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intensity profile at the shadow side of the system where the positions of the cylinders
are indicated by black dotted circles. Moreover, during the transition, constituents of the
system continuously evolve to operate from monopole (panel-b) to dipole (panel-f) while
the system behaves as a dipole. The middle “arm” of the triplet state corresponds to the
system resonance where maximum energy of the mode is confined between the cylinders
resulting in the leaky nature of the mode as shown in panel-(d). However, beyond the
tangent bifurcations, system still resembles a dipole thus indicating the presence of ghost
regime where constituents could behave as either monopole (panel-c) or dipole (panel-e)
depending on the operating frequency. . . . . . . . . . . . . . . . . . . . . . . . . .  91 

5.8 Scattering cross-section of the system of two isotropic cylinders with permittivity ε = 5

surrounded by air. Panel-(a) shows the system setup for end-on illumination with a plane
wave. Corresponding normalized scattering cross section (σnorm) is shown in panel-(b) in
false color as a function of system parameters. Notice the scattering cross section peak due
to ghost resonance indicated by the dotted green line. . . . . . . . . . . . . . . . . .  93 
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ABSTRACT

Similar to thermodynamic phase transitions in matter, readily apparent changes in optical

response arise in the transition from isotropic to anisotropic optical phases. Treating the

anisotropy of the dielectric permittivity as a control parameter, which changes continuously

from zero to a nonzero finite value at the transition, in this work we describe the resulting

effect on light propagation.

We begin by investigating a simple case of the manifestations of such optical transition in

lossy media. In the presence of loss, isotropic materials do not support Brewster phenomenon,

however, if one changes the anisotropy continuously, the exact zero in the reflection at the

Brewster incidence angle is recovered. Next, in the case of uniaxial anisotropy, we uncover

dramatic changes in far-field thermal radiation induced by the transitions between metal,

dielectric, and hyperbolic optical regimes that can be observed in the same material. We

demonstrate that continuous evolution between different “phases” in the electromagnetic

response imprints a characteristic signature in the far-field thermal emission. Finally, we

show that the evolution of the optical anisotropy from uniaxial to biaxial symmetry brings

qualitatively new optical modes which are different from the conventional propagating and

evanescent fields. These emergent “ghost” waves offer a unique way to control mode in-

teractions in optical systems. Our work uncovers the connection between the macroscopic

properties of the optical materials and the transitions between different regimes of the elec-

tromagnetic response in these media. At last, we propose a range of potential applications

of the resulting phenomena, from perfect absorption in lossy media to thermal radiation and

optical sensing.
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1. INTRODUCTION

Even though matter is made up of enormous number of atoms, the properties of matter

are radically different than that of individual atoms. It is the interaction between the con-

stituents that define and control the macroscopic properties. Different phases of matter can

be built entirely by the same constituents but with different interactions among them. A

transition between thermodynamic phases can be achieved by changing various thermody-

namic parameters: water changing from solid to liquid is a common example of many.

Though interactions among the constituents have many degrees of freedom, thermody-

namic properties are controlled by a few parameters such as pressure, temperature, density,

magnetism, etc. Similarly, the optical refractive index is one of the thermodynamic degrees

of freedom responsible for optical responses. Phase transitions in such responses can be

achieved by changing the medium refractive index to reach a critical limit. Analogously, we

find that optical phase transitions can be controlled by the degree of anisotropy, which is

accountable for direction-dependent electromagnetic responses of the media

Since its discovery, optical anisotropy has led to the understanding of fundamental con-

cepts ranging from polarization to light-matter interactions at the microscopic level. In

modern-day optics, anisotropy still finds new engineering applications and concepts in fun-

damental physics. In this work, we show how anisotropy-induced optical phase transitions

lead to qualitative changes in light absorption, thermal emission, guided modes, and optical

scattering.

We begin our study by considering incoherent perfection absorption using the Brewster

effect: a semi-infinite slab of lossless non-magnetic dielectric does not reflect any p−polarized

light for a certain angle of incidence. But this effect is suppressed due to the loss within

isotropic media and consequently fades. However, loss in anisotropic media can bring the

Brewster phenomenon back and hence perfect absorption by using the degrees of freedom in

material anisotropy. As detailed in Chapter  2 , this method employs a simple planar system

of air and lossy uniaxial media.

The effect of phase transition in uniaxial media on far-field thermal emission is investi-

gated in Chapter  3 . Since the density of microscopic optical states varies as the material
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parameters cross over different phases, the number of outcoupled photons also changes ac-

cordingly. It is shown that evolution in the topology of electromagnetic responses between

different phases leaves a characteristic signature in the far-zone thermal emission. More-

over, we have demonstrated that our results are applicable in both naturally available and

artificially structured media.

In Chapter  4 , continuous evolution from uniaxial to biaxial media is investigated. The

optical modes supported by biaxial media are hybrid in general, consisting of two propagating

constants. Moreover, anisotropy-induced nontrivial dynamics turn one of the modes into a

negative index mode (NIM)[ 1 ] while the optical index of the other mode remains positive

(PIM). Eventually, annihilation of PIM and NIM by each other results in “ghost” waves.

These are qualitatively new classes of nonuniform waves which are both oscillatory and

evanescent in nature. Furthermore, when two such ghost modes are allowed to interact,

the resonance frequencies show symmetry-protected degeneracies instead of mode splitting.

However, in the presence of asymmetric loss, these degeneracies turn into exceptional points

enabling new approaches for optical sensing applications.

Finally, in Chapter  5 , we consider anisotropy in artificial structures which support triplet

states in optical scattering. It is shown that nontrivial dynamics of such triplet states

evolve into a singlet state and a ghost resonance. The ghost resonance is created by the

self-annihilation of the other two resonance frequencies. During this evolution, due to the

presence of ghost resonance, the system goes through a continuous transition where the

constituents change their operating modes. We have theoretically calculated ghost-induced

scattering cross section for multiple cylinders.

The various theoretical findings presented in this thesis are within experimental reach.

These findings are expected to have a significant impact on light absorption, thermal emis-

sion, optical mode interactions, and sensing applications.
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2. INCOHERENT PERFECT ABSORBER

This chapter has been partially reproduced from a previous publication [  2 ].

In this chapter we show perfect absorption of electromagnetic waves using Brewster

phenomenon. Since the mechanism does not depend on the phase of incoming light, we

find that perfect absorption of incoherent light is possible in a semi-infinite lossy slab if the

absorption media is anisotropic instead of isotropic. The operating frequency of the proposed

system is free of any dependence on physical dimensions.

2.1 Perfect absorption

Perfect absorption, the phenomenon where an electromagnetic wave incident on a medium

is absorbed completely without any back reflection, has applications in broad range of areas

including biosensing [ 3 ], radar cloaking [  4 ], photovoltaics [ 5 ] etc. This is usually achieved by

manipulating the incoming wave, or the medium, or both.

When the incoming radiation is coherent, perfect absorption can be realized by manipu-

lating the wave to interfere destructively and to dissipate energy into the material, just as in

a time-reversed laser. The resulting coherent perfect absorption (CPA) [  6 ], however, is quite

sensitive to any perturbation from the coherent state of light, or from the balance between

destructive interference and material absorption [  7 ].

On the other hand, with the goal of perfect absorption in mind, manipulation of material

generally involves surface impedance matching. Metamaterials, through its tailorable per-

mittivity and permeability components, can demonstrate perfect absorption via resonance

in photodetectors [  8 ], sensors [  3 ], microcavities [  9 ] etc. from GHz [  10 ] to visible range [ 11 ].

However, material engineering requires a great deal of design effort and complex fabrication

process, making it desirable to achieve perfect absorption through simpler means for large

scale applications.

The aim of this chapter is to have perfect absorption using incoherent light using the zero

reflection of Brewster phenomenon: a semi-infinite slab of lossless non-magnetic dielectric

does not reflect any p−polarized light for a certain angle of incidence. Under the presence
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of an infinitesimal loss for sufficiently large thickness, the slab will eventually absorb all the

incident energy. For the resulting perfect absorber, the frequency of operation only depends

on material properties.

The condition of no back reflection in Brewster phenomenon does not require any co-

herence in the incoming wave since it does not depend on any wave interference (required

for CPA). As a result, the Brewster effect allows perfect absorption of spatially incoherent

radiation. For the incident field that is formed by a random superposition of p- polarized

waves, propagating along the Brewster angle with respect to the interface normal (but in

an arbitrary direction in the interface plane), the entire energy will be transmitted into the

medium and eventually be absorbed. Note that such incident fields are spatially incoherent

due to random relative phases between different plane wave components.

In practice materials are lossy. While this lifts the requirement of infinite thickness of the

absorber, loss destroys the Brewster phenomenon and only gives a reflection minimum in its

stead. Interestingly the same conclusion cannot be generalized to lossy anisotropic media.

In fact, incoherent perfect absorption (IPA) has already been predicted theoretically [ 12 – 14 ]

and observed experimentally [ 15 ] in a strong anisotropic (hyperbolic) medium which shows

dielectric and metallic behavior in two orthogonal directions.

In this paper, we show incoherent perfect absorption can be achieved in lossy uniaxial

dielectric as well and provide material examples already available in nature. We also develop

a physical picture to explain how anisotropy can modify the polarization of a lossy media to

bring back the Brewster phenomenon.

2.2 Zero reflection and Brewster angle

The Brewster phenomenon is illustrated in Fig. 2.1 where a p−polarized light impinges

on an interface between two isotropic lossless media and we have a definite angle of incidence

where there is no reflection (blue curve). For a two-dimensional planar interface, the Brewster

angle only restricts one out of two degrees of freedom in the propagation direction and any

incoherent CPA system. Similar to the planar geometry in the present work, a spherical

CPA resonator operating at frequency ω0 for a particular incident field profile E0(r, ω0), will
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also show perfect absorption for any incoherent linear combinations of the incident waves

Ei(r, ω0) that originate from a spatial rotation of E0(r, ω0) by an arbitrary angle. Here the

CPA leads to zero reflection, for a single spherical harmonic. Due to the rotational symmetry

of the system, spatial incoherent superposition of such states, that differ from each other by

spatial rotation will also be totally absorbed.
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Figure 2.1. Reflection coefficient of a TM polarized light as a function of incident angle
from a plane interface between air and isotropic dielectric material(ε). The blue and red
curves correspond to lossless (ε = 2) and lossy (ε = 2 + i) material respectively. The inset
shows the schematic of the planar system.

If some finite amount of loss is introduced in the isotropic medium, the Brewster phe-

nomenon is not observed and the reflection goes to a minimum instead of zero (see the red

curve in Fig.  2.1 ). However, as we show in the present work that even with lossy ma-

terials there could still be possibilities of no reflection if the material is allowed to have

optical anisotropy. In the next section, we develop a physical picture of the effect of material

polarization.

2.3 Polarization, loss, and anisotropy

When light is incident on a medium, it polarizes the surface molecules and the induced

dipoles radiate in unison. The transmitted wave is the summation of the forward scattered

light from these dipoles and the incident energy, which is reflected in one of Maxwell’s Eq.

∇.D = 0 where the displacement field D = ε0E + P contains both the electric field E and

the polarization P.
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(a) (b) (c)

n

Figure 2.2. Origin of Brewster phenomenon illustrated in terms of material polarization.
(a) A lossless isotropic medium with p−polarized light incident at the Brewster angle will
have all the induced dipoles (shown by red arrows) aligned along the reflection direction.
(b) However, if there is loss present in the medium, the dipoles, instead of oscillating along
a line, rotate with an elliptical trajectory. (c) This can be viewed as a superposition of two
orthogonal linear dipole oscillations with a phase delay as shown by the dotted and solid
arrows. The presence of dipoles oscillating perpendicular to the reflected ray (solid arrows)
sends energy back and suppresses the Brewster phenomenon.

The reflected wave, on the other hand, is the back-scattered radiation wavefront coming

from these dipole sources. If one looks at one oscillating electric dipole, one sees the emanat-

ing radiation expand in spherical shells with the speed of light. However, not all points on

the spherical surface represent to the same radiated energy [ 16 ]. The points on the equator

of the sphere correspond to the most intensity whereas no energy is carried along the polar

direction. As one considers more than one single dipole, interference between the radiation

takes place and the emission angle narrows just as for an antenna array. For a plane wave

illumination on a material surface, we get a continuum picture of induced dipoles and the

emission becomes a ray, sending energy only in one direction with an intensity dependent on

the orientation of the dipole axis with respect to the reflected ray.

For s−polarized light the electric field and hence the polarization is perpendicular to the

reflection direction, and as a result, there is always energy available in the reflected light since

it is contained in the equatorial plane of all the individual dipoles. However, for p−polarized

light there can be a situation when the dipole axis points along the reflection direction (see

Fig.  2.2 (a)). In that case, the reflected ray contains no energy and we have the Brewster

phenomenon.
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Now if we consider an isotropic medium with loss described by a complex permittivity

scalar ε, the transmitted light decays as it propagates because of absorption. This is indicated

by the complex nature of the normal component of the wavevector k = (kτ , kn) given by

kn =

√
ε
(ω
c

)2
− k2τ (2.1)

with ω being the frequency of light. Consequently, the polarization P = (Pτ , Pn) will have a

phase delay introduced between its two components Pτ and Pn since

Pn

Pτ

=
En

Eτ

=
Dn

Dτ

= −kτ
kn

(2.2)

is not real (here the last equality followed from ∇ ·D = 0 ⇔ k ·D = 0). Therefore, instead

of having the induced dipoles oscillating linearly, we have a rotating dipole picture whose

trajectory in general is elliptical (see Fig.  2.2 (b)). This dipole oscillation can then again

be decomposed in two non-zero components (see Fig.  2.2 (c)): one along the reflected ray

(dashed arrows) and the other perpendicular to it (solid arrows). The presence of dipoles

oscillating perpendicular to the reflected ray sends energy back from lossy isotropic medium

and kills the Brewster condition.

However for uniaxial anisotropic material described by permittivity components (ετ , εn),

Eq. ( 2.2 ) is modified as
Pn

Pτ

=
εn − 1

εn

ετ
ετ − 1

Dn

Dτ

. (2.3)

Even though loss introduces a phase difference in the components of D, the different scaling

factors in Eq. ( 2.3 ) can still cancel that phase and make P linearly oscillate again, as in

lossless isotropic case (Fig.  2.2 (a)). This phase cancellation condition, which can bring

back the Brewster phenomenon, would make perfect absorption possible in lossy anisotropic

media. In the next section we further show that this loss-induced perfect absorption can

only exist in uniaxial dielectric and hyperbolic media, but not in metals.
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2.4 Mathematical description

Let us consider a p−polarized light incident from medium 1 onto the interface with

medium 2. If the permittivity components tangential and normal to the interface are given

by ε1τ and ε1n for medium 1, and those for medium 2 by ε2τ and ε2n, respectively, then the

Fresnel reflection coefficient [ 17 ] is

rp =
ε2τk1n − ε1τk2n
ε2τk1n + ε1τk2n

, (2.4)

where the wavevectors in the two media k1 = (k1τ , k1n) and k2 = (k2τ , k2n) maintain

k21τ
ε1n

+
k21n
ε1τ

=
(ω
c

)2
=
k22τ
ε2n

+
k22n
ε2τ

. (2.5)

The zero(s) of rp corresponds to the zero reflection for the IPA. Then from Eq. (  2.4 ) we have

ε2τk1n = ε1τk2n. (2.6)

Due to translational symmetry, the tangential components of the wavevectors will be same

for both media: k1τ = k2τ ≡ kτ . If we assume medium 1 to be lossless air (ε1τ = ε1n = 1)

then we get

ε′2τ +
ε′′2τ
ε′′2n

ε′2n =
1

1− ( c
ω
)2k2τ

(2.7)

where ε′ and ε′′ represent the real and imaginary parts of the corresponding permittivities.

The right hand side of Eq. (  2.7 ) is always positive as ( c
ω
)2k2τ < 1. Since medium 2 is

absorbing ε′′2τ , ε′′2n > 0, both ε′2τ and ε′2n cannot be negative simultaneously. This condition

shows that lossy metals cannot exhibit zero reflection from the air-metal planar interface.

Except for metals, other materials satisfying Eq. (  2.7 ), such as an anisotropic dielectric or a
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Figure 2.3. Three dimensional plot of the real part of the tangential permittivity that
corresponds to the incoherent perfect absorption for incidence from air, vs. the real and
imaginary parts of the normal component of the permittivity. Panel (a) corresponds to the
imaginary part of the normal permittivity component ε′′2n = 200. Here the real part of the
tangential permittivity ε′2τ is positive everywhere in the plot, so that the range ε′2n < 0
correspond to the hyperbolic regime, while the region with ε′2n > 0 describes a dielectric.
In panel (b), the imaginary part of the normal permittivity component ε′′2n = 2, and the
solution includes both hyperbolic and dielectric bands. Note that ε′2τ and ε′2n are never
simultaneously negative. In panel (c), we have ε′′2n = 0.02. Here the region the region
0 < ε′2n with ε′2t < 0, again corresponds to the hyperbolic behavior.

hyperbolic medium, may support zero reflection. To find the condition for perfect absorption

in terms of material parameters, we find

(ε′′2n)
2 − ε′′2n

ε′′2t
(ε′2τ − 1)− ε′2n + (ε′2n)

2 = 0 (2.8)

which can be shown to be consistent with the phase canceling condition developed in the

previous section.

Equation (  2.8 ) can be used as a criterion for zero reflection in any nonmagnetic (µ = 1)

lossy uniaxial material. The solution of Eq. (  2.8 ) for ε′2τ is shown in Fig.  2.3 as a function

of other material parameters. Each point in Fig.  2.3 corresponds to the combination of

the material permittivity for zero reflection. Note that the observed behavior is consistent

with the predictions [  14 ] of perfect absorption for hyperbolic material with large transverse

and small axial components of the permittivity tensor. Additionally, Eq. (  2.8 ) predicts

that lossy dielectric with permittivity components satisfying the condition would provide
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zero reflection as well (see Figs.  2.3 (a)- 2.3 (b)). In the following section we will show few

examples of naturally available lossy dielectric material to support the above result.

2.5 Material examples

As an example of the preceding discussion, we show sapphire (Al2O3), a commonly

used material in optical applications [ 18 ] is naturally anisotropic. The dielectric permit-

tivity [ 19 ] in the infrared spectral range and the reflection coefficient from Eq. (  2.4 ) are

plotted in Figs.  2.4 (a)- 2.4 (c). Fig.  2.4 (c) shows that for the dielectric permittivities

(εn, ετ ) ≈ (−1.474 + 0.146 i, 8.326 + 0.292 i) at the frequency ω ≈ 503.46 cm−1, Al2O3 sat-

isfies the zero-reflection condition even though the material has loss. This is consistent with

the predictions in [  15 ] which pointed out perfect absorption by lossy indefinite anisotropic

medium. While this frequency is within the hyperbolic band, nontrivial dispersion of sapphire

also leads to the zero reflection at another frequency ω ≈ 520.93 cm−1. At this frequency,

the permittivity components (εn, ετ ) ≈ (2.099 + 0.079 i, 15.274 + 0.491 i) of sapphire is from

dielectric band. Consequently, if a p− polarized wave of that specific frequency impinges on

a half infinite Al2O3 slab, all the incoming light will be absorbed.

For the second example, we use hexagonal Boron-Nitride (h-BN), another promising

optical application [ 20 ] platform. Anisotropic properties of this material are shown in the

dielectric permittivity [  21 ] plot (Fig.  2.5 (a)). The reflection coefficient plot in (Fig.  2.5 (b))

indicates that perfect absorption occurs at frequencies ω ≈ 611.7 cm-1 and ω ≈ 952.8 cm-1

which are consistent with the results in [  15 ]. Thus, a p-polarized light will be perfectly

absorbed at those frequencies and the corresponding Brewster angles are 68.8◦ and 72.9◦

respectively shown in (Fig.  2.5 (c)). Notice that the permittivity values (εn, ετ ) ≈ (7.351 +

0.038i, 6.794 + 0.0047i) and (εn, ετ ) ≈ (3.051 + 0.0159i, 8.084 + 0.0180i) are both from the

dielectric band. The nonzero imaginary parts of the permittivity tensor show that despite

being lossy, h-BN supports perfect absorption.

IPA can also be observed for higher energy photons upto and including ultraviolet fre-

quency band. For example anisotropic dielctric response of graphite [  22 ] satisfies Eq. ( 2.8 )
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Figure 2.4. Perfect absorption from Al2O3 - air interface: (a) dielectric permittivity
[ 19 ] of both tangential and normal components of Al2O3 slab vs. frequency, (b) 2D plot
of reflection from Al2O3 slab for p− polarization as a function of incident angle (degrees)
and frequency (cm−1). The false color shows the reflection amplitude. Note the presence of
perfect absorption at the frequencies ω ≈ 503.46 cm−1 and 520.93 cm−1, indicated by the
arrows, (c) the absolute value of the reflection coefficient as a function of incident angle for
the frequencies indicated by two arrows in (b). Reflection at 64.465◦ and 79.151◦ respectively
goes to zero, corresponding to the Brewster angles for the indicated frequencies.
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Figure 2.5. Perfect absorption from h-BN - air interface: (a) dielectric permittivity of
h-BN slab as a function of frequency, (b) 2D plot of reflection from hBN-air interface for p−
polarized light as a function of incident angle (in degrees) and frequency (cm-1). The false
color shows the reflection amplitude, and the presence of perfect absorption at frequency
ω ≈ 611.7 cm−1 and ω ≈ 952.8 cm−1 are shown by the blue and red arrows respectively,
(c) the absolute value of the reflection coefficient as a function of incident angle for the
indicated arrow in (b).
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for ω ≈ 27027 cm-1 and 39215 cm-1 (corresponding λ ' 370 nm and 255 nm, respectively)

at the interface orthogonal to the basal crystallographic plane.

2.6 Discussion

Perfect absorption due to Brewster phenomenon in planar media is related to the as-

sociated Brewster wave [  23 ]. If, starting from lossless isotropic dielectric, we continuously

increase the losses in the material, the Brewster wave evolves directly into the Zenneck sur-

face wave (ZSW) [  24 ]. Inherent leaky nature of ZSW for isotropic lossy dielectric material

makes the reflection coefficient minimum instead of zero (red curve in Fig.  2.1 ). In fact, the

criterion for zero reflection in Eq. (  2.6 ) is identical to the Eq. for ZSW in lossy isotropic

dielectric material. These identical Eqs. stem from the same boundary condition for both

Brewster wave and ZSW, which implies that there is only one wave at infinity in the first

medium.

Equation ( 2.8 ) is a non-trivial constraint on the medium parameters for the zero reflec-

tion condition, and hence not all anisotropic dispersive material can be candidates for IPA.

However, consideration of biaxial and magnetic materials [ 13 ] may expand the solution space,

even for other polarizations of light. Furthermore, a particular material is not restricted to

satisfy Eq. ( 2.8 ) only at a single frequency. Instead, as shown in the examples of Al2O3,

h-BN, and graphite, there could be multiple operating frequencies for the same material.

Since the proposed system does not require any additional layered or surface structures, the

operating frequency depends solely on material parameters, making this technique suitable

for broad range of sensing and thermal applications.

So far, we have considered the case of planar system that has infinite thickness. Restric-

tion to finite thickness due to practical consideration will not change the results appreciably

because of the exponential field decay (∼ exp(−Im{kn}z)) inside the medium. The corre-

sponding absorption length δ = 1/Im{kn} then characterizes the absorber performance. For

the examples given in this article the absorption lengths for sapphire, h-BN and graphite are

on the order of tens of microns, a few millimeters and few hundred nanometers, respectively.
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2.7 Summary

A planar system for incoherent perfect absorption has been proposed and the relevant

condition on material parameters has been derived. To explain the associated principle a

physical picture is given from material polarization perspective. The scope of material choice

for potential realization of such a system has been extended from hyperbolic media to lossy

uniaxial dielectric class, and material examples have been provided.
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3. THERMAL EMISSION AT THE OPTICAL TOPOLOGICAL

TRANSITION

This chapter has been partially reproduced from a previous publication [  25 ].

In this chapter we develop a theoretical description of far-field thermal radiation near

optical topological transitions of uniaxial media. Our results show a strong asymmetric

pattern of reduced emission near the transition from type-I hyperbolic to dielectric responses

and are applicable in both naturally available and composite media.

3.1 Optical topological transition

Conventional phase transitions in materials may be induced by changes in temperature or

stress. Similarly, optical properties also exhibit a drastic change due to a variation in external

parameters such as photon energy. For example, silver is reflective for low energy photons but

transparent for photons above the plasma frequency. Optical topological transition (OTT)

corresponds to the drastic change in the electromagnetic response. This originates from a

transformation in the topology [ 26 ] of the phase space for light waves propagating in the

medium.

Optical responses of different “phases” differ in many aspects. For example, in the di-

electric phase light passes through in all directions, but the propagation is diffraction limited

[ 27 ]. On the other hand, in the “hyperbolic” phase [  28 ] light propagates in limited directions

and does so without beam broadening. This is due to the “hyperbolic” phase behaving like

a metal in one direction and a dielectric in the orthogonal direction. Finally, in the metallic

phase, no propagating waves are supported at all. Transition between these phases results in

drastic changes such as reduced reflection, spontaneous emission [ 29 ], superresolution imag-

ing [ 30 ], enhanced radiative thermal conductivity [ 31 ], and near-field super-Planckian [  17 ,

 32 – 34 ] radiation.

In this article, we show that optical topological transitions have strong effect in far-field

thermal radiation as illustrated in Fig.  3.1 (a). Note the drastic change in thermal radiation
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Figure 3.1. Far-field radiation intensity (I, normalized to blackbody [ 35 ])
plot from dolomite (CaMg(CO3)2)[ 36 ] mineral as a function of frequency and
radiation angle (θ) from a flat interface as shown in panel-(a) for several wave-
length regimes. Different optical phases: dielectric (εn > 0, ετ > 0), anisotropic
metal (εn < 0, ετ < 0, hyperbolic type-I (εn < 0, ετ > 0) and hyperbolic type-II
(εn > 0, ετ < 0) are indicated by D, M, H-I, and H-II, respectively. Note that
the color coded numerical value of intensity has different characteristic profiles
for different OTTs. Panel-(b) shows the corresponding anisotropic dielectric
permittivities where ετ and εn represent permittivities along tangential and
normal directions of planar dolomite crystal, respectively.
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Figure 3.2. Thermal radiation due to ghost transition. Panel -(a) shows
the dielctric permittivity of sapphire Al2O3 [ 19 ] for metallic band. Solid and
dotted lines correspond to the real and imaginary parts of the permittivity,
respectively. Even though, both real parts are negative within the bandwidth
considered here, one of the components was about to change its sign (ghost
transition, inset shows magnified image). The corresponding far-zone ther-
mal radiation is shown in panel-(b) where we see no radiation due to metal-
lic phase except the ghost region which results in narrowband emission with
∆ω ≈ 5cm−1.
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leaving emission features within the parameter space of radiation angle and wavelength,

considered in this analysis. Furthermore, as pointed out, each radiation feature is related

with corresponding optical phase (D, M, H-I, H-II, etc.) which evolves as the permittivities

(εn, ετ ) change with wavelength as shown in panel-(b). At the crossover of optical phases

where one of the permittivity components changes its sing, topology of electromagnetic

responses leave characteristic signature in the far-zone thermal emission. The signature is

even evident in the case of “ghost” transition: a topological change which did not take place

but was about to, as shown in Fig.  3.2 .

For understanding the OTT, we use the concept of the isofrequency surface: a surface of

allowed electromagnetic modes in the momentum space at constant frequency. The disper-

sion relation of an uniaxial medium can be described by the equation k2τ/εn+k2n/ετ = (ω/c)2

for p-polarized wave. Here the wavevector of the propagating wave is given by ~k ≡ (kτ , kn),

ω is the frequency of radiation, c is the light speed in vacuum and the dielectric permittiv-

ities {ετ , εn} are along the tangential and normal propagation directions, respectively. The

constant frequency surface of the dielectric (ετ , εn > 0) phase in momentum space forms an

ellipsoid. On the other hand, when permittivity tensor components have opposite signs, the

isofrequency surface forms a hyperboloid (different topology). The contrast between open

topology of hyperboloid and close topology of ellipsoid shows up qualitative differences in

the propagating waves of the corresponding phases. The wavenumbers in case of hyperbolic

phase are not limited by the isofrequency surface, while they are confined by the frequency

in dielectric phase.

Even though hyperbolic media support large wavenumbers exceeding the outside medium

wavenumber (k0 = ω/c0), the energy is carried into the far zone by corresponding propagating

modes. If the interface of the material and the outside medium is flat, then the symmetry of

the system allows waves with tangential momentum between −k0 and +k0 (low k), satisfying

momentum conservation, to outcouple. Hence, the low k momentum subspace dictates far-

field thermal radiation properties.
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Figure 3.3. 2D plot of isofrequency surface (contour) for lossless uniaxial
anisotropic medium. Type-I hyperbolic phase in panel (a) shows that it sup-
ports low-k momentum for all frequencies (e.g.: ω1, ω2). As the frequency
changes, open isofrequency contour turns into a closed one at ω = ωc and the
medium becomes dielectric. The isofrequency contour of the dielectric phase
(ω3, ω4) is plotted in panel (b). The corresponding frequencies are indicated by
different colors in the dielectric permittivity plot in panel (c) where ετ remains
positive and εn changes sign at ω = ωc. The asymmetric feature of the thermal
radiation related to the OTT appears near the proximity of ωc indicated by
the shaded region. In this range, the linear model of the material permittivity
even though it may be significantly different, is accurate to the actual value.

3.2 Mathematical model of OTT

In this letter, we focus on a particular OTT: hyperbolic type-I to dielectric phases where

ετ remains constant and εn changes sign with frequency. Isofrequency surfaces of both phases

(see ω1 and ω4 in Fig.  3.3 ) have tangential momenta spanning the entire momentum space

from −k0 to +k0 of the outside medium. As a consequence, thermal radiation far away

from the OTT critical frequency appears to be very similar for both phases. However, the

signature of the OTT is quite evident near the transition frequency. Furthermore, we predict

that this OTT will have a unique far-field thermal emission feature present in the parameter

space of radiation angle and frequency for p−polarized waves.

To calculate the far-field radiation pattern near the OTT, we analyze the evolution

of the isofrequency surface (Figs.  3.3 (a)- 3.3 (b)) in the vicinity of the transition. In the

hyperbolic phase, the entire low k spatial spectrum is supported by the medium allowing

for thermal radiation in all directions. At the transition frequency, the closed isofrequency

surface (ωc) only supports tangential momentum kτ = 0. As the frequency increases beyond
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the transition, the closed isofrequency surface (ω3) will only support a subset of the low k

momentum. Therefore, due to momentum matching conditions only certain directions of

outcoupled radiation are supported. The allowed tangential momenta for far-field thermal

emission from the dielectric band can be expressed as

kτ < k0
√
εn(ω). (3.1)

The far-field emission profile from a planar surface can be related to the reflectivity [  17 ],

ξ(ω, θ) = (1−R) cos θ (3.2)

where ξ(ω, θ) is the thermal emissivity [ 37 ] at the radiation angle θ with respect to surface

normal and R is the Fresnel reflection co-efficient. For a low-loss material, the reflectivity

near the OTT can be obtained from the approximation that neglects the (small) imaginary

part of the dielectric permittivity. Furthermore, in the vicinity of the OTT we can neglect

the frequency dispersion of the permittivity component that does not change sign at the

transition, while for the other component we use linear approximation for frequency depen-

dence. We therefore approximate ετ (ω) ≈ ετ (ωc) and εn(ω) ≈ α(ω−ωc). The corresponding

thermal emissivity due to the p−polarized wave is obtained as follows

ξp(ω, θ) ≈ a(θ)×


ω−ωc−b1(θ)
ω−ωc−b2(θ)

, {ω, θ} ∈ A

0, {ω, θ} ∈ B

1 + b3(θ)
ω−ωc

, {ω, θ} ∈ C

(3.3)
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Figure 3.4. 2D plot of spectral directional emissivity as a function of fre-
quency and radiation angle. Numerical value of the emissivity is shown by the
false color on the scale from 0 to 1. Here we use ετ=1 for the entire spectrum
and linearly increasing value of εn (α = 0.65) with frequency which changes
its sign from negative to positive at ω = ωc. Therefore, region A corresponds
to hyperbolic and regions B, C are within the dielectric band.

where

a(θ) =
4
√
ετ (ωc) cos

2 θ

(1 +
√
ετ (ωc) cos θ)2

, (3.4)

b1(θ) =
sin2 θ

2α
, (3.5)

b2(θ) =
1

(1 +
√
ετ (ωc) cos θ)

sin2 θ

α
, (3.6)

b3(θ) =
(1−

√
ετ (ωc) cos θ)

(1 +
√
ετ (ωc) cos θ)

sin2 θ

2α
. (3.7)

The resulting emissivity is shown in Fig.  3.4 as a function of radiation angle and fre-

quency. Note the sharp contrast of emissivity across the region boundaries. The edge at

the critical frequency corresponds to the OTT from type-I hyperbolic to dielectric, while the

border between region B and region C is not a transition between two optical topological
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phases (i.e. metal, dielectric, hyperbolic), rather the limit of total internal reflection [  38 ] of

a dielectric medium.

3.3 Material examples

As an example of this behavior we present the thermal emission intensity [ 35 ] (normal-

ized to blackbody at the same temperature, Eq. (  3.2 )) from sapphire (Al2O3) [ 19 ] in Fig.

 3.5 (b). For this calculation, we use experimentally measured dielectric permittivity [  19 ] in

the infrared spectral region (see Fig.  3.5 (a)) where medium optical response changes from

hyperbolic type-I to dielectric. To find out the parameters introduced in Eqs. (  3.4 ) - ( 3.7 ),

we numerically calculate the slope of εn and the value of ετ at the critical frequency. Near

the OTT, the corresponding radiation energy goes down drastically showing good agree-

ment with the theoretically calculated region boundaries (superimposed black dotted line).

Furthermore, the thermal emission from all three regions is consistent with the theoretical

prediction in Fig.  3.4 .

As a second example, we consider another promising platform hexagonal Boron-Nitride

(h-BN) [ 20 ] for optical applications. In this material [  21 ], εn changes its sign at the frequency

ω = 818.94cm−1 as shown in Fig.  3.5 (c), corresponds to the OTT described in this article.

As expected, in the vicinity of the transition, the radiated energy (Fig.  3.5 (d)) diminishes

strikingly corresponding to region B of the theoretical profile described in Eq. ( 3.3 ).

This feature of reduced thermal emission is not limited solely to natural media. Meta-

materials with metal-dielectric periodic structure also show the same behavior. Consider

GaAs based composites, which are well known and commonly used platforms due to their

semiconductor and photonic applications [ 41 ]. Using the effective parameter model intro-

duced in Ref. [  28 ,  42 ] for a heterostructure composed of periodic layer of InAlAs and doped

InGaAs, we calculate the dielectric permittivity shown in Fig.  3.5 (e) for 50% metal fill frac-

tion. Within the frequency range of interest, ετ remains positive while εn changes its sign and

the corresponding thermal emission shown in Fig.  3.5 (f) drops near the critical frequency.

Comparing the numerical result with our theoretical model, given in Eqs. ( 3.3 ) - ( 3.7 ) (Fig.
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Figure 3.5. Dielectric permittivity for different materials in panels (a), (c),
and (e) as a function of frequency. The solid (dotted) blue and red curves
correspond to the real (imaginary) part of ετ and εn, respectively. The cor-
responding radiated (normalized to black body) thermal intensity are shown
as a function of radiation angle and frequency in panel (b), (d), and (f). The
theoretically predicted boundaries in black dotted lines are superimposed for
each material and it shows that at the topological transition, all three have a
general profile predicted by the model. Inset of panel (e) shows that the reflec-
tivity calculated based on effective medium theory is highly accurate compared
to the exact (e.g. S− matrix based[ 39 ,  40 ]) method when the unit cell length
of multilayer system is much smaller than the wavelength.

41



 3.4 ), we clearly see the reduced emission that corresponds to region B from the theoretical

prediction.

The asymmetric feature of the thermal emission happens within very narrow frequency

range compared to the typical frequency scale of the permittivity variation as shown in

Fig.  3.5 . This justifies the use of linear model for material permittivity in Eq. (  3.3 ). In

fact, exact reflectivity (Fig.  3.5 (e) inset[ 39 ,  40 ]) based on S− matrix method for multilayer

system yields emission pattern which is visually indistinguishable from that of Fig.  3.5 (f),

when the wavelength (2.5 µm - 3.3 µm) is larger than the unit cell length (e.g. 200 nm).

Note the presence of region B in all three examples considered. Furthermore, the general

asymmetric profile of reduced emissivity is in good agreement with the theoretical model in

all the examples.

However, one can see visible discrepancies in the actual thermal emission profile compared

with the theoretical model. In particular, the nonzero emission in region B , where the theory

predicts zero emission, is due to the finite loss of the material. Frequency dependence of

εn may also differ from our linear approximation. As a consequence, the boundary between

region B and region C in h-BN deviates from the model.

3.4 OTT by metal-dielectric composite

The predicted behavior is not limited to specific metamaterials but is, in fact, common

to all planar metal-dielectric composites. To justify the claim, we plot the optical phase

diagram [  32 ] for the entire class of planar conducting-dielectric periodic systems in Fig.

 3.6 . One can clearly see the transition (white line) from the hyperbolic to dielectric phase

for predicted thermal emission. This transition is supported by all such heterostructures

regardless of metal fill fraction.

The thermal emission near the OTT reduces drastically and both natural and composite

materials show this behavior. Hence, the existence of the asymmetric feature should be

experimentally observable and can be used as a tool to detect the OTT between type-I

hyperbolic and dielectric phases.
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Figure 3.6. The “phase diagram” of metal-dielectric layered system as a func-
tion of metal fill fraction and frequency with false color showing the metallic,
dielectric, and hyperbolic response of the composite. As a convenient mea-
sure of frequency, we choose the ratio of metal to dielectric permittivity which
behaves as −1/ω2. The phase diagram shows all phases: anisotropic metal,
anisotropic dielectric, hyperbolic type-I and hyperbolic type-II are labeled by
M, D, H-I, and H-II, respectively. The transition for the zero thermal emission
of p− polarized light has been indicated by the dark white line at the bound-
ary of H-I and D phases. Similar transition takes place when permittivity of
metal is negative for 0 < fm < 0.5 shown in dotted white line. However, asso-
ciated loss of such transition is too high to produce the zero emission feature
for p−polarization.
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Moreover, away from the OTT, the contribution from s− polarized wave to the thermal

emission is comparable to that of p− polarized wave. However, near the OTT, the thermal

emission intensity of p−polarized wave drops by approximately an order of magnitude while

emissivity of s− polarized light does not change significantly because ετ remains approxi-

mately constant at the OTT. Hence the predicted effects of thermal emission persist when

both polarizations are taken into account. Thus, it is possible to build frequency-varying

polarized thermal emitters using planar fabrication technology.

Finally, the interface can also support a surface wave. But, since surface waves have

high momenta kτ > k0, they would not couple to the far-field and hence will not change

our result. However, the situation becomes very different in the case of near-field radiation.

Exponential decay of the surface wave away from the interface affects the near-field radiation

significantly which could reach beyond Planck radiation limit[  32 ]. To generalize our result

for the near-field radiation one has to include surface wave contribution in our model.

3.5 Summary

In conclusion, a theoretical description of far-field thermal radiation has been developed

near an optical topological transition. Material examples consisting of both natural and

composite media showed that our analytic approach is in good agreement with numerical

results.
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4. GHOST WAVE IN BIAXIAL MEDIA

This chapter has been partially reproduced from previous publications [ 43 ,  44 ].

In this chapter we show that ghost waves – a special class of nonuniform waves in biaxial

dielectric media that are not present in uniaxial or isotropic classes. Moreover, interactions

between such hybrid waves can lead to exact frequency degeneracies in guided modes. These

degeneracies are a new way of controlling mode interactions with a broad range of potential

applications, such as integrated waveguides, nonlinear optics, and optical sensing.

4.1 Biaxial medium

Optical biaxial media are such that there are no two equivalent crystallographic directions

that could be chosen which makes the media different from uniaxial or isotropic media where

such equivalent directions exist. Thus, optical permittivities of biaxial crystal along the

principal dielectric axes are all different from each other (εx 6= εy 6= εz).

In contrast with the uniaxial media, there can be two or more optically equivalent di-

rections chosen in a plane perpendicular to an axis having threefold (rhombohedral [  45 ]),

fourfold (tetragonal [  46 ]) or sixfold (hexagonal [  47 ]) symmetry. If the axis is along z direction

and one dielectric axis coincides with it, then εx = εy 6= εz. Contrary to that, the directions

of the principal dielectric axes in the biaxial media may (orthorhombic, monoclinic) or may

not (triclinic) be determined by the crystallographic symmetry. In the case of orthorhombic

symmetry, all three principal dielectric axes are aligned with the crystallographic orientation.

However, for triclinic system, the directions of all three axes are dictated by the frequency

of light passing through.
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4.2 Dispersion

In general, a plane wave propagating in biaxial media is determined by the dielectric

tensor εij that links the displacement field and the electric field as follows

Di =
∑
j

εijEj; where{i, j} = {x, y, z}. (4.1)

If the coordinate axes of the system coincides with the principle dielectric axes, then in

transparent media, εij = 0 for i 6= j and the above relation simplifies to Di =
∑

i εiiEi.

Inside such biaxial media, a monochromatic plane wave with frequency ω and momentum

vector ~q = (qx, qy, qz) satisfies the following wave equation

~D +
~q × ~q × ~E

k20
= 0 (4.2)

where k0 is the free space momentum. Using vector algebra and material properties, the

above equation can be reduced to

k20εiEi − |q|2Ei + ( ~E · ~q)qi = 0. (4.3)

Equation ( 4.3 ) being linear and homogeneous in Ex, Ey, and Ez, can be solved for nonzero

values if the associated determinant is zero, which yields a quartic dispersion equation

εxεyεzk
4
0 + |q|2(εxq2x + εyq

2
y + εzq

2
z)

−

[
q2xεx(εy + εz) + q2yεy(εz + εx) + q2zεz(εx + εy)

]
k20 = 0.

(4.4)

Notice the absence of both cubic and linear terms from eq. (  4.4 ). This biquadratic equation

corresponds to a wavevector surface having two shells in the momentum space as shown in

Fig.( 4.1 ). In other words, for each direction, there are two propagating modes supported by

biaxial media. If any two (qx, qy) of the momentum components are given, then Eq.(  4.4 ) can

be solved for the third component [  48 ]
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Figure 4.1. 3D momentum space of biaxial medium shown from inside (a) and outside (b)
the shell. Note that the presence of Diabolic points (DPs) on qz = 0 plane which create cusps
in the 3D momentum space where the Poynting vectors (s) have a negative (z) component
correspond to negative index mode (NIM)[ 49 ]. On the contrary, outside the cusp regime,
the Poynting vector creates an acute angle with the momentum vector that corresponds to
a positive index mode (PIM). The black dotted ring shown in panel-(b) corresponds to the
boundary between PIM and NIM where they annihilate each other.
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2
} 1
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(4.5)

However, for wave propagation along any principal dielectric plane (i.e. qz = 0), the

biquadratic dispersion (Eq.  4.4 ) turns into two independent quadratic equations representing

TE and TM modes as shown in Fig. (  4.2 ). Polarizations of these independent modes are

such that one of the field components is zero. Whereas, in general, biaxial media support

hybrid mode consisting of all nonzero field components [  48 ]. Moreover, the isofrequency

contours separate different regimes of momentum space as indicated in Fig. (  4.2 )(b).

The isofrequency contours of biaxial media have four singular points of self-crossing

known as Diabolic points (DPs); Of which, all of them are located on the crystallographic
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Figure 4.2. (a) Isofrequency contours q2x
εy

+
q2y
εx

= k20 (red) and q2x + q2y = εzk
2
0 (blue)

supported by biaxial crystal with εx < εz < εy. Note the singularities induced by the
self-crossing of the isofrequency wavevector at plane qz = 0. While those singular points
form two principal optical axes through the origin of the momentum space, the isofrequency
contours correspond to the region boundaries in the phase space. Different regimes can
be mathematically classified by the values of the qz as indicated by the magnified view of
the momentum space in panel (b). Out of five different regimes-“3” and “4” are unique in
biaxial crystal while regimes-“1”, “2”, and “5” are similar to uniaxial media.

plane and the optical axes can be found by connecting two opposite DPs through the origin

of the momentum space. The directions of optical axes are the only ones for which the

wavevector has one magnitude. If any two components of the dielectric permittivity are equal,

then, two optical axes are aligned with each other and pointed towards the crystallographic

axis resulting in uniaxial media.

For biaxial media with permittivity εx < εz < εy, all four DPs are on qz = 0 plane

which connect several regimes of the momentum space. Mathematically, those regimes can

be identified by the solution of qz (Eq.  4.5 ) as shown in Fig.  4.2 (b). While regimes -“1”,

“2”, and “5” are similar to uniaxial media, regimes -“3” and “4” uniquely differentiate the

biaxial crystal from the uniaxial. In regime-“1”, both qz are real but the corresponding ray

directions are different resulting in birefringence. However, in regime-“2”, one of the modes

is an evanescent type resulting in unimodal propagation. Finally, regime-“5” does not allow
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any propagating mode within biaxial media indicating that both qz are imaginary and the

associated modes decay exponentially with distance.

Figure 4.3. Dispersion diagram of biaxial media as a function of qz (qx and qy are
fixed) where solid and dotted lines correspond to real and imaginary parts of the frequency,
respectively. Note that, the operating regimes indicated in the frequency scale are akin to
that of the momentum space (Fig.  4.2 b) whereas the region boundaries are marked by ωi.

Contrary to that, in regime-“3”, even though both modes (q±z ) are the propagating type,

their difference (∆qz = q+z − q−z ) decreases with the increase of q. This behavior is due to

the presence of an anomalous dispersion (i.e., ∂ω
∂qz

< 0) resulting in the NIM [  50 ] supported

by biaxial media. To show these nontrivial dynamics we plot ω(q) as a function of qz in
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Fig. ( 4.3 ) where different regimes of operations are indicated in the frequency scale and the

region boundaries are defined as

ω1 = c

√
q2x
εy

+
q2y
εx
,

ω2 = c

√
q2x + q2y
εz

,

ω3 =
c

εy − εx

(
qx

√
1− εx

εz
+ qy

√
εy
εz

− 1

)
,

ω4 =
c

εy − εx

(
− qx

√
1− εx

εz
+ qy

√
εy
εz

− 1

)
.

(4.6)

Note the transition from regime-“2” to regime-“3” where one biaxial mode evolves con-

tinuously but the other one transforms nontrivially from imaginary to real with ∂ω
∂qz

< 0.

Moreover, such nontrivial evolution turns both modes to annihilate each other at ω3 where

all higher order dynamics of biaxial modes have equal magnitudes but opposite phases. In

the momentum space (see fig. 4.2 (b)), this condition is indicated by the black dotted line

touching TE and TM isofrequency contours. Beyond the tangent bifurcation, dynamics of

the system modes enter into complex phase space resulting in ghost wave(s): a qualitatively

new hybrid wave supported by regime-“4” of the phase space where propagating constant

pair (q±z ) is complex conjugate to each other while the other two (qx, qy) are real. Finally, in

regime-“5” both qz are imaginary.

Akin to different phases in the momentum space, biaxial crystals support qualitatively

different types of electromagnetic waves. In the next section, we will discuss such waves in

the realm of parallel plate waveguides with biaxial media as a core.

4.3 Parallel plate waveguides with biaxial core

Consider a parallel plate optical waveguide system as shown in the schematic in Fig.  4.4 

(a) with biaxial core inside. Since the refractive indices of the core region are direction-

dependent, careful attention is given to the value of the permittivities and the orientation

of the core. For structural simplicity, we use isotropic cladding surrounding the core region
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Figure 4.4. (a) Parallel plate waveguide with biaxial core (red) and isotropic cladding
(water blue) with permittivities εbiaxial = diag(2, 30, 6) and ε0 = 7.2, respectively. (b)
Schematics of the momentum space of biaxial core where momenta (qx, qy) correspond to
that of the tangential components of the guided modes which are being changed in our
calculation along the dotted purple line with slope m = 0.4; Note that the orientation of the
crystal would remain same throughout the thesis except section-4.10 where the necessity of
the change in the orientation is discussed in details.

and assume that the interface of the system is infinitely extended. Moreover, the thickness

of the cladding is assumed to be infinite whereas the core has finite width as shown in the

schematic.

The orientation of the biaxial crystal is such that the plane containing maximum and

minimum values of the permittivities is parallel to the interface plane. Whereas, the normal

direction to the interface has permittivity between maximum and minimum. Note that to

excite guided modes supported by different regimes of the momentum space, the refractive

index of the isotropic medium is chosen such that εx < εz < ε0 < εy.

Dispersion of those modes is shown in Fig.  4.5 (a). Note the presence of all five regimes

supported by the system. Modes within regime-“2” are well separated from each other in

the frequency scale and orthogonal as if the core is isotropic media. Contrary to that, in

regime-“3”, the interaction is nonzero. Moreover, the interactions vary as a function of

frequency and momentum which result in both mode degeneracies and repulsions (details of

mode interactions are discussed in Secs.  4.7 -  4.9 ). Finally, in regime-“4”, due to complex

conjugation characteristic of momentum component qz, mode profile within biaxial core

51



Figure 4.5. (a) Schematics of 2D plot of the determinant of transfer matrix [  39 ,  48 ]
representing isotropic-biaxial-isotropic system where the false color indicates the value of
the determinant in natural log scale. The deep blue lines representing zero of the transfer
matrix correspond to the guided modes of the system. Note the presence of all five regimes
which are inherent to biaxial crystal, supported by the system. Among all five regimes,
regime-“1” corresponds to light scattering which remains above the light (yellow) line while
regimes-“2”-“4” support guided modes. Field profiles associated with three qualitatively
different guided modes are shown in panels (b)-(d). Finally, due to the imaginary nature of
the propagating constants (qz), regime-“5” does not support any guided mode.
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contains both oscillating and exponential decaying fields known as “ghost” wave [  50 ] as

shown in Fig.  4.5 (d). In the next section, we will discuss more details about ghost waves

and their excitation mechanism.

4.4 Ghost waves

Ghost wave is a special class of non-uniform electromagnetic waves [ 51 ] inside a biaxial

anisotropic medium that combines the properties of propagating and evanescent fields. The

designation “ghost” [  50 ] refers to the fact that these waves are created in tangent bifurcations

that annihilate pairs of positive and negative index modes and represent the optical analogue

of the “ghost orbits” in the quantum theory of non-integrable dynamical systems [  52 ].

Although ghost waves can be generally excited in a variety of device geometries and

material platforms, a simple prototypical realization would be its excitation as a surface

wave but the conclusion will hold in general for any arbitrary ghost waves.

4.5 Ghost surface waves

Ghost surface waves are a special class of Dyakonov surface waves [ 53 ] that can be con-

fined at the interface between biaxial and isotropic medium with permittivity ε0. Analogous

to conventional Dyakonov waves as shown in Fig.  4.6 (a), ghost surface waves decay exponen-

tially away from the interface in the isotropic material. However, inside the biaxial medium,

they act differently: in addition to the exponential decay they also show oscillations (see

Fig.  4.6 (b)).

If the z direction points along the interface normal, and the y direction is chosen such

that εx < εy, then one of the conditions for the existence of the surface wave is [  48 ]

εx < εz < ε0 < εy (4.7)
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Conventional Dyakonov wave Ghost surface wave
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Figure 4.6. Surface waves that can be excited at the interface of a biaxial (green) and an
isotropic (white) dielectric media can be of two distinct classes: (a) conventional Dyakonov
waves and (b) ghost surface waves. Among these, only ghost surface waves decay with
oscillations inside the biaxial medium.

Moreover, the tangential components of the wavevector (qx, qy) have to satisfy the surface

wave dispersion equation [  48 ]

κ0(κ+ + κ−)

{
εxεy
ε0

[(ωs

c

)2
− q2x
εy

−
q2y
εx

]
− κ+κ−

}

+ κ+κ−

[
(εx + εy)

(ωs

c

)2
− ε0 + εx

ε0
q2x −

ε0 + εy
ε0

q2y

]

+

{
εxεy
ε0

κ20

[(ωs

c

)2
− q2x
εy

−
q2y
εx

]
− κ2+κ

2
−

}
= 0

(4.8)

where ωs corresponds to the single interface resonance frequency for the surface wave. Here,

the fields of the surface wave decay evanescently within the dielectric side with a decay

coefficient

κ0 =

√
q2x + q2y − ε0

(ωs

c

)2
. (4.9)
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The corresponding decay coefficients within the biaxial side can be found by solving eq. (  4.4 )

κ± = iqz =
1√
2

{(
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εx
εz

)
q2x +

(
1 +

εy
εz

)
q2y − (εx + εy)
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c

)2
±

[(
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)2
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(
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εz

)
q2x −

(
1− εy

εz

)
q2y

)2

+ 4
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εz

)(
1− εy

εz

)
q2x q

2
y

] 1
2
} 1

2

.

(4.10)

Figure 4.7. Panel (a) shows isofrequency contour of ghost surface waves (green) excited
at the interface of a biaxial (red and blue) and an isotropic (purple) dielectric media. Panels
(b)-(d) correspond to the field plots at different points on the ghost surface wave dispersion.
Note the surface wave dispersion lies within the ghost regime of the momentum space where
the two extreme points are denoted by P and R. At those extreme limits, this hybrid type
surface wave evolves into conventional Dyankonov surface wave. At point P, where the
dispersion touches the isotropic medium contour, the new surface wave penetrates deep
within the isotropic medium. On the other hand, at point R, the surface wave tail extends
within the biaxial medium which could be used for long-range sensor applications.

Note, that in the uniaxial limit εx → εz, κ± are purely real, and thereby the mode reduces

to the well-known Dyakonov surface wave at the interface between an isotropic medium and a
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uniaxial dielectric[ 53 ,  54 ]. Since point R in Fig.(  4.7 a) of the biaxial medium behaves similar

to a uniaxial medium, at that point, ghost mode evolves into conventional Dyakonov surface

as shown in Fig. ( 4.7 d).

In general, Eq. (  4.10 ) asserts that κ± are complex conjugates of each other. For the

resulting surface wave (Re[κ±] > 0) to belong to the ghost class, as opposed to the con-

ventional Dyakonov class (see Fig.  4.6 (a)), the imaginary parts of κ± have to be nonzero:

Im[κ±] 6= 0, (4.11)

so that the field amplitudes exhibit oscillations in addition to the evanescent decay (see Fig.

 4.6 (b)). As will be shown in the next section, this oscillatory nature of ghost surface waves

leads to exact frequency degeneracy when two such waves are allowed to interact.

4.6 Ghost induced degeneracies

Lifting of energy degeneracies of a composite system through interaction among its con-

stituents is a generic theme of all physical systems - from splitting of s−orbital energies

of two hydrogen atoms [ 55 ] to two surface modes in a plasmonic waveguide [  40 ,  56 ] in the

metal-insulator-metal configuration. The universal feature present in all of the manifesta-

tions of this phenomenon is the direct relation of the amount of splitting with the interaction

length.

The generic feature of interaction lifting degeneracy also shows a direct monotonic rela-

tion between the amount of splitting and the interaction length. In this work, we challenge

this notion and show that degeneracies may persist even though there is a nonzero interac-

tion length. We demonstrate this behavior in the case of recently discovered ghost waves

[ 48 ,  50 ].

4.7 Ghost coupling: Interaction between Ghost modes

Consider two ghost surface waves excited on either side of a lossless biaxial slab which

is surrounded by the same isotropic lossless dielectric material on both sides, as shown in
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Fig.  4.8 (a). Because of the finite slab thickness L, the fields of the two surface waves would

spatially overlap.

Figure 4.8. Oscillatory character of ghost surface wave leads to vanishing coupling be-
tween guided modes and yields frequency degeneracies. (a) Waveguide schematics show a
biaxial core (of NaNO2, with permittivity tensor εslab = diag(1.806, 2.726, 1.991)) of thick-
ness L with an isotropic dielectric surrounding (of permittivity ε0 = 2.01) along with the
field amplitudes of the two uncoupled ghost surface waves. Note the oscillatory nature of
the fields inside the biaxial medium. (b) Behavior of mode splitting as a function of the
slab thickness L, normalized to single interface ghost resonance wavelength λs = 2πc/ωs,
shows that for certain interaction lengths the two modes have exact degenerate frequencies.
Insets show the field profiles of the symmetric (red line) and anti-symmetric (blue line) slab
eigenmodes.

These individual surface states would then form the basis of the symmetric and anti-

symmetric combination for the slab eigenmodes. Both these eigenmodes have their frequen-

cies asymptotically converge to the single interface mode frequency ωs as L → ∞ as shown

in Fig.  4.8 (b). However, their variation for finite L shows oscillations, as opposed to conven-

tional monotonic behavior in other prototypical systems. Additionally, note that for certain

slab thicknesses, the frequency difference between the two eigenmodes is exactly zero. These

frequency degeneracies are attributed to the oscillatory character of ghost surface waves

which leads to vanishing coupling between the two guided modes.

To illustrate this result, consider the transmission through such a biaxial slab as a function

of frequency and slab thickness (see Fig.  4.9 (a)). For an incident evanescent field, the

ghost resonances amplify the field inside the biaxial slab, much similar to the evanescent

field amplification in negative index material [ 57 ]. However, as slab thickness is varied, the
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two resonance frequencies intertwine around each other, leading to degeneracies at regular

intervals.

To contrast this behavior with that of usual surface waves, consider replacing the biaxial

slab with an ideal lossless metal so that the interaction between the two surface plasmon

modes on either side of the slab splits the system eigenmodes on the frequency scale. Fig.

 4.9 (b) shows the corresponding transmission plot as a function of the slab thickness. No-

tice the transmission corresponding to two plasmon resonance frequencies monotonically

approach each other, asymptotically converging to the single interface resonance frequency

ωs, without showing any frequency degeneracy along the way.

In the next section, we employ coupled-mode theory [  40 ,  58 ], a standard perturbation

technique widely used for explaining mode interactions in waveguides, in order to capture

the essence of “ghost coupling” presented in this section upto the first order.
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Figure 4.9. Transmission through a biaxial slab (shown by false color in log scale), as
a function of frequency and slab thickness, shows the occurrence of ghost resonances. For
certain slab thicknesses, these resonances occur at the same frequency. Here the system
consists of a NaNO2 biaxial slab surrounded by an isotropic dielectric with permittivity
ε0 = 2.01. Since the incident field is evanescent (the transverse wavevector components
(qx, qy) ' (0.793, 1.182) in units of ωs/c), a prism coupler may be used, which does not alter
the results qualitatively. Panel (b) shows the transmission through a metallic slab for the
same setting with a permittivity of −2 surrounded by air.
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4.8 Coupled-mode analysis

The physical origin of ghost coupling can be explained within the framework of per-

turbation theory, where the interaction among the elements of a composite system can be

described, to first order, by a term that is linear in the interaction potential. For example,

for the case of two hydrogen atoms considered at the beginning of this paper, let ‖ψ1〉 and

‖ψ2〉 denote their wavefunctions when they are not interacting with each other. If they are

brought nearby and allowed to interact through a potential V , then the amount of energy

splitting can be approximated [ 59 ] by 〈ψ1‖V ‖ψ2〉.

A similar perturbation technique, known as coupled-mode theory, describes optical in-

teraction between modes in waveguides [ 58 ,  60 ,  61 ]. This approach offers a good qualitative

picture of the nature of mode interaction without the need to solve for fields of the entire

system. In cases of moderate interaction, it also yields good quantitative estimates for power

exchange, transfer distance, frequency splitting, etc.

Mathematically, the potential V for our system can be described by a permittivity tensor

ε(r) = εslab for 0 < z < L and ε0I otherwise (I being the identity tensor). The general wave

equation for the electric field E(r) is given by

∇× (∇× E) = ω2µ0 ε · E. (4.12)

where µ0 is the permeability of free space. By dot multiplying Eq.  4.12 by E∗, and integrating

over a large volume where the fields vanish for large z or have contributions canceled from

parallel surfaces due to system symmetry, one gets [ 58 ]

ω2 =

∫
(∇× E∗) · (∇× E) dV

µ0

∫
E∗ · ε · E dV

. (4.13)

Now the perturbation in the analysis comes from approximating the field E as a linear

combination of the unperturbed fields:

E =
∑
i

aiei, i = 1, 2. (4.14)
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Here, e1 is the field for the single interface system characterized by a permittivity tensor

ε1(r) = εslab for z > 0 and ε0I otherwise. Similarly, e2 corresponds to the system described

by ε2(r) = εslab for z < L and ε0I otherwise. Since, each ei represent fields at resonance, we

have from Eq.  4.12 

∇× (∇× ei) = ω2
sµ0 εi · ei (4.15)

where ωs is the single interface resonance frequency. Equation  4.13 then turns into

ω2 = ω2
s

a†Ka
a†Wa

(4.16)

where
Wij =

∫
e∗
i · ε · ej dV

Kij =

∫
e∗
i · εj · ej dV

(4.17)

and a is the vector containing the coefficients in Eq.  4.14 . For a lossless system both W and

K are Hermitian matrices. Their positive definiteness property also implies a real value for

ω, as expected. Differentiating Eq.  4.16 with respect to a yields [  58 ]

ω2Wa = ω2
sKa (4.18)

which gives stationary values for the system frequencies that can be readily determined from

the unperturbed fields by solving

det [ω2W − ω2
sK] = 0. (4.19)

We apply coupled-mode theory to the case of biaxial slab (εslab = diag(εx, εy, εz)), and

illustrate the ghost resonance frequencies in Fig.  4.10 . We compare the resonance frequencies

determined from Eq.  4.19 and by solving the full system as a function of slab thickness. In

comparison with the exact calculation, although there are slight quantitative discrepancies

for small slab thicknesses which is expected from a perturbation approach that assumes small

interaction, the results match well in showing the oscillating behavior of the resonances. In

particular, occurrence of degeneracies as well as the corresponding slab thicknesses are well
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Figure 4.10. Application of a coupled-mode analysis for the system considered in Fig.
 4.8 shows the frequency degeneracies and correctly predicts the corresponding slab thick-
nesses. Solid and dotted lines correspond to exact and couple mode results, respectively
while different colors represent symmetric and anti-symmetric eigenmodes of the system.

predicted through this approach. Hence, couple mode analysis captures the essence of ghost

wave interactions and shows that due to the characteristic oscillatory part of the ghost wave

the effective coupling is zero at the degenerate points.

Furthermore, for the lossless biaxial system, it can be shown that W and K are real and

symmetric. The condition for frequency degeneracy then becomes

K11

W11

=
K12

W12

. (4.20)

From Eq.  4.20 with the standard approximations of the coupled mode approach, for the

slab thickness interval ∆L between successive degeneracies, we obtain

∆L ≈ π

|Im(κ)|
(4.21)

where κ is the propagation constant of ghost mode inside the biaxial slab. Eq.  4.21 indicates

that ghost-induced degeneracies have periodicity which is half of the ghost wave oscillation
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within biaxial medium. Furthermore, as evident from Fig.  4.10 , the frequency at the degen-

eracy point ωdegen is not exactly ωs, but approximately given by the coupled mode theory as

ωdegen ≈ ωs

√
K11

W11

. (4.22)

Note that degeneracy points do not necessarily occur at the single interface resonance fre-

quency. The offset decreases as one goes to the asymptotic limit L → ∞ where the modes

get increasingly uncoupled.

So far we have discussed ghost-induced degeneracies which are the consequence of the

oscillatory nature of the hybrid mode. Since ghost surface waves are special kind of hy-

brid mode, such level crossings are not limited to surface modes but are prevalent within

propagating bands too. In the next section, we will discuss nonuniform electromagnetic

mode-induced degeneracies supported by biaxial media.

4.9 Degeneracies in bulk modes

As pointed out in Sec.  4.2 , biaxial media support different regimes of operations (see

Fig. (  4.3 )). Consequently, isotropic-biaxial-isotropic system would also have several regimes

of operation depending on the number of propagating constants of biaxial media and their

corresponding types. In Sec.  4.3 , different regimes are shown for waveguide mode dispersion

as a function of frequency and momentum while the width of the biaxial core remains fixed.

In this section, the evolution of the system modes is discussed by changing the core width

while momentum remains fixed as shown in Fig.  4.11 .

Regime-1 corresponds to scattering modes for our setup which in Fig.  4.11 (a) ties with

higher frequency and out of our scope of analysis. We start our discussion from regime-2 in

which, there is only one real propagating constant resulting in the monotonic evolution of

the system mode. As evident from Fig.  4.11 (a), successive modes in regime-2 are separated

on the frequency scale with the variation of slab thickness. Moreover, the geometrical con-

figuration of the system confirms that the parity of successive modes would have alternate

symmetry (even and odd) with respect to the center of the system. Furthermore, within
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Figure 4.11. (a) Density plot of a matrix corresponds to isotropic-biaxial-isotropic
system introduced in Fig.(  4.8 ) where deep blue lines correspond to the guided modes of the
system as a function of frequency and biaxial slab length. Note the mode evolution across
different regimes where the boundaries between regimes are indicated by dotted black lines.
Panel (b) shows field profiles associated with the evolution of system mode from regime-2
to regime-3. Note the change of the number of nodes within the field (wavefunction) profile
while the symmetry remains unaltered.
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regime-2, the number of nodes (zero crossings of the field) of a system mode remains fixed as

shown by field plots in Fig.  4.11 (b), and successive modes have one more or one less node.

However, nontrivial dynamics ( ∂ω
∂qz

< 0) in regime-3 cause nearby modes with opposite

parity (P) symmetry to couple with each other and form doublets. As the slab length is

varied, constituents of each doublet cross at multiple points in a regular interval giving rise

to degeneracies. While all the doublets are within the propagating band, the lowest pair in

the frequency scale corresponds to the surface modes of the system.

Figure 4.12. Evolution of ghost surface waves as a function of frequency and biaxial
slab thickness shown in panel (a) and the corresponding field profiles (Ex(z)

Ex(0)
) are shown in

panel (b). Note the formation of crossing and anti-crossing junctions within the doublet
whose constituents have opposite P− symmetry. Moreover, since, surface waves are the
lowest frequency modes, frequency maxima only correspond to anti-crossing junctions. As a
consequence, change in no. of nodes takes places while the modes traverse through maxima
in the frequency scale (1→ 3, 6→ 8) whereas there are no such changes for the cases of
frequency minima (2→ 4, 5→ 7).
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A physical explanation of doublet formation and degeneracies within the bulk band can

be explained from the coupled mode theory introduced for ghost wave in Sec. (  4.8 ). With the

presence of nontrivial dynamics, the field components of the system modes start to overlap

for finite slab thickness (L). With the change of L, the coupling between nearby modes is

varied, and the contribution from all field components sums to zero at degenerate points.

Beyond a degenerate point, the DP-induced dynamics bring both modes of the doublet

closer to the nearby doublets in the frequency scale. We call the points where each doublet

is closest to the nearby doublets the anti-crossing points. After the anti-crossing point is

reached, P symmetry-induced repulsion pushes both modes of the doublet closer together

and away from neighboring doublets. As the slab width is varied, the crossing and anti-

crossing patterns continue in regular intervals in such a way that each crossing point is

surrounded by four nearby anti-crossing points and vice versa. Therefore due to the crossing

and anti-crossing properties, the system doublets create a checkerboard pattern as shown in

Fig. 4.11 (a).

Notice the change in the number of nodes in the field profiles shown in Fig. 4.11 (b). While

the frequency of a system mode is within regime-2, adiabatic change of the biaxial length

(or any other system parameter such as q) does not alter the wavefunction’s node number.

Contrary to that, in regime-3, the node number changes near anti-crossing points, which is

one of the characteristic features of the junction supported by an isotropic-biaxial-isotropic

system.

Changes in the number of nodes are also prevalent within regime-4 as shown in Fig.

( 4.12 ) where the system supports ghost waves. Since there is only one doublet in the ghost

regime, each degenerate point within that doublet is surrounded by two anti-crossing points

instead of four and vice versa. As the slab thickness is changed, the frequency maxima of

the doublet correspond to anti-crossing junctions while the minima do not. Consequently,

as evident by the field profiles shown in Fig.  4.12 (b), changes in the number of nodes take

place while ghost surface modes traverse through the frequency maxima only. Note that the

parity symmetry of the modes remains unaltered through evolution.

Finally, we conclude unusually that anisotropy introduced nontrivial dynamics give rise

to a change in the number of nodes for the same mode. Moreover, scalar wavefunctions (in
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electronic systems) remain well separated in the energy scale while the system goes through

adiabatic perturbation. However, in optics, vectorial wavefunctions (field) under anisotropic

(biaxial) potential form a checkerboard pattern consisting of frequency degeneracies and anti-

crossing junctions as a function of system parameters (L, q or ω). This nontrivial behavior

is due to the presence of a cusp regime(“3”) originating from the DP in biaxial media. In

the next section, we will discuss NIM mode supported by the cusp regime.

4.10 Negative index mode

Since the discovery of left handed media (LHM) by Veselago[ 62 ], NIM becomes an excit-

ing tropic for numerous theoretical studies and applications including superlens [ 57 ], negative

pressure [  63 ], higher harmonic generation [ 64 ], phase maching between different electromag-

netic polarizations [  65 ], dispersionless optical modes [  66 ,  67 ], etc.

Figure 4.13. (a) 3D momentum space of biaxial crystal for εx < εz < εy where coordinate
axes are parallel to the crystal axes. Note the presence of DP on the the x-y plane and
negative component of pointing vector (sz) within the cusp regime supported by the media.
Panel (b) shows the Fabry-Perot cavity configuration where biaxial media is sandwiched
between two isotropic dielectric in such a way that the “z” direction is along the interface.

Since LHM are not available in nature, researchers have turned themselves towards artifi-

cial approaches including but not limited to split ring resonators [ 68 ], metal-dielectric planar
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composites [  69 ,  70 ], photonic crystals [  71 ], negative transmission lines [ 72 ] and their optical

analogues [  73 ] to obtain NIMs. However, due to the composite nature of the system, these

approaches have their own drawbacks in design, fabrications, and applications.

In this regard, from their beginning, natural anisotropic crystal with in-build anomalous

dispersion is drawing tangible attention for both linear and non-linear [  74 ] optical applica-

tions. Recently, a planar dielectric slab geometry [ 49 ] with biaxial crystal has been theoret-

ically proposed to achieve negative radiation pressure. However, due to the leaky nature of

those modes, such a concept has yet to produce any lasing activity.

In the case of laser, media with anomalous dispersion [ 75 ] have been used in conjunction

with Fabry-Perot cavity configuration. Here, anomalous dispersion compensates the intra-

cavity stress [  75 ] that optical modes suffer while traversing through the system. However,

biaxial media, with nontrivial dynamics in the cusp regime offer a simple way to compensate

for optical mode stressing while being used as part of the cavity.

In this section, we discuss the theoretical concept of a continuous wave laser using bi-

axial crystals. The cavity of the system is designed such that the biaxial media is placed

in between two lossless isotropic dielectrics. Moreover, the dielectric permittivities of the

isotropic cladding are chosen judicially such that each interface works as perfect reflector.

Since the DP of the biaxial crystal remains on the crystallographic plane, cusp regimes

have all three momentum components which are nonzero. Subsequently, a nonzero momen-

tum component perpendicular to the plane containing DP is required to realize NIM as

shown by the schematic of Fig.  4.13 (a). With permittivities εx < εz < εy, the momentum

vector (qz) remains positive while traversing from inside to outside of the cusp region, one

of the pointing vector components (sz) changes it’s sign from negative to positive. Conse-

quently, with such orientation of biaxial media, Fabry-Perot configuration as shown in Fig.

 4.13 (b) offers optical modes with zero frequency dispersion (ω Vs qz) which could be used

to build single-mode laser based on monolithic crystal [  76 ].

As an example of this behavior, we present the mode dispersion for the system where

biaxial crystal As2S3 is surrounded by isotropic NaF. The orientation of biaxial crystal is such

that the crystallographic direction having maximum optical refractive index (n) is pointed

towards the perpendicular direction of the NaF-As2S3 interface. For this calculation, we use
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constant values of n for both media [  77 ]. Note the system mode shows negative frequency

dispersion ( ∂ω
∂qz

< 0) for qx = 1.8k0 as shown in Fig.  4.14 (a). Moreover, akin to the biaxial

anisotropy, the nontrivial evolution of NIM turns into PIM through a critical point where
∂ω
∂qz

= 0 corresponding to zero dispersion. Since the mode is guided, this zero dispersion

property could be used to support a continuous wave laser in a Fabry-Perot geometry.

Figure 4.14. Frequency dispersion of NaF(n=1.326): As2S3(n=2.4,3.02,2.81):
NaF(n=1.326) [  77 ] system is shown in panel (a) as a function of qz while qx remains fixed.
Note the presence of both NIM and PIM regimes supported by the system where the in-
herent anisotropy of the biaxial medium results in nontrivial evolution of the system mode
between the regimes. Panel (b) depicts the field profile evolution where it is noteworthy
that the parity of the mode remains unaffected.

As a second example we consider TeO2 [ 78 ], another promising platform for optical appli-

cations[ 79 ,  80 ]. Out of the different crystallographic phases [  81 ], high-pressure orthorhombic

D2
2 phase shows biaxial anisotropy. In our calculation we use refractive index of TeO2 as n =

diag[2.0,2.38,2.18] [  77 ] sandwiched between two identical isotropic media (NaF) with optical

index nNaF = 1.326 as shown in Fig.  4.13 (b). Figure  4.15 (a) clearly shows, as expected, that

the system supports both positive and negative frequency dispersion while the evolution

from NIM to PIM is plotted as a function of the tangential momentum component qz. The

zero frequency dispersion supported by the system is indicated by a red dot (“2”) and the

corresponding field profile is shown in Fig.  4.15 (b).

Note the presence of zero frequency dispersion in both examples considered. Furthermore,

the general evolution of optical modes supported by the system from NIM to PIM as a
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Figure 4.15. Panel-(a) shows the frequency dispersion of the system mode consisting of
NaF-TeO2-NaF. The schematic of the system is the same as shown in Fig.  4.13 (b). Note
the nontrivial evolution of the mode supporting NIM, PIM, and zero dispersion. Panel-(b)
shows corresponding field profiles of all three regimes.

function of momentum is consistent with the nontrivial frequency dispersion of biaxial media.

It is this nontrivial dispersion that results in mode degeneracies in both regime-3 and regime-

4 of isotropic-biaxial-isotropic systems. In the next section, we will discuss the lifting of

frequency degeneracies, which are protected by the symmetry of the system.

4.11 Lifting degeneracies and symmetry

Hybrid mode-induced degeneracies supported by isotropic-biaxial-isotropic system are

the outcome of the interplay between two separate dynamics of the system. One is the result

of the DP of biaxial media while the other is structure-induced parity (P) symmetry [  82 ]

which represents reflection symmetry with respect to the center of the system. Moreover,

due to being Hermitian [  83 ], the system poses time (T) reversal symmetry and combined

parity-time (PT) [  84 – 88 ] symmetry as well. Consequently, frequency degeneracies of such

systems cannot be removed without breaking the PT symmetry.

Since, DPs of the biaxial media are material induced, removing DPs requires changing the

crystallographic structure [  74 ,  89 ] which would result in altering the optical phase (biaxial)
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of the material. On the other hand, PT symmetry can be easily broken by either breaking

P or T symmetry which results in lifting of the degeneracies as shown in Figs.(  4.16 -  4.17 ).

In our system, P-symmetry is broken because of different isotropic media being used on

the sides of biaxial crystal in parallel plate waveguide configuration as shown in Fig.  4.16 

(a). The waveguide is designed to excite ghost surface waves on both interfaces as introduced

in Sec. ( 4.5 ). Moreover, as discussed in Sec. (  4.7 ), interaction between two such surface

waves leads to non-monotonous frequency splitting as shown in Fig.  4.16 (b). Note the

frequency separation between the modes irrespective of biaxial slab thickness resulting in no

degeneracy supported by such systems.

Figure 4.16. Evolution of degeneracies by removing the parity symmetry of the system,
the one shown in Fig.  4.8 but with different configurations. Two different isotropic media
are used with permittivities 2.01 and 2.0101 as indicated by two different colors shown in
panel (a) with NaNO2 as biaxial medium between them. Panel (b) shows the resonance
frequencies of the system in red and blue colors as a function of biaxial slab length where
the frequency separation between the modes is clearly visible for P-broken case. Here,
the transverse component of wavevector used for the incident evanescent field is (qx, qz) '
(0.793, 1.182) in units of ωs/c.

Similarly, time symmetry is broken by introducing loss in the system. In our case, small

amount of loss within the dielectric permittivity suffices the non-conservativeness of the

system. The idea is implemented by considering two separate cases: (I) adding tiny loss

within biaxial crystal while the surrounding isotropic media are transparent as shown in Fig.

 4.17 (a), and (II) introducing same amount of loss in the isotropic media to keep the reflection

symmetry while biaxial crystal is transparent as shown in Fig.  4.17 (c). The real part of the
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permittivities are the same as PT symmetric case, and tangential momenta ( qx
ωs/c

, qz
ωs/c

) '

(0.793, 1.182) are used to excite ghost surface wave. Even though the interaction between

two eigenmodes is non-monotonous, as evident from panel-(b) and panel-(d), the frequency

gap between them is finite as shown in the insets.

Figure 4.17. Evolution of degeneracies by removing time symmetry of the system. In the
case shown by panel (a), the system is configured by introducing loss within the NaNO2 with
permittivity tensor ε = diag(1.806, 2.726 + 10−4i, 1.991) while keeping the isotropic media
on both sides transparent with permittivity 2.01. The loss within biaxial slab is indicated
by black dots. However, for the second case shown in panel (c), the loss is introduced
within isotropic media while the biaxial medium is transparent. The permittivities of both
isotropic media are chosen as 2.01+10−6i and used transparent NaNO2 as biaxial medium.
Corresponding surface resonance frequencies are shown on the right column in panels (b)
and (d), respectively as a function of slab thickness. Note that the two resonance frequencies
indicated by the red and blue colors for either case do not cross each other. A magnified
view of the resonance frequencies shown in the inset of panels (b) and (d) clearly reveals
the separation between them in the frequency scale for even large biaxial slab thickness.

On the contrary, however, a non-Hermitian Hamiltonian [  90 ] can still commute with

PT system. Following the quantum mechanical formalism [  82 ,  91 ], a non-Hermitian [  87 ]
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system can be PT-symmetric if ε(z) = ε∗(−z) along the transfer coordinate axis z: which

requires the real (imaginary) part of the ε is symmetric (antisymmetric) about the center

of reflection z=0. The realization of PT-symmetric optical structures in a coupled two-

component system [  92 ] has drawn considerable attention and resulted in many nontrivial

effects both using active and passive systems i.e.: loss-induced transparency [ 93 ] and lasing

[ 94 ], PT-symmetric lasers [ 95 ], laser absorbers [  96 ], non-reciprocal light propagation [  97 ],

power oscillations [  98 ], unidirectional invisibility [  99 ,  100 ], etc.

In the case of active system, constituents contain equal amount of loss and gain which

is contrary to the passive system where different amounts of losses are used instead of gain

and loss. However, the former one is equivalent to the latter case under appropriate gauge

transformation [  90 ]. Under this transformation, zero loss of active system is equivalent to

the average loss of passive system. In our research, we only consider passive system for

isotropic-biaxial-isotropic slab waveguide.

The necessary complex potential for our planar system is introduced by adding different

losses within the surrounding isotropic media (see Fig.  4.18 (a)). With asymmetric losses,

the resonance frequencies are complex in general whose real and imaginary parts are shown

in panels (b) and (c), respectively. As the slab thickness is changed, contrary to T-broken or

p-broken systems, for non-Hermitian PT system, not only do the real parts of the frequencies

cross at the degenerate points but the imaginary parts also “spike”.

The behavior of the resonance frequencies as a function of slab thickness can be described

by a two-state model with an asymmetric Hamiltonian [ 101 ]

H =

ω1 + iγ1 κ

κ ω2 + iγ2

 (4.23)

where ω1,2 are the resonance frequencies of the two coupled modes, κ is the coupling

coefficient, and γ1,2 are their decay rates. Such a 2 × 2 system Hamiltonian leads to a

quadratic characteristic equation, and the solution corresponds to the system resonance

frequencies which can be calculated from the eigenvalues of the system as follows

ω± = ωav + iγav±
√
κ2 + (ωdiff + iγdiff )2 (4.24)
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Figure 4.18. Panel (a) shows the schematic of broken-PT symmetry system implemented
by introducing different losses within the isotropic media as 2.01+10−6i and 2.01+4×10−5i
while biaxial medium is lossless. Note that losses in isotropic media are indicated by black
dots. Panels (b) and (c) show the real and the imaginary parts, respectively where red and
blue colors correspond to the resonance frequencies of surface modes as a function of biaxial
slab length.

Here, ωav = (ω1 + ω2)/2 and ωdiff = (ω1 − ω2)/2 correspond to average and difference of

the resonance frequencies, respectively, whereas γav = (γ1 + γ2)/2 and γdiff = (γ1 − γ2)/2

are the associated loss factors, respectively. In general, each of the eigenvalues shows a

square-root dependence on the interaction [  101 ] between the system modes dictated by the

slab thickness.

In the case of non-Hermitian PT system, ωdiff = 0 and with appropriate gauge trans-

formation, we can assume γav= 0 with modified eigenvalues as ω′
± = ωav + ±

√
κ2 − γ2diff .

Thus, for the PT-symmetric system to have (pseudo)real eigenvalues, κ > γdiff and the

symmetry gets broken when κ < γdiff . The boundary between two phases are located at the
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point where κ = γdiff , know as Exceptional point (EP) [  101 ]. Beyond the EP, the resonance

frequencies show a square-root divergence consistent with Fig.  4.18 (c). Mathematically, this

means the eigenvalues (ω′) are taking two different paths starting from the complex branch-

cut and EP marks an abrupt phase transition from real to complex spectra. Contrary to

that, when P or T symmetry is broken, frequency changes smoothly near the degenerate

points without any bifurcation as shown in Figs.  4.16 -  4.17 . This square-root dependence

near exceptional points can be utilized in sensing applications.

Figure 4.19. Field profiles of surface modes associated with PT-symmetric and broken-
PT symmetric phases as a function of coordinate space. The system parameters are same
as Fig. 4.18 . For PT-symmetric phase, real and imaginary parts of frequencies are taken
for biaxial length Lz = 10λs whereas for broken-PT phase, field profiles correspond to
Lz = 12λs where Im[ω] are extreme.

Note that, for large slab length κ ≈ 0, which makes ω′ purely complex conjugate. Conse-

quently, eigenvalues permanently takes two branches as shown in Fig.  4.18 (c) for lz/λs > 20.

However, for smaller biaxial length κ increases and oscillate in a periodic manner for ghost
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wave as discussed in Sec.(  4.7 ). As a result, the system goes through alternatively between

PT and broken-PT phases through EPs.

In other words, we show here that ghost mode induced degenerate points give rise to a pair

of EPs in high dimensional (complex) frequency space which is consistent with corresponding

coupled-mode analysis. Moreover, the transition from DP to EPs has been theoretically

predicted for birefringent structures [  102 ]. It is also clear from the plot that two EPs are

connected through Fermi arc [ 103 ,  104 ] which is a rift (hole) in complex frequency space. As

long as the system possesses broken-PT symmetry, the Fermi arc is non-vanishable.

Field profiles of these two separate phases are shown in Fig.  4.19 . In the PT-symmetric

phase, field profiles (eigenfunctions) are similar to Hermitian system (symmetric probability

distribution) as shown in panels (a) and (b). However, for broken-PT systems, such as in

our case, eigenfunctions correspond to two complex eigenvalues which are symmetric with

respect to the average frequency (ωav). As a result, field profiles become asymmetric with

respect to the center of the system. The larger the separation between imaginary parts of

resonance frequency, the stronger the mismatch between the field profiles as shown in panels

(c) and (d).

4.12 Summary

In conclusion, we showed that the degrees of freedom offered by the strong anisotropy in

biaxial media give rise to DP. The presence of DP creates nontrivial curvature in the momen-

tum space resulting in a cusp. Furthermore, the cusp regime evolves into the ghost regime

where optical modes are simultaneous oscillatory and evanescent in nature. Due to the vec-

torial nature of optical modes, both the cusp and ghost regimes show frequency degeneracies

and mode repulsion. The vanishing mode coupling has potential applications in integrated

waveguides where undesirable crosstalk between modes can be completely prevented even at

finite interaction lengths. Additionally, the degeneracies can be used for sensing purposes

since any perturbation in the refractive indices caused by analyte binding would result in a

measurable breaking of the system degeneracy. Since most biaxial materials are also non-

linear (e.g. KTP, LBO, NaNO2, TeO2, As2S3 etc), biaxial anisotropy-induced degeneracies
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can also offer new ways of controlling optical modes interactions. Moreover, with correct

orientation of the biaxial crystal and appropriate Fabry-Perot cavity design, the cusp regime

can support cavity mode with zero frequency dispersion. Similarly, mode repulsion results

in a change in the number of nodes within the same mode (wavefunction) supported by both

“cusp” and ghost regimes. Furthermore, we showed that the degeneracies supported by our

system are protected by PT symmetry and using standard quantum mechanism formalism,

we can create broken-PT symmetry through EPs. While EPs are known to have high optical

sensitivity [  105 ,  106 ], field profiles of broken-PT phase are asymmetric which can be used

for topological photonics [ 107 – 109 ] applications.
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5. GHOST RESONANCE IN OPTICAL SCATTERING

This chapter has been partially reproduced from previous publications [ 110 ,  111 ].

5.1 Introduction

Similar to guided ghost waves where two real propagating constants annihilate each other,

in the case of scattering, two frequencies do the job. Those frequencies correspond to well-

known Mie [  59 ] resonances in optical scattering [  112 ] and consequently ghost resonance is the

product of annihilation of two Mie resonances. Conversely, ghost resonance can bifurcate

and give rise to two Mie resonances. We show the presence of such ghost resonances in

optical scattering using structural anisotropy configured by a system of isotropic cylinders.

5.2 Ghost resonances

From conventional optical devices such as the Fabry-Perot interferometer to recent de-

velopments in nanophotonics such as negative refractive index, [  113 ] and optical cloaking

[ 114 ], the route to nontrivial electromagnetic responses generally relies on resonant field

enhancement due to formation of a quasi-bound state [  115 ]. Furthermore, quasi-bound elec-

tromagnetic states are generally interesting, as they often show counter-intuitive behavior

such as the formation of a toroidal resonance [  116 – 118 ], where resonance is due to the radial

current instead of axial current. In the present work, we uncover another example of such

nontrivial behavior - the electromagnetic ghost resonance in optical scattering.

Qualitatively, the formation of an optical resonance can generally be explained as a result

of constructive interference along the path of periodic ray trajectories [  119 ,  120 ]. When

two such trajectories annihilate, such as in a “tangent bifurcation” [  121 ], the corresponding

optical resonance is no longer supported by the system. This quasi-classical explanation can

be extended to the general case, where instead of classical trajectories one relies on resonant

eigenstates derived from the exact scattering matrix of the system.
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The framework of scattering theory [  122 ,  123 ] is well established and has been developed

to study both particle [ 124 ] and wave scattering [ 125 ]. In general, scattering (S)-matrix

[ 126 ] is related to the probability amplitude of wave-function near the scatterer and to the

cross-section of various interactions in both classical [  127 ] and quantum mechanics [  128 ]. At

resonances, near the scatterer, both probability amplitude of wave function and scattering

cross section which are observable, maximize. Mathematically, there are two extreme cases

of probability amplitudes related to either only incoming waves or only scattered waves.

They correspond to the singularities [  129 ] of the S-matrix in complex frequency plane.

Controlling these singularities result in engineering light-scattering and many interesting

phenomenon such as perfect absorption [  130 ,  131 ], coherent perfect absorption [ 132 ], coherent

perfect absorption laser [  96 ,  133 ], virtual perfect absorption (complex zeros with temporally

shaping input) [ 134 ], bound state in continuum [ 135 – 137 ], exceptional points [  138 ,  139 ] or

zeros [  140 ] in non-Hermitian PT-symmetric system, etc. In this chapter, we show the residue

of the annihilation of singularities, another interesting scattering (ghost) resonance.

Figure 5.1. Schematics of two different approaches of calculating scattering resonances.
Panel -(a) shows the conventional approach where complex resonance frequencies are indi-
cated by black dots corresponding to the positions of the singularities of scattering matrix.
Panel-(b) shows the plot of eigenvalues (red dots) of unitary matrix on unit circle where
θ corresponds to the phase of each eigenvalue. Note that as the system parameters are
changed, those dots rotate on the circle resulting in changes within the eigenphases only,
while the magnitudes remain fixed to unity.
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Furthermore, like their semi-classical counterparts, the annihilation dynamics can be

explained by classical tangent bifurcation [  141 ] in nonlinear dynamics. However, contrary

to their semi-classical counterparts, in general, annihilation of two resonances at the tan-

gent bifurcation creates “ghost” resonances which is the remnant of the annihilation. The

designation “ghost” [  52 ,  142 ] refers to the fact that these resonances are created in tangent bi-

furcations that annihilate pairs of resonances and represent the optical analog of the “ghost”

orbits in the quantum theory of non-integrable dynamical systems. Conversely, ghost reso-

nances can bifurcate and give rise to resonance pairs analogous to saddle-node bifurcation

in nonlinear systems [ 143 ].

Mathematically, scattering resonances are complex numbers as shown in Fig.  5.1 (a)

and finding them in a complex frequency plane involves 2D-root search. Even though the

numerical search mechanism [  144 ] is time consuming, it has been widely used to study

optical phenomena such as total absorption of light by metallic grating [  145 ,  146 ], coupling

of incident laser beam into a waveguide [  147 ], field enhancement [  148 ,  149 ], perfect blazing

of corrugated wavegudie [  150 ], etc. However, convergence of the search mechanism depends

on the starting point and the vicinity of the singular points. Moreover, if these singularities

are close to each other or have low quality factor, resolving them in complex frequency space

and resolving their contributions to the observable are both challenging.

In this work, we have developed a new mechanism to find those singularities which reduces

higher dimensional root search into 1-D. Moreover, our mechanism distinctly resolves the

contribution of each resonance to the observable (scattering cross section) irrespective of the

frequency or associated quality factor. Furthermore, this approach also captures the residue

of annihilation and also the bifurcation of “ghost” or “shape” [  143 ] resonance into singularity

pair. We show the presence of such “ghost” resonances in optical scattering for dielectric

cylinder.

In this new approach, we first formulate the scattering matrix in angular momentum

basis and calculate the matrix for single cylinder for plane wave indecent. Instead of 2D root

search mechanism, we calculate eigenvalues and eigenvectors of the matrix which correspond

to the scattering channels: monopole, dipole, quadruple, etc. Since, the scattering matrix is

unitary, only the phases (θ) of the eigenvalues change with the system parameters as shown
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in Fig.  5.1 (b). Consequently, the dynamics of the system depend only on the eigenphase

which is inherently 1D. Moreover, since the eigenmodes are orthogonal, the contribution to

the observable from each channel can be calculated separately irrespective of their resonance

frequencies and quality factors.

Using this approach, we also show the presence of new (“shape” or “ghost”) class of res-

onance within each channel. Since the dipole is the dominant scattering mode, furthermore,

we perturb the “ghost” resonance of dipole channel and bifurcate it into singularity pair

similar to saddle-node [  143 ] bifurcation in nonlinear dynamics. Finally, we show “ghost” res-

onance induced long-range interaction between two dipoles supported by dielectric cylinders.

5.3 Scattering matrix formalism

Consider the standard scattering problem in angular momentum basis where the S-matrix

describes the scattering from angular momenta l1 to l2. If an incoming wave vector ~α

containing all the momentum components turns into ~β after scattering, then, mathematically

those vectors are related by

~β = [S]~α. (5.1)

Figure 5.2. Scattering system in angular momentum basis where α and β correspond to
the strength of incoming and outgoing waves, respectively
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The eigenvectors of S correspond to eigenvalues of the related Hamiltonian. Therefore

the eigenvector set of S does not represent a complete basis, since it only describes the

scattering states which asymptotically, far from the scatterer, take the form of plane waves.

Moreover, such eigenvectors do not include the bound states which have profiles that drop

off exponentially (ψ(r → ∞) = 0) far from the scattering object.

However, it offers the complete basis for the scattering solutions as those generally do

not mix (bound state in continuum [ 151 ] is an important exception). Assuming our system

does not support any bound state in continuum, for the scattering states the basis of the

eigenvectors of S is both complete and orthogonal. Therefore, any field can be represented

in terms of eigenvectors of S as follows

ψ(~r) =
∑
n

ζnψn(~r) (5.2)

where,

ψn(~r)~r> ~R0
=
∑
l

α
(n)
l H

(−)
l (~r) +

∑
l

β
(n)
l H

(+)
l (~r). (5.3)

Here, H(±)
l are the incoming (-) and outgoing (+) cylindrical waves with {αl, βl} as

the strength of the lth component of the cylindrical harmonics and ~R0 is the radius of the

scattering interface with respect to the center of the system.

Incoming fields enter into the scattering region via the input channels and exit through

the output channels. Due to the conservation of angular momentum, each component of

the incoming wave will be scattered independently and transformed into an outgoing wave

according to the eigenvalue (χ) of the S matrix as follows

β
(n)
l = χ(n)α

(n)
l (5.4)

Since S is unitary, its eigenvalues must have the form of eiθ which indicates conservation

of the probability of scattered wave. Here, θ is a function of system parameters whose effect is

to attach a phase factor to the outgoing wave. Akin to the total probability conservation, this

phase shift creates angular distribution in the scattered field of the corresponding channel.
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Hence, the dynamics of θ would determine the properties of the scattering field. If amplitude

γl is a measure of the scattering in the lth angular momentum, then ~γ, consisting of all angular

momentum components of the scattered wave can be defined as

~γ = ~β − ~α. (5.5)

The effective scattering cross-section (σ) which is different from the geometric cross-

section, can be calculated from the contribution of all angular momentum components. Due

to the orthogonality relation among all scattering channels, σ, with a normalization constant

σ0 yields as follows

σ = σ0
∑
n

|ζn|2
∣∣eiθn − 1

∣∣2. (5.6)

Note the functional dependency of the phase of eigenvalues with the total scattering

cross-section. When the scattered wave is 180◦ out of phase with that of the incoming wave,

the effective scattering cross section maximizes. The corresponding frequencies where the

phases of the eigenvalues θ = π, indicate the resonance frequencies of the scattering channels.

Conventionally, the frequency model is extended into complex plane to calculate the

quality factor of the scattering resonance where the resonance corresponds to a pole in S(ω)

at a complex point as shown in Fig.  5.1 (a). The real part of the point indicates the

resonance frequency while the imaginary part corresponds to the resonance width. Contrary

to that, with eigenvalue approach, such as in our case, one-dimensional dynamics of the

system modes provide insight about the resonances.

Since the scattering resonance frequency is within the continuous spectrum of the system,

the corresponding wave state elapses finite time within the scatting object which indicates

finite quality factor of the resonance. At resonance, the interaction time of the probing wave

can be quantified in terms of the Wigner delay time [  125 ,  152 ] which is the derivative of

phase of eigenvalue with respect to the resonance frequency.

In the following sections, we analyze the dynamics of scattering modes in a circular

cylinder and show resonance state in each channel. Moreover, the dynamics reveal the

presence of ghost resonances in optical scattering.
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5.4 Plane wave scattering by single cylinder

In the case of isotropic cylinder, both TE and TM polarization modes degenerate and

produce same electromagnetic responses in all propagating directions. In this work, we are

only considering TM polarization which has the electric field component along the cylinder

axis(z). For cylindrical system, the lth angular momentum component of the field can be

expressed as

Ez(r) ∝ Jl(k0
√
εr)exp(ilφ) (5.7)

where (r, φ) are cylindrical co-ordinates, ε is material dielectric permittivity, J is the Bessel

function of the first kind, and k0 is the free space propagation constant. Furthermore, any

plane wave can be treated as infinite summation of cylindrical harmonics and the exact

scattering element of two (l, l′) asymptotically free waves in angular momentum basis can

be formulated as [ 153 ]

sll′ =

√
εJ ′

l (k0
√
εR)H

(−)
l (k0R)Jl(k0

√
εR)H

′(−)
l (k0R)

√
εJ ′

l (k0
√
εR)H

(+)
l (k0R)Jl(k0

√
εR)H

′(+)
l (k0R)

δll′ (5.8)

Since the plane wave expansion [ 154 ] in angular momentum basis contains infinite compo-

nents, following the conservation of angular momentum, scattered wave also contains infinite

components. So the matrix S = [sll′ ] also has infinite dimension which has been truncated

[ 144 ] to conduct numerical calculation. If, L=2K+1 denotes the truncation order, corre-

sponding to the incident and scattered waves with numbers, l=-K,...,K in Eq.(  5.8 ). Then S

matrix relates L incident and L scattered waves in angular momentum basis. The eigenvalue

and eigenvector calculation of the truncated scattering matrix has been carried out using

commercial computer.

Each eigenvalue of the unitary S matrix corresponds to a channel of scattering in the

cylindrical system where the phase of the eigenvalue is directly related with the phase shift

in the corresponding scattered wave. Even though all the eigenvalues have unit magnitudes,

phases are different as shown in Fig.  5.3 (b). As the system parameter (frequency of the

incoming wave, in this case) is changed, all the eigenvalues traverse on unit circle in the
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complex plane which only changes phases. As a result, with this approach, conventional 2D

root search of the scattering resonances, reduces to 1D for the system.

The dynamics of the system can be explained by the trajectory of the corresponding

eigenvalue on the unit circle which is not monotonic as shown in Fig.  5.3 (c). Note the

presence of two different regimes:, “fast” and “slow” in the phase plot as a function of

frequency. The “fast” branch is directly related to frequency of the incoming plane wave,

whereas the “slow” (“shape” or “ghost” resonance [  143 ]) branch is the contribution of the

system rotational symmetry. Since the overall phase of each mode depends on the slowest

path, the symmetry-induced “shape” resonance dictates the dynamics of individual scattering

channel and the system as well.

The resonance frequency is indicated by ω0 in Fig.  5.3 (c) where the corresponding eigen-

value has θ = π. Note the quality factor of the quasi-bound state is directly related with the

slope of that mode at ω = ω0. Hence, the resonance frequency can be defined with a complex

term ω0− iΓ, where Γ represents the width of the resonance. This description quantitatively

produces the standard BreitWigner [ 155 ] profile as used in conventional methods to describe

the energy distribution near the resonance.

However, the presence of ghost resonances slows down the rate at which the phases of

eigenvalues evolve on the unit circle. As a consequence, if the ghost resonance is nearby

the primary resonance (θ = π), the quality factor of that resonance reduces. In the case

of isotropic cylinder, ghost resonances in higher angular momentum stay relatively far from

ω0 compared to that of the lower angular momentum as evident from Fig.  5.3 (c). This

effect results in larger quality factor for higher angular momentum in single cylinder system.

Moreover, notice the asymmetric profile of the phase with respect to the resonance frequency.

Since the “slow” branch has broad frequency spectrum, any nearby presence of such branch

affects the shape of the overall resonance profile. For instance, l = 3 mode is less skewed

compared to l = 1 mode in the circular cylinder system as shown in Fig.  5.3 (c).
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Figure 5.3. (a) Schematic of single cylinder scattering system where free space plane
propagating wave is scattered by transparent dielectric cylinder with permittivity ε = 5.
Panel (b) shows the eigenvalues of the scattering matrix plotted on a unit circle where each
red dot represents the system scattering mode. Panel (c) shows the rotational dynamics of
the system modes (l = 1−3) on the unit circle as a function of the frequency of the incoming
plane wave. The corresponding resonance frequencies (ω01−ω03) are indicated by black dots
and the width (Γ) of the resonance can be calculated from the slope (black dotted line) of
the phase at ω = ω0. Note, the presence of two qualitatively different dynamics indicated
by “fast” and “slow” (shape resonance). If the shape resonance is close to the primary
resonance (θ = π), then the speed of the corresponding red dot slows down on the unit
circle resulting in a change in the quality factor.

To show the characteristic behavior of the scatterer, we plot the scattering cross-section of

2D cylinder as shown in Fig.  5.4 (a) while being illuminated by plane wave. Mathematically,

the effective scattering cross section of circular cylinder takes the form of

σnorm
2D =

σ2D
2R

=
λ

πR

∑
l

∣∣eiθl − 1
∣∣2 (5.9)
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Figure 5.4. (a) Scattering cross-section of 2D cylinder illuminated by plane wave (inset)
as a function of normalized wavelength (R/λ). The top (orange) curve corresponds to
the total scattering cross-section and contributions from individual angular momentum are
shown with different colors at the bottom. Note, the presence of shape resonance in each
angular momentum channel indicated by black arrows. Panels (b)-(d) correspond to the
intensity of electric field for different channels (ls) while they are in resonance with the
incoming plane wave. The corresponding positions of the resonances are indicated by black
dots in panel-(a). Note that the photonic jet effect [ 156 – 159 ] intensifies the field strength at
the shadow-side of the scatterer along the axis of plane wave propagation. Moreover, near
the scatterer, the width of the jet is sub-wavelength and the confinement increases even
further for higher angular momentum.
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where λ is free space wavelength. Notice, two qualitatively different features are present

in the total cross section as a function of the frequency (1/λ) of incident wave. The low

frequency peaks correspond to different principal energy bands [  160 ] while the high frequency

peaks within each band are due to the contribution from different channels (l). Electric field

intensity profiles in Figs.  5.4 (b)-(d) show the excitation mode profiles at the resonance

frequency of individual channel.

Note the presence of shape resonance in each channel indicated by black arrows. Since

the shape resonances have inherent broad spectrum, the presence of such resonances change

the quality factor of the primary resonance and make the energy distribution asymmetric

with respect to resonance frequency. It is evident from Fig.  5.4 (a) that within the first

principal energy band, l = 0 mode has the lowest quality factor since the corresponding

shape resonance is closest in the frequency scale compared to that of other modes (l > 0)

consistent with Fig.  5.3 (c). Similarly, energy distribution of the resonance in higher angular

momentum is more symmetric than that of lower angular momentum with respect to the

corresponding resonance frequency.

To compare the conventional 2D root search method with the eigenphase approach, we

calculate resonance frequencies based on both methods and compare it with respect to the

position of the total scattering cross-section peak as show in Fig.  5.5 . As evident from

the analysis, both methods resolve the scattering cross-section peak for resonances with

high quality factor (n) for all materials (εin). However, as the quality factor of the resonance

diminishes, performance varies depending of the permittivity of the material. The eigenphase

method works better over the conventional approach for high permittivity (panel-c), whereas

for lower permittivity, conventional approach works better (panel-a). For low permittivity,

when “n” is small, the presence of multiple resonances from nearby different channels and

ghost resonance within each channel results in frequency shift of the total scattering cross-

section-peak of the scatterer.

In the next section, we will discuss a systematic method to control ghost resonance in

optical scattering. Since dipole is the dominant optical response, we will show a prototypical

mechanism to perturb the shape resonance within the dipole mode. However, the approach

holds for other modes too.
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Figure 5.5. . Plot of scattering resonance frequency (ω) as a function of resonance
number (n) which is proportional to quality factor (higher the value of n, higher the quality
factor of the resonance is). Vertical axis of the plot is normalized to the frequency of
scattering cross-section peak (ωsc). Panels (a), (b), and (c) correspond to permittivity of
the cylinder εin = 3, 5, and 10, respectively.

5.5 Optical scattering by two-cylinders system and ghost resonance

To respect the C2 symmetry of dipole, we use a system of two identical circular cylinders

separated by finite distance with two axes of symmetry as shown in Fig.  5.6 (a). Using stan-

dard co-ordinate transfer method [ 161 ,  162 ], scattering matrix of the system is calculated,

and the corresponding eigenvalues are shown in Fig.  5.6 (b). Note that each dot on the com-

plex plane corresponds to a scattering mode of the system. Since the system does not have

rotational symmetry, dipoles become the lowest energy modes instead of monopole. The

nonzero phases of two dots as shown in Fig.  5.6 (b) correspond to the system dipole modes.
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Figure 5.6. (a) Schematics of two-cylinders system separated by distance d while each
cylinder having radius, R and permittivity, ε. Panel-(b) shows the scattering eigenvalues
of the system on complex plane where each dot correspond to a system mode. As the
parameters of the system are changed, all the dots traverse on the periphery of the unit
circle. The nonzero phases of the two dots (red and blue) correspond to the lowest energy
dipole modes of the system. Panel-(c) shows the evolution of the system mode as function
of the frequency of the incoming wave where d acts as a control parameter. Note the
evolution of the system mode supports three resonance frequencies indicated by purple
dots. Continuous evolution of the resonance frequency is shown in panel -(d) where the
system mode goes through singlet-triplet-singlet (STS) transition in normalized parameter
space.

At low energy, higher order modes are not being scattered by the system and hence, phases

of the corresponding eigenvalues are zero.

To show the dynamics of the system mode, we plot the phase of the eigenvalue corresponds

to one of the dipole modes as a function of frequency (see Fig. 5.6 (c)). Note, the presence

of both “fast” and “slow” branches in the system mode for d=d1 which are similar to that

of single cylinder case (see Sec.  5.4 ). As the separation between the scatterers is changed

to d=d2, the symmetry-induced dynamics evolve into ghost resonance indicated by black

arrow. Eventually, ghost resonance bifurcates and creates system triplet state at d = d3

where the mode supports three resonance frequencies. Further change in d = d4 leads to
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the annihilation of two resonance frequencies followed by the creation of one ghost at low

frequency while the system resonates at high frequency.

Continuous evolution of singlet-triplet-singlet (STS) transition is shown in Fig.  5.6 (d)

which looks like “S” in the parameter space of d/R vs R/λ. This nontrivial evolution is

due to the presence of system ghost modes (black arrows) in both low and high frequency

regimes. At the tangent bifurcation points, these ghost resonances split and give rise to

system dipole resonances.

Evolution of the electric field intensity is shown in Fig.  5.7 while the system is illumi-

nated by plane wave propagating along the end-fire axis. The configuration of the system

illumination is shown in panel-(a) inset. Note that, even though an incoming plane wave has

all (−∞,∞) angular momentum components, only few of them would be scattered by each

cylinder due to their finite size (R). Furthermore, spatially separated scattered fields from

each object would overlap and excite secondary waves. However, due to coustic effect [  163 ],

only few angular momenta compared to the size of the system would couple to each other and

form the scattering mode of the system. Moreover, the lack of rotational symmetry results

in l = 0 mode to cease to exist within the system. On the contrary, structural induced C2

symmetry is in favor of dipole mode and thus the lowest energy mode of the system turns

out to be dipole (l = 1).

Figures  5.7 (b)-(f) illustrate different cylinder modes responsible for the system resonance.

At low frequency (lowest“arm” of “S”), constituents of the system behave as monopole which

is consistent with the monopole resonance frequency of the individual cylinder (see Fig.

 5.4 (a)). Similarly, high frequency (highest “arm” of “S”), corresponds to dipole excitation

within the constituents of the system as shown in panel-(f). Continuous transition between

monopole and dipole excitations are mediated (middle “arm” of “S”) due to the presence

of ghost modes. Since the origin of the ghost mode comes from the slowest dynamics of

the system, the middle “arm” of the triplet state has the lowest quality factor consistent

with the leaky nature of the field profile as shown in panel-(d). From the field profile, it is

evident that during the transition, constituents of the system neither behave like monopoles

nor dipoles. Instead, maximum energy of the field is confined between the cylinders.
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Figure 5.7. Evolution of the dipole mode of the system in the parameter space of d/R
vs R/λ is shown in panel -(a). The corresponding field intensity profiles are shown in panels
(b)-(f) for the resonance frequencies indicated in panel (a). Note the presence of photonic jet
in each intensity profile at the shadow side of the system where the positions of the cylinders
are indicated by black dotted circles. Moreover, during the transition, constituents of the
system continuously evolve to operate from monopole (panel-b) to dipole (panel-f) while
the system behaves as a dipole. The middle “arm” of the triplet state corresponds to the
system resonance where maximum energy of the mode is confined between the cylinders
resulting in the leaky nature of the mode as shown in panel-(d). However, beyond the
tangent bifurcations, system still resembles a dipole thus indicating the presence of ghost
regime where constituents could behave as either monopole (panel-c) or dipole (panel-e)
depending on the operating frequency.
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Note the field profiles of ghost resonances shown in panel-(c) and panel-(d). Even though

scattering due to ghost resonance does not represent true system resonance, constituents of

the system behave in such a way that the system resembles resonance with the incoming plane

wave. After the annihilation of resonance frequencies at d/R = 4.85, monopole excitation

still continues within each cylinder for d/R > 4.85. Similarly, for the highest “arm” of “S”,

dipole excitation within each cylinder also sustains even after the annihilation as shown in

panel-(e).

The existence of ghost effect can be explained based on the extension of resonance dy-

namics to an extended phase space of higher dimensionality. In this higher-dimensional

space, the resonance remains in existence even beyond the point of the tangent bifurcation

in this approach. This is akin to the behavior of the solutions of a quadratic equation -

while a real solution can only exist if the corresponding discriminant is not negative. In

a higher dimensional (complex) space, this equation always has a solution irrespective of

the sign of discriminant. The ghost resonance can then be explained as a projection of this

higher-dimensional resonance onto the actual physical phase space.

Finally, to show observable scattering behavior, we plot the scattering cross-section of the

system as shown in Fig.  5.8 . The configuration of the structure and illumination are shown

in panel-(a). The coupling effect with respect to the size of the cylinders, separation between

the cylinders, and wavelength of the incoming light are studied here. The color density plot

of panel-(b) corresponds to normalized scattering cross section as a function of separation

between the cylinders and the wavelength of the incoming wave where both parameters are

normalized by the radius of the cylinder.

To compare different methods, we calculate scattering resonance frequencies of the system

of two cylinders based on both eigenvalue method (continuous lines) and conventional method

(discrete crosses) which are superimposed on the plot as shown in Fig. 5.8 (b). Note that, even

though frequencies from both methods follow the peaks of the scattering cross-section, they

are slightly off due to low permittivity of the cylinders and low quality factor of the resonance

mode as we discussed in Sec.  5.4 (see Fig.  5.5 (b)). Furthermore, notice the presence

of strong scattering activity due to ghost resonance (dotted green line) which diminishes

gradually from the bifurcation point as a function of cylinder separation. On the other
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Figure 5.8. Scattering cross-section of the system of two isotropic cylinders with per-
mittivity ε = 5 surrounded by air. Panel-(a) shows the system setup for end-on illumination
with a plane wave. Corresponding normalized scattering cross section (σnorm) is shown in
panel-(b) in false color as a function of system parameters. Notice the scattering cross sec-
tion peak due to ghost resonance indicated by the dotted green line.
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hand, the transition “arm” of the triplet state does not show strong scattering activity due

to the leaky nature of the system mode consistent with field intensity profile shown in Fig

 5.7 (d).

For smaller separation between the cylinders (d/R < 3), there are two scattering cross-

section peaks which is consistent according to the eigenvalue method. However, contrary

to that, the conventional method indicates three resonances for smaller separation. On the

other hand, for larger separation (d/R > 4), the conventional method works well since there

are three observable scattering cross-section peaks consistent with the number of resonance

modes. Similarly, with the concept of ghost resonance, which starts at the extreme point of

triplet state, the eigenvalue method is also consistent.

Even though both methods work well for large separation between the cylinders, the

conventional approach cannot explain the gradual decrease of the cross-section peak with

the increase of separation (d/R > 4.8 and R/λ < 0.08). Since ghost resonance can be thought

of as the projection of higher dimensional frequency on physical phase space, there is always

an exponentially decaying factor associated with it which explains the diminishing factor of

cross-section peak. Furthermore, the eigenvalue method shows the exact starting point of

the ghost scattering regime.

To show that eigenphase method works for even larger separation we extend our calcula-

tion for distance till d/R = 20 as shown in Fig.  5.9 . Note the STS transitions of both dipole

modes and creation of ghost resonances each time from the tip of “S” indicated by dotted

lines. Whereas, conventional method also tracks the resonance peaks but does not know

the existence of ghost resonances. Finally, when the separation is too large to create strong

coupling between the cylinders, both the system dipole modes no longer show STS transi-

tions. Instead, the system behaves like two individual dipoles with resonance frequencies of

that of single cylinder dipole. Note that there are ghost resonances also at higher frequency

(R/λ > 0.16) due to the STS transitions of dipole modes. However, associated scattering

cross-sections are screened out due to the presence of scattering from high frequency system

modes.
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Figure 5.9. Normalized scattering cross section (σnorm, in false color) of two dielectric
cylinders due to lowest order dipole modes as a function of separation (d) and incoming
wavelength(λ). Both parameters are normalized with respect to the radius of the cylinder
(R). The evolution of the resonance frequency calculated based on conventional (crosses)
and eigenvalue approaches (solid and dash lines) are superimposed on the plot. Note the
presence of ghost resonance (dashed line) and associated scattering cross sections peaks due
to STS transitions of the system dipole modes.

5.6 Ghost induced long-range interaction and polarization of dipole modes

The C2 symmetry of the two-cylinders system supports total four dipole modes. Here,

we are showing all four eigenmodes (m1-m4) of the system as shown in Fig.  5.10 (a). The

resonance frequencies of the modes are calculated based on the eigenvalue method whose

polarizations are indicated in the inset. Note the presence of frequency splittings and degen-

eracies between symmetric and anti-symmetric polarizations of both broadside and end-on

orientations of the dipoles. The splitting is due to the coupling between the scattered field

from each cylinder while the oscillatory nature of the scattering mode is responsible for the

frequency degeneracies.
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Figure 5.10. (a) Evolution of the system dipole modes as a function of normalized
frequency (R/λ) and normalized separation (d/R) between the cylinders with dielectric
permittivities ε = 5. The orientation of each eigenmode is indicated in the inset. For large
separation constituents of the system behave like an individual cylinder and all the system
modes (m1-m4) approaches a single cylinder dipole frequency (R/λ = 0.1795) consistent
with Fig. 5.4 (a). As the separation decreases, coupling results in frequency splitting of
broadside modes with respect to the single cylinder dipole frequency. However, symmetric
and anti-symmetric modes of end-on orientation evolve through STS transition multiple
times due to the presence of ghosts. Consequently, as evident from the intensity plots of
the electric field in panels (b)-(c), the interaction between the scatterer extends for long-
range (d/λ>1). Notice, the presence of photonic jet at the end of the system for both field
plots. Furthermore, while panel-(b) shows long-range dipole-dipole interaction, pane-(c)
shows monopole-monopole coupling for resonance frequencies indicated in panel (a).
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As the separation between the cylinders increases, coupling becomes weaker. Conse-

quently, the frequencies of the system dipole modes asymptotically approach the single cylin-

der electric dipole frequency (see Fig.  5.4 (a)). Since the end-on symmetric mode corresponds

the strongest coupling among all other system dipole modes, constituents of the system need

to be placed farthest to reach the asymptotic frequency.

Conversely, as the coupling increases for finite distance, frequencies of two collective

modes (m3 and m4) of broadside orientation oscillate above and below the isolated cylinder

dipole frequency. The amplitude of the oscillation increases as the cylinders are brought

closer to each other. Associated field distributions of individual dipoles are such that their

orientations correspond to symmetric and antisymmetric combinations. This behavior is

consistent with the theoretical prediction of toroidal dipole modes supported by two cylinders

system [  117 ].

On the other hand, end-on-oriented modes (m1 and m2) evolve through STS transition

multiple times as the coupling is increased. Note the presence of bifurcation and annihilation

every time the system evolves through the transition giving rise to ghost resonances at

multiple frequencies within the strong coupling regime. With ε = 5 used for both cylinders,

ghost induced strong coupling persists up to d/R ≈ 18.0 as shown in Fig.  5.10 (a).

To show the long-range interaction, we plot field profiles in panels (b)-(c) for large sepa-

ration between the cylinders (d/λ > 1). Note the presence of photonic jet at the end of the

system indicating that the overall system behaves like a dipole while the constituents have

degrees of freedom of operating either as dipole (panel -b) or monopole (panel-c).

Physical explanation of such degrees of freedom and STS transitions can be explained by

the presence of ghost resonances and their broad spectrum within each channel as introduced

in Sec.  5.4 and shown in Fig.  5.4 (a). With broad spectrum, dipole-ghost induced scattered

field from both cylinders induce monopole resonance within their neighbors in such a way

that the system behaves like dipole. As a consequence, the operating frequency of the

system reduces close to individual monopole frequency of the cylinder. Similarly, while the

monopole modes are excited in both cylinders, ghost resonance of monopole modes induce

dipoles within their neighbors. As such, the constituents of the system change their operation
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mode between monopole and dipole while the system resonance frequencies oscillate, and

the amplitude of oscillation increases gradually with the increase of coupling.

5.7 Summary

In summary, we have shown a new mechanism to calculate scattering resonance and

compared with the conventional approach for single dielectric cylinder. Using this new ap-

proach, we show the presence of ghost resonance in optical scattering which originates from

the rotational symmetry of the scatterer. Moreover, the presence of ghost resonance for each

angular momentum state allows one to build a macroscopic optical system supporting such

resonances. We extended our calculation for a system of two cylinders using the eigenvalue

approach and showed the presence of ghost resonance supported by the system. By varying

the system parameters, we have shown a systematic method of bifurcating such ghost res-

onances giving rise to new system resonances. Furthermore, akin to the broad spectrum of

ghost resonances the constituents of the system continuously change their excitation mode

between monopole and dipole while the system goes through the STS transition. Such ghost

induced transitions lead to long range (d >> λ) dipole-dipole and monopole-monopole inter-

actions exceeding current state of art [  164 ] which claims a sub-wavelength interaction length

(d ≈ λ/2) using hyperbolic metamaterials.
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6. CONCLUSION AND FUTURE WORK

The manifestation of different optical phases in the optical anisotropy sets directional depen-

dent refractive indices as independent macroscopic parameters. By using these macroscopic

degrees of freedom, more optical phases are expected to open in the future which could push

the current state-of-art in optical science and technologies. In this research, we investigated

all three classes (isotropic, uniaxial, and biaxial) of dielectric anisotropy and showed qual-

itatively new optical properties along several avenues: light absorption, thermal radiation,

guided modes, and optical scattering.

In particular, we have shown the persistence of Brewster phenomenon even in the pres-

ence of material loss by using anisotropic media. Moreover, we showed, that changes in the

topology of electromagnetic responses associated with phase transitions leave characteris-

tic signatures in far-field thermal emission. As we further increase anisotropy in material

parameters (biaxial media), nontrivial curvature in the momentum space results in qualita-

tively new electromagnetic responses including but not limited to mode degeneracies, mode

interactions, negative frequency dispersion, and ghost surface waves. Using planar geometry

with a biaxial core, we showed changes in the mode profiles which are usually obtained by

circular geometry [  165 ]. Furthermore, the presence of EPs and topological modes supported

by planar geometry has opened new avenues for low-cost optical sensing [  44 ] and lead us to

expect topological photonics [ 166 ] on simple geometry, respectively.

In this research, we only considered naturally available biaxial crystals where all per-

mittivity components are positive. However, a combination of their degrees of freedom in

material parameters along with their (±) sing can offer many more optical phases for future

research. Moreover, anisotropic media are known to have nonlinear optical responses. Evolu-

tion of linear optical properties found in this research is an intriguing question that needs to

be answered. One of the challenges remains in the small degrees of optical anisotropy avail-

able within natural media. In the near future, multi-layer artificial composites will hopefully

achieve this using nano-fabrication technology.

Furthermore, we have shown how internal degrees of freedom for circular geometry can

be used by the presence of “ghost” resonance in optical scattering. The origin of such a new
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class of resonances is related to circular symmetry and examples have been presented based

on single and two cylinders systems. The result needs to be extended for periodic structure

and explore the consequence of symmetry-induced resonances for larger systems.

To summarize, we have shown how degrees of freedom in material parameters and struc-

tural symmetry open up new optical phases which bring qualitatively new properties. It is

the author’s sincere belief that this will have broad impacts on both scientific advances and

technological development.
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