V [ρ(0)]
1− Tr (ΠgV [ρ(0)]) = V |ρ(0)〉

1− 〈Πg|V|ρ(0)〉 (4.29)

Over time the system is expected to fall into the ground state naturally, and so the renor-

malization becomes increasingly large as the system approaches the resting state.

4.3.1 Transmon Qutrit Experimental Procedure

During an ongoing experiment the system is prepared in |f〉 using a π-shift from |g〉,

which is the resting state for the system. From here, a short timescale resonant rotation can
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transition the system to any state on the ef -Bloch sphere. The system then time evolves

under L, but until a quantum jump occurs the system effectively evolves under H. After

evolving for the specified time, a measurement of the system is made through the frequency

shift of an input cavity coherent state. In the event that |f〉 or |e〉 are measured, the trial

and the measurement are added to the ongoing statistics. However, if |g〉 is detected then

the result is removed, and the total number of trials is not incremented [ 15 ].

For a real world transmon circuit, Lge and Lgf are not the only dissipators that will be

present in the experiment. There will be an additional spontaneous emission dissipator Lef ,

as well as a phase noise dissipator Lefz. As these dissipators are internal to the two level

manifold, their quantum jumps cannot be removed through post selection. Luckily, both γef

and γefz can be minimized relative to γge and the postselection of L will approximate H.

4.4 Comparing PT -Symmetric and Lindbladian Behavior

We are now ready to compare our modified state densities. Inspecting the forms of Eq. 4.9 

and Eq. 4.29 , we see that we can neatly express both functions relative to the identity of the

two level manifold of the transmon qutrit

|ρ̃(t)〉 = U |ρ(0)〉
〈1ef |U|ρ(0)〉 (4.30a)

|ρ̄(t)〉 = V |ρ(0)〉
〈1ef |V|ρ(0)〉 (4.30b)

where 1ef = |f〉 〈f |+ |e〉 〈e|.

Figure  4.4 compares the time evolution of ρ̃(t) to ρ̄(t) expressed through their expectation

values 〈σj〉. The left column lists Tr(σjρ̃(t)), the middle column lists Tr(σjρ̄(t)), and the right

column lists the difference between the two. We can see from the rightmost column that

the two schemes have the same expectation values. This taken together with Tr(ρ̃(t)) =

Tr(ρ̄(t)) = 1 guarantee that ρ̃(t) = ρ̄(t).
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Figure 4.4. Equivalence of Renormalized Non-Hermitian Hamilto-
nian and Postselected Lindbladian Evolutions: Phase Diagrams com-
paring the renormalized Liouvillian evolved ρ̃ (Figure  4.4 a,d,g) vs the posts-
elected Lindbladian evolved ρ̄ (Figure  4.4 b,e,h). The difference between the
two is then plotted in Figure  4.4 c,f,i. Figure  4.4 a,b compares 〈σx〉, Figure
 4.4 d,e compares 〈σy〉, and Figure  4.4 g,h compares 〈σz〉. We see from the dif-
ference plots that the expectation values are equal. Since the identity element
is identical in both cases, all of the elements of the 2× 2 state density matrix
must be identical, and the evolutions are equivalent. The initial parameters
are ρ(0) = |f〉 〈f | and ∆

γge
= 0.5.
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We have one last subject to cover, which is the interpretation of measurements for renor-

malized / postselected systems. From Eq.  4.30 , the forms of measurements for our altered

evolutions are

〈Q|ρ̃(t)〉 = 〈Q|U|ρ(0)〉
〈1ef |U|ρ(0)〉 = 〈Q|V|ρ(0)〉

〈1ef |V|ρ(0)〉 (4.31)

However, the exact information that is conveyed through the measurement has some sub-

tleties that require care. For this reason, we now investigate two constructions of the mea-

surementsQ through two-time measurement problems used to characterize quantum systems.

4.4.1 Measurement with respect to an External Basis: Leggett-Garg Inequality

The first and simpler of the two possible constructions is to utilize a measurement oper-

ator constructed in an basis that is independent of the basis of the measured system. When

considering non-Hermitian systems H, measurements of this type are performed with the

intention of projecting non-Hermitian states onto an orthonormal basis. We can use mea-

surements of this type to investigate the Leggett Garg Inequality (LGI), which is a temporal

correlation function used to characterize if a system requires quantum mechanics to describe

effectively [ 34 ]–[ 36 ].

The LGI parameter K3 compares the two time sequential correlations of a system

K3 = C01 + C12 − C02 (4.32)

where Cij is the correlation function between measurements made at times ti and tj. Mea-

surements made at t0 = 0 are made immediately following the preparation of the initial

state density ρ(t), and subsequent measurements are normally made under the conditions
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t1 = t and t2 = 2t. We can then express each of the correlation functions in terms of the

measurement operator Q and the transition probabilities Pij

Cij =
∑

ij
qiqjPij(ψi, ψj) (4.33)

Pij(qi, qj) = |〈qj|Uij|qi〉|2∣∣∣〈qi

∣∣∣U †
ijUij

∣∣∣qi
〉∣∣∣ |〈qi|U0i|ψ0〉|2∣∣∣〈ψ0

∣∣∣U †
0iU0i

∣∣∣ψ0
〉∣∣∣ (4.34)

where |qj〉 is an eigenstate of Q with eigenvalue qj, and Uij = U(tj, ti) is the time evolution

operator from time ti to tj. Normally the measurement operator is chosen to be bimodal

with q± = ±.

In the standard construction of K3 in Hermitian systems the normalization in Eq.  4.34 is

simply 1, but for open systems we require that the transition probabilities sum to 1, and so

the normalization is required in our case [ 37 ]. Utilizing Eq.  4.30 , we can cast the transition

probabilities in the vectorized representation

Pij(qi, qj) = 〈Πj|U|Πi〉
〈1ef |U|Πi〉

〈Πi|U|ρ(0)〉
〈1ef |U|ρ(0)〉 (4.35a)

= 〈Πj|V|Πi〉
〈1ef |V|Πi〉

〈Πi|V|ρ(0)〉
〈1ef |V|ρ(0)〉 (4.35b)

Doing so allows us to investigate K3 from the perspectives of both non-Hermitian Hamilto-

nians as well as Lindbladians.

LGI parameter K3 is utilized as a test of quantum nature by looking for values that

are classically forbidden. We will assume that Cij are normalized to −1 ≤ Cij ≤ 1. For

a system characterized by definite coordinates and momenta, K3 can vary from K3 = 1

(an unmoving system) to K3 = −3 (a system that returns to its original configuration).

K3 > 1 are algebraically possible, but not physically possible if the motion of the object

is deterministic. However, Hermitian quantum systems can reach K3 as high as K3 = 1.5

(Lüders bound). Thus, systems with q ≤ K3 ≤ 1.5 are purely quantum in nature, but this

marks the physical limit of unitary dynamics. In order to achieve K3 > 1.5 some form of

non-linear dynamics are necessary.
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For a testing model we will use the passive PT -dimer (H2− ıγ
2 1) with zero detuning. The

equivalent Lindbladian model is the Transmon qutrit under the restriction that γef , γefz �

γge, J . This makes our Hamiltonian in the energy levels of the transmon qutrit

H = −J2 σx + ıγ

2 σz −
ıγ

2 1 =


0 −J

2 0

−J
2 −ıγ1 0

0 0 −εg

 (4.36)

For a measurement operator we choose Q = σy as it lies transverse to the two potentials of H.

We will also initialize the system in the eigenstate of Q corresponding to |q+〉 = 1√
2 |↑〉+

ı√
2 |↓〉

Figure  4.5 shows the calculation of K3 as the time between measurements increases.

Figure  4.5 a shows K3 calculated using the renormalized Liouvillian approach. Figure  4.5 c

shows K3 calculated using the postselected Lindbladian approach (Figure  4.5 b shows the

proper Lindbladian evolution for reference). We see that near the unitary limit J
γ
→ ∞

parameter K3 oscillates between −3 ≤ K3 ≤ 1.5, with the minimum shown in deep blue and

the points near Lüders bound in dull orange. Approaching the exceptional point from the

unitary limit, we see that the oscillations occur over an increasing timescale corresponding to
√
J2 − γ2t. During this approach K3 increases at the peak of the oscillation from K3 = 1.5

toward the algebraic limit of K3 = 3. At the exceptional point this algebraic limit is finally

achieved, but this occurs at γt→∞ and so is not observable. Beyond the exceptional point

K3 does not develop much, and the parameter is instead pulled toward K3 = 0 signifying

that measurements are completely uncorrelated with each other.

This however is not a complete description of the system. If we optimize our choice of

Q and ρ(0) for the maximum achievable K3 at each J
γ
, we will find that the maximum for

both is always achieved on the yz plane of the Bloch sphere. For the PT -symmetric regime

the choice any point along the geodesic will maximize K3 so long as ρ(0) = |q+〉 〈q+|, though
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Figure 4.5. K3 Parameter Comparison: Phase Diagrams comparing K3
calculated from the renormalized Liouvillian evolved ρ̃ (Figure  4.5 a) vs the
postselected Lindbladian evolved ρ̄ (Figure  4.5 c). The full Lindbladian evolu-
tion is shown for reference in Figure  4.5 b. We can clearly see the presence of
oscillatory behavior near the unitary limit J

γ
→∞. As we approach the excep-

tional point J
γ

= 1 the timescale of the oscillations increase, while the peak K3
during the oscillation approaches the algebraic limit K3 → 3, and achieves the
limit at the exceptional point. In the PT -broken regime we observe K3 → 0,
signifying the system becoming highly uncorrelated.
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they will maximize at different initial times. However, in the PT -broken regime we must

choose a starting state and measurement slightly off of a particular eigenstate of H

ρ(0) ≈ |ε−〉 〈ε−| (4.37)

Q ≈ |ε−〉 〈ε−| −
|ε+〉〉 〈〈ε+|
〈〈ε+|ε+〉〉

(4.38)

The two eigenstates of H are |ε±〉 and divide geodesic along the yz-plane into a major arc

and minor arc, and the specific perturbation we need to maximize K3 places us on the major

arc. For our perturbation we rotate from |ε±〉 using R(δθ) = eıδθσx , where δθ is a small

perturbation strength ≈ 10−3. We cannot choose to remove the perturbation entirely as the

eigenstate is “stable” and the system will not evolve away from |ε±〉.

Figure  4.6 shows the phase diagram for K3 once the optimization is implemented. We

see that the PT -symmetric regime is identical to before, as our initial choice of Q and

ρ(0) happened to already be optimal in this region. The PT -broken regime however looks

strikingly different. We now see a large wavefront that does not repeat in t and spans the

entire PT -broken regime. At the peak of this wavefront K3 ≈ 3. The approximation is

caused by the perturbation R(δθ), where reducing δθ → 0 causes K3 → 3, but also causes

tpeak →∞.

We can find a simple understanding of the system by casting ρ(t) as a Bloch vector ~S(t)

whose elements are

~S =
∑

j=x,y,z
Sĵj (4.39)

Sj(0) = 〈σj|ρ(0)〉 (4.40)

Sk(0) =
∑

j=x,y,z
〈σk|U|σj〉Sj (4.41)
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Figure 4.6. K3 Parameter Maximization: Phase Diagram showing K3
maximized for each J

γ
utilizing the optimal Q and ρ(0) listed in Eq.  4.37 . The

PT -symmetric regime is identical to before. On the other hand, the PT -
broken regime now hosts a single major wavefront where K3 ≈ 3. The height
of K3 increases as the perturbation off of |ε−〉 is reduced, however doing so
pushes the peak of the wavefront out to longer times.
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where x̂, ŷ, and ẑ are unit vectors of cartesian space. If we implement this Bloch vector

representation in the non-linear master equation Eq. 4.10 we are left with

∂t~S = ~A× ~S︸ ︷︷ ︸
(1)

+ ~B − Tr( ~B · ~S)~S︸ ︷︷ ︸
(2)

(4.42a)

~A =
∑

j=x,y,z

1
2
(
〈σj|H〉+

〈
σj

∣∣∣H†
〉)

ĵ (4.42b)

~B =
∑

j=x,y,z

1
2ı
(
〈σj|H〉 −

〈
σj

∣∣∣H†
〉)

ĵ (4.42c)

where ~A is the vector representation of the Hermitian components of H, and ~B is the

vector representation of the anti-Hermitian components of H. Term (1) in Eq. 4.42 produces

rotations with axis ~A as found in the traditional Rabi problem. Term (2) in Eq.  4.42 is

equivalent to the component of ~B tangent to the Bloch sphere at the point ~S. This term

will result in a source forming on the Bloch sphere at − ~B and a sink forming at ~B. The

combination of these two potentials will result in either stable orbits or sources and sinks

existing on the Bloch sphere.

We can find an analytic solution to Eq. 4.42 by changing from the cartesian basis to a

basis aligned with ~A, ~B, and the orthogonal direction ~n = ~A× ~B

∂tSA = − |B|SASB (4.43)

∂tSB = − |A|Sn + |B| − |B|S2
B (4.44)

∂tSn = |A|SB − |B|SBSn (4.45)

Considering that the maximal K3 occurs on the plane perpendicular to ~A, we can set SA = 0

and solve the other two components

SB(t) = − Ω sin(Ωt+ C)
A+B cos(Ωt+ C) (4.46)

Sn(t) = B + A cos(Ωt+ C)
A+B cos(Ωt+ C) (4.47)

where Ω =
√
A2 −B2
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In our example case, ~A and ~B are perpendicular which causes the source and sink to exist

on the yz-plane. Beginning near the source, ~S(t) will spend a large amount of time with

low velocity until deviating far enough from the source to experience a large acceleration

that suddenly transitions ~S(t) near the sink state. The act of measuring the ~S(t) projects
~S either to a point near the source or a point midway along the “fall”, and so if done soon

enough acts to realign the system to its initial conditions. The wavefront we observe in

Figure  4.6 represents the time at which this realignment can no longer occur, and so the

short time correlations C01 = C12 remain near one, while the slightly longer time correlation

C02 experiences a complete inversion of the system. The peak of the wavefront where K3 = 3

occurs when the measurement time 2t would occur precisely when ~S(t) is falling past the

point opposite the source.

Finally, we will consider the effect that the dissipators Lef and Lefz will have upon K3.

Figure  4.7 shows the effect of non-removable quantum jumps on the phase diagram of K3.

We see in Figure  4.7 b the effect of Lef . The decoherences have depressed K3 across the

phase diagram, but the strongest effect is seen near the non-Hermitian exceptional point
J
γ

= 1 where K3 is pulled near K3 = 1. Figure  4.7 c shows Lefz has a similar effect that

is even worse in the PT -broken regime. In both figures the only regions with K3 ≈ 3 are
J
γ
< 0.25. As a relative strength of γef

γge
= γefz

γge
= 10−2 is about the limit of what can be

currently engineered in the transmon circuit, observing K3 = 3 will prove difficult.

4.4.2 Measurement with respect to a Non-Orthogonal Basis: Jarzynski Equality

The second, and more subtle, construction of measurement operators seek to identify

the current components of ρ. For a Hermitian system this is identical to the previous

construction, but for non-Hermitian systems this requires that we measure a non-Hermitian

basis with another non-Hermitian basis.
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Figure 4.7. Effect of Non-removable Quantum Jumps on K3: Phase
Diagram showing K3 maximized for each J

γ
utilizing the optimal Q and ρ(0)

listed in Eq.  4.37 . This time we have included non-removable jumps originating
from the dissipators Lef and Lefz, with γef

γge
= γefz

γge
= 10−2. The effect of Lef is

shown in Figure  4.7 b and the effect of Lefz is shown in Figure  4.7 b. A section
of Figure  4.6 near the exceptional point is provided in  4.7 a for reference. We
see that K3 near the exceptional point has been forced to K3 = 1, and the
surrounding K3 have been depressed. The only regions with K3 ≈ 3 are with
strong dissipation.

98



We can use a measurement of this type to investigate Jarzynski’s Equality (JE) [ 38 ]–

[ 40 ], according to which the expectation of the exponentiated work is equivalent to the

exponentiated Helmholtz free energy

〈
e−βW

〉
= e−β∆F (4.48)

where β is related to temperature as β = 1
kbT

, W is the work done during the evolution of

the system, and ∆F is the Helmholtz free energy. For ∆F we will utilize the established

definition related to the change of the partion function of the system [ 39 ]

e−β∆F = Z(t)
Z(0) =

∑
j e−βεj(t)∑
j e−βεj(0) (4.49)

The next major step will be clearly defining the average exponentiated work
〈
e−βW

〉
.

Starting with a state density defined in the energy basis |εj〉, we define the work done during

time evolution from state |εj〉 to state |εj〉 as Wij = εj − εi. The average work for a given

evolution V is then predicated on two factors:

1. pi: the distribution of energy states |εi〉 in the initial state density.

2. Pij: the transition probability between each initial state |εi〉 and each final state |εj〉.

The average work is then defined by the double summation

〈W 〉 =
∑
i,j
WijPijpi (4.50)

or we can modify the relative weights for each possible configuration to obtain the average

exponentiated work

〈
e−βW

〉
=
∑
i,j

e−βWijPijpi (4.51)
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where we have inserted a scaling parameter β with units of inverse energy which we interpret

as β = 1
kbT

. Setting the initial probabilities as

pi = e−βεi∑
i e−βεi

(4.52)

will then associate the initial state density with the thermal state.

The goal of an experimental validation then is to determine each of the transition proba-

bilities Pij. However, unlike in Hermitian systems the trace cannot simply be decomposed as

a sum of projections onto the energy basis. The choice of measurement operators is there-

fore a subtle, but deeply important convention. If we were to propose utilizing measurement

operators constructed from the right-eigenstate basis

Πj = |εj〉 〈εj| (4.53)

Q =
∑

j
qjΠj (4.54)

ρ(0) =
∑

j
ηiΠi (4.55)

Such projectors can be experimentally produced from resonant rotations of the intended

projector onto a prefered basis. In the case of the superconducting qutrit, this amounts to

Πj → Πf = RΠjR
†. The problem with such a measurement stems from the non-orthogonality

of the eigenbasis. Consider the TLS with a static or periodic Hamiltonian H(t). Beginning

with a pure state |ε+〉, the final state density takes the form

|ρ(t)〉 = V |Π+〉 = P++Π+ + P+−Π− + P+gΠg (4.56)

where 0 ≤ {P++, P+−, P+g} ≤ 1 and P++ +P+− +P+g = 1 Performing a projective measure-

ment onto the |ε+〉 would then yield

〈Π+|ρ(t)〉 = P++ + αP+− (4.57)
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where α = |〈ε+|ε−〉|2. Therefore, measurements onto the right-projectors overestimate the

transition probabilities by an amount proportional to the non-orthogonal overlap factor α.

Seeing this one could attempt to correct for α by renormalizing with respect to the new

probability total, but this would yield for Eq. 4.51 

〈
e−βW

〉
N

=
∑

i,j e−βWij 〈Πj|V|Πi〉 pi∑
i,j 〈Πj|V|Πi〉 pi

(4.58)

=

〈
e−βW

〉
+
〈
e2βEav

〉
α

1 + α
(4.59)

The proper way to form measurement operators of this construction is from the left-

eigenstate basis

Ξj = |εj〉〉 〈〈εj|
〈〈εj|εj〉〉

(4.60)

Q =
∑

j
qjΞj (4.61)

ρ(0) =
∑

j
pjΠj (4.62)

Taking a measurement then yields the transition probability as intended

〈Ξj|V|Πi〉 = Pij (4.63)

which can be used to properly determine Eq. 4.51 .

To test the Jarzynski Equality for non-Hermitian systems we will use the time periodic

PT -dimer H2(t) with sinusoidal modulation

H2(t) = J(t)
2 σx + ı

γ

2σz (4.64a)

J(t) = Jmax + Jmin

2 cos(2π

T
t) (4.64b)

Just as with the Floquet Lindbladians (Ch. 2.4.1 ), an analytic solution is not available for

sinusoidal modulation, and so we discretize UF and calculate
〈
e−βW

〉
numerically. The reason

we have chosen to use this periodic potential is it simplifies the interpretation of ∆F . As the
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system returns to its original configuration, we expect that there is no change in the state

variables, and so

e−β∆F = 1 (4.65)

Figure  4.8 shows the phase diagram for
〈
e−βW

〉
as Jmin and T are varied. We see that

above the exceptional point Jmin
γ

= 1 the phase diagram asymptotically approaches the value

predicted by the free energy e−β∆F = 1. Below the exceptional point we see large oscillations

that stretch from 0.75 ≤
〈
e−βW

〉
≤ 1.5. One possible explanation for this feature is that

below the exceptional point J(t) will trace a path that encircles the exceptional point, leading

to a mode switching behavior that inverts the system. However, the transition between the

regions begins to occur before the exceptional point is encircled, and becomes especially

noticable in the high frequecy regime T → 0. Further down we see thin breaks in the

oscillations that approach the opposite exceptional point Jmin
γ

= −1. A likely cause of these

are a resonant effect requiring both exceptional points which should have opposing residues.
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Figure 4.8. Exponentiated Work for Jarzynski’s Equality: Phase Di-
agram showing

〈
e−βW

〉
with Jmax

γ
= 3, γβ = 1, and ρ0 in the thermal state.

Above the exceptional point Jmin
γ

= 1 the function
〈
e−βW

〉
approaches the

predicted value of 1, while below the exceptional point the path traced by J(t)
encircles the exceptional point and large oscillations in

〈
e−βW

〉
occur. How-

ever, the transition is smooth and we see deviations from the predicted value
grow before the exceptional point is encircled. After passing the opposite ex-
ceptional point Jmin

γ
= −1, we see thin resonance lines appear.

103



5. SUMMARY

Throughout this work we have investigated the behavior of open quantum system through

a variety of approaches. In Chapter  1 , we introduced non-Hermitian Hamiltonians, non-

unitary evolution, the concept of exceptional points. Through the lenses of PT -symmetry

and pseudo-hermiticity, we examined how symmetries and constants of motion diverge un-

der such non-conservative systems. In Chapter  2 , we introduced quantum maps, Kraus

operators, and Lindbladian evolution. Utilizing Floquet analysis, we then investigated the

presence of exceptional points in these periodically driven, decohering systems. In Chapter

 3 , we specified how to construct a cavity coupled transmon circuit for studying Lindbla-

dian evolution. Finally, in Chapter  4 we illustrated the similarities between non-Hermitian

evolution and Lindbladian evolution, and found that under specific circumstances we can

use postselected Lindbladians to study renormalized non-Hermitian Hamiltonians. We then

used this equivalence to study two tests of quantum reality in non-conservative systems.

Over the last quarter century, the concepts of PT -symmetry and pseudo-hermiticity have

developed and expanded under intense scrutiny. The non-unitary but coherent evolution they

give rise to pose deep physical questions that test the limits of unitary quantum mechanics.

However, experiments in evanescently coupled waveguides [  3 ], ultra-cold atoms [  5 ], and su-

perconducting circuits [ 6 ] demonstrate that exceptional points are real, physically observable,

and fully quantum phenomena.

The field still has many avenues for growth. Effective models of gain in PT -symmetric

systems require non-linear analysis, as their continuous growth eventually results in physi-

cally impossible state-densities theoretically, and saturation effects experimentally. Similar-

ily, models for the recoherence of systems at long timescales are still being worked on. Our

efforts show that non-linear effects arising from renormalized linear maps pose an intriguing

avenue for developing such theories.

We look forward to the development of this field, and our continued inquiry into open

quantum systems, for many years to come.
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A. PARTIAL TRACE OPERATION

When studying the properties of physical systems it is often necessary to extract information

stored in the state density operators ρ as a scalar valued function. The trace operation is

defined as

ρ =
d∑

i,j=1
ρij |i〉 〈j| =

d∑
j=1

pj |ψj〉 〈ψj| (A.1)

Tr(ρ) =
d∑

j=1
ρjj =

d∑
j=1

pj (A.2)

where |j〉 is a basis vector in the element-wise basis satisfying 〈i|j〉 = δij, ρij are the elements

of the matrix ρ, |ψj〉 is a state in which ρ is diagonal so that pj are probabilities, and

d = rank(ρ). In this way, the trace operation represents a reduction of all degrees of freedom

to a single value. However, in certain circumstances it can be useful to remove some degrees

of freedom while maintaining the statistical properties of the remaining system.

To accomplish this we introduce the partial trace over the degrees of freedom to be

removed, for which there are two useful algorithms. If the form of ρ in Dirac notation is

known, we can begin with a matrix that is separable into n distinct subspaces and write the

elements of ρ as

ρ =
n⊗

m=1

dm∑
i,j=1

ρi1i2...in
j1j2...jn |im〉 〈jm| (A.3)

where the total rank of ρ is D = ∏n
m=1 dm. The partial trace can then be derived from

projection with respect to the dual space to |jl〉

Trl (ρ) =
dl∑

jl=1
〈〈jl| ρ |jl〉〉 (A.4)

which will produce a matrix with rank D−l = ∏n
m=1,6=l dm.
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The second algorithm is more useful for computer computation. In this method ρ is

reshaped into a multi-dimensional tensor so that each subspace can be addressed directly.

For each element of the reduced matrix Trl(ρ) then performs an individual trace calculation

ρ
i1i2...jl−1jl+1...in
j1j2...jl−1jl+1...jn =

dl∑
jl=1

ρi1i2...jl...in
j1j2...jl...jn (A.5)

either by direct summation or by reshaping a matrix constructed from all elements matching

im 6= il and jm 6= jl.
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