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ABSTRACT 

Can a critical industrial system, such as a nuclear reactor, be made self-aware and cognizant 

of its operational history? Can it alert authorities covertly to malicious intrusion without exposing 

its defense mechanisms? What if the intruders are highly knowledgeable adversaries, or even 

insiders that may have designed the system? This thesis addresses these research questions through 

a novel physical process defense called Covert Cognizance (C2). 

C2 serves as a last line of defense to industrial systems when existing information and 

operational technology defenses have been breached by advanced persistent threat (APT) actors 

or insiders. It is an active form of defense that may be embedded in an existing system to induce 

intelligence, i.e., self-awareness, and make various subsystems aware of each other. It interacts 

with the system at the process level and provides an additional layer of security to the process data 

therein without the need of a human in the loop.  

The C2 paradigm is founded on two core requirements – zero-impact and zero-observability. 

Departing from contemporary active defenses, zero-impact requires a successful implementation 

to leave no footprint on the system ensuring identical operation while zero-observability requires 

that the embedding is immune to pattern-discovery algorithms. In other words, a third-party such 

as a malicious intruder must be unable to detect the presence of the C2 defense based on 

observation of the process data, even when augmented by machine learning tools that are adept at 

pattern discovery.  

In the present work, nuclear reactor simulations are embedded with the C2 defense to induce 

awareness across subsystems and defend them against highly knowledgeable adversaries that have 

bypassed existing safeguards such as model-based defenses. Specifically, the subsystems are made 

aware of each other by embedding critical information from the process variables of one sub-

module along the noise of the process variables of another, thus rendering the implementation 

covert and immune to pattern discovery. The implementation is validated using generative 

adversarial nets, representing a state-of-the-art machine learning tool, and statistical analysis of 

the reactor states, control inputs, outputs etc. The work is also extended to data masking 

applications via the deceptive infusion of data (DIOD) paradigm. Future work focuses on the 

development of automated C2 modules for “plug ‘n’ play” deployment onto critical infrastructure 

and/or their digital twins. 
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 ARTIFICIAL INTELLIGENCE 

Assume a drone is flown into unfriendly territory and captured. Experts may attempt to 

reverse-engineer the drone to understand and uncover hidden relationships among its data and 

other valuable information. Is it possible to make the drone intelligent enough to recognize the 

situation based on how it is being operated? Is it possible to feed false information to mislead the 

captors covertly? These are the key research questions explored in this chapter. 

The definition of intelligence varies from researcher to researcher, but in the context of the 

present work, the definition of artificial intelligence (AI) by Albus in [1], “The ability of a system 

to act appropriately in an uncertain environment, where appropriate action is that which increases 

the probability of success, and success is the achievement of behavioral subgoals that support the 

system’s ultimate goal,” is quite befitting. In other words, an intelligent drone is aware of its 

execution history, and autonomously takes actions that maximize its chances of success, i.e., to 

prevent reverse-engineering, without the need for external input or supervision. The million-dollar 

question is: how? 

1.1 History of AI 

The roots of AI research may be traced to classical philosophers and the invention of the 

digital computer in the 1940s. It was believed that intelligence and thought could be formalized 

through mathematical manipulation and logic, with conjectures such as the Church-Turing 

hypothesis [2] providing the breakthrough necessary to formulate mathematical logic through 

binary operations. The goal was to emulate the human brain electronically and mimic synapses 

and electrical pulses through artificial neurons and activation functions. With the advancements in 

digital computing, researchers quickly wrote programs for checkers and chess and solving 

mathematical theorems, culminating in the famous Dartmouth Workshop of 1956 that led to the 

coining of the term AI. 

AI was no exception to the famous Gartner hype cycle [3]. The following decades were 

highly optimistic with major funding of AI research and predictions of fully intelligent or “strong 

AI” agents within a generation. However, by the 1970s, data storage and computational power 

limitations, lack of progress in vision and robotics, inadequacy of the neuron model, and the failure 
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of commercialization ventures led to an “AI winter” until the 1990s. Advancements in chip 

technology and mass storage capabilities in the 1990s mitigated some of the problems associated 

with AI, specifically the subset known as machine learning (ML) that attempts to “learn by 

example” from vast amounts of data. 

AI/ML research has undergone a monumental resurgence since the 1990s finding vast 

applications in imaging, engineering, biology [4]–[11] etc. through the development of machine 

learning algorithms such as support vector machines (SVMs) [12] and the introduction of deep 

neural networks (DNNs) [13]. The 2010s saw a new class of learning algorithms called generative 

adversarial nets (GANs) [14] that allowed neural nets to compete against each other in a zero-sum 

game until one net, called the generator, can mimic the training dataset successfully without being 

detected as fake by the other, called the discriminator. This development led to the creation of 

photorealistic images, colloquially known as “deepfakes” [15], and has found uses in AI art to 

create portraits, melodies etc. In parallel, artificial general intelligence [16] continues to be 

explored in the hopes of realizing the original goals of AI such as cognition and fully intelligent 

systems. 

A discussion on AI would be incomplete without its effects on humanity. Recent years 

have overseen an interest in explainable AI in attempt to explain the actions and decision-making 

process of an intelligent agent in human terms. As AI enjoys success in facial recognition, object 

recognition, and autonomous control applications, further analysis and discussion is warranted on 

the inner working, modes of failure etc. of machine learning algorithms to ensure that they are 

used to the benefit of humanity. Greater transparency and accountability, and the need to respect 

data privacy is of paramount importance to ensure sustainable development of AI algorithms [17]. 

Researchers have alerted to the existence of algorithmic bias in facial and voice recognition 

systems, hiring practices, and raised several questions regarding the liability of autonomous agents 

such as self-driving cars [18]–[20]. Additionally, due to the infancy of explainable AI, it is 

exceedingly difficult to judge whether AI/ML algorithms are impartial, fair, and trustworthy in 

their judgment. The rising popularity of deepfakes has also raised several ethical and security 

questions due to their realistic appearance and potential for misuse. In response, various 

organizations such as the European Commission, the OECD, and the US government have released 

several directives guiding and regulating the use of AI in modern society [21], [22]. The following 

section delves into some of these major applications of AI in the modern world. 
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1.2 Applications of AI 

AI has found applications in fields such as astronomy, finance, gaming, healthcare, 

industry, transportation etc. In the finance industry, AI/ML algorithms have been leveraged to 

predict stock movements, perform risk analysis, and build automated trading algorithms [23]. In 

gaming, GANs have been used to “upscale” graphics, i.e., make old video game graphics look 

modern [24]. Other prominent advances in AI/ML research include the development AlphaGo [25] 

in Weiqi/Go and OpenAI [26] in Dota 2 that proceeded to defeat the top-ranked player and team 

respectively. Both AI bots were developed using reinforcement learning (RL) and trained by 

playing hundreds of thousands of games with itself. Additionally, GANs have been used to create 

AI art by training on vast amounts of portrait images and generating a new portrait based on 

information gleaned from the training data [27]. They have also been used for humorous, malicious, 

and advertising purposes by creating deepfake videos of politicians and celebrities giving speeches, 

most famously that of former US President Barack Obama [28]. 

However, the focus of the present manuscript is on industrial applications. With the advent 

of digitalization and “big data” storage capabilities, industrial systems have been one of the largest 

beneficiaries of AI technology. Recent years have overseen a paradigm shift in industrial 

infrastructure through the cyber-physical framework [29], resulting in a large-scale integration of 

sensors, controllers, and other physical systems with computers to form cyber-physical systems 

(CPS). With the help of cyber technology, so-called “smart” devices have been developed to 

further optimize resource allocation, perform predictive analytics, detect intrusion etc. and adapt 

to the need of the hour. The “brain” of these devices, also called predictive modeling technology, 

has proven to be effective at behavior forecasting, surveillance, and control strategy and requires 

the underlying model to be continuously updated to keep pace with the functional requirements of 

the CPS. The underlying model is typically constructed based on observations of the physical 

system using a combination of domain expertise and data-driven ML algorithms. 

A commonly encountered task in CPS closely related to classification is that of anomaly 

detection and condition monitoring. These tasks may be supervised, unsupervised, or semi-

supervised. In supervised tasks, the data is prelabeled with the target class and the goal of the 

algorithm is to minimize the misclassification error. In unsupervised tasks such as clustering, there 

is no information on the class label and algorithms attempt to cluster the data into classes based on 

a measure of separation such as Euclidean distance. In semi-supervised problems, only a small set 
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of instances are labeled, and the goal of the ML tool is to generalize to a wider set. For example, 

ML has been used in the plastic industry to detect low-quality production cycles in a production 

line of coffee capsules [30]. Five predictive models, namely, k-nearest neighbor, naïve Bayes, 

random forest, decision trees and support vector machines, were trained and tested on the 

MONSOON Coffee Capsule dataset to detect defective cycles. F1 scores of 0.657 and accuracies 

of close to 70% were reported using the k-nearest-neighbors algorithm, leading to a significant 

reduction in waste. Similar research has been done using data from a reflow oven to perform 

predictive maintenance. For highly specific environments heavily dependent on domain 

knowledge, random forest algorithms have been shown to perform better than other ML algorithms 

such as SVMs and DNNs.  

In the nuclear industry, model-based defenses have been constructed by exploiting physical 

correlations between sensors to extract signatures from time-series data [31]. The signatures, 

depending on their intensity, may be classified as lower-order or higher-order components (LOCs 

and HOCs), with lower-order components representing dominant trends and higher-order 

components representing subtle and more noise-dominated trends. SVMs may be employed to 

draw a decision boundary to separate anomalous data from normal data using these LOCs and 

HOCs, and additionally, the anomalous data may be isolated to certain fault categories based on 

further classification. While LOCs are often adequate to detect large deviations from normal 

behavior, they are augmented with HOCs to detect more subtle deviations such as sensor drift and 

incipient signs of equipment degradation that occur over longer timescales. With regards to 

materials, convolutional neural networks (CNNs) have been developed to analyze small-scale 

images of structural components for crack and corrosion detection [32]. These may be helpful in 

detecting incipient signs of damage in an automated fashion by scanning the surface of structural 

components and passing the images to a trained neural network for classification. 

ML algorithms such as neural networks and RL have also been used for optimization of 

parameters in various industrial processes such as press hardening, production planning, and 

quality assurance [33]–[35]. For example, principles from least-squares regression and function 

optimization were used for quality assessment and to adjust temperature, spacing, and force 

parameters for optimal press hardening. In the nuclear industry, the DOE has funded a project to 

automate the additive manufacturing (3D printing) of microreactors using an intelligent agent 
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guided by a RL framework to perform quality assurance and adjust the printing process 

accordingly.  

Another common use of ML algorithms such as principal component analysis (PCA) is to 

build reduced-order models (ROMs) for industrial systems [36]–[40]. PCA is an unsupervised 

technique that provides a linearly uncorrelated basis ranked by total variance explained. It helps 

isolate features of the data and plays a major role in denoising applications, exploratory data 

analysis etc. The constructed ROMs may serve as surrogate models to save computational 

resources, provide a simple low-dimensional representation of the data/system, identify dominant 

patterns etc. They often find use in simulations of complex systems such as airflow and reactor 

simulations with millions of variables that can be reduced to just few tens of variables that carry 

most of the variance within the data. Additionally, PCA-based algorithms offer a great deal of 

flexibility since they allow users to control the error in the data by prespecifying a tolerance, and 

only keeping as many principal components as necessary.  

For example, in the nuclear industry, ROMs serve as a useful tool for uncertainty 

quantification and model validation [41]–[44]. There is a strong incentive to account for 

uncertainties in the critical eigenvalue of reactors since a tighter bound on the uncertainty may 

allow for the reactor to operate at potentially more efficient conditions. These uncertainties are a 

typically the result of uncertainties in the nuclear cross-section data (input) that propagate through 

reactor calculations and affect the final estimate of the eigenvalue of the reactor (output). Gaining 

an accurate understanding of the various uncertainties in the reactor, however, requires several 

executions which are often intractable for complex high-fidelity 3D models and require high 

performance computing even with accelerated solver methods such as Krylov subspace methods, 

method of characteristics etc. This is typically due to the vast number of energy groups in 

neutronics calculations coupled with the fine mesh requirements of thermal hydraulics calculations. 

Using ROM-based input-output surrogate models, this computational burden is greatly reduced 

facilitating quick execution of an approximate surrogate model and providing an upper bound on 

the error due to the reduction, which may be accounted for in the overall uncertainty of the 

eigenvalue. However, it is noted that ROMs often require an upfront one-time investment to 

construct the model based on the high-fidelity 3D simulations, typically done using randomized 

linear algebra techniques [45], [46]. These techniques find the active subspace of the model that 

describes most of the variance through random perturbations of the model inputs. 
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With regards to security, the pattern detection nature of ML algorithms has been 

successfully leveraged to detect zero-day vulnerabilities in hardware using deep learning, network 

intrusion via packet analysis, and data tampering via sensor fingerprinting [47]–[49]. ML 

algorithms have been deployed to develop so-called model-based defenses that rely on observing 

the data and detecting anomalies based on statistical discrepancies with a reference model that may 

be data-driven and/or physics model-based [50]. For instance, sensors at a water distribution 

facility were fingerprinted by tying the noise in the data to a particular sensor, rendering it difficult 

to fake data [49]. If noise analysis of the data did not bear the statistical properties of the sensor 

(the “fingerprint”), it was determined to be anomalous. In the nuclear community, multilayer 

cyber-attack detection systems have been developed to detect intrusion based on network traffic 

data, host system data, and finally, the process data itself [36]. A common shortcoming of these 

model-based defenses is that they may be bypassed by a knowledgeable adversary. The physics of 

critical infrastructure such as nuclear powerplants is well-known and can be found in most 

introductory textbooks, thus weakening the assumption that an adversary may not have domain 

knowledge. With the advent of physics-informed neural networks in recent years, it may now be 

possible to find critical parameters by formulating an inverse problem and training the network 

with vast amounts of industrial data. In fact, research has shown that AI may be used to learn 

fingerprints and the underlying physical model using the same data-driven ML algorithms used to 

create the fingerprint [39], akin to counterfeiting money using authentic but unauthorized plates. 

Tools such as SINDy and PDE-FIND may be utilized to uncover underlying differential equations 

and physics of data from unknown sources, greatly simplifying the problem for an adversary 

without domain knowledge [51], [52]. The adversary may simply train surrogate models to the 

desired level of accuracy after an initial lie-in period to collect data. 

Returning to the example of the intelligent drone at the beginning of this chapter, it is 

evident that misleading its captors is a complex challenge that must withstand reverse-engineering 

efforts by both humans and AI. Despite being adept at pattern discovery, AI and ML algorithms 

have shortcomings and blind spots that may be exploited, as outlined in the following section. 

1.3 Shortcomings of AI/ML 

This section provides a comprehensive literature review on some AI/ML algorithms such 

as DNNs, SVMs etc and their shortcomings. DNNs are a popular choice of ML tools that have 
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enjoyed mainstream success across many fields such as image processing, time-series forecasting, 

anomaly detection, object identification etc. It is a neural network consisting of multiple layers of 

neurons, each with its own weights, biases, and activation functions. These networks are a practical 

implementation of the universal approximation theorem, which states that a simple feedforward 

neural network with a single hidden layer of infinite size can approximate any continuous function. 

In the case of DNNs, the size of the layer is finite but multiple layers are stacked to increase the 

width of the network and achieve a similar effect, although they may not necessarily be universal 

approximators depending on the dimension of the input layer. They are often trained using 

gradient-based backpropagation algorithms that adjust the weights in every iteration depending on 

the error in the output. The training is typically formulated as an optimization problem with 

differentiable loss functions such as mean-squared error that must be minimized through 

adjustment of the neuronal weights and biases. Consequently, due to the vast number of neuronal 

parameters that must be estimated, DNNs are often data-hungry and require several hours of 

training even on modern graphical processing units (GPUs). 

One of the common pitfalls of training DNNs is the vanishing gradient problem [53], where 

the backpropagation algorithm is unable to adjust the weights due to a zero gradient at a local 

minimum. Moreover, increasing the complexity of the network with multiple layers and/or neurons 

often increases the odds of encountering a local minimum since the gradient is computed using the 

chain rule in calculus which involves multiplication of multiple fractions resulting in very small 

adjustments to the weights. Recent years have seen the introduction of residual networks (ResNets)  

[6] with skip connections to alleviate this issue. These skip connections allow information to 

connect a layer to a deeper layer without necessarily passing through intermediate layers, thus 

allowing information to permeate through the network, effectively reducing network complexity 

and mitigating the impact of vanishing gradients during the initial training phase. As further 

training occurs, skipping is reduced and the intermediate layers are trained with the expectation 

that the weights of the network are closer to their optimal values. Other solutions to combat 

vanishing gradients include using the rectifier activation function (ReLU), long short-term 

memory networks, and using a search algorithm for weight optimization instead of 

backpropagation to train the network. 

Secondly, DNNs often suffer from a lack of interpretability due to its structure. 

Constructing DNN architectures is an art, and often relies on trial-and-error and rule-of-thumb 
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guidelines with little reasoning. Oftentimes, existing architectures that “work” are modified and 

adapted to the target task with several regularization techniques to guide the training such as 

dropout layers that may randomly deactivate during training to avoid overfitting. Additionally, 

intermediate outputs from each network’s layer are often incomprehensible to humans, leading to 

DNNs having the appearance of a “black box”. For instance, DNNs used in the classification of 

animals may show features such as eyes, nose, face, fur etc. being extracted from the first layer, 

but the explainability is typically lost in subsequent layers even if the network classifies correctly. 

As a result, several questions arise as to what features the DNN learns, why some DNNs work 

well on certain datasets but not others, what the modes of failure are, etc. Understanding the inner 

working of these networks and why they succeed/fail is crucial to adoption in critical infrastructure 

applications. One popular yet controversial theory to explain the working of DNNs is the 

information bottleneck theory proposed in [54] as a foundational theory for deep learning. It 

attempts to explain deep learning using information compression and mutual information, where 

each layer attempts to compress the information in the signal of the previous layer while retaining 

as much relevant information as possible by eliminating some of the noise and signal in the 

compression. This departs from existing black box approaches that portray learning as an 

optimization problem alone where the goal is to minimize the error between the output and target 

variables. However, controversy stemmed from the fact that attempts to replicate the experiment 

with simple problems did not yield favorable results, with countercriticism being aimed at the 

methods used to compute mutual information in the replication experiments. Nevertheless, the 

theory is an important step in attempting to explain deep learning and may benefit from 

advancements in computational methods to estimate mutual information in high dimensions, such 

as the MINE algorithm. 

SVMs are another class of supervised ML algorithms that perform well with high-

dimensional separable data and may provide more interpretable results. The goal of these 

algorithms is to draw a decision boundary that ensures maximal separation between two or more 

class labels based on their features. If the data cannot be separated linearly in lower-dimensions, 

kernel functions such as the radial basis function project low-dimensional data onto a higher 

dimensional space to draw a hyperplane separating the datasets in the higher dimension (popularly 

known as the “kernel trick”) [55], [56]. These methods are also robust to outliers since they rely 

on only a few critical “support” data points to determine the decision boundary. Nevertheless, they 



 
 

20 

often fail when encountering classes with overlapping that are not easily separable and require 

careful tuning of hyperparameters and the kernel function used until the desired performance is 

achieved. Additionally, they work best with smaller datasets and the training time often grows 

exponentially with data, thus rendering them unsuitable for big data applications without some 

preprocessing.  

Naïve Bayes [56] is an ML algorithm that alleviates the issue of scalability and may run in 

real-time with multi-class classification capabilities. It utilizes Bayes theorem to estimate the 

posterior probability of an event and relies on two key assumptions – training data is representative 

of the population, and independence of the extracted features. This often renders it unsuitable for 

application in anomaly detection scenarios where anomalous data is often scarce and the features 

are typically correlated in time-series and/or image data. The probability estimates provided by the 

algorithm may not necessarily be meaningful outside a qualitative analysis due to violations of the 

underlying assumptions. 

Decision trees [56], [57] are a simple yet powerful non-parametric classification tool in 

ML that models the classification problem using a series of simple decision rules inferred from the 

data features. These rules may be simple threshold-based decisions and are thus highly explainable 

in contrast to their neural network counterparts. Ensembles of decision trees may be constructed 

to solve complex problems; however, these structures often suffer from overfitting, high training 

times, and increased sensitivity to outliers. Random forests mitigate these challenges by 

minimizing the error of individual trees and forming a collective decision based on all trees. 

However, this comes at the cost of explainability as they often appear like black boxes in their 

working, which is often counterproductive to the inherent interpretability of decision trees. 

Another example of a simple and interpretable ML tool is that of the k-nearest-neighbors 

algorithm [58]. Widely used for clustering, the algorithm relies on metrics such as Euclidean 

distance to determine class membership with a given data point assigned the most common class 

among its k-nearest-neighbors where k is typically a small integer. These algorithms are easy to 

interpret visually due to their reliance on geometrical metrics in lower dimensions and are ideal 

for unsupervised learning tasks to gain an initial idea of what data points may belong to the same 

class. However, the result is often not unique and multiple sets of clustering may occur for the 

same dataset requiring some additional domain knowledge for better performance. A common 

weakness of these algorithms is the curse of dimensionality, and they often require some 
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preprocessing such as PCA to reduce the dimension of the feature space. This is because the 

Euclidean distance metric does not generalize well to higher dimensions and many points may be 

equidistant from a given point. Additionally, the algorithm is extremely sensitive to scaling since 

it relies on distance-based metrics for clustering. It generally does not work well with imbalanced 

datasets and the algorithm typically does not scale well with large datasets. 

A common shortcoming to most AI/ML algorithms is the presence of noise in the dataset. 

While noise may be introduced to improve the robustness of the training algorithm in some 

applications such as image classification, it often degrades the performances of AI/ML algorithms 

due to blurring of the decision boundaries by causing class overlap and increasing misclassification. 

Furthermore, adversarial examples [59] have been generated via the fast gradient sign method 

where seemingly noisy and nearly imperceptible perturbations to images cause DNNs to 

completely misclassify the object in ways a human would not, revealing the existence of a blind 

spot for AI/ML algorithms. Referring to the example of the captured drone, it appears that the 

insertion of noise may be a promising avenue of research to blind and evade AI/ML-based pattern 

discovery tools when model-based methods are bypassed. This forms the premise of the following 

section that delves into the efficacy of noise-based defense techniques against AI. 

1.4 Noise: Can it blind AI? 

 The work presented in this section borrows from content previously published by the 

author in the journal Progress in Nuclear Energy in assessing the efficacy of operational 

technology (OT) active defenses [60]. Contrasting with model-based defenses that are passive 

since they rely on capturing deviations of the data and referencing it with a physical model/digital 

twin, active defenses involve interacting with the system through carefully tailored perturbations 

of the process variables. A well-known example in the CPS community is that of dynamic 

watermarking [61], where noise-like perturbations based on a hidden Markov model were inserted 

into the actuator of a control system. The system is then equipped with a 𝜒𝜒2-detector which 

computes the residual between the output of the system and the expected output. If a statistical 

analysis of the residual does not exhibit any trace of the perturbation, the data is deemed to be fake, 

and an alarm is raised. Another active algorithm that works on a similar premise is that of noise 

impulse integration where Gaussian noise is inserted and later removed from a control signal to 

detect tampering. A common shortcoming of these active defenses, however, is that they often 
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affect the optimality of the system due to the perturbations. For example, in dynamic watermarking, 

there is a tradeoff between the controller cost and the anomaly detection rate. While these 

techniques rely on the insertion of noise to secure the system, they are overt in that their presence 

can easily be detected by classification algorithms. In the preliminary assessment of such noise-

based active defense techniques, it is argued that while noise may be used to carry information, 

albeit obfuscated, to secure CPS, it is crucial that these techniques remain undetected by ML 

algorithms by avoiding the use of patterns such as the same random seed or inducing correlations 

among the noise components. This is demonstrated through a series of numerical experiments 

where supervised and unsupervised learning algorithms are used to distinguish various types of 

noise.  

In the first numerical experiment, supervised learning is used to demonstrate the capability 

of ML algorithms to identify different colors of noise based on raw data alone without the need 

for additional domain knowledge. While the raw time-series appears statistically random, the 

profiles differ in power spectrum, thus having markedly different patterns from Gaussian white 

noise. Additionally, it is also demonstrated that if the adversary possesses some domain knowledge, 

Fourier transformation of the raw time series to the frequency domain provides a clear linear 

separation between the different colors as shown in Figure 1 [62], allowing for easier classification. 

However, it is also observed that the classifier performance degrades between noise of similar 

colors (violet and azure) due to the relatively lower separability between the two classes compared 

to the other colors. Therefore, it is concluded that randomness alone is insufficient, and the 

statistical properties of noise must also be preserved in noise-based active defenses to evade 

detection by AI/ML algorithms. 
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Figure 1: Colors of noise (Frequency domain) 

In the second numerical experiment, the concept of inserting coded noise into process 

variables using secret keys is explored. The code here represents the seed of each random number 

generator used, which is then combined to generate noisy versions of the data. The 

KEYMASTER™ Generic Combined Cycle Gas Turbine Simulator System by WSC, Inc. (Figure 

2) is simulated under normal operating conditions and the resultant dataset was corrupted with 

white Gaussian noise with a fraction of the datasets corrupted with the coded white Gaussian noise. 

While the two datasets are statistically similar in their noise profile, the noise in the coded datasets 

is generated using a linear combination of a few fixed random sources while the uncoded datasets 

had constantly changing random sources. It is observed that a simple feedforward neural network 

algorithm can detect the presence of fixed sources and classify the datasets into the coded and 

uncoded versions with complete accuracy. The detection capability persists even if the coefficients 

of the fixed sources are randomized with every run. However, the performance of the classifier 

degrades when more fixed sources are added, but this is alleviated with additional training samples 

as shown in Figure 3 below.  
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Figure 2: WSC Gas Turbine Simulator 

 

Figure 3: Performance of classifier with additional sources 
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This experiment is analogous to testing the strength of encryption in the cryptographic 

community, where the length of the key (number of sources) increases the strength of the 

encryption and the burden on the attacker, but with enough repetitions, can eventually be 

deciphered. It is thus concluded that in addition to randomness and statistical properties, the seed 

of the random number generator must be constantly changed akin to a one-time-pad. The one-

time-pad, also known as the Vernam cipher [63], guarantees theoretically perfect secrecy as long 

as a key is not reused and is randomly generated as proved by Shannon using information theory.  

The third and final experiment demonstrates the requirement for an active defense 

technique to remain covert and not have an impact on the physical process. While other methods 

such as dynamic watermarking increase the cost of the controller and may thus be detected over 

multiple runs by simple classification algorithms, covertness may be achieved by constraining the 

embedded noise using the cost function. A linear time-invariant (LTI) system with stochastic noise 

is simulated to show that the addition of noise orthogonal to the gradient of the cost function 

renders noise-based active defenses covert. Over multiple runs, as seen in Figure 4, it is observed 

that the change in cost when the noise is inserted orthogonally is within the variation in cost due 

to noise itself, whereas in the case of simple noise addition, the cost is significantly different and 

can be detected using unsupervised methods such as k-means clustering. 

 

Figure 4: Clustering of controller cost with no noise (NN), random noise (RN), and constrained 
along gradient (NS) 
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The results from the three numerical experiments are summarized as follows. Noise-based 

active defense techniques are a promising counter to pattern discovery and reverse-engineering by 

AI/ML tools due to their inherent randomness. These techniques may be rendered covert and 

immune to discovery by AI/ML tools using one-time-pad algorithms that constantly change the 

source of randomness, perturbing the process variables in a manner that does not impact the 

process, and preserving the statistical properties of the process variables and their noise before and 

after the perturbation. These observations lay the foundation for the Covert Cognizance (C2) 

physical process defense paradigm [64] described in the following chapter. Specifically, zero-

impact and zero-observability criteria are developed based on these observations to ensure that the 

C2 paradigm remains covert and undetectable by even highly knowledgeable adversaries with 

privileged access such as insiders and APT actors. 
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 COVERT COGNIZANCE (C2) 

This chapter borrows content from work previously published in the journals Nuclear 

Technology and Nuclear Science and Engineering [64], [65]. Covert Cognizance (C2) is a novel 

physical process defense developed for industrial systems that actively perturbs process variables 

to induce self-awareness (cognizance) and link various subsystems in a discreet manner (covert). 

The proposed work is a paradigm shift in the philosophy of predictive modeling and levels the 

playing field between defenders and attackers of critical systems. Existing philosophies have 

generally been reliant on the ability of the programmer to track code changes, detect intrusion, 

prevent unauthorized access etc. via specific instructions to the model. The C2 paradigm, on the 

other hand, seeks to embed awareness in the system itself without needing a human in the loop to 

make these decisions. Achieving such human-emulating intelligence/awareness, at a minimum, 

requires the system to have the ability to store, recall, and process experiences at will. In the C2 

paradigm, evidence-based records based on the system’s execution/operational history are created 

and embedded along the noise of the process variables to induce awareness across various 

subsystems. Furthermore, the awareness induced is covert and the evidence-based records are 

resistant to AI/ML pattern discovery tools since they lie in the noisy space (described as non-

observable space in the original manuscript) and are obfuscated to resemble random noise through 

the use of a one-time-pad algorithm. Since the records are based on the system’s own history, they 

are incorruptible and additionally provide an avenue for intrusion detection and data recovery if 

the system is compromised. 

In this chapter, section 2.1 provides a background of existing predictive modeling 

philosophies and their response to cyberthreats followed by the motivation behind developing the 

C2 paradigm in section 2.2. Since the present work focuses on industrial applications of C2, a 

mathematical framework is developed in section 2.3 to induce cross-cognizance among 

subsystems in an industrial control system. Lastly, section 2.4 outlines several applications for the 

C2 work, which is explored in further detail in the following chapters. 
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2.1 Background 

With increasing digitalization of the modern world and the adoption of predictive modeling 

technology, the fourth industrial revolution, called Industrial 4.0, has integrated the cyber and 

physical world in industry through the internet of things (IoT) [66], [67]. The Smart Grid , one of 

the most significant applications of IoT technology, is an advanced digital power system with 

advanced functionalities such as smart meters, load control, fault detection, self-healing etc. In 

direct contrast to traditional isolated industrial systems, systems connected to the Smart Grid have 

vastly benefited from the increased connectivity coupled with advances in data analytics to 

improve their efficiency and robustness. Nevertheless, the increased connectivity comes at a cost 

– the increased propensity of cyberthreats. While traditional systems were often air-gapped and 

isolated from the network, the improved efficiency and optimal use of resources due to the 

increased connectivity is quite lucrative to businesses and consumers alike, prompting the latter to 

link their physical infrastructure to the internet through cloud-based services. However, due to the 

novelty of such technology, lack of best practices, minimal employee awareness, and a host of 

other human and non-human factors, breaches continue to occur with a sharp uptick in the number 

of cyberattacks in the past decade. In addition to the leakage of compromising information, 

financial loss, and identity theft, industrial systems often face the risk of physical damage to their 

devices as demonstrated by the Stuxnet virus [68] causing irreparable damage to the centrifuges 

in the Natanz nuclear facility in Iran. Other examples of such instances include the Havex malware 

targeting U.S. and European industrial systems, BlackEnergy responsible for the 2015 Ukrainian 

grid cyberattack, Crashoverride/Industroyer responsible for the 2016 cyberattack on the Ukrainian 

grid, and more recently, the ransomware attack on the Colonial gas pipeline in the U.S. A detailed 

analysis of similar cyber-incidents on critical infrastructure may be found in the cited NIST report 

[69]. Such cyberattacks are often highly sophisticated in their implementation; measures are taken 

to bypass information technology (IT) and operational technology (OT) defenses, obtain privileged 

credentials through phishing emails, delete files and data pertaining to the grid, and gain access to 

the supervisory control and data acquisition (SCADA) system to remotely turn off the subsystems. 

It is evident that there is a need to protect the system at the process level in addition to the IT and 

OT measures outlined below. 

SCADA systems are often highly distributed in the sense they connect various 

decentralized systems such as water distribution plants, gas pipelines, etc. They were designed 
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with ease-of-use and robustness in mind with very little regard to security before the advent of IoT 

and cloud-based services. Legacy systems were typically air-gapped with physical security 

measures in place and specialized communication protocols to deter most threats. However, with 

attacks such as the Maroochy-Shire sewage-spill [70] and Stuxnet exploiting SCADA software, 

the past decade has seen a surge in both IT and OT defenses to secure these systems.  

The Purdue Enterprise Reference Architecture (PERA) is an ANSI/ISA-95 industrial 

standard reference model for the implementation of industrial system architectures [71]–[73]. 

Through clearly defined hierarchies, it seeks to synchronize business strategy and operational 

execution through a combination of control, intelligence, and process management to maximize 

business revenue while minimizing security risks to the system. As illustrated in Figure 5 [74], 

there are six functional levels to the Purdue model starting from the physical equipment itself to 

the broader set of internet/web-based services. The innermost level, Level 0, concerns the physical 

industrial control system comprising of sensors, actuators, pumps etc. that performs the task. 

Typically, this is the level with the most access to critical processes and the least intrinsic security. 

Level 1 comprises of devices such as programmable logic controllers (PLCs), relays, 

microcontrollers etc. that perform control actions via actuators based on sensor measurements. 

Under the Purdue model, this is the only level that is allowed to directly interact with level 0 

equipment albeit with appropriate security protocols. SCADA software and human-machine 

interfaces (HMI) form level 2 of the hierarchy. These systems utilize the data generated from level 

1 to create records (historians), perform data analytics, and issue commands to the PLCs to guide 

the process. Level 3 comprises of systems whose scope includes the entire industrial plant. These 

systems form the last layer of OT devices, and their goal is to process lower-level data for the 

entire site before pushing it upwards for business analytics. The next layer, level 4, comprises local 

networks for on-site employees, database management systems, internal servers etc. It is prudent 

that access to the internet does not extend beyond this layer to prevent the possibility of 

cyberthreats affecting the sensitive physical equipment directly, typically achieved through air-

gapping. Finally, layer 5, introduced with the advent of the internet, are typically consumer-facing 

in that they involve direct interaction with end users. These servers may also host email, backup 

storage, HR systems etc. IT defenses are typically concerned with securing digital assets in Levels 

4 and 5, while OT defenses seek to protect physical assets in Levels 0 – 3 as discussed below. 



 
 

30 

 

Figure 5: Purdue Enterprise Reference Architecture 

IT defenses often involve access-based restrictions such as passwords, firewalls, 

encryption of network traffic, preventing Internet access etc. The recently emergent adaptive 

networks [75] automatically configure, monitor, and maintain themselves without the need of 

humans in the loop. They consist of programmable infrastructure that can continuously adapt to 

the traffic in the network, switching topologies as necessary through packet switching architecture. 

The infrastructure utilizes modern data analytics and AI/ML tools to make informed decisions by 

routing information from users, network elements, instrumentation etc. to a software layer that 

analyzes the data. Cloud-based technologies such as edge computing [76] provide topological 

solutions by bringing the data storage and computational facilities closer to the source of the data. 

While this allows end-users to take ownership of their data, the responsibility of security is also 

passed onto them. Nevertheless, the topology provides significant advantages with regards to 

network latency, and proponents argue that the distributed nature of edge computing is more secure 

since the effects of a single disruption on a network are largely mitigated. Additionally, by keeping 

the data closer to the source, there is minimal transmission of the data to the cloud thus reducing 
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the risk of data leaks if the cloud is breached. On the flip side, security requirements near the data 

source are much higher and sometimes beyond the capabilities of such devices due to resource-

based constraints. Note that in the Purdue model, sufficient separation between the layers must be 

achieved through firewalls and other defenses, and information is not allowed to skip levels, i.e., 

any communication must pass through the hierarchy in a sequential manner to minimize risks. 

However, this is often violated in modern systems with IoT devices and cloud-based technologies 

that often directly link the OT systems to the cloud/internet. If the cloud is breached, the OT 

systems that often lack intrinsic security features are exposed. 

Encryption [77] is another popular IT measure that secures raw data using computationally 

expensive mathematical algorithms that obfuscate the data using “keys”. Similar to the concept of 

passwords, a key is necessary to reverse the encryption process (decryption) and obtain the raw 

data, thus preventing unauthorized users from accessing data. The field of cryptanalysis aims to 

exploit the pseudo-random nature of the mathematical algorithm and other weaknesses in the 

encryption scheme to decipher the raw data while other methods such as social engineering seek 

to retrieve the private key information through deceit and clever manipulation of authorized users. 

In the same vein, blockchain-based technologies have risen over the past decade to meet the 

demand for secure record-keeping. Popularized by cryptocurrencies such as Bitcoin and Ethereum, 

the blockchain may be visualized as an append-only ledger where records are hashed with 

timestamp information before linking it to the previous record. The blockchain is practically 

immutable since changing a given block requires all subsequent blocks to be modified, making the 

process computationally expensive as more records are added. The commonly used proof-of-work 

algorithm to append a record onto a blockchain involves guessing a random number, called a nonce, 

which when combined with the record creates a hash below a certain threshold value that may be 

raised or lowered depending on the number of available “miners” in the system. These miners are 

typically supercomputers that make millions of guesses each second with the first miner to make 

a successful guess granted the right to append a given record and given a reward as incentive. The 

result is a fully decentralized and open ledger with easily verifiable records since it is often trivial 

to verify if the given hash is below the threshold value.  

Such solutions often suffer from scalability issues due to the extremely high computational 

cost of mining [78]. While alternative less-intensive methods have been proposed, these are often 

less decentralized, require trust-based algorithms, or may be susceptible to low-cost attacks. 
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Overall, blockchain applications for industrial applications is still in its infancy with some high-

profile applications such as tracing diamond sales to prevent counterfeiting, decentralized energy 

management allowing users to directly buy electricity, secure DNA databases in the medical 

industry [79]–[81], etc. However, due to the aforementioned concerns of scalability, it is unclear 

if blockchain technology may prove to be effective for industrial control systems that process 

massive amounts of data at high frequencies. Additionally, the implementation must also address 

significant challenges such falsification of the process variables prior to hashing and potential 51% 

attacks where a majority of the sensors are compromised, as expected from highly skilled 

adversarial attacks. Other complementary IT measures include biometrics such as fingerprint 

scanners, iris detectors etc. that restrict access to only authorized personnel based on certain 

immutable physical features. A well-known shortcoming of such methods, however, is the risk of 

insider threat where adversaries typically have the necessary privileges to infiltrate the system and 

bypass biometrics-based safety measures, necessitating a security paradigm to protect the system 

at the process level known as OT defenses. 

. The primary objective of OT measures is to always ensure the safe operation of all 

physical assets even if the system is compromised. In contrast to IT measures that treat the physical 

assets as a black box and focus on access prevention, OT defenses protect these assets by 

leveraging the physics of the system to create model-based defenses and detect discrepancies in 

the process variables. Digital twin [82] technology has become increasingly popular to create a 

virtual version of the physical system that serves as a reference for anomaly detection, predictive 

maintenance etc. The key to such measures is the fidelity and proprietary nature of the digital 

model, i.e., it is assumed that the attackers do not have access to the digital twin or a similar model. 

However, this assumption has been proven to be naïve in recent years with the advent of AI/ML 

techniques as outlined in Section 1.2 that are able to learn the model with an initial approximation 

[39]. Additionally, insider attacks often come from within the system, dispelling any notions of 

access-based security.  

A growing body of research has been specifically devoted to the class of attacks known as 

false data injection attacks (FDIAs) [61], [83]–[85]. FDIAs seek to send a target industrial system 

along a different, and often dangerous, trajectory while appearing to be under normal operation to 

an observer through clever falsification of the process variables. In the seminal paper on FDIAs 

against Smart Grids [86], the authors exploit the dynamics of the system to ensure that the attack 
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remains covert and undetectable through typical statistical methods such as 𝜒𝜒2  residual-based 

detectors. It is assumed that perfect knowledge of the grid configurations is available to the attacker, 

which is typical of insiders and APT actors. Even under imperfect conditions, it has been 

demonstrated that FDIAs may be constructed to bypass 𝜒𝜒2-detectors [87]. The goal of FDIAs may 

be multifaceted – they may be employed to cause physical damage to equipment [88], defraud 

bulk electricity markets by manipulating locational marginal prices, profit off demand response 

systems [89] etc. Demand response systems are often an attractive target since they often have 

many participants that make it difficult to attribute cyberattacks. Using representative models, 

optimal attack strategies have been explored to generate sudden overload spikes in the data to 

cause physical damage to the equipment while subtly avoiding detection or manipulate the market 

through clever integrity attacks on the pricing signals. 

 To combat these attacks, several methods have been proposed depending on the model, 

attacker knowledge, operational conditions etc. Security analysis of demand response systems 

indicate that dynamic pricing methods are more resilient to such adversarial attacks than direct 

load control. Generalizing to industrial control systems, under noiseless conditions, decoders have 

been designed to render the system resilient to a limited number of FDIAs [90]. However, the 

computational complexity of the decoder algorithm and the presence of real-world noise are major 

drawbacks to real-life implementation. Other statistical methods include discrepancy-based 

methods that exploit the difference in distribution of clean and falsified data through the Kullbeck-

Liebler divergence metric [91]. However, the effectiveness of such methods is severely degraded 

in the presence of various sources of noise in a real system since the attacks may be subtler than 

the deviations due to noise.  

Few others in the control community have taken a mitigation-based approach to limit the 

impact of FDIAs on industrial systems [50]. For example, PCA-based methods have been proposed 

to detect cyberattacks that disrupt correlations between the process variables [31], [36]. This limits 

a successful cyberattack to operating within the uncorrelated space to avoid detection. However, 

it is recognized that if the adversary has access to all sensors and actuators, it is possible to 

manipulate the measurements in a manner that preserves correlations and evade model-based 

schemes. The replay attack, popularized by the Stuxnet virus, exploits this observation by 

replaying previous steady-state data while sending the system along a different trajectory. Since 

past data is representative of the system and preserves all the necessary correlations, it appears 
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genuine to most model-based algorithms, necessitating the use of active techniques that interrogate 

the system through perturbations that may be traced for authenticity. A popular example of active 

techniques is dynamic watermarking [61]where a random signal based on a hidden Markov model 

is added to the actuator input that may be traced through the output of the signal using a modified 

𝜒𝜒2-detector. The efficacy of such active techniques was previously discussed in Section 1.4 in 

further detail. 

The ISA/IEC 62443 series by the Global Cybersecurity Alliance provides a metric called 

the security level to evaluate the security of industrial systems [92]. This was subsequently adapted 

in the ISA-99.01.01 standard as security assurance levels. The metric is based on seven 

foundational requirements, namely, access control, use control, data integrity, data confidentiality, 

restrict data flow, timely response to an event, and resource availability. In this model, systems are 

assigned security levels in terms of the protection they offer against adversaries with varying 

resources, skills, means and motivation. Systems with level 1 security offer protection against 

casual or coincidental violations that are typically unintentional and expected to occur during 

routine operation. A few examples of such violations include an operator accessing the wrong PLC, 

accidentally setting an incorrect setpoint outside the permissible limits etc. Protection against 

intentional violations that are simple to cause and require low motivation and skill satisfies the 

requirements for level 2.  For example, an adversary may use a publicly known exploit to gain 

access into the OT systems, or simply send a virus to an email server that spreads to various 

systems due to unsuspecting employees, requiring very low effort on the side of the adversary. 

Systems that have level 3 protection are difficult to penetrate and successful attacks require 

significant skill and resources to execute. These adversaries are typically motivated, possess 

system-specific knowledge and may even penetrate the IT/OT barrier to cause damage to physical 

assets. Lastly, level 4 requires systems to be protected against adversaries that are highly 

resourceful and motivated such as state-sponsored attackers, APT actors, and insiders. This 

represents the highest degree of sophistication for a cyberattack and requires intimate knowledge 

of the target system, its vulnerabilities, and the ability to develop zero-day exploits like the Stuxnet 

virus. 

Summarizing from the literature review on existing methods, it is evident that there is 

insufficient protection at the process level against sophisticated threats. In other words, there is a 

need to develop a physical process defense paradigm that can confer level 4 protection onto 
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industrial systems such that the system is rendered resilient to adversaries that possess intimate 

knowledge of the system, motivating the development of the C2 paradigm in the following section. 

C2 is intended as a complementary layer of defense to existing IT and OT protocols to protect data 

integrity at the process level. 

2.2 Motivation 

The chief motivation behind the development of the C2 paradigm is rooted in the 

observation that existing IT and OT methods are inadequate in addressing sophisticated 

adversaries such as insiders and APT actors to protect the data at the process level, i.e., Level 0 of 

the Purdue model. The playing field is often lopsided in favor of the attackers as demonstrated by 

the simplicity of the replay attack and recent research suggesting that data falsification attack 

payloads may be delivered with as little as 2 KB of memory using simple runs analysis and line 

segments to learn the behavior of the process variables[93]. In addition to being bypassed by 

adversaries with privileged access, existing defenses such as model-based passive defenses and 

noise-based active defenses are often probabilistic in nature with undesirable false positive rates. 

The C2 physical process defense fills this gap by providing a deterministic solution to the problem 

of FDIAs and insider threats through the evidence-based records embedded along the process 

variables. Effectively, the system is alert to how it is typically operated, and thus any falsification 

of the data is detected, and the location of the intrusion is pinpointed. 

C2 is a paradigm shift in the approach towards cybersecurity of industrial systems that 

seeks to level the playing field or even tilt it in the favor of defenders. As the name implies, it seeks 

to embed intelligence in industrial systems in a covert manner that avoids some of the common 

pitfalls associated with model-based defenses and active techniques. It operates under the 

assumption the attacker has full privileged access to a given industrial system and may manipulate 

its process variables in any manner. The heart of the C2 physical process defense lies in the 

somewhat paradoxical observation that one may perform an FDIA on the system with the opposite 

goal, i.e., instead of sending the system along a different trajectory to damage the system, the 

process variables may be falsified with the goal of securing the system instead. In other words, the 

process variables are falsified to prevent further falsification. 

The key to the C2 paradigm lies in the inherent redundancy of most industrial systems. 

Physical models and digital twins often have thousands of variables coupled to each other through 
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physics-based equations that constrain them to only a few active degrees of freedom (DOFs) 

describing the dominant behavior of the process. For instance, in a nuclear power plant, the 

temperatures of the reactor at various points in the core, inner, and outer plenum are highly 

correlated across time and their temporal evolution may be reduced to a handful of dominant 

directions. The other uncorrelated and independent directions are described by variations due to 

noise in the sensors and other disturbances that do not affect the temporal evolution of the system 

in a meaningful manner. This leaves the designer of a predictive model with a vast space spanned 

by the numerous non-influential DOFs that may serve as courier variables to embed the evidence-

based records. It is highlighted here that this inherent redundancy is what enables the C2 paradigm 

to remain covert; it only uses existing process variables without requiring the use of additional log 

files, variables etc. that may leave a footprint on the system and does not affect the system behavior 

through the embedding. The above discussion may be summarized through two key constraints, 

namely, zero-impact and zero-observability, as described in further detail in the later sections. 

While the C2 paradigm has many applications, the focus of the present work is on 

constructing an additional layer of physical process defense to protect industrial systems at the 

process data level from insiders and adversaries possessing domain knowledge such as APT actors. 

As such, a framework is developed in the context of industrial systems in the following section. 

2.3 C2 Framework for Industrial Systems 

The C2 physical process defense is founded on the principles of zero-impact and zero-

observability. In the context of industrial systems, zero-impact implies that the induced awareness 

must not leave a footprint on the system or affect the process variables in any significant manner 

that causes the system to deviate from normal operation. Note that this is markedly different from 

active techniques such as dynamic watermarking that sacrifice optimality of the control system for 

improved detection and have associated false positive rates. Zero-observability, as the name 

implies, requires the C2 implementation to be covert and undetectable by a third party. In essence, 

a system with and without the C2-enabled awareness must operate identically in identical 

conditions. It must be resistant to pattern discovery by AI/ML algorithms as validated in the 

following chapter. Due to the inherent redundancy of industrial system, this is achieved by using 

the dominant directions of the process variables of one subsystem to create evidence-based records 

and embedding the latter along the noise of the process variables of another subsystem to render 
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the two subsystems cognizant of each other – a process known as cross-cognizance. If the statistical 

properties of the noise are preserved, the embedding does not impact the operation of either 

subsystem while achieving cognizance goals.  

The first step to creating evidence-based records is to extract the dominant and noisy 

directions from the process variables, also called the observable and non-observable space 

respectively. The decomposition of industrial data into the two subspaces may be achieved through 

reduced-order modeling (ROM) techniques such as principal component analysis (PCA), proper 

orthogonal decomposition, randomized linear algebra techniques etc. The dominant DOFs, or 

active DOFs, span the observable space, and carry most of the information on the evolution of the 

process variables with time and their correlations with each other. In fact, model-based passive 

defense techniques often rely on these DOFs to construct an approximate physical model and test 

for statistical deviations. The complementary subspace, i.e., the non-observable space, is spanned 

by non-dominant DOFs that often carry information on the unexplained variance in the data, 

typically due to noise in the system. These DOFs serve as courier variables to carry the information 

in the evidence-based records. Mathematically, consider the model of an industrial system with 

state variables 𝐱𝐱, control input 𝐮𝐮, and output 𝐲𝐲 whose temporal evolution with time 𝑡𝑡 is described 

by functions 𝑓𝑓(⋅) and 𝑔𝑔(⋅) as stated in Eqs. 2.1-2.4. Let the observable and non-observable space 

of the state extracted using ROM techniques be given by the orthonormal matrices 𝐐𝐐 and 𝐐𝐐⊥ 

respectively where ⊥ denotes orthogonality, i.e., 𝐐𝐐𝐐𝐐⊥ = 𝟎𝟎. Additionally, consider two subsystems 

A and B, denoted by variable subscripts, that must be linked with each other through the C2 

implementation. 

 

�̇�𝐱A = 𝑓𝑓A(𝐱𝐱A,𝐮𝐮A, 𝑡𝑡) (2.1) 

𝐲𝐲A = 𝑔𝑔A(𝐱𝐱A,𝐮𝐮A, 𝑡𝑡) (2.2) 

 �̇�𝐱B = 𝑓𝑓B(𝐱𝐱B,𝐮𝐮B, 𝑡𝑡) (2.3) 

𝐲𝐲B = 𝑔𝑔B(𝐱𝐱B,𝐮𝐮B, 𝑡𝑡) (2.4) 

  

Then, the evidence-based records are extracted from the output 𝐲𝐲 of one subsystem and 

obfuscated using a one-time-pad algorithm to resemble statistically random noise, represented 

using the composite function ℎ(⋅) here for simplicity. These records are then stored along the 

process variables of the other subsystem through perturbations Δ𝐱𝐱 in accordance with the C2 
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paradigm. Note that the embedding is done from subsystem A to B and vice-versa as shown in 

Eqs. 2.5 and 2.6 to induce cross-cognizance among the subsystems. The zero-impact and zero-

observability constraints are satisfied via Eqs. 2.7-2.10 to ensure that the perturbations do not 

affect the system behavior and cannot be detected by AI/ML pattern discovery tools. Specifically, 

Eqs. 2.7 and 2.8 dictate that the perturbation does not affect the dominant behavior of the system, 

i.e., its effects do not permeate into the observable space of the process variables to ensure 

covertness. Eqs. 2.9 and 2.10 describe the zero-impact condition if one wishes to eliminate the 

effect of the perturbation on the output of the control system. 

 

𝐐𝐐A
⊥(𝐱𝐱A + Δ𝐱𝐱A) = ℎA(𝐲𝐲B) (2.5) 

𝐐𝐐B
⊥(𝐱𝐱B + Δ𝐱𝐱B) = ℎB(𝐲𝐲A) (2.6) 

𝐐𝐐AΔ𝐱𝐱A = 0 (2.7) 

𝐐𝐐BΔ𝐱𝐱B = 0 (2.8) 

𝑔𝑔A(𝐱𝐱A + Δ𝐱𝐱A,𝐮𝐮A, 𝑡𝑡) = 𝑔𝑔A(𝐱𝐱A,𝐮𝐮A, 𝑡𝑡) (2.9) 

𝑔𝑔B(𝐱𝐱B + Δ𝐱𝐱B,𝐮𝐮B, 𝑡𝑡) = 𝑔𝑔A(𝐱𝐱B,𝐮𝐮B, 𝑡𝑡) (2.10) 

 

Note that the use of a one-time-pad algorithm is critical in this implementation. This is 

because for steady-state, periodic or saturated processes, the same temporal information may be 

repeated across various time-intervals, resulting in the same output if the one-time-pad is reused. 

As demonstrated in section 1.4, this may be detected with sufficient samples by an insider familiar 

with the implementation of the C2 paradigm especially if the embedding occurs at every time-step 

for high frequency data. Keeping in spirit with the C2 paradigm, the source of the one-time-pad 

may be found within the system itself without requiring the use of additional variables or log files. 

In fact, physical devices often gain sufficient entropy during operation and are excellent examples 

of true random number generators that are cryptographically secure. Common examples include 

/dev/urandom on UNIX-based systems and hardware random number generators based on thermal 

noise. 

Interestingly, it is observed that Eqs. 2.9 and 2.10 demonstrate the potential for a non-

observable space in the function 𝑔𝑔(⋅) that may be exploited for further obfuscation of the C2 

process. Similarly, one may extend this to the state function 𝑓𝑓(⋅) and the controller cost 𝐽𝐽 to ensure 

no impact on any hidden state variables. The above setup is only one instantiation of the C2 
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paradigm and further constraints on other process variables may be designed depending on the 

target industrial system. Although not explored in this work, it is possible to construct a non-

observable space that encompasses all possible variations and dependencies in the system using 

active subspace identification techniques from ROM. In fact, this highlights the flexibility that the 

C2 paradigm offers to a defender due to the vast number of non-influential/noisy DOFs resulting 

from the inherent redundancies of the system. 

An important question that may arise during the discussion of insider threats is whether the 

designer of the C2 system may bypass it. This may be addressed through the use of random 

embedding to render it impossible to predict when the C2 physical process defense is active. This 

relies on the observation that since FDIAs are subtle and occur over long timeframes to bypass 

existing defenses, it is not necessary to embed evidence-based records at every time-step. In fact, 

the records may be generated from previous time-steps and embedded in the process variables at 

a later time-step while continuously being obfuscated by a one-time-pad algorithm to prevent 

reverse-engineering. The whole process may be randomized through independent and random 

pulses that dictate when the record generation and embedding should take place, and the 

corresponding process and courier variables. Further architectural considerations may be 

employed to render the implementation covert; however, this is beyond the scope of this 

manuscript which focuses on software-based implementations. 

2.4 Applications of C2 

The C2 framework for industrial systems has several applications in anomaly detection, 

data recovery, data deception through decoys, sensor fingerprinting etc. This section provides a 

brief overview of how the embedded evidence-based records may be utilized to achieve these 

predictive modeling functionalities while remaining covert to humans and AI/ML-based pattern 

discovery tools. The incorruptible records ensure that the system is aware of its own execution 

history and can adapt to changes in operation. In the area of anomaly detection, system anomalies 

may arise due to natural factors (e.g. external disturbances, equipment malfunction) or malicious 

intrusion. Here, C2 may be used to differentiate between naturally occurring anomalies and 

malicious intrusion since the latter involves an element of falsification that can be detect using the 

embedded evidence-based records. If the C2 paradigm is implemented in a distributed industrial 

system with multiple sensors, the evidence-based records from critical sensors may be embedded 
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throughout the system due to the vast number of non-influential DOFs available to serve as courier 

variables. In this case, even if the critical sensors are compromised, the C2 embedding provides 

an avenue for data recovery that does not rely on vault-like data storage mechanisms whose 

security is predicated on the lack of access – a naïve assumption considering insider threats.  

The C2 paradigm may also be used to embed constantly changing signatures/watermarks 

in the data for fingerprinting akin to steganography. Contrasting with existing fingerprinting 

techniques, the C2 fingerprint is resistant to pattern discovery due to the use of a one-time-pad and 

the validation cannot be bypassed by statistically similar data. Regarding reverse-engineering 

applications, the idea of observable and non-observable space may be extended to decompose 

industrial data into two sets of metadata describing the underlying physical model and the process 

parameters respectively. The metadata may be obfuscated and manipulated for data masking 

purposes to enable the sharing of sensitive data while minimizing the risk of exposure in the event 

of a leak. Additionally, benchmark datasets may be constructed for AI/ML applications by 

preserving the inferential properties of the data and fusing it with different physical systems. Lastly, 

the C2 paradigm may be used in an offensive setting. Using the example of a drone, it may be 

beneficial to intentionally induce patterns in the embedding to mislead attackers into a false sense 

of victory when discovered. These applications are discussed in further detail below and 

subsequent chapters of the manuscript demonstrate some of these capabilities in representative 

industrial systems. 

2.4.1 Intrusion Detection 

Generally, anomalies in industrial systems may be classified as natural anomalies like 

sensor drift that arise due to external disturbances, equipment degradation etc. or man-made like 

FDIAs that arise due to malicious intrusion [31]. Such anomalies typically manifest themselves as 

sudden or subtle deviations in the data depending on the timescale on which they occur. Apart 

from clever FDIAs that exploit the non-observable space, these anomalies may be detected by 

passive model-based methods using the so-called lower-order and higher-order components 

(LOCs and HOCs) that carry information about the correlations among process variables. Drawing 

parallels with the C2 terminology, the LOCs and HOCs lie in the observable space of the process 

variables and carry information about their temporal evolution. Extracted using SVD-based 

algorithms, LOCs are sensitive the dominant behavior while HOCs are sensitive to subtle 
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variations that occur over longer time-intervals. Unlike HOCs, LOCs are generally robust to 

variations due to noise, and as such are an ideal candidate for AI/ML features. On the other hand, 

HOCs are easily obfuscated by noise and require careful denoising to extract the critical 

information relevant for AI/ML-based detection algorithms. Consequently, denoising algorithms 

have been developed that place an emphasis on preserving LOCs and HOCs for AI/ML 

applications to improve classification performance of such models in the presence of noise. 

Preliminary analysis of classifier performance on reactor datasets indicates that such algorithms 

may outperform other filtering algorithms such as moving average, exponential smoothing, Fourier 

smoothing etc. with regards to classification ability while also providing good estimates of the 

process variables in the mean-squared sense. Furthermore, they can continually update estimates 

as more measurements are gathered and may be deployed for real-time condition monitoring and 

anomaly detection applications. 

In addition to detection, there arises a need to classify the anomaly as natural or man-made 

since the response required is radically different in the two cases. Anomalies arising out of 

equipment degradation often require replacing/repairing of physical components while malicious 

intrusion requires response from a cyberteam to analyze possible threat vectors, attacker intent etc. 

and to mitigate the impact of the cyberattack. Here, it is noted that the key difference between the 

two types of threats is that the process variables are often falsified in cyberattacks while they 

respect the system dynamics in the case of natural disturbances. Thus, after a preliminary anomaly 

detection through passive model-based methods, the C2 physical process defense layer may be 

used to distinguish between the two and provide an appropriate response. Even if the cyberattack 

is statistically subtle enough to bypass model-based defenses, it is still detected by the C2 defense 

since the latter does not rely on statistical methods and instead provides a deterministic solution 

through the embedding of evidence-based records. This is implemented in chapter 3 in a 

representative linearized nuclear reactor modeled as an LTI system and validated using both 

statistical and AI/ML methods. 
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2.4.2 Data Recovery 

A common critique of existing IT and OT defenses is that once the system is compromised, 

defenders are typically relegated to shutting down the system and relying on backups to restore 

operation, resulting in massive downtime as evidenced by the Colonial pipeline ransomware 

attacks [94]. Additionally, there is no avenue for data recovery in such mechanisms and backup 

data is often stored in vault-like systems or implemented through redundant sensors whose success 

hinges upon the assumption that they cannot be accessed/falsified by the attacker. However, with 

the increasing propensity of cyberattacks, it may not necessarily be practical to constantly shut 

down the system, thus establishing the need for a more robust mechanism that allows the system 

to continue operation even while compromised. This idea is captured through the concept of energy 

resiliency in power grid infrastructure, where the goal is to continue delivering energy to critical 

loads and mitigate the impact of outages via self-recovery mechanisms during unforeseen events. 

The C2 paradigm fulfills this critical need by embedding information about the system’s own 

operational history in the process variables themselves via evidence-based records.  

While the decentralized/distributed nature of industrial systems is often cited as a drawback 

for security, C2 turns this into an advantage by inducing cross-cognizance between loosely coupled 

systems. For instance, information about a critical component such as the core of the nuclear 

reactor may be embedded in the process variables of an isolated pump, providing an avenue for 

data recovery if the process variables in the core are falsified. Furthermore, due to the vast number 

of non-influential DOFs available as courier variables, multiple copies of the same embedding 

information may be stored with appropriate obfuscation using different one-time pads to ensure 

that no correlations are accidentally induced violating the covertness requirement. Even if multiple 

sensors are compromised, it is possible to recover the lost information from the distributed system 

to continue operation while a cyberteam responds to the intrusion and falsification. This is 

especially important to remotely controlled and automated industrial systems that must remain 

functional but may not be easily accessible in times of distress. As an example, a representative 

small modular reactor (SMR) is simulated using the modeling software Dymola with C2 modules 

developed for automated intrusion detection and data recovery in chapter 4. 
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2.4.3 Process Fingerprinting 

Deviating from control systems, the C2 paradigm also has steganographic applications that 

may be leveraged for covert watermarking of other processes. For instance, the mathematical 

framework developed in section 2.3 is also applicable to computational solver algorithms such as 

Newton’s method or Krylov subspace methods. Developers for commercial solver software may 

use the C2 embedding methodology to fingerprint their solvers by generating evidence-based 

records from the solver execution history (date, time, initial conditions etc.) and embed these 

records along the solution itself (self-cognizance) to serve as an authentication of the solver 

execution. Additional constraints may be imposed on the embedding to ensure that the 

perturbations carrying the fingerprint lie in the non-observable space of the solver algorithm and 

do not have any impact on the final solution. For instance, if a commercial solver uses Newton’s 

method in one of its sub-calculations, a proprietary watermark such as the logo or the name of the 

solver may be obfuscated using a one-time-pad derived from the system’s inherent randomness 

(thermal noise, system time etc.) to create evidence-based records. Using active subspace methods, 

one may construct a subspace spanned by the gradient of the solution with respect to minor 

perturbations and embed along the subspace orthogonal to the gradient to ensure minimal impact 

on the solution of the solver, akin to the idea using the cost function in industrial control systems.  

The application may also be extended to fingerprinting sensors through the concept of self-

cognizance, i.e., the evidence-based records are generated from and embedded in the same sensor. 

This may be done through ROM techniques such as dynamic mode decomposition, singular 

spectrum analysis, randomized window decomposition etc. that exploit the temporal correlations 

and measurement noise within the individual sensor to construct the non-observable space for 

embedding. By way of example, a sensor in a representative control system equipped with a 

Kalman filter is perturbed to carry information about itself in this preliminary work [95]. Here, the 

residual between the perturbed output of the sensor and the Kalman filter estimate is used as a 

courier variable to embed the obfuscated records derived from the previous sensor measurements 

with additional constraints imposed that the perturbated output is covert to statistical 𝜒𝜒2-detectors 

and does not impact the control input. The process may be validated via residual analysis of the 

output and the filter estimate to recover the embedded information, thus serving as a fingerprint. 
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2.4.4 Data Masking 

The decomposition of industrial data into the observable and non-observable space using 

active subspace identification ROM techniques for C2 motivates an interesting discussion on the 

physical meaning of these subspaces. While the non-observable space is typically taken to 

represent unexplained variances such as noise, the observable space spanned by the active DOFs 

carry information on the dominant behavior of the process variables. The observable space may 

be further decomposed into the so-called fundamental and inference metadata, where the 

fundamental metadata describes the governing physical principles of the system while the 

inference metadata carries information about the operational parameters. For instance, the 

fundamental metadata of a reactor experiencing a power increase may be described using an 

exponential profile, whereas the corresponding inference metadata may be the time constant, 

saturation power etc. that represent process parameters. Since datasets typically vary only in their 

process parameters, AI/ML algorithms may be fed the inference metadata for the purposes of 

optimization, regression, classification etc. 

The following body of work is motivated by two key observations from the decomposition 

of data into its fundamental and inference metadata. Firstly, it is observed that replacing the 

fundamental metadata of the dataset with that of a different system while preserving the inference 

metadata effectively masks the system identity since any association with the origin of the data is 

captured in its underlying physics, i.e., the fundamental metadata. This process, called the 

deceptive infusion of data (DIOD) [37], enables the sharing of sensitive data such as that from 

nuclear reactors with third-party AI/ML services without the risk of data leaks that tie it to the 

reactor. It may also be used to prevent reverse-engineering of datasets to obtain sensitive 

information from critical systems as done by tools like SINDy, PDE-FIND etc [51], [52]. Secondly, 

multiple datasets may be generated by using the same inference metadata but different fundamental 

metadata from several generic/non-critical systems to create a benchmark for AI/ML algorithms. 

Based on the concept of mutual information, an ideal AI/ML algorithm is expected to be invariant 

to the extraneous information carried by the fundamental metadata and must make the same 

inference on all datasets since the inference metadata is identical in all cases. Mutual information 

is a symmetric measure capable of quantifying all linear and non-linear dependencies between 

systems. It represents the upper limit of separability in classification applications and is a useful 

tool in identifying relevant and irrelevant features for AI/ML tasks. Consequently, several 
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constraints may be developed to preserve the inference metadata for AI/ML applications and 

obfuscate the fundamental metadata using mutual information depending on the level of 

obfuscation required. These applications are explored in further detail in chapter 5. 

The following body of work is motivated by two key observations from the decomposition 

of data into its fundamental and inference metadata. Firstly, it is observed that replacing the 

fundamental metadata of the dataset with that of a different system while preserving the inference 

metadata effectively masks the system identity since any association with the origin of the data is 

captured in its underlying physics, i.e., the fundamental metadata. This process, called the 

deceptive infusion of data (DIOD) [37], enables the sharing of sensitive data such as that from 

nuclear reactors with third-party AI/ML services without the risk of data leaks that tie it to the 

reactor. It may also be used to prevent reverse-engineering of datasets to obtain sensitive 

information from critical systems as done by tools like SINDy, PDE-FIND etc [51], [52]. Secondly, 

multiple datasets may be generated by using the same inference metadata but different fundamental 

metadata from several generic/non-critical systems to create a benchmark for AI/ML algorithms. 

Based on the concept of mutual information, an ideal AI/ML algorithm is expected to be invariant 

to the extraneous information carried by the fundamental metadata and must make the same 

inference on all datasets since the inference metadata is identical in all cases. Mutual information 

is a symmetric measure capable of quantifying all linear and non-linear dependencies between 

systems. It represents the upper limit of separability in classification applications and is a useful 

tool in identifying relevant and irrelevant features for AI/ML tasks. Consequently, several 

constraints may be developed to preserve the inference metadata for AI/ML applications and 

obfuscate the fundamental metadata using mutual information depending on the level of 

obfuscation required. These applications are explored in further detail in chapter 5. 

2.4.5 Deception 

To quote Almeshekah and Spafford [96], “achieving security cannot be done with single, 

silver-bullet solutions; instead, good security involves a collection of mechanisms that work 

together to balance the cost of securing our systems with the possible damage caused by security 

compromises and drive the success rate of attackers to the lowest possible level.” Deception is a 

security mechanism popularized in the computer science community and IT defenses that involves 

the intentional misdirection of adversaries with irrelevant information while protecting critical 
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information. Entire networks may be constructed to serve as decoys and honeypots that do not 

impact the real system while providing a ruse for the adversarial interaction. Analogously, the vast 

number of non-influential DOFs in modern industrial systems present the defender with the option 

to mislead attackers through intentional embedding of false information along these DOFs. Using 

the example of the drone introduced at the beginning of chapter 1, misleading information may be 

directly embedded without obfuscation along some of the non-influential DOFs to misdirect 

adversaries while protecting critical information using other DOFs.  

In essence, this is a honeypot strategy to thwart reverse-engineering of critical systems 

using independent DOFs that do not affect system behavior while preserving system functionalities 

using the DOFs embedded with the evidence-based records. Pattern discovery tools are expected 

to find the misleading information due to the lack of obfuscation, thus lulling the adversaries into 

a false sense of success. Additional layers may be added through partial obfuscation to render the 

task difficult but not impossible for AI/ML pattern discovery tools to make the honeypot appear 

more convincing and further lure the adversary. Distinct from other deception methods, the C2 

paradigm does not involve the creation of separate networks, additional log files etc. and embeds 

both the evidence-based records and the fake information in the process variables themselves. 

While this manuscript focuses on defensive applications such as intrusion detection and data 

recovery mentioned above, the proposed angle enables C2 to be used in an offensive setting putting 

the onus on the adversary to decipher whether the extracted information is legitimate. 
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 CASE STUDY: INTRUSION DETECTION 

In this chapter, the C2 physical process defense is implemented and validated in a 

linearized model of a nuclear reactor (chosen as a representative LTI industrial system) in 

MATLAB using the mathematical framework developed in section 2.3. The implementation is 

validated visually using histograms, plots of the state variables, response, control inputs, and 

statistical tests to ensure that the zero-impact constraints are satisfied. Subsequently, AI/ML-based 

pattern discovery tools are trained on the reactor data to ensure that temporal correlations in the 

data are preserved and that the embedding does not introduce additional features that violate the 

zero-observability constraints. The goal of this chapter is to provide a deterministic solution to 

intrusion detection and differentiate it from other naturally occurring anomalies via the C2 

paradigm when existing IT and OT measures have been bypassed. 

The chapter is organized as follows: section 3.1 provides the problem setup for a linearized 

reactor model and the associated C2 constraints. Section 3.2 covers the results of the embedding 

and demonstrates the ability of the C2 physical process defense to detect intrusion against FDIAs. 

The implementation is validated statistically in section 3.3 and using a state-of-the-art AI/ML tool 

in section 3.4. 

3.1 Problem Setup 

The nuclear reactor consists of two subsystems, namely, the core (A) and the steam 

generator (B), in which cross-cognizance is induced through the C2 embedding. The goal of the 

embedding is to provide an additional layer of defense at the process level in case the core or steam 

generator process variables are falsified. The state variables of the reactor core are the reactor 

power, precursor power, fuel temperature, and moderator temperature, of which the reactor power 

is the measured output. The core is augmented with a Kalman filter [97] to provide an optimal 

estimate of the state and guide the controller to reach a target power output using the inlet 

temperature as control input and a setpoint value. The core power is chosen as the output variable 

and is corrupted by additive zero-mean white Gaussian noise 𝛜𝛜A with a known covariance matrix 

𝐑𝐑A. The given LTI system may be formulated as a linear-quadratic-Gaussian problem with the 

Kalman filter providing an optimal estimate of the state in a linear sense and the Kalman gain is 
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set to optimize the control process with respect to an objective cost function 𝐽𝐽 that depends on the 

state variables and the control input.  

With regards to the steam generator, the state variables are the primary temperature, metal 

temperature, water level, downcomer enthalpy, steam quality, and pressure. Of these, the primary 

temperature, water level, and the pressure are the measured outputs corrupted by additive zero-

mean white Gaussian noise 𝛜𝛜B  with a known covariance matrix 𝐑𝐑B  and the system evolves 

according to the input moderator temperature from the core. Although no control algorithm was 

involved, the steam generator is also augmented with a Kalman filter to provide estimates of the 

state variables using the output. The equations of the core and steam-generator are provided in 

state-space form in Eqs 3.1-3.4 with further information in the Appendix. The reactor is simulated 

multiple times in MATLAB by varying the operating conditions and the seed number used to 

generate the noise, using which the observable and non-observable spaces are constructed for the 

two subsystems.  

Since the linear-quadratic-Gaussian controller provides a function relationship between the 

control input and the state variables via the Kalman gain, the controller cost may be written solely 

as a function of the state variables, and the gradient with respect to the state variables represents 

the direction of greatest change for a small perturbation. Geometrically, the direction(s) orthogonal 

to this direction then represents the direction of minimal change, i.e., a level curve where the 

controller cost is unperturbed. Thus, an additional constraint may be imposed when constructing 

the non-observable space as seen in Eq 3.5. 

 

𝐱𝐱A = 𝐅𝐅A𝐱𝐱A + 𝐆𝐆A𝐮𝐮A (3.1) 

𝐲𝐲A = 𝐇𝐇A𝐱𝐱A + 𝛜𝛜A (3.2) 

𝐱𝐱B = 𝐅𝐅B𝐱𝐱B + 𝐆𝐆B𝐮𝐮B (3.3) 

𝐲𝐲B = 𝐇𝐇B𝐱𝐱B + 𝛜𝛜B (3.4) 

𝜕𝜕𝐽𝐽
𝜕𝜕𝐱𝐱A

⋅ Δ𝐱𝐱A = 0 (3.5) 

 

Due to the limited number of variables, the present model only has two active DOFs each 

for the core the steam generator, leaving two and four noisy DOFs respectively to serve as courier 

variables. Consequently, evidence-based records are created from the power of the core and 
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embedded along the non-observable space of the steam generator state estimates and vice-versa 

using the water level of the steam generator and the non-observable space of the core state 

estimates. Note that a real nuclear reactor is expected to have thousands of sensors resulting in a 

much larger number of noisy DOFs that can carry much more information. Using Eqs. 2.5-2.8, the 

state estimates of the Kalman filter of both the core and the steam generator are perturbed in 

accordance with the zero-impact and zero-observability constraints of the C2 paradigm.  

The C2 implementation is subsequently validated using statistical measures and AI/ML 

pattern detection tools to ensure that the zero-impact and zero-observability constraints are 

satisfied. The following section summarizes the results from this numerical experiment and 

validates it statistically and against AI-based pattern detection. 

3.2 Results 

This section describes the results from the C2 implementation in the linearized reactor 

model. In this numerical simulation, evidence-based records are generated from the core and steam 

generator and embedded in each other in real-time at discrete intervals of 1 second. The process is 

simulated over a period of 60 seconds until the reactor reaches the setpoint power of 2100 MW, 

an increase of 100 MW from the initial equilibrium of 2000 MW around which the core and steam 

generator equations were linearized. Additionally, a reference case with the same random number 

generator seed (for noise) is simulated without the C2 implementation to compare and validate the 

zero-impact and zero-observability criteria. 

In the reactor model, the evidence-based records from the water level and core power are 

initially patterned since they describe the temporal evolution of the two process variables. Using a 

one-time-pad, the information is obfuscated via permutations and scaling to represent statistical 

noise prior to embedding along the non-observable space of the courier variables, i.e., the noisy 

DOFs as seen in Figure 6. Here, it is observed that the original components along the non-

observable space are random and noisy, validating the assumption that the non-observable space 

represents noise. Upon embedding, the components are replaced by the permuted evidence-based 

records while preserving statistical properties of the components such as the mean and variance. 

To verify, the basis matrix of the non-observable space 𝐐𝐐⊥ of one subsystem is used to extract the 

obfuscated records and the one-time-pad is used to reverse the process, yielding the embedded 

temporal information of the other subsystem as seen in Figure 7. It is observed the embedding is 
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recovered with perfect accuracy, implying that any minor distortion in the process variables can 

be detected. 

 

Figure 6: Non-observable space: noisy DOFs 

 

Figure 7: Recovered evidence-based records in steam generator (top-left) and core (bottom-left); 
source of evidence-based record in core (top-right) and steam-generator (bottom-right) 
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In the case of malicious intrusion via a clever data deception attack that bypasses model-

based defenses, the C2 embedding serves as an additional line of defense that can deterministically 

pinpoint intrusion since it is highly improbable that the data deception attack preserves the 

embedded evidence-based records in the non-observable space of the process variables. For 

example, a replay attack that falsifies data by replaying previously authenticated data to bypass 

statistical techniques is instantly detected since the embedded information changes with time due 

to the one-time-pad algorithm. On the other hand, anomalies arising out of external disturbances, 

equipment degradation etc. may be detected using model-based metrics such as LOCs and HOCs 

as explored previously in the nuclear community [31]. Here, there is no falsification of the process 

variables, and the data still carries the C2-embedded evidence-based records. Therefore, the C2 

paradigm may be used to differentiate between anomalies arising out of malicious intrusion and 

natural causes to enable operators/owners take appropriate measures. 

3.3 Statistical Validation  

It is expected that a successful implementation of the C2 paradigm results in a system 

response (states, inputs, outputs etc.) that is identical to normal operation within the statistical 

noise expected in the system. In this section, the C2 paradigm is first validated visually via 

histograms and plots of the states, inputs, outputs, residuals, and the controller cost. Subsequently, 

hypothesis tests are performed on the residual statistics based on derivations from control theory 

using the Kalman filter. The following subsections provide a background of the measures used 

followed by the validation results obtained. 

3.3.1 Background 

The Kalman filter [97], [98], developed in the control community, provides an optimal 

estimate of responses in a linear sense, and for the given LTI problem, the statistical distribution 

of the residuals 𝐳𝐳A  may be pre-computed. Here, the residuals are calculated as the difference 

between the observed output and the estimated output, which is expected to approach a zero-mean 

Gaussian distribution of some variance that can be computed using the variances of the process 

and measurement noise, and the system matrices under conditions of stability and observability. 

The filter may be implemented recursively in a manner that updates estimates of the covariances 
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as more measurements appear, converging to a steady-state value depending on the stability of the 

state matrix. In the discrete case, the steady-state covariance matrix 𝐒𝐒A of the residual of the core, 

also called innovation in the control community, is given by the expression 𝐒𝐒A = 𝐑𝐑A + 𝐇𝐇A𝐏𝐏A𝐇𝐇A
𝐓𝐓 

where the Lyapunov equation 𝐏𝐏A = 𝐅𝐅A𝐏𝐏A𝐅𝐅A + 𝐐𝐐A must be solved to obtain the steady-state error 

covariance matrix 𝐏𝐏A using the process noise covariance matrix 𝐐𝐐A. 

In model-based defenses, the control system is often equipped with a 𝜒𝜒2-detector [98] that 

analyzes the distribution of residuals. Since the residual is expected to be normally distributed, a 

validation gate may be setup by computing 𝐳𝐳A𝐒𝐒A−1𝐳𝐳AT ≤ 𝑔𝑔2  for some threshold quantity 𝑔𝑔 . 

Although the C2 paradigm is designed to protect the system and not evade detectors, a successful 

covert implementation of the C2 paradigm requires the distributions of the residuals to be 

preserved to render it resistant to AI/ML and statistical techniques. In other words, the 

perturbations along the non-observable space of the state estimates must not change the statistical 

distribution of the residuals characterized by zero mean and the precomputed variance mentioned 

in the previous paragraph. While histograms are useful in analyzing distributions and providing 

visual validation, the Kolmogorov-Smirnov test is a powerful statistical test that determines 

whether two samples arise from the same distribution at the required significance level.  In the 

context of residual comparison, under the null hypothesis, it is assumed that the two different sets 

of residuals arise from the same normal distribution while the alternate hypothesis indicates 

otherwise. 

3.3.2 Results 

As seen in Figure 8, it is observed that the embedding the evidence-based records from the 

water level of the steam generator along the core of the reactor results in a perturbed response 

(labeled ‘Modified’) that is similar to the case under normal operation (labeled ‘Original’). Using 

the Kalman filter, a general trend of the response is obtained to visually validate the expectation 

that the perturbed response is a noisy version of the original. 
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Figure 8: Validation of core response behavior 

The residuals of the core response may then be computed using the Kalman filter estimate 

to ensure that the C2 paradigm is covert to 𝜒𝜒2-detectors and does not artificially inflate the noise 

in the system. While Figures 9 and 10 serves as visual validation, the Kolmogorov-Smirnov test is 

used to test whether the residuals are similar in distribution. Under the null hypothesis, it is 

assumed that the residuals with and without the C2 embedding have the same underlying 

distribution, and the test fails to reject this null hypothesis at a significance level of 0.05 over 

multiple runs with p-values > 0.5. 
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Figure 9: Validation of residual distribution 

 

Figure 10: Validation of residuals over time 



 
 

55 

 

While the previous results focus on individual responses, it is recognized that the C2 

implementation must lie in the non-observable space of the entire system to have zero-impact on 

the process, i.e., the perturbations must not affect the active DOFs in the system such as the 

correlations between response variables. For instance, physics indicates that the core power and 

the fuel temperature are positively correlated with time after an initial delay due to the heat transfer 

coefficient of the fuel pin. Such correlations must be preserved even with the perturbations with 

any deviation being the result of measurement noise in the system. As seen in Figure 11, it is 

observed that these correlations are preserved within statistical noise, serving as additional 

validation for the C2 implementation. 

 

Figure 11: Validation of response correlation 

Since the embedding is done along the process variables such as the state estimate and 

output, it is entirely possible for the system to manipulate the control input to the core, i.e., the 

inlet temperature, to “make up” or account for these perturbations. Therefore, it is necessary to 
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validate that the change in the control input is also within noise levels to ensure that the embedding 

of the evidence-based records from the steam generator truly have zero impact on the process. As 

seen in Figure 12, the control input after embedding is visually similar to that under normal 

operation, further validating the C2 implementation.  

 

Figure 12: Validation of control input 

As a final validation of the zero-impact condition on the control algorithm, the evolution 

of the state variables and control input with time is summarized using the measure of controller 

cost. Note that the Kalman filter and Kalman gain algorithms are derived by optimizing the process 

with respect to the cost. If the operation of the system with and without the C2 implementation is 

indeed identical, it is expected that the cost of the controller remains the same within statistical 

noise. As mentioned in Section 1.4, this may be achieved by further constraining the perturbations 

to be orthogonal to the gradient of the controller cost.  
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Figure 13: Validation of controller cost 

Over multiple runs as seen in Figure 13, it is observed that the controller cost before and 

after the embedding is identical with any variation being much smaller than the variance due to 

noise. Thus, the zero-impact and zero-observability constraints of the C2 paradigm have been 

statistically validated for the simple reactor case. 

In recent years, adversaries have augmented their analysis of industrial systems with 

AI/ML data mining and pattern discovery tools to uncover underlying correlations and exploit 

vulnerabilities in the model. The statistical methods presented in this chapter analyze the temporal 

evolution indirectly through cost-function and residual analysis. However, the time-dependence of 

the response must be analyzed directly using features of the data to ensure that the C2 embedding 

does not affect dominant features or induce new correlations. These features are typically extracted 

using AI/ML tools such as long short-term memory (LSTM) networks and convolutional neural 

networks (CNNs). Therefore, in addition to the statistical analysis above, the C2 implementation 

must be validated against AI/ML tools to ensure that the zero-observability and zero-impact 

constraints are satisfied. The following section evaluates the efficacy of the C2 paradigm against 
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AI/ML tools using the GAN for Anomaly Detection (GAN-AD) tool developed by the data science 

community to secure water treatment plants. 

3.4 AI Validation 

In this section, the C2 implementation in the linearized reactor model is validated against 

the GAN-AD AI/ML tool[99]–[102]. For simplicity, only the core model and its output reactor 

power are used, and the evidence-based records from the output are embedded along the state-

estimate of the Kalman filter. The GAN-AD tool consists of two LSTM networks trained against 

each other using a GAN framework. LSTMs are a recurrent neural network architecture suitable 

for time-series data due to their ability to remember/forget sequences and keep track of 

dependencies within the data. The GAN framework consists of two competing networks, called 

generator and discriminator respectively, that compete against each other to extract features from 

the time-series data and learn the true underlying distribution of the process. The generator network 

attempts to transform random inputs into time-series data representative of the training samples 

based on feedback from the discriminator. The goal of the discriminator is to distinguish between 

synthetic samples created by the generator and the true data supplied as the training set. With 

sufficient training, it is expected that the generator can accurately mimic the features of the time-

series data and fool the discriminator into classifying the synthetic samples as authentic. 

Additionally, the trained discriminator may be utilized as a statistical anomaly detection tool 

capable of detecting anomalous data that are not representative of the training set. This chapter 

relies on this observation to validate the C2 paradigm by training a GAN-AD model on operational 

data from normal operation and using the trained discriminator to attempt to distinguish normal 

operational data from C2-embedded data. If the discriminator is unable to distinguish, it may be 

likely that the two datasets come from the same process, which is the goal of the C2 paradigm. 

The following sections provide a background of LSTMs, GAN, and GAN-AD, followed by a 

summary of the results from validating C2 against AI. 
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3.4.1 Background 

Long short-term memory networks (LSTMs) 

LSTMs [101], [102] are a modification of recurrent neural network architectures that 

attempt to mitigate the effects of the vanishing gradient problem by passing the gradient 

information directly to subsequent layers. In doing so, they avoid some of the problems associated 

with multiplying finite-precision numbers that may go to zero or infinity with time as past 

information is continually incorporated. Nevertheless, they still retain the ability of recurrent 

networks to learn and store information over extended time-intervals through feedback 

connections. A typical LSTM unit consists of three gates, namely, the input gate, the output gate, 

and the forget gate, that regulate the flow of information through the cell as shown in Figure 14 

[103]. The input gate determines the relevant information that must be added at the current time-

step, the forget gate determines the relevant information from previous time-steps, and the output 

state determines the cell state in the next time-step based on this information. The cell state serves 

as the memory of the network as sequential data is processed and the use of gates ensures that the 

memory may be extended to longer time-steps than usually feasible with recurrent neural networks. 

This contrasts from simple feed-forward network architectures that do not have feedback 

connections to understand the sequential nature of data. 
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Figure 14: LSTM Architecture 

The ability to retain memory and understand sequences makes LSTMs ideal for time-series 

data. They are widely used in forecasting and classification applications including but not limited 

to speech recognition, predictive texts, handwriting recognition, music composition, and anomaly 

detection. For instance, LSTMs were used for speech recognition in Google Voice, Polly for Alexa, 

and to aid in automatic translations for Facebook. One of the most significant achievements, 

however, came in their implementation in the OpenAI bots for the video game Dota 2 [26], where 

the five-man bot team defeated the then world champions, OG, under limited conditions through 

clever use of in-game sustenance and co-ordination strategies that did not just rely on superior 

reflexes inherent in computers. Remarkably, the bots were trained from scratch through hundreds 

of thousands of hours of repeated games against themselves in an unsupervised manner, i.e., no 

footage of human professionals was used as training data. Similar progress was achieved in 

Starcraft II with DeepMind’s program AlphaStar [104]. 

In industry, LSTMs have been utilized for predictive maintenance, anomaly detection, and 

business process monitoring applications [102], [105], [106]. For example, time-series data from 

the process variables of a jet engine was used to train an LSTM model to predict the remaining 
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useful life of the system. These predictions are useful in detecting incipient signs of failure for 

maintenance purposes and can save resources otherwise lost due to system downtime, replacement 

costs, security concerns etc. In business settings, logs of completed processes may be used to 

predict the runtime of existing processes and make informed decisions for scheduling and 

optimization purposes. The sequential nature of the data makes LSTMs a lucrative process 

monitoring tool and research has demonstrated their ability to outperform other predictive models 

without the need for excessive tuning to the target application. Lastly, as discussed in greater detail 

in subsequent sections, LSTMs may be used to extract and learn features from sensor data in 

systems for anomaly detection. These anomalies may be a result of cyberattacks, equipment 

degradation, external disturbances etc. One such tool, GAN-AD, is chosen as the representative 

AI/ML tool to validate the C2 paradigm in this manuscript. 

Generative Adversarial Networks (GANs) 

GANs, introduced by Goodfellow et al. [14], are a recent milestone development in AI/ML 

research widely using in image processing, synthetic data generation, and advertising. The GAN 

framework consists of a generator and a discriminator that compete against each other in a zero-

sum game where the goal of the generator is to learn the feature space of the input and create 

synthetic samples while the discriminator attempts to distinguish between the training dataset and 

the synthetic samples. As shown in Figure 15 [107], the generator is penalized while the 

discriminator is rewarded if the latter is able to successfully distinguish between the data and vice 

versa otherwise. The input to the generator is typically random noise from a known multivariate 

statistical distribution, and the generator transforms this into data representative of the training set 

using a series of nonlinear transformations depending on the generator architecture. The output is 

then fed into the discriminator along with samples from the input training data, which then 

classifies the data as synthetic or original and the resulting loss is fed back into the generator for 

further training. In the Wasserstein loss function for example, given a real training sample 𝐱𝐱, noisy 

input 𝐳𝐳 , generator function 𝐺𝐺(⋅)  and discriminator function 𝐷𝐷(⋅) , the discriminator seeks to 

maximize the loss 𝐷𝐷(𝐱𝐱) − 𝐷𝐷(𝐺𝐺(𝐳𝐳)) while the generator seeks to maximize 𝐷𝐷(𝐺𝐺(𝐳𝐳)). Intuitively, 

this implies that the discriminator is judged by its ability to classify real samples as real and 

synthetic samples as fake, whereas the generator is judged by synthetic samples that are 

misclassified as real by the discriminator. 
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Figure 15: GAN Architecture 

GAN training typically occurs in alternating periods where either the generator or the 

discriminator weights are fixed while the other trains for one or more epochs. It is difficult to 

ascertain if and when convergence occurs during the training process and the training periods must 

be carefully juggled until the two competing networks are sufficiently trained. For example, if a 

generator is extremely good at generating representative samples, the discriminator cannot guess 

better than random leading to meaningless outputs. However, since these outputs are fed back into 

the generator via the loss function, the generator effectively trains in subsequent epochs on 

meaningless data, which may degrade the performance of the generator. Another issue is that of 

mode collapse, where the generator fails to generalize the training data and instead focuses on a 

subset of features that are still “valid” but not entirely representative. For instance, given a training 

set on the digits 0-9, the generator may only learn to generate ones and threes, which are 

satisfactory to the discriminator and thus no further training occurs. To alleviate this issue, mutual 

information-based loss functions have been proposed where the mutual information itself is 

estimated using a supporting neural network, thus forcing the generator to create synthetic samples 

representative of the entire dataset as opposed to only a subset. Common examples of loss 

functions involve measures that compute the difference in probability density functions of the input 

data such as Wasserstein loss, minimax loss etc. 

The generator and discriminator architecture vary depending on the application and the 

input data. Convolutional neural networks (CNNs) have enjoyed great success in image processing 
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applications and are widely used in the generation of deepfakes, AI art [5], [24] etc. The generator 

is typically a deconvolutional neural network that projects the relatively low-dimensional noise 

input to a high-dimensional image while the discriminator is a CNN that reduces the image to a 

single number describing its “authenticity”. Additionally, a combination of DNNs, RL, and the 

GAN framework have been used in the medical industry for AI-inspired drug discovery [108]. 

Here, the AI predictive model scours through existing drug databases, attempts to learn common 

relationships and drug properties, and synthesizes new candidate drug models to significantly 

speed up drug research. While the area of AI drug discovery is still in its infancy, the model by 

Insilico Medicine has shown great promise with successful tests in mice using some of the 

artificially generated drugs. With regards to time-series applications, both the generator and 

discriminator may be LSTMs that are well-suited in learning sequences and correlations over time 

intervals. These may be leveraged for synthetic data generation to create energy portfolios for 

optimization and anomaly detection to perform predictive maintenance, detect intrusion etc. The 

GAN-AD tool outlined in the next section is one such application of LSTMs trained using the 

GAN framework for anomaly detection. 

Generative Adversarial Networks-based Anomaly Detection (GAN-AD) 

The GAN-AD model, later published as Multivariate Anomaly Detection with GAN 

(MAD-GAN) [99], [100], is a state-of-the-art anomaly detection tool developed by the machine 

learning community for complex CPS. The architecture, illustrated in Figure 16, pits two LSTMs 

against each other in a GAN framework to learn the underlying distribution of sensor and actuator 

data in the CPS. Since sensors and actuators are highly correlated, the dimensionality of the time-

series data may be modeled using substantially fewer variables by the generator. The discriminator 

attempts to differentiate between the synthetic samples from the generator and real samples from 

data obtained from a complex six-stage water treatment plant. The model is then trained on the 

water treatment data until the generator can sufficiently model the underlying probability 

distribution of the sensors and actuators. 
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Figure 16: GAN-AD/MAD-GAN Architecture 

 While the generator typically maps from the latent space (inputs) to the sample space 

(sensor data), an inverse mapping from the sample space to the latent space is found by the authors 

through similarity-based iterative methods. Given the inverse mapping and the ability of the 

trained discriminator to detect differences in probability distributions, an anomaly score metric is 

derived for the purposes of anomaly detection. The time-series data may be passed to the detector 

for classification as anomalous or otherwise in a pointwise or sample-wise (collection of 

consecutive points) manner. The ability of the detector is enhanced when multiple responses are 

incorporated since the correlations among them often provide additional insight into system 

behavior that cannot be gleaned from a single response. Note that such detectors are still passive 

model-based methods and may be easily bypassed by falsification attacks such as the replay attack 

popularized by the Stuxnet virus that falsifies process variables using authentic data from previous 

time-steps. Nevertheless, the GAN-AD model provides a powerful validation tool to determine if 

the C2 paradigm truly satisfies zero-observability and zero-impact constraints by testing for 

discrepancies in the distribution of the process variables with and without the embedding. This 

represents the ultimate test for the resilience of C2 to AI/ML techniques, as discussed section 3.4.2. 

Isolation Forest 

Isolation forest (iForest) [109] is a state-of-the-art unsupervised anomaly-detection tool 

that takes a different approach to most anomaly detector techniques. While methods such as one-

class SVM attempt to profile normal instances, bound them as tightly as possible using a 

hypersphere, and classify any outliers as anomalous, iForest profiles the anomalies themselves. 

The underlying argument is that anomalies are far and few and unique in their occurrence, and 

consequently must be easier to “isolate” from a given dataset than other points. The dataset is split 
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using binary trees by randomly selecting a feature and a random threshold to partition the data. On 

average, anomalous points require a shorter path length, i.e., fewer splits, to be isolated than their 

normal counterparts, and each point can be assigned an anomaly score using this metric averaged 

over multiple trees as shown in Figure 17. 

 

Figure 17: Isolation Forest 

The C2 paradigm can be validated by looking for point-wise anomalies in the embedded 

data. If the zero-observability and zero-impact constraints are not satisfied, it is expected that the 

isolation forest algorithm will be able to classify anomalous points better than random on a large 

enough dataset with multiple samples. Failure to isolate the C2-embedded points better than 

random may be taken as evidence that the anomalous points are statistically similar to the non-

anomalous entries as demonstrated in the following section. This is the core of the C2 approach, a 

time-series with and without the embedding must appear statistically similar in their deterministic 

as well as stochastic components. 
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3.4.2 Results 

In this numerical experiment, the linearized core model is executed multiple times without 

the C2 physical process defense using the Dymola simulation software [110], [111] to generate a 

dataset representative of normal operation. The GAN-AD tool is trained on this dataset until it 

learns the underlying distribution of the input data and the generator can reproduce representative 

samples that bypass the discriminator. Once trained, the discriminator is isolated from the 

architecture to serve as an anomaly detection tool. Multiple datasets are generated with the C2 

defense embedded into the process variables and passed to the discriminator as testing data to test 

its ability to distinguish between the C2-embedded data and the data under normal operation. This 

represents the ultimate test of the C2 paradigm since the discriminator was only trained on normal 

operational data. In other words, the C2-embedded data was unseen by the discriminator and 

consequently, the latter must be able to detect any deviations in the feature-space caused by the 

C2 embedding. If the discriminator is unable to perform better than random, it is likely that the 

distribution and feature-space of both the datasets are identical, fulfilling the goals of the C2 

paradigm. 

In this experiment, the same neural network parameters and preprocessing criteria are used 

on the training data as in the original GAN-AD manuscript. The GAN-AD model is trained as a 

two-player minimax game with the discriminator loss and generator loss to be minimized as 

provided in Eqs. 3.6 and 3.7. Here, the same notation for the input noise, generator, discriminator, 

and samples is used as in the background on GANs in section 3.4.1 where 𝑚𝑚 denotes the number 

of samples in the dataset. The LSTM generator consists of 3 layers with 100 hidden units each 

while the discriminator consists of 1 layer with 100 hidden units. The input latent space to the 

generator is 15-dimensional to learn features from the temporal data. 

𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = min
1
𝑚𝑚
��− log𝐷𝐷(𝐱𝐱𝑖𝑖) − log �1 − 𝐷𝐷�𝐺𝐺(𝐳𝐳𝑖𝑖)���
𝑚𝑚

𝑖𝑖=1

(3.6) 

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = min
1
𝑚𝑚
� log �−𝐷𝐷�𝐺𝐺(𝐳𝐳𝑖𝑖)��
𝑚𝑚

𝑖𝑖=1

(3.7) 

 

The training input is the response 𝐲𝐲 of the reactor, representing the power level at steady-

state conditions. The data was collected at time-intervals of 1 second for a total duration of 496,800 
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seconds (5.75 days).  The GAN-AD is trained using two types of datasets, namely, pointwise and 

sample-wise. With pointwise data, the GAN-AD model attempts to distinguish individual time-

steps in the output data as anomalous or otherwise, whereas with sample-wise data, the GAN-AD 

model learns temporal features from a time-series of length 120 time-steps (2 mins) and the 

discriminator attempts to classify the given test sequence as anomalous or otherwise. In this 

numerical experiment, equal number of normal operation and C2-embedded datasets were 

provided to the trained discriminator for the purposes of anomaly detection. The anomaly score 

metric based on the discriminator output and the generator reconstruction error was adopted from 

the GAN-AD model to test the C2 paradigm. A given point/sample was declared as anomalous if 

its anomaly score was above a certain threshold value 𝜏𝜏 which may be varied based on the desired 

true positive and false positive rates.  

As mentioned earlier, the GAN-AD model is trained on data obtained from normal 

operation and tested on C2-embedded data to assess differences in the statistical properties and the 

underlying probability distribution. Since the problem is a binary classification problem, four 

metrics may be used to summarize the results of the testing algorithm, namely, the number of true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Here, TP denote 

the number of C2-embedded samples that were classified as embedded by the discriminator, FP 

denote the number of samples from normal operation that were classified as embedded, TN denote 

the number of samples from normal operation that were classified as normal, and lastly, FN denote 

the number of C2-embedded samples that were classified as normal. Using these metrics, four 

measures may be derived using the definitions in Eqs. 3.8-3.11. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
(3.8) 

Precision =
TP

TP + FP
(3.9) 

Recall =
TP

TP + FN
(3.10) 

False Positive Rate =
FP

FP + TN
(3.11) 
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Typically, the measures of precision and recall are used in the computer science community 

to describe the performance of a binary classifier. A high precision indicates that the classifier can 

successfully detect anomalies, while a high recall indicates that the detected anomalies are truly 

anomalous. As shown in Figures 18 and 19, it can be observed that despite varying the threshold, 

the GAN-AD model is unable to predict better than random regardless of pointwise or sample-

wise data. In cases where a high recall is obtained, the false positive rate is correspondingly high 

indicating that the classifier classifies most normal operation and C2-embedded datasets as 

anomalous. Attempting to decrease the false positive rate results in a low recall, indicating that the 

classifier mostly classifies both datasets as normal operation. This is better captured via the 

precision and accuracy metrics which are capped around 50%, the equivalent of randomness/coin-

toss probability. 

 

Figure 18: ROC curve for point-wise results 
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Figure 19: ROC curve for sample-wise results 

The above results indicate that the statistical distribution of the system output with and 

without the C2 embedding is similar, as validated visually earlier with the histograms in section 

3.3.2. As mentioned in the introductory section of this chapter, this implies that the C2 

implementation is resistant to pattern discovery by AI/ML techniques since the temporal features 

extracted from the C2-embedded data are identical to the normal operation case. Combined with 

the statistical results in section 3.3.2, it is demonstrated that the zero-impact and zero-observability 

constraints are satisfied. 

The iForest numerical experiment was conducted on the above dataset with the same 

preprocessing parameters and without the label information. However, for the sake of analysis, the 

iForest labels were compared to the true labels to determine if there were any discrepancies in the 

point-wise data. Half the data was contaminated with anomalies (the C2 embedding) at every 

alternate time-step, and a set of 100 binary trees were used to extract features and isolate the 

anomalies. The iForest algorithm was implemented using the PyOD library [112], a state-of-the-

art anomaly detection library for time-series data. 
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Table 1: Point-wise results from iForest 

Metric Score (%) 

True Positive Rate 49.93 

False Positive Rate 50.08 

Accuracy 49.93 
 

It can be seen from Table 1 above that the iForest algorithm is unable to detect the 

embedded time instances better than random, further validating the claim that the embedding is in 

line with the principles of zero-observability and zero-impact on the process. Additionally, it can 

be proven mathematically under assumptions of additive Gaussian noise and working in the non-

observable space that the embedding process generates a time-series that has the same 

deterministic component as the original time-series and the same statistics on the stochastic 

component. Effectively, the embedding transforms a given time-series into a different realization 

of the time-series by only manipulating the noise while preserving its statistics. Furthermore, the 

assumptions of Gaussianty may be relaxed to encompass the family of stable distributions although 

this is rarely encountered in practice with process noise. In practical applications, different non-

Gaussian sources of randomness typically sum up to a Gaussian distribution by virtue of the central 

limit theorem, and the non-observable space is heavily dominated by noise for any minor trends 

to be discernible. 

To summarize, this chapter demonstrates a simple implementation of the C2 paradigm in 

a linearized reactor model equipped with a core and steam-generator. Cross-cognizance is induced 

among the two subsystems using the mathematical framework developed in section 2.3 to serve as 

an additional layer of physical process defense. It is observed that the given implementation can 

be used to detect falsification of process variables and can therefore distinguish between anomalies 

arising out of natural causes and malicious intrusion detection. This fills a key gap left by existing 

defenses that may be bypassed by replay attacks that preserve statistical similarity and insiders that 

can detect the additional footprint of active techniques.  

The work has several extensions. First, it is recognized that the above implementation was 

intended as proof-of-concept and is limited in its scope due to the simple reactor model under 

consideration which only had a few degrees of freedom for the C2 embedding. Therefore, the work 
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must be extended to a real representative model with multiple sensors and nonlinear dynamics as 

encountered in the physical world. The proposed work seeks to accomplish this using the open-

source TRANSFORM Library [113] developed by Oak Ridge National Lab for the modeling 

software Dymola. Secondly, it is observed that one subsystem may be used to recover lost data in 

the case of data falsification since it contains the necessary information to retrieve and restore the 

falsified process variables of the other subsystem. This is because the evidence-based records are 

created based on the temporal evolution of the process variables prior to falsification by an 

adversary. Thus, the C2 paradigm serves a dual purpose of intrusion detection and data recovery 

to ensure robust operation of the system even under compromised environments, representing the 

ultimate goal of OT defenses. Lastly, with the advent of automation and remote operation, it is 

critical to develop an automated method of intrusion detection and data recovery for critical 

infrastructure to continue operation in inaccessible environments. This is explored through the 

development of automated C2 modules in Dymola for a representative small modular reactor using 

the TRANSFORM package in chapter 4.  
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 CASE STUDY: DATA RECOVERY 

This chapter concerns the development of automated C2 modules using the TRANSFORM 

library in Dymola for a representative small modular reactor and borrows content published in the 

journal [114], Progress in Nuclear Energy. One of the important premises of unattended operation, 

a highly promoted characteristic of fission batteries and advanced microreactors, is the ability to 

automate the analysis of sensors data used in support of operational monitoring and control. To 

meet this vision, this work proposes a new monitoring and data recovery paradigm to ensure 

resilience against data corruption which may be the result of malicious intrusion into the reactor 

operational network. This is paramount to ensure 100% availability under contingency scenarios 

such as cyberattacks. In support of this vision, earlier work has presented the concept of covert 

cognizance and demonstrated its mathematical ability to identify and embed cognizance 

parameters under the noise-dominated null space of the sensors data. This work extends this 

concept and applies it in real-time to demonstrate three key characteristics: zero-impact, zero-

observability, and data recovery, where the first characteristic is to ensure no impact on operation, 

the second is immunity to discovery by pattern recognition techniques, and the third is to allow 

recovery of corrupt or falsified data. Recognizing that fission batteries are designed to operate 

under steady state most of the time, we elect to employ a small modular reactor model under 

transient operational conditions to demonstrate the operational resilience enabled by the covert 

cognizance paradigm. Specifically, the PI controller is augmented with the covert cognizance 

modules to develop self-awareness and enable automatic data recovery. The developed modules 

are expected to be equally applicable to a wide range of advanced reactor technologies relying on 

full or partial unattended control. 

4.1 Background 

Energy resilience, as defined in the FY2018 National Defense Authorization Act under 10 

USC § 101(e)(6), refers to “the ability to avoid or prepare for, minimize, adapt to, and recover 

from anticipated and unanticipated energy disruptions in order to ensure energy availability and 

resiliency sufficient to provide for mission assurance and readiness, including task critical assets 

and other mission essential operations related to readiness and to execute and rapidly reestablish 
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mission essential requirements”. In the context of power grids, energy resilience refers to the 

ability of the power grid to continue delivering energy to critical loads and reduce outages via self-

healing and reconfiguration in the event of natural disturbances or malicious cyberattacks. This 

implies that backup sources of power are needed to maintain power to critical loads and minimize 

loss of life and/or property during unforeseen events [115]. 

Along the lines of energy resiliency, the Fission Battery Initiative by Idaho National Lab 

[116] seeks to develop ready-to-implement battery-like nuclear reactors with the vision of 

providing economical, reliable, and unattended power to various systems. A few key 

characteristics of such batteries include prompt installation, standardized sizes, and the ability to 

be fault-tolerant and achieve 100% availability under different operating conditions. To achieve 

this vision, testbeds such as MARVEL [117] have been proposed for proof-of-concept 

demonstration and the validation of fission battery technologies. In the upcoming years, these 

testbeds are expected to be equipped with digital twin technologies to achieve secure, robust and 

unattended operation with a focus on automated intrusion detection and data recovery technologies. 

This is especially relevant in the face of cyberthreats that may seek to disrupt small-scale remote 

systems such as decentralized microgrids operating in island mode. 

The demand for automated detection and data recovery at the process data level in the face 

of cyberthreats is largely unmet when considering knowledgeable adversaries such as insiders and 

advanced persistent threat actors that have the technical know-how to evade statistical model-

based measures and can manipulate the system to undesirable states in subtle ways [11,12]. To this 

end, the present work seeks to address this challenge using a method referred to as covert 

cognizance (C2) [13,14], which is a novel active defense paradigm that protects a system at the 

process level as a safeguard against insiders that have bypassed existing information technology 

(IT) measures and passive operational technology (OT) measures. By augmenting the reactor with 

automated C2 modules, self-awareness is induced across the system sensors to carry information 

about each other. In the event that a sensor is compromised, the modules serve as an intrusion 

detection tool that pinpoint the sensor and time of intrusion, ultimately recovering the lost 

information from other sensors. These design goals reflect the overall goal of OT defenses, energy 

resiliency and the Fission Battery Initiative– to protect the system at a process level and maintain 

the functional expectations of a physical process during cyber incidents. Additionally, the 

demonstration in this work is expected to pave the way for demonstration on testbeds such as 
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MARVEL and implementation in microreactors and other next generation reactor technologies 

[118]. 

The scope of this work is confined to enabling autonomous operation and 100% availability 

of fission batteries in the face of cyberattacks. Since control strategies, state estimation, 

verification and validation, and operating conditions for fission batteries are part of ongoing 

research, the focus of this manuscript is to develop C2 modules that can easily adapt to conditions 

and may be readily deployed in any system. The modules are designed to be flexible in their 

deployment; they may be the software component of embedded firmware, software augmentation 

of digital twins, or as hardware add-ons to fission battery technologies. They are also agnostic to 

performance indicators since by definition of the zero-impact and zero-observability criteria, they 

are designed to not affect the operational data in any meaningful way. In other words, any 

variations due to C2 are indistinguishable from natural variations due to system noise by virtue of 

the C2 embedding occurring in the so-called non-observable space. 

The present work is organized as follows: Section 3 provides a brief background of fission battery 

technology, the role of automation, and a comprehensive literature review on the existing IT/OT 

security measures in place. Section 4 introduces the simulated SMR in Dymola, the automated C2 

modules, and the proposed mechanism for intrusion detection and recovery. Section 5 describes 

the simulation results and validates the implementation using the zero-observability and zero-

impact conditions of the C2 paradigm. Lastly, Section 6 summarizes the results and discusses 

avenues for future work using the designed C2 modules.  

In the U.S., the microreactor project was proposed to provide small transportable reactor 

modules to provide ~ 20 MW of power for remote sites, emergency operations, military 

installations, and space applications. They are expected to operate at temperatures exceeding 

600 °C, achieving thermal efficiencies on the order of 32% that rival and even exceed the 

performance of many large-scale reactors. Owing to their small size, they require substantially less 

capital than full-scale power plants, have fewer electrical components, and possess a significantly 

simplified configuration. This makes them ideal for fission-battery-type deployment, as addressed 

by the fission battery initiative [116], where nuclear energy is miniaturized for plug-n-play 

deployment with a focus on unattended operation. However, microreactors lose a significant 

economic advantage due to their small power output, especially in comparison to competing 
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distributed energy resources of similar power outputs such as distributed solar/wind and battery 

storage-type technologies. 

Automation has been proposed to reduce operations and maintenance (O&M) costs via 

advanced displays, computer-based control procedures, advanced alarm systems, and 

computerized operator support systems [119]. The modern instrumentation, controls, and human-

machine interface (ICHMI) is one such example that demonstrates the transition from traditional 

analog systems to digital and potentially automated systems. However, there are a few challenges 

with the modern ICHMI in microreactors due to the drastically different needs of the latter from 

conventional reactors [120]. For example, direct sensing capabilities to obtain critical 

measurements are typically diminished due to the small size and harsh environment of the 

microreactor, thus increasing the uncertainties built into the safety margins of the reactor. 

Furthermore, many systems are often shared among the various components of the reactor which 

requires operators to consider the coupling of dynamics between these systems that they may be 

unfamiliar with during their experience with conventional reactors [121]. Modern designs have 

also incorporated the benefits of remote access, and automation technology via the ICHMI to 

further economize the microreactor. Intelligent control, for example, has been proposed to 

maintain reliability in adverse scenarios by allowing the reactor to adapt its internal configuration 

depending on structural changes. In recent years, autonomous frameworks have been developed 

for microreactors considering their unique challenges to allow for potentially unattended operation 

for long periods of time [19–22]. With regards to direct application, there is limited research on 

autonomous control for space systems that have onboard reactors [126]. Simulation models have 

been created to demonstrate some degree of automation for small modular reactors (SMRs) such 

as the IRIS module in the TRANSFORM library developed at Oak Ridge National Lab [113]. 

While microreactors are considered a subset of SMRs, simulation efforts to provide high-fidelity 

data for microreactors specifically are part of ongoing efforts in the community [127]. 

While automation technology has become increasingly mature in application domains such 

as robotics and manufacturing, the technology has not been extensively developed for advanced 

reactor designs such as microreactors with a focus on robustness, flexibility, and optimization 

[122]. This is primarily due to the sensitive/proprietary nature of nuclear reactors with some 

research even showing a negative effect on situational awareness by employees with increased 

automation [119]. However, it is acknowledged that the conservativeness of the nuclear 
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community is warranted since the increased connectivity of various components, remote control, 

and automation open up a new avenue for malicious intruders to access and control the plant. 

Traditional power plant networks are air-gapped to prevent external access, but attacks such as 

Stuxnet [68] have shown that even these systems are vulnerable to insiders able to bypass IT 

protocols, unaccountable employees, and a host of other human factors. Even prior to the discovery 

of Stuxnet, it was recognized that a highly automated plant control system would have to 

incorporate diagnostics and response mechanisms for non-standard operational behavior [121]. 

In response, the control community has attempted to augment and automate intrusion 

detection using process data analysis (i.e., physics-based detection), and incorporating IT-based 

measures such as packet analysis. One of the pioneering works [128] in this domain involves the 

classification of variables into three categories based on their semantics (constants, enums, and 

continuous variables). This was followed by constructing a behavioral model for each process 

variable, and raising an alarm when the observed behavior deviated from the expected behavior. 

Similar work has been done to construct physical model-based and control command analysis-

based intrusion detection systems that rely on the knowledge of the physical system, its network 

topology, and its dynamics to autonomously detect intrusion [27–31].  

A common shortcoming of “model-based” automated and passive OT techniques is that 

they may be bypassed by stealthy attacks launched by knowledgeable adversaries. Such 

adversaries may be intimately familiar with the system or can attempt to learn system features 

during an initial waiting period using artificial intelligence/machine-learning (AI/ML) techniques 

[11,12,32,33]. The battlefield is inherently lopsided in the favor of the attacker with the defender 

spending far more resources to be bypassed by relatively simple attacks. For instance, a replay 

attack was shown to be extremely effective in the Stuxnet attack and bypass most passive defensive 

measures, whereas active solutions proposed to counter replay attacks, e.g., dynamic watermarking 

[61], sacrifice controller optimality and system performance to enable attack detection. Other 

active measures such as noise impulse integration [134] is intended for steady-state processes and 

may have unintended effects during attacks if the target application is sensitive to unmodeled 

disturbances. Furthermore, while the control community has worked on detection and limiting the 

impact of stealthy attacks [50], improving the robustness of the system, and discovering zero-day 

vulnerabilities [36,37], there is a dearth of techniques that can recover data and continue operation 

during a cyberattack. In other words, mere detection is inadequate for systems such as fission 
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batteries that are backups to critical infrastructure and must be kept running. Data recovery is still 

in its infancy with the recent introduction of consensus-based algorithms, redundant sensors, and 

vault-like data storage mechanisms [38–40]. 

In fission battery technologies such as microreactors, digital instrumentation and sensors 

provide measurements that are essential for autonomous control and remote monitoring with no 

human in the loop under different operating conditions. The control algorithms to achieve 

autonomous operation must be able to gather information about their operational environment, 

learn, adapt, anticipate, and take informed control actions. In other words, the monitoring must be 

supported by intelligent automation and decision-making capabilities with minimal human 

intervention, i.e., the system must be made self-aware. This includes automated capabilities that 

can verify the integrity of data in the face of sophisticated cyberattacks and restore the lost data to 

continue robust operation even if the system is compromised. To address the lack of measures for 

automated intrusion detection of stealthy attacks and subsequent data recovery, a novel predictive 

modeling paradigm, C2[64], was proposed to induce awareness in systems about their operational 

history. The C2 paradigm alerts an operator or a digital diagnostics module to stealthy attacks in a 

deterministic manner by embedding information about the operational history of the process 

among its process variables. Specifically, the non-observable/noisy space of the process variables 

are used to carry the information in a random manner since this renders it immune to data mining 

by humans and AI/ML tools. Additionally, C2 also permits data recovery in the event that a given 

sensor is compromised since its information can be recovered using invertible transformations 

from other sensors. Since the information is in the non-observable space, it was demonstrated in 

previous work that the methodology does not affect the underlying physical process [65], i.e., a 

system with C2 embedded is indistinguishable from one without C2. The C2 technology represents 

the highest level of autonomy [125], [138] achievable by a system where the potential for human 

intervention is at a minimum. It endows the microreactor with the ability to decide and act 

autonomously while ignoring operator commands due to a failure in verifying data integrity. 

In this work, C2 modules are created which are capable of automating the above process for 

a representative SMR using the TRANSFORM package in the Dymola simulation software. The 

work is intended to validate the C2 process for SMRs, and to create modules that can be simply 

attached to any system (plug-n-play) to secure it for other SMR designs, control architectures etc. 

While our previous work focused on a simplistic linearized reactor model, the present work 
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implements C2 in a full-scale non-linear SMR simulation with complex phenomena such as heat 

transfer, pressure loss etc. The potential for data recovery in a compromised environment is also 

demonstrated. The goal of this demonstration is to showcase the potential for the plug-n-play 

modules to be embedded in the control algorithms of microreactors that may be deployed in a 

battery-like manner. Although not necessarily the intended mode of operation for fission 

batteries/microreactors, the SMR implementation is chosen to demonstrate that C2 is also 

applicable to transient models, i.e., it can exhibit resilience under various operational conditions. 

4.2 Integration of C2 with Dymola 

The target SMR architecture, the goal of the C2 modules and their relation to the C2 paradigm, 

and a functional description of each component is provided in this section. The International 

Reactor Innovative and Secure (IRIS) design from the TRANSFORM library in Dymola is chosen 

as a representative SMR and shown in Figure 1. The SMR is equipped with a control system 

consisting of feedback controllers, temperature, power and pressure sensors, and actuators that 

insert reactivity via the control rods and adjust the mass flow rate using a centrifugal pump as 

shown in Table I.  
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Figure 20: IRIS SMR layout 
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Table 2: Description of control system 

Sensors [Nominal Values] Noise Level Corresponding 
Actuator 

Reactor Power (MW) [1000 MW] 1% noise ~ 5 MW 
Control rod reactivity, 
PI control, limited to 
± 0.01 absolute units 

Pressurizer Pressure (bar) [157 bar] 1% noise ~ 1 bar 

Heater, constant 
power, turns on/off 
depending on 
pressure 

Core Inlet Temperature (°C) [285 °C] 0.1% noise ~ 0.5 °C Pump speed, PI 
control, limited to 
[1150, 1950] rpm Core Outlet Temperature (°C) [315 °C] 0.1% noise ~ 0.5 °C 

Upper Riser Pressure (bar) [157 bar] 1% noise ~ 1 bar - 

Lower Riser Pressure (bar) [157 bar] 1% noise ~ 1 bar - 

Core Outer Plenum Temperature (°C) 
[321 °C] 0.1% noise ~ 0.5 °C - 

Steam Generator Outer Plenum Temperature 
(°C) [285 °C] 0.1% noise ~ 0.5 °C - 

Steam Generator Outlet Pressure (bar) [160 
bar] 1% noise ~ 1 bar - 

Downcomer Pressure (bar) [160 bar] 1% noise ~ 1 bar - 

 

For work described herein, the existing design was modified with additional temperature 

and pressure sensors and corrupted by additive white Gaussian noise for a more realistic simulation 

as shown in Table 2. Simulation constraints require the PI controllers to operate in discrete time-

steps of 1 second, i.e., sensor inputs are used to calculate the corresponding actuator outputs at a 

rate of 1 sample-per-second. The following sections formulate the problem, the goal of C2, and the 

modules developed to implement C2 in the IRIS SMR for automated intrusion detection and data 

recovery. 

Intrusion detection is initially demonstrated similar to Chapter 3 by embedding information 

along the non-observable space of the sensors to satisfy the zero-impact and zero-observability 

design requirements of C2. Here, information refers to the operational history of a given sensor 

that can be used to recover the time-series data if that sensor is compromised. Embedding is 

randomized using a one-time pad [139] to prevent humans and/or pattern detection tools such as 
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AI/ML from detecting the presence of the information. For data recovery, the information is 

derived from the temporal data of the sensors so as to be reconstructed using the non-observable 

space of the other sensors. Mathematically, the above system can be described using the non-

autonomous set of differential equations 1-3 for some time 𝑡𝑡: 

�̇�𝐱 = 𝑓𝑓(𝐱𝐱,𝐮𝐮, 𝑡𝑡) (1) 

𝐲𝐲 = 𝑔𝑔(𝐱𝐱,𝐮𝐮, 𝑡𝑡) (2) 

𝐮𝐮 = ℎ(𝐲𝐲, 𝑡𝑡) (3) 

 

Here, 𝐱𝐱 refers to the reactor state that is hidden and generally not observable, 𝐲𝐲 refers to 

the noisy measurements by the sensors, and 𝐮𝐮 refers to the control inputs of the corresponding 

actuators described in Table 2. The functions 𝑓𝑓(⋅),𝑔𝑔(⋅) and ℎ(⋅) refer to the evolution of the state, 

the relationship between the state and the sensors, and the controller logic respectively. 

Information from a subset of sensors 𝐲𝐲𝑖𝑖  shall be embedded across another subset 𝐲𝐲𝑗𝑗  and the 

information is given by {𝑧𝑧𝑖𝑖} for each sensor in {𝑦𝑦𝑖𝑖} at some time 𝑡𝑡 derived using functions {𝑚𝑚𝑖𝑖(⋅)} 

as shown in Eq. 4. To avoid the presence of patterns, as seen in Eq. 4, the information is further 

obfuscated, randomized and transformed using functions {𝑟𝑟𝑖𝑖(⋅)} prior to embedding along the non-

observable space of 𝐲𝐲𝑗𝑗 causing a change Δ𝐲𝐲𝑗𝑗. Let the non-observable space of 𝐲𝐲𝑗𝑗 be given by the 

basis vectors in 𝐔𝐔𝑗𝑗⊥ respectively. While embedding along the non-observable space satisfies the 

zero-observability criterion, we must also satisfy the zero-impact criterion as seen in Eq. 6 . 

Mathematically, we have: 

𝑧𝑧𝑖𝑖 = 𝑚𝑚𝑖𝑖(𝐲𝐲𝑖𝑖) (4) 

𝐔𝐔𝑗𝑗⊥�𝐲𝐲𝑗𝑗 + Δ𝐲𝐲𝑗𝑗� = 𝑟𝑟𝑖𝑖(𝑧𝑧𝑖𝑖) (5) 

ℎ�𝐲𝐲𝑗𝑗 + Δ𝐲𝐲𝑗𝑗� = ℎ�𝐲𝐲𝑗𝑗� (6) 

Note that the two sensor subsets are not mutually exclusive and the present work is just 

one instantiation of the process. Additionally, the observable and non-observable space may be 

constructed to exploit correlations across time for a given sensor, the correlations among multiple 

sensors at a given time, or both. As highlighted in previous work [64], one of the main advantages 

of complex dynamical systems is their reducibility to few dimensions leaving a vast number of 

degrees of freedom for the non-observable space that can serve as carrier variables for the 

information.  
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With the above problem statement, the process is implemented dynamically by automating 

the generation of the information, its obfuscation, and the embedding along the non-observable 

space of the target sensor as seen in Figure 2. Specifically, modules are created that may be 

implemented in a “plug-n-play” manner to achieve cognizance in the SMR’s control system as 

described further in the following subsections. 

4.2.1 Development and Implementation of C2 modules 

This section provides a brief description of the C2 module seen in Figure 2. The C2 module 

consists of three major components: generator, scrambler, and embedder. The sensors 𝐲𝐲𝑖𝑖  from 

which the information is to be derived is labeled as the “Source” and connected to the generator 

module. The sensors 𝐲𝐲𝑗𝑗, whose non-observable space is where the information is to be embedded 

is labeled as “Target” and connected to the embedder module. Once the information is extracted, 

it is scrambled using the scrambler module with the aid of a one-time-pad algorithm. The 

transformed information is then received by the embedder module, which embeds it along the non-

observable space of the target sensors. Since the generation and embedding does not have to 

happen at every time-step, the system is augmented with two Boolean pulses, “Generate” and 

“Embed”, that signal when the information must be extracted and embedded respectively. 
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Figure 21: Dymola C2 modules for message generation, obfuscation and embedding 

The generator consists of a dimensionality reduction algorithm, principal component 

analysis (PCA), to extract only the dominant components of the source sensor in real-time. While 

the procedure may be generalized to multiple sensors, in this instantiation, information about the 

recent temporal evolution of the reactor power sensor (see Table 2) is extracted and sent to the 

scrambler. The dimensionality reduction algorithm may be implemented dynamically or done 

offline to construct the observable and non-observable space depending on the available resources. 

Typically, incoming information is patterned since it describes the temporal evolution of 

the source sensor. However, since the non-observable space of the target sensors are typically 

noisy, this information must be obfuscated to remove patterns and transformed to fit the noise 

distribution of the target sensors to remain covert. The one-time-pad cryptography transforms the 

input information into a random version using a randomly generated pad. It is information-

theoretically secure as long as the pad is random, not reused and only shared with the receiving 

party, and the randomized version may be inverted to the input information using the pad. The 

scrambler uses an algorithm similar to the one-time-pad with a source of randomness to render the 

incoming information patternless and sends it to the generator. Additionally, the one-time-pad 
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constantly changes with time, so the same incoming information being embedded at two different 

time instances will have different scrambled outputs. This is done so that an AI/ML tool cannot 

decipher the underlying algorithm and will be unable to find any association between the inputs 

and outputs. 

Once the information is scrambled, the embedder has its own dimensionality reduction 

algorithm to extract the observable and non-observable space of the sensors. In addition to 

extracting the non-observable space, the embedder also analyzes the target distribution of the 

carrier variables prior to embedding. These are independent, identically distributed samples of 

white-Gaussian noise and thus, the incoming scrambled information is scaled to fit the distribution 

of the target carrier variables. In the present work, since the ten sensors (in Table 2) are correlated 

and reducible to fewer degrees of freedom, the remaining degrees of freedom compose the non-

observable space for embedding the temporal information of the power sensor from the generator 

module. Note that the non-observable space may be computed online or offline depending on 

resource constraints similar to the generator module. 

With regards to intrusion detection and data recovery, the process is simply reversed since 

all transformations are invertible. The scrambled information may be extracted from the sensors 

since the non-observable space is known. If the scrambled information does not match the actual 

output of the scrambler, the data has been compromised and an alarm is indicated. In this case, the 

expected output is unscrambled using the one-time-pad algorithm to extract the original 

information. Since this information corresponds to the dominant behavior of the temporal data, the 

power sensor data may be reconstructed, allowing the system to continue to operate with the 

reconstructed data instead of the incoming tampered data. 

There are several extensions which may serve as additional layers of security and recovery. 

For instance, randomizing the “Generate” and “Embed” pulses serves as another layer of security 

for the SMR, since it is impossible to predict when the pulse may trigger. Along the same lines, 

the chosen courier variable in the embedder module may be randomized, or due to the vast 

dimensionality of the non-observable space, the same information may be embedded along 

multiple courier variables using different one-time-pads as backup. The link between the source 

and target sensors may also be randomized to ensure an adversary intimate with this specific 

implementation neutralized. 
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4.2.2 Numerical Experiments and Results 

In this section, the automated C2 modules are implemented and validated via an IRIS SMR 

design developed using the TRANSFORM library in Dymola. The zero-impact and zero-

observability criteria of the C2 paradigm are first validated followed by a demonstration of the 

intrusion detection and data recovery capabilities. The reactor is simulated under various 

operational conditions by adjusting the target power between 50 and 100% of the plant capacity. 

A typical operational mode involves steady-state operation, followed by two linear ramps 

culminating in a parabolic load-following behavior as shown in Figure 3. 

 

Figure 22: Representative operation of IRIS SMR. 

The C2 embedding module procures information about the temporal evolution of the power 

sensor and embeds it across all the 10 sensors outlined in Table 2. The process is done every 10 

seconds via the “Generate” and “Embed” pulses and using Eqs. 4-6. To validate the zero-impact 

criterion, the controller cost is computed using the sensors and actuator inputs over 10 different 

simulations. Of these, the first five simulations represent various operational modes as seen in 

Figure 4, while the latter five simulations validate the zero-impact criterion over different 

instantiations of noise (different random numbers) for a given mode to further showcase that the 

change in operational cost due to C2 is within the noise variance of the controller cost as seen in 
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Figure 5. As such, a classifier based on the controller cost alone is expected to be unable to 

distinguish between the two processes. 

The controller cost, borrowing from control theory and described in further detail in 

previous work, is a measure of the effort expended to change a process from an initial state to a 

desired state. It has arbitrary units and is a function of the state-space, the control inputs, and the 

error between the desired state and the current state, with cost minimization being the goal of most 

control system designs. In this set of numerical experiments, however, the PI controller parameters 

were already provided so no optimization was done. The cost was simply computed as the sum of 

the states and the control inputs across all time-steps with appropriate scaling. Note that this is 

arbitrary and the following analysis follows without loss of generality for different cost functions 

since the effect of C2 on the operational data is within the noise level. Effectively, regardless of 

specific cost function, the variations in controller cost due to the C2 modules are within the 

variations expected due to randomness of noise. 

 

Figure 23: Controller cost over five runs with different operational modes. 
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Figure 24: Controller cost over five runs with different noise instantiations for a given mode. 

The zero-observation criterion is validated visually by viewing the analyzing along the 

non-observable space and statistically validated using the Kolmogorov-Smirnov test at a 

significance level of 0.01. By design, the C2 paradigm does not affect the dominant space as seen 

in Eq. 6. However, the statistics of the coefficients along the non-observable space vector in Eq. 5 

must be preserved. To this end, the coefficients of the vector are computed and plotted in Figure 6 

before and after embedding at the time instances where the embedding occurs. It is observed that 

the embedded coefficients are within the existing noise-level, thus validating non-observability. 

To summarize, Figures 4-6 validate the claim that any change to the operational data from the C2 

embedding (Eqs. 4-7) is within the noise of the data arising out of measurements. Further 

validation of the C2 paradigm using the underlying probability distribution of the reactor states, 

outputs, inputs etc. was done in previous work via a generative adversarial net with two competing 

long short-term memory networks [41].  
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Figure 25: Coefficients along non-observable space. 

The primary focus of this work, however, is on the intrusion detection and more critically, 

data recovery capabilities of the C2 modules under compromised environments. To accomplish 

this, first, we simulate a replay attack by falsifying all 10 sensors using past data. In this work, we 

consider a reactor operating under steady-state conditions with all its sensors falsified after 500 

seconds with the ramp data from an earlier simulation. Although all 10 sensors are falsified, only 

the four sensors that affect the PI control algorithm are shown for brevity in Figure 7. While 

falsification of a subset of sensors may be detected via redundant or additional sensors, since 

correlations may not be preserved, falsification of all sensors preserves the expected physical 

correlations, and is thus, expected to bypass passive algorithms that rely on the physics of the data 

or a digital twin, since the false data comes from an earlier “genuine” scenario. Additionally, 

residual-based detectors such as 𝜒𝜒2 -detectors when combined with passive methods are also 

bypassed since the noise statistics are preserved in a replay attack. 
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Figure 26: Effect of replay attack; left to right, top to bottom – 7a) Reactor Power, 7b) Reactor Pressure, 
7c) Reactor inlet temperature, 7d) Reactor outlet temperature. 

As seen in the four subplots of Figure 7, the replay attack is capable of driving the reactor 

to unsafe states since the PI controller attempts to return the reactor to steady-state power based 

on the falsified input. Specifically, the reactor power is driven to 1500 MW, well above its 

maximum output of 1000 MW, as seen in Figure 8a. Note that additional falsification of the 

actuator command display to the operator is possible to further obfuscate the attack. Regardless, a 

replay attack is shown to be highly disruptive to operations; the reactor ramps up to 150% of its 

capacity as seen in Figure 7a, while appearing to be a regular load-following transient, with a 

corresponding rise in the pressure (7b), inlet (7c) and outlet temperature (7d). The attack may also 

be rendered subtle via minor falsifications of the reactor state over a time causing the reactor to 

approach an unsafe operational regime in a subtle manner. 

However, with the addition of the C2 module, it is observed that the noise analysis across 

all sensors is expected to carry information of the temporal evolution of the reactor power. 

Additionally, due to the one-time-pad, the same information is expected to be obfuscated 

differently at different time-steps, i.e., as seen in Eq. 5, even if the extracted information 𝑧𝑧𝑖𝑖 is 

identical across time, the one-time-pad obfuscation function 𝑟𝑟𝑖𝑖(⋅) changes and thus the output of 

the scrambler module is different. In other words, this implies that a replay of past sensor data is 
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insufficient to bypass the detector since the pad required for unscrambling is different. Thus, the 

proposed approach serves as an intrusion detection mechanism as seen in Figure 8 since the 

recovered information using the non-observable space operator does not match the expected result 

at the first instant of falsification. 

 

Figure 27: Instantaneous detection of replay attack using embedded information. 
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information by reversing the one-time-pad obfuscation as seen in Figure 9. Using the recovered 

information, the original time-series may be reconstructed using Eq. 4 since the information was 

extracted from the temporal evolution of the power series. For verification, the embedded and 

recovered information are plotted against each other in Figure 10 assuming that the detection 

algorithm detects the replay attack as shown above and switches to recovering the actual data and 
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Figure 28: Recovery of embedded information using one-time-pad. 

 

Figure 29: Complete recovery of embedded information. 
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In the above experiments, the C2 modules have been implemented and validated in an IRIS 

SMR simulated using Dymola. Specifically, the zero-impact and zero-observability of C2 were 

first validated under normal conditions and various modes of steady-state and transient operations. 

It is observed that the controller cost varies within the noise-level with C2 and the noise level along 

the vectors in the non-observable is also preserved. Then, a replay attack is simulated on the 

Dymola module using previous simulation data to represent intrusion by a skilled adversary, such 

as an insider, and it is detected instantly using the automated C2 modules. Furthermore, the data 

recovery capabilities of C2 is validated by extracting the embedded information from the non-

observable space, reversing the one-time-pad operation, and reconstructing the original time-series. 

With regards to fission batteries and microreactors, the above modules have been developed in a 

stand-alone plug-and-play manner and may easily be integrated into the software and/or the 

hardware design of the instrumentation. After an initial training period, the generator and 

embedder module perform dimensionality reduction on the input sensor data, identify the 

observable and non-observable space, and embed the information for recovery during 

contingencies such as cyberattacks. As demonstrated, the method also readily adapts to significant 

changes in operational modes, which is not expected of fission batteries that typically operate at 

steady-state. In this case, the training and subspace identification may be done offline and 

hardcoded into the fission batteries’ instrumentation, with only the embedding and recovery 

processes carried out online during deployment. 

4.3 Discussion 

One of the key requirements of unattended operation in fission batteries is the ability to 

automatically verify the integrity of sensor data and undertake data recovery actions in the face of 

cyberthreats with minimal human intervention. The key contribution of the present work, in this 

regard, is the implementation of covert cognizance (C2) to endow microreactors with this ability 

by inducing awareness of its own operational history and permitting data recovery capabilities if 

the system is compromised. The IRIS SMR design in Dymola, chosen as a representative module, 

was simulated using the TRANSFORM package and its sensors were perturbed in accordance with 

the zero impact and zero observability criteria set by the C2 paradigm. The C2 modules are 

composed of a generator module that applies dimensionality reduction algorithms to extract core 

information from a source sensor, a scrambler module that obfuscates and transforms the 



 
 

93 

information into noise, and an embedder module that embeds the noise along the non-observable 

space of the other sensors. In the event that the source sensor is compromised due to a cyberattack, 

an intrusion detection and data recovery algorithm based on the C2 modules can deterministically 

pinpoint the attacked sensor, recover the lost information using the non-observable space of the 

other sensors, and ensure normal operation of the system while a response team deals with the 

cyberattack. The implementation is then validated by simulating a replay attack by a 

knowledgeable/skilled adversary that falsifies all existing sensors by simply replaying data from 

previous operational conditions. While model-based detection schemes can detect falsification 

attacks that do not preserve physical correlations between the various sensors [31], the simulated 

cyberattack evades detection by simply replaying past data across all sensors, thus preserving 

physical correlations and representing the highest level of access an insider/advanced persistent 

threat actor may have to the control system.  

Without the C2 modules, it is demonstrated that the reactor could be driven to an unsafe 

state well above its operational regime while appearing to adjust to a decrease in power based on 

the falsified sensors. This could have disastrous implications in a real scenario, potentially leading 

to shutdown of the reactor if the emergency cooling systems are activated and even a meltdown 

scenario if the emergency systems are linked to the falsified sensor measurements. When 

augmented with the C2 modules, the intrusion is detected deterministically, and the actual power 

sensor measurements are recovered using the embedded information from the other sensors. The 

present work explores an application of the C2 technology to enabling automated data recovery 

and unattended operation in fission batteries in the face of cyberattacks. The novelty lies in the 

ability to recover data in a compromised environment by working within the constraints of the 

physical systems and without the introduction of additional variables, redundant sensors, backup 

devices etc. This contrasts with existing data recovery tools that rely on restore points, vault-like 

storage of raw data, multiple copies of the data, etc., to restore operation after a cyberattack and 

whose security hinges upon the lack of access to these vaults. The designed C2 modules exploit 

the inherent redundancy of dynamical systems to store information within the existing variables, 

do not mandate system downtime, and provide an avenue for automated recovery. While the 

present work is intended as a prototypical rendition, further work is necessary to develop the 

architecture, i.e., the placement of the modules within a system, secure and covert communication 

channels for verification and validation, setting up the intrusion detection and data recovery 
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channels etc. Future work is expected to focus on the integration of C2 with established testbeds 

for microreactor applications such as the MARVEL testbed proposed for proof-of-concept 

demonstration. 

The present work showcases a hypothetical digital implementation in the control system of 

a small modular reactor. However, the developed C2 modules are standalone and may be easily 

integrated into the software of a digital twin and/or embedded into the hardware instrumentation 

of a microreactor/fission battery. As part of future work, plug-and-play hardware modules with the 

C2 modules embedded shall be developed and deployed onto real testbeds such as MARVEL to 

automatically induce self-awareness in these systems and augment them with the ability to recover 

data and operate autonomously during a cyberattack. As an intermediary step, hardware-in-loop 

simulations supported by Dymola may be used to virtualize a microreactor environment and test 

the hardware C2 modules. 
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 CASE STUDY: DATA MASKING 

This chapter extends the C2 paradigm to data masking applications through the novel 

deceptive infusion of data (DIOD) methodology and borrows from content published in the 

Transactions of the American Nuclear Society [37], and the journals, Nuclear Science and 

Engineering [140] and Nuclear Technology [141]. Recent decades have seen a growing demand 

of AI/ML data analytical services that can help businesses optimize their resource allocation 

strategies and maximize revenue through data-driven insights. The global big data and business 

analytics market was valued at nearly $200 bn in 2020, with projected estimates of $684 bn by 

2030 [142] with various subsections focusing on predictive analytics, prescriptive analytics, 

descriptive analytics, customer analytics etc. In industrial systems, there is a strong need to 

integrate AI/ML insights with process data for applications such as condition monitoring, 

vulnerability analysis, autonomous control etc. To realize this goal, it is critical that AI/ML 

services are granted access to sensitive process data, often to the chagrin of owners of proprietary 

systems that are reluctant to share details of their systems for fear of loss of competitive edge or 

discovery of vulnerabilities that may be leveraged against them. The present work identifies a need 

for a data masking technique for industrial data that preserves the necessary inferential properties 

for AI/ML services while obfuscating sensitive information that may provide clues to the identity 

of the proprietary system. To this end, the deceptive infusion of data (DIOD) data masking 

paradigm is proposed to enhance collaboration among owners of critical infrastructure and third-

party AI/ML services to leverage the analytical capabilities of AI/ML. Specifically, it is recognized 

that industrial data may be decomposed into the so-called fundamental and inference metadata 

describing the system identity and process parameters respectively. The fundamental metadata 

may be obfuscated to achieve data masking goals, while the inference metadata is preserved using 

the idea of mutual information to ensure that the data is relevant for AI/ML applications. 

This work may be considered as an offshoot of the C2 decomposition work done in 

identifying an observable and non-observable space for industrial systems and is motivated by the 

physical meaning behind the active DOFs and their components. This chapter is organized as 

follows: section 4.1 describes the background of existing data masking techniques and 

demonstrates the need for DIOD, section 4.2 provides a mathematical framework for the 
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implementation, section 4.3 provides an application for DIOD to create AI/ML benchmark datasets, 

and lastly, section 4.4 presents DIOD as a solution to reverse-engineering. 

5.1 Background 

Business intelligence [143], [144] is a technology-driven process in enterprises seeks to 

merge data analytics with business information in order to maximize shareholder value. Its goal is 

to provide a concise interpretation of data and transform it into actionable insights for business 

strategy through data mining, process analysis, performance benchmarking etc. Such insights often 

fall under the broad umbrella of business analytics, the area of analytics that focuses on statistics, 

optimization, and prediction for enterprises. Owners of proprietary systems such as critical 

infrastructure often seek the additional insight provided by AI/ML services to remain competitive 

in the market. This is especially relevant in the nuclear industry that competes against relatively 

less sensitive renewable technologies such as solar, wind, etc. 

However, vendors of AI/ML services are often third-parties that may not respect the need 

for data privacy as required by owners of proprietary systems, who are often reluctant to share 

process data for fear of data leaks and misuse. For example, an AI/ML service focusing on 

detecting signs of equipment degradation from sensor data may discover additional loopholes and 

security vulnerabilities by reverse engineering the data to find information related to the design of 

the system. Unscrupulous services may subsequently sell this information to the highest bidder 

that can carry out cyberattacks targeting critical vulnerabilities in the system. The demand for such 

information remains high; in recent years, hacker groups such as REvil have recruited affiliates to 

conduct multiple high-profile ransomware attacks against tech giants such as Apple, academy 

trusts, defense contractors, meat processing plants etc., earning millions in the process. Recent 

research on the effects of data leaks by Accenture [145], [146] indicates a 10% drop in revenue for 

six months following public exposure of private information, necessitating the need for data 

masking techniques to protect sensitive information in the event of a breach to ensure that the 

information cannot be traced to their owners. The following subsections describe various reverse-

engineering tools that may be used to extract sensitive information, the extant data masking 

solutions to combat these techniques and their shortcomings with regards to industrial data, and 

lastly, the DIOD paradigm that extends the application of data masking from data warehouses to 

industrial data. 
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5.1.1 Reverse-Engineering in Industry 

AI/ML services have been at the forefront of research in recent years. The advent of smart 

technology and the widespread incorporation of AI/ML techniques into critical infrastructure has 

led to the massive benefits such as improved operational efficiency, predictive maintenance etc. 

However, such tools have also been leveraged by malicious agents that exploit their pattern-

detection capabilities to reverse-engineer critical systems and learn proprietary information. 

Consequently, stakeholders often face the conundrum of leveraging the benefits of AI/ML without 

leaking potentially proprietary information to third-party agents. Additionally, the core dynamics 

of critical industrial systems, especially modules such as powerplants, and steam generators, is 

widely disseminated in academic and public circles. The release of industrial data is thus heavily 

scrutinized, and the data is often sanitized prior to release to conceal critical physical parameters. 

The extraction of such parameters is often portrayed as an inverse problem, i.e., given a set of 

responses, and a basic model of the system, is it possible to estimate the concealed parameters? 

The following section provides a comprehensive literature review on state-of-the-art AI/ML tools 

that have reverse-engineering capabilities in the context of industrial systems.  

Historical approaches to solving inverse problems were often knowledge-driven and 

required accurate analytical models of the physical system. Regularization techniques such as 

Tikhonov regularization were employed to account for uncertainties in data [147]. However, if the 

inverse problem is ill-posed, i.e., the number of response variables is much smaller than the number 

of parameters, there may not be a unique solution. Furthermore, obtaining a reasonable solution is 

often computationally infeasible with analytical methods, requiring data-driven approaches. Data-

driven methods [148] such as neural networks have been utilized to solve the problem of parameter 

estimation for over 30 years and circumvent the problem by learning by example, i.e. the network 

parameters are trained to fit the data without any model. Some of the earliest applications of neural 

networks involve the estimation of soil parameters such as water table elevation and concentration 

[149]; however, the lack of adequate storage and data processing capabilities were often a 

hindrance to the implementation of deep models. In recent years, with the advent of big data 

analytics, DNNs have seen a re-emergence of such techniques to solve inverse problems. For 

example, GANs have been utilized in 3D image reconstruction using CT, PAT and MRI images 

[150]–[152]. In some cases, however, there may be inadequate data to sufficiently train the neural 

network due to resource constraints. To this end, recent research hybridizes both knowledge-driven 
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and data-driven approaches to develop physical-analytical models and mitigate some of the 

shortcomings of both models. The so-called physics-informed neural networks [153], [154], while 

still in their infancy, have shown promise in parameter estimation in fluid dynamics by identifying 

unknown parameters using the Navier-Stokes equations and flow velocity measurements. In this 

approach, the physical laws of continuity and conservation principles are directly encoded in the 

loss and activation functions of the neural networks, which must be minimized. For example, 

conservation of momentum may be encoded as the mean squared difference of the momentum 

between the two consecutive nodes. Additionally, since the networks learn by gradients, time and 

space derivatives may also be directly implemented in the network. The parameter estimation work 

has also been extended to biological systems [9], [155].  

ROM is another popular reverse-engineering tool where low-order models are constructed 

to approximate complex dynamical systems [38], [45], [46]. As mentioned in the motivation 

behind the C2 paradigm [64], such systems are often inherently reducible, with their dominant 

behavior described only using a few active DOFs. Research has shown that even if the true model 

is concealed, neural networks based on the input and output data may be constructed to learn the 

underlying model. The challenge is greatly simplified for an adversary if the system dynamics are 

well-known, as is the case with nuclear powerplants whose parameters may be estimated with 

simple point-kinetics models that can be found in any introductory textbook on nuclear engineering 

[39]. With sufficient data, a capable adversary may bridge the gap in knowledge and successfully 

glean information about the underlying parameters that must be kept confidential. In fact, artificial 

neural networks have been used to reverse-engineer gene networks in biological systems to 

identify complex higher-order dependencies between expression patterns [156]. Although such 

dependencies are difficult to capture using brute-force approaches due to the prohibitively large 

search space, neural networks have been shown to circumvent this by searching within the 

neighborhood of each gene. 

While there is a lot of empirical evidence supporting the use of deep learning to solving 

inverse problems, the limitations of such approaches are largely unknown due to the relative 

obscurity of the inner workings of deep networks. Over the past decade, attempts have been made 

to disrupt the learning process of deep networks via minor perturbations in the data that maximize 

their training loss and induce a misclassification [59]. Aptly called adversarial attacks, these 

attacks appear like noisy perturbations to the human eye but have a disproportionate impact on the 
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performance of deep neural networks. However, recent research [157] appears to indicate that due 

to the inherent nature of inverse problems, a few deep networks have been shown to be robust to 

uncertainties arising out of noise as well as adversarial attacks.  

Intelligent perturbations of dynamical systems [158] have been proposed as a candidate for 

automated reverse-engineering of complex dynamical systems. Candidate models may be 

suggested based on domain-knowledge or observing common mathematical relationships among 

the variables and their derivatives, from which an optimal model is chosen via perturbations. These 

models may uncover fundamental laws of nature such as the Hamiltonian or Newton’s laws, 

through symbolic manipulation while others such as PDE-FIND [51] utilize sparse regression 

techniques to uncover partial differential equations. They have also been augmented by AI/ML to 

decipher underlying physical laws with a relatively small amount of training data. Similar 

capabilities have been observed in the context of 3D-printed materials, where the microstructure 

of such materials and the tool path of the 3D-printer was inferred from CT scan measurements 

using a recurrent neural network [159]. 

In addition to industrial data, recent research in computer science indicates that even 

executable code may be reverse-engineered through the use of AI/ML techniques [160]. This is 

especially beneficial to an adversary in the event that the data from a simulation is inadequate for 

parameter estimation, and one is unable to access the source code due to proprietary restrictions. 

In such cases, it is possible to recognize certain functions during execution via observation of the 

assembly code using CNNs. While the research is in its infancy, this presents a new challenge to 

industrial stakeholders as reverse-engineering in the context of binary analysis is typically 

considered prohibitive. 

Reverse-engineering and data leaks are expected to cost companies billions of dollars in 

annual revenue. Consequently, nearly 40% of firms redact proprietary information prior to going 

public due to fears of losing competitive edge [161]. Moreover, research in the financial sector has 

shown that these firms often outperform their disclosing counterparts and exhibit greater 

profitability despite initial underpricing and investor concern due to the lack of information. In the 

context of industrial data, owners of proprietary systems often face the dilemma of sharing data at 

the risk of leakage to rival firms, necessitating the use of data masking techniques as outlined in 

the following section. 
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5.1.2 Data Masking 

The need for data masking has historically followed the adoption of data warehouses by 

enterprises to store massive amounts of information typically related to business logistics. With 

the rise of “big data” and the data hungry nature of AI/ML tools, enterprises often rely on these 

warehouses to remain competitive, making them an attractive target for hackers and malicious 

insiders. Consequently, the transmitted data often undergoes a comprehensive sanitizing process 

using data masking techniques such as substitution, shuffling, differential privacy etc. [162]–[166] 

that seek to protect sensitive information pertaining to the proprietary system. In substitution, 

sensitive information may be obfuscated by substituting it with seemingly irrelevant information 

while the relationship between the sensitive and substituted information is only known to the 

implementer of the data masking paradigm. Associations between data fields may be permanently 

altered by shuffling records to ensure that even if a subset of information is leaked, it cannot be 

linked further to other data fields to fully reconstruct the original record. For example, if an 

application involves analyzing the gender distribution of employees in an organization, the names 

may be substituted with generic names, and the age may be shuffled to prevent further inference 

being made on the age, SSN etc. of the employees. These methods may be considered as static 

since they permanently alter records, requiring the creation of an additional database (a copy) with 

the original sensitive information. Dynamic methods, on the other hand, only mask information on 

the receiver end and may work in real time with the caveat that they may be susceptible to 

corruption and data loss since the original record is transmitted. Common examples include the 

masking of most characters in a retrieved email ID, the initial digits of SSN etc.  

Differential privacy is an emergent data masking technique that statistically perturbs the 

data to prevent adversaries from piecing together information to reconstruct the original record. 

Relying on the fundamental law of information recovery – “overly accurate answers to too many 

questions will destroy privacy in a spectacular way” – the method introduces uncertainties to 

protect the privacy of individuals in a group. The statistical distortion is expected to have a minimal 

impact on the group statistics/inferential properties required by AI/ML services. A common 

example of differential privacy is that of randomized survey techniques. Survey takers are 

encouraged to take sensitive survey questions (vices, habits etc.) by anonymizing their responses 

through a discreet coin-toss. Depending on the face of the coin, the survey taker is asked to either 

take the survey truthfully or select a pre-determined response. Based on an individual response, it 
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is impossible to deduce whether it was truly indicative of the survey taker’s habits better than 

random. Nevertheless, population statistics may be deduced using probability theory with a large 

enough sample size, thus protecting the individual’s privacy while providing relevant information 

for the survey. However, for large datasets with multiple uses and statistical parameters to be 

gleaned, the effects of the individual perturbations may have a significant effect on the utility of 

the entire dataset, rendering it ill-suited for industrial applications. 

Along the same line, privacy-preserving computation techniques such as fully 

homomorphic encryption [167] have been popularized to enable mathematical computations on 

datasets without decrypting individual records. For instance, consider the simple computation of 

2 +  3 = 5. With homomorphic encryption, an addition operator is designed such that one might 

add the encrypted versions of 2 and 3 to obtain an encrypted 5, which may be subsequently 

decrypted for the desired application. Such methods, however, are in its infancy, and are currently 

being explored for applications in the healthcare industry, where patient records may be 

manipulated without identifying the individual patient. Additionally, the high overhead costs of 

encryption remain a significant obstacle to commercial feasibility, especially for AI/ML 

applications that require the mathematical manipulation of vast amounts of data. 

The above data masking schemes, while suitable for data warehouses, fail to fulfill the 

needs of industrial data. This is because it is infeasible to simply mask or scale time-series data 

from the process variables without preserving existing correlations. Here, the goal is to preserve 

the inferential properties of the data while preventing reverse-engineering techniques from 

associating the data to its source – the proprietary system. For example, the optimization of 

parameters for a turbine design may involve certain correlations among the blade speed and length 

based on the underlying physics. These correlations must be respected while masking to ensure 

similar statistical inference on the masked data and the original data. Due to the high frequency of 

data collection, it is often only feasible to strip datasets of some critical process variables and 

encrypt them prior to transmission with no measures in place to protect the data from unscrupulous 

third-party AI/ML services once decrypted. Additionally, the stripping of critical process variables 

or parameters may affect the usability of the data and degrade the performance of the AI/ML 

algorithm, proving to be counterproductive to the goals of data sharing. To protect the data, the 

sharing of sensitive information is consequently surrounded by bureaucratic red tape with multiple 

disclosure forms and agreements to ensure that the receiving party may be held accountable in the 
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event of a breach. However, this may be impractical and/or inadequate and does not prevent the 

damage from a leak which may be devastating to the proprietary owner and typically not limited 

to economic consequences. While recent years have seen the implementation of data privacy laws 

such as the California Consumer Privacy Act [168] and the General Data Protection Regulation 

[169], legislation is still in its infancy and often suffers from jurisdictional concerns. Additionally, 

such laws often make it difficult on the proprietor end to share sensitive data since they are held 

responsible for the handling and dissemination of the data. This motivates the following question: 

Is it feasible to develop a data masking methodology for industrial data that preserves the 

inferential properties of the data while masking system identity to remove sensitivity concerns? 

5.1.3 Deceptive Infusion of Data (DIOD) 

The proposed DIOD paradigm [37] addresses the above issues through a novel time-and-

space scalable data masking methodology that relies on the decomposition of industrial data into 

its constituent metadata, namely, fundamental and inference metadata. The fundamental metadata 

are tied to the identity of the system such as the underlying physical model, the associated 

differential equations, etc. The inference metadata, on the other hand, contain information on the 

operational conditions such as process parameters, boundary conditions, initial conditions etc. that 

are relevant for various AI/ML tasks like classification, regression, and optimization. Through a 

novel mathematical algorithm, the fundamental metadata of a proprietary dataset is replaced by 

that of a generic system, thus changing the identity of the parent system itself. The DIOD dataset 

is subsequently generated through the fusion of the fundamental metadata of the generic system 

and the inference metadata of the proprietary system. This is done through the use of so-called 

“deception kernels” developed using a library of concealment operators that may be developed 

using the ROM techniques outlined in the C2 paradigm. The DIOD paradigm contrasts with 

existing methods in that it does not affect the inferential properties of the data as done by 

substitution, shuffling etc. and only requires an upfront cost to develop the concealment library as 

is the case with building ROMs. Thereafter, it provides a scalable solution to data masking since 

generated datasets may simply be obfuscated using the concealment kernel at a substantially 

reduced computational cost compared to encryption. Additionally, unlike encryption, reverse 

engineering of the DIOD dataset does not provide any clues to the identity of the proprietary 
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system since that link is permanently altered by the deception kernel that is only known to the 

owner of the proprietary data.  

Furthermore, attempts to reverse the deception process is mathematically infeasible due to 

the vast number of candidate proprietary systems and possible metadata. This may be better 

illustrated through an analogy in the control community regarding state-space models and transfer 

functions. The transfer function for a given state-space model is unique while the inverse does not 

hold true. A given transfer function may be the result of any one of infinite possible state-space 

models, rendering it impossible to guess the original system. Analogously, unless the exact 

deception kernel is known, it is not possible to guess the fundamental metadata of the proprietary 

system given the fundamental metadata of the generic system that may be extracted from the DIOD 

dataset through reverse-engineering. A few interesting questions that arise from this discussion are: 

Could the inference metadata perhaps provide clues to narrow down the parent system? If so, could 

it be obfuscated without affecting the inferential properties of the dataset? 

Certain systems may have inference metadata possessing correlations or process 

parameters that may be unique to the system or can significantly narrow down the possible 

candidates given their proprietary nature. This is a significant challenge for the DIOD work since 

manipulation of the inference metadata may render the data unusable for target applications. To 

this end, the concept of mutual information [170] is leveraged to provide additional layers of 

obfuscation that can mask the ties between the inference metadata and the proprietary system. 

Mutual information is a statistical entropy-based measure that captures all the linear and nonlinear 

dependencies between two variables. In the case of classification, the variables may be the 

classifier label and the extracted process parameters. The problem then reduces to finding the 

subset of parameters that carry relevant information while discarding the remaining. A key 

advantage of mutual information is its invariance to invertible mathematical transformations and 

the addition of extraneous information. In fact, AI/ML tools such as kernel SVMs [55] exploit this 

property to project low-dimensional data onto a high-dimensional space and draw a decision 

boundary (hyperplane, hypersphere etc.). This provides an avenue for masking the inference 

metadata further to closely represent the properties of the generic system. For instance, suppose 

the proprietary system is a nuclear reactor with reactivity being the relevant inference metadata 

and the generic system is a spring-mass system with a certain spring constant. The reactivity, being 

a real number, cannot be directly used as a spring constant since the latter is a strictly positive 
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quantity. Here, invertible transformations such as scaling and shifting may be used to alleviate this 

issue without loss of information for the target AI/ML classification task, as explored further in 

the following section on the mathematical framework. 

The DIOD data masking paradigm has several applications. First, it is recognized that the 

same inference metadata may be fused with the fundamental metadata of multiple generic systems 

using various deception kernels from the pre-developed library of concealment operators to create 

a benchmark DIOD dataset for AI/ML applications. Theoretically, since the fundamental metadata 

is irrelevant to the AI/ML task, an ideal algorithm must be invariant to the fundamental metadata 

and achieve similar performance on all the datasets. This application is explored in section 4.3 

where the inference metadata from a reactor is directly fused with the fundamental metadata of a 

direct current permanent magnet (DCPM) and validated using various AI/ML tools such as 

supervised algorithms, unsupervised clustering algorithms, singular value decomposition, and 

response correlations. 

Secondly, recent years have overseen the use of open-source environments and datasets to 

create a collaborative environment among various AI/ML researchers. Through competitions 

hosted on websites such as Kaggle, enthusiasts are encouraged through reward-based systems to 

develop novel architectures and data mining tools to perform unsupervised and supervised AI/ML 

tasks. However, owners of critical infrastructure are unable to leverage the benefits of open-source 

collaboration due to the sensitivity of their data and the associated risks as mentioned in section 

4.1. Using the DIOD paradigm, however, this sensitivity factor is eliminated since reverse-

engineering of the data only leads to the identity of a generic system, thus providing an avenue for 

owners of critical infrastructure to participate in such collaborative environments. This application 

is explored in section 4.4 where various constraints based on the mutual information metric are 

developed to achieve multiple layers of masking on the inference metadata as well in addition to 

the fundamental metadata obfuscation in the previous application. The following section provides 

a mathematical framework for the DIOD paradigm using the concepts of fundamental metadata, 

inference metadata, deception kernel, and mutual information. 
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5.2 Mathematical Framework 

The decomposition of industrial data into fundamental and inference metadata is motivated 

by the subspace decomposition technique used in the C2 paradigm. In C2, the data is decomposed 

into its observable and non-observable space spanned by the dominant “active” DOFs and non-

dominant “noisy” DOFs respectively. The observable subspace carries information on the 

dominant behavior of the process variables in the data which are determined by the underlying 

physical model, operational conditions, process parameters etc. whereas the non-observable space 

contains information about most of the noise in the model. The above decomposition is extended 

further in the DIOD work by further decomposing the observable space into the fundamental and 

inference metadata. As mentioned in the previous section, the fundamental metadata contain 

information pertaining to the physical system such as the underlying differential equations whereas 

the inference metadata contain information on the process parameters, boundary conditions etc. 

This decomposition may be achieved through ROM methods such as proper orthogonal 

decomposition, kernel PCA , etc. Given a proprietary dataset represented using the multivariate 

function 𝑦𝑦(𝐱𝐱,𝛂𝛂) , the goal of the DIOD paradigm is to decompose this function into the 

fundamental metadata, represented by the basis functions 𝜓𝜓𝑖𝑖(𝐱𝐱), and the inference metadata 𝜙𝜙𝑖𝑖(𝛂𝛂). 

The decomposition may be represented as a 𝑘𝑘-rank approximation depending on the user-defined 

tolerance 𝜖𝜖 as demonstrated in Eqs. 4.1 and 4.2.  

𝑦𝑦(𝐱𝐱,𝛂𝛂) ≈�𝜓𝜓𝑖𝑖(𝐱𝐱)𝜙𝜙𝑖𝑖(𝛂𝛂)
𝑘𝑘

𝑖𝑖

(4.1) 

�𝑦𝑦(𝐱𝐱,𝛂𝛂) −�𝜓𝜓𝑖𝑖(𝐱𝐱)𝜙𝜙𝑖𝑖(𝛂𝛂)
𝑘𝑘

𝑖𝑖

� < 𝜖𝜖 (4.2) 

Here, the variable 𝐱𝐱 depends on the target application. For example, it may represent the 

pixel location on an image or the spatial/temporal modes of evolution in the data (exponential, 

polynomial etc.). The variable 𝛂𝛂 is the chief source of variation among the samples in a dataset. It 

may represent varying boundary conditions, process parameters, material properties, etc. that must 

be extracted for inferential applications. The following sections describe the masking methodology 

in further detail for the fundamental and inference metadata. 
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5.2.1 Data Masking: Fundamental Metadata 

In this section, the fundamental metadata of the proprietary dataset is masked, while the 

inference metadata is preserved. Here, the key assumption is that no information about the system 

identity may be gleaned from the inference metadata, and no further assumptions are made about 

the target AI/ML application. The proposed methodology may be used to create datasets to 

benchmark various AI/ML tools since an ideal AI/ML tool is expected to be invariant to the 

fundamental metadata and act on the inference metadata only. 

 The first step of the DIOD paradigm is to perform the above decomposition using 

established ROM techniques, among which a gradient-based active subspace identification 

technique is described below as an example. Via random perturbations of the various input 

parameters to a system model, it is possible to compute the gradient of the function 𝑦𝑦(𝐱𝐱,𝛂𝛂) and 

find the active subspace through PCA of the gradient matrix. Geometrically, the principal features 

here denote the directions of maximum variance, i.e., they describe the directions of input 

perturbations that have the maximum impact on the system responses. The space orthogonal to the 

active subspace is expected to have minimal impact on the system and may thus be discarded for 

the purposes of DIOD. Note that this subspace, termed the non-observable space, plays a key role 

in the C2 paradigm as courier variables. The principal features, describing the possible modes of 

evolution of the response, are determined by the underlying differential equations of the system. 

On the other hand, the prominence of these features, represented by the dot product of the features 

with a given sample from the dataset, depends on the process parameters used in generating said 

sample. Therefore, in this mode of separation, the principal features are a representation of the 

fundamental metadata, while the corresponding dot products, called feature components, are a 

representation of the inference metadata. These components are useful for inferential purposes 

such as anomaly detection, optimization, etc. akin to the concept of LOCs and HOCs described in 

section 2.4.12.1 . 

The second step involves the development of a library of concealment operators to mask 

the extracted fundamental metadata while preserving the inference metadata. Using similar ROM-

based decomposition techniques, the fundamental metadata of multiple generic systems, which are 

often well-understood, may be extracted to develop a deception kernel for the purposes of 

concealment. The goal of the deception kernel is to replace the fundamental metadata of the 

proprietary system with that of a generic system; however, it is critical that the kernel is invertible 
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and only known to the owner of the proprietary system. Here, the obfuscation through the kernel 

is a “permanent” mask in the sense that any associations with the proprietary system are 

permanently altered. The decomposition step and the development of the library for various 

generic systems are a one-time cost to the proprietor owner, and DIOD datasets may be generated 

by directly implementing the fusion step outlined below. 

The third step involves the fusion of the inference metadata of the proprietary system and 

the fundamental metadata of the generic system. The concealment operator acts on the proprietary 

dataset 𝑦𝑦(𝐱𝐱,𝛂𝛂)  by fusing its inference metadata 𝜙𝜙𝑖𝑖(𝛂𝛂)  onto the fundamental metadata of the 

generic system 𝜑𝜑𝑖𝑖(𝐱𝐱′) to generate the DIOD dataset 𝑦𝑦′(𝐱𝐱,𝛂𝛂) using the deception kernel 𝐾𝐾(𝐱𝐱′,𝒙𝒙) 

as shown in Eqs. 4.3 and 4.4. Here the 𝜓𝜓𝑖𝑖∗  operator represents the transpose operator with the 

property that the product 𝜓𝜓𝑖𝑖∗𝜓𝜓𝑗𝑗 is identity when 𝑖𝑖 = 𝑗𝑗 and zero otherwise, i.e., the basis functions 

are orthonormal. 

𝐾𝐾(𝐱𝐱′, 𝐱𝐱) = �𝜑𝜑𝑖𝑖(𝐱𝐱′)𝜓𝜓𝑖𝑖∗(𝐱𝐱)
𝑘𝑘

𝑖𝑖=1

(4.3) 

𝑦𝑦′(𝐱𝐱′,𝛂𝛂) = 𝐾𝐾(𝐱𝐱′, 𝐱𝐱) 𝑦𝑦(𝐱𝐱,𝛂𝛂) (4.4) 

 

Since the deception kernel is invertible, any inference made on the DIOD datasets may be 

traced back to the original dataset. To further illustrate this condition, consider a classifier 𝐶𝐶 that 

trained on 𝑦𝑦(𝐱𝐱,𝛂𝛂)  or 𝑦𝑦′(𝐱𝐱′,𝛂𝛂)  attempting to classify new data 𝑧𝑧  or its DIOD version 𝑧𝑧′ 

respectively. The DIOD paradigm requires that Eq. 4.5 is satisfied. 

 

𝐶𝐶𝑦𝑦(𝐱𝐱,𝛂𝛂)(𝑧𝑧) = 𝐶𝐶𝑦𝑦′�𝐱𝐱′,𝛂𝛂�(𝑧𝑧′) (4.5) 

 

From the above equations, it may be gleaned that any attempts to reverse-engineer the data 

through ROM-based techniques leads back to the fundamental metadata of the generic system, 

𝜑𝜑𝑖𝑖(𝐱𝐱′), and the inference metadata of the proprietary system, 𝜙𝜙𝑖𝑖(𝛂𝛂), implying that the inferential 

properties of the data is preserved and the association with the proprietary system is masked, thus 

fulfilling the goals of the DIOD paradigm. Section demonstrates the ability of the DIOD paradigm 

to preserve inference metadata for a wide variety of AI/ML applications using a nuclear reactor 

and a DCPM simulation in Dymola, thus serving as a benchmark dataset. The following section 
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provides a mathematical framework for the case where the inference metadata may also need to 

be obfuscated to be more representative of the inference metadata commonly associated with the 

generic system. 

5.2.2 Data Masking: Inference Metadata 

This section addresses the concern that direct fusion of the inference metadata may be 

insufficient in protecting system identity since some industrial systems may have process 

parameters, boundary conditions etc. that are unique to the system. There is thus a need for further 

obfuscation of the inference metadata, which is a challenging task given that the data must remain 

usable for the target AI/ML application. Here, the deception kernel is modified by fine-tuning it to 

the target AI/ML application to render the inference metadata more representative of the generic 

system. This is done through the concept of mutual information, discussed in further detail below. 

The mutual information between two variables is a statistical measure that captures all 

linear and non-linear dependencies between them unlike simple linear correlation [171]–[174]. 

Derived from the principles of entropy, it represents the gain in information of one variable with 

the knowledge of the other, and vice versa, making it a symmetric measure. For example, suppose 

a coin is tossed twice and classified as 1 if the resulting faces are the same, and 0 otherwise. The 

initial uncertainty/entropy in the classifier label is 50% (1 bit) since the two outcomes are equally 

likely. On revealing the face on only one coin, it is observed the entropy in the label is still 1 bit, 

implying that no information was gained. Intuitively, it may be ascertained that the mutual 

information between the classifier label and revealing the result of one coin toss is 0. However, if 

both coins are revealed, the label is known with complete certainty, i.e., it has no entropy, resulting 

in an information gain. Therefore, the mutual information between the classifier label and 

revealing the result on both coins is the corresponding reduction in entropy, i.e., 1 bit. 

Mathematically, the mutual information 𝐼𝐼(𝑎𝑎; 𝑏𝑏) between two variables 𝑎𝑎 and 𝑏𝑏 given the entropy 

function 𝐻𝐻(⋅) is given by 𝐼𝐼(𝑎𝑎; 𝑏𝑏) = 𝐻𝐻(𝑎𝑎) − 𝐻𝐻(𝑎𝑎|𝑏𝑏). 

In the context of classification and DIOD, the mutual information between the inference 

metadata and the classifier label represents the highest possible separability of the dataset using 

only the inference metadata [170]. This has implications in feature selection for AI/ML 

applications where additional features that do not impact the mutual information of the label may 

be discarded as redundant. In the DIOD paradigm, this means that not all the information in the 
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inference metadata is necessary, and subsequently some may be discarded, freeing up additional 

DOFs to introduce extraneous correlations in the inference metadata that fit the requirements of 

the generic system. Furthermore, mutual information is unaffected by invertible transformations 

that preserve the dimensionality of the inference metadata, allowing for further obfuscation. This 

invariance to invertible transformations and the addition of extraneous variables is described using 

Eq. 4.6. 

 

𝐼𝐼�𝐿𝐿�𝑦𝑦(𝐱𝐱,𝛂𝛂)�; [𝜙𝜙𝑖𝑖(𝛂𝛂) 𝜉𝜉]� = 𝐼𝐼�𝐿𝐿�𝑦𝑦(𝐱𝐱,𝛂𝛂)�;𝜙𝜙𝑖𝑖(𝛂𝛂)� = 𝐼𝐼 �𝐿𝐿�𝑦𝑦(𝐱𝐱,𝛂𝛂)�;𝑓𝑓�𝜙𝜙𝑖𝑖(𝛂𝛂)�� (4.6) 

 

Here, the function 𝐿𝐿(⋅) is the classifier label corresponding to the data in 𝑦𝑦(𝐱𝐱,𝛂𝛂), 𝑓𝑓(⋅) is 

assumed to be an invertible function, and the extraneous variable 𝜉𝜉 has no impact on the classifier 

label. Using this framework, it can be readily seen that simply masking the fundamental metadata 

as done in section 4.2.1 does not affect the performance of AI/ML applications since the mutual 

information between the label and the DIOD dataset is the same as that between the label and the 

original dataset. This result may be obtained by setting 𝜉𝜉 =  𝜓𝜓𝑖𝑖(𝐱𝐱) or 𝜉𝜉 = 𝜑𝜑(𝐱𝐱′) and 𝑓𝑓�𝜙𝜙𝑖𝑖(𝛂𝛂)� =

𝐾𝐾(𝐱𝐱′,𝐱𝐱)𝜓𝜓𝑖𝑖(𝐱𝐱)𝜙𝜙𝑖𝑖(𝛂𝛂) = 𝑦𝑦′(𝐱𝐱′,𝛂𝛂) . Additionally, in the previous implementation where the 

inference metadata was preserved, it is observed that there exists an invertible transformation 

between 𝑦𝑦′(𝐱𝐱′,𝛂𝛂) and 𝑦𝑦(𝐱𝐱,𝛂𝛂) through the deception kernel, leading to the same conclusion that 

any inference made using either dataset must be identical. 

While 𝛂𝛂 may be thought of as process parameters, boundary conditions etc., in the context 

of AI/ML algorithms, it may also be thought of as the latent variables of the dataset 𝑦𝑦(𝐱𝐱,𝛂𝛂) that 

determine the separability of the classification problem. As long as there is an invertible 

transformation from the dataset 𝑦𝑦(𝐱𝐱,𝛂𝛂) and its latent variables 𝛂𝛂, no mutual information is lost in 

the reduction. The latent space may be identified through autoencoders, parameter extraction tools 

like physics-informed neural networks, reverse-engineering tools such as SINDy and PDE-FIND 

etc. Further transformations may be performed on these variables to generate another set of latent 

variables, which may be fused with the fundamental metadata of the generic system to create the 

DIOD dataset. Multiple levels of masking may be achieved using this technique depending on the 

classification task, as explored below. 
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The first level of masking, as done in the previous section, only permits transformations of 

the inference metadata that preserve or increase their dimensionality. This is necessary to allow 

for a transformation to the proprietary dataset 𝑦𝑦(𝐱𝐱,𝛂𝛂) from the DIOD dataset 𝑦𝑦′(𝐱𝐱′,𝛂𝛂) via the 

deception kernel, which in turn preserves the mutual information as shown in Eq. 4.7. This may 

be suitable for cases where the target AI/ML application is unknown, and all the inference metadata 

must be preserved. However, this level of masking is limited in its applicability and requires 

careful consideration of the generic system since the latter requires at least as many dimensions as 

that of the inference metadata. 

 

𝐼𝐼�𝑦𝑦(𝐱𝐱,𝜶𝜶);𝜙𝜙𝑖𝑖(𝛂𝛂)� = 𝐼𝐼 �𝑦𝑦′(𝐱𝐱′,𝜶𝜶); 𝑓𝑓�𝜙𝜙𝑖𝑖(𝛂𝛂)�� (4.7) 

 

The second level of masking may be permitted when the inference metadata itself is 

reducible to its latent space described by 𝛂𝛂 . Here, the above constraint may be relaxed to 

preserving or increasing the dimensionality of the latent space instead since there exists a 

transformation to 𝑦𝑦(𝐱𝐱,𝛂𝛂) from 𝑦𝑦′(𝐱𝐱′,𝛂𝛂). The transformation in this case is a composition of two 

transformations, namely, one from the dataset to the inference metadata, and another from the 

inference metadata to the latent space. Nevertheless, the mutual information between the 

proprietary dataset and its latent space, and that between the DIOD dataset and its latent space are 

preserved, thus ensuring similar inference on both datasets as shown in Eq. 4.8. This is the limit 

of masking achievable for unsupervised learning applications. 

 

𝐼𝐼(𝑦𝑦(𝐱𝐱,𝜶𝜶);𝛂𝛂) = 𝐼𝐼 �𝑦𝑦′�(𝐱𝐱′,𝜶𝜶)�; 𝑓𝑓(𝛂𝛂)� (4.8) 

 

The third level of masking is permitted when the target AI/ML application is a supervised 

problem, e.g., classification with labels 𝐿𝐿(⋅)  known a priori. Here, the requirement of a 

transformation to the proprietary dataset 𝑦𝑦(𝐱𝐱,𝜶𝜶) from the DIOD dataset 𝑦𝑦′(𝐱𝐱′,𝛂𝛂) may be relaxed 

since not all latent variables may be relevant for the classification problem. While preserving the 

subset of relevant variables 𝛃𝛃 and discarding the rest does not permit a transformation to 𝑦𝑦(𝐱𝐱,𝜶𝜶) 

from 𝑦𝑦′(𝐱𝐱′,𝛂𝛂), it does not affect the ability of the classifier since the discarded variables are 

extraneous and do not affect the mutual information between the label and the relevant latent 
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variables as shown in Eq. 4.9. In this case, only the dimensionality of the relevant variables needs 

to be preserved as the class labels of a proprietary dataset and its corresponding DIOD version are 

the same. The above discussion is summarized in Table 3. 

 

𝐼𝐼�𝐿𝐿�𝑦𝑦(𝐱𝐱,𝛂𝛂)�;𝛃𝛃� = 𝐼𝐼 �𝐿𝐿�𝑦𝑦′(𝐱𝐱′,𝛂𝛂)�;𝑓𝑓(𝛃𝛃)� (4.9)  

Table 3: Levels of masking of inference metadata 

Masking 
Level Constraint Explanation 

1 𝐼𝐼�𝑦𝑦(𝐱𝐱,𝜶𝜶);𝜙𝜙𝑖𝑖(𝛂𝛂)� = 𝐼𝐼 �𝑦𝑦′(𝐱𝐱′,𝜶𝜶); 𝑓𝑓�𝜙𝜙𝑖𝑖(𝛂𝛂)�� 

Transformations on 𝜙𝜙𝑖𝑖(𝛼𝛼) 
must preserve their 

dimensionality where 𝑓𝑓 is 
invertible. Requires 

transformation from 𝑦𝑦′ → 𝑦𝑦  

2 𝐼𝐼(𝑦𝑦(𝐱𝐱,𝜶𝜶);𝛂𝛂) = 𝐼𝐼 �𝑦𝑦′�(𝐱𝐱′,𝜶𝜶)�; 𝑓𝑓(𝛂𝛂)� 

Transformations on 𝛼𝛼 must 
preserve its dimensionality 

where 𝑓𝑓 is invertible. 
Requires transformation from 

𝑦𝑦′ → 𝑦𝑦 

3 𝐼𝐼�𝐿𝐿�𝑦𝑦(𝐱𝐱,𝛂𝛂)�;𝛃𝛃� = 𝐼𝐼 �𝐿𝐿�𝑦𝑦′(𝐱𝐱′,𝜶𝜶)�; 𝑓𝑓(𝛃𝛃)� 

Transformations on 𝛼𝛼 must 
preserve the dimensionality 

of the relevant subset 𝛽𝛽 where 
𝑓𝑓 is invertible 

 

Note that in all the above cases, extraneous variables may be added to the inference 

metadata, the latent variables, or the relevant subset of latent variables without losing any 

information. This implies that the dimensionality of the generic system needs to be at least equal 

to that of the inference metadata, the latent variables, or the relevant subset depending on the 

desired level of masking. Of the three, the least strict criterion is Eq. 5.9 and it allows for the 

deepest level of masking fine-tuned to the target AI/ML application. This is illustrated through the 

example below. 

Consider a proprietary system simulated over different conditions by varying its 𝑚𝑚 process 

parameters to generate the proprietary dataset and a generic system that requires 𝑛𝑛 constraints to 

ensure that the inference metadata is representative. Here, level 1 masking attempts to preserve the 

dimensionality 𝑚𝑚 of the process parameters/inference metadata of the proprietary system and 

requires the generic system to have at least 𝑚𝑚 + 𝑛𝑛 dimensions available. Next, suppose the 𝑚𝑚 
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process parameters are spanned by a latent space of dimension 𝑟𝑟 <  𝑚𝑚.  This frees up 𝑚𝑚− 𝑟𝑟 DOFs 

to implement some constraints of the generic system, implying that 𝑟𝑟 +  𝑛𝑛  dimensions are 

sufficient for the generic system, thus achieving level 2 masking. Lastly, if the target AI/ML task 

is to build a classifier that only requires 𝑠𝑠 <  𝑟𝑟-dimensional subset to characterize the class label, 

𝑚𝑚 − 𝑠𝑠 constraints of the generic system may be implemented. Here, level 3 masking may be 

achieved if the generic system has at least 𝑠𝑠 + 𝑛𝑛 dimensions. The best-case scenario is achieved if 

the dimension of the relevant latent variables is 𝑠𝑠 = 𝑚𝑚− 𝑛𝑛, fulfilling all the constraints of the 

generic system. 

One class of reverse-engineering tools used in the present work is a set of data-driven 

techniques to extract underlying ODEs and PDEs [13], [51], [52], [158] of nonlinear dynamical 

systems in the applied mathematics community. In these methods, the challenge of finding the 

underlying system of ODEs/PDEs is transformed into a regression problem, where the data is fit 

to a system of differential equations consisting of polynomials, sines, cosines, partial derivatives, 

higher-order derivatives etc. In the SINDy and PDE-find algorithms proposed in [51], [52] for 

example, sparse regression techniques combined with Pareto analysis is used to avoid overfitting 

the data and obtain parsimonious models that offer the best balance between accuracy and 

complexity. Additionally, in PDE-FIND, the data points considered to build the model are 

randomly subsampled from the whole dataset with good approximations resulting with just 2-3% 

subsampling. The methodology is described using Eqs. 4.10 and 4.11 below. 

 

𝜕𝜕𝑦𝑦(𝑥𝑥,𝛼𝛼)
𝜕𝜕𝑡𝑡

= 𝑓𝑓 �𝛼𝛼,𝑦𝑦,𝑦𝑦2, 𝑥𝑥, 𝑥𝑥2,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

,
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

, …� (4.10) 

𝐘𝐘𝑡𝑡 = 𝚿𝚿(𝐘𝐘,𝐐𝐐) 𝚽𝚽(𝛂𝛂) (4.11) 

 

In Eq.4.11, which is the matrix analog of Eq. 4.1, 𝐘𝐘 denotes the data matrix subsampled at various 

points in space-time, 𝐘𝐘𝑡𝑡  denotes the time-derivative of the data at these points, 𝐐𝐐 denotes any 

additional forcing functions, 𝚿𝚿  denotes the library of fitting functions considered, i.e., the 

fundamental metadata, and 𝚽𝚽  represents the coefficients, i.e. the inference metadata, to be 

determined through sparse regression. While the derivatives may be approximated using simple 

finite difference methods, it may be necessary to use smoothing or polynomial interpolation for 

noisy data. Although the model may be rendered resilient to noise using interpolation, 
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preprocessing the data to decrease noise using denoising techniques such as singular value 

decomposition [175], singular spectrum analysis [176], [177] etc. may be considered. 

Section 4.4 demonstrates the ability of DIOD to leverage reverse-engineering tools to 

prevent reverse-engineering of proprietary datasets and mask both the fundamental and inference 

metadata. A nuclear reactor dataset is successfully transformed into that from a nonlinear spring-

mass system with various levels of masking achieved depending on the target AI/ML application. 

5.3 Data Masking for AI/ML Benchmark Datasets 

In this section, the DIOD methodology is implemented using the simulation of a nuclear 

reactor and a DCPM representing a proprietary and generic system respectively for data masking. 

The inlet temperature of the reactor and the current output are the measured quantities, and the 

above simulations are carried out in Dymola (version 2020x) as shown in Fig 1 below [110], [111]. 

The Westinghouse 4-Loop PWR example from the TRANSFORM package [113] and the current-

controlled DCPM from the default Modelica package are simulated under various operating 

conditions. The two processes are simulated until steady state for 100 seconds. In this 

implementation, the inlet temperature represents sensitive information that must be masked since 

it can be linked to a nuclear reactor based on its temporal evolution by a knowledgeable adversary. 

However, the data must be masked in a manner that preserves the AI/ML-relevant inference 

metadata as obtained from the decomposition in Eq. 4.1. To this end, the current-controlled DCPM 

serves as an ideal canvas to fuse the inference metadata since it is representative of a non-critical, 

generic, and well-understood system. The goal of the DIOD methodology is to fuse the inference 

data from the PWR with the fundamental metadata of the DCPM to create the DIOD version of 

the data. This is accomplished using Eqs. 4.3 and 4.4 via kernel deception using the concealment 

operators developed for the DCPM system as shown in Figure 17. 
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Figure 30: Goal of DIOD paradigm 

In the following sections, the DIOD methodology is implemented and validated via 

statistical and machine-learning techniques. They are organized as follows. In section 4.3.1, the 

inference metadata from the PWR under two different simulation conditions are concealed within 

the DCPM responses. The validation process is performed using simple statistical tools to ensure 

that in-class and between-class separability are maintained. In section 4.3.2, we assumed that the 

target application does not have any pre-existing knowledge of the dataset and implemented an 

unsupervised k-means algorithm to simulate the inference of AI/ML tools. The goal is to ensure 

that the same separability exists in the inference metadata of the PWR and the DIOD data. In 

section 4.3.3, a more complex analysis, singular value decomposition, is performed to extract 

information about both the fundamental and inference metadata of the system. The validation 

process ensures that the DIOD data and the PWR data share the same inference metadata but 

different fundamental metadata to conceal proprietary information and verifies this using the 

mutual information of the response and the inference metadata. Lastly, in section 4.3.4, two 

responses from each system are considered and the correlation between these responses is 

computed to produce correlation curves that characterize the fundamental metadata of the system. 

Here, the DIOD methodology is validated by ensuring that the DIOD correlation curve exhibits 

significantly different behavior than that of the PWR. 
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5.3.1 Domain Knowledge 

In this section, the DIOD methodology is demonstrated by fusing the inference metadata 

of the PWR simulations with the fundamental metadata of the current-controlled DCPM as seen 

in Figure 18. The inlet temperature of the PWR is simulated under two different conditions, namely 

a) normal operation and b) partial pump failure as shown on the left subplot of Fig. 3. For each 

condition, five datasets were generated by varying the mass flow rates and the final pump 

revolutions per minute (RPM), respectively, although only one set from each condition is plotted 

for visual acuity. The goal of the manuscript is to anonymize the above data by fusing the inference 

metadata of the two operating conditions with the current-controlled DCPM simulation as seen on 

the right subplot of Figure 18. Figure 19 depicts the DIOD version of the inlet temperature data 

from Figure 18 after applying the methodology as described by Eqs. 4.3 and 4.4. 

 

Figure 31: Representative data from proprietary (PWR) and generic (DCPM) system 

0 20 40 60 80 100
Time (s)

282

284

286

288

290

292

294

296

298

300

302

In
le

t T
em

pe
ra

tu
re

 (d
eg

 C
)

Westinghouse 4-Loop PWR

Normal operation
Pump Failure

0 20 40 60 80 100
Time (s)

0

50

100

150
C

ur
re

nt
 (m

A
)

DCPM



 
 

116 

 

Figure 32: DIOD version of PWR data 

The DIOD version of the data is similar in appearance to the operation characteristic of the 

current-controlled DCPM, and the visual separability is maintained within the two operating 

conditions—partial pump failure and normal operation. Using domain knowledge that the DCPM 

current follows an exponential profile, statistical analysis reveals the separation of the two classes 

in the DIOD data via a significantly different time constant. Additionally, the in-class separability 

in each class is in the final saturation value of the DIOD curves as tabulated in Table 4. The fraction 

of pump power at steady state after partial pump failure is denoted by 𝜇𝜇. 

Table 4: Classification based on domain knowledge 
Operation 
Mode 

Normal Operation Mass Flow Rate (kg/s) Partial Pump Failure (μ) 
450 460 470 480 490 0.2 0.25 0.3 0.35 0.4 

DIOD time 
constant (s) 16 16 16 16 16 17 17 17 17 17 

DIOD sat. 
current (mA) 327.8 327.2 326.7 326.2 325.7 331.9 331.4 330.8 329.6 329.2 
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5.3.2 Unsupervised AI/ML 

The next task is to use an AI/ML tool to classify the 10 datasets based on their operating 

conditions (i.e., normal operation and partial pump failure without domain knowledge). In this 

section, we assumed that there is no a priori knowledge of the operating conditions/classes and 

utilized an unsupervised learning algorithm to cluster the datasets. The PWR inlet temperature is 

simulated under normal operating conditions and partial pump failures by varying the mass flow 

rate and fraction of pump power at steady state, respectively, as shown in section 4.3.1. The 

resultant time-series are separated into two clusters using a k-means clustering algorithm without 

explicitly labeling the membership class of each dataset or the number of members in each class 

(unsupervised). Table 5 shows that the two clusters correspond to the normal operation and partial 

pump failure conditions. This can be attributed to the vastly different structure of the two curves 

as seen on the left subplot of Figure 18 above. 

Then, the DIOD methodology is applied onto the inlet temperature data using the 

fundamental metadata from the DCPM. The above process is repeated and the k-means clustering 

algorithm is applied on the DIOD datasets. The class separability is still maintained in the DIOD 

datasets and corresponds to the normal operation and partial pump failure conditions. Table 5 

tabulates the results and demonstrates that the class separability is maintained even in an 

unsupervised learning environment where we assumed that the tool has no domain knowledge of 

the system. 

Table 5: Classification using k-means clustering 

Operation 
Mode 

Normal Operation Mass Flow Rate (kg/s) Partial Pump Failure (μ) 
450 460 470 480 490 0.2 0.25 0.3 0.35 0.4 

Cluster index 
– PWR data 1 1 1 1 1 2 2 2 2 2 

Cluster index 
– DIOD data 1 1 1 1 1 2 2 2 2 2 

5.3.3 Singular Value Decomposition 

In previous sections, the extraction of inference metadata and their separability was 

demonstrated using statistical and AI/ML tools. In this section, we use singular value 

decomposition (SVD) to extract information about both the fundamental and inference metadata 
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from the PWR, DCPM, and DIOD data. SVD is a widely used analysis tool and is defined via an 

orthogonal transformation of the data onto a new set of coordinate axes ordered from greatest to 

least variance. The given dataset 𝐳𝐳  is decomposed as 𝐳𝐳 ≈ 𝛽𝛽1𝐮𝐮1 + 𝛽𝛽2𝐮𝐮2 + ⋯+ 𝛽𝛽𝑛𝑛𝐮𝐮𝑛𝑛 , where 

𝐮𝐮1,𝐮𝐮2, … ,𝐮𝐮𝑛𝑛  describe the 𝑛𝑛  dominant features of the dataset and 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛  describe their 

respective coefficients. The extracted 𝐮𝐮𝑖𝑖 vectors describe the behavior of the physical system itself 

and provide some insight into the fundamental metadata of the system. Their coefficients 𝛽𝛽𝑖𝑖 

describe the operation of the system and provide information about the inference metadata of the 

system. The DIOD methodology is validated by preserving existing correlations among the 

coefficients 𝛽𝛽𝑖𝑖 of the PWR and masking the fundamental metadata of the PWR. 

Consider 10 time-series generated by varying the mass flow rate of the PWR under normal 

operation. As in the previous sections, Eqs. 4.1-4.4 are used to fuse the inference data of the PWR 

with the DCPM using the library of concealment operators developed earlier, thus generating the 

DIOD version of the PWR data. Consequently, the PWR data and the DIOD data are decomposed, 

and the first three coefficients 𝛽𝛽1,𝛽𝛽2, and 𝛽𝛽3 representing the dominant coefficients are analyzed. 

Figure 20 presents the correlation between the coefficients 𝛽𝛽𝑖𝑖 obtained from the SVD of the PWR 

and DIOD data and shows that the correlations are preserved across the PWR and the DIOD 

datasets. 



 
 

119 

 

Figure 33: Correlation among SVD coefficients 

Next, we consider the first three dominant 𝐮𝐮 vectors obtained from the decomposition of 

the PWR and its DIOD version as shown in Figure 21. A successful implementation of the DIOD 

methodology completely masks the fundamental metadata of the proprietary system (PWR). The 

𝐮𝐮 vectors of the PWR containing information about the fundamental metadata do not resemble 

those extracted from the DIOD version, thus protecting the fundamental metadata of the PWR. 

Additionally, the extracted vectors of the DIOD data resemble those of the DCPM, implying that 

the underlying physical processes of the two are similar. Therefore, any analysis of the 𝐮𝐮 vectors 

of the DIOD dataset provides insight into the generic DCPM system and not the proprietary PWR. 
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Figure 34: 𝐮𝐮 vectors from SVD 

5.3.4 Response Correlation 

In the previous section, the DIOD methodology was validated using SVD by preserving 

the correlations among the SVD coefficients of the responses representing inference metadata and 

masking the fundamental metadata of the PWR. In this section, the masking of fundamental 

metadata of the PWR is further demonstrated using the correlations among the responses 

themselves. Every physical system is expected to have its own set of correlations among its 

responses based on the underlying physical model. For example, the data from an experiment on 

a resistor may exhibit a linear relationship between the current and the voltage. A successful DIOD 

implementation masks these relationships so that any attempts at inference do not lead back to the 

original proprietary system. In this experiment, two responses from each system are considered—

namely, the inlet and outlet temperature from the PWR and the current and rotation speed of the 

DCPM. The correlation between the inlet and outlet temperature is computed to produce 

correlation curves that characterize the fundamental metadata of the PWR. 

Consider a DIOD implementation involving the above responses from the Westinghouse 

4-Loop PWR and current-controlled DCPM system described at the beginning of 4.3. The PWR 

and the DCPM are simulated until steady state is achieved. Using Eqs. 4.1-4.4, the inference 
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metadata of the outlet temperature is fused with the speed data, while that of the inlet temperature 

is fused with the current data. 

 

Figure 35: Response Correlation 

The correlation curves of the PWR and DIOD datasets are shown for a representative case 

in Fig. 7 using the responses obtained from each system. The DIOD methodology is validated by 

observing that the correlation curve of the Westinghouse PWR is masked in the DIOD data, thus 

protecting it from discovery. However, the idea may be further extended by using invertible 

mathematical transformations to better fit the features of the generic system depending on the 

target application. For example, the DIOD inference metadata could be scaled/transformed to 

exhibit a relationship similar to a DCPM correlation curve. The DIOD data can thus be reasonably 

expected to have come from the DCPM system, achieving another level of masking if desired. 

This is desirable for reverse-engineering applications where the invariance of the mutual 

information may be exploited for further masking, as demonstrated in the following section. 
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5.4 Data Masking against Reverse-Engineering 

In this section, we consider a nuclear reactor, representing the proprietary system, and a 

simple spring-mass system, representing the generic system, on which the DIOD methodology is 

to be implemented. The reactor physics is described by the single-group point-kinetics model in 

Eq. 4.12, while the spring-mass system is described for a non-linear hardening/softening spring as 

described in Eq. 4.13. 

 

�̇�𝑃 =
(𝜌𝜌 − 𝛽𝛽)

Λ
𝑃𝑃 + 𝜆𝜆𝐶𝐶

�̇�𝐶 =
𝛽𝛽
Λ
𝑃𝑃 − 𝜆𝜆𝐶𝐶

(4.12) 

 

In the above expression, 𝑃𝑃 is the power of the reactor with the  ̇ operator denoting its first 

derivative with respect to time, 𝜌𝜌 is the initial reactivity inserted into the system, Λ is the prompt 

generation time of the neutrons, 𝜆𝜆 is the decay constant corresponding to one group, and 𝛽𝛽 is the 

delayed neutron fraction. These parameters vary depending on the experimental conditions of the 

reactor such as its geometry, fuel enrichment, fuel composition etc. For the purposes of this 

manuscript, 𝜌𝜌 is held to be a fixed quantity, i.e., we would like to see the effect of inserting a small 

amount of reactivity over time into various reactor compositions. 

 

𝑚𝑚�̈�𝑥 + 𝑙𝑙�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝑛𝑛𝑥𝑥3 = 0 (4.13) 

 

In Eq. 4.13, 𝑥𝑥 is the position of the spring with the  ̇ and  ̈ operators denoting its first and 

second derivative with respect to time respectively, 𝑚𝑚 is the mass of the object attached to the 

spring, 𝑙𝑙 is the damping coefficient of the dashpot, 𝑘𝑘 and 𝑛𝑛 are parameters describing the stiffness 

of a nonlinear spring. These parameters may vary depending on the material used for the spring 

and the dashpot. The following subsections illustrate the constraints imposed on the spring-mass 

system for the three different masking levels. 

For the purposes of this manuscript and to demonstrate the separability criterion, it is 

assumed that the labels are known and binary, i.e., the problem is set up as a balanced supervised 

binary classification problem. Additionally, the binary labels only depend on the latent variables 

𝛽𝛽 and Λ. The classification criteria are shown in Algorithm  1 where U(𝑎𝑎, 𝑏𝑏) denotes a uniform 



 
 

123 

distribution on the interval [𝑎𝑎, 𝑏𝑏] ∈ 𝐑𝐑. Algorithm  1 divides the dataset such that 40% of the data 

belongs to the class corresponding to label 0, 40% of the data belongs to the class corresponding 

to label 1, and 20% of the data is randomly split between the two labels. Therefore, the maximum 

achievable accuracy for the optimal classifier is 90%. A total of 10,000 samples were generated 

for the reactor data and labeled, of which 2,000 samples were selected as test data for the neural 

network. 

Algorithm 1:  Data classification 
Input: Delayed neutron fraction, 𝛽𝛽 ~ U(0.006, 0.007) 

Prompt generation time, Λ ~ U(1 ∗ 10−5, 5 ∗ 10−5)  
Number of samples in dataset, 𝑛𝑛 

  
Output: Label 𝐿𝐿 corresponding to reactor data 𝑦𝑦 using 𝛽𝛽 and Λ 
  
Initialize: Counter variable 𝑝𝑝 = 1 
  
WHILE 𝑝𝑝 ≤ 𝑛𝑛 
IF 4𝛽𝛽 + 100Λ ≤ 2.85777 ∗ 10−2 
 𝐿𝐿(𝑦𝑦) ← 1 
ELSE IF 4𝛽𝛽 + 100Λ ≥ 2.94223 ∗ 10−2 
 𝐿𝐿(𝑦𝑦) ← 0 
ELSE  
 𝐿𝐿(𝑦𝑦) ← randint(0, 1) 
 𝑝𝑝 ← 𝑝𝑝 + 1 
END  
  

 

It is important to note that the algorithm above is only for simulation purposes; in reality, 

the classification algorithm is unknown while the labels are known and must be devised by the 

AI/ML researchers using supervised learning algorithms such as neural networks [178], support 

vector machines [179] etc. on the DIOD data. In the case of unsupervised learning, the highest 

achievable masking is level 2, and no further reduction is possible since the labels are also 

unknown and can vary depending on the criteria used. The following subsections implement the 

different levels of masking on the reactor and the spring-mass system. 

5.4.1 Level 1 Masking – Inference Metadata 

In this experiment, the set of ODEs describing the reactor kinetics (Eq. 4.12) is extracted 

using SINDy from the dataset generated from various simulations. The inference metadata of the 
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reactor are the coefficients of the various terms in the equation. Since the extracted coefficients 

are quite close to the true value, the DIOD dataset is generated using the true value of the inference 

metadata. In reality, there may be a minor loss in information due to numerical error or an inability 

to form a parsimonious model using SINDy. 

In this case, the inference metadata consists of four coefficients - 
(𝜌𝜌−𝛽𝛽)
Λ

, 
𝛽𝛽
Λ

, 𝜆𝜆 and −𝜆𝜆, 

where 𝜌𝜌 is fixed. In level 1 masking, no further reduction based on the latent variables or the 

classification label is performed, and therefore, the generic spring-mass system requires four 

parameters. In the nuclear data, the coefficients 
𝛽𝛽
Λ

 and 𝜆𝜆 are non-negative. However, in the spring-

mass system, the mass 𝑚𝑚, the spring constant 𝑘𝑘, and the damping coefficient 𝑙𝑙 are non-negative, 

while the stiffness parameter 𝑛𝑛  allows for small negative values to ensure a bounded spring 

response. Therefore, invertible transformations are employed prior to the generation of the DIOD 

dataset as shown in the flowchart in Figure 23. 

 

Figure 36: Level 1 Masking 

The four arbitrarily chosen transformations used were ℎ1(𝐶𝐶1) = −𝐶𝐶1 10⁄ , ℎ2(𝐶𝐶2) =

𝑒𝑒𝐶𝐶2 1000⁄ , ℎ3(𝐶𝐶3) = − ln𝐶𝐶3,  and  ℎ4(𝐶𝐶4) = 𝑒𝑒𝐶𝐶4 + 7 . Since we have an invertible chain, 𝑦𝑦 ↔

�𝜌𝜌−𝛽𝛽
Λ

, 𝛽𝛽
Λ

, 𝜆𝜆,−𝜆𝜆� ↔ {𝑚𝑚, 𝑙𝑙,𝑘𝑘,𝑛𝑛} ↔ 𝑦𝑦′, the mutual information between the nuclear data and each of 

its inference metadata (coefficients) is preserved in the DIOD dataset. A neural network is trained 
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on the inference metadata of the proprietary system, i.e., the four coefficients �𝜌𝜌−𝛽𝛽
Λ

, 𝛽𝛽
Λ

, 𝜆𝜆,−𝜆𝜆�, and 

later, on the inference metadata extracted from the DIOD version, i.e., the four coefficients 

{𝑚𝑚, 𝑙𝑙,𝑘𝑘, 𝑛𝑛}. It is observed that similar classification results are obtained in both cases as seen in 

Table 6. 

Table 6: Level 1 Classification Results 

 Sensitivity (%) Specificity (%) Accuracy (%) 
Reactor Data 92.7 91.1 91.9 
DIOD Data 87.1 92.8 89.8 

 

The sensitivity refers to the percentage of samples in the DIOD dataset having the label 1 

that were correctly classified as 1, while the specificity refers to the percentage of samples having 

the label 0 that were correctly classified as 0. The accuracy is the percentage of samples that were 

classified to their correct class. By design, the accuracy is expected to be around 90% within error, 

as observed, while the sensitivity and specificity may vary depending on how the neural network 

determines its decision boundary. Minor deviations may arise due to the neural network 

architecture, randomness within the data, training algorithm used, number of samples etc. 

Additionally, among the 80% of the reactor data that is clearly separable as defined in 

Algorithm  1, their DIOD versions have the same label as desired, i.e., the transformation is 

isomorphic with respect to the class label for the separable data. In other words, if a test sample in 

the separable data is classified with the label 1(or 0), its DIOD version is also classified with the 

label 1(or 0). Among the remaining 20% that are randomly classified into one of the two classes, 

since they are inseparable by design, their DIOD versions are not isomorphic to the class label. 

This satisfies the goal of the DIOD methodology in maintaining class separability as illustrated in 

Figure 24. 

 

Figure 37: Isomorphism of DIOD transformation to class label 
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5.4.2 Level 2 Masking – Latent Space 

In the above example, one might observe that there are only three variables 𝛽𝛽,Λ, and 𝜆𝜆 and 

that the inference metadata is a projection of these variables onto a 4-dimensional space. As 

mentioned in the previous section, the mutual information is invariant to projections onto higher 

dimensions. Therefore, the generic system need not require four parameters, but three instead to 

preserve the mutual information. While it is immediately obvious that the third and fourth 

coefficients are linear transformations of one another in the above implementation, this may not 

generally be the case, and the problem of finding the latent variables is often solved through more 

sophisticated methods such as PCA [180], kernel PCA [55], [181], autoencoders [182], [183] etc. 

The flexibility of the DIOD methodology allows the owner of the proprietary system to control 

the loss of information (if any) from the reduction of order.  

Nevertheless, it is observed that the spring-mass system now has one fewer constraint 

imposed by the DIOD methodology. For example, the two spring parameters 𝑘𝑘 and 𝑛𝑛 may not be 

independent in real-life applications since the two are material-dependent properties and relate to 

the stiffness of the spring. The availability of the extra constraint allows for a functional 

relationship between the two that may now be respected, thus granting another level of masking. 

The process is described in Figure 25. 

 

Figure 38: Level 2 Masking 

The four arbitrarily chosen transformations used were 𝑓𝑓1(𝛽𝛽) = 𝑒𝑒−100𝛽𝛽 , 𝑓𝑓2(Λ) = − lnΛ ,

𝑓𝑓3(𝜆𝜆) = 105𝜆𝜆3, and 𝑓𝑓(𝑘𝑘) = √𝑘𝑘. Similar to the previous section, since we have an invertible chain, 

𝑦𝑦 ↔ (𝛽𝛽,Λ,𝜆𝜆) ↔ (𝑚𝑚, 𝑙𝑙,𝑘𝑘,𝑛𝑛) ↔ 𝑦𝑦′, the mutual information between the nuclear data and each of 
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its latent variables is preserved in the DIOD dataset. A neural network is trained on the latent 

variables of the proprietary system, i.e., {𝛽𝛽,Λ, 𝜆𝜆}, and subsequently on the inference metadata 

extracted from the DIOD version, i.e., the four coefficients {𝑚𝑚, 𝑙𝑙,𝑘𝑘,𝑛𝑛}. It is observed that similar 

classification results are obtained in both cases as seen in Table 7. Additionally, the isomorphism 

of the separable data is also observed as in the previous section and illustrated in Figure 24. 

Table 7: Level 2 Classification Results 

 Sensitivity (%) Specificity (%) Accuracy (%) 
Reactor Data 90.3 91.9 91.1 
DIOD Data 93.5 86.3 89.7 

5.4.3 Level 3 Masking – Latent Variables relevant for classification 

As mentioned at the beginning of this section, in supervised learning, the dataset is labeled 

according to some algorithm unknown to the proprietary owner. For the purposes of simulation, 

the true algorithm is given as a simple partially separable problem in Algorithm  1 where a 

maximum of 80% true positive and true negative rates may be achieved. Additionally, the true 

algorithm only uses the latent variables 𝛽𝛽 and Λ and ignores 𝜆𝜆, thus providing another level of 

reduction, but this is also initially unknown to the proprietary owner. What could be done to extract 

this information? 

We refer to 4.9 where the mutual information between the label and the extracted latent 

variables (via SINDy or other algorithms) is computed. Since the mutual information accounts for 

all linear and nonlinear dependencies between the variables [170], it is expected that the mutual 

information between the label and the redundant latent variables is close to zero. In recent decades, 

techniques such as mutual information neural estimation [171] (MINE) and k-nearest neighbors 

[172] (kNN) algorithms have been used to estimate the mutual information between two variables, 

and since the proprietary owner is aware of both the label and the latent space, it is possible to 

discard the variables irrelevant for classification and achieve the desired level of masking as seen 

in Figure 26. Here, we reiterate the flexibility of the DIOD methodology in designing constraints 

based on the user-defined tolerance for error and loss of information. 

To verify that the label 𝐿𝐿 and 𝜆𝜆 have no relationship, we employ Algorithm  1 and compute 

the mutual information between the two variables using the MINE algorithm, which results in 
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𝐼𝐼(𝐿𝐿(𝑦𝑦), [𝛽𝛽,Λ]) = 𝐼𝐼(𝐿𝐿(𝑦𝑦), [𝛽𝛽,Λ, λ]), thus verifying the redundancy of the variable 𝜆𝜆. Additionally, 

we also verify that 𝐼𝐼(𝐿𝐿(𝑦𝑦), [𝛽𝛽,Λ]) = 0.78 ≈ 0.8 bits which is the expected mutual information for 

the problem designed in Algorithm  1. Intuitively, the algorithm is designed such that 80% of the 

data can be classified into one of the two labels with complete certainty, while 20% of the data is 

classified randomly. Since the classification is balanced, the entropy of the label without any 

knowledge of 𝛽𝛽 and Λ is 1 bit. Therefore, the mutual information, which represents the reduction 

in the uncertainty of the label after knowledge of 𝛽𝛽 and Λ, is 1 − (0.8 ∗ 0 + 0.2 ∗ 1) = 0.8 bits. A 

more in-depth discussion of the relationship between classifiers and mutual information may be 

found in Refs. [170], [174]. 

 

Figure 39: Level 3 Masking 

With the additional degree of freedom available, one may impose another constraint 

required by the generic spring-mass system. For example, the owner of the proprietary data may 

want to set the value of 𝑘𝑘 and 𝑛𝑛 to a particular material of spring to mask the DIOD data further. 

In this case, we still have an invertible chain, 𝐿𝐿(𝑦𝑦) ↔ (𝛽𝛽,Λ) ↔ (𝑚𝑚, 𝑙𝑙) ↔ 𝐿𝐿(𝑦𝑦′)  and thus the 

mutual information between the label of the nuclear data and the necessary latent variables is 

preserved in the DIOD dataset. 

The four arbitrarily chosen transformations used were 𝑔𝑔1(𝛽𝛽) = 𝑒𝑒−200𝛽𝛽 , 𝑔𝑔2(Λ) = 105Λ,

𝑘𝑘∗ = 15, and 𝑓𝑓(𝑘𝑘∗) = √𝑘𝑘 = √15. A neural network is trained on the required latent variables of 

the proprietary system, i.e., {𝛽𝛽,Λ}, and subsequently, on the inference metadata extracted from the 

DIOD version, i.e., the four coefficients {𝑚𝑚, 𝑙𝑙,𝑘𝑘,𝑛𝑛}. It is observed that similar classification results 
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are obtained in both cases as seen in Table 8. Once again, the DIOD transformation is isomorphic 

to the label for the separable data as observed in the previous sections and in Figure 24. 

Table 8: Level 3 Classification Results 

 Sensitivity (%) Specificity (%) Accuracy (%) 
Reactor Data 91.0 90.4 90.7 
DIOD Data 92.1 89.7 90.9 
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APPENDIX 

The appendix provides detailed explanation of the two sub-systems models A for reactor core and 

B for a steam generator as employed in this work 

 

Reactor Core (Model A): 

𝛽𝛽: Delayed neutron fraction = 0.0065 

𝜏𝜏𝑝𝑝: Prompt generation time = 2.4 ∗ 10−4;  s−1 

𝜆𝜆: Single precursor group decay constant = 0.08; s−1 

𝛼𝛼𝑓𝑓: Fuel temperature coefficient =  −2 ∗ 10−5;  ℃
−1

  

𝛼𝛼𝑚𝑚: Moderator temperature coefficient =  −5.3 ∗ 10−4;  ℃
−1

 

𝜌𝜌𝑓𝑓: Density of fuel =  10;  g cm−3 

𝑐𝑐𝑓𝑓: Specific heat capacity of fuel = 0.34;  J g−1 ℃
−1

 

𝐴𝐴𝑟𝑟: Fuel to cell area ratio = 0.306796 

𝑉𝑉𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙: Volume of cell = 5.74 ∗ 107;  cm3 

𝜏𝜏ℎ𝑥𝑥: Heat exchanger time constant = 3.54167; s−1 

𝐿𝐿: Length of fuel rod = 381;  cm 

𝑁𝑁: Number of fuel rods = 61696 

𝑅𝑅 = 8πkf: kf is the thermal conductivity of the fuel = 0.75398;  W ℃
−1

 cm−1 

𝜌𝜌𝑚𝑚: Density of moderator = 0.74;  g cm−3 

𝑐𝑐𝑚𝑚: Specific heat capacity of moderator = 5.6;  J g−1 ℃
−1

 

𝑉𝑉𝑚𝑚: Volume of moderator = 4.17 ∗ 107;  cm3 

�̇�𝑚: Mass flow rate = 4.7 ∗ 106;  g s−1 

𝑃𝑃0: Initial power at equilibrium = 2 ∗ 109;  W 

 

𝛿𝛿𝑃𝑃: Change in reactor power; W  

δC: Change in precursor power;  W 
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𝛿𝛿𝛿𝛿𝑓𝑓: Change in fuel temperature;  ℃ 

𝛿𝛿𝛿𝛿𝑚𝑚: Change in moderator temperature;  ℃ 

𝛿𝛿𝛿𝛿𝑖𝑖𝑛𝑛: Change in inlet temperature;  ℃ 

 

Let 𝐒𝐒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

𝛽𝛽
𝜏𝜏𝑝𝑝

𝜆𝜆
𝛽𝛽
𝜏𝜏𝑝𝑝
𝑃𝑃0𝛼𝛼𝑓𝑓

𝛽𝛽
𝜏𝜏𝑝𝑝
𝑃𝑃0𝛼𝛼𝑚𝑚

𝛽𝛽
𝜏𝜏𝑝𝑝

−𝜆𝜆 0 0

1
𝜌𝜌𝑓𝑓𝑐𝑐𝑓𝑓𝐴𝐴𝑟𝑟𝑉𝑉𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙

0 −
1
𝜏𝜏ℎ𝑥𝑥

1
𝜏𝜏ℎ𝑥𝑥

0 0
𝐿𝐿𝑁𝑁𝑅𝑅

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑉𝑉𝑚𝑚
−𝐿𝐿𝑁𝑁𝑅𝑅 − 2�̇�𝑚𝑐𝑐𝑚𝑚

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑉𝑉𝑚𝑚 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 and 𝐓𝐓 =  

⎣
⎢
⎢
⎢
⎡

0
0
0

2�̇�𝑚𝑐𝑐𝑚𝑚
𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑉𝑉𝑚𝑚⎦

⎥
⎥
⎥
⎤

  

 

𝐅𝐅A = expm(𝐒𝐒); where expm denotes matrix exponentiation 

𝐆𝐆A = 𝐒𝐒−1 [𝐈𝐈𝟒𝟒 − expm(𝐒𝐒)] 𝐓𝐓; where 𝐈𝐈𝐧𝐧 is the n x n identity matrix 

𝐇𝐇A = [1 0 0 0] 

𝐱𝐱A =  �

𝛿𝛿𝑃𝑃
𝛿𝛿𝐶𝐶
𝛿𝛿𝛿𝛿𝑓𝑓
𝛿𝛿𝛿𝛿𝑚𝑚

� 

 

Steam Generator (Model B): 

 

ℎ𝑑𝑑: Initial specific enthalpy of downcomer water =  1.18 ∗ 106;  J kg−1 

Ld: Initial water level in downcomer = 12.19;  m 

𝑥𝑥𝑀𝑀: Initial steam quality = 0.268 

 

𝜌𝜌𝑝𝑝𝑟𝑟: Density of primary water =  700;  kg m−3 

𝑐𝑐𝑝𝑝𝑟𝑟: Specific heat capacity of primary water = 6.3 ∗ 103;  J kg−1 K−1 

𝑉𝑉𝑝𝑝𝑟𝑟: Volume of primary water = 32.5; m3 

𝛼𝛼𝑝𝑝𝑟𝑟: Heat transfer coefficient from primary to metal tube = 7 ∗ 103;  W m−2K−1 

𝐴𝐴𝑝𝑝𝑟𝑟: Inner area of U − tubes = 5400; m2 
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𝜌𝜌𝑚𝑚𝑐𝑐: Density of U − tube metal =  8 ∗ 103;  kg m−3 

𝑐𝑐𝑚𝑚𝑐𝑐: Specific heat capacity of U − tube metal = 500;  J kg−1 K−1 

𝑉𝑉𝑚𝑚𝑐𝑐: Volume of U − tube metal = 6.1; m3 

𝛼𝛼𝑝𝑝𝑟𝑟: Heat transfer coefficient from primary to metal tube = 7 ∗ 103;  W m−2K−1 

𝐴𝐴𝑝𝑝𝑟𝑟: Inner area of U − tubes = 5400; m2 

𝛼𝛼𝑙𝑙𝑐𝑐: Heat transfer coefficient from metal tube to secondary = 2 ∗ 104;  W m−2K−1 

𝐴𝐴𝑙𝑙𝑐𝑐: Outer area of U − tubes = 6000; m2 

𝛿𝛿𝑙𝑙𝑠𝑠𝑡𝑡: Saturation temperature = 9.2 ∗ 10−6𝑃𝑃 + 495;  K [P in Pa] 

𝐴𝐴3: Area of upper part of steam generator = 18.2; m2 

𝐴𝐴2: Area of lower part of steam generator = 9.8; m2 

𝐴𝐴1: Area of steam node = 8.3; m2 

𝐿𝐿1: Length of U − tube bundle = 10.3;  m 

𝐿𝐿2: Length of steam node = 14.8;  m 

𝐿𝐿3: Total length of steam generator = 17.1;  m 

𝐿𝐿4: Length of lower part of steam generator = 9.6;  m 

𝑘𝑘1 = 1 −
𝐿𝐿1

2𝐿𝐿2
= 0.65 

𝑘𝑘3 = 𝐿𝐿4(𝐴𝐴2 − 𝐴𝐴3) = −80.6; m3 

𝑘𝑘4 = 𝐴𝐴3 − 𝐴𝐴1 = 9.9; m2 

𝑉𝑉𝑙𝑙𝑡𝑡: Volume of steam dome node = 41.9; m3 

𝑉𝑉𝑙𝑙: Volume of steam node = 93.1; m3 

𝑊𝑊𝑑𝑑 = 𝑘𝑘8 �
𝐿𝐿𝑑𝑑
𝑣𝑣𝑑𝑑

− (1 − 𝑥𝑥𝑀𝑀)
𝐴𝐴1
𝐴𝐴𝑤𝑤

𝐿𝐿2
𝑣𝑣𝑙𝑙
�
−12

; kg s−1  

𝑊𝑊𝑙𝑙𝑡𝑡: Mass flow rate of steam =
Vst

v′′
; kg s−1 

𝑣𝑣𝑓𝑓: Specific volume of water = 3.3 ∗ 10−11𝑃𝑃𝑟𝑟 + 1.1 ∗ 10−3;  m3kg−1 [𝑃𝑃𝑟𝑟 in Pa] 

𝑣𝑣𝑝𝑝: Specific volume of steam = −3.8 ∗ 10−9𝑃𝑃𝑟𝑟 + 5.4 ∗ 10−2;  m3kg−1 [𝑃𝑃𝑟𝑟 in Pa] 

𝑣𝑣𝑔𝑔 = 𝑣𝑣 ′′ − 𝑣𝑣 ′; m3 kg−1 

𝑣𝑣𝑙𝑙: Specific volume of the steam− water mixture =  𝑣𝑣 ′ + 𝑘𝑘1𝑥𝑥𝑀𝑀𝑣𝑣𝑔𝑔; m3 kg−1 

ℎ𝑓𝑓: Specific enthalpy of saturated water =  5 ∗ 10−2𝑃𝑃𝑟𝑟 + 9.2 ∗ 105; J kg−1 [𝑃𝑃𝑟𝑟 in Pa] 
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𝑟𝑟: Heat of vaporization =  −6.3 ∗ 10−2𝑃𝑃𝑟𝑟 + 2 ∗ 106; J kg−1 [𝑃𝑃𝑟𝑟 in Pa] 

ℎ𝑙𝑙: Specific enthalpy of the steam− water mixture =  ℎ′ + 𝑘𝑘1𝑥𝑥𝑀𝑀𝑟𝑟; m3 kg−1 

𝑉𝑉𝑑𝑑: Volume of the downcomer = 𝑘𝑘3 + 𝑘𝑘4 ∗ 𝐿𝐿𝑑𝑑; m3 

𝑣𝑣𝑑𝑑: Specific volume of water in downcomer = 1.5 ∗ 10−6𝛿𝛿 + 4.7 ∗ 10−4;  m3kg−1 [T in K] 

𝑥𝑥𝑟𝑟 =
1 − 𝑥𝑥𝑀𝑀
𝑥𝑥𝑀𝑀

 

 

𝛿𝛿𝛿𝛿𝑝𝑝𝑟𝑟: Change in primary temperature;  K 

𝛿𝛿𝛿𝛿𝑚𝑚𝑐𝑐: Change in metal temperature;  K 

𝛿𝛿𝐿𝐿𝑑𝑑: Change in steam generator water level;  m 

𝛿𝛿ℎ𝑑𝑑: Change in downcomer enthalpy;  MJ kg−1 

𝛿𝛿𝑥𝑥𝑀𝑀: Change in steam quality 

𝛿𝛿𝑃𝑃𝑟𝑟: Change in pressure; bar 

Similar to the reactor matrix exponentiation, the following matrices are computed for the above 

values: 

𝐅𝐅B =  

⎣
⎢
⎢
⎢
⎢
⎡
0.544888 0.035270 0.000028 0.000909 0.000075 0.011085
0.220770 0.089635 0.000285 0.009596 0.000783 0.063281
0.015234 0.007519 0.993286 0.001894 −0.015324 −0.002151
0.004929 0.007739 0.000034 0.967432 −0.000369 0.006846
1.088189 0.941626 −0.055545 0.139170 0.874916 −0.256764
1.062617 0.975153 0.004011 0.136437 0.011042 0.735099 ⎦

⎥
⎥
⎥
⎥
⎤

 

𝐆𝐆B =  

⎣
⎢
⎢
⎢
⎢
⎡
0.314474
0.080939
0.003830
0.000717
0.233299
0.222291⎦

⎥
⎥
⎥
⎥
⎤

 

𝐇𝐇B = �
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

 � 

𝐱𝐱B =

⎣
⎢
⎢
⎢
⎢
⎡
𝛿𝛿𝛿𝛿𝑝𝑝𝑟𝑟
𝛿𝛿𝛿𝛿𝑚𝑚𝑐𝑐
𝛿𝛿𝐿𝐿𝑑𝑑
𝛿𝛿ℎ𝑑𝑑
𝛿𝛿𝑥𝑥𝑀𝑀
𝛿𝛿𝑃𝑃𝑟𝑟 ⎦

⎥
⎥
⎥
⎥
⎤
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