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ABSTRACT 

 Microbiome studies are varied and involve the examination of microorganisms at different 

levels: individual cells to determine individual functions, populations of specific microorganisms 

to determine interactions between organisms, and/or communities of microorganisms for a broader 

investigation of interactions between organism and environment. These studies are typically done 

within the context of a particular niche or environment. There are two parts to this dissertation, 

separated by the types of research involved. First, the analysis of bacterial communities using 16S 

rRNA sequencing and analysis. In this first part the bacterial communities of the reproductive tract 

of bulls and the gastrointestinal tract of weanling pigs were studied. The reproductive organs of 

the male, domestic species had not been studied from an ecological perspective prior to the study. 

As such, the research was mainly focused on characterizing the bacterial communities found 

within the prepuce of bulls that were considered to be healthy, or that the breeding soundness exam 

was satisfactory and the bulls had no clinical disease in the urogenital tract. Through this study 

two distinct types of bacterial communities were found based on the diversity of the observed taxa; 

the groups were split into a low diversity group identified by the presence of Bradyrhizobium and 

a high diversity group distinguished by the abundance of mucosal-associated bacteria found in oral, 

respiratory, and vaginal communities of cattle. Second, the effects of supplementary, soluble fiber 

on the intestinal bacterial communities of piglets pre- and/or post-weaning were studied. The 

rationale behind this study was to determine if pre-weaning fiber could alter the microbiome prior 

to weaning and the change of diet from liquid to solid. Pre-weaning, supplementary, soluble fiber 

was found to increase short-chain fatty acid concentrations and bacterial taxa potentially involved 

in their production. Additionally, bacterial taxa implicated in an increased inflammatory response 

were reduced in groups fed supplementary fiber. Taken together, the two bacterial community 

studies highlight the gaps in knowledge for reproductive communities in male animals as well as 

the potential for reducing weaning stress in pigs. Part two of this dissertation focuses on whole 

genome sequence analysis as a way to study bacterial populations associated with bovine 

respiratory disease (BRD), a common and potentially fatal disease in cattle. Identification of BRD 

has low accuracy and the presence of antibiotic resistant bacteria increases the chance of treatment 

failure. Using machine learning, the prediction of antibiotic resistance in bacterial isolates from 

animals with BRD was performed to find potential sequences for use in future molecular assays. 
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While using known resistance genes was helpful for some antibiotics, several of the antibiotics 

used in treating BRD were better predicted using the machine learning models. Model output 

sequences should be further tested using molecular methods to determine function and importance 

before using as an assay target. Put together, the contents of this dissertation should serve as an 

introduction to bacterial ecology as well as how the concepts can be applied to food animal 

production systems. 

  



 

 

14 

CHAPTER 1. INTRODUCTION TO BACTERIAL ECOLOGY AND ITS 

RELEVANCE TO LIVESTOCK PRODUCTION 

Abstract 

Animal agriculture is one of the largest economic sectors globally. With the growing, 

global human population, animal producers have been challenged with improving the efficiency 

of animal growth while maintaining animal health and welfare. Research into nutrition and disease 

mitigation has increased as scientists try to find ways of increasing final product quantity and 

quality through optimizing animal feed efficiency (i.e., decreasing the amount of feed needed to 

produce an equal or greater amount of meat, milk, eggs) and increasing animal resilience to 

disease. Microbial communities have become one of the main targets for animal research as studies 

have shown the importance of studying the various organs and systems of animals (e.g., lungs, 

reproductive tract, gastrointestinal tract, etc.). Bacteria aide in the digestion of feed into smaller 

components that are absorbed and used by the body. Additionally, commensal bacteria can help 

provide a preventative barrier against pathogenic microorganisms. Pathogenic bacteria can invade 

epithelial cells with some species able to avoid the host animal immune system through proteins 

expressed on their surface or secreted extracellularly. Through the study of bacterial communities, 

populations, and cells we can improve our understanding of the ways bacteria interact with other 

microorganisms, host environments, and feed as a component of productivity animal health. 

1.1 Background 

Animals raised for the production of meat, eggs, or milk for consumption have been a 

widely studied system as the global population continues to rise. Meat, dairy, and eggs have 

traditionally been the most consumed sources of protein, globally (FAO, 2018). While the role 

microbial communities play in human health have been studied extensively, there is increasing 

motivation to do the same in livestock. Livestock producers and scientists have started relying on 

the contribution of the animal’s microbial communities as a way to increase yield of animal 

products while trying to maintain high health status of the animals (Donham, 2000; Sundrum, 

2015; Temple & Manteca, 2020).  
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Recent advances in microbial analysis (i.e., community analysis, whole genome sequence 

analysis, etc.) have led to increased attention into the relationships between microorganisms, 

nutrition, and disease resistance in livestock production (Dewi & Kollanoor Johny, 2022; Kogut 

& Arsenault, 2016; Y. Li et al., 2020; Monteiro et al., 2022; O’Hara et al., 2020). Bacterial 

communities can be studied to find sources of beneficial bacteria, and examining the various 

aspects of pathogenic bacteria, such as the most common pathogens for a disease or environmental 

factors increasing risk of bacterial disease, to help improve animal health. While the microbial 

communities and populations in the gastrointestinal tract (GIT) of animals have significant 

examination, there is increased awareness of the potential impacts microorganisms can have on 

other organs and systems within livestock.  

Naturally, as more is learned about the complex interactions between microorganisms and 

animals, the ways in which we approach microbial ecology research shift. In fact, some scientists 

think of the gut microbiome as a separate organ due to the ability of microorganisms to manipulate 

metabolic and immune processes in the host animal (Anwar et al., 2020). The microbiome can be 

heritable based on parental genetics, and changes in the humoral immunity bring about small, 

“microevolutionary” shifts in gut microbial community members (L. Yang et al., 2017). The 

intricate connections between microorganisms and host create ecological niches and require 

individual examination to determine the differences within each community. 

One of the most consistent findings in animal bacterial community studies is the age-related 

shift in intestinal bacterial communities. Attempts to invoke early maturation of the communities 

in animals have been seen across species as a way to reduce risk of disease and increase animal 

performance (Awad et al., 2016; Choudhury et al., 2021; Fu et al., 2022). As animals mature, the 

alpha diversity of bacterial communities increases in richness (number of observable or predicted 

bacterial taxa) and evenness (the distribution of abundance of each taxon) when compared to 

younger animals (Guo et al., 2020). Additionally, a more stable diet selects specific taxa of 

bacteria, thus  the phylogenetic diversity becomes more consistent through the presence of certain 

bacterial taxa as mentioned above. Aruwa et al. (2021) highlighted the ways in which the poultry 

GIT is impacted during different stages of life. First, initial colonization of bacteria affects disease 

resistance. Colonization by pathogenic bacteria leads to poor health early, whereas symbiotic or 

commensal bacteria colonization increases disease resistance by actively defending against 
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pathogen colonization (Aruwa et al., 2021). Second, successional changes in the poultry gut 

microbial community eventually stabilize in the mature animal. 

There are many types of studies in microbial ecology, but the focus of this dissertation will 

be on bacterial community and population level analysis, referencing larger microbial ecology 

topics where needed. The remainder of this chapter serves as an introduction into some basic 

aspects of bacterial ecology, how the concepts can be applied to livestock production systems, and 

the ways in which we use bioinformatic analysis on bacterial communities and populations from 

livestock to help improve animal health and performance. 

1.2 Bacterial ecology  

Microbial communities are defined as a group of microorganisms living and interacting 

with each other in a specific niche under similar environmental conditions. These communities 

can be a mixture of all types of microorganisms – viruses, fungi, bacteria, and protozoa. The 

rationale behind studying microbial communities is to determine their interactions with biotic and 

abiotic components, i.e., host, environment, and other microorganisms. These interactions make 

up the basis of biological activity as microorganisms. There are an estimated 39 trillion microbial 

cells in one human body and bacterial cells alone make up 30% of those cells, contributing to about 

15% of the total cells within the human body (Gilbert et al., 2018). Bacteria commonly provide 

beneficial functions such as metabolizing complex carbohydrates and fats into smaller 

components, more readily available for the body to absorb as well as producing metabolites such 

as essential amino acids and vitamins (Albenberg & Wu, 2014; Dieterich et al., 2018).  

In addition to providing nutritional benefits, some bacteria function as a physical and 

chemical barrier on mucosal surfaces to prevent pathogenic microorganisms from attaching and 

invading (Paone & Cani, 2020). Through competitive exclusion, commensal bacteria can 

physically prevent pathogens from attaching to surfaces or utilize nutrients necessary for the 

growth of pathogens(Hibbing et al., 2010). The mucosal lining of many organs with outward-

facing cells (lungs, intestines, etc.) helps to provide a niche wherein established microbiota can 

provide additional defenses. Production of antimicrobial compounds, by both the host and 

mucosal-associated microorganisms, grant mucosal-associated bacteria a protective gradient 

through which pathogenic microorganisms must travel to invade host cells (Paone & Cani, 2020; 

Perez-Lopez et al., 2016).  
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Studying bacterial communities allows a broad picture of the potential functions in the 

animal environment, such as the bacterial community of the intestinal mucosa described 

previously. However, examining single populations of specific bacteria within a community allows 

the determination of individual benefits and detriments of each member of the community. Both 

types of research are important and expand the knowledge of how bacteria interact with the host 

and the environment. Their individual importance is discussed in the next several paragraphs. 

Increasing numbers of biological functions have been linked to the activity of 

microorganisms. Studies by Estrela et al. (2021) and Pacheco et al. (2021) showed the link between 

nutrient source or environment and microbial community members, with family-level changes 

being fairly predictable with different nutrients, but individual genera of the family changing. 

Though originally for human research, examination of the interconnection between the gut and 

brain in animals has displayed the ways in which microbial interactions, including commensal, 

symbiotic, or pathogenic microorganisms, affect behavior and appetite (Diaz Heijtz et al., 2011; 

Kraimi et al., 2019; Suchodolski, 2018). 

On the other hand, the analysis of bacterial isolates allows the connection of phenotypic 

and genotypic functions. As described above, potential functions can be determined by looking 

through the genome to identify coding sequences linked to a function. However, coding sequences 

do not always get translated, due to mutations in the coding sequence (i.e., deletion, insertion, 

frameshift), weak or absent promoter sequences, or the requirement of specific environmental 

conditions (i.e., heat, pH, and oxygen stress). By analyzing a specific phenotype in conjunction 

with the functional information gathered from the genome, the ability of a specific organism to 

perform a particular function can be elucidated. 

To determine the contributions of individual bacteria to the community, it is important to 

study specific populations of bacteria (e.g., Lactobacillus spp., Escherichia coli, Salmonella 

enterica ssp.). Examining explicit bacterial functions of individual commensal and pathogenic 

populations can help define the limits of a bacterial population such as how specific species are 

selected within an environment and how a specific population becomes virulent (Sheppard et al., 

2018; Tzortzis et al., 2005; VanInsberghe et al., 2020; Y. Wu et al., 2021). 

In addition to determining differences between populations, there is increased benefit to 

studying the change in a population over time (Bossi et al., 2003; Kamath et al., 2016; Ward et al., 

2014). Studying the longitudinal changes of a population grants the study of genetic changes and 
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mechanisms for those changes. For example, Rangel et al. (2005) studied E. coli O157:H7 

outbreaks from 1982-2002 and determined that the outbreaks continued to be foodborne with 

increased occurrence from water and animal contact cases. In various studies on the genetic 

disparity of E. coli O157:H7 strains, it was discovered there are strains with varying resistance to 

processing parameters such as high pressure, acidity, and temperature (Kay et al., 2017; Lim et al., 

2010; Malone et al., 2006). The longitudinal studies of bacterial populations can increase our 

knowledge of factors that lead to virulence, as discussed above with E. coli O157:H7 but also the 

value of beneficial bacteria, such as Lactobacillus spp., a genus that has been studied extensively 

in humans for effects on digestion and resistance to pathogenic microorganisms (Heeney et al., 

2018; Walter, 2008) and has gained the attention of animal producers (Dewi & Kollanoor Johny, 

2022; Hu et al., 2018; Mountzouris et al., 2007; Valeriano et al., 2017).  

Phenotypic resistance to antimicrobials, and antibiotics in particular, adds to the list of 

functions that have growing attention from scientists. The diminishing number of effective 

antibiotics has put an emphasis on determining antibiotic resistant bacteria (ARB) and the 

mechanisms by which bacteria become resistant (Bengtsson-Palme, 2018; Dowling et al., 2017). 

Pairing genomic antibiotic resistance data with observable resistance phenotype is important for 

the reasons mentioned above; the existence of a particular gene does not always result in 

transcription and translation. Scanning for particular antibiotic resistance genes (ARG) within a 

community is even less helpful when bacteria are intrinsically resistant to a particular antibiotic 

and may not contain the resistance genes despite being phenotypically resistant (Cox & Wright, 

2013). This connection between genotype and phenotype is not always straightforward and 

requires the isolation of bacteria to perform biochemical and molecular assays (Leclercq et al., 

2013). Linking antibiotic resistance (AR) to particular bacterial populations within a community 

is an obstacle requiring novel methods to be developed to quickly detect AR populations and 

improve treatment of diseases.  

1.3 Increasing animal health by studying bacterial communities and populations 

In livestock, microbial studies have been focused on the gut microbiome, however there is 

evidence across all animals of the importance of microbial communities on the skin, in the lungs, 

and other organs. Animal production as a whole includes much more than nutrition and disease 

treatment, and recent findings have encouraged the scientific community to study the whole animal 
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instead of concentrating efforts only on the GIT. Adnane & Chapwanya (2022) reviewed the 

importance of the microbial diversity in the reproductive tract of cattle, discussing the initial 

establishment of the reproductive microbiome early in life and the connection of microbiome 

dysbiosis to infertility and uterine diseases. Similarly, Sanglard et al. (2020) studied the impact of 

porcine reproductive and respiratory syndrome (PRRS) vaccination on the vaginal microbiome of 

sows and found the microbiome was different between sows with low and high reproductive 

performance. In both the reproductive studies, connections between microbial community 

members and animal performance or disease (e.g., infertility and number of progeny) were found, 

suggesting additional investigation is needed determine the importance of the reproductive tract 

microbiome on breeding programs. 

In studies on the respiratory microbiome of livestock, key bacterial and viral agents have 

been identified for most animal species. Research on the swine respiratory microbiome shows 

Mycoplasma hyopneumoniae to be one of the primary bacterial pathogens in cases of swine 

pneumonia (Siqueira et al., 2017). In fact, Mycoplasma spp. are implicated in severe cases of 

respiratory disease in mammalian and avian livestock species (Daee et al., 2020; Dudek et al., 

2020; Gerchman et al., 2011; Maes et al., 2020). Pasteurella multocida, another respiratory 

bacterial pathogen found in both mammalian and avian livestock species (Hsuan et al., 2009; 

Rawat et al., 2019; J.-R. Wu et al., 2003), is observed as an opportunistic pathogen, requiring a 

lowering of immune defense from viruses or stress before becoming virulent.  

Stresses, including but not limited to transportation, temperature change, dietary change 

(e.g., from milk to solid feed), co-mingling, and weaning impact animals at every stage of life. 

Each of these stresses has been implicated in poor performance in young animals, increased 

prevalence of disease, and a lower quality of finished product (e.g., milk yield and carcass weight). 

Researchers have approached stress in various ways to reduce the negative effects on animals. A 

review on stress in early weaned piglets by Campbell et al. (2013) highlights weaning as one of 

the most stressful times in a pig’s life. The authors consider separation from the sow, handling, 

establishment of new social hierarchies, and change in physical environment as some of the points 

of stress during weaning that lead to low performance and decreased health status of pigs later in 

life (Campbell et al., 2013).  

The stress of changes to an environment can include physical occurrences such as 

movement to a different facility, but also factors such as temperature and humidity. Increases in 



 

 

20 

temperature are linked to a decline in gut integrity of animals with heat stress leading to impaired 

gut barrier function, an increase in intestinal inflammation. Prolonged exposure to high 

temperatures can permanently damage the intestinal epithelia (Koch et al., 2019; Quinteiro-Filho 

et al., 2012; Summer et al., 2019). As gut barrier function is reduced, there is a higher risk of 

infection due to the ability of bacteria and other microorganisms to bypass gut defenses and be 

disseminated into other parts of the body (Spadoni et al., 2015; Wickramasuriya et al., 2022).  

However, it is important to note that the gut barrier does not only refer to the intestinal 

epithelia and immune cells but includes the microbiota in the lumen and mucosa as well. A study 

by Xia et al. from 2022 connected a reduction in gut barrier function to dysbiosis of the microbiome 

within the gut. The mucosal-associated bacteria are exposed to more oxygen than their luminal 

counterparts due to the oxygen needed within the gut epithelial cells being diffused through the 

mucous barrier. However, Xia et al. (2022) discussed the impact small changes in oxygen levels 

can have on the mucosal bacteria, with increased reactive oxygen species (ROS) being created as 

oxygen is moved to the peripheral vascular system during heat stress. The ROS, created by both 

the epithelial cells as well as the mucosal bacteria, cause increased damage to the epithelia as well 

as the microbiota within the mucous and lumen (Xia et al., 2022). 

While weaning stress greatly affects the function of the GIT as discussed above, many 

other essential systems are disturbed by maternal separation and weaning. Malmuthuge et al. 

(2021) studied the separation of calves from dams and subsequent transportation to determine the 

effects of these stressors on the immune system of the young animals. The authors found that while 

the microbiome of the calves’ upper respiratory tract did not significantly change compared to 

suckling calves, the expression of neuroimmune receptor genes increased, warranting further 

investigation into the immune responses of weaned calves (Malmuthuge et al., 2021). Studies in 

early-weaned piglets show the animals often benefit from supplementation of amino acids (J. 

Wang et al., 2021), probiotics (Xu et al., 2018), or prebiotics (Hu et al., 2018) as ways to ameliorate 

the effects of weaning stress. In a study by Choudhury et al. (2021), an attempt was made to mature 

the gut microbial community of piglets to reduce weaning stress and prevent post-weaning 

diarrhea. Using a diet high in fiber during farrowing, the authors observed a change in the gut 

microbiota, increased weight gain, and decreased diarrhea scores post-weaning compared to 

piglets without access to the solid feed (Choudhury et al., 2021).  
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Stress to livestock can also be the result of poor air and water quality. Studies have 

examined the microbial communities of the environments within and surrounding production 

facilities to determine the impact of air and water quality on animal health from a microbial 

perspective. In a study on the air quality within calf barns during winter, Lago et al. (2006) cultured 

airborne bacteria to determine which factors can result in lower bacterial counts, as poor ventilation 

can increase the risk of respiratory disease. The authors found factors such as pen bedding type, 

temperature, ventilation rate, and openings between pens contributed to the number of bacteria 

within individual pens as well as in the shared space (alley) in the barns (Lago et al., 2006). 

Ventilation type also contributes to differences in respiratory disease as ventilation helps control 

the temperature and humidity within animal housing as well as the removal of ammonia and carbon 

dioxide. In a 2022 study by Shi et al., the authors observed tunnel ventilation was the best option 

for cattle during winter as it takes advantage of higher temperature within the soil compared to 

open air. 

1.4 Nutrition and bacterial communities 

The microbial environment of an animal’s GIT plays a distinct role in health status and 

production capabilities. Without gut microbial community members able to degrade complex 

carbohydrates, proteins, and fats into smaller components, animals will not have the ability to 

incorporate the components into muscle, milk, or eggs (Hooper et al., 2002; Wessels, 2022). While 

the microbial community can affect how well an animal can absorb nutrients from their diet, the 

reverse relationship is also true – animal feed can impact the microbial community within the GIT, 

selecting for microorganisms that can efficiently utilize the dietary components. For this reason, 

the most suitable diet to balance nutrition for both animals and beneficial microorganisms while 

deterring the colonization and growth of pathogenic microorganisms is under current investigation.  

Optimizing absorption of nutrients and reducing nutrient loss through waste are key 

components to increasing feed efficiency. Utilization of dietary components (e.g., fats, protein, 

carbohydrates, and vitamins) have been studied through full diet changes as well as 

supplementation as ways to increase feed efficiency and reduce unwanted excretion (de Vries et 

al., 2015; Heinritz et al., 2016). The gut bacterial community can improve the full utilization of 

nutrients by producing metabolites and enzymes to help process complex carbohydrates (H. Wang 
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et al., 2020) and fats (Kim et al., 2020; H. Yang et al., 2018) into useable components (e.g., 

secondary metabolites) for the host animal. 

Studies on the swine GIT have emphasized the importance of fiber in the piglet diet and 

how incrementally introducing solid feed to the suckling pig (creep feed) can influence the 

development of the piglet intestine later in life. Chen et al. (2021) studied the differences between 

types of creep feed (powdered, soft pellet, or hard pellet) on performance and intestinal 

development. The authors found that soft pelleted creep feed improved growth performance and 

intestinal development in piglets measured 10 days post-weaning. However, not all studies have a 

positive result from using creep feed (Middelkoop et al., 2020), suggesting the implementation 

potential or generalizable benefit is unknown or narrow. 

The use of creep feed highlights one of the key findings of studies in livestock; dietary 

fiber is linked to the maturation of the GIT as well as the microbial community. The type of fiber 

used is dependent on species of animal, but is considered a crucial dietary component in 

monogastric (Jha et al., 2019) and ruminant (Mertens, 1997) animals for production of short chain 

fatty acids (SCFA). In both monogastric and ruminant animals, the production of SCFA is 

performed by microorganisms; in monogastric animals this happens primarily in the cecum and/or 

colon while in ruminant animals, production of SCFA occurs primarily in the rumen. Fiber is 

supplemented in the monogastric diet to select SCFA producing bacteria that are considered 

beneficial (Jha et al., 2019). The SCFA are utilized for many purposes including as energy for 

colonic epithelial cells, creating a better barrier and quicker responses of immune cells. Fiber is 

used in a similar way in ruminant animals, where selection of microbial communities with low 

numbers of unique but specialized microorganisms effective in degrading plant biomass have been 

implicated in dairy cattle with high feed efficiency (Shabat et al., 2016).  

Secondary metabolites produced by bacteria can be used by the animal, like the SCFA 

mentioned above, but also may provide an environment that is selective for other microorganisms. 

In ruminants, lactic acid producing bacteria and exogenous lactic acid found in silages create an 

environment selective for lactic acid utilizing microorganisms, striking a balance between the 

fermentation of plant biomass, metabolism of lactic acid by the animal for energy, and utilization 

of excess lactic acid to prevent acidosis (Mackenzie, 1967; Mills et al., 2014). Production of urease 

by ureolytic bacteria in the animal GIT is important in the utilization of nitrogen and the prevention 

of excess urea in both ruminants and monogastric animals (Patra & Aschenbach, 2018). Finding a 
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stable microbial community that optimizes the utilization of nutrients and removal of waste 

between animal and microorganism is crucial to animal health and efficiency. 

1.5 Animal disease treatment and AMR in bacterial communities 

Thus far, we have discussed the ways in which microorganisms can benefit animals 

through microbial communities that enhance feed efficiency and improving animal health by 

balancing nutrient utilization and loss. However, pathogenic microorganisms are always part of 

the equation, and while a stable microbial community can help reduce the chances of infection, 

animals that become sick from a microorganism often demand the use of antimicrobials (Johnston, 

1998). An antimicrobial is any compound that inhibits the growth of, or actively kills, 

microorganisms including antibiotics, disinfectants, and heavy metals.  

Antimicrobials play a large role in the health and performance of animals (Broom, 2017; 

Butaye et al., 2003; Dibner & Richards, 2005).While producers vaccinate animals against common 

diseases caused by microorganisms, antimicrobials are also used for prophylactic treatment of 

diseases known to be a problem, e.g., diarrhea in grow-finish operations in (USDA - APHIS, 

2002). In prophylactic treatment of disease, the dose of an antimicrobial given is typically 

subtherapeutic which is much lower than what would be used to treat a disease (Edrington et al., 

2001; Van Cuong et al., 2021).  

However, the use of antimicrobials at therapeutic and subtherapeutic levels can lead to an 

increase in antimicrobial resistance (AMR). Rosenfeld (2017) reviewed the effects of metal, 

antimicrobial, and other chemical contamination on the microbial communities within animals and 

concluded that gut dysbiosis is an acute result of exposure to anthropogenically contaminated 

water, but prolonged exposure can lead to systemic issues. Similar to water quality, diets are often 

supplemented with metals such as zinc and copper to increase feed intake, to provide essential 

micronutrients, or to provide prophylactic treatment of digestive dysbiosis  (Carlson et al., 2007; 

Villagómez-Estrada et al., 2020). However, the antimicrobial properties of metal in water or feed 

can select for antimicrobial resistant bacteria within the animal gut (Baker-Austin et al., 2006; M. 

Zhang et al., 2017), leading to treatment complications. 

Though commonly applied on farms for preventative and therapeutic practices, the use of 

antimicrobials is well-regulated. Historically, antimicrobials were also used as growth promoting 

compounds (AGP) in livestock (Broom, 2017; Butaye et al., 2003; Dibner & Richards, 2005). 
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Animals that receive growth promoters perform better than their un-treated counterparts, with 

increased disease tolerance and feed efficiency (Cromwell, 2002; Dibner & Richards, 2005; Shabat 

et al., 2016). However, recent regulation of antimicrobials has led to AGP being prohibited in 

several countries, including the United States (Department of Health and Human Resources, 2015). 

In the US, government agencies and organizations (e.g., Department of Agriculture (USDA),  Food 

and Drug Administration (FDA), and the Animal Health Association (USAHA), as well as global 

regulatory agencies such as the World Health Organization (WHO) and the Food and Agriculture 

Organization (FAO), give regulations and guidelines, or encourage legislation that, in combination 

with veterinarians and producers, result in the best treatment for a sick animal (Food and Drug 

Administration, 2012; World Health Organization, 2019). Using the most judicious treatment is 

part of the global initiative in reducing the amount of antimicrobials used to increase the 

effectiveness of available antimicrobials (Forum on Microbial Threats et al., 2017). 

The reduction in the use of commonly known antimicrobials has spurred research into 

antibiotic alternatives – feed additives, management practices, and biosecurity measures – that can 

help reduce the prevalence of disease and need for antimicrobials (Allen et al., 2013; Sharma et 

al., 2018; Suresh et al., 2018). While antimicrobials are useful in the treatment and prevention of 

disease, the search continues for alternative treatments for illnesses to reduce the need to use 

antimicrobials except in very particular cases of infection. The motivation behind finding 

alternatives to antimicrobials is the increased occurrence of antimicrobial resistant (AMR) 

microorganisms (Bonten et al., 2001; Forum on Microbial Threats et al., 2017; Sharma et al., 

2018).  

However, antimicrobial resistance in bacteria is not confined to pathogens. In fact, the 

interactions of commensal and pathogenic bacteria in disease progression has attracted the focus 

of scientists as it has been found that commensal bacterial populations are high in AMR (Card et 

al., 2017; Chuppava et al., 2019; Ramos et al., 2022; Tawfick et al., 2022). Populations of 

commensal E. coli in the GIT of humans and animals are reservoirs for resistance plasmids (Card 

et al., 2017; Chuppava et al., 2019; Tawfick et al., 2022) and AMR in commensal Staphylococcus 

aureus in wild animal populations have been connected to agricultural land usage (Ramos et al., 

2022) suggesting the movement of AMR between environments.  

Much like pathogens, commensal organisms are trying to survive (e.g., exposure to 

antimicrobials, environmental changes, nutrient scarcity) and can develop resistance genes to the 
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stressors. Commensal bacteria are commonly more abundant and persistent within an environment 

than pathogenic bacteria thus the probability of commensal organisms developing resistances is 

high (Lopetuso et al., 2013; McLaren & Callahan, 2020). Antimicrobial resistance in commensal 

bacteria can be a benefit to the host as they can serve as a barrier to pathogen colonization and 

invasion of cells (McLaren & Callahan, 2020). However, the transfer of antimicrobial resistance 

from commensal to the pathogenic bacteria poses a risk to animal and human health.  

Resistance genes can move to pathogenic bacteria through horizontal gene transfer (HGT) 

which can occur through conjugation (direct exchange between bacteria), transduction (infection 

bacteriophage), or transformation. The mechanisms of HGT have been well studied and there are 

studies that have attempted to characterize the scenarios that make HGT more likely to occur, such 

as spatial ecology during exposure to low concentrations of antibiotics (Cairns et al., 2018) and 

the large diversity of microorganisms in the mammalian GIT (Shterzer & Mizrahi, 2015). The 

animal gut, including humans, has long been associated with high HGT of antibiotic resistance 

genes and thus has been the primary focus of animal researchers (Lima et al., 2020; Shterzer & 

Mizrahi, 2015). As HGT is thought of as the main contributor to pathogen-acquired resistance 

genes, it has gained attention from various disciplines (Cairns et al., 2018; Jutkina et al., 2016; 

Úbeda et al., 2005).  

Overall, treating animal disease has the same end goal as with human clinical treatments – 

to reduce or eliminate the cause of the disease while quickly and safely returning the animal to a 

healthy state. There are additional intentions when treating a disease in agricultural animals that 

include lessening the impact of the treatment on surrounding environments (including soils, 

surface waters, etc.), animals (companion, production, or wild), and humans. However, the 

considerations in each of these cases involves making the best choice possible with the information 

at hand, making animal disease resilience and effective treatments research critical to reduce 

antibiotic resistance and to preserve the efficacy of antibiotics. 

1.6 Determination of bacterial functions in communities and populations 

Prior to the “golden age of sequencing” happening now, analysis of bacteria and bacterial 

disease was limited to what bacteria could be cultured and easily characterized by biochemical 

and/or molecular methods (Didelot et al., 2012; Schabereiter-Gurtner et al., 2001). Now, with the 

ability to go from isolation to fully sequenced bacterial genome in the matter of days, researchers 
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have put more emphasis on collecting vast libraries of isolates from which genomic information 

can be obtained. While the most genomic information is still obtained through culturing and 

sequencing of bacterial isolates, broad examination of bacterial communities within an 

environment can be performed with the advent of meta’omic (i.e., metagenomic, 

metatranscriptomic, etc.) sequencing and analysis (Segata et al., 2013).  

The increasing interest in bacterial function and selection in livestock necessitates the 

analysis of large amounts of sequence data. Bioinformatics, a field growing in popularity among 

scientists of many disciplines, permits multifactor analysis of bacterial sequence data. Studying 

bacterial communities gives us insight into potential reservoirs of beneficial and detrimental 

processes for animals. Research into the shifts in microbial communities due to dietary changes or 

stress have led to discoveries in nutrition, behavior, and management of production animals 

(Chang et al., 2022; Diaz Heijtz et al., 2011; Fu et al., 2022). As an additional measure of bacterial 

communities, producers and researchers have increased focus on the role of beneficial bacteria on 

animal immune response and resilience of the community to perturbation by pathogenic 

microorganisms (Clavijo & Flórez, 2018; Desai et al., 2016; Haley et al., 2020; Mon et al., 2015).  

Studies on the livestock microbiome may focus on characterizing the bacterial community 

with 16S rRNA gene amplicon sequencing or metagenomic analysis. Through analyzing the 16S 

rRNA genes of bacteria with gene amplicon sequencing or targeted metagenomic sequencing, 

researchers can identify the phylogenetic differences that categorize bacteria into various taxa and 

determine broad potential functions based on the taxonomic information. A study by Pitta et al. 

(2016) found differences in the rumen metagenome of dairy cattle during the stages of lactation, 

with late lactation having higher abundance of protein metabolism genes. Additionally, differences 

in carbohydrate enzymes found within the rumen metagenome were observed with a shift in the 

type of carbohydrate enzyme (e.g., debranching, cellulase, oligosaccharide degrading) between 

lactation periods (Pitta et al., 2016).  

Studies on the bacterial communities of the sow reproductive tract emphasize the analysis 

of vaginal microbiota and the effects on sow production. Zhang et al. (2021) studied the vaginal 

microbiota in conjunction with gut microbiota to determine a connection between the microbial 

communities and a return to estrus. The authors found higher abundance of Lactobacillus in feces 

and Ruminococcaceae from vaginal swabs of sows with a normal return to estrus, two taxa 

associated with healthy communities for both environments, compared to sows that did not return 
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to estrus which had higher abundance of inflammatory and pathogenic bacterial taxa from vaginal 

swabs and feces (J. Zhang et al., 2021). In a study on differences in the vaginal microbiota of sows 

with or without urogenital infections, Poor et al. (2022) used culture-dependent (MALDI-TOF) 

and culture-independent (16S rRNA targeted metagenomics). Though there was similar 

characterization of genera between the culture-dependent and -independent methods, indicating a 

high abundance of the genera found within the samples, an identifiable difference in the genera 

between sows with and without urogenital infection was observed (Poor et al., 2022).  

While analysis of bacterial communities focuses on identifying members and defining 

broad, overarching functions within higher order taxa, population analysis is concentrated on 

connecting function and phenotype within a specific genus, species, or strain. As discussed 

previously in this chapter, researchers have been able to isolate and characterize the biochemical 

properties of bacteria such as antibiotic resistance. Using the genome, the observable 

characteristics of bacteria can be linked to specific genetic information.  

Traditionally, isolates were categorized by their phenotype. One of the earliest, and most 

famous, bacterial phenotype characterizations is the association of virulence and disease with 

colony morphology in Streptococcus pneumoniae by Frederick Griffiths in 1928 (Shen, 2019). 

Griffiths used classical microbiological techniques and determined what he called the 

“transforming principle” which is the ability for dead cells to transfer their phenotype to live cells. 

This set of observational experiments led the way for future scientists to understand the intricacies 

of DNA. Currently, we understand that the “smooth”, virulent cells and “rough”, avirulent cells 

have their morphology due to a set of genes that control the production of capsular polysaccharide 

– a common evasion mechanism against the host immune system shared among many virulent 

strains of bacteria (Klima et al., 2017; Sande & Whitfield, 2021). The theoretical knowledge of 

bacterial functions learned prior to the advent of high throughput sequencing still shapes how we 

approach experiments. However, the methods used reflect how much information has truly been 

gathered. 

Following the growth and improvement of sequencing technologies, more bacteria have 

been characterized for phenotype and genotype, but there is still a large number of bacteria for 

which scientists do not have the ability to culture (Lloyd et al., 2018). Using the knowledge gained 

from mining bacterial genomes, proteomes, metagenomes, etc. from specific environments, the 

optimal conditions for culturing the “unculturable” can be ascertained but require deep datasets 
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that often do not exist (X. Wu et al., 2020). The connection of genotype and phenotype in well-

known bacteria is ongoing as the bacteria evolve, but as more is learned about the complex 

interactions between members of a microbial community, increased emphasis is placed on 

characterizing the most influential members in conjunction with the most abundant. 

Artificial intelligence-based analyses such as machine learning allows additional 

connection of genotype and phenotype. With machine learning, scientists are able to predict 

bacterial phenotypes using the genome and collected environmental information (Feldbauer, 2016; 

Lees et al., 2020). For example, the general function of rumen microbial communities is to ferment 

complex plant materials for further degradation by the host. However, the specific connection 

between which rumen bacteria are connected to rumen fermentation has recently been examined 

using machine learning. With the combination of sequence data and collected fermentation 

measurements from animals, J. Li et al. (2022) determined Lactobacillus, Prevotellaceae, 

Selenomonas, Peptostreptococcus, and Olsenella were significantly associated with gas 

production, nutrient digestibility, and volatile fatty acid production in sheep, goats, and cows.  

1.7 Applying bacterial ecology to study communities and populations in livestock 

However, there are many situations for which phenotype does not match current genotype 

information. Machine learning can be especially helpful in these situations, and the application of 

existing algorithms in bacterial ecology has pushed researchers to gather more information. One 

way machine learning has been used in cases of phenotype and genotype discordance is in the 

determination of antibiotic resistance. The pathogenic bacteria in animal diseases are often genera 

that have few representative genomes, resulting in unusable generalizations of current antibiotic 

resistance genotypes. Using machine learning, data collected on the specific animal pathogens can 

be used as the starting point for the discovery of antibiotic resistance determinants (Hicks et al., 

2019; Lees et al., 2020).  

While the different aspects of bacterial ecology are often studied individually, i.e., studies 

on populations or communities, the interactions between levels are all a part of a bigger picture. A 

review by Kodera et al. (2022) highlights the importance of understanding the interactions of 

bacteria within and outside of the target population. Though examining the individual potential of 

bacterial genera or species is helpful, it is important to remember that bacteria do not exist solely. 

The interactions between bacteria, biotic, and abiotic factors is the key focus of all ecological 
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studies, regardless of the level being examined (Mony et al., 2020; VanInsberghe et al., 2020). The 

utilization of traditional microbiology and ecology methods with current technology and analysis 

has improved our comprehension of many diseases in humans and will continue to be the way to 

advance understanding of the bacterial communities and populations within livestock. 

The topics in this dissertation are split into two parts. In both parts of this dissertation, the 

information on bacteria is gathered with specific conditions in mind – bulls with satisfactory 

breeding soundness scores, farrowing piglets, and cattle with bovine respiratory disease. While 

some information can be generalized for similar conditions (e.g., the types of bacterial genera 

found within the respiratory tract), it is important to remember that ecological studies typically are 

observations at a specific point in time and/or under specific environmental conditions.  

The first part of the dissertation is on the study of bacterial communities in the prepuce of 

bulls and the GIT of piglets during weaning. The objectives for these two studies are varied; 

examining bacterial communities of the reproductive tract bulls is to characterize healthy 

communities and how animal traits (age, breed, etc.) affect the types of bacteria that inhabit the 

reproductive organs. The objective of studying the GIT of piglets is to determine how 

supplementary dextrin can help ameliorate weaning stress.  

The second part of the dissertation is the determination of antibiotic resistance using the 

genome of specific, pathogenic populations of bacteria from cattle with bovine respiratory disease. 

This research can be used for further investigation into how we can improve animal resilience to 

disease and overall health, as well as reduce the need for antibiotics, and improve. The objectives 

of the specific studies were to determine sequences predictive of phenotypic antibiotic resistance 

1) from three BRD pathogens and 2) from M. haemolytica specifically.  
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Abstract 

Characterization of microbial communities inhabiting the reproductive tracts of cattle may 

lead to a better comprehension of bovine physiology and reproductive health. To date, studies have 

been reported that have utilized culture-independent 16S ribosomal RNA (rRNA) for the 

classification of microbiota in the vaginal tract of cows but no studies have looked at the microbiota 

of the prepuce or penis of the bull. The aim of this study was to elucidate the microbiota present 

on the epithelial surface of the penis and prepuce of the post-pubertal bull using 16S rRNA gene 

sequencing. Ninety- two healthy bulls of a variety of ages and breeding history, presented for 

routine breeding soundness examinations, were utilized in this investigation. Bacteria belonging 

to Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria were identified in 

the prepuce. From all the bulls, two major community types were found, those with low or high 

bacterial species richness (up to 400 operational taxonomic units in one sample). There was no 

animal characteristic (breed or age) or management practice (feed type, antibiotic use, co-housing, 

breeding history) that was correlated with the bull penile microbial community composition. 

However, Bradyrhizobium is a distinguishing genus only found in the low diversity samples. The 

bull penile microbial community includes members of genera that are common in soil, cow vagina, 

respiratory tract, and feces. The baseline preputial microbial community in healthy bulls is 
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described in the current study. This knowledge can be used later when looking at how disease state 

alters the male reproductive microbial community. 

2.1 Introduction 

Worldwide there are approximately 971 million head of cattle with 92 million head within 

the United States alone. The production of cattle is one of the most important industries in the 

United States, accounting for $78.2 billion in cash receipts during 2015 (National Agriculutral 

Statistics Service, 2016). Despite the relevance of cattle economically, many aspects of their 

reproductive physiology and biology are still relatively unknown including the microbial 

community of certain body systems such as the urogenital tract of the male bovid. A microbial 

community can be defined as an assemblage of microorganisms present in a distinct environment. 

These microbial communities play a key role in maintaining health and altered microbial 

communities or dysbiosis have been associated with a variety of conditions (Nelson et al., 2010).  

Up to this point, most microbial characterization of the bovine prepuce has involved 

investigation of urogenital disease. Bacterial genera isolated from the penis and prepuce and 

implicated in bovine reproductive disease including Campylobacter, Chlamydia, and Histophilus 

– specifically H. somni (Chaban et al., n.d.; Humphrey et al., n.d.; Parez, n.d.; Sandal & Inzana, 

2010). These bacteria were isolated due to clinical signs of disease, but do not represent all of the 

species present in the bovine reproductive environment. In general, a majority of the microbial 

species within an environment resist cultivation in the laboratory (Amann et al., 1995; Bomar et 

al., 2011) and consequently have evaded notice during attempts to define microbial communities 

through bacterial culture. With the use of 16S ribosomal RNA (rRNA) amplification and 

sequencing, a larger majority of inhabiting microorganisms can be identified, allowing for the 

characterization of an entire microbial community of a selected environment. By identifying the 

symbiotic and dysbiotic states of the microbiota, the host-parasite-bacteria-virus complex 

interactions at mucosal or epithelial surfaces can be described allowing for important new research 

to be conducted. 

The microbial community has been shown to have an impact on animal health and disease 

conditions as the host immune system is affected by changes in the microbiota and vice versa 

(Tomkovich & Jobin, 2016). Only recently has the vaginal and uterine microbiome been 

characterized in the cow, but the microbiota of the male urogenital system has yet to be determined 
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in any domestic animal species (Laguardia-Nascimento et al., 2015; Machado et al., 2012; Peng et 

al., 2013; Rodrigues et al., 2015; Swartz et al., 2014). In this study, samples from 92 healthy bulls 

were collected. This study defines the baseline microbial colonization of the bull prepuce and in 

the future may aid in determining factors governing disease conditions on the epithelial surface of 

the penis and prepuce. Similar work is beginning to be conducted in humans. For example, there 

is a clear distinction of urogenital microbial communities between males infected, or not, with 

sexually transmitted diseases or suffering from conditions such as prostatitis. Additionally, in 

humans the seminal microbial community correlates well with fertility in men (Weng et al., 2014). 

Through exploring and defining the bovid urogenital microbiota, the effects of the urogenital 

microbial community on host health and disease can be established.  

2.2 Materials and Methods 

2.2.1 Animals and Sample Collection 

The objective of this study was to investigate and define the microbiota of the penis and 

prepuce of the post-pubertal bull using 16S rRNA profiling. Bulls presented to the Purdue 

University Food Animal Service for routine breeding soundness exams were utilized in this study 

pending client consent. This project was approved by the Purdue University IACUC committee 

(PRN-1701001529) and the Purdue University College of Veterinary Medicine Veterinary Clinical 

Studies Committee.  

Ninety- two bulls were presented to the service between March and June 2017 and served 

as the source for the study group. All bulls were of breeding age with ages ranging between 15 

months and nine years-of-age. A total of 7 breeds were represented: Angus (44), Crossbred (21) 

mainly Angus-Simmental crosses, Simmental (19), Hereford (5), Gelbvieh (1), Shorthorn (1), and 

Wagyu (1). A questionnaire was completed by the owner for each bull obtaining information on 

age, breed, diet, breeding history of bull co-housing, and antibiotic history from the previous year.  

Bulls were restrained in a livestock squeeze chute per routine standards for performing 

routine breeding soundness examinations. The bull underwent a basic physical exam in-line with 

normal bull breeding soundness practices. During the process of semen collection by 

electroejaculation when the bull had fully extended his penis and prepuce a Dacron swab was used 

to collect samples from the epithelial surface of the penis and prepuce. Aseptic technique was used 
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to minimize contamination of the sample (i.e., gloves were worn during sampling, the sample was 

not grossly contaminated with dirt or debris, and once collected the sample was aseptically placed 

in a tube for transport). Once taken, the sample was quickly placed in individually labeled vials 

containing 1 mL RNAlater (Ambion, Austin, TX, USA) to stabilize and protect nucleic acids.  

2.2.2 DNA Extraction and Sequencing 

Samples were transported to the lab, and DNA was extracted from samples using the 

MagMAX CORE Nucleic Acid Purification Kit (Thermofisher Scientific Waltham, MA, USA) 

following the manufacturer’s protocol. Extracted DNA was used for the construction of a 16S 

rRNA gene library following a standardized protocol (Kozich et al., 2013). Briefly, Illumina 

indexed reads were created using PCR amplification of the V4 region of bacterial 16S rRNA gene 

using the 515R (GTGCCAGCMGCCGCGGTAA) / 806R (GGACTACHVGGGTWTCTAAT) 

(Kozich et al., 2013). Amplification success was determined through gel electrophoresis as a 

quality check. No bands were observed in the negative control samples using water as the DNA 

template. Amplified DNA was normalized using a SequalPrep Normalization Plate (Invitrogen), 

and pooled into a single library. Library concentration was determined using the KAPA Library 

Quantification Kit (Roche) and library average fragment length was determined using the 

Bioanalyzer (Agilent) with a high sensitivity kit. Following the confirmation of proper DNA 

concentration, the pooled samples, mock community, and water, were sequenced (Illumina, MiSeq 

v2 kit, 500 cycle) at the Purdue Genomics Core Facility. PCR and sequencing quality was assessed 

by preparing 16S rRNA gene libraries for a known positive control mock community (20 Strain 

Even Mix Genomic Material; ATCC® MSA1002TM) and water as a negative control (Kozich et 

al., 2013). Raw reads are available in the National Center for Biotechnology Information Sequence 

Read Archive (NCBI; SRA), Bioproject PRJNA534088, Biosamples SAMN11476796-891. 

2.2.3 Sequence Analysis 

Raw reads (1,175,143 read pairs from 92 bulls) were analyzed using mothur (v 1.39.3) 

(Kozich et al., 2013). The general pipeline for mothur is as follows: make contigs from raw reads, 

align contigs to reference sequences (SILVA database release 132) (Quast et al., 2012), screen and 

filter sequences to remove low quality reads (ambiguous bases allowed = 0, maximum read length 
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= 275, homopolymers allowed = 8), group sequences based on sequence similarity, classify 

sequences with reference to known taxonomic classifications (RDP training set 16) (Cole et al., 

2013), cluster sequences, and run diversity metrics. After error removal processing, a total of 

1,077,555 high quality sequences were obtained and used for downstream analysis (i.e., OTU 

picking and stats). Data was subsampled to 3000 reads. For purposes of reproducibility, all 

commands used in the mothur software are available at 

https://github.com/clwickwa/16S_Analysis. 

2.2.4 Statistical Analysis 

Because there was a lack of bulls aged 6 years and older (n=4, 1, and 1 for ages 6, 7, and 

9, respectively) these were combined into one age group 6+; the same logic was used for low count 

breeds (Gelbvieh=1, Shorthorn=1, Hereford=4), which were combined into the breed category 

“Other”. Alpha diversity, calculated by Chao1 or Shannon indices, was visualized with box-and-

whisker plots using the R package “ggplot2” and alpha diversity differences were determined using 

ANOVA with a Tukey’s test. Beta diversity was calculated using Bray-Curtis dissimilarity 

(Oksanen et al., 2018) and visualized with non-metric dimensional scaling (NMDS) plots using 

ggplot2. PERMANOVA was used to determine differences in beta diversity (age, breed, age x 

breed, diet, breeding history, and history of bull co-housing). Operational taxonomic unit (OTU) 

co-occurrence analysis was performed using OTU count data as input and calculation of all 

pairwise Spearman rank correlations between OTUs according to the methods described by 

Williams et al. (Williams et al., 2014). A multiple test correction q-value was calculated for alpha 

diversity Tukey’s p-values and Spearman p-values using the Benjamini-Hochberg procedure to 

control the false discovery rate. All statistical analyses were done using R (R Core Team, 2013). 

To aid in computational reproducibility, all R scripts used in data analysis and visualization 

including alpha and beta diversity, ANOVA, and co-occurrence are available at 

https://github.com/clwickwa/16S_Analysis. 
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2.3 Results 

2.3.1 -Diversity: diversity within each sample 

A total of 406 OTUs were identified. Rarefaction analysis indicated that the number of 

OTUs per sample reached a maximum, indicating that the sequencing effort captured the majority 

of samples’ diversity (Figure 2.1). Estimated species richness (Chao1 index) in the bulls ranged 

from about 10 to 440 OTUs, though the majority of samples have 25-200 OTUs (Figure 2.2a). No 

statistically significant differences were seen in the microbial community due to age, diet or breed 

(Figure 2.2). -Diversity: difference in community composition between samples 

Two major clusters of samples were identified and the x-axis in the NMDS plot essentially 

divided these two groups of samples (Figure 2.3a): a tight cluster of samples on the left half of the 

plot and a disperse cluster of samples on the right half. Animal age, breed, diet, co-housing, or 

breeding history of the past year was not correlated with penile microbial community composition 

profile (Figure 2.3a). However, there was a significant difference in alpha diversity between these 

two clusters, with alpha diversity being significantly lower in the samples on the left (Figure 2.3b). 

Given that the alpha diversity is the most distinguishing factor of the sample clustering, samples 

with an axis 1 value less than zero on Figure 2.3a will be referred to as the low diversity (LD) 

samples and the samples with a positive axis 1 value on Figure 2.3a as the high diversity (HD) 

samples. 

 

 

Figure 2.1 Rarefaction curves of observed bacterial species richness in bull preputial community 

by age 

Species collection curves determined from sequence analysis. Each line represents one bull. 

Vertical line represents the subsampling cutoff: 3,000 sequences. 
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2.3.2 Taxonomic composition 

The majority of 16S rRNA amplicons belonged to five main phyla including: Firmicutes, 

Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria. The genera found in the bull 

prepuce reveal a clear separation of bulls that had low overall alpha diversity, and samples that 

were dominated by more than two genera (e.g., Fusobacterium, Histophilus, Porphyromonas, and 

Streptobacillus) (Figure 2.4a). Difference in community membership was consistent with the 

clustering pattern observed in Figure 2.3a, as indicated, as well as the differences in alpha diversity. 

Bull samples from the HD cluster were evenly dominated by multiple genera (e.g.,Fusobacterium, 

Histophilus, Porphyromonas, and Streptobacillus) (Figure 2.4, right side).A wide spectrum of 

membership profiles were observed in the HD cluster.  Bradyrhizobium was consistently present 

in samples from the low diversity cluster, but not the high diversity cluster (Figure 2.4b). Bull 

samples in the LD cluster showed lower abundance of minor members, while the membership 

profile in the HD cluster was not dominated by only one or two genera (Figure 2.4b). 

 

 

Figure 2.2 Alpha diversity of bull prepuce by age measured by Chao and Shannon indices 

Box-and-whisker plots of diversity within samples. The lines of the box show the 25th, 50th, and 

75th percentiles, the whiskers extend to the highest or lowest value within 1.5 times the 

interquartile range. Panel A: estimated number of OTUs (number of species found in samples) 

calculated by the Chao1 index. Panel B: estimated alpha diversity calculated by the Shannon 

index. No significant differences (p > 0.05) found. Age one n = 28, age two n = 19, age three n 

= 9, age four n = 12, age five n = 13, age 6+ n = 6. 
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Figure 2.3. Diversity of bull preputial communities divided into low and high alpha diversity 

NMDS ordination (A) showing beta diversity calculated with Bray-Curtis dissimilarity. Two 

clusters considered, samples with Axis 1 < 0.00 (negative) and samples with Axis 1 > 0.00 

(positive). The alpha diversity of these two clusters (B) calculated with Shannon index was 

significant (p < 0.05). 

2.3.3 Bacterial correlation 

Strong co-occurrence patterns were observed between some members of the microbial 

communities. The strongest positive correlation was found between Bacteroides and unclassified 

Clostridiales, which are both high abundance OTUs from HD (Table 1). Additionally, 

Bradyrhizobium, mentioned previously as being consistently present in the low alpha diversity 

cluster, was negatively correlated (rho < -0.5, q < 0.05) with Parvimonas and unclassified 

Ruminococcaceae, genera found in the top-most abundant genera of the high diversity cluster 

(Apendix A.1). With the exception of the negative correlations between Parvimonas and 

unclassified Ruminococcaceae with Bradyrhizobium, all correlations found between OTUs were 

positive (Appendix A.1-A.8). 

2.4 Discussion 

In this study, the bull prepuce microbial community from healthy bulls was characterized 

in order to describe the baseline normal microbial community composition of the prepuce. These 

microbial communities do not appear to be shaped by diet, breed, age, farm or breeding history. 
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However, two community types were identified, one with low overall community diversity, and 

another type with higher community diversity.  

Culture-dependant methods have identified many opportunistic bacterial pathogens 

colonizing the bull prepuce, and many of these populations were also detected in this study using 

culture-indepentant methods. For example, Campylobacater fetus, a bacterial species that causes 

bovine genital campylobacteriosis in females but has no known clinical signs in males, has been 

isolated from bull prepuce samples in other studies (Chaban et al., n.d.; Parez, n.d.) and 

Campylobacter was found in several of the high diversity samples (Figure 2.4b). Additionally, the 

genera Histophilus, Porphyromonas, and Fusobacterium, have all been previously isolated from 

cattle, and were present in high abundance in all samples with the exception of a few low diversity 

samples. 

Histophilus was previously isolated from bull semen, urine, preputial washings as 

Haemophilus somnus (reclassified as Histophilus somni), while Porphyromonas and 

Fusobacterium have been isolated from non-prepuce, mucosal-associated environments in cattle, 

so it is not entirely surprising to find the genera in the prepuce (Elad et al., 2004; Humphrey et al., 

n.d.; Sandal & Inzana, 2010; Wolfe, 2018). These genera represent a small part of the microbial 

composition that was looked at in the current study. Thus, the culture-independent approach used 

in this study more comprehensively described the membership of the preputial microbial 

community than culture-dependent approaches have in the past.  
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Figure 2.4. Relative abundance of genera in bull preputial bacterial community 

Stacked bar graphs showing the relative abundance of genera (y-axis) for each bull sample (x-axis) sorted by the NMDS axis 1 with 

the vertical line representing 0.00 (Fig 3A). Panel A: The top 16 most abundant genera. Panel B: next 16 most abundant genera. Low 

Diversity = samples with NMDS axis 1 < 0.00, High Diversity = samples with NMDS axis 1 > 0.00. 
 



 

 

 

5
4
 

 

 

 

 

 

 

 

 

 

 

 

 

 

-This table shows the most significant correlations (rho > 0.5 or rho < - 0.5 and qval < 0.0001). 

-OTU 1 corresponds to Genus 1 and OTU 2 corresponds to Genus 2.

OTU 1 OTU 2 pval qval rho Genus 1 Genus 2 

Otu0001 Otu0009 < 0.0001 < 0.0001 -0.78 Escherichia Parvimonas 

Otu0007 Otu0009 < 0.0001 < 0.0001 -0.76 Bacillus Parvimonas 

Otu0020 Otu0015 < 0.0001 < 0.0001 0.76 Ruminococcaceae_unclassified Actinomycetales_unclassified 

Otu0024 Otu0042 < 0.0001 < 0.0001 0.76 Fusobacterium Firmicutes_unclassified 

Otu0020 Otu0009 < 0.0001 < 0.0001 0.76 Ruminococcaceae_unclassified Parvimonas 

Otu0011 Otu0015 < 0.0001 < 0.0001 0.77 Lachnospiraceae_unclassified Actinomycetales_unclassified 

Otu0041 Otu0058 < 0.0001 < 0.0001 0.77 Corynebacterium Lactobacillales_unclassified 

Otu0019 Otu0042 < 0.0001 < 0.0001 0.77 Bacteroides Firmicutes_unclassified 

Otu0004 Otu0019 < 0.0001 < 0.0001 0.79 Porphyromonas Bacteroides 

Otu0012 Otu0042 < 0.0001 < 0.0001 0.80 Clostridiales_unclassified Firmicutes_unclassified 

Otu0019 Otu0012 < 0.0001 < 0.0001 0.83 Bacteroides Clostridiales_unclassified 

Otu0001 Otu0007 < 0.0001 < 0.0001 0.90 Escherichia Bacillus 

Otu0027 Otu0035 < 0.0001 < 0.0001 0.92 Porphyromonadaceae_unclassified Porphyromonadaceae_unclassified 

Table 2.1 Significant Correlations of Bacterial Genera from Bull Preputial Samples 
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2.4.1 Sources and selection of the preputial microbial community 

In order to understand the composition of the bull prepuce microbial community, it is 

important to discuss its potential sources. It is assumed that the major sources of bacteria of the 

bull prepuce are soil, feces, cow vagina, and urine. The most distinguishing genus in the prepuce 

microbial community for the low diversity cluster was Bradyrhizobium (Figure 2.5). 

Bradyrhizobium are canonical soil bacteria that form  symbiotic relationships with plant roots 

(Noisangiam et al., 2012) and has only been found to some significant amount in milk microbiome 

studies (Cremonesi et al., 2018; Taponen et al., 2019). Thus, soil is likely at least one source of 

bacteria to colonize the prepuce of bulls, especially of the LD cluster.  

Some of the most distinguishing genera of the high diversity cluster include Bacteroides, 

unclassified Ruminococcaceae, Histophilus, and Streptobacillus (Figure 2.5). Bacteroides and 

Ruminococcaceae are commonly found in the bovine digestive tract (Yeoman et al., 2018).  

Histophilus has been isolated from urine as well as semen and prepuce (Humphrey et al., n.d.), and 

Swartz et al (Swartz et al., 2014) found that more than half of vaginal samples taken had 

Streptobacillus, perhaps the most common location for this genus in cattle. Thus soil, feces, urine, 

and the cow vagina may be potential sources of bacterial colonizers of the prepuce of bulls.  

The selective conditions of the prepuce may have an even larger influence on the bacteria 

that colonize and grow on the prepuce than their environmental sources. A common characteristic 

of many of the genera identified is that they have been observed in mucosal environments. For 

instance, Porphyromonas, Bacteroides, and Fusobacterium, three of the most abundant genera in 

the HD bull samples, were among the most abundant genera from the upper respiratory tract, a 

mucosal environment, of healthy calves starting at three days after birth and are still present at 35 

days (S. F. Lima et al., 2016). Porphyromonas was found colonizing the skin, oral cavity, upper 

GI, and the colon (Moe et al., 2010; K. Wang et al., 2016; Yano et al., 2010). Mycoplasma, 

Leptotrichiaceae, and Fusobacterium were among the five most abundant OTUs in lung and 

lymph node samples from cattle that died from bovine respiratory disease (D. Johnston et al., 

2017). Fusobacterium spp. have been associated with human colorectal cancer and have be found 

in the placental microbial community, causing many cases of uterine disease in both humans and 

cattle (Kostic et al., 2013; Mor & Kwon, 2015). Streptobacillus was commonly found in the cow 

vagina (Swartz et al., 2014). 
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Figure 2.5. Linear Discriminant Analysis Effect Size of bulls with LD and HD bacterial 

communities 

Bar plot showing the most distinguishing genera of either the low or high diversity cluster. Only 

OTUs with p < 0.05 and LDA > 2.0 were considered as being distinguishing. 

 

Parvimonas is known to colonize the human oral cavity (Ang et al., 2013), but data on this 

genus in cattle is sparse. Like the prepuce, the environments discussed here – respiratory tract, oral 

cavity, placenta, and vagina – are also mucosal environments. While these mucosal environments 

are not necessarily physically connected, the environmental conditions may be the driving 

selective pressure for their colonization by similar organisms.  

In additional to the mucosal surface as a selective pressure, the role of other factors in 

shaping the preputial bacterial community was investigated. Although no correlation was found 

between the bacteria and the microbial community composition and farm, age, diet, or breed of 

the bulls, two community types were identified. The presence of Bradyrhizobium appears to be a 

major driver of community composition, especially of the LD cluster. OTUs from Bradyrhizobium 

were negatively correlated with OTUs of high relative abundance in the HD samples. Thus, it 

appears that bacteria-bacteria interactions may play a role in the establishment of the prepuce 

microbiota. Future research could be performed to determine if Bradyrhizobium could be applied 
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to bulls as a probiotic to decrease the diversity of the microbiota on the bull prepuce to decrease 

the chance of colonization by opportunistic pathogens and possible parasitic disease. In addition 

to looking at the penile microbial community itself, the effect of low diversity versus high diversity 

penile microbiota on vaginal colonization and vaginal microbial community dysbiosis should be 

explored as the role of bacterial transfer in vaginal and uterine health pre- or post-breeding not yet 

known.  

Bull preputial samples should continue to be collected and characterized using culture-

independent methods to gain a more complete picture of the penile microbial community of 

healthy bulls, but it remains unclear if the penile microbial community is geographic-region 

specific. Additionally, the relationship between bacterial density and bacterial diversity should be 

exmined in the bull penile environment. The PCR negative control samples (water as DNA 

template) – which were initiated in the library preparation workflow after DNA extraction – had 

about 80% and 10% relative abundance of Escherichia and Bacillus, respectively (data not shown), 

similar in composition to the samples with the lowest alpha diversity (Figure 2.4a, far left). This 

observation makes it unclear if the community type is present in the bull prepuce or is an artifact 

of the DNA library preparation process. Despite the similarity of the negative control samples to 

the low diversity bull samples, the composition of the low diversity community type cannot be 

disregarded, based on the following observations: No PCR amplification products were observed 

following gel electrophoresis negative control PCR products, ii) PCR products resulting in weak 

observed electrophoresis bands were contained in both HD and LD groups and iii) other 

populations observed in the low diversity samples were not observed in the negative control 

samples, such as Bradyrhizobium. Escherichia and Bacillus are likely to be present in the bull 

penile microbial community. However, as a cautionary approach Escherichia and Bacillus were 

not extensively discussed as contributing factors to the composition and diversity of these samples. 

The use of sequencing negative control samples is helpful in determining possible contamination, 

but a lack of consensus remains as to how to incorporate data from negative controls with the 

biological samples (Kim et al., 2017). In future preputial microbial community studies, total 

bacterial load should be determined to understand if bacterial load and bacterial diversity are 

correlated. 

Taken together, the taxonomic composition of the bull penile microbiome has similarities 

with other microbial communities within the bull. It appears that the source of the community 
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originates from soil, feces, and vaginal sources based on the shared occurrence of bacteria on the 

bull prepuce and these other environments. In addition, the similarity of the bull preputial 

microbial community with other mucosal microbial communities indicates that similar 

environmental conditions (moisture, nutrient contents, temperature) may exert similar selective 

pressures resulting in overlapping community compositions. 
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Abstract 

Digestive dysbiosis, impaired gut barrier function, and disease are common following 

weaning in swine. Post-weaning, the gut microbial community is significantly altered, partially 

due to the change in diet. The goal of this study was to determine the effects of supplemental 

soluble fiber (dextrin) administered both pre- and post-weaning on growth performance, short 

chain fatty acid (SCFA) production, and bacterial community composition. Pigs (n = 40) were 

blocked by genetics and body weight (BW), and randomly allotted to treatments in a 2 x 2 factorial 

design with or without supplemental dextrin pre-weaning and with or without supplemental dextrin 

post-weaning in a 35-day (d) experiment. Dextrin was suspended in chocolate milk and 

administered orally from 14 d prior to weaning until 4 d post-weaning, after which it was added in 

the diet at 1% by weight. Growth performance was not affected (P > 0.10) by treatment. When 

considering SCFAs, pigs fed fiber only in the nursery had the highest fecal acetate concentration, 

while pigs never receiving fiber had the lowest concentration. The intestinal microbiome was 

altered due to dextrin treatment (P < 0.001) and microbiota shifts supported the SCFA analysis; 

pigs that received fiber pre- and/or post-weaning had an increase in some OTUs that belong to 

genera known to produce SCFAs, such as Coprococcus, Butyricimonas, Mogibacterium, and 

Paraprevotella, as well as other beneficial commensal bacteria. This study shows the importance 

of fiber in shaping the gut health of swine, especially during the pre-weaning period, and merits 

continued study to determine the optimal fibers that should be used, the method of fiber 

supplementation. 

Keywords: fiber, gastrointestinal, microbiome, mucosal, swine, weaning stress  
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LIST OF ABBREVIATIONS 

ADFI -  average daily feed intake  

ADG - average daily gain  

BW - body weight 

G:F - gain:feed ratio 

GI - gastrointestinal 

LAB - lactic acid bacteria 

PLI -  proximal large intestine 

q value - false discovery rate corrected p value 

SCFA - short chain fatty acids 
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3.1 Introduction 

Weaning is one of the most stressful periods in the life of a pig and is associated with many 

gastrointestinal (GI) alterations including a reduced villus height to crypt depth ratio (villus:crypt), 

changes to the intestinal microbiome, and poor regulation of an underdeveloped immune system 

(Pluske et al., 1997; Heo et al., 2013). These alterations to the pig GI tract often cause diarrhea, 

decreased absorptive capacity, increased intestinal inflammation, and decreased growth 

performance following weaning (Campbell et al., 2013; Pluske et al., 1996; Wijtten et al., 2011), 

likely due to the sudden environmental, social, and dietary changes that occur around the time of 

weaning (Hötzel et al., 2011; Lallès et al., 2007), which can then lead to animal stress (Moeser et 

al., 2007) and decreased feed intake (Pluske et al., 1997). Higher incidence of diarrhea following 

weaning have been linked to the proliferation of enterotoxigenic or enteropathogenic Escherichia 

coli (Rhouma et al., 2017), which may be exacerbated by decreased barrier function causing an 

imbalanced microbiome and pathogenic infection (H. Chen et al., 2013).  

Intestinal barrier function is critical to animal health especially at weaning. Intestinal 

permeability can be increased due to reduced tight junction protein (e.g., occludin) expression or 

concentration in the intestinal mucosa (Oswald, 2006), which can allow bacteria and other toxic 

substances to pass through the intestinal barrier paracellularly, activating the immune system 

(Turner, 2006), leading to intestinal inflammation (Campbell et al., 2013). Intestinal permeability 

and cellular integrity can also be altered by pro-inflammatory cytokines (McKay and Baird, 1999). 

The intestinal microbiota are also thought to be important to intestinal barrier function and the 

overall health and development of the pig (Frese et al., 2015a). Short chain fatty acids (SCFAs) 

are produced by beneficial bacteria, and an alteration in SCFA concentrations typically indicates 

a shift in the bacterial community composition (Franklin et al., 2002).  

Antibiotics are often added to the feed post-weaning to prevent disease. However, 

antibiotic use in livestock production is coming under increased public scrutiny due to concerns 

over antibiotic resistance, for both humans and pigs. For these reasons, there has been a push by 

the animal industry to reduce antibiotic usage, mostly to satisfy market demand for meat produced 

without antibiotics (Singer et al., 2019). To reduce the need for antibiotics, a multitude of new 

strategies have been researched to decrease intestinal permeability and diarrhea while increasing 

absorptive capacity and maintaining growth performance achieved similar to when animals are 
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treated with antibiotics (Allen et al., 2013b), but many challenges remain in this new agricultural 

system and no convincing alternatives to antibiotics have been found (Allen, 2017). 

The microbiome of swine undergoes a significant shift at the time of weaning due to the 

dietary shift from a milk-based diet to a cereal grain-based diet. Significant shifts in alpha and beta 

diversity have been observed post-weaning in piglets (Frese et al., 2015a; Guevarra et al., 2018). 

The bacterial families Ruminococcaceae, Prevotellaceae, and Lactobacillaceae increase post 

weaning in the healthy pig (Frese et al., 2015a) in response to a plant-based (including fibers) diet 

post weaning. In humans, inclusion of dietary fiber can alter the gut microbiota composition, acting 

as a prebiotic energy source (Bauer et al., 2006). In pigs, fiber can improve gut health and prevent 

diarrhea in growing pigs (Jha et al., 2019), but is usually only given to gestating sows to control 

caloric intake, enhance gut fill, and/or reduce feed cost (Jarrett & Ashworth, 2018). Little is known 

about the impact of supplemental fiber on the suckling piglet. Creep feed is thought to have 

beneficial effects and help train piglets to explore and eat solid food. However, current studies 

have conflicting evidence of the effects of creep feed on animal performance with some suggesting 

there is no improvement (Christensen & Huber, 2021; Middelkoop et al., 2020), while others 

showed a benefit in animal performance (H. Chen et al., 2021; Lee et al., 2021).  Regardless, access 

to solid feed prior to weaning can alter the gut microbiome composition (Choudhury et al., 2021; 

Shim et al., 2005), thus we hypothesized that supplementation of dextrin in the diet of the pre-

weaned piglet would result in an enhanced gut microbiome at weaning, and thereby reduce 

weaning stress to the gut.  

Soluble fibers, specifically, have been reported to reduce lesions caused by inflammation 

in both the ileum and colon, influence expression of anti-inflammatory cytokines in mice 

(Bassaganya-Riera et al., 2011), decrease fecal pH and increase calcium absorption (Whisner et 

al., 2016). Five soluble fibers were shown to increase the abundance of Bifidobacteria and 

Lactobacillus species in vitro, in which fermentation of dextrin was found to generate the most 

SCFAs compared with the other four soluble fibers (Maathuis et al., 2009). In rats, dextrin was 

reported to benefit gut health by increasing cecal weight and goblet cell count, and alter mucin 

composition (Knapp et al., 2013). It is thought that these beneficial effects are brought about by 

altering the gut microbial community to a more beneficial community that produces more SCFAs. 

The purpose of this study was to supplement the diet of pigs pre- and/or post-weaning with dextrin 
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to test the ability of a soluble fiber to modify the gut microbiome composition and/or alleviate 

negative health symptoms that occur shortly after weaning. 

3.2 Materials and methods 

3.2.1 Animals and experimental design 

All animal procedures were approved by the Purdue Animal Care and Use Committee 

(PACUC #1303000841). A total of 40 barrows (Landrace x Chesterwhite cross (Calbrix et al., 

2012)) were blocked by BW and genetics, and randomly allotted to a 2 x 2 factorial experiment 

with or without supplemental dextrin fiber pre-weaning and with or without supplemental dextrin 

fiber post-weaning. At the beginning of the study, pigs were 9.2 ± 1 d of age. The study lasted for 

5 weeks: beginning 14 d prior to weaning (d -14) and ending 21 d post-weaning (d 21). From d -

14 to d 0, pigs were housed with the sow in their respective farrowing crate. On d 0, pigs were 

weaned and moved to group housed pens (8 pigs / pen), and on d 4 pigs were moved to individual 

pens where they remained for the remainder of the experiment. 

Dextrin (Equate, Bentonville, AR) was given to pigs orally (dissolved in chocolate milk) 

at a rate of 1 g/d on days -14 to -8, 2 g/d on d -7 to -1 and 3 g/d on d -1 until d 4 relative to weaning 

(d 0) to mimic the consumption of creep feed (i.e., the concentration of dextrin was increased as 

the animals matured from farrowing to nursery). Chocolate milk was used to aid in animal 

acceptance of swallowing. The target fiber dose was 0.05 g dextrin / kg BW / d according to doses 

in human trials (Whisner et al., 2016). Starting on day 4, dextrin was mixed into the feed at 1% of 

the diet. Pigs not receiving fiber during the oral dosing period received chocolate milk with no 

added fiber to mimic the same level of stress in all animals.  

After weaning on d 0, all pigs were fed a common Phase 1 nursery diet with no 

supplemental dextrin added.  During this time (d 0-4), pigs on dextrin treatments were given the 

fiber orally, dissolved in chocolate milk. All diets were formulated to meet or exceed all nutrient 

requirements (Table 3.1) according to the NRC (2012). Diets were analyzed at Purdue University 

for energy, DM, ash, nitrogen, phosphorous, NDF, and ADF (Table 3.2).  The Phase 1 diet (corn-

soy based diet with lactose and animal protein sources) had no supplemental dextrin (Table 3.1). 
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Table 3.1 Formulated composition of swine diets  

  Phase 1 Phase 2 Phase 3 

Ingredient, % Control Treatment Control Treatment Control Treatment 

Corn, yellow dent 35.71 35.71 40.57 39.57 45.69 44.69 

Soybean meal, 47.5% CP 13.5 13.5 18.00 18.00 23.00 23.00 

Soy protein concentrate 3.12 3.12 2.50 2.50 3.00 3.00 

Soybean oil 3.62 3.62 4.00 4.00 1.66 1.66 

Corn DDGS, 7% 0.00 0.00 0.00 0.00 10.00 10.00 

Plasma, spray-dried 6.5 6.5 2.50 2.50 0.00 0.00 

Selenium premix 0.05 0.05 0.05 0.05 0.05 0.05 

Blood meal, spray-dried 1.00 1.00 1.00 1.00 0.00 0.00 

Whey, dried 25.00 25.00 25.00 25.00 10.00 10.00 

Fish meal, menhaden 4.00 4.00 4.00 4.00 4.00 4.00 

Lactose 5.00 5.00 0.00 0.00 0.00 0.00 

Limestone 1.17 1.17 0.94 0.94 0.93 0.93 

Monocalcium Phosphate 21% 0.11 0.11 0.21 0.21 0.21 0.21 

Trace Mineral premix1 0.13 0.13 0.15 0.15 0.15 0.15 

Vitamin premix2 0.25 0.25 0.25 0.25 0.25 0.25 

Salt 0.25 0.25 0.25 0.25 0.47 0.47 

Natuphos 6003  0.10 0.10 0.10 0.10 0.10 0.10 

L-lysine-HCl 0.28 0.28 0.26 0.26 0.28 0.28 

L-threonine 0.04 0.04 0.04 0.04 0.03 0.03 

DL-methionine 0.18 0.18 0.15 0.15 0.15 0.15 

L-tryptophan 0.00 0.00 0.03 0.03 0.03 0.03 

Fiber premix4 0.00 0.00 0.00 1.00 0.00 1.00 

ME, Kcal/lb 1594 1594 1592 1577 1543 1527 

Crude Protein, % 23.26 23.26 22.27 22.19 23.57 23.49 

Lysine, % 1.79 1.79 1.62 1.62 1.54 1.53 

SID Lysine, % 1.64 1.64 1.48 1.48 1.37 1.37 

SID Threonine, % 0.96 0.96 0.87 0.87 0.81 0.81 

SID Tryptophan, % 0.28 0.28 0.28 0.28 0.26 0.26 

SID Methionine, % 0.50 0.50 0.47 0.47 0.47 0.46 

SID Methionine + Cysteine, % 0.90 0.90 0.81 0.81 0.76 0.76 

SID Valine, % 1.07 1.07 0.98 0.97 0.97 0.96 

SID Isoleucine, % 0.84 0.84 0.82 0.82 0.87 0.86 

SID Leucine, % 1.88 1.88 1.76 1.75 1.58 1.57 

Calcium, % 0.94 0.94 0.88 0.88 0.78 0.78 

Phosphorous, % 0.64 0.64 0.64 0.64 0.63 0.62 

Available Phosphorous, % 0.43 0.43 0.42 0.42 0.35 0.35 
1Trace mineral premix provided the following guaranteed minimums per kg diet: iron, 84.7 mg; zinc, 84.7 mg; 

manganese, 10.5 mg; copper, 7.87 mg; iodine, 0.32 mg. 
2Vitmain premix provided the following guaranteed minimums per kg diet: vitamin A, 9000 IU; vitamin E, 187 IU; 

vitamin K (hetrazeen), 2.62 mg; vitamin B1, 1.857 mg; vitamin B12, 17.25 µg; riboflavin, 5.25 mg; d-pantothenic 

acid, 11.25 mg; niacin, 18.75 mg. 
3Contains 600 U/g of phytase activity 
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On day 4 post-weaning, all pigs were moved to individual housing, and were given the 

Phase 2 diet. Phase 3 nursery diets began on d 11 and were fed until the conclusion of the study (d 

21). For both Phase 2 and 3 diets, the basal diet was made without supplemental dextrin, and pigs 

getting dextrin received the basal diet blended with supplemental dextrin at a level of 1% of the 

diet, whereas pigs not receiving supplemental dextrin had an extra 1% corn blended into the diet 

(Table 3.1).  

3.2.2 Animal growth and performance 

Feed intake and animal weights were measured at different life stages. BW, average daily 

gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) were determined on a pen 

basis from d 0 to d 4 and on an individual animal basis from d 4 to d 21.  

3.2.3 Sample collection  

On d 0 and d 21, 8 and 31 pigs were euthanized, respectively, using carbon dioxide stunning 

followed by exsanguination. Intestinal tissue was collected from the ileum and cecum. A 2-inch 

cross section was taken from the proximal ileum (10 inches from the ileal-cecal junction), rinsed 

with phosphate-buffered saline (PBS), and then placed in 30 mL of 10% neutral buffered formalin 

for subsequent histological analyses. Proximal ileal and cecal tissue were scraped and flash frozen 

in 1 mL of InvitrogenTM TRIzol® reagent (ThermoFisher Scientific; Waltham, MA, USA) for 

subsequent isolation of mRNA. Digesta and mucosal swab samples (from microbiota analysis) 

were taken from the distal ileum, cecum, and proximal large intestine (PLI), placed on ice and 

transported to the laboratory. Mucosal swab samples were taken by cleaning the tissue with PBS 

then using a cotton swab to wipe a 2 inch by 2 inch area. Fecal samples were also taken, placed in 

a sterile bag, transported on ice and stored at -20°C until short-chain fatty acid (SCFA) analysis. 
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Table 3.2 Analyzed composition of post-weaning swine diets  

 Phase 1 Phase 2 Phase 3 

Nutrient1 
 No Fiber Fiber No Fiber Fiber 

Nitrogen, % 3.81 3.43 3.67 3.54 3.49 

Metabolizable Energy, Kcal/kg 4152 3506 4160 4037 4019 

Dry Matter, % 88.42 86.97 87.75 86.8 87.25 

Ash, % 5.2 5.37 5.27 4.67 4.6 

Phosphorous, % 0.667 0.703 0.685 0.739 0.628 

NDF, % 1.83 5.15 3.95 10.26 13.29 

ADF, % -0.765 1.86 0.114 3.12 5.73 
1 Analyzed at Purdue University 

3.2.4 Histology 

Ileal cross sections that were placed in formalin were prepared and imaged at the Purdue 

University Histology Lab in the College of Veterinary medicine. Digital pictures of the slides were 

taken with MotiConnect software (version 1.5.9.1 ; Motic China Group Co. Ltd.; Xiamen, China). 

The digitized slides were then analyzed using ImageJ 1.51k measurement software (LOCI, 

University of Wisconsin). Six villi and six crypts were measured for each pig. The villi were 

measured from the tip to the base of the villus. Crypts were measured from the base of the villus 

to the bottom of the crypt region.  

3.2.5 Short-chain Fatty Acid (SCFA) Analysis 

Fecal samples were removed from the freezer and thawed in a refrigerator. Thawed feces 

were diluted with a recorded amount of deionized (DI) water until they reached the desired liquid 

consistency, and then mixed with 2 mL of 25% metaphosphoric acid and placed into tubes. Each 

sample was divided into 2 tubes so that each sample could be run in duplicate. Samples were then 

vortexed for 10 seconds, followed by centrifugation (15,120 x g for 10 minutes) after which the 

supernatant was collected. The samples were centrifuged again at 15,120 x g for 10 minutes and 

the supernatant was collected and poured into a 12-cc syringe, which connected to a paper filter 

(0.45 μm pore size). The supernatant was passed through the filter and the filtrate was collected. 

A stock solution with 87.4 μM/L acetic acid, 26.76 μM/L propionic acid, 7.607 μM/L butyric acid, 

8.789 μM/L isobutyric acid, 1.864 μM/L valeric acid, and 1.835 μM/L isovaleric acid was mixed 

as a standard to normalize the samples. The Gas Chromatograph (3900 CP-8400, Varian Medical 
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SystemsTM, Palo Alto, CA, USA) installed with a fused silica capillary column (0.25mm 𝑥 0.25μm 

𝑥 30 m), was loaded with a blank containing a 1:5 dilution of 25% metaphosphoric acid and a 

standard containing a 1:5 dilution of the standard stock, followed by the experimental samples. 

The sample analysis was run using Galaxie analysis software (Galaxie, Varian Medical Systems™, 

Palo Alto, CA, USA). 

3.2.6 Microbiome sample preparation and sequencing 

Total community DNA, extracted using the Qiagen MagAttract PowerMicrobiome 

DNA/RNA Kit, was used for the construction of a 16S rRNA gene library following a standardized 

protocol (Kozich et al., 2013). Briefly, Illumina indexed amplicons were created using PCR 

amplification of the V4 region of bacterial 16S rRNA gene. Amplification success was determined 

through gel electrophoresis as a quality check. No bands were observed in the negative control 

samples in which water was used as the DNA template. Amplified DNA was normalized using a 

SequalPrep Normalization Plate (Invitrogen) and pooled into a single library for each 96-well 

plate. Library concentration was determined using the KAPA Library Quantification Kit (Roche) 

and library average fragment length was determined using the Bioanalyzer (Agilent) with a high 

sensitivity kit. Following the confirmation of proper DNA concentration, the pooled samples, 

mock community, and water were sequenced (Illumina, MiSeq v2 kit, 500 cycle). Sequences were 

demultiplexed according to oligonucleotide bar code sequence with Illumina software. Sequences 

were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read 

Archive (SRA) (BioProject PRJNA687488; BioSamples SAMN17145353 – SAMN17145574). 

3.2.7 Bioinformatics for microbiome sequencing 

Raw reads were analyzed using the mothur (Schloss et al., 2009; v 1.39.3) MiSeq analysis 

standard operating procedure. The general pipeline for mothur is as follows: make contiguous 

sequences (contigs) from raw reads, align contigs to reference sequences (Quast et al., 2012; 

SILVA database release 132), screen and filter sequences to remove low quality reads (ambiguous 

bases allowed = 0, maximum read length = 275, homopolymers allowed = 8), group sequences 

based on sequence similarity, classify sequences with reference to known taxonomic 

classifications (Cole et al., 2013; RDP training set 16), cluster sequences, and run diversity metrics.  
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3.2.8 Statistical Analysis 

For pig growth performance during the pre-weaning period, intestinal morphology, and 

intestinal gene expression (n=8), all data were analyzed with two treatment groups, with and 

without supplemental dextrin. For pigs euthanized on day 21, the pig was used as the experimental 

unit (n=31) for growth performance, gene expression, histology and SCFA concentrations. Data 

were analyzed using PROC GLM in SAS 9.4 (SAS Inst. Inc., Cary, NC). All growth performance 

data were analyzed as a 2x2 factorial arrangement with or without supplemental fiber pre-weaning 

and with or without supplemental fiber post-weaning. Values were considered significant at P ≤ 

0.05 and a trend at 0.05 < P ≤ 0.10. Any data point greater than 2.5 standard deviations from the 

average was removed and not included in statistical analysis. Four additional pigs, one per 

treatment, were removed from the final data set for analysis due to poor health. Because the 

animals cannot be blocked by microbial community, for microbiome data the treatments were not 

analyzed using a 2x2 factorial design and instead as whole treatment groups per animal (pre-

weaning treatment / post-weaning treatment: Fiber/Fiber, No Fiber/Fiber, Fiber/No Fiber, and No 

Fiber/No Fiber). Alpha and beta diversity were calculated using mothur (Schloss et al., 2009; v 

1.39.3) and analyzed with R statistical software (R Core Team, 2013; v 1.1.423). Alpha diversity 

was visualized with box-and-whisker plots using the R package “ggplot2” and differences were 

determined using Mann-Whitney-Wilcoxon or Kruskal-Wallis with post-hoc pairwise 

comparisons where appropriate. Beta diversity was calculated using Bray-Curtis dissimilarity and 

Jaccard from the R package “vegan” and visualized with non-metric dimensional scaling (NMDS) 

plots using ggplot2. Dispersion was calculated, using “betadisper” from the “vegan” package, for 

Bray Curtis and Jaccard indices to determine the homogeneity of the treatment groups while 

perMANOVA was used to determine differences in variance of the treatment groups. Metastats 

was used to determine statistical significance between treatment groups in mothur (Schloss et al., 

2009; v 1.39.3). Multiple test corrections, calculated using Benjamini-Hochberg, were completed 

in R (R Core Team, 2013; v 1.1.423) for all necessary statistical tests and corrections are labeled 

as “q-value”. All scripts used to produce mothur and R output, as well as the accompanying data, 

can be found at https://github.com/clwickwa/16S_Analysis/SwineFiber. 



 

 72 

3.3 Results 

3.3.1 Animal Growth and Performance 

Dextrin supplementation had limited to no impact on animal feed intake, weight gain, or 

feed efficiency during the study period. There was no difference in ADG while pigs were nursing 

(P > 0.05; Table 3.3), but on day 0, pigs receiving supplemental dextrin tended to weigh less than 

those not receiving dextrin (P = 0.087). This tendency became significant four days after weaning, 

and pigs that received dextrin following weaning had decreased body weight (P = 0.022; Table 

3.3). From d 4 to d 11, there were no differences in ADG or ADFI (P > 0.05; Table 3.3), however 

there was a tendency for pigs receiving dextrin after weaning to have decreased G:F d 4 to d 11 (P 

= 0.056; Table 3.3). From d 11 to 21 there was a tendency in ADG for an interaction between pre- 

and post-weaning dextrin supplementation (P = 0.085; Table 3.3), but no differences in ADFI, 

G:F, or d 21 BW (P > 0.05; Table 3.3) were observed. There were no differences between 

treatments for ADG, ADFI, or G:F from d 0-21 (P > 0.05; Table 3.3). Overall, dextrin 

supplementation tended to reduce BW for the first 4 day period post-weaning, but there were no 

differences in any animal growth performance measures during the pre-weaning period, after the 

first 4 days post-weaning, or the overall post-weaning period due to dextrin supplementation.  
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Table 3.3 Effect of dextrin supplementation before and after weaning on growth and 

development 
      Probability, P< 

Animal Parameter NF/NF F/NF NF/F F/F SE 
Pre-wean 

Main Effect 

Post-wean 

Main Effect 

Pre-weaning 

x Post-

weaning 

Initial Wt, kg 3.26 3.00 3.13 3.25 0.138 0.587 0.648 0.158 

  d -3 Wt, kg 5.68 5.53 5.34 5.58 0.149 0.771 0.317 0.179 

Day -14 - 0         

  ADG, kg/d 0.223 0.224 0.199 0.215 0.014 0.507 0.216 0.533 

 d 0 Wt, kg 6.38 6.13 5.91 6.26 0.179 0.778 0.332 0.087 

Day 0 - 4         

  ADG, kg/d 0.105 0.098 0.101 0.044 0.040 0.403 0.445 0.514 

  ADFI, kg/d 0.139 0.132 0.165 0.119     

  d 4 Wt, kg 6.80 6.52 6.06 6.44 0.188 0.769 0.022 0.058 

Day 4 - 11         

  ADG, kg/d 0.189 0.142 0.118 0.077 0.049 0.356 0.164 0.951 

  ADFI, kg/d 0.264 0.367 0.243 0.202 0.070 0.651 0.183 0.297 

  G:F 0.532 0.444 0.059 0.215 0.179 0.849 0.056 0.486 

  d 11 Wt, kg 7.91 7.51 7.15 6.98 0.456 0.508 0.146 0.792 

Day 11- 21         

  ADG, kg/d 0.220 0.323 0.303 0.216 0.055 0.876 0.831 0.085 

  ADFI, kg/d 0.425 0.470 0.540 0.382 0.067 0.377 0.824 0.120 

  G:F 0.487 0.645 0.533 0.476 0.089 0.562 0.481 0.219 

  d 21 Wt, kg 10.33 10.58 10.51 9.36 0.935 0.615 0.559 0.432 

Overall Post-Weaning        

Day 4 - 21         

  ADG, kg/d 0.196 0.226 0.233 0.162 0.048 0.587 0.697 0.276 

  ADFI, kg/d 0.364 0.401 0.426 0.312 0.053 0.451 0.795 0.148 

  G:F 0.475 0.408 0.509 0.370 0.075 0.974 0.186 0.623 
1Sample size: preweaning NF/NF (n = 10), F/NF (n = 10), NF/F (n = 9), F/F (n = 10); postweaning: NF/NF (n = 8), 

F/NF (n = 8), NF/F (n = 7), F/F (n = 8) 

3.3.2 Histology  

 Pigs euthanized prior to weaning on d 0 had no differences in villus height, crypt 

depth, or villus height to crypt depth ratio (P > 0.1), however, differences were observed in 

intestinal morphology by the end of the study on d 21. Providing supplementary dextrin to pigs 

prior to weaning tended to decrease crypt depth (P = 0.0904), while villus height was unchanged 

(P > 0.1 Table 3.4), leading to a tendency (P = 0.093) for an increased villus height to crypt depth 

ratio in animals given fiber during the pre-weaning period. The addition of fiber after weaning 

resulted in no difference in villus height, crypt depth, or villus height:crypt depth ratio (P > 0.05; 

Table 3.4).  
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3.3.3 Short Chain Fatty Acid (SCFA) Analysis 

In general, addition of dextrin to the diet caused an increase in the concentration of short 

chain fatty acids in the feces, especially for pigs that received dextrin during the pre-weaning 

period (Table 3.5). For pigs euthanized on d 21 post weaning, dextrin supplementation resulted in 

a pre-weaning treatment x post-weaning treatment interaction for the total amount SCFAs (P = 

0.054). Pigs that received supplemental dextrin at any point had greater concentrations of total 

SCFAs compared to pigs that never received supplemental dextrin. Acetate and propionate 

concentrations (mmol/L) were not different among treatment groups (P > 0.10). There was an 

interaction (P = 0.007) of pre- and post-weaning treatment for butyrate concentrations which was 

explained by pigs receiving supplemental dextrin at any point having increased butyrate 

concentrations. However, pigs that received supplemental dextrin only prior to weaning or after 

weaning had greater concentrations of butyrate when compared to pigs that received dextrin for 

the entire study (Table 3.5). A pre-weaning treatment x post-weaning treatment interaction was 

observed for valerate concentrations. Pigs fed supplemental dextrin pre-weaning but not post-

weaning had greater concentrations of valerate compared to all other treatment groups (P = 0.045) 

and pigs fed supplemental dextrin for the entirety of the study had decreased fecal valerate 

concentrations. Pigs receiving supplemental dextrin prior to weaning had decreased isobutyrate (P 

= 0.050) and a tendency for decreased isovalerate (P = 0.058) concentrations compared to other 

treatment groups (Table 3.5).  

When SCFA data were analyzed as a percentage of total SCFAs in the feces, acetate 

accounted for a larger proportion of SCFAs for pigs receiving supplemental dextrin post-weaning 

(P = 0.047; Table 3.5). Propionate as a percentage of total SCFAs did not differ among treatment 

groups (P ≥ 0.262; Table 3.5). There was an interaction between pre- and post-weaning dextrin 

supplementation for butyrate concentrations, with pigs being fed supplemental dextrin only prior 

to weaning having a greater proportion of butyrate (as a percentage of total SCFAs) than all other 

treatment groups (P = 0.029; Table 3.5). Pigs receiving supplemental dextrin post-weaning had a 

decreased valerate concentration as a percentage of total SCFAs (P = 0.038; Table 3.5). Decreases 

in isobutyrate (P = 0.040) and a tendency for isovalerate (P = 0.051) as a percentage of total 

SCFAs were observed in pigs that received supplemental dextrin pre-weaning compared to pigs 

that did not receive supplemental dextrin pre-weaning (Table 3.5). 
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3.3.4 Microbiota diversity measures 

A total of 338 operational taxonomic units (OTUs) were observed in this study. The 

predicted number of OTUs (Chao Index) was 100-300 OTUs from mucosal swabs and luminal 

contents in a majority of the samples from the ileum. In comparison, the Chao indices for mucosal 

swabs and luminal contents from cecal and PLI samples was higher, between 200-500 OTUs. No 

differences (P > 0.10) were observed in microbial community alpha diversity (Chao or Shannon 

indices) based on diet or sample type (luminal or mucosal). 

As expected, ileal microbial communities were clearly distinct from cecal and PLI 

communities for both Bray-Curtis and Jaccard indices (PERMANOVA; P < 0.05, Table 3.6). 

Additionally, mucosal communities were significantly different from digesta communities in post-

weaning pigs (PERMANOVA; P < 0.05, Table 3.6). Luminal communities had an increased 

relative abundance of Coprococcus, Butyricimonas, and Anaerovibrio, while mucosal 

communities had an increased relative abundance of Mucispirillum, Desulfovibrionaceae, and 

Novosphingobium Helicobacter, and Prevotella (q < 0.05; Table 3.8).  

Supplementation of dextrin in the diet altered the community composition on d 21 post-

weaning, as a main effect, in both mucosal and luminal samples (PERMANOVA; q < 0.05, Table 

3.6C-D). Pairwise PERMANOVA testing revealed that nearly all diet groups were distinct from 

each other (q < 0.05, Table 3.7) in the mucosal samples, but diet explained less than 10% of the 

variation, indicating that the differences were not dramatic.  Pairwise testing revealed there was a 

tendency for dextrin treatments to result in a shift in the luminal intestinal microbial communities 

(PERMANOVA; q < 0.1, Table 3.7). No difference in intestinal microbial communities of mucosal 

swabs or luminal contents were observed due to supplemental dextrin  during the pre-weaning 

period only, likely due to the low number of samples collected (n = 4 per treatment) and the low 

number of samples with sufficient number of high quality sequences (n = 2 in ileum groups). 

3.3.5 Microbiome composition 

Immediately following weaning there was a large degree of inter-individual variance, but 

the most dominant genera in the piglets overall were Lactobacillus and Prevotella (Fig 1). The 

most abundant genera also included bacteria that may induce inflammation and disease, such as 

Fusobacterium, especially in the mucosal samples (Figure 3.1B). Shifts in the relative abundance 
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of genera after the pre-weaning period were not significant; however, there were numerical shifts 

in Lactobacillus, Clostridium sensu stricto, and Prevotella between pigs due to supplemental 

dextrin that likely deserve future consideration. In the ileal digesta and mucosa, pigs that received 

supplemental dextrin had a numerically decreased abundance of Lactobacillus.  
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Table 3.4 Interactive effects of dextrin supplementation pre- and post-weaning on villus height, crypt depth, and villus height:crypt 

depth on d21 post-weaning 
      

Probability, P< 

Diet NF/NF F/NF NF/F F/F SE Pre-wean Post-wean Pre-weaning x Post-

weaning  

Villus Height, μm 378 367 364 336 20.49 0.336 0.275 0.675 

Crypt depth, μm 346 314 325 295 18.01 0.09 0.266 0.975 

Villus:Crypt  1.074 1.222 1.111 1.257 0.089 0.093 0.671 0.994 

 

 

 

Table 3.5 Main and interaction effects of dextrin supplementation pre- and post-weaning on SCFA concentrations and percentages 
     

 Probability, P< 

Diet1  NF/NF NF/F F/NF F/F SE Pre-wean 

Main Effect 

Post-wean 

Main Effect 

Pre-weaning 

x Post-

weaning 
Total SCFA, mmol/L 144 182 180 164 14.0 0.507 0.401 0.054 

Acetate, mmol/L 73 96 87 86 7.68 0.773 0.141 0.115 

Acetate, % of total 51 52 48 53 1.54 0.595 0.047 0.216 

Propionate, mmol/L 38 47 44 43 4.84 0.830 0.452 0.266 

Propionate, % of total 26 25 25 26 1.06 0.486 0.966 0.262 

Butyrate, mmol/L 24 30 37 28 2.70 0.057 0.497 0.007 

Butyrate, % of total 17 17 21 16 1.02 0.070 0.047 0.029 

Valerate, mmol/L 6.1 6.3 9.7 5.9 0.990 0.096 0.072 0.045 

Valerate, % of total 4.2 3.7 5.4 3.5 0.555 0.314 0.038 0.190 

Isobutyrate, mmol/L 1.2 1.4 0.88 0.83 0.237 0.050 0.746 0.571 

Isobutyrate, % of total 0.87 0.92 0.50 0.50 0.190 0.040 0.905 0.878 

Isovalerate, mmol/L 1.2 1.4 0.77 0.85 0.304 0.058 0.745 0.961 

Isovalerate, % of total 0.95 0.99 0.44 0.50 0.253 0.051 0.832 0.949 

1Sample size: NF/NF (n = 8), NF/F (n = 7), F/NF (n = 8), F/F (n = 8)
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Three weeks after weaning, the major members of the community included Lactobacillus, 

Prevotella, Campylobacter, unclassified Veillonellaceae, Megasphaera, and Escherichia. There 

were statistically significant shifts in OTUs (metastats, q <0.05) of the cecal and PLI microbial 

communities 21 d post weaning, mainly in less abundant OTUs (abundance of less than 1% of the 

community) (Table 3.8).  

When comparing groups with different dextrin supplementation during the preweaning 

period (NF/NF vs F/NF; Table 3.8A), many OTUs were enriched when no supplemental dextrin 

was added in the post-weaning period (NF/NF, F/NF. Conversely, when dextrin was fed during 

the post-weaning period but differentially fed during the pre-weaning period (NF/F vs F/F), there 

were no differentially abundant OTUs. Some OTUs enriched in NF/NF compared to F/NF 

included Coprococcus, Butyricimonas, Mogibacterium, Anaerovibrio and Paraprevotella (Table 

3.8A). One OTU, identified as unclassified Desulfovibrionaceae, was increased in the pigs fed no 

supplemental dextrin  compared to pigs fed supplemental dextrin during pre-weaning - NF/NF vs 

F/NF (Table 3.8A) and NF/NF vs F/F (Table 3.8B).  

When comparing groups that differed in supplemental dextrin in the post-weaning period 

(F/NF vs F/F (Table 3.8C) or NF/NF vs NF/F (Table 3.8D)), the result was inconsistent. There 

was a single differentially abundant OTU when dextrin was not supplemented during the pre-

weaning period but was altered during the post-weaning period compared to the groups 

differentially fed supplemental fiber pre-weaning (NF/NF vs NF/F (Table 3.8D) and F/NF vs NF/F 

(Table 3.8E)). 
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Table 3.6 PERMANOVA main effects of dextrin supplementation and sampling 

region on bacterial community beta diversity 

A. Pre-weaning mucosal 

 Df  SumsOfSqs  MeanSqs  F.Model       R2  Pr(>F)   

Diet                     1 0.3162 0.3162 1.08164 0.05289 0.3579 

Region 2 0.8974 0.4487 1.53488 0.1501 0.057 

Diet:Region   2 0.3801 0.19007 0.65019 0.06358 0.9099 

Residuals 15 4.3851 0.29234 0.73343   
Total                              20 5.9788 1    

B. Pre-weaning contents 

 Df SumsOfSqs  MeanSqs  F.Model R2 Pr(>F)    

Diet 1 0.198 0.19796 0.64491 0.03001 0.8002 

Region 2 1.3707 0.68535 2.23274 0.20782 0.0058* 

Diet:Region 2 0.4228 0.21139 0.68867 0.0641 0.8585 

Residuals 15 4.6043 0.30696 0.69807   
Total 20 6 1    

C. Post-weaning mucosal 

 Df  SumsOfSqs  MeanSqs  F.Model R2  Pr(>F)     

Diet 3 1.5014 0.50046 2.5596 0.07915 0.0001* 

Region  2 2.7358 1.36791 6.9964 0.14422 0.0001* 

Diet:Region 6 1.0459 0.17432 0.8916 0.05514 0.7551 

Residuals 70 13.686 0.19552 0.72149   
Total  81 18.9693 1    

D. Post-weaning contents 

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)     

Diet 3 1.2151 0.40504 2.1184 0.0628 0.0005* 

Region 2 3.3711 1.68555 8.8156 0.17422 0.0001* 

Diet:Region 6 0.9974 0.16623 0.8694 0.05154 0.7711 

Residuals 72 13.7664 0.1912 0.71144   
Total 83 19.35 1    
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Table 3.7 Pairwise PERMANOVA results for dextrin supplementation and sampling region 

A. Pre-weaning contents, region 

 F.Model R2  p.value  q 

cecum vs ileum  3.7046035 0.25193495 0.0028 0.0042* 

cecum vs colon  0.1975277 0.01391282 0.9807 0.9807 

ileum vs colon  3.8896915 0.26123385 0.0014 0.0042* 

B. Post-weaning mucosal, diet 

 F.Model R2  p.value  q 

NF/NF vs F/NF 2.020038 0.04807321 0.0256 0.03840* 

NF/NF vs F/F 1.399386 0.03224438 0.1412 0.1412 

NF/NF vs NF/F 3.359982 0.08123751 0.0002 0.00120* 

F/NF vs F/F 1.824334 0.04361897 0.0416 0.04992* 

F/NF vs NF/F 2.494069 0.06479099 0.0086 0.01720* 

F/F vs NF/F 2.601212 0.06406735 0.0016 0.00480* 

C. Post-weaning mucosal, region 

 F.Model R2 p.value q 

cecum vs ileum 9.486399 0.15947173 0.0001 0.00015* 

cecum vs colon 2.012331 0.03353196 0.0132 0.0132 

ileum vs colon 8.961158 0.15198409 0.0001 0.00015* 

D. Post-weaning contents, diet 

 F.Model R2 p.value q 

NF/NF vs F/NF 1.87048 0.04263642 0.0324 0.0648 

NF/NF vs F/F 1.691441 0.04057046 0.0683 0.10245 

NF/NF vs NF/F 2.207446 0.05490143 0.0237 0.0648 

F/NF vs F/F 1.499668 0.03447538 0.1138 0.1138 

F/NF vs NF/F 1.921116 0.04582693 0.0303 0.0648 

F/F vs NF/F 1.622617 0.0409518 0.09 0.108 

E. Post-weaning contents, region 

 F.Model R2 p.value q 

cecum vs ileum 11.05453 0.17531698 1.00E-04 0.00015* 

cecum vs colon 2.960038 0.04855703 5.00E-04 0.00050* 

ileum vs colon 11.77578 0.18464345 1.00E-04 0.00015* 
1Main effect significant results only 
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Table 3.8 Differentially abundant operational taxonomic units (OTUs) between diet groups post-weaning (q < 0.05). No distinguishing 

OTUs found between the any of the ileal samples for either mucosal swabs or digesta, nor pre-weaning pigs. 

A.    No Fiber/No Fiber vs. Fiber/No Fiber 

OTU Genus NF/NF NF/NF SE F/NF F/NF SE q value Region Sample type 

Otu051 Coprococcus 0 0 0.000366 0.000335 0.0181 cecum digesta 

Otu063 Butyricimonas 0 0 0.000761 0.000761 0.0181 cecum digesta 

Otu066 Bilophila 0 0 0.000282 0.000282 0.0181 cecum digesta 

Otu069 Mogibacterium 0 0 0.002113 0.002113 0.0181 cecum digesta 

Otu092 Anaerovibrio 0 0 0.000282 0.000282 0.0181 cecum digesta 

Otu110 Paraprevotella 0 0 0.002366 0.002366 0.0181 cecum digesta 

Otu153 Psychrobacter 0 0 0.000592 0.000592 0.0181 cecum digesta 

Otu022 Streptococcus 0.000479 0.000231 0.00924 0.003507 0.0422 cecum digesta 

Otu061 Pseudoscardovia 0.007409 0.004607 0.000366 0.000127 0.0422 cecum digesta 

Otu051 Coprococcus 0 0 0.000535 0.000535 0.0339 colon digesta 

Otu092 Anaerovibrio 0 0 0.000423 0.000423 0.0339 colon digesta 

Otu110 Paraprevotella 0 0 0.007606 0.007606 0.0339 colon digesta 

Otu152 Eggerthella 0 0 0.000366 0.000366 0.0339 colon digesta 

Otu066 Bilophila 0 0 0.000254 0.000254 0.0314 colon mucosal 

Otu095 Desulfovibrionaceae unc.1 0.000676 0.000586 0 0 0.0314 colon mucosal 

Otu118 Lactococcus 0 0 0.000761 0.000761 0.0314 colon mucosal 

Otu122 Victivallis 0 0 0.000282 0.000282 0.0314 colon mucosal 

B.     No Fiber/No Fiber vs. Fiber/Fiber 

OTU Genus NF/NF NF/NF SE F/F F/F SE q value Region Sample type 

Otu028 Clostridium sensu stricto 0 0 0.001099 0.000635 0.0412 cecum digesta 

Otu051 Coprococcus 0 0 0.001859 0.001608 0.0412 cecum digesta 

Otu092 Anaerovibrio 0 0 0.000282 0.000282 0.0412 cecum digesta 

Otu058 Mucispirillum 0.000592 0.000259 0.002648 0.000692 0.0292 cecum mucosal 

Otu092 Anaerovibrio 0 0 0.000225 0.000225 0.0292 cecum mucosal 

Otu095 Desulfovibrionaceae unc.1 0.000254 0.000197 0 0 0.0292 cecum mucosal 

Otu204 Novosphingobium 0 0 0.000451 0.000451 0.0292 cecum mucosal 

C.    Fiber/No Fiber vs. Fiber/Fiber 

OTU Genus F/NF F/NF SE F/F F/F SE q value Region Sample type 

Otu075 Corynebacterium 0.000282 0.000189 0 0 0.0342 cecum digesta 

Otu110 Paraprevotella 0.002366 0.002366 0 0 0.0342 cecum digesta 

Otu153 Psychrobacter 0.000592 0.000592 0 0 0.0342 cecum digesta 

Otu173 Rhodobacter 0.001099 0.001099 0 0 0.0342 cecum digesta 

Otu058 Mucispirillum 0.000648 0.00032 0.002962 0.000404 0.0259 colon digesta 

Otu059 Subdoligranulum 0 0 0.001465 0.001433 0.0223 colon mucosal 



 

 

8
2
 

Table 2.8 Continued 
C.    Fiber/No Fiber vs. Fiber/Fiber (continued) 

OTU Genus F/NF F/NF SE F/F F/F SE q value Region Sample type 

Otu091 Actinobacteria unc.1 0 0 0.000507 0.000272 0.0223 colon mucosal 

Otu118 Lactococcus 0.000761 0.000761 0 0 0.0223 colon mucosal 

Otu134 Reyranella unc. 0.00093 0.000505 0 0 0.0223 colon mucosal 

Otu204 Novosphingobium 0 0 0.000338 0.000338 0.0223 colon mucosal 

Otu230 Ezakiella 0 0 0.000338 0.000338 0.0223 colon mucosal 

Otu054 Enterobacteriaceae unc.1 0.010987 0.009001 0.000113 7.40E-05 0.0382 colon mucosal 

D.    No Fiber/No Fiber vs. No Fiber/Fiber  

OTU Genus NF/NF NF/NF SE NF/F NF/F SE q value Region Sample type 

Otu058 Mucispirillum 0.000592 0.000259 0.006665 0.001313 0.0234 cecum mucosal 

E.    Fiber/No Fiber vs. No Fiber/Fiber  

OTU Genus F/NF F/NF SE NF/F NF/F SE q value Region Sample type 

Otu058 Mucispirillum 0.00058 0.00024 0.006665 0.001313 0.0410 cecum mucosal 
1 Suffix “unc.” refers to OTUs that were not classified to the genus level – taxonomic identifier is at the family level
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Many OTUs with increased or decreased abundance were found when dextrin was fed 

during the pre-weaning period but differed in the post-weaning period (F/NF vs F/F (Table 3.8C)). 

While there were many differences in OTU abundance in both F/NF and F/F treatment groups, 

potentially beneficial bacteria were enriched in both treatment groups. When comparing the groups 

that differed in dextrin feeding during both periods (NF/NF vs F/F, Table 3.8B), the differential 

abundance pattern was similar to F/NF vs NF/NF, with Coprococcus and Anaerovibrio enriched 

in the dextrin fed animals, while the no fiber group was enriched with unclassified 

Desulfovibrionaceae. 

3.4 Discussion 

The stress of weaning and change in diet are known to cause significant shifts in the 

intestinal microbial community. We sought to determine if diet supplementation with the soluble 

fiber dextrin could cause this shift in microbial community to occur earlier in the life of the piglet, 

in preparation for weaning and diet change. Often the stress at weaning requires the use of 

prophylactic or therapeutic antibiotics and reducing the need for antimicrobial use in animals is 

included in the One-Health approach to reduce antibiotic resistance in pathogens. The swine 

industry, as with all other users of antibiotics, is working to develop different means of lowering 

the need for antimicrobials through supplementation of various pathogen-suppressing feed 

additives.  

Several researchers have reported the many benefits that are accompanied with adding fiber 

to swine diets (Cleave, 1968; Trowell, 1972). Dietary fiber has been reported by (Jenkins et al., 

2002) to increase the concentration of SCFAs which are capable of being used by the enterocytes 

as an energy source.  
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Figure 3.1 Top 16 most abundant genera of pre-weaning swine gut bacterial communities 

Relative abundance of genera (y-axis) for individual pigs at the end of the suckling 

period. Both the luminal (A) and mucosal (B) microbial communities were characterized. Fiber 

(F) n = 4, No Fiber (NF) n = 4. Samples that had low sequence counts were not included in the 

analysis.      PLI = proximal large intestine  
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Figure 3.2 Top 16 most abundant genera of post-weaning swine gut bacterial communities 

Relative abundance of genera (y-axis) for diet group averages at the end of the experimental 

period. Both the luminal (A) and mucosal (B) microbial communities were characterized. Pre- 

and post-weaning diet treatments are indicated: fiber pre-weaning and fiber post-weaning (F/F) n 

= 8, no fiber pre-weaning and fiber post-weaning (NF/F) n = 7, fiber pre-weaning and no fiber 

post-weaning (F/NF) n = 8, no fiber pre-weaning and no fiber post-weaning (NF/NF) n = 8. 

Samples that had low sequence counts were not included in the analysis.                                    

PLI = proximal large intestine
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SCFAs have been reported to boost the efficiency of the immune system by increasing the 

amount of natural killer cells (Pratt et al., 1996) and liberates glutamine to be used as an energy 

source by lymphocytes (Jenkins et al., 1999). In our study, supplemental dextrin increased fecal 

SCFA concentrations. Most notable was the increase in butyrate production, which has been 

associated with reductions in inflammatory genes, increased growth performance, increased 

intestinal absorptive capacity, and decreased E. coli abundance (Lu et al., 2008).  

In the current study, supplemental dextrin altered the composition of the gut microbiome, 

as evidenced by a statistical difference in the Bray Curtis index. Supplementing dextrin during the 

pre-weaning period caused reduction in some bacteria associated with gut inflammation, in 

addition to an increase in bacteria associated with beneficial functions. Pigs that received dextrin 

during the pre-weaning period (F/F and F/NF groups) had an increase in some SCFA producing 

bacteria (q < 0.05) compared to pigs that never received dextrin (NF/NF). Pigs fed dextrin during 

the pre-weaning period had an increase in beneficial bacteria, including the genera Coprococcus, 

Butyricimonas, Anaerovibrio, Paraprevotella, and Clostridium sensu stricto, which have 

previously been shown to produce SCFAs (Polansky et al., 2016; Sakamoto et al., 2009; Vital et 

al., 2014). Thus, these bacteria may produce SCFAs in the pig hindgut, promote healthy immune 

pathways, and maintain gut homestasis (Bressa et al., 2017; Lopetuso et al., 2013; Sun et al., 2016; 

F. Yang et al., 2020).  Other OTUs were enriched, but their effect on gut health remains unclear. 

For example, Mogibacterium has been found to be a core member of the gut microbiota but not a 

SCFA producer (L. Chen et al., 2017) while Bilophila has been associated with low performing 

swine (Gardiner et al., 2020), but has not been shown to cause disease in the intestines (McOrist 

et al., 2001). In both cecum and colon of pigs that never received dextrin (NF/NF) there was an 

increased relative abundance of unclassified Desulfovibrionaceae (q < 0.05), a family with 

members implicated in increased inflammation (Figliuolo et al., 2017). Pigs that received dextrin 

only in the post-weaning period (NF/F) seem to be of an intermediate community type. There were 

no genera with different relative abundance with the NF/NF group and only one genera different 

with the F/F group. Thus, dextrin supplementation in the post-weaning period did not result in the 

microbial community shift like pre-weaning dextrin supplementation. 

In addition to inflammatory markers increasing, weaning is associated with reductions in 

villus height and increases in crypt depths (Campbell et al., 2013). This is indicative of intestinal 

inflammation as well as increased intestinal cell sloughing (Land, 2015). In this study, no changes 
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in villi heights were observed between treatment groups. However, a trend for a reduction in crypt 

depths was observed with dextrin supplementation, leading to a trend for an increase in 

villus:crypt. This implies that addition of dextrin did not increase the absorptive capacity in the 

ileum, but potentially reduced the amount of stress placed on the small intestine (Nabuurs et al., 

1993). Seeing this reduction in intestinal stress coupled with SCFA production, growth 

performance would be expected to increase. The only statistically significant difference in growth 

performance data showed pigs fed dextrin prior to weaning were more efficient from day 11 until 

day 21. However, when analyzed over the entire study, there were no differences in ADG or ADFI 

among diet groups. While prebiotic changes benefit the health of the gut tissue and immune 

response (as discussed above), animal performance is not always increased (Jha et al., 2019; 

Markowiak & Śliżewska, 2018; Ngoc et al., 2013). In one study, diet supplementation with a 

mixture of galactooligosaccharides did not alter animal growth but decreased attachment of 

enterohepatic Escherichia coli and Salmonella enterica serotype Typhimurium (Tzortzis et al., 

2005). This suggests that while animals fed supplemental prebiotics may not have increased 

growth rate, due to altered immune status and intestinal tissue health they might be able to perform 

better under a pathogen challenge or other suboptimal conditions,. 

Pigs that received supplemental dextrin only prior to weaning or only post-weaning (F/NF 

or NF/F, respectively) typically showed a more beneficial response than the pigs that received 

supplemental dextrin for the entirety of the study (F/F). This was seen for response variables such 

as total SCFA concentrations, acetate concentration, and butyrate concentration. These results 

were surprising as we expected pigs receiving supplemental dextrin both pre- and post-weaning to 

have an increased response to these variables. This could be due to differences in carbohydrase 

production. Prior to weaning, lactase is the main carbohydrase being produced to digest the lactose 

in the sow’s milk (Hartman et al., 1961). With the addition of dextrin, different carbohydrases will 

be produced since dextrin is capable of being broken down in the small intestine due to the α-1,4 

linkage (Singh et al., 2010; Takata et al., 2005). This could prepare the pig to better digest the 

multitude of carbohydrates that are available in solid feed after weaning. Pigs fed supplemental 

dextrin prior to weaning could then be expected to perform better than those that had not received 

supplemental dextrin prior to weaning. Pigs fed supplemental dextrin for the entirety of the study 

then would digest more of the dextrin fed post-weaning, which would limit the amount of dextrin 

available to the cecum to be fermented. Pigs being fed dextrin only post-weaning would be 
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expected to not have as high carbohydrase production to metabolizing dextrin in the small 

intestine, allowing more dextrin to make it to the cecum and be fermented by the bacteria to 

produce more SCFAs. The change in carbohydrase production could explain the increases in the 

response variables that we observed for pigs that only received supplemental dextrin either pre- or 

post-weaning. 

From the microbiome perspective, it appears that supplemental dextrin fed only during the 

post-weaning period (NF/F) resulted in the fewest changes in bacterial taxa compared to the other 

diet groups, while pre-weaning dextrin (F/NF) appears to have promoted many beneficial bacteria 

compared with NF/NF. Additionally, when animals were fed dextrin during the pre-weaning 

period but differed in the post-weaning period (F/F and F/NF groups), there were still many OTUs 

that had different relative abundance. Interestingly, many of the assumed functions of the 

differentially abundant OTUs between these two groups were either increased or decreased in both 

diet groups. For example, Butyricimonas and Coprococcus both produce beneficial SCFAs (Nogal 

et al., 2021; Sakamoto et al., 2009) but Butyricimonas was increased in the F/NF group, while 

Coprococcus was increased in the F/F group. This suggests that supplementing dextrin post-

weaning may not have changed the function of the community as a whole, but instead shifted 

which populations present to carry out these functions. This was previously seen in the human gut 

– higher order taxa of microbial communities do not shift due to small or short-term diet changes; 

the genera may change but the functions they provide are similar (Arumugam et al., 2011). Thus, 

it appears that some community divergence occurred during the post-weaning period, but the 

overall community function appears similar between the two groups. 

Mucosal communities were significantly different from digesta communities in piglets 

after weaning, as has been determined previously (Burrough et al., 2017). In addition, dextrin 

supplementation impacted the mucosal bacterial community differently than the luminal bacterial 

community in the current study, as is seen in the types of bacteria with increased abundance in the 

mucosal samples - e.g. Muscispirillum, a bacteria commonly associated with diabetes and colonic 

inflammation (Berry et al., 2012; Robertson et al., 2005). The mucosal-associated bacterial 

communities may be of increased importance to the gut health of animals (Aidy et al., 2013; Awad 

et al., 2016; Van den Abbeele et al., 2013). While metabolites produced in the lumen can still have 

an impact on the animal (Donaldson et al., 2016; Kong et al., 2016), mucosal microbial 

communities are thought to be of more relevance to gut health because mucosal communities have 
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a longer retention time in the gut, are in closer contact to the epithelium, and thus can have a more 

direct impact on the structure and function of the intestinal barrier (Finnie et al., 1995; Martens et 

al., 2008; Van den Abbeele et al., 2013). Thus, these shifts to the mucosal bacterial community 

may play an important role in the gut health of dextrin supplemented pigs.  

3.5 Conclusion 

Data from this study indicates that feeding supplemental soluble fiber prior to and/or after 

weaning resulted in changes in SCFA production, crypt depth, and the cecal and colon 

microbiome. There were some benefits from feeding dextrin to pigs around weaning, e.g., increase 

in SCFA production. To increase SCFA production, it may be beneficial to supplement soluble 

fiber to pigs post-weaning. Feeding piglets dextrin prior to weaning resulted in potentially 

beneficial modulations of the microbiome but a practical method to feed soluble fiber before 

weaning would need to be determined. Though some beneficial effects from the addition of 

supplemental dextrin were observed, the effects tended to be smaller than expected. Different types 

and sources of fiber have been reported to produce different effects in pigs, and additional 

investigation is warranted. 
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Abstract 

Bovine respiratory disease (BRD) is one of the costliest diseases for producers, along with 

having a high rate of mortality for both dairy and beef cattle. Since microbiological testing takes 

longer than can be afforded to prevent morbidity and mortality, antibiotic therapy is often 

administered empirically. Phenotypic antibiotic resistance is common in BRD pathogens and rapid 

genetic assays to identify antibiotic resistance genes in pathogenic bacteria could be useful for 

determining antibiotic resistance phenotypes.  However, when relying on previously characterized 

antibiotic resistance genes, genotype-phenotype concordance rates are low in BRD pathogens 

compared to well-studied pathogens such as Salmonella Typhimurium. The objective of this study 

was to use a machine learning approach to determine marker sequences of antibiotic resistance in 

three BRD pathogens, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. 

Previously established antibiotic resistance genotype-phenotype concordance for these pathogens 

is low for many tested antibiotics, suggesting there are unknown genes or sequences determining 

resistance. We hypothesized that the use of  machine learning methods would improve our 

ability to predict phenotypic antibiotic resistance by lowering the number of false negative 

predictions. The error rates for predicting phenotypic resistance to tulathromycin and tilmicosin, 

two antibiotics used to treat BRD, using known antibiotic resistance genes alone were 41% and 

39%, respectively. By using marker sequences generated with machine learning, the error rates 
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were decreased to 7.4% and 15% for  tulathromycin and tilmicosin, respectively. A similar 

improvement of error rate in the predicted phenotype was seen in all tested antibiotics. The marker 

sequences found for the tested antibiotics were annotated as transposases, tetracycline repressor 

tetR, and some amino acid biosynthesis genes. Regions surrounding the resistance marker 

sequences (i.e., found on the same contig) contained other known resistance genes (sul2, blaROB, 

arsR) and some had conjugation machinery genes. However, the identified marker genes of 

antibiotic resistance were not annotated as known antibiotic resistance genes, but were annotated 

as CRISPR arrays, histidine biosynthesis genes, transposases, and mobile element proteins. Mobile 

genetic elements (MGEs) such as transposases can be associated with many different resistance 

genes.  Despite the individual implications of the marker sequences, using machine learning to 

generate markers of antibiotic resistance increased the chances of accurately determining the 

resistance phenotype of the bacterial isolates. With the marker sequences from this study, assays 

could be developed to rapidly determine resistance phenotypes, which could help improve 

treatment success in cattle with BRD. 

4.1 Introduction 

Bovine respiratory disease (BRD) is a broad term for diseases affecting the respiratory tract 

in cattle. With approximately 20-30% of a herd affected per year, BRD is one of the costliest 

diseases for both beef and dairy cattle producers (Peel, 2020; Theurer et al., 2021). While the 

estimated economic loss from BRD is $800-900 million annually from treatment, retreatment, low 

feed efficiency, and replacement animals (Peel, 2020; Theurer et al., 2021), BRD also results in 

increase loss of animal lives and welfare. Many factors increase the risk of an animal becoming 

susceptible to BRD including environmental changes and management practices (e.g., temperature 

fluctuations and stocking density).  

However, these factors are not the only concerns in the complexity of BRD as 

epidemiological risk factors are the direct cause of disease. BRD is often polymicrobial, meaning 

it can result from multiple microbes (e.g., a viral infection followed by a bacterial infection) (Agnes 

et al., 2013; Petruzzi et al., 2020). Many of the bacterial pathogens associated with BRD are 

opportunistic; they exist as a part of the commensal community and become pathogenic when the 

conditions allow them to by-pass animal immune defenses and/or outgrow other commensal 

bacteria (Murray et al., 2016; Sandal & Inzana, 2010).  



 

 

100 

Detection of BRD through visual observation of animals combined with clinical 

measurements (the current established method) has low accuracy, but waiting for a laboratory 

diagnosis can take several days or longer (White & Renter, 2009). As an alternative, a rapid 

biosensor, such as has been used in the diagnosis of Sars-COV-2 (Davidson et al., 2021), could be 

used to determine the most likely causative agent of BRD (Pascual-Garrigos et al., 2021). Rapid 

determination of the causative agent of BRD and the antibiotic resistance profile of the pathogen 

may provide the data necessary to determine the most appropriate antibiotic(s) for treating BRD 

or if antibiotics should not be administered.  

Targeting specific antibiotic resistance genes with polymerase chain reaction (PCR) 

determine resistant bacteria, a common method, only produces output on if the bacteria have the 

capacity to be resistant to antibiotics, not if they are physiologically resistant. Previous methods to 

determine novel resistance genes or predict resistance have relied on comparison of the genome in 

question to reference sequences and genomes to identify novel antibiotic resistance genes based 

on homology to known genes (Knopp et al., 2021; Köser et al., 2012; Wood et al., 2020) as well 

as mining assembled and unassembled metagenomes for sequences with similarity to known 

resistance genes (Berglund et al., 2019; Pehrsson et al., 2013; Willms et al., 2019). However, these 

methods only detect sequences with similarity to previously identified resistance genes, not if the 

presence of the genes confer resistance to the bacterium that encodes the genes.  

Machine learning allows the use of genome sequences in addition to antibiotic resistance 

phenotypes from a large training set of isolates as input and determines de novo markers of 

antibiotic resistance without relying on currently available resistance gene databases. Using 

machine learning to identify marker sequences of phenotypic antibiotic resistance may improve 

the prediction of resistance phenotypes from genomic sequences and potentially identify novel 

resistance genes for further characterization. For this study, we used a machine learning program, 

Kover, to predict phenotypic antibiotic resistance from genome assembly data without the use of 

ARG reference sequences (Drouin et al., 2016, 2019).  
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4.2 Materials and Methods 

4.2.1 Isolates 

Isolates of Mannheimia haemolytica (n=6), Pasteurella multocida (n=7), and Histophilus 

somni (n=5) were obtained from cattle nasopharyngeal and deep lung swabs submitted to the 

Purdue University Animal Disease Diagnostic Laboratory (PA). PA isolates were prepared for 

genome sequencing using the TruSeq DNA PCR-free Library Preparation kit (Illumina, San 

Diego, USA). Sequencing was performed at the Purdue Genomics Core using MiSeq sequencing 

(Illumina; 2 x 300 cycles).  

4.2.2 Genome Sequences and Assembly 

Isolates from BRD pathogen species – M. haemolytica (n=26), P. multocida (n=25), and 

H. somni (n=13) – previously sequenced and assembled by Owen et al (OA; 2017) were also used 

in the current study together with the PA isolates. OA assembled genomes were downloaded from 

the NCBI Genome database (Bioproject PRJNA306895).  PA genome sequences were assembled 

using SPAdes (Bankevich et al., 2012; Nurk et al., 2013) with default parameters for assembly but 

including the “--careful" parameter to reduce the number of mismatches and short contigs.  

Assembly quality was assessed using quast v3.2 (Gurevich et al., 2013; Mikheenko et al., 

2016) with default parameters. Recorded statistics include number of contigs, max contig, total 

length, and N50. Full assembly statistics for PA isolates are listed in Appendix B.1. 

4.2.3 Antibiotic susceptibility testing (AST) and ARG annotation 

Antibiotic susceptibility of OA isolates was tested using Sensititre Bovine/Porcine AST 

plate BOPO6F (Thermo Scientific; Owen et al., 2017) while PA isolates were tested using Bovine 

AST plate BOPO7F (Thermo Scientific). Some antibiotics (tildipirosin and those related to 

tetracycline) are not included on both plates. In these cases, antibiotics for which a minimum 

inhibitory concentration (MIC) was not determined for all isolates were removed to produce a 

balanced dataset. MIC values and interpretations for PA isolates are listed in Appendix B.2 and 

are listed in supplementary table 1 (TableS1) of Owen et al., (2017) for OA isolates. 
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ARGs were annotated using the Complete Antibiotic Resistance Database - Resistance Gene 

Identifier (CARD-RGI, Alcock et al., 2019). Though Owen et al annotated ARGs in their study, , 

we re-annotated the OA genomes with CARD-RGI to limit database bias between the two sets of 

isolates. Parameters used for CARD-RGI were as follows:  

--input_type contig -d wgs --local --exclude_nudge –clean 

The “loose” matches were excluded, leaving only “strict” and “perfect” annotations,  the  highest 

confidence gene calls from CARD-RGI. Concordance (accuracy) was calculated for each 

antibiotic by taking the sum of the isolates with matching genotype (G) and phenotype (P) of 

antibiotic susceptible (AS) or resistant (AR) isolates (G-AR+P-AR and G-AS+P-AS) and dividing 

by the total sum of isolates, i.e., G-AR/P-AR and G-AS/P-AR and G-AR/P-AS and G-AS/P-AS 

(Table 4.1). Additional metrics sensitivity (recall), specificity, precision, and F1 score were also 

calculated for each antibiotic. 

4.2.4 Antibiotic resistance prediction using machine learning 

Assembled genomes were used to create a table of k-mers (k=31) representing the presence 

or absence of sequences 31 bases in length in each genome. K-mer length 31 was used as it 

produced the best models (data not shown). The k-mers were created using Suffixerator and 

counted using Tallymer through the GenomeTools wrapper program (v 1.5.9; Kurtz et al., 2008; 

Gremme et al., 2013). A metadata file was created for the isolates, which contained the assembly 

names and whether the isolates were phenotypically resistant (1) or susceptible (0) to a particular 

antibiotic. A separate prediction model was created for each antibiotic. To create a model of AR 

prediction, more than 10 isolates in both the resistant and susceptible groups were required (Drouin 

et al., 2016). The k-mer table and metadata were both used as input files to predict resistance in 

Kover with the Set Covering Machine algorithm (Drouin et al., 2016, 2019; Marchand & Shawe-

Taylor, 2002). Briefly, the dataset was split into training and testing groups (66 and 33% of the 

data, respectively). A model was learned using the training data and validated using the testing 

data. The output was a set of rules (31-mers) each assigned an importance based on how often the 

rule was considered for the model (Drouin et al., 2016, 2019). Also included as output were the 

equivalent rules (ER) – the set of 31-mers considered equally important for predicting AR in the 

model. 
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Table 4.1 Concordance between antibiotic resistance phenotype and genes. P: phenotype; G: genotype; R: resistant; S: susceptible; 

ML: machine learning 

ML Antibiotics 

P:R  P:S 

Precision Recall/Sensitivity Specificity F1 score Accuracy G:R G:S  G:R G:S 

Ampicillin 17 4  7 54 0.71 0.81 0.89 0.76 0.87 

Clindamycin 42 36  4 0 0.91 0.54 0.00 0.68 0.51 

Danofloxacin 0 27  0 55 N/A 0.00 1.00 N/A 0.67 

Penicillin 21 5  3 53 0.88 0.81 0.95 0.84 0.90 

Tiamulin 0 25  0 57 N/A 0.00 1.00 N/A 0.70 

Tilmicosin 34 20  12 16 0.74 0.63 0.57 0.68 0.61 

Tulathromycin 12 0  34 36 0.26 1.00 0.51 0.41 0.59 

         

Non-ML antibiotics 

P:R  P:S 
     

G:R G:S  G:R G:S Precision Recall/Sensitivity Specificity F1 score Accuracy 

Ceftiofur 0 1  24 57 0.00 0.00 0.70 N/A 0.70 

Enrofloxacin 0 15  0 67 N/A 0.00 1.00 N/A 0.82 

Florfenicol 10 18  12 42 0.45 0.36 0.78 0.40 0.63 

Gentamicin 34 0  41 7 0.45 1.00 0.15 0.62 0.50 

Neomycin 75 2  0 5 1.00 0.97 1.00 0.99 0.98 

Spectinomycin 25 1  50 6 0.33 0.96 0.11 0.50 0.38 

Sulfadimethoxine 22 52  2 6 0.92 0.30 0.75 0.45 0.34 

Trimeth/sulfa 6 4  26 46 0.19 0.60 0.64 0.29 0.63 

Tylosin tartrate 39 27  7 9 0.85 0.59 0.56 0.70 0.59 
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4.2.5 Model alignment to genomes 

The following steps were used as suggested by Drouin et al. to further characterize the 

output of Kover model analysis (Drouin, 2018). First, AR models including ER were used in a 

BLAST search against the family Pasteurellaceae (NCBI:txid712). Alignments to NCBI reference 

genomes were not always high quality. The best alignments (as determined through e-value, 

length, and percent coverage of query to subject) to the reference sequences were called reference 

alignments. Low e-values (e < 10-50) and total query length at 100% coverage were considered as 

the reference alignment. In a case where the e-value was higher than 10-50 and/or coverage was 

less than 100%, the best alignment possible was considered. Sequence query information can be 

found in Appendix B.3. BLAST results identified as the reference alignment were examined to 

identify genes or regions of interest in the proximity of the reference alignment. 

Second, the reference alignments were downloaded from NCBI as GenBank files so ER 

could be aligned to the reference sequence using UGENE (Okonechnikov et al., 2012; v40.1). The 

UGENE function “Find Pattern” was used to align the model rule sets to the matching reference 

alignment (i.e., model 1 for ampicillin with GenBank file from model 1 ER). Through this process 

a filtered alignment file was saved in fasta format for use in later steps. 

4.2.6 Annotation and Target selection 

OA and PA genomes were annotated using Rapid Annotation and Subsystem Technology 

(RAST) (Aziz et al., 2008; Brettin et al., 2015; Overbeek et al., 2013). To determine the potential 

function of model rules, a BLAST search was performed within RAST using the filtered 

alignments as the query and the OA and PA isolate genomes as the subject. For each model, if the 

model type was “presence”, either conjunction or disjunction, the genomes considered to be in the 

resistant group were the subject (metadata = 1). If the model type was “absence”, either 

conjunction or disjunction, the genomes considered to be sensitive were the subject (metadata = 

0). Resulting output was searched not only to determine the sequence location within the genomes, 

but to examine the surrounding areas on the contigs for genes of interest. 
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4.2.7 Data availability 

Genome sequence and coverage data, as well as AST results of OA isolates are available 

through their published work (Owen et al., 2017). Sequence reads from PA isolates can be found 

at NCBI SRA and assembled genomes are available in the NCBI Genome Repository (BioProject 

PRJNA824533). Bioinformatics scripts as well as input and output files for Kover and CARD are 

available at github.com/clwickwa/BovineRespiratoryDisease/Multispecies/scripts. 

4.3 Results 

4.3.1 Sequencing and assembly 

The total length of PA genome assemblies, apart from A196714 (discussed below), was 

within the expected range of genome sizes for each species (Appendix B.1). Genome coverage 

was around 100 times and N50 typically ranged from 100-300 kilobase pairs (kb) with one P. 

multocida assembly (A198640) having an N50 of over 500 kb. In general, PA isolate assemblies 

had similar total lengths as OA isolate assemblies, indicating the genome sizes are within the 

expected range (Owen et al., 2017). However, the quality metrics of OA assemblies, coverage, 

max contig length, and N50 were much lower than those of the PA assemblies, and several OA 

assembles had >100 contigs. This indicates lower quality assemblies than those of the PA isolates. 

PA isolate A196714 had double the expected assembly length for a Pasteurella spp. 

genome – Pasteurella multocida genomes should be about 2.32Mb, whereas isolate A196714 had 

4.67Mb.  The authors chose metagenomic taxonomic identification program Kaiju (Menzel et al., 

2016) for the consideration of a co-culture. Isolate A196714 was found to contain a co-culture of 

P. multocida and Bibersteinia trehalosi.  The isolate was still used in analysis as B. trehalosi is 

also in the family Pasteurellaceae and is often found as a less common opportunistic pathogen in 

BRD cases (Andrés-Lasheras et al., 2022). However, it should be noted that the assembly could 

be duplicated in places where the two species contain similar sequences.  

4.3.2 Susceptibility testing and concordance using antibiotic resistance gene annotation 

Antibiotic resistance genes in OA isolates found in this study were largely the same ARGs 

found in the Owen study (Owen et al., 2017) with a few differences. The following genes were 
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found in both Owen et al and the current study: tetH, aph3-Ia, blaROB-1, sul2, erm42, ermF, floR, 

and dfrA14. Additionally, the genes aph(3``)-Ib and aph(6)Id found in the current study through 

CARD (Alcock et al., 2019) are listed as strA and strB, respectively, in Owen et al. There is only 

one gene that was found in the study by Owen et al that was not found in the current study, cat2.  

While catII was not identified by CARD-RGI in our annotations, there was a gene found from the 

same class of chloramphenicol acetyltransferases, listed as Campylobacter coli chloramphenicol 

acetyltransferase (Ccol_ACT_CHL). Genes identified in the current study, but not in the study by 

Owen et al. (2017), include: two aminoglycoside resistance genes, aadA25 and aadB; a second 

tetracycline resistance gene, tetD; the macrolide-lincosamide-streptogramin (MLS) resistance 

genes mphE and msrE; and beta-lactam resistance genes blaOXA-2 and blaROB-2.  

The three bacterial species had different phenotypic resistance patterns, i.e., some 

antibiotics were found to have more resistant isolates of one species than another.  MH had the 

most isolates with phenotypic resistance to penicillin and ampicillin and had the highest number 

of isolates with beta-lactam resistance genes (Table 4.2). PM had the most isolates with phenotypic 

resistance and ARGs for MLS antibiotics. No HS isolates were found to have a unique ARG 

(Appendix B.3). Phenotypic resistance to ceftiofur, a common antibiotic used for treating BRD, 

was found in one isolate (HS) and no specific ARGs for ceftiofur were found in any isolate (Table 

4.2). Three ARGs, aadB, Ccol_ACT_CHL, and blaROB-1, were found only in MH isolates and one 

ARG, blaROB-2, was found in a single PM isolate. M. haemolytica isolates showed a diversity of 

phenotypic and genotypic resistance. Isolates from PA showed phenotypic resistance in at least in 

one isolate to all tested antibiotics with the exception of ceftiofur (Appendix B.2). Over 90% of 

isolates were resistant to clindamycin, neomycin, sulfadimethoxine, and tylosin, while less than 

20% of isolates were resistant to ceftiofur, gentamicin, enrofloxacin, tiamulin and 

trimethoprim/sulfadimethoxine (TMS). More than 90% of M. haemolytica isolates had ARGs 

conferring resistance to aminoglycoside (aph(3`)-Ia) and tetracycline (tetH) antibiotics (Appendix 

B.4) while over 50% had the aminoglycoside resistance genes aph(3``)-Ib and aph(6)-Id as well 

as beta-lactam resistance gene blaROB-1. Fewer than 30% of M. haemolytica isolates had ARGs 

erm(42) and sul2, MLS and sulfonamide resistance, respectively, and less than 20% of isolates had 

resistance genes floR and Ccol_ACT_CHL (phenicols), mphE and msrE (MLS), aadA(25) and 

aadB (aminoglycoside), and blaOXA-2 (beta-lactam). 
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Among all the P. multocida isolates, phenotypic resistance was found in at least one isolate 

to all tested antibiotics except ceftiofur. However, less than 50% of isolates were resistant to nine 

of the 16 antibiotics (Appendix B.2). The MLS resistance gene erm42 and tetracycline resistance 

gene tetH were found in more than 80% of isolates (Appendix B.4). Three aminoglycoside 

resistance genes, aph(3``)-Ib, aph(6)-Id, and aph(3`)-Ia were found in more than 50% of the P. 

multocida isolates (56%, 68%, and 91%, respectively). Less than 30% of the P. multocida isolates 

had resistance genes dfrA14, tetD, ermF, mphE, msrE, blaROB-2, floR, and sul2.  

H. somni isolates displayed phenotypic resistance to very few antibiotics. Phenotypic 

resistance to neomycin was found in all H. somni isolates (Appendix B.2). While 94% of isolates 

were phenotypically resistant to sulfadimethoxine, corresponding TMS resistance genes were 

found in just under 40% of the H. somni isolates. Twelve of the sixteen tested antibiotics had less 

than 30% of isolates with resistance. Like the phenotypic resistance profiles in H. somni, less than 

50% of H. somni isolates had resistance genes found in the other species. There were only three 

resistance genes – erm42, tetH, and aph(3`)-Ia – that were found in greater than 50% of the H. 

somni isolates (Appendix B.4).  

Overall concordance between resistance gene and phenotypic resistance was varied 

depending on the antibiotic (Table 4.1). The lowest concordance was seen in sulfadimethoxine and 

spectinomycin with 34 and 38%, respectively. Low concordance for sulfadimethoxine was marked 

by a high number of false negatives (phenotypically resistant and genotypically sensitive) with 52 

isolates having no sulfonamide ARG found but being phenotypically resistant to sulfadimethoxine 

(Table 4.1).  
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Table 4.2 Antibiotic resistance genes and their corresponding susceptibility testing MICs 

   Breakpoint (mg/mL) 

Antibiotic Class Resistance genes Antibiotic Tested Susceptible Resistant 

MLS 
erm(42), ermF, mphE, 

msrE 

Clindamycin ≤ 2 ≥ 4 

Tilmicosin ≤ 8 ≥ 16 

Tulathromycin ≤ 16 ≥ 32 

Tylosin tartrate ≤ 16 ≥ 32 

Phenicol floR, Ccol_ACT_CHL Florfenicol ≤ 4 ≥ 8 

Tetracyclines tet(H), tet(D) None tested   

Aminoglycoside 

aadB, aph(6)-Id (strB), 

aph(3'')-Ib (strA), 

aadA25, aadB 

Gentamicin ≤ 4 ≥ 8 

Neomycin ≤ 4 ≥ 8 

Spectinomycin ≤ 32 ≥ 64 

Trimpethoprim dfrA14 Trimethoprim+ 

sulfamethoxazole ≤ 2 ≥ 4 

Sulfonamide sul2 Sulfadimethoxine ≤ 256 ≥ 512 

Beta-lactam 
blaROB-1, blaOXA-2, 

blaROB-2 

Ampicillin ≤ 4 ≥ 16 

Ceftiofur ≤ 2 ≥ 4 

Penicillin ≤ 0.5 ≥ 1 

Fluoroquinolone none found 
Danofloxacin ≤ 0.25 ≥ 0.5 

Enrofloxacin ≤ 1 ≥ 2 

Pleuromutilin none found Tiamulin ≤ 16 ≥ 32 
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Conversely, low concordance for spectinomycin was the result of high false positives 

(phenotypically sensitive and genotypically resistant) where 50 isolates were found with 

aminoglycoside resistance genes but were phenotypically sensitive to spectinomycin. Ampicillin, 

penicillin, and neomycin had the highest concordance rates at 87%, 90%, and 98%, respectively. 

Clindamycin, tylosin, tilmicosin, and tulathromycin (MLS antibiotics) all had below 65% 

concordance. The concordance rates for clindamycin, tilmicosin, and tylosin were the result of 25-

40% of the isolates being false negatives whereas the concordance rate for tulathromycin was the 

product of 40% of the isolates being false positives.  

4.3.3 Model statistics, alignment, and annotation 

Multiple MIC resistance breakpoints were considered for each antibiotic and the resulting 

resistant/sensitive metadata was used as input to Kover (Table 4.3). The results from Kover 

confirmed that the models at the previously established breakpoint MIC had the best overall model, 

indicating Kover behaved the way we expected and generated reasonable models.  

Models included: 1) whether there were multiple rules associated with AR, 2) if the model 

was a combination of all rules (conjunction) or individual rules (disjunction), as well as 3) if it was 

the presence (rule found in AR isolates) or absence (rule found in AS isolates) of the rule that was 

considered as the AR determinant. Models at breakpoint MICs resulted in both presence and 

absence, as well as both conjunction and disjunction models (Table 4.4). Model error rates and 

statistics can be found in Table 4.3 for the seven antibiotics tested. Out of the seven antibiotics, 

machine learning improved the concordance for five antibiotics (Table 4.4). However, it is 

important to note that some of the models are under fit, meaning the training error rate is much 

lower than testing error rate (Table 4.3). 

As all isolates with an MIC interpretation of ‘intermediate’ were considered resistant, no 

minor errors – defined as the misclassification of isolates within one interpretive category (e.g., 

susc-int, int-resist) – were recorded. The results, therefore, are given as overall error (OE), defined 

as the total of all misclassifications; major errors (ME), defined as true susceptible isolates 

classified as resistant; and very major errors (VME), defined as true resistant isolates classified as 

susceptible. ME ranged from 0-22% of isolates while VME ranged from and 0-25% of isolates 

(Table 4.5). Misclassification of isolates by a model was seen for every antibiotic except penicillin, 

for which the OE was 0% (Table 4.5). Tiamulin had no ME, though the model did have the highest 



 

110 

rate of VME at 25%. Conversely, tulathromycin and tilmicosin had no VME, however tilmicosin 

had the second highest rate of ME (14%; Table 5). The highest ME was seen from the danofloxacin 

model with 22% of the isolates misclassified as resistant.  

Taxonomic classification of reference genomes found from NCBI BLAST varied between 

antibiotics as well as rulesets (Table 4.4). However, the search often returned alignments to a single 

species for each model (Appendix B.5). All rules were constrained to a BLAST search against the 

family Pasteurellaceae, as searching more broadly resulted in no or low confidence BLAST hits 

(e-values close to 1). Results from individual antibiotic models are discussed over the next several 

paragraphs. 
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Table 4.3 Kover error data of BRD antibiotics. Boxed summary information represents the 

currently established MIC breakpoint value (CLSI reference) for each antibiotic 

  
Training Data Testing Data 

ABX MIC Susc Res Error F1-score    Susc Res Error  F1-score 

DANO 
0.25mg 31 24 0.091 0.88 14 13 0.22 0.77 

0.5mg 36 19 0.11 0.84 19 8 0.33 0.53 

TIL 

8mg 14 41 0.091 0.94 6 21 0.26 0.84 

16mg 20 35 0.091 0.93 8 19 0.15 0.9 

32mg 36 19 0.73 0.9 16 11 0.11 0.87 

64mg 36 19 0 1 18 9 0.3 0.67 

> 64mg 45 10 0.11 0.57 24 3 0.26 N/A 

TULA 

8mg 14 41 0.14 0.9 5 22 0.3 0.83 

16mg 36 19 0.018 0.97 17 10 0.48 0.43 

32mg 45 10 0.055 0.87 25 2 0.074 0.67 

  64mg* 
   

 
   

 

AMP 0.5mg 35 20 0.054 0.93 20 7 0.48 0.43 

 
1mg 40 15 0.073 0.85 21 6 0.19 0.54 

 
4mg 41 14 0.073 0.83 21 6 0.074 0.86 

 
16mg 42 13 0.036 0.92 21 6 0.11 0.73 

 
32mg 45 10 0.018 0.95 21 6 0.15 0.75 

CLIN 2mg 9 46 0.055 0.98 4 23 0.037 0.95 

 
4mg 13 42 0.02 0.99 5 22 0.11 0.93 

 
8mg 14 41 0.036 0.98 5 22 0.037 0.98 

 
16mg 24 31 0.036 0.97 13 14 0.18 0.83 

 
>16mg 36 19 0.018 0.97 16 11 0.11 0.87 

PEN 0.25mg 16 39 0.11 0.93 13 14 0.26 0.8 

 
0.5mg 36 19 0.036 0.95 20 7 0.18 0.62 

 
1mg 38 17 0.11 0.79 20 7 0 1 

 
4mg 40 15 0.055 0.89 21 6 0.15 0.67 

 
8mg 41 14 0.036 0.93 21 6 0.22 0.67 

 
16mg 44 11 0.036 0.92 21 6 0.18 0.71 

TIA 4mg 13 42 0.036 0.98 5 22 0.11 0.94 

 
8mg 14 41 0 1 6 21 0.074 0.95 

 
16mg 21 34 0.018 0.98 11 16 0.15 0.87 

 
32mg 38 17 0.018 0.97 19 8 0.26 0.22 

* Not enough isolates in group  64 mg (established breakpoint) to determine model 
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Table 4.4 KOVER model for breakpoint MIC. Model type: presence (P) or absence (A) of the ruleset predicts 

resistance; Importance: weighted value for rule – designates how often the rule was found in the model; For multiple 

rulesets - Conjunction: all rulesets pre predict resistance (logical AND) or Disjunction: one ruleset needs to be 

present or absent to predict resistance (logical OR). 

ABX MIC Model type (Importance) # equiv rules Annotation 

DANO 0.5mg Conjunction 
P (0.83) 25 IS30-like transposase 

A (0.22) 31 murA – peptidoglycan synthesis 

TIL 16mg  A (1.00) 128 23S rRNA (multiple regions) 

TULA   32mg Conjunction 
P (0.71) 17 Non-coding region between tetH and tetR 

A (0.40) 2 23S rRNA (Pasteurella spp.) 

AMP 16mg Conjunction 
P (0.98) 73 histidinol transaminase 

P (0.93) 66 mobile element protein 

CLIN 4mg Disjunction 
A (0.95) 87 23S rRNA  

P (0.93) 2 proline tRNA 

PEN 1mg  P (1.00) 31 histidinol dehydrogenase 

TIA 32mg  P (1.00) 3 CRISPR array 

 

The predictive model for phenotypic danofloxacin resistance had two rules and was 

classified as a conjunction model (Table 4.4). The presence of the first rule (25 ER) was annotated 

as mobile element protein that matched IS30-like transposase in BLAST. Rule two (31 ER) was 

typed as absence and was annotated as murA, a key enzyme for the synthesis of peptidoglycan 

(Table 4.4). A total of 15 isolates were misclassified by this model – six from the training data set 

and nine from testing. Of the 15 misclassified isolates, eight were MH, six were PM, and one was 

HS. Three of the MH isolates were misclassified as danofloxacin susceptible (one training, two 

testing) and five were misclassified as being danofloxacin resistant (one training, four testing). 

There were four PM isolates misclassified as danofloxacin susceptible (two training, two testing) 

and two with resistant phenotypes (one training, one testing). The single HS isolate was considered 

danofloxacin resistant by the model (training). Additionally, half of the isolates with an MIC of 1 

mg/mL (resistant) were misclassified. 

The model for tulathromycin resistance had two conjunction rules (Table 4.4). The 

presence of the first rule (17 ER) matched an area between tetH and tetR, tetracycline resistance 

genes. The absence of rule two (2 ER) was annotated as a region of 23S rRNA gene specific to 

Pasteurella spp. (Appendix B.5). Five isolates were misclassified by the model for tulathromycin 

resistance (three training, two testing). One MH isolate was misclassified as resistant from 
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(training). No PM isolates were misclassified. Four misclassifications were from HS isolates, all 

with tulathromycin susceptible phenotypes misclassified as resistant (two training, two testing). 

Isolates from all species were predicted to be both resistant and sensitive. 

Tilmicosin resistance prediction resulted in a single rule (128 ER); the absence of   multiple 

variable regions of the 23S rRNA gene, a gene important as the target of MLS antibiotics, the class 

to which tilmicosin belongs (Table 4.4). On the other hand, 23S rRNA is important in 

differentiating species, including those of the family Pasteurellaceae. Of the nine isolates 

misclassified by the predictive model for tilmicosin resistance, five were from training and four 

from testing datasets. All five of the MH isolates were misclassified to be resistant to tilmicosin. 

Interestingly, no MH isolates with phenotypic susceptibility to tilmicosin were correctly identified 

during training or predicted during testing. Two PM isolates were misclassified as resistant 

(testing). One phenotypically susceptible and resistant HS isolate each were misclassified 

(training).  

The model for ampicillin resistance had two rules and was classified as a conjunction 

model. The presence of rule one (73 ER) was annotated as a histidinol transaminase, an important 

enzyme for the synthesis of several amino acids (e.g., histidine, tyrosine, and tryptophan) while 

the presence of rule two (66 ER) was annotated as a mobile element protein (table annotation info). 

There were a total of five misclassified isolates by the ampicillin model, two in the training data 

set and three in the testing data set. Three of the MH isolates (one training, two testing) were 

misclassified as susceptible by the model while one MH isolate (testing) was misclassified as 

resistant. The single phenotypically resistant H. somni isolate (training) and one of the two P. 

multocida isolates (training) with a resistant phenotype was correctly identified by the model, 

whereas the remaining PM isolate (training) with ampicillin resistant phenotype was misclassified 

as susceptible. No HS or PM isolates with antibiotic susceptible phenotypes were misclassified 

(Table 4.6) and the model effectively identifies susceptible and resistant MH isolates. 
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Table 4.5 Comparison of error rates and F1-scores between resistance database query (ARG) and 

machine learning (ML) at the established breakpoint for each tested antibiotic 

 ARG ML 

Antibiotic Error Rate F1-score Error Rate F1-score 

Danofloxacin 33% N/A 33% 0.53 

Tilmicosin 39% 0.68 15% 0.9 

Tulathromycin 41% 0.41 7.4% 0.67 

Ampicillin 13% 0.76 11% 0.73 

Clindamycin 49% 0.68 11% 0.93 

Penicillin 10% 0.84 0% 1 

Tiamulin 30% N/A 26% 0.22 

 

The model for penicillin resistance had a single rule (31 ER), the presence of which was 

annotated as histidinol dehydrogenase, a different enzyme in the same amino acid synthesis 

pathway as ampicillin (Table 4.4). There were six total misclassifications from the penicillin 

model, all in the training data set. Three MH and PM isolates each were misclassified as 

susceptible. Additionally, the three PM isolates were the only PM isolates with phenotypic 

penicillin resistance. No HS isolates were misclassified; however, they were all phenotypically 

susceptible. It appears the model effectively identifies susceptible and resistant MH isolates, while 

assuming all PM and HS isolates are susceptible. 

The tiamulin model had a single rule, for which the presence (3 ER; table 4.4) matched a 

CRISPR array with each ER being repeated across a 5-7 kilobase region (Appendix B.2). Eight 

isolates were misclassified by the tiamulin resistance model: one error from the training dataset 

and seven from testing. Three MH isolates were misclassified as susceptible, which were the only 

MH isolates with phenotypic resistance to tiamulin. The single training error was a PM isolate, and 

the remaining four testing errors were PM isolates misclassified as susceptible. No HS isolates 

were misclassified; however, they were all phenotypically susceptible. 

The clindamycin model had two rules and was classified as a disjunction model. The 

absence of rule one (87 ER) matched 23S rRNA in Pasteurellaceae, but the rule was split into two 

sections of the 23S rRNA gene which was surrounded by other rRNA (Table 4.4). The presence 

of rule two (2 ER) matched a proline tRNA with the specific anticodon TGG. A total of seven 

isolates were misclassified by the clindamycin model, four in the training data set and three in 
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testing data set. The training errors were an MH isolate and two HS isolates, misclassified as 

resistant, and one PM isolate, misclassified as susceptible. Two of the three testing errors were PM 

isolates misclassified as susceptible. The remaining testing error was an HS isolate misclassified 

as resistant.  

4.3.4 Alignment similarities and overall error  

The sets of equivalent rules for each model were used to create alignments, however not 

every isolate had every equivalent rule. Pencillin was the only antibiotic for which the percent of 

similarity between the filtered alignment (query) and isolate genome (subject) was below 80%. 

Penicillin, with only one model, had the lowest OE of all the antibiotics at 0% (Table 4.3) but some 

isolates had 55% percent similarity with the filtered alignment (Appendix B.2). Interestingly, 

though all HS isolates were phenotypically susceptible to penicillin and the only PM isolates with 

phenotypic resistance to penicillin were misclassified as susceptible by the predictive model, the 

penicillin model had no testing errors (Table 4.6), the highest accuracy, and highest F1-score (table 

4.3).  

The rule for tiamulin was a CRISPR array – a section of repeated bases with “spacers” of 

DNA sequences from previously encountered foreign genetic elements (Garrett, 2021). As the 

spacers are not always the same for every species, or even every isolate of the same species, 

determination of similarity to the filtered alignment was not considered necessary for this study. 

However, as CRISPR/Cas systems can inhibit horizontal gene transfer (Wheatley & MacLean, 

2021), it would be interesting to examine the types of sequences encountered and captured within 

the cassettes.  

While the OE of antibiotic resistance prediction for the majority of antibiotics was 

improved using machine learning (Table 4.5), it is important to examine the individual rules and 

their annotations if present. Four of the seven antibiotics examined in this study were associated 

with models that had multiple rules. Of these, two had at least one rule with reference alignments 

to only one species – danofloxacin rule 2 and tulathromycin rule 2 only had reference alignments 

to P. multocida. Additionally, the single rule for the tiamulin model only had reference alignments 

to P. multocida. In each of these three cases, the resulting annotation was a gene (danofloxacin 

and tulathromycin) or non-coding region (tiamulin) that was specific to P. multocida.   
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Table 4.6 Kover models with classification of each species 

 
 Training   Testing 

  
Correct   Error  Correct  Error  

  
MH PM HS  MH PM HS  MH PM HS  MH PM HS 

Danofloxacin 
Res 6 9 1  1 1 1  1 4 0  2 1 0 

Susc 12 11 10  1 2 0  5 2 6  4 2 0 

Tilmicosin 
Res 20 13 1  0 0 1  7 12 0  0 0 0 

Susc 0 4 12  3 0 1  0 1 3  2 2 0 

Tulathromycin 
Res 7 2 1  0 0 0  2 0 0  0 0 0 

Susc 15 17 10  1 0 2  7 13 3  0 0 2 

Ampicillin 
Res 10 1 0  1 1 0  4 0 0  2 0 0 

Susc 9 20 13  0 0 0  5 10 5  1 0 0 

Clindamycin 
Res 19 21 2  0 1 0  12 8 0  0 2 0 

Susc 0 1 11  1 0 2  0 0 4  0 0 1 

Penicillin 
Res 11 0 0  3 3 0  7 0 0  0 0 0 

Susc 8 16 14  0 0 0  3 13 4  0 0 0 

Tiamulin 
Res 0 17 0  0 1 0  0 0 0  3 4 0 

Susc 19 0 18  0 0 0  10 10 0  0 0 0 

 

However, it was not always the case that antibiotics with singularly skewed species 

resistance resulted in a seemingly biased model. For example, the model for clindamycin, with a 

38% improvement in error rate compared to ARG comparison alone (Table 4.5), was built from 

data where 16 of 18 HS isolates and only one isolate of MH and PM, each, were found in the 

phenotypically susceptible group (Table 4.6). The clindamycin rules matched sections of the 23S 

rRNA gene, but the regions matched were conserved across many genera in the family 

Pasteurellaceae (Table 4.4).  Similarly, the model for penicillin resistance matched an amino acid 

synthesis gene and was built from data where 84% of the phenotypically resistant isolates were 

MH, the remaining 16% were PM, while all HS isolates were phenotypically susceptible to 

penicillin (Table 4.4). 

4.4 Discussion 

In the current study, machine learning was used to determine sequences predictive of 

antibiotic resistance from bacterial genome assemblies and phenotypic AST data. Presently, two 

methods of detecting antibiotic resistance are commonly used in veterinary laboratories: 1) 
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antibiotic susceptibility testing (AST) and molecular assays with bacteria isolated from sick or 

dead animals, or 2) molecular assays to determine presence of antibiotic resistance genes (ARG) 

within unpurified samples using polymerase chain reaction (PCR) amplification of target ARGs. 

In the case of BRD, however, these two methods have distinct issues that make their use 

impractical for accurate identification of resistance. First, bacterial culture and AST can be slow, 

requiring days for fast-growing species such as E. coli or Salmonella spp. or weeks for slow-

growing species such as Mycobacterium tuberculosis (Beste et al., 2009; Neidhardt, 1996). 

Second, ARGs must be discovered and catalogued, thus determination of antibiotic resistance 

genes is dependent on previous determination of gene function. High genotype-phenotype 

concordance has been observed in well-studied organisms which also have assembled genomes 

from many isolates of the species. For instance, a study on the concordance of ARGs and 

phenotypic AR of non-typhoidal Salmonella enterica found 97.8% of approximately 3,400 isolates 

had AR genotype and phenotype that agreed (Neuert et al., 2018). In contrast, when studying 64 

isolates from three pathogens associated with BRD, Owen et al (2017)  found less than 75% 

concordance between AR genotype and phenotype. In the case of BRD pathogens, there are 

additional genomes sequences and assemblies that are publicly available; however, these genomes 

lack accompanying phenotypic antibiotic resistance information which limits ability to determine 

concordance with a larger sample size.  

4.4.1 Antibiotic resistance patterns across BRD pathogens 

Initial examination of the phenotypic resistance profile revealed HS isolates to be 

susceptible to most antibiotics (Table 4.2). In contrast, ceftiofur was the only antibiotic for which 

there were no resistant isolates of PM and MH. The profile for resistance in PM and MH showed 

the isolates are highly resistant to sulfadimethoxine, the aminoglycoside antibiotics clindamycin 

and neomycin, and the MLS antibiotics tilmicosin and tylosin. Of those antibiotics, tilmicosin is 

the only antibiotic listed for which there is active use of the antibiotic to treat BRD under the trade 

name Micotil. As the majority of PM (25/32 isolates) and MH (27/32 isolates) were phenotypically 

resistant to tilmicosin, it may be necessary to avoid use of the antibiotic as a primary treatment if 

the causative agent is not known.  

Curiously tulathromycin, an antibiotic also actively used in the treatment of BRD (trade 

name Draxxin), had very low numbers of isolates with phenotypic resistance in all three pathogens. 
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Previous studies on the use of tulathromycin in prevention and treatment of BRD have shown 

tulathromycin resistance to be present in many MH isolates prior to use. As we do not have 

antibiotic use information on all the animals from which the isolates in the current study were 

sourced, it is unknown whether the animals were treated with tulathromycin.  

4.4.2 Models with biologically significant AR predictors 

The majority of models contained, or were entirely comprised of, rules that had annotations 

matching genes or other coding sequences. Ampicllin model rule 1 and the penicillin model both 

matched genes in the histidine/purine biosynthesis pathway (Table 4.4). Ampicillin model rule 1 

matched histidinol phosphate transferase (hisC; EC:2.6.1.9.) which catalyzes the transfer of 

phosphate between L-histidinol-P and imidazole-acetol-P. The penicillin model ruleset matched 

histidinol deydrogenase (hisD; EC:1.1.1.23) which catalyzes the removal of a hydrogen from L-

histidinol, resulting in L-histidinal, an immediate precursor to L-histidine. The link between 

histidine biosynthesis and beta-lactam resistance could be the role of histidine metabolism in cell 

wall synthesis. A well studied amino acid, histidine is a proteogenic amino acid that is also utilized 

in the metabolism of other amino acids and amino sugars, including those used in the formation of 

peptidoglycan (Bender, 2012; Zeng & Lin, 2013). Additionally, the his operon has been implicated 

in increased multidrug resistance following duplication of the operon (Brenner & Ames, 1971; 

Dunn et al., 2021). 

Some model rules were annotated as genes that could be associated with the potential 

targets of the antibiotics – danofloxacin model rule 2 and tulathromycin model rule 2, as well as 

ampicillin model rule 1 and the penicillin model discussed above (Table 4.4). Interestingly, the 

second danofloxacin rule matched a cell wall synthesis gene and as a fluoroquinolone, 

danofloxacin targets cell replication machinery (DNA gyrase and topoisomerase IV). The second 

rule for tulathromycin, a macrolide antibiotic, matched one of the targets of macrolides, the 23S 

rRNA subunit. Since most of these rules seem to be related to the target of the antibiotic, resistance 

might be conferred through antibiotic target alteration, potentially preventing the inhibition of the 

bacteria. Further characterization is required to confirm this hypothesis.  

In the current study, there were two models with rules annotated as MGEs. Danofloxacin 

model rule 1 and ampicillin model rule 2 had matching sequences to mobile element proteins that 

were annotated as insertion sequences (IS) of an integrative-conjugative element (ICE) in the 
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reference genomes (Table 4.4). In both models the IS was annotated as “IS30-like element ISApl1 

family transposase,” an IS first found in another member of the Pasteurellaceae family, 

Actinobacillus pleuropneumoniae. In the danofloxacin model, there were many types of antibiotic 

resistance genes on the same contig as the IS including aminoglycoside, sulfonamide, and phenicol 

as well as potential conjugation machinery, suggesting the importance of resistance genes to the 

survival of these pathogens. Interestingly, in the ampicillin model most of the surrounding genes 

were other MGE sequences including integrases and “mobile element” or “mobilization” proteins.   

 As MGEs can be associated with many different genes, the confidence of targeting a 

specific ARG or sequence is difficult. The ICEs found in the current study have been identified as 

having the same conserved backbone in MH, PM, and HS (Andrés-Lasheras et al., 2022; Eidam 

et al., 2015; Lubbers & Hanzlicek, 2013; Michael et al., 2012; Owen et al., 2017).  As additional 

evidence as to why targeting an MGE would be challenging, the regions surrounding the MGE 

sequences were conjugation machinery (type IV pilus system) and other mobile genetic elements 

(transposases and integrases) that are often the conserved sequences in MGEs, as well as 

antimicrobial resistance genes (e.g., copper resistance and phenicol resistance) that are not always 

consistent between isolates (Beker et al., 2018; Frost et al., 2005; Partridge et al., 2018).  

To use the MGEs as predictor, there needs to be further research on the types of AR co-

occurring with the MGEs in the three species from the current study. There were several models 

for which model rules had annotations other than potential antibiotic targets (e.g., 23S rRNA) or 

ARG (e.g., tetR). These models could be targeting a proxy gene – not a gene conferring the 

antibiotic resistance in question but one found to be frequently associated, or co-occur, with 

resistant genes (Johnson et al., 2016). Genes and sequences surrounding the model rules of 

danofloxacin, tulathromycin, and ampicillin (Table 4.4) were other AMR genes, e.g., metal 

resistance genes, and MGEs. Co-occurrence of AMR genes is not a new concept, and further 

research into what types of genes co-occur in the BRD pathogens may improve confidence that 

the non-ARG sequences could be used as proxies for co-occurring ARGs. 

4.4.3 Considerations for the use of non-coding sequences as AR predictors 

Tulathromycin model rule 1 matched a non-coding sequence and it is currently unclear 

how non-protein-coding sequences would confer an antibiotic resistance phenotype. We have three 

hypotheses: the model rule sequences are (i) merely proxy sequences for resistant bacterial clades, 
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(ii)  epigenetic controls, such as methylation and acetylation, resulting in a “dormant” survival 

phenotype (Ghosh et al., 2020; Riber & Hansen, 2021), or (iii) regulatory sequences or binding 

sites (e.g., sigma factors) facilitating stress-response mechanisms during exposure to antibiotics 

(Woods & McBride, 2017; Yoo et al., 2016). 

4.4.4 Future research directions 

The functional annotations of the rule sequences for each model in the current study 

revealed a wide variety of coding and non-coding sequences identified as the predictive sequences 

of phenotypic resistance. Ideally, the rules would have matched coding sequences that could be 

identified as a novel resistance gene. Novel resistance genes often have homologs with the same 

functions or might be annotated as hypothetical proteins, but proper annotation of homologous 

genes may not occur (Bengtsson-Palme, 2018). Additional testing (bioinformatic, biochemical, or 

multi-omic) is required to confirm if the rules produce functional genes and the importance of the 

non-coding sequences. 

Though all three of the isolate genera belonged to the family Pasteurellaceae, there are 

still enough differences in their genomes to consider them separate genera and species. An example 

of phenotypic differences is in the phenotypic resistance profile of HS isolates compared to MH 

and PM (Appendix B.2); HS isolates typically have fewer antibiotics to which they are 

phenotypically resistant. Additionally, the pan-genome of the three taxa used in the current study 

may have included too many species-specific sequences to determine AR markers across all three 

species. A recent methodology using the pan-genome in antimicrobial resistance prediction 

improved the likelihood of correct predictions of four species with open pan-genomes (Yang & 

Wu, 2022), suggesting the ability to mine the pan-genomes of the species in the current study for 

enhanced prediction.  

Due to the  potential limitation of using the pan-genome of these three species, it is 

imperative that further analysis of individual BRD pathogens be carried out. However, the 

pathogens in the current study have very few available isolates in the NCBI database that have 

phenotypic resistance data along with sequenced and/or assembled genomes. For Mannheimia 

haemolytica, there are 2,023 isolates with sequence reads and 207 isolates with assembled 

genomes available, while Pasteurella multocida has 1,244 isolates with sequence reads and 310 

with assembled genomes available. However, the majority of the M. haemolytica and P. multocida 



 

121 

isolates do not have AST data publicly available. For example, there are only 18 available isolates 

of Histophilus somni from NCBI with AST and genomic data. In addition to the low numbers of 

paired sequence and antibiotic resistance phenotype data, not all the available isolates come from 

a relevant environment, i.e., ruminant animals, with emphasis on beef or dairy production.  

4.5 Conclusions 

Using machine learning, the rate of predicting whether an isolate was resistant to a 

particular antibiotic was increased. Prediction of phenotypic resistance to the BRD antibiotics 

tilmicosin and tulathromycin improved 24 and 33%, respectively, using machine learning and that 

pattern was seen for all antibiotics except danofloxacin. However, the functional annotations of 

the model rule sequences were not clear indicators of  the mechanism of resistance. There were 

antibiotics for which the majority of sensitive or resistant isolates were from only one of the three 

species (e.g., tiamulin), creating likely bias in the sequences found. Additionally, there were AR 

determinants found for mismatching antibiotic classes (e.g., danofloxacin matching the murA cell 

wall synthesis gene). The potential species indicators and mismatching resistances suggests there 

may be more to optimize in identifying resistance determinants in these pathogens. 

The lack of available paired genomic and phenotypic data is a current limitation for the 

determination of AR using the genome in BRD pathogens. Though the machine learning method 

used in this study increased the accuracy of AR prediction, there is still room for improvement. It 

is necessary to add to the current repository of sequenced BRD pathogens with AST data to further 

assess the variability in BRD pathogen genomes. This will allow more comparisons of isolates 

across different geographical areas and times, as well as increase the knowledge of the core- and 

pan-genomes of BRD pathogens. 
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Abstract 

Mannheimia haemolytica is one of the most common causative agents of bovine respiratory 

disease (BRD). Previous studies on phenotypic and genotypic antibiotic resistance in M. 

haemolytica have detailed the different relationships between virulence (e.g., outer membrane 

proteins) and antibiotic resistance through phenotype or genotype. Phenotypic resistance in M. 

haemolytica to macrolide and fluoroquinolone antibiotics is still fairly low, with studies reporting 

the majority of isolates below the intermediate breakpoint cutoff. However, isolate MIC values for 

these antibiotics have been steadily rising, suggesting a movement towards antibiotic resistance. 

Additionally, researchers have observed an influx of mobile genetic elements (MGE) such as 

integrative-conjugative elements (ICE) in the genomes of M. haemolytica previously found in 

other bacteria within the family Pasteurellaceae. These ICE commonly have around 100 different 

genes, with multiple resistance islands reported as conferring resistance to drugs in four antibiotic 

classes. Even so, the existence of the antibiotic resistance genes does not imply phenotypic 

resistance and BRD researchers have recently been studying phenotype and genotype in tandem 

to learn how the two resistances are interconnected. However, there are discrepancies in the 

accuracy of well-studied genotype prediction methods using antibiotic resistance databases. Prior 

investigations using resistance databases have reported high phenotype-genotype concordance for 

beta-lactam antibiotics ampicillin and penicillin (> 85%) but low for commonly used BRD 
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antibiotics such as tulathromycin and tilmicosin (<60%). The current study aimed to predict 

antibiotic resistance through the genome using machine learning (ML) by training reference-free 

models using known antibiotic resistance phenotypes coupled with sequence information. 

Comparison of genes found through antibiotic resistance database searches and sequences from 

the machine learning models showed an improvement for three of the seven antibiotics tested 

(danofloxacin, enrofloxacin, and tilmicosin) with 30% increase in accuracy for danofloxacin and 

enrofloxacin and a 10% increase for tilmicosin. There were four antibiotics (florfenicol, 

tetracycline, tildipirosin, and tulathromycin)  for which a known ARG provided a more accurate 

prediction (>90% accuracy) than the machine learning models (>80% accuracy). When scanning 

the isolate genomes for potential annotations of the model output, various types of sequences were 

found. The annotations were coding sequences, such as DNA topoisomerase IV or parA, and non-

coding sequences near tetracycline genes (tetR, tetH), MGE, or virulence genes. Using machine 

learning for antibiotics with low genotype-phenotype concordance in M. haemolytica helped 

improve the chances of accurately predicting antibiotic resistance. When tested on an external set 

of isolates for validation, the best predictor of antibiotic resistance (either ARG or ML) performed 

similarly to the test datasets for each antibiotic with the exception of tilmicosin which saw a 20% 

decrease in accuracy compared to model creation. Further research on the role of ML model 

sequences should be performed as they could potentially encode novel antibiotic resistance 

determinants. 

5.1 Introduction 

Mannheimia haemolytica (MH) is one of the main pathogens implicated in bovine 

respiratory disease (BRD). The bacteria are Gram negative, non-motile, non-spore forming, 

facultative anaerobic bacilli sometimes found in coccobacilli formations (Samanta & 

Bandyopadhyay, 2020). M. haemolytica is an exclusive animal pathogen originally classified as 

Pasteurella haemolytica due to its relation to the genus Pasteurella as well as the complete lysis 

of heme when grown on blood agar. However, after the identification of two separate biotypes of 

P. haemolytica (A and T), P. haemolytica biotype A (arabinose fermenting) was reclassified as M. 

haemolytica. Mannheimia was proposed as a novel genus by Angen et al (1999) due to differences 

in 16S rRNA gene structure compared to Pasteurella spp., though the biotype designation A is 

still used in the identification of the > 20 serotypes of M. haemolytica.  
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Since BRD is an extremely costly disease to both the animal and producer, many 

management practices have been employed to improve the outcomes of animals by reducing risk 

factors. These practices include training calves on feed and water during weaning; weaning at least 

45 days before transport from cow-calf operation to feedlot; castration and deworming of calves 

prior to transport from cow-calf operation to feedlot; and vaccinations (Hilton, 2015; Seeger et al., 

2011; Theurer et al., 2021). Each of these practices focuses on a different type of risk factor: 

predisposing (e.g., transport stress and animal age), environmental (e.g., stocking density), or 

epidemiological (i.e., exposure to pathogenic microorganisms). By reducing these factors, animals 

ultimately have a lower risk of morbidity and mortality from BRD. 

Treatment failure has been reported to affect 10-20% of cattle, with increased risk of 

mortality for each consecutive treatment (Cernicchiaro et al., 2013; Coetzee et al., 2019). Failed 

treatments are often the result of resistant bacteria. Antibiotic resistance (AR) can be intrinsic – 

the bacterial outer-membrane structure, efflux mechanisms, and epigenetic controls resulting in no 

antibiotic influx, activation, or target. AR can also be acquired through genetic mutations such as 

random insertions, deletions, and SNPs or horizontal gene transfer (HGT) mechanisms. HGT 

includes transduction (viral genetic transfer), natural transformation (bacterial engulfing of genetic 

material from the environment), and conjugation (bacteria-bacteria transfer through conjugative 

mechanisms).  

While much information on the phenotypic or genotypic antibiotic resistance of MH 

isolates from BRD cases has been examined, there is a lack of investigations attempting to 

determine genotype-phenotype agreement. Previous analysis on phenotype to genotype 

comparisons in BRD pathogens has been done, but there is still a distinct gap in the amount of 

available data (Owen et al, 2017; Wickware and Johnson, not published). These previous studies 

have focused on analysis of three BRD pathogens, Pasteurella multocida, Histophilus somni, and 

M. haemolytica. In each of the studies, it was found there is low agreement of the phenotype and 

genotype in regard to antibiotic resistance. Where Owen et al (2017) found antibiotic resistance 

gene (ARG) database comparisons had little agreement with phenotype, Wickware and Johnson 

found that using machine learning improved this agreement. However, it was determined that 

comparing all three pathogens at once may not have actionable results – i.e., the resulting 

sequences may not be specific enough to an antibiotic to be used in a rapid assay.  
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For the reasons listed above, it was determined more analysis on the individual pathogens 

should be performed. The current study has utilized 119 isolates of MH from BRD cattle that have 

both antibiotic susceptibility testing (AST) and genome sequence data to establish phylogenetic 

relatedness, potential virulence, and antibiotic resistance patterns within the single species. 

5.2 Materials and Methods 

5.2.1 Isolates 

Isolates of Mannheimia haemolytica (n = 92) were obtained from previously collected 

nasopharyngeal and deep lung swabs of cattle processed at the Purdue University Animal Disease 

Diagnostic Laboratory (PU; n = 24), Kansas State University Veterinary Diagnostic Laboratory 

(KSU; n = 49), and Texas A&M University Veterinary Medical Diagnostic Laboratory (TAMU; 

n = 19). Six PU isolates were from a previous experiment and were prepared for Illumina MiSeq 

using the TruSeq DNA PCR-free Library Prep kit (Illumina, San Diego, USA). Sequencing for 

these six isolates was performed at the Purdue Genomics Core using MiSeq sequencing (Illumina; 

2 x 300 cycles). The remaining PU isolates as well as KSU and TAMU isolates were sent to KSU 

Veterinary Diagnostic Laboratory for sequence preparation using Illumina DNA Prep kit 

(Illumina, San Diego, USA) and sequenced using Illumina MiSeq (2 x 300 cycles).  

5.2.2 Genome Assembly 

Isolates of M. haemolytica (n = 26) previously sequenced by Owen et al (OA; 2017)  were 

used in the current study. Sequence reads from OA isolates were downloaded from the NCBI 

Sequence Read Archive (Bioproject PRJNA306895). Sequence reads for all OA, PU, KSU, and 

TAMU isolates were trimmed for quality using Trimmomatic (v 0.39; Bolger et al., 2014) and 

sequence quality was assessed with fastQC (v 0.11.9). Quality checked sequence reads were 

assembled using SPAdes (v 3.13.0; Bankevich et al., 2012; Nurk et al., 2013) with default 

parameters for assembly with the exception of the “--careful" parameter to reduce the number of 

mismatches and short contigs.  

Assembled reads were filtered to remove all contigs < 500bp. . Assembly quality was 

assessed using quast (v 3.2 ; Gurevich et al., 2013; Mikheenko et al., 2016) with default parameters. 
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Recorded statistics include number of contigs, max contig, total length, and N50. Full assembly 

statistics for PU, KSU, and TAMU isolates can be found in Appendix C.1. 

5.2.3 Antibiotic susceptibility testing (AST) and ARG annotation 

MIC values and interpretations for PU, KSU, and TAMU isolates are listed in Appendix 

C.2. and are published in Owen et al., (TableS1; 2017) for OA isolates. Due to variability in the 

AST plates used by different diagnostic labs, not all tested antibiotics have the same number of 

isolates.  

ARGs were annotated using CARD-RGI (Alcock et al., 2019) with the following 

parameters:  

--input_type contig -d wgs --local --exclude_nudge –clean 

The “loose” matches were excluded, leaving only “strict” and “perfect” hits, to have the 

most confidence in the gene calls from CARD. Concordance was calculated for each antibiotic by 

taking the sum of the isolates with matching genotype (G) and phenotype (P) of antibiotic 

susceptible (S) or resistant (R) isolates (GR+PR and GS+PS) and dividing by the total sum of 

isolates (i.e., GR/PR and GS/PR and GR/PS and GS/PS) (Table 1). 

5.2.4 Antibiotic resistance prediction using machine learning 

Assembled genomes (n = 96) were used to create a table of k-mers (k=31) representing the 

presence or absence of the 31 base-long sequence in each genome. K-mer length 31 was used as it 

produced the best models in a previous study (see Chapter 4). The k-mers were created using 

Suffixerator and counted using Tallymer using GenomeTools (v 1.5.9; Kurtz et al., 2008; Gremme 

et al., 2013). A metadata file was created for each antibiotic that contained the assembly names 

and whether the isolates were phenotypically resistant (1) or susceptible (0) to a particular 

antibiotic. To create a model of AR prediction, more than 10 isolates in the resistant or susceptible 

groups were required (Drouin et al., 2016). The k-mer table and metadata were used to create a 

dataset for KOVER. The dataset for each antibiotic was used to predict resistance in KOVER with 

the Set Covering Machine algorithm (Drouin et al., 2016, 2019; Marchand & Shawe-Taylor, 

2002). Briefly, the dataset was split into training and testing groups (66 and 33% of the data, 

respectively). A model was learned for each antibiotic using the training data and validated using 
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the testing data. The output was a set of rules (31-mers) each assigned an importance based on 

how often the rule was considered for the model (Drouin et al., 2016, 2019) and the equivalent 

rules (ER) – the set of 31-mers considered equally important for predicting AR in the model. Model 

statistics including error, F1-score (harmonic mean), specificity, sensitivity, and precision for both 

training and testing groups  were also included as output for each antibiotic. 

(Drouin, 2018). First, AR models including ER were used in a BLAST search against the 

family Pasteurellaceae (NCBI:txid712). Alignments to NCBI reference genomes were not always 

high quality. The best alignments (as determined through e-value, length, and percent coverage of 

query to subject) to the reference sequences were called reference alignments. Low e-values (e < 

10-50) and total query length at 100% coverage were considered as the reference alignment. In a 

case where the e-value was higher than 10-50 and/or coverage was less than 100%, the best 

alignment possible was considered. Sequence query information can be found in Appendix C.3 

(seq info). BLAST results identified as the reference alignment were examined to identify genes 

or regions of interest in the proximity of the reference alignment. 

Second, the reference alignments were downloaded from NCBI as GenBank files so the 

ER could be aligned to the reference sequence using UGENE (v 40.1; Okonechnikov et al., 2012). 

The UGENE function “Find Pattern” was used to align the model rule sets to the matching 

reference alignment (i.e., model 1 for ampicillin with GenBank file from model 1 ER). Through 

this process a filtered alignment file was saved in fasta format for use in later steps. 

5.2.5 Model alignment to genomes 

The following procedures, used in a prior study (see Chapter 4), were modified from the 

suggested steps outlined by Drouin to further characterize the output of Kover model analysis 

Annotation and Target selection 

Genomes were annotated using Rapid Annotation and Subsystem Technology (Aziz et al., 

2008; Brettin et al., 2015; Overbeek et al., 2013). Using the aligned rulesets from UGENE, a 

BLAST search was performed within RAST with the alignments as the query and the isolate 

genomes as the subject. For each model, if the model type was “presence”, either conjunction or 

disjunction, the genomes considered to be in the resistant group were the subject. If the model type 

was “absence”, either conjunction or disjunction, the genomes considered to be sensitive were the 
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subject. Resulting output was searched not only to determine the sequence location within the 

genomes, but to examine the surrounding areas on the contigs for genes of interest. 

5.2.6 Final validation 

19 isolates (14 KSU, 2 TAMU, 3 PU) were randomly chosen using random number 

generation and removed from the testing data set to be used for final validation of the models. The 

isolates represent ~15% of the total isolates used in the study. The AST data for the 19 isolates 

were removed from the model creation data by a researcher not involved in the study to keep the 

authors blind to the antibiotic resistance phenotype. Validation was performed by determining the 

resistance using the best predictor (i.e., ML model or ARG; table 2 ) for each antibiotic as the 

query in a BLAST search. The predictions were then compared to the phenotype AST results and 

summarized as number incorrectly predicted out of 19 by the same researcher who removed the 

AST data.  

5.2.7 Data availability 

Data from Owen et al is available through their published work (Owen et al., 2017). The 

data used from Owen et al in this study can be found in supplementary file XX. Sequence reads 

from PU, KSU, and TAMU isolates can be found at NCBI SRA and assembled genomes are  

available in the NCBI Genome Repository (BioProject XXXXXXXXX). Bioinformatics scripts, 

input, and output files for Kover and CARD available at 

github.com/clwickwa/BovineRespiratoryDisease/Mannheimia/scripts. 
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Table 5.1 Concordance between antibiotic resistance phenotype and genes. P: phenotype; G: genotype; R: resistant; S: susceptible; ML: machine learning 
  

P:R  P:S      
    G:R G:S  G:R G:S Precision Sensitivity/Recall Specificity F1 Accuracy 

M
L

 a
n
ti

b
io

ti
cs

 

Danofloxacin 0 38  1 59 0.00 0.00 0.98 N/A 0.60 

Enrofloxacin 0 38  1 59 0.00 0.00 0.98 N/A 0.60 

Florfenicol 25 6  4 63 0.86 0.81 0.94 0.83 0.90 

Tetracycline 32 2  0 32 1.00 0.94 1.00 0.97 0.97 

Tildipirosin 15 1  1 26 0.94 0.94 0.96 0.94 0.95 

Tilmicosin 31 26  5 36 0.86 0.54 0.88 0.67 0.68 

Tulathromycin 24 1  1 49 0.96 0.96 0.98 0.96 0.97 

N
o

n
-M

L
 a

n
ti

b
io

ti
cs

 

Ampicillin 37 2  14 45 0.73 0.95 0.76 0.82 0.84 

Ceftiofur 1 0  50 47 0.02 1.00 0.48 0.04 0.49 

Clindamycin 32 47  0 0 1.00 0.41 N/A 0.58 0.41 

Gamithromycin 16 1  0 26 1.00 0.94 1.00 0.97 0.98 

Gentamicin 26 0  27 20 0.49 1.00 0.43 0.66 0.63 

Neomycin 38 0  2 17 0.95 1.00 0.89 0.97 0.96 

Oxytetracycline 12 0  0 11 1.00 1.00 1.00 1.00 1.00 

Penicillin 31 3  1 20 0.97 0.91 0.95 0.94 0.93 

Spectinomycin 56 10  3 29 0.95 0.85 0.91 0.90 0.87 

Sulfadimethoxine 44 11  6 37 0.88 0.80 0.86 0.84 0.83 

Tiamulin 0 59  0 29 N/A 0.00 1.00 N/A 0.33 

Trimeth/sulfa 3 2  36 22 0.08 0.60 0.38 0.14 0.40 

Tylosin tartrate 35 24  1 38 0.97 0.59 0.97 0.74 0.74 
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Table 5.2 Comparison of F1 scores, accuracy, and error between resistance database query 

(ARG) and machine learning (ML) for each tested antibiotic 

 
ARG  ML 

Antibiotic F1 Accuracy Error  F1 Accuracy Error 

Danofloxacin N/A 0.60 0.40  0.8 0.875 0.125 

Enrofloxacin N/A 0.60 0.40  0.9 0.938 0.062 

Florfenicol 0.83 0.90 0.10  0.67 0.88 0.12 

Tetracycline 0.97 0.97 0.03  0.87 0.917 0.083 

Tildipirosin 0.94 0.95 0.05  0.75 0.88 0.12 

Tilmicosin 0.67 0.68 0.32  0.8 0.78 0.22 

Tulathromycin 0.96 0.97 0.03  0.78 0.84 0.16 

5.3 Results and Discussion 

5.3.1 Sequence read and assembly quality 

  The quality of the sequence reads varied between different isolate origins. OA 

isolates had the shortest length and the lowest quality compared to the isolates sequenced at PU 

and KSU. After assembly, the quality of OA isolate sequences improved compared to the others 

but were still lower overall (Appendix C.1). However, the quality of the OA assemblies compared 

to those  previously generated by OA was only marginally improved (Appendix C.1; Owen et al, 

2017). 
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Table 5.3 KOVER model for breakpoint MIC. Model type: presence (P) or absence (A) of the 

ruleset predicts resistance; Importance: weighted value for rule – designates how often the rule 

was found in the model; For multiple rulesets - Conjunction: all rulesets pre predict resistance 

(logical AND) or Disjunction: one ruleset needs to be present or absent to predict resistance 

(logical OR). 

Antiboitic Model type (importance) # equiv rules Annotation 

Danofloxacin Disjunction 

P (0.69) 7 Sequence near tetR 

P(0.52) 31 Sequence upstream of toxin-antitoxin genes higA/higB 

A(0.17) 35 Sequence upstream of IS481 transposase 

P(0.48) 31 Section of DNA topoisomerase IV 

Enrofloxacin Disjunction 

P (0.70) 7 Sequence associated with tetR 

P (0.48) 31 Sequence upstream of toxin-antitoxin genes higA/higB 

P (0.15) 137 Five regions associated with virulence and survival 

Florfenicol Disjunction 
P (0.76) 7 Sequence near tetR 

P(0.45) 55 Sequence tetR 

Tetracycline Conjunction 
P (0.96) 31 

Duplicated sequence between hypothetical protein CDS 

and exodeoxyribonuclease I 

A (0.50) 2 Multiple copies of ISSod 13/IS1595 transposase 

Tildipirosin Disjunction 
P (0.58) 251 Five regions with AR and MGE sequences 

P (0.50) 31 Hypothetical protein CDS 

Tilmicosin Conjunction 
A (0.74) 1049 ParA/ParB 

A (0.58) 26 Phage tail tip – host specificity J 

Tulathromycin Disjunction 

P (0.76) 7 Sequence associated with tetR 

A (0.38) 1 Unspecific sequence matches 

P (0.38) 23 Upstream and start of Laccase 

5.3.2 AST phenotype and potential ARGs 

The majority of antibiotics tested by broth microdilution had more than 30% of the isolates 

with phenotypic resistance (Appendix C.2). Tulathromycin and trimethoprim+sulfadimethoxazole 

(TMS) had 13% and 10% of isolates with resistance, spectinomycin had 9%, and ceftiofur only 

had 1% of isolates with phenotypic resistance. Phenotypic resistance to tulathromycin and 

spectinomycin has been seen in BRD-associated pathogens, including M. haemolytica, in previous 

studies  (Holschbach et al., 2020; Owen et al., 2017; Stanford et al., 2020; Torres-Blas et al., 2021). 

Trimethoprim/sulfamethoxazole is rarely used for treatment of BRD though resistance has been 
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observed in M. haemolytica previously with similar levels of phenotypic resistance to the current 

study (Clinical and Laboratory Standards Institute, 2020; Owen et al., 2017). Ceftiofur, a third 

generation cephalosporin, has been used in the treatment of BRD due to its broad-spectrum, 

bactericidal action and low incidence of resistance in respiratory pathogens (Owen et al., 2017; 

Torres-Blas et al., 2021).  

In addition to differing numbers of observed phenotypically antibiotic resistant isolates, 

there were varying antibiotic resistant genes found (Appendix C.3). The isolates from each origin 

(KSU, OA, PA, TAMU) had some shared ARGs. However, no resistance gene was found in more 

than 53% of the isolates with the exception of the disinfectant resistance gene qacG (98%) and 

tetracycline resistance gene tetH (62%) (Appendix C.3). Unsurprising was the fact that isolates 

from the same origin seemed to share a similar ARG profile with isolates from the same origin.  

Antibiotic resistance genes identified in the current study include those conferring 

resistance to all of the antibiotic classes used in the treatment of BRD – blaROB-1, blaOXA-2, blaTEM-

229, blaROB-2, blaCMY-2, and blaCRP (beta-lactam); arlR, arlS, emrR, emrA, emrB, Saur_norA, norC, 

and sdrM (fluoroquinolone); erm(42), erm(47), mphE, and msrE (macrolide-lincosamide-

stretogramin; MLS); floR and Ccol_ACT_CHL (phenicol); and tetA, tetH, tetT, tet38, mepA, and 

mepR (tetracycline) – as well as many others  (Appendix C.3).  

5.3.3 ARG prediction and machine learning model statistics 

Concordance between ARGs and phenotypic resistance was above 90% for florfenicol, 

tildipirosin, tetracycline, and tulathromycin (Table 5.1). However, danofloxacin, enrofloxacin, and 

tilmicosin had less than 70% agreement with the phenotype AST. Though roughly 40% of the 

isolates had phenotypic resistance to danofloxacin and enrofloxacin, fluoroquinolone resistance 

genes were only found in one isolate, MH084, which was phenotypically susceptible to 

danofloxacin and enrofloxacin (Appendix C.2). The lack of fluoroquinolone resistance genes led 

to low accuracy and harmonic mean for the phenotypic danofloxacin and enrofloxacin resistance 

when using ARG as the predictor.  

Additionally, using ARGs for macrolide antibiotics resulted in low sensitivity for 

predicting tilmicosin resistance, where half the resistant isolates were misclassified as susceptible 

(Table 5.1). Interestingly, machine learning improved the accuracy and harmonic mean compared 

to use of known antibiotic resistance genes for three of the seven tested antibiotics. While the 



 

139 

accuracy between machine learning models and phenotype AST was greater than 75% for all tested 

antibiotics, the harmonic mean for florfenicol was less than 75% (Table 5.4).  

Antibiotic resistance genes were the most accurate predictors of resistance for florfenicol, 

tetracycline, tildipirosin, and tulathromycin while danofloxacin, enrofloxacin, and tilmicosin 

resistance were more accurately predicted from their respective machine learning models. There 

was an inverse relationship between ARG accuracy and ML accuracy. In the four antibiotics with 

≥ 90% prediction accuracy using ARGs, the ML accuracy was < 90% whereas in the three 

antibiotics with between 60-70% accuracy from ARG prediction, the ML accuracy improved at 

least 10%. The same pattern was seen with the harmonic mean (Table 5.2). Additionally, 

tetracycline had the highest harmonic mean of the antibiotics with 97% accuracy using ARGs. 

Tetracycline resistance prediction was more accurate using ARGs (97% concordance) compared 

to the ML model (92% concordance; Table 5.2). 

5.3.4 Machine learning model alignment and annotation 

Each created model for the seven tested antibiotics resulted in multiple rules (Table 5.). 

The rules for danofloxacin, enrofloxacin, florfenicol, tildipirosin, and tulathromycin were part of 

disjunctive models (i.e., the presence/absence of any one rule must be satisfied) while tetracycline 

and tilmicosin rules were conjunctive (i.e., all rules must be satisfied). The summary of this 

information can be found in Table 5.3. Though the ARG models were more accurate for 

florfenicol, tetracycline, tildipirosin, and tulathromycin, the ML models were still analyzed to 

determine genetic context for why the models did not perform well. 

Four antibiotics shared the same first rule – danofloxacin, enrofloxacin, florfenicol, and 

tulathromycin (Appendix C.3 and C.4). This rule was 37 base long (7 ER) and matched a small, 

non-coding sequence found upstream of the tetracycline repressor gene tetR (Appendix C.3 and 

C.4). The sequence matched 97% of the phenotypically resistant isolates for each antibiotic. 

However, there were some isolates considered phenotypically susceptible to one antibiotic but 

resistant to another, decreasing the importance of the rule due to phenotypically resistant isolates 

without the matching rule sequence (Appendix C.4).  

In addition to the shared rule for the four antibiotics above, danofloxacin and enrofloxacin 

shared the same second rule, the presence of which was predictive for resistance of these two 

antibiotics. This is less surprising than the outcome above as both danofloxacin and enrofloxacin 
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are both fluoroquinolone antibiotics. Rule 2 for danofloxacin and enrofloxacin was 61 bases long 

and matched a non-coding sequence associated with one part of a toxin-antitoxin system, higA, a 

mechanism for virulence gene regulation (Appendix C.4; Wood and Wood, 2016). Rule 2 matched 

97% of the resistant isolates and was found in susceptible isolates. 
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Table 5.4 Kover model metrics for ML tested antibiotics 

  Training Data  Testing Data 

Antiboitic Susc Res Error F1 Sens/Recall Spec Precision  Susc Res Error F1 Sens/Recall Spec Precision 

Danofloxacin 37 29 0.0303 0.96 0.97 0.97 0.96  23 9 0.13 0.8 0.89 0.87 0.73 

Enrofloxacin 37 29 0.061 0.93 0.9 0.97 0.96  23 9 0.06 0.9 1 0.91 0.82 

Florfenicol 40 26 0.075 0.91 0.96 0.9 0.86  27 5 0.12 0.67 0.8 0.89 0.57 

Tetracycline 21 27 0.1 0.9 0.81 1 1  15 9 0.08 0.87 0.78 1 1 

Tildipirosin 21 12 0.0303 0.96 0.92 1 1  12 4 0.12 0.75 0.75 0.92 0.75 

Tilmicosin 23 43 0.061 0.96 1 0.83 0.91  17 15 0.22 0.8 0.93 0.65 0.7 

Tulathromycin 32 18 0.06 0.92 1 0.91 0.86  18 7 0.16 0.78 1 0.78 0.64 
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However, while the majority of isolates with phenotypic resistance to fluoroquinolones had 

100% sequence identity to the rule two sequence, all the isolates with phenotypic susceptibility 

had a SNP in the middle of the match (C to T; Appendix C.4). Of the nine phenotypically resistant 

isolates with the same SNP, only one was misclassified by the danofloxacin and enrofloxacin 

models (Appendix C.4).  

The two additional rules for danofloxacin resistance and the one additional rule for 

enrofloxacin resistance were not shared. Danofloxacin rule 3 was 81 bases long and matched a 

non-coding sequence (nCDS) just upstream of an IS481-like transposase and was surrounded by 

MGE genes – integrases, plasmid stabilization proteins, and unclassified mobile genetic elements 

(Appendix C.4). The absence of this gene was considered a predictor for danofloxacin resistance 

and 88% of isolates with phenotypic susceptibility to danofloxacin had multiple copies of this 

sequence throughout the genome, 9% had only one copy, and only one isolate, MH084, did not 

have any matches (Appendix C.4). Rule 4 for danofloxacin resistance, for which the presence 

predicted resistance, was a 61 base long sequence with 100% of phenotypically resistant isolates 

having the sequence though some had only 83% sequence similarity (nine isolates) with the filtered 

alignment (Appendix C.3). This rule matched a section of DNA topoisomerase, one of the targets 

of danofloxacin. The genes surrounding the rule sequence have been identified as virulence genes 

in other studies of MH, sialic acid metabolism and capsule formation (Appendix C.4; Cai et al., 

2020; Samanta and Bandyopadhyay, 2020). In eight of the nine isolates with the lower sequence 

similarity to the filtered alignment, there was a SNP (A to G) in the middle of the sequence. There 

was one isolate, MH012, with 83% similarity to the sequence that had several mismatches, a high 

e-value (e -5), and completely different surrounding genes indicating this rule does not help predict 

resistance in the isolate.  

Enrofloxacin rule 3 was split into seven different regions, all within the same section of the 

isolate genomes. Each region was between 40-107 bases long, had a sequence similarity between 

the isolate genomes and the filtered alignment between 79 and 100%, and was found in all isolates 

with phenotypic enrofloxacin resistance (Appendix C.3). The annotation of the seven regions of 

the genome that aligned with rule 3  included genes useful during survival and invasion of 

macrophages, one of the main modes of pathogenesis for MH (Appendix C.4; Visick et al., 1998; 

Mathur et al., 2006). 
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Misclassification of isolates was seen for all antibiotics. The ML model for tilmicosin 

resulted in the most misclassified isolates and all but one were phenotypically susceptible to 

tilmicosin (Table 3). In contrast, tildipirosin had one misclassified isolate, MH084. For models 

with shared rules (danofloxacin, enrofloxacin, florfenicol and tulathromycin), typically only those 

isolates that were either unique or missing from one of the resistant datasets that were misclassified 

(Appendix C.5). 

Though the ML models for florfenicol, tetracycline, tildipirosin, and tulathromycin were 

not as accurate as their ARG predictions (Table 5.2), it is still important to look at the results of 

the models to determine why this could be the case. The second florfenicol rule partially matched 

the same region as florfenicol rule 1, mentioned previously as the shared first rule for four 

antibiotics. However, the rule was split into three regions, one 49 bases long and matching a section 

of the tetH gene and two different regions upstream of tetR that were 54 and 61 bases long 

(Appendix C.4). When looking at the differences between rule 1 and rule 2, it seems the regions 

in rule two have larger sections of the sequences that do not match those of rule 1 suggesting 

different alleles of the gene (Appendix C.3).  

The model for tetracycline consisted of two rules and was a conjunction model with the 

presence of rule 1 and the absence of rule 2 both needing to be satisfied for resistance (Table 5.3). 

Tetracycline rule 1, a 61 base long sequence matching 91% of the isolates. This sequence was 

duplicated in all isolates with matches with the sequence being located between a CDS for a 

hypothetical protein and another hypothetical protein CDS for one duplicate or 

exodeoxyribonuclease I in the other duplicate sequence (Appendix C.4). The sequences 

surrounding rule 1 were different genes annotated as DNA repair, sodium/amino acid symport, 

phage component, and iron acquisition. Rule 2 was split into two regions, both associated with  

transposases, though one region was 684 bases long and matched ISSod 13 and the other was 436 

bases long and matched IS1595 (Appendix C.3 and C.4). Multiple copies of these IS were found 

with 91% sequence similarity to the filtered alignment and located on contigs with 23S 

methyltransferases and various membrane permease genes (Appendix C.4).  

The tildipirosin model was a disjunction model and had two rules with either the presence 

of rule 1 or rule 2 predicting resistance (Appendix C.4). Rule 1 was split into five regions all of 

which were found within the same section of one contig. Region 1 was annotated as an iron 

transport permease gene, regions 2 and 3 were different sequences associated with tetR and tetH 
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(i.e., between the two genes, upstream of tetR, or downstream of tetH), region 4 was downstream 

of the same tetH gene with part of the sequence annotated as the beginning of an ISL3 transposase, 

and region 5 being located at the beginning or end of the contig depending on the strand (Appendix 

C.4). Other CDS on these contigs were annotated as various genes related to MH virulence and 

pathogenesis – iron transport, RTX toxin genes, macrophage infectivity genes, and cell division 

machinery. The second rule was found as the only CDS on the contig in each of the genomes with 

matching sequences (Appendix C.3 and C.4). 

As discussed previously, tulathromycin had the same rule 1 as danofloxacin, enrofloxacin, 

and florfenicol. The disjunctive model for tulathromycin consisted of three rules where either the 

presence of rule 1, absence of rule 2, or presence of rule 3 needed to be satisfied for resistance to 

tulathromycin. Rule 3, a 53 base long sequence, was found in 96% of isolates with phenotypic 

resistance to tulathromycin (Appendix C.3). Again, isolate MH084 was phenotypically resistant 

to tulathromycin but the ruleset was not found within the genome (Appendix C.4). Rule 3 was 

annotated as the beginning of laccase as well as a section upstream of laccase with surrounding 

genes related to stress response (Appendix C.4). The second rule of tulathromycin consisted of a 

single equivalent rule (Table 3) and was not able to be aligned as it matched too many varying 

sections of the genome, perhaps lending to the poor performance of the tulathromycin model in 

predicting phenotypic resistance (Appendix C.3). 

Several isolates were found as testing and training errors for more than one ML model 

(Appendix C.5). In particular, MH019 and MH084 were found as errors in four different antibiotics 

and MH082 was an error in five of the seven antibiotics. Of these three isolates, MH082 and 

MH084 were consistently found with different gene patterns when examining annotations of the 

genes surrounding the model rules in each isolate. Isolate MH084 (PA) also had a genome twice 

the expected size at 4.79 Mb. Matrix assisted laser desorption-ionization, time-of-flight mass 

spectrometry (MALDI-TOF MS) identification of MH084 resulted in the isolate being considered 

M. haemolytica. However, it is possible that the isolate was misidentified. Misidentification of 

uncommon pathogens by MALDI-TOF MS has been seen in human clinical studies and the 

accuracy of MALDI-TOF MS in identifying BRD pathogens has been reported as less than 80% 

in pure and mixed cultures (AbdulWahab et al., 2015; Puchalski et al., 2016; Van Driessche et al., 

2019). 
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5.3.5 Performance of models on new data 

Using the most accurate prediction method based on the model creation dataset resulted in 

similar accuracy of resistance prediction in the final validation within 3% for enrofloxacin, 

florfenicol, tetracycline, and tildipirosin (Table 5.5). Danofloxacin and tulathromycin  resistance 

prediction had lower error than their model predictions with danofloxacin (ML model) having 7% 

lower error and tulathromycin (ARG prediction) with 6% lower error (Table 4). Tilmicosin had 

25% higher error than the machine learning model. As tilmicosin is a commonly used BRD 

antibiotic (trade name Micotil), it is imperative to determine a suitable predictive model. 

5.3.6 Future considerations 

 In the current study, phenotypic identification of isolates was limited to one species. 

However, it is important to note that serotype plays a major role in the pathogenesis of the isolates 

(Fodor et al., 2010; Hauglund et al., 2015; Klima et al., 2017). Serotype clustering from genome 

and ID with molecular methods should be performed to determine any connection between 

antibiotic resistance and serotype.  

For predictions of antibiotic resistance that were better using ARGs, the use of random 

forest to consider which ARG is predictive of phenotype for each drug class would be useful 

information for the creation of an assay from the sequence data (Kouchaki et al., 2020; 

Moradigaravand et al., 2018). The current study found multiple ARGs across isolates for each 

antibiotic class, but to determine which ARGs are the most important predictors, further analysis 

is warranted. 

To use the results of the current study in the determination of the best treatment for animals 

with BRD, it is assumed that animal and/or farm information (prior treatment, animal age, farm 

disease data, season, etc.) should be included in the decision-making process, as each of these 

factors can increase the risk of treatment failure. In addition to these factors, the pathogen 

abundance and microbial community patterns the upper respiratory tract may also aid in treatment 

decisions (Centeno-Martinez et al., 2022) 
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Table 5.5 Final validation results 

 

Antibiotic 

Incorrect 

Predictions Percent error 

Prediction 

Model Error 

ML prediction 

Danofloxacin 1 5% 12.5% 

Enrofloxacin 1 5% 6.2% 

Tilmicosin 9 47% 22% 

ARG 

prediction 

Florfenicol 3 15% 12% 

Tetracycline 2 10% 8.3% 

Tildipirosin* 1 10% 12% 

Tulathromycin 2 10% 16% 
* 9 of the 19 isolates did not have AST data for tildipirosin; final validation is for total of 10 isolates 

5.3.7 Future considerations for the treatment of animals with ARB 

To determine how HGT plays a role in the gain of antibiotic resistances within MH, 

researchers have studied the genomes of MH isolates. Mobile genetic elements (MGE) such as 

transposons and integrative-conjugative elements (ICE) allow transfer of genetic materials 

between bacteria and have been identified in MH isolates from cattle with BRD. ICE donor and 

recipient cells typically need to be from the same taxonomic family and an ICE with identical 

backbones to those found in P. multocida (ICEPmu1) have been found in MH isolates (Eidam et 

al., 2015; Owen et al., 2017). Clawson et al. (2016) examined MH isolates to determine genotypes 

related to pathogenesis and found ICEMh1 sequences were more frequently found in isolates from 

lungs than nasopharynx or nasal samples. ICEMh1 was reported as having up to 107 total genes 

and resistance genes for aminoglycosides, tetracyclines, and sulfonamides (Eidam et al., 2015).  

5.4 Conclusions 

Bovine respiratory disease is a major concern to both dairy and beef cattle producers, 

making the study of the causative agents and antibiotic resistance vital. Through the current study, 

we were able to determine sequences that improved the prediction of resistance to antibiotics 

commonly used in the treatment of BRD in the United States. PCR amplification targeting known 

resistance genes is still the most accurate method for four of the seven antibiotics. However, for 

the fluoroquinolone antibiotics and tilmicosin, machine learning models targeting other sequences 

were able to improve phenotypic resistance prediction accuracy by 10% for tilmicosin and 20-30% 

for the fluroquinolones.  
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Antibiotic resistance prediction in commensal and pathogenic, animal-associated bacteria 

is an important area of study. The treatment of BRD is highly error-prone due to the necessary use 

of empiric antibiotic treatment – treatment that is given prior to the determination of etiology, 

source of infection, or resistance profile of the disease-causing pathogen. Empiric treatments allow 

for an immediate attempt at treating the animal rather than waiting days for laboratory confirmed 

information. However, empiric treatment can result in failed treatments, i.e., use of ineffective 

antibiotics that result in fatality require retreating animals with different antibiotics. 
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CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 

6.1 Part I – Bacterial Community Analysis 

6.1.1 The bacterial community in the reproductive tract of cattle has similar members to 

other mucosal-associated communities 

Prior to the study discussed in Chapter 2 of this dissertation, there were no characterizations 

of the reproductive bacterial community in male livestock species. The bull preputial microbial 

community shares members with the bull urinary tract as well as the vaginal bacterial community 

of cows. The community seems to be made of bacterial members from soil, fecal, and vaginal 

communities, similarities that can also be found in other ruminant and non-ruminant species. While 

the impact of community composition on bull breeding was not studied, the differences between 

high and low diversity communities can be used in future research.  

Following the examination of the bull prepuce from animals with satisfactory breeding 

soundness scores, a study on the composition and diversity of the seminal bacterial community of 

bulls with satisfactory and unsatisfactory scores was performed (Koziol et al., 2022). While the 

preputial community is made primarily of various soil, feces, and mucosal-associated bacteria, the 

seminal community of satisfactory bulls more closely resembled mucosal bacterial communities. 

The community of unsatisfactory bulls consisted of several bacterial members identified as 

opportunistic pathogens in cattle vaginal and respiratory tracts.  

The identification of potential bacterial pathogens within the bull preputial and seminal 

communities leads to a few questions that can be used as the starting point of future research. First, 

is bacterial species richness, evenness, phylogenetic diversity, or a combination beneficial to 

prevent pathogenic colonization? Through the examination of the preputial community of healthy 

bulls, bacterial communities with low and high diversity with respect to the Shannon index were 

identified. The implication of these communities is still unknown and should be examined. In the 

vaginal community, cows considered to be “healthy” reproductively have low richness and 

phylogenetic diversity, but the individual members are well-established within the microbial 

community (Swartz et al., 2014). 

Second, how does the seminal community affect the reproductive communities of the cow? 

The vaginal and uterine bacterial community composition have been studied, primarily 
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surrounding the effects of artificial insemination or pregnancy and parturition (Ault et al., 2019; 

Clemmons et al., 2017; Swartz et al., 2014). However, studies on the combination of seminal 

communities with different bacterial compositions and their effects on the vaginal community 

before and after breeding have not been performed and could shed some light on potential 

improvements for breeding programs.  

Third, is there a relationship between the bull reproductive bacterial communities and cow 

reproductive diseases? Infections and diseases of the cow reproductive tract have been studied to 

find potential treatments and prophylactic solutions (Moore et al., 2021; Rosales & Ametaj, 2021). 

As with the first question, more needs to be done with the combination of seminal quality and the 

effects on the cow. 

Last, following the previous two questions, are there long-lasting effects of the bull 

reproductive communities? The study(ies) would need to be longitudinal, examining different 

stages of reproduction of the cow (e.g., estrus, pregnancy, parturition, post-partum) and bull before 

and after breeding (i.e., directly bred with cows or collection of semen for artificial insemination), 

as well as following calves from the different breeding conditions. Reproductive disease in bulls 

and cows have been studied (Bellows et al., 2002; Brotman et al., 2014; Wagener et al., 2014), and 

some information is known about the types of risks associated with calving (Murray et al., 2016; 

Wenker et al., 2022), but the combined knowledge of the generational effects of sire and dam 

reproductive bacterial communities on calf health is lacking. 

Generally, the study of bacterial communities in the reproductive tract of cattle has shown 

there are some members typically found in both the bull and the cow. However, as more 

information is obtained about the differences in bull semen, as well as uterine and vaginal bacterial 

communities, additional improvements can be made to breeding programs and cow-calf operations 

to reduce the incidence of disease, morbidity, and mortality. 

6.1.2 Supplementation of soluble fiber in the piglet diet increases bacteria associated with 

short-chain fatty acid production 

Weaning is a time of immense stress for animals. Not only does the diet change from liquid 

(milk) to solid feed, but often weaning is coupled with immediate transport to grow-finish 

operations. Supplementation of dextrin in the piglet diet pre-weaning showed the most promising 

changes in bacterial community members with differentially abundant bacteria associated with 



 

154 

short-chain fatty acid production compared to supplementation post-weaning. The abundance of 

SCFA-producing bacteria was coupled with an empirical increase in SCFA, mainly butyrate, in 

the pre-weaning supplementation groups.  

While the results of the supplementing dextrin pre- and post-weaning were not substantial, 

the study highlighted some important impacts. First, pre-weaning dextrin supplementation led to 

more favorable bacterial taxa compared to post-weaning supplementation or no supplementation. 

Potential reasons for these outcomes is the selection of bacteria that can utilize dextrin before 

weaning. While research on the effects of pre-weaning dietary supplementation in pigs is limited, 

there have been studies examining the changes that occur in the gut microbial community during 

this time. A study by Frese et al. (2015) showed the drastic shift in diversity and functional 

potential of the microbial community of nursing vs weaned pigs. By introducing fiber early, the 

microbiota that developed during the pre-weaning period likely lingered as the animals were 

switched to solid feed.  

However, it was found that supplementation of dextrin at any time resulted in better health 

outcomes and a favorable community when compared to pigs that received no dextrin at all. This 

study lends itself to future research in a few ways. The most limiting factor given the results from 

the study is how to incorporate the dextrin into the farrowing piglet diet. Dextrin supplementation 

pre-weaning was achieved by oral gavage, something not feasible in large, commercial operations. 

One potential method is to provide the supplemental dextrin in the water given to the animals. As 

dextrin is soluble in water, this would likely be the easiest to implement. In spite of the solubility, 

testing would need to be performed to determine the willingness of piglets to drink water with 

dissolved fiber compared to water alone.  

The implementation of pre-weaning fiber leads to two other avenues of research.  First, as 

there is not a practical way of controlling how much fiber an animal eats using ad libitum feeding, 

a study should be performed to determine the lowest concentration of fiber at which benefits can 

be consistently shown. Second, as mentioned above, this should be done alongside preferential 

testing to determine if there is a concentration at which the animals will not choose to eat or drink 

the supplementary feed, similar to recent studies on acceptability and preference of different 

copper supplementation (Villagómez-Estrada et al., 2020) and forages (Figueroa et al., 2020). 
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6.2 Part II – Bacterial Population Analysis 

6.2.1 Characterization and analysis of antibiotic resistance in bovine respiratory disease 

pathogens is necessary to improve our ability of determining AR in the field 

The three bovine respiratory disease (BRD) pathogens discussed in this dissertation, 

Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, are all considered 

opportunistic pathogens; they are typically only pathogenic during times of stress on the host 

immune system (Underwood et al., 2015). Though all three species are also members of the family 

Pasteurellaceae, the types of phenotypic and genotypic antibiotic resistances found differed. For 

this reason, it is imperative to continue collecting and reporting phenotypic resistance information 

alongside molecular and genomic characterizations of the individual pathogens. 

The first BRD study discussed in this dissertation attempted to utilize the similarities 

between the three BRD pathogens to determine AR from the genome and was based on a previous 

examination by Owen et al. (2017). The authors analyzed the genomes of M. haemolytica, P. 

multocida, and H. somni using resistance databases and compared the results to phenotypic 

susceptibility tests of the same isolates to answer the question, “What is the applicability of 

resistance gene databases to three bacterial pathogens commonly implicated in BRD?”  

Prediction of antibiotic resistance was improved with the machine learning method used. 

However, there were still questions as to why the resistance databases were not more predictive of 

resistance given their high accuracy in other pathogenic bacteria such as Salmonella enterica 

(Neuert et al., 2018). One potential answer is likely the most obvious; there are more studies on 

Salmonella enterica than the BRD pathogens. 

In an effort to determine if studying a single species would allow more resolution of the 

antibiotic resistance prediction, M. haemolytica was used in the second BRD study discussed in 

this dissertation. Again, there was some improvement in prediction using the machine learning 

method, however, in this case it was determined that machine learning improved the ability to 

predict resistance in those antibiotics for which the resistance database prediction was low. This 

left more questions unanswered as four of the seven tested antibiotics had  90% accuracy of 

phenotypic prediction.  

As a follow-up to looking at antibiotic resistances found within the genomes, both 

molecular and genetic serotyping should be performed. As discussed within the chapter on M. 



 

156 

haemolytica resistance prediction, there are two pathogenic serotypes and one commensal  

serotype of M. haemolytica commonly found within the respiratory tract of cattle. Genetic 

information conferring AR can easily passed between the commensal and pathogenic serotypes, 

making it worth having the knowledge of AR within the respiratory tract community. However, in 

an effort to elucidate the most likely causative agent in BRD cases, knowing the common serotype 

found within a farm, breed, or geographic region could lead to targeted vaccine development as 

described in a previous study by Andrés-Lasheras et al. (2019). 

Ultimately, the study of bacterial ecology can help improve the lives of food production 

animals through the determination of beneficial community compositions and organisms, as well 

as the detrimental members. The utilization of multi-omics approaches (e.g., using host genomics, 

microbial genomics and transcriptomics, and metabolomics) to answer animal health questions 

can provide even deeper knowledge of the impacts of diet, environment, and stress on the host 

animal. 
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APPENDIX A. CHAPTER 2 CORRELEATION TABLES 

All correlation tables in this appendix are organized as follows. First, each separate table shows the statistically 

significant (rho < -0.5 or rho > 0.5, q < 0.05) correlations of the relative abundance of one genus (OTU 1) with the 

relative abundance of other OTUs (OTU 2). Second, taxonomic classification columns listed are for OTU 2. 
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A.2. OTUs co-occurring with Fusobacterium. 
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A.3. OTUs co-occurring with Parvimonas. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu000

9 

Otu000

1 0 0 

-

0.78 

Gammaproteobacter

ia Enterobacteriales Enterobacteriaceae Escherichia 

Otu000

9 

Otu000

7 0 0 

-

0.76 Bacilli Bacillales Bacillaceae_1 Bacillus 

Otu000

9 

Otu003

8 

3.21E-

08 

1.26E-

06 

-

0.56 Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium 

Otu000

9 

Otu003

1 

1.04E-

07 

4.08E-

06 0.54 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu000

9 

Otu000

2 

3.08E-

08 

1.21E-

06 0.56 

Gammaproteobacter

ia Pasteurellales Pasteurellaceae Histophilus 

Otu000

9 

Otu002

6 

2.30E-

08 

9.03E-

07 0.56 

Epsilonproteobacteri

a 

Campylobacteral

es Campylobacteraceae Campylobacter 

Otu000

9 

Otu000

5 

6.63E-

09 

2.60E-

07 0.58 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu000

9 

Otu005

1 

5.96E-

09 

2.34E-

07 0.58 Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

Erysipelotrichaceae_unclassifi

ed 

Otu000

9 

Otu000

8 

5.41E-

09 

2.12E-

07 0.58 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu000

9 

Otu001

7 

1.03E-

09 

4.06E-

08 0.61 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichia 

Otu000

9 

Otu000

3 

8.89E-

11 

3.49E-

09 0.63 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 

Otu000

9 

Otu001

6 

2.71E-

11 

1.06E-

09 0.65 Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_unclassifie

d 
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Otu000

9 

Otu001

4 

1.90E-

11 

7.46E-

10 0.65 Bacilli Bacillales 

Bacillales_Incertae_Sedis_

XI Gemella 

Otu000

9 

Otu001

1 

1.97E-

12 

7.72E-

11 0.67 Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_unclassified 

Otu000

9 

Otu001

5 

4.44E-

16 

2.89E-

14 0.75 Actinobacteria Actinomycetales 

Actinomycetales_unclassifi

ed Actinomycetales_unclassified 

Otu000

9 

Otu002

0 0 0 0.76 Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_unclassifie

d 
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A.4. OTUs co-occurring with Porphyromonas. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu000

4 

Otu00

01 

7.50E-

07 

2.94E-

05 

-

0.51 

Gammaproteobact

eria Enterobacteriales Enterobacteriaceae Escherichia 

Otu000

4 

Otu00

08 

9.93E-

07 

3.90E-

05 0.50 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu000

4 

Otu00

70 

7.81E-

07 

3.07E-

05 0.51 Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_unclassified 

Otu003

0 

Otu00

32 

2.76E-

07 

1.08E-

05 0.53 Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

Otu000

6 

Otu00

54 

2.27E-

07 

8.91E-

06 0.53 Clostridia Clostridiales Peptostreptococcaceae Filifactor 

Otu000

6 

Otu00

48 

2.04E-

07 

8.01E-

06 0.53 Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus 

Otu005

2 

Otu00

60 

1.63E-

07 

6.40E-

06 0.53 Actinobacteria Actinomycetales Actinomycetaceae Actinomyces 

Otu000

4 

Otu00

21 

6.36E-

08 

2.50E-

06 0.55 Bacteroidia Bacteroidales 

Bacteroidales_unclassifie

d Bacteroidales_unclassified 

Otu005

2 

Otu00

12 

2.31E-

08 

9.07E-

07 0.56 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu003

9 

Otu00

30 

2.14E-

08 

8.42E-

07 0.57 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Otu003

0 

Otu00

39 

2.14E-

08 

8.42E-

07 0.57 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Otu000

4 

Otu00

18 

2.07E-

08 

8.14E-

07 0.57 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 
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Otu000

6 

Otu00

50 

1.16E-

08 

4.57E-

07 0.57 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu005

2 

Otu00

42 

1.00E-

08 

3.94E-

07 0.58 

Firmicutes_unclas

sified 

Firmicutes_unclass

ified Firmicutes_unclassified Firmicutes_unclassified 

Otu003

0 

Otu00

48 

9.82E-

09 

3.86E-

07 0.58 Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus 

Otu000

4 

Otu00

23 

7.65E-

09 

3.01E-

07 0.58 Fusobacteriia Fusobacteriales Leptotrichiaceae Streptobacillus 

Otu000

4 

Otu00

03 

3.16E-

09 

1.24E-

07 0.59 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 

Otu000

6 

Otu00

13 

3.02E-

09 

1.18E-

07 0.59 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu005

2 

Otu00

24 

2.39E-

09 

9.39E-

08 0.60 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu000

4 

Otu00

16 

2.01E-

09 

7.89E-

08 0.60 Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_unclassified 

Otu005

2 

Otu00

22 

1.35E-

09 

5.29E-

08 0.60 Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_unclassified 

Otu005

2 

Otu00

54 

9.10E-

10 

3.58E-

08 0.61 Clostridia Clostridiales Peptostreptococcaceae Filifactor 

Otu005

2 

Otu00

25 

8.24E-

10 

3.24E-

08 0.61 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 

Otu000

4 

Otu00

27 

3.14E-

10 

1.23E-

08 0.62 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 

Otu003

9 

Otu00

40 

3.07E-

10 

1.20E-

08 0.62 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 
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Otu000

4 

Otu00

55 

1.51E-

10 

5.92E-

09 0.63 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu000

4 

Otu00

35 

1.06E-

10 

4.17E-

09 0.63 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 

Otu000

4 

Otu00

54 

2.93E-

11 

1.15E-

09 0.65 Clostridia Clostridiales Peptostreptococcaceae Filifactor 

Otu000

4 

Otu00

24 

2.33E-

11 

9.14E-

10 0.65 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu003

9 

Otu00

48 

1.19E-

11 

4.67E-

10 0.66 Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus 

Otu003

0 

Otu00

13 

7.53E-

12 

2.96E-

10 0.66 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu003

0 

Otu00

50 

3.26E-

12 

1.28E-

10 0.67 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu000

4 

Otu00

42 

1.10E-

12 

4.32E-

11 0.68 

Firmicutes_unclas

sified 

Firmicutes_unclass

ified Firmicutes_unclassified Firmicutes_unclassified 

Otu003

9 

Otu00

50 

2.19E-

13 

8.59E-

12 0.70 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu000

6 

Otu00

40 

5.91E-

14 

2.55E-

12 0.71 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 

Otu003

9 

Otu00

06 

5.42E-

14 

2.38E-

12 0.71 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Otu000

6 

Otu00

39 

5.42E-

14 

2.38E-

12 0.71 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Otu000

4 

Otu00

33 

2.13E-

14 

1.11E-

12 0.72 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 
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Otu005

2 

Otu00

40 

1.47E-

14 

8.14E-

13 0.72 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonadaceae_unclassified 

Otu003

9 

Otu00

13 

4.22E-

15 

2.62E-

13 0.73 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu000

4 

Otu00

12 

8.88E-

16 

5.75E-

14 0.74 Clostridia Clostridiales Clostridiales_unclassified Clostridiales_unclassified 

Otu000

4 

Otu00

19 0 0 0.79 Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
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A.5. OTUs co-occurring with Unclassified Ruminococcaceae. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu002

0 

Otu000

1 

1.09E-

13 

4.32E-

12 

-

0.70 Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia 

Otu002

0 

Otu000

7 

7.86E-

13 

3.09E-

11 

-

0.68 Bacilli Bacillales Bacillaceae_1 Bacillus 

Otu001

6 

Otu000

1 

1.22E-

11 

4.77E-

10 

-

0.66 Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia 

Otu001

6 

Otu000

7 

4.59E-

09 

1.80E-

07 

-

0.59 Bacilli Bacillales Bacillaceae_1 Bacillus 

Otu002

0 

Otu003

8 

7.63E-

07 

3.00E-

05 

-

0.51 Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium 

Otu001

6 

Otu000

8 

8.20E-

07 

3.22E-

05 0.51 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu001

6 

Otu000

3 

6.61E-

07 

2.59E-

05 0.51 Fusobacteriia Fusobacteriales Leptotrichiaceae 

Leptotrichiaceae_unclass

ified 

Otu001

6 

Otu001

0 

2.38E-

07 

9.36E-

06 0.53 Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma 

Otu002

0 

Otu004

4 

2.10E-

07 

8.26E-

06 0.53 Fusobacteriia Fusobacteriales Leptotrichiaceae Streptobacillus 

Otu001

6 

Otu002

4 

1.13E-

07 

4.42E-

06 0.54 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu001

6 

Otu001

1 

1.02E-

07 

4.01E-

06 0.54 Clostridia Clostridiales Lachnospiraceae 

Lachnospiraceae_unclass

ified 

Otu001

6 

Otu001

8 

9.52E-

08 

3.74E-

06 0.54 Clostridia Clostridiales Clostridiales_unclassified 

Clostridiales_unclassifie

d 
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Otu002

0 

Otu001

6 

4.79E-

08 

1.88E-

06 0.55 Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_uncla

ssified 

Otu001

6 

Otu002

0 

4.79E-

08 

1.88E-

06 0.55 Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_uncla

ssified 

Otu001

6 

Otu002

1 

4.57E-

08 

1.79E-

06 0.55 Bacteroidia Bacteroidales Bacteroidales_unclassified 

Bacteroidales_unclassifi

ed 

Otu001

6 

Otu002

6 

3.60E-

08 

1.41E-

06 0.56 Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter 

Otu002

0 

Otu002

6 

1.34E-

08 

5.28E-

07 0.57 Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter 

Otu001

6 

Otu000

5 

1.26E-

08 

4.93E-

07 0.57 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu001

6 

Otu004

4 

1.17E-

08 

4.58E-

07 0.57 Fusobacteriia Fusobacteriales Leptotrichiaceae Streptobacillus 

Otu001

6 

Otu001

9 

7.25E-

09 

2.85E-

07 0.58 Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

Otu002

0 

Otu000

2 

6.42E-

09 

2.52E-

07 0.58 Gammaproteobacteria Pasteurellales Pasteurellaceae Histophilus 

Otu001

6 

Otu007

0 

5.98E-

09 

2.35E-

07 0.58 Clostridia Clostridiales Lachnospiraceae 

Lachnospiraceae_unclass

ified 

Otu001

6 

Otu002

3 

3.19E-

09 

1.25E-

07 0.59 Fusobacteriia Fusobacteriales Leptotrichiaceae Streptobacillus 

Otu001

6 

Otu000

4 

2.01E-

09 

7.89E-

08 0.60 Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

Otu001

6 

Otu003

3 

1.15E-

09 

4.52E-

08 0.60 Fusobacteriia Fusobacteriales Leptotrichiaceae 

Leptotrichiaceae_unclass

ified 
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Otu001

6 

Otu004

2 

3.68E-

10 

1.44E-

08 0.62 

Firmicutes_unclassifie

d Firmicutes_unclassified Firmicutes_unclassified Firmicutes_unclassified 

Otu002

0 

Otu000

3 

3.54E-

10 

1.39E-

08 0.62 Fusobacteriia Fusobacteriales Leptotrichiaceae 

Leptotrichiaceae_unclass

ified 

Otu002

0 

Otu001

4 

2.76E-

10 

1.08E-

08 0.62 Bacilli Bacillales 

Bacillales_Incertae_Sedis_

XI Gemella 

Otu002

0 

Otu001

7 

1.31E-

10 

5.12E-

09 0.63 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichia 

Otu001

6 

Otu005

5 

4.58E-

11 

1.80E-

09 0.64 Clostridia Clostridiales Clostridiales_unclassified 

Clostridiales_unclassifie

d 

Otu001

6 

Otu000

9 

2.71E-

11 

1.06E-

09 0.65 Clostridia Clostridiales 

Clostridiales_Incertae_Sedi

s_XI Parvimonas 

Otu002

0 

Otu005

1 

2.61E-

11 

1.03E-

09 0.65 Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

Erysipelotrichaceae_uncl

assified 

Otu001

6 

Otu011

1 

1.53E-

11 

6.02E-

10 0.65 

Firmicutes_unclassifie

d Firmicutes_unclassified Firmicutes_unclassified Firmicutes_unclassified 

Otu002

0 

Otu001

1 

1.01E-

12 

3.96E-

11 0.68 Clostridia Clostridiales Lachnospiraceae 

Lachnospiraceae_unclass

ified 

Otu002

0 

Otu001

5 0 0 0.76 Actinobacteria Actinomycetales 

Actinomycetales_unclassifi

ed 

Actinomycetales_unclass

ified 

Otu002

0 

Otu000

9 0 0 0.76 Clostridia Clostridiales 

Clostridiales_Incertae_Sedi

s_XI Parvimonas 
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A.6. OTUs co-occurring with Streptobacillus. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu0044 

Otu00

01 

3.64E-

08 

1.43E-

06 

-

0.56 

Gammaproteobacte

ria Enterobacteriales Enterobacteriaceae Escherichia 

Otu0044 

Otu00

07 

2.33E-

07 

9.17E-

06 

-

0.53 Bacilli Bacillales Bacillaceae_1 Bacillus 

Otu0044 

Otu00

18 

7.41E-

07 

2.91E-

05 0.51 Clostridia Clostridiales 

Clostridiales_unclas

sified Clostridiales_unclassified 

Otu0044 

Otu00

51 

5.63E-

07 

2.21E-

05 0.51 Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_unclassified 

Otu0044 

Otu00

20 

2.10E-

07 

8.26E-

06 0.53 Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_unclassified 

Otu0044 

Otu00

26 

8.26E-

08 

3.24E-

06 0.55 

Epsilonproteobacte

ria Campylobacterales Campylobacteraceae Campylobacter 

Otu0044 

Otu01

11 

6.36E-

08 

2.50E-

06 0.55 

Firmicutes_unclass

ified 

Firmicutes_unclass

ified 

Firmicutes_unclassif

ied Firmicutes_unclassified 

Otu0044 

Otu00

16 

1.17E-

08 

4.58E-

07 0.57 Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_unclassified 

Otu0044 

Otu00

05 

1.07E-

08 

4.21E-

07 0.57 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu0044 

Otu00

03 

4.92E-

09 

1.93E-

07 0.59 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 

Otu0044 

Otu00

10 

3.74E-

09 

1.47E-

07 0.59 Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma 

Otu0044 

Otu00

11 

1.00E-

10 

3.93E-

09 0.63 Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_unclassified 

Otu0044 

Otu00

17 

1.29E-

11 

5.06E-

10 0.66 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichia 
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A.7. OTUs co-occurring with Histophilus. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu00

02 

Otu00

01 

4.20E-

08 

1.65E-

06 

-

0.56 

Gammaproteobact

eria 

Enterobacterial

es Enterobacteriaceae Escherichia 

Otu00

02 

Otu00

11 

8.01E-

08 

3.14E-

06 0.55 Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_unclassified 

Otu00

02 

Otu00

17 

6.74E-

08 

2.65E-

06 0.55 Fusobacteriia 

Fusobacteriale

s Leptotrichiaceae Leptotrichia 

Otu00

02 

Otu00

09 

3.08E-

08 

1.21E-

06 0.56 Clostridia Clostridiales 

Clostridiales_Incertae_S

edis_XI Parvimonas 

Otu00

02 

Otu00

43 

2.98E-

08 

1.17E-

06 0.56 Mollicutes 

Mycoplasmata

les Mycoplasmataceae Ureaplasma 

Otu00

02 

Otu00

20 

6.42E-

09 

2.52E-

07 0.58 Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_unclassified 

Otu00

02 

Otu00

51 

1.75E-

09 

6.86E-

08 0.60 Erysipelotrichia 

Erysipelotricha

les Erysipelotrichaceae Erysipelotrichaceae_unclassified 

Otu00

02 

Otu00

15 

6.92E-

11 

2.72E-

09 0.64 Actinobacteria 

Actinomycetal

es 

Actinomycetales_unclass

ified Actinomycetales_unclassified 

Otu00

02 

Otu00

29 

3.30E-

11 

1.30E-

09 0.65 Fusobacteriia 

Fusobacteriale

s Leptotrichiaceae Leptotrichiaceae_unclassified 
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A.8. OTUs co-occurring with Mycoplasma. 

OTU 1 OTU 2 pval qval rho Class Family Order Genus 

Otu00

10 

Otu00

01 

2.30E-

07 

9.05E-

06 

-

0.53 Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia 

Otu00

10 

Otu00

31 

9.92E-

07 

3.89E-

05 0.50 Clostridia Clostridiales 

Clostridiales_unclassifi

ed Clostridiales_unclassified 

Otu00

10 

Otu00

18 

5.57E-

07 

2.19E-

05 0.51 Clostridia Clostridiales 

Clostridiales_unclassifi

ed Clostridiales_unclassified 

Otu00

10 

Otu00

08 

4.54E-

07 

1.78E-

05 0.52 Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

Otu00

78 

Otu00

54 

2.72E-

07 

1.07E-

05 0.53 Clostridia Clostridiales Peptostreptococcaceae Filifactor 

Otu00

10 

Otu00

16 

2.38E-

07 

9.36E-

06 0.53 Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_unclassified 

Otu00

78 

Otu00

33 

1.20E-

07 

4.73E-

06 0.54 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 

Otu00

10 

Otu00

03 

6.36E-

08 

2.50E-

06 0.55 Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichiaceae_unclassified 

Otu00

78 

Otu00

42 

5.12E-

08 

2.01E-

06 0.55 Firmicutes_unclassified Firmicutes_unclassified Firmicutes_unclassified Firmicutes_unclassified 

Otu00

10 

Otu00

44 

3.74E-

09 

1.47E-

07 0.59 Fusobacteriia Fusobacteriales Leptotrichiaceae Streptobacillus 
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APPENDIX B. CHAPTER 4 SUPPLEMENTARY TABLES AND FIGURES 

B.1. Assembly statistics for Purdue ADDL isolates 

Species Isolate Contigs Coverage Total Length N50 
Max Contig 

Length 

HS A197597 17 94.61 2084808 237695 556989 

HS A198251 32 103.81 2287988 201957 323604 

HS A198252 31 103.79 2287280 163145 477970 

HS A198296 22 97.97 2158031 290280 445746 

HS B6291 18 97.81 2153613 187280 590911 

MH A194411 63 99.09 2689165 108982 339662 

MH A194414 68 99.11 2689066 108982 230838 

MH A194420 79 99.19 2692388 108963 339547 

MH A194424 68 99.17 2689916 102105 262623 

MH A196038 62 96.96 2625639 102146 339528 

MH A198447 75 96.80 2627581 102098 339547 

PM A193010 25 105.07 2318066 216932 537536 

PM A196291 36 111.25 2453934 199122 356656 

PM A196714 66 211.43 4666579 285797 754889 

PM A197897 24 107.60 2373074 206593 423786 

PM A198602 22 105.49 2323030 194751 423790 

PM A198640 15 100.78 2218602 534196 608605 

PM A199107 39 109.54 2415739 198905 318006 
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B.2. Minimum inhibitory concentrations of antibiotics for Purdue PA isolates. All concentrations in mg/mL 
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A193010 P. multocida 0.25 0.25 8 0.12 0.12 0.25 2 8 0.12 8 256 8 2 2 8 8 

A194411 M. haemolytica 0.5 0.25 16 1 2 8 16 32 1 64 256 8 16 2 64 32 

A194414 M. haemolytica 0.5 0.25 16 1 2 8 16 32 1 64 256 8 16 2 64 32 

A194420 M. haemolytica 16 0.25 16 1 2 8 16 32 8 64 256 16 16 2 64 32 

A194424 M. haemolytica 0.5 0.25 16 1 2 8 16 32 4 64 256 8 16 2 64 32 

A196038 M. haemolytica 0.25 0.25 8 0.12 0.12 0.5 2 4 0.12 32 256 8 4 2 8 32 

A196291 P. multocida 0.25 0.25 8 0.12 0.12 0.25 2 32 0.12 64 256 16 2 2 8 16 

A196714 P. multocida 16 0.5 16 1 2 8 2 32 8 64 256 32 16 2 64 32 

A197597 H. somni 0.25 0.25 1 0.12 0.12 0.25 4 16 0.12 16 256 2 4 2 8 4 

A197897 P. multocida 0.25 0.25 8 0.12 0.25 0.25 4 8 0.12 8 256 8 2 2 8 8 

A198251 H. somni 0.25 0.25 2 1 1 1 4 32 0.12 64 256 1 8 2 16 2 

A198252 H. somni 0.25 0.25 16 1 1 2 4 32 0.12 64 256 1 16 2 32 4 

A198296 H. somni 0.25 0.25 1 0.12 0.12 0.5 8 32 0.12 16 256 2 4 2 8 4 

A198447 M. haemolytica 0.25 0.25 8 0.12 0.12 0.5 2 4 0.25 16 256 8 4 2 8 32 

A198602 P. multocida 0.25 0.25 0.25 0.12 0.12 0.25 2 32 0.12 8 256 1 2 2 8 4 

A198640 P. multocida 0.25 0.25 16 0.12 0.12 0.5 2 4 0.12 16 256 16 8 2 8 32 

A199107 P. multocida 0.25 0.25 16 0.12 0.12 0.25 4 32 0.12 64 256 16 4 2 8 16 

B6291 H. somni 0.25 0.25 1 0.12 0.12 0.25 16 32 0.12 32 256 2 4 2 8 4 
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B.3. Sequence information for Rule alignments. Length of region refers to length of filtered 

alignment (Reference) or rule match (Region). 

 Length of region % Similarity to alignment % Isolates with matches 

Danofloxacin, 0.5mg    

Rule 1 - Presence 
Region 1 61 97-100% 100% 

Reference 61   

Rule 2 - Absence 
Region 1 62 82-100% 100.00% 

Reference 62   
Tilmicosin, 16 mg    

Rule 1 - Absence 

Region 1 71 95-100% 96% 

Region 2 34 91-100% 96% 

Region 3 40 95-100% 96% 

Reference 744   
Tulathromycin, 32 mg    

Rule 1 - Presence 
Region 1 50 98-100% 100% 

Reference 50   

Rule 2 - Absence 
Region 1 60 100% 42% 

Reference 60   
Ampicillin, 16 mg    

Rule 1 - Presence 
Region 1 47 100% 97% 

Reference 47   

Rule 2 - Presence 

Region 1 67 100% 95% 

Region 2 61 96-100% 100% 

Reference 128   
Clindamycin, 8mg    

Rule 1 - Absence 

Region 1 61 100% 100% 

Region 2 41 100% 100% 

Reference 705   

Rule 2 - Presence 
Region 1 32 87-100% 100% 

Reference 32   
Penicillin, 1 mg    

Rule 1 - Presence 
Region 1 62 55-100% 100% 

Reference 62   
Tiamulin, 8 mg    

Rule 1 - Absence 

Region 1 7369 10-96% 100% 

Region 2 5148 27-60% 100% 

Reference Several regions   



 

 

1
8
0
 

B.4. Antibiotic resistance genes per isolate. ‘+’: gene present in isolate; ‘-‘: gene absent from isolate. MH: Mannheimia haemolytica; 

PM: Pasteurella multocida; HS: Histophilus somni; PA: Purdue ADDL isolates; OA: Owen isolates 

   MLS Phenicol Tetracycline Aminoglycosides Trimpethoprim Sulfonamide Beta-lactam 
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A193010 PM PA - - - - - - - - - - - - - - - - - - 

A194411 MH PA + - + + + - + - + + + + + - + - + - 

A194414 MH PA + - + + + - + - + + + + + - + - + - 

A194420 MH PA + - + + + - + - + + + + + - + + + - 

A194424 MH PA + - + + + - + - + + + + + - + - + - 

A196038 MH PA - - - - - - - - - - - - - - - - - - 

A196291 PM PA - - - - - - + - + + + - - - + - - - 

A196714 PM PA - + + + + - - + + + - - - + + - - + 

A197597 HS PA - - - - - - - - - - - - - - - - - - 

A197897 PM PA - - - - - - - - - - - - - - - - - - 

A198251 HS PA + - + + + - + - + + + + - - + - + - 

A198252 HS PA + - + + + - + - + + + + - - + - + - 

A198296 HS PA - - - - + - + - + + + - - - + - - - 

A198447 MH PA - - - - - - - - - - - - - - - - - - 

A198602 PM PA + - - - - - + - + + + - - - + - - - 

A198640 PM PA - - - - - - - - - - - - - - - - - - 

A199107 PM PA - - - - - - + - + + + - - - + - - - 

B6291 HS PA - - - - - - + - + + + - - - + - - - 

ASM192945v1 MH OA - - - - - - + - + + + - - - + + - - 

ASM192946v1 PM OA + - - - - - + - + + + - - - - - - - 
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B.4. Continued MLS Phenicol Tetracycline Aminoglycoside Trimethoprim Sulfonamide Beta-lactam 
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ASM192951v1 MH OA - - - - - + + - + + + - - - - - - - 

ASM192952v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM192956v1 PM OA + - - - - - + - + - - - - - - - - - 

ASM192959v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM192964v1 MH OA - - - - - + + - + + + - - - - - - - 

ASM192965v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM192966v1 MH OA + - - - - - + - + + + - - - - - - - 

ASM192970v1 PM OA + - - - - - + - + - + - - - - - - - 

ASM192971v1 MH OA + - - - - - + - + + - - - - - - - - 

ASM192973v1 MH OA - - - - - - + - + + - - - - - - - - 

ASM192976v1 PM OA + - - - - - + - + + + - - - - - - - 

ASM192977v1 MH OA - - - - - - + - + + - - - - - + - - 

ASM192985v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM192988v1 MH OA - - - - - - + - + + + - - - - + - - 

ASM192989v1 HS OA + + - - + - + - + - - - - + - - - - 

ASM192990v1 PM OA + - - - + - + - + + + - - - + - - - 

ASM192996v1 MH OA - - - - - - + - + + - - - - - + - - 

ASM192998v1 PM OA + - - - - - + - + + + - - - - - - - 

ASM193002v1 MH OA - - - - - - + - + + + - - - - + - - 

ASM193010v1 MH OA - - - - - - + - + + + - - - - + - - 

ASM193019v1 MH OA - - - - - + + - + - - - - - - + - - 

ASM193028v1 PM OA + - - - - - + - + + + - - - + - - - 

ASM193030v1 PM OA + - - - - - + - + + + - - - - - - - 
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B.4. Continued MLS Phenicol Tetracycline Aminoglycoside Trimethoprim Sulfonamide Beta-lactam 
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ASM193032v1 MH OA - - - - - - + - + + + - - - + + - - 

ASM193036v1 MH OA + - - - + - + - + + + - - - - - - - 

ASM193038v1 PM OA + - - - - - + - + - - - - - - - - - 

ASM193040v1 PM OA + - - - + - + - + + + - - - + - - - 

ASM193044v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM193046v1 PM OA + - - - - - + - + - + - - - - - - - 

ASM193047v1 MH OA + - - - - - + - + - + - - - - - - - 

ASM193050v1 MH OA - - - - - - + - + - - - - - - + - - 

ASM193058v1 MH OA - - - - - + + - + - - - - - - - - - 

ASM193060v1 PM OA + - - - + - + - + + + - - - + - - - 

ASM193061v1 MH OA - - - - - - + - + + + - - - + + - - 

ASM193062v1 MH OA - - - - - - + - + - - - - - - + - - 

ASM193068v1 MH OA - - - - - - + - + - - - - - - + - - 

ASM193069v1 MH OA - - - - - - + - + - + - - - - + - - 

ASM193070v1 PM OA + - - - + - + - + + + - - - + - - - 

ASM193073v1 MH OA + - - - + - + - + + + - - - + - - - 

ASM193076v1 PM OA + - - - - - + - + + + - - - - - - - 

ASM193077v1 HS OA + - - - + - + - + - - - - + - - - - 

ASM193078v1 HS OA + + - - - - + - + - - - - + - - - - 

ASM193082v1 HS OA - - - - - - - - - - - - - - - - - - 

ASM193084v1 MH OA - - - - - - + - + + + - - - + + - - 

ASM193087v1 PM OA + - - - - - + - + - + - - - - - - - 

ASM193089v1 PM OA + - - - - - + - + - - - - - - - - - 
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B.4. Continued MLS Phenicol Tetracycline Aminoglycoside Trimethoprim Sulfonamide Beta-lactam 
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ASM193092v1 PM OA + - - - - - + - + + + - - - - - - - 

ASM193093v1 MH OA - - - - - - + - + - - - - - - + - - 

ASM193096v1 PM OA + - - - - - + - + - - - - - - - - - 

ASM193097v1 HS OA - - - - - - + + + + + - - - + - - - 

ASM193102v1 HS OA + + - - - - + - + + - - - + - - - - 

ASM193103v1 HS OA + + - - - - + - + - - - - + - - - - 

ASM193104v1 HS OA + + - - + - + - + - - - - + - - - - 

ASM193108v1 HS OA + + - - + - + - + - - - - + - - - - 

ASM193109v1 HS OA - - - - - - - + + - - - - - - - - - 

ASM193123v1 PM OA + - - - - - + - + + + - - - - - - - 

ASM193126v1 PM OA + - - - - - + - + + - - - - - - - - 

ASM193134v1 MH OA - - - - - - + - + + + - - - - + - - 

ASM193136v1 MH OA - - - - - - + - + + + - - - + + - - 

ASM193137v1 HS OA - - - - - - - + + + - - - - - - - - 

ASM193141v1 HS OA - - - - - - - + + + + - - - - - - - 

ASM193144v1 HS OA + + - - - - + - + - - - - + - - - - 
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B.5. Annotations for Rule rulesets. Functional annotation of region refers to BLAST annotation of filtered alignment (BLAST 

reference) or RAST annotation of isolate match (Region) 

Danofloxacin, 0.5mg Functional annotation of region Interesting Surrounding genes  

Rule 1 – 

Presence 

Region 1 mobile element protein 
Integrase, APH genes, sul2, floR, 

type 4 pilus/sec system 
Several found as only CDS on contig 

BLAST Reference 
IS30-like element ISApl1 family 

transposase 

Integrase, APH genes, 

aminopenicillin acyl-transferase 
Pasteurellaceae other than MH, PM, HS 

Rule 2 – 

Absence 

Region 1 
UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 

Stress proteins and ABC 

transporters 
Hits with e-values 10^-4 (MH) to 10^-30 (HS) 

BLAST Reference 
UDP-N-acetylglucosamine 1-

carboxyvinyltransferase (MurA) 

LPS trasnporters, exoribonuclease 

gene, NADH reductase 
All references were PM 

Tilmicosin, 16 mg 
   

Rule 1 – 

Absence 

Region 1 23S 

If any surrounding genes, other 

rRNA (16S and 5S) 

E-values around 10^-33 

Region 2 23S E-values aroud 10^-13 

Region 3 23S E-values around 10^17 

BLAST Reference 23S Surrounded by tRNAs 
References are mostly other Pasteuerellaceae 

(Glaesserella, Avibacterium, Haemophilus) 

Tulathromycin, 32 mg 
   

Rule 1 – 

Presence 

Region 1 region between tetR and tetH 
integrase, 184ransposase, metal 

resistance, other ARG 
E-values around 10^-22, no hits to CDS 

BLAST Reference region between tetR and tetH ISL3, metal resistance Matches to many ICE assemblies 

Rule 2 – 

Absence 

Region 1 23S rRNA specific to Pasteurella 23S rRNA All isolates with hits were PM 

BLAST Reference 23S rRNA specific to Pasteurella 23S rRNA All references were PM 
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B.5. Continued 

Ampicillin, 16 mg 
   

Rule 1 - 

Presence 

Region 1 Histidinol transaminase 
Cell division machinery, specific 

sugar metabolism, aa synth genes 
E-values of 10^-21 

BLAST Reference Histidinol transaminase aa synth genes, metalloprotease 
Most references MH, some Bibersteinia, and 

Pasterurellaceae bacterium 

Rule 2 - 

Presence 

Region 1 
hypothetical protein, or region 

before/after/between other CDS integrases, mobile 

element/mobilization proteins 

One MH had no hit for region 1, but had a hit 

for region 2 

Region 2 mobile element protein 

BLAST Reference 
IS30-like element ISApl1 family 

transposase 

sul2, tetB, tetR, hth transcriptional 

regulator 

Most references MH, some Bibersteinia, and 

Pasterurellaceae bacterium 

Clindamycin, 4mg 
   

Rule 1 - 

Absence 

Region 1 
23S rRNA 

If any surrounding genes, other 

rRNA (16S and 5S) 

Regions matched 23S rRNA on same contig, 

often truncated 
Region 2 

BLAST Reference 23S rRNA 
other rRNA genes and replication 

genes 

References are mostly other Pasteuerellaceae 

(Glaesserella, Avibacterium, Haemophilus) 

with several HS 

Rule 2 - 

Presence 

Region 1 tRNA-Pro-TGG 
Other tRNA, aa synthesis, and 

protein metab genes 

Matched 2 copies of tRNA-Pro with anticodon 

TGG for each genome 

BLAST Reference tRNA-Pro-TGG Other tRNAs and rRNA genes 
References are mostly other Pasteuerellaceae 

(Glaesserella, Avibacterium, Haemophilus) 

Penicillin, 1 mg    

Rule 1 - 

Presence 

Region 1 Hisitidnol dehydrogenase 
membrane proteins, purine 

biosynthesis 

PM isolates matched correct gene but had high 

e-values 

BLAST Reference Histidinol dehyrogenase membrane proteins Majority of references were MH 

 

B.5. Continued    
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Tiamulin, 32 mg    

Rule 1 - 

Presence 

Region 1 CRISPR array 

LPS synth, sugar metabolism (PTS, 

LacI),  RNA pol genes, RNA 

helicase 

Repeat region only found in PM isolates 

BLAST Reference CRISPR repeat region 

LPS synth, sugar metabolism (PTS, 

LacI),  RNA pol genes, RNA 

helicase 

All references PM 
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APPENDIX C. CHAPTER 5 SUPPLEMENTARY TABLES  

C.1. Assembly statistics 

Isolate ID # contigs Max contig (bp) Total length (bp) N50 

MH001 88 339547 2681281 95744 

MH002 80 230826 2585295 87508 

MH003 101 208386 2620333 78085 

MH004 117 154831 2552581 69710 

MH005 77 339498 2612630 111021 

MH006 113 339547 2706083 85681 

MH007 107 184143 2687938 76013 

MH008 94 339548 2688989 87630 

MH009 81 339547 2651437 94189 

MH010 112 201624 2685788 57726 

MH011 489 62800 2595262 8056 

MH012 37 439203 2435732 180083 

MH013 89 333432 2680800 87630 

MH014 76 339335 2587889 102104 

MH015 89 339548 2608987 89064 

MH016 105 333410 2676824 74011 

MH017 101 339547 2687866 76225 

MH018 105 150048 2524369 62189 

MH019 59 339460 2568758 126573 

MH020 76 339309 2589273 102104 

MH021 79 339535 2582633 97035 

MH022 79 333382 2643712 97035 

MH023 99 230823 2694353 92346 

MH024 97 339334 2622499 102105 

MH025 98 339529 2594939 95378 

MH026 108 149813 2519133 64501 

MH027 93 339516 2629826 95378 

MH028 89 339546 2628628 84801 

MH029 88 333417 2661999 93126 

MH030 90 345738 2619733 95378 

MH031 81 339467 2677174 97035 

MH032 81 339534 2652343 94188 

MH033 107 155103 2526032 69701 
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C.1. continued 

Isolate ID # contigs Max contig (bp) Total length (bp) N50 

MH034 102 339511 2626503 82739 

MH035 99 331010 2675934 87635 

MH036 95 339535 2614743 95378 

MH037 88 339493 2619963 95378 

MH038 89 339496 2628160 97035 

MH039 105 330885 2608996 87640 

MH040 99 216941 2627213 95378 

MH042 86 333465 2685515 94189 

MH043 97 339511 2625181 97035 

MH044 97 339548 2627964 78313 

MH045 64 333390 2569523 126617 

MH046 85 339433 2569630 97035 

MH047 97 333476 2622612 78142 

MH048 80 230856 2624990 102104 

MH049 104 216941 2607304 82958 

MH050 102 339505 2626699 95378 

MH052 117 330944 2711544 87715 

MH053 89 330992 2657884 89205 

MH054 95 330957 2687240 95744 

MH055 92 333476 2688315 97035 

MH056 95 330903 2683535 87635 

MH057 90 330992 2657097 87635 

MH058 90 230841 2657509 89205 

MH059 92 333467 2683594 89205 

MH060 82 333324 2621609 97035 

MH061 93 330974 2684370 87715 

MH062 95 330980 2689908 95745 

MH063 88 208386 2656731 89205 

MH064 94 330949 2652165 89214 

MH065 94 330908 2688869 89214 

MH066 90 208386 2689725 89223 

MH067 76 333312 2643484 102095 

MH068 90 230932 2647843 102105 

MH069 106 330810 2650647 89184 

MH070 88 230842 2648691 102129 

MH071 101 330956 2647583 97035 
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C.1. continued 

Isolate ID # contigs Max contig (bp) Total length (bp) N50 

MH072 108 143862 2550508 66206 

MH073 110 208386 2687760 87635 

MH074 85 330966 2681643 89187 

MH075 100 333353 2624743 87640 

MH076 105 155402 2676786 68332 

MH077 83 333410 2583633 89205 

MH078 102 149132 2517053 78321 

MH079 99 330950 2622216 89250 

MH080 106 333470 2624942 82966 

MH081 85 330992 2582616 87722 

MH082 43 346448 2352287 175491 

MH083 102 149001 2517489 77688 

MH084 123 443660 4939555 86453 

MH085 90 210870 2625518 89241 

MH086 102 330938 2624683 87640 

MH087 103 185695 2516557 69643 

MH088 109 333476 2660837 89250 

MH2125 107 152771 2659536 72146 

MH2165 115 168440 2659886 55668 

MH2190 129 168440 2671976 60237 

MH2297 389 100950 2907601 32362 

MH2428 107 155255 2663675 61400 

MH2436 114 155287 2605887 74883 

MH2512 140 149596 2582071 61082 

MH2543 104 155257 2594941 93925 

MH2578 116 168439 2606708 80767 

MH2597 105 168439 2595575 80767 

MH2612 136 168440 2656249 53418 

MH2633 147 140982 2608186 60589 

MH2683 125 155288 2658889 61400 

MH2700 135 168446 2657234 60237 

MH2769 127 140982 2573893 61006 

MH2887 102 153194 2658824 73859 

MH2930 125 168440 2659136 53418 

MH2969 144 183847 2676978 56429 

MH3022 131 168440 2657638 60237 

 



 

190 

C.1. continued 

Isolate ID # contigs Max contig (bp) Total length (bp) N50 

MH3045 100 155254 2600854 91992 

MH3369 132 168441 2657754 59910 

MH23209 139 149585 2598318 56752 

MH32754 142 141405 2589936 56748 

MH232020 120 168440 2657117 73858 

MH327511 110 150867 2656656 61400 

MH327518 143 141155 2582644 50296 
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C.2. Minimum inhibitory concentrations of antibiotics for ADDL, KSU, and TAMU isolates used in machine learning model creation. 

All concentrations in mg/mL. 

AMP = ampicillin; CEFT=ceftiofur; CLIND = clindamycin; DANO = danofloxacin; ENRO = enrofloxacin; FLOR = florfenicol; GAMY 

= gamythromycin; GENT = gentamicin; NEO = neomycin; OTET = oxytetracycline; PEN = penicillin; SPEC = spectinomycin; SULFA 

= sulfadimethoxine; TET = tetracycline; TIA = tiamulin; TILD = tildipirosin; TILM = tilmicosin; TMS = 

trimethoprim/sulfamethoxazole; TULA = tulathromycin; TYL = tylosin tartrate 

Isolate 

A
M

P
 

C
E

F
T

 

C
L

IN
D

 

D
A

N
O

 

E
N

R
O

 

F
L

O
R

 

G
A

M
Y

 

G
E

N
T

 

N
E

O
 

O
T

E
T

 

P
E

N
 

S
P

E
C

 

S
U

L
F

A
 

T
E

T
 

T
IA

 

T
IL

D
 

T
IL

M
 

T
M

S
 

T
U

L
A

 

T
Y

L
 

A194411 0.5 0.25 16 1 2 8 
 

16 32 
 

1 64 256 
 

8 
 

16 2 64 32 

A194414 0.5 0.25 16 1 2 8 
 

16 32 
 

1 64 256 
 

8 
 

16 2 64 32 

A194420 16 0.25 16 1 2 8 
 

16 32 
 

8 64 256 
 

16 
 

16 2 64 32 

A194424 0.5 0.25 16 1 2 8 
 

16 32 
 

4 64 256 
 

8 
 

16 2 64 32 

A196038 0.25 0.25 8 0.12 0.12 0.5 
 

2 4 
 

0.12 32 256 
 

8 
 

4 2 8 32 

A198447 0.25 0.25 8 0.12 0.12 0.5 
 

2 4 
 

0.25 16 256 
 

8 
 

4 2 8 32 

MH001 0.25 0.25 16 1 2 8 
 

16 32 8 8 0.5 64 4 256 
 

4 8 
 

64 

MH002 0.25 0.25 16 0.12 0.12 1 
 

2 8 1 1 0.25 32 0.5 256 
 

0.5 16 
 

4 

MH004 0.25 0.25 8 0.12 0.12 0.5 
 

2 4 0.5 0.5 0.25 32 0.5 256 
 

0.5 16 
 

8 

MH006 0.25 0.25 16 1 2 8 
 

16 32 8 8 0.5 64 8 256 
 

8 8 
 

64 

MH008 0.25 0.25 16 1 2 8 
 

16 32 8 8 0.5 64 8 256 
 

8 8 
 

64 

MH009 0.25 0.25 8 1 2 1 
 

16 4 8 8 0.5 64 8 256 
 

8 8 
 

32 

MH010 16 0.5 16 1 2 8 
 

16 32 8 8 8 64 8 256 
 

8 8 
 

64 

MH011 0.25 0.25 8 0.12 0.12 0.5 
 

2 4 0.5 0.5 0.12 32 0.5 256 
 

0.5 8 
 

4 

MH012 0.25 2 4 0.5 0.5 8 
 

1 16 8 8 0.12 8 8 256 
 

8 16 
 

4 

MH013 0.25 0.25 16 1 2 8 
 

1 32 8 8 0.25 32 8 256 
 

8 8 
 

64 

MH015 0.25 0.25 8 0.12 0.12 0.5 
   

0.5 0.5 0.25 32 0.5 256 
 

0.5 16 
 

4 

MH016 0.25 0.25 16 1 2 2 
   

8 8 0.25 64 8 256 
 

8 8 
 

64 

MH018 0.25 0.25 8 0.12 0.12 0.5 
   

0.5 0.5 0.25 32 0.5 256 
 

0.5 16 
 

8 

MH019 0.25 0.25 16 0.12 0.12 0.5 
   

8 8 0.25 32 8 256 
 

8 16 
 

8 
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C.2. continued 

Isolate 
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MH021 0.25 0.25 8 0.12 0.12 1 
   

0.5 0.5 0.12 16 1 256 
 

1 16 
 

4 

MH023 16 0.25 16 1 2 8 
   

8 8 8 64 4 256 
 

4 8 
 

64 

MH025 0.25 0.25 
 

0.12 0.12 0.5 
   

0.5 0.5 0.13 32 0.5 256 
 

0.5 
  

4 

MH026 0.25 0.25 
 

0.12 0.12 0.5 
   

1 1 0.25 16 2 256 
 

2 
  

8 

MH027 0.25 0.25 
 

0.12 0.12 0.5 
   

0.5 0.5 0.12 16 1 256 
 

1 
  

4 

MH028 0.25 0.25 
 

0.12 0.12 0.5 
   

0.5 0.5 0.25 16 0.5 256 
 

0.5 
  

4 

MH029 16 0.25 
 

1 2 1 8 
    

8 64 8 256 2 8 
 

2 16 

MH031 0.5 0.25 
 

1 2 8 
   

8 8 0.5 64 4 256 
 

4 
  

64 

MH032 0.25 0.25 
 

1 2 1 
   

8 8 0.5 64 4 256 
 

4 
  

16 

MH033 1 0.25 
 

0.12 0.12 1 
   

1 1 1 16 1 256 
 

1 
  

8 

MH034 0.25 0.25 
 

0.12 0.12 1 1 
    

0.12 32 0.5 256 1 0.5 
 

1 4 

MH035 16 0.25 
 

1 2 2 8 
    

8 16 8 256 16 8 
 

16 16 

MH038 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.25 16 0.5 256 1 0.5 
 

1 4 

MH039 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.12 32 0.5 256 1 0.5 
 

1 4 

MH043 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.25 32 1 256 1 1 
 

1 8 

MH044 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.12 16 1 256 1 1 
 

1 8 

MH046 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.25 16 1 256 1 1 
 

1 4 

MH047 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.5 16 0.5 256 1 0.5 
 

1 2 

MH048 0.25 0.25 
 

0.12 0.12 1 1 
    

0.12 32 1 256 1 1 
 

1 4 

MH049 0.25 0.25 
 

0.12 0.12 0.5 1 
    

0.12 32 1 256 1 1 
 

1 8 

MH050 0.5 0.25 
 

0.12 0.12 0.5 1 
    

0.25 16 1 256 1 1 
 

1 2 

MH054 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 32 16 16 

MH055 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 32 16 16 

MH056 16 0.25 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 16 16 16 
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C.2. continued 

Isolate 
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MH057 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 8 16 16 

MH058 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 32 16 16 

MH059 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 32 16 16 

MH060 2 0.25 8 1 2 8 8 16 32 
  

4 64 8 256 16 8 16 16 16 

MH062 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 16 16 16 

MH063 16 0.5 16 1 2 4 8 16 32 
  

8 64 8 256 16 8 8 16 16 

MH064 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 32 16 16 

MH065 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 8 16 16 

MH066 16 0.5 16 1 2 8 8 16 32 
  

8 64 8 256 16 8 8 16 16 

MH067 16 0.25 8 0.12 0.12 0.5 1 2 8 
  

8 16 8 256 1 8 16 1 2 

MH069 16 0.25 8 0.12 0.12 1 1 2 8 
  

8 64 8 256 1 8 16 1 4 

MH070 16 0.25 8 0.12 0.12 0.5 1 2 16 
  

8 64 8 256 1 8 16 1 4 

MH071 8 0.25 8 0.12 0.12 0.5 1 2 16 
  

8 64 8 256 1 8 16 1 2 

MH072 0.25 0.25 8 0.12 0.12 0.5 1 1 4 
  

0.25 16 0.5 256 1 0.5 8 1 8 

MH074 16 0.25 16 1 1 2 8 2 32 
  

8 16 8 256 16 8 16 16 16 

MH075 0.25 0.25 8 0.12 0.12 0.5 2 2 8 
  

0.12 32 1 256 1 1 16 1 4 

MH076 0.25 0.25 16 1 2 8 8 16 32 
  

0.5 64 8 256 16 8 8 16 16 

MH077 0.25 0.25 16 0.12 0.12 0.5 1 2 8 
  

0.25 32 0.5 256 1 0.5 32 1 8 

MH078 0.25 0.25 8 0.12 0.12 1 4 2 4 
  

0.12 32 0.5 256 2 0.5 32 2 16 

MH079 0.25 0.25 8 0.12 0.12 0.5 1 2 8 
  

0.12 32 0.5 256 1 0.5 8 1 4 

MH081 0.25 0.25 8 0.12 0.12 0.5 1 2 8 
  

0.5 32 1 256 1 1 16 1 4 

MH082 0.25 0.25 8 0.12 0.12 0.5 1 2 8 
  

0.5 32 8 256 1 8 8 1 4 

MH083 0.25 0.25 8 0.12 0.12 0.5 1 2 4 
  

0.12 32 0.5 256 1 0.5 16 1 8 

MH084 16 8 16 0.12 0.12 8 8 2 4 
  

8 32 8 256 16 8 32 16 16 

  



 

 

1
9
4
 

C.2. continued 

Isolate 

A
M

P
 

C
E

F
T

 

C
L

IN
D

 

D
A

N
O

 

E
N

R
O

 

F
L

O
R

 

G
A

M
Y

 

G
E

N
T

 

N
E

O
 

O
T

E
T

 

P
E

N
 

S
P

E
C

 

S
U

L
F

A
 

T
E

T
 

T
IA

 

T
IL

D
 

T
IL

M
 

T
M

S
 

T
U

L
A

 

T
Y

L
 

MH085 0.25 0.25 8 0.12 0.12 0.5 1 2 4 
  

0.12 32 0.5 256 1 0.5 16 1 4 

MH086 0.25 0.25 8 0.12 0.12 1 1 2 8 
  

0.12 32 0.5 256 1 0.5 8 1 4 

MH087 0.25 0.25 8 0.12 0.12 0.5 1 1 4 
  

0.12 32 0.5 256 1 0.5 16 1 8 

MH088 0.25 0.25 16 0.5 0.5 1 1 2 8 
  

0.5 32 1 256 1 1 16 1 8 
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C.3. Sequence information for Rule alignments. Length of region refers to length of filtered alignment (Reference) or rule match (Region). 

 
 

Length of region % similarity of study isolates % Isolates with matches 

Danofloxacin 
   

*Rule 1 - 

Presence 

Region 1 36-37 97-100% 97% 

Reference 37 
  

**Rule 2 - 

Presence 

Region 1 60-61 98-100% 97% 

Reference 61 
  

Rule 3 - Absence 
Region 1 81 100% 98% 

Reference 81 
  

Rule 4 - Presence 
Region 1 51-61 83-100% 100% 

Reference 61 
  

Enrofloxacin 
   

*Rule 1 - 

Presence 

Region 1 36-37 97-100% 97% 

Reference 37 
  

**Rule 2 - 

Presence 

Region 1 60-61 98-100% 97% 

Reference 61 
  

Rule 3 - Presence 

Region 1 39-40 97-100% 100% 

Region 2 38-48 79-100% 100% 

Region 3 31-33 93-100% 100% 

Region 4 30-31 96-100% 100% 

Region 5 53-54 98-100% 100% 

Region 6 105-107 98-100% 100% 

Region 7 76-82 92-100% 100% 

Ref region 1 40 
  

Ref region 2 48 
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C.3. continued 

Enrofloxacin Length of region % similarity of study isolates % Isolates with matches 

Rule 3 - Presence 

Ref region 3 33 
  

Ref region 4 31 
  

Ref region 5 54 
  

Ref region 6 107 
  

Ref region 7 82 
  

Florfenicol 
   

*Rule 1 - 

Presence 

Region 1 36-37 97-100% 97% 

Reference 37 
  

Rule 2 - Presence 

Region 1 48-49 97-100% 97% 

Region 2 53-54 98-100% 97% 

Region 3 61 100% 96% 

Ref region 1 49 
  

Ref region 2 54 
  

Ref region 3 61 
  

Tetracycline 
   

Rule 1 - Presence 
Region 1 60-61 98-100% 91% 

Reference 61 
  

Rule 2 - Absence 

Region 1 683-684 99-100% 100% 

Region 2 401 91% 100% 

Ref region 1 684 
  

Ref region 2 436 
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C.3. continued 

Tildipirosin 
   

Rule 1 - Presence Region 1 50 100% 93% 

 Region 2 130 98-100% 93% 

 Region 3 30-37 81-100% 93% 

 Region 4 127-157 80-100% 93% 

 Region 5 127 100% 93% 

 Ref region 1 50 
  

Rule 1 - Presence 

Ref region 2 130 
  

Ref region 3 37 
  

Ref region 4 157 
  

Ref region 5 127 
  

Rule 2 - Presence 
Region 1 60-61 98-100% 93% 

Reference 61 
  

Tilmicosin 
   

*** Rule 1 - 

Absence 

Region 1 
  

100% 

Region 2 
  

100% 

Reference 
   

Rule 2 - Absence 
Region 1 57-61 93-100% 100% 

Reference 61 
  

Tulathromycin 
   

*Rule 1 - 

Presence 

Region 1 36-37 97-100% 97% 

Reference 37 
  

**** Rule 2 - 

Absence 

Region 1 
   

Reference 
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C.3. continued 

Tulathromycin 
   

Rule 3 - Presence 
Region 1 52-53 98-100% 96% 

Reference 53 
  

  



 

 

1
9
9
 

C.4. Annotations for Model rulesets. Functional annotation of region refers to BLAST annotation of filtered alignment (BLAST 

reference) or RAST annotation of isolate match (Region) 
  Functional annotation of region Interesting Surrounding genes 

 

Danofloxacin   
 

*Rule 1 - 

Presence 

Region 1 between tetR and tetH/ANT(2``)-Ia 

transposases, ANT genes, bla-OXA2, 

msreE and mphE, PFGI-1 cluster genes, 

metal-binding genes 

often duplicated on a high 

number contig 

Reference upstream of tetR tetH, other ARGs Mixture of Pasteurellaceae 

**Rule 2 - 

Presence 

Region 1 
sequence before HigA/HigB (toxin-antitoxin 

genes) 

HigA/HigB, permease, lipase, cell wall, 

ribosomal methyltransferase 

Mostly found at beginning or 

end of large contigs (>100kb) 

Reference upstream of transcriptional regulator IS481 transposase, HipA MajorityMH 

Rule 3 - 

Absence 

Region 1 sequence before transposase 

transposase, integrase, plasmid 

stabilization protein, mobile element 

protein, antirestriction protein, phage 

proteins, sig70, LPS proteins 

most had >10 copies of the 

sequence, associated with 

various CDS but always IS481-

like transposase 

Reference upstream of IS481 transposase 
adhesin, transcriptional regulator, DNA 

bidning protein 
Majority MH 

Rule 4 - 

Presence 

Region 1 DNA topoisomerase section 

sialic acid sugar isomerase, Pst permease 

genes, phosphate regulon, PTS, lysine 

synth gene aspartokinase 

Some genomes with SNP (a to 

g) in middle, one genome with 

several mismatches 

Reference DNA topoisomerase section pstSABC, Pho genes, PTS system genes Majority MH 

Enrofloxacin    

*Rule 1 - 

Presence 

Region 1 between tetR and tetH/ANT(2``)-Ia 
transposases, ANT genes, bla-OXA2, 

msreE and mphE, PFGI-1 cluster genes 

often duplicated on a high 

number contig 

Reference upstream of tetR tetH, other ARGs Mixture of Pasteurellaceae 

**Rule 2 - 

Presence 

Region 1 
sequence before HigA/HigB (toxin-antitoxin 

genes) 

HigA/HigB, permease, lipase, cell wall, 

ribosomal methyltransferase 

Mostly found at beginning or 

end of large contigs (>100kb) 

Reference upstream of transcriptional regulator IS481 transposase, HipA Majority MH 
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C.4. continued 

Functional annotation of region 

Interesting Surrounding genes 

Enrofloxacin    

Rule 3 - 

Presence  

Region 1 section of SurE 

Each region within same area 

Most had SNP (g to a) 

beginning third of match 

Region 2 Different sections of tRNA pseudouridine 

synthase TruD 

 

Region 3  

Region 4 
between TruD and triose-phosphate 

isomerase 

 

 

Region 5 beginning of triosephosphate isomerase 
Most had SNP (c to t) middle of 

the match 

Region 6 
end section of PTS mannose transporter 

subunit IID 

Most had 2 SNP (a to g, c to t) 

first 1/3, last 1/3 of match 

Region 7 
middle of PTS mannose transporter subunit 

IID 
Most had 6 SNP across match 

Ref region 1 section of SurE 

Each region within same area Majority MH 

Ref region 2 Different sections of tRNA pseudouridine 

synthase TruD Ref region 3 

Ref region 4 
between TruD and triose-phosphate 

isomerase 

Ref region 5 section of triose-phosphate isomerase 

Ref region 6 different sections of PTS mannose 

transporter subunit IID Ref region 7 

Florfenicol    

*Rule 1 - 

Presence 

Region 1 between tetR and tetH/ANT(2``)-Ia 
transposases, ANT genes, bla-OXA2, 

msreE and mphE, PFGI-1 cluster genes 

often duplicated on a high 

number contig 

Reference upstream of tetR tetH, other ARGs Mixture of Pasteurellaceae 
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C.4 continued 

 Functional annotation of region Interesting Surrounding genes 

 

Florfenicol    

Rule 2 - 

Presence 

 

Region 1 between tetR and tetH/ANT(2``)-Ia 

transposases, ANT genes, bla-OXA2, 

msreE and mphE, PFGI-1 cluster genes 

Had to use NCBI nucleotide 

sequence as no alignment could 

be made; several copies across 

genome; overlap between this 

and Rule1 

Region 2 between tetR and tetH/ANT(2``)-Ia 
often duplicated with a gap mid-

sequence 

Region 3 section of tetH  

Ref region 1 upstream of tetR other ARGs Mixture of Pasteurellaceae 

Ref region 2 upstream of tetR tetH, other ARGs 

Ref region 3 section of tetH tetR, other ARGs 

Tetracycline   
 

Rule 1 - 

Presence 

Region 1 

between hyp protein and 

exodeoxyribonuclease I or another hyp 

protein 

several hyp proteins, Na/Ala symport gene, 

TriC cycle genes or dna repair, phage genes, 

and iron transport 

duplicated 

Reference hyp protein 
RNase P RNA component class A, hyp 

proteins 

Majority MH 

Rule 2 - 

Absence 

Region 1 ISSod 13 transposase 
23S methyltransferase, FtsH, pyruvate 

dehydrog complex, various permeases 

Had to use NCBI nucleotide 

sequence as no alignment could 

be made; several copies across  

Region 2 IS1595 trasnposase 
23S methyltransferase, FtsH, pyruvate 

dehydrog complex, various permeases 

Had to use NCBI nucleotide 

sequence as no alignment could 

be made; several copies across  

Ref region 1 
many copies of region associated with IS481-

transposase 

adhesins, porins, various rRNA and hyp 

proteins 

Majority MH 

Ref region 2 
many copies of region associated with 

IS1595-transposase 

adhesins, porins, various rRNA and hyp 

proteins 

Majority MH 
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C.4 continued 

 Functional annotation of region Interesting Surrounding genes 

 

Tildipirosin   
 

Rule 1 - 

Presence 

Region 1 iron transporter permease protein 

First four regions within same contig 

containing iron transport genes, ribosomal 

proteins, OsmB, RTX toxin genes, 

macrophage infectivity potentiatior, PFGI-

1 cluster 

 

Region 2 upstream and beginning of tetR 

some had partial matches to 

regions with no tetR but tetH or 

ANT(2``)-Ia 

Region 3 between tetR and tetH/ANT(2``)-Ia 

 

Region 4 
ISL3-family transposase or generic "mobile 

element protein" 

mobile element proteins were 

often partial genes;  

Rule 1 - 

Presence 

Region 5 beginning or end of contigs 

xylulose/xylose utilization, anaerobic 

carbon utilization genes, lysine biosynth 

gene or transposase and hyp proteins 

Multiple copies, one typically 

matched contig of previous 

regions 

Ref region 1 upstream of iron ABC transporter permease hyp prot Mixture of Pasteurellaceae 

Ref region 2 upstream of tetR other ARGs 

Ref region 3 between tetR and tetH  

Ref region 4 
downstream of tetH and overlapping ISL3 

transposase 
tetH 

Ref region 5 
between hyp protein and ssDNA binding 

protein 
 

Rule 2 - 

Presence 

Region 1  hyp protein Only one CDS on contigs 

Reference between hyp protein and DDE  Majority MH 

Tilmicosin   
 

Rule 1 - 

Absence 

Region 1 
parA,parB, replicase, tRNA-Leu plasmid replication and partitioning genes 

Overlapping sections on same 

contig 
Region 2 

Reference tRNA-Leu, parA, replicase, parB various regions spanning genes Majority MH 
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C.4 continued 

 Functional annotation of region Interesting Surrounding genes 

 

Tilmicosin   
 

Rule 2 - 

Absence 

Region 1 phage tail tip host specificity J other phage tail tip genes, phage tail genes 

Often multiple, some as only 

CDS on contig. Sometimes 

contained a 3base gap and SNP 

(a to g) 

Reference incomplete host specificity phage genes Majority MH 

Tulathromycin   
 

*Rule 1 - 

Presence 

Region 1 between tetR and tetH/ANT(2``)-Ia 
transposases, ANT genes, bla-OXA2, 

msreE and mphE, PFGI-1 cluster genes 

often duplicated on a high 

number contig 

Reference upstream of tetR tetH, other ARGs Mixture of Pasteurellaceae 

Rule 2 - 

Absence 

Region 1 Need to find a way to use the model. It matches to many different regions across NCBI genomes 

Reference 
many copies of region associated with IS481-

transposase 

adhesins, porins, various rRNA and hyp 

proteins 

Majority MH 

  Functional annotation of region Interesting Surrounding genes 

 

Tulathromycin   
 

Rule 3 - 

Presence 

Region 1 upstream and beginning of Laccase CopG, NrtY, DNA topoisomerase III 

 

Reference 
overlapping metal-binding and bilirubin 

oxidase 
 Mixture of Pasteurellaceae 



 

204 

Table C.5 Isolates with multiple errors. AB = antibiotic with error; MetaClass = AST 

interpretation used in the creation of the metadata file for the specific antibiotic; Train_Test = 

whether the error was in the training or the testing group during model creation; DANO = 

danofloxacin; ENRO = enrofloxacin; FLOR = florfenicol; TET = tetracycline; TILD = 

tildipirosin; TILM = tilmicosin; TULA = tulathromycin 

Isolate AB MetaClass Train_Test 

MH012 
FLOR R Train 

TET R Train 

MH019 

DANO S Train 

ENRO S Test 

FLOR S Test 

TET R Train 

MH029 
FLOR S Train 

TULA S Train 

MH032 
FLOR S Test 

TILM S Train 

MH082 

DANO S Test 

ENRO S Train 

FLOR S Train 

TET R Train 

TULA S Train 

Isolate AB MetaClass Train_Test 

MH084 

DANO S Test 

FLOR R Test 

TET R Train 

TILD S Train 

MH088 
DANO R Test 

ENRO R Train 

MH2190 
DANO R Train 

ENRO R Train 

MH2597 

DANO S Test 

ENRO S Test 

TILM S Train 

 


